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SUMMARY 

This thesis focuses upon automatic target recognition (ATR) with radar sensors.  Recent 

advancements in ATR have included the processing of target signatures from multiple, spatially-

diverse perspectives.  The advantage of multiple perspectives in target classification results from 

the angular sensitivity of reflected radar transmissions.  By viewing the target at different angles, 

the classifier has a better opportunity to distinguish between target classes.  This dissertation 

extends recent advances in multi-perspective target classification by: 1) leveraging bistatic target 

reflectivity signatures observed from multiple, spatially-diverse radar sensors; and, 2) employing 

a statistical distance measure to identify radar sensor locations yielding improved classification 

rates.   

The algorithms provided in this thesis use high range resolution (HRR) profiles – formed by 

each participating radar sensor – as input to a multi-sensor classification algorithm derived using 

the fundamentals of statistical signal processing.  Improvements to target classification rates are 

demonstrated for multiple configurations of transmitter, receiver, and target locations.  These 

improvements are shown to emanate from the multi-static characteristics of a target class’ range 

profile and not merely from non-coherent gain.  The significance of dominant scatterer reflections 

is revealed in both classification performance and the “statistical distance” between target classes.  

Numerous simulations have been performed to interrogate the robustness of the derived classifier.  

Errors in target pose angle and the inclusion of camouflage, concealment, and deception (CCD) 

effects are considered in assessing the validity of the classifier.  Different transmitter and receiver 

combinations and low signal-to-noise ratios are analyzed in the context of deterministic, 

Gaussian, and uniform target pose uncertainty models.  Performance metrics demonstrate 
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increases in classification rates of up to 30% for multiple-transmit, multiple-receive platform 

configurations when compared to multi-sensor monostatic configurations. 

A distance measure between probable target classes is derived using information theoretic 

techniques pioneered by Kullback and Leibler.  The derived measure is shown to suggest radar 

sensor placements yielding better target classification rates.  The predicted placements consider 

two-platform and three-platform configurations in a single-transmit, multiple-receive 

environment.  Significant improvements in classification rates are observed when compared to 

ad-hoc sensor placement.   
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1 INTRODUCTION 

While automatic target recognition can be performed with other sensors, this thesis focuses 

upon ATR with radar.  The abundance of radar data and the complexities in using this data for 

target classification prompted the development of ATR techniques as early as the 1960s.  ATR 

algorithms accept radar sensor data and attempt to match this data to known target characteristics 

stored within a reference library.  The success of an ATR algorithm hinges on its ability to 

discern between distinct features of probable target classes.  The distinctiveness of a target’s 

features depends upon many factors including the target’s physical characteristics, the operational 

environment, the sensitivity of the radar platform’s sensors, and the signal processing capabilities 

of the radar platform.  ATR is a difficult problem for the radar community; hence, significant 

effort has been expended for decades to advance ATR technology. 

1.1 ATR Challenges 

ATR technology must overcome a number of technological, environmental, and operational 

obstacles to be effective.  The most challenging of these obstacles can be summarized as follows: 

1. Any minor variation in scene geometry (e.g., platform or target movement) produces 

a significant change in the electromagnetic (EM) signature received at a radar sensor; 

 

2. Due to scene-dependent variability in target characteristics and the number of 

potential target classes, libraries of known target characteristic data may be large.  

These large data sets induce computer storage, processing power, and processing 

time constraints; and, 
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3. The required target recognition rates must be extremely high to prevent 

misclassification errors that could result in significant, unintended property damage 

and personal injury.   

 

These challenges necessarily impact the design of the radar system and, more specifically, the 

classifier.  Variation in scene geometry significantly impacts the classifier’s ability to discern 

between probable target classes.  The computing requirements dictated by the large target 

characteristic database result in an ever-present engineering design trade-off between radar 

platform size and signal processing capacity.  Finally, the need for such high target classification 

accuracy limits satisfactory operational conditions to those consistent with usable signal-to-noise 

ratio (SNR). 

1.2 HRR-based Classifiers 

 Since ATR’s inception, the radar community has experimented with a variety of target 

identification concepts.  In recent decades, the majority of these efforts have focused upon the use 

of either HRR profiles or synthetic aperture radar (SAR) images as inputs to target classification 

algorithms.  Successful ATR algorithms have been achieved with both sensor input types.  SAR 

inputs have the advantage of high resolution, but are hindered by image blur for moving targets 

[1].  HRR inputs have the disadvantage of providing only a one-dimensional perspective of the 

target, while enjoying reduced computational and data collection requirements [2].  In this study, 

HRR profiles are the input of choice due to the desire to reduce the platforms’ signal processing 

and data collection requirements.  

 High range resolution profile-based ATR algorithms rely on some form of pattern 

recognition.  With these algorithms, the HRR profiles are submitted to the classification routine in 
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one of two forms.  The profiles are either submitted without modification or subjected to various 

methods of feature extraction.  Some of the feature extraction methods used include principle 

component-based approaches [1, 3, 4], rough set theory [5], central moments [6], distribution 

entropy [6], and non-orthogonal feature vectors [7].  Since feature extraction approaches require 

pre-processing prior to classifier input, potentially involving the loss of information, this thesis 

uses unmodified HRR profiles as input to the classifier to reduce the signal processing load on the 

radar platforms. 

 Regardless of the input format, algorithms employed by HRR profile-based classifiers 

rely on statistical or structural techniques to perform pattern matching [8].  Some of the most 

common statistical and structural techniques include Bayesian [9, 10], correlation [11], maximum 

likelihood [12], support vector machines [13, 6], nearest neighbor [6], and feed-forward artificial 

neural network [14, 15].  

Another major distinction among HRR-based classifiers involves the introduction of multiple 

radar platforms.  When inputs from multiple radar platforms are available for target identification, 

the classifier algorithm can accept all inputs for processing (sensor-level fusion) or perform 

classification on a sensor-by-sensor basis prior to final decision processing (decision-level 

fusion).   Many tradeoffs are associated with deciding between one-stage or two-stage 

classification.  For example, decision-level fusion has the advantage of reduced communication 

bandwidth between participating radar platforms and the disadvantage of missing potential data 

correlations among the different platforms’ target views.  Examples of successful decision-level 

fusion classifiers include those developed by Vespe [14, 15], Rizvi [16], and Kahler [17].  In 

contrast, sensor-level fusion has the potential to leverage multi-view data correlations with the 

disadvantage of having to transmit sensor data to a central processing platform.  Successful 
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sensor-level fusion classifiers include those developed by Zhang [18], Nguyen [10], and Shaw 

[1].  A single-stage classifier employing sensor-level fusion was selected for this study to reduce 

the processing requirements of the platforms operating near the target of interest and avoid 

“throwing away” potentially useful data.  This implies there is a more capable central processing 

platform in the vicinity of the less computationally-capable platforms.  Power not used for local 

computation may be needed to transmit larger data sets.  This thesis focuses on the advantages 

provided by more principled data analysis, leaving detailed study of the power tradeoffs for future 

work.  

 An analysis of previous works related to target classification from multiple target views 

suggests the inclusion of additional target perspectives helps the classifier identify a target’s 

probable class.  Specifically, studies performed by Vespe [14, 15, 19], Cui [20], and Zhang [18] 

demonstrate classifier sensitivity to scene geometry can be exploited by classifier algorithms to 

better discern between potential target classes.  In addition, research by Stinco [11], and Butler 

[21] has shown the influence of multi-static reflectivity on classifier performance.  These studies 

suggest additional target classification performance gains are possible if multiple, spatially-

diverse platforms leverage multi-static reflectivity.  The remainder of this thesis presents 

evidence of performance gains achievable when multiple, distributed radar platforms consider 

multi-static reflectivity in target classification. 

1.3 Key Contributions 

The key contributions of this research effort are: 

1) The development of a multi-static, distributed, multi-sensor classifier algorithm that 

demonstrates better classification performance when compared to existing single and 

multi-perspective classifiers; and, 
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2) The development of a technique for identifying radar sensor placement that 

demonstrates improved classification performance. 

Contributions provided by our classifier algorithm advance the state-of-the-art research of Shaw 

[1], Vespe [15], Kahler [17], Cui [20], Nguyen [10], Wong [9], and Zhang [18] by considering 

multi-static reflectivity.  The combination of spatial diversity and sensor-level fusion represents 

advancement over the sensor-level fusion techniques provided by Nguyen [10], Shaw [1], Butler 

[21], and Kahler [17].  Based upon an extensive search of published research, little work appears 

to have been performed on the relationship between multiple sensor locations and classification.  

The research detailed in this thesis on the relationship between sensor location and improved 

classification significantly expands the work performed by Vespe [14] and Zhang [18]. 

This thesis provides a framework for addressing multi-static, distributed, multi-sensor ATR.  

This framework leverages the accomplishments of Jacobs [12] on using sequences of HRR 

profiles for target classification.  In [12], the authors demonstrate the validity of using HRR 

profiles to perform ATR based upon a conditional Gaussian data model.  This model serves as the 

basis for all work presented in this thesis.  The conditional Gaussian data model states that target 

HRR profiles exhibit independent Gaussian behavior conditioned on a specific target aspect angle 

and target class.  The legitimacy of the conditional independence is rooted in the understanding 

that target returns are uncorrelated when separated by sufficient angular extent.  This model is 

used in conjunction with the findings of Vespe [15] on multi-perspective classification.  Vespe 

demonstrated progressive improvement in classification rates as additional target perspectives 

were added to the classifier.  These results were proven using three different classifiers, thereby 

suggesting the ATR improvements were generally due to additional perspectives and not a 

specific classifier algorithm.  By extending the work performed by Jacobs and Vespe to multi-
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static target returns, we demonstrate how the uniqueness of a target’s multi-static reflectivity can 

be leveraged for additional gains in ATR performance. 

Once the benefits of multi-static reflectivity are demonstrated, a detailed analysis of radar 

sensor location and classification is presented.  Information-theoretic techniques are employed to 

derive a lower bound on a divergence measure attributable to target class.  This divergence 

measure lower bound is used to identify sensor locations where target classes are most 

discernible.  Based entirely upon the classifier derived in the first part of this research effort, the 

divergence measure bound is compared to probabilities of correct classification over a range of 

noise levels to demonstrate a correspondence between target class divergence and classification 

performance.  Algorithms incorporating the divergence measure bound are presented to 

demonstrate how the bound can be used to identify platform positions in single transmitter, 

multiple receiver classification scenarios. 

Throughout this thesis, the terms sensor and platform are used interchangeably.  Either 

instance refers to an airborne vehicle capable of transmitting and/or receiving EM waves suitable 

for further radar processing.      
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2 BACKGROUND 

Modern radar systems serve many purposes within government, commercial, and military 

communities.  The design, development, deployment, and operation of these systems vary based 

upon their intended use within each community.  However, despite their various forms, all radar 

systems perform one or more of the following functions: detection, tracking, classification, and 

imaging.  These functions leverage EM wave transmission and reflection characteristics as key 

discriminants in their respective signal processing algorithms.  More specifically, radar systems 

process reflected EM energy to: 1) recognize the presence of desired objects (detection); 2) 

follow the movement of a detected object (tracking); 3) identify the object as belonging to a 

particular object type (classification); and, 4) produce a one, two- or three-dimensional 

representation of the object (imaging).  We focus our treatment of reflected EM wave energy to 

classification processing.  Radar detection, tracking, and imaging functions are assumed to exist 

and support the classification function as required.   

A block diagram of a typical radar system (adapted from [22]) showing the major radar 

receive processing components is provided in Figure 1.  EM reflections from the radar’s 

operating environment are captured by the antenna and amplified by the radio frequency 

amplifier (RFA).  Once amplified, the received signal is modulated to a lower frequency by the 

mixer.  Additional amplification is provided by the intermediate frequency amplifier (IFA) before 

the signal is delivered to the radar’s signal processor.  The signal processor is responsible for 

several key functions prior to classification processing.  These key functions may include: 1) 

sampling, 2) matched filtering, and 3) detection processing.  The design of the radar’s antenna, 

front-end electronics, analog-to-digital converters, filters, and detector are critical to radar 

performance, including classification.  Design decisions related to these radar components dictate 



8 

 

many key radar performance measures including signal-to-interference plus noise ratio (SINR), 

range resolution, probabilities of detection and false alarm, and percentages of correct target 

classification.   

 

 

Figure 1.  Typical radar receive processing block diagram. 

 

Our classification study assumes the pre-classification signal processing components have been 

designed to support the required classifier data input requirements.  The division between “signal 

processor” and “classifier” is somewhat arbitrary; we make it to emphasize the classification 

aspects. 

2.1 Problem Formulation 

Radar systems transmit EM waveforms and process waveform energy reflected from 

objects in the radar’s operating environment.  Reflected energy can emanate from any physical 

object present within the transmitted waveform’s beam width.  We restrict our research to 

reflections from ground-based vehicles.   

  In its most general form, our standard signal processing model, not including noise, 

entails the convolution of the transmitted waveform with the range-scattering function of the 

target:  
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( ) ( ) ( )y t x t t b dλγ λ λ
∞

−∞

= −∫ ,    (2.1) 

where ( )x t  is the transmitted waveform; ( )b λ  is the range-scattering function; ( )y t is the 

waveform returned to the radar platform;γ  represents the cumulative losses incurred by the 

waveform in the environment; t  is time; and, tλ is the time associated with distance λ .  The 

range-scattering function depends on distance, but not time.  This singular dependence on 

distance has resulted in the description of illuminated targets as range-spread targets [23].  A 

representative diagram of (2.1) is shown in Figure 1 (adapted from [24]).   

 

Figure 2.  Diagrammatic representation of transmitted waveform convolution with a target. 

 

The transmitted waveform impinges on numerous surfaces of the target and reflects the 

transmitted waveform in directions dictated by the azimuthal and elevated normals of the 

surfaces.  This process causes some waveform energy to be returned to the radar platform, while 

other energy is directed away.  The reflected waveforms received by the radar platform are 

dependent upon the target’s physical properties. 

 This thesis focuses on the classification of ground-based targets.  Since all targets are 

illuminated with the same transmitted waveform and are assumed to experience the same 
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environmental losses, target uniqueness is completely determined by the range-scattering 

function.  Identification of unique scattering characteristics of the observed targets is required to 

properly classify the targets.  The scattering characteristics of targets are collectively referred to 

as radar cross section (RCS).  As will be shown in Section 2.4, a target’s RCS is highly dependent 

upon the angular position of the target relative to the radar platform (target pose angle) and the 

incident and reflected angles of the transmitted waveform.  Coupled with a target’s unique 

physical properties, the reflected waveform geometrical dependencies provide an opportunity to 

distinguish between two targets that might otherwise look very similar.  This serves as the 

premise for leveraging multiple, dispersed radar platforms to more reliably identify a target’s 

class.      

2.2 Waveforms 

The waveforms transmitted by radar systems are designed to enhance the detection, 

tracking, classification, and imaging of a desired scene or objects.  The specific design 

characteristics of these waveforms are formulated based upon the intended use of the radar 

system.  For this study, a waveform suitable for providing excellent range resolution and 

simplicity in post-receipt processing is desirable.  A popular choice for meeting these 

requirements is a pulsed waveform with frequency modulation.  The pulsed waveform permits 

our radar system to transmit and receive from a single platform while the frequency modulation 

characteristic ensures the system provides sufficient range resolution.  A pulsed waveform with 

frequency modulation can be expressed in complex notation as: 

( ) ( ) ( )( ){ }( ) exp 2
c

x t rect t A t j f t tπ θ= ⋅ + ,    (2.2) 
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where ( ) 1rect t = for 0 t τ≤ ≤ and ( ) 0rect t = for 0t < and t τ> ; ( )A t  is the amplitude 

modulation; exp is the exponential function; j is 1− ; c
f is the carrier frequency; ( )tθ is the phase 

function that includes the requisite frequency modulation; and,τ is the pulse length.  The complex 

exponential form is algebraically convenient; the “real” waveform is found by taking the real part 

of ( )x t .  It is rare for the transmitted waveform to include amplitude modulation, so ( )A t  is 

assumed to be constant throughout the pulse’s duration.  Typical pulsed radar systems employ 

several pulses to achieve their objectives.  A multi-pulse version of (2.2) is: 

( ) ( )

( ) ( )( ){ }

1

0

1

0

             ( ) exp 2

M

pulsed

m

M

c

m

x t x t mT

rect t mT A j f t mT t mTπ θ

−

=

−

=

= −

= − ⋅ − + −

∑

∑
, (2.3) 

where m is the pulse number, M is the total number of pulses, and T is the pulse repetition 

interval (PRI).  This waveform has been designed to use M pulses within a single coherent 

processing interval (CPI) of length M PRI× . 

Several forms of frequency modulation are possible with the waveform described in (2.3).  

Linear, non-linear, stepped, and linear-stepped frequency are the most prevalent frequency 

modulation forms used by today’s radar systems.  Linear and linear-stepped frequency 

modulation waveforms are often used to generate HRR profiles similar to those required by this 

study.  In certain operational scenarios, a stepped frequency waveform can also be used to 

generate the HRR profiles.  The results of Chapters 4 and 5 are applicable to all HRR profiles 

regardless of the waveform type used. 
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2.3 High Range Resolution Profiles 

The HRR profiles used in this study are simulated using a simple complex-valued 

reflectivity waveform.  This approximation reduces the complexity and processing time required 

to generate the required HRR profiles by simulating the output of a typical frequency modulated 

waveform signal processing chain.  As detailed in Section 2.2, several different frequency 

modulated waveforms are suitable for HRR profile generation.  The profiles can be generated 

using matched filtering, which results in the output of a radar processor appearing like the HRR 

convolved with the autocorrelation of the transmitted waveform.  Some waveforms, such as 

stepped-frequency waveforms, facilitate computationally efficient approaches using the fast 

Fourier transform.  Linear FM waveforms permit other tricks such as “stretch processing,” which 

can reduce receiver bandwidth requirements.  Our approach does not require any particular 

waveform or technique; we merely assume that the effective point-spread response of the 

resulting HRR formation process can be reasonably modeled as a Dirac delta function, and that 

such functions are summed into “range bins” aligned with a resolution of  

2

c
R

β
∆ =  ,      (2.4) 

where β  is the frequency bandwidth of the transmitted waveform and c  is the speed of light 

(approximated as
83 10× meters per second).    

It has been shown [25] that the scatterer-reflected waveform received at a radar platform, 

within a proportionality constant, is  

 ( ) ( )
( )

1

2 , ,
, , exp 2

H
h t r pose

h t r pose

h

R
y t j f t

c

θ θ θ
σ θ θ θ π

=

   
 = −     

∑  ,   (2.5) 
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where ( ), ,h t r poseσ θ θ θ represents the square root of the RCS magnitude for scatterer h ;

( ), ,
h t r pose

R θ θ θ is the distance between the radar platform and scatterer h ; f is the center 

frequency of the waveform; t
θ is the angle of the transmit waveform relative to the scatterer; r

θ is 

the angle of reflection relative to the scatterer; 
poseθ is the target pose angle relative to the same 

scene geometry imposed on the scatterer; and, H  is the number of scatterers.  With the 

appropriate substitution of distance for time in (2.5), the discrete, scatterer-reflected waveform 

received at the radar platform depends upon the position and RCS of the scatterers 

[ ] ( )
( ),

1

2 , ,
, , exp 2

nH
n h t r pose

h t r pose

h

R
y n f

c

θ θ θ
σ θ θ θ π

=

   
 =      

∑ ,  (2.6) 

where
,n hR is the range to scatterer h  that is present in range bin n  and 

n
H  is the number of 

scatterers in range bin n .  If observed for a specific slow-time sample, the scatterer-reflected 

waveform becomes 

[ ] [ ] [ ] [ ]( )

[ ] [ ] [ ]( )
1

,

, , ,

2 , ,
                       exp 2

nH

h t r pose

h

n h t r pose

y n m m m m

R m m m
f

c

σ θ θ θ

θ θ θ
π

=

=

   
 ⋅      

∑
,  (2.7) 

where [ ]t mθ , [ ]r mθ , and [ ]pose mθ are now dependent upon the position of the platform during 

each slow-time sample m .  The slow-time sample m  is not meant to imply that coherent 

processing is going to take place across the m  dimension. 
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2.4 Radar Cross Section 

Radar cross section is as a measure of the reflective strength of a target defined as 4π times 

the ratio of the power per unit solid angle scattered in a specified direction to the power per unit 

area in a plane wave incident on the scatterer from a specified direction [26] [27].  In 

mathematical form, the definition can be expressed as 

2

2

2
lim 4

scattered

r incident

E
R

E
σ π

→∞
=

�

�  ,     (2.8) 

where σ  designates RCS measured in square-meters (sm), R  is the distance between the radar 

transmitter and the target,
scattered

E
�

 is the electric field scattered from the target measured in volts, 

and
incident

E
�

 is the electric field impinging upon the target measured in volts.  The limit with 

respect to R  addresses the need to standardize RCS measurements regardless of distances 

between the radar transmitter, target, and receiver.  Intuitively, RCS can be described as the 

product of three components [27] 

σ  = Projected Cross Section ×  Reflectivity ×  Directivity,   (2.9) 

where 

Projected Cross Section Geometrical area subjected to the illuminating 

waveform, 

  

Reflectivity Portion of the transmitted power reradiated by 

the target, and 

  

Directivity Ratio of the power scattered towards the radar 

receiver relative to power scattered isotropically. 
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As demonstrated in (2.9), RCS is not solely a function of the physical cross section exposed to the 

radar transmitter.  Target construction, including material properties and geometrical attributes, 

plays a significant role via the reflectivity and directivity components.   

An understanding of RCS is critical to this study as demonstrated in (2.7).  Section 2.1 argued 

that the ability to classify targets is strictly dependent upon each target’s range-scattering 

function.  The range-scattering function presented in (2.7) was simplified for purposes of clarity.  

A more complete formulation of target RCS must consider all of the factors listed below: 

• Transmit angle - t
θ , 

• Receive angle - r
θ , 

• Target orientation relative to transmitter/receiver - 
poseθ , 

• Target construction (materials and geometrical composition), 

• Transmit waveform frequency - f , and 

• Transmitter and receiver polarization -
transmit

S , 
receive

S . 

 

Several of these effects are not necessary to demonstrate the technology outlined in this thesis.  

Specifically, the effects of polarization are not addressed.  Thus, the use of a scattering matrix and 

other polarization concepts are excluded from the analysis; this could be an avenue for future 

work.  Additionally, no consideration for the target’s material properties has been included.  

However, target geometrical construction and transmit waveform frequency must be considered 

due to the target model requirements outlined in Section 3.1.  To accommodate the dependencies 

on target geometrical construction and waveform frequency, (2.7) is expanded in a more 

complete form as 

[ ] [ ] [ ] ( )( ), , , ,h t r posem m m f hσ θ θ θ d ,   (2.10) 
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where ( )hd  is a vector of parameters describing dimensional aspects of the scatterer.  This 

parameter set may vary depending upon scatterer type (sphere, point, plate, etc.).  For our test 

targets, we use point and plate scatterers to form representative target classes.  However, the 

technology presented in Chapter 4 and Chapter 5 could be used on target reflectivity data 

generated from EM codes, including material properties, for example. 

 An important consideration in the specification of target RCS is the scattering regime 

applicable to the target.  There are three regimes used to describe EM scattering.  The regimes are 

defined in terms of target size and EM wavelength.  Targets with physical dimensions much 

smaller than the transmitted wavelength fall within the Rayleigh region.  If the transmitted 

wavelength is roughly the size of the target, scattering occurs within the resonant region.  Finally, 

if the transmitted wavelength is much smaller than the target, the scattering is defined to be 

within the optics region.  The region designation is important in determining which of the 

numerous EM scattering types are applicable.  Examples of the various scattering types include 

traveling, specular, end-region, diffraction, and multiple bounce.  Given the transmit wavelength 

and target characteristics used in this study, RCS scattering will be restricted to the optics region.  

Operating within the optics region requires careful consideration of the specular, end-region, 

diffraction, and multiple bounce scattering types.   

 Multiple theories have been developed to model scattering from objects in the high 

frequency (optics) region.  Examples include geometric optics, physical optics, geometrical 

theory of diffraction (GTD), uniform theory of diffraction (UTD), method of equivalent currents 

(MEC), physical theory of diffraction (PTD), and other extensions based on these models [28].  

Each of these models is subject to some restriction in geometric modeling due to incident angle, 

reflective angle, or both.   This study employs the GTD models developed in [29] to generate the 
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required RCS values.  These GTD models support the parametric requirements outlined in this 

section.  Further details on the use of these models to generate RCS are covered in Section 3.1.  

Again, it is important to emphasize the technology presented in Chapter 4 and Chapter 5 is not 

dependent upon any specific method for modeling RCS. 

2.5 Detection and Classification Theory 

Detection theory encompasses the concepts and methods necessary to determine the 

presence of a signal in noise.  Detection theory becomes classification theory when the detection 

algorithms seek to identify a particular signal in noise as being a particular signal type.  For 

example, speech classification algorithms attempt to recognize specific sounds or words from an 

audio recording.  In the context of target recognition, classification algorithms endeavor to 

characterize received target signals as belonging to a particular target class.  These problems are 

categorized as multiple hypothesis testing problems.  Typically, these testing problems involve 

comparisons of observed data to available, known data sets exhibiting probable target class 

features.   

The complexity of the classification problem is directly related to what is known about the 

probability density functions (PDF) of all potential target classes and the observed HRR profiles.  

Since the signal representations defined later in Section 3.2 are inherently random, statistical 

hypothesis testing must be employed.  Also, since the statistical models defined in Chapter 3 are 

parameterized by unknown attributes (e.g. target pose angle), a composite hypothesis testing 

approach must be used to derive the necessary classifier.  Most statistical, composite hypothesis 

testing approaches result in classifiers obtained from one of two general strategies: generalized 

likelihood ratio tests (GLRT) and Bayesian tests.  The GLRT has the binary testing form [30] 
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( )
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ˆ; ,
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G
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L

p H
= >

z θ
z

z θ
,    (2.11) 

where z represents the data vector under test; ˆ
iθ and ˆ

jθ are the maximum-likelihood estimates 

(MLE) for the unknown parameters that maximize ( )ˆ; ,
i i

p Hz θ and ( )ˆ; ,
j j

p Hz θ , respectively; 

and, the detection threshold present in [30] has been replaced by 1 to signify a classification 

versus detection problem.  The probable target class is determined to be i  if (2.11) is satisfied.   

The Bayesian approach has the binary testing form [30] 

    
( )

( )
( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
| , || |

1
| | | , |

i i i i i ii i i

j j j j j j j j j

p H p H p H dp H p H p H

p H p H p H p H p H p H d
= = >

∫
∫

z θ θ θz z

z z z θ θ θ
,      (2.12) 

where ( )|
i

p Hz is the PDF of z with respect to hypothesis i
H ; ( )| ,

i i
p Hz θ is the conditional 

PDF of z conditioned upon i
θ  for hypothesis i

H ; ( );
i i

p Hθ  is the prior PDF for the parameter 

i
θ  under hypothesis i

H ; and, ( )i
p H  is the probability of target class 

i
H .    Assuming each 

target class is equally likely and the prior PDFs on pose are the same regardless of target class, 

the Bayesian binary test form reduces to 

( )

( )
( ) ( )

( ) ( )
| ,|

1
| | ,

i i i ii

j j j j j

p H p dp H

p H p H p d
= >
∫
∫

z θ θ θz

z z θ θ θ
.   (2.13) 

Assuming the classes are equally likely, the probable target class is determined to be i  if (2.12) is 

satisfied.  The classifier derived in Section 4.1 uses the Bayesian approach.   
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 The multiple hypothesis testing approach required by this study uses (2.12) to decide 

betweenC probable target classes.  The probable target class is determined by evaluating 

( )ˆ arg max |
c

c

c p z H= ,     (2.14) 

where ĉ  is the probable target class; ˆ,c c C∈ ; and, C  is the index set of all potential target 

classes. 

2.6 Performance Metrics 

2.6.1 Probability of Correct Classification 

The primary performance metric for this study is probability of correct classification 

(PCC).  PCC denotes the percentage of test HRR profile samples identified as the correct target 

class 

( ) ( )( )| |s i s j

s
i

total

I p H p H

PCC
S

>

=
∑ z z

 ,    (2.15) 

 where 
i

PCC  is the percentage of correct classification for target class i  ; ( )I ⋅  is the indicator 

function; 
s

z is the HRR profile associated with sample index s ; and, total
S is the total number of 

HRR profiles submitted to the classifier.  The results of the classification tests are stored in 

confusion matrices to document how well the classifier performs for all possible target classes.  A 

typical confusion matrix is provided in Table 1. 

Table 1.  Typical confusion matrix showing performance percentages of 

test data against a library of known target data for three probable target 

classes. 
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  Training Target Class 

  1 2 3 
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1 75 15 10 

2 20 80 0 

3 15 15 70 

 

Two PCC metrics are derived from the confusion matrix and used in performance plots.  First, a 

mean PCC value is calculated by taking the average of the confusion matrix diagonal.  This 

metric represents the overall performance of the classifier referenced to properly classifying all 

possible target classes.  An example of this metric is the comparison of monostatic and multi-

static classifier performance as noted in Figure 15.  A second metric analyzes the PCC values of a 

single confusion matrix row.  This second metric references classifier performance specific to a 

single test target class.  An example of the second metric is classification results related to CCD 

use as noted in Figure 25. 

2.6.2 SNR 

Throughout this thesis, performance plots are provided where the horizontal axis denotes 

noise power.  Noise power was chosen to ensure consistency when comparing results across 

multiple tests and plots.  Due to Rayleigh fading, target construction, and other test configuration 

characteristics, consistency in SNR could not be assured for all transmit incidence angles, receive 

platform angles, and target classes.  Noise power increments of 3 dB were employed in the 

generation of reflectivity data according to (3.3).  In almost all cases, the respective single-pixel 
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SNR values range from approximately 28 to 33 dB for a noise power of 0 dB.  The referenced 

SNR values were calculated using an average of the zero-noise-power target reflectivity 

amplitude across slow-time samples and within a range window that only included the target.  

This average amplitude was converted to decibels to give the approximate SNR levels mentioned 

above. 

2.7 Approach 

The air-to-ground scenario addressed by this study simulates an operational environment 

where a single, stationary, non-cooperative target is interrogated by several spatially-distributed 

radar platforms.  Each platform illuminates the target in a straight-line flight path and collects 

HRR profile data accordingly.  The HRR profile data is submitted to a centralized classifier for 

classification processing wherein a forced decision model determines the probable target class.  

This data collection and processing architecture is depicted in Figure 3. 

 

Figure 3.  Distributed data collection and centralized 

data processing architecture. 

 

The scenario described above has been formulated to address several key elements of this study: 
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1. The selection of HRR profiles for sensor data supports a general goal of reducing the 

computational requirements on the distributed platforms; 

 

2. Multiple sensors provide the flexibility to interrogate the target of interest from multiple 

perspectives at the same time; and, 

 

3. A centralized classification processing platform reduces the need for significant 

processing power on the distributed platforms and avoids the potential loss of useful 

sensor data. 

  

A physics-based scattering model suitable for the generation of realistic, multi-static target 

return data is developed in Chapter 3.  This scattering model is useful because of the limited 

public availability of multi-static target return data.  Also, our scattering model allows us to 

intuitively modify scattering effects to better interpret how such modifications affect performance 

results.  Chapter 4 derives our multi-sensor classifier using the conditional Gaussian data model.  

In contrast to several earlier multiple-perspective studies that selected classifiers of interest [13, 

15, 16, 20], statistical decision theory dictates the form of our classifier.  The classifier’s final 

form leverages the independence of each transmit and receive sensor combination to obtain a 

composite test statistic.  Numerous data sets are generated to compile a library of test and training 

data samples.  These data samples are parameterized by the transmit incidence, receive platform, 

and target pose angles in addition to target class.   

Once separated into test and training data libraries, the data sets are subjected to Monte Carlo 

simulations employing several platform and target configurations.  The platform test 

configurations are defined specifically to evaluate the advantages and disadvantages of using 
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multiple, distributed sensors at the same time.  Specifically, the benefits and drawbacks 

associated with having one or more transmitting platforms operating in conjunction with one or 

more receiving platforms is demonstrated.  For example, these tests lead to a performance 

assessment comparison between two intriguing platform configurations: 1) a single transmitting 

platform with three receiving platforms leveraging multi-static target returns; and, 2) three 

monostatic platforms operating independently.  The case of all platforms transmitting and 

receiving is also of interest. 

The impact of target pose uncertainty on classifier performance is examined for three target 

pose uncertainty models. These tests demonstrate the importance of selecting the appropriate 

target pose angle prior probability distribution relative to classifier operating conditions.  

Different test target configurations are explored in terms of concealment, camouflage, and 

deception characteristics.  These tests evaluate the robustness of the classifier design to incidental 

and purposeful modification of known target classes.  The results of these studies indicate the 

conditions where specific platform configurations perform better under CCD challenges.  All test 

results are analyzed with particular attention to low SNR performance.   

After validating the merits of the distributed, multi-sensor classifier, the impact of sensor 

placement relative to classification performance is analyzed in Chapter 5.  Information-theoretic 

concepts are used to derive an angle-dependent distance measure.  This distance measure 

considers scene geometry (transmit, receive, and target pose angles) to identify the configurations 

for which the target classes differ the most.  We leverage an approximation of the Kullback-

Leibler divergence (KLD) to determine scene geometry providing the greatest target class 

probability density separation.  Two algorithms are developed to enumerate transmit and receive 

angles producing the greatest KLD values.  Each algorithm assumes three platforms (one transmit 
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and two receive) are available for interrogating the target.  The first algorithm presumes all three 

platforms operate independently and thus, finds the highest KLD value with three degrees of 

freedom.  The second algorithm determines the highest KLD value for a two platform (one 

transmit and one receive) scenario.  Using the selected transmit angle, a second receive angle is 

identified using the second highest KLD value.  This second algorithm represents a significant 

reduction in processing when compared to the first algorithm.  The KLD results are compared to 

the commensurate PCC results to validate algorithm performance.  

Finally, an important terminology distinction may help avoid misunderstandings.  Much work 

has been performed to understand the benefits of multiple-input, multiple-output (MIMO) radar 

systems [31, 32, 33].  Many of these MIMO studies have addressed the benefits of spatial 

diversity.  These are, to the best of my knowledge, related to detection and possibly geolocation.  

MIMO radar systems typically involve cooperation among radar platforms in terms of signal 

transmission and receipt.  The radar platforms employed in this study cooperate in the sense of 

sharing sensor data but are independent in transmission and receipt processing.  A notable 

exception to platform independence is the understanding that each platform transmits a waveform 

that is orthogonal to, and therefore, easily distinguishable from the others in terms of target return 

processing.  
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3 DATA MODELS 

Examining the impact of spatially-diverse target scattering on ATR performance requires a 

robust target reflectivity data set parameterized by transmitter incidence, receiver platform, and 

target pose angles.  Publicly-available data sets exhibiting spatially-diverse target scattering are 

rare.  Thus, a mechanism to produce synthetic target reflectivity data is helpful for analyzing the 

behavior of a multi-static, distributed, multi-sensor classifier.  The target reflectivity data 

supporting this study is generated using target models composed of individual scatterers.  The 

subsections below describe the scatterer-based target and signal modeling used to generate the 

required HRR profiles.  The methods of Chapters 4 and 5 could also be applied to training data 

derived from EM codes such as XPATCH, Lucernhammer, compact radar range test, or carefully 

calibrated studies with real targets. 

3.1 Target Model 

Targets are simulated as a collection of non-dominant and dominant scatterers formed in the 

canonical shape of an ellipse.   Scatterer density and location are parameterized in a manner to 

support the notion of an electrically-large target.  Electrically-large targets have reflectivity 

characteristics associated with the optical scatterering regime.  A more imposing constraint of the 

target design assumes the distances between two adjacent scatterers are, in almost all cases, larger 

than the transmit waveform’s wavelength.  This high-frequency constraint ensures the HRR 

profile received at any radar platform exhibits typical optical regime scattering properties such as 

specular scattering and diffraction [28, 34].  The additional optical regime scattering properties of 

multiple bounce and end-region scatterering are not considered in this study.  The specular 
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scattering and diffraction properties were sufficient to illustrate the benefits of bistatic scattering 

on ATR performance.   

Three target models are constructed to simulate targets from three distinct target classes.  

Every target class has the same scatterer positions but varying scatterer RCS values. Non-

dominant scatterers have RCS values ranging from 10 to 15 dBsm within different regions of 

each target class.  The exact scatterer RCS specifications are provided in Section 4.2.2.  

Dominant scatterers exhibit distinctive characteristics as discussed further below.  Scatterer 

positions are determined by distributing individual scatterers within a 0.5 meter block according 

to a uniform distribution.  The scatterer density is controlled to ensure the majority of scatterer-to-

scatterer distances are greater than the transmit waveform’s wavelength.  The complete target is 

finalized by combining sixteen 0.5 meter blocks into the roughly elliptical shape referenced 

earlier.  The final target form provides a two-dimensional representation suitable for generating 

plausible target reflectivity at reasonable target-to-platform distances.  A third dimension 

(elevation) was not essential to demonstrating the aforementioned ATR performance 

improvements.  The impact of incorporating elevation into target and signal modeling may be 

addressed in future work.  A typical target representation is provided in Figure 4, where red 

circles indicate locations of non-dominant scatterers with individual RCS values of 10 dBsm.  

Similarly, the blue and green circles indicate non-dominant scatterer locations with RCS values of 

13 and 15 dBsm, respectively.  The solid black circles identify the locations of the four dominant 

scatterers.   
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Figure 4.  Typical target representation showing the density and locations of target 

scattering centers. 

 

 

Non-dominant scatterers are modeled as spheroids.  The RCS of the non-dominant scatterers 

model perfect reflection of incident EM energy.  Four dominant scatterers are distributed in four 

relatively dispersed locations within the targets.  The dominant scatterers are modeled as flat plate 

reflectors and placed within each target class to ensure distinctiveness between target classes as a 

function of pose angle.  All plate reflections within a specific target class have the same normals.  

The plate normals are 18, 36, and 45 degrees relative to the negative y-axis for target classes 1, 2 

and 3, respectively.  Each plate is modeled as square with a length of 0.5 meters and a peak RCS 

of 30 dBsm.  This work models flat plate radar cross section using GTD principles as provided in 

[35]: 
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, (3.1)  

where
dom

σ is the dominant scatterer RCS; t
φ  is the elevation transmit angle; r

φ is the elevation 

receive angle; t
θ  is the azimuthal transmit angle; r

θ  is the azimuthal receive angle; f is transmit 

waveform frequency;
c

f  is the transmit waveform carrier frequency;
m

L  is the length of the flat 

plate; and, 
m

h  is the flat plate height.  The angles t
φ  and r

φ are assumed to be zero degrees, given 

our two-dimensional assumption.  An example RCS plot for the flat plate is provided in Figure 5.  

Note the significant drop in RCS as the receive angle moves away from the maximum specular 

reflection angle.  In this example, RCS drops by more than 20 dB with a deviation of only one 

degree from the plate normal. 
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Figure 5.  Example plot showing flat plate RCS response at a frequency of 10 GHz, transmit 

angle of 0 degrees, plate dimensions of 0.5 meters x 0.5 meters, and plate normal of 90 

degrees. 

 

3.2 Signal Model 

Each target scatterer collection is used to determine the composite radar target return at a 

specific receive platform.  The composite radar target return simulates the HRR profile that 

would be received from transmitting a wideband signal whose autocorrelation is approximated as 

an impulse, as described in Section 2.3.  The transmit waveform is assumed to be configured to 

support the necessary energy and range resolution requirements.    The composite radar target 

return signal received by an individual radar platform is 
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This signal is combined with receiver noise to produce 

, ,, , ,a b a b bz n m y n m v n m          = + ,    (3.3) 

where 
,a bz  is the waveform received at platformb due to the transmission from platform a ; and, 

bv  is additive, circular-symmetric, white Gaussian noise (AWGN) with zero mean and variance

2

noiseσ  . 

The signal represented in (3.3) is used to produce HRR profiles from individual scatterers 

according to the position of the applicable transmitters and receivers.  The generated HRR 

profiles exhibit the expected characteristics of Rayleigh fading, range stretch, and range 

compression.  Rayleigh fading is demonstrated in the HRR sequence plot of Figure 6, which 

shows sample target HRR profiles for 45 sequential illuminations separated by one meter in 

cross-range.  Note the varying reflectivity amplitudes predominantly in range bins 12 through 20.  

Also, note that the fading in range bins 11 and 21 are relatively slight.  This reduced fading is due 

to the dominant scatterer contributions exhibited by the flat plate reflectors.  The flat plate 

reflector RCS response does not drop significantly due to the small angle traversed during the 

data collection (approximately 0.25 degrees). 
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Figure 6. Sequence of HRR profiles showing Rayleigh fading. 

 

 Bistatic angle geometry induces a natural stretching and compression of the HRR profile 

based upon transmitter and receiver placement.  HRR profiles are stretched when the bistatic 

angle is zero and severely compressed at bistatic angles approaching 180 degrees, as shown in 

Figure 7.  The zero degree case is the monostatic or pseudo-monostatic case.  The HRR profile 

for the bistatic angle of zero degrees is spread across 16 range bins, versus one range bin for the 

bistatic angle of 180 degrees.  Also, note the significant increase in HRR profile amplitude when 

all scatterers are confined to the single range bin.  



32 

 

 

(a) 

 

(b) 

Figure 7. Comparison of HRR profile lengths at bistatic angles of 0 degrees (a) and 

180 degrees (b). 
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Several simplifying assumptions have been applied to the data model, without loss of 

generality to the overall analysis.  Specifically, occlusion of scatterers has not been modeled.  

This simplification allows scatterers behind illuminated flat plates to be included in the target’s 

response.  The inclusion of these scatterers in the target contributes more to the resulting 

constructive and destructive summation of individual scatterer responses.  Multipath reflections 

are also not considered within the model.  The complexities associated with modeling multipath 

have been excluded to reduce processing time.   Due to the relatively large number of scatterers 

already included in the target response, any additional benefits of including multipath responses 

were deemed unnecessary for our research objectives.  Additionally, the target class shape and 

individual scatterer positions are not intended to mimic any specific real world target.  The target 

shape and scatterer positions were chosen to demonstrate the effects of spatial diversity on ATR.  

Finally, a significant assumption about the statistical properties of the HRR profile is required 

to simplify classifier design in accordance with the research constraint of reducing processing 

complexity.  Gaussian random processes afford many opportunities for simplifying the derivation 

of signal detectors and classifiers.  These detectors and classifiers often result in more practical 

and efficient implementations as well.  However, in the case of this classification study, 

limitations associated with a realistic training data set and scene geometry force us to consider a 

composite radar return whose magnitude may be Rician, as discussed below.  Any phase included 

in the training data sets is problematic given the difficulty of ensuring that the test receiver is at 

the exact distance (or wavelength multiples) from the target as observed when the training data 

was collected.  Because the exact phase of the radar return is difficult to use reliably within the 



34 

 

classifier, the magnitude of the composite radar return is used as input to the classifier.  The 

magnitude operation, , ,a b a b=z z
�

, is performed on each discrete range bin as follows: 

[ ] [ ] [ ] [ ], , , ,1, 2, ,  
a b a b a b a b

T
m z m z m z N m 

 =z
�

… .   (3.4) 

Because the distribution of
,a bz is complex Gaussian with additive dominant scatterers, the 

distribution of ,a bz
�

 is Rician.  We approximate 
,a bz
�

 as Gaussian, and not Rician, to simplify 

classifier implementation in accordance with the practicality goal stated in Chapter 1.   

In [12], the received complex data were assumed to be circularly-symmetric zero-mean 

Gaussian random variables, and conditionally independent between range bins.  Under these 

assumptions, the magnitudes of data are Rayleigh distributed, and they have a convenient 

mathematical form.  Although we sometimes make the same assumptions when interpreting the 

behavior of our algorithms, our procedures do not depend on these assumptions; we fit a real-

valued Gaussian distribution with non-zero mean and non-diagonal covariance to the magnitudes 

of the training data.  Adding noise before taking the magnitude allows us to map the underlying 

density on the complex data through the magnitude transformation analogous to the way random 

sampling is employed in particle filters or Monte Carlo integration in general.  If the original 

complex data does have some correlations between range bins, the resulting density would have a 

multivariate Rayleigh distribution, which is analytically foreboding.  If it also has non-zero mean 

with uniformly distributed phases, it would have a multivariate Rician distribution, which is even 

more complicated [36], and contains nonstandard integrals. Rather than try to compute these 

directly with techniques such as trapezoidal integration and then try to match Gaussian 

parameters to those densities, we find it reasonable and tractable to simply represent the density 

of the magnitudes as an ensemble of random samples and fit a Gaussian distribution to that 
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ensemble.  The underlying range bin data may be uncorrelated, or not; it may be zero mean, or 

not; either way, our approach encapsulates those effects. This Gaussian approximation on the 

magnitudes of 
,a bz
�

, which contrasts our “conditional Gaussian” implementation with the 

implementation pioneered in [12] that is applied to complex values,  affects the results of this 

study only in the sense that the theoretical optimality of the derived classifiers is not assured.  The 

results of Chapter 4 illustrate that the Gaussian approximation leads to reasonable results. 
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4 MULTI-SENSOR, DISTRIBUTED, MULTI-STATIC ATR 

CLASSIFIER 

This chapter presents the theoretical formulation of the multi-sensor, distributed, multi-static 

classifier.  Our classifier derivation employs an approach similar to the one used by Jacobs [12] to 

model HRR profiles as conditionally Gaussian as opposed to the more complex Rician form.  The 

classifier is subjected to several test scenarios for purposes of examining its performance in the 

context of monostatic classification, dominant scatterer contributions, target pose angle 

uncertainty, and robustness with respect to unknown target modifications.  Tests are also 

conducted to demonstrate the sensitivity of classification results on radar platform placement.  

The later tests serve as motivation for development of the sensor placement algorithms presented 

in Chapter 5. 

4.1 Classifier Design 

The data model employed by our ATR algorithm leverages the conditional Gaussian model 

detailed in [12], except we fit a real-valued Gaussian to the magnitude data instead of fitting a 

complex-valued Gaussian to the original complex data.  Under our conditional Gaussian model 

assumption, the waveform received at each radar platform under hypothesis i
H exhibits Gaussian 

behavior with a mean and covariance parameterized by the transmit incidence and receive angle 

vector ,  
Ttransmit receive

a ba b θ θ=   θ and target pose angle
poseθ , 

( ) ( ) ( )( ), , , ,, | , , ,
a b a b pose i i a b pose i a b pose

H Nθ θ θθ µ θ C θz ∼
� 1

, (4.1) 

                                                      
1
 When used to the right of a tilde, N denotes a Gaussian distributed random variable. When used as part of 

a mathematical equation, N  represents the Gaussian density. 
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where i C∈ designates a specific target class; ( ), ,i a b poseθµ θ and ( ), ,i a b poseθC θ are the mean and 

variance, respectively;
poseθ is the target pose angle.  An example configuration of transmit 

platform, receive platform, and target pose angles is provided in Figure 8. 

 

Figure 8.  Depiction of radar platform and target pose angles. 

 

Since ,a bz
�

is parameterized by ,a b
θ and

poseθ , the signal model for ,a bz
�

is described by a 

family of densities.  As detailed in [37], statistical decision theory dictates a composite hypothesis 

testing approach to formulate the required detector/classifier.  Without loss of generality, we 

presume the target classes are equally likely; hence, using the Bayesian likelihood ratio test 

(LRT), the classification decision between target class i and target class j has an initial form of 
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 ,   (4.2) 

where ( )1,1 ,1,1 ,, , | ; , ,
i A BA Bp Hz z θ θ

� �
… �  is the multi-platform, joint probability density of 

,
ˆ

a bz  

for hypothesis i
H given the specific transmit incidence and receive platform angles for each 

transmit and receive platform combination,
1,1 ,A Bθ θ� ; ( )1,1 ,1,1 ,

ˆ ˆ, , | , ; , , ,
pose i A BA Bp Hθz z θ θ… �

is the multi-platform, conditional probability density of 
,

ˆ
a bz  for hypothesis i

H given the specific 

transmit incidence and receive platform angles for each transmit and receive platform 

combination,
1,1 ,A Bθ θ� , and target pose angle,

poseθ ; ( )|
pose i

p Hθ  is the prior probability 

density of the target’s pose angle pose
θ for hypothesis i

H ; A  is the number of transmit platforms; 

and, B  is the number of receive platforms.  Independent target pose angle integrations are 

required in (4.2) and separately notated as 
'

poseθ  and
"

poseθ  to avoid confusion.    

As stated in [12], each receive platform waveform, ,a bz
�

, when conditioned on target type 

and scene geometry, can be considered statistically independent of other receive platform 

waveforms, provided the platforms are separated by sufficient angular extent.  We assume the 

receive platforms are sufficiently spaced in angular extent to ensure the returns of two adjacent 

platforms are independent.  This conditional independence permits the separation of the multi-

platform, conditional probability density into the product of the individual densities as follows 
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�

. (4.3) 

 The density ( );
pose i

p Hθ describes prior knowledge of the target’s pose angle for each 

hypothesis.  Without loss of generality, we assume each hypothesis has the same prior density on 

target pose angle.  Our study considers three possible densities for a prior on the target pose: 1) 

impulse, 2) Gaussian,
2
 and 3) uniform.  The impulse density indicates exact knowledge of the 

target pose angle.  The Gaussian density models the behavior of a typical tracking system, where 

the target pose angle is presumed known with some level of uncertainty. The uniform density 

assumes no prior knowledge of the target’s pose angle.  The final form of the LRT test statistic 

will differ based upon which prior density is considered.  The test statistic derivation for the 

Gaussian prior is included below, followed by a simple statement of the remaining two test 

statistics. 

 Under the assumption of a Gaussian prior and conditional independence of the platform 

waveforms, the log LRT (LLRT) becomes 
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, (4.4) 

where ( ) ( ) ( )( ), , ,, | , ; , , ,
pose i a b i a b pose i a b posea bp H Nθ θ θ=z θ µ θ C θ

�
, ( ) ( )2,

pose mean t
p Nθ θ σ= ; 

mean
θ  is the target pose angle estimated by some tracking algorithm; and,

2

tσ is the tracking error 

                                                      
2
 Technically speaking, it is a “wrapped Gaussian” because we apply the Gaussian form to an angular 

parameter. 
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variance.  Substituting the multivariate Gaussian density formulation into (4.4), replacing the 

continuous integration operation with the discrete sum,
3
 removing constant terms appearing in 

each hypothesis test statistic, and simplifying the results gives a test statistic for each hypothesis 

as follows 

( )( ){

( )( ) ( ) ( )( )

( )

,

1 1

1

, , , , ,

2

2

ln exp ln det ,

                     , , ,

                                                   
2
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θ θ θ
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σ

= =

−

=
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− − −

− 
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,  (4.5) 

where  or k i j= ; and, ( ),
,

k a b pose
θµ θ and ( ),

,
k a b pose

θC θ are the model mean and covariance for 

target class k at the prescribed transmit incidence, receive platform, and target pose angles. 

Typically, one of the terms within the angle summation dominates, so we apply the 

approximation of using the maximum value across all angles, yielding the test statistic 

{ ( )( ){

( )( ) ( ) ( )( )

( )

,

1 1

1

, , , , ,

2

2

max exp ln det ,

               , , ,

                                      
2

ln
pose

A B

k a b pose

a b

T

a b k a b pose k a b pose a b k a b pose

pose mean

t

kT
θ

θ

θ θ θ

θ θ

σ

= =

−

−

− − −

−
−

 
 =    







∑∑ C θ
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.  (4.6)   

The maximization in (4.6) can be changed to a minimization if the inequality in (4.4) and the 

signs in (4.6) are switched.   In addition, since the log function is monotonically increasing we 

                                                      
3
 Without loss of generality, we assume that each target hypothesis is computing with the same set of 

angular samples approximating the integral, and that these samples are equally spaced. 
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can switch the order of the minimization operation and the log function to produce the final form 

of our LLRT: 

i jT T< ,      (4.7) 

where  

( )( ){
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and the Gaussian superscript has been added to distinguish between each of the three pose angle 

prior density test statistics.  Thus, the classifier selects a probable target class of i  instead of j  if 

the inequality in (4.7) is satisfied.  Examining the form of (4.8), we note the presence of the 

Mahalanobis distance measure indicated by the quadratic term in
,

ˆ
a bz .  The Mahalanobis distance 

provides a quantitative measure of how closely 
,

ˆ
a bz  is related to the statistical probability density 

described by ( ),
,

k a b pose
θµ θ and ( ),

,
k a b pose

θC θ .  This measure is shifted by the log of the 

determinant of ( ),
,

k a b pose
θC θ and the target pose angle uncertainty.  Intuitively, the covariance 

scale factor balances differences in power amongst the target classes.  As can be seen in (4.8), the 

pose angle uncertainty scale factor increases the test statistic in instances where the pose angle 

deviates from the actual target pose angle. 
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The test statistics for the known (impulse density) and completely unknown (uniform 

density) pose angles follow easily from (4.8).  If the exact pose angle is known, the test statistic 

reduces to 
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where actualθ is the actual target pose angle. 

The test statistic associated with the unknown target pose angle prior density is 
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4.2 Simulation 

4.2.1 Simulation Environment 

Consider an operational scenario where three radar platforms are available to sense a single, 

stationary ground-based target.  Each platform is capable of transmitting and receiving 

waveforms whose transmission characteristics permit separation of returns from multiple 

transmitters (e.g. the transmission waveforms are orthogonal in some sense).  The target is one of 

three distinct target classes, { }c C∈ .  The radar platforms and target are restricted to two 

dimensions, [ ] 
t r

θ θ=θ , as noted in Section 3.1.  An example of the scene geometry is provided 

in Figure 9. 
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Figure 9. Scene geometry showing example placements of 

the target and three radar platforms. 

 

The radar platforms operate in an environment without clutter and all propagation and other 

channel losses are assumed to be identical for all platforms and test scenarios.  The illumination 

of the target by the radar platform occurs over a straight flight line path constituting a slow-time 

aperture distance of 90 meters.  Slow-time samples
4
 are captured every one meter.  The distance 

between the center point of the slow-time aperture and the target is always 10,000 meters.  The 

range and slow-time aperture dimensions have been selected to ensure all slow-time samples 

from the CPI lie within the correlation window as shown in Figure 10.  The correlation angle 

extent is defined to be [38]:  

                                                      
4
 The term "slow-time” merely indicates a sequence of collected range profiles, and is not intended to 

indicate any kind of coherent processing over the slow-time dimension, such as in synthetic aperture radar 

or space-time adaptive processing. 
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SoL
c

Lf L

λ
θ∆ = =   (4.11) 

where L is the maximum target length, SoL
c is the speed of light, f  is frequency of the transmitted 

radar pulse, and /SoLc fλ = is the wavelength of the transmitted radar pulse.  Illumination within 

the correlation angle extent is crucial for accurate statistical representation of the radar return 

distributions used in Section 4.1. 
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Figure 10. Slow-time aperture depiction showing presence of correlation 

and sample regions. 

 

The complex-valued HRR profile obtained for each slow-time sample spans 10 meters 

divided into 33 range bins of 0.3 meters in length.  The resulting data set from a single CPI is N x

M , where 33N = and 90M = .  Test and training data samples are extracted from the data set 
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using an even-odd paradigm, producing an equal quantity of test and training range profiles.  

These independent data sets are separated and used accordingly in the classifiers defined in 

Section 4.1. 

 Each profile represented within a data set is the result of a bistatic transmission between a 

transmitter, target, and a receiver.  The bistatic nature of the HRR profile necessitates the 

generation of HRR profiles for the full range of possible transmitter and receiver angles.  Data 

sets were generated for 120 transmit and 120 receive angles, covering the full angular extent in 3-

degree increments.  In summary, 43,200 data sets of size N M× were generated to represent three 

target classes, 120 transmit angles, and 120 receive angles. 

4.2.2 Target Construction 

4.2.2.1 Non-dominant Scatterers 

As indicated in Section 4.2, the target under interrogation represents one of three target 

classes.  Each physical representation of a target class conforms to the scatterer model provided in 

Section 3.1.  The non-dominant scatterer RCS values were varied across target class to ensure 

some level of distinctiveness.  The non-dominant scatterer RCS distributions are shown in Figure 

12.  The red, blue, and green circles indicate RCS values of 10, 13, and 15 dBsm, respectively. 
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(a) 

 

(b) 

Figure 11. Target scatterer diagrams showing varying regions of RCS for target class 1 (a), 

target class 2 (b), and target class 3 (c). 
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(c) 

Figure 12. Continued. 

 

The placement of the non-dominant scatterers with RCS values of 13 and 15 dBsm provide HRR 

profiles that demonstrate differences across target classes at some angles and similarity at other 

angles.  An example of the HRR profile similarities and differences for specific combinations of 

transmit incidence and receive angles is shown in Figure 13.  The plots have been windowed in 

range to remove range bins containing only noise. 
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(a) 

 

(b) 

Figure 13.  Example windowed HRR profiles demonstrating a) similarities at a transmit angle 

of 0 degrees and a receive angle of 6 degrees; and, b) differences at a transmit angle of 0 

degrees and a receive angle of 90 degrees. 
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4.2.2.2 Dominant Scatterers 

The dominant scatterers within each target class play a significant role in demonstrating the 

benefits of multi-static, distributed, multi-sensor ATR.  Dominant scatterer positions are 

identified by the black circles in Figure 12 and have an RCS of 30 dBsm.  The use of flat plates as 

dominant scatterers provides a straightforward illustration of dominant scatterer contributions to 

the HRR profiles.  The placement and orientation of the flat plates for each target class is 

provided in Table 2.  The plates within each target class are oriented identically, but have 

different normals when compared to the other target classes.  These plate orientations ensure 

dominant scattering distinctiveness across target classes. 

Table 2.  Dominant scatterer plate normals by target class 

Target Class Number of 

Plates 

Plate Normals 

(Degrees) 

1 4 18 

2 4 36 

3 4 45 

 

The plate normals of 18, 36, and 45 degrees have been selected to complement the sensor 

placements used in several of the test scenarios.  The complimentary selection of plate normals 

and sensor placement supports requirements for analyzing the benefits of a multiple transmit and 

receive operational scenario.  Specifically, as shown in Figure 14, scattering from the flat plates 

contribute to the HRR profiles at all three platforms.  In the case of platforms 1 and 2, flat plate 

scattering from multiple target classes is achieved.  The target classes most readily 

distinguishable by dominant scattering at each receive platform are listed in Table 3.   
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Figure 14.  Multiple transmit and receive scene geometry. 

 

Table 3.  Target class identification by transmit and receive platform. 

 Transmit Platform & Position 

Receive 

Platform 

1 

(0 degrees) 

2 

(36 degrees) 

3 

(90 degrees) 

1 None Target Class 1 Target Class 3 

2 Target Class 1 Target Class 2 None 

3 Target Class 3 None None 

 

4.2.3 Test Scenarios 

The tests were designed to progressively demonstrate how multi-static reflectivity can be 

leveraged by multiple platforms.  The tests validate the following key characteristics of the 

classifier: 

1. The use of multi-static reflectivity with multiple platforms to improve 

classification performance is the result of multi-static reflectivity and not merely 

due to non-coherent gain achieved from using multiple platforms; 
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2. The presence of dominant scatterers in the multi-static returns increases classifier 

performance as more dominant scatterers are added; 

3. Multi-static platform configurations outperform monostatic platform 

configurations; 

4. The placement of the radar platforms impacts classifier performance; 

5. The choice of probability models used for target pose uncertainty have some 

effect on classifier performance, but comes short of nullifying the benefits of the 

classifier, unless target pose angle is assumed as known; and, 

6. The impact of the tested concealment, camouflage, and deception effects on the 

classifier is relatively minor. 

The explored platform configurations are described in Table 4.  Tests associated with test 

scenarios 1 and 3 are conducted with a fixed target pose angle of 0 degrees.  All platform 

positions discussed in these sections are measured relative to this fixed target pose angle.  The 

results presented in Sections 4.3.1 and 4.3.3 can be obtained for any fixed target pose angle, and 

any results related to platform positions would have their positions adjusted by the change in 

target pose angle. 
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Table 4. Test platform configurations and definitions. 

Platform 

Configuration 

Number 

Description Purpose 

1 
Single Sensor, 

Monostatic 

Provides a reference performance level 

simulating a single platform 

operational scenario 

2 
Multi-sensor, 

Monostatic 

Demonstrates ATR performance 

improvements gained by using multiple 

radar platforms configured to process 

target returns associated only with each 

platform’s transmission  

3 

Single Transmit, 

Multiple-receive, 

Bistatic 

Analyzes ATR performance under the 

scenario of a single transmit platform 

(not co-located with the receive 

platforms) and multiple receive 

platforms 

4 

Multiple-transmit, 

Multiple-receive, 

Bistatic 

Validates the ATR performance gains 

achieved when multiple platforms 

transmit and receive 

 

4.2.3.1 Test Scenario 1 

The simulations executed in this first test scenario are detailed in Table 5.  These 

simulations use multiple platform configurations to establish several baseline classifier 

performance measures.  Three radar platforms are initially placed such that each platform’s 

transmit and receive angle is coincident with a specific target class dominant scatterer plate 

normal (test platform configurations 1 and 2).  Radar platform one is positioned at 18 degrees to 

receive maximum response from the flat plate scatterers of target class 1.  Similarly, radar 
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platforms two and three are placed at 36 and 45 degrees to align with flat plate normals of target 

class 2 and 3, respectively.  This radar platform arrangement supports the development of a 

monostatic ATR performance baseline.  The performance baseline is used for non-coherent gain 

analysis and multi-platform, multi-static ATR performance comparisons. 

Table 5.  Classifier test summary for test scenario 1 including platform 

configurations and a brief test description. 

Test 

Number 

Platform 

Configuration(s) 
Test Description 

1 1,2, and 4 

Multi-static classifier performance 

improvements are not solely the result of non-

coherent gains 

2 4 

Multi-static classifier performance increases 

with an increasing number of dominant 

scatterers 

3 1, 2, 3, and 4 
Multi-static platform configurations 

outperform monostatic platform configurations 

4 4 
Multi-static classifier performance varies based 

upon placement of participating platforms 

 

Platform configurations 3 and 4 rely on the geometry shown in Figure 14 to show the 

benefits of multi-static reflectivity.  With platforms positioned at 0, 36, and 90 degrees, multi-

static reflectivity contributions are observed at each platform according to Table 3.  The multi-

static reflectivity contributions enable the classifier to demonstrate how dominant scatterers and 

platform placement influence classifier behavior. 

4.2.3.2 Test Scenario 2 

A second set of tests were conducted to show the classifier’s robustness to target pose 

angle uncertainty.  Three target pose uncertainty models (known, Gaussian, and uniform) were 
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implemented for the actual test target data and classifier to examine performance relative to test 

and training data model mismatches.  The tests executed in the second scenario are provided in 

Table 6.   

Several Monte Carlo simulations were performed using test data with actual target pose 

angle distributions following one of the three target pose uncertainty models (known, Gaussian, 

and uniform). Each of the three target pose uncertainty models, in turn, was assumed by the 

classifier in these simulations.  These simulations support the analysis of nine different 

combinations of the pose model used to generate the test data and the pose model assumed by the 

classifier.  A second set of simulations were executed to compare classifier performance when 

both the actual target pose angle and classifier assume target pose certainty is governed by a 

Gaussian distribution.  These simulations compare different Gaussian variance combinations for 

actual data and assumed classifier target pose to evaluate classification sensitivity to target pose 

uncertainty.   

Table 6.  Classifier test summary for test scenario 2 including platform 

configurations and a brief test description. 

Test 

Number 

Platform 

Configuration(s) 
Test Description 

5 4 

Multi-static classifier target pose angle 

assumptions affect classification performance 

for known actual target pose angle 

6 4 

Multi-static classifier performance is sensitive 

to matching variance parameters for actual and 

classifier Gaussian target pose angle models 

7 4 

Multi-static classifier target pose angle 

assumptions affect classification performance 

for uniform actual target pose angle 
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4.2.3.3 Test Scenario 3 

The third test scenario assesses the effects of CCD on the proposed multi-static, 

distributed, multi-sensor ATR solution.  Under this scenario, target class 1 test data was modified 

to mimic three different CCD attempts.  The description and purpose for each target class 1 

configuration is detailed in Table 7.  Test number 8 was implemented by placing a single, 

spheroidal scatterer with an RCS of 30 dBsm in the region spanned by the points [0.5, 0.0] and 

[1.0, 0.5] in Figure 12(a).  This scatterer mimicked the behavior of a cylindrical pole attached to 

the target extending in the z - coordinate direction.  Test number 9 required uniformly modified 

RCS values for non-dominant scatterers located in the region spanned by the points [0.0, 0.5] and 

[0.5, 1.0] in Figure 12(a).  Uniform modification of the RCS values in this region simulates the 

camouflage of the dominant scatterer located within the region.  Finally, test number 10 

artificially adjusts two of the four flat plates attributable to target class 1.  The normals associated 

with these two plates were modified to 36 degrees in an attempt to confuse the classifier into 

thinking the modified target class 1 was similar to target class 2.   

Table 7.  Classifier test summary for test scenario 3 including platform 

configurations and a brief test description. 

Test 

Number 

Platform 

Configuration(s) 
Test Description 

8 4 
Multi-static classifier performance for target 

with unknown, spheroid dominant scatterer 

9 4 
Multi-static classifier performance for target 

with unknown, regional dominant scatterers 

10 4 

Multi-static classifier performance for target 

with unknown, modification of dominant 

scatterer plate normals 
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4.2.4 Test Procedures 

Simulated HRR profile data sets were generated without additive noise and stored for 

repetitive use during all tests.  Parameterized AWGN was added to the raw HRR profiles to 

generate simulated test data.  Once the appropriate AWGN was added to the raw HRR profile 

data, each profile was subjected to windowing and normalization.  The windowing operation 

simply removed range bins that did not include target returns.  For the targets described in 

Section 4.2.2, the window was applied to all HRR profiles permitting contributions from range 

bins 9 through 24.  The normalization process used the
2

L -norm to equalize the power of the 

HRR profiles.  This equalization ensured the classifier was discriminating target classes based 

upon spatial signature differences and not differences in total signal power.  Similar to the 

argument presented in Section 3.2 regarding the inability to use phase in the classifier, 

normalization of the HRR profiles reduces the impact of differences in signal power between the 

test and training data sets on classifier operation. 

 Requisite test statistics were used as inputs to a forced decision classifier.  The classifier 

was executed for each of the 45 slow-time samples within the test HRR profile data set.  A 

conservative approach was instituted regarding noise in the test and training data sets.  For each 

test sample, the classifier used a training data set with the same noise level as the test data set.  In 

some studies, researchers use “ideal” training data containing little to no noise.  The conservative 

approach used in this study challenges the classification with respect to imperfect training data.  

Even if the training data is “collected” under seemingly pristine conditions, there may be 

systematic errors, such as mismatches between the scale model used in the compact radar range 

collection or the CAD model employed by the EM code and the real target; the noise in the 

training data is intended to encapsulate these effects. In practice, test data will typically be 
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collected under noisier conditions than the training data; future work could include studying the 

effects of varying noise in the training data relative to the test data. In addition to allowing us to 

stress the overall ATR approach, adding noise to the training data helps us avoid analytic 

complications in statistically modeling the magnitude data, as described in Section 3.2. If we do 

not wish to stress the algorithm in terms of limited training data, we can simply increase the 

number of Monte Carlo runs used to generate the training set. 

 Tests were executed at 10 different noise power levels for each of the three target classes.  

The classifier decisions were tallied for each test and training target class combination to produce 

a confusion matrix.  A percentage of correct classification was calculated for each cell within the 

confusion matrix.  Unless otherwise noted, the results presented in Section 4.3 use mean PCC as 

the primary performance criterion.   

 Several of the curves presented in Section 4.3 show somewhat erratic behavior at the high 

noise power indices.  This behavior is attributable to a thresholding effect [39] on the classifier 

caused by significant noise spikes; we expect that additional Monte Carlo runs would smooth out 

these curves.  This behavior does not diminish the general conclusions of these results since: 

1. Classification results with PCC levels below 70% are unlikely to be considered relevant 

given challenge #3 in Chapter 1; 

2. The trends observed in other sections of the curves are consistent with expected 

behavior; and, 

3. Many of the percentages of correct classification in these regions are close to the 

statistical coin flip percentage of 33%, indicating a noise level at which the system 

would be unusable anyway. 
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4.3 Simulation Results 

The three test scenarios described in Section 4.2.3 were executed using the data and signal 

models described previously.  The results of each test scenario are detailed in the sections below.   

4.3.1 Test Scenario 1 

The simulations associated with test scenario 1 were designed to demonstrate several 

baseline performance measurements.  In particular, we would like to ensure that performance 

improvements are attributable to spatial diversity and not simply to the non-coherent gain benefits 

of multiple classifier inputs.  Non-coherent summation of data can increase SNR [40], and any 

increase in SNR has the opportunity to improve ATR performance.  Thus, it is important to 

qualify the impact of any non-coherent gain when incorporating data from more than one 

platform. 

For the spatial diversity versus non-coherent gain analysis, each radar platform was placed to 

leverage the dominant scatterer reflectivity of each target class.  This platform configuration 

presumably offers the best opportunity to distinguish between each target class when all three 

radar platforms are used in (4.8).  To demonstrate ATR performance improvement due to non-

coherent summation of test statistics, nine independent test runs were executed with the stated 

platform configuration.  The classification results are presented in Figure 15.  The solid blue 

(lowest) line represents the mean PCC for the set of slow-time samples collected at platform 1.  

The red (second lowest) and green (second highest) lines denote the classifier’s performance 

when the test statistics from three and nine independent slow-time sample collections at platform 

1 are summed and submitted to the classifier for processing, respectively.  As can be seen, there is 

a quantifiable improvement in platform 1 mean PCC when more than one sample is used for 

classification. 
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However, multiple, spatially-diverse sensors are capable of significantly outperforming an 

equal number of single-sensor samples.  This performance improvement is noticeable in Figure 

15 by observing the solid magenta (highest) line.  With the exception of the highest noise level, 

the inclusion of multiple, spatially-diverse platforms resulted in a mean PCC that exceeded the 

performance of the multiple-sample, single-platform configuration by 9 dB or more.  This 

conclusion demonstrates the advantages of employing multiple platforms at different target pose 

angles, as indicated in [15].    

 

Figure 15.  Performance comparison of single sensor, summed single sensor, 

and multi-sensor classification. 

 

The next set of simulations for test scenario 1 addressed the role of dominant scatterers in 

classifier performance.  This set of simulations employed platform configuration 4, with 

platforms positioned at 0, 36, and 90 degrees.  The positions of the platforms provide the 
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classifier with potentially more discernible views of each target class, as defined in Table 3.  

Target class identification by transmit and receive platformThe ability to incorporate multi-

static reflectivity at a specific platform allows the classification algorithm to more easily 

distinguish between target classes with different dominant scatterer characteristics.  This is 

evident by evaluating the performance of the classifier while varying the number of dominant 

plate scatterers included within the target class.  The potential benefits of multi-static 

reflectivity from dominant scatterers are illustrated by observing mean PCC in Figure 16.  

Classification performance is significantly lower in the instance where each target class lacks 

dominant scatterers.  As more dominant scatterers are included in each target class, the plot 

shows better performance at the higher noise levels. 

 

Figure 16.  Mean PCC performance demonstrating the benefits of having more 

dominant scatterers. 
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The next step is to evaluate PCC performance relative to different measurement 

scenarios.  A third set of simulations was run to examine mean PCC performance for each 

platform configuration outlined in Table 4.  The results of these tests are depicted in Figure 17.  It 

is clear from these results that more than one sensor provides improved PCC when compared to a 

single sensor.  The improved PCC performance measures for multiple, spatially-diverse views are 

consistent with the results achieved by previous studies [18, 11, 15, 19, 41].  The blue (lowest) 

curve in Figure 17 represents the best mean PCC across all three independent, monostatic 

platforms.  The remaining curves show mean PCC performance for multi-sensor configurations.  

In each multi-sensor configuration, the mean PCC curve exceeds the best monostatic curve, 

illustrating the potential advantage of multiple sensors.  The benefits of exploiting multi-static 

reflectivity are demonstrated by the superior performance of the multiple-transmit, multiple-

receive platform configuration (magenta, highest curve) compared to the summed monostatic 

platform configuration (red, second lowest curve).  The potential to improve classifier 

performance when multiple platforms transmit and receive versus just receive is evident from the 

comparison of the magenta (highest) and green (second highest) curves. 
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Figure 17.  Mean PCC performance showing relative performance of the 

four platform configurations. 

 

 The multi-platform performance results in Figure 17 are encouraging, but not indicative 

of all possible sensor locations.  In Figure 18, the mean PCC performance for the multiple-

transmit, multiple-receive platform configuration is shown for two different sensor placement 

combinations.  Three platforms positioned at 0, 36, and 90 degrees provide good performance, as 

demonstrated by the blue (highest) curve.  However, positioning the three platforms at 81, 153, 

and 159 degrees results in a significant reduction in mean PCC, as noted by the red (lowest) 

curve.  Thus, a better understanding of where to position the platforms would be helpful in 

improving performance.  The examination of the relationship between target RCS, multi-sensor 

placement, and PCC is the subject of Chapter 5. 
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Figure 18.  Mean PCC performance demonstrating sensor placement 

impacts classifier performance. 

 

4.3.2 Test Scenario 2 

Test scenario 2 simulations addressed the sensitivity of matching the classifier’s assumed 

prior distributions on pose to the poses in actual test data.  The first series of Monte Carlo 

simulations in test scenario 2 evaluated classifier performance under the guise of a known target 

pose angle for the test data.  In these simulations, test data from a single target pose angle is fed to 

the classifier.  Each of the three target pose uncertainty models (known, Gaussian, and uniform) 

was used by the classifier to produce the results shown in Figure 19.  The known “true” target 

pose angle results exhibited expected behavior.  The known target pose angle uncertainty model 

for the classifier provided the best results; it represents an upper bound on classifier performance.  

The lower bound on classifier performance was achieved by using the uniform target pose angle 
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uncertainty model for the classifier.  Using the Gaussian model for target pose angle uncertainty 

in the classifier produced classification rates within the upper and lower bounds.  The Gaussian 

uncertainty model also demonstrated expected behavior as higher variances are used in the model.  

Note the progressively poorer performance as the variance is increased from 1 to 100 angle 

indices.   

 

Figure 19.  Comparison of classifier results showing performance differences of each 

classifier pose distribution assumption when actual pose is fixed. 

 

The second series of simulations in test scenario 2 compared PCC results for different 

combinations of test and classifier-assumed Gaussian target pose uncertainty model standard 

deviations.  The results for these simulations are shown in Figure 21.  In each test, better PCC 

performance was obtained when the classifiers’ standard deviation assumption matched the actual 

test data standard deviation.  The results are marginally convincing for a standard deviation of 



65 

 

five, as noted in Figure 21 (b).  However, the helpfulness of matching the classifiers’ assumed 

pose model to that of the actual test data is evident by examining Figure 21 (a) and Figure 21 (c).  

 
(a) 

 

(b) 

Figure 20.  PCC comparison of Gaussian target pose uncertainty models for 

actual test data and the classifier: a) actual standard deviation = 1, b) actual 

standard deviation = 5, and actual standard deviation = 10. 
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(c) 

Figure 21.  Continued. 

 

When knowledge of the actual target pose angle standard deviation is less certain, the results 

of Figure 21 (c) indicate it is better to assume a wider standard deviation for the classifier.  A 

narrower assumption on target pose angle uncertainty for the classifier produces poor results 

when the actual target pose angle uncertainty is wide (dashed curve).  However, a broader 

assumption on target pose angle uncertainty gives more favorable results (dash-dot curve). 

The third series of simulations examined classifier performance using data with a pose 

angle drawn uniformly.  Classifier performance under these conditions is shown in Figure 22.  As 

expected, the uniform target pose angle uncertainty performed the best, considering the narrower 

certainty assumptions inherent in the known and Gaussian target pose angle models.  The 
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assumed “known” target pose angle performance mimics selection based upon a three-sided coin 

flip.  In this case, the PCC values hover around 33% for all noise levels.   

 

Figure 22.  Classifier performance for actual target pose angle uncertainty 

modeled as uniform. 

 

Note that in general, as the test data target pose angle becomes more uncertain, the 

classifier performance decreases.  For example, comparison of the uniform target pose angle 

results from Figure 19 and Figure 22 show degrading PCC performance as the test data target 

pose angle becomes less certain. 

4.3.3 Test Scenario 3 

The goal of test scenario 3 was to evaluate the impact of various CCD effects on the derived 

classifier.  The intent of tests 8, 9, and 10 in Table 7 was to confuse the classifier by introducing 
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an omnidirectional scatterer, camouflaging a dominant scatterer, or reconfiguring the plate 

normals of target class 1, respectively.  Several simulations were executed with the same sensor 

placement – 0, 36, and 90 degrees – that produced the results presented in Figure 17.  Test data 

was generated for each of the test target configurations using the previously generated target class 

1 data set as a base.  Each test target configuration was tested independently to produce confusion 

matrices that included all three target classes.  The resulting confusion matrices were used to 

derive PCC results related to tests against the non-CCD version of target class 1.  Thus, the PCC 

results explore the robustness of the classifier, relative to RCS modifications mimicking target 

class 1.  PCC results for each of the test target configurations using a monostatic configuration 

are shown in Figure 24.  These results can be contrasted with the multiple-transmit, multiple-

receive platform configuration classifier output shown in Figure 25.   

The first key observation from Figure 24 is that all platforms show degradation in target 

classification to varying degrees for each of the CCD modifications.  These results are expected 

since the training data does not include the tested modifications, so the classifier has more 

difficulty in matching the test data to the training data.  The second key observation is how 

performance varies based upon platform placement.  When compared to the no-CCD 

performance curves, platforms 2 (36 degrees) and 3 (90 degrees) do a reasonable job in properly 

classifying target class 1 with plate and region modifications.  With respect to the omnidirectional 

scatterer, platforms 1 (0 degrees) and 2 demonstrate a significant inability to properly classify the 

tested target as target class 1.   
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(a) 

 

(b) 

Figure 23.  Monostatic PCC performance for target class 1 when subjected to CCD 

effects: a) platform 1 (top), b) platform 2 (middle), and c) platform 3 (bottom). 
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(c) 

Figure 24.  Continued. 

 

 The variable and poor performance attributable to each platform in a monostatic 

configuration is improved dramatically when multi-static returns are incorporated.  The 

classification results of the multiple-transmit, multiple-receive platform configuration are 

provided in Figure 25.   One of the most significant improvements is achieving ninety percent or 

better PCC up to and including 18 dB noise power regardless of the CCD modification.  Even the 

most effective CCD technique in this platform configuration – plate modification – has a PCC 

curve that meets or exceeds the best curve in Figure 24.  Another important observation from 

Figure 25 is how well the multiple-transmit, multiple-platform configuration performed for each 

of the CCD modifications when compared to no-CCD modification.  The classification curves for 

each of the CCD modifications mimic the no-CCD curve with a reduction in PCC of no worse 
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than ten percent.  Interestingly, there appears to be no benefit to using a regional CCD effect 

since its PCC curve is almost identical to the no-CCD curve. 

 

Figure 25.  Multiple-transmit / multiple-receive PCC performance for target class 1 

when subjected to CCD effects. 

 

4.4 Summary 

A multi-static, distributed, multi-sensor classifier was derived and shown to be able to 

perform better than a monostatic, distributed, multi-sensor classifier.  The performance 

improvements attributable to the new classifier were achieved by leveraging multi-static returns.  

Dominant scatterer returns facilitated better classifier performance as the number of dominant 

scatterers increased.  Further, our simulations illustrated that the performance increases arising 

from using multi-static data were not merely due to non-coherent gain improving the signal-to-

noise ratio; these improvements arose from the way scattering varies with angle. 
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The derived classifier was studied under conditions of varying target pose angle uncertainty.  

Simulations using a known target pose angle demonstrated the upper performance bound for the 

classifier.  Gaussian target pose uncertainty models for test data generation and the classifier were 

explored in varying combinations to demonstrate levels of performance.  The principal 

conclusion from these studies is that if there is any doubt about how accurately the pose of the 

target is known, it is generally wiser to be pessimistic and assume a larger standard deviation.  

Guessing “wider” does not accrue the same kind of penalty as guessing “narrower.” An 

unjustifiably overconfident classifier will tend to deceive itself. 

The impact of CCD effects on the derived classifier was also explored.  Target class 1 was 

modified to exhibit three different CCD effects: 1) single omni-directional scatterer, 2) 

camouflage region covering a dominant scatterer, and 3) modification of dominant scatterer plate 

normals intended to mimic target class 2.  Simulations were performed to examine how each 

CCD effect influenced monostatic classifier performance at each radar platform.  The results 

demonstrated varying levels of confusion at each platform.  Marginal monostatic classifier 

performance was compared to classification rates achieved with a multi-static, distributed, mulit-

sensor platform configuration.  The multi-static, distributed, multi-sensor classifier demonstrated 

exceptional performance with regard to ignoring the CCD effects.  The maximum deviation in 

classifier performance between targets with and without CCD effects was 10%. 

Finally, the derived classifier’s dependence on sensor placement was examined.  Two 

different combinations of sensor placement were used to demonstrate significant differences in 

classifier performance.  Classification performance reductions of 30% were noted for some noise 

power levels.  Similarly, a reduction of 5 dB in noise power was required to maintain a 

reasonable classification rate in some simulations.  These results indicate a substantial need for 
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understanding the role of sensor placement in the multi-static, distributed, multi-sensor classifier.  

This topic is explored in the next section, Chapter 5. 

  



74 

 

5 USING AN INFORMATION THEORETIC-BASED DISTANCE 

MEASURE TO IMPROVE SENSOR PLACEMENT 

This chapter details an approach for identifying sensor placements with a potential for 

providing high target classification rates. The approach outlined uses a surrogate measure, 

Kullback-Liebler divergence (KLD), in place of probability of error to establish a relationship 

between differences in probable target class probability distributions and PCC.  Due to some 

strict conditions required by the KLD derivation that cannot be met, in general, by our problem, a 

lower bound on an approximate KLD is derived.  Henceforth, the lower bound on the 

approximate KLD is referenced as “the KLD” for brevity. 

The KLD is parameterized by relative transmit incidence and receiver angles to support 

comparisons of KLD and PCC values for various sensor placements.  The KLD and PCC 

analyses are augmented by the development of two sensor placement algorithms.  An optimal 

algorithm is derived that leverages an exhaustive search of all possible transmitter and receiver 

angles.  A more efficient approximate algorithm is also developed to analyze the tradeoffs 

between reduced algorithmic complexity and classification rates.  Simulations are conducted to 

demonstrate the benefits of using either algorithm for improved target classification. 

5.1 Sensor Placement Algorithms 

5.1.1 Distance Measure 

The notion of a distance measure is pertinent to identifying optimal sensor placement 

within a multi-sensor ATR environment.  Since the HRR profiles obtained by each sensor are 

stochastic, target classification depends upon the probability densities describing the HRR 

profiles.  The characteristics of these distributions dictate the probability of misclassification.  
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The goal of this chapter is to find configurations where the classifier identifies the probable target 

class with a minimal probability of error.  Minimizing the probability of error with multi-

dimensional data sets is often difficult.  In such cases, a reasonable substitute for the probability 

of error may be a distance measure between the probability distributions of competing target 

classes.   

There is a rich literature relating to probability of error and various distance measures, such 

as Kullback-Leibler, J-divergence, and Bhattacharyya measures.  In [42], the use of a suboptimal 

distance measure was shown to be an effective surrogate for the minimum probability of error.  In 

this dissertation, the KLD examined in [42] has been selected to assist with sensor placement.  

The derivation of the KLD in the context of a multi-static, distributed, multi-sensor environment 

is provided in the next section. 

5.1.2 Kullback-Leibler Divergence 

The concept of a distance measure between probability densities is rooted in information 

theory.  In [43], Kullback and Leibler established a measure for discriminating between two 

probabilistic hypotheses
5
.  KLD is defined as the “mean information for discrimination between 

i
H   and 

jH ,” where 
i

H  denotes the hypothesis of target class i  being the true target class.  The 

term “information” refers to the classical definition as provided in [44] and introduced by 

Shannon in [45].  Information can be described as the amount of uncertainty associated with a 

random variable.  Because the KLD characterizes the separation between two hypotheses, the 

relevant random variable must be a function of the two hypotheses’ probabilistic representations.  

                                                      
5
 The Kullback-Leibler distance measure does not satisfy the triangle inequality due to its asymmetry.  

However, most literature still refers to the resultant as the Kullback-Leibler distance measure.  We use the 

same liberties throughout this thesis. 
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The random variable provided in [43] is prescribed as the ratio of the two applicable probability 

densities, 
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where the dependence of z
�

 on transmit, receive, and target pose angles has been suppressed for 

clarity; and, 
i

Z   designates the support set relevant to the expectation operation, assured to 

include all sample space elements for both densities.   

 The multi-dimensional integral defined in (5.2) requires integration over all possible 

target pose angles.  For purposes of simplifying the conceptual and computational requirements 

of this study, the derivation of the KLD employs a chosen “true” target pose angle for the 

referential target class i , 
' true

pose poseθ θ=  although the classifier is unaware of this “true” pose angle.   

The detailed derivation of (5.2) is provided in the Appendix.   

The derived KLD provides a single scalar representing the difference in the multivariate 

probability distributions.  Our sensor placement algorithms seek to identify the transmit and 

receive angle combinations producing the largest KLD value, so we modify (A.17) to explicitly 
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express KLD as a function of 
,a bθ .  Removing the summation operators reveals the desired target 

class divergence measure, 
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Equation (5.3) represents the base expression used to develop the optimal and approximate sensor 

placement algorithms in Sections 5.1.4 and 5.1.5, respectively.  A deeper understanding of the 

KLD measure can be obtained by examining contributions from each of the terms in (5.3).  Terms 

5.3.1 and 5.3.3 are scaling factors to encapsulate the effects of target power.  This is evident by 

analyzing the covariance determinant operation.  Since the determinant of the covariance matrix 

is the product of the eigenvalues, which are representative of the power in each HRR profile 

dimension, the determinant operation provides a general measure of power in the target return.  

Since the covariance matrices are derived from normalized HRR profiles, Terms 5.3.2 and 5.3.4 

provide a relative distance measure based upon covariance structure.  If 
i

C  and 
jC  have the 

same structure, terms 5.3.2 and 5.3.4 cancel one another.  However, if there is a difference in 

structure between 
i

C  and 
jC , the KLD value is increased.  Finally, term 5.3.5 is the 

Mahalanobis distance measure for 
i
µ  in relation to the probability distribution statistics 

associated with target class j .  This term provides a general measure of how different the mean 

HRR profile for target class i  is when compared to the statistical properties of target class j .  
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When interpreting these formulas, remember that the data used is the magnitude of the HRR 

profiles, and not the original complex values. 

5.1.3 Operational Scenario Definition 

Consider a scenario where three radar platforms are coordinating positions relative to a 

ground-based, stationary target.  One radar platform is responsible for transmission, while the 

other two platforms are receivers.  Sensor data from the two receive platforms is transmitted to a 

central radar platform.  This central processing platform could be, but is not necessarily, the 

transmission platform.  An example scenario is provided in Figure 26. 

 

Figure 26.  Scene geometry demonstrating multi-platform interrogation of 

a ground-based, stationary target. 

 

Each receiver ( 1b
X  and 2b

X ) is responsible for collecting reflectivity data within a 

prescribed slow-time data collection time span.  Data is captured via a straight line flight path 

tangent to a consistent target range radius, as described in Section 4.2.1.  HRR profiles are 
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generated from the target reflectivity data and sent to a central processing platform employing the 

classifier defined in Section 4.1. 

5.1.4 Optimal Sensor Placement Algorithm 

The premise for the optimal sensor placement algorithm is to identify the best placement 

of a single transmitter and two receive platforms as determined by the highest KLD value 

between two target class probability densities.  A three-dimensional placement algorithm can be 

achieved by parameterizing (A.17) in accordance with the three angles shown in Figure 26, 
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Equation (5.4) is used to identify the optimal transmitter and receiver placements according to 

( ){ }
1 2

1 2 1 2
, ,

ˆ ˆ ˆ, , arg max , , ,
a b b

true

a b b a b b pose
optimal

KLD
θ θ θ

θ θ θ θ θ θ θ  =  ,   (5.5) 

where ˆ
a

θ , 1
ˆ
b

θ , and 2
ˆ
b

θ  are chosen placements of the transmitter and receivers, respectively. 

5.1.5 Sensor Placement Approximation Algorithm 

The optimal sensor placement algorithm specified in Section 5.1.4 requires a KLD 

computation for each permutation of the three independent reference angles.  Although this will 

typically be offline computation, the processing requirements could prove burdensome in some 

instances particularly if the algorithm was extended to include additional platforms.  A less 
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computationally-intensive approach could begin by using (5.3) to find the transmit and receive 

angles for a two-platform scenario.  Then, using the specified transmit angle and receive angle, 

the algorithm examines KLD values for all possible receive angles to select a third platform’s 

receive angle.  This approximate sensor placement approximation algorithm can be formalized as 

( ){ }

( ){ }

1

2

1 1
,

1 2 1 2 2 1

ˆ ˆStage 1: , arg max , ,

ˆ ˆ ˆ ˆ ˆ ˆStage 2: , , arg max , , , ,    

a b

b

true

a b a b pose

true

a b b a b b pose b b
approx

KLD

KLD

θ θ

θ

θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

  = 

  = ≠ 

   . (5.6) 

One improvement on this approximate algorithm might be to add additional steps cycling through 

the parameters; for instance, we could add a Stage 3 in which we try to refine 
a

θ  by maximizing 

over it while keeping the receive angles found in Stages 1 and 2 fixed, and so on.  More 

complicated scenarios with more than three platforms might benefit from extension of such 

approaches; for instance, a scenario with six platforms might involve optimizing each parameter 

in turn while holding the other four fixed, cycling through in various combinations.  We leave 

these issues as avenues for future work. 

5.2 Simulation 

The effectiveness of using KLD to predict classifier performance and place platforms is 

examined using KLD sets for a two-class scenario.  The two target classes exhibit significant 

similarities at many angles and dissimilarities at other angles, as described in Section 4.2.2.1.  

The algorithms specified in (5.5) and (5.6) require multi-static HRR profile data for two target 

classes at each transmit (
a

θ ) and receive (
b

θ ) angle combination.  Using the operational scenario 

defined in Section 5.1.3, bistatic HRR profile data was simulated according to the specifications 

in Chapter 3.  Multi-static HRR profiles generated using the prescribed straight-line flight path 
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produce 90 slow-time samples per receive angle.  Odd-numbered slow-time samples form a 45-

sample data set for each transmit and receive angle combination.  Additive, white Gaussian noise 

was added to each bistatic HRR profile for thirteen noise levels in 3 dB increments, 0 dB to 36 

dB.  These data sets were used by each angle selection algorithm to identify sensor placements 

for each noise level.  All simulations were executed using a true target pose (
true

pose
θ ) of zero 

degrees. 

5.3 Simulation Results 

5.3.1 Single Transmitter, Single Receiver Results 

5.3.1.1 KLD Surface Plots 

The KLD values generated by (5.3) produce a surface parameterized by transmit and receive 

angles.  This surface provides a clear indication of where two target classes are similar and 

dissimilar.  The KLD values plotted in Figure 27 were computed using (5.3) under an expectation 

operation with respect to target class 1. 

Several key observations are evident from Figure 27.  First, the dominant scatterers 

attributable to target class 1 result in relatively large KLD values, as shown by the diagonal line 

traversing the plot from upper-right to lower left.  These lines correspond to the distinctive flat 

plate returns from target class 1 as the transmitting platform transitions through all 120 possible 

transmit angles.  The returns from target class 2’s flat plates are not noticeable in Figure 27.  

However, returns from target class 2 flat plates are apparent when the expectation operation in 

(5.3) is performed with respect to the target class 2 probability distribution.  The KLD surface of 

class 2 versus target class 1 taken with respect to the target class 2 probability distribution is 

shown in Figure 28. 
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Figure 27.  Surface plot showing KLD values comparing target classes 1 and 2 at 9 dB 

noise power. 

 

Figure 28.  Surface plot showing KLD values comparing target classes 2 and 1 at 9 dB 

noise power. 
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In Figure 28, the distinctive diagonal lines identifying flat plate scatterer returns have shifted in 

accordance with the flat plate normals associated with target class 2.   

A second prominent observation is the low KLD value regions present from upper-left to 

lower-right in both Figure 27 and Figure 28.  These regions indicate transmit-receive angle 

combinations where the two target classes are similar.  The transmit-receive angle combinations 

in these regions correspond to large bistatic angles.  As discussed in Section 3.2, large bistatic 

angles result in target returns being compressed to just a few range bins.  The statistical properties 

for these returns (i.e. sample mean and sample covariance) provide little distinction between 

target classes, thereby giving similar KLD values. 

A third significant observation is the difference in target classes due to non-dominant 

scatterers.  In both Figure 27 and Figure 28, large diagonal regions of moderate KLD values 

extend from the upper-left to lower-right of the plot.  These regions indicate the potential to 

distinguish between target classes even if unique, dominant scatterers are not present for a 

particular target class.  

5.3.1.2 PCC vs. KLD 

The figures presented in Section 5.3.1.1 suggest specific combinations of platform transmit 

and receive angles are more likely to result in better classification.  This is indeed the case, in 

general, when a plot of PCC values constructed in the style of the previous section is analyzed.  A 

plot of PCC values computed using (4.10) is shown in Figure 29.  Comparing Figure 27 and 

Figure 29, there appears to be a correspondence between higher KLD and PCC.  While the 

figures do not match exactly, the first three key observations noted in Section 5.3.1.1 are clearly 

evident in Figure 29.  The presence of the target class 1 dominant scatterers, lower KLD values in 

large bistatic angle regions, and the ability to still distinguish between target classes on some non-
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dominant scatterer regions are visible.  The complimentary comparison of PCC values for target 

class 2 versus target class 1, shown in Figure 30, demonstrates the same key behavioral 

characteristics relative to KLD values. 

The relationship between high KLD values and high classification rates is supported further 

by observing PCC rates for a collection of KLD values within a margin of the peak KLD value.  

A comparison of PCC and locations of high KLD values are shown in Figure 31.  The locations 

of KLD values above 90%, 75%, and 50% of the peak KLD value are indicated in subplots (b) 

through (d) of Figure 31, respectively. 

 

Figure 29.  Surface plot showing PCC values comparing target classes 1 and 2, for true 

target 1, at 9 dB noise power. 
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Figure 30.  Surface plot showing PCC values comparing target classes 2 and 1, for true 

target 2, at 9 dB noise power. 

 
 (a) (b) 

 

Figure 31.  Comparison of PCC and high KLD values at different peak thresholds for target class 1 versus 

target class 2 at 9 dB noise level: (a) PCC, (b) 90% KLD threshold, (c) 75% KLD threshold, and (d) 50% 

KLD threshold. 
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 (c) (d) 

 

Figure 31.  Continued. 

 

Two key items are observed in the threshold subplots.  First, reflections from the dominant 

scatterers produce the greatest KLD values, as noted by the upper-right to lower-left diagonals.  

Second, non-dominant scatterer KLD values show target class separation once the threshold is 

lowered to 50% of peak.  Notably, subplot (d) looks very similar to PCC, as shown in subplot (a).  

These results might suggest lowering the KLD threshold to 50% would increase the number of 

transmit-receive angle combinations providing good classification rates.  However, this is not the 

case.  An in-depth analysis of the PCC values associated with KLD values identified in subplot 

(d) indicates a lower probability of having a good classification rate.  A histogram of PCC values 

for transmit-receive angle combinations identified in Figure 31(d) is shown in Figure 32.  The 

histogram reveals good classification rates for a majority of the angle combinations, but less than 

ninety percent (an arbitrary but reasonable recognition rate) for other angle combinations.  The 

significance of underperforming angle combinations is evident when compared to PCC values for 

angle combinations derived from dominant scatterer reflectivity only.  A histogram of PCC 

values associated with transmit-receive angle combinations identified in Figure 31 (c) is provided 

in Figure 33. 
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Figure 32.  PCC histogram for platform positions associated with target class 1 

versus target class 2 KLD values within 50% of peak KLD at 9 dB noise level. 

 

Figure 33.  PCC histogram for platform positions associated with target class 1 

versus target class 2 KLD values within 75% of peak KLD at 9 dB noise level. 

 



88 

 

Note the significant improvement in angle combinations producing good classification rates.  

Specifically, only one out of 33 possible angle combinations produce a PCC value of less than 

90%.  The comparison of PCC values in Figure 32 and Figure 33 suggest the presence of 

dominant scatterers can improve classification rates appreciably. 

5.3.1.3 Optimal Classification Angle Selection 

The results presented in Section 5.3.1.2 illustrate a correspondence between KLD and PCC.  

This relationship may help identify transmit and receive platform positions that produce the best 

classification rates.  The next step is to demonstrate the effectiveness of KLD in selecting a 

single, optimal transmit-receive angle combination.  In this scenario, (5.3) is used to determine 

the optimal positions for identifying each target class with one transmit and one receive platform 

across several noise levels.  Two Monte Carlo simulations were executed using the form of (5.3)

commensurate with the target class attempting to be identified.  The exact form shown in (5.3) is 

the result of an expectation with respect to target class 1.  A complimentary form exists when 

considering target class 2 by switching i  and j .   The highest KLD value for target class 1 was 

achieved for transmit and receive angles of 63 and 333 degrees, respectively.  Similarly, the 

chosen transmit and receive angles for target class 2 were 108 and 324 degrees, respectively.   

The corresponding PCC values for these transmit-receive angle combinations are shown in 

Figure 34, demonstrating excellent performance when compared to classification rates for all 

possible transmit-receive angle combinations.  For example, the target class 1 PCC value for the 

27 dB noise level was better than 99.97 % of all other 14,400 possible transmit-receive angle 

combinations.  Similar performance was observed at other noise power levels.  A key observation 

associated with the algorithm’s transmit and receive angle selections is that these pairs of angles 
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are consistent with reflections from the dominant scatterers of each target class.  This is the 

expected result given conclusions drawn in Section 5.3.1.2. 

 

Figure 34.  PCC curve for target classes 1 and 2 using transmitter and 

receiver placements selected by the two-platform KLD. 

    

5.3.2 Single Transmitter, Multiple Receiver Results 

An analysis of the optimal and approximate sensor placement results for three platforms were 

conducted using (5.5) and (5.6).  Each sensor placement algorithm was analyzed using a KLD 

representing different expectation assumptions: 

1. KLD values generated with an expectation operation associated with target 

class 1, 12KLD ; 

2. KLD values generated with an expectation operation associated with target 

class 2, 21KLD ; 
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3. KLD values associated with a symmetrized KLD calculation referred to as 

the J-divergence, 
JD

KLD . 

The KLD expressions used to identify optimal placements with respect to each individual target 

class are inconvenient for identifying platform positions where both target classes must achieve a 

high classification rate.  PCC maximization for both target classes requires consideration of the 

distance between target classes i  and j  with respect to both expectation assumptions 

simultaneously.  Although it does not enjoy the same theoretical basis as the Kullback-Leibler 

divergence its terms are drawn from, the J-divergence is a popular choice in conditions requiring 

this type of symmetrization.  As defined in [43], the J-divergence includes KLD expressions from 

both expectation assumptions: 

( ) ( )JD ij ji i j
KLD KLD KLD E I E I= + = +      z z

� �
.   (5.7) 

Monte Carlo simulations were performed over 13 noise power levels (0 to 36 dB) for each 

combination of expectation assumption and sensor placement algorithm.  Several key 

observations were apparent when analyzing the suggested placements at each noise level.  First, 

placements at lower noise levels (less than 15 dB) varied considerably with noise level.  

However, placements became more stable as the noise level increased.  This behavior can be 

attributed to the non-Gaussian nature of the HRR profiles at the lower noise levels.  Our KLD 

expression explicitly assumed the magnitude signals were Gaussian.  With less Gaussian noise 

“corrupting” the HRR profiles at lower noise levels, the probability distributions looked less 

Gaussian and more Rician.  At the higher noise levels, the HRR profile probability distributions 

looked more Gaussian, which allowed the KLD algorithm to consistently differentiate the targets 

at the suggested placements.  The angles identified in this noise region are presented in Table 8.     
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Second, the KLD algorithms provided several angle combinations attributable to high 

classification rates.  In these instances, the KLD values for the different angle combinations 

approached one another asymptotically as the noise level increased.  As hypothesized, a detailed 

analysis of the PCC curves for each of these angle combinations demonstrated equally good 

classification performance.  This observation supports the conclusions drawn in Section 5.3.1.2 

regarding the selection of angle combinations within 90% of the peak KLD value.    

 

Table 8.  Platform transmit and receive angles obtained from the optimal and approximate 

sensor placement algorithms.   

Expectation 

Assumption 

Optimal Approximate 

Transmit 

Angle 

(Degrees) 

Receive 

Angle 1 

(Degrees) 

Receive 

Angle 2 

(Degrees) 

Transmit 

Angle 

(Degrees) 

Receive 

Angle 1 

(Degrees) 

Receive 

Angle 2 

(Degrees) 

Class 1 vs. 

Class 2 
327 69 114 63 333 174 

Class 2 vs. 

Class 1 
241 162 171 108 324 72 

J-divergence 327 69 114 209 177 318 

 

5.3.2.1 Three-platform versus Two-platform Performance 

Classifier outputs were computed for each of the placements identified in Table 8.  Outputs 

for the optimal and approximate algorithm placement selections were compared to those 

produced in Section 5.3.1.3 for the two-platform scenario, as shown in Figure 35.  For target class 

1, classification rates for the optimal sensor placement exceeded the rates achievable with the 

two-platform placement by up to 27%.  These results lead us to believe, at least in the case of 

target class 1, that the approximate placement algorithm could be less reliable.  This is a 

reasonable conclusion given the approximate algorithm’s restrictions on placing the second 

receiver.  PCC performance for target class 2 is clearly better for the optimal placements when 
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compared to the equivalent two-platform scenario until PCC rates close to 50% are achieved.  We 

expect inconclusive behavior once rates get close to 50% since the noise level forces the classifier 

to essentially perform a “coin flip.”   

 

(a) 

 

(b) 

Figure 35.  PCC performance plots showing optimal and approximate sensor placement 

classification performance for (a) target class 1 and (b) target class 2, relative to two-platform 

optimal placement performance. 
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5.3.2.2 Intelligent versus Ad-hoc Placement Selection 

The classification rates associated with both placement algorithms were also compared to 

those obtained in Section 4.3 for the ad-hoc sensor placements.  This comparison demonstrates 

improvements attributable to intelligent selection versus ad-hoc sensor placement, as shown in 

Error! Reference source not found..  For both target classes, the optimal and approximate 

sensor placements exhibited much better classification performance than the ad-hoc placements.  

Classification rate increases of up to 40% and 20% were achieved for target classes 1 and 2, 

respectively.   

 

(a) 

Figure 36.  PCC performance plots showing optimal and approximate sensor placement 

classification performance, for expectation in the KLD expression taken with respect to (a) 

target class 1 and (b) target class 2, relative to ad-hoc sensor placement. 
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(b) 

Figure 36.  Continued. 

 

These results are even more dramatic when considering the platform configurations employed 

under both scenarios.  In the case of the optimal and approximate placement results, three 

platforms were used in a single-transmit, dual-receive configuration; however, the ad-hoc 

placement results used three platforms in a triple-transmit, triple-receive configuration.  The 

optimal and approximate classification results are achieved by using two classifier inputs 

compared to nine inputs from the ad-hoc placement configuration.   

 

5.3.2.3 Efficacy of the J-divergence Measure 

The results presented in Sections 5.3.2.1 and 5.3.2.2 analyzed the performance of the 

placement selection algorithms in the context of individual target class identification.  An analysis 

of placements yielding good classification rates for both target classes simultaneously required 
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the J-divergence.  Using the J-divergence placement selections shown in Table 8, PCC curves for 

the optimal and approximate placements were compared to those obtained from the ad-hoc 

placements.  The results shown in Figure 37 demonstrate good performance for the J-divergence 

placements.  Both placement algorithms produce PCC curves exceeding those achieved by ad-hoc 

placement.   

 

Figure 37.  PCC comparison of J-divergence and ad-hoc sensor placements. 

 

5.4 Summary 

A distance measure between two likely target classes was used to demonstrate how 

leveraging statistical differences in target class probability densities can lead to higher 

classification rates.  An approximation of the multivariate Kullback-Leibler distance measure was 

derived to identify optimal and approximate sensor placements for transmitting and receiving 

radar platforms.  The distance measure was used to demonstrate agreement between high KLD 
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and PCC values.  PCC values associated with the optimal and approximate sensor placement 

algorithms exceeded up to 99.97% of the remaining transmitter-receiver angle combination PCC 

values.  While transmitter-receiver angle combinations not associated with a dominant scatterer 

reflectivity path performed reasonably well, angle combinations attributable to dominant scatterer 

reflectivity performed extremely well.   

Several key similarities between KLD and PCC were noted, including the presence of 

dominant scatterers, lower values in large bistatic angle regions, and the ability to distinguish 

between target classes in non-dominant scatterer regions.  The KLD measure consistently 

revealed the presence of dominant scatterers, regardless of noise level and expectation operation 

assumption. 

A comparison of the optimal and approximate sensor placement algorithms revealed both 

algorithms provide excellent classification performance.  However, the approximate algorithm 

demonstrated several performance inconsistencies attributable to the prescribed approximations.  

Comparison of the single-receive and two-receive platform classification performance results 

showed the benefits of adding a second receive platform.  The superiority of each angle selection 

algorithm was demonstrated by comparing earlier results for ad-hoc sensor placement to those 

produced by the intelligent selection algorithm for two receivers.  The performance of the 

intelligent selection algorithm was even more notable given the significantly lower number of 

classifier inputs required to achieve the observed PCC values.  Symmetrization of the KLD for 

purposes of identifying platform placements yielding good PCC performance for both target 

classes simultaneously was successful. 
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6 CONCLUSIONS AND FUTURE WORK 

The theoretical results detailed in this dissertation advance the state of the art for ATR.  

Previous studies in ATR independently demonstrated the benefits of using multiple perspectives 

and bistatic geometry.  The theoretical analysis presented in Chapter 4 merged these two concepts 

to show how multi-static reflectivity from dominant scatterers can lead to improved target 

recognition.  The inclusion of multiple transmit and receive sensors permitted the exploitation of 

bistatic geometry.  This was leveraged further by deriving an information-theoretic distance 

measure for determining placement of the transmit and receive sensors.  The derived measure 

exhibited an ability to improve classification rates relative to ad-hoc placement.  To our 

knowledge, there are no previous studies addressing sensor placement for optimizing target 

classification with multi-static radar. 

6.1 Multi-static, Distributed, Multi-sensor Classifier 

A detailed explanation and derivation of a multi-static, distributed, multi-sensor classifier 

was presented in Chapter 4.  The classifier was subjected to several critical analyses to determine 

its accuracy and robustness.  A comparative analysis was performed to demonstrate that increases 

in target classification rates were attributable to bistatic geometry and not due to the mere 

addition of sensors.  For the scenarios considered, the simulations revealed PCC improvements of 

approximately 25% were achievable by adding additional monostatic sensors.  However, the 

approximate algorithm generally did not perform as well as the optimal algorithm.   

Contributions of dominant scatterers were shown to improve classification rates by as 

much as 30% over similar tests with targets lacking dominant scatterers.  These results were 

expected and formed the basis for the exemplary findings associated with the sensor placement 
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algorithms.  A series of simulations was performed to assess the classifiers as a function of 

mismatches in target pose angle assumptions.  Classification performance curves showed 

expected behavior as the uncertainty in target pose angle transitioned from deterministic to 

Gaussian to uniform.  In cases where target pose angle uncertainty was assumed to be Gaussian, 

matching the classifier’s assumed pose angle error (i.e., standard deviation) to the actual pose 

angle error provided the best classification results.  

Classifier tests were also executed to analyze performance related to modified target 

modeling camouflage, concealment, and deception.  Monostatic receiver classification rates 

illustrated the difficulty in successfully identifying modified targets.  The multi-sensor classifier 

demonstrated superior performance in identifying the modification.  Classification rates within 

10% of the unmodified target classification rates were achieved by the multi-sensor classifier. 

An assessment of the classifier’s performance related to different transmitter and receiver 

configurations was performed.  Specifically, two multi-sensor configurations were tested to 

assess classification performance for single transmitter, stand-off and multiple-transmit, multiple-

receive scenarios.  Classification performance for the single transmitter scenario, while not as 

good as the multiple-transmit scenario, showed promise in providing good classification.  Both 

configurations exhibited excellent performance at lower SNR regions with improvements up to 

30% over monostatic configurations. 

Finally, a simple test of the classifier’s performance for two ad-hoc sensor placements was 

completed.  This test revealed large variances in classifier performance based upon sensor 

placement, demonstrating the necessity of identifying a suitable sensor placement algorithm.      
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6.2 Sensor Placement for Improved Target Classification 

Works by Kullback and Leibler [43] provided the foundation for developing sensor 

placement algorithms addressing multi-sensor classification.  An information-theoretic approach 

was taken to derive two sensor placement algorithms.  These algorithms used a multi-sensor 

approximation of the Kullback-Leibler distance measure to select sensor positions producing high 

classification rates.  The distance measure worked well in a simple single-transmit, single-receive 

scenario.  The sensor placements suggested in this simple scenario consistently produced high 

classification rates.  An example for the 24 dB noise level was provided wherein the platform 

placements produced a PCC greater than 99.97% of all other possible platform placement 

combinations. 

Both sensor placement algorithms demonstrated good utility in several three-platform tests.  

In these tests, a single transmitter and two receivers were subjected to both placement prediction 

algorithms.  Suggested placements from the optimal algorithm resulted in individual target class 

PCC rates exceeding similar tests in the two-platform scenario.  Suggested placements from the 

approximate algorithm produced less conclusive, but good, PCC rates.  These tests validated the 

benefits of having a second receive platform and the usefulness of the placement selection 

algorithms.  

A comparison of the PCC curves for each placement algorithm to those obtained for ad-

hoc sensor placement was also performed.  Despite having one less receive sensor and using only 

a single transmitter, the single-transmit, dual-receive configuration with intelligent placement 

outperformed the ad-hoc placements.  Attempts to maximize PCC values for both target classes 

simultaneously were also successful; noting PCC curves from both algorithms’ platform 

placements exceeded those from the ad-hoc placements.  
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6.3 Future work 

The work presented in this dissertation provides a basis for further study of multi-static, 

distributed, multi-sensor ATR.  The classifier and distance measure results presented in Chapters 

4 and 5 were derived from a two-dimensional geometric model.  Extension of the geometric 

model to three dimensions, possibly employing a robust EM code such as XPATCH or 

Lucernhammer, would offer a more complete analysis.  An analysis of the impact of limited 

training data would also prove useful.  The simulations included in this thesis assumed training 

data sets for all transmit and receive angles were available to the classifier.  It is reasonable to 

assume that a limited training data set would influence PCC and KLD.  Another significant 

enhancement to this effort would be the consideration of more than two probable target classes in 

the KLD analysis.  Other potential topics include the effects of the HRR profile range window on 

classification performance and a Cramer-Rao bound analysis on pose estimation.  Finally, 

potential application of the derived algorithms to other target recognition venues would be 

interesting.  For example, are the algorithms suitable for classifying human and airborne objects? 
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A. APPENDIX – DERIVATION OF A MULTI-SENSOR 

KULLBACK-LEIBLER DISTANCE MEASURE 

Detailed below is the derivation of the Kullback-Leibler distance measure between target 

classes 1 and 2 calculated with respect to the target class 1 probability distribution.  The final 

expressions are actually a lower bound on the approximate Kullback-Leibler distance, but for 

brevity, we omit the modifier “a lower bound on the approximate” through the text of this 

dissertation and simply refer to it as “the KLD”.  A similar derivation can be performed to 

produce a lower bound on the approximate Kullback-Leibler distance measure between the same 

target classes but with respect to the target class 2 probability distribution.   

From (5.2), 
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Here, replacing an integral with its maximum value can be thought of as approximating the 

density by a single Dirac impulse function sampling the density at its maximum point.  This is a 

rough adaptation of the approach to nuisance parameters taken by Grenander, Srivastava, and 
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Miller [46], who used Laplace’s method to integrate posterior densities over nuisance pose 

parameters by approximating them as Gaussian;
6
 we essentially further approximate this 

Gaussian as being an impulse.  The quantity inside the expectation in (A.2) is similar in spirit to 

the first term in Equation (8) of [46].  The authors of  [46] have an additional term involving the 

Fisher information on the pose parameters that provides a more direct link between classifier 

performance and the ability to estimate nuisance parameters; incorporating such a term into the 

derivation provided here, and exploring what effects it would have, is left as a direction for future 

research. 

We further approximate the expression by assuming that the maximizing 
'θ  in the numerator 

is 
true

pose
θ .  This is analogous to the application of Proposition 1 on p. 1661 to arguments in the left 

column of p. 1662 of [46] and the “asymptotic situation” result in Section III.A of [46].  The 

maximization of 
"

pose
θ  in the denominator can be intuitively thought of as the pose that makes the 

confusing target “look most like” the true target; a similar argument is made in Section V of [46].  

In our case, we use: 
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 (A.3) 

Since the exponential function is monotonic, we may interchange the order of operations between 

the maximum and exponential functions in the denominator: 

                                                      
6
 Their use of a Gaussian approximation on full posterior density for the nuisance pose parameter should 

not be confused with the Gaussian likelihood of the data itself; even if the probability of the data 

conditioned on a particular pose is truly Gaussian, the mixture of Gaussians resulting from integrating out 

pose is not. 
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Applying the natural logarithm function to both numerator and denominator: 
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Substituting Gaussian multivariate probability density expressions into (A.5) and discarding 

constants: 
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The dependence of 
,a b

z
�

on 
,a bθ and

true

pose
θ  has been suppressed for clarity.  Recognizing the 

quadratic term as a scalar and using the property that the trace of a scalar is equal to the scalar: 
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Using the property of cycling matrices within the trace: 
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(A.8) 

Since the expectation function is a linear operation, we can bring the expectation operator inside 

the summations in the first term of (A.8).  To treat the second term the same way requires 

exchanging the order of the maximum and expectation operations; in general, this cannot be done 

while retaining equality, but we can exchange the operations and form a lower bound: 
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Expression (A.9) is a lower bound on the approximate KLD in (A.8). If the likelihood function is 

fairly peaked, as we have often observed, we conjecture that this bound is fairly tight. Further 

study of the tightness of this bound, as well as the accuracy of our KLD approximations in 

general, is left as an avenue for future study. 

Recognizing that the determinant terms are constants with respect to the expectation operation: 
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Since the trace operator is linear, we can swap the expectation and trace operations: 
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The covariance term ( )1
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i a b pose
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C θ  is constant with respect to the expectation, and the 

expectation of the quadratic term ( )( ) ( )( ), , , ,, ,
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is just the 

covariance matrix of ,a bz
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The matrix product ( ) ( )1

, ,, ,
true true

i a b pose i a b pose
θ θ−

C θ C θ is just the identity matrix.  Applying the 

expectation and trace operator to this quantity results in P , the dimension of ,a bz
�

: 
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Expanding the expectation operation on the remaining quadratic term: 
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Distributing the expectation operation to all expanded quadratic terms: 
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where ( ),
, true

i a b pose
R θθ  is the correlation matrix for 

,a bz
�

, 
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.  Adding and 

subtracting ( ) ( ), ,, ,
true T true

i a b pose i a b poseθ θµ θ µ θ to the terms inside the trace allows simplification to a 

more relevant formulation of the trace term.  The correlation term ( ), ,
true

i a b poseR θθ becomes

( ),
, true

i m n pose
C θθ and the quadratic mean terms can be simplified to a more compact quadratic 

form: 
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Reintroducing ( )1 "

, ,j a b poseθ−
C θ into the trace term gives a simplified final form: 
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