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SUMMARY

Many applications require human intervention to guide autonomous robots through

complicated tasks. For example, we often rely on and benefit from a human operator’s

ability to decide where robots should focus their efforts in a search and rescue operation, or

to instruct where and how they should position equipment on a manufacturing floor. Even

when autonomous robots do not require human guidance, humans and robots continue to

share workspaces and interact with each other, as is the case in automated warehouses and

assembly lines. Much of the focus has been centered on supporting human interactions

with one or a few robots (i.e., human-robot interaction, or simply HRI); however, as the

number of robots involved in a task grows large, scalable abstractions are needed to support

interactions with larger numbers of robots. Consequently, there has been a growing effort to

understand human-swarm interactions (HSI) and devise abstractions that are amenable to

having humans interact with swarms of robots easily and effectively. In this dissertation, we

investigate what it means to impose a control structure on a swarm of robots for the purpose

of supporting a specific HSI, when such a control structure is suitable for allowing a user to

solve a particular task with a swarm of robots, how one can evaluate attention and effort

required to interact with a swarm of robots through a particular control structure, how well

attention and effort scale as the number of robots in the swarm increases, why some swarms

of robots are easier to interact with than others under the same control structure, how to

select an appropriate swarm size, and how to design new input controllers for interacting

with swarm of mobile robots. Consequently, this dissertation provides a comprehensive

framework for characterizing, understanding, and designing the control structures of new

abstractions that will be amenable to humans interacting with swarms of networked mobile

robots, as well as, a number of examples of such old and new abstractions investigated

under this framework.

xii



CHAPTER I

INTRODUCTION AND BACKGROUND

1.1 Introduction

Many applications require human intervention to guide autonomous robots through compli-

cated tasks. For example, we often rely on and benefit from a human operator’s ability to

decide where robots should focus their efforts in a search and rescue operation [4, 20], or to

instruct where and how they should position equipment on a manufacturing floor [48]. Even

when autonomous robots do not require human guidance, humans and robots continue to

share workspaces and interact with each other, as is the case in automated warehouses and

assembly lines. Much of the focus has been centered on supporting human interactions with

one or a few robots (i.e., human-robot interaction, or simply HRI); however, as the number

of robots involved in a task grows large, scalable abstractions are needed to support inter-

actions with larger numbers of robots [43]. Consequently, there has been a growing effort

to understand human-swarm interactions (HSI) and devise abstractions that are amenable

to having humans interact with swarms of robots easily and effectively.

Much of the recent work on HSI has focused on developing new abstractions for enabling

useful interactions with a swarm of robots. For example, some of the novel abstractions

that have been developed include articulating gestures [71], composing music [21], stirring

fluids [57], manipulating densities [61], and our own: molding clay [33] and broadcasting

instructions [29]. However, this beckons the question, why is it that these abstractions

provide a control structure amenable to interacting with swarms of robots? We answer this

question in this dissertation by discussing the following:

• a formal definition of the underlying control structures that support HSI abstractions,

• a tool for demonstrating that a control structure facilitates completing a geometric

task with a swarm of robots,
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• a set of tools for characterizing attention, effort, scalability, and other factors involved

in interacting with a swarm of robots through a particular control structure,

• and a number of examples of old and new abstractions evaluated with this set of tools.

Consequently, this dissertation provides a comprehensive framework for understanding,

characterizing, and designing the control structures of HSI abstractions (such as our own

new abstractions) that are amenable to humans interacting with swarms of mobile robots.

We support this framework with discussions around three central topics.

1.1.1 Control Structures for Interacting with Swarms of Robots

Suppose a user is required to guide a mobile robot to a specific stack of packages in a

warehouse, such that the robot can sort these packages for an expedited order. A reasonable

way for the user to interact with this robot is to drive it with a joystick to the stack of

packages. This HRI is simple and the task can easily be completed, but suppose that a

collection of ten smaller robots can sort all packages ten times quicker. The user could

individually guide each robot as before, but with ten robots this interaction becomes a

tedious task. Instead, suppose that we let the robots autonomously coordinate to meet up

with nearby robots, and provide the user with a single joystick to guide one of the robots

in the swarm to the stack of packages. This deliberate combination of an autonomous

cooperative behavior and a simple input controller creates an HSI that is amenable to a

user guiding this small swarm of ten robots to the stack of packages.

The package sorting example demonstrates that HSIs are unique compared to HRIs not

only due to the number of robots involved in the interaction, but also, because the user’s

interaction with the swarm of robots occurs concurrently with the interactions between the

robots in the swarm. Specifically, this example illustrates a type of control structure called

the single-leader network, in which the user interacts with the swarm of robots through

a single designated leader robot. Suppose that these package sorting robots are single

integrators, such that the position of any robot, xi(t), can be directly controlled, i.e., ẋi(t) =

ui(t). Let the control input of each follower robot be a function of the distance to other

2



nearby robots (neighbors),

ui(t) =
∑
j∈N(i)

(xj(t)− xi(t)), (1)

where N(i) is the set of all neighbors of robot i, while the position of the leader robot, xl(t),

is directly controlled by the user, i.e., ẋl(t) = v(t). This control structure purposefully

reduces the complexity of interacting with the swarm down to controlling a single robot.

In Chapter 2, we discuss how these types of control structures can be formally defined

from a multi-agent systems perspective in terms of state feedback (i.e., local, inter-robot

interactions) and a set of admissible inputs from the user. This definition is pivotal in not

only understanding how an HSI is structured, but in constructing characterization tools for

such HSIs.

1.1.2 Characterization Tools for Human-Swarm Interactions

Can the user complete the task with the swarm? and Is this a usable interaction structure?

are two fundamental questions that we would like to answer for a human-swarm interaction.

The former question can be answered objectively given the control structure of the HSI and

the set of admissible user inputs. Specifically, we discuss in Section 2.2.1 how to use control

Lyapunov functions (CLFs) to show that a particular control structure facilitates a user

guiding a swarm of mobile robots to some desired specification set (i.e., a set of geometric

configurations that the swarm should achieve). If the user can complete the task with the

swarm, then the latter question takes on a subjective tone: Was it easy to complete the task

with this swarm? How much did you have to concentrate on the task? Were you frustrated?

These questions can be answered by a user study, which we have done for single-leader

networks to tie the answer to these subjective questions to properties of the multi-agent

system as is discussed in Chapter 3. However, we do not want to solely rely on running

a study for every HSI. In Section 2.3, we discuss tools for objectively characterizing the

attention, effort, and scalability of interacting with a swarm of robots through a particular

HSI control structure. These characterization tools presented in Section 2.3 and the results

of the user study presented in Chapter 3 allow us to make concrete recommendations on

how to design HSI control structures.
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1.1.3 New Abstraction for Interacting with Swarms of Robots

Given the tools to characterize HSI control structures, we are capable of designing and

developing new abstractions for interacting with swarms of mobile robots. In Chapter 4, we

discuss three novel abstractions: broadcast control, biologically-inspired parameterized in-

teractions, and manipulating deformable media. These abstractions allow a user to interact

with a swarm of mobile robots to achieve specific geometric configurations. For example, a

deformable medium, such as clay, can be molded into a shape that the swarm should form,

or a single broadcast signal can separate two types of robots into separate clusters. Our

discussion partly focuses on demonstrating that these abstractions allow a user to complete

these specific task with a swarm, and the advantages and disadvantages of some of these

abstractions with respect to the characterization tools discussed in Chapters 2 and 3. We

also focus our discussion on other important HSI questions, such as How many robots are

needed for a particular interaction to succeed? and Is there an input controller that affords

guiding a swarm of robots into specific shapes?

1.2 Background Research

We described a package sorting example in Section 1.1.1, where a user is interested in

guiding a swarm of ten mobile robots to a stack of packages in a warehouse for sorting.

Suppose that we program the robots to autonomously meet up with their neighbors, and

provide the user with a single joystick to guide one of the robots in the swarm to the stack of

packages. This so-called single-leader network (as described in detail in [79, 81]) is a control

structure that is likely amenable to guiding the small swarm of ten robots to the stack of

packages as is illustrated in Figure 1. In this section, we will use the single-leader network

and this example of a human-swarm interaction to introduce the mathematical language

required to discuss such HSIs from a control and graph theory perspective. Graph and

control theory are instrumental in modeling the interactions between robots in the swarm,

defining the control structure imposed on a swarm, and most importantly, characterizing

the factors contributing to an amenable HSI control structure.
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Figure 1: A user guides a single-leader network to a specific rendezvous location from
its initial configuration. The solid red line is the path along which the user guides the
leader. All robots share a common location in the final configuration.

1.2.1 Graphs, the Graph Laplacian, and Control Structures

Interactions between robots in a swarm typically occur in two different ways: robots com-

municate to each other about their states (via acoustic, optical, or radio channels) or sense

each other’s physical states (via tactile, infrared, laser, ultrasonic, or vision sensors). Graphs

are an encoding of these interactions, where each robot is a vertex and each interaction with

another robot is an edge. These edges may be directed if the interaction is one sided, or

undirected if both robots partake in the interaction. In Figure 1, each circular object is

a vertex (robot) and each straight line between two circles is an undirected edge (interac-

tion). Encoding the interactions of robots in a swarm allows us, for example, to create other

mathematical objects (e.g., the graph Laplacian) to model the dynamics of the swarm and

characterize the importance of vertices (i.e., node centrality). Consequently, understand-

ing how to model the interaction topology of the swarm with a graph is a prerequisite to

defining and characterizing the control structure of an HSI.

1.2.1.1 Graphs

A graph can be formally defined as G = (V,E), where V is the set of vertices (or nodes),

and V × V ⊆ E is the set of edges between vertices. Each edge between two vertices

models an interaction between two robots, meaning that if the robots are sensing each

other or communicating over a network, then the graph will contain an edge between the

two vertices representing the robots. Consequently, if robot i ∈ V and robot j ∈ V are

interacting, then there exists an edge (i, j) ∈ E. The set of robots that share an edge with
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robot i is the so-called neighborhood,

N(i) = {j ∈ V | (i, j) ∈ E} , (2)

which is implicitly a function of a graph G = (V,E). If an edge (i, j) ∈ E is undirected,

then j ∈ N(i) and i ∈ N(j). If this edge is directed, then j ∈ N(i), but i /∈ N(j).

Graphs can be static or dynamic. For example, an edge (i, j) ∈ E in a ∆-disk graph

exists if and only if ‖xj − xi‖ ≤ ∆, ∆ ∈ R+, where xi and xj are the positions of robot

i and j and ∆ represents a maximum interaction distance. Figure 2 illustrates a ∆-disk

around robot i, which includes robots j and k, but does not include robot l; therefore,

N(i) = {j, k}. Since mobile robots frequently change their positions, a particular edge

(i, j) ∈ E exists whenever robots i and j are close to each other, but is removed from the

graph when the robots move too far apart to interact. Consequently, the set of edges and

neighborhoods in a ∆-disk graph change. The vertex set of a graph may also change over

time if robots are added or removed from the swarm. Graphs with vertex or edge sets that

are not constant are dynamic. Dynamic graphs, such as the ∆-disk graph, are typically used

to model swarms, because they capture dynamic nature of interactions between robots in a

swarm induced by mobility and limited communication and sensing ranges. However, some

situations are not bound by these limitations (e.g., a swarm of robots in a small space) or

it could be advantageous to impose a static network topology on the swarm. For example,

we may insist on a static graph in the package sorting example, such that the interaction

topology of the swarm does not change while the user is interacting with this single-leader

network. Consequently, a static graph models an interaction topology with a constant edge

set, i.e., a robot will always interact with the same set of robots.

1.2.1.2 Graph Laplacian

The graph is essential in modeling the dynamics of the robots in the swarm. For example,

if we suppose that the package sorting robots are single integrators, ẋi(t) = ui(t), where

xi(t) ∈ R (without loss of generality) is the position of robot i at time t and ui(t) ∈ R is

the control input to robot i at time t, then the so-called consensus dynamics (introduced
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Figure 2: Since the ∆-disk around robot i includes robots j and k, (i, j) ∈ E and
(i, k) ∈ E, but the ∆-disk does not include robot l, so (i, l) /∈ E.

in [68]) are

ẋi(t) = ui(t) =
∑
j∈N(i)

(xj(t)− xi(t)) , (3)

where the change in position of a robot is implicitly a function of the graph. The consensus

dynamics model a robot i moving towards the centroid of the closure of its neighborhood,

i.e. the average position of itself and its neighbors. If we expand the sum in Equation 3,

then

xi(t) =
∑
j∈N(i)

xj(t)− deg(i)xi(t), (4)

where deg(i) is equal to |N(i)|, i.e., the number of robots in the neighborhood of robot i.

Let us define ∆(G) to be a n× n diagonal matrix (n = 10 in the package sorting example),

where

∆(G)ii = deg(i), (5)

which is the so-called degree matrix. Another symmetric n × n matrix is the so-called

adjacency matrix, A(G), where

A(G)ij =


1 if (i, j) ∈ E

0 otherwise.

(6)

If we stack all xi(t) into a vector x(t), then it follows from Equation 4 and the definitions
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of the degree and adjacency matrices that

ẋ(t) = (A(G)−∆(G))x(t)

= −L(G)x(t),

(7)

where L(G) = ∆(G) − A(G) is the so-called graph Laplacian. This definition of the graph

Laplacian makes the implicit assumption that the graph G is undirected. The graph Lapla-

cian can also be defined for undirected graphs, such that L(G) = D(G)D(G)T , where D(G)

is the m× n incidence matrix (m = |E|, n = |V |).

It is known (see for example, [65]) that for any undirected, connected graph G, Equation

7 asymptotically converges to

x(t)→ 1Tx(t0)

n
1 as t→∞, (8)

which is the centroid of the robots’ initial position. In general, it can be shown that the

consensus dynamics applied to a connected graph (undirected or directed with a rooted

outward branching tree) will converge to span{1}, which is precisely the null space of the

graph Laplacian.

Suppose a user input, v(t), is applied to the n-th robot in addition to Equation 3, then

the multi-agent system (swarm) dynamics are

ẋ(t) = u(t) = −Lx(t) +



0

...

0

1


v(t), (9)

where L is the aforementioned graph Laplacian matrix. We show in Chapter 2 that this

single-leader network converges to the position of the n-th robot, the leader. In general,

it is known (see, for example, [19]) that in multi-leader networks, the follower robots will

converge to a point in the convex hull of the leaders.

We can construct the controllability matrix (or Gramian, see [55] for a standard defini-

tion) from the state transition and input matrices in Equation 9 to evaluate if a user can

guide the swarm from its initial position to a desired final position. Similarly, we discuss in
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Section 2.2.1 how to use control Lyapunov functions (introduced in [78]) to show if a user

can guide the swarm from its initial position to some desired specification set, and we pro-

vide examples where L(G) is essential to this analysis. Consequently, the graph Laplacian is

a useful mathematical object to describe the consensus dynamics of a swarm of robots and

demonstrating, for example, if there exists a user input to guide all the robots into some

desired geometric configuration.

1.2.1.3 Control Structures

Equation 9 describes a single-leader network, which is one example of a control structure

for a swarm of robots. For example, if the dynamics of all robots (again, modeled as single

integrators) were

xi(t) = ui(t) =
∑
j∈N(i)

(xj(t)− xi(t)) + v(t), (10)

then v(t) ∈ R is a broadcast input signal. The user interacts with the swarm by broadcasting

an input signal v(t) to all robots, rather than only interacting with the leader robot. The

graph Laplacian can once again be used to described the dynamics of the entire swarm,

ẋ(t) = u(t) = −Lx(t) + 1v(t), (11)

where 1 ∈ Rn is a vector of all ones. Equation 11 is another example of a control structure

used to facilitate the package sorting task as we will demonstrate in Section 2.4.2.

We focus in this dissertation on control structures for multi-agent systems (such as

swarms of robots) that are characterized by the kinematics of the robots, the dynamics of

their interactions, and an exogenous input signal. Specifically,

1. The kinematics of an individual robot are a function of its own state and the control

input, ui(t). For example, single integrator kinematics are modeled as ẋi(t) = ui(t),

while the kinematics of a unicycle are modeled as
ẋi(t)

ẏi(t)

θ̇i(t)

 =


cos(θi(t)) 0

sin(θi(t)) 0

0 1

ui(t), (12)
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where the two vector components of ui(t) ∈ R2 are equal to the linear and angular

velocity of the unicycle at time t, respectively.

2. The control input, ui(t), for robot i is a function of the stacked state vector x(t) (i.e.,

the states of all robots in the swarm) and some exogenous user control input v(t).

Since the interactions between robots are limited to an interaction topology (e.g., a

∆-disk graph), the control input to robot i, ui(t), can only be a function of its own

state and the state of any of its neighbors.

The distinction between control input, u(t), and some exogenous input, v(t), is common

when modeling multi-agent systems, but not always explicitly stated. We discuss in Chapter

2 one formal definition of such control structure for multi-agent systems in the context of

HSIs. Specifically, the exogenous input signal v(t) is the user input restricted to some set

of admissible inputs, V.

These control structures are often created to support multi-robot applications focused

on geometric tasks, such as foraging [3], coverage [5], exploration [18], rendezvous [62],

surveillance [70], and transport [77]. For example, a control structure can force robots to

maintain an equal distance to all nearby robots to form triangulations that cover an area

larger than what can be covered by a single robot. While these robots can self-organize into

triangulations without any guidance, an HSI control structure permits a user to externally

guide these robots to an area of interest by including the exogenous input, v(t). This

dissertation focuses on such control structures that are geared towards facilitating a user

in achieving a particular geometric configuration with the swarm of robots. For example,

we discuss the package sorting example throughout this dissertation, where the user-desired

geometric swarm configuration is for all robots to be located together at the rendezvous

location, i.e., the stack of packages to be sorted.

1.2.2 Attention, Effort, Scalability, and other Factors in HSIs

The previous section was dedicated to introducing the graph, graph Laplacian, and control

structures. These concepts are essential to the discussion of controllability, node centrality,

and network centralization as objective metrics of how a swarm of robots will perform under
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input in Chapters 2 and 3. This section introduces three new metrics, attention, effort, and

complexity, to objectively characterize the user’s interactions with a swarm of mobile robots

through an HSI control structure. However, we are also interested in measuring subjective

factors, such as perceived difficulty, frustration, temporal demand, and other self-reported

measures that can be captured through a user study. The novelty is that we tie objective and

subjective metrics together in Chapter 3 to construct recommendations on how interaction

topologies, and HSIs in general, should be designed.

1.2.2.1 Attention, Effort, and Scalability

Since the point of robotics is partly to automate tedious task, a user should naturally not

be required to pay a lot of attention or expend a lot of effort to guiding a swarm of robots.

At its simplest, one can imagine that the user is only responsible for pressing a button to

start or stop the robots, but typically, robots require a little more guidance in tasks that

require greater decision making. We want to measure the attention and effort required to

guide a swarm of robots into a specific geometric configuration. For example, how much

attention is required for the user to guide the package sorting robots to their rendezvous

location?

Roger Brockett introduced the notion of a minimum attention controller [15] by solving

an optimal control problem that minimized the total variation of the control signal over

time as well as over the state of the system. For example, the attention functional would

take the form ∫
T

∫
X
φ

(
x, t,

∂u

∂x
,
∂u

∂t

)
dxdt, (13)

where X and T are the state space and time domains over which the controller is defined,

and u is the control signal. However, attention is only part of the story. Optimization

problems often minimize u itself (see, for example, [16]), meaning that it is desirable to

complete some task with minimal effort. Consequently, we propose in Section 2.3 that a

cost on the user input should be both in terms of attention and effort. One way to formulate

this attention-effort cost for an HSI control structure is∫ ∞
0

1

2

(
‖v(t)‖2 + ‖v̇(t)‖2

)
dt, (14)
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which encodes a cost on the squared magnitude of the user input v (effort) and the variation

in v over time (attention). It should be noted that such a functional computes the attention-

effort cost for a particular v(t) and not for a particular HSI control structure. In fact, it

becomes evident in Chapter 2 that most, if not all, metrics are a function of the task. Tasks

are a unique combination of a robotic swarm, HSI control structure, initial condition, and

a specification set. For example, a user input, v(t), will typically be specific to a task and

not to an HSI control structure. Consequently, we can gain insight into an HSI control

structure in general by computing these metrics across a variety of tasks (i.e., variations in

initial conditions and specification sets), as we have done in Chapter 3.

If attention and effort are computed for some task with n robots, then we can also

compute the attention and effort required to complete a similar task with (n + 1) robots.

Computing the attention-effort cost over a range of n can provide insight into the scalability

of the HSI control structure with respect to attention and effort. Our notion of scalability

is consequently similar to computational complexity for algorithms (see, for example, [23]).

1.2.2.2 Subjective Factors

While attention, effort, and scalability are objective metrics computed either from an op-

timal input or sampled user input, we can also assess the effectiveness of an HSI control

structure with subjective factors. For example, we could ask the user to perform the package

sorting task with the single leader network organized over a variety of different interaction

topologies. Then, we could inquire about the perceived difficulty of the task, whether the

user felt frustrated, and how much attention they felt that they needed to invest in the

task. These subjective factors are typically gathered through a user study. User studies are

a common tool (see, for example, their use in [6]) to measure these subjective factors by

asking a large number of participants (a sample population) to complete tasks and answer

a targeted questionnaire afterwards. Most user studies are used to decide whether control

structure A is effective, or if control structure B is better, as is explored in [60], but not why

they are effective. Consequently, we discuss a user study in Chapter 3, where we tied the

subjective factors measured in the user study to objective metrics, such as controllability,
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node centrality, and network centralization. The results of this analysis is an answer to a

more profound question, what characteristics of a particular control structure make it more

or less amenable to user input? Answering this question allowed us to make recommen-

dations in Chapter 2 on which HSI control structure to select for a particular task, or in

Chapter 3 how to design interaction topologies that improve interactions with a swarm of

robots through an HSI control structure.

1.2.3 Current and New Abstractions for HSIs

Given the discovered connections between attention, effort, scalability, the subjective fac-

tors, and the graph and control theoretic properties of the control structures, we are able to

make an informed decision on how to design an HSI control structure that will be amenable

to users guiding a swarm of robots in a task. It also provides us with tools to reevaluate

some of the existing abstractions for HSIs in the new framework presented in this disser-

tation, as is discussed in Chapters 2 and 3. It is often the case that these abstractions are

presented as novel control structures for swarm robotics, but rely on the fact that “it just

works” to justify that it is an appropriate abstraction. While this is partly true, we have

already alluded that one can be far more specific in one’s justification.

We discuss in Chapter 4 three novel HSI abstractions: molding clay [33], chasing prey,

and broadcasting instructions [29]. We have already discussed that the most prevalent

approach is to use leader-based multi-agent coordination [53], such as single-leader networks,

where the user input is applied directly to a single leader robot. This is an effective control

strategy if a small number of robots is used, but it becomes less effective as the number

of robots in the team grows, as we discuss in Chapter 3. Alternative approaches that

have been proposed include articulating gestures [71], composing music [21], stirring fluids

[57], and manipulating densities [61]; however, these approaches may require additional

distributed infrastructure or complex interfaces for generating input signals. Consequently,

a related question focuses on the appropriate design of input controllers such that a user is

not overloaded with deciding control inputs. This question has been addressed, for example,

in [25, 35]; however, the operator typically uses an input controller (like a joystick) that
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does not afford all of the actions needed to collectively manipulate a multi-robot team. We

mitigate this drawback in Section 4.3 by using a deformable medium as an input controller

that specifically affords the actions required to form geometric shapes.

Significant inspiration for designing HSI abstractions has been drawn from the many

examples of cooperative behaviors in nature. Foraging and predator-prey models have

inspired the design of cooperative capture strategies for multi-agent robotic systems in

[3, 8, 49, 82, 83]. In Section 4.2, we demonstrate that a small group of predators can use

a simple geometric formation to capture a member of a larger collection of prey. Nature

provides us with numerous examples of such few-to-many (or one-to-many if we consider

solitary hunters) strategies [39, 72], which we can adapt into HSI control structures by, for

example, handing control of the predators to the user. This approach may lead to more

natural interpretation of leader-based interactions. More importantly, we addressed the

rarely answered question (see, for example, [51]) of how many robots are needed for the

interaction to succeed.

We can also draw inspiration from physical processes. For example, the Brazil nut

effect (granular convection) describes how a granular mixture of differently sized particles

separates under direct, external vibrations [2, 22, 75]. The objective is to separate all

particles with a single external input signal, rather than separating each type of particle

separately, which is akin to a user shaking a box of cereal. Sensorless manipulation [9]

uses external vibration and basins of attraction to sort and orient parts of different shapes

and sizes. The viscosity of magnetorheological fluids can be controlled by applying an

external magnetic field to align magnetic particles in the non-magnetic fluid [37]. These

applications are examples of controlling passive components using a broadcast input signal,

but this concept can also be extended to robots. For example, Becker et al. demonstrated

in [7] and [14] that it is possible to broadcast a uniform control signal to steer a collection

of robots with small variations in their turn rate to arbitrary positions. The drawback

of this approach is that it does not leverage the ability of robots to interact with each

other. Azuma et al. demonstrated in [1] that a global broadcast controller can achieve

coverage with local controllers that switch between random and deterministic walks. A
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global controller broadcasts the value of an objective function that corresponds to the task

of the collection of homogeneous robots. This value measures the collection’s performance

and is used locally to control each robot’s motion. Similarly, the focus of our work in Section

4.1 is to leverage the local interactions (like in Azuma et al.) between heterogeneous robots

(like in Becker et al.) under a broadcast signal from a user, such that the user can interact

with the swarm collectively with a single input controller.
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CHAPTER II

OBJECTIVE METRICS FOR THE ANALYSIS OF HSI CONTROL

STRUCTURES

In this chapter, we discuss how to define, analyze, and objectively characterize HSI control

structures, which require users to interact with a swarm of robots by applying an exogenous

input signal. As we have done in [31, 32], we begin with a formal definition of what it means

to impose a control structure on the dynamics of the multi-agent (or, more specifically, multi-

robot) system that represents a swarm of robots. We use a control Lyapunov function (CLF)

approach to show convergence of the multi-robot system to some geometric configuration

to demonstrate that it is feasible for the user to complete the task of achieving this desired

geometric configuration with such a swarm of robots. Additionally, we propose attention,

effort, and scalability as metrics for objectively characterizing a user’s interactions with an

HSI-enabled swarm of robots during a specific task. These metrics can be measured after

the task, or approximated before the task to characterize and improve an HSI. We will

demonstrate that in the latter approach, we can use optimal control tools to generate an

approximation of user control input under the assumption that users with training will act

approximately optimally. Consequently, we are able to quantify the answer to the questions,

if we are given a particular HSI control structure for a swarm of robots, does it provide an

interaction that requires low attention and effort? and Does this interaction scale well as

the swarm increases in size?, which provides us with deeper insight into the viability of a

control structure than proofs of convergence alone.

2.1 Definitions

Our first objective is to determine whether it is feasible for a human operator to use a

particular human-swarm interaction (HSI) to achieve some geometric configuration with

a swarm of mobile robots. To establish feasibility, we first need to define what a HSI

represents in terms of the control structure it imposes on a multi-robot system, and what
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it means for a human operator to complete a task with the robotic swarm.

2.1.1 Human-Swarm Interaction Control Structures

In general, we consider continuous-time, time-invariant systems with inputs, which repre-

sent robotic swarms that can be externally controlled (or interacted with) by a user. The

dynamics of such multi-robot systems can be defined as ẋ(t) = f(x(t), u(t)), where x(t) ∈ X

is the state of the system at time t and u(t) ∈ U is the input to the system at time t. In fact,

x(t) will represent the stacked vector of the states belonging to all robots at time t, while

xi(t) will refer to the state of robot i at time t. For example, x(t) will typically represent

the position or pose of all robots together at time t, i.e., their geometric configuration.

More importantly, the differentiable function f : X × U → TX , where TX is a tangent

space, is structured according to the interaction topology of the multi-robot system. The

interaction topology is given by a graph G = (V,E), where V is the set of vertices represent-

ing the robots, and E is the set of edges representing information exchange between robots

via communication links or due to sensor footprints (see, for example, [65]). Specifically,

f ∈ sparseX (G) conveys that state information in the multi-robot system can only flow

between robots that are linked in the interaction topology. Consequently,

f ∈ sparseX (G)⇔
(
j /∈ N(i)⇒ ∂fi(x, u)

∂xj
= 0, ∀x, u

)
, (15)

where N(i) is the so-called neighborhood of robot i, i.e., j ∈ N(i) if (i, j) ∈ E, i, j ∈ V , and

N(i) = N(i) ∪ {i} is its closure.

By picking a particular HSI control structure, we are being specific about the structure

of U , i.e., how the user can interact with the robotic swarm and how the robots in the

swarm interact with each other. Our definition is as follows:

Definition 2.1.1. An HSI control structure is a map

H : X × V → U , (16)

where V is some set of admissible inputs to make the corresponding robotic swarm accessible

to human control. Additionally,

f(x,H(x, v)) = fH(x, v) ∈ sparseX (G), (17)
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which means that the dynamics f under this map H needs to observe the sparsity structure

imposed by the interaction topology.

This definition of an HSI control structure implies that the control input to the system

is really a combination of state feedback and a restricted set of inputs from the user, which

respects the constraints imposed by the interaction topology. Consequently, the dynamics

of a multi-robot system under such an HSI control structure are

ẋ(t) = f(x(t), u(t))

= f(x(t), H(x(t), v(t))

= fH(x(t), v(t)).

(18)

Therefore, an HSI control structure is a very specific way in which the user controls the

multi-robot system, i.e., interacts with the robotic swarm.

For example, suppose that a robotic swarm consists of n mobile robots positioned on a

rail (xi(t) ∈ R) with single-integrator dynamics,

ẋi(t) = ui(t), i = {1, . . . , n}, (19)

where the control input for the first n− 1 robots is

ui(t) =
∑
j∈N(i)

(xj(t)− xi(t)). (20)

N(i) denotes the neighborhood of robot i, which is the set of all its immediate neighbors in

the interaction topology derived from communication links or sensor footprints.

The control input for the n-th robot is

un(t) =
∑
j∈N(i)

(xj(t)− xi(t)) + v(t), v(t) ∈ V, (21)

which corresponds to the user directly controlling the position of the n-th robot. This HSI

control structure is commonly referred to as a single-leader network (see, for example, [68]),

because the user interacts with the swarm of robots by guiding a “leader” robot, while the

other robots follow the leader and each other according to the consensus dynamics in (20)

(see [67] for more on consensus).
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If we stack all xi(t)’s into a state vector x(t) ∈ Rn and all ui(t)’s into an input vector

u(t) ∈ Rn, then the ensemble dynamics of our example system are

ẋ(t) = u(t) = −Lx(t) + lv(t), l =



0

...

0

1


∈ Rn (22)

where L is the graph Laplacian L as defined in [65] (and commonly used in multi-robot

control). Consequently, the single-leader network HSI control structure is a particular

structuring of the control input u(t) in (22) given by the function H, such that

u(t) = H(x(t), v(t)) = −Lx(t) + lv(t), (23)

where v(t) ∈ R is the user input.

2.1.2 Tasks

Definition 2.1.2. When a multi-robot system under some HSI control structure can asymp-

totically converge to a state, a subset of states, or all states in a specification set S and stay

in this set, then

lim sup
t→∞

d(x(t),S) = 0, (24)

where,

d(x(t),S) = inf
s∈S
‖x(t)− s‖. (25)

If this is true, then we say that the user can achieve some or all of the geometric configu-

rations described by S with the robotic swarm.

The specification set is the set of geometric configurations that we want the user to

achieve with the robotic swarm, in the sense that the user should be able to form a geometric

configuration with the swarm and keep it in this configuration. For example, a specification

set could be defined as

S = {x ∈ Rn | xi = xj , i, j = 1, . . . , n} , (26)
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which merely states that all components of the state should be equal, or S = span {1}. For

example, the specification set for consensus problems with multi-robot teams is typically

defined in this way. Or, we may want the user to guide a single-leader network, such that all

robots in the swarm rendezvous at a specific location, i.e., α ∈ R,S = α1. More succinctly,

these are examples of geometric tasks, which for our purposes we define as follows:

Definition 2.1.3. A geometric task is a 2-tuple,

T = (x0,S) , (27)

where x0 is the initial state of the swarm, and S is the specification set.

Definition 2.1.4. A task supported by a control structure H is a 2-tuple,

TH = (H, T ), (28)

where T = (x0,S) is a geometric task.

Consequently, a task TH encodes that a user is required to guide swarm of robots from

their initial configuration x0 to a specific geometric configuration S by interacting with this

swarm through a control structure H.

2.2 Feasibility

We have shown that the function H : X ×V → U encodes a particular HSI control structure

into the dynamics of a multi-robot system, and that if this combination of multi-robot

system and control structure can asymptotically converge to a specification set S (or a subset

thereof), then we say that it is feasible for a user to complete this task TH = (H, (x0,S)).

More formally,

Definition 2.2.1. It is feasible to achieve a specification set S under an HSI control struc-

ture defined by H if there exists v(t) such that, v(t) ∈ V, ∀t ≥ t0, and

lim sup
t→∞

d(x(t),S) = 0,

when ẋ(t) = fH(x(t), v(t)), x(t0) = x0.

We will use control Lyapunov functions (CLFs) [78] to determine this feasibility.
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2.2.1 Control Lyapunov Functions

Let us denote D ⊂ X as a domain of the state space containing the quasi-static equilibrium

point z for some w ∈ V, such that ẋ(t) = fH(z, w) = 0.

Definition 2.2.2. A continuously differentiable V : D → R with

V (z) = 0 and V (x) > 0 in D − {z}

is a control Lyapunov function (CLF), if there exists a v ∈ V for each x ∈ D, such that

V̇ (x, v) = 〈∇V (x), fH(x, v)〉 < 0 in D − {z} (29)

and V̇ (z, w) = 0.

If such a control Lyapunov function exists, then any trajectory starting in some compact

subset Ωc = {x ∈ X | V (x) ≤ c, c > 0} ⊂ D will approach z as t→∞.

Theorem 2.2.3. If there exists a CLF as defined in Definition 2.2.2 for the system de-

scribed by ẋ(t) = fH(x(t), v(t)), x(0) = x0, and the specification set S is some quasi-static

equilibrium point z ∈ D, then it is feasible to converge to z as t→∞.

Proof. By Definition 2.2.2, the existence of a CLF guarantees that if x0 ∈ Ωc, then there

exists v(t) ∈ V, such that the multi-robot system converges to z asymptotically, i.e.

limt→∞ x(t) = z. Since z = S, it is true that(
lim sup
t→∞

d(x(t), z) = 0

)
⇒
(

lim sup
t→∞

d(x(t),S) = 0

)
,

which by Definition 2.2.1 confirms that for this particular multi-robot system and HSI

control structure, the user can achieve the geometric configuration in the specification set

S with the corresponding robotic swarm.

Using this formulation of CLFs allows us to test the feasibility of achieving, for example,

rendezvous at a specific location or a formation at a specific location with a specific rotation

and assignment to positions. However, we would also like to capture formations that can

translate and rotate, like cyclic pursuit, or rendezvous at any arbitrary location. Therefore,
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our definition of CLFs needs to include sets of quasi-static equilibrium points and limit

cycles. Suppose that D ⊂ X is a domain of the state space that contains all or part of the

specification set S.

Definition 2.2.4. A continuously differentiable V : D → R (and locally positive definite

as before) is a control Lyapunov function, if there exists v ∈ V such that

V̇ (x, v) = 〈∇V (x), fH(x, v)〉 ≤ 0 (30)

for each x in some compact set Ω ⊂ D, for example, Ωc. By LaSalle’s invariance principle

[56], if M is the largest invariant set in
{
x ∈ Ω

∣∣∣ V̇ (x, v) = 0, v ∈ V
}

, then any trajectory

starting in Ω will approach M as t→∞.

Consequently, we must ensure that our choice of CFL satisfies M ⊆ S, otherwise we can-

not prove that it is feasible to achieve any of the geometric configurations in the specification

set S.

Theorem 2.2.5. If there exists a CLF as defined in Definition 2.2.4 for the system defined

by (X ,V, fH , x0) and M ⊆ S, then it is feasible to asymptotically converge to M from any

x(t0) ∈ Ω.

Proof. The proof is similar to what was shown in the first theorem. By Definition 2.2.4,

the existence of a CLF guarantees that if x0 ∈ Ω, then there exists v(t) ∈ V, such that the

multi-robot system converges to the invariant set M asymptotically. Therefore,

lim sup
t→∞

d(x(t),M) = 0

lim sup
t→∞

inf
m∈M

‖x(t)−m‖ = 0.

If M ⊆ S, then any m ∈M is also in S, which means that

lim sup
t→∞

inf
m∈S
‖x(t)−m‖ = 0

lim sup
t→∞

d(x(t),S) = 0,

which satisfies our definition of feasibility.
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2.3 Attention, Effort, and Scalability

Feasibility does not immediately imply that it is possible for a user to complete a task

easily and effectively. A user’s experience is typically explored through user studies, where

measures such as attention, effort, or frustration are evaluated. Unfortunately, such user

studies tend to be time-consuming. Consequently, we circumvent this problem by objec-

tively investigating how much attention and effort are required to accomplish a given task.

We also investigate the scalability of an HSI control structure with respect to attention and

effort across similar tasks with larger numbers of robots in the swarm.

2.3.1 Attention and Effort

Attention and effort are common metrics by which one can characterize the user’s perfor-

mance in some task [54]. These metrics can be gathered through experiments in a user

study, but the concept of attention and effort can also be formulated in a control theory

context. Roger Brockett introduced the notion of a minimum attention controller [15] by

solving an optimal control problem that minimized the total variation of the control signal

over time as well as over the state of the system, e.g., the attention functional would take

the form ∫
T

∫
X
φ

(
x, t,

∂u

∂x
,
∂u

∂t

)
dxdt, (31)

where X and T are the state space and time domains over which the controller is defined,

and u is the control signal.

However, attention is only part of the story. Optimization problems often minimize

u(t) itself (see, for example, [16]), meaning that it is desirable to complete some task with

minimal effort. Consequently, we propose that a cost on the user control input should be

both in terms of attention and effort. One way to define this attention-effort cost is

J(v) =

∫ ∞
0

(‖v(t)‖+ ‖v̇(t)‖) dt, (32)

which encodes a cost on the magnitude of the user input v (effort) and the variation in v

over time (attention). It should be noted that such a functional computes the attention-

effort cost for a particular v(t) and not for a particular HSI control structure. To overcome
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this problem, we focus instead on a particular choice of control signal – the optimal one, v∗

– as a proxy for the signal a trained human operator might indeed employ.

While a user is likely to try to complete a task as fast and accurately as possible, a user

also likely choses to minimize attention and effort. Too much attention or effort required

to complete a task is likely undesirable. Consequently, we propose to compute the optimal

control v∗ using a cost function that encodes accuracy, effort, and attention simultaneously.

For example, in Section 2.4.1.1 we minimize the following cost with respect to w = v̇:

min
w

J(w) =
1

2

∫ ∞
0

(
(x− α1)T (x− α1) + vT v + wTw

)
dt

s.t. ẋ = −Lfx+ lv

v̇ = w

x(0) = x0, v(0) = 0

(33)

The first term penalizes any swarm configuration that is not in the specification set, while the

second and third terms penalize effort and attention. Computing v̇∗(t) allows us to construct

v∗(t), which we will use in evaluating the attention-effort cost. We will demonstrate this

example in full in Section 2.4 for three different HSI control structures under the same

geometric task.

Optimal control solutions are a function of the initial conditions; therefore, different

tasks (with respect to initial conditions) are likely to result in different attention-effort

costs. Consequently, we recommend to either average the cost over a sampling of the initial

conditions, or use attention-effort cost to compare two different HSI control structures in

the same task with the same initial conditions.

2.3.2 Scalability

Suppose that if Jn(v∗1) is the attention-effort cost for n robots in some task TH , then

Jn+1(v∗2) is the attention-effort cost for (n+ 1) robots in a similar task T̃H . TH and T̃H are

not equivalent, because a task is implicitly a function of the number of robots in the swarm.

Regardless, scalability approximates the increase in attention and effort required to interact

with a swarm of more robots. We choose to formulate scalability similar to computational

complexity for algorithms: Σ(n) is a function that encodes the change in cost for some type
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of task as a function of number of robots in the swarm, n. For example, we show in Section

2.4.4 that one can linearly approximate the growth of the attention-effort cost over a range

of swarm size, for example, from N to 10N . The slope of a linear fit to this data can be

used for approximating Σ(n).

2.4 Examples

In this section, we will provide several examples of HSI control structures imposed on multi-

robot systems for which we can find CLFs and show that a user can achieve a particular

geometric configuration with a swarm of robots. We will revisit our previous example of

a single-leader network, where the user guides a swarm of robots to a common rendezvous

location, and compare it to using broadcast control and controlling all robots simultaneously.

2.4.1 Rendezvous with a Single-Leader Network

Rendezvous is similar to consensus in that all robots meet up at the same location; how-

ever, let us suppose rendezvous captures the additional constraint that all robots should

meet up at a particular location. The specification set that encodes this objective is

S = {x ∈ Rn | xi = α, α ∈ R, i = {1, 2, . . . , n}}, or more concisely, S = α1, where α is

the rendezvous location.

We chose a candidate CLF [68] given by

V (x) =
1

2
‖x− α1‖2, (34)

which captures the disagreement between the current state of the robotic swarm and the

rendezvous location. V (x) is positive definite everywhere except at the desired equilibrium

point x = α1 and is radially unbounded (‖x‖ → ∞⇒ V (x)→∞).

Next, we need to compute V̇ (x, v), which is defined by

V̇ (x, v) = 〈∇V (x), fH(x, v)〉

= (x− α1)T (−Lx+ lv)

= −(x− α1)TLx− (α− xn)v

= −xTLx− (α− xn)v.

(35)
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If V (x) is a CLF, then it must be true that for each x ∈ Rn, there exists v ∈ V,V = R

such that V̇ (x, v) < 0 when x 6= α1 and V̇ (x, v) = 0 when x = α1. In Equation (35), we

can see that since −xTLx is semi-definite positive, we can always chose v ∈ R, such that

V̇ (x, v) < 0. Therefore, V (x) is a CLF that guarantees that there exists v(t) ∈ V, such that

the user can guide the swarm of robots from x(t0) ∈ Rn to x = α1 as t→∞.

Figure 3a is a demonstration of rendezvous with a single-leader network. To aid in

the visualization, the above candidate CLF and the single-leader network system have been

extended to R2. Since the robots are single integrators, the dynamics along each dimension,

x and y, are decoupled. The user applies a control input v ∈ R2 to guide the leader robot

to the origin. All robots that are organized over an arbitrary connected, static interaction

topology. The solid, red trajectory belongs to the leader robot that is controlled by the user,

while the dashed, blue trajectories belong to all other robots in the swarm. × denotes their

starting location, while + denotes the rendezvous location if v(t) = 0,∀t, and ◦ illustrates

the robots’ actual final position. Figure 3b shows that the CLF V (x, y) is positive, but

“energy” dissipates as robots converge on the rendezvous location, while Figure 3c shows

that V̇ (x, y, v) remains negative during the interaction. Consequently, it is feasible for the

user to use this HSI control structure to choose the rendezvous location of a swarm of

robots. Similarly, this combination of multi-robot system and HSI control structure would

be effective in setting the flocking direction if the state x were the orientation θ of each

robot, rather than its position.

2.4.1.1 Attention, Effort, and Scalability

We discussed in a previous section that in place of measuring v(t), we compute v∗(t) using

optimal control tools. We solve the following optimization problem:

min
w

J(w) =
1

2

∫ ∞
0

(
(x− α1)T (x− α1) + vT v + wTw

)
dt

s.t. ẋ = −Lx+ lv

v̇ = w

x(0) = x0, v(0) = 0

(36)
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Figure 3: A user is guiding a swarm of ten robots to rendezvous at (0.4, 0.4) by interacting
with the leader robot (red).

This is a continuous-time, infinite horizon linear quadratic regulator-like (LQR-like) prob-

lem, which can be solved in the following manner. First, the first order necessary conditions

(FONC) for optimality are:

H =
1

2

(
(x− α1)T (x− α1) + vT v + wTw

)
+ λT ẋ+ µT v̇

∂H

∂w
= wT + µT = 0⇒ w = −µ

λ̇ = −∂H
∂x

= LTλ− x+ α1

µ̇ = −∂H
∂v

= −lTλ− v

(37)
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It is important to note here that the co-state dynamics, λ̇, include an extra affine term that

is typically not present in a standard LQR problem. For convenience, let us stack states

and co-states into single variables in the following way:

z =

x
v

 , ż =

−L l

0 0

 z +

0

1

w = Azz +Bzw

η =

λ
µ

 , η̇ =

−LT 0

lT 0

 η − z +

α1

0

 = −ATz η − z + Ψ

(38)

We propose that η(t) = S(t)z(t) + P (t) is the solution to the stacked co-state equations.

The affine component, P (t), is to account for the affine component that is tracked in the

cost. If we start from the proposed solution, then

η = Sz + P

η̇ = Ṡz + Sż + Ṗ

−ATz η − z + Ψ = Ṡz + SAzz + SBzw + Ṗ

−ATz Sz −ATz P − z + Ψ = Ṡz + SAzz − SBzBT
z Sz − SBzBT

z P + Ṗ

−Ṗ − (ATz − SBzBT
z )P + Ψ =

(
Ṡ + SAz +ATz S − SBzBT

z S + I
)
z

(39)

Since this LQR-like problem is computed over an infinite horizon, we can compute the

steady state Ŝ and P̂ , when Ṡ = 0 and Ṗ = 0. Consequently, to satisfy Equation 101, we

must solve

P̂ = (ATz − SBzBT
z )−1Ψ

0 = ŜAz +ATz Ŝ − ŜBzBT
z Ŝ + I

(40)

The second equation is the continuous time algebraic Ricatti equation, while P can be

solved for directly. Finally, we are able to compute v̇∗ = w,

w = −µ

= −BT
z (Ŝz + P̂ ).

(41)

Consequently, the optimal user control input signal is

v∗(t) =

∫ t

0
w(τ)dτ, v∗(0) = 0. (42)
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Figure 3a was generated by controlling the single-leader network with the optimal user

control input v∗(t). The attention-effort cost for a swarm of ten robots is illustrated in

Figure 4a, while Figure 4b and 4c illustrate the instantaneous effort and attention. The

attention-effort cost caps out once the swarm converges to the rendezvous location. The

instantaneous effort ramps up shortly to drive the leader robot to the rendezvous location,

which also requires some attention. Once the swarm is at the rendezvous location, both

(instantaneous) attention and effort are zero.
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Figure 4: A user’s approximated instantaneous attention and effort and cumulative
attention-effort cost while guiding a swarm of ten robots to a rendezvous location.

Scalability can be calculated by augmenting the task by adding more robots. In this

example, the new robot is added to the swarm in a random location. Figure 5 illustrates

the increased attention, effort, and attention-effort cost of completing the “same” task with

an more robots. The increase in cost is mainly attributed to an increase in effort as shown
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by the red dashed line in Figure 5, while attention has only marginally increased as shown

by the black dash-dotted line in the same figure. The scalability metric for this particular

task is approximated by a linear fit to the attention-effort cost. The slope of this linear fit

is Σ(n) = 1.05n, which is an increase in the attention-effort cost for every robot. However,

the exact coefficient of Σ(n) is only meaningful once we will compare Σ(n) for different HSI

control structures under this same geometric task.
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Figure 5: Growth of attention (black dash-dotted), effort (red dashed), and attention-effort
(blue solid) cost for guiding a single-leader network of N robots to the rendezvous location.

2.4.2 Rendezvous with a Broadcast Signal

In Section 4.1, we discuss that it is possible to use a broadcast signal to separate a swarm

of heterogeneous robots, but let us first examine this HSI control structure in the context

of this chapter. Suppose that broadcasting an input signal is a HSI for the same swarm of

ten package sorting robots, and we would like to know if it is feasible to rendezvous at a

particular location by broadcasting an input signal. The dynamics of the swarm are

ẋ(t) = −Lx(t) + 1v(t) (43)

where L is once again the graph Laplacian, and 1 ∈ Rn is a vector of all ones.
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We again choose the candidate CLF given by

V (x) =
1

2
‖x− α1‖2, (44)

which captures the disagreement between the current state of the robotic swarm and the

rendezvous location. V (x) is positive definite everywhere except at the desired equilibrium

point x = α1 and is radially unbounded (‖x‖ → ∞⇒ V (x)→∞).

Following the same procedure as before, we can show that for each x ∈ X , X = [0, 1],

there exists a v ∈ V, V = R, such that

V̇ (x, v) = −xTLx+ (x− α1)T1v < 0, (45)

when x 6= α1 and V̇ (x, v) = 0 when x = α1. We can also solve for v∗ as before. The

LQR-like optimal control problem is largely unchanged with the state constrain being equal

to Equation 43 being the only difference. Figure 6a illustrates rendezvous using the optimal

broadcast control v∗ ∈ R.
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(a) Broadcast control.
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(b) Concurrent control.

Figure 6: These trajectories in R2 illustrate rendezvous at (0.4, 0.4) using broadcast and
concurrent control.

2.4.3 Rendezvous with a Concurrent Controller

When we first introduced the package sorting example, we spoke of the merits of using

single-leader networks over controlling all ten robots concurrently, because the latter ap-

proach seems tedious for a single user. However, it is worthwhile to compute the attention,
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effort, and scalability of this control structure for comparison. The control structure of this

concurrent control approach is

ẋ(t) = −Lx(t) + v(t), (46)

where v(t) is a N -dimensional input vector, because then input to each robot is computed

separately. The same procedures as before can be used to show that there exist a CLF

that proves it is possible to guide the swarm to the rendezvous location α1, and that it is

possible to solve the LQR-like optimal control problem to compute v∗(t). Once again, the

difference is in the constraints, and additionally v ∈ Rn instead of v ∈ R, which affects

the dimensions of matrices, but not does not change the methodology. Figure 6b illustrates

rendezvous using v∗ ∈ Rn.

2.4.4 Comparison

We have shown in the previous section that all three control structures support the ren-

dezvous task, which precludes us from choosing one control structure over the other. How-

ever, we can use attention, effort, and scalability as metrics for making this decision. We can

compute an optimal control input v∗ for each task, TCC , TSLN , and TBC , which correspond

to the rendezvous problem tied to concurrent control, single leader networks, and broadcast

control respectively. Figure 7 contains plots of the attention-effort cost, attention, and effort

on the interval t ∈ [0, 20] of all three tasks, where TCC is solid blue, TSLN is dashed red,

and TBC is dash-dotted black.

If we focus on Figure 7a, then it is evident that using a single leader network for ren-

dezvous incurred the greatest attention-effort cost, while broadcast control incurred the

least attention-effort cost. The effort required for rendezvous under concurrent control and

a single leader network is almost the same at its greatest in Figure 7b, but the effort is

sustained longer for the single leader network. On the other hand, attention is less for the

single leader network than concurrent control as shown in Figure 7c. Broadcast control

required less attention and effort compared to the other two control structures.

If the broadcast control-based task requires less attention and effort compared to con-

current the control-based and single-leader network-based task, is this also true for a larger
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Figure 7: A user’s estimated attention and effort while guiding a swarm of 10 robots to
rendezvous at a specific location with different control structures: single-leader network
(blue solid), broadcast control (black dash-dotted), and concurrent control (red dashed).

number of robots? Scalability describes the growth rate of the attention-effort cost when

modifying the task by adding more robots to the swarm. Figure 8 illustrates the effect of

increasing the swarm size from ten to 100 robots on attention, effort, and the combined

attention-effort cost. The procedure for increasing the swarm size was to add each new

robot to the workspace by choosing its location from a uniform distribution that covers the

entire workspace, X = {x, y | x ∈ [0, 1], y ∈ [0, 1]}. Figure 8a includes a linear fit to the

attention-effort cost data, i.e., Σ(n) = cn, where c = 0.31 for concurrent control, c = 1.05

for single leader networks, and c = 0.13 for broadcast control. Comparing Figure 8b and 8c

reveals that these control structures are more differentiated by effort than attention, and

that attention levels off after N ≈ 60.
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Figure 8: Growth of a user’s estimated attention and effort while guiding a swarm of 10-100
robots to rendezvous at a specific location with different control structures: single-leader
network (blue solid), broadcast control (black dash-dotted), and concurrent control (red
dashed).

The result of this comparison is that broadcast control outperforms concurrent control,

while concurrent control outperforms single leader networks with respect to attention, effort,

and scalability. However, this comparison omits one important factor that differentiates

concurrent control from single-leader networks (and broadcast control), which is the fact

that the dimension of the former control structure grows linearly in the size of the swarm,

while the latter control structures require the user to decide only a two dimensional input

(akin to a joystick). Consequently, if a single user could yield 100 joystick, or gather 100

co-operators, or rely on a computer (perhaps, the user simply specifies a goal location with

a point-and-click interface), then concurrent control is better than a single-leader network.
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Regardless, broadcast control is the better control structure for this task.

2.4.5 Recommendations

The three examples in the section show that a CLF approach is useful to show convergence of

the multi-robot system to a specification set. In fact, our definition of a HSI control structure

allows us to use CLFs directly, and the CLFs themselves can typically be constructed by

inspecting the specification set. The specification set is also useful when adding a tracking

cost to the optimal control problem. The optimal control problems may be different for

each HSI control structure and task; however, we have shown that a general guideline is

to include a tracking, effort, and attention cost when solving for v∗. Consequently, v∗ will

likely serve as a good proxy for the user control input, v, when evaluating attention, effort,

and scalability. Attention, effort, and scalability can consequently be used to compare three

tasks that differentiate in the control structure that is used.

2.5 Conclusions

In this chapter, we have provided a precise definition for what it means to impose a human-

swarm interaction (HSI) control structure on a multi-robot system and to achieve a geomet-

ric configuration with a swarm of robots. With these two definitions in hand, we defined that

feasibility in this context implies that a user can successfully guide a swarm of robots into

some desired geometric configuration. We have also shown that finding a control Lyapunov

function (CLF) implies feasibility, such that CLFs can be used to show that a particular

combination of multi-robot system and HSI control structure is appropriate for achieving a

particular geometric configuration or set of configurations as demonstrated by the included

examples. Additionally, we proposed attention, effort, and scalability as metrics for evalu-

ating a user’s interactions with an HSI-enabled swarm of robots during a specific task. We

demonstrated how to use optimal control tools to generate an approximation of the user

control input, which allowed us to evaluate and compare HSI control structures before users

have to interact with the swarm of mobile robots.
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CHAPTER III

COMBINING OBJECTIVE AND SUBJECTIVE METRICS FOR THE

CHARACTERIZATION OF HSI CONTROL STRUCTURES

In the previous chapter we discussed the use of optimal control to approximate the attention

and effort required of a trained user to complete a particular task. Alternatively, we could

have chosen to invite a number of participants to complete the task, capture each partici-

pant’s input signal v(t), and analyze the attention, effort, and scalability in the same way

with the actual v(t) in place of v∗(t). Additionally, we could have queried the participants

about how much effort and attention they felt that the task required. This approach is a

so-called user study, which is typically employed to gather a set of objective and subjective

data to evaluate and compare. A quantitative comparison of this data is useful, for example,

to decide which control structure to choose for the task amongst a set of control structures.

In this chapter, we will instead demonstrate how to correlate the user study data to control

and graph theoretic properties of the control structure. This correlation allows us to un-

derstand how the characteristics of a control structure influence the difficulty of completing

the task, such that we can improve its design.

The main focus of this chapter is on the role of the underlying interaction topology

(graph), since the characteristics of a control structure are strongly dependent on it. For

example, all three control structures introduced in Section 2.4 depended on the fact that

the underlying interaction topology was connected. If an interaction topology had any

disconnected components, then rendezvous of the entire swarm would no longer be possible

(see, for example, [65] for a proof). We can also observe variability in the attention and

effort required to complete a task whenever the topology is changed. Consequently, we are

justified in focusing on the effect of the interaction topology on the efficacy of different types

of control structures.

Since there exist a variety of different ways in which users can interact with a swarm
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of mobile robots (see, for example, [21, 33, 46, 64, 66, 76]), we decided to once again focus

on single-leader networks, since this type of control structure has been well studied (see,

for example, [40, 74, 79]) from a control-theoretic vantage point. A number of works have

connected controllability properties of such control structures to the underlying interaction

topology (see, for example, [63, 65]). However, controllability or the control Lyapunov

function (CLF) approach in Section 2.2.1 only establish what can theoretically be achieved

through a control structure. But, these properties do not quantify how easy or difficult it is

for users to actually interact with a swarm of robots. Consequently, we introduced attention,

effort, and scalability in Section 2.3; however, these metrics were tied to the user input signal,

rather than the properties of the control structures themselves. Therefore, we are faced

with the question, How are the interaction topology dependent control structure properties

correlated to a user’s perceived difficult of interacting with a swarm of robots through this

control structure? In this chapter, we attempt to answer this question by conducting a

user study, as we have done in [27, 38], where people are to control teams of simulated

mobile robots through single-leader network control structures with different interaction

topologies. This user study is described in Section 3.1. In particular, the participants are

asked to rate the difficulty of the control task across different interaction topologies. These

topologies are connected to control and graph theoretic properties in Section 3.2, including

properties such as controllability, node centrality, and network centralization. The findings

are reported in Section 3.3, and the main result is that the user study strongly indicates

that the established controllability properties do tell a part of, but not the whole story.

3.1 User Study

We describe the user study in three parts. First, we describe our selection of interaction

topologies, which forms the basis of the different tasks in the user study. Then, we follow

up with a description of the experimental setup and the results of the user study.

3.1.1 Interaction Topologies

We have previously discussed that an interaction topology, i.e., a graph, describes how

information is flowing among the robots for the purpose of coordinating their behaviors.
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Since the explicit aim with this chapter is to understand what role the interaction topology

plays when users control single-leader networks, we first need to discuss which of the many

possible interaction topologies should be considered. We restrict our discussion to a smaller

set of common interaction topologies to generate results that are both representative and

practically useful.

The least connected (in terms of the so-called algebraic connectivity) of the connected

graphs over n nodes (vertices) is the so-called line graph, Ln, where each node, with the

exception of the terminating nodes, is connected to two other nodes. This is a very natural

organization, found for example in single-file military columns. Consequently, we include

Ln in the list of candidate topologies under consideration. However, choosing the topology

itself is not enough. We also need to decide which node in the graph should be the leader-

node, where the user can apply an input signal. For Ln, we consider three different leader

locations–the head node, a node offset from the head, and the center node of a line graph

(consisting of an odd number of nodes), as illustrated in Figure 9.

L5,h

L5,o

L5,c

S5,cS5,p

K5C5

Figure 9: The four canonical interaction topologies used in the user studies: L (line), S
(star), C (cycle), and K complete graph. The black node is the leader node while the white
nodes are the followers. The subscripts refer to the total number of nodes and which node
serves as the leader for the cases.

The line graph is a degenerate example of an acyclic (or tree) graph. Another degenerate,

yet typical, example of an acyclic graph is the star graph Sn. This graph consists of a central
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node connected to all other nodes in the graph. These peripheral nodes do not share edges

with any additional nodes, and this topology is found, for example, in certain communication

networks where a central hub shares and receives information from the additional nodes.

As the star graph Sn constitutes one extreme tree graph and the line graph Ln the other,

we include this topology in our list of candidate topologies, and we let the central as well

as a peripheral node be the leader in the user study, as illustrated in Figure 9.

The simplest cyclic graph is the cycle graph, which is denoted by Cn. It is a “closed”

line graph, where each node shares an edge with two other nodes in the graph. Cycle graphs

are found naturally in certain social contexts (such as games). Since all nodes are equal,

we can assign any node as the leader.

Finally, the complete graph Kn is a graph where each nodes is connected to all other

nodes. This type of structure is common in communication networks (broadcast-based) or

when a small number of mobile robots are coordinating their behaviors. Since all nodes

are connected to all other nodes, it again does not matter which node is assigned as the

leader. Table 1 summarizes the interaction topologies used in the user study and defines a

new notation we use to encode the interaction topology with a leader location, e.g., S7,p for

a star graph with a peripheral leader node.

Table 1: Network configuration, leader location, and target configuration for each task.

Tasks Network Leader Notation Targets

1, 8 L7 Head L7,h Ellipse, Wedge
2, 9 L7 Offset L7,o Ellipse, Wedge
3, 10 L7 Center L7,c Ellipse, Wedge
4, 11 C7 Any C7 Ellipse, Wedge
5, 12 K7 Any K7 Ellipse, Wedge
6, 13 S7 Center S7,c Ellipse, Wedge
7, 14 S7 Periphery S7,p Ellipse, Wedge

3.1.2 Experimental Setup

The purpose of the user study is to measure the perceived difficulty of controlling a particular

interaction topology with a single leader; therefore, 18 participants were presented with 14

such tasks. The order in which the tasks were given was randomized, such that any learning
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and order biases in the data were minimized. Each task consisted of moving the single-leader

network via the leader from its initial configuration to a target geometric configuration. For

example, participants were asked to guide a L7 network from its initial configuration into

an ellipse. Table 1 provides a detailed list of the 14 tasks. The tasks were selected such

that all networks were paired with each target formation, and all target formations were

significantly different from a network’s initial configuration. These two conditions ensured

that none of the tasks were trivial to complete (e.g., form circle with a C7 network).

The experiment was structured such that the participant was shown the interaction

topology only prior to the start of the task. Communication links were not visible to the

eye and it was up to the participant to infer the behavior of the network from the interactions

of the robots. The participants were only able to directly control the movement of the leader

during the experiments using a joystick.

During the tasks, the participants received no feedback (e.g., a scoring meter). This

choice was made so that focus was entirely on matching the network to the target for-

mation. During each task, a score was calculated from a least square fit of the network’s

current configuration to its target formation. And, since we were only concerned about the

participants matching the shape of the formation, the least square (LSQ) fit was translation,

rotation, and assignment invariant, meaning that neither the location of the formation in

the workspace, nor the assignment of robots to specific positions in the formation mattered,

following the developments in [52].

After each task, the participants’ experiences were recording, by rating the perceived

difficulty of the tasks on a scale from very easy (0) to very difficult (20) in conjunction with

a NASA Task Load Index (TLX) workload survey [50]. The workload survey consisted

of six questions that covered physical, mental, and temporal demands, as well as levels of

performance, effort, and frustration. Consequently, the mean least squares error, difficulty

rating, and total raw score of the TLX workload survey were repeated for each task. The

duration of the task as well as the total distance traveled by the robot network were also

recorded.
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To get a sense for the way the experiment is experienced, see Figure 10, where a partic-

ipant controls a collection of simulated robots through a graphical user interface as shown

in Figure 11. The interface is split into two areas, where the left area is the current state

of the network and the right area is the desired target configuration. The participant is

moving the leader using the analog joystick on a gamepad. Figure 12 shows the graphical

user interface used by the participant to rate the difficulty and the workload for each task.

Figure 10: Photo of a participant performing one of the tasks in the user study. The
participant is moving the network around using the analog joystick on a gamepad to match
the target formation.

3.1.3 Experimental Results

A repeated-measures, one-way ANOVA statistical test [45] on the collected user-study data

reveals that the LSQ score (p < 0.0000001), rating score (p = 0.00138), and workload

score (p = 0.0256) are all statistically significant at a 0.05 (or 95%) confidence level. We

are justified in applying the ANOVA statistical test, since the user-study data in most

cases satisfies the underlying assumptions of the test, which state that any sampled data

should be independent and normally distributed, and the variances across tasks should be

equal. For example, Figure 13 illustrates that the sampled NASA TLX workload scores are

approximately normally distributed. The normal distribution is somewhat skewed in the
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Figure 11: Screen capture of the graphical user interface used by the participant to control
a L7 network.

(a) Task rating interface. (b) NASA TLX workload interface.

Figure 12: Screen capture of the graphical user interface used by the participant to rate the
task. Figure 12a corresponds to questions about the overall difficulty of the task by itself
and in comparison to the previous task. Figure 12b corresponds to questions about mental,
physical, and temporal demands, as well as, levels of performance, effort, and frustration.
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case of the LSQ scores; however, the ANOVA statistical test is relatively robust to such

violations of its normality assumption [58].
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Figure 13: The sampled NASA TLX workload scores are approximately normally dis-
tributed.

We use the LSQ, rating, and NASA TLX workload scores to make comparisons between

the different tasks and the different interaction topologies, and for decide which topologies

are easier for users to guide the single-leader network to the target geometric configuration.

While the time data (p = 0.012) is also statistically significant, the distance data (p = 0.262)

is not statistically significant enough to use as a measure to distinguish between the tasks.

Since we did not ask participants to minimize time or distance, we chose to omit both

metrics from the analysis.

Before describing the interaction protocols, the robots dynamics, or how the leader-

follower teams were formally defined, we first discuss the findings from the user studies

in terms of the captured data. These findings will be related to formal properties in the

robot swarm in subsequent sections. Figure 14 is a histogram of the mean LSQ scores for

each task, with error bars denoting the standard error, which is computed by normalizing

the standard deviation with the square root of the number of samples. The standard error

expresses the region in which we can be confident that the true population mean lies (see

[24]). If we want to claim that one task received a lower score than another task, we have to
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check for a statistically significant difference in the regions denoted by the error bars of the

respective tasks. The repeated-measures ANOVA (analysis of variance) test performs these

pairwise comparisons and reports the significance level of any difference. If a difference

is statistically significant, we are justified in claiming that one task received a lower (or

higher) score than another task.

Figure 14: Mean LSQ score for each task. The task numbers correspond to those in Table
1, and the best scores were obtained for line graphs, with the leader node as the head of
the line, forming ellipse formations (Task 1). The worst was when trying to form a wedge
with a star network, with the central node as the leader node (Task 13).

It can be inferred from Figure 14 that the task of moving a interaction topology to an

ellipse formation is generally easier than moving the same interaction topology to a wedge.

The first seven bars correspond to the ellipse while the last seven correspond to the wedge.

The LSQ scores suggest that the difference in scores between two interaction topologies

is largely independent of the target formation. Note that we have to be careful and use

the modifier “largely” here, since not all pairwise comparisons yield statistically significant
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differences. However, almost without exception L7 networks have a statistically significantly

lower (better) score than C7, K7, and S7 networks regardless of target formation. Similarly,

S7 networks have in almost all cases a statistically significant higher (worse) score than all

other networks. As a consequence, one conclusion that can be drawn is that in terms of

LSQ scores, line formations are to be preferred and star formations are to be avoided.

Figure 15 is a histogram of the mean rating scores for each task. We observe a similar

trend as before, where, independent of the target formation, line topologies are mostly rated

as being easier to control than all other topologies. Star topologies are mostly rated as the

hardest topologies to move into a particular formation. The p = 0.0138 value is larger than

the p-value of the LSQ scores, so we see less statistically significant differences between the

tasks. For example, the L7,c network does not have a statistically significant advantage over

C7, K7, or S7 networks with respect to the rating scores.

Finally, Figure 16 is a histogram of the mean workload scores for each task, which

encodes how difficult the task was in terms of the effort involved. Each bar is divided into

six parts encoding (starting from the bottom) the mental, physical, and time demands, as

well as the levels of performance, effort, and frustration reported by the participant. The

size of each sub-bar corresponds to the magnitude that each measured response contributes

to the total workload score. We observe a similar pattern in the workload scores compared

to the rating scores. However, the p = 0.0256 value is larger for the workload score than for

the rating and LSQ scores, so we, again, see less statistically significant differences between

the tasks.

From Figures 14, 15, and 16, it is clear that, as expected, some interaction topologies

were significantly more difficult to control than others. For example, we directly see that

line topologies are easier to control than star graphs. However, to make these types of

observations stand on a more firm mathematical footing, we first need to discuss the actual

single-leader network dynamics used in the experiments and their corresponding controlla-

bility properties. We will return to the results of the user study once this has been done.
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Figure 15: Mean rating score of the perceived difficulty for each task, as enumerated in
Table 1. Line graphs (Tasks 1,2,3,8,9,10) are generally perceived to be easier to control
while star graphs (Tasks 6,7,13,14) are harder. The differences between target formations
(ellipses and wedges) are not very pronounced.

3.2 Properties of the Single-leader Network

Ultimately, we want to tie the results of the user study to established control and graph

theoretic properties. Since these properties are directly tied to how the single-leader net-

work behaves under input, a strong connection between these properties and how amenable

the network is to user guidance would endow us with a set of tools for enabling effective

human-swarm interactions. As a first step, we must fully describe the single-leader network

dynamics, i.e., the HSI control structure. Next, we define three fundamental control and

graph theoretic properties–the rank of the controllability matrix, the node centrality mea-

sures, and the network centralization coefficient–such that we can correlate these properties

to the results of the user study.
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Figure 16: Mean workload score for each task. The differences between tasks are less
pronounced than for the LSQ results and the rating scores.

3.2.1 Single-leader Network Dynamics

We begin our description of the single-leader network dynamics by defining the low level

dynamics that each robot executes locally. Given n robots, let pi(t) ∈ R2 be the planar

position of robot i at time t, i = 1, . . . , n. As the robots can typically measure the relative

displacements to adjacent robots, i.e., robot i can measure pj(t) − pi(t) if robot j is a

neighbor to robot i in the network, a standard interaction law, that has been proposed

repeatedly in the community (see, for example [17, 65]), is

ṗi(t) = ui(t) = −
∑
j∈N(i)

w(pi(t), pj(t))(pi(t)− pj(t)), i = 1, . . . , N − 1, (47)
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for all robots but the leader. We use the convention that the first N −1 robots are followers

and robot n is the leader. N(i) is once again the set of neighbors to robot i and w(pi, pj) is

a scalar weight that scales the contribution of robot j’s position to the movement of robot

i. Since we are interested in formation control, a typical choice of this weight is

w(pi(t), pj(t)) =
‖pi(t)− pj(t)‖ − δij
‖pi(t)− pj(t)‖

, (48)

and δij is the desired distance between robots i and j. Consequently, robot i will move

towards robot j if their distance is greater than δij , while they will move apart from each

other if it is less than δij .

The underlying interaction topology is modeled as an undirected, static graph G =

(V,E). Although we only consider undirected networks in this chapter, it can be useful

to associate an orientation with the underlying graph. The way this construction works is

by defining a mapping σ : E → {−1, 1} with each edge, thus assigning it an orientation.

vi is the tail of edge (vi, vj) ∈ E if σ((vi, vj)) = −1 while it is the head if σ((vi, vj)) = 1,

with the interpretation that σ((vi, vj)) = −σ((vj , vi)). The corresponding, directed graph

is Gσ = (V,Eσ) and if the edges in this graph are numbered from 1 to m, then the n ×m

incidence matrix, D(Gσ), is given by

[D(Gσ)]ij =


1 if vi is the head to edge j

−1 if vi is the tail to edge j

0 otherwise.

(49)

Moreover, if we associate a weight with each edge, we can let W be the m×m diagonal

weight matrix, where m is the number of edges, and each entry along the diagonal corre-

sponds to the corresponding edge weight. The weighted graph Laplacian Lw then takes the

following form:

Lw(G, p) = D(Gσ)W (p)D(Gσ)T . (50)

Note here that Lw does not depend on σ even though the incidence matrix does, meaning

that the graph Laplacian is orientation independent.

The ensemble dynamics of the followers in the single-leader network can be derived by

48



partitioning Lw as

Lw(G, p) =

 Lf (p) l(p)

l(p)T λ(p)

 , (51)

where Lf (p) is a (n−1)× (n−1) matrix, l(p) is a (n−1) vector, and λ(p) is a scalar. Using

this notation, the stacked follower dynamics in Equation 47 are

ẋj = −Lf (p)xj − l(p)vj , j = 1, 2, (52)

where xj ∈ Rn−1 is the state of all follower robots and vj ∈ R is the exogenous user

input in dimension j. Given these single-leader network dynamics, we are ready to answer

two questions about a given network: Is the network controllable? and How controllable is

the network?. We will use the rank of the controllability matrix and the node centrality

measures applied to the leader to answer these questions.

3.2.2 Controllability

To understand what is meant my controllability, we first need to take a short foray into the

field of linear systems theory. A linear, time-invariant (LTI) system is given by

ż = Az +Bv, (53)

where z ∈ Rq is the state of the system and v ∈ Rk is the input. Such a system is completely

controllable if and only if it is possible to drive the system from any initial state to any final

state.

The controllability of LTI systems can be analyzed through the controllability matrix

Γ =

[
B AB . . . A(q−1)B

]
, (54)

The rank of this matrix tells us how controllable the system is. If the rank is q then the

system is completely controllable, while if it is rank deficient, then the rank is equal to

the dimension of the so-called controllable subspace which essentially is the subspace in

which the control inputs can drive the system between arbitrary states. Consequently, the

rank of the controllability matrix seems like a promising candidate for understanding which

single-leader networks are easily controlled.
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In fact, if we (for now) let the edge weights be identically equal to one, we get the

ensemble dynamics

ẋj = −Lfxj − luj , j = 1, 2, (55)

which is indeed a linear, time-invariant system. Consequently, we can construct the network

controllability matrix

ΓL =

[
−l (−Lf )(−l) . . . (−Lf )(n−2)(−l)

]
, (56)

and we are going to use the rank of this matrix, ρ(ΓL), as one of the candidate measures

of how easy the network is to control. The reason why this is a valid notion is that even

though our system has non-unity weights on the edges, the linearized dynamics around the

desired inter-robot distances δij is closely related to Equation 55.

To see this, assume that we decouple the weights along the different dimensions. In

other words, consider the dimensionally-decoupled system dynamics

ẋj = −Lf (pj)xj − l(pj)uj , j = 1, 2. (57)

This equation is different from Equation 118, because Lf and l depend on pj instead of, as

before, on the full state vector p. The decoupled weights are now assumed to be given by

w(pi,j(t), pk,j(t)) =
|pi,j(t)− pk,j(t)| − δijk
|pi,j(t)− pk,j(t)|

, j = 1, 2. (58)

Linearizing this system along the state-input pair (x̂j , 0), where x̂j is such that the edge

distances are exactly equal to to the desired distances, yields

˙̃xj = −
∂(Lf (xj)xj + l(xj)uj)

∂xj

∣∣∣∣
(x̂j ,0)

x̃j

− ∂(Lw(xj)xj + l(xj)uj)

∂uj

∣∣∣∣
(x̂j ,0)

uj , j = 1, 2. (59)

With a fair amount of algebra, we can show that this is equal to the linear system in

Equation 55:

Theorem 1. Let ẋ(t) = −Lwx(t) be the dynamics of the unforced, non-linear system, where

for the purposes of this theorem only x(t) = [x1(t), . . . , xn(t)]>. If and only if the following

two properties hold:
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1. Consensus in the j-th dimension of the d-dimensional Euclidean space is given by,

ẋi,j(t) = −
∑

k∈N(i)

w(xi,j(t), xk,j(t))(xi,j(t)− xk,j(t)) (60)

and,

2. The following property for the partial derivative of w(xi(t), xj(t)) holds:

∂w(xi,j(t), xk,j(t))

∂xi,j(t)
(xi,j(t)− xk,j(t))

∣∣∣∣
x̂0,j

= 1. (61)

Then the linearized system will be equivalent to the linear system, ẋ(t) = −Lx(t).

Proof. Property 1 holds, because we already assumed that we can decouple the weights along

the two dimensions. Property 2 also holds if the edge weights are defined as in Equation

48 and decoupled along each dimension. Recall that we chose the equilibrium point (x̂0)

to be where each robot is in the target configuration with ‖xi − xk‖ = δ. Similarly, the

equilibrium point in the j-th dimension is (x̂0,j) with ‖xi,j − xk,j‖ = δj .

(61) =
∂w(xi,j , xk,j)

∂xi,j
(xi,j − xk,j)

∣∣∣∣
(x̂0,j)

=
∂

∂xi,j

(
‖xi,j − xk,j‖ − δj
‖xi,j − xk,j‖

)
(xi,j − xk,j)

∣∣∣∣
(x̂0,j)

=

(
δj(xi,j − xk,j)
‖xi,j − xk,j‖3

)
(xi,j − xk,j)

∣∣∣∣
(x̂0,j)

=
‖xi,j − xk,j‖(xi,j − xk,j)2

‖xi,j − xk,j‖3

=
(xi,j − xk,j)2

|xi,j − xk,j |2
=

(xi,j − xk,j)2

(xi,j − xk,j)2
= 1

(62)

We have shown that properties 1 and 2 hold; therefore, we have to show that conse-

quently the linearized system is equal to the linear system of the form ẋ(t) = −Lx(t). We

can achieve this by linearizing the system along each dimension k around the equilibrium

point (x̂0,j) in that dimension.
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First we compute the Jacobian matrix (J) of the system at (x̂0,j),

˙̃xj = − ∂(Lwxj)

∂xj

∣∣∣∣
(x̂0,j)

x̃j

= − ∂

∂xj

[
DWDTxj

]
x̃j

= − ∂

∂xj


f1(x0,j)

...

fn(x0,j)

 x̃j = −


∂f1(x0,j)
∂x1,j

· · · ∂f1(x0,j)
∂xn,j

...
. . .

...

∂fn(x0,j)
∂x1,j

· · · ∂fn(x0,j)
∂xn,j

 x̃j
(63)

The entries on the diagonal of J are all the partial derivatives ∂
∂xi,j

fi(x̂0,j) for i =

1, . . . , n. We may isolate fi from the graph Laplacian by premultiplying it by eTi , where the

unit vector ei is a zero vector with a 1 at the i-th position. We apply property 2, as well

as, the fact that w(xi,j , xk,j)|(x̂0,j)
= 0, since ‖xi,j − xk,j‖ = δj

∂fi(x̂0,j)

∂xi,j
=

∂

∂xi,j

[
eTi DWDTxj

]
=

∂

∂xi,j

 ∑
k∈N(i)

w(xi,j , xk,j)(xi,j − xk,j)

∣∣∣∣∣∣
(x̂0,j)

=
∑

k∈N(i)

∂

∂xi,j
[w(xi,j , xk,j)(xi,j − xk,j)]

∣∣∣∣
(x̂0,j)

=
∑

k∈N(i)

[
∂w(xi,j , xk,j)

∂xi,j
(xi,j − xk,j)

+ w(xi,j , xk,j)
∂(xi,j − xk,j)

∂xi,j

]∣∣∣∣
(x̂0,j)

=
∑

k∈N(i)

(1 + 0) = [∆(G)]ik

(64)

The i-th entry of the diagonal of J corresponds to the degree of robot i in G. The

off-diagonal entries of J are the partial derivatives ∂
∂xi,j

fk(x̂0,j), where i 6= k. We note that
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a contribution from the derivative with respect to xi,j appears if and only if i ∈ N(k).

∂fk(x̂0,j)

∂xi,j
=

∂

∂xi,j

[
eTj DWDTxj

]
=

∂

∂xi,j

 ∑
l∈N(k)

w(xk,j , xl,j)(xk,j − xl,j)

∣∣∣∣∣∣
(x̂0,j)

=
∑

l∈N(k)

∂

∂xi,j
[w(xk,j , xl,j)(xk,j − xl,j)]

∣∣∣∣
(x̂0,j)

=
∑

l∈N(k)

[
∂w(xk,j , xl,j)

∂xi,j
(xk,j − xl,j)

+ w(xk,j , xl,j)
∂(xk,j − xl,j)

∂xi,j

]∣∣∣∣
(x̂0,j)

=


−1 if i ∈ N(k),

0 otherwise.

= −[A(G)]ik

(65)

Each off-diagonal entry of J corresponds to the negative of the same entry in A(G).

Given the results for the diagonal and off-diagonal entries of J , we can write the following

equation:

˙̃xk = −Jx̃j

= − [∆(G)−A(G)] x̃j

= −Lx̃j

(66)

We have shown that the Jacobian matrix from the linearization around the equilibrium

point is equivalent to the unweighted graph Laplacian L(G).

Corollary 1. Similarly, the system ẋj = −Lf (p)xj − l(p)uj, if the two properties holds, is

equivalent to the system ẋj = −Lfxj − luj when linearized.

The linearization of this system immediately follows from the theorem. Let x(t) =

[x1(t), . . . , x(n−1)(t)]
> be the vector of followers as before and recall that u = xn.
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˙̃xj = −
∂(Lw,fxj + lwuj)

∂xj

∣∣∣∣
(x̂0,j ,û0,j)

x̃j

−
∂(Lw,fxj + lwuj)

∂uj

∣∣∣∣
(x̂0,j ,û0,j)

ũj

= −
∂(Lw,fxj)

∂xj

∣∣∣∣
(x̂0,j)

x̃j −
∂(lwuj)

∂uj

∣∣∣∣
(x̂0,j ,û0,j)

ũj

= −Lf x̃j − lũj , j = 1, 2

(67)

We have shown that the dynamics of the linearized single leader network are equivalent

to the dynamics of the unweighted single leader network; therefore, we are almost (recall,

we have neglected the coupling terms in edge-weights) justified in considering the rank

of the controllability matrix associated with the linearized system. The reason why we

do not consider the controllability properties of the nonlinear system is that a number

of connections have already been proven between the interaction topology and the linear

dynamics in Equation 55 when it comes to establishing the controllability properties of the

network dynamics, e.g. [79, 81]. And, as for the “almost” modifier, as the purpose of this

chapter is ultimately about what users considers to be easy to control, the question whether

or not ρ(ΓL) is an appropriate measure is ultimately an empirical question. And, as will

be seen in the next section, ρ(ΓL) will indeed turn out to be a very strong measure of how

easy it is for human users to control the underlying network.

3.2.3 Measures of Node Centrality

As an alternative to controllability, we will also use four classic centrality measure for simple

graphs–degree centrality [13], closeness [26], betweenness [41], and eigenvector centrality

[10]–to quantify the importance of the leader in each of the networks. Degree centrality is

equal to the node degree (i.e., number of edges shared with other nodes),

CD(v) = deg(v),where v ∈ V. (68)

CD(v) is simple to calculate, but it only measures the importance of the leader with respect

to its immediate neighbors. For example, Figure 17 illustrates degree centrality in red. The

black leader node has two neighbors; therefore, CD(v) = 2.
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L5,o

Figure 17: Degree centrality (dash-dotted) and betweeness centrality (solid) of the black
leader node of this L5,c interaction topology are illustrated.

Closeness is defined in terms of the shortest paths from a node to all other nodes on the

network.

CC(v) =
∑
u∈V \v

2−dG(v,u),where u, v ∈ V. (69)

Closeness penalizes a node with long paths to other nodes. For the black leader node in

Figure 17,

CC(v) =
1

21
+

1

21
+

1

22
+

1

23
= 1.375,

but if the leader were assigned to be the middle node in the L5,o interaction topology, then

the leader’s closeness would be larger, CC(v) = 1.5.

Betweenness is a measure of the fraction of shortest paths between any two nodes that

passes through a particular node.

CB(v) =
∑

u6=w∈V \v

σu,w(v)

σu,w
, (70)

where σu,w(v) is the total number of shortest paths between u and w that intersect v and

σu,v is the total number of shortest paths between u and w. Figure 17 illustrates in purple all

shortest paths that pass through the black leader node. In the case of this L5,o interaction

topology, the shortest paths are also the only paths; therefore, the fraction in Equation 70

is always one, such that CB(v) = 6 for this particular interaction topology.

Eigenvector centrality measures the influence of a node on the network. This centrality

measure is computed by first solving the eigenvalue problem, Ax = λmaxx, where A is the

adjacency matrix and λmax its largest eigenvalue. The i-th entry of the vector x is the

centrality score given to the i-th node in the network.

CE(v) = xi,where xi is the i-th entry of x. (71)
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For the interaction topology shown in Figure 17, the second entry of the eigenvector

corresponding to λmax = 1.732 is 0.5; therefore, for this particular interaction topology,

CE(v) = 0.5.

3.2.4 Newer Measures of Centrality

In addition to these four centrality measures, newer centrality measures have been developed

for complex networks, such as social networks. We can use Bonacich’s power centrality [11],

Kleinberg’s centrality [59], and Bonacich’s alpha centrality [12] to quantify the importance

of the leader in the network. If A is the adjacency matrix for some network, then Bonacich’s

power centrality is defined as,

CP (A,α, β) = α(I − βA)−1A1, (72)

where α is a scaling factor such that the sum of the centralities of all nodes is equal to the

number nodes, and β is an attenuation parameters that needs to be less than the reciprocal

of the largest eigenvalue of A. The power centrality of the i-th node is the i-th entry of

CP (A,α, β).

Kleinberg’s centrality is computed in similar way as eigenvector centrality, except that

the i-th node’s centrality is equal to the i-th component of the principal eigenvector of ATA.

A is, as before, the adjacency matrix representing the network. For the interaction topology

shown in Figure 17, CK(v) = 0.707, where v is the leader node.

Finally, Bonacich’s alpha centrality is a unique centrality measure, which allows us

to externally influence the importance of a node. Our selection of a leader in a network

implicitly makes the corresponding node more important than other nodes on the network.

The importance of a node is given by some scalar, and all these scalars are stacked into the

vector ~e. For example, suppose that seventh node of a L7 network is the leader, then one

possible ~e is [1, 1, 1, 1, 1, 1, 2]T . If α is a scalar that indicates how important the endogenous

factors are compared to the exogenous factors given by ~e, then alpha centrality is

Cα(A,α) = (I − αAT )−1~e. (73)

For the interaction topology shown in Figure 17, α = 0.25, and ~e = [1, 1, 1, 1, 1, 1, 2]T , the
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seventh entry of Cα is 3.004, which is the leader’s alpha centrality.

Given the importance of the leader in the leader-follower structure, we can expect that

the measures of node centrality for the leader are another indicator of how difficult it is for

a user to control a network.

3.2.5 Centralization

So far, we have focused on the centrality of the leader in a leader-follower network, but

it may be useful to investigate centrality as a property of the whole network. Network

centralization is a measure of how central the node with the highest centrality score is

compared to all other nodes [42]. Suppose, we are given some centrality measure, C(v)

(for example, CD(v)), then v∗ = argmaxv∈V C(v) is the node with the highest centrality

measure. If the sum of differences between C(v∗) and the centrality score of each node

on a particular network is
∑

v∈V C(v∗) − C(v), then let C∗ be the largest of such sum

of differences over all possible networks with the same number of nodes. Consequently,

network centralization, C, is defined as

C =

∑
v∈V C(v∗)− C(v)

C∗
. (74)

As an example, suppose we want to calculate the network centralization of a L7 network

with respect to degree centrality. The largest centrality measure on L7 is CD(v∗) = 2.

The sum of differences is maximized on a S7 network, where the center node has a degree

centrality of 6, while all peripheral nodes have a degree centrality of 1. Therefore, the largest

sum of differences is C∗D = 30. At this point, we can compute the network centralization,

CD =

∑
v∈V CD(v∗)− CD(v)

C∗D
=

2

30
= 0.06̄ (75)

A small CD indicates that the nodes of a L7 network have similar degree centrality.

While network centralization is computed independent of our choice of leader, networks

with little centralization may uniformly propagate input signals, which may reduce the

difficulty in interacting with the network as a whole. Consequently, we can expect it to be

another metric for how difficult it is for a user to control a network.
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3.3 Analysis and Conclusions

We are now ready to connect the single-leader network characterization – the rank of the

controllability matrix, the node centrality measures, and the network centralizations – to

the user study results. The average rating, average LSQ error, total workload score, the

rank of the controllability matrix, and the first four node centrality measures, CD, CC , CB,

and CE are summarized in Table 2, while Table 3 adds the three other node centralities,

CP , CK , and Cα. The line graph, L7, with the leader node located at the head of the

network, is completely controllable and, intuitively, it should be easy to move the followers

into position by pulling the leader around. This observation is supported by the user

study data. It is important to note that controlling this particular L7 graph can be easily

accomplished by the user independent of the target formation. In fact, if the leader in the

L7 graph is offset from the head of the network, the score, ratings, and workload measures

slightly increase in comparison, even though the controllability remains constant. In this

case, examining the measures of node centrality helps us explain for the difference. The

leader in the L7,h network has a lower node centrality score than the leader in the L7,o

network. The results indicate that a less important (or influential) leader in the network

is beneficial for controlling networks in tasks require robots to be moved into a specific

formation (as opposed to driving the network from point A to point B collectively).

Selecting a leader in the center of the L7 graph cuts the rank of the controllability matrix

in half, while again increasing the reported measures in comparison to the L7,o network.

We can conclude from this observation that a decrease in rank results in an increase in the

reported measures. The rank of its controllability matrix is the same as that of the C7

network; however, its leader’s centrality score is larger or equal than the centrality score of

the C7 network’s leader. Therefore, we can expect that the C7 network is easier for a user

to control than the L7,c network. This conclusion is validated by the user study data in

those cases where the difference is statistically significant.

The complete graph K7 is rank deficient due to its high degree of symmetry. In fact, the

rank of the controllability matrix is 1; meaning that the only the network’s center of mass

can be controlled in this configuration. Consequently, it is impossible for the participant
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Table 2: Mean LSQ, rating, and workload scores with controllability matrix rank, ρ, and
node centrality measures for each task.

Task Network Target ρ CD CC CB CE LSQ Rating Workload

1 L7,h Ellipse 6 1 0.984 0 0.191 0.035 5.83 27.33
2 L7,o Ellipse 6 2 1.469 10 0.354 0.061 9.65 43.37
3 L7,c Ellipse 3 2 1.750 18 0.500 0.137 12.82 57.40
4 C7 Ellipse 3 2 1.750 6 0.378 0.090 8.72 38.46
5 K7 Ellipse 1 6 3.000 0 0.378 0.157 10.11 39.14
6 S7,c Ellipse 1 6 3.000 30 0.707 0.273 16.47 63.42
7 S7,p Ellipse 2 1 1.750 0 0.289 0.276 14.46 63.98
8 L7,h Wedge 6 1 0.984 0 0.191 0.141 9.93 45.14
9 L7,o Wedge 6 2 1.469 10 0.354 0.229 10.54 50.88
10 L7,c Wedge 3 2 1.750 18 0.500 0.415 12.57 56.94
11 C7 Wedge 3 2 1.750 6 0.378 0.486 13.26 55.59
12 K7 Wedge 1 6 3.000 0 0.378 0.606 15.16 52.32
13 S7,c Wedge 1 6 3.000 30 0.707 0.627 14.64 59.90
14 S7,p Wedge 2 1 1.750 0 0.289 0.602 14.81 60.86

Table 3: Mean LSQ, rating, and workload scores with Bonacich (β = 1), Kleinberg, and
alpha centrality (α = 0.25) measures for each task.

Task Network Target CP CK Cα LSQ Rating Workload

1 L7,h Ellipse 0.000 0.354 2.536 0.035 5.83 27.33
2 L7,o Ellipse 0.441 0.707 3.004 0.061 9.65 43.37
3 L7,c Ellipse 1.764 1.000 3.134 0.137 12.82 57.40
4 C7 Ellipse 1.000 1.000 3.155 0.090 8.72 38.46
5 K7 Ellipse 1.000 1.000 1.600 0.157 10.11 39.14
6 S7,c Ellipse 1.517 1.000 5.600 0.273 16.47 63.42
7 S7,p Ellipse 0.885 0.166 3.100 0.276 14.46 63.98
8 L7,h Wedge 0.000 0.354 2.536 0.141 9.93 45.14
9 L7,o Wedge 0.441 0.707 3.004 0.229 10.54 50.88
10 L7,c Wedge 1.764 1.000 3.134 0.415 12.57 56.94
11 C7 Wedge 1.000 1.000 3.155 0.486 13.26 55.59
12 K7 Wedge 1.000 1.000 1.600 0.606 15.16 52.32
13 S7,c Wedge 1.517 1.000 5.600 0.627 14.64 59.90
14 S7,p Wedge 0.885 0.166 3.100 0.602 14.81 60.86

to move K7 into a wedge formation. The results from the user study confirm this fact. In

contrast, from Table 2 demonstrates that the reported measures are low for tasks 4 and

5, where the user has to move a C7 and K7 network into an elliptical formation. We can

conclude that the perceived difficulty is only low for such rank deficient networks, if the

target formation is analogous to the natural formation of the network (e.g., C7, a cycle, to
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an ellipse) and the user can avoid driving the system into an uncontrollable subspace.

In contrast, all tasks involving a S7 network using either a peripheral or center leader

are perceived as being very difficult. Not only are these networks rank deficient, but any

input quickly drives the system into an uncontrollable subspace. Interestingly, the extra

rank of the S7,p network has no advantage over the fully rank deficient S7,c network.

In fact, the rank of the controllability matrix is negatively correlated to the scores as

shown in Table 4, which supports the claim that a configuration with a higher rank was

almost without exceptions given a better score than a configuration with a lower rank. We

can conclude that the rank of the controllability matrix is a strong predictor of how easy

it is to control a team of mobile robots. Consequently, it is the first property one should

consider when choosing an easily user-guided single-leader network. As a corollary, symmet-

ric configurations (e.g., star graphs and complete graphs) are not particularly well-suited

for human control. The node centrality measures of the leader are positively correlated

(e.g., for CE , r2
Rating = 0.58, r2

Workload = 0.54) to the scores as shown in Table 4. In

other words, a small leader-node centrality is another good indicator that a particular net-

work of mobile robots is easier to control. In fact, given two configurations with the same

ranks, all centrality measures serve as reasonable tie breakers for which network is easiest

to control. Finally, Table 5 shows that there is also a positive correlation between network

centralization and the scores, which means we can use the network centralization as an-

other reasonable tiebreaker. It is important to note, however, that rank, node centrality,

and network centralization are by no means absolute metrics for the difficulty of controlling

a given network, but good predictors of the perceived difficulty.

Table 4: Correlation coefficient of mean LSQ, rating, and workload scores versus controlla-
bility matrix rank and each node centrality measure.

Score ρ CD CC CB CE CP CK Cα

LSQ -0.604 0.352 0.495 0.181 0.356 0.441 0.123 0.241
Rating -0.733 0.432 0.616 0.420 0.588 0.648 0.172 0.456

Workload -0.539 0.164 0.366 0.472 0.541 0.634 0.124 0.524
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Table 5: Correlation coefficient (r2) of mean LSQ, rating, and workload scores versus cen-
tralization measure with respect to degree centrality, closeness, betweenness, and eigenvector
centrality.

Score CD CC CB CE
LSQ 0.437 0.342 0.324 0.163

Rating 0.644 0.565 0.548 0.345
Workload 0.660 0.637 0.630 0.537

3.3.1 Recommendations

The results of this user study and their analysis allow us to make recommendations about

how to construct single-leader networks that are amenable to human control. First of all, the

single-leader network needs to be controllable, which means that interaction topologies that

are symmetric with respect to the leader node should be avoided. Once a set of controllable

single-leader networks has been constructed, we recommend using either closeness centrality

or Bonacich’s power centrality to evaluate the centrality of the leader on each of these

networks. Choosing a network with a lower leader centrality is beneficial to reducing the

difficulty of controlling a single-leader network. Alternatively, it is also beneficial to pick

a network with a small (non-zero) network centralization with respect to degree centrality.

Ultimately, choosing a single-leader network that is controllable, has small leader centrality,

and has small network centralization seems to ensure that the network will be amenable to

human control for the tasks in this user study.
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CHAPTER IV

NEW INTERACTIONS WITH SWARMS OF ROBOTS

This fourth chapter introduces three new HSI abstractions: broadcast control, predator-prey

interactions, and deformable media. First, we demonstrate how users can interact with a

swarm of mobile robots by broadcasting as single input signal to all robots. This type of

human-swarm interaction (HSI) has been previously introduced in Section 2.4.2 for guiding

a swarm of robots to a stack of packages for sorting. In Section 4.1, we will demonstrate

that users can also use broadcast input signal to separate a heterogeneous swarm of robots

into homogeneous clusters. The focus will also be on applying the framework from Chapter

2 to this HSI control structure. Section 4.2 introduces a new task: a user needs to deploy

a parameterized formation of N robots (predators) to capture an evasive, parameterized

robot (prey). The focus of this work is to provide the user with an algorithm to pick the

minimum number of predators to capture the prey based on the parameters picked for

the hunt. Consequently, we introduce and provide a preliminary answer to an important

HSI question, How many robots are required for the user to be able to successfully complete

a task? We introduce another important question in Section 4.3: What type of input

controllers affords guiding robotic swarms into specific shapes? In Chapter 3, we discussed

how single-leader networks are generally difficult to guide into specific geometric shapes.

Consequently, we introduce a new HSI abstraction that is based on providing users with a

deformable medium–clay. Deformable media, such as clay, afford actions associated with

forming shapes, such as stretching, splitting, bending, and merging unlike traditional input

controllers, such as joysticks.

4.1 Separating Heterogeneous Swarms with a Broadcast Signal

Broadcast control was previously introduced in Section 2.4.2 as an example of an HSI control

structure to guide a swarm of robots to a rendezvous location. In this section, we focus on

the task of separating the swarm into separate, connected components or “clusters” that
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correspond to all robots of a particular class (where this class may correspond to a unique

capability) being co-located, but completely separated from robots belonging to another

class. This problem has not been widely studied in robotics aside from [47], but it is well

known that in physical processes involving granular mixtures, granules of different sizes

segregate under external perturbations, which is our source of inspiration for broadcast

control [2, 22, 75]. If a user can achieve granular separation by shaking a cereal box, then

this interaction may be useful for swarms as well.

Once again, we let the robots execute weighted consensus dynamics, where the robots

are attracted to each other, rather than repulsed (cohesion). Robots within the same class

have the same weight, while robots from different classes have different weights. Different

weights in the dynamics are an analog for the robots having different sizes. We will show that

a user can apply an exogenous control signal to this swarm that will completely separate

robots from each other if they are in different classes, while robots from the same class

remain together. The key is that these multi-agent systems are heterogeneous, meaning

that robots with different characteristics will react differently to the same input signal.

This difference in response to an input signal is exploited to achieve a global behavior for

the swarm.

As we have done in [28], we derive an external signal for separating two classes of robots

and then show that it is also possible to separate three classes of robots, while assuming

that the initial position of all robots is the same and that the separation happens along

a single dimension. Next, we generalize to separating M classes of robots. Once we have

made this generalization, we will continue to generalize our results to show that we can also

compute a separation signal for robots moving in multiple dimensions and to the case when

the robots start separating while co-located in a small ball, i.e. not coincident as previously

assumed. Last, we conclude with some experimental verification in the form of simulations.

Along the way, we will also use attention, effort, and scalability, as we have done in [32], to

characterize the user’s interaction with the swarm during this separation task .
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4.1.1 Separating Two, Three, and M Classes

Suppose that a network of robots is comprised of M types of robots, belonging to one of the

classes in C = {C1, . . . , CM}. The problem is how to separate these M classes of robots from

each other without separating robots from the same class. As an initial way of approaching

this problem, let us assume that the robots in the different class somehow carry different

weights, such that they respond differently to an external signal. In addition, assume that

these robots are all running a local, forced agreement protocol, in the sense that

ẋi(t) = vi(t) = γπ(i)

 ∑
j∈N(i)

(xj(t)− xi(t)) + v(t)

 , (76)

where xi is the position of robot i, γπ(i) is a scalar weight, N(i) is the set of neighbors that

robot i has in the network, and v is an exogenous user input signal. The set of neighbors is

defined by the condition ‖xj−xi‖ ≤ ∆, i.e. j ∈ N(i) and i ∈ N(j) if robots i and j are close

enough to each other. It is important to note that a neighborhood, N(i), is not a function

of class, since an robot is not aware of its neighbor’s class. The key object in Equation (76)

is the class membership function π : N → C, where N = {1, . . . , N} is the set of all robots,

i.e the function π maps robot i into one of the M classes with weights γ1, γ2, . . . , γM . The

notion that these classes weigh differently is encoded in the following two properties:

1. Each class has a unique weight; otherwise, any two classes with the same weight can

be merged into a single class.

2. The weights can be ordered in ascending order,

0 < γ1 < γ2 < . . . < γM ,

by simply relabeling C if necessary.

We aim to generate a separating signal v that ensures that the robots are separated from

each other, as is illustrated in Figure 18. This signal will be broadcast simultaneously to all

robots. As a first step towards deriving such a separating signal, let us first assume that a)

the robots are all scalar, i.e., that xi ∈ R, and b) that all robots start at the same position,

i.e., xi(0) = xj(0),∀(i, j). We will first consider the two class case, then the three class
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Figure 18: Separation of ∆ between two classes using an external signal v applied to all
robots simultaneously.

case, and finally, we will generalize to M classes. The two class case will provide us with a

way to separate two classes, while the three class case will provide us with a strategy for

separating more than two classes by using the results from the two class case. It is then

possible for us to use the results from these two cases to generalize to M classes.

4.1.1.1 Two Classes

Under the two assumption, xi(0) = xj(0), ∀(i, j) and xi ∈ R, we will derive a constant,

scalar separating signal that is guaranteed to achieve a desired separation of greater than ∆

between the two classes. In fact, assume that there are N1 robots of C1 and N2 robots of C2.

Since all robots within a class start at the same position and execute the same dynamics,

they will always stay together under any input signal v. As such, if we let χi be the position

of any member of Ci, i = 1, 2, we can let d12 = χ2 − χ1 denote the distance separating the

two classes. And, the swarm dynamics for the two classes become

χ̇1 = γ1(N2d12 + v), χ̇2 = γ2(−N1d12 + v)

or

ḋ12 = χ̇2 − χ̇1 = (γ2 − γ1)v − (γ2N1 + γ1N2)d12. (77)

Now, assume that the robots are no longer connected if an inter-robot distance is greater

than ∆, i.e. if i ∈ C1, j ∈ C2, then j /∈ N(i), i /∈ N(j) when |xj − xi| > ∆.

Theorem 4.1.1. v is a scalar, constant separating signal if

v >
(γ2N1 + γ1N2)∆

γ2 − γ1
, (78)
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which ensures that ḋ12 > 0 when d12 ∈ [0,∆], i.e., guarantees that all robots belonging to

different classes are completely separated by a distance greater than ∆.

Proof. The proof follows directly from applying ḋ12 > 0 to Equation (77) and solving for v

to get

v >
(γ2N1 + γ1N2)d12

γ2 − γ1
.

u > 0 is needed to start the separation process when d12 = 0. Since d12 increases monoton-

ically on the interval [0,∆], it is sufficient to suppose that d12 = ∆ and require that

v >
(γ2N1 + γ1N2)∆

γ2 − γ1

is applied on the interval.

Then, a scalar, constant separating signal v is

v =
(γ2N1 + γ1N2)(∆ + ε)

γ2 − γ1
, (79)

where ε > 0.

Moreover, we can explicitly compute the duration Ts for which v needs to be applied to

ensure that no two robots from different classes are connected.

Corollary 2. To separate the two classes, v needs to be applied for a duration of

Ts =
ln
(

∆+ε
ε

)
γ1N2 + γ2N1

, (80)

where ε > 0.

Proof. The distance separating the two classes at time t is

d12(t) =

∫ t

0
e−(γ2N1+γ1N2)(t−s)(γ2N1 + γ1N2)(∆ + ε)ds

= (∆ + ε)
(

1− e−(γ2N1+γ1N2)t
)
,

(81)

where d12(0) = 0 is the initial condition. At time Ts, we know that d12(Ts) = ∆, so we can

solve Equation (81) in terms of Ts to get Equation (80). Since ḋ12(Ts) > 0, the two classes

will be separated by a distance greater than ∆ after Ts time.
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4.1.1.2 Three Classes

The next step is to find a separating signal v, which can completely separate robots be-

longing to three classes, C1, C2, and C3. We will use this result as a stepping stone for

generalizing our results to M classes. With the addition of C3, we define d23 to be distance

between robots in C2 and C3 and d13 to be the distance between robots in C1 and C3. Let

d13 = d12 + d23, such that d13 > d12 and d13 > d23 during the separation process, i.e. t > 0.

Recall that the initial conditions are d13(0) = d12(0) = d23(0) = 0.

The swarm dynamics for the three classes before separation are

χ̇1 = γ1(N2d12 +N3d13 + v),

χ̇2 = γ2(−N1d12 +N3d23 + v),

χ̇3 = γ3(−N1d13 −N2d23 + v).

(82)

Instead of finding a single separating signal v, we are going to be strategic and find a series

of separating signals vM , . . . , v2 that separate the classes by peeling off classes in descending

order of their weights. For example, in the three class problem, v3 will separate C3 from C2

and C1, and v2 will separate C2 from C1
1.

First, we want to find v3 that separates C3 from C2. v3 will also separate C3 from C1,

since when d23 > ∆, then d13 > ∆ must be true, because d13 > d23 by definition. As before,

we want ḋ23 > 0 when d23 = ∆:

ḋ23 = χ̇3 − χ̇2 > 0

= γ3(−d13N1 − d23N2 + v3)

− γ2(−d12N1 + d23N3 + v3) > 0

(83)

Suppose we find a v3 that satisfies this inequality and achieves a separation of C3 from C1

and C2. The dynamics are now slightly different:

χ̇1 = γ1(N2d12 + v2),

χ̇2 = γ2(−N1d12 + v2),

χ̇3 = γ3v2.

(84)

1When we state that we want to separate Ci from Cj , what we really mean is that we want to separate
the robots in Ci from the robots in Cj .
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Since we now want ḋ12 ≥ 0 when d12 = ∆, the separating signal v2 that separates C1 and

C2 is exactly Equation (79).

It is important to note that this strategy seems to ignore the change in dynamics that

occurs when C1 and C3 separate before C2 and C3 have separated. Similarly, depending

on the choice of parameters γ1, γ2, and γ3, as well as, N1, N2, and N3, C1 and C2 may

have separated before C2 and C3 separate. This scenario renders applying v2 unnecessary.

Therefore, this strategy will not be optimal; however, we will show that this strategy will

still successfully separate the three class. Our motivation is to define a simple strategy,

which will guarantee the separation of the different classes of robots independent of the

parameters (with respect to the strategy only, not with respect to how the input signals are

defined) and can easily be applied by a user.

Theorem 4.1.2. v3 is a scalar, constant separating signal if

v3 >
(γ3(N1 +N2) + γ2N3)∆

γ3 − γ2
, (85)

which ensures that ḋ23 > 0 when d23 ∈ [0,∆], i.e. guarantees that all robots belonging

to C3 are separated from all robots in C1 and C2. Once this separation has occurred, the

scalar, constant separating signal v2 equal to Equation (79) can be applied to separate robots

belonging to C2 from robots belonging to C1.

Proof. We want to find v3 that guarantees ḋ23 > 0 when d23 = ∆. First we solve for v3 in

Equation (83).

v3 >
(γ3N2 + γ2N3)d23 + (γ3d13 − γ2d12)N1

γ3 − γ2

We select a sufficiently large v3 by applying the fact that d13 > d23 and γ2d12 > 0:

v3 >
(γ3(N1 +N2) + γ2N3)d13

γ3 − γ2

=
(γ3(N1 +N2) + γ2N3)(∆ + ε)

γ3 − γ2
,

where ε > 0.

This is not an airtight upper bound, since the contribution from robots in C1 will be

zero sometime before d23 = ∆ and separation between C2 and C3 is achieved. However, it

still guarantees that ḋ23 > 0 when d23 ∈ [0,∆].
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Once C3 is separated from C1 and C2, we are justified in using v2 as defined by Equation

(79) to separate C1 and C2 if and only if the inequality ḋ23 ≥ 0 still holds when applying v2.

Otherwise, we cannot guarantee that C2 and C3 remain separated. After separation,

ḋ23 = γ3v2 − γ2(−d12N1 + v2) ≥ 0,

so we need to plug in v2 and make sure the inequality holds.

v2 =
(γ2N1 + γ1N2)(∆ + ε)

γ2 − γ1
≥ −γ2d12N1

γ3 − γ2

We can directly see that this inequality will hold, because a) γ3 > γ2 > 0, and b) γ2d12N1 >

0. Therefore, if we use v3 to separate C3 from C1 and C2 and then v2 to separate C2 from

C1, we are able to completely separate all three classes from each other.

Moreover, we can compute a duration for applying v3, Ts,3, that is sufficient to separate

C3 from the other two classes and a duration of applying v2, Ts,2, that is sufficient to separate

C2 from C1. These durations will be relaxed upper bounds, because of the following two

assumptions:

1. We assume that the dynamics in Equation (82) are unchanged on the interval [0, Ts,3],

which is not accurate, since C1 separates from C3 before C2, and C1 may even separate

from C2 before then depending on the weights and the sizes of the classes.

2. We assume that d12(Ts,3) = 0, which is not accurate, since d12 > 0 is guaranteed by

the fact that γ1 6= γ2.

Under these assumptions, we can compute a simple schedule for applying v3 and v2 to

achieve separation of the three classes.

Corollary 3. To separate the three classes, C1, C2, and C3, we will apply the signal v3 for

a duration of Ts,3 and at time Ts,3, we will apply the signal v2 for a duration of Ts,2, where

Ts,3 and Ts,2 are defined as,

Ts,3 =
ln
(

∆+ε
ε

)
γ3(N1 +N2) + γ2N3

Ts,2 =
ln
(

∆+ε
ε

)
γ1N2 + γ2N1

,

(86)

and ε > 0.
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Proof. The proof follows the same process as Corollary 2 by deriving d23(t) on the interval

t ∈ [0, Ts,3] and solving d23(Ts,3) = ∆ for Ts,3. d23(t) is derived from Equation (82) assuming

that these dynamics are unchanged on the interval [0, Ts,3]. d12(t) is derived from Equation

(84) on the interval t ∈ (Ts,3, Ts,2]. We solve d12(Ts,2) = ∆ for Ts,2 and assume that

d12(Ts,3) = 0 to find the time to separate C1 and C2 as in Corollary 2.

This simple schedule is not optimal. We will hold v3 for longer than is needed to separate

C3 from C2, because we assume that the dynamics do not change on the interval [0, Ts,3].

Similarly, assuming that d12(Ts,3) = 0 is pessimistic, since d12 > 0 is guaranteed by the fact

that γ1 6= γ2. The consequence is that we will hold v2 for longer than is needed to separate

C2 from C1. We could be more exact in computing these durations, since the parameters

are known, and thus, we know how the system evolves. However, we are motivated to

find a strategy that is simple to implement, in the sense that this strategy is independent

of the choice in parameters (weights and sizes of the classes) that determine the order of

separation2. Despite the lack of optimality, this strategy of applying v3 for Ts,3 and then

applying v2 for Ts,2 will separate the three classes successfully.

4.1.1.3 M Classes

The next step is to find a similar strategy to completely separate robots belonging to M

classes, C1, . . . , CM . We define dij to be the distance between robots in Ci and Cj . If

three classes, Ci, Cj , and Ck, are ordered such that γi < γj < γk, then by our previous

construction, dik = dij + djk, such that dik > dij and dik > djk (with the exception of the

initial conditions, where dik(0) = dij(0) = djk(0) = 0).

The swarm dynamics for the M classes before any separation are

χ̇i = γi

(
M∑
k=1

Nkdik + u

)
,

where dii = 0 and dik = −dki. Instead of finding a single separating signal v, we are going

to again be strategic and find a series of separating signals, vM , . . . , v2, that separate the

2Independence from the parameters does not imply that v or Ts do not depend on the parameters, but
rather that we can apply v for Ts time to separate two specific classes without worrying about how exactly
these two classes separate from the other classes.
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classes by peeling off classes in descending order of their weights.

First, we want to find vM that separates CM from CM−1. vM will also separate CM from

CM−2, . . . , C1. Next, we want to find vM−1 that separates CM−1 from CM−2, and so on until

we have separated all of the M classes from each other. As was the case before, we will

assume that the dynamics are unchanged while we separate two classes, even though Ck−2

would separate from Ck before Ck and Ck−1 have separated, and Ck−1 may even separate

from Ck−2 before separation between Ck and Ck−1 has been achieved. As we have shown

before, vk will still be an input signal that separates Ck and Ck−1, . . . , C1 successfully.

Theorem 4.1.3. vM , . . . , v2 is a series of scalar, constant separating signals that separate

M classes completely, i.e. dij > ∆, ∀i 6= j, and i, j ∈ {1, . . . ,M}, if

vk >

(
γk
∑k−1

j=1 Nj + γk−1Nk

)
∆

γk − γk−1
, (87)

where k ∈ {2, . . . ,M}.

Proof. We want to find vk that separates robots in Ck from the robots in C1, . . . , Ck−1.

Assuming that when vk is applied, Ck+1, . . . , CM are already separated from C1, . . . , Ck, then

we know from the developments in the previous sections that vk is of the form Equation

(87). However, we have to make sure that applying vk does not result in the merging of any

of the already separated classes Ck+1, . . . , CM . Therefore, the following inequality must be

satisfied,

vk ≥ −
γk
∑k−1

j=1 djkNj

γk+1 − γk
,

for all k = 2, . . . , (M − 1) such that Ck and Ck+1 do not to merge, as well as, that vk ≥ 0

such that none of the separated classes Ck+1, . . . , CM merge. Both of these inequalities are

satisfied by the fact that vk is always positive by inspection of Equation (87).

Moreover, we can again compute a duration of applying vM , Ts,M , that is sufficient to

separate CM from the other classes, a duration of applying vM−1, Ts,M−1, that is sufficient

to separate CM−1 from the other classes, and so on. As before, we apply the assumption

that the dynamics do not change while a class Ck is separated from Ck−1 and the other

classes, and that when we start separating Ck from Ck−1, that distance separating Ck from
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Ck−1, . . . , C1 is zero. These assumptions, as before, lead to conservative upper bounds on

the durations that the input signals are applied to separate the classes.

Corollary 4. To separate the M classes, C1, . . . , CM , we will apply the signal vM for a

duration of Ts,M , and at time Ts,M , we will apply the signal vM−1 for a duration of Ts,M−1,

and so on, where vk is held for a duration of Ts,k,

Ts,k =
ln
(

∆+ε
ε

)
γk
∑k−1

j=1 Nj + γk−1Nk

, (88)

where k = M, . . . , 2 and ε > 0. Let Ts,M+1 = 0.

Proof. Suppose that we pick the separating signal such that

vk =

(
γk
∑k−1

j=1 Nj + γk−1Nk

)
(∆ + ε)

γk − γk−1
.

The proof follows directly from the proof of Corollary 2 by deriving d(k−1)k(t) on the interval

t ∈ [Ts,k+1, Ts,k] and solving d(k−1)k(Ts,k) = ∆ for Ts,k, as if d(k−1)k(Ts,k+1) = 0.

This strategy is not optimal for the same reasons as before. Assuming that d(k−1)k(Ts,k+1) =

0 is pessimistic, since d(k−1)k > 0 is guaranteed by the fact that γk−1 6= γk. Similarly, as-

suming that the dynamics do not change when peeling a class away from the rest of the

classes is not accurate. The consequence is that we will hold vk for longer than is needed

to separate Ck from C1, . . . , Ck−1, ∀k = 2, . . . ,M . However, complete separation of all M

classes is achieved under this strategy.

4.1.1.4 Other Generalizations

In the previous sections we assumed that xi ∈ R; however, the exact same arguments apply

to non-scalar robots (xi ∈ Rn, n ≥ 2) under the same dynamics. The only difference is that

we still insist on a constant vk, where the separation condition becomes

‖vk‖ >
(γk
∑k−1

j=1 Nj + γk−1Nk)∆

γk − γk−1
.

This condition follows from the fact that the dynamics are decoupled along all dimensions

and that the magnitude of vk is independent of its direction in Rn.
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We want to be able to remove our assumption about the initial conditions, i.e., that

xi(0) = xj(0), ∀(i, j). These initial condition could be achieved by simply running the

unforced version of the dynamics, which we know will asymptotically drive all robots to a

common location (as long as the network stays connected). However for practical purposes,

it may be too long to wait for all robots to converge to exactly the same location, so what

we will do is see how the argument needs to change when we insist that ‖xi(0)− xj(0)‖ ≤

2δ, ∀(i, j) for a given, small δ > 0.

To show that separation is possible between two classes, C1 and C2, we need to show

that v is a constant, separating signal that completely separates all pairs of robots (i, j), i ∈

C1, j ∈ C2. In fact, we will show that if we assume that ∆ > 4δ, xi ∈ R, and pick a v that

separates the centroids of the two classes by ∆ + 2δ, then

1. While the network is completely connected, the centroids are separating, i.e. ˙̄x2− ˙̄x1 >

0, and robots are moving towards the centroid of their class.

2. Once some of the robots from the two classes start separating, ˙̄x2 − ˙̄x1 > 0 holds and

the closest pair (i, j), i ∈ C1, j ∈ C2 is separating.

Lemma 4.1.4. If the robots are initially co-located in a δ-ball, i.e. |xi(0)−xj(0)| ≤ 2δ, ∀(i, j)

and ∆ > 4δ, then an input signal

u >
(γ1N2 + γ2N − 1)(∆ + 2δ)

γ2 − γ1
,

will ensure that ˙̄x2 − ˙̄x1 > 0 on the interval (x̄2 − x̄1) ∈ [−2δ,∆ + 2δ].

Proof. Suppose x̄k(t) is the centroid of the positions of the robots in class Ck, i.e.

x̄k(t) =
1

Nk

∑
j∈Ck

xj(t),

then, the first step is to find the derivative of the two centroids, ˙̄x1 and ˙̄x2. We can rewrite

Equation (76) for an robot xi ∈ C1 as,

ẋi = γ1

 ∑
j∈N(1)

(xj − xi) +
∑

j∈N(2)

(xj − xi) + u

 ,

= γ1 (N1(x̄1 − xi) +N2(x̄2 − xi) + u) ,
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under the assumption that all robots of C1 and C2 are connected. This assumption is

certainly true while all robots are inside the δ-ball and before the distance between any two

robots from different classes exceeds ∆. Then,

˙̄x1 =
1

N1

∑
j∈C1

ẋj

=
γ1

N1

∑
j∈C1

(N1(x̄1 − xj) +N2(x̄2 − xj) + u)

= γ1 (N2(x̄2 − x̄1) + u)

Following the same procedure, we can compute ˙̄x2,

˙̄x2 = γ2 (N1(x̄1 − x̄2) + u) ,

and in turn we can compute,

˙̄x2 − ˙̄x1 = γ2 (N1(x̄1 − x̄2) + u)− γ1 (N2(x̄2 − x̄1) + u)

= −(γ2N1 + γ1N2)(x̄2 − x̄1) + (γ2 − γ1)u

Without an external input, u = 0, the distance between the centroid decays to zero

asymptotically; however, if we were to apply

u =
(γ2N1 + γ1N2)(∆ + 2δ + ε)

γ2 − γ1
, (89)

where ε > 0, then we ensure that the distance between the centroids is always increasing.

One of the assumptions we made is that all robots of C1 and C2 are connected during

the separation process; however, we know that not all robots of C1 will separate from all

robots of C2 simultaneously. In fact, the dynamics will change as robots start to separate,

but we will show that v will still ensure complete separation of the two classes.

Suppose that an robot, xi ∈ C1, starts to separate from some of the robots in C2, and

therefore, this robot’s dynamics change to

˙̃xi = γ1

 ∑
j∈N(1)

(xj − xi) +
∑

j∈Ñ(2,i)

(xj − xi) + u

 ,

where Ñ(2, i) is the set of Ñ2,i robots from class C2 that are still connected to robot xi from

class C1. As a consequence, the dynamics of the centroid of class C1, now denoted ˜̄x1, are
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also changed to

˙̄̃x1 =
γ1

N1

∑
j∈C1

 ∑
k∈Ñ(2,j)

(xk − xj) + u


≤ γ1 (N2(x̄2 − x̄1) + u) ,

and similarly,

˙̄̃x2 =
γ2

N2

∑
j∈C2

 ∑
k∈Ñ(1,j)

(xk − xj) + u


≥ γ2 (N1(x̄1 − x̄2) + u) .

Therefore,

˙̄̃x2 − ˙̄̃x1 ≥ γ2 (N1(x̄1 − x̄2) + u)− γ1 (N2(x̄2 − x̄1) + u)

= −(γ2N1 + γ1N2)(x̄2 − x̄1) + (γ2 − γ1)u.

If we apply v as defined in Equation (89), then ˙̄̃x2 − ˙̄̃x1 > 0 continues to hold even if some

of the pairs (i, j), i ∈ C1, j ∈ C2, have separated.

Lemma 4.1.5. If the robots are initially co-located in a δ-ball, i.e. |xi(0) − xj(0)| ≤

2δ, ∀(i, j), ∆ > 4δ, and while (x̄2− x̄1) ∈ [−2δ, 2δ], the network is completely connected and

each robot is moving towards the centroid of their class.

Proof. We want to be able to show that while the networks is still completely connected

(which is certainly true while |x̄2 − x̄1| ≤ 2δ, because ∆ > 4δ), robot i ∈ C1 is moving

towards x̄1 and robot j ∈ C2 is moving towards x̄2:

˙̄x1 − ẋi = γ1 (N2(x̄2 − x̄1) + u)

− γ1 (N1(x̄1 − xi) +N2(x̄2 − xi) + u)

= −γ1(N1 +N2)(x̄1 − xi),

and similarly,

˙̄x2 − ẋj = −γ2(N1 +N2)(x̄2 − xj).

These equations show that each robot is moving towards the centroid of their class. The

result is that if we have separated the centroids by 2δ, we can be sure that all robots j ∈ C2

are to the right of all robots i ∈ C1, i.e. xj > xi, ∀(i, j).
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Unfortunately, once some of the robots start to separate, we can no longer guarantee

that robots are moving towards the centroid of their class. However, we can show that the

closest pair (i, j), i ∈ C1, j ∈ C2 continues to separate.

Lemma 4.1.6. Once some of the robots from the two different classes have started to

separate, the closest pair (i, j), i ∈ C1, j ∈ C2 is separating if we continue to apply

u >
(γ1N2 + γ2N − 1)(∆ + 2δ)

γ2 − γ1
,

i.e. ẋj − ẋi > 0.

Proof. Suppose Ñ2,i is the number of robots of C2 that robot i can detect, then ˜̄x2,i is the

centroid of those robots. Similarly, Ñ1,j is the number of robots of C1 that robot j can

detect, and ˜̄x1,j is the centroid of those robots. Recall that we have separated the two

classes in such a way that x̄2 > x̄1, x̄2 > ˜̄x2,i, x̄1 < ˜̄x1,j , and xj > xi. If (i, j), i ∈ C1, j ∈ C2

is the closest pair, then x̄1 < xi and x̄2 > xj . We will use these inequalities to show that

ẋj − ẋi > 0:

ẋj − ẋi = γ2(Ñ1,j(˜̄x1,j − xj) +N2(x̄2 − xj) + u)

− γ1(N1(x̄1 − xi) + Ñ2,i(˜̄x2,i − xi) + u)

= (γ2 − γ1)u+ γ2N2(x̄2 − xj)− γ1N1(x̄1 − xi)

+ γ2Ñ1,j(˜̄x1,j − xj)− γ1Ñ2,i(˜̄x2,i − xi)

> (γ2 − γ1)u+ γ2N2(x̄2 − xj)− γ1N1(x̄1 − xi)

+ γ2N1(x̄1 − xj)− γ1N2(x̄2 − xi)

= (γ2 − γ1)(u+N1x̄1 +N2x̄2)

− γ2(N1 +N2)xj + γ1(N1 +N2)xi

> (γ2 − γ1)(u+N1x̄1 +N2x̄2)

− γ2(N1 +N2)x̄2 + γ1(N1 +N2)x̄1

= (γ2 − γ1)u− (γ2N1 + γ1N2)(x̄2 − x̄1)

= ˙̄x2 − ˙̄x1 > 0
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Since the centroids and the closest pair (i, j), i ∈ C1, j ∈ C2 are separating under v from

Equation (89), we know that the two classes continue to separate even as some of the robots

in each class have already separated. However, we have no guarantee that the centroids are

not separating significantly faster than the closest pair, such that when the centroids are

separated by ∆ + 2δ, the closest pair is separated by distance less than ∆. Therefore, there

may exist a permutation of γ1, γ2, N1, and N2, for which v is not sufficient to separate the

two classes. Despite this possibility, we can make the following conjecture based on these

lemmas and our simulations:

Conjecture 1. If the robots are initially co-located in a δ-ball, i.e. ‖xi(0) − xj(0)‖ ≤

δ, ∀(i, j), then it is possible to completely separate two classes of robots, C1 and C2, by

separating the centroids of the two classes by a distance greater than ∆+2δ. v is a separating

signal if

u >
(γ1N2 + γ2N1)(∆ + 2δ)

γ2 − γ1
, (90)

where δ > 0 and ∆ > 4δ.

4.1.2 Simulations

We want to verify numerically in simulation whether our results hold, and demonstrate the

effect of varying the parameters γk and Nk for each of the M classes. First, let us consider

the two class case, where we are interested in separating C1 from C2. Figure 19 demonstrates

a successful separation using the control signal

u =
(γ2N1 + γ2N2)(∆ + ε)

γ2 − γ1
,

for some ε > 0. The separation distance ∆ is indicated by the black dashed line. The

distance between the two classes logarithmically approaches ∆ until separation occurs, after

which the distance that separates the two classes increases quickly. If it were the case that

v was not sufficient to separate the two classes, we would see that the distance between C1

and C2 in the plots would stay under the black dashed line.

Figure 19a illustrates the effect of varying N1 and N2, while Figure 19b illustrates the

effect of varying γ1 and γ2. In all cases, the distance between C1 and C2 eventually exceeds
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the separation distance ∆ (the black dashed line in the figures).
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Figure 19: Successful separation of C1 and C2 for a variety of parameters.

We can also demonstrate that our choice of vM , . . . , v2 applied to the case when we

want to separates six classes, C1, . . . , C6 is also successful. Again, a failure to separate

a pair of classes (i.e., vk is not sufficient for separation) would have been indicated by

one of the separation distances (lines in the plot) staying under the black dashed line.

Figure 20 illustrates that we can successfully separate the six classes from each other.

In both cases, all classes have the same number of robots, i.e. N1 = . . . = N6 = 10.

Figure 20a specifically considers the case when the inter-class difference in γ increases, i.e.

γ2 − γ1 < γ3 − γ2 < . . . < γ6 − γ5. In this scenario, C6 and C5, . . . , C1 completely separate

first, then C5 and C4, . . . , C1 separate completely, and so on. Figure 20b illustrates the

simple schedule used to separate the classes. In this scenario, v6, v5, and v4 are sufficient

to actually separate all M classes.

Last, we want to demonstrate that if the robots move in R2 and do not start in the

same location, namely they are co-located in some δ-ball, then we can still achieve separation

using the control signal

u =
(γ2N1 + γ2N2)(∆ + 2δ + ε)

γ2 − γ1
,

for some δ, ε > 0.
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Figure 20: Successful separation of C1, . . . , C6 with a simple schedule.

Figure 21 illustrates the case where 100 robots in C1 separate from 75 robots in C2. The

separation distance when any two robots disconnect is ∆ = 0.4, and all robots start from a

location within a δ-ball, where δ = 0.1. The centroids of the two classes are separated by a

distance greater than ∆ + 2δ when the simulation ends. The minimum separation between

two robots of each class is ∆min, and since ∆min > ∆, the two classes are completely

separated. Figure 21a illustrates the case when xi ∈ R, while Figure 21b illustrates the case

when xi ∈ R2. The signal v separates the two classes in both cases.

4.1.3 Feasibility Revisited

Before we conclude our discussion of using a broadcast input signal to separate a swarm

of heterogeneous robots into homogeneous clusters of robots with the same class, let us

revisit this HSI control structure in the context of this separation task. First, we can

demonstrate using a CLF that there exists a broadcast input signal that can separate a

heterogeneous swarm of two difference classes of robots. Once again, we use the initial

conditions xi(t0) = xj(t0), ∀i, j ∈ C1 and xi(t0) = xj(t0), ∀i, j ∈ C2, which corresponds all
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Figure 21: Successful separation of C1 and C2 when robots start in a δ-ball, N1 = 100, N2 =
75, γ1 = 0.2, γ2 = 0.7.

robots of same class starting together. We can simplify the dynamics, as before, to

χ̇1 = −γ1(N2(χ1 − χ2)− v) = fH,1(χ, v)

χ̇2 = γ2(N1(χ1 − χ2) + v) = fH,2(χ, v),

(91)

where χi ∈ R represents the shared position of all robots of class Ci, and χ = [χ1, χ2]T .

A specification set that encodes a separation distance of ∆ between the two classs

of robots is S = {x ∈ R | ‖xi − xj‖ = ∆, ∀i, j, i ∈ C1, j ∈ C2}. Consequently, we pick a

candidate CLF [36]

V (χ) =
1

4

(
‖χ1 − χ2‖2 −∆2

)2
, (92)

which is positive definite everywhere except at the quasi-static equilibrium points, where

‖χ1 − χ2‖ = ∆. Next, we need to show that

V̇ (χ, v) =


∂V
∂χ1

∂V
∂χ2


T fH,1(χ, v)

fH,2(χ, v)

 < 0 (93)

Suppose that in this example the domain isD =
{
χ ∈ R2

∣∣ 0 ≤ ‖χ1 − χ2‖ ≤ ∆, χ1 ≤ χ2

}
,

that all robots of the same class start at the same location [χ1(t0), χ2(t0)]T ∈ D, that the

80



“weights” of the two classes of robots are ordered 0 < γ1 < γ2, and that

V̇ (χ, v) = −(γ1N2 + γ2N1)(χ1 − χ2)2(‖χ1 − χ2‖2 −∆2)

− (γ2 − γ1)(χ1 − χ2)(‖χ1 − χ2‖2 −∆2)v,

(94)

then for every χ ∈ D,

v ≥ γ1N2 + γ2N1

γ2 − γ1
(χ2 − χ1) (95)

will ensure that V̇ (χ, v) ≤ 0, where V̇ (χ, v) = 0 only whenever ‖χ1 − χ2‖ = ∆ or χ1 = χ2.

By LaSalle’s invariance principle, this system will converge to the largest invariant set M

in
{
χ ∈ Ω

∣∣∣ V̇ (χ, v) = 0
}

as t→∞, where Ω is the compact subset{
χ ∈ R2

∣∣∣∣ V (χ) ≤ 1

4
∆4 − ε, ε > 0

}
⊂ D. (96)

The largest invariant set M is{
χ ∈ Ω

∣∣∣ V̇ (χ, v) = 0, ‖χ1 − χ2‖ = ∆, v =
γ1N2 + γ2N1

γ2 − γ1
∆

}
, (97)

because for this particular v ∈ V, χ̇2 − χ̇1 = 0, such that ‖χ1 − χ2‖ = ∆ will always hold

and thus V̇ (χ, v) = 0 and V (χ) = 0. M ⊆ S; therefore, it is feasible for the user to use this

broadcast control HSI structure to separate the two classes of robots by a distance ∆ if the

system starts at χ(t0) in Ω.

Figure 22 illustrates separation of a swarm of ten robots of C1 and five robots of C2 by

a distance ∆ = 0.2. The user is applying a constant, positive broadcast signal

v =
(γ1N2 + γ1N1)

γ2 − γ1
∆,

analogous to using a wind tunnel to move robots (on a rail) with mass inversely proportional

to γi. Figure 22a indicates the starting location of the C1 (blue) robots and C2 (red) robots

by × and their final positions by ◦. Initially, the separation between the two classes of

robots is less than ∆, but eventually, their separation equals ∆. This plot is confirmed by

Figure 22b which shows that the CLF V (χ) is positive, but “energy” dissipates as the desired

separation distance is achieved, while Figure 22c shows that V̇ (χ, v) remains negative during

the interaction. Consequently, it is feasible for the user to use a strong enough broadcast

signal to separate the two classes of robots in the example by a distance of ∆.
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Figure 22: A user is separating a swarm of ten robots of C1 (γ1 = 0.2) and 30 robots of C2

(γ2 = 0.9) by a distance ∆ = 0.2 with a broadcast signal v.

4.1.4 Attention, Effort, and Scalability

Similar to our discussion of broadcast control in the context of rendezvous in Section 2.4.4,

we compute v∗ for this separation problem using optimal control tools. We solve the fol-

lowing optimization problem:
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min
w

J(w) =
1

2

∫ ∞
0

(
κ(d12 −∆)T (d12 −∆) + wTw

)
dt

s.t. ẋ = −(γ1N2 + γ2N1)d12 + (γ2 − γ1)v = Ad12 +Bv

v̇ = w

d12(0) = d12,0, v(0) = 0,

(98)

where d12 denotes the separation between the two classes of robots, and κ > 1 weighs the

tracking error stronger than the cost on attention. The effort cost, vT v, is missing, because

in this particular task, it is crucial to exert enough effort to separate the two classes of

robots.

This is again a continuous-time, infinite horizon linear quadratic regulator-like (LQR-

like) problem, which can be solved in the following manner. First, the first order necessary

conditions (FONC) for optimality are:

H =
1

2

(
(d12 −∆)T (d12 −∆) + wTw

)
+ λT ẋ+ µT v̇

∂H

∂w
= wT + µT = 0⇒ w = −µ

λ̇ = −∂H
∂x

= ATλ− κd12 + κ∆

µ̇ = −∂H
∂v

= −BTλ

(99)

It is important to note here that the co-state dynamics, λ̇, include an extra affine term that

is typically not present in a standard LQR problem. For convenience, let us stack states

and co-states into single variables in the following way:

z =

d12

v

 , ż =

A B

0 0

 z +

0

1

w = Azz +Bzw

η =

λ
µ

 , η̇ =

AT 0

BT 0

 η −
κ 0

0 0

 z +

κ∆

0

 = −ATz η − Czz + Ψ

(100)

We propose that η(t) = S(t)z(t) + P (t) is the solution to the stacked co-state equations.

The affine component, P (t), is to account for the affine component that is tracked in the
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cost. If we start from the proposed solution, then

η = Sz + P

η̇ = Ṡz + Sż + Ṗ

−ATz η − Czz + Ψ = Ṡz + SAzz + SBzw + Ṗ

−ATz Sz −ATz P − Czz + Ψ = Ṡz + SAzz − SBzBT
z Sz − SBzBT

z P + Ṗ

−Ṗ − (ATz − SBzBT
z )P + Ψ =

(
Ṡ + SAz +ATz S − SBzBT

z S + Cz

)
z

(101)

Since this LQR-like problem is computed over an infinite horizon, we can compute the

steady state Ŝ and P̂ , when Ṡ = 0 and Ṗ = 0. Consequently, to satisfy Equation 101, we

must solve

P̂ = (ATz − SBzBT
z )−1Ψ

0 = ŜAz +ATz Ŝ − ŜBzBT
z Ŝ + Cz

(102)

The second equation is the continuous time algebraic Ricatti equation, while P can be

solved for directly. Finally, we are able to compute v̇∗ = w,

w = −µ

= −BT
z (Ŝz + P̂ ).

(103)

Consequently, the optimal user control input signal is

v∗(t) =

∫ t

0
w(τ)dτ, v∗(0) = 0. (104)

Figure 23 was generated by separating a swarm of two classes with the optimal broad-

cast user input v∗(t). The attention-effort cost is illustrated in Figure 23a, while Figure 23b

and 23c illustrate the instantaneous effort and attention. The attention-effort cost increases

steadily, because a constant input signal is required to keep the two classes of robots sepa-

rated. The instantaneous effort ramps up to separate the two classes of robots by a distance

of ∆ = 0.2, which also requires some attention. Once the two classes are separated, the

(instantaneous) attention is zero, while effort is constant, but non-zero, because maintaining

the separation distance is a dynamic equilibrium.

Scalability can be calculated by consecutively adding one more robot to each class. In

this example, the new robots are initially located at the centroid of the other robots in their
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Figure 23: A user’s estimated attention and effort while separating swarm of |C1| = 10, |C2| =
30 robots (solid) and |C| = 11, |C2| = 31 robots (dashed).

class. Figure 24 illustrates the increased attention-effort cost of completing the “same”

task with an extra robot uniformly randomly added to either class. The increase in cost

is mainly attributed to an increase in effort as illustrated by the dashed, red line, while

attention has only marginally increased as illustrated by the dash-dotted, black line . The

scalability metric for this particular task has to be approximated, because the constant non-

zero effort continuously increases the attention-effort cost. Therefore, we will approximate

scalability by examining the attention-effort costs at a point in time when separation has

been achieved, attention is zero, and effort is constant. Once again, we approximate Σ(n)
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by the slope of a linear fit on the attention-effort cost. Consequently, Σ(n) = 5010.4n, which

translates to a 2.2% cost increase over the original cost for every new robot. In comparison,

broadcast control in the rendezvous task in Section 2.4.4 incurred a 1.65% cost increase

over the original cost for every new robot.
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Figure 24: Growth of attention (black dash-dotted), effort (red dashed), and attention-effort
(blue solid) cost for separating a swarm of N1 robots of class C1 and N2 robots of class C2.

4.1.5 Conclusions

We have demonstrated that it is possible to separate a heterogeneous swarm of mobile

robots into homogeneous clusters with a broadcast input signal. This heterogeneous swarm

can be composed of two, three, or an arbitrary number of different classes of robots, which

interact with other robots independent of their class, but react differently to the broadcast

input signal. Since we are controlling the swarm using a single broadcast input signal, this

control structure lends itself to human-swarm interactions. A user can interact with the

entire swarm of robots by pushing a joystick with sufficient force in a direction along which

the separation should be achieved. However, we have also demonstrated that broadcast

control in this separation task scales poorly with effort, while scaling well with attention.
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Consequently, we either need to design a different HSI control structure for this task, or add

scaling to the input controller to compensate for the increased effort required to separate

the swarm of robots.

4.2 Computing Group Sizes for Successful Predator-Prey Interactions

All HSI examples introduced up to this point involved an arbitrary number of robots in

the swarm. Why, for example, are ten robots used to sort a stack of packages, or why are

we separating a swarm of 100 robots of C1 and 75 robots of C2? In general, if we have a

task TH , how many robots are needed for the user to successfully complete this task? In

this section, we answer this question in the context of a pursuit-evasion task (as we have

done in [30]), where a user is required to deploy a team of N robots to capture an evasive

robot. Since nature provides us with numerous pursuit-evasion example in the form of

predator-prey interactions, we have decided to take inspiration from one specific example:

Lions, unlike Cheetahs [39], form a so-called “catcher’s mitt” formation to capture gazelles

and other prey with superior agility. Typically, three to five lionesses are involved in the

hunt, with the dominant female positioned at the center, while the remaining females flank

her in the wing positions [39]. Consequently, our pursuit-evasion task will resemble lions

hunting gazelles.

To be able to predict how many predators are needed, we need models that are simple

enough to analyze, yet expressive enough to allow for a parametrization that captures

different predator strategies. It should already be stressed at at this point, however, that

our aim is not bio-mimicry despite our robot’s resemblance to lions and gazelles as illustrated

in Figure 25. We characterize a prey’s behavior in the presence of predators with a set of

parameters. These parameters allow us to adjust the behavior of the prey, such that the

predators can hunt a variety of strong, weak, brave, or skittish prey. Similarly, we define

parameters that describe the hunting strategy of the predators, such as their speed and

formation as a group during the hunt. These models also allow us to analytically and

algorithmically answer whether a capture strategy for a multi-agent robot team will be

successful against a particular prey. Very few results (for example, [51]) exist that relate
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the number of robots in a swarm or multi-robot team to the success at achieving the task

at hand. This work can thus be thought of as one particular attempt at addressing this

previously neglected question concerning how large a team or swarm of mobile robots needs

to be to achieve a particular task.

Figure 25: Mobile robots are surrogates for the prey (gazelles) and predators (lions).

4.2.1 Geometric Hunting Strategies

Since we are inspired by the predator-prey interactions between lions and gazelles, where

the predators hunt as a team in a strategic geometric configuration (i.e., a formation) to

overcome the evasive abilities of the prey, we focus our attention on “catcher’s mitt”-like

formations of N predators, as illustrated in Figure 26. The dominant predator (to borrow

from the lion terminology) in the team takes the central position on the x-axis, while the

remaining predators are spread symmetrically to either side in the “wing” positions. Each

predator is separated from its nearest team member by a distance ∆, and the predators

can be thought of being uniformly distributed on a circle of radius r centered on the x-axis.

Furthermore, ` is the distance separating the outermost wing predators and the prey along

the x-axis (denoted by a cross in the figure).

Counting from the center predator, the zeroth level is the center predator, the first set

of wing predators is the first level, the next set of wing predators is the second level, and
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Figure 26: A group of N = 5 predators (circles) hunting a single prey (cross).

so on. There are m = (N − 1)/2 levels of wing predators. And, for each predator, we can

compute its x and y position in the formation with respect to the center predator:

∆x,k = r − r cos

(
2k sin−1

(
∆

2r

))
|∆y,k| = r sin

(
2k sin−1

(
∆

2r

))
,

(105)

where k = {0, 1, . . . ,m}, and where a k-th level wing predator is located at (∆x,k,∆y,k)

with respect to the center predator. We can also compute how far a predator at the k-th

level is from the prey along the x-axis, i.e.,

λk(`) = `+ ∆x,m −∆x,k. (106)

Then, the total distance separating the prey and a predator at the k-th level is,

δk(`) =
√
λk(`)2 + ∆2

y,k. (107)

The center predator is the zeroth level, such that λ0(`) = δ0(`) = ` + ∆x,m, since ∆x,0 =

∆y,0 = 0.

Now that we have described the initial geometry of the hunt, we are ready to describe

its dynamics. The predators hunt together along the x-axis in the direction of the prey

with a constant, scalar velocity v (incidentally, also the exogenous user input) and without

deviating from their configuration. If pl(t) ∈ R2 is the position of a particular predator at

time t (where we somewhat facetiously use the subscript l to denote “lion”), then

ṗl(t) =

ẋl(t)
ẏl(t)

 =

v
0

 . (108)
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The dynamics of the prey with respect to a particular predator at the k-th level are encoded

by a continuous, monotonically non-increasing function Γ : R → R, such that it starts off

at some value Γmax and ends up at 0 after a finite interval, i.e.,

Γ(ψ) =


Γmax if ψ ≤ ∆max

0 if ψ ≥ ∆d

, (109)

where ∆max is the distance from a predator when the prey will start evading with maximum

effort, and ∆d is the distance from a predator when the prey can detect the predator, and

where we assume that ∆max < ∆d.

If we denote the contribution to the prey dynamics of a predator at the k-th level as

Γk(`) = Γ(δk(`)) = Γ
(√

λk(`)2 + ∆2
y,k

)
, (110)

then we can write down the full dynamics of the prey for the N predator hunt. If pg(t) =

[xg(t), yg(t)]
T ∈ R2 is the position of the prey at time t (where we use the subscript g to

denote “gazelle”), then

ẋg = Γ0(`) + 2
m∑
k=1

Γk(`)λk(`)√
λk(`)2 + ∆2

y,k

, (111)

and ẏg = 0. The symmetric configuration of wing predators during the hunt ensures that

any component along the y-axis is always equal to zero.

For the purpose of generality we will use Equation (111), but we will ground our results

on a slightly modified version of an actual swarm interaction dynamic–originally proposed

in [44]. Under this model the contribution from a predator located at the k-th level is

Γ
′
k(`) =



β
√

γ
2e λk(`) ≤

√
γ
2

βλk(`)e
− δk(`)2

γ

√
γ
2 < λk(`) <∞

0 λk(`) ≥ ∞

, (112)

such that the full dynamics of the prey for a N predator hunt can be written as

ẋg = Γ
′
0(`) + 2

m∑
k=1

Γ
′
k(`), (113)
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and ẏg = 0, where β, and γ are certain behavioral parameters. In fact, the interaction

dynamics described in [44] defines an additional parameter, which dictates whether an

agent is drawn towards another agent. Some predators, for example the anglerfish Lophius

piscatorius, are able to attract their prey. However, lions and most predators do not hunt in

this manner, and therefore we exclude this phenomenon from the model. Instead we focus

our attention on the two parameters β and γ. These two parameters together characterize

with how much effort the prey attempts to escape from a predator as the distance to

the predator decreases. The maximum effort with which the prey evades a predator is

β
√

γ
2e , where as its maximum effort is captured by Γmax in Equation (109). Moreover, γ

parameterizes how close the predators can approach the prey before it evades with maximum

effort. This distance is captured by ∆max in Equation (109), while ∆d in Equation (109)

captures the distance at which the prey does not detect the predators.

Although all prey are scared of predators and will attempt to escape them, we do not

need to impose that different prey are alike. Therefore, we have two prey parameters that

can vary: β and γ (or Γmax and ∆max). We also consider three additional parameters that

characterize the formation and dynamics of the predators. A group of predators will move

together in a formation parameterized by ∆ and r with a constant velocity v, which gives

us three additional “knobs” by which the hunt dynamics can be characterized, namely v,

∆, and r.

4.2.1.1 One Predator

The first predator-prey scenario is a single predator hunting a single prey. Figure 27 shows

the predator-prey configuration we consider in the scenario. This particular configuration,

ℓ

ẋl = v ẋg = Γ0(ℓ)
x

Figure 27: A single predator (circle) hunting a single prey (cross).
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which places the predator and the prey on the line y = 0, allows us to only consider:

ẋg = Γ0(`) = Γ(`). (114)

Since we are interested in hunting, let us consider that a capture occurs when `, the distance

separating the predator from the prey, is equal to zero. We want to find the velocity of the

predator, v, that guarantees that capture occurs.

Theorem 2. If Γmax is the maximal effort the prey can use to evade the predator, then the

predator is able to the capture the prey if and only if the predator’s velocity is v > Γmax.

This result is not particularly surprising. What it simply says is that the predator’s hunt

velocity v must be greater than the prey’s maximal evasion velocity, which is, for example,

how solitary Cheetahs hunt. However, the proof of this statement will be useful for more

complex situations and, as such, we do include it below:

Proof. Let `∗ be the distance separating the predator and the prey that maximizes the

derivative ˙̀, where

˙̀ = ẋg − ẋl = Γ(`)− v. (115)

Then the predator is able to capture the prey if and only if ˙̀(`∗) < 0. By construction of

Γ(ψ), we know that Γ(`∗) is maximized when `∗ ≤ ∆max. Therefore,

˙̀(`∗) = Γ(`∗)− v < 0, (116)

which means that

Γmax − v < 0 ⇔ Γmax < v, (117)

which means that given `∗, the predator can capture the prey if v > Γmax.

If we consider the predator-prey interaction dynamic defined in Equation (113), we can

apply this theorem to find the velocity v of the predator that is guaranteed to capture a prey

parameterized by β and γ. The configuration shown in Figure 27 allows us to formulate

the prey dynamics as:

ẋg = β`e
− `

2

γ .
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We can detect a capture by checking if ˙̀(`∗) is negative, where ˙̀ is now defined in the

following way:

˙̀ = ẋg − ẋl = β`e
− `

2

γ − v.

We solve for `∗, the value of ` that maximizes ˙̀, by setting the derivative of ˙̀ with respect

to ` to zero and simplifying:

∂ ˙̀

∂`
= βe

− `
2

γ − 2β`2

γ
e
− `

2

γ = 0(
1− 2`2

γ

)
βe
− `

2

γ = 0(
1− 2`2

γ

)
= 0√

γ

2
= `∗

We plug `∗ back into the equation for ˙̀ and set this equation equal to less than zero to solve

for v:

˙̀(`∗) = β

√
γ

2
e
−
√

γ
2

2

γ − v < 0,

i.e.,

β

√
γ

2e
< v. (118)

As such, the predator can capture the prey if and only if v > β
√

γ
2e , when the maximal

effort of the prey, Γmax = β
√

γ
2e , is held on the interval ` ≤

√
γ
2 .

Let us briefly examine a concrete example. Figure 28 is a graph of ˙̀ as a function of

` ∈ [0, 2]. The maximum of ˙̀ occurs at `∗ =
√

γ
2 ≈ 0.274, which agrees with our derivation.

We also show two cases for the predator’s velocity: 0.1 m/s and 0.3 m/s. First, if the

predator’s velocity is 0.1 m/s, then the maximum of ˙̀ is above the solid line, meaning that

˙̀(`∗) > 0 and the predator is not fast enough to capture the prey,

v = 0.1 < 1.5

√
0.15

2e
≈ 0.249.

In the second case, the predator’s velocity is 0.3 m/s, such that ˙̀(`∗) < 0, and the predator

is able to capture the prey, since v = 0.3 > Γmax = 0.249.
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Figure 28: The change in distance between prey and predator, ˙̀, as a function of ` when
β = 1.5, γ = 0.15. The blue dashed-dotted curve corresponds to a predator velocity of
v = 0.1 m/s, while the red dashed curve correspond to a predator velocity of v = 0.3 m/s.

4.2.1.2 Three Predators

The previous section gave us an expression for the velocity required for a single predator

to capture a prey. However, predators are typically not as fast as the prey, so they hunt

cooperatively in groups to increase their chance of success. Let us consider a configuration

with three predators, as illustrated in Figure 29. We want to derive a similar capture

condition on the velocity of the predators as in the previous case; however, in this scenario

` = 0 implies that capture is achieved when the wing predators at the m-th level achieve

“crossover”, i.e. these leading wing predators pass the prey. We first show that it is indeed

sufficient to just consider the crossover condition and moreover note that this condition is

very much in line with the result on cooperative pursuit-evasion games that rely of driving

the evader into the convex hull spanned by the pursuers, as was done in [73].

Theorem 3. If at time tc, the two leading wing predators reach the prey with respect to the
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x-axis, i.e. xwl (tc) = xg(tc), then there exists a strategy which guarantees capture after this

“crossover” event.

Proof. If crossover occurs at time tc, then this event implies that 0 < ẋg(tc) ≤ v. We can

expand ẋg, such that

ẋg = ẋwg + ẋL\wg , (119)

where ẋwg is the contribution to ẋg from the leading wing predators, and ẋ
L\w
g is the con-

tribution from all predators excluding the leading wing predators.

Since ẋwg (tc), the contribution from the leading wing predators, is zero when they are

at the crossover point, we can write ẋg(tc) = ẋ
L\w
g (tc). At time tc all predators except the

leading wing predators stop, such that ẋ
L\w
l (tc) = 0. By continuity, there exists ∆T > 0,

such that

ẋg(t) > 0, ∀t ∈ (tc, tc + ∆T ]. (120)

But on this interval, ẋ
L\w
g (t) < ẋ

L\w
g (tc) = ẋg(tc) and since ẋwl (t) = v, we have ẋ

L\w
g (t) < 0.

In other words, the leading wing predators pass the prey and contribute a push towards the

rest of the predators.

Let us pick t′ ∈ (tc, tc + ∆T ] and let v′ = ẋg(t
′) < v. Since ẋg(t) ≤ ẋg(t

′) ∀t ≥ t′ and

v > v′, there exists a T such that

|xg(T )− xwl (T )| >
v′ywl (tc)

v
, (121)

∆x,1

ℓ
∆

∆y,1
x

r

Figure 29: A group of three predators (circles) hunting a single prey (cross).
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where ywl (tc) is the position of the leading wing predators in the y-direction at time tc. Then,

at time T , a possible capture strategy is to first stop the motion of the leading wing predators

in the x-direction, such that ẋwl (T ) = 0. Next, let these wing predators converge on the

x-axis, such that ywl (t) → 0, t > T . Once they have converged, ywl (t) = 0 and the leading

wing predators can regroup with the rest of the predators, such that |xL\wl (t)−xwl (t)| → 0,

t > T and capture is achieved.

We are now justified in simply using the event that the leading wing predators reach the

crossover point, ` = 0, as a condition for guaranteed capture. Consequently, let us return

to the three predator scenario as depicted in Figure 29. We define the derivative, ˙̀(`), as

˙̀(`) = Γ0(`) + 2
Γ1(`)λ1(`)√
λ1(`)2 + ∆2

y,1

− v′

= Γ(`+ ∆x,1) + 2
Γ
(√

`2 + ∆2
y,1

)
√
`2 + ∆2

y,1

`− v′.

(122)

We want to find a configuration of predators, ∆ and v′ < v, such that we can capture a

single prey with slower predators.

Theorem 4. There exists ∆y > 0, such that captured is guaranteed when v′ < v, if and

only if ∆x > ∆max.

Proof. For capture to be possible with three predators, we need to satisfy:

Γ(`∗ + ∆x) + 2
Γ
(√

(`∗)2 + ∆2
y

)
√

(`∗)2 + ∆2
y

`∗ < v′, (123)

where `∗ maximizes Equation (122), ∆x = ∆x,1, and ∆y = ∆y,1. We also want to satisfy

that v′ < v, therefore:

Γ(`∗ + ∆x) + 2
Γ
(√

(`∗)2 + ∆2
y

)
√

(`∗)2 + ∆2
y

`∗ < Γmax. (124)

The contribution from the center predator has to satisfy

Γ(`+ ∆x) < Γmax,
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otherwise it is impossible to satisfy Equation (124). Its contribution is less than Γmax for

all ` ≥ 0 if and only if ∆x > ∆max by construction of Γ(ψ).

Suppose ∆x > ∆max, then we can rewrite and rearrange Equation (124) as,

Γmax(1− ε) + 2
Γ
(√

(`∗)2 + ∆2
y

)
√

(`∗)2 + ∆2
y

`∗ < Γmax

Γ
(√

(`∗)2 + ∆2
y

)
√

(`∗)2 + ∆2
y

`∗ <
ε

2
Γmax,

(125)

where ε > 0 and ε ∈ (0, 1]. We can apply one more bound to Equation (125),

Γ
(√

(`∗)2 + ∆2
y

)
√

(`∗)2 + ∆2
y

ˆ̀≤ Γmax√
(`∗)2 + ∆2

y

`∗ <
ε

2
Γmax

`∗√
(`∗)2 + ∆2

y

<
ε

2

(126)

We can satisfy Equation (126) by picking ∆y sufficiently large, such that the inequality

holds independent of `∗.

Corollary 5. Given that ∆y > 0 and ∆x > ∆max, then ∆ > ∆max is a lower bound on ∆

that must hold for capture to be possible when v′ < Γmax < v and ∆y is sufficiently large.

Returning to the predator-prey dynamics defined in Equation (113), if ∆x >
√

γ
2 , then

three predators are able to cooperatively capture a prey at a velocity v′ that is smaller than

β
√

γ
2 , i.e the velocity v that is required by a single predator to capture the same prey. The

expression for ˙̀ with the addition of two wing predators to the single predator is,

˙̀ = β(`+ ∆x)e
− (`+∆x)2

γ + 2β`e
−

(`2+∆2
y)

γ − v′ (127)

or

˙̀ = Λc + Λw − v′,

where,

Λc = β(`+ ∆x)e
− (`+∆x)2

γ

is the contribution from the center predator, and

Λw = 2β`e
−

(`2+∆2
y)

γ
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is the contribution from the wing predators.

First, the contribution from the center predator, Λc, attains its maximum in the region

` ≥ 0 when ` = 0, i.e. the maximum push from the center predator occurs when the wing

predators achieve crossover.

Λcmax = Λc (` = 0) = β∆xe
−∆2

x
γ .

Second, the contribution from the wing predators, Λw is maximized when ` =
√

γ
2 .

Λwmax = Λw
(
` =

√
γ

2

)
= 2β

√
γ

2e
e
−

∆2
y
γ

As in the case of the single predator, we again want ˙̀ < 0, such that Λc + Λw < v′, and

since Λcmax + Λwmax > Λc + Λw and v′ < v:

Λcmax + Λwmax < v′ < v

If ∆x >
√

γ
2 , then using this inequality and v >

√
γ
2e , we can show the following:

β∆xe
−∆2

x
γ + 2β

√
γ

2e
e
−

∆2
y
γ < v

β∆xe
−∆2

x
γ + 2e

−
∆2
y
γ v < v

(1− ε)v + 2e
−

∆2
y
γ v < v

2e
−∆2

y
γ v < εv

e
−∆2

y
γ <

ε

2

There exists a ∆y sufficiently large for which this inequality will hold, since ε > 0 and

ε ∈ (0, 1]. As a consequence, there exists ∆y large enough, such that v > v′ holds.

Let us inspect ˙̀ from Equation (127) in Figure 30 and check whether we can say some-

thing equally useful as in the single predator case. We choose the parameters β = 1.5,

γ = 0.15, v = 0.225, ∆ = 0.75, and φ = 0.75/(2 sin(π/8)) for which the two conditions hold.

The dashed line is the component of ˙̀ that is contributed by the center predator, while

the dashed-dotted line is the contribution from the two wing predators. The solid line is

the total contribution to ˙̀ from all predators. A velocity of 0.225m/s is not sufficient for a
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single predator to capture the prey (i.e., ˙̀(`) > 0 and recall that the contribution from the

center predator is offset by ∆x); however, it is sufficient for three predators to cooperatively

capture this particular prey. The dashed-dotted line has a negative maximum; however,

it is unclear whether there exists a capture strategy for two predators passing the prey to

either side that implies capture; therefore, we will consider only the cases where we have a

center predator.

−1 −0.5 0 0.5 1 1.5 2
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

ℓ

ℓ̇
(ℓ
)
=
Λ
c
+
Λ
w
−

v

Figure 30: A predator-prey hunt is parameterized by β = 1.5, γ = 0.15, v = 0.225, ∆ = 0.75,
r = 0.75/(2 sin(π/8)). The dashed and dashed-dotted lines are the components contributed
to ˙̀(`) by the center and wing predators minus v respectively. The solid line is ˙̀(`).

4.2.1.3 N Predators

Let us return to the configuration with N predators and a single prey, as illustrated in

Figure 26, since we are originally interested in the question of how many predators it takes

to capture a particular prey. We want to show that a group of N predators can capture a

prey at a velocity v′ that is less than the velocity v required for a single predator to capture

the same prey.
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Theorem 5. There exists a ∆y = min{∆y,1, . . . ,∆y,m}, such that v′ < v and capture is

guaranteed, if and only if ∆x,m > ∆max.

Proof. For capture to be possible with N predators, we need to satisfy

Γ0(`∗) + 2
m∑
k=1

Γk(`
∗)λk(`

∗)√
λk(`∗)2 + ∆2

y,k

< v′ (128)

where `∗ maximizes ˙̀(`). We also want to satisfy that v′ < v, therefore:

Γ0(`∗) + 2
m∑
k=1

Γk(`
∗)λk(`

∗)√
λk(`∗)2 + ∆2

y,k

< Γmax (129)

The contribution from the center predator has to satisfy Γ0 < Γmax, otherwise it is impos-

sible to satisfy Equation (129). Its contribution is less than Γmax for all ` ≥ 0 if and only if

(r + ∆x,m) > ∆max by construction of Γ(ψ).

Γmax(1− ε) + 2

m∑
k=1

Γk(`
∗)λk(`

∗)√
λk(`∗)2 + ∆2

y,k

< Γmax

m∑
k=1

Γk(`
∗)λk(`

∗)√
λk(`∗)2 + ∆2

y,k

<
ε

2
Γmax

m∑
k=1

Γmaxλk(`
∗)√

λk(`∗)2 + ∆2
y,k

<
ε

2
Γmax

m∑
k=1

λk(`
∗)√

λk(`∗)2 + ∆2
y,k

<
ε

2

m∑
k=1

λk(`
∗)√

λk(`∗)2 + ∆2
y

<
ε

2

(130)

where ∆y = min{∆y,1, . . . ,∆y,m} and ε ∈ (0, 1].

We would also like to show that if there is a configuration ofN predators that can capture

a prey with a velocity of v′, then we can also capture a prey with some configuration of

N + 2 predators at a slower velocity v′′ < v′.

Corollary 6. There exists a ∆′y = min{∆′y,1, . . . ,∆′y,m}, such that v′′ < v′ if and only if

∆′x,m > ∆max.
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Proof. We can pick a ∆′y = min{∆′y,1, . . . ,∆′y,m} sufficiently large, such that

m+1∑
k=1

λk(`
′∗)√

λk(`
′∗)2 + ∆′2y

<
m∑
k=1

λk(`
∗)√

λk(`∗)2 + ∆2
y

(131)

where `∗ maximizes ˙̀(`) for the N predator hunt and `
′∗ maximizes ˙̀(`) for the N + 2

predator hunt. Satisfying this inequality implies that N + 2 predators can capture the prey

at a velocity v′′ < v′.

4.2.2 Algorithm

We proved in the previous section that there exists ∆y that guarantees that a group of

predators can capture a prey under certain conditions (characterized by a set of parameters).

For the purposes of the proofs, we have been very conservative with the bounds to show that

∆y can be made sufficiently large to satisfy the inequalities and thus guarantee capture.

Practically speaking, ∆y can be reasonable (and not necessarily arbitrarily large) depending

on the predator and prey parameters selected.

Suppose a user is required to deploy the minimum number of robotic “predators” needed

to capture a moving target parameterized by Γmax and ∆max. The predators are parame-

terized by v, ∆, r, and T . One way for the user to determine the minimum number of such

predators needed to capture this prey can be computed using the algorithm in Table 6.

Table 6: An algorithm for computing the minimum number of predators to capture a prey:
Hunting(Γmax,∆max, v,Nmax,∆, r, T )

Input: Prey parameters Γmax and ∆max; predator parameters v, ∆, r, and T
Output: The minimum N (if it exists) for the given parameters

for all m = (N0 − 1)/2 to (Nmax − 1)/2 do
if (r −∆x,m) > ∆max then

[t, `(t)]← ODE45(@dynamics, [0, T ], `0)
if ∃t, `(t) < 0 then
Nmin ← 2m+ 1
return

end if
end if

end for

T is a new parameter that captures how long the predators will attempt to hunt before

running out of energy. Up until now we have assumed T = ∞, but we need T to be
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finite for the algorithm to terminate. Nmax is odd and represents the maximum number of

predators that can be recruited for the hunt. Since T and Nmax are finite, this algorithm

may terminate with no successful strategy even if one exists if T or Nmax were larger. This

limitation is reasonable when these strategies are deployed on robots, because we have a

finite amount of time before battery power is expended, or we can only deploy a finite

number of robots in the hunt.

4.2.3 Experiment

We validate that is possible to generate a cooperative strategy with the proposed parame-

terized model that achieves capture by performing an experiment involving robotic “lions”

hunting a robotic “gazelle”. A differential drive mobile robot platform is used as a robotic

surrogate for real predators and prey. These robotic gazelle and lions are provided with po-

sitional data from a motion capture system, which allows them to compute the inter-agent

distances needed in the dynamics. A low-level controller converts the desired predator and

prey motions into the appropriate differential drive velocities needed to actuate the mobile

robots.

The experiment consists of two hunting scenarios. The prey and predator parameters,

β = 1.5, γ = 0.15, and v = 0.225m/s are the same for both scenarios, meaning that the

same prey and predators participate in both experiments. These parameters were scaled

from simulated examples to appropriate values for the hardware environment. In the first

scenario, shown in Figure 31, the user deploys a single predator that is unable to capture

the prey. We can verify that

v = 0.225 < 0.25

√
0.15

2e
≈ 0.25

and, therefore, a single robotic lion is not fast enough to capture this particular robotic

gazelle.

In the second scenario, shown in Figure 32, the user deploys two more of the same

predators, which are able to capture the prey together given the same parameters for β, γ,
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Figure 31: A single robotic “lion” is unable to capture the “gazelle”.

and v, as well as, ∆ = 0.75m and r = 0.75/(2 sin(π/8)). The condition,

∆ = 0.75 > ∆x = 0.531 >

√
0.15

2
= 0.274,

is satisfied. Figure 33 illustrates the positions of the predators and prey during the hunt.

A color gradient is used to denote the progression of time starting with a darker color and

ending with a lighter color.

Figure 32: Three robotic “lions” are able to cooperatively capture the “gazelle”.

The prey is not agile enough to escape from the trio of predators; however, it is agile

enough to escape a single predator in the first scenario. Such scenarios are often observed

in nature when predators (such as lions) sneak up on their prey and the prey is unable

to detect the predators early enough and escape. The strategy for capture illustrated in

Figures 32 and 33 is for the wing predators to converge (without collision) in front of the

prey once they have achieved crossover and allow the center predator to capture the prey.

4.2.4 Conclusion

The experiment validates that we can qualitatively recover hunting strategies from nature

and deploy these strategies on mobile multi-agent robot teams. Therefore, we have a valid
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Figure 33: Recorded positions of a robotic gazelle and three robotic lions during the second
scenario.

set of parameters that we can use to characterize the dynamics of the predator-prey interac-

tions and decide whether a particular capture strategy will be successful. This abstraction

can be naturally extended by incorporating additional, more expressive biologically-inspired

parameters, such as a maximum evasion velocity for the prey or variations among predators

in the group, which correspond to actuator limits, wheel slip, and battery levels on the

robotic platforms. More importantly, we have set the ground work for asking and answer-

ing the question, how many robots are needed to successfully complete a task? This is a

fundamental question to not only ask in the context of HSIs as we have done here, but for

multi-robot applications in general.

4.3 Interactions with a Deformable Medium-based Input Controller

We have shown in the Chapter 3 that single-leader networks are often not an effective way to

form geometric shapes with a swarm of mobile robots. However, we still want to give a user

a single input controller that is amenable to controlling all robots collectively as we have

done in Section 4.1. We previously used a traditional joystick to use the leader robot to push
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and pull the other robots into a formation. Another approach to moving the robots into

the correct position is to stretch and bend the swarm of robots into the desired geometric

shape. A traditional joystick does not afford these kind of actions, but a deformable medium

affords stretching and bending. Therefore, if we can map these affordances to decentralized

controllers that achieve these actions with a swarm of mobile robots, then a user can form

shapes with the robots by simply molding instrumented clay. We devised one particular

implementation of such a deformable medium controller for swarms of mobile robots in [34].

This input controller allows a user to form several geometric shapes with swarms of six

and fifteen mobile robots. The framework that implements this human-swarm interaction

consists of an image recognition algorithm for classifying the shape of a piece of clay coupled

with a library of distributed control laws that globally achieve the specified shape with the

robots.

The contribution of this HSI abstraction is not in the application of computer vision for

recognizing clay shapes or in the design of decentralized controllers for achieving a geometric

formation, but rather in the use of a deformable medium as a joystick to manipulate the

swarm of mobile robots. Molding clay is an interaction that is likely more amenable to

forming geometric shapes than pushing and pulling on a string. Bending and stretching the

swarm of robots collectively consequently seems to be easier than trying to move individual

robots into particular positions by pushing and pulling on robots through a single leader

robot. This interaction encapsulates the user from the difficult task of moving the robots

into position, and it establishes a tractable one-to-one mapping between the shape of the

clay and the formation of the mobile robot swarm.

4.3.1 Flowchart

The objective of our HSI abstraction is to provide the user with an input controller for

guiding a swarm of mobile robots into a particular formation by molding clay. Rather than

instrumenting the clay itself, this abstraction for interacting with the swarm is based on a

combination of computer vision algorithms for monitoring the clay interface, and distributed

controllers for forming the clay shape with the robots. This process can be divided into
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two phases–an image recognition phase and a swarm control phase–illustrated in Figure

34. Whenever the user presents a new shape (part of the shape library) by modifying the

clay controller, the image recognition algorithm analyzes the observed image and selects

the corresponding control law (part of the control law library) to be deployed on the robots

n the swarm. Consequently, the swarm of mobile robots converges to the shape formed by

the user with the clay.

...

Shape
Library
(SL)

Image

ξij,1

ξij,2

ξij,n

Control
Law

Library
(CLL)

...

Clay Robots

Figure 34: The first three parts of the framework are included in the image recognition
phase, while the last two parts are included in the swarm control phase.

Although the main contribution of this paper is the clay-based interaction model for

supporting a number of novel affordances for human-swarm interactions, this model only

becomes meaningful in the context of actual algorithms. The image recognition phase

(described in Section 4.3.2), consists of a segmentation-inspired algorithm that classifies

each observed clay shape in the image to a shape class in the precomputed Shapes Library

(SL). The swarm control phase (described in Section 4.3.3) maps the output from the image

recognition process onto executable control laws. Consequently, we will develop scalable,

distributed, and decentralized control laws that guarantee that the swarm converges to

the specified shape. This set of control laws forms a precomputed Control Laws Library

(CLL). The SL and CLL are created offline and between their elements there is a one-to-

one correspondence, meaning that for each shape in the SL there exists a control law in the

CLL.
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4.3.2 Image Recognition Phase

In this section we describe the image recognition algorithm needed to recognize the shape

formed by the user with the clay. The algorithm is divided into two main parts–the offline

part described in Sections 4.3.2.1 and 4.3.2.2 and the online part described in Section 4.3.2.3.

The objective of the offline part is to extract the features of the boundary of a shape for

each class and store these features in the SL. The objective of the online part is to recognize

the shape in an image of the clay based on the features stored in the SL.

4.3.2.1 Shape Alignment

For each of the m classes of shapes in the SL, we want to extract the features of the

boundary of a shape (which defines that class of shapes) from a sample of images called the

training set. Before we are able to extract these features, we need to apply an alignment

algorithm. This algorithm is required to remove variations in position, orientation, and scale

of the shape (i.e., a shape’s pose) in the different images of the training set before feature

extraction. The provided raw training set consists of binary (i.e., monochrome) images

of a shape from a particular class in different poses. First, coarse alignment is performed

by hand, and then the variational approach proposed in [80] is applied to achieve a finer

alignment.

4.3.2.2 Parameterizing the Shape Boundaries

The features of the boundary of a shape from the k-th class can be defined by the parame-

terized model,

Φk[wk] = Φ̄k +

qk∑
i=1

wki Φk
i ,

where Φk is a level set function parameterized by wk = {wk1 , wk2 , . . . , wkqk}, which corre-

sponds to the weights of qk eigenshapes extracted through an eigenvalue decomposition of

n signed distance functions and Φ̄k is the mean level set of the same n signed distance

functions–described in detail in [69, 80]. Specifically, the zero level set of Φk[wk] describes

the boundaries of the shape associated with the k-th shape class. Those boundaries are di-

rectly linked to the variability in the boundary of the shape captured by the qk eigenshapes,
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meaning that by varying wk it will be possible to try to match a clay shape formed by the

user.

Returning to the U-shape class, we applied the level set methods described in [69, 80]

to find ΦU-shape illustrated in Figure 35b. Figure 35a is its zero level set. We store ΦU-shape

in the SL and can now use it in the online part of the image recognition framework as way

to recognize if the shape of a molded piece of clay belongs to the class of U-shapes.

(a) Zero level-set. (b) 3D visualization.

Figure 35: The zero level-set of the shape is stored in the Shape Library (SL).

4.3.2.3 Region-based Model For Segmentation and Recognition

The objective of the online part is to segment an image of molded clay and recognize its

shape using all parameterized models, Φ[w], stored in the SL. We use the Binary Mean

Model (BMM) proposed by Yezzi et al. in [84] to compute the parameters of all Φk[wk] and

then select the one that best segments the image. This is achieved by minimizing a cost

function based on the squared difference of the ratios of the total pixel intensity to area

between the inner and outer regions. The inner and outer regions are determined by the

zero level set of a Φk[wk] applied to the image. This is illustrated for the U-shape class in

Figure 36.

The algorithm described above fits in our process since our objective is to recognize

the shape class of a shape molded by the user with the clay. Since different users likely

do not share the same manual skills when deforming the clay, all clay shapes will likely
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inner region

outer region

zero level
set of

ΦU−shape[w]

Figure 36: A binary image of the clay with the zero level set of the current ΦU-shape su-
perimposed to demonstrate the inner and outer regions used to compute the cost in the
BMM.

be nonregular and nonuniform. Moreover, the segmentation has no assumptions on what

shape class of the SL (i.e., which Φk[wk]) should be used to segment the observed shape;

therefore, our algorithm segments each newly presented shape using each one of the models

available in the SL in parallel.

Within each shape class k, the segmentation process needs time to converge to its final

Φk[wk]. Since our goal is to perform online shape recognition, we terminate the computation

after a few updates of the weight parameters wk for k = 1, 2, . . . , m. Subsequently, we

evaluate the BMM cost functional that produced the last Φk[wk], for k = 1, . . . ,m. The

smallest value across the cost functionals will be selected and, thus, determine to which

shape class the shape belongs.

For example, suppose that the user molds a U-like shape and that the precomputed SL

consists of U-shape and Line-shape classes. The developed algorithm will try to segment

the observed U-like shape using both classes. Since the models in the SL capture the char-

acteristics of a particular class of shapes, when the segmentation starts using ΦU−shape,

it will result in greater decrease in the BMM cost functional than using ΦLine−shape for

the segmentation. The proposed algorithm handles pose differences in the observed im-

ages by matching the latter with the corresponding parameterized shape models after the

recognition phase.
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4.3.3 Swarm Control Phase

The image recognition phase allows us to match the shape of the deformable medium to

a shape in the Shape Library. In this section, we construct the local, decentralized, and

distributed control laws that ensure that the robots move into a formation that matches

the selected shape. We assume that robots in the swarm do not share a global reference

system, do not have a unique ID, and act asynchronously.

4.3.3.1 Robot and Swarm Dynamics

A swarm of N mobile robots is organized over a static, connected ∆-disk graph, the commu-

nication graph, Gcomm. We use standard, energy-based functions [69], which allow robots to

achieve distance-based formations, similar to the formation control introduced in Chapter

3. First, the single integrator dynamics in R2 of an individual robot is

ṗi(t) = ui(t), i = 1, 2, , . . . , N (132)

where pi = [xi, yi]
T is the position of robot i and ui = [uix, uiy]

T is its input. For each edge

j incident to robot i in Gcomm, we define a nonnegative potential function, ξij(pi(t), pj)(t),

such that the following properties are true:

• ξij is convex with a unique minimum,

• ξij is monotonically increasing near dij = ∆.

The edge-tension energy function can be defined as

ξ(p(t)) =
1

2

N∑
i=1

N∑
j=1

ξij(pi(t), pj(t)) (133)

which is the summation of the local potential functions,

ξij(pi(t), pj(t)) =


1
2{eij(dij(t), θij(t))}

2 (vi, vj) ∈ Esens

0 (vi, vj) 6∈ Esens

where eij : R+ → R is a strictly increasing function, dij is the distance between robots

i and j, and θij is the orientation between robots i and j. Let ∆ij represent the desired

distance between robots i and j and Θij the desired orientation between robots i and j, then
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eij(∆ij ,Θij) = 0. Each robot minimizes the edge-tension energy in Equation 133 through

gradient descent, i.e., each robot’s control input is

ui = −
∑

j∈Ns(i)

∂ξij(pi(t), pj(t))
T

∂pi
, i = 1, 2, , . . . , N (134)

where Ns(i) = {j | (i, j) ∈ Esens} ⊆ V r {i} is the neighborhood set of robot i.

A more convenient (for analysis) dynamical system has p̂ as its state, where p̂ =

(DKN ⊗ I) p is a stacked vector of all relative positions between robots, DKN is the oriented

incidence matrix of the complete communication graph with N vertices, KN represents an

arbitrary orientation of a complete graph, ⊗ denotes the Kronecker matrix product, I is the

identity matrix of appropriate dimension, and p is a stacked vector of all robot positions.

Consequently, the system dynamics can be written as

˙̂p = (DKN ⊗ I2)u, (135)

where u is the stack vector of all inputs defined in Equation 134. Since Gcomm remains

connected for all time, the communication links are fixed and time invariant.

4.3.3.2 Parameterized Edge-Tension Energy Functions

In this section, we demonstrate how different parameterized edge-tension energy functions

can be used to achieve deformations in the swarm’s formation. If the robots are initially

clustered (but not coincident), then we can prove that it is possible to from the shapes in the

Shape Library (SL) through a combination of these parameterized functions. Consequently,

we construct the Control Laws Library (CCL) by creating control laws for each shape in

the SL.

Stretching One example of eij that allows the swarm formation to be stretched in direc-

tions parallel and perpendicular to some desired orientation is

estij(dij , θij) = d2
ij −

(
cos(θij − θr)δ‖ + sin(θij − θr)δ⊥

)2
, (136)

where the parameters δ‖ and δ⊥ represent the stretching factors with respect to the reference

orientation θr. If δ‖ = δ⊥, then the swarm formation is stretched uniformly into a circular

shape, while δ‖ 6= δ⊥ stretches the swarm into an ellipsoid.
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Theorem 4.3.1. Consider a system of N mobile robots with single integrators, each con-

trolled by the input defined in Equation 134, with a local potential function as defined in

Equation 136. Then the swarm of robots approaches a formation that minimizes all robots’

energy potentials.

Proof. Consider the function ξ(p(t)) defined in Equation 133 that is differentiable and con-

tinuous everywhere3. Since the communication graph is connected, its diameter cannot be

larger than (N − 1). Consequently, the largest physical distance between any two robots is

smaller than (N − 1)∆comm, which allows us to bound the sum of the interrobot distances

such that ∑
(i, j)∈V×V

dij ≤
N(N − 1)2Rcomm

2
. (137)

Consequently, all robot trajectories, i.e. p̂(t), evolve in a closed and bounded set. Similarly,

the level sets of ξ are compact sets. Since any path connecting two robots i and j on the

communication graph has a length of at most (N − 1), if we let α > 0, then from the

properties of ξ it is true that each dij ≤ ξ−1
ij (α(N − 1)) is bounded. Consequently, the set

Ω =

{
p̂

∣∣∣∣ ‖p̂‖ ≤ N(N − 1)2∆comm

2

}
(138)

is compact.

The derivative of the edge-tensions energy function, ξ, is negative semidefinite:

ξ̇ =
1

2

N∑
i=1

ξ̇i

=
1

2
2

N∑
i=1

ṗTi
∑

j∈Ns(i)

∂ijξij

=
N∑
i=1

(∂riξi)
T ṗi

= −
N∑
i=1

(∂riξi)
T (∂riξi) ≤ 0, ∀i.

(139)

This derivative is zero whenever∑
j∈Ns(i)

est,ij(dij , θij) (pi − pj) = 0, ∀i = 1, . . . , N, (140)

3Due to discrete variations in the neighboring sets, some discontinuities could arise in the (local) control
laws.
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which holds if either pi = pj or Equation 136 is equal to zero for each pair (i, j). Con-

sequently, the set γ =
{
pi

∣∣∣ ∑N
i=1 ‖∂piξi‖2 = 0

}
⊂ Ω is invariant, and we can now prove

convergence by applying LaSalle’s invariance principle. By this principle, if the initial

conditions are in Ω, then the solutions of the system converge to the largest invariant

subset
{
pi
∣∣ [xi, yi]

T ∈ span {γ}
}
⊆ γ. Consequently, ḋij = 0 and the system dynamics

are ˙̂p = −(BKN ⊗ I2)[. . . ∂pijξij . . .]
>, such that [ẋi, ẏi]

T belongs to the range of the ori-

ented incidence matrix D of Gcomm. For a connected, complete communication graph,

range {DKN } = span {γ}⊥; therefore, [xi, yi]
T ∈ span {γ} implies [ẋi, ẏi]

T ∈ span {γ}. This

implication holds if and only if [ẋi, ẏi]
T ∈ span {γ} ∩ span {γ}⊥ ≡ {0}. Consequently, the

edge-tension energy function in Equation 133 is zero at steady state, which implies that

all ξij are locally minimized. If ξij is (locally) convex within the communication range,

then the extremum is unique and the robots are stabilized to their desired positions and

orientations.

It is important to note that the existence and uniqueness of the solutions of Equation 135

is provided by the boundedness of Equation 134. If one of the two assumptions (connected-

ness of Gcomm and initial positions not all coincident, but clustered closely), are violated,

then it is possible for dij /∈ Ω and, consequently, stability is not guaranteed.

Bending A number of different curved formations, such as U-shapes, S-shapes, and L-

shapes, are possible by applying a slightly different eij . For example,

ebendij = ‖rij‖2 −
(
cos(θij − θr − λ)δ‖ + sin(θij − θr − λ)δ⊥

)2
, (141)

where λ = ±f(‖di,0‖) kπ . k > 0 is a constant, and f : R → {1, 2, . . . , N} is a function

of ‖di,0‖, which is the distance of robot i from its initial position. If 0 ≤ ‖di,0‖ < β1,

then f(‖di,0‖) = 1, if β1 ≤ ‖di,0‖ < β2, then f(‖di,0) = 2, and so on. The β parameters

simply split up some bounded subset of R+ ∪ {0}. A proof of convergence follows the

same arguments as above and, consequently, can be safely omitted here and for subsequent

edge-tension energy functions.

113



Splitting Our deformable medium also support splitting, which we can support through

another edge-tension energy function. Suppose there exists a sensing graph, Gsens. The

maximum communication and sensing ranges are ordered, such that ∆comm � ∆sens > 0.

This ordering implies that Gsens is dynamic, while Gcomm is static and remains connected

at all times. A splitting maneuver implies the swarm separates, which means that Gsens is

no longer connected. Nevertheless, convergence is still possible, so long as, Gcomm remains

connected. A local edge-tension energy function that can achieve splitting is, for example,

ξsplitij =

 ±
1
2p

2
i k sign{cos(θr − π

2 ) sin(θr − π
2 )}, ‖di,loc‖ ≤ β1

ξ0
ij , otherwise,

where ξ0
ij is a standard edge-tension energy function that simply maintains some specific

interrobot distance, and k > 0 is a design parameter. The swarm splits in the direction

perpendicular to θr.

Merging Our deformable medium can be merged back together after a split; therefore,

we would like do the same with the swarm. Merging of the swarm can be achieved by forcing

all robots to locally agree on their (local) initial positions with an egocentric edge-tension

energy, for example,

ξmergei =
1

2
‖di,0‖2,

which is minimized once the robots have returned to their initial conditions, i.e., the initial

close clustering of the swarm.

4.3.4 Numerical Simulations and Robot Experiments

We created a number of numerical simulations to demonstrate the efficacy of the control

laws. Four different formations are illustrated in Figure 37. These simulations initialized

all robots to be clustered uniformly around the origin. The control laws were augmented

with a collision avoidance controller to ensure that both simulations and real experiments

would avoid collision between robots, while still converging to the target formation. The

simulations in Figure 37 included N = 100 robots in a 10× 10 area with a communication
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range of ∆comm = 6. The parameters to the bending and stretching local edge-tension

energy functions were δ‖ = 8 and δ⊥ = 0.5.
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Figure 37: Several different swarm formations can be achieved with the different local,
edge-tension energy functions.

In addition to the numerical simulations, we create experiments with actual mobile

robots to demonstrate the efficacy of the entire framework. We used six Khepera III mobile

robots, as shown in Figure 38a, for our swarm of robots. An overhead camera, as shown in

Figure 38b, was used to capture an image of the shape of the deformable medium. Once

a user has formed new shape, the image recognition algorithm computes the appropriate

match in the SL and sends the corresponding control law from the CLL to the robots.

This process is completed in approximately three seconds on a modern PC (Intel Core 2

Duo @ 2GHz, 4GB 1066MHz RAM). In Figure 39a, a user has formed a U-shape, which

as been overlaid on top of the final configuration of the swarm. The trajectories of the

robots (captured using a motion capture system) from their initial positions marked by ×

to their final position are illustrated in Figure 39b. The parameters in this experiment for
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(a) Khepera III. (b) Experimental set up.

Figure 38: The experiments were performed with Khepera III mobile robots and a standard
webcam attached to a PC.

the stretching and bending local edge-tension energy functions were δ‖ = 0.9, δ⊥ = 0.13,

and ∆comm = 1. The robots converge to the U-shape provided by the user in 20-30 seconds.

Larger swarm sizes typically require more time to converge.

(a) U-shape is superimposed on the swarm. (b) Trajectories of the swarm.

Figure 39: The swarm of mobile robots form a U-shape similar to the U-shape formed by
the user with the clay.

It is important to note that we were are not actually reproducing the exact shape of the

deformable medium. In fact, the shape molded by the user is matched to a template in the

SL, which is then approximated by a parameterized control law. The templates in the SL

and the matching control laws in the CLL are computed offline, before the user interacts with

the swarm. Consequently, the swarm converges, for example, to a U-like shape determined

by the parameterization. Figure 40 illustrates several different U-like shapes that can be

achieved by the swarm depending on different parameterizations. Consequently, if it is

desirable to better approximate a U-like shape molded by the user, then more templates
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and matching parameterized control laws needs to be added to the shape and control law

libraries.

Figure 40: The swarm of robots can form different U-like shapes depending on the selection
of parameters.

4.3.5 Conclusions

We have demonstrated that a framework composed of image recognition algorithms and

decentralized control laws can be used to provide users with a deformable medium, such

as clay, to form geometric shapes with a swarm of mobile robots. The strength of this

framework is that a deformable medium, in contrast to joysticks, afford the actions required

to form different geometric shapes. For example, a user can bend and stretch a piece of clay

in the same way that swarm would bend and stretch into a geometric shape. Consequently,

we have demonstrated that by answering the question, What type of input controllers affords

guiding robotic swarms into specific shapes?, we have designed and developed a better HSI

abstraction.
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CHAPTER V

CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Conclusions

In this dissertation, we have developed a framework for analyzing, characterizing, and

designing human-swarm interaction (HSI) abstractions that are amenable to guiding swarms

of mobile robots in geometric tasks. Each technical contribution is a step towards a better

understanding of HSI abstractions from a control and graph theory perspective. The main

technical contributions of this dissertation are:

• Control structures: We provided a formal definition of the control structures underly-

ing HSI abstractions. Consequently, we were able to use control Lyapunov functions

(CLFs) to prove that there exist user input signals that can guide a swarm of mobile

robots under a control structure to some specification set.

• Attention, effort, and scalability : These three metrics characterize a user’s interac-

tion with a swarm of mobile robots through some control structure. Optimal control

tools allowed us to approximate a trained user’s interaction as opposed to capturing

these metrics through a user study. Consequently, we were able to compare the atten-

tion, effort, and scalability of three different control structures–single-leader networks,

broadcast control, and concurrent control– and make a decision on which control struc-

ture is best for achieving rendezvous at some desired location with a swarm of mobile

robots.

• User studies: We have demonstrated how user studies can be used to capture sub-

jective metrics. Specifically, we have shown that these metrics are not only useful in

generating qualitative comparisons, but are even more useful when correlating these

metrics to properties of the multi-agent system, such as controllability, node central-

ity, and network centralization. Consequently, we were able to characterize the effect

118



of the interaction topology on the difficulty of guiding a single-leader network into a

geometric shape.

• New HSI abstractions: Several new HSI abstractions were introduced throughout

this dissertation. Specifically, broadcast control was introduced, which focuses on

achieving a geometric task with a swarm of mobile robots by interacting with all robots

collectively through a broadcast input signal. We demonstrated that broadcast control

scaled well in a task geared towards rendezvous, but would require modifications to

improve its scalability when separating a heterogeneous swarm of mobile robots into

homogeneous clusters.

• Group size selection: We have answered the question, How many robots are required

for the user to be able to successfully complete a task?, in the context of parameterized

predator-prey interactions. Experiments with mobile robots as surrogates for lions

and gazelles demonstrated that we can generate a formation of a minimum number

of predators to successfully capture a particular prey.

• Deformable media as input controllers: We investigated the question, What type of

input controllers affords guiding robotic swarms into specific shapes?, and were able

to demonstrate that a deformable medium, such as clay, affords the actions required

to complete the task posed in the question. Specifically, users were able to form a

variety of different geometric shapes by molding a piece of clay, which was parsed by

an image recognition algorithm and matched to an appropriate distributed control

law for the mobile robots.

Consequently, these technical contributions comprise a framework that can be applied to

future novel HSI abstractions to prove feasibility, assess attention and effort, approximate

scalability, design interaction topologies, select swarm size, choose appropriate input con-

trollers, and in general, ensure and understand why a new abstraction is amenable to users

interacting with a swarm of mobile robots effectively and easily. For further reference,

all technical contributions discussed in this dissertation were published in peer-reviewed

journals, conference proceedings, and book chapters [27, 28, 30, 31, 32, 34].
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5.2 Future Directions

The framework presented in this dissertation serves as a basis for characterizing and facili-

tating human interactions with swarms of mobile robots. In its current state it is capable

of incorporating a variety of HSI control structures focused on allowing users to solve geo-

metric tasks. These HSI control structures can be characterized, compared, and improved

within this framework. The strength of this framework is that it can be naturally extended

with further work.

For example, one immediate extension could be applied to our definition of tasks. We

have chosen to exemplify tasks with geometric tasks; however, one could also consider

dynamic tasks. Such tasks could be an extension of geometric tasks, in the sense that a

dynamic task could include an initial configuration and specification set, as well as, state

constraints for the trajectories of the robots in the swarm.

Another extension, for example, could be applied to the definition of a HSI control

structure. These control structures are currently defined as if the output of the system, i.e.,

the swarm of mobile robots, is equal to the entire state of the system. However, there may

be HSIs, where all states of the robots are not directly observable. This extension would

allow this framework to consider HSI control structures that incorporate observers.

Such extensions would allow this framework to incorporate a larger variety of HSI control

structures that may be focused on solving different types of tasks. Consequently, this

framework can and will continue to serve as a strong basis to characterize, compare, and

improve HSI control structures for the purpose of allowing users to interact with swarm of

mobile robots effectively.

120



REFERENCES

[1] Azuma, S.-i., Yoshimura, R., and Sugie, T., “Broadcast Control of Multi-Agent
Systems,” Automatica, 2013.

[2] Bagnold, R. A., “The physics of wind blown sand and desert dunes,” Methuen,
London, vol. 265, 1941.

[3] Balch, T., “The Impact of Diversity on Performance in Multi-Robot Foraging,”
pp. 92–99, 1999.

[4] Bashyal, S. and Venayagamoorthy, G. K., “Human swarm interaction for ra-
diation source search and localization,” in Swarm Intelligence Symposium, 2008. SIS
2008. IEEE, pp. 1–8, IEEE, 2008.

[5] Batalin, M. A. and Sukhatme, G. S., “Spreading Out: A Local Approach to Multi-
Robot Coverage,” vol. 5, pp. 373–382, Springer, 2002.

[6] Becker, A., Ertel, C., and McLurkin, J., “Crowdsourcing swarm manipulation
experiments: A massive online user study with large swarms of simple robots,” arXiv
preprint arXiv:1402.3653, 2014.

[7] Becker, A., Onyuksel, C., and Bretl, T., “Feedback Control of Many Differential-
Drive Robots with Uniform Control Inputs,” IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2256–2262, 2012.

[8] Belkhouche, F., Belkhouche, B., and Rastgoufard, P., “Multi-robot hunting
behavior,” in 2005 IEEE International Conference on Systems, Man and Cybernetics
(SMC), vol. 3, pp. 2299–2304, IEEE, 2005.
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