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SUMMARY 

 

Science and medicine have progressed in unfathomable ways over the 

past century. Paradoxically, as our result of our advancements in medicine we 

live in a progressively aging society where the majority of people will have 

multiple morbidities associated with senescence. The World Health Organization 

estimates that nearly 100% of the population will suffer dental maladies, which 

left untreated compound with age.  

We hope to gain new biomedical insight applicable to the advancing field 

of dental regenerative therapeutics. This dissertation reveals new dental biology 

through studying the embryology, genetics and evolution of teeth across 

patterning, morphogenesis and regeneration. We exploit an innovative model, 

the Lake Malawi cichlid fishes, to study these processes in a natural system. 

Malawi cichlids have rapidly evolved diverse species-specific dentitions, ranging 

from hundreds to thousands of teeth that represent a rainbow of shapes and 

sizes, yet Malawi cichlid species has nearly identical genomes, offering us a 

powerful genetic system. Furthermore, unlike classic vertebrate models in 

embryology such as  zebrafish, chicken or mice, cichlids have oral teeth and the 

ability to replace each tooth constantly throughout their lifetimes. 

In the first study, we break-down the process of whole de-novo tooth 

replacement in cichlids. We then explore the re-deployment of initiating gene 
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pathways later in the morphogenesis of each replacement tooth (RT). In the 

second study we investigate the co-patterning of two placode derived oral 

organs, teeth and taste buds (TBs), and uncover new genes that may modulate 

their number and size. We subsequently discover a bipotency of progenitor 

tissue to form both organs and a later plasticity to trans-fate it through 

coordination of a Wnt-BMP- Hh genetic hierarchy. In the last study, we explore 

the stem cells that are responsible for the phenomenon of lifelong cichlid tooth 

replacement. We describe a common epithelium connected to TBs and rich in 

stem cells, with a newly discovered stem cell niche at the tip of the RT. We 

uncover the transcriptomes of both organs, and through differential gene 

expression informed manipulations, coerce dental cells to display TB 

characteristics. We hypothesize that TB stem cells may be used in dental 

therapeutics.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1: Significance 

 

Roughly 25% of the human population is born with congenital defects of 

the dentition arising from genetic aberrations (Fleischmannova et al., 2008). 

While this figure is significant, a far greater number of human beings will suffer 

from dental disease arising from dental decay and selective tooth loss. In 

contrast to most vertebrates, who continuously replace their dentitions 

throughout ontogeny, humans have evolved to possess only two sets of teeth: a 

primary dentition and a successional dentition that must serve throughout 

adulthood. Although the human successional replacement tooth (RT) possesses 

limited regenerative potential in the cellular pulp chamber and periodontal 

ligament, injury to the adult tooth is largely irreversible. The fields of restorative 

and prosthodontic dentistry seek to address these congenital and adult dental 

defects. For the large part, this has been accomplished by employing synthetic 

materials such as plastics and ceramics. To better restore a healthy dentition, the 

field of regenerative dentistry alternatively looks to cell-based dental repair. 

Regenerative dentistry is a promising field aimed at replacing damaged 

oral structures with live tissues. One of the most exciting therapies of 
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regenerative dentistry lies in the possibility of replacing agenic and lost teeth 

through biomedical engineering. By transplanting cells or cell scaffolds into oral 

tissues, researchers aim to culture new teeth (Oshima et al., 2011)to achieve 

ideal dental function and aesthetic where it was once lost. To wield this 

technology, we need to understand how those tissues were formed in the first 

place. Conventional model organisms studied in developmental biology, such as 

the chicken, frog, and zebrafish, lack teeth on their oral jaws. While the capability 

of replacing the dentition is limited to one generation in humans, the mouse 

never replaces its single set of teeth. Scientists have learned a great deal from 

studying the mouse dentition. However, if scientists are to best address the 

mechanisms underlying tooth replacement in order to regenerate missing teeth, 

they must turn their research to a model with a naturally replacing dentition. 

Tooth replacement requires cells that both have some degree of potency 

and can obtain dental competence. The cells that coordinate this process must 

be either stem cells or cells in a more limited progenitor state. There has been 

keen interest in identifying the stem-cell niche(s) involved in tooth development. 

This is because these cells hold the most promise for regenerating lost dental 

tissues from a cultured germ layer. The most widely accepted data on mouse 

incisor suggest that the stem cells responsible for the constant renewal of rodent 

enamel reside in an intermediate germ layer known as the stellate reticulum 

(Harada et al., 2002; Wang et al., 2007). It has also been proposed that this 

same layer, albeit at the tip of the tooth rather than at the apices or cervical loops 



 

3 
 

as seen in the mouse, likely holds stem cells that help differentiate a RT germ in 

the gecko (Handrigan et al., 2010). 

The most promising therapeutics for addressing morbidities that arise from 

congenital, traumatic, or infectious pathology lie in the field of regenerative 

medicine. As we turn to cell-based therapies for repair of missing teeth and 

damaged oral tissues, we must look to developmental biology to understand how 

nature grew these tissues in the first place. What we know about tooth 

development or odontogenesis has been almost exclusively derived from the 

mouse. While we have learned a great deal from this system, in contrast to 

humans and most other vertebrates, the mouse lacks a successional or 

replacement set of teeth. We know relatively little about how to replace the 

dentition. To discover how nature perfected the growth of a tooth in an adult 

organism, we turn to the de-novo continuously replacing dentition of Lake Malawi 

cichlid fishes. As we move into an era where the replacement of missing or 

damaged tissues has become not only a promising therapy, but a viable 

possibility, it is imperative that we appreciate how those tissues were formed in 

the first place. With a more global health impact, we seek to identify the epithelial 

and mesenchymal stem cells responsible for the natural replacement of an adult 

organ. These findings will advance our understanding of dental stem cells so that 

we may one day design therapies based on endogenous mechanisms of repair. 
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1.2: Malawi cichlids 

We employ Lake Malawi cichlids as models of dental regeneration. Cichlid 

teeth exhibit complex shapes in tightly conserved patterns. Cichlid species may 

possess only a few unicuspid teeth, many bicuspid and tricuspid teeth together, 

or even over a thousand tricuspid teeth on their oral jaws (Fraser et al. 2008). In 

addition, Malawi cichlids constantly replace their teeth throughout ontogeny, 

enabling us to learn more about how teeth are regenerated in a natural system.  

Lake Malawi cichlids represent one of the greatest examples of adaptive 

radiation. Rapid evolution was driven by extrinsic ecological factors such as lake 

depth and levels of solar radiation combined with intrinsic factors like behavioral 

sexual selection (Wagner et al., 2012) and a genetic background replete with 

gene duplications and non-coding element divergence (Brawand et al., 2014). 

The auspicious amalgamation of extrinsic factors inherent to Lake Malawi and 

intrinsic factors inherent to cichlid biology permitted what is largely considered 

the highest known incidence of vertebrate evolution, with over 500 species 

(Turner et al., 2001) evolving in less than 2 million years (Kocher, 2004; Meyer, 

1993). Owing to this rapid rate of evolution, high phenotypic variability across 

Malawi cichlid species derives from genomes that are said to be interspecifically 

less divergent than that of laboratory strains of Danio Rerio when comparing 

nucleotide diversity (Watterson's θw = 0.26% for cichlids compared to θw = 

0.48% for zebrafish) (Loh et al., 2008).  
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Malawi cichlids therefore serve as a paradigmatic animal for studying 

evolutionary developmental biology. Classical model in embryology are often 

studied by first describing the natural state of the organism (i.e., a phenotype 

corresponding to gene expression), and then by performing a functional assay 

such as a transgenic or chemical mutagenesis to verify a hypothesized 

embryologic process. As an alternative approach, researchers have turned to 

powerful models like the three-spined stickleback (Gasterosteus aculeatus) and 

Astyanax mexicanus to compare differences between naturally occurring 

vertebrate species. Genome-wide linkage maps generated from crosses between 

larger benthic and smaller limnetic species of stickleback have revealed portions 

of chromosomes that map to traits such as body size and armor plate number 

(Peichel et al., 2001). Furthermore, positional cloning and fine-mapping between 

low-armored lake species and the ancestral heavily armored pelagic species 

reveal a migration into the lake and selection on the ancestral allele of the gene 

locus coding for Ectodysplasin (Eda) for a derived Eda allele, believed to have 

resulted from standing genetic variation (Barrett et al., 2008; Colosimo et al., 

2005). In the case of Astyanax mexicanus, hypothesized roles of Hedgehog (Hh) 

signaling in eye evolutionary development have been established by comparing 

expression differences of Hh mediators in a normal surface morph and a blind 

cave morph of the single species, which were then recapitulated by Hh factor 

overexpression (Yamamoto et al., 2004).  

The cichlid model has thus become increasingly exploited to answer new 

questions in evolutionary biology and biomedicine. Cichlids occupy a rainbow of 
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phenotypic extremes and intermediates (Figure A.1). In their short evolutionary 

history, cichlids have divergently selected for brains specialized for forebrain 

function or brains specialized for midbrain function (Sylvester et al., 2010) and 

dentitions with 50 to over 1000 teeth (Fraser et al., 2009). They have 

convergently evolved extreme phenotypes like hump heads and trident shaped 

teeth across different species within a lake as well as in sister African Great 

Lakes(Fryer and Iles, 1972). With cichlids to occupy a spectrum of morphs, 

scientists can study a myriad of “natural mutants” for a given phenotype. By 

hybridizing a species with broad, short jaws used for scraping algae 

(Labeotropheus fuelleborni, LF) to a species with longer more gracile jaws used 

for generalized feeding (Metriaclima zebra, MZ), researchers have scored 

craniofacial morphometrics and utilized Quantitative Trait Loci mapping (QTL) to 

predict differential expression of bmp4 (Albertson et al., 2005) and ptch1 (Hu and 

Albertson, 2014) linked to jaw morphology and function. This same cross has 

been further fine mapped to a region of the genome  controlling jaw length 

containing the gene lbh, which was functionally demonstrated in both zebrafish 

and frog to control migration of cranial neural crest cells (Powder et al., 2014). 

Even extreme hybridizations are possible from the most distant open water 

dwelling Utaka with rock-dwelling Mbuna (Figure A.2).  
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Figure 1.1. Composite of Malawi cichlid diversity in laboratory species. This 
figure demonstrates the range of phenotypes represented in the animals used in 

this work. 

 

Beyond mapping experiments and forward genetics approaches, methods 

for studying cichlid biology are rapidly being developed. Like other lower 

vertebrates, cichlids have immense regenerative potential and have been used to 

understand stem cell-mediated renewal, like how tooth acquire shape upon 

replacement (Fraser et al., 2013). Variation in cichlid brains and underlying 

neurogenesis are being studied to understand complex behaviors and neuronal 

disease (Fernald and Maruska, 2012; Korzan et al., 2014; Sylvester et al., 2013). 

A detailed staging system for the a species from the Cichlidae Family, Nile tilapia 

Oreochromis niloticus, has recently been described (Fujimura and Okada, 2007) 

and we have charted the ontogeny of Malawi cihlids (figure 1.1). Furthermore, 

transgenic cichlids (Farlora et al., 2009; Fujimura and Kocher, 2011; Juntti et al., 
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2013) and culture systems (Gardell et al., 2014; Mack and Tiedemann, 2013) 

have been created and more are on the way. With five published cichlid 

genomes published and annotated (Brawand et al., 2014), the cichlid is emerging 

as a premier model for studying evolution and development. 

 

Figure 1.2. Malawi cichlid ontogenetic staging series. 

 

1.3: Approach 

 In Chapter 2 of this dissertation we uncover the basic properties of cichlid 

tooth regeneration. In doing so, we highlight the relationship between gene 
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pathways that initiate and facilitate tooth replacement and are later redeployed to 

aid in morphogenesis, giving cichlid teeth their distinctive and diverse tooth 

shapes. The genetic coupling of these processes was hypothesized in a review 

shortly before the publication of this chapter (Jernvall and Thesleff, 2012). 

Mammals are unique in the sense that they develop complex shaped teeth in the 

primary dentitions. Cichlids and other fishes with shaped teeth, in contrast, have 

simple conical primary teeth and only exhibit complex shapes in successional 

teeth.  We charted odontgenesis, from the first to subsequent generations of 

cichlid RT, and employed H&E staining and PCNA immunohistochemistry (IHC) 

to break replacement tooth formation into 3 stages: initiation, encompassing 

placode or succesional lamina stages of tooth formation; differentiation, 

encompassing cap and bell stages;, and secretion, encompassing  late bell and 

secretion stages where complex shape is constructed. Next, we explored 

expression patterns of BMPs, Hhs, Wnts, FGFs, and the Notch pathway across 

these three stages, describing those factors recycled from initiation stages to 

secretion stages. Armed with a spatial and temporal map of RT gene expression, 

we manipulated all five pathways with chemical antagonists, noting which 

pathway treatments affected replacement, which affected shape, and which 

affected both. This chapter provided insight to the phenomenon of whole-

vertebrate tooth replacement, a relatively undescribed process, and how 

complex-tooth shape can be generated as a result of it.  

  In Chapter 3, we delved into the co-patterning of two oral organs, 

teeth and taste buds (TBs). Both oral organs are present in numbers of hundreds 
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to thousands and are tightly patterned in shared space of the cichlid jaw. We 

noted that the numbers of teeth and TBs anecdotally were positively correlated 

across species with divergent dentitions. We examined the initiation of these two 

organs with ISH and found that both were derived from the same embryonic 

tissue, previously considered the “odontogentic” or dental band. We then crossed 

two species with low and high numbers of each organ, respectively, and again 

performed an intercross in order to generate a QTL map of tooth and taste bud 

densities, defined as tooth number over area of jaw. F2 species exhibited a 

strong positive correlation of tooth and TB densities, suggesting genetic linkage. 

We identified several genetic candidates that may help co-pattern these organs. 

Two of which, bmper and sfrp5, new to the literature on patterning of both 

organs, were differentially expressed in the jaws of cichlids with different dental 

patterns as well as in both organs in mice. We then functionally tested the roles 

of BMP, Hh, and Wnt family members (important to forming both organs and host 

pathways to our genetic candidates in other animal models) in determining the 

oral pattern through chemical inhibition of each pathway. We identified a genetic 

hierarchy, wherein Wnts are positively correlated to the density of both teeth and 

taste buds and lie upstream of both BMPs and Hhs. The latter two pathways 

demonstrated positive roles on the promotion of tooth formation and were 

restrictive to TBs, where antagonism of these pathways led to the generation of 

ectopic TBs at the expense of teeth. This study uncovered a bi-potency of 

embryonic oral lamina to form both teeth and TB as well as a plasticity to trans-

fate epithelium from tooth to TB. These boundaries are defined by Wnt, BMP, 
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and Hh pathways and two new genetic candidates, bmper and sfrp5, may 

modulate them, a vestigial hierarchy on placode patterning exhibited across 

vertebrates redolent of a common ancestral organ.  

 In the final study of this dissertation, Chapter 4, we investigate intriguing 

findings from the Chapters 2 and 3 related to the stem cell mediated renewal of 

cichlid RT. In chapter 2, we note that all RT examined histologically develop in 

the presence of a labial ball of cells, identified later as TBs. In Chapter 3, we 

demonstrate the shared embryonic origin of both teeth and TBs. Here we find 

through ISH that adult stem cell markers are prominent throughout RT and TB 

epithelium and that the two organs maintain a connection through the 

succesional dental lamina. Through cell cycling pulse-chase experiments and 

double labeling with immunohistochemistry for adult stem markers, we pinpoint 

stem cell niches in the oral organ renewal of cichlids and highlight a new 

population of stem cells at the tip of cichlid replacement teeth, a population not 

described in the literature. We then perform RNA-sequencing and note 

differential expression between RT and TB bearing oral epithelium, with BMPs 

being biased to RT, a finding we confirm with ISH. Lastly, we down-regulate 

BMPs in-vivo with small molecule chemical treatments, resulting in cells within 

the RT that display TB characteristics. We conclude from the culmination of 

these chapters that TB stem cells have clinical potential for use in the 

bioengineering of cell based tooth repair. Taken together, our work in cichlids 

uncovers a plethora of new developmental, genetic, and evolutionary data on the 

generation of teeth. 
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CHAPTER 2 
 

 

COMMON DEVELOPMENTAL PATHWAYS LINK TOOTH SHAPE TO 
REGENERATION 

 

 

 

2.1: Abstract 

In many non-mammalian vertebrates, adult dentitions result from cyclical 

rounds of tooth regeneration wherein simple unicuspid teeth are replaced by 

more complex forms. Therefore and by contrast to mammalian models, the 

numerical majority of vertebrate teeth develop shape during the process of 

replacement. Here, we exploit the dental diversity of Lake Malawi cichlid fishes to 

ask how vertebrates generally replace their dentition and in turn how this process 

acts to influence resulting tooth morphologies. First, we used 

immunohistochemistry to chart organogenesis of continually replacing cichlid 

teeth and discovered an epithelial down-growth that initiates the replacement 

cycle via a labial proliferation bias. Next, we identified sets of co-expressed 

genes from common pathways active during de novo, lifelong tooth replacement 

and tooth morphogenesis. Of note, we found two distinct epithelial cell 

populations, expressing markers of dental competence and cell potency, which 

may be responsible for tooth regeneration. Related gene sets were 

simultaneously active in putative signaling centers associated with the 

differentiation of replacement teeth with complex shapes. Finally, we manipulated 
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targeted pathways (BMP, FGF, Hh, Notch, Wnt/β-catenin) in vivo with small 

molecules and demonstrated dose-dependent effects on both tooth replacement 

and tooth shape. Our data suggest that the processes of tooth regeneration and 

tooth shape morphogenesis are integrated via a common set of molecular 

signals. This linkage has subsequently been lost or decoupled in mammalian 

dentitions where complex tooth shapes develop in first generation dentitions that 

lack the capacity for lifelong replacement. Our dissection of the molecular 

mechanics of vertebrate tooth replacement coupled to complex shape pinpoints 

aspects of odontogenesis that might be re-evolved in the lab to solve problems in 

regenerative dentistry. 

 

2.2: Introduction 

Vertebrate animals differ in their capacity to renew and regenerate body 

parts. Various lineages have retained or evolved the ability to regenerate nervous 

systems (Kizil et al., 2011 and Kroehne et al., 2011), limbs (Kragl et al., 

2009 and Nacu and Tanaka, 2011), fins (Jaźwińska et al., 2007 and Singh et al., 

2012) and tails (Echeverri and Tanaka, 2002 and Lin and Slack, 2008), internal 

organs like the heart (Wang et al., 2011), as well as iterative elements like hairs, 

scales, taste buds and teeth (Chang et al., 2009, Harada et al., 1999, Plikus et 

al., 2011, Plikus et al., 2008 and Wang et al., 2007). Developmental biologists 

are captivated by regeneration because the process may recycle well-known 

mechanisms of embryonic patterning and likely involves the deployment of stem 
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cells in post-embryonic tissues. Precisely because humans (and more generally 

mammals) lose regenerative capacity with age, keen biomedical interest revolves 

around natural instances of regeneration and renewal from stem cells as 

exemplars for cellular reprogramming (Christen et al., 2010). 

In many examples of animal regeneration, the trigger or impetus is 

external and unpredictable. A lizard can re-grow a tail after escaping a predator; 

such an interaction may be probable, but not necessary over an individual's 

lifetime. By contrast, predictable programs characterize other cases of 

regeneration, like the shedding of hair, teeth, scales and feathers. For instance, 

adult cichlid fishes replace each tooth in the oral jaw approximately every 30–100 

days (Tuisku and Hildebrand, 1994). When programmed regeneration is coupled 

with the functional requirement to maintain a particular organization of elements 

(feathers for flight, scales for swimming, teeth for mastication), the developmental 

phenomena of patterning, morphogenesis and renewal, often studied 

independently, must be deeply integrated across space and time. In most 

systems, biologists do not understand how this integration is achieved. 

Vertebrate dentitions represent a seemingly apposite system in which to 

decipher how individual organs (teeth) develop complex shapes and inter-unit 

patterns, while simultaneously exhibiting programmed regeneration. Many 

vertebrates possess teeth in multiple rows on multiple elements of the oral jaw 

and pharyngeal region that are continuously replaced throughout life. In ray-

finned fishes, dipnoans and urodeles, first generation teeth are small and simple 

unicuspids lacking blood vessels and nerves; therefore the numerical majority of 
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vertebrate teeth develop shape and increased complexity (e.g., size, curvature, 

cusps) through replacement (Sire et al., 2002). Teeth likely arose in jawless 

vertebrates more than half a billion years ago (Fraser et al., 2009; Smith, 2003; 

Smith and Coates, 1998 and Smith and Coates, 2000)—there is thus a long 

evolutionary record and broad phylogenetic distribution to bolster our 

understanding of how patterned dentitions are likewise regenerated. 

The fact that we know very little about the coupled patterning, 

morphogenesis and regeneration of vertebrate dentitions can be partly explained 

by the peculiar biology of teeth in the mouse model. The mouse dentition is 

comprised of one incisor and three molars, in a single row, on each left and right 

quadrant of the upper and lower jaws. Incisors are separated in space from 

molars by a toothless diastema, and the early patterning of the incisor and molar 

domains is well understood (Tucker and Sharpe, 2004). Molars develop complex 

three-dimensional shape while incisors generally do not (Jernvall et al., 2000). 

Incisors exhibit self-renewal via continuous deposition of enamel on the labial 

surface, supported by a stem cell niche biased to the labial cervical loop (Harada 

et al., 1999 and Wang et al., 2007); molars lack this potential. Thus, mouse 

molars are models of complex morphogenesis. Classic studies have 

demonstrated how molars develop under the influence of well-known signaling 

pathways (e.g., BMP, FGF, Hh, Wnt and Eda) and downstream transcription 

factors (i.e., Pitx, Pax, Dlx, Barx, Msx) (Åberg et al., 1997, Bei and Maas, 1998, 

Chen et al., 1996, Dassule et al., 2000, Jernvall et al., 1994, Peters et al., 1998, 

Sarkar and Sharpe, 1999, Sharpe, 1995 and Thesleff and Sharpe, 1997). Recent 
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reports point to genes that may couple these developmental pathways in the 

molar field (Ahn et al., 2010 and Cho et al., 2011). By contrast, incisors are 

models of stem-based continuous growth, with context-dependent function of 

common pathways (BMP, FGF, Wnt) as well as novel roles for additional factors 

(Notch (Felszeghy et al., 2010); Follistatin (Wang et al., 2007)). Notably, neither 

molars nor incisors are replaced over mouse ontogeny. 

Because mice do not replace their teeth, a set of new models for dental 

regeneration has emerged. This includes the shrew (Järvinen et al., 2008), ferret 

(Järvinen et al., 2009), zebrafish (Huysseune, 2006) and a cadre of reptiles 

(Handrigan et al., 2010). Taken together, studies suggest that tooth replacement 

requires (i) an epithelial connection between the functional tooth and its 

successor, known as successional lamina (SL), which is borne from (ii) putative 

dental/epithelial stem cells capable of forming a replacement tooth de novo. One 

limitation of these new replacement models is that the dentitions in question are 

relatively simple: few teeth total, often in a single row, with each tooth generally 

conical or spatulate in shape. 

In this report, we ask how complex dentitions are shaped as they are 

replaced, using cichlid fishes from Lake Malawi, East Africa. The main advantage 

of this system is the sheer dental diversity among closely related species (Fraser 

et al., 2008 and Streelman et al., 2003). Most cichlids endemic to Lake Malawi 

have evolved from a common ancestor in the last 500,000 years; their genomes 

are highly similar (e.g., less nucleotide diversity than observed in lab strains of 

zebrafish) and species share genetic polymorphism (Loh et al., 2008). Against 
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this backdrop of genomic similarity, dental patterns and shapes vary 

considerably. For example, Cynotilapia afra, a rock-dwelling planktivore, 

possesses a small number of large, widely spaced, conical teeth in 2–3 rows 

while species of the algal-brushing rock-dweller genus Petrotilapia exhibit 

hundreds of small, tightly packed tricuspid teeth in 10–15 rows. The particular 

tooth pattern, that is the size and spacing of teeth as well as the extent of the 

tooth field in the jaw, is set with the initiation of the first generation dentition, prior 

to the development of tooth shapes ( Fraser et al., 2008). As in other cichlids, 

these first generation teeth are small conical unicuspids and are not innervated ( 

Huysseune and Sire, 1997). Complex shape and innervation are thus the 

phenomenological consequence of tooth replacement in cichlids, with adult 

shapes developing during multiple, early rounds of replacement ( Streelman et 

al., 2003) into patterns set during initiation ( Fraser et al., 2008). 

We used a combination of immunohistochemistry and in situ hybridization, 

at multiple stages of development, to identify cell populations, putative signaling 

centers and molecular pathways involved in cichlid tooth replacement and 

morphogenesis. Armed with this information, we employed a set of small 

molecules to manipulate these pathways in vivo, documenting effects of 

treatment on both shape and replacement. The key finding from this study is that 

the processes of tooth morphogenesis and replacement are linked by common 

pathways that likely control the balance between growth, proliferation and 

differentiation as cusps form on tooth tips and as new dental organs initiate 

development from their predecessors. We suggest that this coupling of 
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morphogenesis and lifelong regeneration is the ancestral vertebrate condition, 

largely lost or decoupled in the mammalian dentition. Our integrative 

understanding of continuous tooth replacement from nature may pinpoint 

features of the process to be re-evolved by bioengineers. 

 

2.3: Materials and methods 

2.3.1: Fish husbandry 

Species of Lake Malawi cichlids used in this analysis include: Aulonocara 

jacobfreibergi [AJ], Cynotilapia afra [CA], Labeotropheus fuelleborni [LF], 

Mchenga conophoros [MC], Metriaclima zebra [MZ], Petrotilapia chitimba [PC] 

Petrotilapia tridentiger [PT] and Pseudotropheus lombardoi (PL). These species 

were chosen to represent diversity in feeding behavior, adult tooth shape and 

ontogeny of tooth replacement (Table S1). Adult cichlids were maintained in re-

circulating aquarium systems at 28 °C (GIT). Fertilized embryos were removed 

from the mouths of brooding females and staged in days post-fertilization (dpf) 

according to a developmental series from the Nile Tilapia (Fujimura and Okada, 

2007). Embryos/fry were raised to desired stages for chemical treatment or 

anesthetized with MS-222 for fixation in 4% paraformaldehyde followed by 

dehydration into MeOH. 
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2.3.2: Immunohistochemistry 

Embryos were fixed in 10% NBF for 24 h, dehydrated through ethanol, 

cleared with butanol and embedded in paraffin. Embryos were sectioned at 

10 μm and H&E stained using a Leica Autostainer XL. For proliferation assays, 

cichlid fry undergoing active dental replacement were incubated in 5-Bromo-2-

deoxy-uridine (BrdU) for periods of 6–8 h for nucleic acid incorporation. Fry were 

immediately anesthetized (MS-222), fixed, and paraffin sectioned at 10 μm. We 

then applied the 5-Bromo-2-deoxy-uridine Labeling and Detection Kit II (Roche) 

according to manufacturer's specifications (secondary antibody conjugated with 

AP activated NBT/BCIP, Roche). Similarly, PCNA staining was carried out on 

paraffin sections of wild type embryos according to manufacturer instructions 

(PCNA staining kit, Invitrogen), with DAB color reaction. 

2.3.3: In-situ hybridization 

Digoxigenin-labeled antisense riboprobes were prepared using partial 

cichlid genome assemblies (Loh et al., 2008) as well as recently assembled 

tilapia and MZ genomes (https://www.broadinstitute.org/ftp/pub/assemblies/fish). 

DNA sequence diversity across the Lake Malawi assemblage is 0.28%; less than 

reported values for laboratory strains of zebrafish. cDNA sequences for probe 

design have been deposited in GenBank (accession numbers KC633829—

KC633848). ISH was performed according to previously published protocols 

(Fraser et al., 2008 and Fraser et al., 2009). Embryos were re-hydrated from 

MeOH and ISH was carried out in whole-mount. Digoxigenin-labeled antisense 
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riboprobes were generated using the Riboprobe System Sp6/T7 kit (Promega). 

AP-conjugated anti-dig antibodies were visualized at the end of color reaction 

(NBT/BCIP; Roche) using light microscopy. Embryos were embedded in chick 

albumin cross-fixed with 2.5% gluteraldehyde and post-fixed with 4% PFA. A 

Leica Microsystems VT1000 vibratome was used to cut sections at 15–25 μm. 

Histological sections were then mounted with glycerin and imaged at 10–63× 

using a Leica DM2500 compound microscope. 

2.2.4: Treatment with small molecules 

Stock solutions were prepared for each chemical treatment experiment 

using Dimethyl Sulfoxide (DMSO, MP Biomedicals) or water as a solvent. Stock 

solutions were as follows: 5 mM Cyclopamine (LC Laboratories) in DMSO, 10 μm 

DAPT (Tocris) in DMSO, 10 μm Dorsomorphin (Sigma-Alrich) in DMSO, 5 mM 

LiCl (Alexis Biochem) in H2O, and 50 μm SU5402 (see acknowledgments) in 

DMSO. Cichlids were raised to appropriate stages for treatment and embryos 

from single broods were split into small molecule and solvent control groups. All 

treatments were designed to evaluate perturbations to complete, fully shaped 

adult first-row dentitions; because species differ in the number of replacement 

generations (and hence time) until adult first-row tooth shape is established 

(Table S1), the onset of treatment varied by species accordingly (e.g., as early as 

40 dpf in LF). Treatment doses varied across chemicals to produce dental 

phenotypes without gross anodontia or fatality. All chemical and control 

experiments were performed in Erlenmeyer flasks at 28 °C in an oscillating 

platform culture incubator (Barnstead Lab-Line Max 4000). After treatment, fry 
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were washed extensively with fresh fish water and raised for 14 days prior to 

sacrifice, fixation, clearing and staining. 

2.2.5: Clearing and staining 

Fry previously fixed in PFA were washed with DEPC-H2O for thirty 

minutes. Specimens were then placed into a 1% trypsin solution for one hour. 

After protein digest, calcified tissues were stained using Alizarin red S solution 

(1 g/50 mL KOH). Staining averaged 30 min, with larger specimen requiring a 

longer stain time. Once the tips of the pelvic fins stained red, fry were moved to a 

2% KOH solution for a period of 24 h. Cleared and stained fishes were then 

graded into 100% glycerin, with thymol as a biocide. 

 

2.4: Results 

2.4.1: One-for-one replacement of cichlid teeth 

We explored the histological events surrounding cichlid tooth replacement 

using both standard staining methods (i.e., hemotoxalin and eosin), as well as 

antibodies to proliferating cell nuclear antigen (PCNA) and incorporated 

bromodeoxyuridine (5-bromo-2′-deoxyuridine, BrdU). We present data for the 

oral dentition only, but general observations hold for oral and pharyngeal jaws, 

both of which house teeth in cichlids ( Fraser et al., 2009). Throughout, we divide 

our description into three stages of replacement tooth development: (1) initiation, 

(2) cellular differentiation, and (3) secretion. 
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Cichlids exhibit intramedullary (inside the jawbone; i.e., intraosseous 

(Trapani, 2001)) replacement, similar to humans but distinct from other animals 

like reptiles (Handrigan et al., 2010), zebrafish (Danio rerio) ( Huysseune, 2006) 

and rainbow trout (Oncorhynchus mykiss) ( Fraser et al., 2006) where 

replacement germs develop in an extramedullary location. Cichlids replace teeth 

in one-for-one fashion like some other bony fishes ( Bemis et al., 2005, Fraser et 

al., 2006, Kerr, 1960 and Motta, 1984); each functional tooth serves as a 

placeholder, as well as a supply of epithelial cells, for subsequent replacement 

by a single successor tooth—a process repeated over ontogeny. This is different 

from the many-for-one replacement system as observed in sharks ( Fraser and 

Smith, 2011 and Smith et al., 2009), and pufferfish ( Fraser et al., 2012), where 

many replacements form in advance of function for each tooth family. 

Labial epithelial cells associated with developing first generation teeth 

form each successional lamina (SL, Fig. 1A–C), and together with contributions 

from labial oral epithelium, initiate the continued supply of tooth replacements. 

Using BrdU and PCNA, we found that the primary stage of SL invagination is 

marked by high rates of proliferation ( Fig. 1B, C). When the lamina extends 

further below the existing primary tooth, proliferation continues and the lamina 

interacts with the receptive neural crest-derived mesenchyme to begin the 

process of replacement tooth organ development. 
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Figure 2.1. Dynamics of shape and (self-) renewal in mouse and cichlid 
dentitions. In the mouse, the processes of self-renewal in incisors (M1) and 
complex shape morphogenesis in molars (M2) are decoupled in space and time. 
By contrast, cichlid replacement teeth form complex shapes as they regenerate 
(C1–C3). Cichlid tooth replacement can be broken into three stages: initiation (A–
C), cellular differentiation (D–F) and secretion (G–I). We illustrate these stages 
by H&E histology (A, D, G); BrdU (B, E, H) and PCNA (C, F, I) 
immunohistochemistry. First generation teeth are outlined in green and 
replacement dental epithelium in red. These are paraffin sections in sagittal plane 
at 10 μm thickness, imaged at 63× magnification. (A, D, G)—Metriaclima zebra; 
(B, C, E, F, H, I)—Labeotropheus fuelleborni. 
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 As the epithelial SL interacts with the underlying mesenchyme, the bone 

surrounding and attached to the predecessor tooth begins to remodel and 

encases the newly initiated replacement organ (Fig. 1D–F) in a crypt that will 

house it throughout maturation. We observe that the oral epithelium and SL 

remain connected to the developing replacement tooth by a thin epithelial stream 

of cells, until eruption of the replacement (Fig. 1D–I). The bone forms around this 

‘connector’ cell stream (the gubernacular cord (Avery and Steele, 2000)) leaving 

small pores called gubernacular canals, observed across vertebrates from fishes 

to humans (Avery and Steele, 2000 and Huysseune, 2000). The SL, through the 

gubernacular canal, maintains a link to oral epithelia and continuity between the 

extramedullary epithelium and the intramedullary (crypt) mesenchyme. 

The replacement tooth germ transitions to stages of cellular differentiation 

as the mesenchyme condenses into the dental papilla (Fig. 1D, F). The 

epithelium contorts into a dental bud, followed by an inward folding of the 

epithelium to form the cap stage tooth—the first stage of the tooth-shaping 

process. This epithelial folding leads to the formation of three cell layers: the 

inner dental epithelium (IDE), outer dental epithelium (ODE) (Fraser et al., 2008), 

and an intermediate layer of cells between the IDE and ODE (Fig. S1), putatively 

analogous to the stellate reticulum of mammalian teeth (Huysseune and Thesleff, 

2004 and Wang et al., 2007). Epithelial and mesenchymal cells differentiate at 

the cap to bell transition and form enameloid-secreting ameloblasts from the IDE 

and dentine-secreting odontoblasts from the dental papilla. As the replacement 
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tooth transitions from bud to cap and from cap to bell stages, we note three main 

sites of cell proliferation: at the tip of the developing replacement tooth, and in 

both cervical loops. These areas have similarly been identified in the gecko as 

regions of proliferation for hard tissue-secreting (enameloid and dentin) cells 

(Handrigan et al., 2010). 

During terminal stages of cichlid replacement tooth development, the 

ameloblasts and odontoblasts secrete their respective hard tissue matrices. The 

ameloblasts continue to elongate as columnar cells and the bony crypt is 

remodeled to accommodate the growing tooth. As the eruption process initiates, 

we find that the lamina stream (gubernacular cord) that connects the oral 

epithelium with the successional tooth begins to break down (Fig. 1G–I). BrdU 

and PCNA analyses during hard tissue secretion highlight a slight labial bias in 

proliferation at the cervical loops, presumably giving rise to additional enameloid-

secreting cells on the labial surface of the tooth ( Fig. 1E, F, I). This asymmetry 

provides evidence of spatial differences in hard tissue deposition during the 

formation of cichlid replacement teeth. 

2.4.2 Gene co-expression domains direct de novo tooth replacement 

Cichlid one-for-one tooth replacement is initiated as an epithelial 

invagination, labial to the predecessor tooth (Fig. 1). We sought to understand 

the molecular pathways that might guide this process. Because little is known 

about tooth replacement in vertebrates, we focused on pathways involved in the 

patterning and regeneration of hairs and feathers, as well as the development of 
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mouse molars and incisors. A priori, de novo tooth replacement must combine 

factors providing dental competence to the epithelium and associated 

mesenchyme, coupled with signals of cell potency. 

pitx2 is one of the earliest markers of dental-competent epithelium ( Fraser 

et al., 2008). Consistent with expectation, pitx2 expression is observed within the 

extended SL, throughout the epithelial downgrowth ( Fig. 2A). The reciprocal 

neural crest-derived ectomesenchyme condenses and expresses a set of genes, 

including transcription factors such as runx2 ( Fig. 2B), and signaling molecules 

from the Wnt and FGF pathways (e.g., wnt10a, fgf10, Fig. 2C, D). Genes of the 

BMP pathway are also recruited to the replacement tooth. The invaginating SL 

expresses bmp4 ( Fig. 2E) and bmp2 (not shown, see Fig. 3A), as does the 

reciprocal condensing ectomesenchyme; this expression is maintained 

throughout the process of lamina extension and proliferation. We note a second 

mesenchymal domain of bmp4 expression, labial to the first generation tooth and 

the SL downgrowth (blue arrowhead in Fig. 2E). The two BMP domains are 

separated in space by cells expressing osr2, a transcription factor that represses 

BMP expression in mouse dental mesenchyme ( Zhang et al., 2009) ( Fig. 2F). 

Osr2-null mice exhibit expansion of lingual BMP expression and ultimately form 

lingual supernumerary teeth. It is possible that osr2 acts similarly here, to 

properly position the first cycle of dental replacement through restriction of 

odontogenic BMP. 
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Figure 2.2. Replacement teeth recruit markers of dental competence and 
cell potency. The epithelial successional lamina (SL) expresses dental-
commissioning pitx2 (A) in close proximity to condensing mesenchyme marked 
by runx2 (B), wnt10a (C), and fgf10 (D). bmp4 is active throughout epithelium 
and mesenchyme of the replacement tooth (E) and in a second region of labial 
mesenchyme (blue arrowhead) separated from the tooth germ by cells 
expressing the BMP inhibitor osr2 (F). shh (G) is not expressed in the 
invaginating SL, but is active in the oral epithelium both lingual to the 
replacement tooth (presumed dental lamina for lingual rows) and oral epithelium 
labial to the replacement germ (black arrows). ptc1 expression (H) is observed in 
the mesenchyme subjacent to shh-expressing oral epithelium. irx1b, a putative 
regulator of Hh signal, is expressed in the aboral-most region of the [Hh-
negative] invagination (I). The invaginating SL contains an intermediate layer, 
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between inner and outer dental epithelium (see Fig. S1), expressing jag2 (J), 
notch1 (K), and sox2 (L). jag2 and sox2 are also expressed in a continuous 
ribbon of epithelium labial to the replacement organ (arrows). First generation 
teeth are outlined in green and replacement dental epithelium in red. These are 
vibratome sections in sagittal plane at 15 μm thickness, imaged at 63× 
magnification. Labial is oriented to the left and oral toward the top of the page. 
Fishes used in this panel are ∼15 dpf. (A, B, D, E, F, G, H, K, J, L)—Metriaclima 
zebra, (C)—Labeotropheus fuelleborni, (I)—Aulonocara jacobfreibergi. 

 

 BMPs interact with the Hedgehog (Hh) pathway during the patterning of 

many organ systems, including teeth (Handrigan et al., 2010 and Zhang et al., 

2000); we thus examined expression of Hh ligands and receptors in the cichlid 

replacement program. Hedgehog is essential for tooth development in the mouse 

(Cobourne et al., 2004, Cobourne and Sharpe, 2004 and Dassule et al., 2000), 

initiates the first generation dentition in cichlids (Fraser et al., 2008), but does not 

play a role in the initiation of the replacement dentition in the trout (Fraser et al., 

2006), nor in squamates (Handrigan and Richman, 2010). Here, we did not 

observe activity of the extracellular ligand shh or its receptor ptc1 ( Fig. 2G, H) 

until later replacement tooth morphogenesis ( Fig. 3 and Fig. 5). Molecules from 

the Iroquois homeobox family have been documented in mouse tooth 

development ( Ferguson et al., 2001), but their roles in the process are not 

understood. irx1b is known to respond to Wnt signals and restrict shh in the 

embryonic forebrain ( Scholpp et al., 2007, Scholpp et al., 2006 and Sylvester et 

al., 2010). Here, we observe irx1b expression in the aboral-most epithelium of 

the extending SL ( Fig. 2I), in close proximity to wnt10a ( Fig. 2C). A putative 

function for irx1b in replacement tooth initiation is thus the regulation of Hh signal 

in the early SL downgrowth. 
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Although shh and ptc1 expression are absent from the early replacement 

SL, they are nonetheless active in regions relevant to tooth development ( Fig. 

2G, H). The epithelium lingual to the outer row of erupted teeth strongly 

expresses shh, and as expected, the underlying mesenchyme maintains strong 

expression of the receptor ptc1. Cichlids continue to add posterior (lingual) rows 

of teeth throughout ontogeny and this lingual Hh signaling domain, in conjunction 

with pitx2 and BMP, may provide the potential for the initiation of first generation 

teeth in lingual rows ( Fraser et al., 2008). Notably, there is a second region of 

shh-expressing epithelium and corresponding ptc1-expressing mesenchyme 

labial to the SL ( Fig. 2G, H), corresponding to the labial domain of bmp4 noted 

above ( Fig. 2E). This labial domain of BMP and Hh co-expression is maintained 

during subsequent stages of replacement tooth development ( Fig. 3). As no 

teeth form labial to the first generation dentition, we explored this cell population 

as a putative source of dental potency for replacement. 

To do so, we first examined expression of Notch signaling family 

members. The Notch pathway is involved in the patterning of teeth (Mitsiadis et 

al., 2010, Mitsiadis et al., 1998 and Mitsiadis et al., 2005), the stem niche of 

mouse incisors (Harada et al., 1999), and the general regulation of stem cells 

(Androutsellis-Theotokis et al., 2006). The Notch ligand jag2 is expressed in both 

(i) the Hh- and BMP-positive cells labial to the SL ( Fig. 2J, black arrow) and (ii) 

the intermediate cells of the SL ( Fig. 2J, blue arrow). These intermediate cells, 

between IDE and ODE, will give rise to stellate reticulum-like cells in the 

differentiated replacement tooth ( Fig. 1D–F; Fig. S1). The receptor notch1 is 
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expressed in the intermediate cells, but not labial to the SL ( Fig. 2K). However, 

the receptors notch2 and notch3 are active in both locations during subsequent 

developmental stages and rounds of replacement (RFB, unpublished). Next, we 

examined activity of the stem cell transcription factor sox2 in the replacing cichlid 

dentition. sox2 is expressed in both the labial domain (as well as lingual to the 

first tooth row) and within the intermediate cells of the SL ( Fig. 2L). Taken 

together, these patterns of gene co-expression give an mRNA signature to two 

distinct populations of cells (i) labial and superficial to the replacement organ and 

(ii) within the intermediate cells of the SL, one or both of which may enable and 

maintain continuous de novo dental replacement. Notably, in reptiles ( Handrigan 

et al., 2010), stem-like cells are arranged superficially along the non-tooth 

forming outer layer of the dental lamina while in zebrafish ( Huysseune, 

2006 and Huysseune and Thesleff, 2004), intermediate cells between IDE and 

ODE are suggested to exhibit stem-like properties. 

2.4.3 Gene expression is evolutionarily conserved in replacement tooth 

differentiation 

Cichlid replacement teeth undergo development within a bony crypt 

constantly remodeled to accommodate jaw growth and dental renewal. The 

replacement dental organ differentiates in a series analogous to the bud, cap and 

bell stages of mammalian teeth, while remaining connected to oral epithelium by 

a cord of cells through the gubernacular canal (Fig. 1). We know very little about 

the molecules accompanying the morphogenesis of replacement teeth in any 

organism. We thus examined the expression of genes from five signaling 
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pathways involved in the development and regeneration of vertebrate organs: 

BMP, FGF, Hh, Notch, and Wnt/β-catenin. 

bmp2 and bmp4 are expressed in both the epithelium and mesenchyme 

as the developing tooth transitions from cap to bell stages ( Fig. 3A, B). We 

observe two centers of expression: one in dental mesenchyme (black arrowhead) 

and one at the tip of developing teeth (yellow arrowheads). While BMPs are 

expressed at the oral-most cap and bell stage epithelium, we note a general 

absence of activity in the lateral and aboral-most epithelium. Interestingly, we find 

the BMP antagonist, sostdc (ectodin; wise ( Laurikkala et al., 2003)), expressed 

in the epithelium where bmp2 and bmp4 are not ( Fig. 3C). sostdc expression is 

strongest in the intermediate cells between the ODE and IDE of the cap to bell-

stage replacement tooth, and less strong at the cusp tip or mesenchymal papilla 

(3C, yellow arrow). 
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Figure 2.3. Expression of genes from the BMP (A–C), FGF (D–F), and Hh 
pathways (G–I) during the differentiation stage of cichlid replacement tooth 
development. First generation teeth are outlined in green and replacement 
dental epithelium in red. Three expression domains are highlighted at this stage; 
(i) the tooth tip (A, B; yellow arrowhead), the condensing papilla (A; black 
arrowhead), and the cervical loops (C; yellow arrow). These are vibratome 
sections in sagittal plane at 15 μm thickness, imaged at 63× magnification. Labial 
is oriented to the left and oral toward the top of the page. Fishes used in this 
panel are ∼15–30 dpf. (A, B, D, F, G, H, I)—Metriaclima zebra, (C)—
Labeotropheus fuelleborni, (E)—Petrotilapia chitimba. 
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sostdc influences tooth development by integrating BMP, FGF, Hh and 

Wnt pathways ( Ahn et al., 2010, Cho et al., 2011, Kassai et al., 

2005 and Laurikkala et al., 2003). As cichlid replacement teeth initiate 

differentiation, fgf3 and fgf10 are expressed in dental mesenchyme, and fgf3 is 

expressed transiently in the aboral epithelium ( Fig. 3D, E). FGF signals induce 

dlx2 expression in the zebrafish pharyngeal dentition ( Jackman et al., 

2004 and Stock et al., 2006). Similarly here, dlx2 is co-expressed with fgf10 in 

the papilla throughout the bud to bell stage transition ( Fig. 3F). shh transcripts, 

on the other hand, initiate expression in the invaginated SL only after the 

ectomesenchyme condenses, and the bud stage begins ( Figs. 2G; 3G). shh 

becomes concentrated briefly from the cap to bell stage at the tooth tip, but later 

is localized to the epithelium analogous to mammalian cervical loops ( Fig. 5G). 

As in the snake ( Handrigan and Richman, 2010), the cichlid replacement tooth 

expresses the receptor ptc1 in both epithelium and mesenchyme of the 

differentiating tooth, implying that the mode of action of Hh signaling is both 

autocrine and paracrine ( Fig. 3H). eda, a ligand in the ectodysplasin pathway is 

thought to induce Hh activity in hair ( Pummila et al., 2007), feathers ( Houghton 

et al., 2005), salivary glands ( Häärä et al., 2011), and teeth ( Laurikkala et al., 

2001). Here, we observe its expression in the epithelium of replacement teeth ( 

Fig. 3I). Expression of eda in the epithelium of cichlid replacement dental organs 

is notable because it is restricted to the mesenchyme during initiation of first 

generation teeth ( Fraser et al., 2008). 
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In mouse incisors, FGF signaling from the mesenchyme maintains Notch 

activity in cervical loop epithelium (Harada et al., 1999) and presumptive stem 

cells in the stellate reticulum (Harada et al., 2002). Consistent with our 

observations from the initiation of dental replacement, jag2 and notch1 are 

expressed in localized cells of the epithelium and at the tooth tip ( Fig. 4A, B, 

yellow arrow in B). Because we observed FGF signal in dental mesenchyme and 

Notch activity in the epithelium, we evaluated whether the stem cell marker sox2 

was expressed at this stage. sox2 expression is maintained in the epithelium 

labial to the replacement tooth organ and is also observed in discrete epithelial 

cells favoring the labial side of the tooth ( Fig. 4C). 

 

 

 

 



 

42 
 

 

Figure 2.4. Expression of genes from the Notch (A–C) and Wnt pathways 
(D–F) during the differentiation stage of cichlid replacement tooth 
development. First generation teeth are outlined in green and replacement 
dental epithelium in red. Genes expressed in the intermediate cell layer include 
notch1 (B; yellow arrow) and sox2 (C) at differentiation stage. These are 
vibratome sections in sagittal plane at 15 μm thickness, imaged at 63x 
magnification. Labial is oriented to the left and oral toward the top of the page. 
Fishes used in this panel are ∼15–30 dpf. (A, E, F)—Metriaclima zebra, (B)—
Mchenga conophoros, (C)—Petrotilapia chitimba, (D)—Labeotropheus 
fuelleborni. 

 

 

 

 

 

 

 



 

43 
 

 

 

Figure 2.5. Expression of genes from the BMP (A–C), FGF (D–F), and Hh 
pathways (G–I) during the secretion stage of cichlid replacement tooth 
development. Replacement outer dental epithelium is outlined in red. These are 
vibratome sections in sagittal plane at 15 μm thickness, imaged at 63x 
magnification. Labial is oriented to the left and oral toward the top of the page. 
Fishes used in this panel are ∼15–30 dpf. (A, D, F, G, I)—Metriaclima zebra, (B, 
H)—Cynotilapia afra, (C)—Labeotropheus fuelleborni, (E)—Petrotilapia chitimba. 
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The Wnt/β-catenin pathway is similarly active in differentiating 

replacement teeth. We observe lef1 and β-catenin expression throughout the 

dental epithelium during the bud to cap transition ( Fig. S2A, B). wnt5a ( Fig. 4D) 

exhibits a local focus of expression at presumptive tooth tips; in the mouse, this 

gene is active in dental epithelium (including enamel knots) as well as in 

mesenchyme ( Cai et al., 2011). wnt10a continues to be expressed in dental 

mesenchyme ( Fig. 4E). In the mouse dentition, Pitx2 and β-catenin directly 

interact to regulate Lef1 ( Vadlamudi et al., 2005). Here, pitx2 marks a distinct set 

of labial epithelial cells that connect the oral epithelium to the replacement tooth ( 

Fig. 4F). Overall, the molecular events that choreograph the progression from 

dental bud to bell stage tooth development are highly conserved between single 

generation mouse teeth and the continuously replacing cichlid dentition. 

Conservation of the genetic toolkit for individual tooth differentiation is particularly 

notable in this context of continuous one-for-one dental replacement. 

2.4.4 Gene expression domains sharpen during secretion stage 

By secretion stage, the replacement organ has begun to deposit hard 

tissues and nears eruption (Fig. 1G–I). We observe the same set of pathways 

active in replacement teeth at this stage, although expression domains for certain 

molecules have shifted with tooth maturation. bmp4 and bmp2 are expressed in 

the replacement organ at the tooth tip and the dental papilla ( Fig. 5A, B) but are 

nearly absent from the putative cervical loops; sostdc is expressed in these 

cervical loops as well as a region far oral to the bmp4-positive tooth tip ( Fig. 5C). 

This complimentary pattern of expression between signal and antagonist is also 
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observed for members of the FGF pathway. fgf3 is expressed in the epithelium, 

including the tooth tip, and the dental papilla ( Fig. 5D), but is absent from the 

aboral-most cervical loops; fgf10 is strongly expressed in the papilla ( Fig. 5E); 

the receptor fgfr2, which transduces FGF signal in teeth ( Parsa et al., 2010), is 

active throughout ( Fig. S3A). The FGF inhibitor spry4 ( Boran et al., 

2009 and Charles et al., 2011) is concentrated along the cervical loop epithelium, 

also expressed in the dental papilla ( Fig. S3B). 

Ligands and receptors of the Hh pathway are dynamically expressed 

through the sequence of replacement tooth development. shh is initially absent 

from the invaginating SL ( Fig. 2G), then is active throughout the bud to bell 

stage epithelium ( Fig. 3). At mature stages of replacement tooth morphogenesis, 

shh is strongly localized to the basal cervical loops ( Fig. 5G). The receptors ptc1 

(epithelium and mesenchyme, Figs. 2H, 3H) and ptc2 (mesenchyme only), as 

well as the Hh activator eda, are likewise confined to cervical loop epithelium and 

contact mesenchyme ( Fig. 5H, I; Fig. S3C). These aboral domains of activity for 

the Hh pathway are similar to observations from mouse incisors, where Hh is 

required for the differentiation of ameloblasts from dental stem cells within the 

stellate reticulum ( Parsa et al., 2010). In contrast to the changing patterns of 

activity exhibited by Hh, molecules in the Notch pathway are consistently 

expressed across the stages of replacement tooth development, localized to the 

intermediate stellate reticulum-like cells between IDE and ODE, as well as at the 

tooth tips ( Fig. 6A, B). 
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Figure 2.6. Expression of genes from the Notch (A–C) and Wnt pathways 
(D–F) during the secretion stage of cichlid replacement tooth development. 
Replacement outer dental epithelium is outlined in red. These are vibratome 
sections in sagittal plane at 15 μm thickness, imaged at 63x magnification. Labial 
is oriented to the left and oral toward the top of the page. Fishes used in this 
panel are ∼15–30 dpf. (A, F)—Metriaclima zebra, (B)—Cynotilapia afra, (C)—
Petrotilapia chitimba, (D, E)—Labeotropheus fuelleborni. 

 

 

 

We note an intriguing and strong bias in the expression of follistatin (fst) 

during the final stage of replacement tooth development. Fst is expressed with a 

lingual bias in mouse incisors where, by antagonizing BMP activity, it contributes 

to the reduction in enamel-secreting ameloblasts on the lingual surface ( Wang et 

al., 2004). Cichlids, however, express fst with a labial bias overlapping Notch-
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expressing intermediate cells ( Fig. 6C). Such biases might contribute to 

asymmetries in cell proliferation and differentiation to give cichlid teeth their 

characteristic slight lingual curvature ( Fig. 1), but the molecular mechanism 

would then be distinct from that explaining the same curve of mouse incisors. 

wnt5a and wnt10a continue to be expressed at the tooth tip ( Fig. 6D) and the 

dental papilla ( Fig. 6E), as in earlier stages and pitx2 maintains expression 

linking the dental epithelium of the replacement organ to the oral epithelium ( Fig. 

6F). lef1 expression spans the epithelium and mesenchyme of the replacement 

tooth unit ( Fig. S3D). Notably, axin2, an effector of Wnt/β-catenin signaling, is 

active in dental mesenchyme, as well as dental epithelium including the cervical 

loops and the intermediate cells between IDE and ODE ( Fig. S3E). This is in 

contrast to mouse incisors, where Axin2 is only weakly expressed in cervical loop 

epithelium and is absent from the stellate reticulum ( Suomalainen and Thesleff, 

2010). Irx family members irx1b (not shown) and irx2 also localize to the cervical 

loop domains during late replacement tooth morphogenesis ( Fig. S3F). 

The data presented here in conjunction with previous reports of cichlid 

tooth initiation (Fraser et al., 2008 and Fraser et al., 2009) demonstrate that five 

signaling pathways (BMP, FGF, Hh, Notch, Wnt/β-catenin) are sequentially 

active in specific cell populations (the SL as an extension of oral epithelium, the 

tooth tip, the dental papilla, and intermediate cells of the cervical loops) during 

the process of replacement tooth development. It is likely that the signaling 

pathways we highlight (i) set the precise dental pattern (the size and spacing of 

teeth, (Fraser et al., 2008)), (ii) requisition one-for-one replacement, which 
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maintains that pattern, and (iii) build the tooth organ for every new generation. 

The spatial domains of pathway gene co- and complementary expression are 

thus presumed to confine odontogenesis to precise locations and to accurately 

reset the process of tooth development for regeneration. 

2.4.5: Treatment with small molecules affects replacement and shape 

Cichlids replace (shaped) teeth in one-for-one fashion, using a set of 

common signaling pathways throughout (Fig. 2, Fig. 3, Fig. 4, Fig. 5 and Fig. 6). 

The spatial proximity of patterned tooth families and the temporal continuity of 

morphogenesis plus regeneration suggest to us that these processes are deeply 

integrated. One prediction, then, is that manipulation of key pathways should 

result in altered replacement and shape phenotypes. To test this prediction, we 

exposed cichlid individuals to temporally precise, non-lethal doses of small 

molecules known to agonize or antagonize the BMP, FGF, Hh, Notch and Wnt/β-

catenin pathways. 

A typical treatment experiment involved (i) culture of replicate cichlid 

juveniles at the appropriate stage (e.g., 40–100 dpf) in fish water with the small 

molecule or delivery control (1% DMSO) for 24 h, (ii) a 14-day recovery period 

under standard conditions and (iii) finally, sacrifice for phenotypic analysis (see 

Materials and methods). There are two major advantages of this approach in the 

cichlid system. First, treatment over such a brief temporal window will affect only 

those teeth at sensitive stages of development; there are thus ‘control’ individuals 

that did not receive small molecule baths, as well as ‘control’ teeth in the jaws of 
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experimental animals. Second, non-lethal in vivo treatment, subsequent growth 

in fish water and post-sacrifice clearing and staining with Alizarin red allows us to 

examine the presence or absence of replacement teeth in the jaw's bony crypt, 

as well as additional effects of treatment (i.e., jaw hypertrophy) that might 

influence tooth development. A general caveat holds for all of these experiments; 

effects differ depending upon the duration and concentration of the dose applied. 

Manipulation of two of the five signaling pathways did not affect cichlid 

tooth replacement. Treatment with the Hh antagonist cyclopamine strongly 

disrupts the patterning of the cichlid dentition when administered during the 

initiation of first generation teeth (Fraser et al., 2008) but does not interfere with 

dental replacement in snakes and lizards (Handrigan and Richman, 2010). Our 

results are similar here upon treatment at tooth replacement stages; cyclopamine 

(25 μm) affects the shaping and morphogenesis of teeth (below), but does not 

abrogate the replacement process (Table 1). This is consistent with our gene 

expression data (Fig. 2, Fig. 3 and Fig. 5) wherein Hh molecules are not active in 

the replacement tooth until differentiation begins. Treatment with the FGF 

antagonist SU5402 does not interfere with the production of replacement teeth 

per se (we observe replacement tooth development deep to the predecessor), 

but seems to interfere in some animals with the process of functional tooth 

shedding, thus an indirect effect on replacement (Table 1). In some tooth 

positions in treated animals, we noted that functional teeth were elongated and 

that bony crypt morphology was disrupted, perhaps the result of jaw hypertrophy 

(data not shown). 
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Table 2.1. Concentrations and phenotypes of chemical treatments. Effective 
non-lethal doses of small molecules are arranged in rows. 1A: Numbers of 
affected and treated cichlid broods and species used; MZ, Metriaclima zebra; LF, 
Labeotropheus fuelleborni; PL, Pseudotropheus lombardoi; PT, Petrotilapia 
tridentiger. 1B: Phenotypes are recorded with respect to numbers of teeth; mean 
and standard deviations (SD) of both affected and total teeth are presented. 
Phenotypes are reported as having an effect on shape (S) and/or replacement 
(R). Higher concentrations elicited multiple phenotypes in a dose dependent 
manner. NB, unaffected individuals developed complete dentitions with no 
patterning defects despite being exposed to the same chemicals at the same 
time as their affected siblings. A single animal may have more than one 
phenotype. 

Chemic
al 

Concentr
ation 

Affect/Tr
eat—
Brood 

Affect/Tr
eat—

Individu
al 

Spec
ies 

Mean tooth 
no. 

affected/ind
ividual 

Mean 
tooth no. 
Total/indi

vidual 

% 
Affect

ed 
pheno
type 

DAPT 100 μM 5/6 6/11 
LF; 
MZ; 
PT 

2.5 (SD 
1.77) 

10.0 (SD 
2.80) 

R/S–
35/65
% 

DAPT 75 μM 5/5 9/10 
LF; 
MZ; 
PT 

4.75 (SD 
2.42) 

9.0 (SD 
2.49) 

R/S–
22/78
% 

DAPT 50 μM 3/3 9/9 
LF; 
MZ 

6.25 (SD 
2.05) 

9.67 (SD 
1.30) 

S–
100% 

DAPT 40 μM 2/2 3/3 MZ 
4.5 (SD 
1.38) 

9.5 (SD 
0.84) 

S–
100% 

Dorsomo
rphin 

1.0 mM 1/1 3/3 PL 
4.0 (SD 
2.94) 

10.5 (SD 
4.04) 

R/S–
21/79
% 

Dorsomo
rphin 

0.5 mM 6/6 12/14 PL 
4.07 (SD 
1.62) 

10.07 (SD 
2.12) 

R/S–
3/97% 

Cyclopa
mine 

25 μM 4/5 7/9 
LF; 
MZ; 
PT 

4.44 (SD 
2.04) 

9.28 (SD 
2.19) 

S–
100% 

LiCl 250 μM 5/5 10/10 
LF; 
MZ 

3.15 (SD 
1.07) 

8.69 (SD 
1.97) 

R/S–
10/90
% 

LiCl 500 μM 2/2 4/4 LF 
5.0 (SD 
0.89) 

8.33 (SD 
0.52) 

R/S–
37/63
% 

SU5402 50 μM 2/2 5/5 MZ 3.5 (SD 8.57 (SD R/S–
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Chemic
al 

Concentr
ation 

Affect/Tr
eat—
Brood 

Affect/Tr
eat—

Individu
al 

Spec
ies 

Mean tooth 
no. 

affected/ind
ividual 

Mean 
tooth no. 
Total/indi

vidual 

% 
Affect

ed 
pheno
type 

1.51) 2.82) 14/86
% 

 

 

 

Small molecules targeting any of three pathways, BMP, Notch and Wnt/β-

catenin, affected the process of cichlid tooth replacement. Treatment with the 

BMP antagonist dorsomorphin (BML-275), at 1 mM concentration, results in tooth 

positions that do not undergo natural replacement on both upper and lower jaws 

(Fig. 7A–C; Table 1). Furthermore, there is no evidence of replacement teeth (at 

any stage of development) in the underlying bony crypt of affected positions. 

Dorsomorphin exposure thus has a major effect on the replacement dentition and 

uniquely (among our treatments) perturbs adjacent tooth positions. We also 

observed a replacement phenotype after DAPT exposure (100 μM), which 

inhibits the Notch signaling pathway. Treatment with DAPT produces a number 

of tooth positions that lack replacements (at any developmental stage) across 

multiple tooth rows (Fig. 7D–F). Notably, this manipulation differs from treatment 

of the BMP pathway in that the disrupted tooth families tend not to be nearest 

neighbors, and are mirrored across the jaw symphysis. Lastly, treatment with 

LiCl, an agonist of Wnt/β-catenin signaling, has only modest effects on tooth 

replacement at low concentration (0.25 mM; Table 1), but results in cusp and 

replacement phenotypes at higher (0.5 mM) concentration (Fig. 7G–I and below). 
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This regeneration phenotype is intriguing because it is not a complete knockout 

of the replacement tooth unit. Rather, treatment appears to affect the rate and/or 

timing of replacement cycles, such that the phasing of tooth replacement in even 

vs. odd positions and across the symphysis is disrupted, compared to control. 

Together, these experiments demonstrate that the BMP, Notch and Wnt/β-

catenin pathways are necessary for the proper initiation, rate and/or timing of 

continuous tooth replacement cycles in cichlid fishes. Given the expression of 

molecules from these pathways at early stages (Fig. 2, Fig. 3 and Fig. 4), our 

treatments have likely affected the invagination or potency of the epithelial SL 

and/or the responsive mesenchyme that facilitates dental replacement. We have 

yet to conduct molecular analysis of treated morphants; therefore effects from 

individual small molecules might be the indirect result of interactions between 

BMP, Notch and Wnt/β-catenin pathways, well known from other systems 

(Mitsiadis et al., 2010, Mustonen et al., 2002 and Plikus et al., 2008). 
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Figure 2.7. Small molecules targeting the BMP, Notch and Wnt/β-catenin 
pathways modulate tooth regeneration. We present dorsal views of Alizarin 
red stained upper (A–B) and lower (D–E, G–H) oral jaws from a variety of Malawi 
cichlid species. All individuals received small molecule treatments or vehicle 
controls for 24 h, followed by 14 days of recovery in fish water prior to sacrifice 
and analysis. (A–B) Pseudotropheus lombardoi, 100 dpf at the start of treatment. 
(D–E) and (G–H) Labeotropheus fuelleborni, 40 dpf at the start of treatment. A, D 
and G are vehicle controls and show the normal tooth formula. In (B), after 
treatment with the BMP pathway inhibitor BML275 (dorsomorphin, 1 mM), teeth 
from positions 1–4 of the first row, right quadrant and position 1, left quadrant, 
are not replaced; black arrow indicates the symphysis of the upper jaw. E, after 
treatment with the Notch pathway inhibitor DAPT (100 μM), teeth from positions 
1, 2, and 4 of the first row (right quadrant) and tooth positions 2 and 7 (left 
quadrant) are not replaced. White circles show bony crypt space deep to 
functional teeth, with a replacement tooth present in the left circle and absent at 
right. (H) after treatment with the Wnt/β-catenin pathway agonist, LiCl (0.5 mM), 
teeth in multiple positions are delayed in eruption (red circle in I) and/or are out of 
phase in the replacement cycle (white arrowheads). Red circle in (I) refers to the 
white arrowhead positions (in H) showing functional positions without teeth; 
however tooth replacements are present in the crypts—hence a delay to the 
replacement process rather than a loss of tooth positions. Colors in schematics 
(C, F, and I): red=enameloid; blue=dentine; gray=bony crypt. 
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Notably, manipulation of all five signaling pathways for brief durations, and 

typically lower concentrations, produced tooth shape phenotypes ( Fig. 8; Table 

1). For instance, treatment with 0.5 mM dorsomorphin (BMP antagonist) results 

in transformation of outer row bicuspid to tricuspid teeth in Pseudotropheus 

lombardoi ( Fig. 8C,D). Similarly, treatment with 50 μM SU5402 (antagonist of 

FGF signaling) results in triscuspid teeth in bicuspid first-row positions of 

Metriaclima zebra ( Fig. 8E,F). Thus, inhibition of both BMP and FGF pathways 

affects bicuspid teeth in the same way—through the addition of a medial cusp. 

Treatment with cyclopamine (Hh antagonist) for only 6 h has a dramatic effect on 

tooth morphogenesis in Petrotilapia tridentiger ( Fig. 8G,H), a species with an 

exclusively tricuspid dentition. Inhibition of Hh signaling interferes with natural 

cusp formation, resulting in teeth with no cusps, unevenly patterned enameloid, 

and even an unusual four-cusp phenotype (not shown). The variation in shape 

phenotypes after cyclopamine treatment matches the dynamic patterns of Hh 

gene expression during replacement tooth development ( Fig. 2, Fig. 3 and Fig. 

5). Treatment with DAPT, a Notch antagonist, impacts cusp development in 

Labeotropheus fuelleborni, a species with tricuspid teeth ( Fig. 8I, J). We observe 

mineralization defects in both the dentine and enameloid of lateral and central 

tooth cusps, implying that Notch signaling is essential for correct hard-tissue 

biogenesis and cusp formation. Similar mineralization defects are observed in 

fishes treated with the Wnt/β-catenin agonist LiCl ( Fig. 8K, L). Small-molecule 

treatment effects on replacement as well as shape (i) are reproducible in 
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replicate individuals and experiments across multiple broods of different species ( 

Table 1) and (ii) are often matched in upper and lower jaws and on each side of 

the symphysis. Such replacement phenotypes and shape transformations have 

not been observed in healthy fishes from natural populations ( Streelman et al., 

2007). Our in vivo manipulations demonstrate an essential role for these five 

signaling pathways in the proper morphogenesis and shaping of cichlid teeth. 

Particularly exciting are treatments of the BMP and FGF pathways that transform 

tooth type from bicuspid to tricuspid, mimicking ecologically relevant differences 

among closely related species ( Fraser et al., 2008, Streelman and Albertson, 

2006 and Streelman et al., 2003). Taken together, these experiments ( Fig. 

7 and Fig. 8) provide evidence for a model linking tooth morphogenesis to tooth 

replacement through the function of key signaling pathways. 
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Figure 2.8.Small molecules targeting five signaling pathways modulate 
tooth shape. Control bicuspid (A–A′; Metriaclima zebra) and tricuspid (B–B′; 
Labeotropheus fuelleborni) dentitions are shown above the solid black line and 
small molecule treated dentitions are indicated below. All individuals received 
small molecule treatments or vehicle controls for 24 h, followed by 14 days of 
recovery in fish water prior to sacrifice and analysis. (C) BML275 treatment, 
(dorsomorphin, BMP inhibitor, 0.5 mM) results in transformation of bicuspid to 
tricuspid teeth (Metriaclima zebra). (E) Similarly, treatment with the FGF inhibitor 
SU5402 (50 μM) transforms teeth from bicuspid to tricuspid (Metriaclima zebra). 
In each of these cases, ‘control’ bicuspid teeth are present next to those sensitive 
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to the temporal window of small molecule application. (G) Treatment with 
cyclopamine (Hh antagonist, 25 μM) elicits numerous effects on shape, primarily 
through variation in enameloid patterning (arrows and arrowheads; Petrotilapia 
tridentiger). (I) Inhibition of the Notch pathway with DAPT (25 μM) affects cusp 
development and mineralization (arrowheads; Labeotropheus fuelleborni). (K) 
Treatment with the Wnt/β-catenin agonist LiCl (0.25 mM and 0.5 mM) results in 
mineralization defects with increasing dose (Labeotropheus fuelleborni). Colors 
in schematics (D, F, H, J, L): red=enameloid; blue=dentine; gray=bony crypt. 
Mineralization defects are inferred in treated individuals when the dentine 
(alizarin red stained) and/or the enameloid (yellow-orange color from Fe 
deposition) are abnormal, compared to controls. 

 

 

2.5: Discussion 

2.5.1 The cichlid dentition integrates tooth replacement and shape 

The ‘homeobox code’ for the mammalian dentition posits that tooth shape 

is the product of linear position along the jaw margin (Sharpe, 1995 and Tucker 

and Sharpe, 2004). Mouse teeth represent the extreme condition of this general 

model, wherein only incisors and molars develop under distinct gradients of 

BMP-Msx and FGF-Barx1, respectively. In the mouse (and more generally the 

mammalian) dentition, molars undergo complex morphogenesis and develop 

cusps, which are absent and perhaps suppressed (Ohazama et al., 2010) from 

incisors. Mouse incisors, by contrast, exhibit enamel renewal via a labial stem 

cell niche. Thus for the mouse model, the phenomena of (i) complex cusp 

development and (ii) stem-based (self-)renewal are decoupled in space and in 

time (Fig. 1). Many other vertebrate dentitions do not follow such binary rules. 

For instance, cichlid teeth are shaped through rounds of replacement (all first 

generation teeth are conical) such that tricuspid teeth may replace unicuspid 
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teeth in the same jaw position (Streelman et al., 2003). Once adult tooth shapes 

are present, tooth replacement continues through ontogeny, maintaining shape 

and pattern fidelity. Tooth shape therefore is not correlated with position within a 

row and teeth with complex shapes undergo regeneration. The key finding from 

this study is that common signaling pathways are active and essential during the 

coupled phenomena of replacement and morphogenesis of cichlid dentitions, 

forcing us to think differently about the integration of these processes in 

odontogenesis (Jernvall and Thesleff, 2012). Our data inspire a model implicating 

specific signaling pathways (BMP, FGF, Hh, Notch, Wnt/β-catenin) in the process 

of cichlid tooth regeneration, explicitly coupled to tooth morphogenesis and 

shape. Genes from these families are sequentially co- and complimentarily 

expressed in spatial domains throughout tooth development and replacement. 

Our model posits a mechanistic connection between replacement and shape, as 

these signaling pathways likely mediate proliferation and differentiation at both 

the tooth tips and in presumed stem cell populations for renewal (Fig. 9). 
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Figure 2.9. Cichlid teeth integrate tooth shape and lifelong regeneration, a 
linkage lost in mammals. Cichlid dental organs simultaneously coordinate 
shape morphogenesis and regeneration developmental programs, in the same 
tooth position (also Fig. 1 schematic). This is achieved via tight control of gene 
co-expression in zones of differentiation and zones of renewal. We identify cell 
populations and putative signaling centers that may regulate cichlid tooth shape 
and regeneration (A1–4), including (i) a population of epithelial cells (black) labial 
to the predecessor tooth superficial to the sucessional lamina of the replacement 
organ (gray arrow), (ii) cells of the intermediate layer between IDE and ODE 
(purple), (iii) cervical loop regions (blue), (iv) dental papilla (green) and (v) 
putative enameloid knots at the tips of teeth (pink). These cellular domains and 
putative signaling centers are color-coded based on empirical measure of gene 
co-expression (Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Fig. 7). In B, we show 
comparable gene activity in mouse incisors (Felszeghy et al., 2010, Harada et 
al., 1999, Harada et al., 2002, Jernvall and Thesleff, 2012, Wang et al., 
2007 and Wang et al., 2004) capable of self-renewal and mouse molars (Jernvall 
et al., 2000, Jernvall et al., 1994, Kettunen et al., 2000 and Zhang et al., 2012) 
that develop complex 3D shapes. Throughout, tooth tissue colors are as in Fig. 1. 
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Cichlid teeth retain the capacity for lifelong de novo renewal. Our data 

suggest that at least two cellular domains may be important for tooth 

replacement. The first is similar in location to that housing putative stem-like cells 

in the zebrafish ( Handrigan et al., 2010, Huysseune, 2006 and Huysseune and 

Thesleff, 2004). These cells are found in an intermediate layer between IDE and 

ODE that may be analogous to the stellate reticulum of mouse incisor cervical 

loops. These intermediate cells in cichlids co-express a common set of markers 

throughout replacement tooth development: sostdc, an inhibitor of BMP 

expression; Notch pathway ligands and receptors; β-catenin, and the stem 

transcription factor sox2. Molecules active at discrete, later stages of tooth 

replacement in the intermediate cells include spry4, an inhibitor of FGF signaling, 

shh, fst and axin2. A second population of cells that may contribute stem 

potential to tooth replacement in cichlids is the labial oral epithelium, superficial 

to each invaginating SL. This epithelium co-expresses shh, Notch pathway 

ligands and receptors, β-catenin and sox2 throughout the stages of replacement 

tooth development; as noted, this labial epithelial domain is matched with 

mesenchymal expression of ptc1 and bmp4. In reptiles, stem-like cells are 

located superficially, along the non-tooth forming regions of the dental lamina ( 

Handrigan et al., 2010). It is notable that the pathways (BMP, Notch and Wnt/β-

catenin) active throughout cichlid tooth development in both of these domains are 

those where small molecule manipulation elicit the strongest tooth replacement 

phenotypes ( Fig. 7, Table 1). Our immunohistochemical, gene expression and 

small molecule experiments do not definitively prove that either of these cell 
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populations contains dental stem cells. Yet, based on gene co-expression 

signatures and the anatomical position of these cellular domains with respect to 

regenerating dental organs in other species, it is tempting to speculate that each 

of these populations contributes to and/or regulates the stem niche for cichlid 

tooth replacement ( Fig. 9). 

Cichlid teeth are shaped as they are replaced. First generation teeth are 

conical; generally, the first shaped replacement teeth have sharper cusps and 

more rapid replacement cycles than those that follow (Streelman et al., 2003). 

Once adult tooth shape is reached, teeth continue to be replaced with shape 

fidelity, roughly every 30–100 days. This means that the molecular signals that 

determine tooth shape do so later in the life of an individual cichlid than say, in 

the life of an individual mouse, whose first and only set of molars are shaped 

during embryogenesis. Two aspects of tooth shape are relevant given the 

diversity among cichlid species and the data we report here. The first is the 

degree of lingual curvature of the tooth, taken to the extreme in some algal 

brushing species that exhibit a near 90° angle between the long and flexible tooth 

‘stalk’ and the multicuspid ‘brush’ at the tip (Fryer and Illes, 1972). We note from 

our histological data that cichlid replacement teeth begin as a downward 

extension of the SL on the labial side of the functional tooth, and that a labial bias 

in cell proliferation persists into hard tissue secreting stages (Fig. 1). Both the 

labial and lingual surfaces of cichlid teeth are covered with enameloid, but a 

slight bias in the production and proliferation of ameloblasts on the labial side 

might be facilitated by slight differences in molecular signaling in the labial vs. 
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lingual cervical loops. BMPs and FGFs seem to be largely absent from both 

cervical loop locations while the Hh, Notch and Wnt/β-catenin pathways are 

active. We observe a striking labial bias in the expression of fst that might 

contribute to different rates of ameloblast production and/or proliferation on the 

labial surface; this is a prime focus of future research because the bias is 

opposite that observed in mouse incisors ( Wang et al., 2007). 

The second relevant aspect of tooth shape is the number of cusps on 

each tooth, which in cichlids ranges from one to three with dramatic variation in 

the relative size and pattering of individual cusps (Fryer and Illes, 

1972 and Streelman et al., 2003). Our data from ISH and small molecule 

treatments illustrate that (i) genes from all five pathways studied are active in 

putative signaling centers associated with cusp morphogenesis and (ii) 

manipulation of these pathways, individually, is sufficient to modulate shape. 

Strikingly, we observe a suite of molecules (bmp2/4, fgf3, shh, Notch ligands and 

receptors, wnt5a) active at the tooth tip in expression foci with similarity to 

mammal enamel knots ( Jernvall et al., 1994). We suggest then that fishes (and 

perhaps all vertebrates with complex cusp shapes) possess primitive enamel 

knot-like signaling centers that function to control cusp number, sharpness and 

size. 

One-for-one replacement of a complex dentition requires simultaneous 

activation of molecular programs for morphogenesis and regeneration within the 

same tooth. Our analysis has focused on specific cell populations and putative 

signaling centers that co- and sequentially express stem and dental markers 
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because it is likely that the spatio-temporal complementarity of gene activity is 

what allows a dental organ to tune proliferation, growth and differentiation all at 

once. In this sense, the coordination of these processes may depend as much on 

excluding molecular signals from a specific domain at a specific time as it does 

on the integration of signaling. Our data may be particularly useful in 

understanding how this segregation of gene expression is regulated in space and 

time. For instance, shh expression is absent from the initial downgrowth of the 

SL; this observation is consistent with data from other bony fishes and reptiles ( 

Fraser et al., 2006 and Handrigan et al., 2010). We observe the expression of 

irx1b, a known mediator of Wnt signaling, antagonist of shh in the embryonic 

forebrain ( Houweling et al., 2001, Scholpp et al., 2007, Scholpp et al., 

2006 and Sylvester et al., 2010), and antagonist of Bmp4 at gastrulation ( 

Gomez-Skarmeta et al., 2001), in the aboral-most epithelium of the SL 

invagination. The irx1/2 genes are later active in the cervical loop regions, this 

time co-expressed with Hh molecules and complementarily expressed with 

bmp2/4. Irx molecules have been noted in mouse teeth, but function is unknown ( 

Ferguson et al., 2001). Our data suggest that these transcription factors may 

couple signals from the BMP, Hh and Wnt pathways and may be important 

negative regulators of Hh in the early SL. Similarly, osr2 is expressed with a 

complementary pattern to bmp4 at the initiation of primary replacement and may 

facilitate delineation of odontogenic cell populations across the jaw. At later 

stages of replacement tooth development, genes from the BMP and FGF 

pathway are invariably confined to activity in the dental papilla and the putative 
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enameloid-knot signaling centers at the tooth tip, and in particular are largely 

absent from the cervical loops and intermediate cells between IDE and ODE. We 

observe antagonists in each of these pathways (sostdc, spry4) expressed 

precisely in those cells where BMPs and FGFs are absent. Taken together, our 

data suggest that cichlid dental organs integrate shape and replacement by 

sometimes combining and other times segregating differentiation signals (BMPs, 

FGFs, Hh) from renewal and regeneration signals (Notch, Wnt, sox2), with 

temporal and spatial precision. It is likely that these interactions, necessary to 

pattern regenerating dentitions with complex shapes, prefigure the molecular 

programs found within multicuspid molars and self-renewing incisors ( Fig. 9) ( 

Jernvall and Thesleff, 2012). We speculate that the difference between 

organisms with lifelong regeneration of complex dentitions (i.e., cichlids, reptiles) 

and those without (e.g., mammals) lies in the continued maintenance and 

repeated activation of stem-like cells in positions superficial to successional 

lamina ( Handrigan et al., 2010). 

2.5.2 Stem cells and programmed evolvability of patterned elements 

The majority of patterned dentitions in the long evolutionary history of 

vertebrates have been capable of continuous replacement (Huysseune and 

Thesleff, 2004), and yet we do not understand for any dentition how the 

processes of patterning, morphogenesis and regeneration are integrated in 

space and time. From first principles, we see that the replacement of dentitions 

de novo in a one-for-one fashion, while maintaining shape fidelity of individual 

units and inter-unit pattern, requires (i) signals of dental competence to specify 
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tooth vs. non-tooth, (ii) a morphogenesis program that can be recruited again and 

again within a tooth family, (iii) signals of renewal that can provide cell potency, 

and (iv) a clock mechanism to coordinate timing. Our study addresses the first 

three of these a priori requirements. Cichlid teeth carry out largely conserved 

morphogenesis programs coupled to regeneration via the co- and 

complementary expression of key signaling molecules ( Fig. 9). Notable among 

these signals of cell potency is the transcription factor sox2 that, among other 

functions, acts to maintain the undifferentiated stem state in embryonic and adult 

stem cells ( Avilion et al., 2003) and specifically marks stem cells of the mouse 

incisor ( Juuri et al., 2012). We observe sox2 expression in two cellular domains 

that may mark the location of stem-like for cichlid tooth replacement. One of 

these domains shares anatomical features with dental stellate reticulum-like cells 

in other vertebrates. The second domain, labial to tooth rows, is particularly 

interesting because it may shuttle cells to the developing tooth unit ( Fig. 9). A 

recent report of SOX2 anophthalmia syndrome in humans documented multiple 

dental phenotypes including supernumerary impacted teeth and the persistence 

of deciduous teeth ( Numakura et al., 2010). It is likely then that sox2/Sox2/SOX2 

plays (and has played) a central role in tooth replacement across vertebrates. 

It is not clear what factors contributed to evolutionary modifications of the 

dentition in mammals, including the reduction in tooth number, tooth rows and 

lifelong replacement cycles. What is clear, however, is that this latter contingency 

has constrained the plasticity of mammalian teeth over an individual's ontogeny 

(particularly so for molars) and has limited the developmental window available 
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for evolutionary tinkering over a lineage's phylogeny. The recently noted ‘difficulty 

of increasing dental complexity’ in mammals (Harjunmaa et al., 2012) may be a 

direct result of this constraint. By contrast, we suggest that the phenotypic 

plasticity and dramatic shape diversity observed in cichlid teeth is facilitated by 

the potential for evolvability afforded by lifelong replacement. It is particularly this 

feature of cichlid teeth, the simultaneous integration of morphogenesis and 

regeneration programs, which might galvanize bio-inspired advancement in the 

field of regenerative dentistry. 
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CHAPTER 3 

CO-EVOLUTIONARY PATTERNING OF TEETH AND TASTE BUDS 

 

 

3.1: Abstract 

Teeth and taste buds are iteratively patterned structures that line the oro-

pharynx of vertebrates. Biologists do not fully understand how teeth and taste 

buds develop from undifferentiated epithelium, or how variation in organ density 

is regulated. These organs are typically studied independently because of their 

separate anatomical location in mammals: teeth on the jaw margin and taste 

buds on the tongue. Yet, in many aquatic animals like bony fishes, teeth and 

taste buds are co-localized one next to the other. Using genome mapping in 

cichlid fishes, we identified shared loci controlling a positive correlation between 

tooth and taste bud densities. Genome intervals contained candidate genes 

expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wnt 

and BMP signaling, were differentially expressed across cichlid species with 

divergent tooth and taste bud density, and were active in the development of 

both organs in mice. Synexpression analysis and chemical manipulation of Wnt, 

BMP and Hh pathways suggest that a common cichlid oral lamina is competent 

to form teeth or taste buds. Wnt signaling couples tooth and taste bud density 

while BMP and Hh mediate distinct organ identity. Synthesizing data from fish 

and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that 
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configures teeth and taste buds on mammalian jaws and tongues may be an 

evolutionary remnant inherited from ancestors wherein these organs were co-

patterned from common epithelium. 

 

3.2: Introduction 

Hughes and Chuong (Hughes and Chuong, 2003) called the mammalian 

oral cavity a “mouthful of epithelial-mesenchymal interactions” because the same 

precursor epithelium must ultimately differentiate to form teeth in one row on the 

oral jaw margin, taste buds and filiform papillae on the tongue, and salivary 

glands in precise locations. Developmental biologists have worked for decades to 

understand how this oral epithelium is properly fated to form such a diversity of 

structures. Although progress has been made to discover the molecules and 

pathways responsible for individual organ identity (Tucker and Sharpe, 2004), we 

know much less about the genetics and development of tooth and taste bud 

patterning (i.e., the spacing, organization and density of organs), and almost 

nothing about adaptive variation in dental and taste bud density across 

populations and species. 

Because placode-derived structures such as teeth and taste buds tend to 

be located in different regions of the integument or the gastrointestinal tract to 

engage a particular function, they are studied independently. However, 

commonalities are apparent in the patterning of these appendages. Hair, 

feathers, glands, teeth, taste buds, and intestinal crypt villi all form under the 
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direction of epithelial and mesenchymal interactions resulting in placode 

induction. Similar reaction-diffusion models have been proposed to control the 

size and spacing of manifold placode-derived organs (Kondo and Miura, 2010) 

such as hair (Sick et al., 2006), feathers (Mou et al., 2011) and teeth (Cho et al., 

2011). Activators and inhibitors in the bone morphogenetic protein (BMP), 

fibroblast growth factor (FGF), Hedgehog (Hh), and Wingless (Wnt) pathways 

execute the pattern. Genetic abnormalities in these pathways often lead to 

syndromic human diseases, such as Gardner’s syndrome, Gorlin syndrome and 

ectodermal dysplasia, which affect multiple appendages (Mikkola and Millar, 

2006). Feedback loops have been independently identified wherein Wnt drives 

the initiation of dental (Ahn et al., 2010) or taste (Iwatsuki et al., 2007) placodes. 

Wnt/-catenin acts upstream of BMP and Hh signaling ((Liu et al., 2008; Liu et 

al., 2007)), which in turn may regulate Wnt and organ identity (5-10).  

Mammals typically possess a single row of teeth on the oral jaw and a 

distinct taste papillae-bearing tongue and posterior palate. By contrast, many 

vertebrate dentitions are found in multiple rows on multiple bony or cartilaginous 

structures throughout the oro-pharynx. Taste buds often co-localize with teeth at 

these sites as both organs are regenerated, with pattern fidelity, throughout the 

lifetime of an individual. Teeth and taste buds may share an evolutionary origin 

and deep molecular homology (Fraser et al., 2010). There is tremendous 

variation in tooth and taste bud numbers among vertebrates. Among closely 

related species, this variation likely has ecological relevance (Yamamoto et al., 

2009). For instance in Lake Malawi cichlids, planktivores typically possess a 
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small number of widely spaced teeth (Fraser et al., 2008) with reduced taste bud 

counts on the oral jaws. Alternatively, the oral jaws of algivores are packed with 

100s-1000s of teeth and taste buds at high density. We sought to understand the 

genetic and developmental underpinnings of co-variation in tooth and taste bud 

density in Lake Malawi cichlids; in particular (i) how these distinct organs are 

patterned from a shared oral epithelium, (ii) how diversity in organ density is 

achieved across closely related species, and (iii) which molecular pathways and 

genomic regions control patterning. Working from insights in the cichlid system, 

we explored the activity of novel candidate genes for tooth and taste bud 

patterning in the mouse model. 

 

  

3.3: RESULTS  

3.3.1: Common regions of the cichlid genome control the positive correlation 

between tooth and taste bud density 

The positive phenotypic correlation between tooth and taste bud density 

observed across Malawi cichlid species could be controlled by: (i) pleiotropy, 

wherein common genetic intervals control both tooth and taste bud density 

and/or (ii) epigenetics (in the general sense), wherein the density of one of these 

structures constrains or determines the density of the other. To explore the 

genetic basis of tooth and taste bud densities, we assessed the correlation in F2 

fishes from an intercross between two rock-dwelling Lake Malawi cichlid species, 
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Cynotilapia afra (CA), a planktivore with few teeth and taste buds and 

Pseudotropheus elongatus (PE), an algivore with many of both. Tooth and taste 

bud densities each ranged >4-fold and were positively correlated across F2 (r
2 = 

0.43, Figure S1). To identify the genome intervals controlling tooth and taste bud 

density, we employed a QTL mapping framework, using fully informative RAD-

Tag single nucleotide polymorphisms (SNPs), as previously described for other 

phenotypes (Parnell et al., 2012). 

Briefly, we genotyped informative SNPs in the F2 and constructed a 

genetic linkage map. We joined 370 loci in 22 linkage groups (Malawi cichlids 

have 22 haploid chromosomes (Poletto et al., 2012). The data set exhibits nearly 

complete genotypes across 382 F2 (0.4% missing data). The linkage map was 

translated to genome assemblies of tilapia, Oreochromis niloticus (an East 

African river cichlid) and Metriaclima zebra (another Lake Malawi rock-dwelling 

cichlid) (Brawand et al., 2014). We used the assembled linkage map to 

determine QTL location and mode of effects for lower jaw tooth and taste bud 

densities in 263 F2 animals with complete phenotypic data (see Methods). We 

integrated single-QTL scans using standard and composite interval mapping with 

two-dimensional scans to identify pairwise (epistatic) QTL interactions and built 

multiple QTL models (MQM) incorporating QTL interactions, as well as 

phenotypic sex as a covariate. Marker quality and size of the data set give us 

suitable power to detect epistasis and sex-specific effects (Parnell et al., 2012). 

The final model for tooth density (logarithm of odds, LOD=32.10) 

incorporated eight loci and three epistatic effects, accounting for over 43% of the 
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phenotypic variance in this trait (Phenotypic Variance Explained, PVE=43.12; see 

Supplemental Table 1, Figure 3.1). The largest effect was seen at position 5.8 

cM on chromosome 11, explaining an estimated 15.47% of the phenotypic 

variance. Another QTL (PVE<8%) was found on chromosome 11 at a location 10 

cM distal (11@16.0) to the first. Three other large effect loci were each 

associated with ~8% of the variance in tooth density, cumulatively accounting for 

a large proportion of the PVE for this trait. One of these loci (17@34.8) was 

identically identified as a determiner of taste bud density (Supp. Table 1). Four 

other loci and one epistatic interaction were included in the full MQM for taste 

bud density (LOD=13.77, PVE=21.49), and all loci in the taste bud model shared 

chromosomes and LOD peaks with QTL for tooth density (chromosomes 3, 14, 

19, 20; Supp. Table 1, Figure 1). We did not detect a significant effect of 

phenotypic sex on either density measure. Overall, these genome mapping data 

suggest that pleiotropy and/or genetic linkage contribute to the observed positive 

correlation between tooth and taste bud densities in Malawi cichlids. 
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Figure 3.1. QTL profile for significant tooth (red) and TB (blue) genetic 
effects, with chromosome position plotted against LOD score. Best-scoring SNP 
markers from MQM models were located in cichlid genomes and all annotated 
genes 1 Megabase (Mb) on either side were identified. Bottom plot, candidate 
genes for tooth and taste bud density are indicated along expanded 2Mb portion 
of x-axis approximately positioned from the center of the peak for tooth (red) and 
taste bud (blue). Note shared QTL on chromosome 17. 

 

 

 Using annotated cichlid genomes (Brawand et al., 2014), we manually 

curated all predicted genes within one megabase in both directions (2Mbp total) 

around the highest LOD-scoring SNPs from MQM models. We highlight 

positional candidate genes based on either (i) published interactions in placode-

derived organ development or (ii) known roles in BMP, FGF, Hh, or Wnt 

pathways. Notable among these positional candidates is the gene smo, a well-

known mediator of Hh signaling, in close proximity to 17@34.8 -- a QTL for both 
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tooth and taste bud density; the gene bmper, a modulator of BMP activity, near 

the largest-effect QTL for tooth density (11@5.8); bmp2, well studied in tooth 

development, near a tooth density QTL (14@19.3); genes sfrp5 and wnt5a, 

putative effectors of Wnt/-catenin signaling near the 20@51.3 tooth density QTL 

(with marginal LOD signal for taste bud density); and pax9, known to regulate 

mouse tongue papillae (Jonker et al., 2004), near a taste bud density QTL 

(19@17.3). 

 

3.3.2 Cichlid tooth and taste bud fields are specified from a common lamina 

Because cichlid teeth and taste buds are co-localized on the jaw, we 

sought to understand the developmental ontogeny of each. In cichlids and other 

vertebrates, the earliest markers of the dental epithelium, or dental lamina, are 

shh and pitx2 (Fraser et al., 2008). Similarly, presumptive taste bud epithelium is 

known to express sox2 and shh at the earliest stages (Hall et al., 1999; Okubo et 

al., 2006). We used in situ hybridization (ISH) at 5 days post fertilization (5dpf) 

when the oral jaws first become apparent, to chart the spatial activity of these 

markers (Figure 2). The earliest oral lamina expresses pitx2 (a marker of dental 

epithelium), shh (a marker of dental and taste epithelium), and sox2 (a marker of 

taste epithelium) with near-overlapping patterns. A day later (6dpf), we observe 

the first pitx2+, shh+ dental placodes and the initiation of calb2+ (a marker of 

mature taste buds with more distinct expression than sox2) taste buds forming 

lingual to them (Figure S2, S3). Subsequently (7dpf), a labial band of taste buds 
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appears flanking the newly forming first row of teeth. Throughout, the epithelial 

dental field is circumscribed by the odd-skipped transcription factor osr2 

expressed in mesenchyme; osr2 constrains tooth rows in mice (Zhang et al., 

2009). Successive rows of teeth will be added between lingual rows of taste buds 

as the animal matures (Figure S4). Therefore, each tooth row is flanked by labial 

and lingual bands of taste buds. 

 

 

Figure 3.2. ISH of earliest markers of teeth and taste buds.  ISH of progenitor 
dental marker pitx2 (A,D), progenitor taste marker sox2 (C,F) and early marker of 
both, shh (B,E). Sagittal section at initial stages of jaw formation, early 5dpf (20X; 
scale=20µm) and late 5dpf (40X; scale=40µm). Black arrows show shared 1st 
arch lamina, white arrowhead shows reduced pitx2 in posterior pharynx. Rostral 
is to the left of page, ventral to the bottom. 18µm thickness sections. 

 

We focused on the stage of initial tooth and taste bud condensation (6dpf) 

because this is the first point during which common epithelium becomes 
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differentiated as either pitx2+ tooth or calb2+ taste buds. We therefore assayed 

the spatial expression by ISH of a number of placodal markers as well as genes 

in the BMP, FGF, Hh and Wnt pathways, in both whole mount and histological 

section (Figure S5; S6; Supp. Table 2). FGF signal plays known roles in the 

patterning of teeth and taste buds in the mouse (Neubüser et al., 1997; Petersen 

et al., 2011) and in the zebrafish pharynx (Jackman et al., 2004; Kapsimali et al., 

2011), but function in the oral jaws of teleost fishes is less clear. Here, we 

observed fgf10 in condensed dental mesenchyme, fgf7 in the forming velum 

lingual to teeth/TBs, and no activity of fgf8 in the oral organ field (see also 

(Fraser et al., 2008)). We detected fgfr1 and spry4 in the oral epithelium, 

consistent with the position of initial tooth and taste buds (Figure S6), suggesting 

that FGF signal is transduced in these placodes. Wnt ligands wnt7b and wnt10a 

delineate and mark the tooth placodes respectively; -catenin is expressed 

broadly across the tooth and taste epithelium. shh marks both the initial tooth 

placodes as well as the lingual taste bud field; the Hh receptor ptc1 is broadly 

expressed. sox2 is expressed in epithelium corresponding to lingual and labial 

taste bud fields, flanking the pitx2+ tooth row. The BMP receptor bmpr2b is 

expressed diffusely in the epithelium of tooth placodes and the lingual taste field, 

and bmp4 is strongly activated in both dental epithelium and mesenchyme.  

Notably, numerous BMP antagonists are active in the epithelium or 

mesenchyme marked for lingual and labial taste bud fields; this includes ectodin 

(wise, sostdc), osr2 and fst. Similarly, the Pitx2 repressor tbx1 (Cao et al., 2010) 

is strongly expressed lingual to the initial tooth row. Taken together, these data 
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from gene expression suggest roles for the Hh, Wnt and BMP pathways in co-

patterning of cichlid teeth and taste buds and furthermore that BMP signaling 

promotes the differentiation of teeth from a common epithelial field, while multiple 

BMP and pitx2 antagonists are protective of sox2+, calb2+ taste domains. 

 

3.3.3: Positional candidate genes are expressed in teeth and taste buds of fishes 

and mice 

We examined the expression of positional candidate genes from QTL 

analysis (above) during the placode condensation stage (Figure S4 and S6, inset 

box). smo, a co-receptor in the Hh pathway, near a coincident QTL for tooth and 

taste bud density, was expressed generally throughout the jaw epithelium, except 

in the primary dental placodes. As observed in the mouse (Du et al., 2012), 

activity of this transcript was not detectable at later stages. bmp2 and wnt5a, 

near separate tooth density QTL, are expressed in dental epithelium and 

mesenchyme, or in the mesenchyme flanking dental placodes, respectively. 

pax9, near a QTL for taste bud density, was active throughout the mesenchyme 

subjacent to both tooth and lingual taste bud fields. sfrp5 and bmper are two of 

our most interesting positional candidate genes, because they have not been 

heavily studied in oral placode development. Both are expressed in 

mesenchyme, in complementary anti-tooth patterns. sfrp5 has been described as 

a Wnt inhibitor in several systems (Li et al., 2008; Suzuki et al., 2004), an 

integrator of Wnt-BMP signaling in the zebrafish gut (Stuckenholz et al., 2013), 
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and a regulator of mouse incisor renewal (Juuri et al., 2012). bmper has been 

reported as both a positive and negative mediator of BMP signaling in other 

organs of the mouse, frog and fly ((Ikeya et al., 2006), (Moser et al., 2003), 

(Kelley et al., 2009)), and as an antagonist of BMP in mouse incisor ameloblasts 

(Cao et al., 2013). We assayed expression of these candidates in species with 

divergent densities of teeth/taste buds --- C. afra, a species with few teeth and 

taste buds and L. fuelleborni, a species with many of both (Figure S7). bmper is 

expressed diffusely in bands flanking the tooth field; expression is stronger in C. 

afra. Notably, sfrp5 is expressed from the midline in a gradient that encompasses 

much of the tooth and taste bud fields of both species; expression is strongest 

and broadest in C. afra. These expression differences between species are 

consistent with antagonistic roles for each gene in BMP (bmper) and Wnt (sfrp5) 

signaling, at this stage. 

Since these genes have not been well studied in mammal tooth and taste 

bud development, we assessed gene expression by ISH in teeth on mouse jaws 

and taste buds on mouse tongues (Figure 3). Bmper expression, observed at the 

molar bud stage (E12.5) was restricted to buccal mesenchyme, a pattern similar 

to that of Bmp4 (Figure 3A) (Vainio et al., 1993). By E15.5, expression can be 

seen surrounding the cap stage tooth bud in mesenchyme, in areas 

corresponding to the sites of osteogenesis (Figure 3A’). The highest expression 

level was still observed in buccal mesenchyme, adjacent to the dental epithelium. 

Bmper expression in the developing tongue was restricted to the deeper 

mesenchyme in the areas where musculature develops (Figure 3 B, B’, C, C’). 
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Sfrp5 was also observed predominantly in buccal molar tooth mesenchyme at 

the bud stage, with some expression in the epithelium at the tip of the bud 

(Figure 3D). At E15.5, mesenchymal expression of Sfrp5 is largely undetectable 

but highly restricted expression was located in the epithelium of the cervical loop 

with a greater level in the buccal aspect (Figure 3D’). In the tongue, Sfrp5 

expression was weak and diffuse except for a small area corresponding to the 

single circumvallate papilla that also expresses Wnt10b (Figure 3E) (Iwatsuki et 

al., 2007). By E15.5, punctate expression in the deep tongue mesenchyme was 

observed (Figure 3E’) with localized expression on the dorsal and lateral 

epithelial surfaces corresponding to (Figure 3F’). In addition Sfrp5 was expressed 

in the incisor cervical loop (Figure 3E’). 
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Figure 3.3  Expression of candidates Bmper and Sfrp5 in mouse teeth and 
tongues. Bmper and Sfrp5 expression, as shown in frontal section of bud stage 
molar teeth at E12.5 (A, D) and cap stage teeth at E15.5 (A’, D’) (20x; 
Scale=200µm). Gene expression in tongue as observed in sagittal (B, B’, E, E’) 
and frontal (C, C’, F, F’) sections at E12.5 and E15.5, respectively (10x; 
Scale=400µm).  
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3.3.4: Manipulation of signaling reveals epithelial plasticity via a complex logic of 

placode specification 

QTL and gene expression data implicate the Wnt, BMP and Hh pathways 

in the regulation of tooth and taste bud densities, as well as the patterning of 

these organs from a common oral epithelium. To test the precise role of these 

pathways, we employed small molecule antagonists to modulate signaling during 

the placode condensation stage. We applied LDN-193189 (LDN), an inhibitor of 

the BMP pathway; endo IWR-1 (IWR), an antagonist of the Wnt pathway; and 

cyclopamine (cyc), an antagonist of the Hh pathway, in fishwater, at 6dpf for 24 

hours. Split broods received small molecules or vehicle control. Following 

chemical or sham treatment, a subset of embryos was washed, returned to 

fishwater and allowed to develop until sacrifice at 14dpf, for quantification of tooth 

and taste bud densities. A second subset of embryos was sacrificed immediately 

after treatment, followed by ISH to examine the effects of pathway manipulation 

on gene expression. 

 

 

Figure 3.4.  Effects of chemical treatment on tooth and taste bud density. 
calb2 ISH was used to score TB density (A-D) and cleared and stained jaws 
were used to score tooth density (A’-D’). Midline of cleared and stained fish 
marked by white line, teeth in each half of dentary marked by white numerals. 
Statistics in S6. Dorsal views of dentaries, labial to bottom of page, 
scale=100µm. 
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Treatment with IWR significantly reduced the density of teeth and taste 

buds, compared to control siblings (Figure 4; quantified in Figure S9; P<0.0001). 

Abrogated or reduced expression levels of sox2, pitx2, BMP- and Hh-pathway 

members likely mediate this effect on both oral organs, observed after 24 hours 

of treatment (Figure S8). The only gene whose expression increased or 

expanded after IWR treatment was the putative Wnt antagonist, sfrp5. Notably, 

we raised a small number of IWR-treated animals to 1 month and noted a lasting 

reduction in the density of teeth and taste buds (Figure S10). LDN treatment 

(knockdown of BMP signaling) resulted in a striking increase in taste bud density 

at the expense of tooth density (Figure 4; quantified in Figure S9; P<0.0001). In 

LDN treated animals, taste papillae invaded the tooth field and occupied inter-

dental spaces, suggesting the breakdown of developmental boundaries. It is 

possible that calb2+ cells migrated to occupy the normally obligate tooth field, or 

that the oral epithelium holds inherent plasticity at this juncture. Observations of 

gene expression 24 hours after treatment support the latter notion (Figure 5). 

LDN treatment resulted in reduced expression of dental placode transcription 

factors pitx2 and lef1, and dramatic expansion of sox2 and shh into the tooth 

field. calb2+ taste papilla development was accelerated and the putative BMP 

antagonists osr2 and bmper showed up-regulation and expanded spatial 

domains, as observed for Osr2 in mouse conditional Bmp4 knockouts (Jia et al., 

2013). Similar to knockdown of BMP signaling, Hh antagonism via temporary 

cyclopamine treatment reduced the density of teeth and increased the density of 

taste buds, compared to controls (Figure 4; quantified in Figure S9; P<0.0001). 
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This appears to be mediated by an increase in both lingual and labial taste bud 

fields coincident with a smaller dental domain. After just 24 hours, cyclopamine 

almost completely abolished expression of the ptch1 receptor (Figure 5). As in 

LDN treatment, cyclopamine exposure yielded an expansion of TB markers calb2 

and sox2 at the expense of the pitx2+ tooth field. Expression of the transcription 

factor pax9 was reduced; we noted negligible effects on bmp2 expression. 

Finally, to assay if ectopic taste buds in taste and dental fields after LDN 

and cyclopamine treatment held potential for functional activity, we employed 

double whole-mount immunohistochemistry against; 1) Acetylated-Tubulin (red, 

Figure 6), a marker of innervation (LeClair and Topczewski, 2010), and 2) 

Calretinin/Calb2 (green) and visualized fluorescence using nonlinear optics 

(NLO) in conjunction with multiphoton microscopy. Taste buds that invade the 

tooth field after LDN treatment were well innervated, while following cyclopamine 

treatment their counterparts were not innervated (arrows). Recent study in adult 

mice shows that mis-expression of Shh is sufficient to induce ectopic taste 

placode development in lingual regions of the tongue, surprisingly independent of 

innervation (Castillo et al., 2014). Those data, in conjunction with ours, highlight 

differing roles of Hh and innervation in embryonic development versus adult 

maintenance of taste placodes (Barlow et al., 1996). 



 

92 
 

 

Figure 3.5. Changes in gene expression following treatment. ISH of genes in 
cichlid dentary following 24h treatment with LDN or CYC initiated at 6dpf and 
immediate sacrifice. Dorsal views, labial to bottom of page, scale=100µm. 

 

 

To sum up, our treatment data demonstrate that when teeth and taste 

buds are patterned from common epithelium, Wnt signaling exerts a positive 

influence on the densities of both organs, while BMP and Hh signaling both 

promote, or reinforce, the development of teeth. Assessment of gene expression 

after treatment suggests that the Wnt pathway acts upstream of BMP and Hh as 

teeth and taste buds initiate development. Notably, the epithelial plasticity (or bi-

potency) revealed from both LDN and cyclopamine treatments may be a 

common feature of organ systems like teeth and taste buds that function 

together, as observed for liver and pancreas (Xu et al., 2011), and hearts and 

lungs (Peng et al., 2013). 
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Figure 3.6. Effects of treatment at protein level.  Dorsal views of dentary after 
whole-mount IHC of TB marker Calb2 (green) and nerve marker Acytelated 
Tubulin (red) following LDN or Cyclopamine treatment. 3-D rendering of 150µm 
optical sections overlay to bright-field image at 10X. White arrows indicate 
ectopic TB. Labial to bottom of page, scale=100µm. 

 

3.4: DISCUSSION 

3.4.1: Deep ancestry of the Wnt-BMP-Hh regulatory hierarchy in oral placode 

development 

In many vertebrates, teeth and taste buds are co-localized in the oro-

pharyngeal cavity and function together as potential food items are assessed, 

acquired and then (in some cases) masticated. In Malawi cichlids, the number 

and density of teeth and taste buds varies widely (Fraser et al., 2008) and the 
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positive phenotypic correlation between tooth and taste bud densities makes 

adaptive sense. Planktivores typically assess food/prey using acute vision and 

swallow it whole – they tend to have reduced tooth and taste bud densities. By 

contrast, algivores use taste and smell to make food choices and then employ 

flexible or shearing teeth to comb or nip from the substrate – they generally 

possess many teeth and many taste buds. 

We showed here that the phenotypic correlation between tooth and taste 

bud densities is, at least partly, explained by genetic variants in common regions 

of the cichlid genome. We identified positional candidate genes in the BMP, Hh 

and Wnt pathways whose gene expression in fishes and mouse suggest 

conserved roles in the patterning of teeth and taste buds, regardless of whether 

these organs are co-localized from common epithelium (fish), or located in 

spatially restricted parts of the mouth (mouse). Using QTL and gene expression 

data as a lead, we manipulated BMP, Hh and Wnt pathways and demonstrated 

that Wnt signaling couples the density of teeth and taste buds, while BMP and 

Hh signaling promote the development of teeth at the expense of taste buds, at 

these early stages. 

Taken together, these observations are notable for two reasons. Firstly, 

manipulation of Wnt signaling in cichlid morphants provides a positive correlation 

between tooth and taste bud densities, similar to the correlation we observe 

across natural species and in the F2 of our intercross. Modulation of Wnt 

signaling early in the development of cichlid teeth and taste buds is sufficient to 

phenocopy natural differences among cichlid species (Figure S10). Second, our 
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small molecule treatment experiments, followed by assays of gene expression, 

suggest that Wnt acts upstream of BMP and Hh in the co-patterning of tooth and 

taste bud fields from common epithelium. Therefore, the function of these 

pathways, as well as their relative position in a regulatory hierarchy, is strikingly 

consistent between fishes and mammals, given the noteworthy spatial difference 

in organ distribution (Figure 7). In cichlids, Wnt signal promotes the initiation of 

both organs, as well as BMP and Hh from a bi-potent epithelium. As tooth and 

taste placodes mature, distinct fields develop wherein taste buds are patterned 

initially in a proximal or lingual zone to the tooth field and are recruited by Wnt 

signals, but repressed by BMP and Hh elsewhere. In contrast all three pathways 

synergistically support the maturation of tooth placodes distally. Finally, neural 

crest derived mesenchyme is induced to the placodes under a BMP+ tooth 

environment expressing bmp2,4 and a BMP- taste environment, likely restricted 

by repressors like osr2 and possibly bmper. It is likely that factors expressed by 

maturing tooth and taste buds are in turn restrictive to one another and help 

delineate the respective fields (Figure 7).  
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Figure 3.7. A model of evolutionary conserved patterning networks for oral 
organs. Humans possess TB on the tongue and teeth on the dental arch, while 
these organs are co-patterned in cichlids and other fishes. Inferred roles of Wnt-
BMP-Hh interactions and effects on tooth and TB patterning in cichlids 
represented before placode condensation, during placode formation, and during 
induction of mesenchyme to both organs, from proximal to distal of horizontal 
plane. Genomic candidates are highlighted in red text. Pre-placode stage 
represents the model of placode recruitment from a bi-potent epithelium. These 
interactions are consistent with what has been reported in the mouse for taste 
bud [9, 11, 69, 70] and tooth [8, 21, 37, 46, 48, 71, 72] patterning networks, when 
studied independently. Based on cichlid expression and treatment data, Wnts 
drive the formation of taste placodes proximally and tooth placodes distally, while 
BMPs and Hhs are inhibitory of taste bud differentiation and permissive for tooth 
germs. Anti-BMPs, such as osr2, may reduce BMP activity in the taste field to 
promote taste bud formation and sfrp5, expressed in both fields, may repress 
Wnt signaling. At the point of mesenchyme induction, pitx2 is expressed in tooth 
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placodes and the underlying mesenchyme expresses bmp2/4. Likewise, taste 
buds express calb2 and anti-BMPs osr2 and bmper are expressed in lingual 
mesenchyme. 

 

In the mouse, Wnt/-catenin signal is one of the earliest markers of dental 

placodes on the jaw margin and taste placodes on the tongue, acting upstream 

of BMP and Hh in both organs (Liu et al., 2008; Liu et al., 2007). Up-regulation of 

Wnt signaling in the mouse dentition, via constitutive activation of -catenin or 

genetic ablation of Apc, leads to extra teeth (Järvinen et al., 2006; Wang et al., 

2009). Similarly, culture of mouse tongues with LiCl, an agonist of Wnt/-catenin, 

and the activating -catenin mutation, both increase taste papillae number and 

size (Iwatsuki et al., 2007; Liu et al., 2007). Hedgehog signaling is necessary for 

proper development of teeth in fishes and mammals (Dassule et al., 2000; Fraser 

et al., 2008) and ectopic activity in the mouse diastema leads to extra teeth 

(Ohazama et al., 2009). Culture of mouse tongues with 5E1, an antibody against 

Shh leads to more papillae; culture with purified Shh reduces papillae number 

(Iwatsuki et al., 2007). Numerous reports using gene targeting have shown that 

ablating function of BMP antagonists [Ectodin (Sostdc1, Wise; (Kassai et al., 

2005)); Noggin (Plikus et al., 2005); Osr2 (Zhang et al., 2009)] increases tooth 

number. Likewise, ectopic expression of the BMP antagonist Follistatin, using the 

K14 promoter, reduces tooth number (Wang et al., 2004). BMP data for 

mammalian taste papillae are complicated and stage-specific. A variety of BMPs 

are expressed in mammalian tongue papillae with considerable variation across 

stages (Kawasaki et al., 2012). Zhou and colleagues (Zhou et al., 2006) report 
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that culture of rat tongues with purified BMPs or the antagonist Noggin at E13 

results in increased numbers of taste papillae, but that treatment at E14 with 

BMPs decreases papillae while Noggin treatment increases them. Interestingly, 

genetic ablation of Follistatin increases BMP signal in the mouse tongue and 

gives rise to ectopic posterior papillae that express Sox2 and Foxa2, but which 

appear to invaginate rather than evaginate like typical taste buds (Beites et al., 

2009). Overall, teeth and taste buds share gene synexpression and a deep 

molecular homology (Fraser et al., 2010).Our work here implies that the Wnt-

BMP-Hh regulatory hierarchy patterning these organs is conserved, despite 

release from the constraint of spatial co-localization in mammals (and other 

vertebrates). The conservation of regulatory interactions is a well-known tenet of 

development for homologous structures (e.g., the heart, (Davidson and Erwin, 

2006)) and core regulatory circuits are sometimes used in different organs, such 

as the case of Pax-Dach-Eya-Six in eye and muscle development (Heanue et al., 

1999). We highlight a special case of conservation in evolutionary development, 

wherein the function and interaction of signaling in independent regulatory 

networks (to make teeth on the mammalian jaw margin and taste buds on the 

tongue) may be evolutionary remnants of a single gene circuit that evolved long 

ago to co-pattern these organs from common oral epithelium. 
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3. 5: Materials and Methods 

3.5.1: Cichlid husbandry 

Species of Lake Malawi cichlids used in this analysis include: 

Tramitochromis intermedius [TI], Cynotilapia afra [CA], Labeotropheus fuelleborni 

[LF], Metriaclima zebra [MZ], Petrotilapia chitimba [PC] and Pseudotropheus 

elongatus (PE). These species were chosen to represent diversity in tooth and 

taste papillae densities. Adult cichlids were maintained in re-circulating aquarium 

systems at 28°C (GIT). Fertilized embryos were removed from the mouths of 

brooding females and staged in days post-fertilization (dpf) according to Nile 

Tilapia developmental series (Fujimura and Okada, 2007). Embryos were raised 

to desired stages for chemical treatment or euthanized with MS-222 for fixation in 

4% paraformaldehyde followed by dehydration into MeOH.  

3.5.2: Mouse husbandry 

Outbred CD1 mice were obtained from Charles River. Noon of the day 

when a vaginal plug was detected was designated as E0.5. Time-mated embryos 

were collected at E12.5, E13.5 and E15.5. All animal procedures were approved 

by the UK Home Office. 

3.5.3: Tooth and taste bud phenotyping in cichlid adult F2 

Following euthanasia (IACUC standard protocols) measurements of 

standard length (nearest mm) were taken on each individual and the dentary was 

dissected out in 70% EtOH. Jaws were rehydrated in reverse osmosis purified 
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water (60 seconds) and immersed in toluidine blue for 60 seconds to visualize 

taste buds (Su et al., 2013). The dentary was photographed at 7 – 16X on a 

Leica MZ16 dissecting microscope with a scale bar merged to each photo. Taste 

buds (found in the shared epithelial field, see below) were counted in ImageJ 

(Schneider et al., 2012) using the cell counter plugin. Jaws were then cleared 

with KOH and glycerin using standard protocols (Dingerkus and Uhler, 1977) to 

allow accurate counts of all teeth (erupted and replacement teeth) as well as 

measurement of the tooth/taste field. Each dentary was then photographed again 

as described above, without staining. Tooth counts were made using ImageJ 

(Schneider et al., 2012). The tooth/taste bud field was quantified by calibrating 

the scale bar in ImageJ and creating a polygon extending around the entire field; 

this delineation included the area in which teeth and taste buds were quantified 

above. Total tooth and taste bud counts were divided by total shared tooth/taste 

bud field area to account for any potential differences in jaw size due to 

allometry. 

3.5.4: QTL mapping of cichlid tooth and taste bud densities 

We used RAD-tag SNPs to map tooth and taste bud densities in F2 

animals, as described previously for other phenotypes (Parnell et al., 2012; 

Streelman et al., 2003a), with one important addition. From genome-anchored 

linkage maps of Oreochromis niloticus and Metriaclima zebra (Brawand et al., 

2014), we handpicked an additional set of SNPs predicted to fill gaps in linkage 

group coverage. This second group of SNPs was genotyped in the same F2 

population using the Fluidigm Dynamic Array (Parnell et al., 2012). This resulted 
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in a fully informative set of SNP markers covering the cichlid genome, with nearly 

complete genotypic data across F2 (0.4% missing data). A genetic linkage map 

was constructed with SNP marker genotype data using JoinMap® 3.0 software, 

as described previously (Parnell et al., 2012). The map was created using 

Kosambi’s mapping function, a LOD threshold of 1.0, a recombination threshold 

of 0.4, a jump threshold of 6.0, and a ripple function with no fixed order of loci. A 

LOD threshold of 4.0 was used to join 370 loci in 22 linkage groups with a total 

map size of 1381 cM and average marker distance 4.38 ± 1.85 cM with an 

average of 16.8 markers per linkage group. To facilitate comparison to other 

genetic maps in Malawi (Albertson and Kocher, 2005; Albertson et al., 2005; 

Parnell and Streelman, 2012; Streelman et al., 2003b) as well as tilapiine cichlids 

(Lee et al., 2005), our linkage group names represent consensus cichlid 

chromosomes. 

The linkage map was used to determine genomic locations for tooth and 

taste bud densities in the F2 population using the R/qtl package (Broman and 

Sen, 2009). We used an iterative approach by scanning for single QTL with 

standard and composite interval mapping (CIM), followed by two-dimensional 

scans to (i) identify QTL x QTL interactions (i.e., epistasis) and (ii) detect 

additional QTL. Finally, using results of the previous steps we built multiple QTL 

models (MQM) incorporating QTL interactions and covariates (i.e., sex). In the 

MQM process, we used a forward-backward selection algorithm to add and 

remove QTL based on overall model effects and the effects of single QTL as they 

were removed from the model. Genotype-phenotype associations are scored 
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using the logarithm of the odds (LOD) which represents the log10 likelihood ratio 

comparing the hypothesis of a QTL at a marker location to the null hypothesis of 

no QTL (LOD=(n/2)log10 (RSS0/RSS1); RSS=residual sum of squares (Broman 

and Sen, 2009). The variance in a phenotype is assigned to each significant QTL 

(or covariate) and reported as percent variance explained (PVE) in the analysis 

output. The total variance accounted for by QTL is a proxy for the heritability of a 

trait and is calculated as 1 – 10-(2/n)LOD (Broman and Sen, 2009). Significance 

thresholds for LOD scores were estimated using 1000 permutations of 

phenotypes relative to genotypes to build a distribution of maximum genome-

wide LOD scores. From this distribution, the 95th percentile LOD score was 

calculated to serve as a threshold for significant QTL associations (Broman and 

Sen, 2009). 

To identify positional candidate genes, we manually curated all predicted 

genes within 1 Mb up- and downstream from the highest LOD-scoring SNPs from 

MQM models, using annotated cichlid genomes (Brawand et al., 2014). 

Candidates were selected based on published interactions in placode-derived 

organ development or a known relationship to BMP, Hh, Wnt, or FGF signaling 

pathways. 

3.5.5: Cichlid in situ hybridization 

Digoxigenin-labeled antisense riboprobes were prepared using partial 

cichlid genome assemblies (Loh et al., 2008) as well as recently assembled 

tilapia and MZ genomes (Brawand et al., 2014). DNA sequence diversity across 
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the Lake Malawi assemblage is 0.28%; less than reported values for laboratory 

strains of zebrafish. cDNA sequences for probe design have been deposited in 

GenBank (accession numbers XXXX-XXXX). ISH was performed according to 

previously published protocols (Fraser et al., 2008; Fraser et al., 2013). Embryos 

were re-hydrated from MeOH and ISH was carried out in whole-mount. 

Digoxigenin-labeled antisense riboprobes were generated using the Riboprobe 

System Sp6/T7 kit (Promega). AP-conjugated anti-dig antibodies were visualized 

at the end of color reaction (NBT/BCIP; Roche) using Leica Mz16 dissecting 

microscope. Embryos were embedded in chick albumin cross-fixed with 2.5% 

gluteraldehyde and post-fixed with 4% PFA. A Leica Microsystems VT1000 

vibratome was used to cut sections at 15-25µm. Histological sections were then 

mounted with glycerine and imaged at 10-63x using a Leica DM2500 compound 

microscope.  

3.5.6: Mouse histology and in situ hybridization 

Embryos were dissected in ice-cold PBS, fixed in 4% PFA overnight at 

4oC, before embedding in paraffin wax. Serial sections of the embryo were 

obtained at 10mm and dried overnight at 42oC. ISH was carried out using 

standard methods (Wilkinson et al., 1989). Digoxigenin-labeled antisense probes 

for Sfrp5 (IMAGE ID 1395864) and Bmper (IMAGE ID 3483063) were used. After 

completion of the color reaction, sections were counterstained with nuclear fast 

red, dehydrated and mounted with DPX. 
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3.5.7: Treatment of cichlid embryos with small molecules 

Stock solutions were prepared for each chemical treatment experiment 

using Dimethyl Sulfoxide (DMSO, MP Biomedicals). Stock solutions were as 

follows: 10µm LDN-193189 (Enzo) in DMSO, 50mM endo IWR-1 (Enzo) in 

DMSO, and 16mM Cyclopamine (LC Laboratories) in DMSO. Cichlids were 

raised to 6 dpf and embryos from single broods were split into small molecule 

and solvent control groups. All chemical and control experiments were performed 

in Erlenmeyer flasks at 28°C in an oscillating platform culture incubator 

(Barnstead Lab-Line Max 4000). Treatments were performed at 1.5µM LDN, 

3.75µM IWR, and 2.5µM Cyclopmamine. After 24 hours treatment in the small 

molecule dilution, fry were sacrificed immediately. ISH was carried out on 

experimental animals to understand effects of treatment on gene expression. 

Alternatively, embryos were washed extensively with fresh fish water and 

raised to 14dpf for sacrifice to understand effects of treatment on organ densities. 

Embryos were fixed and were either cleared and stained to assay effects of 

treatment on tooth density or ISH for the taste marker calb2 was performed to 

assay effects of treatment on density of taste papillae. Tooth and taste densities 

were measured in different animals because the clearing/staining process and 

ISH damaged the tissues in combination. Post treatment and staining, dentaries 

were photographed using a Leica MZ16 dissecting scope. Teeth (C&S) or taste 

buds (calb2 ISH) were counted manually using ImageJ software, and jaw size 

was calculated using the measure function which converted pixel area of scale 

bar to millimeters. Total tooth and taste bud counts were divided by jaw area to 
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account for possible size differences between specimens. All measurements for 

TB controls were pooled because experiments were conducted in the same 

species (PC) while those for tooth density were analyzed separately because 

experiments were conducted in different species (IWR-PC, LDN/CYC-MZ). Data 

were organized into box plots for each treatment set using JMP 11.0 software. 

Mann-Whitney U non-parametric tests were performed to test the null hypothesis 

of equal organ densities between treatment and control. 

 

3.5.8:  Cichlid whole-mount immunohistochemistry (IHC) and NLO microscopy  

For IHC, embryos were sacrificed and fixed in 10% NBF for 24 hours at 

RT. Antigen retrieval was performed by washing 3X10min. PBS, placing in 2β-

mercaptonol for 1 hr, washing in PBS and incubating at 70°C 150mM Tris-HCL 

for 1hr. Embryos were incubated in blocking solution (3% goat serum, 1% bovine 

serum, 0.1% Triton 100X) for 3hrs RT, followed by 48hr incubation in a 1:1000 

dilution of rabbit anti-calretinin [Millipore] and mouse IgG anti-acetylated tubulin 

[Sigma] at 4°C in blocking solution. Embryos were then washed 6X1hour at RT in 

PBS and incubated 24 hours at 4°C in 1:400 alexa-fluor 488 goat anti-rabbit IgG 

[Molecular Probes] and alexa-fluor 568 goat anti-mouse IgG [Molecular Probes]. 

Unbound secondary antibody was removed by washing 48 hours in PBS and 

specimen were stored in a 50:50 glycerin:Vectashield mixture for imaging. Deep 

tissue whole-mount fluorescence was imaged by mounting embryos on glass 

depression slides and scanning with nonlinear optics (NLO) using a Zeiss 710 
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system coupled with multiphoton microscopy. Conjugated antibodies were 

excited with a Coherent Chameleon Ti:Sapphire laser at 780nm and scanned at 

their respective wavelengths. 
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CHAPTER 4 

PLASTICITY OF STEM CELLS IN TOOTH AND TASTE BUD RENEWAL 

4.1 Abstract 

We use the continuously replacing dentition of Lake Malawi cichlid fishes 

to understand de-novo tooth replacement in adult vertebrates. In this system, 

each tooth is replaced in a one-for-one fashion every ~50 days. Here, we explore 

the source of epithelial stem cells for tooth replacement. We first characterized 

spatial expression of putative stem cell factors, including bmi1, celsr1, igfbp5, 

hopx1, lgr4/6, sox2 and Wnt/Hh activity, in replacement teeth (RT). We noted 

that RT shared epithelium with adjacent taste buds (TBs) and that both organs 

co-expressed putative stem factors in subsets of cells. This is intriguing because 

both organs regenerate continuously in cichlids. We identified putative stem cells 

in RT and TBs after double IHC experiments with markers Bmi1, Gli3, Sox2 or 

Trp63, and BrdU after 100 days of chase. In the early patterning of cichlid teeth 

and taste buds, BMP signaling appears to promote tooth development at the 

expense of TBs and knockdown of BMP reveals developmental plasticity 

between these organs that share a common epithelium. We dissected 

replacement tooth germs and TB bearing oral epithelium for RNA extraction, on 

which we performed next generation RNA-seq. Transcriptome analysis reveled 

differential up-regulation of BMP family members in RT compared to TB oral 

epithelium. Similarly at replacement stages, we observed bmp2/4 expressed in 

RT but outside of TBs using ISH. Morphants bathed in the BMP antagonist LDN 
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exhibited RT with abrogated shh expression in the inner dental epithelium (IDE) 

and the ectopic expression of calb2 (a TB marker) in these very cells. Our data 

suggest that RT epithelium retains inherent plasticity to form non-dental cell 

types. These findings may reveal an endogenous supply of oral stem cells with 

promising potential in bioengineering and dental therapeutics. 

  

4.2 Introduction 

Roughly 25% of the human population is born with congenital defects of 

the dentition arising from genetic aberrations (Fleischmannova et al., 2008).While 

this figure is significant, according to the World Health Organization a far greater 

number, approaching 100 percent, of all human beings will suffer from dental 

disease throughout their lifetimes arising from dental disease and selective tooth 

loss. Most vertebrates, including the majority of fishes and reptiles, are defined 

as polyphydonts by their prowess to replace teeth many times over and usually 

throughout ontogeny. In contrast, most mammals including humans are 

diphyodont and have evolved to possess only two sets of teeth: a primary 

dentition and a successional adult dentition that must serve throughout 

adulthood. Further still, evolution has progressed towards specialized cases of a 

reductive dentition in monophyodonts like most rodents, favoring the capacity to 

renew damaged tissues over the capacity for whole tooth-replacement. Although 

the human “adult” or successional replacement tooth (RT) possesses limited 

regenerative potential in the cellular pulp chamber and periodontal ligament, 
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injury to the adult tooth is largely irreversible. The fields of restorative and 

prosthodontic dentistry have traditionally sought to address dental morbidities by 

employing synthetic tissue substitutes forged from alloys, plastics, and ceramics. 

On the forefront of regenerative medicine the emerging field of regenerative 

dentistry alternatively looks to cell-based dental repair aimed at replacing 

damaged oral structures with live tissues. By transplanting cells or cell scaffolds 

into oral tissues, biomedical engineers have cultured teeth and transplanted them 

in mice to achieve ideal dental function and aesthetic where it was once lost (Kim 

et al., 2010; Oshima et al., 2011).  

A caveat of regenerative medicine is the prerequisite of an adequate 

reservoir of cells to compose a desired tissue. Because stem cells (SCs) possess 

the ability to both self renew and generate vast numbers of several cell types, 

they underlie most biological regenerative processes. In the instance of 

therapeutic research SCs are typically either harvested from sources such as 

embryonic and animal tissues or generated from somatic cells induced to carry 

out stem-like functions. While each holds immense clinical potential, these types 

of cells are often muddied with hurdles to practical applications arising from 

immunogenicity, ethical dilemmas, tumorigenicity and degrees of potency. 

Consequently it stands to reason that a clinically idyllic SC would be both 

endogenous to the patient and similar in native potential to generate the desired 

tissue. In the pursuit of tooth regeneration, the top cellular candidates for the task 

would be dental SCs or their nearest neighbor.  
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While at the turn of the century we knew relatively nothing about SCs that 

mediate tooth renewal and replacement, we have now gleaned a great deal 

about de-novo dental regeneration from a host of models. The mouse 

compensates for its monophyodont dentition by renewing damaged enamel 

asymmetrically on the labial surface of its incisors, which bear the brunt of 

primary mastication. At the base of each incisor lies, known as the cervical loop 

(CL), a stem-cell niche that has become a powerful model for understanding SC 

biology and the generation new of adult tissues in-vivo. Initially the epithelial stem 

cell (ESC) niche was the focus of this work. Mechanistically, a histologically 

apparent group of mesnmchymal-like epithelial cells, called stellate reticulum 

(SR), lie sandwiched in between an inner (IEE) and outer (OEE) enamel 

epithelium. A subset of these cells from within the SR serve as stem/progenitor 

cells to the epithelium, differentiating into transit amplifying (TA) cells that will 

multiply to form pre-ameloblasts and ultimately enamel-secreting ameloblasts 

along the iee (Harada et al., 2002; Wang et al., 2007). Several factors common 

to ESCs have been identified within this stem-niche that referee labial enamel 

renewal in mice. For instance, the polycomb group gene Bmi1, well-known for its 

participation in neural (Molofsky et al., 2003) and hematopoietic (Park et al., 

2003) self-renewal, is now known to contribute to incisor SC renewal through 

repression of Ink4a/Arf and Hox genes (Biehs et al., 2013). Sox2 has been used 

as a marker of the putative ESC  niche in a cadre of mammals and reptiles (Juuri 

et al., 2013), cichlid fishes (Fraser et al., 2013) and sharks (Tucker and Fraser, 

2014) and genetic fate mapping experiments have demonstrated that Sox2-
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positive SCs contribute to all lineages of the dental epithelium (Juuri et al., 2012). 

It stands to reason, however, that if mesenchymally derived tissue, (ie dentin), is 

to be regenerated then progenitors must exist for this tissue type as well. 

Recently, nerve-associated SHH protein ligand has been demonstrated to 

activate Gli1-postive mesenchymal stem cells (MSCs) in mouse incisors, where 

dennervation experiments lead to a disruption of the MSC niche and defects in 

the generation of odontoblast and pulpal derivatives (Kaukua et al., 2014; Zhao 

et al., 2014). 

These genetic and cellular interactions are not unique to SCs belonging to 

rodent incisors. In fact, many were first recognized in other placode derived 

organs such as hair, feathers, taste buds and scales, all of which self-renewal 

across ontogeny, show similarities in development and anatomy, and likely share 

a common ancestor (Dhouailly, 2009; Sharpe, 2001). For instance, nerve 

associated Shh- activation of  Gli1 responsive MSC’s was first demonstrated in 

mouse hair follicles (Brownell et al., 2011) and evidence of the same pattern has 

been reported in taste buds (Castillo et al., 2014; Liu et al., 2013). Lgr5 was 

shown as markers of a population of SC’s in intestinal crypt-villi (Barker et al., 

2007), later shown to be distinct from Bmi1 positive SCs (Yan et al., 2012), while 

Lgr6 from the hair follicle was demonstrated to generate all lineages of the 

dermis (Snippert et al., 2010). Congruently, lgr5 is co-expressed with pulse-

chase labeled BrdU-positive putative SCs of teeth that undergo of whole 

replacement in the gecko (Handrigan et al., 2010), as well as in the mouse 

incisor ESC niche (Suomalainen and Thesleff, 2010).   
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We set out to understand the phenomenon of vertebrate whole-tooth 

replacement in Lake Malawi cichlids, fishes that have the ability to replace each 

of their teeth with fidelity approximately every 50 days(Hildebrand et al., 1995). 

This is quite a task for animals that occupy a rainbow of dental formulas, with 

hundreds to thousands of teeth depending on the ecological demands of the 

particular Malawi cichlid species. In a previous study where we explored the 

phenomenon of cichlid RT formation with respect to tooth shape.  We noted that 

each RT maintained a physical connection, through a ribbon of epithelium known 

as the succesional dental lamina, to a superficial ball of “onion-shaped” cells 

labial to the functional tooth (FT) and that expressed proliferative factors such as 

β-cat and sox2 throughout each RT germ’s maturation (Fraser et al., 2013). 

Closer examination of this population through histology revealed that this sub-set 

of cells was actually a taste bud (TB). In another study we described the co-

patterning of cichlid oral organs (Bloomquist et al., in submission), specifically 

teeth and taste buds, and we came across three intriguing findings: First, we 

noted that in cichlids teeth and TBs arise from common epithelium embryonically 

and that the dental lamina is really an “oral lamina” with bi-potency to form either 

tissue. Next we found that while many factors are shared across oral tissues, 

certain genes such as bone morphogenetic proteins (BMPs) were expressed in 

the presumptive dental field and flanked by BMP antagonists such as osr2 and 

bmper in the presumptive taste field. Finally, we discovered that while teeth and 

TB placodes are patterned in distinct fields, chemical manipulation of gene 
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function, such as BMP antagonism, demonstrated the plasticity of embryonic oral 

epithelium by forming TBs in the dental field.  

Given the described ancestral and embryonic homology between teeth and what 

is perhaps their closest cousin spatially and developmentally, the TB, we set out 

to uncover the SCs in these two organs responsible for their constant renwal in 

such close proximity. Furthermore, we wanted to understand why RT and TB 

have such an intimate connection maintained, by the dental lamina, and why this 

connection was sustained for much of the RT germ’s incubation. We first used in-

situ hybridization (ISH) for a host of adult SC markers to localize putative stem 

cell populations in each organ, ne of which is new to what is currently understood 

about tooth renewal. Next, we verified the “stemness” of these populations 

through pulse-chase analyses coupled with immunohistochemistry (IHC) against 

SC factors. We then extracted tissues and perfomed RNA-seq, and through 

independent analysis with ISH highlighted BMP factors to be differentially 

expressed in RT and not TB. Finally, we utilized a chemical antagonist of BMPs 

to alter the characteristics of TA cells within the RT germ, which after treatment 

favored TB expression profiles to that of normal RT. Our study highlights the 

homology of these two organs in lower vertebrates, not just in their proximity and 

structure, but in their prowess to renew and the cells that their stem populations 

can generate; and, incriminates taste bud SCs, a reservoir of SCs that can be 

endogenously harvested from most patients, as top-candidates for dental 

therapeutics.  
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4.3 Materials and Methods 

4.3.1: Fish Husbandry 

Adult Malawi cichlids were housed in re-circulating aquarium systems at 

28°C (GIT) for embryo production. Species of Lake Malawi cichlids include 

Labeotropheus fuelleborni [LF], Metriaclima zebra [MZ], Petrotilapia chitimba 

[PC] and were selected based on embryo availability with a preference toward 

MZ, owing to their genome assemblage (Brawand et al., 2014) and partial 

albinism morph which permitted better imaging of histological stain. Fertilized 

embryos were harvested from mouth brooding females and staged in days post-

fertilization (dpf) according to Nile Tilapia developmental series (Fujimura and 

Okada, 2007). Embryos were raised to desired stages for ISH, pulse-chase 

experiments, or chemical treatment and euthanized with buffered MS-222 for 

fixation in either 4% paraformaldehyde or 10% neutral buffered formalin.  

4.3.2: In situ hybridization 

Primers for target probe sequence were designed using the published and 

annotated genomes of tilapia species Oreochromis niloticus (Brawand et al., 

2014) and the aligned genome of Malawi cichlid Metriaclima Zebra from the 

University of Maryland Cichlid Blast Server Tool. It has been reported that 

genomic sequence diversity across the Lake Malawi assemblage is 0.28%, less 

than reported values for laboratory strains of zebrafish (Loh et al., 2008), and 

riboprobes were reactive across Malawi cichlid species. Target sequences were 

transformed and cloned, and sequences were deposited in GenBank (accession 
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numbers XXXX-XXXX). Riboprobes were synthesized and labeled with 

Digoxigenin (Roche) using the Promega System Sp6/T7. In-situ hybridization 

was performed using previously published methods in whole-mount (Fraser et 

al., 2008) and visualized using a AP conjugated anti-digoxigenin antibody 

(Roche) to activate a NBT/BCIP (Roche) blue color reaction. Specimen were 

embedded in chick albumin and cross-fixed with 2.5% gluteraldehyde followed by 

a post-fixed with 4% PFA. Histological sections were cut at 18-20μm using a 

Leica Microsystems VT1000 vibratome and then mounted with glycerine for 

imaging using a Leica DM2500 compound microscope with 20-40x objectives. 

4.3.3: BrdU labeling 

5-bromo-2′-deoxyuridine pulse-chase experiments were carried out to 

label slow-cycling cells, a property of stem cells. Specimens reared to 4dpf were 

bathed in a 2% solution of BrdU in-vivo labeling reagent (Invitrogen 00-0103)in 

200mL of fish room water at 28ᴼC in an erlenymer flask. Daily 1mL aliquots of 

BrdU solution were added for a total labeling period of 1 week to complete the 

“pulse” period. Embryos were rinsed 2X and then moved to fresh water at 28ᴼC 

in a  re-circulating aquarium system (GIT). Embryos were sacrificed over 20 day 

periods up until a period of 100 days “chase”. This period was verified by BrdU 

immunohistochemistry as the chase time-point where only discreet populations of 

slow-cycling cells were labeled.  
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4.3.3: Immunohistochemistry 

Embryos were sacrificed as described and fixed in 10% NBF at RT at 4ᴼC. 

Embryo were then rinsed in PBS and decalcified for a period of 48-72 hrs in a 

mild acid (0.1M EDTA) at RT before being processed through a graded series of 

EtOH (25%, 50%, 75%, 100%, 100%) and 2 washes in xylene. Embryos were 

washed in xylene for 3 hours and incubated 60ᴼC /embedded in paraffin for 

sectioning on a Thermo Scientific Microm HM355S microtome at 5µm. Slides 

were dried for 24 hours at 42ᴼC and rehydrated through xylene and a graded 

series of EtOH for incubation in blocking solution (3% goat serum, 1% bovine 

serum, 0.1% Triton 100X) for 1hr at RT. Slides were then incubated O/N in a 

1:100 dilution of anti-rabbit  primary antibody (rabbit ant-Gli3 [Genetex 

GTX26050], rabbit ant-Sox2 [Genetex GTX124477], rabbit ant-Trp63 [Genetex 

GTX124660] rabbit ant-Bmi1 [Neuromics RA25083]) in conjunction with mouse 

IgG2a anti-BrDU [GE Healthcare RPN202]) and the provided blocking solution 

containing nuclease enzyme at 4ᴼC. Slides were then rinsed 2 x 1h in PBS and 

incubated in secondary antibodies at 1:400 HRP conjugated goat anti-rabbit IgG 

[Molecular Probes] and alexa-fluor 568 goat anti-mouse IgG2a [Molecular 

Probes] in blocking solution at RT. Unbound secondary antibody was removed 

by washing 2 x 1h in PBS and the HRP signal was amplified using a 488-

tyramide chemistry signal amplification kit (Molecular Probes). Slides were again 

rinsed 2x 1h and mounted with a 50:50 glycerin:Vectashield mixture for imaging 

using a Zeiss 710 confocal imaging system. 
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4.3.5: Chemical Treatment 

A 10µm stock solution of LDN-193189  (Enzo) was prepared for each 

chemical treatment experiment using Dimethyl Sulfoxide (DMSO, MP 

Biomedicals). All chemical and control experiments were performed in 

Erlenmeyer flasks at 28°C in an oscillating platform culture incubator (Barnstead 

Lab-Line Max 4000). For changes in gene expression assayed by ISH, cichlids 

were raised to 20 dpf and embryos from single broods were split into a small 

molecule treatment and a solvent control group .Treatments were performed at 

4µM LDN in 200mL fish H20. After 48 hours treatment in the small molecule 

dilution, fry were sacrificed immediately and fixed in 4%PFA. ISH was then 

carried out to assay effects of treatment on gene expression. For RNA-Seq 

analysis, adult MZ males with a standard length of approximately 2.5” were 

treated under the same concentrations and conditions as above in 1L of H20 for a 

period of 48 hours, alongside control animals in water containing equivalent 

volumes DMSO. Animals were sacrificed in buffered MS-222 and immediately 

dissected for RNA extraction.  

4.3.6: RNA extraction and sequencing  

Animals were sacrificed and immediately dissected for RNA extraction. A 

ribbon approximately 1mm x 10mm of epithelium was removed labial to the outer 

row of teeth from the dentary of experimental animals using a #12 scalpel blade. 

The extra-osseous soft tissue was removed from the entire jaw to reduce the risk 

of TB containing epithelium carryover. The bone was then shaved down using a 
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scalpel to expose the bony crypts and intraosseous RT were extracted with fine 

forceps. Extracted tissue was quickly placed in RNAlater RNA Stabilization 

Reagent (Qiagen). Tissues were frozen in liquid nitrogen, homogenized using a 

mortar and pestle and placed in trizol. Following standard chloroform extraction 

RNeasy mini columns (Qiagen) were utilized to purify RNA for storage at -80ᴼC. 

Total RNA was quantified using Qubit (Molecular probes) and quality analyzed 

using the Agilent 2100 Bioanalyzer System for RNA library preparation. RNA 

input was normalized to 1µg and libraries were prepared using the TruSeq 

Stranded mRNA Sample Prep Kit (Illumina- Kit A). Libraries were again 

quantified, quality assessed, and normalized for sequencing on the HiSeq 2500 

Illumina Sequencing System. 

4.3.7: RNA-Seq analysis 

Raw sequence reads from RT and TB samples were quality controlled 

using the NGS QC Toolkit (Patel and Jain, 2012). Raw reads with an average 

PHRED quality score below 20 were filtered out. The remaining reads were 

further trimmed of low-quality bases at the 3’ end. Quality controlled reads for 

each sample were aligned to the Metriaclima zebra genome v1.1 (Brawand et al., 

2014) using TopHat v2.0.9 (Kim et al., 2013). The resulting TopHat2 output bam 

files were sorted and converted to sam files using samtools v0.19 (Li et al., 

2009). Sorted sam files were used as input for the HTSeq-count v0.6.1 program 

to obtain fragment counts for each locus (Anders et al., 2014).  
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Fragment counts were scale-normalized across all samples using the 

calcNormFactors function in the edgeR package v3.6.8 (Robinson et al., 2010). 

Multidimensional scaling (MDS) plots were also produced via the edgeR package 

v.3.6.8 to determine the relative consistency among the replicates and samples. 

Scale-normalized fragment counts were converted into log2 counts per million 

reads mapped (cpm) with precision weights using voom and fit to a linear model 

using the limma package v3.20.9 (Law et al., 2014; Smyth, 2005). Pairwise 

contrasts were constructed between RT and TB samples. After correcting for 

multiple comparisons using the Benjamini-Hochberg method (Benjamini and 

Hochberg, 1995), genes were considered differentially expressed between RT 

and TB samples if they exhibited both an adjusted P-value < 0.05 and a fold 

change > 2. 

 

4.4 Results and Discussion 

4.4.1: ISH of stem markers reveal a highly potent oral epithelium 

  We began our study with aim of identifying the location of putative stem 

cell niches in both renewing TBs and succesional teeth through ISH. Three 

distinct stages of cichlid replacement tooth maturation are known: initiation, 

which encompasses placode or succesional dental lamina stages of 

odontogenesis; differentiation, which encompasses cap and bell stages; and 

secretion, which encompasses late bell and mineralization stages (Fraser et al., 

2013). We chose to focus our study on the latter because RT spend the longest 
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time in this stage and secretion is the most consistent histologically across 

different aged cichlids, allowing us to study the RT unit at the same stage for all 

experiments presented in this work. We first used pitx2, a marker of dental 

tissues in cichlids (Fraser et al., 2008) and in mice (Lin et al., 1999) to identify 

those cells belonging to the RT germ, but noted expression along the 

succesional dental lamina, along basement membrane cells deep in the oral 

epithelium, both labial and lingual to the taste bud unit (figure 4.1, TB in orange, 

RT in red, FT in green). As we have done before in cichlids (Bloomquist et al, 

unpublished) and has been done in trout (Díaz-Regueira et al., 2005), we used 

calretnin (calb2) to mark TB, which more specifically was expressed in the 

elongated taste bud proper intragemmal cells and the support perigemmal cells 

that surround it. We attempted to further characterize delineate the taste unit 

using foxa2, a marker of the endoderm and taste buds in mice (Luo et al., 2009) 

and in zebrafish (Kapsimali et al., 2011), but to our surprise foxa2 not only 

marked TBs, but was strongly expressed in all RT cells and  across ectodermally 

derived outer oral epithelium associated with these two organs, a pattern that 

became increasingly apparent with most of the factors that we investigated. The 

last prop of the stage we studied before turning to the actors in stemness was 

trp63, a p53 transcription factor family member and a marker of proliferation and 

mitotic activity. Trp63-defecient mice embryos exhibit both anodontia and a thin 

degenerate tongue epithelial layer (Mills et al., 1999) and a hypothesized 

bipotential progenitor layer shared between both filliform and fungiform taste 

papilla is marked by Trp63 in mice (Okubo et al., 2009). We find expression of 
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trp63 to mirror expression of the progenitor layer in mice, being strongly 

expressed in the cells basal surrounding the intragemmal TB cells continuing 

across the oral epithelium overlying the dental lamina and in the CLs of the RT 

epithelium. 

 

 

 

Figure 4.1. ISH identification of tissue in RT-TB unit. Expression of pitx2 
labial to (black arrow, A) and lingual TB outlined in orange, and expressed in RT 
in red, which is labial to FT in green. calb2 expressed in TB (B), foxa2 across all 

epithelium (C), and trp63 in CLs (Black arrowhead, D) expression.  

 

 

We then turned our focus to markers of adult stem cells. Perhaps one of 

the most studied of these factors in both taste bud development, stemness, and 

more recently in tooth regeneration is sox2. While Sox2 is a well known TB 

marker, important for both the generation of TBs as well as maintenance of its 

stem cell populations, it has more recently been implicated in dental ESCs of 

both mice (Juuri et al., 2012) and other vertebrates (Juuri et al., 2013). We found 

sox2 expression in TB’s, as well as RT and across epithelium associated with the 

two structures (Figure 4,2). Bmi1, a polycomb gene required for adult stem cells 
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in a host of organs (Molofsky et al., 2003), is essential for incisor renewal through 

the repression of Ink4a/Arf and Hox genes (Biehs et al., 2013), while in TBs it 

appears that a population of Bmi1 positive SCs renew keratinized epithelial cells 

distinct from SCs that renew TB cells themselves. We observed expression of 

bmi1 distinct from that of sox2, diffusely across TB and surrounding epithelium 

and in RT epithelium. The differences between sox2 and bmi1 expression come 

as no surprise. In the mouse intestine, Bmi1 marks a population of stem cells that 

is relatively quiescent and activated in response to injury, while another distinct 

population of Lgr5 positive stem cells is more active and is responsible for 

regular renewal of the crypt unit (Yan et al., 2012), and further each population 

responds differently to tissue perturbations such as apoptosis (Zhu et al., 2013). 

While no homolog of Lgr5 exists in teleosts, the ortholog lgr4 was expressed in 

cichlid RT and TBs more similarly to that of sox2, although more restricted to the 

basal layers of epithelium in and around the taste unit. igfbp5, shown coincident 

in expression to lgr5 in gecko RT dental lamina (Handrigan et al., 2010), indeed 

co-labels the basal epithelial cells associated with the regenerating RT-TB unit. 

Meanwhile Hopx, which has been used to label SCs in intestine (Takeda et al., 

2011) and hair follicles (Takeda et al., 2013), has not yet been described in teeth 

or TBs but is expressed in both the sox2/lgr4/igfbp5 positive and bmi1 positive 

populations. To complement the renewal of the epithelium, we investigated the 

role of MSCs in cichlid oral organ renewal. It is now well established that nerve 

mediated Hh responsive MSCs derived from glia in mouse incisors express Gli1 

coincident with other stem labels, and upon denervation incisors fail to produce 
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significant mesenchymal cell progeny (Kaukua et al., 2014) . We found gli1/3 

expressed in the epithelium and papillary mesenchyme of the RT and 

mesenchyme subadjacent to the SC marker-positive basal epithelial cells. In 

contrast, the other typical MSC markers, celsr1 and sox10, the former of which 

has not been described in teeth, were oddly expressed in the epithelium of RT, 

the mesenchyme sub-adjacent to epithelium to the TB and dental lamina, and 

outside of the dental papilla itself but in crypt mesenchyme foci near the CLs 

(figure 4.2). Taken together, our ISH data imply a rich band of stemness for both 

epithelium and mesenchyme, containing distinct subtypes of SCs within and 

connected by a dental lamina to comprise a unit labial to the FT with robust 

regenerative potential. 
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Figure 4.2. ISH of adult stem markers, Basal epithelial cell layer marked by 
lgr4 (black arrow, C) and CL mesenchyme of crypt outside of dental papilla 

(white arrow, I) 
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4.4.2: Double labeling with stem markers and pulse chase identifies stem cell 

niches across a potent oral epithelium 

 While we highlighted a host of adult SC-associated transcripts in the RT-

TB unit, it is a not sufficient to infer that these cells are indeed SCs by gene 

expression alone. To validate the SC properties of these tissues and to more 

precisely identify SC niche environments, we conducted the first known pulse-

chase experiments in cichlid fishes, one of the primary experiments done to first 

identify the stem cells the mouse incisor (Harada et al., 1999). By exposing 

animals to the synthetic nucleoside, 5-bromo-2′-deoxyuridine (BrdU), it is 

incorporated into newly created cells and once removed, only those cells that are 

slow cycling or non-dividing, a property of stem cells, will be label retaining cells 

(LRC). We bathed cichlid fry in a solution containing the BrdU at pharyngula 

stage for a period of 1 week, and then sacrificed sequentially until LRCs were 

identified. The high levels of exposure to BrdU early resulted in almost all cells 

being labeled, including potential SC populations, at a period of 40 days-chase, 

but by 100 days-chase discreet cell populations were apparent (figure 4.3). By 

100 days-chase, there were a dense number of LRCs across all epithelium labial 

to the FT and within the RT. There were a far lower of LRC detectable in the 

mesenchyme, mostly associated in a band approximate to the epithelium. 

Because ISH revealed distinct subsets of adult stem markers within a tissue, we 

used double labeling with immunohistochemistry (IHC) to better characterize 

stem niches amongst the oral regenerate RT-TB unit. In accordance with mRNA 

expression, Trp63 protein was detected in TB support cells and co-expressed 
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with LRC across the basal cells of oral epithelium. In the RT, Trp63 was detected 

in those outer dental epithelial (ODE) cells, analogous to mammalian OEE, 

associated with the CL. In contrast to the basal co-labeling of Trp63, Sox2 and 

Gli3 were found co-expressed with almost all LRC associated with both organs, 

and Gli3 was co-expressed with mesenchymal LRC as well. While Bmi1 protein 

co-labeled a smaller subset of LRCs, its domain in the epithelium of both organs 

was largely in the more superficial cells, many of which were negative for label 

retention, and far less of those basal LRC were co-labeled than that of the other 

three markers. Taken together, Trp63 and Bmi1 occupied distinct and contrasting 

regions of LRCs. Co-labeling of Sox2 and Gli3 with LRC confirmed the presence 

of a SC rich regenerate unit epithelium and within it three distinct ESC niches 

became apparent: those associated with the base of the taste bud analogous to 

murine TB SCs (Okubo et al., 2006), those associated with the incisor CL (Juuri 

et al., 2012; Kaukua et al., 2014), and a new SC niche not described in the dental 

literature, occupying most cells at the tip of the maturing RT. It is likely the first 

description of this niche because very little to date has been published on the 

stem cell populations involved in whole tooth replacement in a one-for-one 

replacement system. We conclude that the RT-TB regenerate unit is rich in 

subtypes of stem cells in order to host lifelong renewal. 
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Figure 4.3. Double label for LRC and IHC of adult stem markers. LRC after 
40DC labels almost all cells, 100DC labels more distinct cells in epithelium. 
Three distinct SC-rich niches identified, one in TB (white arrowhead), one at the 
tip of the RT (black arrowhead), and one in the CLs (black arrow). 
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4.4.3: Unique transcriptome environments across SC abundant oral tissues 

confers organ identity  

 Given the high number of stem cells we identified in cichlid oral tissues it 

does not astonish that cichlids and most other teleosts have outstanding 

regenerative capacity, with the ability to renew each tooth and TB throughout 

ontogeny. With their close proximity, common embryonic tissues (Bloomquist et 

al., unpublished), shared epithelium through the dental lamina, common patterns 

of markers for stemness and LRCs, and likely ancestry (Fraser et al., 2010), we 

asked what influenced these highly homologous stem cells to confer organ 

identity in their renewal. We addressed this question first through an unbiased 

approach of whole transcriptome RNA –sequencing. We dissected out a band of 

epithelium, just labial to the outer row of adult cichlid FT, which contained a high 

density of TBs (Bloomquist et al. unpublished). We then removed the periosteum 

surrounding the dental bony crypts and isolated RT germs at secretion stages 

that were easily identified through their hypermineralized acrodin cap (figure 4.4). 

We pooled TB bearing epithelial tissues and RT germs for each animal, extracted 

RNA, prepared RNA-libraries and performed RNA-seq on the Illumina 2500 

platform.  

Raw sequence reads were quality controlled and reads with PHRED score 

< 20 were filtered out. Overall, sequence reads were generally of high quality 

with only about less than 5% on average of reads having PHRED score < 20. 

High quality reads were aligned to the M. zebra genome v1.1 and on average, 

across all samples, over 95% of reads mapped to the reference genome. 
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Fragment counts across all samples were obtained, normalized and fit to a linear 

model to determine differential expression between the tissue types.  Genes 

were considered significantly differentially expressed between RT and TB tissues 

if they exhibited both a two-fold expression difference or greater and an adjusted 

P-value < 0.05. Using this criterion, we found 2,527 genes were differentially 

expressed between the tissue types (Figure 4.4).  Of those, 1623 were up-

regulated in RT tissues while 905 were up-regulated in TB tissues.  Significant 

RT biased genes included bmp4, bmb2b, smad3, smad6, msxa, msxc, krt18, 

krt80, dmp1, odam, wnt9b, wnt3, axin2, pdgfra, snail1a, jag2, igf2, igfbp5, p21, 

irx1, irx6, MMPs, nrp1, nrp2, notch1, lrp5, lrp8, fgf14, ptch1, itga2, itgbl1 (other 

integrins), dlx6, per2, sparc, solute carriers. Genes biased in TB tissue included: 

krt15, neurod4, lrrn1, advillin, foxp4, per3, tspan8, cntn4, grb10, atoh1, grid2, 

kcnq4, cx30.9, nkx2, cntnap2, wnt4b, cntn2, sox14, sox7, itgb4, lrp2, jag1, sox13, 

fgf7, nkx6.1, osr1, and solute carriers. Differentially expressed genes between 

RT and TB samples are represented in a heatmap in Figure 4. An analysis of 

functional enrichment of gene ontology (GO) categories revealed genes with 

functions related to development (Supplemental file 1).  
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Figure 4.4. RNA-seg of RT and TB bearing epithelium. Dorsal view of 
cichlid jaw (A), dissected by removal of TB bearing epithelium (B’)  just labial to 
the outer row of teeth (B) and subsequent removal of extra-crypt tissue (C) to 
isolate RT germs (C’) for RNA extraction. Volcano plot of all differentially 
expressed genes, y-axis log of p-value with those significantly d-expressed in red 
and not d-expressed in black, X-axis is log fold change of d-expression left of 0 
value are TB biased and right of are RT biased (D). Heat map of those 
differentially expressed genes show clustering based on sample type and fold 
genes represented by color key (E) TB right 6 samples, RT left 6.  

 

Major developmental pathways important for tooth development in the 

mouse include Bone Morphogenetic Protein (BMP), Fibroblast Growth Factor 

(FGF), Hedgehog (Hh), Notch, and Wingless (Wnt) in patterning (Cobourne and 

Sharpe, 2010) and renewal (Seidel et al., 2010; Wang et al., 2007), all of which 

are expressed in cichlid RT (Fraser et al., 2013). We found BMP genes biased to 

RT on our list and the BMP pathway was the most significantly biased 

developmental pathway on our GO analysis. It has long been established that 

BMPs are critical to the proper formation of teeth (Vainio et al., 1993) and more 

recently odd-skipped related protein 2 (Osr2), through BMP inhibition, has been 

proven to prevent the lingual formation of ectopic teeth by restricting the dental 
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competent field of mice (Zhang et al., 2009). While BMPs are expressed in 

lingual epithelial cells of mouse tongues, they are described as having switching 

roles from a brief period of activating to highly inhibitory to taste buds in cultured 

rat tongues (Zhou et al., 2006) and as negative regulators of taste formation 

through Wnt inhibition in mice (Beites et al., 2009). We have recently 

demonstrated that BMP inhibition results in ectopic TB formation in dental field 

progenitor epithelium. We further examined the dichotomy of pathway genes 

through ISH and, as predicted by our transcriptome profiling, found that β-

catenin, fgf10, jag2, and shh were expressed in both organs, but bmp2 and bmp4 

were sharply expressed in RT epithelium and mesenchyme but excluded from all 

tissues in and around the TB (figure 4.5). We hypothesized that from the 

common environment of SC-rich oral tissues, BMPs were a differentiation 

pathway that helped confer organ identity from neighboring oral SCs.  

 

Figure 4.5 Pathway expression in RT and TB. bmp2/4 bias to RT (E,F). 
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4.4.4: Antagonism of the BMP pathway blurs the line between RT and TB  

 The environment in which a stem cell resides can sharply influence either 

its quiescence, its self-renewal, or what progeny it can differentiate into it. A 

striking example of this is in the case of cell fate determination of the rodent 

incisor stem cell niche, where conditional deletion of transcriptional co-activator, 

Mediator 1 (Med1) resulted in hair growth; another organ with adult SC based 

renewal, from within the incisor (Yoshizaki et al., 2014). We’ve shown before that 

BMP antagonism through chemical inhibition abrogates cichlid tooth replacement 

(Fraser et al., 2013). Armed with our knowledge of cichlid RT and TB 

transcriptomes and renewal properties, we set to characterize this phenotype at 

a deeper level. We bathed juvenile cichlids in the small molecule inhibitor of 

BMPs, LDN, for a period of 48 hours, long enough to affect the cellular 

differentiation of SCs from within cichlid RT at secretion stages, and then 

sacrificed to characterize treated RT at the cellular and mRNA level. Shh 

regulates pre-ameloblasts in the rodent incisor that are making the transition from 

SC derived transit amplifying cells to enamel secreting ameloblasts (Seidel et al., 

2010), and shh was expressed in the analogous IDE of cichlid teeth (figure 4.6). 

Upon exposure to LDN, shh expression was completely undetectable and RT 

appeared shorter and malformed, particularly in the CLs. We then explored 

expression of our TB marker, calb2, and found compared to control animals 

where calb2 was specific to TB and excluded from the entire RT germ, LDN 

treated animals showed expression of calb2 in CL epithelium in regions where 

shh expression was reduced (figure 4.6). At earlier initiation and differentiation 
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stages of RT odontogenesis, ectopic RT calb2 expression appeared in rounded 

elongate TB like cells (Appendix D.1). We were excited to find that BMP 

antagonism in-vivo across the entire animal resulted in a loss of dental 

characteristics in RT in exchange for TB like characteristics.  

.   

 

 

Figure 4.6. Effect of LDN on RT SC differentiation. Solvent control RT express 
shh (A) and not calb2 (C) in CL epithelium, but LDN treated RT express calb2 (D) 
and not shh (B). 
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4.5 Conclusions 

 In this study we employ Lake Malawi cichlids, animals with immense 

regenerative capabilities, to uncover new biology in the process of vertebrate 

whole tooth replacement. As tetrapods and mammals innovate through evolution 

to outcompete and execute highly specialized tasks, their tissues have become 

increasingly complex. With this increase in complexity comes an evolutionary 

tradeoff, away from the ability to regenerate and towards wound repair or 

scarring. A paradigm of this tradeoff is in the highly specialized dentitions 

belonging to mammals and rodents, which have evolved to possess limited 

replacement capacity (Koussoulakou et al., 2009), and where teeth reside in 

environments isolated from SC containing taste bud and salivary tissues. In 

many fishes and reptiles, including cichlids, both teeth and TBs populate the first 

to the most posterior pharyngeal arches. As opposed to the distinct TB and 

incisor models of the mouse, from this crowded environment we found that RT 

formed juxtaposed to TBs and that dental lamina of the successional tooth 

maintained a connection to the TB containing oral epithelium labial to the FT 

throughout RT maturation (figure 4.7). ISH revealed that adult stem cell markers 

were rampant across this epithelium and that with exception of BMPs, few factors 

were unique to either organ. Double label experiments with pulse chase in 

combination with IHC for adult SC markers highlighted Bmi1/Sox2/Gli3 positive 

LRCs and Trp63/Sox2/Gli3 positive LRCs superficially and basally respectively, 

with a SC niche surrounding the TB, in the RT CLs, and a newly identified niche 

at the tip of the RT (figure 4.7). Finally, we demonstrated that the unique BMP 
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biased transcriptome of RT could be manipulated, through BMP inhibition, to 

reduce the dental characteristic of CL epithelium and confer TB attributes, a 

phenotype reminiscent of hair generated from transfating through genetic 

conditional deletions in rodent incisors (Yoshizaki et al., 2014). We propose that 

cichlid RT SCs are highly similar to those of their nearest neighbor, the TB, and 

that this evolutionary remnant may perhaps be exploited in medicine by utilizing 

human endogenous TB SCs for dental regenerative therapies.  
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Figure 4.7. Model of mouse and cichlid renewal.  Mouse incisor CL epithelium 
(green SR, blue iee/oee) rich with LRC, Gli1, and Sox2 while mesenchyme (pink) 
rich with Gli1 and LRC. Same patterns are reported for TB basal epithelium and 
mesenchyme. In cichlids, three niches are rich in SC at TB, tip of tooth, and CL 
with same epithelial and mesenchymal zones as seen in rodent inscisors for 
LRC/Gli3/Sox2. RT renew in bmp2/4+ environment while TB do so in BMP 
repressor environment.  
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CHAPTER 5 

CONCLUSIONS 

 The goal of this dissertation was to uncover new insight into the 

phenomenon of odontogenesis and natural whole-vertebrate tooth replacement. 

By building on what is known about mouse and other animal dentitions and 

drawing parallels to ancestrally linked placode derived organs, such as hair and 

feather, we have learned a great deal in regards to the patterning, regeneration 

and morphogenesis of teeth. We have done so using an animal model ideally 

suited for evolutionary and genetic approaches, the Lake Malawi cichlid. 

 In the first study, we set out to understand the most basic mechanisms of 

cichlid tooth replacement, an intricate, well timed and robust process. We then 

sought to understand how this splendidly orchestrated progression accounted for 

replacement tooth morphogenesis with fidelity, cichlids being one of the few 

examples of in nature with both species dependent complex tooth shapes and 

continuous dental regeneration. We dissected tooth replacement into three key 

stages: initiation, differentiation, and secretion. We discovered that highly 

proliferative oral epithelium generates RT in a one-for-one fashion, labially or 

rostrally to the erupted row of functional teeth, and that a dental lamina 

maintained its contact to the outer epithelial environment throughout RT 

odontogenesis in close association to a cluster of cells we later discovered to be 

taste buds. We then charted expression of major developmental pathways, 

(BMP, FGF, Hh, Notch, Wnt/β-catenin), noting the high degrees of homology to 
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tooth formation and renewal in comparison to the studied mouse dentition, and 

highlighting the fact that BMP, FGF, Notch and Wnt pathways are redeployed for 

both initiation and morphogenesis of the RT, while Hh only plays a part after RT 

initiation. Through chemical treatment we found that all five pathways were 

essential for proper shaping of teeth, and that BMPs, Notches and Wnts were 

needed for proper initiation of the tooth replacement process.  

  In the next study, we asked how lower vertebrates, such as fishes, 

coordinated the patterning of a multitude of placode derived organs, such as 

teeth and TBs, across the oral and pharyngeal cavities, a process that takes 

place in regionally delineated tissues such as the tongue and alveolar arch of 

mammals. We first studied the embryonic origin of cichlid teeth and TBs at the 

pharyngula to the establishment of placodes and we were shocked to find no 

distinction between the earliest dental tissue, the odontogenic band or dental 

lamina, and the earliest TB tissues. We re-considered this tissue an oral lamina 

competent or bi-potent to form either organ. We then employed QTL mapping to 

understand the genetic loci and candidate genes within that control the patterning 

of both organs between a species with high density of both organs and a species 

with low densities of both organs. We generated F2 populations and found that 

there was a strong positive correlation between the densities of teeth and TBs, 

suggesting genetic linkage between pattern effectors of both. We identified QTL 

and candidate genes in our analysis and highlighted two of which, bmper and 

sfrp5, that were spatially differentially expressed between the two species and 

that were both expressed in mouse tooth germs. Neither of these genes has 
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been demonstrated in the patterning of either organ. We then pushed our model 

of the co-patterning of these genes further by showing BMP, Hh, and Wnt 

pathway expression in the embryonic tissue of each and through chemical 

antagonism we generated taste placodes in the place of tooth placodes, a 

demonstration of the plasticity between these two organs. Through an analysis of 

phenotypes and changes in gene expression following chemical antagonism 

experiments, we generated a model wherein teeth and taste buds are both 

positively regulated by Wnts while BMPs and Hhs coordinated the fating of oral 

tissue between one organ or the other.  

 In our final study, we addressed questions that emerged as we revealed 

more about tooth patterning and replacement in our system. It became clear to 

us from the first work that cichlid teeth renewed with an association to the TB, but 

we wanted to know if this relationship was more than an anecdote of spatial 

constraints. Furthermore, in the second study we discovered that both teeth and 

taste buds are embryonically derived from a common bipotent oral lamina and 

that at the onset of placode formation the tissue is plastic to the response of BMP 

and Hh signaling, still capable of forming either organ. Given the capacity of both 

teeth and TB to renew throughout ontogeny and the likely shared ancestor to 

both, we wanted to know where the stem cells resided within this TB-RT unit and 

how they are coaxed to generate their respective organs. Through histology and 

ISH we found that RT always initiated and matured in the presence of TBs and 

maintained a connection through the successional dental lamina.  We discovered 

that stem factors were rampant across the entire oral epithelium labial to the FT, 
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including that of the RT, and that stem markers were expressed with common 

patterns between RT and TBs. Through pulse-chase and double labeling with 

IHC for adult stem cell markers, we localized stem cells across this highly prolific 

unit where Gli3+Sox2+ co-labeled with most LRCs and Bmi1+ LRC superficially 

versus Trp63+ LRC deep delineated distinct stem environments. Furthermore, 

three concentrations of SCs or stem niches emerged: one at the base of the TB 

analogous to that of the mouse, one at the CL of RT analogous to that of incisor 

CL, and a newly uncovered population at the tip of the RT, likely unknown to 

biologists because of the lack of published data on animals that undergo one-for-

one continuous tooth replacement. Uncovering the high degree of stemness in 

the shared environment of RT and TB, we sequenced transcriptomes using RNA-

Seq to identify unique gene-ontologies of either tissue and found that BMPs, 

which we later verified with ISH, were differentially biased in their expression to 

RT. We concluded our study by antagonizing BMPs in entire live animals through 

chemical inhibition and found that in BMP deficiency, RT lost cellular identity of 

untreated RT cells and gained characteristics of TB cells, insinuating a 

conversion of SC fates from RT like to TB like within the tooth germ. We hope to 

progress in our findings by removing the potent epithelium from the renewal unit 

and have strong preliminary evidence that ablation of TB-bearing epithelium 

ceases tooth replacement and leads to total edntulism. Our colleagues are also 

addressing our findings by studying renewing mouse taste buds, and through 

genetic deletions of BMP repressor genes, have evidence of conversion to dental 

characteristics in the mouse tongue.  
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From a biological perspective these finding are quite intriguing and from a 

biomedical insight these findings are exciting. At the most basic level, we now 

understand a great deal more about how teeth are uniquely patterned and 

replaced, even in the context of complex tooth morphologies, across species. At 

a more optimistic level we now have demonstrated good evidence that teeth and 

their nearest neighbors, the ever-renewing TBs, possess embryonically and 

ancestrally agnate stem cell populations. Perhaps the spatial distinctions of these 

two organs in higher vertebrates contributed to the reduction in stemness and 

subsequent renewal capacity of higher vertebrates. It stands to reason, therefore, 

that TB SCs have promising potential in the field of regenerative dentistry. 
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APPENDIX A 

SUPPLEMNTAL MATERIALS FOR CHAPTER 1 

 

 

Figure A.1. Mbuna and Utaka generated hybrid. Example of several Mbuna 
crossed to Utaka hybrids generated in-vitro in the laboratory demonstrate genetic 
similarities 
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APPENDIX B 

SUPPLEMNTAL MATERIALS FOR CHAPTER 2 

 

Figure B.1. Close-up image of a cichlid replacement tooth showing the 
intermediate cell layer (ICL) between inner- (IDE) and outer dental epithelium 

(ODE). Sagittal section (15m) of a replacement tooth organ from Labeotropheus 
fuelleborni (45dpf); dental epithelium is outlined in red, the labial ICL in blue, 
imaged at 63x. 
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Figure B.2. Expression of additional genes from the Wnt/ß-catenin pathway 
during cellular differentiation stages of cichlid tooth replacement. First generation 
teeth are outlined in green and replacement dental epithelium in red. These are 

vibratome sections in sagittal plane at 15m thickness, imaged at 63x 
magnification. Labial is oriented to the left and oral toward the top of the page. 
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Figure B.3. Expression of additional genes from the FGF, Hh and Wnt 
pathways during the secretion stage of cichlid tooth replacement. These are 

vibratome sections in sagittal plane at 15m thickness, imaged at 63x 
magnification. Labial is oriented to the left and oral toward the top of the page. 
Fishes used in this panel are ~15-30dpf. 
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APPENDIX C 

SUPPLEMNTAL MATERIALS FOR CHAPTER 3 

 

Figure C.1. Genetic linkage suggested by positive correlation of tooth and 

taste bud densities. R2=0.4284, y-axis #tb/mm2, x-axis # teeth/mm2. 
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Figure C. 2. Ontogeny of Metriaclima zebra jaw development.  ISH for 

markers of taste (calb2), tooth (pitx2), both (shh), and BMP antagonist (osr2) 

across juvenile ontogeny starting with dentary formation at 5dpf in Metriaclima 

zebra. Dorsal views, labial to bottom of page, scale=100µm. 

 

 

 

Figure C.3. Ontogeny of Petrotilapia chitimba jaw development. ISH for 

markers of taste (calb2), tooth (pitx2), both (shh), and BMP repressor (osr2) 

across juvenile ontogeny starting with dentary formation at 5dpf in Petrotilapia 

chitimba. Dorsal views, labial to bottom of page, scale=100µm. 
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Figure C.4.  ISH of calb2 in cichlid lower jaw at 4 months. Yellow asterisk 

marks rows of expression (TB) while rows of teeth are marked by red numerals. 

Note row 3 not yet erupted. Dorsal view, labial to bottom of page, scale=100µm. 
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Figure C.5. Expression of patterning genes in cichlid dentaries. Dorsal views 

of dentaries (lower jaw) at 6dpf after ISH for pitx2 (A), which marks the tooth field 

while calb2 (B) and sox2 (C) mark the taste field. Factors in the Wnt pathway (D-

G), Hh pathway (H,I), BMP pathway (J,K), FGF pathway (L-P) and edar (Q) are 

expressed across the jaw in discrete patterns. Putative repressors (R-T) and 

transcription factors (U-Y) likely serve as intermediaries in these pathways. White 

lines delineate expression of candidate genes (A’-G’) from QTL mapping. Labial 

to the bottom of page, Scale=100µm. 

 

 

 

Figure C.6. ISH of cichlid dentary in sagittal histological section for markers 

in main Figure 3.2. Black lines bound candidate genes (A’-G’). Labial to bottom of 

page, rostral to left. 18µm thickness, Scale=20µm. 
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Figure C.6a. Diagram of histological sections presented in Figure B.5. 

Presumptive TB (PTB) field marked in green and presumptive tooth (PT) field in 

yellow. Epithelium in blue, mesenchyme in dark grey, and Meckel’s cartilage in 

light grey.  
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Figure C.7. ISH of candidates between species. bmper (A,B) and sfrp5 (C,D) 

at patterning stage (5dpf), across species that exhibit (i) many adult teeth and 

TBs, Labeotropheus fuelleborni (LF) or (ii) fewer of each organ, in the adult 

phenotype, Cynotilapia afra (CA). Dorsal views of dentaries, labial to bottom of 

page, Scale=100µm 

 

 

 

Figure C.8. ISH of genes in cichlid dentary following 24h treatment with 

IWR initiated at 6dpf and immediate sacrifice. Dorsal views, labial to bottom of 

page, scale=100µm 
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Figure C.9. Box plots summarize statistical analysis of treatments in Figure 
3.6 when plotted next to control (DMSO) of TB (# of TB/10µm2) and teeth (# of 
teeth/100µm2). All treatments significant with p<0.0001. n= numbers of animals 
used. 
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Figure C.10. Lasting effect after 24 hour treatment at 6dpf assayed at 14dpf 
by calb2 ISH (A,B). Broodmates from same treatment sacrificed at 30dpf (C,D; 
~3wk after IWR removal), shows bilateral reduction in tooth (red numerals) and 
TB number. Dorsal views, labial to bottom of page, scale=100µm. 
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Table C.1. Quantitative trait loci for tooth and TB density, including degrees 
of freedom (df), logarithm of odds ratio (LOD), percentage of variance explained 
(PVE), P-Value. 
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Table C.2. Tissue distribution of genes assayed by ISH in Figure 3, S5. 
Mesenchyme in blue, epithelium in purple. Genes below black line are 
candidates from mapping analysis. 
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APPENDIX D 

SUPPLEMNTAL MATERIALS FOR CHAPTER 4 

 

Figure D.1. Effect of treatment on initiation and differentiation stages of RT 
maturation. Cells express calb2 in elongate blebs within the RT germs and the 
effects are more severe with longer 96 hour treatments (D). 


