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Abstract

This thesis presents a mew approach to analyze profile M-FEstimators for
finite samples. The results are inspired by the ideas of [52]. The results
of [52] are refined and adapted to the estimation of components of a finite
dimensional parameter using the mazximization of a criterion functional. A
finite sample versions of the Wilks phenomenon and Fisher expansion are
obtained and the critical ratio of parameter dimension p* € N to sample
size n € N of p*/y/n < 1 is derived in the setting of i.i.d. samples and
a smooth criterion functional. The results are extended to parameters in
infinite dimensional Hilbert spaces using the sieve approach of [22]. The
sieve bias is controlled via common reqularity assumptions on the parameter
and functional. But our results do not rely on an orthogonal basis in the
inner product induced by the model. Furthermore the thesis presents two
convergence results for the alternating maximization procedure. All results
are exemplified in an application to the Projection Pursuit Procedure of [20)].
Under a set of natural and common assumptions all theoretical results can
be applied using Daubechies wavelets.

Zusammenfassung

In dieser Arbeit wird ein neuer Ansatz fir die Analyse von Profile Maxi-
mierungsschdtzern prasentiert. Die Resultate sind von den Ideen aus [52] in-
spiriert. Es werden die Ergebnisse von [52] verfeinert und ange- passt fir die
Schatzung von Komponenten von endlich dimensionalen Parametern mit-
tels der Mazimierung eines Kriteriumfunktionals. Dabei werden Versionen
des Wilks Phdnomens und der Fisher-Erweiterung fir endliche Stichproben
hergeleitet und die dafir kritische Relation der Parameterdimension p* € N
zum Stichprobenumfang n € N von p*/\/n < 1 gekennzeichnet fir den Fall
von identisch unabhdngig verteilten Beobachtungen und eines hinreichend
glatten Funktionals. Die Ergebnisse werden ausgeweitet fir die Behand-
lung von Parametern in unendlich dimensionalen Hilbertrdumen. Dabei wir
die Sieve-Methode von [22] verwendet. Der Sieve-Bias wird durch tbliche
Regularititsannahmen an den Parameter und das Funktional kontrolliert.
E's wird jedoch keine Basis benotigt, die orthogonal in dem vom Model in-
duzierten Skalarprodukt ist. Weitere Hauptresultate sind zwei Konvergen-
zaussagen fiur die alternierende Mazimisierungsprozedur zur approximation
des Profile-Schitzers. Alle Resultate werden anhand der Analyse der Pro-
jection Pursuit Prozedur von [20] veranschaulicht. Die Verwendung von
Daubechies- Wavelets erlaubt es unter natir- lichen und tblichen Annahmen
alle theoretischen Resultate der Arbeit anzuwenden.
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Notation

Before we begin we list some important notations used in this work.

If not specified otherwise we use the following convention for norms

def def
lull = [lull2 =

”AH d:ef sup _— if A e RP*™,
uekr werm |[ull||v]

T C RP x X,, denotes the parameter set, where (Xl -||) is a separable
Hilbert space, with norm || - || induced by the inner product (,-).
The elements of this set are denoted by v, which can be decomposed
into v=(0,m) e RP x X;,.

B¢ denotes the complement of a set B C T .
Conv{B} denotes the convex hull of a set BCT
X* denotes the dual Hilbert space of X. Using Riesz representation w* -

v = (u,v), for u* € X* and v € X. We ease notation and write

u'v instead of u* - v.

(ex)ren denotes a countable basis of (X, || -||). Sometimes we will abuse
notation and denote the vector (ex);,; € X™ by e, if the context
allows this.

IIg, II,, denote the projections onto RP or X respectively.

II,, : X — span{ey,..., ey} denotes the orthogonal projection onto the
span of {ei,...,en} C X for m € N. In case X7 it denotes the
projection onto the span of the first m canonical basis elements.

By(u) C X denotes the ball of radius r > 0 around u € X.
A denotes the closure of a set A C X.
int(A) denotes the interior of a set A C X.

Im(O) C Z denotes the image of the operator O : X — Z, where Z is
some vector space.

suppf C X denotes the set on which the function f : X — Z does not
take the value 0 € Z.

L(X,Y) denotes the space of linear maps from X to Y.
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[? denotes the set of square sum-able sequences {(ug)ren @ Y poq Ui <

L?(£2,v) denotes the set of Lebesgue functions h : 2 — R with [, h?%dv <
00.

14 : 2 — R denotes the indicator function of a set A C (2.

Y denotes the space of the random observations Y € Y. Further

M(Y,F) denotes the class of probability distributions on the space
Y with sigma algebra F .

IP* denotes the true underlying probability distribution of the observations
Y. When the context allows we drop the ”*” and simply write IP.

L :7 xY — R denotes the criterion functional. In the case of maximum

likelihood estimation for n € N i.i.d. observations and P, < v it
equals

£(o,¥) = ;bg (o).

N(u,V) denotes the Gaussian distribution with mean w € RP and covari-
ance matrix V € RP*P.

@ : R — [0,1] we denote the cumulative distribution function of N(0,1).
X;% denotes the Chi-square distribution with p € N degrees of freedom,

i.e. the law of [|€]|2 > 0 for & ~ N(0,1I,), where I, € RP*P denotes
the identity operator.

X}%(IB) denotes the generalized Chi-square distribution with p € N degrees
of freedom, i.e. the law of [€[|> > 0 for & ~ N(0,IB) with some

positive semi definite symmetric matrix IB € RP*P .

e P .
— denotes convergence in distribution and — convergence in proba-
bility.

P,, denotes the empirical process of the sample {Y7,...,Y,} C Y for some
n € N, i.e. with some space Z the empirical process is defined as

1 n
P, {f: Y2} =2, an;f(Yi).

£(X) denotes the law of the random variable X € X.



£(X)* £(Y) denotes the convolution of the two laws £(X), £(Y") i.e. the
law of X +Y .

I, € RP*P denotes the identity matrix.

For two matrices A, B € RP*P we denote A > B if A— B € RP*P ig
positive definite.

0* € RP denotes the target of estimation.
6 € RP denotes the profile M-estimator.

0+ C R? denotes for some @ € R? the subspace {6°; 876° = 0}.

SPt def {8 eRP: ||0]| =1, 6 > 0} C RP denotes the upper half sphere.
Lra € Z denotes the largest integer smaller than or equal to =z € R.

() denotes the empty set.
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Chapter 1

Introduction

Consider observations Y € Y with true distribution
Y ~ IP*,

where IP* € M(Y,F) and M(Y,F) denotes the class of probability dis-
tributions on the space Y with sigma-algebra F . As an example one might
think of an i.i.d. sample, i.e. with some law Py on (), F)

n
Y=(Y,...Y,) e¥Y=QY, P=p, FEFo

i=1

Assume that the statistical task is to infer some ”parameter” 6* = i)(IP*)
with

b:PCMP,F)—=0, PP e,

where © is some set and P C M(Y,F) is a set of measures on which the
above map is defined. These types of statistical tasks can be divided into
three classes. There are parametric models, where the image set © C RP
with p € N a fixed dimension and where

PZ{PQ,BEQ},

that is, the pre-image of 1 is a parametric family with ([Pg) = 0, see [57]
for an asymptotic treatment of these models. The second class of models
are fully nonparametric. In this case, the image © is infinite dimensional.
A prominent example would be density estimation, i.e. 1 maps an abso-
lutely continuous probability distribution - with respect to some dominating
measure v - to its density, see [48]. The third class lies in between these
two and is called semiparametric estimation tasks. Normally the image set



satisfies ©® C RP for some finite p € N while the set P C M does not need
to be a parametric family but usually is still parametrized, i.e.

P={P,,veT},

where 7 is some infinite dimensional set. If possible the parametrization
is chosen such that ¢ (IP,) = IIpv = 0, where v = (0,) € Y CRP x X
for some space X and Ilg : RP x X — RP denoting the projection onto the
0 -component. One example that we will address in some detail in this work
is the so called single-index model (see [30]). In this model the observations
are Y = (V;,X;)"; C R x RP with

for some non-constant f: R — R and 6* € SV " ¢ RP and with real valued
i.i.d errors g; ~ IP., IEg; = 0, Var(g;) = 0% and i.i.d random variables
X; € RP with distribution denoted by IPx. To ensure identifiability of
0* € RP it is assumed that it lies in the half sphere Sf’Jr o {6 € RP :
10| =1, 61 > 0} C RP. This means that with some function space X

®
P_{<Pf(XT0)*PE> n,eGSf’—F,fG:X:}.

We will discuss this example extensively in Chapter[6] In Section [2.T] we will
briefly summarize some of the most fundamental general results about the
class of semiparametric problems (see [34] for a rather recent monograph).
This thesis deals with the analysis of a special type of such tasks, namely
the case that the "target” 6* = ¢(IP) can be expressed as

0" = Ilg argmax [Ep-L (Y, v),
veYl

where £ :Y x T — R is some functional and IEjp denotes the expectation
operator under the measure IP € M . This means that

Y:PCMY,F)— O, P Igargmax EpL(v). (1.0.2)
veY

A natural way to solve this problem is to simply use the data and define as
estimator

0 115 argmax £ (Y, v) = argmax max L(Y, v), (1.0.3)
ver 0cY, <y

where Tp % {llpv : v € T} CRP and 1y, o {IIyv: veT} C X with
II,, denoting the projection onto the m-component. These estimators are
called profile Mazximization Estimators (profile ME) since € € RP maximizes

2



the functional £ after the nuisance component 7 has been ”profiled out”.
In case of i.i.d observations a natural example for £ would be

L(Y,v) = Ln(Y,0) =Y L(Y;,v), Ep-Ln(Y,v)=nEp,(Y1,v).
=1

where /:)Y xT — R is a suitable functional. In case of the model in ((1.0.1]
assume that X C L?(R). With some suitable function basis (ex) C X and
parameters v = (6,m) € RP x [? one could use

n

1 o0
La®.m) = =5 D [¥i = Y men(X]6)
=1 k=0

2
, (1.0.4)

since indeed 0* = I1g argmax,cy —IFEpx|| Y reomrer(XT0) — F(XT6%)|2.
Of course the estimator resulting in would perform arbitrarily bad
because its variance is unbounded. Below we will circumvent this using the
steve approach.

If the functional £ is the loglikelihood of the observations Y the esti-
mator becomes the so called profile Mazimum Likelihood Estimator
(pMLE). In Section we will present in more detail some of the known
results about this class of estimators, most prominently those of [40]. Here
we briefly mention that even though the full model is nonparametric the
estimation of @ € RP can in many cases be achieved with /n-rate. Given
a sample (Y7,...,Y,) the usual approach in the analysis of these estima-
tors consists in finding conditions on the functional £, the true distribution
IP*, and 7 that allow to derive statements of the kind

Vnd(8, — 6*) % N(0,d9>d ), (1.0.5)
o * w 2/ 5-1+2 3-1
;]rgz;ﬁ(@mn) ~ Inax (6",m) — xp(d—v°d ), (1.0.6)

where 2, d? € RP*P are some symmetric positive definite matrices. In the
context of maximum likelihood estimation the matrices 2 = d? € RP*P
equal the covariance matrix of the efficient influence function, see Section
states the asymptotic normality of the profile ME and is based
on the local linearity

v o~

Vnd(6, - 67) — & =0,
which we refer to as the ”Fisher expansion”, where with some sequence of
random variables &, — N(0,d " '#2d~'). Tt is important to note that in
the right-hand side of ([1.0.6)) the degrees of freedom are determined by the

dimension of the target p € N and that it is unaffected by the full complexity
of the set 1" as long as it is not growing with n € N. The convergence (|1.0.6))

3



was first observed in [58] which is why we call it ”Wilks phenomenon”.
Various extensions of this result can be found e.g. in [19] 18] [10].

Usually - in the i.i.d. setting - (1.0.5) and (1.0.6) are derived in three

steps. First it is shown that with growing sample size n € N the M-estimator
v, for the full parameter v*, i.e.

v, = argmax L, (v), v = argmax Ep«L(v), (1.0.7)
veY vel

is consistent with the right rate r,, — 0, i.e. IP*(v, € By, (v*)) — 1, for
some euclidean ball around v*. The second step is to use empirical process
techniques to establish a uniform quadratic approximation of the kind

max £,,(0,n) — max £, (0%, 1) — VL, (v*) (0 — 0%)
n n
—n||d(6 — 6%)|]*| = op(1), (1.0.8)

on the set {60; (0, argmax,, £,(0,7)) € By, (v*)} with some ”projected gra-
dient” V = Vg — IIV,,, with some linear map II : X,, — RP and with
matrix d € RP*? . The last step consists in showing that

n12dIV L, (v*) 5 N(0,d 1 92d ).

The results ([1.0.5)) and ([1.0.6)) can be used for the construction of asymp-
totic confidence sets that yield statistical tests. The construction works as

follows. Let g2 > 0 be an a— level quantile of a Xf)(cz_lbgci_l) -distribution.
Set

E(qa) = {0 : Vn||d(6,, — 0)| < qa}; (1.0.9)
then one can use to show
P{0" ¢ € (a0)} = P {V/ulld(B — )| = au} — 1 -

The last step uses Slutsky’s Lemma and relies on two things. First the weak
convergence of &, = n V2 'VL,(v*) to a N(0,d 'w2d 1) -distributed
random variable and secondly on the disappearance of the error term in
. Although these results appear to be accurate in many practical fi-
nite sample situations, it is unsatisfactory from a theoretical point of view
that the construction of confidence sets for the actual finite sample data set
at hand remains out of reach. Relying on the asymptotic results implies
ignoring the op(1) terms and the distance between the finite sample dis-
tribution of |[n=/2d~1VL,(v*)||? and the chi square distribution with p
degrees of freedom. The later can be accounted for using the Berry Esseen

4



theorem (Berry [8]) or Edgeworth expansions (Hall [25]) but - to the authors
knowledge - there is no general theory that serves a finite sample bound for
the op(1) term in (L.0.8). As we show in Remark [£.2.19| this term can have
a tremendous effect on the confidence sets. Bounding this term is rather
involved because - among other reasons - it also depends on the consistency
of ¥ i.e. on the rate r,. To get finite sample bounds one needs - besides
stronger conditions on the smoothness and moments of the functional £ -
finite sample a priori bounds for the deviation of v .

In this thesis we present a new non-asymptotic approach based on ideas
of [52] (see Chapter , that allows to quantify probabilistic upper bounds
for the term in for finite sample size. The underlying tools rely on
assuming a finite full dimension p* € N, ie. T C RP". To account for infi-
nite dimensional parameter spaces this makes using the sieve approach (see
below) necessary. The finite sample approach yields results of the following
kind: With probability greater than 1 — 2e™*

IN

HD(@—O*) —§|| < d), (1.0.10)

£(8,m) — max £(67,m) — ||€]?
max (0,m) max (0%, m) — &l

< V& (x). (1.0.11)

The symbol <v>(x) denotes a bound for the accuracy of the above approxi-
mations. It is a central object of this work and will be discussed in detail
in Chapter 4l D € RP*P is a matrix related to /nd € RP*? from above.
The random variable é € RP possesses desirable properties, such as good
tail bounds of the kind P(||€]| > 3(x)) < 2¢™*, with some deviation bound
3(x) < Cy/p+x. These results are presented in Chapter Using the

scheme in ((1.0.9) the bounds (1.0.10)) and ((1.0.11)) allow the construction of

(conservative) ”confidence sets”:

def

Al(x) + 0(x) E {05 DO - 0)] <5(x) + S(x) ). (1.0.12)
P(0* € A(3(x) + O(x))) > 1 —4e7 .

If (approximate) quantiles g, for ||€| are available, the construction could
be refined. Assume for instance that with some small € > 0 and any « €
[0,1]

P(I€]l < g0) € (@ — e, + ),
then (see Remark [4.2.12))

a+et2e < PO € A(ga + O(x)},
P{0* € A(ga — O(x))} < v — e 27",

Ut



The important achievement of (1.0.10) and ((1.0.11)) is that these bounds

allow to make approximate confidence statements even in the finite sample
case, without ignoring ”hopefully small enough” terms. As mentioned such
terms appear in this or a similar form also in the asymptotic approaches (for
example [40]) but they are shown to be a zero sequence in the sample size
n € N under certain complexity and smoothness assumptions on the set of
scores {VL(v), v € T}. The obtained ”confidence sets” are more
conservative, i.e. larger than the asymptotic ones, but guarantee that the
claimed coverage probability is attained. Note however that on this level
the contribution is rather theoretical: as in case of the asymptotic results in
[40], crucial objects such as the matrix D are unknown and would have to
be estimated as well. An honest real data application of these results, where
all model specific constants are unknown, is not possible yet and would be
well beyond the scope of this work.

In the derivation of and we do not simply assume that
the profile ME is consistent but give conditions that ensure the right con-
centration behavior. This particularly allows to address the crucial question
of the largest dimension of the nuisance parameter for which the Wilks and
Fisher expansions still hold. As we point out in Section in the smooth
i.i.d case with a fixed dimension of the target parameter, both Fisher and
Wilks results apply up to an error of order p*/ n'/2 . This is an improve-
ment with respect to a naive application of the results of [52] from Chapter
which would lead to an error of order p*s/ 2 / n'/2 . In particular, we obtain
that the error term in the Fisher expansion can be smaller than the similar
error term in the Wilks Theorem, namely by a factor of the order /p*. This
ratio p*/ n'/2 is the critical bound for the quality of the Fisher and Wilks
expansions under the imposed conditions which is confirmed by a specific
counter-example in Section It is of interest to compare our statements
with the existing literature on the growing parameter asymptotics. We par-
ticularly mention [35] [36l 37] and a series of papers by S. Portnoy, see e.g.
[43, 44, [45]. The typical dimensional asymptotic appearing in those works
indeed is p* = o(nl/ 2) , which corresponds to our results.

Once the maximal allowed growth rate of p* as a function of sample size
is determined, the results ([1.0.10]) and (1.0.11]) can be applied to the setting
where the nuisance 7 lies in an infinite dimensional separable Hilbert space
X via the sieve approach; see [22], Chapter 8. For this, let (ex) be a suitable
basis of X and define for some m € N the sieve profile ME via

m

0., def IIg argmax £ (0, g nkek> ) (1.0.13)
OcRP _
neR™ k=1

By abuse of notation we denote this estimator by ,,, where in asymptotic
settings m € N depends on the sample size n € N, such that in that context

6



we suppress the sub index -, to ease notation. This type of estimators are
studied in [12] as well with a lot of examples and special cases. In case of
the model in and assuming that X C L?(R) this means that we use
the functional

n

Ln(0,m) = 1 Z Y; — anek(XiT@))

2
2 )
1=1 k=0

(1.0.14)

instead of that in (1.0.4). The crucial part in this context is to incorporate

and bound the bias ” v* — v}, ” where
m
def
(0 = argmax EL | 0, anek .
OcRP P
nerR™ -

In Section we explain in detail how this can be done. To convey the
idea define n* = II,v*. The approach is based on the decay behavior of
(n*,er) as k — oo and based on the properties of the operator
def . \
sz :e V(I—Hm)nv(eynmn)EL(v ) : RP - (I - Hm)x’
where II,, : X — R denotes the projection onto the span of the first m

basis elements (ey);" ;. Once the bias is controlled this allows to apply the
finite dimensional results for each m € N to obtain

| D61 = 6%) = &u|| < 500 +am),

L(Om,m) — L0, m) — €nl?/2| < Vi<
s @)~ s £6%m) ~ €0l/2] < VBOG) +alm)

where a(m) > 0 quantifies the impact of the bias ” v* — v}, ”. The choice of
m € N then has to balance the two terms &(x) and «(m). For statistical
inference the term a(m) would have to be added to {(x) in the bounds in
. In Section we present a representative asymptotic approach
to this type of estimators from [12] and in Section we will explain how
the related results can be derived in our framework. As it turns out, the
careful analysis of A,,, allows to address bias effects that occur when the
used basis (e;)72, is not orthogonal in the inner product induced by the
covariance structure of the model as commonly assumed (cf. [50] and [12]).
The example of Chapter [6] shows that this assumption can be misleading in
interesting cases. _

Another important question is how to actually calculate 6@ in .
In situations where £ : T x 13, — R is not convex, the maximization task
might become computationally very hard. In case of the single-index model
with £ in the maximization problem is high dimensional and non-
convex. But for fixed 6 € S; C RP maximization with respect to n € R™
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is rather simple while for fixed 7 € R™ the maximization with respect to
0 € RP can be feasible for low p € N. A widely used workaround in such a
setting is to start with some initial guess 77(®) and to alternate for k € N

iany def argmaXL(G( ).n), gk) def argmax £(0,7%)).
nETn IS

This method is called ”alternation maximization (minimization) procedure”.
Although it is employed in many parameter estimation tasks no satisfactory
and general ”convergence” result is available except for the treatment of
specific models (see for example [31], [41], [33] or [62]). A convergence result
would be satisfactory if it stated that the elements of the limit set of the
procedure posses the same statistical properties as the full maximizer v, or
even that the limit set equals {v}. The alternation maximization proce-
dure can be understood as a special case of the Expectation Maximization
algorithm (EM algorithm) as we will illustrate in Chapter [5} There are con-
vergence result for the EM algorithm - one of the first and most popular by
[59] - but these results normally only imply that the limit point is a fixed
point of the procedure. Generally it is not ensured the sequence of estimator
converges to the global maximizer. For instance [59] ensures that with some
L* <max L (v)

(0%, 7%) » {v e T, L(v) = L7},

but he can not ensure that on the set {v € 7, L(v) = £*} a finite sample
Wilks or Fisher expansion as in (1.0.10) or (1.0.11)) applies. Similarly in a
more recent work [6] derive conditions that ensure that

16%) — 67 < V46— 67| + Cer,

with some ¢, that depends on the sample size and on the complexity of the
parameter set. Again neither convergence to the actual profile estimator nor
desired statistical properties can be guaranteed.

The second part of this thesis deals with the analysis of this procedure.
In Chapter [5| we present conditions under which the sequence (H(k)) con-
verges to a limit that satisfies the same statistical properties as the profile
estimator in and we specify how many iterations are necessary to
obtain accurate results. Furthermore we refine those conditions to obtain a
guarantee that the sequence actually converges to the global maximizer v .
More precisely with similar tools as those underlying (1.0.10)) and (1.0.11)) we
manage to show that if the initial guess is good enough and with probability
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greater than 1 —8e™™

Hb(éﬂf) — 6% —gH < &(x) +6(k), (1.0.15)

¥

maxz(§<k>,n)—%xa(e*,n>—Héyﬁ < p&(x) +6(k), (1.0.16)

neYy

where §(k) ~ vF with v < 1; see Chaper |5 This means that the construc-
tion applies to the estimator G(k)~as well if A(3(x) + O(x) +6(k))
is used. In other words the sequence (0) attains the same statistical
properties as €. Note that for statistical inference this is all that is needed,

as an actual convergence to the profile ME 6 is not necessary as long as

(1.0.15) and (1.0.16) are met with small error {$(x).

We also manage to show that (%) (%)) — & ie. we find condi-

tions that ensure that with probability greater than 1 — 3e™*, with D? def
V2IEL(v*) and some 7(x) < 1

ID((OW, 7M) = B)|| < ()" o),

if the initial guess is good enough. So we obtain nearly linear convergence
of (0% 7)) to ¥ .

Finally we present an application of the new results to the single-index
model and the Projection Pursuit Procedure of [20]. Assume observations
Vi, X;) e RxRP

}/% = g(XZ) + €, 1= 17 s Ty

where g : RP — R is some continuous function, (&;)i=1,.., C R are additive
centered errors independent of random regressors (X;). Consider the task
of estimating the conditional expectation

EY[X] = g(X).

Statistical theory for nonparametric models shows that even for moderate
p € N the accuracy of estimating ¢(X) increases very slow in the sample
size n € N. For instance [54] shows that the rate is bounded from below by
n~®/(e+p) " where o > 1/2 quantifies the smoothness of g : RP? — R. [20]
propose to use a projection pursuit approach to circumvent this problem in
situations where

M

9(X)~ > AXTO),

=1

for a set of functions f; : R — R, vectors 8f € SP'* .= {8 ¢ RP : ||| =
1,0; > 0} C RP and some M € N. A special case would be M =1, i.e.
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observations Y = (X, y;)!"_; from the model . Under a set of natural
conditions on the smoothness of the true function ¢, on the distribution
IPx of X € RP and tail assumptions on the additive i.i.d noise ¢ € R
we manage to show in Chapter [6] that the results from above apply for the
sieve M-estimator 6 € RP derived via the functional in ((1.0.14]). That is we
manage to show that if m”/n — 0 (m5/n =0 if M =1)

Ox) +a(m) =0, n— oo,

and that there is a feasible initial guess for which the alternating procedure
converges in statistical and absolute sense. This also allows us to derive a
rather crude assessment of the performance of the Projection Pursuit Pro-
cedure of [20]. Unfortunately the results on the critical ratio of dimension
to sample size are rather restrictive and the derivations very technical and
tedious such that Chapter [] is more a proof of concept and an illustration
of the theory than a presentation of results that are of scientific interest by
themselves.

The Thesis is organized as follows: In Chapter [2] we present some im-
portant known results on semiparametric models, such as lower bounds for
regular estimators, and on M-estimators. Chapter [3] contains a brief synop-
sis of the ideas and results of [52] and a collection of tools from that paper,
which we will use throughout this work. It is followed by the new results
for profile M-estimators in a finite dimensional setting and on sieve profile
estimators in Chapter 4, Chapter [5| contains the results on the statistical
properties and on the convergence of the alternating procedure. Finally in
Chapter [6] we apply - for the purpose of illustration - the results to the model
(T.0.1).
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Chapter 2

Semiparametric models and
profile M-estimators

In this chapter we will present some of the fundamental results on semi-
parametric models and profile Mazimization Estimators (profile ME). Ev-
erything in this chapter - except the section on sieve M-estimators and the
treatment of the single-index model - is taken from the books [34] and [57]
and from the paper [40)].

2.1 Results on semiparametric estimation

In this section we want to briefly summarize the results on efficiency of
regular estimators in regular semiparametric models. For simplicity consider
the following estimation task: Given i.i.d. observations Y = (Y3,...,Y,,) C
Y with Y; ~ IP we search for ¢(IP) = 6* € RP with

¥ PE Py, v €T} 5 RP, Py > llgv = [19(6,m) = 6,

where we assume that P possesses a dominating measure v. We do not
claim that all semiparametric estimation problems can be formulated in this
way. But this setting simplifies a lot of the terms in this section and covers
all examples of this thesis. Nonetheless the presentation still involves some
of concepts that will not be used again in this work. We still present them
in full detail to make this section self contained.

In the following we will present some definitions and results from the

book [34] for general semiparametric models. For ease of notation we write

def
IP* = Py~ .

Definition 2.1.1. A set {IP;, t € [0,¢)} with € >0, [Py = IP* and IP, € P
for all t € [0,€) is called one-dimensional parametric submodel of P at
P

11



Definition 2.1.2. A one-dimensional parametric submodel {IP;, t € [0,¢€)}
1s called differentiable in quadratic mean at t = 0 with score function g :
Y — R if the densities (pt): of (IP;); with respect to v satisfy

<¢pt<y> V) 1
t

2

lim
t—0

2
9(y) po(y)> v(dy) =0 (2.1.1)

Remark 2.1.1. One can show that Epg = 0 and Ep-g?> < oo such

that g € L2(Y, IP*) < {h € L2(Y, IP*), Ep+[h] = 0} . Note that (2.1.1) is

related to the Hellinger distance between measures (see [57], Chapter 14.5).

Definition 2.1.3. If there exists an open neighborhood U(v*) C T of
v* €T such that for all v € U(v*) there exists a smooth one-dimensional
parametric submodel {IP;, t € [0,€)} with P, = IP, for some t € [0,¢)
then P is smooth at IP* = I[Py« € P.

Definition 2.1.4. If P is smooth at IP* the collection of score functions
g of all one-dimensional parametric submodels in IP* is called tangent set
of the model P at IP* and is denoted by Pp+ C L%(y).

Definition 2.1.5. If P is smooth at IP* and if there exists a bounded linear
operator Yp« : L% — RP such that for any one-dimensional parametric
submodel {IP;, t € [0,€)} with score function g € Pp~

1

- (W) = Y (IR)) = - (9),

the map v : P — RP is called differentiable at IP relative to Pp- .

Definition 2.1.6. A sequence of estimators T, for 1¥(IP*) is called asymp-
totically linear with influence function ¥p+ : Y — RP if

\/E(Tn —P(IP*)) — \/EPTLQZP* = OP*(I)'

Definition 2.1.7. An estimator sequence T, for 1 (IP*) is called regular at

IP* if for any one-dimensional submodel {IP;, t € [0,€)} and any sequence
t, = O0(n~1/?)

V(T — o(IP,,)) 22 2,

for some tight Borel random variable Z that does not depend on the sub-
model or sequence (ty) .

Assume for now that Pp C Lg(ﬂ?) is a linear space. Then one can show
with the Riesz representation theorem that there exists a function

p- € Ppe C L(IPY),
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such that

bip(g) = Ep-[dpg] € RP. (2.1.2)

The function ¢p- is called efficient influence function. Theorem 18.3 of [34]
reads:

Theorem 2.1.8. (Convolution theorem) Assume that P is smooth at IP*
and that ¢ : P — ]Rf is differentiable at IP* relative to Pp~ with efficient
influence function Yp-. Let T, be a reqular estimator sequence for 1 (IP*)
with Z being the weak tight limit of \/n(T,, — ¥ (IP*)) under IP*. Then
the law of Z satisfies £(Z) = £(Zy) * £(M) where M € RP is some tight
Borel random variable and where

Zy~N (O,JEJP* [JJP*%FD*]) .

In other words if the model and the estimator are regular the lower
bounds of parametric estimation problems - in particular those derived from
the local asymptotic normality (LAN) of regular parametric models, see [57],
Chapters 7 and 8- carry over to the semiparametric setting. In Section [4.3.2]
we will analyse a particular estimator in the model Y = (Y;) € Y®" and
P* = P2

P*eP={P,,v=(0,n)€T CR xX},

where X is assumed to be a separable Hilbert space. The target of estima-
tion is 8* € RP | i.e. the parameter function ¢(-) becomes

w(ﬂjgm) =0 e RP.

In reference to Definition [2.1.3] it suffices to consider the finite dimensional
submodels of the form

(P, t€]0,6)} = {Posro, t € [0,6)}, v=(0,n)cRPxX. (2.1.3)

Define the Fréchet-derivative of f:27 — R in v* € 7 as a linear operator
Vf(v*) :span(Y7) — R such that for every v € T

lim f*) = f(v* +ttv) —tVi)v|

We call a function Fréchet-differentiable if its Fréchet-derivative exists. As-
sume that there is a dominating measure v such that p; = dIP;/dv are well
defined and /p; is almost everywhere Fréchet-differentiable. Also assume
that p;/p; € L?(IP;) with covariance that is continuous in ¢ for all ¢ € [0, €)
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and all submodels in (2.1.3). Then one can show that P is smooth at IP*
with

Pp- = {1v‘upv,v € R? x x}
po dv

where by abuse of notation we denote for v € R? x X with v ' its dual
element - in the sense of Riesz’ Representation Theorem - and where V
denotes the Fréchet-gradient. Note that Pp« is a linear space. Define the
operator F2. : R? x X — Im(F2.) as the operator that satisfies for any pair
v,v° € RP x X

T9 o def 1 dIP* dP*
F .v° = — —_— . 2.14
v Fl.v E[p% (V 7 v) (V A ( )

2

and assume that it is invertible on its image I'm(F2.) with inverse F,? :

Im(F2.) — RP x X. One can represent

1 P P
=0"=F [2 (vdw‘;?n;) <vd v)] :
=0 4 dv dv
d

Consequently if piOV g; "~ € Im(F2.) almost surely this gives

[V (IFt) — (1))

1
t

~ o 1 _dIP* ~ o~ _
Y = HOFUEPTJVW’ Eplbpyp) = MoF, 21,

where Ilg : RPxX — RP is the orthogonal projection onto the @ -components,

and II, its adjoint operator. Note that with £(v) o log(dIP,/dv) we have

in case ,/p; is differentiable thanks to the chain rule

1 _dIP*
W(v*)z—vd , F2, =

Vo IE V(v ) V(v .
0

With Theorem this gives

Corollary 2.1.9. Assume that there is a dominating measure v such that
pi(y) = dIP;/dv are well defined and \/p; differentiable and that pi/p; €
L2(IP;) with covariance that is continuous in t for all t € [0,€¢) and all
submodels from . Furthermore assume that F2. : RP x X — Im(F2.)
m is tnvertible and }%V% € Im(F2.) almost surely. Then all
regular estimators T, of 8* obey

lim (T, — 6%) ~ N (0, HJF;EH(,) « £(M),

n—oo

with £(M) denoting the law of some independent random variable M € RP .
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Remark 2.1.2. Clearly the assumptions that F2. : RP x X — Im(F2.)
in (2.1.4)) is invertible and that almost surely ivd(% € Im(F2.) are not

Po
necessary. One could generalize the result using different concepts of in-

verting F2, and via projecting piovd;% onto a subspace on which F2, is
”invertible”. But to make this excursion as focused as possible we restrict
ourselves to the simplest formulation.

2.1.1 Application to single-index model

We want to apply the above to the special case of the single-index model

(T.0.1). Denote fn(0'X) = >3, nex(X0), ie. the m-component
Fn € L*(R) is identified with its Fourier coefficients 1 € (?. The fam-
ily of measures becomes

Qn
P= {(PZ?; nker(XT0) * ]PE) ,8esPt me l2} )

and the parameter function v (-) remains
V(P y) =6 € RP.

Let the path 6(t) € S; for [0,€) be the geodesic satisfying lim,_,o +(8(t) —
6*) = hg € ** and let h,, € 2. In reference to Definition it suffices
to consider the finite dimensional submodels of the form

Lemma 2.1.10. Assume that both the error distribution and the distribution
of X possess a density with respect to the Lebesgue measure denoted by pe
and px . Furthermore assume that pe is continuously differentiable with

Pe) L*(IP.), (2.1.6)

pe(€)

Assume that for any 6 € RP and h,, € I?
¢ T T T 2
/ (Frr@T0)07 2+ fi, (27 09) px(@)dz <o (217)
then the submodel (2.1.5)) is smooth in IPg« y« with influence function

_ iy (@709 (For (@62 + i, (@76%))
g(y,az) - pe(y _ fTI* (mTO*)) px>0-

Remark 2.1.3. One way to ensure (2.1.7)) is to impose that the support
of X is bounded and that n* € [? decays in a way that ensures that

[ foe (#)%dt < 0.
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Again Pp- C LE(IP,) is a linear space. Take the submodel in (2.1.5)),
then

lim = (6(1P) — Y(IPy)) = lim © (0(1) — 6°) = by

Note that

. , T
(for @"0%)2 ko + fu, (@7 67)) = (for (2767w, e1(x07),...)  (ho.h)
© VL") (ho, hy).
where for Lebesgue almost every @ € R? one has V/(v*)T € (RP x [?)*.
The - abuse of - notation V/(v*) is motivated by the fact that it is strongly
related to the gradient of the functional

[e.e]
def 2
(0, m) <y -3 menx]0)| .
k=0
Set with € =y — fp«(x ' 6%)
def 'e €
wex () 4 Pl

and define for any pair v,v° € RP x [? the operator

v V2 ¥ B, [wax(m, y)? (VE(U*)U°> (Vf(v*)u)} .

Note that
9y, ®) = wx(@,y) VL") (hg, hy) € R.
Setting
Yp =g V2w, x(z,y)Vl(v*) € RP,
we find

Ep-pg(y,x)
— Ep- [ws,x(a:,yﬁ(ww*)@—?n; ) <V£(v*)(h9, hn))} — he.

Consequently we infer with Theorem that the lower bound for the
covariance of regular estimators is given by

Elp[’(fﬁvﬂ?&%] = Hgi\772ﬂg.

In the special case of a Gaussian error distribution with covariance o2 the
operator nV? becomes equal to the operator in (6.2.4).
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2.2 M-estimators in semiparametric models

In this Section introduce some important asymptotic results on M-estimation.
This will allow us to relate our results of Chapter [4] to the existing theory.
Consider Y € Y and some criterion functional £ : Y x71 — R for some set
T . Then the associated M-estimator and its target are defined as

o argmax £(Y,v), v* o argmax IEL(Y, v). (2.2.1)
vel vel

A prominent special case is Maximum Likelihood Estimation (MLE) when

dIP,
dv

L(Y,v) = log (Y,v), Pe{P,,veT},

for some dominating measure v . As noted above we are interested in profile

M-estimators as defined in . The approach we will present in Chapter
is derived for the finite dimensional setting, i.e. ¥ C RP" for some p* € N.
To compare our results we cite the following Theorem from [57] for i.i.d
samples (y1,...,Yn) =Y € Y®" and L(Y,v) = Z?:1 (y;,v) .

Theorem 2.2.1 ([57], Theorem 5.23). Let {(-,v) : Y — R be measurable
in an open vicinity of v* € T and let {(y,-) : T — R be differentiable at
v* € int(T) for almost every y € Y. Assume that a measurable function

0:Y = R exists such that for every pair v,v° €T in a neighborhood of
v el

16(y, v) — Ly, v°)]| < £(y) v —v°.

Furthermore assume that the map IEl(y,-) : T — R admits a second order
Taylor expansion at a point of maximum v* € T with nonsingular symmet-
ric second derivative matriz —D? € RP"*P" | [f the M-estimator is consistent

Un, Ly v , then
1 n
Vo, —v*) = DP—=) Vi(y;,v*) +op(l),
Vi s

VnD(v, — v¥) N N(0, 'D*1\72®*1),
where
V2 = Cov(f(v*)) c RP"XP",

Let IP, = (IP3)®™ be the probability distribution the i.i.d. sample (yi,
., Yn) =Y € Y®" . Assume that

£(¥,0) = Y tlyw), Hy,v) =logp(y,v), ply.v) ™ oy v)
=1
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Then the estimator defined in becomes the Maximum Likelihood
Estimator (MLE) for i.i.d. samples. It turns out that in this special case the
existence of a second order Taylor expansion of IE¢ and that ¢(y,-) : T — R
is differentiable at v* € int(T") is ensured by a natural condition, namely
differentiability in quadratic mean.

Theorem 2.2.2 ([57], Theorem 5.39). Let {(-,v) : Y — R be measurable
in an open vicinity of v* € T and let L(y,-) : T — R be differentiable in
quadratic mean at v* € int(Y), i.e. there exists a function VI(-,v*) )Y —
RP" such that as v — v*

2

[ (Vo) = Vol o) - §9t(0. 0% 0 — v Vi 07 ) v

— o(v - v*|).

Assume that a measurable function ¢ :' Y — R exists such that for every
pair v,v° €T in a neighborhood of v* €T

ey, v) — €y, o) < i)l — v°].
If the matriz V2 = E[Vi(y,v*)Vi(y,v*)T] € R P is nonsingular and

if the MLE v, Py v* then

n

=3 Vi v) + o (1)
=1

ViV(0, —v*) =5 N(0, Iy+).

VT, —v*) = V2

Remark 2.2.1. We will see in Chapter 4] that the (strong) conditions in
Section are rather similar to those of Theorem m (see discussion
in Section . But the conditions of our approach are not sensitive to
the peculiarities of maximum likelihood estimation: it is treated as an usual
Me-estimator.

Remark 2.2.2. The above Theorems impose that consistency of the es-
timator € is already established. [57] explains how to attain it using the
argmax theorem (see Section . But the technique presented there only
gives consistency in probability and not a result of the kind

P(d(vn, v") 2 Tp(x)) <€,

for some function r,(-) and metric d(-,-) on 7" as is needed for our finite
sample approach in Chapter [
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For the i.i.d model the definition ((1.0.3]) becomes

6, & IIg argmax IP,{(y,v) = argmax max IP,/(y,v).
veT 0cYyy, NI

For a finite dimensional full model 71 CNRP* the two theorems above could
be modified to yield similar results for 6 def Igv:

Vn(6, — 0) = (I, — ev*) —% N(0, IgD2V2D211]).
]

For infinite dimensional parameters things become a bit more involved (see
below). Besides asymptotic normality we also want to address the behavior
of the (quasi) log-likelihood ratio statistic

sup £(0,6%) def sup £(60) — L(6%)
0Ty 0Ty
C sup sup £(6,m) — sup L(6%.7).
0cYy neTy, neTy
(6,meTr (0*m)eTr

Define

~  def
Vg« = argmax L(v).
(0*meY

Under i.i.d. conditions and assuming that £(v) = >_7 , log %(Yi) for a
parametric family {IP,, v € T} with T C RP" Theorem 16.7 of [57] reads:

Theorem 2.2.3. Under the same assumption as in in Theorem [2.2.3 If
the estimator Ug- £> v* then

2 sup £(6,0%) -2 X;Q;- (2.2.2)
0cTy

Remark 2.2.3. As noted in the Introduction the result of Theorem 2.2.3]
is often referred to as the Wilks phenomenon as it was originally observed
by Wilks ([58]) but derived in a somewhat informal fashion which is why
we present the result from [57]. As pointed out the degrees of freedom are
determined by the dimension p € N of the target and it is unaffected by
the size of the full dimension p* € N. As we will see later in Chapter
the result becomes sensitive to the full dimension once p*(n) — oo: (2.2.2))
holds if pp*?/n — 0.

Remark 2.2.4. [51] showed that in the setting of M-estimation for i.i.d.
samples

2 sup £(0,0%) -2 | DIy D>V Z|?,
0Ty
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where Z ~ N(0,I,+) and where D? = (IlpD 21T, )~' € R? and D2 V? ¢
R from Theorem The assumptions in [51] are a quite technical so we
h

simply remark that the conditions of Theorem [2.2.1| combined with Ug« 2,
v* yield the same result. This can be proved using the same arguments as
in the proof of Theorem 16.7 of [57] and some matrix algebra.

Let us now turn to profile M-estimators for i.i.d variables for infinite
dimensional parameters. We follow closely Chapter 21 of [34]. Denote by

751(,?3 c L3(IP¥),

the tangent set at the point IP* = IP,» with respect to the one-dimensional
submodels of the form

{Pe*,'r](t)a te [076)}7 (9*777()) : [0?6) - Tv 77(0) - 77*'

The results presented below do not rely on the specific structure of the
tangent space. Alternatively one could assume - as we do in Chapter [4] -

that Zn(t)[—o o 17(0) € X;; for some Hilbert space X, and that

d

00" (1)l = Vl(67, 0" 0)),

ie. Vyl(0*,m*) exists and lies in the dual of the space X, . Then we set

75(72 = X5, . This leads to a very similar set of assumptions as those we use
in Chapter (4], which is why we adapt in the following the results of Chapter
21 of [34] to that setting.

Assume that the functional £ :7 — R admits two Fréchet-derivatives.
Using the Riesz representation we obtain

VL(v) = (Vel,VypL) ERP x Xy, V2L :RP x X — RP x Xy,
Define
Vol(v) = Vol(v) — AH 2V, L(v), D*(v*)=D?—- AN 2AT,
V2 Cov(VL(vY)),

where

2
( iT 7;42 > o —VQJEL(U*%

which coincides with the definitions in Chapter [4

Remark 2.2.5. The element VL(v) is related to the efficient influence
function in (2.1.2). If the model is correctly specified and £ = Y " | ¢; is
the log-likelihood then V/(v) = ¢p € Pp.
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Consider the following list of conditions from [34] Chapter 21, which we
adapted to our setting:

(A.1) (Consistency and rate of convergence) Assume that for some ¢; > 0
16, — 07| = op(1), [ — 77| = Op(n™").

(A.2) (Finite variance) 0 < det(D(v*)~2V2(v*)D(v*)72) < 0o.

(B.3) (Stochastic equicontinuity) For any d,, -0 amd C >0

1
wp L B)(VeL(8.m) - vcw*,n*))H
10—0%]|<5,, H Vn
ln—n*||<Cn~
= op(1),

1
sup —(1 - F)AH %(V,L(0,n) — V,L(0*, n* H
Lo |- BT, 0,m) = V(6 )
[n—n*||<Cn~c1
= ij(l),

where we use the shorthand notation (1 — E)X Yx_E [X].

(B.4) (Smoothness of the model) For some co > 1 satisfying cico > 1/2,
where ¢; > 0 is from condition A.1 and for all (0,n) € {||@ — 0*| <
On, [ —n*|| < Cn='})
1 = = * * N2 *
~|B{VoL(6.m) ~ Vor(o ")} + D*6 - 07)
= o([|6 = 07[)) + O (lln —n"[|**) -

Then Corollary 21.1 of [34] reads

Theorem 2.2.4. Suppose that the conditions (A.1), (A.2), (B.83) and (B.4)

are met. Then
Vn(8, — 6%) = D(v*)"'VL(Y;,v) + op(1),

i particular 571 18 asymptotically normal with covariance

v 9

D(v*) "2V (v*)D(v*) "2 € RP*P.
Remark 2.2.6. Here we only cite the weaker result, i.e. the one that needs

stronger conditions. See Chapter 21 of [34] how the assumptions B.3 and
B.4 can be relaxed.
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Remark 2.2.7. The ”Wilks”-type result

2 sup £(0,0%) —% || DIy D2V Z|?,
0€Ty

again can be attained under similar conditions translating the arguments of
the proof of Theorem to the M-estimation setting.

Remark 2.2.8. In our setting of Chapter {4 condition (B.3) and (B.4) are
substituted by conditions (£Lo) and (ED;).

2.2.1 Profile Maximum Likelihood Estimation

Again a prominent special case is the profile Maximum Likelihood Estima-
tor. Using the true structure of the underlying family and the assumption
that the observation actually are distributed according to an element of that
family leads to slightly weaker conditions on the smoothness of the functional
L(y, ) : T — R which in this case is the log-likelihood corresponding to the
family {P,, veT}.

But before we list the conditions we need to introduce two additional
concepts that play a central role in empirical process theory. They are
related to the law of large numbers and the central limit theorem. For this
consider a sample (Y;)!'; C Y and underlying measure [P with associated
empirical process P, indexed by a class F of functions from ) to RP.

Definition 2.2.5. A function class F is called IP-Glivenko-Cantelli if

sup || Po(f) — EF(Y)]| 2 0.
feF

Definition 2.2.6. A function class F is called IP-Donsker if the process

def

satisfies for any continuous and compactly supported map h € C.(I°°(F))
that

EMGn)] = ERG)],

where G is a centered Gaussian process indexed by F with covariance struc-
ture

B(G(f)G(f)") = Blf*f'] - BIf|E[f]".
The conditions in [40] read:
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(B.4)’ (Least favorable smooth submodel) For each v = (6°,n) € T there
exists a map

0 — ne(0°,m), (0,m9(6°,m)) €T, ne(0,m) =,
such that
0 1(0.6°m) = £(0,mg(6"m) ).
is twice continuously differentiable, where we denote the derivatives by
Vol(0,6°,m) and V31(0,6°,m) . Furthermore the map 6 — 1g(6°,7)
should be such that
Vel(6%,0%,n°) = Y € Pp,
where %p is the efficient influence function in and such that
(6,6°m) — (1(6,6°.m), Vol(6,6°,m), V31(6,6°,m)).
is continuous in (6%, 0%, n*).

(A.1)’ (Nobias) Assume that the pMLE satisfies 6 E 6" and that n i n*

and
EVe,16",0,7) = o(|0 — 67| +n7"/%).
(A.2)’ (Regularity) Assume that VZ(v*) &f EP[IZPQZHT;] € RP*P is invert-
ible.

(B.3)’ (Complexity) Assume that there exists a neighborhood U C ITgT X
Y of (6*,60%,n*) such that the class {Vpl(0,0° n), (6,0°,m) € U}
is IP-Donsker with square-integrable envelope and the class

{V51(6.6°n), (6.6°.n) € U},
is IP-Glivenko-Cantelli and bounded in L;(IP).

Remark 2.2.9. The condition (B.3)’ together with (B.4) replaces condi-
tion (B.3) from the previous section. As indicated by their labels condition
(A.1)’ replaces condition (A.1), (A.2)’ replaces (A.2) and condition (B.4)’
corresponds to (B.4). Consequently in our setting of Chapter [4] condition
(B.3)" and (B.4)" are substituted by conditions (L) and (ED;).
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Theorem 2.2.7 ([40], Corollaries 4 and 5). Suppose that the conditions
(A.1)’°, (A.2)’, (B.3) and (B.4)’ are met. Then

(6, — 6%) = En:f/ VY, v) + op(1),

i particular §n 1s asymptotically normal with optimal covariance V*Q(U*) .
Furthermore

2 sup £(0,0%) % Xp
0cTy

As our approach uses some of the ideas underlying this result we briefly
explain the main step of the proof. The arguments in [40] can be sketched

as follows: Let @ 55 0* such that (0,0,n%),(0,0*,n*) € V. Define

Mo def argmax £(6,n).
n

Then
max £(6,7m) = 1(6,0,1) > 16,07, 06+,
max £(6",m) = 1(6",0", i) > U(6", 0. 7).
such that

1(6,60%,719-) — 1(6*,0", Tj9-) < L(8) — L(0") < 1(0,0,719) — 1(6*,0, 7).

Using the imposed conditions a second order Taylor expansion gives that for
any 6 I o

5(6) - £(0%) = S dwly)(0 - 67) ~ 5(0 - 67) D60~ 6)

+op(v/n||@ — 0% +1)%

Consistency of 6 allows to derive the claims of Theorem after some
calculations (see Corollary 1 of [40)]).

Remark 2.2.10. The term op(y/n]|@ — 6*|| + 1)? is a bound for

(efgopeanP (Vol(0",v°) — i ) || 6 - 07

+ sup [V —nP,V5i(6%,v°)]|0 — 677,
(6*,v°)eV
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which corresponds to the bound in and is derived using the assump-
tions in (B.3)’. This is where our derivations in Chapter 4| will deviate from
the arguments of [40], as we do not strive for zero sequence in probability
but actual finite sample bounds for the above term that reveal the impact
of the full dimension (or the complexity). This is why we do not simply
assume that the crucial terms have desirable properties - in the sense of
(B.3)’ - but impose more specific smoothness and moment conditions that
allow to derive precise statements about the deviation behavior of the term

in (L3

2.2.2 Consistency of the ME

In this section we want to explain how the consistency results P(d(v,v*) >
€) — 0 can be established. These arguments are usually based on the
Argmax Theorem:

Theorem 2.2.8 (Theorem 5.7 of [57]). Let L, : Y x Y1 — R be a random
functional such that for every € >0

sup |Lp(v) — L¥(v)] L, 0, sup L% (v) < L*(v").
veY vid(v,v*)>e

Then any sequence of estimators (v,) with Ln(v,) > Lp(v*) — op(1)
converges in probability to v* .

In the context of i.i.d M-estimation £,(v) = 13"  ((Y;,v) and L£* =

n
IE{. The convergence sup,cy |Ln(v) — L£*(v)| L0 is usually established
using empirical process theory, i.e. showing that {L(-,v), v € T} is IP-
Glivenko-Cantelli. Then the above result applies as £,(v) > £,(v*) by
definition. In Chapter 4] we need some consistency result of the kind

P(d(v,v*) > r(x)) <e*,

for a function r(x). For this purpose Theorem would not suffice as it
only gives convergence in probability. An alternative that would yield such
a bound is the following result which only applies to the correctly specified
i.i.d. maximum likelihood estimator. Let {p(-,v), v € T} be the family of
densities dIP, /dv of the parametric family {IP,, v € T} with respect to
some dominating measure v .

Theorem 2.2.9 (Theorem 5.8 of [29]). Let T C RP" be a bounded and
convex set and let the functions p(Y ,v) be continuous on the closure of T
for v -almost every Y and let the following conditions be satisfied

1. There exists a number o > 0 such that

/ vl v) P g
y

sup
v,V°ET ||,U_,Uo||a
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2. There exists a number >0 and a function a(v) > 0 such that for
all v €Y and all h € RP" with sufficiently small norm

B
IVB(v) = VB + B) |22, > a(mM'

Then the MLE v satisfies for any A < B8~' and with constants C,Cy that
only depend on «,,A and diam(T)

P (n*AHa — vt > 5(x, )\)) < Ce¥, (2.2.3)
3(x,\) = cin /8 (x + log(n) (5_1 — (Qa)_l))l/ﬂ a(v)_l/ﬁ.

Equation looks a lot like what we desire. But there are still
some problems which make us use Theorem [3.3.2] instead. The first one
is that the constants C,C; need a finite diameter diam(2") to be finite
themselves. In general this is not needed to apply Theorem [3.3.2] although
in chapter [6] we will need a finite diameter in order to satisfy the conditions
of Theorem Another issue is that the resulting bound 3(x, ) is of a
rather complicated form and would not easily allow to extract for instance
the effect of the full dimension p* € N on the a priori accuracy. Finally
the proof of Theorem relies on the correct specification and the i.i.d.
structure. Our approach in Chapter [ is designed for general M-estimation
tasks such that Theorem would not be general enough, despite its
appeal due to its weak conditions.

2.2.3 Sieve profile M-estimators

Obviously in many models the profile M estimator 6 € R? from Equation
cannot be calculated in practice if the full model is infinite dimen-
sional. There are various ways to circumvent this problem. Next to non
parametric estimation and plugin of the nuisance 1 € X a prominent ap-
proach is the so called sieve technique that we want to use in this work.
The sieve approach was introduced systematically in Chapter 8 of [22]
and consists in choosing a suitable sequence of subsets (1,,)2°_; C 7" such
that for each v € T there exists a sequence II,,(v) C 1,, with |v —
II,,(v)|]] = 0 as m — oo. Furthermore the sets 7, C 7" have to be such
that sup,ey,, £(v) or argmax,.,, L(v) can be calculated in practice. In
Section we will analyze the case where 1" = Tp x 1, € RP x X with
some infinite dimensional separable Hilbert space X and countable basis
{e1,eq,...} C X. In that case we set 1,,, = T x 11,75, , where I, : X —

X, denotes the orthogonal projection onto X,, def span(eq,...,emy). This
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means that for each m € N the sieve profile M-estimator is defined as

m

0,, < 113, & 1Ty argmax £ (9, S jnkek> : (2.2.4)
O€RP _
’I’]ERm k=1

Clearly the size of m € N has to balance the variance of the estimator
which usually increases with m and the bias of the estimator which gener-
ally decreases with growing m . In asymptotic settings m consequently will
depend on the sample size n € N, which we suppress in the notation.

As mentioned in the introduction this type of estimators is studied in
[12], where it is referred to as finite dimensional linear series estimation
in Section 2.2.3 of that work. [I2] contains also results on the asymptotic
properties of such estimators that we want to briefly present in the following.
The first results concern the consistency of 6, in . Let ||-|ly be some
norm on 1", that is restricted by .

Remark 2.2.11. A natural candidate for the norm || - ||y is to use ||D ||,
where D2 % ~V2EL(v*).

As in one of the first treatments of this type of estimators by [21] -
dealing with sieve maximum likelihood estimators - consistency is generally
rooted in three ingredients

(Identification) The functional £(Y,-) satisfies for every m € N

inf {r > 0, sup FEL(Y,v) < EL(Y, v*)} = 0.

VEY ! [[lv—v*||y>r

(Continuity) The functional £(Y,-) is upper semi-continuous for all 75,
and m € N.

(Compactness) The sets 15, are compact for all m € N.

In [12] conditions of this type lead to vy, Ly or

Remark 2.2.12. The continuity and compactness assumption yield that
§m in is well defined and measurable as is pointed out in Remark
2.1 of [12]. In Chapter {4 we do not need compactness of the sets 15, as
we can ensure that the set 6 is not empty and contained in a compact ball
T, C R”" via condition (£r) and (€r) with Theoremm

[12] also gives results on the rate of convergence of the full sieve estimator
Uy, (cf. Section 3.3). For this they assume
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(Smoothness of expectation) ¢ — EL(v* + tv) is twice continuously
differentiable with

2

d * * *
CSBLW + (0 — 7))z = — v — o7

Together with the assumptions to ensure that the sieve estimator is consis-
tent this already allows to infer that

lv* = v lly < cllv* = IR v* |y,

where H;"nv* € 7,, denotes the closest element of 75, to v* € RP x X in
the metric induced by || - ||y and where

v, argmax IEL(v).

m
UETm

To get rates for the estimator ©U,, it remains to control the random compo-
nent. For this [I2] assume

(Derivatives) The Fréchet-derivative VL(v*) € X* of £ : 7 — R in
v* €7 exists.

Furthermore they impose smoothness and deviation constraints (Condition
3.13 of [12]) on the gradient V,,L(v},) defined as

* def d %
me(Um)7 = &L‘(Um + t7)|t:0) S Y.

Theorem 3.5 of [12] states that under such conditions
|8 = v*lly = O (Vi + |0 = v*ly)

Concerning the asymptotic distribution of /n(8,, — 8*) [12] give a result
that is based on [50]. It involves a list of conditions, which adapted to fit to
our setting reads as follows:

(Rate) The full sieve estimator v,, in (2.2.4) satisfies with some r,, > 0
IP (U, € Tom(rm)) — 1,
where
def

Yom(rm) = {v ey, lv—v'|ly <rn,}.
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(Stochastic equicontinuity) With v°(v) = v +¢,(0,0) for any 6 € R?P
and &, = o(n"1/?)

sup (1 — IB) (£(v) — L(v°) = VL(u")(v — v°)) = opp(L).

UETo,m (rm)

(Expectation of criterion) It holds that

1
sup {IE’L(U,U*) + §HU — v*H%} =o(r?). (2.2.5)

'UGTO,m (rm)

(Approximation accuracy) With some positive h,, — 0

|hlllv* = IS 0*[[§ = O(v/n).

(Gradient) The linear operator VL(v*) satisfies

sup (1 —IE)VL(v")(v—v") =o0(v/n).

VEY o, m (Tm)

A very important condition - which we cite separately for that reason - is
that the norm || - ||y induces an inner product (-,-)y on 7" —v* and that
the sieve basis (ex)ren satisfies

<€k,€l>g = 5l,k- (2.2.6)

Remark 2.2.13. We are not completely precise here as (eg)ren is a basis
for X but not R x X. A complete sieve basis is {b; x 0,...,b, x 0,0 x
e1,0 X eg,...}, where by,...,b, is a basis for RP. The above condition
means that such a pair of bases (by)r<p, (€x)ren has to be chosen such that
the resulting complete sieve basis is orthogonal in the inner product (-,-)y.

[50] present the following result:

Theorem 2.2.10 (Corollary 2, [50]). If the above list of conditions holds,
if Var(VeL(v*)) < oo and if the basis satisfies (2.2.6)), then

Vil — 87) = N(0, Var(Vo L (v")),

Remark 2.2.14. In [49] a Wilks type result for sieve M-Estimation is de-
rived in a quite general setting under similar conditions.

Unfortunately condition is not easily satisfied in practice as the
inner product (-,-)y induced by condition (Expectation of criterion) may
depend on the unknown true parameter. We will encounter such an ex-
ample in Chapter @ namely the model from Equation . If a general
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basis is used without prior knowledge of the norm from Equation ((1.0.1]),
one needs more conditions as we want to show with the following example.

Let with i.i.d ¢; € R
Y, =e/v4¢e, v cl? (e); €l? linearly independent.

Let

Usevy,  Nigse

1 9 def I T 2 d? a,
SDPE S el = (T S ),
=1
where d2, € R™*™ | q,,, :R™ — [2. Define the sieve ME

n

def

Um = argmax L,,(v) = argmax Z(Y; — e/ v)?
veER™ veR™ T

n -1 n
— l II e‘eTHT l e-eT v*
() (150

i=1

1 T
TT
—l—(ng 1 e;e; Hm> nélai
1=

i=1

—1
R 1o _
~ m'U* + <n E Hmelejﬂrj) E E E; +dm2a,¢vm;g*.
=1 =1

If 0= Ilpange,;}v - where (er)ren C 12is the canonical basis - this gives

—1
_ . B . 1 n 1 n
V(0 — 0%) = /nlld s, 2* + 1T (n §' 1: Hmeiejn,;> - E’ 1: &.
1= 1=

Thus to get asymptotic normality one needs that \/ﬁﬂld;lzam,mz* — 0,
which is not implied by any of the conditions of [50] except (2.2.6). We
address such effects in Section In Chapter [6] we present a basis that
- under mild regularity conditions - ensures \/nIl1d;,%asem,,2* — 0 in the
context of the model , without any prior knowledge about the true
data distribution.

2.A Proof of differentiability in quadratic mean
for the single-index model

Proof. We prove this claim using the arguments of the proof of Lemma 7.6
in [57]. By definition p¢(y, @) = pe(y — frtn, (' 60(t)))px(x). We can
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bound

2
/ <\/pt(y7x) ; \/pO(y’w) — %g(y,a)) po(va)> d(y,(l?)

- 2/ <\/pt(y,w) - \/po(y,w)>2d(y7x)

+/9(y, x)?po(y)d(y, x).

Denote

def

§(@.8) = (forsony (@ 0()0() @ + fu, (27607) ) VVpx(@).

We have by pointwise differentiation

dv/ pt(ya x) _ Pe(y — fn*+shn (xTO(S))) Gl
at VP = far oy (@76(5))

and by the continuity of the derivative

Voly. ) — Vmoly, / Py — foreana @O oo
Py = Fo o (@76(5)))

_ t/ Pe(y — f'r] —i—rh77 Y 0( )
\/pe Yy — fn +rh7, wTo( )))

This gives with Jensen’s inequality, Fubini’s theorem and assumptions (2.1.6])

and

/<\/pt(y,w) ; \/po(y,w)> iy, z)

2
L Be(y = frrgton, (27 0(5)))
< n g(x) | dsd(y,x)
/ / VP = farsony (@7 6(5))) )

g(x, s)dr.

2
1 (Y — frrtto x'0(s .
L[] (Bl trsamteTow) g@,s)) o
0 S\ Py = fason (276(5))

2
Pe(y — fo 'i"f()hnaj 0( ) g(x, s)*dx ds < oo
[ (St g
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Furthermore again using assumptions (2.1.6]) and (2.1.7))

/g(y,w)zpo(y)d(y, )

_ [ by =S @O\
. /M/R<¢pe<y—fn*<wm*>>> Al O ds < o

Clearly we have almost everywhere pointwise convergence

Voi(y, ) ; Vo(y, ) — %g(yvm)m-

This gives the claim with the dominated convergence theorem.
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Chapter 3

Parametric estimation, finite
sample theory

In this chapter we want to give a synopsis of the results of [52]. Many ideas
and tools of this paper are used for our approach presented in Chapter |4} so
we present the results in some detail. Also in the Sections [3.5.2] and [3.5.3]
we present two new Theorems that are derived with the empirical process
techniques of [52] and that are central for the subsequent chapters.

3.1 Basic idea

[52] deals with M-estimators in parametric models, i.e. the arguments of
the functional £ from equation are finite dimensional objects v €
T Cc RP"*P" | Remember the definitions of the full target parameter and the
M-Estimator (ME)

*

- argmax [EpL(v), © o argmax £(v). (3.1.1)
vel vel

Introduce the functional gap
L(v,v*) = L(v) — L(vY), (3.1.2)

and define the total information matrix D3 = —V2IEL(v*) € R . The
results of [52] can be summarized as

IN

’L(’E,’U*) - ||£e||2/2’

[De(® ~v7) — &

Ae(x), (3.1.3)

IN

2A(x), (3.1.4)

where D2 ~ D3, & %ef DAIVL(v*), and Ac(x) is a random term called

the spread which is small with probability greater 1 —4e™*. In the smooth
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ii.d. case Ag(x) is of order p*g/z/nl/Q, where p* is the total parameter

dimension. If the model is correctly specified, which means that £(Y,v) =
log [, p(Yi,v), where p(y;,v) is the the density of IP,, & is nearly
standard normal such that 2£(v,v*) is nearly X;Z)* if p*3/2/n1/? is small.
The results also allow to infer that the MLE v is asymptotically normal
and efficient.

This result is derived in two steps. First it is proven that the ME lies with
a high probability in a neighborhood of the target v* € 7. In the second
step the functional gap of equation is sandwiched by two quadratic
processes motivated by a second order Taylor expansion. For some radius
r > 0 the local neighborhood 75(r) is defined as

To(r) €

{'v ERP : [ Do(v — v¥)|| < r} , (3.1.5)
which is a ball in the intrinsic norm ||Dg(+)|| . [62] derives a deviation bound
of the form

IP(v € To(ro(x))) 21 —e7, (3.1.6)

where ry(x) grows almost linearly with x.
On this local neighborhood one could approximate

L(v,v") = VL") (v = v") = [|Do(v — v*)|?/2 + ag (v, v"),
where
ag(v,v*) = L(v,v*) = VL(v*) (v — v*) + || Do (v — v*)|?/2. (3.1.7)

The remaining task would be to derive deviation bounds for sup,er,(r)
|ap(v,v*)|. This is possible using conditions (L) and (£D;) of Section
and would lead to a bound of the kind (see proof of Theorem for
the case that § = v € RP")

.IP{ sup |ag(v,v*)| > r’c (5(r) + w\/p* + x)} <e ¥,

veY (r)

where §,w are small terms from those conditions. It is important to note
that the error term is of order r?§(r) + r?\/p*w, which could be too large
for big values of r. It turns out that a small trick enhances these bounds
substantially in situations where r > 0 is large in comparison to p* € N.
Instead of approximating the functional by a quadratic term and accounting
for the uniform error supycr, () lao(v,v*)[, [62] sandwiches the process
L(v,v*) between two different quadratic processes Le,Leup to uniform
errors that are substantially smaller than sup,cy(q) |ao(v,v*)|. To gain
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insight into the properties of the maximizer and maximum of £(v,v*)
with respect to v € T, [52] analyzes and compares the maximizers and
maxima of L, Le, which again differ by less than sup,cy(r) [oo(v,v*)|.
When accounting for all approximation errors this leads to sharper results
in terms of how sensitive the error terms are to the size of r. [52] uses the
following altered approximation

L(v,v") (3.1.8)
< VA" (0~ v%) — 5(v—v") {1~ 6D}~ WV} (v — v°)
+a(v,v"),
where

ac(v,v*) = (L — EL)(v,v*) = VL(v) (v — v*) — w|[Vo(v — U*)H2/2,
and Vo & B [VL(v)VL(v)T]. The inequality (3.1.8)) is valid as [52] as-
sumes that

[EL(v,v") = [[Do(v — v*)|*/2| < 8[| Do(v — v")|?/2.
One can bound due to EVL(v*) =0

ae(v,v*) < sup  sup Dyt {V(L — EL)(v°) — V(L — EL)(v)}y
~eRP™ V0 EYo(x)
lvll=r

— wl[VoDg (/2.

The important difference to bounding sup,er, (r) |ag (v, v*)| is that the ad-
ditional quadratic drift component —w|VoDy'v|/?/2 allows to derive - uti-
lizing Theorem - a bound for «, which is of order w(r)p*. The de-
pendence on the radius now is only through w(r) which in many settings is
linear in r. This can make a tremendous difference if rg > 0 from equation
is large in comparison to p* € N. The same is done for an upper
bound using (1+46)DE+wV? in instead. This leads to the key result
of [52], that the functional gap L(v,v*) can be sandwiched on Y,(r) by
two processes Le(v,v*) and Le(v,v*) that are quadratic in v, that is for
v € Y(x)

Le(v,0%) — Qe(r) < L(v,v") < Le(v,v") + $e(x), (3.1.9)

where $e(r) > 0 and $e(r) > 0 are with high probability of order w(r)p*.
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Furthermore it turns out that

maxLe(v, v*) — maxLe(v, v*)| < C(0(r) + w(r))p”,

[ Le(0,0) = paxLe(0,0)] < C(0(x) +w(x))p

|argmax L¢ (v, v*) — argmax Le (v, v*)| < C(0(r) + w(T))p™.
To(r) To(r)

The bracketing result (3.1.9) and the last two equations combined with the
local concentration of the M-estimator (3.1.6)) give (3.1.3)) and (3.1.4]), which

again yield a number of important and informative corollaries.

Remark 3.1.1. We will also exploit this improvement in comparison to the

bounds for sup,ecy ) [ao(v,v*)| from (3.1.7) in Remark [4.2.15

3.2 Wilks and Fisher via local quadratic bracket-
ing
In the following we will briefly present the arguments employed in [52] that

lead to the results (3.1.3) and (3.1.4). We do this in some detail to highlight
what is new and different in our approach in the subsequent Chapters.

3.2.1 Conditions

Below we cite the conditions that are used in [52]. We will not explain
them here in detail as we will restate and discuss a slightly altered list of
conditions in Chapter [4] that is more relevant to our work.

Local conditions

Local conditions describe the properties of £(v) in a vicinity of the central

point v* from (3.1.1).

Define the stochastic component ((v):
((v) = L(v) — EL(v).

Below we suppose that the random function ((v) is differentiable in v and
its gradient V¢ (v) = d¢(v)/0v € RP" has some exponential moments. Our
first condition describes the property of the gradient V((v*) at the central
point v*.

(€Do) There exist a positive symmetric matriz V2, and constants g > 0,
vo > 1 such that Var{V{(v*)} < V3 and for all |\ <g

T *
sup log]Eexp{)\W} < I/g)\2/2.
~ERP Vo
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The following two conditions are restricted to neighborhoods Y, (r) C 1

from (3-13).

(DY) For some r* >0 and each r < t*, there exists a constant w(r) <
1/2 such that it holds for all v € To(r)

{ VW) - Vew))
() [Do]

Here the constant g is the same as in (EDj).

sup log IF exp

} < 1/3)\2/2, A < g.
~ERP

(L4) There are a symmetric strictly positive-definite matriz D3 and for-
some r* > 0 and each r < r* a constant 6(r) < 1/2, such that it
holds on the set To(r)

2[EL(v,v*) < 6(x).

14—l <
1Do(v = v*)]?

Remark 3.2.1. We denote these conditions as (L) and (€D)) because
we will introduce variants of these in Chapter 4l The new versions (£¢) and
(EDq) will be slightly stronger but allow the mentioned improvement from
1)*3/2/711/2 to p*/nl/2 of the bounds for terms related to the approximation

error ((1.0.8)).

The identifiability condition relates the matrices DZ and V3.

Z) There is a constant a > 0 such that a?D? > V2, ie. such that
0 0
azﬂg — V% is positive definite.

Global conditions

The global conditions are needed to control the large deviations of the ME.
They are chosen to ensure that the event {||Do(v — v*)|| < r} is of high
probability for not to large r > 0.

(Exr) For any r, there exist a constant vr >0 and a value g(r) >0 such

that for all X < g(r)

sup sup loglE exp
veY,(r) YERP

{)\VTVC(U)

< V2X\?/2.
Vol }

Also remember the radius ro(x) from (3.1.6).

(Lr) There is a function b(r) such that rb(r) monotonously increases in
r and for each r > g

inf ’EL(’U,’U*)‘ > b(r)r’.

v: [|[Vo(v—v*)||=r
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3.2.2 Local quadratic bracketing

In this section we present the key results of [52], i.e. the local quadratic ap-
proximation of £(v,v*) given by Theorem below and its implications.
We follow closely the original text of that paper.

Consider 4(r),w(r) from (ED)) and (L{) in Section [3.2.1] Introduce
a vector €(r) = (6(r),w(r)) € R? to define the quadratic process:

oL

Le(v,v") = (v = v") VL") = [ De(v — v")|?/2

— £ De(v —v") — [De(v — v")[2/2, (3.2.1)

€

where ((v) = L(v) — [EL(v) and VL(v*) = V((v*) by VIEL(v*) =0.
Further define with V3 > Cov(V((v*))

D2 = DX(1-6) —wVi & L DIvL(vY).

Le(v,v*) is defined analogously via replacing € = (0,w) with € = (=0, —w) .
[52] presents the following central sandwiching result:

Theorem 3.2.1 ([52], Theorem 3.1). Assume (€D}) and (Ly). Let for
some r, the values w > 3vow(r) and § > 6(xr) be such that D(1 — §) —
wVE > 0. Then for any v € To(r) with r < r*

Le(v,0%) = Qe(r) < L(v,v") < Le(v,v") 4+ Qe(x), v eTo(r), (3.2.2)

with Le(v,v*), Le(v,v*) defined by (3.2.1). The error terms {$e(r) and
Qe(r) satisfy

P{w™c(r) 2 50(x,Q)} < exp(—x)
with 30(x,Q) given for go =gy >3 by

(x.Q) % (1+\/X+@)2 if 14+ vx+Q < go,
doixe) = 1—|—{2gal(x+(@)+go}2 otherwise,

where Q < c1p with ¢ =2 for p>2 and ¢ = 2.7 for p=1. Similarly
for $e(x) .

Remark 3.2.2. The proof of this theorem is based on an uniform exponen-
tial deviation bound for U(v,v*) — ||[Vo(v — v*)|?/2 with

1
W, w') = oo v) (0 -0 VW) v e )
served by Theorem [3.5.6
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Proposition allows to ensure that under (£Dg), the norm |[|&l|
posses essentially the same deviation behavior as the norm of a Gaussian
vector with the same covariance matrix. It gives for some nonrandom real

value 3(x,B) > 0 defined in Section that
P(|€]* > 3(x,B)) < 2e ™. (3.2.3)

Together with the bracketing result (3.2.2)), the geometric structure of the

processes L. and Le and (3.2.3) this allow to derive a non-asymptotic

versions of Fisher’s and Wilks’ theorems in Corollary Define 7¢(r) e

§(r) + w(r)a? < 1, the value ae(r) o 12_7;2 and the spread Ae(r) by
ef
Ac(r) € 2w(r)30(x, Q) + ae(r)3(x, B), (3.2.4)

and note that it only depends on the radius r > 0 through w(r) and ae(r).
Further define the set Ce(r) C {2 which is contained in the sigma algebra
of the underlying probability space

Ce(r) ¥ {5 e 1o(x), VoD <,

Oe(r) < wio(x,Q), [l&ol* < 5(x. B)}. (3.2.5)

The implication of the results of [52] can be summarized as follows:

Corollary 3.2.2. On the random set Ce(r) from (3.2.5)), it holds

[£@,0%) ~ [€1P/2] < Oelx) V Oelx) + el
[De(® —v*) — & < 2Ac(x).

VAN

Remark 3.2.3. Define
ro(x) ¥ min{r > 0, P(¥ € Vo(r)) > 1 — e *}.

This gives that the set Ce(rg) C {2 is of probability greater than 1 — 4e™*

due to Theorem combined with Equation (3.2.3]). The bounds for the

large deviation of the MLE derived in Section give that ro < Cy/p* +x,
which implies for §(r) + w(r) < Cr//n that
x3/2

Ae (ro) S CW

This is exactly the claimed sufficient ratio of dimension to sample size for
the Wilks and Fisher expansions for the smooth i.i.d. setting if the approach
[52] is used. As mentioned we will improve this sufficient ratio to p*/y/n in
Chapter [4
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Proof. From Corollary 3.3 of [52] we obtain
1€ell?/2 = Ce(x) < L(D,0%) < [|€e]?/2 + Oelx)-
We get
[£(0,v") = [I€]17/2] < Oe(x) V Oelx)
+ (l1€el*/2 = 11€1*/2) v (l1€ell*/2 — l1€l*/2) -

Now Lemma [3.2.3] gives the first claim. The second claim is Corollary 3.4 of
[52]. O

Lemma 3.2.3 ([52], Lemma 3.9). Suppose (Z) and let ¢ C w2 <1,
Then

D2 > (1 —7)DE, D2 < (14 7)Dg,

_ def 27,
1y = DD Dellc < e ® =55

€

Moreover,

2 2 Te 2 2 2 Te 2
— < — < —

€ell® — ll€el® < aell€ll”.

3.3 Concentration of the qMLE

The result of Corollary only holds true on the set C(x) C . In
Remark we noted that this set is of very high probability. This partic-
ularly concerns the large deviation behavior of the estimator © € RP" . [52]
presents one possible way of determining a radius ro(x) > 0 such that

P(® € To(r)) > e (3.3.1)

In this section we present this approach. Before we explain it in more detail
let us try to understand the idea. It involves the conditions (€r) and (Lr)
from Section Let 7(r) be a family of nested sets, that shrink with
decreasing radius r, than due to the definition of ©

P@¢T(r) <P (Ué%?i‘)cﬁ(”’“*) > 0) :

because L(v) > L(v*). Now one can decompose

L(v,v*) = L(v,v*) — E[L(v,v")] + E[L(v,v")],
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such that with condition (Lr) and Taylor expansion
L(0,0%) < V@)W —v) —b(@) Do - )2, (332)

for some v (v, v*) in the convex hull of v,v* € 7. Assume that the supre-
mum of the norm of D™'V{(v) on T(r) grows slower with the radius r
than the quadratic term does. Then the term on the right hand side in
should be below zero with a high probability once the radius exceeds
a certain bound rg. So the task is to find some rg > 0 such that under
condition (€r) for any r > ry

~ —U* . r ’U—’U* 2 e*X.
P (s {VE@)w - 0") ~ @)D - )} 20) <

This is done in Theorem which again utilizes Theorem

3.3.1 Upper function approach

Everything in this Section is taken from [52] except the remarks and slight
variations in the formulation of the Theorems. The idea of the upper func-
tion device is to find a deterministic upper function u:7 — R such that

P <1s)1€11;{ﬁ(v,v*) +u(v,x)} < 0) >1—e %

If this function u:2 x R — R satisfies u(-,x) > 0 on Y5(ro(x))¢ C T for
some ro(x) > 0 then we can easily infer

P(v ¢ T5(ro(x))) < P(L(v,v") +u(v,x) >0) <e ¥,

because L(v,v*) > 0 by definition.
Take a geometric sequence uy = o2~ % with any fixed po and define
t(ux) = k for k> 0. Define also for each r > 0

M(r) def pe s 14+ x4+ Q+t(n) < vogl(r)/m}, (3.3.3)

with @ = ¢;p. Theorem 2.8 of the supplement of [52] reads:

Theorem 3.3.1. Suppose (Er). Let a function u(v) be fized. Define for
any v

©F max {— K [EL(v,v*) +u(v)] — 1,u,2r2 - 2t(,u)}, (3.3.4)



where ¥ = || D(v —v*)||. Take some x with x+ Q > 2.5. If it holds
M (v, v*) > 2(x+Q), v e T,(r)"

then

P ( sup {L(v,v") +u(v)} > 0) <e ™

veYo(r)¢

Remark 3.3.1. This result is proved using the following equations. The
first one is this simple inequality

sup {L(v,v*) +u(v)}
vEYH(T)

< sup {IEL(v,v") +u(v)}+ sup ((v) — (V7).
vEY () veTo(r)

The second one is an application of Theorem in Section [3.5] i.e. that
with (€r) for p € M(r)

310 veT, ()

P (“ sup G(v,0%) — L > {1 - wm}?) <o)

It remains to find a way to ensure that condition is satisfied.
This is done via a lower quadratic bound for the negative expectation
—IEL(v,v*) > b(r)||Do(v — v*)||?/2 given in condition (Lr) from Sec-
tion Further the bounds of the exponential moments from condition
(Lr) have to be qualified to ensure that the set M(r) from contains
b/3vy. [52] presents two different results. The first one adresses the case
that b(r) =b > 0 for all r > ry. We present Theorem 4.2 in [52], in the
following modified version, which is proved in the same way:

Theorem 3.3.2. Suppose (Er) and (Lr) with b(r) =b. Let, for r > g,

14+ v/x+Q < 3v2g(r) /b, (3.3.5)

b
6rry/x+Q+ —K < rb, (3.3.6)
178

with x +Q > 2.5 and Q = 2p*. Then

P(Te(K) € Tolxo)) < 267,

where T (K) def {veT: L(v,v*) > -K}.

Proof. The result follows from Theorem with u(v) = K, M(r) =
{32}, t(w) =0. 0
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Remark 3.3.2. Note that this Theorem also ensures that the maximum
of £ :RP — R is actually attained. Clearly v* € 7(0) such that it is
nonempty. Further

P (T(0) € To(ro)) =1 —e%,

such that 7(0) C Y5(rg) C RP" is compact and thus £ attains its maximum
on 1'(0), which will be the global maximum ©. The same holds for vg« €
RP" | which is defined as

. def
Vg = argmax L(v).
vel
Igv=6*

Remark 3.3.3. The condition helps to understand which rg > 0
ensures the prescribed concentration properties of © € RP” and vg- € RP
because by definition both are in the set 7°(0). Consequently, if g(r) > 0
is large enough, follows from the bound

ro > 6b lupy/x + p*. (3.3.7)

Remark 3.3.4. The condition (3.3.5) qualifies the lowest admitted decay
of g(r) from condition (€r), i.e. that g?(r) > C(x + p). This is similar
to requiring finite polynomial moments for the score function. Condition
is derived from condition (Lr). It tells us the necessary size of

ro(x) to ensure (3.3.1)), namely r3(x) > C(x + p*).

If b(r) decreases with r, it has to be ensured that b(r) does not de-
crease too fast. More precisely we need that the product rb(r) grows to
infinity with r. The result is given in Theorem 4.3 in [52]:

Theorem 3.3.3. Suppose (€xr) and (Lr). Let ryp be such that b(ry) >
b(rg)27% for k> 1. If the conditions

1+ vVx+Q+ ck < 3v2g(rx)/b(x),

b
61/r\/X + Q + ck + érk)K < rkb(rk),

Vr

are fulfilled for ¢ =log(2), then it holds
PTe(K) ¢ Tolro)) < 267

where 1 (K) o {ve?: L(v,v*) > —-K}.
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3.4 Deviation bounds for quadratic forms

In this section we present the important result by [52] on the deviation
behavior of quadratic forms. It is rather technical and involves a list of
constants. In the subsequent chapters we will use the corresponding bounds
frequently. Everything in this Section is based on [52].

3.4.1 The idea behind the result

First let us try to get some intuition. The aim is to control the deviation
for quadratic forms of type ||M£||? for a given symmetric matrix M and a
random vector &.

Remark 3.4.1. In this Chapter
£=Vy'V¢(vY), M =Dy,
while in Chapters and [6] we could also have
£=VIV¢(vY), M=D7'V,

where the vector V¢ (v*) € RP and matrices D,V € RP*P are introduced
in Chapter

The proof of the result of this section is based as usually in this chapter
on the exponential Markov inequality

P (|ME|* > C(x)) < e ™2 E [exp{A||ME|/2}] .

It would be to restrictive to assume bounded exponential moments for the
squared norm ||M¢||?. Using a small trick this is indeed not necessary:

E [exp{\||ME|*/2}]

o [exp{A!|M£||2/2} ()" [ eptoanave - 7|2/2}d7]
_ @)pw E VR esxp{ vy T ME — A||7\|2/2}d7} . (3.4.1)

To bound the right hand side of (3.4.1)) one can use assumption (3.4.2)) below
to find

pleotimer] < (1) [ evttmie i)
- (j)/ [ [ exol-xaT e - AM2>~//2}dﬂ

= det (I — AM?)~Y/2,
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which leads to the bounds for C(x) as in Proposition Again we did
not address the difficulty arising from the fact that in assumption (|3.4.2])
the moment bounds only exist up to a certain g > 0. The actual result
follows after a series of tedious calculations involving slicing arguments and
the right truncation inside of the above integral.

3.4.2 Formulation of the result

Suppose that

log Eexp(v'€) <|I*/2,  ~v€RY, vl <e (3.4.2)
For the symmetric matrix IB?> = MM " define

5« def def
pp = tr(B?), vay = 2tr(IBY), Nz E (| BY|oc = Amax(IB?).

To ease notation suppose that g2 > 2p. The other case only changes the
constants in the definition of 3(x,B) > 0 below. Define p.=2/3 and

def
g = Vg2 — [icPB,
def * *
2(xc+2) = (gz/ﬂc —pB)/AB +1og det(Ip — peIB/A )

The following proposition is a variant of Corollary 1.7 of the supplement of
[52]:

Proposition 3.4.1. Let (3.4.2) and g?> > 2pp . Then for each x >0
P(||ME]| > 3(x, B)) < 2¢7%,

where 3(x,IB) is defined by

pp+2vp(x)12, x<
def N
2(x—1,B) = { pp + 6)\*(x), we <x<x,  (343)

A% 2
‘yc + Qg—ﬂf(x — XC)‘ , X > X,

with y2 < pp + 6X5(xc + 2) .

Remark 3.4.2. The definitions above are presented for the sake of com-
pleteness. They arise from the proof of the proposition. One important
thing to note is that x. = g,, where in many cases g, — oo as n —
oo. This means that x. — oo such that in most cases one can bound
32(B,x) < pp +6AX* (x+1). In not to degenerate cases one can expect that
tr(MM ") < Cp* for some constant C > 0, such that we obtain

P (||ME|* > C(p* +x)) < 2™
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3.5 Some results for empirical processes

In this section we summarize the results of the supplement of [52] concerning
empirical processes. We will concentrate rather on the explanation of the
ideas and correct citation of the necessary results than on the technical
details. This is why we present a simple proof of the central Theorem [3.5.5
below. Also we only address the finite dimensional case. In Sections [3.5.2
and we also present two new results for bounds of suprema of norms
of random vector- or matrix-valued processes from [4] and [5].
We are interested in bounds for

sup ((v,v*), sup w(r) ' {¢(v,v*) = V(v (v —v*)}.(3.5.1)
VEY,(r) v, (1)

The term U(v) can stand for U(v) = ¢(v) or U(v) = w1 ({(v)—V((v*)v)
depending on context. The approach we will present here consists of two
steps. First one derives a bound for the exponential moments of

SUPyers (r) |U(V) —U(v™)| using chaining and the conditions (€r) or (€Dy):

loglEexp{ sup |U(v) — U('u*)‘} < A2/2+ Q(Tu(x)),

VT vely(x)

where Q(25(r)) is the entropy of the set Yo(r) from (3.1.5), which is a
measure of the complexity and is related to the Dudley integral (see [17]).
The second step is the exponential Markov inequality

¥/ ( sup IU(U) - U(v*)| > 21/0r3(x)> (3.5.2)
veYo(r)

< exp {N*/2+ Q(To(x)) — X(x)} -

It remains to minimize the exponent on the right hand side with respect to
A > 0 and to find a constant 3(x) such that

min{)2/2 + Q(Ts(r) — X3()} = x,

which gives 3(x) = /2(Q(25(x)) + x) if there is no constraint on the size
of |A|. In some cases the dependence on r as in (3.5.2) is not desirable as
r might be too big. Also in Chapter 5] we are interested in a bound for

sup sup |U(v) — U(v*)|.

r<r* vels(r)

To address this problem the idea is to subtract a quadratic drift term that
dominates the ”linear in r” deviations of U(v) — U(v*) for large r > 0,
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which means that one bounds

sup sup {’U(v) - U(v*)| - d('u,v*)Q} ,

r<rx velo(r)

for some adequate distance d(-,-). This is done in Theorem using
similar arguments, which yields a bound of the kind

P (Sup sup {311/0 U(v) — U(v™)| - d(vvv*)2} > 3(X)2> <e¥

r<rx veYs(r)

where 3(x) = 1+ 1/2(Q(25(x)) + x). The analysis becomes more involved
once the exponential moments only exist for |\ < go for some gy > 0.
This is why in the following the term 3(x) becomes more complicated.

3.5.1 A bound for local fluctuations

Everything in this Section except the proof of Lemma is taken from

[52]. We infer from (€r) and (€D;) from section or

(ED) There exist g > 0, vy > 1 for each v € T,(xr) such that for any
A\ < g(r) and any unit vector v € RP", it holds

7 VU(v)

log B exp{ A5 1

} < vEN/2.
The following lemma turns out to be very useful:

Lemma 3.5.1 ([52], Lemma 2.9). Assume that (ED) holds with some g for
each v € T5(x). Consider any v,v° € Yi(xo). Then it holds for |\| < g

(3.5.3)

o 2)\2
log]Eexp{)\ U, v°) } < a

[Do(v —v°) 2

Thus Lemma shows that condition (D) implies (Ed) with
d(v,v°) = [|Do(v — v°)]:

(Ed) There exist g >0, rog >0, vy > 1, such that for any \ < g and
v,v° €T with d(v,v°) <1y

logEexp{/\W} < UEN%)2. (3.5.4)

Remark 3.5.1. In the setting of Theorems and we have
U(w) = D7 (V¢(w) - VE(Y)),
and condition (&) becomes (£€D1) from

47



To derive bounds for the terms in we only have to apply Theorem
or from below. For this we use the basic chaining device as it
was introduced by [17]. Let (2}) be a sequence of subsets 13 C 1,(r) with
minimal cardinality while satisfying supycr, (r) inforer, d(v',v) < r27% and
Yo = {v*}. This allows to define the entropy of 75(r)

QTu(r)) := > 2 *log(2ITx]), (3.5.5)

k=1

and we remark, that for 7,(r) C R?" we have Q(7,(r)) = 2p* due to the
following Lemma:

Lemma 3.5.2 ([52], Lemma 2.10). Let 7° = {v € T : d(v,v*) < r} for
some v € RP" . Under the conditions of Lemma it holds Q(T°) <
ap®, where ¢ =2 for p* > 2, and ¢ = 2.7 for p* =1.

For the derivation of Theorem [3.5.5] and Theorem [3.5.6] we need a series
of Lemmas. First we need the Holder inequality.

Lemma 3.5.3. For any r.v.’s & and A >0 such that A=), A\, <1

log IF exp <Z Ak€k> < Z i log EeS*.
k k

Now we state the central lemma, of this section where we use the sequence
of sets (2%) to apply the chaining method.

Lemma 3.5.4 ([52], Theorem 2.1). Suppose (Ed). If Yo(r) is a set with
finite entropy and center v* and the radius r, i.e. d(v,v*) < r for all

v € Yo(r), then for A < go o g

logZEexp{ sup |U(v) — U(’U*)‘} < A?/2 4+ Q(Ys(x)).

WOT peT, (r)

Remark 3.5.2. This Lemma is Theorem 2.1 from [52]. We give a simple
and short proof because this result is fundamental for this work. The original
proof is based on generic chaining and is slightly more complicated. Because
we will only use results from this section for finite dimensional sets 7 C RP”
usual chaining is sufficient. See Section 2 of [55] for a concise description of
chaining and generalizations of the idea.

Proof. A simple change U(-) with v;*U(-) and g with gy = vpg allows to
reduce the result to the case with vy = 1 which we assume below. We have
with our sequence (1%)

sup |U(v) — U(v°)| < Z sup inf |U(v) — U(V")].
vEY o (x) 1 €Tk v EY 1
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We denote supyey, infyer, , [U(v) — U(V)| =: &. Denote ¢ = 27F

for k> 1. Then > 2, ¢, = 1. It holds by the Hélder inequality; see
Lemma 3.5.3t

A — s A
logEexp<2rZ§Z> < chlogJEeXP<2_k+1r€Z>
k=1

k=1

We have with v;_, (v) = argmin,, ¢y, , d(v,v’) and with (€d)

A s
log E exXp (2_k+1r0£k>

<log Y Eexp ()\IU(U) — U(’U;C_l(v))>
)

U(w) — U] ()
. log{ 2 EeXp@ d(]_,(),v)

veYy
U(v) = U(vy_y (v))
+ IF exp <—)\ > }
d(v,_; (v),v)
< log(2Ti]) + \2/2.
which gives the claim. O

The exponential bound of Lemma [3.5.3] can be used for obtaining a
probability bound on the maximum of the increments U(v) — U(v°) over
Yo(r). We restate Corollary 2.2 of the supplement of [52]:

Theorem 3.5.5. Suppose (Ed). If Yo(r) is a central set with center v*
and radius r > 0, then it holds for any x > 0

]P< sup U(v) — U(v*) > 3u0r31(x,(@)> < exp(—x),
VEYH(x)

where with gy = 1vpg and Q = Q(Ls(x))
31(x,Q) % V2(x+Q), if vV2(x+ Q) < go, (3.5.7)
B g (x + Q) +go/2, otherwise. o

Remark 3.5.3. The proof is a simple application of the exponential Markov
inequality.

The previous Lemma yields a bound that depends linearly on the radius
r > 0 of the local set over which the supremum is taken. Subtracting a
quadratic process as done in the proof of Theorem allows to obtain a
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bound that is independent of r > 0 and is preferable in situations where
the radius ro > 0 - needed to ensure IP(v € 175(r)) > 1 —e™* - is too large
in comparison to /30(x,Q) > 0 from (3.5.8). For this purpose we restate
Corollary 2.5 of the supplement of [52] as a Theorem:

Theorem 3.5.6. Let (YVo(r))o<r<rs C RP" be a sequence of balls around
v* induces by the metric d(-,-). Let a random p -vector process U(r,v)
fulfill UW(r,v*) =0 and (€d) for each 0 < r < r*. Finally assume that
SUDyer, (r) W(T, v) increases in r. Then for each 0 <t <", on a set of

probability greater than 1 —e™*

1
sup {wr,v) - d<v,v*>2} < 30(x.2").
veT(r) L3V

where with gy = g

2 .
o(x,Q) {(” S T VERRSEN 555)
1+ {2g; ' (x + Q) +go}?, otherwise.

Remark 3.5.4. The proof of this result is based on Lemma and uses
a peeling argument to derive an even better bound for the exponential mo-
ments of z=U(v,v*) — £d?(v,v*) that allows to get rid of the dependence

Yo

on r > 0. Finally Lemma allows to replace Q by 2p*.

Remark 3.5.5. The generalization that the process U(r,v) is allowed to
depend on the radius r is possible because we impose that sup,cr, vy U(r, v)
increases in r, such that the assertion remains valid.

3.5.2 A bound for the norm of a random process

This and the following section are based on [4] and [5]. In Chapter [5| we
need for a random process Y(v) € R?" a bound of the kind

1
zp(sup sup {wny(v)n—w}ZCaQ<x,p*>>se-x.

r<r* vels(r)

We want to derive it using the results of the previous section.
Let Y(v) be a smooth centered random vector process with values in

RP" and let D : RP" — RP" be some linear operator. We aim at bound-

ing the maximum of the norm ||Y(v)|| over a vicinity 75(r) &f {IID(v —

v¥)|| <r} of v*. Suppose that Y(v) satisfies (£d) with norm d(v,v°) =
w[[Do(v —v)]|.

Theorem 3.5.7. Let a random p* -vector process Y(v) fulfill Y(v*) =0,
EY(v) =0, and suppose that Y(v) satisfies (Ed) from (3.5.4) with norm
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d(v,v°) = w||Do(v—v°)||. Then for each 0 < r <r*, on a set of probability

greater 1 —e™*

1 2
sup sup Y()|| — 2r } < x, 4p"),
r<r*ven(r){6mn )] s0(x,4p%)

Remark 3.5.6. Note that only twice the entropy of the original set 75(r) C
RP" enters the bound. Thus in order to control the norm ||Y(v)|| one only
pays with this factor.

Proof. In what follows, we use the representation

1
B)l=w  sup  ———uY(v).
ful< -] @I D(v = 07|
Due to Lemma|3.5.8|the process U(r, v, u) & s—u'Y(v) satisfies for every
r condition (Ed) (see (3.5.4])) as process on
Ur*) ¥ 7,(r*) x B (0). (3.5.9)

Further sup(y u)ev(x)) U(r,v,u) increases in r. This allows to apply The-
orem [3.5.6] to obtain the desired result. Set

d((v, ), (v°,u?))? = [|D(v = v°) | + [lu — u|.

X

We get on a set of probability greater than 1 —e™

sup { ! uwv)—rmv—v*)w—uun?}

('U,’u.)EU(r*) 6(,01/1.'[‘
2
< s0(xQUE))

The constant Q(U(r*)) > 0 quantifies the complexity of the set U(r*) C
RP" x RP". We point out that due to Lemma we have Q(M) < 2p*
for compact M C RP". This gives (@(U ) = 4p* . Finally observe that

sup sup { ! ||H<v>|r—2r2}

r<r* veYo(r) bwry

1 T o )
< sup sup { uw'Y(v) — | D(v — v*) _u|}
r<r (vau)el(x) | 6wrir ) = [ID( [

- e { ! uwv)—umv—v*)n?—nuw}.

- (v,u)eU (%) 6wiir
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Lemma 3.5.8. Suppose that Y(v) satisfies (Ed) from (3.5.4]) with norm
d(v,v%) = w[|Do(v — v°),

for any w € RP" with ||ul| =1. Then the process U(r,v,u) = 5:-Y(v) u
satisfies (€d) with |\ < g/2, v? =412, with norm

d((v,u), (v°,u%))* = | D(v = 0°)|* + ||u — u’||?,

and U C R¥" defined in (3.5.9), i.e. for any (v,u1),(v°,us) €U

A < g/2.

. o 212
log]Eexp{/\u(v’ul) U(v ,uz)} < ZP)

d((v,u1), (V°, us)) 2’

Proof. Let (v,u1),(v°,u2) € U and w.lo.g. u; < |D(v—v*)| <|D(v°—
v*)||. By the Hélder inequality and (3.5.3)), we find

logIEexp{)\u(U’ul) - U(Ua U2) }

d((”? ul)v (an u2))

— logEexp{)\u(v’ul) - U(’U ,’U,l) +u(’U ,ul) — U(’U ,uQ)}

d((v,uy), (v°, uz))

Lo el () - Yw)
p o8l p{” D — ) }

T _ 27T )
+;logEexp{2/\(u1 u2)‘5(v)}

wllug — ugl|r

IN

IN

1 u
sup —log I exp{ 2
llull<1

M) —%(U"))}
w[D(v —v°)|

1 u
+ sup —loglE exp{2/\
lull<1

T(Y(v°) —Y(v")) }
w||D(v —v¥)||
< 4’/(3/\2, A<g/2

O

With the same arguments one can prove the following slightly differ-
ent version of the previous theorem for the case that for a random process

9

Y(v) € RP we need a bound of the kind
P ( sup ([0 > w(x, 297 + 2p>r) <o
vEYH(x*)
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Theorem 3.5.9. Let a random p-vector process Y(v) fulfill Y(v*) = 0,

EY(v) = 0. Furthermore assume that U(v) def Y(v) satisfies (&d) from
(13.5.4)) with norm

d(v,v°) = w|| Do(v — v°)].

X

Then for each r > 0, on a set of probability greater 1 — e~

sup [[Y(v)|| < 6wrnza(x, 2p* + 2p)r.
veYo(r)

Remark 3.5.7. In cases when 31(x,2p* + 2p) < r this version can be
substantially sharper than Theorem [3.5.

Proof. The proof uses the representation

o 1 o
[9()] = sup —u"Y(v).

[ul<r T
This implies
o 1 T
sup [[Y(v)[| =2 sup sup —u Y(v).
VETL (x) VET, (x) [luf<r 2T
Just as shown in Lemma [3.5.8| the process ﬁ(v,u) f %uTg(v) satisfies

condition (€d) as process on RP" x RP. This allows to apply Theorem m
to obtain the desired result. We get on a set of probability greater 1 —e™*

v

sup [[Y()|| =2 sup sup {1UTH(U)}

vETo(r) veYo(r) fluf<r (4F
< 3y131(x,Q(To(r) X fBr(()))>2r.

It remains to note that due to Lemma Q(To(r) x BL(0)) < 2(p* +
p). O

3.5.3 A bound for the spectral norm of a random matrix
process

We want to derive for a random process Y(v) € R?"*P" a bound of the kind

P ( sup ){||9(U)H} > nggl(x,p*)r> <o

’UETo (I‘

We derive such a bound in a very similar manner to Theorem [3.5.9] For this
let Y(v) be a smooth centered random process with values in RP"*P" and let
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D :RP" — RP" be some linear operator. We aim at bounding the maximum

of the spectral norm [|Y(v)|| over a vicinity 75(r) def {|D(v —v")| < r}
of v*. Suppose that Y(v) satisfies for each 0 < r < r* and for all pairs
v’ eL(r)={veT: |lv—v*| <r} CR”

u; (Y(v) = Y(v°))u V32
{)\ ! 2} < =

sup sup log IF exp Do —v%)]

e [[<1 [Juzl|<1

. (3.5.10)

Remark 3.5.8. In the setting of Theorem [5.2.3] we have
Y(v) = DIV (v) — DIV (v),

and condition (3.5.10) becomes (€D3) from

Theorem 3.5.10. Let a random process Y(v) € RP>*P" fulfill Y(v*) =0
and let condition (3.5.10]) be satisfied. Then for each 0 < r < r*, on a set
of probability greater than 1 —e™*

sup [[Y(v)]| < dwaraza(x, 6p")r,
vEYo ()

with go = 11g.

Remark 3.5.9. Note that the entropy of the original set 1,(r) C RP" is
multiplied by 3. Thus in order to control the spectral norm ||Y(v)| one
only pays with this factor.

Proof. The proof is nearly identical to that of Theorem [3.5.9| once one uses
Lemma [3.5.11] and the representation

1 o
[Y(v)|| =ws sup sup ——ui Y(v)us.
lluz||<r |lus||<r W2T

‘We omit the details. O

Lemma 3.5.11. Suppose that Y(v) € RP"*P" satisfies for each ||uy|| <1,
|luz|| < 1 and [N < g the inequality (3.5.10). Then the process
U(v, w1, u2) = ﬁu?‘é('v)—rug satisfies (Ed) from (3.5.4]) with |\ < g/3,
vy =12/3 and d((v,u1, u2), (v°,uf,u5))? = [[D(v —v°)|> + lur —uf||® +
|ug — u$||? as a process on

U(r) = Yo(r) x B1(0) x B1(0) C R¥".
This means that for any (v,u1,us2), (v°,ug,us) € U

log IE ex iu(v,ul,UQ)—U(vo’ui”ug) < V%)\Q
BB P 3 d v, un, o), (0w, u) J S 2

Al < g
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Remark 3.5.10. The proof is nearly identical to that of Lemma [3.5.8
which is why we omit it.
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Chapter 4

A new approach to analyze
profile M-estimators

4.1 Introduction

In this chapter we present an alternative finite sample approach to analyze
the properties of the estimator defined in . It is largely based on
[4], [3] and [2]. As in the Chapter (3| some parts of this chapter are rather
technical so we fist want to convey some intuition about the central steps.
Similarly to [52] the approach consists of two parts. In the first one we again
control the large deviations of

o argmax £ (v),
veT

i.e. we seek for a radius rp(x) > 0 such that
P(veTs(rg)) >1—e 7%, (4.1.1)

where 15(r) is a ball of radius r > 0 in the intrinsic semi-metric corre-
sponding to the process L£(v). For this we employ the technique presented
in Section which is why we include the conditions (£r) and (€r) into
the list in Section See Section for a precise formulation.

The second part consists in the careful analysis of the properties of ©
and @ in the local elliptic set 7,(ro) around v* in (1.0.7). This step is
similar to the ideas behind Theorem Simplified it works as follows.
On the local neighborhood 75(r) we approximate

VL(v) = VL(v*) — D (v — v*) + (v, v%),
(v, v*) = VL(v) — VL(v*) + D (v — v).
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Using that V£ (0) = 0 this means that
oD %71 (v,v*) = 0 — 0% — [TeD 2V L(v*).

Section provides the following bound on a set of probability of at least
1—e™*:

sup ”D71H9®72T(’U,U*)H < <u>(r,x),
VEY (1)

where $(r,x) is a small error and where D=2 = IIgD~211, € RP*P with
the full information matrix D? = V2IEL(v*). In combination with the
deviation bound this leads to the following Fisher and Wilks type
expansions: With probability greater than 1 — 2e™*

jj(g_ 9*) _éH < <v>(r07x)7

[max £(8,m) — max £(0",m) — [I&]*/2] < cvp+x(ro, x).

In case of correctly specified i.i.d models D? is the covariance matrix of the
efficient influence function; see Section [2.1] The random vector

£ =D IyD 2V L (vY),

satisfies IE€ = 0 and IE||€||> < p. Moreover the general deviation bounds
for the deviation of quadratic forms from Section apply to [|€]|2 (see
Remark for details). In the important ii.d. case, the error term
&(ro,x) can be bounded by C(p* +x)/y/n and £ is asymptotically normal.

We begin with developing the results for the case that the full parameter
space 1 is a subset of the Euclidean space of dimension p*. In Section |4.3
we will exemplify how to extend our approach to the case when v is a
functional parameter using the so called sieve approach; see e.g. [49].

The chapter is organized as follows. First we present the conditions
employed for our results in Section[£.2.1] Section [4.2.2]introduces the objects
and tools of the analysis and presents the main result. In Section we
explain how to obtain the radius rg in and how to improve the main
result under slightly stronger conditions. Section [£.2.4] explains how the
results translate to the case of i.i.d. samples. Section [4.2.5| addresses the
question of critical dimensions and contains an example that shows that the
ratio p*?/n — 0 is critical to obtain the Wilks phenomenon and the Fisher
expansion on the class of models that satisfy the conditions of Section [4.2.1
with §/(r) = w = 1/y/n. Section discusses how the results can be
extended to the case with the infinite full dimension via the sieve approach.
We present further conditions on the correlation structure of the full gradient
VL(v*) € X which will allow to controll the bias induced by the sieve

approach in ((1.0.13)).
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4.2 Finite dimensional full parameter space

This section presents our main results on the semiparametric profile esti-
mator which include the Wilks expansion of the profile maximum likelihood
L(6,0%) € R and the Fisher expansion of the profile ME 6 € RP.

4.2.1 Conditions

This section collects the conditions imposed on the model. Let the full
dimension of the problem be finite, i.e. p* < oco. Our conditions involve the
symmetric positive definite information matrix D3 € RP"*P" and a central
point v° € RP" . In typical situations for p* < co, one can set v° = v*
where v* is the “true point” from . The matrix D3 € RP"*P" can be
defined as follows:

DE = —V?EL(V°).

It is worth mentioning that —V2IEL(v°) = Cov(VL(v*)) if the model
Y ~ P, € (IP,) is correctly specified and sufficiently regular; see e.g. [29].

Remark 4.2.1. This is not the only possible choice for Dg and v°. In
general there is no restriction for the choice of D3, as long as the following
list of conditions can be satisfied. The same holds for the matrix V(Q) €
RP"*P" that we introduce below.

In the context of semiparametric estimation, it is convenient to represent
the information matrix in block form:

D A
DE = ( A(—)? H% ) (4.2.1)

Using the matrix D% and the central point v° € RP", we define the local
set 1o(r) CT C R with some r > 0:

T.(r) € {v=(0,n) € T: | Do(v — )| < r}. (4.2.2)

Remark 4.2.2. For readers familiar with [52] we remark that the use of Dy
instead of Vy in the above definition has no deeper reason but is a choice
of convenience.

We introduce vg+« € 7", which maximizes L (v,v*) subject to Ilpv =
0.
Tg- & (0*, o~) def argmax £ (v, v"),

veEO
H()'UZO*
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and define the radius rg > 0

ro(x) & inf {IP(,0p- € To(x)) 21—}, (4.2.3)

which we set to infinity if © = @) or vg« = (). Under the conditions (£r) and
(€r) Theorem in Section [3.3|states that ro = ro(x) ~ Cy/x +p* > 0.

We assume that the functional £(v): RP" — R is sufficiently smooth in
v € RP" | VL(v) € RP stands for the gradient and VZIEL(v) € RP™*P
for the Hessian of the expectation IEL : RP" — R at v € RP" . By smooth
enough we mean that all appearing derivatives exist and that we can in-
terchange VIEL(v) = IEVL(v) on To(rg), where rg > 0 is defined in

Equation (4.2.3) and 75(r) in equation (4.2.2)).

A sufficient list of conditions

The following three conditions ensure that D2 is not degenerated and fur-
ther they quantify the smoothness properties on 1, (r) of the expected log-
likelihood value IEL(v) and of the stochastic component Vg((v) € RP
where

C(v) ¥ L) - BL(v), (4.2.4)

Vo & Vo — AgH, 2V, (4.2.5)

First we state an identifiability condition.

(Z) The block matrices in (4.2.1]) satisfy for some v <1

IHy'Ag Dyt < v.

Remark 4.2.3. The condition (Z) allows to define the important p x p
efficient information matrix Dg which is defined as the inverse of the 6-
block of the inverse of the full dimensional matrix D%. The exact formula
is given by

o —1
D2 &t (Hg®’2ﬂ(;r) = D2 — AgH;2A]

and (Z) ensures that the matrix D2 is well posed, see for instance [9],
Chapter 2.4. In fact (Z) is equivalent to the conditions (A.2) and (A.2)’
from Section 2.2] as can be seen with Lemma [4.A.6Gl
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(Lo) For some r* > 0 and each r < r*, there is a constant &(r) such
that it holds on the set 1, (r):

|Dy ' D*(v) Dyt = L|| < d(r),
I1Dg (A(v) — ) "l < (r)
| Dyt AoHy* (1, — Hy 'H?(v)Hy M) || < 6(x)

where

D)2 ¥ _V2EL(v), D(v)= ( fﬁi’;i }?2(;;)) )

(8@1) The projected gradient VoC:T = RP of ¢:7 — R from
almost Surely satisfies Vo((v) = Vol (v') as v — v/ with Vg de—
fined in . Furthermore for all 0 < r < 4rg, there exist constants
w<1/2 and g > 0 such that for all |u| < g and v,v" € Vo(x) for
each r <r* and some r* >0

mTD H{Vel(v) — Vo¢()} | _ 2
[D(v = o) -2

sup sup log IF exp
v, €Y, (r) YERP
vlI<1

Remark 4.2.4. (ﬁo) describes the local smoothness properties of the func-
tion IEL(v). In particular, it allows to bound the error of local linear ap-
proximation of the gradient VgIEL(v) where the projected gradient Vg is
defined in (4.2.5). Under condition (Lo) it follows from the second order
Taylor expansion for any v, v’ € 7,(r) (see Lemma [4.A.1))

9

Hb—l (WEL(U) - WEL(U*)) + DO - 6% < cd@)r.  (4.2:6)

In the proofs we actually only need the inequality (4.2.6] - which in some cases
can be weaker than (Lg). This reveals that condition (Lg) is strongly re-
lated to conditions (B.4) and (B.4)’ of Section The term d(r) quantifies
how smooth the second derivative is. We impose such a qualified smoothness
in order to give finite sample deviation bounds as a function of the radius
of the local set Y5(r).

Remark 4.2.5. Condition (£D;) takes the place of (B.3) or (B.3) of Sec-
tion We show in the proof of Theorem that it implies (B.3) or at
least something very similar, namely that with high probability the term

sup

v€eYo(r) n

L(l — ) ([Vo — AoHy > V)L (v) — [V — AoH, VL (vY)) H 7
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is small. It is also strongly related to the assumption of Donsker- and and
Glivenko-Cantelli properties, i.e. (B.3)’ of Section In fact one can use
(é@l) to show - using similar arguments to those in Section that the
Dudley integral based on covering numbers is finite. This allows to infer
that the class

{Vocw), ve @)},

is IP-Donsker (for example Theorem 2.5 of [34]). Note that in linear models
or regressions with bounded regressors this condition is automatically satis-
fied. In the single-index example this condition becomes a condition on the
smoothness of the employed basis functions e : R — R and a subexponen-
tial moment bound on the additive noise € € R, see condition (Cond.) in
Chapter [0}

The above conditions are sufficient to prove our main results. But we in-
clude another condition that allows to control the deviations of
ID~VE(v)]-

(EDy) There exist a matrix V2 € RP*?, constants 5 > 0 and g > 0
such that for all |u| < g

sup log IF exp
~YERP

{MWQCSU"),’W} Tl
VA 2

Remark 4.2.6. One possible and natural choice for the matrices V2 e
RPXP and V2 € RP"*P" (see (EDp) below) is

V2 Var{VL(v°)}, V2 = Cov(Ve((v°)).

But also other matrices could be used as long as (EDg) or (€Dg) can be
satisfied.
Stronger conditions for the full model

In many situations the following, stronger conditions, are easier to verify
and allow a further improvement of the results of Theorem with the
help of Proposition

(Lo) For some r* > 0 and each r < r*, there is a constant §(r) such
that it holds on the set 15,(r):

| Do {VZEL(v)} Dyt — I

< 4(x),
where I, € RP*P denotes the identity matrix.
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(ED1) There exists a constant w < 1/2, such that for all |u| < g and
some r* >0 and each r <r*

{M’YT@Q_l{VC(U) - VC(U’)}} o v

sup sup log IE exp

v €T (x) [yl|=1 w [[Do(v — )| 2

Remark 4.2.7. Observe the difference to (£{,) and (£D}) from Chapter [3]
The new versions (£g) and (£D;) allow the mentioned improvement from
1)*3/2/711/2 to p*/nl/2 of the bounds for terms related to the approximation

error (|1.0.8]).

(EDg) There exist a matrix V2 € RP"*P"  constants vy > 0 and g > 0
such that for all |u| <g

\V4 o , 2,2
sup logJEeXp{,u< C(U)’Y>}§V0M ‘
~eRv* Vol 2

The following lemma shows, that these conditions imply the weaker ones
from above:

Lemma 4.2.1. Assume (Z). Then (€D1) implies (ED1), (Lo) implies
(Lo), and (EDg) implies (EDy) with

g = L= ﬁ‘—(1+y) 1+V2V' o(x) =6(x), and b =w
TR Ve Ve | |

Remark 4.2.8. Note that with (£o), (Do) and (D)) the smoothness
and moment conditions do not have to be satisfied for the full gradient
V£(-) but only for the projected one (Vg + AH V) £(-). This can make
a tremendous difference to (Lo), (EDp) and (EDq) if A(-) € RP*™ is small
while V,L(-) is rather rough or possesses bad moment properties. In that
case (€Dg) and (&D;) might not be satisfied or d(r), & and ¥ would
be considerably smaller than their counterparts §(r), w and vy . This is
particularly obvious if A(-) =0.

Conditions to ensure concentration of the ME

Finally we present two conditions that allow a specific approach to determine
a radius ro(x) > 0 such that IP(0 € T(rg)) > 1 — e* (see Section [4.2.3)).
These conditions have to be satisfied on the whole set T C RP" . Note,
however, that the conditions (Lr) and (€r) can be substituted with any
other set of conditions that allow to determine a value ry ensuring IP(v €
Y(rp)) > 1—¢€*.
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(Lr) For any r > r( there exists a value b(r) > 0, such that

—IFEL(v,v°
||Do('u(—'u°)|)2 > b(r), v € To(T).

(Er) For any r > r( there exists a constant g(r) > 0 such that

(VCw) | _ 12
{“ 1Dor }S 2

sup sup sup loglE exp
vEYo(xr) p<g(r) yeRP”

Remark 4.2.9. These two conditions serve a qualified a priori concentration
result for the full estimator v, of the type IP{v € 1,(ro(x))} > 1 — e *.
Condition (Lr) is satisfied for many estimators that employ some least
square functional as we do for the single-index model in Chapter [f| In a
more general setting it could be combined with yet another even rougher
a priori consistency result IP(v € U(v*)) for some open neighborhood
U(v*) C 7. Then (Lr) is automatically satisfied as smooth functions are
quadratic around their maximum, in this case IEF'{ around v*. Further-
more the condition can be relaxed to —IFL(v,v°) growing with super linear
speed in the distance ||D(v — v*)||, see Theorem 2.1 in [53]. In this case
the calculations become technically more involved which is why we focus on
(Lr) for the sake of readability. (£r) is a global exponential moment con-
dition and ensures that the norm of the stochastic component V((v) € RP"
is bounded with high probability. For example in the least square setting
with additive noise this is satisfied with g(r) = oo if the additive noise is
subgaussian.

Discussion of the Conditions

We want to discuss how restrictive these conditions are and relate them to
the assumptions (A.1),(A.2), etc. presented Section

Condition (Z) actually is equivalent to (A.2) and (A.2)’. Consider the
smoothness criteria (D7) and (Lg). These become necessary for our ap-
proach if the target is the full parameter v* € RP", if the accuracy of
results needs to be increased (see or for the convergence of an alterna-
tion maximization procedure (see Chapter . Our conditions compare well
with those of Theorem One difference is that we specify in (£g) how
accurate a second order Taylor expansion of IFL is, which we quantify with
the term d(r). Furthermore instead of mere differentiability of £ — IEL
we need to impose something like Lipschitz continuity of the gradient in
(€D1). Similarly the conditions (£D;) and (L) compare with (B.3) and
(B.4) of Theorem [2.2.4]and (B.3)’ and (B.4)’ of Theorem Very similar
to (B.4) we qualify the smoothness of V£ via & and 6(r). But instead of
(B.3) or (B.3)’ we assume the exponential bound in (£D;) and can exploit
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the finite dimensional parameter set to obtain the desired uniform bounds
in Theorem We aim not only for vanishing approximation error terms
but for expressions that reveal the interplay of full dimension, smoothness
of the functional £ and moments of the score. In both settings the quan-
tification of the smoothness enables us to specify the impact of a large or
even growing full parameter dimension p* in Theorem As we show
in Section a relaxation of these conditions leads to stronger conditions
on the ratio of p* to n. So in terms of smoothness our conditions do not
differ substantially from the established theory, and where they differ they
do not seem to be stronger than necessary.

A mayor and obvious difference is that we do not only impose smoothness
conditions on £ but also rather strong exponential moment conditions in
(ED1) or (€D1). Usually one only assumes some finite moments of the
errors; cf. [29], Chapter 2. We impose more moments for rather pragmatic
reasons. The first and most obvious one is that we derive finite sample results
and one needs qualified moment bounds to do this in a general setting as
the one we work in. Our condition is a bit more restrictive but it allows to
obtain finite sample bounds of the kind that with some small ¢ > 0

P{[D@-6) | > +x)} = e,

i.e. the bounds depend linearly on the exponent x. Without comparable
moment bounds these results do not seem to be attainable in such a general
setting. Consider for instance the simple model

y=Vuv*+e€R, o =argmax(y—+v)?/2,
veR
with v* # 0, e sign(z)+/|z|, Ee = 0 and Cov(e) = 1. Then up

to the exponential moments all conditions from above are met with D? =
D2 = L and £ =¢. We find

4v
=~ * gl 1 2w\ o 2\/’LF+€_ i 62
|D(v—v*) —&| = 2\/17*@ v*) —¢ _'<2\/1F 1>5 = o

If log E[exp(Ae)] < A?/2 we can derive
P(|D(© - v*) — & > 8Vv*x) <e %,

while obviously without comparable moment criteria such a result - a linear
relation between the exponent on the right-hand side and the bound on the
left-hand side - could not be attained.

Secondly, exponential bounds simplify the proofs in Section [3.5| consid-
erably. If the exponential were replaced by polynomial moments the cal-
culations would be by far more tedious and the substitute of Lemma
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would involve a more complicated term than the entropy Q(7) in (3.5.5).
Finally exponential bounds allow to state results that hold with a probabil-
ity greater than 1 —Ce™* instead of 1—Cp~!(x) for some moment function
p : R — R, which is a question of taste. Without comparable moment
and smoothness bounds our results do not seem to be attainable in such a
general setting.

A final difference lies in the consistency assumptions. Instead of (A.1) or
(A.1)" we use conditions (€r) and (Lr). In a way these are the strongest
conditions in our list, as they are formulated to hold on the full set T .
Obviously they represent only one among many options on how to restrict
the model to ensure the desired type of a priori consistency of M-estimators.
This is why we present the results in a way such that the particular way of
obtaining a concentration behavior based on (€r) and (Lr) and Theorem
3.3.2| can be replaced by any other available technique. An advantage of the
approach we follow here is that the obtained bounds are of the same type as
those we present for quadratic forms or those we derive in Theorem [4.2.2
This means that if the conditions are all satisfied, all deviation bounds are
of similar order.

Section explains how to satisfy the above conditions in case of i.i.d.
observations and a smooth criterion functional £ and hopefully serves some
intuition. In Chapter [6] we present a rather sophisticated model for which
all conditions can be satisfied under very natural and common assumptions
on the model.

4.2.2 Wilks and Fisher expansions

This section states the main results in a finite dimensional framework. First
we introduce the main elements of the approach. Let the information ma-
triz. D € RP"*P" be from the condition in Section For the semi-

parametric (8, mn)-setup, we consider the block representation of the vector

A VL (v*) and of the matrix D3

_ Vg 2 Dg AO
ve(w) (R

We repeat also the definition of the p X p matrix D?
D* = D* — AgH,2 4],

and p-vectors ?9 and é € RP

Vo & Vol (v*) — AoHy 2V ¢ (v*), £ DIV

The random variable 69 € RP is related to the efficient influence function in
semiparametric estimation and the matrix D? € RP*P equals its covariance
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in case of correct specification.

Remark 4.2.10. It seems worthy to point our that D2V, = IIgD2V ,
see again [9], Chapter 2.4.

Define the semiparametric spread <U>(r,x) >0 as

X def 4 ¢ s .
O(r,x) = 4 ((1_1/2)25(4r) + 601w31 (%, 2p" + 2p)> r, (4.2.8)

where §(r) is shown in the condition (£o) and the constants &, i are
from condition (£D1) in Section The value 31(x,2p* +2p) is related
to the entropy of the unit ball in a RP +?_-dimensional Euclidean space.
It is defined in and one can apply 31(x,p*) = /x+ p* as long as
x > 0 is not too large; see Section|3.5.2L The semiparametric spread <V>(r, X)
measures the quality of a linear approximation to V.£(v) — V.L(v*) in the
local vicinity the local vicinity Ys(r) = {v € T: |[Do(v — v°)|| < 1}, ie.
it provides a bound for the term in . Our results become accurate
if {(ro,x) is small. The spread will be evaluated in the ii.d. case in
Section [£.2.4] below.

Theorem 4.2.2. Assume (ED1), (Lo), and (I) with a central point v° =
v* and some matriz D3 and 4rg < r*. Assume further that the sets of
mazimizers U, Vg~ are not empty. Then it holds on a set 2(x) C §2 of

probability greater than 1 — 2e™* for the profile ME 60 in (1.0.3)

ID(6—0%) — €| < $(xo. %), (4.2.9)
2£(8,6") — I1€]2] < 9 (€]l + S(x0.%)) S(xo,x),  (4.2.10)

where the spread &(ro,x) is defined in (£.2.7) and where o > 0 is defined
in (4.2.3).

Remark 4.2.11. The Wilks expansion claims that the profile maximum
likelihood L(6,6*) o L(6) — L(6*) can be approximated by a quadratic
form [|€]]2/2 with € = D 'Vg. In the correctly specified i.i.d setting
the vector 5 is asymptotically standard normal and the quadratic form
I€]|2 = |[D~'Vg]||? converges weakly to a chi-square random variable with
p € N degrees of freedom, which follows from the central limit theorem
and the fact that then Cov(f) = I,. In the general case, the behavior
of the quadratic form ||€]|2 depends on the characteristics of the matrix
B D-172D"1 where V2 € RP? is from (€Dg) and in many cases
equals V2 = Cov(ﬁg). More precisely, one can find an upper quantile
function 3(x, IB) of this quadratic form ensuring

P(||€] > 3(x,B)) < 2e7%;
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see Proposition @ One can use the bound 32(x, B) < C(p + %) in most
situations. We call IB € RP*P semiparametric misspecification matriz as it
is related to the misspecification matrix introduced in [27]. IB is equal to
the identity matrix if a correctly specified log likelihood is used.

Remark 4.2.12. One can use the expansion (4.2.9) for the construction of
elliptic confidence sets

A(s) = {0:1D(0 - 0)|| < 3}:

for some 3(x) > 0. For this assume that the quantiles of ||€]| are available
or that they can be given up to a small error based on the Berry Esseen
theorem (Berry [§]) or Edgeworth expansions (Hall [25]). Let ¢, > 0 be the
a—level quantile of ||€]. Then we find with the triangular inequality and
(4.2.9)

P67 ¢ € (au+ Owox) } = PLIDEO - 07 = g0 + S(xo.%) |
< PLI€] > 0} +2e7% =1~ (a—2e7),
and
P{0" € € (40— Sxo.x)) | = P {IDE )] < g0 — Sxo.0)}
< P{I€l <} +2e 7 =a+2
Consequently up to $(rg,x) and 2e™* the set € (gq) serves as a confidence

set. The choice of x determines the trade off between the closeness of
Ga £ O (ro,%) to g and the probability level o+ 2e™* to «.

Remark 4.2.13. The profile maximum likelihood process L(8) can be used
for defining the likelihood-based confidence sets of the form

E(3)=1{0:1(0,0) <3}

The bound (4.2.10)) helps to evaluate the coverage probability ]P(G* ¢ 8(5))
in terms of deviation properties of the quadratic form Hé |2 ; cf. Corollary 3.2
in [52].

Remark 4.2.14. In the classical finite dimensional case a usual choice for
the central point v° is v° = v* = argmax,cy IEL(v) and one can define
the matrix D3 as D3 = —V2IEL(v*). However, for the sieve semiparamet-
ric problem in Section [4.3] we use another definition related to the infinite
dimensional model.

68



4.2.3 Large deviation bounds

In this section we want to present a way to determine a value rg > 0
such that the full ME © € RP" belongs to the local vicinity 7%(rgq) C
RP" with high probability. As a first step we apply Theorem It
is important to note that Theorem [3.3.2| is one particular approach which
could be replaced by any other appropriate technique. For instance, in the
model with i.i.d. observations, Theorem 5.3 of [29] might serve as a tool.
The required conditions can be substantially weakened to upper and lower
bounds on the Hellinger distance between models for distinct parameters.
We use Theorem because it applies to M-estimators and finite samples.

But the upper function approach in Theorem of showing the consis-
tency for an M-estimator can be rather rough and the bound could
lead to quite large values of rg > 0. As the obtained value ro > 0 en-
ters into the error term {&(rg,x) > 0 of Theorem it is desirable
to obtain a general refined bound for r;{ < ry that still ensures that
P(v € 75(r1)) > 1 — Ce™* with a small constant C > 0. Such an improve-
ment is possible as the following proposition shows. Define the parametric
uniform spread:

Colr,x) def d(r)r + 6wry (2r2 +30(x, 4p*)2) , (4.2.11)

with 30(x,4p*) in (3.5.8). Furthermore with V? € RP**P" from condition

&Dy) introduce the misspecification matriz IB € RP"*P" given by the fa-
p g y

mous sandwich formula; see [27]:

B = Dy'V3D, .

In case of correct model specification with D% = \73, the misspecification
matriz IB becomes the identity: IB = I,«. Theorem tells us that

P {||D'VL(v)| > 5(x,B)} <27,
where 3(x, B) < Cy/tr(IB?) + x for moderate choice of x > 0, see (3.4.3)).

Proposition 4.2.3. Assume the conditions of Theorem[[.2.3 and addition-
ally assume (Lo), (ED1) and (EDg) with V? € RP"*P" and 4rg < r*. Let
ro(x) > 0 be such that (4.2.3)) holds. Then

P{’INJ,GQ* € To(rl)} >1—4e *
where

r1 < 3(x,B) + $o(Ro, x) Aro(x).
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Furthermore if there is some € > 0 such that 6(r)/r V 6riw < € for all
r < 1o and with 4e (3(x, B) + e3¢ (x, 4p*)2)2 <c¢ <1 and 4derp(x) <1 then

P{v,vp- €To(x5)} > 1—4e™™

where

2c

vy < 3(x, B) + e0(x,4p")" + ex—.

(4.2.12)

Remark 4.2.15. In cases where ro > p* it might happen that {(rg,x) =
d(ro)ro + 6r1wji(x,2p* + 2p)rg > 3(x,B). This again may be caused
by the fact that a multiple of §(rg)rg determines the size of {(rp,x).
Thanks to the bracketing device the spread Ae(rp) from Equation
only depends linearly and through d(rg) on ry > 0 and could in some
settings be significantly smaller than {(rg,x) (see Section [3.1). We can
exploit this in the following way. Define with the score covariance matrix

V2 = E[V¢(0h)VE(0*)T] € RP X
ainf{c e R: D% >V},

If the initial radius rg > 0 from Proposition additionally satisfies
ro(1 — €(ro)) > 3(x, B) where €(r) = 6(r) + 3v1a?wr then we can set in
Proposition

T def ((1 — j(i};’)f()l - + O (xo, %) AV Ae(xo, x)> Arxp. (4.2.13)

In situations where rg > p* we can expect that (rg,x) > \/Ae(rp) such
that (4.2.13]) can significantly decrease the size of r; > 0. The proof of this
claim is presented along with the proof of Proposition

4.2.4 The i.i.d. case

In this section we want to illustrate the results for the case of a smooth i.i.d.
model. As explained in the introduction in Chapter [1| this means Y = (Y7,
LY e®L, Y and

1 n
£(Y,v) =~ > Y, v), Epl(v) = Ep (Y1),
=1
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where ¢ :Y x 7 — R is a suitable functional. As above we omit the data

in the following and write ¢;(v) def 0(Y;,v). Note that

- argmax [EL(v) = argmax [F/{(v),
vel vel

D2 ¥ V2EL(vY) = nd? & nVEEN(VY),

V2 4 oy (vc(v*)> = nv? ¥ 5 Cov (V(f - IEE)(U*)).

One way to check the conditions of Section [4.2.1]is to assume that they are
met with £, D replaced by ¢,d with some v}, wi, 0(r) =0*r, b(r) =Db*
and g = g1 . In that case one can easily check the conditions in Section4.2.1
for the full functional £(v) = Y7, l(y;,v) with w = win 2, §(r) =
S rn~ Y% b(r) = b*, and g = gin'/?; ¢f. Lemma 5.1 in [52]. To gain
a bit more intuition let us consider the following stronger sufficient list of
conditions. Abbreviate

GV - EY): TSR

(¢p) The matrix valued function VZIE[((-)] : T — RP"*P" is locally Lips-
chitz continuous with Lipschitz constant §* in an open neighborhood
U>sv*.

(ed;) There are constants vj,g* > 0 such that for all v € U the random
matrix valued function V2(,(-,Y): 7T — RP"*P" gatisfies for all |\ <

*

g
T 3—172 oy 3—1
sup  log I sup exp{)ry1 d= V¢ (v°)d 72}
Y1, 72€RP” v°€Econv(v,v*)
[vall=lvall=1
< UEN/2.

(edy) The random vector valued function V((-,Y): Y — RP**P" gatisfies
forall [\|<g* andall veT

sup log IF exp {)\’YTd_IVCg(’U)} < UEA?/2.
’yERP*
l[l=1

(¢y) There is a constant b* > 0 such that
E[((v) - ((v")] > b*||d(v — v")|*.

(¢) There is a constant ¢y > 0 such that the matrix d? & V2IE((v*)

satisfies vy d%y > cq||y||? for all v € RP".
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Lemma 4.2.4. Assume that n € N is large enough to ensure that the local
neighborhood U C T of v* from the conditions (ly) and (edy) satisfies

1) ¥ wer: |Dw-—vY)| <}

- \}ﬁ{v €T: |ldv—v")| <t} C U

Then the conditions ({y), (ed1), (edy), (4x) and (¢) imply (Lo), (ED1),

(EDo). (EDx). (Lo) and (I) with 6(x) = L. w = . g = v/ig".
d

v =1y =1, glr) =+/ng*, b=">b* forall r < r*. Furthermore v? >

1-— M%”CW Where d% = H;dﬂg c RPX;D (L'I'Ld h2 — H’;’rdnn c Rme .

Remark 4.2.16. To keep things simple we do not elaborate on how to check
(Lo), (ED1), (EDg) but refer to Lemma

Noting that L£(v,v*) > 0 and L(vg+,v*) > 0 Theorem yields
that

P (3,09 € Tolrg)) > 1 —e*, with ro(x) = 6%2«/21)* ¥x.

Theorem applies with D? = nV2El(v*) and v° = v*. We immedi-
ately obtain the following result.

Corollary 4.2.5. Let Yi,...,Y, be iid. and let the conditions (),
(edy), (edp), (bx) and (1) be met. Assume that ro(x) = Ggm <
r*. Then we get the Fisher and Wilks results of Theorem for x <
V/ng* with

- 368 4 0 v
¢ (ro,x) N < -

< P
— * 3
vnb* \ (1 -v2)2cib

Remark 4.2.17. The definition of 3;(x,2p* + 2p) in (3.5.6) implies for
moderate values of x > 0 that

(x+2p%) + vo31(x, 2p™ + 2p)/x + 2p*) .

v

O(ro,x) < Co(x+p")/Vn,

with some fixed constant C¢ . The Fisher result is meaningful if
<v>(r0, x) is small yielding the constraint p* < n'/2. If the target dimension
p is fixed, the same condition is sufficient for the Wilks expansion in .
However, if the target dimension p is of order p*, the constraint for the
Wilks theorem becomes p* = o(n'/?). See Section for an example that

shows, that this difference actually occurs in certain examples.
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4.2.5 Impact of the full dimension

This section discusses the effects of a full dimension p* that grows with the
sample size n. The results of Theorem refined by Proposition 4.2.3
are accurate if the parametric uniform spread <{(r,x) in fulfills
O(ro,x) < 3(x,1B) and $(ry,x) is small, with r1 = 23(x, B). Usually
3(x,B) < Cy/x + p* which means that

O(r1,x) =< 6(r1)ry +@r?  which is small for r? = p*.  (4.2.14)

The critical size of p* then depends on the exact bounds for 6(-),&. If
5(r)/r = & = 1/y/n (as in Corrolary the condition reads
» &(r1,x) = p*//n is small”. This means that one needs that “p*2/n
is small” to obtain an accurate non-asymptotic version of the Wilks phe-
nomenon and the Fisher Theorem. Similar conclusions were obtained by
Portnoy in several papers on growing dimension in generalized linear mod-
els and for natural exponential families, see e.g. [43, [44] [45] as well as
by Mammen in [35, 36, B7]. Improvements of the critical relation such as
p* = o(n?) in [#4] are rooted heavily in the structure of the particular
model. For instance [44] is limited to linear or generalized linear regres-
sion with independent observations, which is exploited extensively in the
derivation.

Thus the typical sufficient dimensional asymptotic is p* = o(nl/ ). In
[46] these are derived for natural exponential families with correct specifica-
tion. In this setting [46] uses the linearity in the stochastic component of the
loglikelihood and the correct specification to obtain both Fisher and Wilks
phenomenon when p*? /n — 0. Our results apply in a rather general situ-
ation and deliver some useful information even in the case when the model
is misspecified and when the stochastic component of V£(-) is nonlinear.

Remark 4.2.18. Note that in Corollary if 5(r)/r =< =1/y/n the
condition on the ratio of dimension to sample size is that p*> /n is small.
One reason for the improvement in this chapter - the results obviously apply
for the case 8 = v, i.e. the full ME - is that we do not first carry out a local
quadratic approximation of £(v,v*) and then bound the displacement of
v. To the contrary we take the first derivative and then carry out a local
linear approximation of V.£(v) — V.£(v) € R?. This means that we do not
pay in the accuracy with uniform bounds for the term in , but only
with uniform deviation bounds for its derivative, i.e. for

This is motivated by the observation that the accuracy of the Fisher expan-
sion depends on the displacement of the ME through the second order terms

Hb*l (VL@) - VL") + D@ - 6°)
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in a Taylor expansion of the gradient V£L(v) and not on the third order
terms in a Taylor expansion of £(v). For the Wilks expansion this
is different as here indeed the Taylor expansion of L(v) is the key. But a
trick from [40] allows us to only pay with an additional factor proportional
to the square root of the target dimension p € N and not to the full di-
mension p* € N. The key observation is that one can carry out a kind of
Taylor expansion for the profile functional max, £(6,n) in a neighborhood
of 8* € RP. For details see Lemma [4.A.2

Critical dimension

To see that under the conditions of Section with §(r)/r < w =< 1/\/n
we can not do better than p* < n'/2 we present the following example. We
write p* = p, . Consider the single observation model

Y = J(v) +e,
z Iml?
fo=some | ™ D |erem
Mp,—1 0

with € ~ N(0,21,.) and v = (6,m) € Rx RP»~1 . This model is equivalent
to the i.i.d. observations in the same model with the errors &; ~ N (0, I,) .
Assume that the parameter of interest is § € R and that the true point
satisfies v* =0 € RP" .

Proposition 4.2.6. Under p,/\/n — 0, the Fisher expansion is accurate
and the profile MLE asymptotically standard normal. If p,/v/n # 0 the
profile MLE in the above model is not root-n consistent. For \/n = o(p,) the
root-n bias tends to infinity almost surely. Finally, the Wilks phenomenon

occurs if and only if p, = o(y/n) .

Remark 4.2.19. The above example can also be used to illustrate the
difference between a finite sample approach and using asymptotic normality
for the construction of confidence sets. For fixed dimension the profile MLE
is asymptotically standard normal, i.e. with ¢, > 0 denoting the «-level
quantile of a chi-square distribution with one degree of freedom

P (e* € {|§— o) < qa/n}> = a (4.2.15)
But the proof of Proposition gives
10— 6% = |eo — llenll?],

74



where nlley||* ~ x2, _y and eg ~ N(0,1/n). Tt is known that the ratio of
the median of a chi-square distribution and its degrees of freedom converges
to 1 if the degrees of freedom tend to infinity. This means that for any
0 < e <1 the set

def
C = {nllen)? = (1~ e)pn},

is of probability greater than 1/2 for p, large enough. Let [y )
Pn—

[0,00) — R denote the Lebesgue density of a Xf)n—l random variable. We
can use the independence of |e,|| and €y and Fubini’s Theorem to estimate

ﬂj@*eﬂg—m2§%ﬂﬁw:iAmE(kw—dnﬁng%>&%@Mz

T )
<;[a+q§<(1—e)5%+\/(7a>—95((1—6)5%—@)]’

where @ : R — [0, 1] denotes the distribution function of a standard normal
random variable. If p,/+/n is significantly larger than 0, the value

(1 - 6)pn (1 - G)pn

o vm) o (B v

is distinctively smaller «. For example for o = 0.95 and (1 — €)p,//n =
11/12 we get

P(We{@-ﬂQS%%ﬁ@)<oa

In other words the asymptotic confidence statement in is very in-
accurate in the finite sample case because the error term in the local linear
approximation is not addressed. In this way the full dimension has an impact
on the behavior of the estimator. Our results in Theorem {4.2.2| quantify the
size of these terms for a large set of models and give a guideline for how to
correct confidence sets to avoid this effect. The price are more conservative
sets, but their coverage property is ensured.

Remark 4.2.20. There is an interesting connection between the condition
p*/v/n — 0 and the general theory on semiparametric M-estimators. In the
common asymptotic approach to semiparametric M-estimators one assumes
a priori consistency of the estimator v = (6,7) . More precisely, in case the
functional V£(-) is smooth enough, one assumes that ||@ — 6*|| = op(1)

and ||7] — n*| = Op(n~*), see Section On the other hand the results
of Theorem are accurate if {(rp,x) is small. As explained above this
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means in the i.i.d setting that $(rg,x) = o(1) . Neglecting the contribution
of ||@ —6*|| to rg = O(y/n||v — v*||) this can be ensured if

$lxo,x) < C(p" +x)/v/n < o(1) + CV/alln —n*|]* = 0,

i.e. if [|[7—n*|| = o(n"'/*). But consider the radius r; > 0 from Proposition

It is of order /p*+m if {(rg) = O(V/p* +x). In that case in

the i.i.d. setting the constraint on the a priori deviation bound becomes

O(ro,x) = O(y/p* + x). This can be ensured if
O(ro,x) < C(p" +1x5)/vn < o(1) + CVnlg — n*|* = O(V/p* +x).

Consequently, if p* +x = o(y/n) we only need |77 — n*|| = o(n~ /%), which
is a considerably weaker constraint. Using the second part of Proposition
the constraint on |77 — n*|| becomes

Cro/v/n < (|10 - 0%|| + 7 — n") = 0,

i.e. we only need consistency of ©. But note that these bounds only con-
cern the finite dimensional case. In the infinite dimensional setting treated
in Section [£.3.2] we have to impose conditions that ensure that the bias
induced by the sieve approach is small enough. Section serves such
conditions for the Hilbert space setting. One of these conditions reads that
|H(n* — ,n*)||> < Cm, ie. the true nuisance component n* € X is
well approximated by its projection onto the span of the first m € N basis
elements (e;) C X. If we represent with some a > 0

oo o
272
nt =Y mer, Y nik < oo,
k=1 k=1

and if H = Iy we obtain from |H(n* — II,,n*)||*> < Cm the constraint
n < m2%*t! | which means that we need o > 1/2 if m = o(n'/?). On
the other hand in the setting of one dimensional nonparametric regression

a > 1/2 means that p* € X is nonparametrically estimable with rate
o(n=1/4).

Critical smoothness

Here we address the necessary smoothness to ensure that the condition that
p*? /n < 1 suffices to ensure that the Fisher expansion is accurate. We show
that the slightly weaker version (L) from of (Lg) already allows to
find examples that satisfy all conditions of Section but for which the
critical ratio is p*3 /n — 0. Namely, we present an example in which the
behavior of the profile ME 0 heavily depends on the value 3, = \/p3/n >

B8 >0.1If 5, — 0, then we can prove asymptotic efficiency of 6. On the
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other hand if 3, > 8 > 0 we can show that the ME 6 is not anymore
root-n consistent.

Assume that p,/v/n — 0. Let a random vector X € RP follow X ~
N(v*,n'I, ). Take for simplicity v* = 0 and let IP = IR denote the
distribution of X . Introduce a special set § C RP* with

g & {v:(vl,...,vpn): Ulzg\/m,zEZ}
N7, (\/Qpn/n + ;\/ﬂn/n) : (4.2.16)

We denote by 85 its 4 -vicinity:
def
8§ = {v:d(v,8) < d},

where d(v,8) is the Euclidean distance from the point v to the set 8. Also
85 stands for the complement of 85. Below we fix § = 1/n. Consider a
special parametric quasi log-likelihood ratio £(v,0) defined as

£(v,0) = nX v —nllv|*/2 +nf(v)|v]*.

Here f:R — R is a smooth function with

f(v):{l v E S,

0 vess§.

Below we consider the problem of estimating the first component 6 def v €
R. Since by assumption p,/y/n — 0 it holds for n large enough and for
any v with |[v|? < 4p,/n + Ba/n that n|lv||?/2 > nf(v)||v|® and thus

argmax IEL(v) = argmin{n|v|?/2 — nf(v)|v[]*} = 0.
v v

It is easy to see that all conditions from Section except (Lg) are
satisfied with w = 1/4/n and

D? =V? =nlp,, To(r) = {|v|l <r/vn}.

But clearly (£p) is met with d(r) = r/y/n. It is straightforward to see
that

Do=+n, V(L—IEL)=Ve(L—IEL)=nX;, and £ = V/nX].

The next result shows that in this example the critical ratio reads 3, =
V/p3/n, ie. iff it is not small, the profile ME 6 is not root-n consistent.
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Proposition 4.2.7. If 82 =p3/n — 0 then
1Do(0 — 6%) = €]l = v/n[or — X1| — 0.

Suppose that B, — (6¢)? for some ¢ > 0. Let also n be large enough to
ensure

213 -1 —— 1 3/4
W pn/n25(pn/n) .

There exists a positive o > 0 such that it holds with a probability exceeding
!

g~ o 1 1
Do(0—0*) — €| > =82 - — > ¢ —0,(1).
[1Do( ) =&l = 5hn N on(1)
If B, — oo, then
v ~ * v P
[ Do(6 — 07) = &|| — 400,
where -5 means convergence in probability.

In short: we have shown that - everything else left unchanged - a smooth-
ness condition of the kind of (Lg), i.e. qualified smoothness of second

derivatives, is necessary to ensure that ” p*/y/n is small” suffices to get
accurate results in Theorem for §(r)/r~w=1/yn.

Difference between Wilks and Fisher

This section discusses the issue of critical dimensions if the target dimension
p = cp* for some ¢ > 0. We again write p* = p,, . In this case Theorem4.2.2
- assuming that 0(r)/r = w = 1/\/n - requires that p, = o(n'/?) or p, =
o(n'/?) to obtain nonasymptotic versions of the Wilks phenomenon and the
Fisher Theorem respectively. Here we show that this difference actually
occurs on the class of models satisfying the conditions of Section We
present an example that shows critical behavior in the following sense. When
p3/n - 0 we find for each n € N large enough a set A C 2 of positive
probability on which the profile log likelihood ratio does not converge to a
chi-square random variable. In accordance with the results of Theorem [4.2.2
the estimator is efficient if p2/n — 0 and the Wilks phenomenon occurs if
p3/n—0.

Assume p, = 2m and take as target 0 := I[;v € R™, where I :
RP» — R™ denotes the orthogonal projection onto the first m € N com-
ponents. Assume further that p2/n — 0. We use a missspecified model,
i.e. we take standard normal observations on RP* but assume that the ME
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is derived from the correct loglikelihood function altered by an additional
term. Consider

L(v) =nY v —n|v]*/2+ f(v)n|v]*/3,

where

Y~N (O, 1Ipn> ,
n

and where f:RP» — R is some smooth function with - for some L >0 -

fo)— {1 S ={imelz 2\ 0B, ),

0, otherwise.

More precisely we set for any v° € RP»
F0) = 2 fimoizg vy Ls, o). (4.2.17)

The ”smooth” factor is defined as

PLimuv)z2y/Em} (V) = /]R Limoncyzm (00K am(vr —vi)doy,

where K is a smooth kernel with support on [—1,1] and

1 x
Kn(w) = 5K (7).
n(z) = K {4
Proposition 4.2.8. In the above model the conditions of Section[{.2.1] are
satisfied yielding {(ro,x) = o(pn/v/n). The Fisher theorem holds true if
p2/n — 0. Furthermore the Wilks phenomenon occurs iff p3/n — 0.

4.3 Infinite dimensional nuisance parameter

This section discusses how the approach can be extended to the infinite
dimensional case. First the basic idea of projecting the infinite dimensional
problem down to a finite dimensional one is explained using a suggestion
by [22] namely the sieve profile ME. The particular type of sieve we are
using was also studied in [50] and we try to relate our results to that paper
(see Section . We prove under bias constraints that the projected
sieve estimator is nearly normal and efficient. To avoid further technical
distractions (or obstacles) we present the case of a separable Hilbert space.
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4.3.1 Sieve approach

To make this chapter self contained we repeat how to construct the sieve
estimator and how to use the Hilbert space in order to reduce the problem to
parameters v € [ o (zj)jen C R, 3702 x? < oo} . Consider the (6,m)-
setup with 8 € ©® C RP and n € X, where X is an infinite dimensional

separable Hilbert space. As always the target parameter 6* is defined as

0" = Ilg argmax IEL(0, 7). (4.3.1)
veYl

The Hilbert space X is assumed to be separable such that it possesses a
countable orthonormal basis {ej,es,...} C X. Any vector n € X admits a
unique decomposition of the form

oo
n= ke,
k=1

where 7; = <n, ej> is the usual Fourier coefficient. In the sieve approach
one assumes that for any m € N a finite set eq,..., e, of elements in X is
fixed and the vector 1 can be approximated by a finite linear combination
N of the basis functions (ex)ken :

=7(m) — 0, as m — oo.

m
N = e
k=1

By abuse of notation we denote v = (8,17) € RP x [ and modify the
parameter set such that T C RP x [? via identifying each n € X with
its Fourier coefficients. Redefine £(6,m) such that it is a function of the
Fourier coefficients of the nuisance component.

o
Lv) € o [6,Y ne;
j=1

(0,m)€l?

ot argmax I/ [L (0,anej>] )
k=1

and define the m-dimensional sieve approximation £,,(v) of L£(v) by
def
Lm(0777) = L(07nm(77))’
(0.m) € T {v = (0.m) € B : (8,m) € T}.
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The corresponding sieve profile estimator ém and its target @, for this
parametric m-submodel are defined in the usual way:

0, & 1190, % 1Ty argmax £,,(6, ), (4.3.2)

UeTm

0;, € vy, Mg argmax [EL,,(6,7).
vEY M

The question we are interested in can be formulated as follows: is ém a
good (efficient) estimator of 8* from (4.3.1) under a proper choice of m?

4.3.2 Bias constraints and efficiency

The parametric results obtained in Sectionclaim that 6,, € R is a good
estimator for ) € RP if the spread <{(rp,x) > 0 is small. More precisely,
we have the following: define for fixed x > 0 the value rg > 0 by

ro(x) & inf {P{Tn, Vos,.m € Tom(x)} =1 - "},

and set Yy (r) & {v € T, | Don(v — v3)|| <},

where v}, = (0},,n,) = argmax,, EL,,(v) and

~ def

Vg,m = argmax L, (v, v").
veEY
ITyv=0

Furthermore define the matrix D2, as

def &2

pem Bl (vy,)] € RV,

. -1
D2 (vy) © (MoD320g ) e R, D2,
i.e. the derivatives of IE[L] are only taken with respect to the first p+m € N
coordinates of v € ~l2 and the Hessian is evaluated in v}, € RP" . Applying
Theorem m to 0, in (4.3.2) we find that with probability greater than

1—2e7%
1D (B = 05,) = &m(vy) | < (xo, %) (4.3.3)

The result (4.3.3) involves two kinds of bias. The first concerns the difference
0, —0* € RP and the second arises with the difference between D,,, € RP*P
and D € RP*P where

o —1
p? (HQVQZE[L («;*)]‘117;) € RP*P,

81



This means that in the case of D? the derivatives of IE [£] are taken with
respect to all coordinates of v € I2 and the Hessian is calculated in the
"true point” v* € (2.

Remark 4.3.1. To be more precise we assume that IEL : 7 — R is Fréchet
differentiable and that each element of the gradient (VIEL,ej) again is
Fréchet differentiable as well. We denote the resulting operator by D? =
V2E[L(v*)] : spanY — span? .

The second bias - i.e. bounds for || — D; Y (v )D2(v*) D (vr)]| - will
be neglected for now, as only the operator lv)gn(’uj‘n) € RP*P ig available in
practice. We will come back to it, when we derive efficiency for the sieve
profile estimator 6,, € RP .

For the first type of bias we impose the following condition:
(bias) There exists a function « : N — R such that

| Dy (05,)(07, — 6°)|| < a(m), a(m) — 0, as m — oc.

Remark 4.3.2. Section 4.3.3| presents conditions on the structure of D :
I — I? and on the sequence n* € [2 that yield (bias).

We represent
D2(v:) Al (vr)
2 * m m\Ym (p+m)x (p+m)
Din(vm) <Am(v*) H2 (vr) ) SR :

m

With Theorem and (bias) we directly get the following corollary:

Corollary 4.3.1. Assume (bias) and that the conditions (EDg), (EDy)
and (ﬁo) from Section are satisfied for all m > mqg for some mg € N
and with D} = VZerIELm(v;) € RPFXPT V2 = Cov[Vpimlm(v),)] €
RP"XP" gnd v° = v}, € RP" . Assume that U, # 0 and vg: # 0. Choose
ro(x) > 0 such that IP(Upm, Vg m € Yom(ro(x))) > 1 —e . Then it holds

for any m > mg with probability greater than 1 — 2e™*

| Din (03,) (8 — 8%) — € (V)| < S(xo, %) + a(m),

where
z %y def =~ — *
sm('vm) = Dml(vg - AmHmlv??)Lm(vm)
Define
S def
L(0) = max £,,(0,n),
neR™
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where it is important to note that the maximization is restricted to the finite

dimensional space R™ . As above abbreviate L(6,6*) o L(0) — L(6*). For

the bias in the Wilks result a bit more work is needed. We can show the
following:

Theorem 4.3.2. Assume the same as in Corollary [{.3.1 Pick a radius
0 <rg such that

P ({6m71~19jn,m71~10*,m € TO,m(rg)}) >1- e—X’

Then we get with probability greater than 1 — 2e™*

L §m, — L 0*, - vm 2 2
neHIIYE?nXTn ( m) nEI?YiXTn (6% m) = l|&ml /‘

< 9 (lem@i)ll + (x5, %)) (S8 %) + a(m) ) +2a(m).

Remark 4.3.3. With condition (€Dg) we can use Theorem to obtain

P (€n(v;)] > 3(x, B)) < e,

Remark 4.3.4. The radius rj € R can be determined again using the tools
of Section Clearly Theorem can be applied to find some ry < rf
such that

P (ﬁmaae,"n,m € TO,m<r0)) >1—e "
Furthermore note that by the mean value theorem

Lm(0% M0 m) = Lm(vy,) = Lin (0%, 1) = L (vy,)

> —(1+v)a(m) sup HD*IVQLm(v)H.
veYo ((14v)a(m))

With condition (£Dg) and (€D;) the right-hand side can be bounded by
some constant —a(m)C(p* +x) € R with probability greater than 1 —2e™*
using the tools of Section Combining this with Theorem [3.3.2] gives
that with

r = 6b1ur¢x +log(4) + p* + 5 a(m)C(p* + %),

92 “
it holds that

P ({Tm: s, € Tom(x0)} N {Boem € Tom(xd)}) > 1 — de > 1o8(®)

=1—-—e"

This means that r§ ~ ry as long as a(m) — 0.
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Now we want to show how this approach allows to prove the classical
weak convergence statements for the sieve profile ME and efficiency of the
sieve profile MLE 6,, € RP. From this point on we focus on the i.i.d.
model in which n denotes the sample size and the functional is of the form
L =3",46,nY;). As in Section this gives that D2 = nd,,,
D2, = nd,, and D? = nd. As the efficient covariance is derived for the
score evaluated at the true full target v* € [?> we need further assumptions
on the bias:

(bias’) With | - || denoting the spectral norm and with some function
B(m) — 0 as m — oo it holds that

I = D (v") " D(v0*)? Din (0*) || < B(m),

1 = Din(v3,) " Din(v*)* Din(vy,) M| < B(m).

Remark 4.3.5. Again we postpone the question how to satisfy the above
condition to Section which presents conditions on the structure of
D :1?> = 12 and on the sequence n* € [? that yield (bias’).

Furthermore we need convergence of the covariance of the weighted score.
For this define

72, p(vh) & Cov (Veli(vs,) — AmH 2V, (v5))
2 (v*) & Cov (Voly (v*) — AH 2V, 0 (v)) .
(bias”) As m — oo with |- || denoting the spectral norm
1D, (03 )V o (03 D (vg,) — d 4621 — 0.

Remark 4.3.6. This is a condition on how the covariance operator of
VprmL(v) € RPT™ s affected when it is evaluated in v}, € RPT™ in-
stead of v* € 2. In the single-index example we get (bias”) due to the
smoothness of the functional.

Corollary and Theorem allow to derive the following corol-
lary which yields the asymptotic efficiency of @,, and the classical Wilks
phenomenon.

Corollary 4.3.3. Assume that we are given iid observations from IP =
Py 5+ . Assume that for some mo € N any m > mg the conditions of
Theorem and the condition (£Dg) are satisfied with v° = v*, . Fur-
thermore let the conditions (bias') and (bias”) be satisfied. Assume that
for any r > 0 that gn(r) — 0 as n € N tends to infinity and that @&, — 0.
Finally assume that ro(x) < oo for any x >0, m,n € N, where ro(x) is
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chosen such that IP(Tpm,0g: m,Ve=m € Yo(ro)) > 1 —e™*. Then there is a

sequence my — 0o such that - with convergence as n — 0o -

Vnd(6,,, — 6%) s N(0,d'2d ),

)

~ * w Y 2
ms - ) 2 )
ng&XTnﬁ(H n) nerglgnxfnﬁ(é’ n) — L([€=1I"/2)

£oo ~ N(0,d102d7Y).

Remark 4.3.7. On this level of generality we can not specify the right
choice of m, € N that ensures the convergence. But in Chapter [6] we
manage to show that it equals the optimal choice for a series estimator of
the nuisance component n* € I2 for known 6*. As is pointed out in [42], the
best choice is m = '/t | with o > 1/2 quantifying the ”smoothness”
of ™ - is admissible.

Remark 4.3.8. For the case of the profile MLE ¢(0,7n,Y;) is the log-
likelihood for a single observation. In that case assume that the linear
operator F2. = Cov{V{(v*)} : 1* — Im(F2.) is invertible and that
Vi(v*) € Im(F2.). With Corollary we infer that the asymptoti-
cally optimal variance for regular estimators is given by the inverse of the
partial information matrix

v

For = (1o COV{VE(U*)}AHJ)?I,

where as above Ilg is the orthogonal projection onto the 6 -components,
and II BT its adjoint operator. In case of correct specification we have that
#? =d ' =g, , such that

iidt =1,

In that case Corollary yields the efficiency of the sieve profile MLE and
we recover the Wilks phenomenon for that estimator.

4.3.3 One way to control the sieve bias

In this section we present a particular way to derive the conditions (bias)
and (bias’). For this we assume that X = [? def {(zr)32, CR, Y0 28 <
oo} . Denote by II,- : 12 — RP" the projection to the first p* € N coordi-
nates of an element of [?. By abuse of notation we denote by (Idj — IT,+)
the orthogonal projection onto {x € I*: xp = 0, k = 1,...,m}. Further-
more denote by V,, the differentiation with respect to the m € N first
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coordinates. We represent

2 v T v
ﬂmﬂg—wﬂuw=<ﬁiﬁ$ %iéf)

To bound the bias || Dy, (v%,) (0%, — 6%)]] > 0 we present the following con-
dition:

(3¢) The vector 3¢* def (Id2 — Iy )v* € I? satisfies ||H,..5¢%||* < Chem for
some C,+ >0 and with a(m) — 0

1D, A, %I < @(m). (4.3.4)

Furthermore for any A € [0,1] with some 7(m) — 0

1D (Ve w BL (I v* Ase") = ALy, ) 36*]| < 7(m),

‘x*T(H,m Vo EL (ITyv*, Ase*)) 3¢*| < Coom. (4.3.5)

Remark 4.3.9. This condition corresponds to condition (approximation
accuracy) and condition of Section which are taken from [50].
The later means A,,,, = 0 such that the most interesting results of this
subsection can not be related to that paper. As was pointed out in Section
conditions of the type are crucial in settings where V2IEL(v*)
is unknown. In those cases a basis that is orthogonal with respect to the
inner product (D?-,-) cannot be constructed.

To ensure that D,,(v*) is close to D(v*) we impose the following
second condition.

(v3) Assume that with some 3(m) — 0

[ HieseA v, Do || < B(m).

Furthermore we introduce the following infinite dimensional version of

(Lro0) from Section [4.2.1}

(Lroo) For any r > rg there exists a value b(r) > 0, such that

—IEL(v,v")
Do — o = °@)

Remark 4.3.10. Conditions (Lreo), the smoothness of £ :7 — R and
the assumption that

||Hxxx*||2 < Cpemn,
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are strongly related to conditions (identification), (approximation accuracy),
and (compactness) from Section [2.2.3] Both sets of conditions allow to
bound

[Hun (07, — ") || < CV/m.

Theorem 4.3.4. Let the condition (Lro) with b(r) =b > 0, () and
condition (Z) from Section be satisfied for both Dy, (v*) and Dy, (vy,)
and for EL : 12 = R. Set r** = 4C2.m/b and let for some my € N and
all m > myg the condition (Lo) be fulfilled for Dy = Dy (vE), v° = vF,
and for any r < r*. If further (3¢) is fulfilled then (bias) is satisfied with

a(m) = 1 /izz (a(m) +r(m) + 25(2r*)r*> ,

If further the condition (v3) is fulfilled then (bias") is satisfied with a
constant C(v,0(r*)) >0 and

I = Dyn(v*) " D(0*)? Dy (v*) | <

and
11 = D (v},) " Dy (V) * D (v},) 1|
ﬁ<2+ L=0(x*) ) +1+6(x")
o(r*
: TP =
4.A Proofs

This section collects the proofs in chronological order.

4.A.1 Proof of Lemma [4.2.7]
Proof. Take any v € RP with |v| =1 then

o o . . —1
¥'D7'Ve((v) =~ ( D'D D'AH!) ( OD OH_l )Vg(v)

def ~ _
= 3'D'V((v),

where

I3 <||( D' D-tan— )| H(é? 0 >@HS<1+V>\/1T,2'

Hfl

87



This gives that (€D;) implies (£D;) and (E€Dg) implies (EDg) with
V1—1v? . I+ v)V140v2
V.

— s VvV =
g (1—|—1/)\/1—|—1/2g V1—1v2

Furthermore for any v € 75(r)

1Ty = DT'D*(v) D7 = | DTH(D? — D*()) D7
= | D™ Ip(D* — D*(v)) g D7Y||
= |D e DIy — D' D2 (v)D 1) DIIg DY
< | D7 DLy — DD (0) D7 = §(x).
Also
ID™(A(v) = A)HY|| = ||D~ (D (v) — D), H ||
= [|D™' Ty D(D™ ' D?(v) D~ —)DIT, H|
< | D7 e D||[H™ 11y D[ I — D™D (v) D
< 0(x).
With the same arguments

|D7'AH™! (I, —H'H*(v)H ) || < vé(x).

4.A.2 Proof of Theorem [4.2.2]

For ((v) = L(v)—IEL(v) remember the semiparametric normalized stochas-
tic gradient gap

Y(v) = D7 (Vol(v) - Vol (v7)). (4.A.1)

Fix the radius ro(x) > 0 that ensures IP{v,vg- € Yo(rg)} > 1 — e .
Define C(rg,x) C £2 as

C(ro, %) def U, Vg~ € To(r0)} ﬂ{ su(p )Hg('u)H < 6rw;(x, Q)4r0}.
vEY, (4o

In the following we will derive statements that hold true on this set
C(ro,x) € 2 which is of probability greater than 1 — 2e™*. Indeed it
follows right away from the definition of rg > 0 that

P{’E,’T)g* Q/ To(ro)} < e .
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By Theorem - which is applicable because (éDl) implies (3.5.4) with
I lly = [P} - we infer

P sup [[Y(w)|| < 6r1e5(x,2p" + 2p)ro | > 1—e %,
V€Yo (x0)

Proof of claim on C(rg,x) C {2
Before we prove the claim we prove the following useful lemma:
Lemma 4.A.1. Assume that (Lg) is fulfilled. Then

4 y
< mrd(r).

Dt (WEL(U) - WEL(U*)) + DO - 6%)

sup
vEY ()

Proof. We have with Taylor expansion and some U € 75(r)

VIEL(v) — VIEL(v*) = VZIEL(D)(v — v¥)

This gives

= D7 ( D*®) — AH2AT(3) A(D) — AH?H2(D) ) (v — v¥)
= D! (D2(6) - AH—QAT@)) D'D(6 — 6%
+ (b—lA(a) - D—lAH—2H2(a)) (n—n").
We estimate separately using (Lo) and (Z)
|D7 (D*(®) ~ AH2AT(8)) D™ - L

- Hb—l (D2(T)) _Dp_ {AH_Q(AT(ﬁ) _ AT)}) D—lH

IN

ID~'D|? (|0~ D*®)D~" — L
HIDT AR |IDTHA®) — A)HT))

1+v .

IN
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and

|(D7*A@) ~ D' AB (@) (n ')

< ||pra@mt - D AR @) [Hn - 0|

< |D7'DI{ID~H(A®) — A)H |
+H[DTIAHT (I, — HTTH2(0)HT) ||} [|H(n — 07|

2 o
< do()IH(n — n™)||.
< () H )|
Furthermore
1D(8 — )|V [1H(n — 1) | € ——— | D(w — v*)] < ——
TSI Ao e Tz
Together this gives that
sup || D! (WEL( ) — W;L(v*)> + D6 - 6%
veYo(r)
1+v 2 1 o
3
<1y2 + /1—1/2> 17V2r (r)
4 o
= V2)2r5(r).
0

The next lemma already completes the proof of (4.2.9)) and (4.2.10) on
C(ro,x) C 2:

Lemma 4.A.2. Assume that the condition (Lo) is fulfilled. Then on the
set C(ro,x) C 2 the approzimations (4.2.9) and (4.2.10) are valid.

Proof. Using VgL(T) = 0, that by assumption VIEL = IEVL and the
triangular inequality we find

ID(6 —67) — || =

DH{Ve(®) - e} + D@ - 6°)

< HIT1 (VEL®) - VL") + D@ - 6")

+[[ D7 Vet (®) - Vac )}

As we assume that ¥ € Y, (ro) we get with (£o) by Lemma m

4 v

Hb—l (WEL@) - WEL(U*)) +D(6 - 0Y) 00 (xo).

=@y
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For the remainder we use that on C(rg,x) C {2

[D7{90¢®) - Yocwn}| < sup  1(0)] < 651 (x, @t
v€Yo(4ro)

This gives (4.2.9) on C(rp,x) C £2. For (4.2.10) we will first show that on
C(ro,x) C 12

‘EN L(6*) - ( )0 — 6%) — ”D(é—o*)n?/z)] (4.A.2)

9] ¥

D71V + S (o, >) O(x0.x).

where L(8) o maxyer, £(0,71). To show this we use some ideas of the
proof of Theorem 1 of [40], that is we define

[:RPxT =R, (61,02,m)— L(0;,n+H2AT (6, —6)). (4.A.3)
Note that
v@ll<017 02777) = 69'5(017"7 + H_2AT(02 - 01))7
ie. Vg, l(6%,0* ") = V((v*).

Remark 4.A.1. If the model was correctly specified and £ the true log
likelihood Vg,1(0*,0%,1*) would be equal to Y ", Vp(Y;), with ¢p the
efficient influence function from (2.1.2)).

We can represent:

L(@) — L(6%) = 1(8.8,7) — (6%,6%,7g-), Tl = I,y argmax L(v).
ve?,
Myo=b*

This allows to bound from above
L(6) — L(6%) < 1(0,6,7) — 1(6",6,7)
= Ve, l(67,0%,1n")(0 — 6%) — | D(6 — 6")|%/2+ &(6,8),

where
&(01,02) < 1(61,8,7) — 1(6,6,7) — Ve, 1(67,6%,1")(8; — 02)
+D(61 — 62)]%/2.
We will show
3(8,07) < (ID7'V ] + B(x0, %)) S(xo,x), (4.A.4)
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which gives the upper bound of (4.A.2). Note that &(8*,0*) =0 such that
we get with Taylor expansion

&(0,0") < |D(O—0%)| sup |D'Ve,i&(0,0%).
0c Iy (xo)

We find
Vo, 4(0,0%) = Vg,1(0,0,7) — Ve, l(0°,6%, ") + D(6 — 0%
= V((°) = V(") + B [VE(°) = VE()| + DO - 6"),

where

(oW
@
fy

o

6,7 +H2AT(6 - 0)),
ID(® —v")|| < DO — 6%+ |[H(7 —n")|| +v||D(® — 0)]
2(1+ v)rg < 4ro.

IN

Using Lemma and the definition of C(rg,x) we can bound

sup | D7'Ve,4(8,0%)| < $(xo, x).
OEHGTO(IO)

Using (4.2.9) we find on C(ro, x)
ID(6 - 67)]| < [D™'V|l + $(xo,%).
This gives (4.A.4]). Similarly we can bound from below:

L(e) - Z(O*) > l(§7 0*7779*) - l(9*79*7ﬁe*)7

and repeat the same arguments using that vg- € Y5(rg) on C(rg,x) C 2
to obtain the lower bound of (4.A.2)). Plugging (4.2.9) into (4.A.2) this gives

2L(8) — 2L(6") ~ [D7V¢(")2] < 4 (ID7V]| + S(x0, %)) Slro, )

+<u>(r0,x)2.

4.A.3 Proof of Proposition [4.2.3]

We start with an auxiliary result. Define the parametric gradient gap
Y(v) = D7 (VC(v) - VE(w),
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and the set

cw = (N { sw {20 < ol )7}

r<Ro(x) VEYH(x)

m{ max{[D-1VL[, |D-'Vall, [HVLll} < 3(X)}-

Lemma 4.A.3. We have that for any rg) <rg
~ =~ (1) ~ =~ (1+1)

C(V)N{v,vg- € To(xy')} CC(V)N{v,09- € Yo(xry )},

where
(I+1) _ )
ry = =3(x,B)+ $o(r',x) Ary.

Proof. Since VL(v) =0 we find with the triangular inequality

ID(® — v*) = DIVL(Y)]| < D7 (V@) - V(o) |

+H|DHEVL(v) - DTHEVL(vY) + D (T —vY)).

In Sectionwe assume that £ : RP" — R is smooth enough such that we
can interchange VIEL(v) = IEVL(v) on 15(rp). This gives by condition

(Lp) and Taylor expansion

sup | DEVL(v) - DTUEVL(vY) 4+ D (v — v
Ve, ()

< sup |DIVEEL(v)D !+ I
VEY (1)

r < d(r)r.

For the remainder we use the definition of C'(V). This gives
[D(® — v*) = DTIVL(W")|| < 6(x)r + 6wrn (267 + 30(x, 4p%)?) .
By the triangular inequality this implies
TeT, (5(}(, B) + $ox®,x) A ro) .
For vg« we repeat the same arguments with the restriction to the set
def *
Yo0+(r) = {(0,m) € To(r): 0 =6"}.
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We bound on 75 g+ (r)
H=H{VnL(v) = Vpk(v") + H? (n — n") } |
< JHTH{VpL(v) = Vyl(v)}|
+H Y VyEL(v) — Vo EL(v*) + H? (n — n*) }|.
Take any v € R™ with [|v|| =1 then
Y THIV,L(v) = (0,H ') 'V l(v) = (0,H ') " DD !V, L(v).
Note that [|D(0,H 15)||> = ||v||> = 1 such that

HH{Vnl(v) = Val ()} = oA 7 TH ! {Vy((v) = VinC(v")}
vlI=1

< sup ’YT@_l {Vul(v) = Vu((v™)}
T

= [ID™H {Vu((v) = Vol (v™)} |
< 6r1wsi(x,4p™)r.

As above we find with Taylor expansion

sup  |[H™H{V,EL(v) = VyEL(v) + H? (n —n") } |
vET, o+ (r)
< swp [HOUHA0)H - L.
UETO,B* (I‘)

We can bound using || D(0,H™1~)[|2 = ||v]|?> and (£Lo)

IH'H2(0)H ™! — L[| = sup (H™'~)' {H2(v) —H?}H 'y
~YER™
llvlI=1

— T _

= sup (O,H 1’7) {DQ('v) — @2} (O,H 1'7)
~yeR™
lIvll=1

< sup v {D_l(DQ(U)D_l — I}y < 6(x).
~ERP”
lIvIl=1

This gives the claim.

Lemma 4.A.4. We have

P (C(V) N {D,Te- € Volro(x))}) > 1 — de™™.
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Proof. By definition of ro(x)
P{v,v9- € Tos(ro(x))} >1—e*.
Lemma yields
[H= Vg < D71V,
which implies that
{ID7'V] < 5(x. B)} € {|H'Vyll < 5(x, B)}.

To control the probability P(|D7'V|| > j;(x,1B)) we apply
Proposition with

B =D ip~t,
We obtain
P (|D7'V| > 3(x,B)) < 2.

By Theorem with p = p* we have

Pl O { s o2 <o) 2 1-en

r<Ro(x) \ VETo(@) bwry

This gives that IP(C'(ro,x)) > 1 —4e™*. O

Proof. Now we can proof the claim of proposition We proof this claim
via induction. On

N(x) = C(V)N{v,0e € To(ro(x))},
we have
v, Vg € To(rp), set (0 &f rg.
With Lemma [£.A.3] we find that
0(x) C {u,ae* e To(r(l))} implies £2(x) C {a, T € To(r<l+1>)},
where

r) < 3(x,B) + Og (r(l—ﬂ,x) .
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Setting [ = 1 this gives the first claim. For the second claim we show that

2(x) C {6,69* e, (lim sup r(l)>} C {D,Tg- € To(x})}.

l—00

Consequently we have to show that limsup, ., r¥) < ry with rj defined
in (4.2.12)). For this we use d(r)/r V4w < € to estimate further

r® < 3(x, B) + O (r(z—n’X)

< 5%, B) + ¢ [r707 4 5 (x, 4p")’]
< 3(x, B) + 30(x, 4p*)? + eV,
such that

0% <2 (3x, B) + esqx, 4p)?)” + 262070 (4.4.5)

Abbreviate 3¢(x) dof (3(x,B) + egQ(x,4p*)2)2. We will show via induction

that

r0? < 23748k Nino 2y ()2 (4.A.6)
s=0

or+1

+2 (4)22:0 2% GZZ:O 2k+1 r(l*r)

Equation (4.A.5) already serves the claim for » = 1. Assume that the claim
is shown for 7 € N then we plug (4.A.5) into (4.A.6) to find

T
D% <9 3 4¥io 2o ()2
s=0

27‘+1

+2(4)Zk=0 2k S i 26 (236()()2 n 262r(l—r—1)4>

T
23 4%k 2 i 2 ()2
s=0

+2(4)22:0 2k 622:0 2k+1 <427'+136(X)27'+2 + 427'+1 627'+2r(l_r_1)27“+2>

IN

r+1 ,
2 Z AThm0 2 X0 2y ()2 2(4)2T+162T+1r(l_’"_1)2 +2,
s=0

IN
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which gives (4.A.6]) for all » <1. We can bound

r+1 . e . r+1 X 1
YAl X ()2 <4 (40X 5 ()2
=0 s=0

r+1

< 430(x) Y {dee(x)} L
s=0

Using that 4e3.(x) < ¢ we find

l
237 4T P S ()2 < Sy ),
s=0

Clearly because 4erp(x) < 1
(4)2l_1621_1r02l = r()(élero)zl_1 — 0.

Consequently

limsupr® < 3(x, B) + e30(x, 4p%)* + limsup er -V

l—00 =0

< 5(X7B) + €3Q(X>4P*)2 + 62 1— céﬁ(x)'

Again using 4ej3.(x) < ¢ gives the claim. O

Lemma 4.A.5. Let D € RPHP)X®0+P) pe invertible and

2
D? = < fT ;2 ) e RPHPX(+p) D e RPXP H e R"™™ invertible,.

Then for any v = (8,n) € RPY™ we have ||H 'n| Vv ||D7'0] < || D" v].
Proof. With v = (8,n) € RPt™

ID~16]l = | D e DD~ v < | DT DI DT ]| < [ DT ],

because
ID~ D> = sup v D™ gDy D'y = ||| = 1.
~l|=
The same argument works for ||[H™1n]|. O
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Remark 4.A.2. To address the claim of remark [£.2.15] note that we have
C'(xo,x) C {[|(1 — €(x0)) "Dy ' V|| < (1 — e(ro))'3(x, B) < 1o} by the
choice of ry > 0 such that by Corollary

1(1 = €(r0))Do(D — v*) — (1 — e(r0)) "' Dy ' V|| < /24c(x).
Consequently

1o (T — v")| < (1 = e(x0)) D5 VI + v/24c(x0)-

The same can be done for 79« which gives the claim.

4.A.4 Proof of Lemma [4.2.4]

Proof. First note that due to (¢) we have

1D~ = i<

1
S (4.A.7)

1
—=lld
Vn
Now we prove the implications.

(Lo) As by assumption 75(r*) C U we simply estimate using (4.A.7)) and
(¢p) for any v € Yo(r*)

I —DIVEEL(v)D Y| < yu)? V2EL(v)|
nc

1
:—3||V21E£( ") = V2EL(v )||<f3

(€D1) Abbreviate ¢; = (¢; — IE¢;) and ( = (L —IEL). Take any v € RP’
and v,v" € 7,(r*) C U and use the mean value theorem to find some
v € conv(v,v') C U

w || Do (v
o ox 2 _1 d(v =)
— el p{ {Zm } |d<v—v'>||}'

Using independence and (ed;) this gives with w = % and |p| <

T—1 v) — v’
1ogEexp{“7 2 {vc<_>vmc< >}}
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Vngp

Tp—1 /
py ' Dy {VE(v) — V((v')}
log IF ex
© p{ w[[Do(v — )]
< Z sup logZE‘eXp{'u'led_IVQQ('?))d_l'yg} < viu?)2.
i=1 yER?" v
[[vll=1

Furthermore (Z) is a consequence of Lemma and (¢). The other
claims can be shown with the same argument or follow trivially from the
setting. 0

Lemma 4.A.6. For a positive definite symmetric matriz

D? A
DQZ<AT H2>7

with cp||v||? <v'Dv for some cp >0 we have that

_ _ _ Cp
ID'AH2ATD | =2 <1 - — 2
IDI2 A [IH|?

Proof. For any v = (0,n) € RP™™ we have

D? A o
UT@QU = (0T777T) < AT H2 ) < n )

I D 'AH! Do
_ THT TrrT p
- (0 D »N H ) ( H—IATD—l Im > < H’r[ )

= |DO|I* + | Hn||* + 2(Hn, H~'ATD™'0).
Minimized with respect to 77, i.e. with Hp = —H AT D71DO we find

v D?v = ||DO|? — |[H 'A"D1D0|?
= (DO)" (I, - D 'AH2A"D ") De,

which gets minimal - i.e. equal to (1 —v?)|| D8] - if
D 'AH2A"D'DO = |D'AH2A" D7 D6 = 2 De,

ie. if DO € RP is a maximal eigenvalue of D"TAH2ATD™1 ¢ RP*P,
With the assumption cp|lv|? < v Dv this gives

ep|v]? < vTD* = (1 —v?)|DOI, |lv]|*=(|0]* + | H>AT 6|,
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such that

2 [l cp
v'<1l—cop <1- .
106> 1D

With analogous arguments we can obtain

P

2
1% S 1-— (&)) S L= .
[ Hnll* IH|?

This completes the proof. O

4.A.5 Proof of Proposition [4.2.6
The profile MLE can be calculated easily
0 =1lpf " (V)= Ilpf " (f(v) + &) = 6" +co— |len],

where € = (gg,€5) € R X RP»—1 Tt is straight forward to show, that the
conditions of Section are satisfied with D2 = nIE[VfV T (v*)] = Idy,
D?=n and € = \/neg . But we immediately see that

2
“Xpn—1

N

V(8 — 6) — viizg = —v/alley|® ~

This means that if p, = O(n!/?) the estimator is not root-n consistent.
For \/n = o(p,) the root-n bias goes to infinity almost surely. Clearly if
pn = 0o(n'/?) the Fisher expansion is accurate.

Concerning the Wilks phenomenon note that £(v) = 0. On the other
hand, with probability tending to one as n — oo

2
. * _ : RV 2 Y)\2 2
. £(0",) nggﬁ{(ye X (Yyl?) + (=) \Ynu}

2
. . 32 2 y)2 2
= nlglelﬂg{(a?g A leq|| ) + (1 = A)[leq]| }
. 2 2 (14 2 2 2
nmin {€0+ llenll ( l[enll o+ ( )

where Y = (yg,Yy) € R x RPr~1 and e = (gg,&y) € R x RP»~1. Clearly
lenl* = O(pn/n) — 0 as. and g9 — 0 a.s. such that the sequence of
minimizers satisfies A, — 1 a.s.. This gives for any 7 >0 and n >n, € N
large enough

— mﬁxL(G*,n) > ned 4+ (1= 7)nleyl|* = (14 7)neo |leqg]* . (4.A.8)
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Furthermore we get setting A =1

- mTz?XL(B*, n) < neg +n|eyl|* — neg |leq? - (4.A.9)

As L(6,6%) = — maxy £(0%,7n) the inequalities (4.A.8) and (4.A.9) combine

to

neg +n(l—7) llegll* = (1+7)nee |ley > < L(6,67)

< neg +nlen|* —neg [leql®.

This gives the Wilks phenomenon if p2/n — 0. If p2/n — oo the right-
hand side in (4.A.8)) diverges since with 7 =1/2

n 4
nsg + 5 |enl” — 2neq ||€77||2
~ X1 * (Xp,1/2n) * {=N(0,1)(2x3 _1/vn)} == dsc.

If p2/n — C then f)(é, 0*) can not converge to a x?2-distribution with one
degree of freedom as one can let 7 > 0 tend 0. This completes the proof.

4.A.6 Proof of Proposition

We only sketch the proof of the first claim as it is rather uninteresting. Note
that

P(n||Y|]* > 4p,) — 0,
which implies that v € 75(2y/pn) . On 15(2/Pn)

n!'Y — n|]v|]2/2 — v Bn

IA

L(v) (4.A.10)
<nv'Y —nl[v]|?/24 /B

Maximizing on the left-hand side of (4.A.10) and plugging in © on the
right-hand side we get

ID@ = Y)|*/2=nlY|*/2 = n0"Y +n|5]*/2 < 2/Bn.
This gives the claim:
1Do(6 — 67) = €] < |D([@ - Y)|* < 2/B, — 0.

For the other claims we first show that for n large enough, the MLE
v € RP" belongs with probability close to one to the § = 1/n vicinity 8
of the set § in (4.2.16]). The second step is to show that with a probability
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exceeding a fixed constant o > 0, the profile MLE 6 differs significantly
from y; which is the profile MLE in the linear Gaussian model. The third
step focuses on the case 3, — .

1. First we show that for n large enough, the MLE © € RP» lies in 84
with probability close to one. For this we check that the maximum of £(v)
on &5 is smaller than a similar maximum on & for “typical” values of Y
and n large enough. Indeed, for any point v € 8§

L(v,0) < max L(v,0) = max{nYTv - nHvH2/2}
vESS vESS

< YTv —nfv|?/2) = 2|y |2
< max {nY v —n|lv|*/2} = S|Y|

Furthermore, introduce a set of “typical” values Y :
1 3/2 2pn \ ¥/
o {Y: - (@) <|Y|? < <p”> ,and [y < 1.
2\n n

It is straightforward to see that IP (Y € C’l) is exponentially close to one
for n large. Below we assume that Y € C; and study the value £(v,0)
for v € 8. By assumption n is large enough to ensure that

T ()25 () AR

Introduce Yg as the closest point in 8 to Y with |vi| > |y1|. This point
always exists by the definition of §. Denote

oY) =Y = Y5 = [y — val.

By construction of 8, it holds 6(Y) < 0.5y/8,/n for Y € C;. For n

satisfying (4.A.11)) this also yields [[|Y| —(5(Y)]3 > 1/2||Y||?. We have for
Y €C;

max £(v,0) > £(Y5s,0)
ves

> nl[Y | = nlynl5(Y) = Z{IY? = 2ls(¥) +6*(Y)}

+n{|Y || = 21 ]0(Y) + 52(Y)}3/2

n 3
> §||Y||2 —n6*(Y) +n{llY] - oY)}

n I} n n

Y P ==+ Y > S [Y])? > max £ :
> SIVIE =G GV > DIYIE = max £(0.0)

This implies © € S5 .
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2. Now we discuss the case when 32 = p?/n — (6c)* for some ¢ > 0
and show that the profile MLE 6 deviates significantly from y; on a set of
positive probability. Define for each n € N

. 1
Cn ™ cvn {IY ¥4l gV = €0 {l - e

zé\/m}-

It is easy to see that IP(C,) > « for some fixed o > 0 and all n. It remains
to note that on the set C,, it holds under (4.A.11]

1Do(6 — 6%) — €| = Vn|t1 — yi]
> Vnlyr — ys1| — vn/n

> 1571/27L L) py/n — oo,
6 Vi e pi/n— (60)
which yields the claim.
3. Finally consider the case when £, — oo. Take the sequence ¢, =

651/4 — 0.Consider the set

€ Cn 1
6 e {1y - %l 2 v} =i {in - wsal = gV /m

Then IP(C,) — 1 and on C,

A (0 p* g Cn n1/2 1
_ _ > " _

1

_ Lo
_Gﬁ" NG

— 00,

as required.

4.A.7 Proof of Theorem [4.2.8|

Since by assumption p2/n — 0 and the support of f(v) is contained in
B, B/ /n(0) by the choice of K it holds for n large enough and for any

v with ||v]|? < 4p,/n that n|v|?/2 > nf(v)||v|® and thus

argmax I[EL(v) = argmin{nHvH2/2 - nf(v)||v||3/3} =0 € RP".

Apart from (L) it is easy to see that all conditions are satisfied with
b=1 and d(r)/r 2w =1//n if we set

D? =V? =nl,,.
It is straightforward to see that
Do=+vn, V(L—IEL)=Vg(L—IEL)=nYy, and £ = /nYp,
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where Y = (Yp,Y,) € R™ x R™. Consequently Theorem gives effi-
ciency of the profile if p2/n — 0 and the Wilks phenomenon if p3n — 0.
In the following we will first show that condition (Lg) is satisfied, then that
the Fisher theorem holds if p2/n — 0 and finally that p}/n — 0 is indeed
necessary to obtain the Wilks phenomenon.

Condition (L)
We will show that VZIEL is Lipschitz continuous on 7, (rg) = B, W(O)

with Lipschitz constant nL > 0 where L is independent of n,p,. This

gives (Lo) with d(r) = Lr/\/n. For this purpose it suffices to consider

the Lipschitz continuity of VZg(v) := V2(f(v)n|v||?). We neglect the

indicator 1p_ \/7(0)(-) as we only have to consider smoothness on 75(ry) .
pn/n

We have for two points v, v° € 15
1 [¢] (o] [}
~IV2g(v) = V()| < [[V?f()[[v]* = V2 (v) o]

+HV (@)oo’ = V(o) o°llv° |
f(U) T f(,UO)'UO'UOTH.

ol ~ e

Denote by Lj.3),, the Lipschitz constant of | - | restricted to Y.(ro),
which is independent of n,p, € N because the set Y,(r¢) C Bi(0) for
n € N large enough. We estimate

IV2f()|vl® = V2 f(v%)[[0°|°]
< V2 f(v) = V2F@O)[[[o]l® + IV £ (@)l = [[o° ]

Pn 3/2 5 )
<8 ()19 o 01 + 19 e L, [0 — o).
By the definition (4.2.17)) we find that

3/2 3/2
19 flloo < L? <“> [ &9wav| e <”) ,
Pn R Pn

with a constant C € R that does not depend on n,p, € N. With similar
arguments for the other terms we find

IVZIEL(v) — VZIEL (V)| < nL|jv — v°|.

Fisher theorem

We control the deviations of the maximizer of £. The gradient reads
1
VL(v) =nY —nv + nf(v)§|]v||v +nVf(v)|v|?/3.
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Setting this equal to zero we find that © satisfies

VAlY — 5] < LB+ Vav @)l

Using the fact that by Theorem [3.3.2] IP(v € BQ\/E(O)) >1—2e P such
that ||0|| = /pn/n and that |V f(D)| = /n/p, we obtain

1Do(6 — 67) — &||* = n[|6 - Yol* < n||& - Y|* < pi/n,

which shows that if p2/n — 0 we obtain the Fisher theorem.

Wilks phenomenon

Suppose for a moment that f = 1. One can see that the unique local
maximizer U of

L(v) =nY Tv —n|v|/2 +nllv|?/3,

equals \Y for some A > 0 as only the term nY v depends on the direction
of v and is maximized on balls with finite radius on the linear space spanned
by Y . We will show that A =1+ §(Y)|Y || where almost surely

I(Y)—1.
To see this note that the maximization problem reduces to solving

argmax {\ — A\*/2 + [[Y[|A?/3} .
A

The solution can easily be obtained with first and second order criteria of
maximality and is given as

11— I AY] 4y

)\max_ -
2Y]| 2|Y[|(1+ /1 —4[[Y]])
U v a4 I 4l — 1+ 7(V)|Y].
(1+/1=4[Y]) (1+ /1 —4[Y])

Consequently v = (1+7(Y)||[Y|)Y . If v € S this means that v = U in
our model, since for any other point v € T

L(v) = nY v —nlv|*/2+ f(v)n|v]’®
< nY v —afv)?/2 +njv]®

< max {nYT’U “nfv)?/2 + nHvH3} — £(D).
v
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The event {v € S} is of strictly positive probability that depends on the
choice of L >0 and grows with n — co. Observe that if v € S

L(6) = m#XL(O, n) = L(0) = L(D)

=n(A+7Y)YI) - @ +r)Y])*/2) IY]?
+n(L+ (Y)Y () /31 Y [°

= ¥ /2 a3+ (470 IV I+ v Y

+T<Y>3|1Y|16/3).

By the definition of Y we have almost surely limn|Y||?/p, < C, such that
if p2/n—0

1
n <(2 +TYDIY I+ r(Y)?Y]° + T(Y)3|!Y|!6/3) = op(1).
On the other hand we have due to f(0,n7) =0 for all n € R™

L(6) = max £(6",m) = max {n¥ T (0,m) — nl|n|?/2} = n[[ Yy /2.

Consequently

L(6) - L(6") = n|Y|*/2 = nl[Yy|*/2 + n[[Y|* + op(1)
=nYZ/2+n||Y|]? +op(1).

It is clear that if p3/n — 0 also n||Y]|> — 0 almost surely. Furthermore
nYg ~ x2, for all n € N. But if p3/n - 0 obviously nYg/2 + n||Y|® +
op(1) does not converge to a x?-square random variable with m degrees
of freedom. In consequence the Wilks phenomenon does not occur on a set
of positive probability if p2/n - 0.

4.A.8 Proof of Proposition [4.3.2

Remember the definitions

~ ~ def
Vex, m = (05, ez, = argmax L, (v),
vel
Iyv=6},

~ ~  def
Vg m = (05, Mp+) = argmax L, (v).
vel
H()’UZB*
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Define for some 0 < rg
oy def (~ ~ ~ o
A(ero) — {’Umvve%,’n’wveﬁm S To,m(ro)}

m{ sup  |[Y(v)]|| < 6110031 (x, 2p* + 2p)4r8} C 0,
’UETO(4I8)

with Y(v) € RP" in ([@.A1).

We prove this claim in a similar fashion as in Section {.A:2] With the
function I, : RP x T — R defined as in (4.A.3) with £ replaced by £,, we
can represent:

Lin(6%) — Lin(0%) = 1n(67,, 0%, 70z ) — Lin (6%, 0%, 779-),

where Em(e) def maxpen,,r, Lm(0,m) . Repeating the same arguments as

in Section A2l we obtain
Lin(65,) = Ln(87) < (61,67, 70;,) — bn (67, 61, 703,
= VoL (v*)(6;, — 0%) = [|Dyn(8}, — 67)]%/2
+, (07, 0%),
where &;;,(01,62) € R is defined as

&%, (01,02) ' 1(64,6:,, Tigs. ) — 162, 0%, Ti: )

—Vg,1(0%,6%,n")(01 — 03) — | D(61 — 6)]|/2.
and satisfies
&5 (05,,0%) < |Di(6;, — %) sup  |D;'Vg,cum(6,0)|

OCTpT, (41)

%}

< a(m)$(rg, %),

since A(x,r5) C {vg:x , g+ € Yo(rg)} . With similar arguments for the lower
bound this gives

2ALun(65,) = Lin(87)] < a(m) (2] D7 VLuu(0%) | + alm) +25(x5,%))
The claim follows because the result (4.2.10) of Theorem occurs on
A(x,rg) € C(x,rg) C £2.

It remains to note that the set A(x,r§) C {2 is of probability greater than
1 —2e™* by the choice of rg > 0.
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4.A.9 Proof of Corollary 4.3.3

We will only prove the asymptotic normality as the the proof the Wilks
phenomenon is very similar. Define

V2 (vF) = Cov(Vpimbm(vs)), Bm = D' V2D,

m m m

Vom = Vo — Ay, 2V, V2 = Cov(Vel(v5,)), By = D, V2D,

m "m—m

Remember p* = p+ m € N and that the point v;, € RP x R is defined
by maximizing the expected value for the sieved functional £,, and the
operators D2, € RP"*P" D2 ¢ RP*P correspond to this point, i.e. we

abbreviate D2, aof D2 (v*), while D? = D2(v*) and D2, = D2 (v*),

m
D? = D?(v*), where v* = argmax, . IEL(v), i.e. the true full maximizer.

We get with Theorem applied to 6, in (4.3.2)) that with proba-
bility greater than 1 — 2e™*

1D (6 = 67,) — €m(v7) ]| < O(xo, ). (4.A.12)
We write
D (6 — 07) = &m(vy,)
= Din (O — 05,) — €n(v}) + (D — D)6 — 63,) + Din (65, — 67).

By (L.A.12) it suffices to bound ||(Dy, — D) (0, —65%,)|| and || D, (07, —6%)]| .
With assumption (bias) we get

|1 D (65, — 0%)|| < ax(m).
Furthermore

(D — D) (81 — 63l

m

v

I(Ds = Dya(v")) (B = 03,) || + |(Din(v7) = D) (8 — 6;,) |

IN

1D (O = 011 (112 = D D2 (o) DM

IN

+ HI _ ﬁm(v*)leZ(U*)Dm(U*)flHl/?Hl”)m(,U*)D;an)_

With (£.A.12) and the fact, that with condition (£Dg) it holds that (see
Section [3.4)

P(||én (v < 3(xn, Brn)) > 1 - 2e™,
we obtain with probability greater than 1 — 4e*
1D (B — B3I < [1€m (w3, ]| + ©(xo, %) < 3(x, Bun) + O(xo, %).
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where 3(x, B,,) = O(y/p ¥ %) . Combining these bounds gives with (bias’)

1D (B~ 6%) = &) | < O(x0,3) + B(m) (3, B) + O(x0.))
+a(m)7

where ro(x) is chosen such that IP(v,,Vex m € Yom(ro(x))) > 1—e™*.
By assumption rp(x) < oo for any x > 0, m,n € N. Remember that

<u>(ro, xn) R~ Sn(ro)ro + Wn/x + p + murg where by assumption gn(r) —0
for any r > 0 and w, — 0. This implies that there exist sequences (m,,) C
N with m,, = o0 and x,, — oo with

O(ro,xn) + B(m) (5(Xn, B, + Q(ro,xn)) + a(my) — 0 (4.A.13)

as n — o0o. Fix such sequences m,, — co and x,, — co. Then we have due

to (4.A.13)) that for any € > 0 there exists an n € N such that

P(|D(6 — 67) = &m(vyy)|| > €) < 4e™.
As x, — oo we get the claim by Slutsky’s Lemma once we showed that
&n(vr) is asymptotically N(0,d~192d 1) -distributed.

For this observe

Em(vl) = DM (Ve — A2V )L (v),)

n -1
= =Y (e Dn) (Toh(oh) — A2V ti(07)
i=1

n

def 1 Z
= ) X,

\/ﬁizl

Due to assumptions (bias”) we have Cov(X;) — d~'92d~! € RP*? . Con-
sequently

y 1 &
Em(vy,) = ﬁzxi,
=1

where the random vectors X; are i.i.d. with zero mean and covariance tend-
ing to d~'92d~!, such that by a slightly generalized central limit theorem

v

En(vr) = N(O,d92d ).

m

4.A.10 Proof of Theorem [4.3.4]

We prove this theorem in a series of lemmas.
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Lemma 4.A.7. Assume that (Lroo) is satisfied for any r > r1 with
b(r) = b and that the condition (3¢) is satisfied. Then we get ||D(v}, —
v)|| < r* Vry where r*? = 4C,-m/b.
Proof. Note that

[D(0" = I v) || = [[Hoere ¢,

such that v* € 75(r*). Furthermore we have VIEL(v*) = 0 such that by
the Taylor expansion with some A € [0, 1]

EL(ITyv*, 0*) = —|[Hoes2™ |2 + 36" T (Moere — Vi EL (0, A3e¥)) 52"
which gives with (4.3.5) and (32) on 75(r*) that
|EL(yv*,v*)| < || D(v* — pv*)||* + Cooem < 2C,om. (4.A.14)

We show that v}, also belongs to 7, (r*) for r*? > 4C,m/b. Suppose for
the moment that H@('vz1 - v*)H >r*Vr;. By (Lre), it holds

2| EL (v}, v*)| > b||D(v, —v*)||* > br*?. (4.A.15)
This contradicts |]EL(’U:;1,’U*)‘ < ‘JEL(HP*U*,U*H in view of
r*? > 4C,.-m /b,

and (4.A.14), such that v}, € 7o(r*). O

Lemma 4.A.8. Assume that (Lreo) is satisfied with b(r) = b. As-
sume further (s) and (Lo) with central point v}, € RP" and operator
D RPXP" | Then we get with r*% = 4C,pxm/b and some C(v) >0

1D (8%, — 09| < C(v) (oz(m) +r(m) + 5(2r*)r*) .

Proof. Using condition (ﬁo) and Lemma we have on
Yon(x) = {|[Dm(v — vy,)| < r} CRPT™,

that

sup ||D:} (ﬁmzmm(v) Vo BL (v} )) — Dy (6 —62)]|

m
VEY (1)

< Co(x)r.
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Because of Lemma . A7l we know that

Do (0™ = vp,) || = | DULpv" — vy, |
< DL v”™ — o) + | D(v" = vp,)|| < 257,

such that IT-v}, € 1o, (2r*), which gives
105 (Vi ELon(03) = Vin B L (1T 0") ) = Din(6° = ;)]
< 205(2r*)r*.
We derive with the triangle inequality
| D (67, — 07)]] < 2C(v)d(2r*)x*
+HD,;L1 (ﬁmJELm(v;) - ﬁmwzm(np*v*)) H

It remains to bound the second term on the right-hand side. Because
VotmIEL(vy,) =0 and VIEL(v*) =0 we find

B3 (Bt~ S|

(Vo BL (V) — ﬁmJEL(npw*U H

Using that [|D(ITv* —v*)|| < r*, Lemma and condition (Z) we may
infer by Taylor expansion that with some \ € [0, 1]

D72 (VL (")~ VL (T0)) |

| D (T L (v, M) = AL

< || Pt AL, (0" = )

_ —1 4T *
- Hﬂm Axvx

+HD;@1 (VU”IE[L((HP*”*v Ax"))] - AL) ||

Due to assumption (3¢) the last sum is bounded by (a(m)+ 7(m)). To-
gether this gives that

D (65, — 67)|| = C (a(m) +r(m) + 5(2r*)r*) .
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Lemma 4.A.9. Assume (v) then

1402+ 3% (m)  B*(m)
1—12 1—32(m)

II — D,'D*Dt| <

Proof. Take any v € R? with [[v[| <1 and note that with v = (8,7, %) €
l2
D72Dmv

= Hoargmax {67 D, — [ Du]*/2}

vel?

= g argmax {07 Dyv — | Dyv][2/2 = inf (36T ALyv + [Hooese|2/2)
vERPT™M i

= g argmax {07 Dyv — | Dyv][2/2 = [Hid > ALv]2/2

veERPT™

def def
= IIgargmax g(v) = Igv°.
vERPT™M

Setting the gradient of g(-) equal to zero gives that the maximizer v° €
RPT™ gsatisfies
v° =D L — DAL H AL DY DT, Dy,

m xro—m

where H; : RP — RPT™ denotes the canonical embedding of RP into
RPt™ | By assumption we have

2
e D=IAT =2 AT =11 _ 7 || < B*(m) .
||(Ip Dm Anv/H;txA;ﬂ)gm ) Ip ” - 1— 52 (’I’)’L)

Note that Dmﬂngfﬂ g— Dmv = v which gives

I(I = Dy D™2Dy) V| = |[v — Dy IIgv°||
= | Dy IlgD; 211y Dyyv — Dy ITgv° ||

= Hbmngﬂml

((Ip* o D;nlAIuH;;%AT Dil)il - Ip*) @;ﬁﬂglv)mv

B2 (m) > 27T
< m“DmﬂGanHe Dy
T 1-p%(m)" T 1- B (m)’
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This implies

I = D' D*D| < |1 = D D72 Di|[| D, DDy}

_1+24 8 Fm)
- 1—12 1—p32(m)

O]

With similar arguments as in the proof of Lemma [4.A.1| we can prove
the following lemma which completes the proof:

Lemma 4.A.10. Assume (vsx), (I) and (Lo) then we get with r*>
= 4C,»m/b

I = Do (v3,) ™ Dy (v*) D (07,) |
NG, <2+ 1—6(r*) ) +1+0(c*)
(1—vv)?

<

Proof. Denote Dy af Din(0%) ), Dy dof Dp(vr) and Dy, = Dy (v*),

Dy D (v*) . We simply calculate

| Dt D2 Dty = Il = | Dyt (D2, = D2ya) Dok

< | Dk, (D(v*)? = D(vi,)?) Dkl

-

Dy (A 247 () = AHL2AL (07)) D
Now with Lemma the first summand can be bounded by

| Dty (D(v*)? = D(v}y)?) D

< Db D(w;) ! 3(")
o
(= VP

o |

< 5(r*).

We use the triangular inequality to find
1Dt (AmHL2AL () = AmHL2AL (05,) ) Dk

< [ Dy (Am(v") = A (vy,) B2 (0F) Ay () D

m

| Drn (A (V%) = A (v7,)) By 2(0],) Ay (v7,) D

m m

| Dy A (v7,) (Hin (v7,,) 2 = Hi (v%)72) A () D

m

|
|

-
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With condition (£o) and (Z) we find ||D(vX,)D(v*)" 1| < 1/1 — 6(r*)

. . . P e V1 —o(r) ., |
HDm%n (Am(v )_Am(vm))Hmz(U )A;(’U )DminH = (1 _ \/;)2 (5(1‘ )7
Db () — A () H 20 AL @)Dl < L)

With the same argument we find

1Drm A (v3,) (Hin(0,) 72 = i (6%)72) A (0%) Dy |

1 L% * \—L1 AT /) % x \—1 \/;+ S(I*) L%
< ———— D < — - .
— (1 _ \/17)26(r )HHm(vm) Am(v ) (Um) ” — (1 _ \/;)2 (5(1’ )
This gives the claim. O
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Chapter 5

Convergence of an
alternation maximization
procedure

5.1 Introduction

This chapter presents two convergence results for an alternating maximiza-
tion procedure to approximate M-estimators. It is largely based on [5]. We
focus on finite dimensional parameter spaces 7 C RP" with p* = p+m € N
being the full dimension, as infinite dimensional maximization problem are
computationally anyways not feasible. As explained in Chapter [1| the al-
ternating maximization procedure is used in situations where a direct com-
putation of the full maximum estimator (ME) © € RP" in is not
feasible or simply very difficult to implement. In such cases a workaround
has to be found to calculate the profile in ((1.0.3]).

One prominent approach is - given some (data dependent) functional
L :RP x R™ — R and an initial guess ©(® € RP™ - to set for k € N

ok k+1) def (g(kr)’ﬁ(lwrl)) — <§(k’),argmaxﬁ(§(k),77)> )
ner™

Bk 1 (gk) Hk)y = <argmax£(0, ~<k>),ﬁ<k>> . (5.1.1)
OcRp

As we mentioned this ”alternation maximization procedure” (or minimiza-
tion) is a widely applied algorithm in many parameter estimation tasks (see
[31], [41], [33] or [62]). Some natural questions arise: Does the sequence
(g(k)) converge to a limit that satisfies the same statistical properties as
the profile estimator? And if the answer is yes, after how many steps does
the sequence acquire these properties? Under what circumstances does the
sequence actually converge to the global maximizer © ? This problem is hard
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because the behavior of each step of the sequence is determined by the actual
finite sample realization of the functional £(-) = £(-,Y), where we usually
suppress the data dependence to ease notation. To the authors’ knowledge
no general ”convergence” result is available that answers the questions from
above except for the treatment of specific models (see again [31], [41], [33]
or [62]).

We address this difficulty via employing new finite sample techniques of
Chapter [ which allow to answer the above questions: with growing iteration
number k € N the estimators 0%) attain the same statistical properties as
the profile M-estimator 6 in and Theorem provides a choice of
the necessary number of steps K € N. Under slightly stronger conditions
on the structure of the model we can give a convergence result to the global
maximizier that does not rely on unimodality. Further we can address the
important question under which ratio of full dimension p* =p+m € N to
sample size n € N the sequence behaves as desired. For instance for smooth
L our results on statistic properties of 6%) become sharp if p* /+/n is small
and convergence to the full maximizer already occurs if p*/n is small.

We already pointed out in the introduction that the alternation maxi-
mization procedure can be understood as a special case of the Expectation
Maximization algorithm (EM algorithm) as we will illustrate below. The
EM algorithm itself was derived in [16] where particular versions of this ap-
proach are generalized. [16] also contains a variety of problems where an
application of EM algorithm can be fruitful; for a brief history of the EM
algorithm see [38] (Sect. 1.8). We briefly explain the EM algorithm. Take
observations X ~ [Py from some parametric family (Pp, @ € ©). Assume
that a parameter 8 € @ is to be estimated as maximizer of the functional
L£.(0,X) € R, but that only Y € ) is observed, where Y = fy(X) is the
image of the complete data set X € X under some map fy : X — ).
Prominent examples for the map fy are projections onto some components
of X if both Y and X are vector valued. The information lost under the
map can be regarded as missing data or latent variables. As a direct max-
imization of the functional is impossible without knowledge of X the EM
algorithm serves as a workaround. It consists of the iteration of tow steps:
starting with some initial guess 8(0) the k. “expectation step“ derives the
functional @ via

Q(0,0%)) = Eyu [£.(0,X)|Y],

which means that on the right hand side the conditional expectation is
calculated under the distribution [Py . The k. "maximization step” then
simply locates the maximizer 61 of Q.

Since the algorithm is very popular in applications a lot of research on
its behavior has been done. We are only dealing with a special case of
this procedure so we restrict ourselves to citing the well-known convergence
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result by Wu in [59]. Wu presents regularity conditions that ensure that
L(OFDY) > £(0%)]Y) where

L(O]Y) € E£.(0.X)Y = fy(X)],

such that £(8®)|Y) — £*(Y) for some limit value £*(Y) > 0, that may
depend on the starting point () . Additionally Wu gives conditions that

guarantee that the sequence %) (possibly a sequence of sets) converges to

C (L") e {6] £(0]Y) = £*(Y)}. [16] show that the speed of convergence

is linear in case of point valued @) and of some differentiability criterion
being met. A limitation of these results is that it is not clear whether £* =
sup £(0|Y) and thus it is not guaranteed that C(£*) is the desired MLE and
not just some local maximum. Of course this problem disappears if £(-|Y)
is unimodal and the regularity conditions are met but this assumption may
be too restrictive. See also [II] for convergence results along similar lines.

[6] is a recent work that presents a new way of addressing the properties
of the EM sequence in a very general i.i.d. setting, based on concavity of
0 — IEg«[L.(0,X)]. They assume that the functional L. is concave and
smooth enough (First order stability) and that for a sample (Y;) with high
probability an uniform bound of the kind

sup |argmax Z Fy[L.(0°,X)|Y;] — argmax Fg-[[Fg[L.(0°,X)|Y]]
0cB.(67)| 6° 0°

< e, (5.1.2)

is satisfied. Under these assumptions, with high probability and some v < 1
it holds

105 — 6% < [0 — 6*|| + Ce,. (5.1.3)

Unfortunately this does not answer our two questions to full satisfaction.
First the bound is rather high-level and has to be checked for each
model, while we seek (and find) properties of the functional - such as smooth-
ness and bounds on the moments of its gradient - that lead to comparably
desirable behavior. Further with it remains unclear whether for large
k € N the alternating sequence satisfies a Fisher expansion or whether a
Wilks type phenomenon occurs. In particular it remains open which ratio of
dimension to sample size ensures good performance of the procedure. Also
the actual convergence of 8%) — @* is not implied, as the right hand side
in is bounded from below by Ce, > 0.

Remark 5.1.1. In the context of the alternating procedure the bound
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(5.1.2)) would read

max |argmax £ (60,790 ) — argmax IEL(0,1ge )| < €,
0°eB(6%) ] 0

which is still difficult to check.

To see that the procedure (5.1.1)) is a special case of the EM algorithm
we have to find the right triplet (X fy,£.). For this we take X = (Z, Y)

with Z ~ argmax, £{(0,n),Y} under [Py. Further we set fy(X) =Y and

L.(0,X) o £(0,1,Y), where X = (n,Y). Then we find

Q6,0+ = -1 [£c(0, X)|Y]
gt [ﬁc@, argmax £{(6%~ Y ), Y}, Y) ‘Y]
n
= L. (9 argmaxL{( o~ D, ),Y},Y)

= L(0,7",Y),

and thus the resulting sequence is the same as in . Consequently the
convergence results from above apply to our problem 1f the involved regu-
larity criteria are met. But as noted these results do not tell us if the limit
of the sequence (O(k)) actually is the profile and the statistical properties
of limit points are not clear as the error term Ce, in ) determines the
limit distribution and it is not obvious whether it is asymptotlcally 2_
distributed.

The results of this chapter fill this gap for a wide range of settings. As
we pointed out in the introduction we manage to establish that under mild
conditions on the initial guess and the same conditions as in Chapter [4] the
estimators %) satisfy a Fisher and Wilks expansion as shown for the profile
ME in Theorem Further we manage to show under slightly stronger
smoothness conditions that (%), %)) indeed approaches the ME © with
nearly linear convergence speed, i.e. ||D((0%), n*)) — )| < 7%/ 108(k) with
some 0 < 7 <1 and D? = —[EV2L(v*). The latter is not necessary for
statistical inference on 6* but can be useful in the context of stochastic
optimization, when it has to be ensured that the maximum is approached
with growing number of iterations k € N.

In the following we write ©(**(+1)) in statements that are true for both
oA+ and ©*HF) . Also we do not specify whether the elements of the
resulting sequence are sets or single points. All statements made about
propertles of 9EEHD) are to be understood in the sense that they hold for

“every point of ©Fk(H1D) «

It is worthy to point out two technical challenges of the analysis. First

the sketched approach relies on (5.A.1). As all estimators (o**(+1)) are
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random this means that we need with some small 5 >0
P {a%vk),a(k:“l) e{||Dw—vY)| < Ro}} >1—e %
keNp

This is not trivial but Theorem [3.3.2] serves the result thanks to the property
L(oHEEED)) > (). Furthermore, the main result is formulated
to hold for all £ € Ny. This implies the need of a bound of the kind

DUV — Ve < e} | 210,

with some small ¢(r) > 0 that is decreasing if r > 0 shrinks. We manage
to derive this result in the desired way using Theorem [3.5.

5.2 Main results

5.2.1 Introduction of important objects

In this section we introduce all objects and bounds that are relevant for
Theorem This section is quite technical but necessary to understand
the results.

First consider the p* x p* matrices D? and V? from Section which
could be defined similarly to the Fisher information matrix:

P2 Y _2EL(wY), VY Cov(VL(vh)).
We represent the information and covariance matrix in block form:
D? A v: B
D2:<AT H2 >7 VQZ(BT Qz)-

A crucial object is the constant 0 < v defined by
|D7rAET P,

which we assume to be smaller 1. It determines the speed of convergence of
the alternating procedure (see Theorem [5.2.1]). Define also the local sets

To(x) def {v: (v—v") Div —v*) <r?},
T(r) ¥ {v: (v-0)TD*v-0) <r?},
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and as in Chapter {4] define the radius rg > 0 via

ro(x) = inf ¢ IP | argmaxL(v),v € Xo(r) | >1—e* 3. (5.2.1)
r>0 vel
Igv=6*

Remark 5.2.1. This radius can be determined using conditions (£,) and

(Er) of Section and Theorem which would yield ro(x) = C/x + p*

with some constant C > 0.

Furthermore, remember the p x p matrix D and the p-vectors 69 and

é as
D?=D% - AH 24T, Vo =Vy — AH 2V, £ = D" 'V,.
For our estimations we need the constant

3(x) Cix, B) Vo 4pY) & Vp +x, B2Y DIv2pl

where 3(x,-) is explained in Section and 3¢(x,-) is defined in Equation
B5.9).

Remark 5.2.2. The constant 3(x) is only introduced for ease of notation.
This makes some bounds less sharp but allows to address all terms that are
of order /p*+x with one symbol. The constant 3(x,IB) is comparable
to the ” 1 — e * "-quantile of the norm of D~!VX, where X ~ N(0, I,+),
i.e. it is of order of the trace of IB. The constant 3¢(x,Q) arises as an
exponential deviation bound for the supremum of a smooth process over a
set with complexity described by Q.

To bound the deviations of the points of the sequence (D*#(H1)) we
need the following radius:

def 619 b2
Kpy) = —_ 2.4p* + —K 2.2
RO(X) 0) 5(X) \ b(l —I/) \/X+ p* + 97/8 O(Xa B)a (5 )

which will ensure {2,511} ¢ 7,(Ry), where Ko(x) > 0 is defined
as

Ko(x, 8) % inf {JP (L(G(O),v*) > —K) > 5(x)},

K>0

for some f(x) — 0 as x — oo, see condition (A4;) in Section Finally
we (re)define the parametric uniform spread and the semiparametric uniform
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spread

Oolr, x) def {(5(r)r + 611w (30 (x,4p") + 2r2)} ,

So(r,%) & 601w (30(x, 20" + 2p)? + 3217) (5.2.3)

32 ¢

+m5(4r)r.

Remark 5.2.3. These objects are central to our analysis. (}Q(r,x) de-
scribes the accuracy of our main result of Theorem It is small for
not too large r, if &,4 introduced in (D), (£o) from Section are
small (with Lemma [4.2.1]it suffices that w,d from (€Dy), (Lo) are small).
<V>Q(r,x) is structurally slightly different from <u>(r,x) in as it is
based on Theorem [3.5.6] and allows a ”uniform in k” formulation of our
main result Theorem but for moderate x € R, they are of similar
size.

5.2.2 Dependence on initial guess

Theorem is only valid under the conditions from Section and
under some constraints on the quality of the initial guess ©(®) € RP?" which
we denote by (A1), (42) and (A3):

(A1) With probability greater than 1 — B(a)(x) the initial guess satisfies

L0 v*) > —Ko(x),

for some Ko(x) > 0.

(Ag) The conditions (€D1), (Lo), (€D1) and (L) from Sectionm
hold for all r < Ry(x,Ko(x,5)) where Rgis defined in (5.2.2) with

B(x) = Biay(x)-

(A3) There is some € > 0 such that 0(r)/r V1214w < e for all r < Ry.
Furthermore Ko(x) € R and € > 0 are small enough to ensure

e(e,3(x)) € edC(r)r— (3(x) + (%) <1, (5.24)
cle,Ro) < edo(v)- ! Ro <1, (5.2.5)

with
c(v) € 2v2(1 + vo)(1 — V)L, (5.2.6)
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Remark 5.2.4. One way of obtaining condition (A;) is to show that vy €
Yo (Rk) with probability greater than 1—5(a)(x) for some finite Rx(x) € R
and 0 < B(a)(x) < 1. Then (see Section [5.A.3)

Ko(x) € (1/2 + 12000) R% + (8(Ric) + 3(x)) Ric + 61ow3(x)2.

Condition (A;) is specified by conditions (A2) and (As) and is funda-
mental, as it allows with dominating probability to concentrate the analysis
on a local set 7, (Ro(x)) (see Theorem . Conditions (Az) and (As)
impose a bound on Rg(x) and thus on Ky from (A;). These conditions
boil down to §(Rg) + wRo being significantly smaller than 1. Condition
(As) ensures that the quality of the main results in Theorem i.e. that
<V>Q(rk,x) R~ <U>(r0,x) under rather mild conditions on the size Rg, as we
only need €Rg to be small. A violation of (A2) would make it impossible
to apply Theorem [3.5.6| which is the backbone of our proofs.

Remark 5.2.5. In case of iid observations with sample size n € N one
often has 0(Rg) + wRy < CRy(x)/y/n which suggests at first glance that
(A2) and (As) are only a question of the sample size. But note that in
case of iid observations the functional satisfies n ~ —£(0(® v*) and Ry >
cy/—L (00 v*) such that the conditions (As) and (As3) are not satisfied
automatically with sufficiently large sample size. They are true conditions
on the quality of the first guess.

5.2.3 Statistical properties of the alternating sequence

In this Section we present the first result of this Chapter, i.e. that the
limit of the alternating sequence satisfies a finite sample Wilks Theorem
and Fisher expansion.

To avoid distracting technicalities we impose one further merely technical
condition:

(B1) We assume for all r > 6%\/}( + 4p*

32
L+ Vx+4pt < = Fg(x).

Remark 5.2.6. Without this the calculation of Rg(x) in Section [5.A.3]
would become technically more involved but no further insight would be
gained.

Theorem 5.2.1. Assume that the conditions (EDg),(ED1), (Lo), (Lr)
and (Er) of Section are met with a constant b(r) = b and where
V3 = Cov (VL(v*)), Di = —V?EL(v*) and where v° = v* . Assume that
(ED1) and (Lo) are met and that RyVirg < r*. Furthermore assume (Bi)
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and that the initial guess satisfies (A1) and (Ag) of Section[5.2.4 Then it
holds with probability greater than 1 —8e™* — By for all k € N

2280, 6%) ~ €] < 9 (]l + Sa(zix)) Solzix),  (5:2.8)
where

ri < 2V2(1 = V) {(6) + Ga(Ro,x)) + (1+ V) Rox) }

If further condition (As) is satisfied then (5.2.7)) and (5.2.8)) are met with

40030 (1) 4 ()2
T o) >(3( )+ e3( ))
(

4¢(v)3c(e, Ro)
1 —c(e, Rp) > Ro.

rp < (c(u) +

vk <C(1/) + v

In particular this means that if

. 2log(5(x)) — log{2Ro(x, Ko)}
= log(v)

9y
we have with 3(x)? < C;(p* +x) and some constant C > 0

éQ(rkax) ~ <V>Q (C p* +x,x) .

Remark 5.2.7. Note that the results are very similar to those in Theo-
rem for the profile M-estimator 6. This is evident after noting that
(ignoring terms of the order €3(x) )

ri S C(v) (3(x) + v (Ro + CeR3))

which for large £ € N means rj; < C(v)3(x) < C'v/p* + x.

Remark 5.2.8. Concerning the properties of é € RP we refer to Remark
E2.11

Remark 5.2.9. In general an exact numerical computation of

6(n) < argmax £(8,7), or 1(8) < argmax £(6, ),
OcRp nerR™

o~

is not possible. To address this define 6(n) and 7(@) as the numerical
approximations to 6(n) and 7(€) and assume that

~

1D(O(n) —6(m))|| <7, and [[H(7(0) —1(0))| <,
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for all @ € Tyg(Ro) < {v € Yo(Ro), Hov = 6} and n € Yy ,(Ro) ¥ {v €
Y-(Ro), IIyv = n} . Then we can easily modify the proof of Theorem
via adding C(v)7 to the error terms and the radii rjy, where C(v) is some
rational function of v.

Remark 5.2.10. Note that under condition (As) the size of ry for k — oo
does not depend on Ry > 0. Thus as long as €Rg is small enough the quality

of the initial guess no longer affects the statistical properties of the sequence
() for large k € N.

5.2.4 Convergence to the ME

Even though Theorem tells us that the statistical properties of the
alternating sequence resemble those of its target, the profile ME, it is an
interesting question if the underlying approach allows to identify conditions
under which the sequence actually attains the maximizer ©. Without fur-

ther assumptions Theorem yields the following Corollary:

Corollary 5.2.2. Under the assumptions of Theorem [5.2.1] it holds with
probability greater than 1 —8e™™ — B(a)

Hlv)(g_ é(k))H < <V>Q(rkvx) + <v>(r07x)7

where ro > 0 is defined in (5.2.1) and

X def 8 y «
O(r,x) = m(s(r)r—{— 6v1031(x, 2p" + 2p)r.

Remark 5.2.11. The value 3;(x,-) is defined in (3.5.6).

Corollary is a first step in the direction of an actual convergence
result but the gap <V>Q(rk, x) + O(xo, %) is not a zero sequence in k € N. It
turns out that it is possible to prove convergence to the ME at the cost of
assuming more smoothness of the functional £ and using the right bound
for the maximal eigenvalue of the Hessian V2L (v*).

Consider the following condition, that basically quantifies how ”well be-
haved” the second derivative V2(£ — IEL) is:

(ED3) There exists a constant w < 1/2, such that for all |u| < g and all
0<r<rg

VW ETo(x) Y1 ]|=1 2 ]l=1 wa [|[D(v — ')

Tp-1Iy? —V? /
sup sup sup log IF exp {/“)’1 { ¢(v) ¢(v )}’)’2}

<—V%”2.
-2
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Define 3(x, V2L (v*)) via
P{|D7'V2L(v")|| >3 (x, VEL(v¥))} < e,
and (x,Ro) as

of 2V 2(1 _
#(x,Ro) & 2v2(1 + V) 5(Ro) + 9wara|| D31 (x, 6p™)Ro

V1-v

HID 5 (x, V2L (0Y) |,

where 31(x,-) is defined in (3.5.6). With these definitions we can prove the
following Theorem:

Theorem 5.2.3. Let the conditions (£€D3), (Lo), (Ly) and (Er) be met
with a constant b(r) =b and where D? = —V2IEL(v*) and v* = v°. Fur-
thermore suppose (B1) and that the initial guess satisfies (A1) and (Asg).
Assume that »(x, Ro) < (1 —v). Then

P (ﬂ {5(k:k(+1)) c fTZ(rZ)}) >1-3e ™ - Ba),

keN

where

Vk%}zm »#(x, Ro)k < 1,

*
T < b log () _
v los(k) =R/ e Ry,  otherwise,

(5.2.9)

with some sequence (cx) € N, where 0 < ¢, — 2.

Remark 5.2.12. This means that we obtain nearly linear convergence to
the global maximizer v .

Remark 5.2.13. As in Remark if no exact numerical computation
of the stepwise maximizers is possible we can easily modify the proof of
Theorem via adding C(v)7 to »(x,Rp) to address that case.

Remark 5.2.14. For the case that L(v) = Y, ¥¢;i(v) with a sum of
independent marginal functionals ¢; : 7 — R we can use Corollary 3.7 of
[56] to obtain

5 (%, V2L(U*)) = V2713\/% + P,

if for some sequence of matrices (A;) C RP™*P"

log IE exp AV?(;(v") 3 30%/24;, > Al <.
i=1
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In case of smooth i.i.d models this means that

x#(x,Rp) < C(Ro + x + log(p*))/v/n + CRo\/% + p*/n,
i.e. x(x,Rp) = O((x + Ro + log(p*))/v/n, if p* +x = o(n).

Remark 5.2.15. It may happen that »(x,Rg)/(1 —v) is very close to 1.
In that case the obtained convergence is rather slow. But a close look at the
proof of Theorem [5.2.3|reveals that this can be improved using Lemmal5.A.4
For this purpose assume that (r)/rV6riws < € for some ¢ > 0 and assume
(A3) from Section Bound r* < C(3(x) + v*Ro) with r} defined in
(5.A.6) and with some constant C > 0. Then the result of Theorem
is true with 2 (x,C3(x)) instead of s(x,Rg) and with probability greater
1 —10e *. See Remark for more details.

5.2.5 Critical dimension

As in Section [4.2.5| we want to address the issue of critical parameter di-
mensions when the full dimension p* grows with the sample size n. We
write p* = p,. The results of Theorem [5.2.1] are accurate if the spread
function <V>Q(rk,x) in is small. The critical size of p* then depends
on the exact bounds on 8(-) and &. In the i.i.d setting one usually has
6(r)/r = & = 1/y/n such that O(rp,x) = p*/y/n for large k € N; see
Section m In other words, one needs that “p*?/n is small” to obtain an
accurate non-asymptotic version of the Wilks phenomenon and the Fisher
Theorem for the limit of the alternating sequence. This is not surprising
because because good performance of the ME itself can only be guaranteed
if “p*2 /n is small” as shown in Section m There are examples where
the pME only satisfies a Wilks- or Fisher result if “p*? /n is small”, such
that in any of those settings the alternating sequence started in the global
maximizer does not admit an accurate Wilks- or Fisher expansion.

The constraint s(x,Rg) < (1 —v) of Theorem for the convergence
of the sequence to the global maximizer means that one needs p*/n < 1 in
the smooth i.i.d. setting if Ry < Cgr,v/p* + x. Furthermore in the smooth
i.i.d. setting the speed of convergence in Theorem decreases if p*/n
grows. Unfortunately we were unable to find an example that meets the
conditions of Section and where no convergence occurs if p*/n tends
to infinity. Whether this dimension effect on the convergence is an artifact
of our proofs or indeed a property of the alternating procedure remains an
open question.
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5.A Proofs

5.A.1 Proof of Theorem [5.2.1]

In this section we will proof Theorem Before we start with the actual
proof we want to explain the ideo of the proof and sketch the strategy.

5.A.2 Idea of the proof

To motivate the approach - and hopefully to ease understanding - first con-
sider the toy model

* P Fg- A
Y = v* + €, where e ~ N(0,F,7), Fi. =: AT F? '
,']*

In this case we set £ to be the true log likelihood of the observations
L(v,Y) = —||Fy- (v* = Y)|?/2.

With any starting initial guess ©(®) € RP*™ we obtain in (5.1.1)) for k € N
and the usual first order criterion of maximality the following two equations

Fo- (0% — 6*) = Ip-eq + FotA(RY —n),
Fope (%) — %) = Lyeq + T, L AT(OW) - 67).

Combining these two equations we derive, assuming HF;}AF;EATIGZIH =:
|Mp|| =v <1

Fo- (%) — 0*) = F ! (Fi.e9 — Aey) + Fo! AF, ! ATF,!Fo- (6p_1 — 6%)

k
= M} T, (Fg.eo — Aey)
=1

+M[Fg- (0 — 6*) — Fg- (6 — 6%).
Because the limit 0 is independent of the initial point ©(®) and because the
profile @ is a fix point of the procedure the unique limit satisfies @ = @. The

argument is based on the fact that in this setting the functional is quadratic
such that the gradient satisfies

VL(v) =F2 (v —v*) +F2.e.

Any smooth function is quadratic around its maximizer which motivates a
local linear approximation of the gradient of the functional £ to derive our
results with similar arguments. This is done in the proof of Theorem [5.2.1
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First it is ensured that the whole sequence (T(F*(+1) keN, satisfies for
some Rg(x) > 0 and with probability greater than 1 —e™*

B ke N} € {[Dw o) SRo@}.  (5.AD)

where D2 % V2IEL(v*); here we use Theorem In the second step
we approximate with ( =L — [EL

L(v,v*) = V¢(v") (v —v*) = |D(v — v")|]*/2 + a(v,v"), (5.A.2)

where a(v,v*) is defined by (5.A.2). Similar to the toy case above this
allows to use the first order criterion of maximality and (5.A.1]) to obtain a
bound of the kind

HD(v““’“—v*)IISCZ (1D V¢ @) + latw®™, v%))

IN

¢ (|D'VE¢(0)]| + €(Ro)) + *Ro & 1y

This is done in Lemma [5.A3] using the results from Chapter [4] to show that
€(Rp) is small. Having established

P (ﬂ {v"“”“””) C{ID(w —v)|| < rk}}> >1- 277,

keN

the same arguments as in the proof of Theorem allow to obtain our first
main result. For convergence to the full ME © similar arguments are used.
The only difference is that instead of (5.A.2)) we use the approximation

£(v,9) = —[|D(v - D)|*/2 + o/ (v, D),

exploiting that V£ (v) = 0, which allows to obtain actual convergence to
the ME.

5.A.3 A desireable set

The first step of the proof is to find a desirable set §2(x) C 2 of high
probability, on which a linear approximation of the gradient of the functional
L(v) can be carried out with sufficient accuracy. Once this set is found all
subsequent analysis concerns events in 2(x) C (2.
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For this purpose define the set

[e.e]

(] c®k) o o1y A 0(7) (5.A.3)

N{L(@®,v*) > —Ko(x)},

CORH) — f (B — )| < Ro(x), [ DO~ 87)] < Rofx),
[ — )| < Ro(x) },
cv)= ) { sup {GWIHH )\|—2r2}§3c9(x,4p*)2}

r<Ro(x) vEYo(r)

1 U *
N { s {0l -2} <soma+ 207}
rSRO (X) UGTO (I‘) 1

ﬁ{ max{||D~VL||, | D™ VeLll, [H'VaLl|} < 5(X)}

N{v, v+ € To(ro(x))}-

For ((v) = L(v) — [EL(v) the semiparametric normalized stochastic gra-
dient gap is defined as

Y(w) = D7 (Vo (v) = Vol (v)).
the parametric normalized stochastic gradient gap Y(v) is defined as

Y(v) = Dy (V¢(w) - V¢(),
and ro(x) > 0 is chosen such that P(v,vg« € Yo(rg)) > 1 — e *, where

~  def
vy« = argmax L(v).
vel
Hgv=6*

Remark 5.A.1. We intersect the set with the event {v, Vg« € Yo(ro)}
where we a priory demand ryp(x) > 0 to be chosen such that IP(v,vUg« €
Yo(rp)) > 1 — e *. Note that condition (Er) together with (Lr) allow to

set /p* +x =~ 19 < Rp (see Theorem (3.3.2)).

In Section we show that this set is of probability greater than
1 —8e™™ — Ba)y. We want to explain the purpose of this set along the
architecture of the proof of our main theorem.
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{£(®© v*) > —Kg(x)}: This set ensures, that the first guess satisfies

L0, v*) > —Ko(x),

which intuitively means that it is close enough to the target v* € RP" .
This fact allows us to obtain an a priori bound for the deviation of the
sequence (DFFE)) v C T from v* € T with Theoremm

{D(@*FED) — *) < Ro(x)}: As just mentioned this event is of high prob-
ability due to £(9®,v*) > —Kg(x) and Theorem This allows
to concentrate the analysis on the set 1,(Rg) on which Taylor expan-
sions of the functional £ :RP" — R become accurate.

C(V): This set ensures that on 2(x) C {2 all occurring random quadratic
forms and stochastic errors are controlled by 3(x) € R. Consequently
we can derive in the proof of Lemma [5.A.3| an a priori bound of the
form || D(@HEFHED) — v*)|| < 1), for a decreasing sequence of radii
(rx) C Ry satisfying limsup,_,. rp = C3(x). Further this set allows
to obtain in Lemma [5.A.5] the bounds for all £k € N.

On 2(x) C 2 we find for all k € N that ©F*F1) € 7,(ry) such that
we can follow the argumentsvof Theorem to obtain the desired result
with accuracy measured by $g(rg,x).

Probability of desirable set

Here we show that the set (2(x) actually is of probability greater than
1 —8e™* — B(ay. We start with the following Lemma:

Lemma 5.A.1. The set C(V) satisfies
P(C(V)) >1—4e™™

Proof. Denote

e 1 «
A0 { s (o - 20 < o a7
r<Ro(x) !

veYo(r)

def 1 Y 9.2 * 2
B= ) { sup {%ﬁl!!ld(v)\l 2r }SsQ(Xﬂp +2p)}

r<Ro(x) vEY (1)
def -1 -1 -1
¢ { max{| D' VL||, | D7 Vo L [HTVytl} < 5() }-
We estimate
P(C(V)) 21— 1IP(A°) - IP(B°) — IP(C°)

P (5, B- ¢ To(xo) — PP (D7 Vo|* > 3(x. Bo) ) .
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where IBg e p-1y2p-1 . We bound using for both terms Theorem
which is applicable due to (€D;) and (€Dy):

P(A°) <e™™, IP(B°)<e™
For the set C C {2 observe that we can use (Z) and Lemma to find
[H™'Vy[l v ID™ V|l < [ D71V
This implies that
{ID7'V|| < 5(x, B)}
S ID™ Vol Vv [HVyl| < 5(x, B)}.

Using the deviation properties of quadratic forms of Proposition we
find

P (DY) > 3(x. B)) < 265, P(ID'V] > 3(x. BB)) < 2
By the choice of 3(x) >0 and ro(x) > 0 this gives the claim. O

The next step is to show that the set ﬂle(C(k’k) N CHFE+D) s of high
probability, which is independent of the number of necessary steps. Note
that with (Z)

~ - 1 ~
ID@O — 6%)|| v [H(H*D) —n)|| < EH"D(U('“”“(“” —v)ll.

With assumption (B;) and

619

Ro(x) = b(l—y)\/x +Q+ gbngo(x),

this implies the desired result as £(vF*ED) 4*) > £(5©) v*) such that
with Theorem [3.3.2]

K
P (ﬂ (C(k’k) N C(k’,k-‘rl)))

k=0

K
> P (ﬂ (C*F) A okk+1)y A {L('E(O),v*) > —K0}>
k=0

—P(L(BY,v*) < —Ky)
P {T(Ko(x)) c TO<(1 - V)Ro(x))} — By

>1—e*—PBay.

Y
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Remark 5.A.2. This also shows that the sets of maximizers (o**(+1))
are nonempty and well defined since the maximization always takes place on
compact sets of the form {6 € RP, (0,7n) € 1,(Ro)} or {m € R™, (6,n) €
15(Ro)}.

To address the claim of remark [5.2.4) we present the following Lemma:

Lemma 5.A.2. On the set C(V)N{vy € Yo(RK)} it holds
L(vg,v*) > —(1/2 + 12vpw)R% — (8(RK) + 3(x)) R — 6row3(x)%

Proof. With similar arguments as in the proof of Lemma we have on
C(V) C 2 that
L(wo,v") > E[L(vo,v")] = [ D'V (v)|| Rk
—{V¢([®) = VE(v™) Hog — v7)|
—[D(vo — v)[IP/2 = |D~'V¢(v") | R
~[DHVL(®) — VL(v*) }| Rk — Rid(RK)
> —(1/2 + 120w) Ry — (5(Rk) +3(x)) Ric — 6rows(x)°.

A\

Proof of convergence

We derive the a priori bound ©*#(+1) € 7, (r;) with an adequately de-

creasing sequence (rp) C Ry using the argument of Section where
limsupry ~ 3(x).

Lemma 5.A.3. Assume that

2x) ¢ () {o™ e, ()}

keN

Then under the assumptions of Theorem we get on §2(x) for all k €
No

IDEEED) — o) | < 2v2(1 = Vi) ! (5(x) + (1+ Vo) Ro(x))

k—1
+2vV2(1 4+ ) ) 00 (r,(f)_r>
r=0

_IS+D'
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Proof. 1. We first show that on £2(x)
DOW —6*) = D7'VpL(v*) — DT AGH — ) + (=), (5.A.4)
HG® —n*) = H'V,L(0*) —H AT (0D — %) + (1),
where
(@)l < Gqlr,x) = {6(r)r + 611w(zo(x, 4p") + 2%)} .

The proof is the same in each step for both statements such that we only
prove the first one. The arguments presented here are similar to those
Lemma By assumption on 2(x) we have vFF1) ¢ 7, (r,(f)) . De-
fine with ( = £ — IEL

a(v,v") := L(v,v") = (V((v*) (v —v*) = [D(v - v")[?/2).
Note that

L(v,v*) = V((v*) (v —v") — | D(v — v")|*/2 + a(v,v")
= Vo((v")(0 — %) —||D(8 — 6")|*/2+ (6 — 6) "A(n —n")
+Vp¢ (v ) —n*) = [H(n —n*)|*/2 + a(v,v").
Setting Vo£(8®, 7*)) =0 we find

DO® — 0%) — D (Voc(v*) — AP — %)) = D' Vpa(*H), v*).

As we assume that 9% ¢ 7,(Ry) it suffices to show that with dominating
probability

sup  [Ue(8, 7*)| < o),
(0,7%))eXs(Ro)

where

u@ (07 ﬁ(k) )

© DVl (@*R) - Vol (v*) — D* (0 — 6) — AR — 0"}

To see this note first that with Lemma | D~ TgDv| < | D~ 1D .
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This gives by condition (Lg), Lemma and Taylor expansion

sup || W0, 7))
(0,70 €T, (x)

< sup |[D"lI, (szL(v) _VEL(w*) —D (v — v*)) I
VEY (1)

< sup D7D DTIVEEL(v)2D 7 - I | Y2
vEY ()

< 4(r)r.

For the remainder note that again with Lemma
1D (Yot (v) = Voc(w"))|| < 1D (Ve(w) = V¢ .
This yields that on 2(x)

sup
(0.77)€Ts (x)

! (Voc(w) = Voc(v)|

< sup
veYo(r)

1
< 6riw su —||Y(v < 6w x, 4p*) + 2r2 1.
w s {E W < Bnesate i) +20%)

Using the same argument for 77%) gives the claim.

2. We prove the a priori bound for the distance of the kth estimator to
the oracle

H@ (kk(+1)) _ H
To see this we first use the inequality
ID@FHFED) — ") || < V2| D(OW) — 6%)|| + V2| HHETD) —n7)]].
We find with (5.A.4)
1D©O —6°)] < [D7' Vot + [D7AGY — )| + |17 (x})]
_ X !
< ID7'VeL ()| + [|DT AR IHE® — )| + |7 () .
Next we use that on 2(x)
IDTLAHTY| < Vo, DTV L(v)|| < 5(x), [HT'VyL(v)|| < 5(x),
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and
o~ * — * — A k— * l
IEH® — )| < [H 'V, L")+ [[HTAT@F Y — 6| + | (x) ],
to derive the recursive formula

ID@W ~ 6| < (1+ Vo) (3() + I (c)]) + v DO — 6]

Deriving the analogous formula for ||H(77%*) —n*)|| and solving the recursions
gives the claim.
O

Lemma 5.A.4. Assume the same as in Theorem [5.2.1. Then we get

2x) <N {v(k,k(+1)) T, (r,(j))},

keN

where
rf? <2v2(1 = Vi) {6(x) + OalRo, %) + (1+ Vi)r* Ro(x) (5.4.5)

Furthermore assume that 6(r)/r V 12v1w < € and that (5.2.4) and (5.2.5)
are met with C(v) defined in (5.2.6). Then

06) € () {o™ e},
keN

where

< (C(l/) + 4(:(1/)30(6’5(}())> (3(x) + €3(x)?)

1 —c(e,5(x))
v 3C €
o (o) 4 R 500

Proof. We proof this claim via induction. On (2(x) we have

v*FED) € TU(Rg),  set r,(co) &t Ro.

With Lemma B.A.3 we find that if

2(x) C ﬂ {U(k,k(ﬂ)) e To(r,gl))},
keN

that then

2(x) € () {o®* e r )],
keN
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where

rf) < 2v2(1 = V) (500 + (1+ Vi)r Ro(x) )

k—1
2B+ )Y g (0 )
r=0

Setting [ = 1 this gives
rf? < 2v3(1 = V) {(5(x) + Oq(Ro,®) + (1 + Vo)W Ro(x) }

which already yields (5.A.5)). For the second claim we show that

2(x) C ﬂ {U(k,k(Jrl)) €T, (limsup r}(j))} C m {,U(k,k(Jrl)) c To(r}i)}-

keN {—o0 keN

We have to show that limsup;_,. r,(cl) < rj in (5.A.6). For this we use
0(r)/r V1211w < € to estimate further

ri) < 2v2(1 - Vo)™

VOURR

3(x) + (1+ Vi) Ro(x))

+2V2(1+ Vo)e Y v (((5)) +5(x)?)

E
—_

<
[en]

< 2V2(1— V)™

N

3(x) + 3(x)? + (1+ Vo) Ro(x) )

+2V2(1 + v)e Vr(rg;l))Q

r=

k—1
c(v) {(5<x> +e3(x)?) + v Ry + ey v (rs:ﬁ)z} ,

r=0

o
—

[e=]

IN

where C(v) > 0 is defined in (5.2.6). We set

O det k—1 k—r1—1 k—ri—...—rs_1—1 : 2
1) def T1 9 T (-1 2
As,k = v Z v Z v (rk—rl—...—rs)
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We will now show that
s—1 ot 1 Zf;(} Qt 928
ASL < 42i=02'¢(v)¥ { (1 — y> (3(x) + eg(x)Q) (5.A.7)

(1 R
+v <y—1—1> R§

+4%8=0 2 (c(v)e)® AU,

We proof this claim via induction. Clearly

k—1
Ag?k = 7 (r](f::l))z < 4¢(v)? Z 7 {(3(}() + 63(}{)2)2 + V2(k_T1)R%}
r1=0 r1=0

rk:—rl —r9
ro=0

k—1 k—r1—ra—1 2
—|—4C(1/)262 Z ! ( Z V’I”Q( (1-2) )2>

Lk
< 4¢(v)? {1—1y (3(x) + ﬁé(x)z)Q T 1R(2)}

Furthermore
2\ 2
k—1 k—ri—1 k—ri—...—rs_1—1
(1) def 1 ro re (_(1=1) 2
As,k = v Z v Z Vs(rk—rl—...—rs)
r1=0 ro=0 rs=0
k—1 9
_ r1 @
- v (Asfl,k7r1> : (5A8)
r1=0

Plugging in the induction assumption (5.A.7) we get for s > 2

h1 Zs:? 2t
o o 1 +=0 s—1
Asl}f < v <4Ztg o)’ 1 { (1 - l/> (30 + Ej(X)Q)Z
r1=0

5—2 ot
1 \Z=02
+F <1/—1 — 1) Rg 1}

2
+ 4% 2 () A ) :

s,k—r1
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Shifting the index this gives

0 — slgt o 1\ S 2 o\ 2°
AQy <4 v (4212 c(v) ( ) (3(x) + 3(x)%)

1—v

L1 \EE=Y
+v (y—1—1> Rg

r1=0

Direct calculation then leads to

s—12t
1 s—1 s 1 t=0 9s
AU, < 4TiE 2 o) {(1_1/) (5 + s(x)?)
s—1 ot
1 \Ze=o®
o (= _1> R }
) k—
t
—|—4Zt 02 Z sk 7"1 7

from which we infer (5.A.7)) with (5.A.8). Similarly we can prove

A0 _ (LY e
s,k 1—v RO .

Abbreviate
e O DS

def 1\ 22 def 1 S
as<x>:( ) Gwrae?” R ()

1—v

Then allows to bound

o) < cw) { 6x) + &(x)?) + V" Ro + ea), }

IN

-1 s—1 -1 s—1 -1
S]] Bras®) + "> A B8R+ [[ B8R (5.A.9)
s=0 r=0 s=0 r=0 r=0
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We estimate further

- s—1 s—1
ZA [ 8rss(x) = c(v) (3(x) + e3(x ZA I1 8r3s(x)
s=0 r=0 r=0
-1 " 1 251 0
< Z4QSC(V)25 (201 (1_”) (5(}() —1—65(}()2)
s=1

= eto)’ (12, ) (60 + o))’

-1 251
Z (64C(V) 1 i > (3(x) + eg(x)2)) .

s=1

Assuming this gives
S TT 40(v)Pe(e,3(x)) )
RNICCE (o) + SLAEDY (5 4 ).
With the same argument we find under that
e 4C(v)3c(e
Y ;) )\STI_I()BTRS <k (C(y) + Vl(—)c(e(,iilj)o)) Ry.
Additionally implies

1 2l—1
H/B'/‘Rl <e4C )V : 1> Rgl — 0.

Plugging these bounds into (5.A.9) and letting [ tend to infinity gives the
claim. O

Result after convergence

In the previous section we showed that

1 v
o c () { s il - 2] <sot + 2
r<Ro(x)

VEY ()

ﬂ_ﬂ { (kk) ¢ 71, ( ()) CokkD ¢ (é))}

keN

ﬂ{’lAj, 69* € To(ro)},

where rg) is defined in (5.A.6) or (5.A.5). The claim of Theorem
follows with the following lemma:
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Lemma 5.A.5. Assume (ED1), (Lo), and (Z) with a central point v° =
v* and D3 = V2IEL(v*). Then it holds on 2(x) C 2 that for all k € N

1D (6) — 6°) — €| < $qlrr, %), (5.A.10)

2281, 0%) ~ €] < 9 (ID71V]| + Sq(rr, 1)) Salrs, x), (5A11)

where the spread $(r,x) is defined in (£.2.7), where L(0) def maxyer, £(6,1)

and where

T def 1Oy ro.

Proof. The proof is nearly the same as that of Lemmal[4.A.2l We only sketch
it and refer the reader to Lemma[4.A.2)for the skipped arguments. We define

[:RP xT =R, (61,02,m)— L(01,n+H 24T (6, —6,)).
Note that

Vo,1(01,02,m) = Vol(6:,n+H2AT (8, — 6y)),

o) = argmaxl(@,g(k),ﬁ(k)),
(4

such that %L(é(’@, 7)) = 0. This gives
|D(Br — 6°) — €| — || D~ 19.£ @M, 750) — D 1L (") + D(By — 6]

The right-hand side can be bounded just as in the proof of Lemma[£.A2] the
only difference being that 604w31(x,2p* + 2p)r is replaced by

610 (30 (x, 2p* + 2p)* + 2r?) . This gives (5.A.10).
For (5.A.11]) we can represent:

L) — L(6*) = 1(6®, 0%) 51y _ (0%, 6%, 7jg+),
where

~  def
N~ = Il argmax £(v).
veT,
Igv=0*

Due to the definition of 8% and 7k+1)

16", 0% 7-) — 1(6%, 6%, 75-) < L(6W) — L(6")
< (0™, 6" 71y — (67,00, D),

Again the remaining steps are exactly the same as in the proof of Lemma
4. A2
O
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5.A.4 Proof of Corollary

Proof. Note that with the argument of Section P(2'(x)) >1—-8 *—
Ba)y where with 2(x) in (5.A.3)

2'(x) = 2(x)N{0 € To(ro)}
On 2'(x) it holds due to Theorem and due to Theorem
ID@OW — %) —&|| < $olrr,x), DO —0%) &l < $lxo,x).
The claim follows with the triangular inequality. O

5.A.5 Proof of Theorem [5.2.3|

We prove this Theorem in a similar manner to the convergence result in
Lemma Redefine the set 2(x)

K
2(x) def ﬂ (C(k’k) A C(k,k-H)) (5.A.12)

NC(V) N{L@Y, v*) > —Ko(x)}, where
R — {IIJD(G(’“”“(“” —v*)| < Ro(x), DO — 07| < Ro(x),

JH@GE) 57| < Ro(x)

cv) = { sup  [[Y(VZ)(v)] < Ivawas (x, ﬁp*)Ro(X)}
veTo(Ro(x))
N{ID™IVE (V)| < 5(x, VZ¢(0"))}-
where
Y(V)(v) E D (V) - VX(v7)) e R
We see that on (2(x)

v®FED) € T (Ro) & {1 D(v — B)|| < Ro + 1o} N 7o(Ro).

Lemma 5.A.6. Under the conditions of Theorem[5.2.

P(2(x)) > 1 -3¢ — Ba)-
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Proof. The proof is very similar to the one presented in Section SO
we only give a sketch. By assumption

P (|D7'V¢(0)] < 5(x, VZ¢(v7))) 21—,

and due to (€D2) with Theorem |3.5.10

P ( sup  ||Y(V?)(v)] < 91/2w231(x,6p*)R0(x)> >1—e ™

vET, (Ro(x))
O
Lemma 5.A.7. Assume for some sequence (rg)) that
N {IoEHD —@)| <=} € ().
keN
Then we get on 2(x)
| D@HEFED) — )| < 2v2(1 + V) ZVTHT r' )+ 2v205 (R + ro),
= Y, (5.A.13)

where
Im(x)II < [8(Ro) + rawa[| D™ [l31(x, 6p") Ro + | D™ l3(x, V¢ (v*))] x.
Proof. 1. We first show that on 2(x)
DO® —§) = —D'AGY — ) + (=),
H(7® —5) = —HAT(@%) - §) + (),
The proof is very similar to that of Lemma Define
a(v,0) = L(v,D) + || D(v — 0)|]*/2.
Note that

L(v,v) = VL(v) — || D(v — 17)||2/2 + a(v,v")
—|D(8 - 8)|%/2+ (6 — 6")T A(n — 7))

~[[H(n = D)I*/2 + a(v,v).
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Setting VoL (8™ 7)) =0 we find
DO® —6) = DTAG® — ) + D 'Vea(vFF) D).

We want to show

sup D'Vp0((8.71), %) < (=)l
(0.79)eTs (x) N7u (Ro)

where
D 'Voa(v,d) & D YVeL(v) — D*(0 - 6) — AHH —7)}.
To see this note that by assumption we have
2(x) C{v € Ts(ro)} C{v € T:(Rp)}.
By condition (£p), Lemma and Taylor expansion we have

sup |EUG, 7))
(6,707 (x})NTs (Ro)

< sup |D~ 11 (V]EL(U) ~VEL®)-D(v— v*)) I
veTo(r))NT5 (Ro)

< sup |[DTHeD[||D IV EL(v)D ! — Lelr))
UETO(RO)

< 5(R0)rg).

For the remainder note that with ( = L —IFL on {2(x) using Lemma
we can bound

sup [wo(0.7%) — B (6.7M)|
(0,7 eTs (xV)NTs (Ro)
< swo || (Vecw) - Vee@)) |
velo (x)NTs (Ro)
<  sup HD_IVQC('U)D_IHrg)
v€Ys(Ro)

1 _ - !
< su D (V¢ (v) — V¢ (v*)) DT }61/ wrl!
Lo {1 (F0) - V() D7 v

H{I v e

IN

[9va | D31 (%, 6p") Ro + | D l3(x, V3¢ (v*))] £
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Using the same argument for 77(%) gives the claim.
The claim follows as in the proof of Lemma

Lemma 5.A.8. Assume that »(x, Ry) <1 —v where

def 2v2(1 + /7))

(%, Ry) Nie;

<5(R0) + QWQV2||D_1||51(X, 6p*) Ro

D (1, 722 (0)) )
Then

20 € () {5 e Ty}

keN
where (rp)ken satisfy the bound (5.2.9)).
Proof. Define for all k € Ny the sequence rgc ) = = Ry. We estimate

1
VvV1—v

_ l
D 1|5<x,13<v2>>r,9,

9] < (5<Ro> T 6110 D 31 (x, 60" Ro

such that by definition
2V2(1 4 Vv) ZVTHT rk Al < (%, Ro) Zl/ rk -
r=0

Plugging in the recursive formula for r,(j) in (5.A.13) we find

E
—_

r' < s(x,R0) S vl 4 2v205(Re + 10)

ﬁ
Il
o

IN
e

—1 k—r—1
»#(x,Rp) v <%(X, Ro) v r](C T) < T 2wk~ "(Ro + r0)>
s=0

Il
o

T

+2V2(Ro + ro)*
- k—r—1
s(x,Ro)2 > v Y virlTP 4 2v20F(Ro + o) (s¢(x, Ro)k + 1)

IN
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By induction this gives for [ € N

k=1 k—ri—1 k=327l
r](gl) < »(x,Rp)! Z I Z 2L Z V" (Rg + 19)
T‘1=0 T2=0 7‘120

-1
+2V20F(Ro + 1) D 5(x,Ro)°k*

S

< ((@) +2fykz X R() )(R0+r0)

Il
o

<<%1xf;o ) + 220k “RO)k> (Ro + 1), »#(x,Ro)k < 1,
<

2#(x,Ro)’ <(1_1V) + 2¢/20F %(XR )k 1) (Ro +rp), otherwise.

By Lemma [5.A77]

c NN e @)}

keNg leN

Set if »(x,Rp)/(1 —v) <1

0, %(Xa RO)k S 17
l(k) « klog(v)+log(2v/2)—log(s(x,Ro)k—1)
B _Oigog(l_y)fi;kx)’ 0 , otherwise.
Then with rz* def r}ng(k)J) we get
(=) c () {g(k,k(ﬂ)) 7, (rZ)},
keNp
=0 (Ro + zo), s(x,Ro)k < 1,

Ty o L(k)-1
2 (@) =g (Ro +rp). otherwise,

The sequence L(k) > 0 is defined as

log(1/v) — 1 (log(2v/2) — log(>(x, Ro)k — 1))
1+ a0 log(1 —v)

L(k) ¢ { €N,

where |z] € Ny denotes the largest natural number smaller than z > 0. To
ensure that L(k) > 0 we assume that klog(1/v) —log(2v/2) > k. Further
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as #(x,Rp) < (1 —v) and L(k) is only relevant once s(x,Rg)k > 1 it
follows that

0<1+ logl(k) log(1—v) < 1.
Then
L(k) > log(1/v) — % (l08(2v2) — log(«(x, Ro)k — 1)) > 1.
Consequently

<%(X,Ro)>10g(k)L(k) < o 10g< (171;:)) (%(x, R0)> e (108(2v2)~log(>(x,R0)k~1))
V O (X, 0

1—v 1—v

1—v
d:ef log(k) 10g<%(x,R0)>ck7

where ¢ — . Finally note that Ry 4+ ro < 2Ry and the proof is
complete. ]

»(x,Ro)
1—v

Remark 5.A.3. As pointed out in Remark [5.2.15]| the above result can be
improved. Assume that 6(r)/r V 6riws < e for some ¢ > 0 and assume
(A3) from Section [5.2.2] Redefine {2(x) as the intersection of the two sets

n (5.A.3) and (5.A.12)). Then P(f2(x)) > 1 — 10e™*. Also redefine

det 2v2(1 + /)

x(x,r) = N <6r+36||D_1||51(X,6p*)r

+ HD_ng (x, V2L(U*)) >

By the arguments of the proof of Theorem we find with r} defined in
(5.A.6))

M {o®*HED) € 1)}
keN

Using this in Lemma instead of Ngen{v®*FED) € 7, (Rg)} we can
bound

Iy < (5<rz> - Gvaeoal| D31 (x, 6p°)

1
VvV1—v
HID (BT ).
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Consequently, representing rj = C (3(x) + *Ro) and using d(r)/rV6riwy <
e we find

T

k—1
r)) < se(x,C3(x) D v'r) ") + 2v20F(Ro + xo)
r=0
k—1
+Ce(1 + | D 51(x,6p)) > v*Rox )
r=0

k—1
< 3e(x,C3(x)) > v'ry Y + CreRokF (Ro + 1o),
r=0

where C1 > 2v/2+ C(1 4 || D~ Y31(x,6p*)) . With the same arguments as in
the proof of Lemma [5.A-§ we infer

rl!/(Ro + 7o)

l
((ny»)+kwk¢g§@w), (3, Co )k < 1,

<
= !
030 ( () + st ) otherwie
Set
I(k) )00 #(x,C3(x))k < 1,
klog(V)+log(C1fP1{(?g)(—11i)lg/g;i(l;:)g€lSc))k—1)—log(kz)7 otherwise.

Then with rj def r,(}l(km we get with a slight adaptation of L(k)

2x) c N {g(k,k(ﬂ)) 7, (IZ)},
keNp

I/k
=£ortys (Ro + o), (o, Cy())k < 1,

) i L(k)—1
9 (*4(}‘17%35"))) tog(k) (Ro +1r0), otherwise.

r; <
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Chapter 6

Projection pursuit and the
single index model

In this chapter we explain how to apply the results of the previous chapters
to the analysis of profile M-Estimators in the single index model and how
to analyse the performance of the projection pursuit procedure. It is largely
based on [1].

6.1 Finding the most interesting directions of a
data set

Assume observations (Y, X;) € R x R? with pe N
Y =9(Xi) +ei, i=1,...,n, (6.1.1)

where g : RP — R is some continuous function, ¢; € R are additive centered
errors independent of the random regressors (X;). Consider the task of
estimating

EY|X] = g(X).

Statistical theory for nonparametric models shows that even for moderate
p € N the accuracy of estimating ¢(X) increases very slow in the sample
size n € N as the rates are lower bounded by n~®/(2et?) _ with a > 0
quantifying the smoothness of g : RP — R - as was for instance noted in
[54]. [20] propose to use a projection pursuit approach to circumvent this
problem in situations where

M
9(X) =~ > fay(X6p), (6.1.2)
=1
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for a set of functions f(;) : R — R, vectors 6, € St .—{0cR: 6] =
1, 6, > 0} C R and some M € N. As each nonparametric estimation task
is uni-variate, better performance can be expected in comparison to a full
nonparametric regression as long as M,p € N are not very large. But of
course is a structural assumption whose usefulness depends on the
size of M € N and p € N. For small M € N and p € N one can get
important gains but the assumption becomes rather restrictive. On
the other hand, for large M € N and large p € N the assumption ((6.1.2))
becomes true for any smooth function. This can be seen as follows. Assume
that one observes (Y;, Z;) for a given vector of regressors Z € RP! and that
the aim is to estimate ¢°(Z) = IE[Y|Z]. We can define for some D € N

D+1 d__ .
an extended vector of regressors X € RP1T2a=2 Pi—P1 vyig

ef
X Y20, 2y 2120, 20 D, Dy 1Ty T2 D1 Dy Doy 1 ZD).

For large D € N this means that demands that ¢°(Z) = ¢(X)
can be well approximated by polynomials of maximal degree D +1 € N,
which of course is the case for smooth functions. See [28] and [32] for a
more sophisticated approach of showing that smooth functions ¢ can be
well approximated as in (6.1.2). [20] suggest to estimate the pairs (f;, 0;)
iteratively. The first task is to estimate

07, a;reg;inﬂ [(g(X) - E[g(X)|XT0])1 . (6.1.3)

Given an estimator 5(1) e St "™ one can determine an estimator ]?(1) for
f() and generate a new sample via

def

Yio) = Yi— J?(1)(X1T9~(1))-

2‘2) and f(2) as
in the first step and again generate a new data set (Y;(Q))Z-:Lm,n. These
steps are repeated M — 1 € N times if M € N was fixed or known in
the beginning, otherwise until a certain level of variability in the data is
explained by the obtained sum

Using this new data set (Yi(1))i=1,.,n one can estimate 6

M o~ o~
> Fo (X 6g).
=1

In this chapter we will mainly focus on the task . It has been
observed in [24] that the estimation of 8*(;) - from now on denoted simply
by 6* - can be attained with root-n rate even though the full model is
nonparametric.
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In the particular case that M =1, i.e. that
9(X) = f(X'6), (6.1.4)

for some f: R — R and 0* € Sf’+ C RP, the estimation problem
becomes the task to estimate the linear response vector in a semiparametric
single-index model (see [30]). The single-index model supposes that the
observations satisfy with two functions f : R — R and h : R? — R and
with errors (g;) € R

Y = f(h(X;) +ei, i =1,..n. (6.1.5)

Usually it is assumed that the index function A is known up to some param-
eter @ € RP such that one writes h(0,x). In our setting h(0,z) = 6 x.
[60] compares the asymptotic distributions of two different prominent es-
timation procedures for 6*. The first is the average derivative estimation
introduced by [47] and refined by [26] and is based on the fact that if

is correct

B )| = B[] 0"
which suggests to estimate 6* via an estimate of IF [f'(0*X)]. The second
one is the minimal conditional variance estimation by [61] which is inspired
by [23] and aims at directly solving via a local linear approximation of
E[y|XT6]. Further results are the asymptotic efficiency of a semiparametric
maximum-likelihood estimator shown by [I5] for particular examples and in
[23] the right choice of the bandwidth for the nonparametric estimation of
the link function.

In this chapter we want to use a different approach to carry out the first
step that allows to apply the results of the previous chapters. For

this purpose denote
IE[g(X)\XTB*] = f(XTB*). (6.1.6)

Assume that f € span{(ey)ren} for a given set of basis functions (eg)ren C
X. For some m > 1 and nn € R™ denote

m
def
fn =D mwer,
k=0
with properly selected coefficients 7 = (11,...,m,)" € R™. Further assume

that P(X; € Bsx(0)) ~ 1 for some sx > 0. Our aim is to analyse for
m € N the properties of the estimator

0, def IIgv,, def IIg argmax £,,,(0,7m), (6.1.7)
(O EYm
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where

Ln(@m) =~ > |IYi— fa(X]0)]/2. (6.1.8)

{i [ Xill<sx}

The set 7, satisfies 13, = SP'T x B% € R? x R™ where B% C R™
denotes the centered ball of radius r® > 0. Note that this is exactly the
type of estimator presented in Section In [30] a very similar estimator
is analyzed based on a "leave one out” kernel estimation of IE[Y;|X, 6]
instead of using fn(XiTB) . Ichimura shows /n-consistency and asymptotic
normality of his proposed estimator.

Remark 6.1.1. The radius r° is needed to control the large deviations of
the full maximizer v,,. We ensure that the estimator v,, does not lie on
the boundary in Lemma [6.3.6

Remark 6.1.2. To avoid undesirable boundary effects (see Remark
we do not use all available data: We only consider realizations (Y;,X;) for
which ||X;]] < sx but in Section we assume in condition (Condx)
that there is positive probability that X € Bgsyics(0)\Bsx(0) (see also
Remark . We assume that the proportion of ignored data is small
such that we can neglect this in the following and pretend that we can use
the full data set.

The estimator 6,, in (6.1.7) is supposed to approach

I II9(6%,m%) 17y argmax [F L (0,1n), (6.1.9)
(0.mer

where ¥ = SP" x 12 and for (8,m) €T

2
Loc(Om) = = 7 /2.

{i I Xill<sx}

Y- > mrer(X,[6)
k=1

Remark 6.1.3. To understand the motivation of this functional note that
for any 0 € S " the sequence

Mg & IT,, argmax IEL(v),

VERP x[?
ITgv=06

solves by first order criteria of maximality for any A € F(X'8) - where
F(XT0) denotes the sigma algebra associated to the law of X' - the
equation

E [(g(X) — fup (XTO)) 1A] —0.
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This means that with equivalence in L?(IPX)
Fi (X76) = Blg(X) X0, (6.1.10)

such that the target (6.1.9) indeed coincides with the most informative di-
rection in (6.1.3).

Remark 6.1.4. Note that there is a model bias and an approximation bias
of the form

"model bias” = mig E|gX) — fn(XT0)||2,
ve
" approximation bias” = m%rn E|fy(X70) — f,- (X762, (6.1.11)
velm

which both have to be accounted for.

As pointed out we will analyze the properties of the estimator 6, in
using the results of Chapter [4{ and Chapter |5l It turns out that this
is possible with a series of conditions on the additive noise ¢; € R, the
function g : R? — R and on the random design X € RP. In particular
the choice of the basis is independent of the model. Due to the support
structure of compactly supported wavelets we still manage to control the
sieve bias in . Even though we assume what is necessary to apply
the results of the previous chapters, the calculations needed to check the
conditions from Section [4.2.1] still remain rather tedious and lengthy. We
present most steps in full detail, which at some points leads to repetitions of
very similar arguments. Also the regression setup leads to some peculiarities
that we elaborate on in Section It is worthy to point out here that a
fixed design setting would not resolve these issues either as one for instance
would still have to deal with convergence issues of the operator

n
D VL(X;, Y, v) V(X Yi,v) T e RPP
i=1
There is another peculiarity to the results we present in this chapter. A

naive approach to satisfy the important condition (Lr) from Section
would include a bound for

sup (L (v, v)|(Xi)iet....n] — L (v, V). (6.1.12)

'UETm

But as £ is quadratic and 7}, C RP" can be quite large this becomes hard to
achieve with nice bounds. We circumvent this problem using an idea of [39].
Mendelson’s crucial insight is that to obtain IE[L (v, v*)[(X;)i=1....n] > br?
one only has to ensure that

inf P (Vi — for (XTO7)/2~ [¥i = (X O)| /2 > bx?/n) > 0.
veEY ()¢
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We follow this route in the proof of Lemma[6.3.7] But we only apply this idea
in the case that Cp;us = 0. In the general case we derive a bound for (6.1.12))
to avoid too lengthy derivations. The price is an additional log(n)-factor
in the sufficient full dimension i.e. we need p*3log(n) = o(y/n) instead of
p*3 = o(y/n) to get accurate results when applying Theorem

Altogether this chapter is more a proof of concept than an illustration
of the elegance and applicability of the theoretical results of Chapter ] and
Chapter [l But on the other hand it has to be kept in mind, that the results
attained are considerably stronger than the weak convergence results usually
aimed for in this context.

6.2 Main results

6.2.1 Assumptions

To apply the technique presented in Chapter [4| and Chapter [5| we need a list
of assumptions. We denote this list by (A). We start with conditions on
the regressors X € RP:

(Condx) The random variables (X;)i=1,.., C RP are ii.d with distri-
bution denoted by IPX and independent of (€i)i=1,..n. C R. The
measure IPX is absolutely continuous with respect to the Lebesgue
measure. The Lebesgue density px of IPX is Lipschitz continuous
on By, (0) C RP with Lipschitz constant L,, > 0. Furthermore
we assume that for any pair 6,0° € S;” with @ 1L 6° we have
Var (XTG‘XTO*) > J%(\J_ for some constant Ug(u_ > 0 that does
not depend on X'6* € R. Furthermore assume that for all such

ol

of (X76°,X70) € R2. Also let on Bgyic;(0) the density satisfy

PX > cpy > 0 for some constants cpy,cp > 0.

< oo with pgog : R? — R, denoting the density

pairs ’

Remark 6.2.1. Var (XTBO‘XTH*) = 0 would mean that X'@° =
a(XT6%) for some measurable function a : R — R. But then we would
have for any («, ) € R? with o? + 3% =1 that

FXT (0" + £6°)) = f(aX 0" + Ba(XT67)) < f2 5(XT07),
such that the problem would no longer be identifiable. We bound px >
cpx > 0 to ensure identifiability.

Remark 6.2.2. We assume that the support of IPX contains 0 without
loss of generality. If that was not the case one could modify the sample as
follows. Let xg be an inner point of the support of IPX. Generate a new
sample (X})i=1,..n = (Xi — ®0)i=1,..n and assume (Condx) for this new
sample instead.
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Of course we need some regularity of the link function f € {f : [-sx, sx] —

R} in (6.1.0):

(Condy) For some n* € Byo(0) C I2 e {(ur)ken + Yopoq us < oo}

f=EgX)X"0"=]=fr =) nex, (6.2.1)
k=1

where Hfrlf o = C||f,/,*Hoo < oo and ||.f1,7/*||oo = CHf,/,/*”oo < oo and

where with some « > 2 - or a > 9/2 if Cpjus > 0 see Remark [6.2.15
- and a constant Cj,«| >0

SO < CFLy < o (6.2.2)
k=0

Remark 6.2.3. We can now specify the parameter set 7 C RP x [2 namely

1 def {(a,n) ER?x 12,0 ¢ Sf’*}.

Remark 6.2.4. Simply using (6.2.2]) does not - easily - yield a bound for

| fn+|loc since (see proof of Lemma |6.A.18)
1/2

00 12 [
|f';]/*(XT9)‘ < m”¢//|’w (Z k20n22> 225J—2a = o0,

k=0 §=0

Remark 6.2.5. In the case that the data is not from the model but
from the model in the implications of this condition to the function
g : RP — R become somewhat unclear. One way of ensuring that it is
satisfied is to assume that for every @ € SP'" and any @ € By (0)NOL the
function

fox :R—=>R, t— g(x+06t),

satisfies (6.2.1)) with some n(0,x) and «(0,x) > 9/2 + €, where € > 0 is
independent of @. More precisely set for any 6 € S¥ +

fot) X B[YXT0 = 1] = /
BSX(O)O

fe,m(t)px|xT0:t(w)dw7
el
where px|xTg—(x) is the conditional density of X|X "6 = t. Due to the
smoothness assumption on fg 5(t) the function fg(t) satisfies (6.2.1) as well
with some (@) and «(0) > infoep, (0)not {a(6,x)} > 9/2. We proof this
in Section [6.Al
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To control the large deviations of ¥, € RP" we use the following as-
sumption:

(Condxg-) On some ball Bj(xg) C Bgy (0) with h > 0 it holds true that
/ T p*
| fre (X 07)] > <t for some cpr. > 0.
Remark 6.2.6. Note that a condition of this kind is necessary to ensure
identifiability. Otherwise the function g : R? — R would be P -almost

surely constant. But for a constant function 6* € RP in (6.1.3) is not
defined.

To be able to apply the finite sample device we need constraints on the
moments of the additive noise:

(Cond.) The errors (g;) € R arei.i.d. with E[g;] =0, Cov(g;) = 0? and
satisfy for all |u| <g for some g > 0 and some v > 0
log Elexp {pe1}] < v7p? /2.

Remark 6.2.7. Note that our assumptions in terms of moments and smooth-
ness are quite common in this model. For instance [23] assume that the
density px of the regressors (X;) is twice continuously differentiable, that

IE[y|X"0* = ] has two bounded derivatives and that the errors (g;) are
centered with bounded polynomial moments of arbitrary degree. In [30]
even three derivatives of IE[y|X"60* =] are assumed.

Unfortunately these conditions do not facilitate an easy proof of our
desired results in the case that Cp;qs > 0. To control the large deviations
of ¥,, and for identifiability we impose some more ”esoteric” conditions on
the interplay of the function ¢ : R? — R and the measure IPX.

(model bias) Assume that
IE[9(X)|XT6"] = g(X)|| = ||+ (XT6%) = g(X)|| < Cpias,

for some constant Cp;us > 0. Furthermore we need if Cp;us > 0 that
there exists an open ball By,(6*) C RP around 6* and a constant
by > 0 such that for 6 ¢ B(6*)

B (500 - Blyx)1x61)’|

- |(90%) - B0 X" 0])°| 2

and such that on By,(6*) C RP~! the second derivative exists and
satisfies with some Cy > 0

o > V31 | (s%) - Bl4(OX70])°| = v >0
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Remark 6.2.8. The conditions (model bias) are of course rather peculiar
and not a very accurate characterization of the class of functions that allow
the application of our approach. As this chapter - even with these conditions
- is still very technical we do not elaborate on this issue further. We only
point out that this condition is a kind of quantification of how salient the

direction 8* € RP in (6.1.3)) is.

6.2.2 Some important objects

In this subsection we introduce some important objects that are relevant for
our results.

For given p* =p+m, set Ipv = (v1,...,vp) = (0,1I,n) € RP" . We
represent the full parameter v € R* in the form

v=(0,f) = IIyv,x) = (0,1,n,3x) € RPT™ x .

where 3¢ = (Jni1,...) stands for the remaining components of the ex-
pansion (6.2.1)). We repeat the definitions of the sieve estimator v,,, its
possibly biased target v}, and the full oracle v* € 1" C [?

Uy, = argmax L, (v),
veY

v, = (0},,n),) = argmax [E[L,,(v)],
veYy,

v* = (II»v", ") = argmax IE[L(v)],
vercl?

where £(-) is the functional in (6.1.8]) for m = co. We set

def m o « def , m
Tm = {(0777) - S{)7+ x R™, HnH <r }7 Tm = {(9777) CSllj—’— x R }7

with some r° > oo defined in Lemma [6.3.6]

Remark 6.2.9. We will see that (v},,0) € [? lies close to the true point
v* € 2 but we will not proof that it is unique. We neither proof or use
uniqueness of the profile ME either. In the following we will denote by
v, the set of maximizers and we will always make statements about 6,, €
RP | whereby we mean any element of the set of maximizers of the profiled
functional. Non-uniqueness is not a problem, as the concentration on the
local set 7% is ensured via Theorem [3.3.2

Remark 6.2.10. Note that we maximize over different sets. To control
the large deviations and avoid boundary effects we have to ensure that with
overwhelming probability ©,, C int{1,,} C 7;;,. We do this with Lemma
6.3.6, which tells us that we may set r® < Cy/m with some constant C € R.
This lemma also ensures that the alternating sequence (0, 7;(—1))ren from
Section lies in SP x B7(0).
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We define the information operator D? similarly to the Fisher informa-
tion matrix as the Hessian operator of the expected value of the functional:

D) ¥ _V2EL(v) = —V2EL(, ).

Consider the following block representations of of the information operator:

2
2 D? Aen 97271 A DT A? Aox
D*=n AT HQ = AT HQ =N Am Hm A"I”
on v P AnG Aun H}Z{%

where A, is a - possibly unbounded - operator from I?> to RPT™. De-
fine cp aef Amin (D (V)))/v/1, where Apin(Dy,) € R denotes the smallest
eigenvalue of D,, € RP"*P" In Lemma we derive that c¢p > 0.
Furthermore we introduce the influence matrix and the score

D, =1eD, g, &n=Ve((vy) — AnH, Vp((vy,), ¢ =L - E.L,

where IE. denotes the expectation operator of the law of (&;)i=1,..n given
(Xi)i=1,..n -

6.2.3 Properties of the Wavelet Sieve profile M-estimator

This section presents the application of the results of Chapter [4] to the
estimator 6, in . Unfortunately a presentation of the results in full
detail would involve constants that are characterized by formulas that would
cover many pages. This is why in this chapter we restrict ourselves to the
mere presentation of an upper bound for the critical dimension. This means
that we do not specify the size of the appearing constants even though this
would be crucial in a true finite sample approach. Thus whenever there
appears a constant C > 0 without further remarks it is a polynomial of
19100 (19" lloos 19" loos €)1 5% i, etc. where ¢ : R — R is introduced
in Section [6.3.2}. Also - in the proofs - the same symbol C can stand for
different values, that do not depend on p*,m,n,x. We use this convention
to make the presentation less cumbersome and hope the reader appreciates
this despite the loss of rigor.
Define

9 p*5/2 + Cbiasp*7/2 +x

<>(X) = C, \/ﬁ ,

where C¢ > 0 is a polynomial of |[1)]|c, [|%]|00, [|%" |00, C)+|» 5% , etc.. We
get the following result by applying Theorem

Proposition 6.2.1. Assume (A). If Cpias = 0 suppose that m~ ety

0 and that p**/n — 0. If Chias > 0 suppose that p*®log(n)/n — 0 and
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that m=2@Yn — 0. If n € N s large enough, it holds with probability
greater than 1 — 12e™* — exp {—m3x} — exp {—nC(Q)/4}

\ngxﬁ(gm, n) = max £(0;,m) = [&m[*| < C <am+ <“>(X)> S(x),
1D (05) (B — 05) — €m]| < O(x).
where c(Q),C > 0.

Remark 6.2.11. The constant c(g) > 0 is derived in the proof of Lemma
and does not depend on x, n, p*.

Remark 6.2.12. The necessary size of n € N is determined by the speed
with which p**/n — 0 and m~2*"'n — 0 or p*®log(n)/n — 0 and
m—2=1p 0 respectively in the cases Cp;qs = 0 or Cpies > 0 respec-
tively In the proof of Proposition [6.2.1] we impose conditions on n € N of
the kind

for certain constants C1,Co > 0 that are polynomials of ||¢|co ,[|¢ |lcc,
19" oo s Clg=)» Lve, sx -

So far we only addressed the behavior of the sieve profile ME with respect
to the possibly biased target 6, € RP and with a weighting matrix that
depends on the dimension m € N of the nuisance parameter 1 € R™. The
next result will specify the finite sample properties of D(G—O*) € R? where

D72 = [IgD2(v*)II] € RP*P,

We get the following result.

Proposition 6.2.2. Assume (A). If Cyias = 0 suppose that m~2+n —
0 and that p**/n — 0. If Chias > 0 suppose that p*Slog(n)/n — 0 and
that m=2@=Vp — 0. If n € N is large enough it holds with probability
greater than 1 —12e ™™ — exp {—m3x} — exp {—nc(Q)/4}

| D (03) (B — 0) = Em(v)|| < S(x) + a(m),

and

£(Op,m) — £(6%,m) — [1€n]*/2
i (0m,m) o (0%,m) — [|€mll”/

< ¢ (ovpFE+ (%)) ) + a(m)(C + VP T %),

159



where
a(m) < Cv/n (m= T2 4 ggum @) |

and

s (2+ . +V> $(x) + a(m).

1—v
Further if Cpias =0 and p*5/2/\/ﬁ — 0 we find as n — o0

D (6., — 07) 5 N(0,02L,),

2 £(6 —9 L0, 1)
i (@m,m) i (0%,7) X

2. (6.2.3)
Remark 6.2.13. The constraints m~(2tn — 0 and p**/?//n — 0
exclude the case a < 2. But note that if 0 < o« —2 =€ and m > nl/5-0
with § > 2¢/(25 + be) we get

m20-1pl < = (1422a/5)+6(Qa+)+1 _ ) =2ea/5+6(5+2¢) _y

such that n = o(m?**!) and p* = o(n'/%). Also note that the choice
m = nY/@e*tD) ig the optimal choice for m - for known 6* € R™ - in
the given setting as a consequence of the bias variance decomposition in
nonparametric series estimation; see [42]. It leads to the optimal rate for
the mean squared error in the estimation of fy«, i.e. no/(20+1)

Remark 6.2.14. Assume that the model (6.1.5) is correct. We will see in
Section [6.A.2] that then

o2D2(v*) = Cov(VL(vY)), (6.2.4)

Such that with (6.2.3])
V(0 — 6°) 5 N(0,02D72),  o?D7% = IIg Cov(VL(v*)),.

As we showed in Section [2.1.1] this is the lower bound for the variance of reg-
ular estimators of 8* € R™ if ¢ ~ N(0,0%) and X is uniformly distributed
on By CRP.

Remark 6.2.15. Note that we do not show any weak convergence state-
ments for the case that Cp;qs > 0. The approach of Section [4.3.3] is not
applicable - at least not with the arguments we use for the case Cpjus = 0
in Lemma Also note that to control the approximation bias and the
size of {(x) when Cpigs > 0 the necessary smoothness of IE[g(X)|XT6* =
= fp+(:) : R = R measured in o > 0 in increases from a > 2 to
a>9/2 to ensure that a(m) — 0.
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6.2.4 A way to calculate the profile estimator

In this section we briefly sketch how to actually calculate © € RP" in prac-
tice. For this note that the maximization problem

O = argmax Y _(V; — f,(07X,))?/2,
=1

is not convex and thus computationally involved. We propose to obtain the
maximizer via the alternation maximization procedure from Chapter |5} To
remind the reader this sequential algorithm works as follows: Start with
some initial guess ©(©) € 7. Then calculate for k € N iteratively

kk+1) def (5(1«)’,7(1%1)) - (ﬁ(k)7argmaxﬁm(§(k),n)) )
n

5 1 (60 75) = (argmax £, (6.7, 7).
]

In the following we write o *(+1) in statements that are true for both
o®A+D) and ©*Hk) | For the initial guess we propose a simple grid search.

For this generate a uniform grid Gy & (01,...,0N) C S; and define
~(0) def
vV = argmax L, (v). (6.2.5)
(0.mer
0cGnN

Note that given the grid the above maximizer is easily obtained. Simply
calculate

~(0) def

= argmax £(6;,7) (6.2.6)
1 T
TixT TixT m
= (= X, 0 - Yie' (X;60,)eR™,
(33 eerixton) Iy verixon e
where by abuse of notation e = (e, ..., e,) € R™. Observe that

) = argmax £,,(6;, ﬁl(o))'

I=1,..,N

Define the fineness of the grid via 7 &f Supg gociy 10 — 0°||. To asses the
statistical properties of the alternating procedure we can derive the following
result via an application of Theorem [5.2.1

Proposition 6.2.3. If Cyus = 0 set 7 = o(p*>?) and m* = o(n)
and assume that m~Ctn — 0. If Chgs > 0 set 7 = o(m~ /%) and
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mSlog(n)/n — 0 and assume that m~2"Ypn — 0. Furthermore let x <
20282 (14 Cpigs)n . With the initial guess given by Equation (6.2.5)) the alter-
nating sequence satisfies with probability greater than 1—12e™*—exp {—mgx}

— exp {—TLC(Q) /4}

| Din(v,) (0%) — 6%) — €|| < Sk, %), (6.2.7)
and
2[max £ (61, m) —max £(6*,m) — €]/2| (6.2.8)
< 9 (1€l + Sar,x)) Hlxn, ),
where

(p*3/2 Lyt Cbiasp*5/2) 2

\/ﬁ I

¥

<>Q <r7 X) S C<>

and where with some constant C
e < (1= V) le (Ve + 25 Ro(x))

Ro(x) < C\/p*(l + Chias log(n)) + x + (1 + CpiasvV/m)n7? + /n7/x.

Remark 6.2.16. The constraint 7 = 0(p*73/ %) implies that for the calcu-

lation of the initial guess the vector ﬁ((lo)) in (6.2.6) and the functional £(-)

have to be evaluated N = p*3P~1/2 times. This means - since m° = o(n)

is necessary for the right-hand sides in (6.2.8) and ([6.2.7) to vanish - that we
need an accuracy of the first guess of order o(n=3/1Y) while the accuracy
of the output of the alternating procedure is of order n~/2. In the case
that Cpies > 0 we need an accuracy of the first guess of order o(nfg/ 26)
because 7 = o(m~?/*) and m!'¥/? = o(n). Although this difference does
not seem large the number of grid points necessary for n~1/2-accuracy of
the grid search is by a factor n®=1/5 or n2(=1/13 Jarger than those for a
sufficient initial guess.

Define the local neighborhood around the ME © (we suppress -, here)

To(x) € {vel: |Dw-v)| <}

If not the statistical properties but mere convergence of the sequence
oFk(+1) 5 T is desired we can prove the following result using Theorem

.23l
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Proposition 6.2.4. Take the initial guess given by Equation . As-
sume (A). If Chigs =0 set 7 =o(m~3/?) and m* = o(n) and assume that
m~Ct ) 5 0. If Chias > 0 set 7= o(m™ /%) and mSlog(n) = o(n) and
assume that m=2@"Vp — 0. Let x >0 be chosen such that

x < = (Png” — log(p")) Ap".

N

Then

P (ﬂ {'E(k’k(ﬂ)) € ﬁ(ri)}) > 1—10e ™ — exp { —m’x}

keN

—exp {—ncg)/4},
where with s(x, Ry) = O(p*%/\/ + Chiasp™> /\/n) — 0

" vk 1_%4(;/3%0)]6}%03 %(Xa RO)k <1,
r. S

ko log<% .
p 1oe(®) #(xRo) /Ry,  otherwise,

with

RO < C\/p*(l =+ Chias IOg(n)) +x+ (1 + Cbiasm)n72 + \/HT\/i

Remark 6.2.17. Note that in the case Cp;s = 0 the constraint on the
size of the dimension p* € N for accurate results is weaker in Proposition

than in Proposition [6.2.3] as there are no ”right-hand sides” and thus

m* = o(n) is sufficient.

6.2.5 Performance of Projection Pursuit Procedure

In this section we want to briefly assess the performance of the Projection
Pursuit procedure of [20]. We assume that the iteration k& € N in the
alternation maximization procedure is large enough so that we can pretend
that one can directly access the maximizer ©. Also we assume that the
number of iterations M € N is fixed. In the previous sections we already
established that for observations of the kind

Yi=9X;)+e, i=1,...,n,
the estimator in (6.1.7)) satisfies
‘E[Y|XT0*(1)] — frio, (XT81)) (6.2.9)
< C(x +a(m) + Ox) + 1Dy~ VL@ (I)) /Vn,
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with high probability. But in each step a new data set is generated, i.e.
given Y;(l),v(l) we generate

def ~
Yi(l+1) = Li(l) — fﬁ(l) (Xz‘Ta(l)) = 9(1+1)(Xz’) + & + Ty,

where

M
g (Xi) ~ an*(s)(XiTO*(s))7

s=l
l
T p* Tn
Ti(l)y = an*(s) (Xz 0 (S)) - fﬁ(s) (Xz 0(8))
s=1

The errors 7;(;) are not i.i.d. and not necessarily centered such that we can
not directly apply the results from above for [ > 1. But a slight modification
serves a remedy. For this remember that the central tool for Theorems of
the type of is to bound with probability 1 —e™

ESTUE) ) D™ (VL (v) — VE(vY)) + D(v — v¥)|| < O(xo,x),

and to show that IP(v,vg« € 15(xp)) > 1 — e *. Consequently we decom-
pose (we suppress -, to ease notation)

Laoy(v,Yiw)

n

= _ Z (g(l)(Xi) +é& — fn(X:0)>2
i=1

n n

— Z Ti(l—1)2 +2 Z Ti(1-1) (fn(XIO) - fn*(”(xz—'re*(l)))
i=1 i=1

def
= Ley(w,Yi) + Ly, (v, Yig)),

and define

% def
Up ) = argmax EL)(v),
vely,

def %
Dm(l)2 = sz[LE(l)(Um(l))]a

def

Cey(v) = Ley(v) — ELepy(v).

We assume that the condition (model bias) holds for every function g .

With Remark Lemma, and Lemma this means that the
conditions of Section and are met for (Le (), Lo, Dm(y) with high
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probability for every [ =1,..., M . It remains to show that for each [ € N
and m € N large enough the contribution of 7;(;) remains insignificant. We
do this in the following Proposition.

Proposition 6.2.5. Assume that M = O(p*) and that the conditions (A)
hold for every l=1..., M . Assume further ;ﬂbg(# — 0 and assume

that m~2=py — 0. With probability greater than
l1—e™*-M (126_X + exp {—mgx} + exp {—nC(Q)/ZL}) ,

we have

sup
x€Bsy (0)

*«7/2 *
§CM\/E<p +X+”p\/fx>.
n n

Remark 6.2.18. Denoting the bias

M
Z fﬂ*(n (mTO*(l)) - fﬁ(z) ($T0(l))
=1

b(M) <

)

M
g — Z f’n*(l) (TG*(D)
=1

o0

Proposition implies if x < p* = o(n'/%) that

sup < CMo(n '3 + b(M).

x€Bsy (0)

M
9(@) = > fi, (@ 0)
=1

Depending on the speed with which b(M) decays in M the resulting rate
can be substantially faster than n—/(2a+p)

6.3 Details

In this section we lay out how to apply the results of the Chapters [] and
First we will explain the implications of the regression setup with random
design and explain which type of Daubechies wavelets can be used. Then
we show that the conditions (€Dy), (D7), (Lo) and (Z) of Section 4.2.1
can be satisfied under the assumptions (.4). These imply - by Lemma [4.2.1
- (Lo), (€Dy) and (£Dyg) from Section 4.2.1| necessary for Theorem|4.2_.2
Furthermore we will show that the conditions (ér) and (£r) from [4.2.1]
are met. This will allow to determine ry > 0 and ensure that the sets of
maximizers U,,, Umg+ are not empty. The subsequent analysis will then
serve to determine the necessary size of n € N that allows to obtain good
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bounds for {(rp,x) € R. Concerning the alternation procedure we will
show that the initial guess in (6.2.5) and the values of §(r),w from (Ly),
(ED1) allow to apply the Theorems [5.2.1 and 5.2.3l

6.3.1 Implications of Regression setup

Due to the regression set up there are some particularities to the analysis
that we have to point out here. The definition of v}, € 1" reads

*
m

%ef argmax [EL,,(v),
’UET’m

v

where IE denotes the expectation operator with respect to the joint measure
of (X,e) € R? x R, similarly D?(v) is also based on the full expectation
IF. But in Lemma we show the conditions (£Dg), (€r) and (EDy)
for the random variables

V(1 = E.)Lm(v) € RFF™,

i.e. we use only the expectation with respect to the noise (g;). This leads
to rather weak conditions on the errors (g;) but the statements are in the
sense that the conditions are met with high probability with respect to the
distribution of the (X;). Especially the conditions (€r) and (D) would
otherwise become quite restrictive. But on the other hand this means that a
list of additional steps becomes necessary to apply the theory of the previous
chapters. As becomes evident from the proof of Theorem [4.2.2] we have to
bound the term

sup || D5, V(E — ) [£m(v),) = Lm ()],

m
veYo(r)

and add the obtained bound to {(rg,x) on the right-hand side in (4.2.9) and
(4.2.10)). Also the probability of the desired bound has to be subtracted from

the probability of the event that (4.2.9) and (4.2.10) are valid in Theorem
The following lemma serves this bound.

Lemma 6.3.1. With some constant C > 0

P((w{ﬁywxvmnmmwmwm—zmmw
r<Rg

> Cry/x + p* log(p*>/\/ﬁ}> <e "

Remark 6.3.1. We will see that the error term
Cry/x + p* log (") v/,
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is of smaller order than the bounds that we will derive for {(r) in the
subsequent analysis. Consequently we neglect it in the following and let a
constant C¢ > 0 account for its contribution in the formulation of Proposi-
tion

Furthermore in the derivation of the conditions (£Dg), (€r) and (£Dy)
we obtain bounds for vq, 1y, that involve terms of the kind

1 < -
_ ——— ) . p*Xp
|E[S,] — Sull, Sh - ;1 M(X;), M(X;)eR )

This leads to concentration bounds for sums of i.i.d. matrices which can
be handled with the results of [56]. We do this in Section Again
the set on which Theorem .2.2] occurs has to be intersected with the set
on which the matrix deviation bounds are valid. Another implication is
that when proving condition (£r) we have to consider [E.L(v,v},) instead
of EL(v,v},), which makes the proof quite involved and again makes the
restriction to a set of high probability necessary. This is why in Proposition
the probability of the desired results can only be bounded from below
by 1—12e™* — Ce ™ P'* instead of 1 — 5e™* as in Proposition

To further address the peculiarities of the regression setting we present
the following adapted versions of Theorem and Proposition [4.2.3] which
are proved in exactly the same way.

Theorem 6.3.2. Assume (Lo) and (I). Also assume that on some set
N(x) C 2 the condition(EDy) is met and that on N (x) the sets of maz-
imizers U, Ug= are not empty. Also assume that 4rg < r*. Assume that
N (x) contains with some 7(-) € R the set

{ sup ||V — [Ee)[£(vy,) = £(0)]]| < T(ro)} N{v, ve- € To(xo)}-
v€Yo(xo)
Then it holds on a set of probability greater than 1 —e™* — IP(N(x)°)

HD(g_ 9*) _5 < <u>(r0,x) + 7(xo),

and
2|max £ (6, m) — max £(6*,m) — €]/2|
n n
< 9 (€] + S(xo, %) + 7(x0)) (S(x0, %) + 7(x0))

where the spread &(ro,x) is defined in ([A.2.7) and where ro > 0 is defined
in (4.2.3).
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Proposition 6.3.3. Assume that the conditions of Theorem are sat-
isfied and additionally that on N'(x) the conditions (Lg) and that (€Dy)
and (€Dg) are met. Also assume that 4rg < r*. Then the results of Theo-
rem[4.2.3 hold with t1 < r( instead of ro and with probability greater than
1 —4e ™ — IP(N(x)¢) where

r1 < j3(x, B) + $g(Ro,x) Arg(x).

Furthermore if there is some € > 0 such that d(r)/r V 6riw < € for all
r <rg and with 6erp(x) < ¢ and 6erg(x) < 1 then ro can be replaced with
ry which is bounded by

18
2
1_ C3G(X)-

ry < 3(x, B) + €3¢ (x, 4p")* + ¢

Furthermore we present an adapted version of Theorem [5.2.1

Theorem 6.3.4. Assume that the conditions (Lo) and (Lo) are met. As-

sume that on some set N'(x) C 2 the conditions (€Dy),(ED1), (Ly),
(ED1) and (Er) of Section are met with a constant b(r) = b and
where Vi = Cov (VL(v*)), D = —VZEL(v*) and v° = v*. Also as-
sume that RoVdrg < r*. Assume further that on N'(x) the sets (DF-F(+1))
are not empty and that it contains with some 7(-) € R the set

N { sup [|[V(IE — [Ec)[£(vy,) — L()]| ST(I)}
<Ry vEYH(T)

N{(@MAED) C Ty n(Ro)}-

Assume further (By) and that the initial guess satisfies (A1) and (Az2) of

Section [5.2.3. Then the claims (5.2.7) and (5.2.8) of Theorem hold
with probability greater than 1 — 8e™ — Bay — IP(N(x)¢) for all k € N.

If further condition (Asz) with 6(r) 4+ 7(r) V v mwr < er is satisfied then

(5.2.7) and (5.2.8)) are met - for some constant C > 0 - with
r, < C (5(}() + ukR()) .

6.3.2 Choice of basis

To control the approximation bias of the sieve estimator gm € RP with the
approach from Section we can not use any basis (eg)peny in
L*([-sx,sx]). We need to show in the proof of Lemma that the
following terms vanish as m — oo

/ em+k(T)emii(x)pxTo- (z)dr; I,k € N, (6.3.1)
R
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where pxTg+ denotes the density of XT6* € R. But it is not clear whether
terms as in vanish for any basis of L?([—sx,sx]). Of course - follow-
ing [50] - we could assume that the basis is orthogonal in the inner product
induced by the Hessian V2IEL(v*). But for this one would need to know
the true parameter 8* € RP and the density px : RP — R in advance. We
want to avoid such assumptions and also the tedious calculations resulting
from using an estimator of 6* plugged into an estimator of pxt. for the
construction of a suitable basis. As it turns out an orthonormal wavelet ba-
sis is suitable for our purpose. For high indexes k € N the support of each
wavelet ey is contained in a small interval on which the density pxtg+ can
be well approximated by a constant. Due to orthogonality and shrinking
supports of the basis the term in can be shown to diminish suffi-
ciently fast for a Lipschitz continuous density pxTg- (see Lemma .
The trouble is that our approach relies on smoothness of the basis elements.
Consequently we need a smooth orthogonal wavelet basis on an interval.
Thanks to [I4] and [I3] such a basis (ej) is available on L?([—sx, sx])-
This basis possesses all the properties needed for the proof of Lemma,
and thus will allow us to control the approximation bias in .

To understand the choice of this basis (ej)ren we first have to briefly
explain how the Daubechies wavelets are derived. To ease understanding
we adopt the notation of [14]. Starting with a scaling function ¢ : R — R
where [|¢[|z2@®) =1 one obtains a sequence of nested spaces, i.e. for j € N

V; = span{279/2¢(277 . —n);n € Z} C L*(R),
.cVicVycVycC...c LAR).
If the scaling function ¢ : R — R satisfies certain properties one can show
that U,z Vi = L*(R) and that (279/2¢(277 - —n))pez is an orthonormal
basis in V; C L?(R) for every j € Z (see Theorem 6.3.6 of [14]). Denote for

each j € Z by W; C L*(R) the orthogonal complement of V41 C L*(R)
in V; C L*(R). This gives

Vi=Vipn @ Wi = @ Wi, such that L?*(R) = @ W;. (6.3.2)
IZ>]Z', JEZ
€

The idea of Daubechies wavelets is to find a function ¢ € W7 that satisfies
with 9, & 279/2p(279 - +n)

W; = span(¥ ;n € Z), (Yjn, Yin)r2 = Opp, nyn' € Z.
This is indeed possible. For this denote

hn = (¢, 0(2-+n)),n € Z,ie. ¢ = V2> hnp(2- —n),

nel
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and define

P =V2) (1) hop19(2- —n).

ne”

Theorem 6.3.6 and Chapter 6.4 of [I4] and the table 3.1 of [7] show that
there exists a scaling function ¢g : R — R for which the associated family
Vin def 279/24)(277 - 4n) satisfies

(wj,n)j,nel ONB of LZ(R)7 SUPP(ZD) - [07 17]7 77/) € 03(R>' (6'3'3)

Thus we obtain a well-suited basis for L?(R) but we only need one for
L?([-sx,5x]). We could simply embed

L([=sx,sx]) = L*(R), f() = F()1 [ sx,ox];

and use that basis but this would mean that we have to include basis func-
tions v;, € L?(R) for positive j € N as well. We want to avoid this. We
would like to do the following: First adapt the scale and support of the basis
and the corresponding shift operation to the interval via redefining

G065 (1) = 55 b (53t + 1), Vay () = s/ (s}t + 1).

The associated wavelet basis v, , def 23/ 21#8)((2*3' - +nsx) still satisfies
all properties in (6.3.3) where the support is adapted to read [—sx, 16sx].
Next note that (6.3.2]) and the definition of the subspaces implies

R =VvePWw.,,
jEN

where the definition is adapted to read V; = spﬁ{Q‘j/QQZ)ZSX (277 —nsx);n €
Z} C L*(R). As we only have to approximate functions that are nonzero on
[—sx,sx] this suggest the following basis: for k = 2/ + 17 — 1+ 17, € N

where j, € Ng and 74, € {0,...,2%% +17 — 1} we set

en def Posx(t —(k—1)sx) if k<17,
Vi if k> 17.

These are all elements of a basis for L?(R) which have a support with
nonempty intersection with [—sx,sx|. We end up with something that
resembles a basis for L?([—sx, sx]), that is contained in C3(R) and satisfies
for any [,k € N with k=2 + ;17 -1+, €N

(e1,€r)r2(r) = 01k, |supp()] < 277+17sx.
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The trouble is, that on each level j € N there are 34 wavelets whose support

is not contained in [—sx, sx]. But again there is a remedy that introduces

new scaling functions qﬁl;f 3 ;ight to deal with the edges of the interval, see

[13] Theorem 4.4. The technique presented in [I3] allows to contruct a basis
(ex)) for L?([—sx,sx]) that is contained in C3(R) and satisfies for any
I,k €N with k=2 + 17— 147, €N and r, € {0,...,27% + 17— 1}

(er, ek>L2(R) =1k, |supp(eg)| < Q_jkl'?SX.

It has another useful property that will come in handy in the proof of Lemma
For any k € N with k= 2/ 4+ j,17 — 1 4+ r,, € N it holds

Hl =20t — 17+ 1| € {0,...,27 + 16}, supp(ex) Nsupp(e;) # @H
< roUi=iK) 177, (6.3.4)

In words this means that the number of nonempty intersections of the sup-
ports of e and e; can be controlled well. For nearly all basis functions e;
with | > k we have

/ er(z)e;(x)pxTe«(x)dx = 0.
R

This will allow to satisfy the conditions () and (vs) from Section [£.3.3]
in Lemma [6.A.6

6.3.3 Conditions satisfied

In this section we show that the conditions of section 2.1l are satisfied.
First we derive an a priori bound for the distance between the target vy, €
RP x R™ and the true parameter v* € RP x [?

Lemma 6.3.5. Assume (A) then there is a constant C > 0 that depends
only on |[pxTe«|lcos Cjlf+|» $x; Lpx such that with

r* = Cv/nm~(2/2 /. (6.3.5)

we get [ D (v, — v*)] < T

The next step is to determine a radius r° that ensures that v € S7 o
Byo(0) with large probability.

Lemma 6.3.6. Define

~(00) def

g = argmax L,,(0,m),
’ neR™
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then with some constant C € R

IP| sup
gestt

Remark 6.3.2. This Lemma also_ensures that the alternating sequence
(O, Mi(—1y) introduced in Section m lies in Sf’+ x By%(0), with

] 2o T <

r’ < Cy/p*log(p*) + x. (6.3.6)

Note that - using that by Lemma we have D,, > c¢p > 0 - this also
means that

T CVo(Vir®/ep) € {v e T o | Dy(v — vf)|| < Vir/ep ).

Now we show that the general conditions of section are met under
the assumptions (A). For this we point out again that due to the random
design regression approach we define the random component of £ via £ —
IE.L where IE. denotes the expectation operator of the law of (&)i=1,. n
given (X;)i=1,..n . This facilitates the proof of the conditions (£Dg), (EDq)
and (€r) but leads to additional randomness, in the sense that the claim
of the following lemma is only true with a certain high probability.

Lemma 6.3.7. Assume the conditions (A). Then with v° = v}, € RP
and

V5 = Cov (VL (vy)), D§=—V>ELy,(v],),

and x < m we get the conditions of section [{.2.1] on the set

{ sup ﬁﬁ,foo)H < CVp* log(p*)+X},
gesit

(EDy) with probability greater than 1 —e™* and with

[ 2 ~2
=4/ — Vi = 2v
g Cmg’ 'm )

(Ex) with probability greater than 1 —e™* and with

with:

g(r) = Vieoge (vin -+ m¥ e/ Vi)
Vi = U° (1 +C (m3/2 + rmZ/\/ﬁ) r/ﬁ)
+C (m + m®r?/n) (X + log(2m)) 1/2/\/5). (6.3.7)

172



(ED1) on To(xr) for all >0 with rm?/\/n < 1 with probability greater
than 1 —e™™ and with

vn def 2 9

> w = v :”JQC m2
e Cen,) T Ve M TR

where Cgp,) is some constant that only depends on ||y||, [|«'[], |4" |,
Lyy,s5x,cp, etc..

(Lo) is satisfied for all * > 0 with rm3/?/\/n <1 and where
o C(Lo) {m3/2 + Cbmsm5/2} r
N cpy/n ’

The constant C(gqy > 0 is polynomial of [|9]lee 1% [loos 19" |l
Cisell» Lve, sx; 051 and ||pxTg«lloc and is independent of x, n, p* .

o(r)

(Lx) if Chias =0 and for n € N large enough with b = c(gr) > 0 as soon
as

r’ > (3(2+C)r*? + Cy)/(cb) Vm (6.3.8)

for certain constants c(cyy, ¢, C, Cy> > 0 and with probability greater
than 1 — exp {—mgx} — exp {—nc(Q)/4} . In the case that Cpiqs # 0
we get for

r? > /x + Cp*[log(p*) + log(n)] /b V 257,

that with some by;es > 0 independent of n, m,x,r and with probability
greater than 1 —e™*

_Ee'cm(vav:n) > bbiasr2~

Remark 6.3.3. The condition rm?/y/n < 1 needed for (D7) can be

relaxed to read rm®?2/\/n < 1 if one increases 1/127m = %Cgp,ym” . This
does not change the bounds for {(r,x), as d(r) then still is of the same
order as wvy,,. With this correction the conditions apply for all r <

Ry, where Ry is the deviation bound for the elements of the alternation
procedure started in Uy in (6.2.5)), as we explain in Remark

For the regularity condition (Z) we use the following Lemma.

Lemma 6.3.8. Under the assumptions of the last lemma the identifiability
condition (Z) is satisfied with

c
,/2§1f£

Cp’
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Proof. This follows from D > c¢pld with Lemma where

9 nep cp
ve<1-— <1l-—.
- AmaxD A AmaxH — Cp

where we used Lemma [6.A.6] to bound ApaxD < Cp in the last step. O

5 Finaully we appljzf the following Lemma to obtain the conditions
(Lo), (8@1) and (8@0)

Remark 6.3.4. We do not show the conditions (Lo), (D) and (€Dy)
directly. To benefit from the weaker conditions we would need entry-wise
bounds for the operator AH™2 for better bounds in the proof of condition
(Z)o) . As this Chapter is very long and technical without this sophistication
we postpone this improvement to future work.

6.3.4 Large deviations

Next we determine the necessary size of the radius ro(x) defined by

ro(x) & inf{r > 0: P{T, Doy, m € Vo(r)} < e},

~ def

Vgx m = argmax Lo, (v),
vEY
Tgv=6%,

def

To(r) = {v €RY ¢ | Di(v — vy < x}.

We want to use Theorem B.3.2] For this we have with Lemma[6.3.6l combined
with Lemma |6.A.16 that condition (€r) is met with probability 1 — 2e™*

and with (setting r = C/n+/p* log(p*) in (6.3.7))
— pe 2] x\) 1 2 < 520m31 )2
g(r) = VnepgC (vVim +m?log(p")) —, v, < °Cm”log(p*)”.

Furthermore due to r* < C/p* and for moderate x > 0 we find if

r2>

Cp*v if Chias = 07
Cp*log(n) if Cpigs > 0.

that with some b > 0
P (~IBL(v,0}) > b%) > 1 ¢ — exp {—m'x} — exp {~nc(gy/4}

Note that the second condition (3.3.5)) of Theorem is satisfied in our
setting for n € N large enough as we assume that p*°(1+ Cpiqs log(n))/n —
0. Finally we only have to ensure that ro > 0 is large enough to satisfy

(6.3.8), then Theorem yields the following corollary.
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Corollary 6.3.9. Consider the set

AL {(&r) and (Ly) are met} N { sup

gesit

vl | < cv/p log(v") + x} ,
Then it holds that

P(Aﬂ{ sup  L(v,v},) <0}> >1—e*—IP(A°,
(x5)

where
re def CmS/QW Zf Chias = 0,
0 C ( p*log(n) vV m®/?/x +p*) if Chias > 0.

Repeating the same steps from above gives that on the set

{(€r) and (L,) are met} N { sup Hﬁ,(noogu < C\/m}
+ b

sy

ﬂ{ sup  L(v,v},) <0}.

VEYm \ Yo (rd)
condition (€r) is actually met on 2o (rg) with
g(r) = Vnepgem ™, 12, < CUm,

if p*>(1 4 Cpigs log(n))/n — 0. This gives
Corollary 6.3.10. Consider the set

B {(&r) and (Ly) are met} N { sup
gestt

ﬁfn“gH < Cv/p*log(p*) + x}

ﬂ{ sup  L(v,v}) <O}.

VEY I \Yo(xf)

Then it holds that

P (Bﬁ { sup  L(v,v},) < O}) >1—2e*— IP(A°),
)

'UGTm \To (TO

where

(6.3.9)

o < C\/ X +p* /Lf Chias = 07
| C/x+p*log(n) if Chigs > 0.
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6.3.5 Proof of finite sample Wilks and Fisher expansion
Combining Lemma[6.3.7]and Corollary [6.3.10] we obtain the following bound
if Cpigs =0 and p*4/n — 0 and if n € N is large enough:

x5/2
o + x
O(TO,X) < COPT;

where C¢ > 0 is a polynomial of [[¢]lco, 19 [|los 19" |lsos Cjj£+||» Ly, 5% -

With these results the case Cpqs = 0 in Proposition [6.2.1] is merely a
corollary of Theorem [6.3.2] and of Lemma [£.2.1] More precisely define the
set

N (x)

def
= sup
fesht

ﬂ{ sup  L(v,v)) <0}

VEYM\To(x])

i | < ev/p log(r) + x}

N { sup |[V(E — E:)[L(vy,) — L(v)]]| < C(x +p*)2ro/\/ﬁ}

veY, (ro)

N {The conditions of Section are met for (£,7,,,D) }.
It is of Probability greater 1—7e™*—exp {—m3x} —exp {—nc(Q)/4} . Finally
with the results of Section [3.4) on the deviation behavior of quadratic forms
we can bound with some constant related to the finite value tr(D~1V2D~1)

P(IDY)) < 3(x, 1B) > 1—2¢7, 3(x,18) < 0Cy/p" +x.
Thus we get the claim with Theorem via adapting the size of C¢ > 0.

For the case that Cp;qs > 0 we want to apply Proposition [6.3.3] For this
define
e ¥ 6w v 5(x)/r < Com®?/\/n.

Then rg > 0 in (6.3.9) satisfies by assumption

6erg — 0.

since m3log(n)//n — 0. Consequently Proposition [6.3.3| applies with
N (x) from above, which yields the claim of Proposition [6.2.1] with an error
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term

X + p*>/ 22
Co(1 + Cigs) ——=—2

where

18
3e(x) < Cy/p* +x.

ry < 3(x,B) + €0(x, 4]9*)2 + 2 ]

6.3.6 Bounding the sieve bias

We prove this claim via showing that the conditions of Corollary and
Theorem |4.3.2] are met, which can be adapted to the regression set up in
the same way as we did with Theorem and Proposition This
concerns especially condition (bias) from Section For this we use the
conditions (Lrs) and (2) from Section and then we can use Theorem
But exactly this is done in Lemma Thus we simply have to
plug in our estimates.

Finally we determine an admissible rate for m(n) € N which ensures
that the error terms vanish. We exemplify this for the case Cpjus = 0. We
can show that

O(xd,x) < C(p” +x)°%/V/n.

If p*>/2//n — 0, we can get that 2(||[D~1V| + Ty (xn)) O (12, %) 250 by
choosing a sequence x, > 0, that increases slow enough. If \/ﬁm*afl/ 2 5
0 we get the desired result. Clearly such a sequence exists and in this case
P(2(x,)) — 1.

For the the weak convergence statements we also focus on the case
Chias = 0 and use Corollary As 0(r),w — 0 and rp(x) < oo we

further only have to prove condition (bias’) which means that we have to
bound

1 — Dy (0*)D(v*) Dy, ()| and [ Ie — Dy (v3,) D (0*) Dy (w7,

m m

With (vs) - as proven in Lemma - we can apply Lemma to
find

C v 14+24m-1  ¢2mt
I-D'DD Y| < 1 -0
” m m ” = \/ 1— 12 C% _ C%m‘l ’
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and with Lemma [ A 10
1T = Din(vy5,) ™ Dy (v*)? Dy (v5,) 7|
ﬁ<2+ \/1 —S(I*)) +1+40(x")
A=) o(r*) — 0.

Furthermore we need to satisfy (bias”), which in our setting becomes

<

(bias”) The ii.d. random variables Y;(m) € RP satisfy Cov(Y;(m)) — 0
where

D)7 Vo (4i(v)) — :(v"))

Bl

_AmH;LQV(m,...,nm) (4i(vy,) — El(v*))} .

which is done with Lemma [6.A.26] This completes the proof after plugging
in the bounds.

6.3.7 Proof of convergence of the alternating procedure

Here we want to explain in more detail how the Propositions and

can be derived.
We want to use Theorem [6.3.4] i.e. the adapted version of Theorem
(5.2.1). For this it remains to check the conditions (Aj), (Agz) and (As)

from Section for the initial guess defined in ([6.2.5)).

Remark 6.3.5. Condition (B;) is met in our case as we pointed out in
Section [6.3.4]

We can prove the following lemma:

Lemma 6.3.11. It holds for x < C§2§2n that
P (Lm(ﬁ(o)v v;) <—C {(1 + Cbias\/m)’r”—2 + (1 + Cbias)ﬁTﬁ}) < 2%,

If Cpias = 0 set 7 = 0(p*73/2) and m* = o(n). If Cpgs > 0 set 7 =
o(m=%) and m® = o(n). Then the initial radius Ry > 0 in (65-2:2) satisfies
eRy — 0 such that the conditions (A1), (A2) and (As) are satisfied for
n € N large enough (as in Lemma .

Together with Theorem this implies Proposition [6.2.3| as we can
bound

g x+p*3/2r2 + Cbiasp*2r2

QQ(I,X) S C<> \/’ﬁ
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Remark 6.3.6. €Rg — 0 implies Rom®/2/\/n — 0. As pointed out in Re-
mark [6.3.3] this means that the conditions from Section [4.2.1]can be satisfied
on TO (Ro) .

For Proposition we apply Theorem [5.2.3] which can be adapted
to the regression setup in analogy to Theorem [6.3.4] It remains to show
condition (£Ds) and to bound 3(x, V2L (v*)) which is defined via

P{|D'VEL(v")|| > 5 (x, V2L(vY))} <e ™

We derive a bound for 3(x, V2L (v*)) in Lemma [6.A.31| which is based on
Corollary 3.7 of [50], as is proposed in Remark [5.2.14] The claim of Propo-
sition is shown with the following Lemma.

Lemma 6.3.12. Assume (A). Assume further that p**/n — 0 and 7 =
o(p*_3/2) if Chias =0 and p*®/n — 0 and T = o(p*_9/4) if Cpias > 0. Let
x > 0 be chosen such that

x < é (527’@2 — log(p*)) .

then the conditions (ED2), (Lo), (Lr) and (Ex) are met and »(x, Ry) —
0 with n — .

Remark 6.3.7. The bound for x comes from Lemma [6.A.31] but also
from the definition of 31(x,3p*) in (3.5.6) and ensures that 3;(x,3p*) =

O(vx+p¥).

6.A Proofs

In the following all the technical steps necessary to prove the Lemmas of
section [6.3] are presented. But first we cite an important result that will be
used in our arguments, namely the bounded difference inequality:

Theorem 6.A.1 (Bounded differences inequality). Let a function f: X" —
R satisfy for any Xq,...,X,, X, € X

’f(Xl,...,XZ‘,...,Xn)—f(Xl,...,X;,...,Xn)‘ < g.

Then for any vector of independent random variables X € X™

2t

P(f(X) - Ef(X)>t) <e e,

2?2

P(f(X) = Ef(X) < —t) <e >,
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Furthermore we will use the basic chaining device as it was introduced
by [17] (see Section 2 of [55] for a more concise description). As we use the
idea several times, we summarize the central step in the following Lemma

Lemma 6.A.2. Let {Y(v)—Y(v*), v € T} be a family of random variables
index by a set T that is contained in a normed space (X,| -|). Define
Yo = {v*} and with some r > 0 the sequence ry = 2 *r and the sequence
of sets T}, each with minimal cardinality such that

rc | Bo(v), Be(v)® (v el |v° o] <z}
veYy

Then for any 3 >0

P (sup 30) — y(w) 2 5

veT

<Z|Tk| sup lP( inf |Y(v) —Y(v )|>2 (k— 1/2( 1/\[))

1 VoY, VET 1

Proof. We simply use the definition and estimate

P (sup 4(0) — ¥(o)| 2 5

veT

< P (Z sup inf  |Y(vg) —Y(vg-1)| > 5)

o1 UKETE Yk 1Vk—1

< P( sup inf  [Y(vr) — Y(vp-1)|
1

o VL €Yy Vh—1€T k-1

> 9~ (=1/2(1 — 1/\f2)g,>

<) %l sup P( inf  [Y(vg) — Y(vp_1)|
k=1

— v, €Y% V1€Y1

where we used that 352 27*F=1/2 < 1/(1 - 1/V/2). O
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6.A.1 Proof of Remark [6.2.5]

Proof. This can be seen as follows. First with Fubini’s Theorem we find
def
O [ faerto
5X7SX

/ /B few ther(t)pxxTo=(z)dzdt,

_ / / fom(Der(t)dt | pxixro-i(x)de,
BSX(O)QGJ‘ [7SX’SX]

= / nx(0, w)pX|xTo=t(w)df'3-
By (0)N6+

Note that the application of Fubini’s theorem is justified since by assumtion
| fo.(t)er(t)px|xTo—¢(x)| < co. Furthermore with Jensen’s inequality and
exchanging the order integration and summation as the limsup is finite we

find

00 0 2
S ke On2(0)2 = 3 k2@ / (60, 2)px x 7 gy ()
P =0 Bsy (0)n0+

< Z/ oo 7‘13206(6))771@(9,313)229X|XTﬁv:t(ﬂv)dﬂlc

< / <Z k2@, (0, m)2> Px|xTo—t(T)dx
Bsy (0)N6+

k=0
< 00,

where we used in the second to last step that «(0) < «(0,x). O

6.A.2 Calculating the elements

First we calculate the relevant objects in this setting. For this we have to
emphasize one subtlety about this analysis. As the parameter 8 € R? lies in

SPT C RP a more appropriate parameter set is W o [0, 7] x [—7/2,7/2] X
[—7/2,7/2] X ... x [-7/2,7/2] C RP~1. This gives, parametrising the half
sphere ST " C RP via the standard spherical coordinates

@ [0,7] x [-7/2,7/2] X [-7/2,7)2] X ... X [-7/2,7/2] C RPTL — §P+
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that our actual likelihood functional is defined on Wg x R™ as

i=1

where with abuse of notation we denote the preimage of an element of the
sphere by the same symbol. Fix any element of the set of maximizers v},
for some m € N.

First we calculate

((v,v") := Ly (v,v") — E. Ly, (v,v")

=Y ei(9(Xi) — Fo(X] 2(0))).

=1

This gives that with Vp,« = (Vg,..., Vg, _,Vy,..., V) and
e=(e1,...,€)

Virt(0) = Y- (f(X]OVE(0) X, e(X[0) )=
=1

def -
=Y Gm(v)e

i=1

W (v)e.

where with e = (ey,...,en)

X[ 0)Ve6) X, .. fr(X]e)Vvee) X,
Wm(v):< n le(XlTB) 1 n e(X70) >

As we use this notation in the following, we repeat the definition

def

Gm(®) S (£(XTOVE(0) X, e(X]0)) € R (6.A1)

By assumption the &; are i.i.d. with covariance o2 > 0 and the design
points (X;) are i.i.d. as well. We set

V2, G2 EW,, (0 ) Wi (0*) T
= (LB ) ) e cmmmeen
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where with [E[-] denoting the expectation under the measure Pt
B(v) = E _f,’v(XIB)2V¢(0)TX1X1TV¢(0)},

(v) = Elee”(X]0)].

am(v) = B f;(xfe)vqs(o)TxleT(Xfo)]

Furthermore we get because of the quadratic functional and sufficient smooth-
ness of the basis (e;) for any v € RP"~1

D2,(v) © —V2 E[L,(v)] = nd? (v) + nrl, (v),
2 - < dg(v)  am(v) )

" ap,(v) h(v)

Ug (V) bm(v)

rm(v) = JE“fn(XTﬁ’)—ﬂX)} ( bh(v) 0 )

)

vg(v) = 2f)(XT0)VDe XX Vg + £ (X 0)? X V3P4 [X, -, ],

bm(v) = VX Te T (X70).

For the analysis of the sieve bias we also define the corresponding full
operator D2 € L(I%, {(z)ren, * € R})

D%(v) = nd*(v) + IE

vi(v) bl (v
[£0x70) g0 (212 ) ] ,
where with the obvious adaptations

2(0) — ( Bw) ax(v) > |

a5 (v)  h3,(v)

Remark 6.A.1. If X' 6* was independent to X' 6° for any 6° € 8*+, we
would have by, (v*) =0 for m € NU{co} by the definition of f,-(X'6*) &

Elg(X)[XT6"].

Furthermore we calculate - with ¢;,, from (6.A.1)) -

V2<<’U) - Z Vgi,m(v)a
=1
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where

IgVesim(v) = f7(X]0)VS(0) X, X[ VS(0)
+ (X 0)X V200" X)X, -,
IT,Vasim(v) = (0" X)X, VD(0),

Vansim(v) = 0.

6.A.3 Preliminary calculations
Lemma 6.A.3. We have
| Elere(X " 6)]]
< 175 Ly 0] 002 1202702 gy (KD, for 1>k (6.A.2)
[E[(X"0)eie (X 6]
< 1722 ol o294/ 227 N 21 (kY6 A3)
| Elejer, (X 0)]]
< 17sx [[9[loollpx [0 2® 20T, gy (K, 1), (6.A.4)
EE [(ex(XT6) — ex(XT6'))(e/(X6) — e(X6)]
< €10 — O'|*27 27 |9 |3, sX 171 1, vp, 09, (6.A.5)
B [(e,(XT0) — ef(X"0))(el(XT0) — /(X" 0))]

< €10 — 0|24 2 o |2, sK 172 10 (6.A.6)

(el(XTO) - el(XTO;‘n)) ek(XTO)}

< C||@ — 0'||27/220KN/2, (6.A.7)

Proof. Observe that if the density of px : RP — R is Lipshitz continuous
with Lipshitz constant L,, and its support contained in a ball of radius
sx > 0 then the density pxTg : R +— R of X6* € R is Lipshitz continu-
ous with Lipshitz constant L, . . < s% Lpy . Furthermore for k,1 € N

BleweX0) = [ e@elpxrp (o)

[—sx,sx]
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Denote by I C R the support of er(z). We write

Eleei(X70)] = [ ealealpxro (o)

= /1 er(v)e(z)px o+ (zo)drlipnr, 20y (K, 1)
l

+/1 ei(z)e(x) (pre*(fU) —pra*(xo))d$1{11m1k¢@}(k,l),

where xy € I; is the center of the support of e;(z), which is of length
270117sx for | =29t + 5,17 — 1 + 7, € N. Because of orthogonality the first
summand on the right-hand side is equal to zero. For the second summand
we use the Lipshitz continuity and Cauchy-Schwarz to estimate

] ’ er(z)e)(x) <PXT0* (z) —pXTg*(mo))dm|1{llmk¢@}(k,l)
l

< 0Ly 2! / lex (@)l ex() daL 17, 20 (k. 1)
l

} 1/2
Ly 20 < /] e(z)2dz /l ek(fv)2dfv> sy (1)
l l

IN

IA

} 1/2
sg)(LpXQ_jl_l </] ek(:n)2d:n> 1{Izﬁfk¢®}(k’l)
1

1785 L ]| o201 208220021 ) g (K, D),

IN

where we used that the (e;) form an orthonormal basis, that |lex|eo
< 27k/2||3)||oo and that I, is of length 277/17sx . This gives (6.A.2). Using
that for any 6 € Wy it holds true that |[V®(0%)0| < @W we estimate
similarly to before

|E[(X6)e)e(X6°)]
< VD2

< P23 [ eh@enlpxror (a)dr
I

) 1/2 1/2
B nskloxrol ([ eiaran) ([ earas)
l l

p+2
2

sk B||eer (X 6°)]]

A
—_
~

|9 [|oo 5% lIpx g o024/ 227 U211 gy (R, ).
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The bound (6.A.4]) follows with exactly the same calculations. To show

(6.A.5) we calculate with My, def {(z,y) € R?, x € [ }U{(x,y) € R?, 24y €
I} and with pg (go_g) : R? — R, denoting the density of (X0, XT(6° —
0)) € R?

E [(e(X6) - ex(XT6%)(e/(XT6) - ex(XT67))
Ly [ (erle) — exta + ))(eils) - ee +9)

o, (6°—6) (T, y)d(z,y)

IN

1/2
o) ( [ (erla) — ente+4)mo 0oy )l y>>
k

1/2
( | )~ et +0)roeo) (w)d(x,y)) |
M

We estimate separately

/M (ex(x) — ex( + ))2po 000 (@, 9)d(x, )

< 23”“\\?/}”@/ y*po.o°—0)(7,9)d(2, ),

My,

Note that pg go_g)(7,y) > 0 only for [y| < [|@ — 6°[[(sx + h), where we
suppress h in the following such that

| (exta) = exlo+ 1) po @)@ 9)dl.1)
k
< (16 — 6°]172%7% |4 |2, 5%
<// Pe,(eo—o)($,y)dyd$+/ /po,(m—e)(ﬂf,y)d’ydx)
< (16 — 6°]172%7% |4 |2, 5%

(/RJP {(00 —-0)'Xel—2/0'X = x}pg(a:)dx + / pe(x)d$> _

Iy,

represent 0° = a@ + 0’ where @' 1 6 with ||0°|| = 1. Then we find with
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condition (Condx)

P {(90 —0) "X el —20X = x}

=P {O'TX € ;(Ik —(1-a)z)|0"X = w}
.

With the bound pg(z) < C,y we find (since ||@ — 6°|| < V/2)

1

Do’ .0 )\{([k_(l_a)g;)}gCQjk/’G—GOH.

Do

g

A4@M@—€M$+wyﬂmm4ﬂ%Wﬂ%y)

< Cllo — %122+ [|y" |3, 5% 177,

which yields (6.A.5). With the same calculations we can show (6.A.6]). with
Mg S {(z,y) € [y xR,z € [N} U{(z,y) € [y xR, z +y € I}

E [(e,(xTe) . el(XTOjfn)> ek(Xm)}

1/2
< </ (er(x) — es(x +1))” Po,(6s,—0) (¥, y)d(z, y)>
M i
1/2
(/ 6% (x)pﬂ,(O;‘n—H) (ZL‘, y)d(l‘, y)) .
Mk
We have by (6.A.5))

/ (e1(2) — ez + )2 poos, o) (@ ¥)d(z, y)
M
< 2290 — 02, |2/ |*5k 172y
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As above we can bound

/ er(2)po, 0z, —o) (z,y)d(z,y)
My g,
= [t [ roio-n@nity)
[ e [ ooty
< / ei(w)]P {(0' — H)TX € (I, —x) 0'X = x}pg(z)d(zx)
R

" /I @)

< g ° go 2O + 22Dy,
O
Lemma 6.A.4. For any (0,n) € RPT™
le(@)] < Cll¢lleov/m, (6.A.8)
[fn(@)] < Cllvllocv/mlinl],
le'(@)]| < V17| |m*?, (6.A.9)

Proof. Clearly |fn(z)| < ||n|/|le(X]6;,)|l. Because of the wavelet structure
and the choice m = 2/ + 5,17 — 1 we have for each 7 =0,...,j, — 1 that

[ M (7)) (6.A.10)

def

{ke{@ +171,... 27" + 1T +15} : |ex(a)| # o}‘ <17.

This implies

1 1/2 1 1/2
le(z)]| = (Z Iek(-’v)|2> = (Z > ek(w)Q)
)

k=0 J=0 keM(j

Jm—1

1/2
< V179l o (Z 2j) = V179 [|oo2/? < V17|t ]|oc v/
j=0

The proof of (6.A.9)) works analogously. O
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6.A.4 Lower bound for the information operator

Lemma 6.A.5. Under (Condx ), (Condxg-) and (model bias) we find
for all m € NU{oo} that D,,(v*) > cp*x with some constant cpx > 0.

Remark 6.A.2. The constant cpx > 0 is specified - to some extend - in
the proof.

Proof. We represent for any v € RP" with ||| =1

¥ Doy

m 2
.1 «
Znhmt< ( = (i +typrr)ex(X (6 +tﬂev))>
k=1

- [(9(%) - EX)X 7] ).

Using the properties of conditional expectation we can write

3

2
( =) (s + typn)en(X (0% + tﬂeﬁ’)))

k=1

— E [(E[g(X)]XT(O* + Ig7))

m 2
Z N + t7p+k 6k(XT(9* + tﬂg"Y))) :|
=1

+

I (X)X (6" + tTgy)])?]
Using assumption (model bias) we find
v Dy = nbg| oy

: 1 T /p*
+aling 5 BlGCOXT (0" + tlTo)]
m 2
= 1+ typn)en (X (6 + tUe’Y))) :
k=1

In case that | ITgy|* > 72 > 0 with some 7 > 0 this implies D,, > be72.
Assume ||ITg7||> < 72. Using the smoothness of the density px and of g
we find with some constant

Elg(X)|X" (6" + tH)] — Blg(X)|X6%]| < C[| gl < nCtr.
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Furthermore we show in Lemma that with some b* >0 and Q >0

inf IP <| [9(X)[ X0 =) (mk)er(XT0)
k=1

’UETm

>wwvﬂsz.

Remark 6.A.3. A close look at the proof of Lemma[6.A.24] reveals that the
claim can be shown with |[[v—v*|| instead of ||D(v—v*)|| on the right-hand
side with the same arguments.

Consequently

m 2
E [(E[g(X)IXT(G* +tlgy)] = Y _(f + trpen)en(X T (07 +tﬂm))> ]
k=1
> Qt*(b* —cr)2

Setting 7 < b*/(2C) gives the claim. O

6.A.5 Regularity

Lemma 6.A.6. Assume that the density px : RP — R is Lipshitz contin-
wous and that the X € R are bounded by some constant sx > 0. Then
using our orthogonal and sufficiently smooth wavelet basis we get for any
A€ [0,1]

| HL/20e% )% < (17HpXT9*”OOC”f | +172V/36s% L px’WHooCﬁf*”) nm=2
def (a o
a(m) = [ D! Apsea®|| <CI\F< /2 4 Chigem 1)>’
T( ) dﬁf ”'D 1VU,,1E[L((HP*U*’/\%*) _Av%)]%*H < Clmf2a+1/2\/ﬁ’

0 = |36 (M — Vs EL(Iyev*, A3e*)) 56

)

if Cpias = 0 one can bound with some C > 0

B(m) © Do Aty | < Cm™ V2,

Furthermore we find that

p+2

|D?| <n Cy 1 |20 5% 2.
Proof. We have that

1Dt Awsese™ || < DIl Awsere™ -
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Due to Lemma [6.A 5]
1
cp \/ﬁ '

And we have by definition that for any v = (8,n) € Wg x R™

Dl <

1 1 1
—|'UTAU,,%*| < —[0Agy ™| + —|NAp,"|.
n n n

We first analyze the second summand

1 k - * = *
SN A = S neElere(XT6%)).
I=mt1 k=1

We use (6.A.2) from Lemma to find

1
|E77A17%"*‘
(o ¢] m
1 I
< 1T Lpyl[Wlloe D D i |lmel279 296270021 g (K, 1),
l=m+1 k=1
Note that for each jp =0,...,j, there exists at most 17 elements r(l) €

{0,...,27 +16} with I; N I; # (). Remember that m = 2/m + 5,17 — 1
and note that 2/m < m . This implies using the Cauchy-Schwarz inequality
and that |n|| =1

1 .
‘;771471%” ’

IN

oo m
1 " 4 ge s
1T L 070 S0 S I lmel2 7371294270021 )y (e, )
l=m+1 k=1

o0 m 1/2
VTR Loy 1921l Y I [27%90/2 (Z?’“l{nmk#w}(hl))

l=m+1 k=1

IN

. 1/2
oo Jm—1 /

. . .
LTVITSS Lo [9]loe Y 2702 | D 2%

l=m+1 §x=0

0 12 /o 1/2
173/23§<“pruw2uoo\/m< > W) (Zr?’ﬂ) .
l=m

l=m+1

IN

IN

By assumption Cond,,-

o 12 o 1/2
( > |m*|2> Sm-“( > lQa\’?z*F) < mTEC) o

l=m+1 l=m+1
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Since m = 2™ + j, 17— 1 and | = 27t + 5,17 — 1+, with 7, € {0,...

17— 1}
00 1/2 00 12
( Z 233'1) — Z C(m)2jl2*3ﬁ
l=m+1 J1=Jm
= C(m)Y?279m2 < 2C(m)3*m™1,
with
2 4 17— 1
C(m) = i < 34.
Consequently

1 1 o
| Apset| < V2T o S5 L [[62 oo™ /2,
For the second summand we remind the reader that

Agse = Nags,

agse = E[f}.(XT0")VPg. X (ems1(XT0%),...)],

,2jl+

Similarly to the first summand we get by the dominated convergence theo-

rem

Oagser™ =D > ninf E[(XTVE(6%)0)erer(XT0)]1 (201 (k) 1).

k=11l=m+1

To justify the exchange of summation and expectation note that for each

leN
E[|(XTV®(6%)0)ef,-(X'6%)]]
< |[VO(07)8||sx 27/ 2| f,. (X 6%)]]

Y miek(X16)

< [|VD(07)0]|sx 272 E [
k=1

|

o 1/2 o 1/2
< | Ve(6")6)|sx 22 (Z 12%7;2) (Zz—“?ﬂ'kuw’H?)

k=1 k=1

1/2

. , 17 X ond
< [[VR(")6]|sxCy gyl |oc2 2 | T D _17202Y | < oo

J=0
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The exchange of the order of summation is justified by the subsequent

bounds and again the dominated convergence theorem. We again use Lemma
to find with (6.A.3) and with similar arguments to those from above

Vp+2

Bagoe’| < 1TV 2 ool

2772233'1@/2 Z n;Q_(jlvjk)/Ql{ImIk;é(Z)}(kal)

k=1 I=m+1
< 17— wl!w’\lmsi\pxllm2n2k3/2< > l2“m*2>
k=1 I=m+1
co 271433 1/2

o> 2medm UV (kD)

Ji=jm+1 7=0

We have due to (6.3.4) that

co 271433 . o
Z Z 272&]1Zi(ﬂ\/]k)l{lzﬂlwﬁ@}(k’l)

J1=jm+1 7=0

S ' o 201433
— Z 920519~ (51 Vik) Z 1{Imlk7é@}(kal)

J1=jm+1 =0
o0
_ Z 9—2aj19—(d1Vik)
J1=Jm+1
Hl — 20 4 1T — 147y € {0,. .., 27 +33), [N I # @H

o
_ Z 90— Q2a+1)ji9=(r—i)+ roUi—ir) 177
Ji=jm+1

9~ (atl)jm1g < 17~ (2ot g,

IN
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Which gives

173/2\/57”’;2

|@ag, 3|

IN

7|9 | sosk |Ipx [|ocCp o~ 2

. 1/2 /o 1/2
(S} (S
k=1 k=1

7y iYL

I/\

)19 o5k 1Px [l 00Cf 4

V(2a = 3)/(2a — 4)m~(@+1/2),

since a > 2 such that >.2°, k~(2*73) < (2a —3)/(2a — 4).
Furthermore with 6° = V&g« g € 0+

|0bgseae™| = ‘IE [(fn* (XT6") —g(X))X6° Y n;’éek(XTG*)] '

k=m
< Gas Y s | f (X0
We bound

J=im+1

IA

C(m)C”n*”\/ﬁHw’Hoom_(o‘_?’/z) < 0.

We can exchange summation and expectation to find

E[|fl.(XT6%)] el (X76%)]].

We estimate

E[ XTB* /‘ek pre* ‘d:c
1/2 1/2
< ( / e;(x)mx) ( / pg(Tg*(x)dm>
Ik Ik
< [¢llooCa2?s/.
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Such that

o0

| < C(m)CpeCalltle Y 275/ %n;

k=m

E[|£,(X76")

1/2

o0
C(m)Cpy Calltlloo | DY 2720712

IN

IN

C(m)Cj Callt[locrm ™.
Collecting both summands
”@;1114'0%}‘*” <C <\/’7lm7(a+1/2) + Cbmsmf(afl)) .

with some C > 0. The same arguments give for the case Cpiqs =0

Do A M |

1 1 1

< - sup —|0Ag,e 2| + sup —|nAp,.|
C - —_1n - —_1n
D \10[|=1, ||l ,2=1 Imll=1, [[>[l,2=1

< C—;Qm_lﬂ.
C
D

Remark 6.A.4. In case Cp;us > 0 we do not manage to get a bound for
Obg, 3 for general 3 € [>. How to get a bound for S(m) in this setting
remains unclear.

We bound using the dominated convergence theorem (applicable due to
similar bounds as above)

oo
* *2 * ok *
[Hm2*||* <n Z M |[PxTo+ oo + 21 Zm niElere (X6
k=m+1 >k

As above we find

| Elerer(XT0%)]| < 175 Ly [t 0027271 27021 g g, gy (R, 1).
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We estimate

> niniElere (X 6%)]

I>k>m
1 % %x0—371/2—107%
< AT Loy l[tlloe Y mimp2 27129621 g gy (1)
1>k
) 0
1 e Y
AT Ly [$lloe D mi2 2 > 02 2 0, 20y (K, 1)
k=1 I=k+1
) 00 1/2
1 *0)] *
<11 ol Y 3° )
k=1 I=k+1

) ' 1/2
(Z l_2a2_3”1{zlmk¢(o}(kal)) :

I=k+1

We continue using that { > 27

Z 17227 g2y (R 1)
I=k+1

< N 2GR (kD)
1=k t1

i 9—(3+2a)j

J=Jk+1

IN

Hl=29 —2§17—1,...,27" 2+ )17 —1—1: ;N I} # 0}

oo
= Z 9—(3+2a)jroj—jk 177

J=Jk+1
o0
< 27Uk18 Z 9—(2+2a)j
J=Jk+1
o
— 9—(3+2a)jy 182 9= (2420)5 < 9=(3+20)k 36,
=0
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Plugging this in we find

> niniElere(X0%)]

I>k>m

(o)
1 *o— j
<17 ﬁ8p+ px||¢||oO Z ni2 (2+2a)]k/2c|‘f*”
k=m-+1

oo 1/2
17v/36s5 ' L px||¢||oocf*||< > 77722k‘2°‘>

k=m-+1

IN

00 1/2
( Z k—20¢2—(2+20¢)jk>

k=m-+1

00 1/2
17\/731)—&-1 pr¢Hoon*||< Z 2_(2+40¢)]k>

<
k=m+1
. 1/2
< ATVB6sK Ly 9]l ooClpey | Y 2740
J=Jm
1/2
S 17\/76 p-‘rl px||¢||ooCH‘f*||2 1+4a ]m 22 1+4a

From which we obtain

[ ||
oo
*2 _ .
=1 Y 1 lpxrer lloe + 25% Ly []]ocC o2 A Gm T/
k=m-+1
o0
< ||pXT9*||oonm_(1+2a)m< Z n22k2a>
k=m+1

1 _
+172\/%S§(+ prHwHooCﬁf*”nm (1/2+2a)
1 —
< (17lpxrorllcCy o + 17VEGR Ly 90 ey ) =20
Next we show

| D, (Vs E[L (I 0™, A36"))] — Agse) *|| < 7(m).
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For this note that

(Vosr B[L((ITyv*, A3e*))] — Agy) 5"

. < B[ f{y yser) X F(0,56) (X 07)] )
Elef0,,0(X"0%)]

+n< SE[.f(,07,,*)Xf(O,)\x*)(XTG*)] ) )

We infer

| D, (Vose B[L (I 0", A3))] — Ause) "

e

! . X
< NIB[ffy ey (XT07)]1/2 (JE U D, ( Ttoae) )

2] 1/2

, 271/2
+IE ”.Dml < g(o,x*)X ) )
n
< Y (x { Bl 172+ Elflg X172} + Ipcral 2774 )
D
B[f§) 0y (X762,

We estimate separately using the same bounds as before to apply the dom-
inated convergence theorem to exchange summation and expectation. We

bound as above using (6.A.4)

2 - %k *
]E[f(lo,m*) J=A Z Nk [e;e;(XTO )]
k,l=m+1

00
< Tsx |9 loollpxlloo Y memi 220 RGN gy (R, ).
k,l=m+1
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We can estimate further

Z 77;;77[*23(jl+jk)/2_(jlvjk)1{Ikﬂfl7£@}(k7l)
k,l=m+1

o0 o0
< Z 23K/ Z 77;‘23.71/2*(JZVJk)1{Ikmlﬁé0}(k’l)
k=m+1 l=m+1

o0 [e.e] 1/2
< > m’223j’“/2< > l2af*?>

k=m+1 l=m+1

N 1/2
( Z 2(3—2&)2]1—2(lejk)1{Ikm1l7£®}(k’l)) .
l

=m+1

Observe
Z (3 20)i—2(j lvjk)l{[ ﬂfﬁéw}(k l)
l=m+1
_ Z 2(3—2&)]‘*2(3‘\/]"@)
J=jm+1

Hl:j12+2j+rl‘rlE{O,...,Zj—i—ll}, Ilmjk?g@}‘

— Z 9(3=20)j=2(jVir) ro(i—ik) 177
J=jm+1

< 18 Z 2 2a)j __ 17318m72a+2
—]m+1

Such that again using the Cauchy-Schwarz inequality for any A € [0, 1]

2 Cw ° oy
Elf{yp)] < 1772V 185x |t/ oo lIpx oGy oy @1 S f2?in/2
k=m+1

< 1T VIBx [0 locllpx looCE g =20+

199



Furthermore

Bl (X0 = S oot Blerer(X 6"
k,l=m+1

o0
+1 3\ Lo
S 1781}){ LpXH/(/}HOO 2 ,)7;;,'7[2 3(]lV]k)/2+(]l/\]k)/21{Ilmlk7é@}(]{)7l)
k,l=m+1

=175 Loy llWlloe Y 279 3" i Lnaneey (k. 1)

k=m-+1 l=m+1
00 00 1/2
1 *—] — *
< g ol 3 iz (37 e
k=m+1 l=m+1
- 1/2
( > 2_2“]ll{zlmzk¢@}(’fvl)>
l=m+1
1/2
0o 0o
+1 *oy—J —2ay
< 1781))( LpXH’gZ}HOO Z 2 ]kC”f*H Z 27218
k=m+1 j=jm-+1

oo
< 1TVIBITY 2SR L [0 oGy ™ > 2%
k=m+1

< 1TVB61T2 55 Ly [[9]|0cC o2
Together this implies
1Dt (Vs EIL (0™, A3e*))] — Ays) 52"

1 1/2
. <28X{173V Bl loc Ipx 1€ | + prre!ml?”“)

VLTS L [[6]0CF 201/

< Clm_ZO‘H/Q\/ﬁ[
Clearly
36T (Hom — Vs EL(ITe 0%, A3e*)) 5" | = 0.
To see this simply note that for any f € S and any » € S
2 Voen EL(0%, )32 = E[f{, (X1 60%)] = 5" Hype.
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Furthermore we find that

0'd5(v")0 = B[f;(X'6")*(X VP(6")6)’]
17 355 VP (67

IN

IN

2
P2 G 2o s,
and
07300 = B[ (fi (X707 — (X)) (X 0)* £ (XT6")
e (XTO)PX V241X, 6,6 )|

Sl

This completes the proof. O

< Chias (%17 1 + 3410 2Oy 5% V200

6.A.6 Proof or Lemma [6.3.5]

Remember the representation the full operator D € L(I2, {(zx)ren, © € R})

in block form
D? A D2 A
DZ *) _ m v
(") (A 7—[2) (AW Hi,,)
D? A, Ag,

= Dfn: An Hm  Ags
A’?% AB% Hztu

We proof the claim in two lemmas. The first one concerns condition
(Lrso) from Section It is important to note, that in the proof of
Lemma it is only needed for the lower bound in (4.A.15)). This means
that we can use the full expectation IF instead of IF. :

Lemma 6.A.7. Assume (A). Then there exists a constant b > 0 such
that

EL(v,v*) < —br?.
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Proof. As in Lemma we can make the decomposition
* T 2
EL(v,v") = —nE | (9(X) - Elg(X)|X"6))

i | (40 - Elgx)X07))

—nlE ( X)|X"9) - anek (X 0)

We find with condition (model bias) for all v =(6,n) € 15,

“nE [@(X) - E[g(X)\XTB])Q] +nlE [(g(X) - JE[g(X)!XTH*])Q]

< —nby, D@ — 6%)| > \/ﬁrg/CD
—bg||D(0 — 6%)||?, otherwise.

As ||D(6 — 0")[|2 < nZE2c)py|[¢'||% %7 we find

1
EL(v,0") < —bl|D(6 — 67)|2, bl = bymin? 1, .
220y 1yl |2 5% 2

We study two cases first assume that ||D(6 —6*)||? > 722 for some 7 > 0,
then we get

~EL(v,v*) > 70)r?

Otherwise - if |D(6 — 6*)||*> < 72r? - we have as in the proof of Lemma
6.A.D)

k=1

n 2
E {(E[g(X)XTH] - anekoﬂe)) ] > Q(b* —or)%r”

Choosing 7 > 0 small enough gives the claim.
O

The claim of Lemma [6.3.5] now is a direct consequence of Lemma

6.A.7 Proof of Lemma [6.3.6]
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Remark 6.A.5. We assume that the density of the regressors satisfies
PX > Cpy > 0 on Bgyicy(0). This implies that for any 8 € RP the den-
sity of X8 is also bounded away from zero on [—sx,sx] by (B 1)cpX
where A(BE™') denotes the Lebesgue measure of the p — 1 dimensional
ball of radius r > 0 on RP~!. As we use a orthonormal wavelet basis on
L?([~5g,54]) this gives

Ain(H*(0) = inf, B[ f(X76)%)/|Im]P

> ABZ e / Fal@)?de/ |2 = ABE: Yeps.

[—sx,5%

Proof. Take any 6 € S% " Then we have due to the quadratic structure of
the problem and using the usual bounds for |e|| < Cy/m

N(oo

Hnmﬂ) = |largmax £,,(0,n)

nerm™

‘ def

. —1
= <711 Z eeT(X,-TO)> % Z(Q(Xz) +ei)e(X/] 0)
i=1 2

)

n -1
(; ZeeT(Xja)) . (6.A.11)
=1

n

1
= ee(X/ 0
~ 2 cie(X; 0)

i=1

< (HgllooC\/ﬁJr

We want to bound the above right-hand side. For this we bound

1 n
P||= e(Xo
(||nz2“< 0

1 n m
2t> —p | s LSS X0 2 ¢
k=1

neR™ NI G2
Imll=1
1 n
<P sup =Y eifp(X[0)>¢].
(TIGBl(O) n ; !

We want to apply Theorem with U(n) = ﬁ Yo 5if,,7(XZT9) , v =
0 € R™. For this we have to show that condition (Ed) in is met
with d(n,n°) = ||n —n°||rm . This is indeed the case since by Lemma [6.A.4]
for any pair n,n° € B1(0)

(Fomne (X7 0)] < I el — )|
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Using (Cond,), the independence of (g;) and (X;) we find for

< Vn o
A G

and any pair n,n° € B1(0)

1ongexp{Au<’">‘W}

d(v,v°)

= loglEexp{ an 7l 2 Zezfn n° XTB)}
& A

< logJEeXp{osif - o(XiTO)}
; N

< iloglE‘ [exp{ﬂ)\2 ! S fol_no(X;-re)}]
pot n|n—mn°

< CPmp?A%/2.

This implies with Theorem

1 n
P||= e(Xo
(R

> CvvmyVx + 2m/\/ﬁ> <e X
Two bound the norm of the inverse of the matrix in (6.A.11]) we denote

1 n
M,(6) = > ee’ (X 0).
=1

Note that with Remark [6.A.5]
E[M,(8)] > \(B) Vepy,
while

sup [|M(6) — B [M(0)]|| = sup (P, — P)f3(X"6)|.
0eSs? (8,m)eSTxST
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We bound
P s ‘(PH—P)ff,(XTB)‘ >t4s
(0,m)eST xS
> 8)

+IP ( sup ‘(Pn —P) [fg(xTo) e (XTH*)” > t> .
(B,n)ESfXS{"

< P (|(P - P)F2(XT0)

For the first term we can use the bounded differences inequality (Theorem

to find
P (|(Pa = P)F2(XT 00| = |l f |23/ V) < 07

For the second summand we define {x(v) of (P, — IP) £ (X[ 6)%. We use
the chaining method, i.e. Lemma Define 7y = {v*} and with a
sequence ry = 2 Fr with r to be specified later the sequence of sets 17
each with minimal cardinality such that

St xS c | Br(v), Bi(v) © e SP x S |lv° — v < 1}

veY

We can estimate with any v’ € By, n(v)

inf [ex(v) = Cx(v)] = [(Pa = P) { £5(X]0)? = £ (X[ 0)?}.

k—1,m

We estimate for an application of the bounded differences inequality
{£2(X70) — £y (X[ 0)2}|
< {#a(XT0) £ (X7} { n(X]0) + £ (XT 0 }|
< (Ifnlloe + I llse) (1 fn-mlloc + 7 llocliO — €]1) -
We have as ||n|| =1 with Lemma

m 1/2
[fnllee < llnll  sup (Zei(fﬂ)Z) < V1T|[y )| vm,

z€[—sx,5x] \ 1

m 1/2
I£7llse < lImll sup <Ze§3(w)2> < VAT |m®2.

m6[78>(78>(] k=1
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Consequently
‘{ﬁKXT )* -%(XTW)}‘SCan%%

This yields with the bounded difference inequality

P (Tinf |Cx(’vk) — Cx(’vk_l)’ > 8C4m3/2rk/\/ﬁ> <e

k—1m
Now we can define r % (1C1/ d‘g) Then
2-"D(1 - 1/v2)s
IP| inf vg) — vE_1)| >
<Tk11,m|CX( k) — Cx(vp-1)] 2 NG
< e % (6.A.12)

Set

s = \/x +1og(2) + p*[1 + log(2) + log(Cem3/2) —log(1 — 1/v2)]/v/n
< Cy/x + p*log(p*)/v/n,
and plug it into (6.A.12)), then we find with Lemma

/o <Sup | M, (0) — IE [M(0)]]| > Cv/x + p* log(p*)/\/ﬁ)

0es?

<P ( sup Cx(v) — Cx(v°) > Oyt 77 1og<p*>/¢ﬁ)

’UGTm

Z { 1+ log(2)k + log(CCm?’/Q) —log(1 —1/v/2)]

k=1

—ok—1 [X +log(2) + p*[1 + log(2) + log(Ccm?’/Q)
—log(1 — 1/\/5)]} } <e "
Together this implies because p*log(p*)/v/n — 0

IP| sup
fesit

Adding log(3) to x in the above inequality and adapting the constant gives
the claim with a probability bound e™*. O

ﬁinoog)H > C/p*log(p*) + x) < 3e "
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6.A.8 Proof of Lemma [6.3.7]

Before we prove the claims we need a series of auxiliary lemmas.

D (vr) is boundedly invertible
Lemma 6.A.8. Under (A) we have that

C* m3/2+cbza5m5/2 r*
Dy (V5)? = & > 2/ (1— (eo | : } )
chvn

where ¢, > 0 is defined in Lemma and is independent of m,n and

where t* > 0 is defined in (6.3.5)).

Remark 6.A.6. By the definition of r* > 0 in (6.3.5) it is clear that
cp & ¢y, once (M2 + Cpigsm3)/y/m — 0.

To prove this claim, note that using Lemma [6.A.5| we can prove the
following result. It is proved very similarly to Lemma [6.A.18

Lemma 6.A.9. We have for any v € {v € 1y, : || D (v*) (v —v*)|| < r}
and with some constant C?Lo) >0

Ciey {m"? + Cunsm®} 2

. —1 * 2 * —1 * <
[T = Dy, (V) D3 (V) Dy (07| < G

m

We obtain the claim of Lemma [6.A.8 because
D7, (vy,) — Dim(vpy) {1 — DM (vh) D2, (v*) Dy (v, } = D (v7),
such that using Lemma and Lemma [6.A.5

< CE‘LO) {m3/2 + Cbiasm5/2} r*
1+
chvn

) D (vr) = D, (v7) = b

Some bounds for the score

Lemma 6.A.10. We have

[Fs (@) < (Cgy +1)V345%][1]| oo,

v —v)|lvm
NG

|D(w° — v*)[m?
+C < NG + 1) . (6.A.13)

Fa(XT0) — e (XT0°)] < I

207



Proof. Using assumption (Cond,-), that |[M(j)| < 17 (in (6.A.10)) and
k = (2% — 1)17 + rp with 7, € {0,...,2/% + 16} and j, € Ny we find as
o> 2

Jm—1
| fp: (®)] < Z Z Dl ler (z
J=0 keM(y)
1 V2l 1/2
SV oo | D D Iml?2Y > 27Y2¥
Jj=0 keM(j) Jj=0

me1 \?

m—1 1/2

< V1719 || <Z ‘n;knk|2k4> > 2
k=0 =0

< V34)¢ o Ol 1,

where with Lemmal6.3.5|and m € N large enough (m®/n — 0 and r* =< m)

m—1 1/2
* 214
Clinz, < <Z 7] k)
k=1

m—1 vz e 1/2
< (Z In*k!2k4) + (Z e 77*k|2k4>
k=0 k=0

< Cypy +m2 (| — )|

21‘*
vnep
For the second claim we bound (|6.A.13]) to bound

< Cyg + < Clgr + 1,

‘fn(XTe) - fn° (XTGO)’ < |fn—n° (XTG)’ + ’fno (XTB) - fn" (XTGO)‘
< IV b x| fip V.

It remains to bound using that m®/n — 0 and that r* < C\/m

1/2

m 1/2 ]m
el < VT (z 77°24> IEE
7j=1

k=1
<o 12 \/;*)IImQ ).
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Lemma 6.A.11. We have with ;, from (6.A.1))

sim (U] < (Clppp 4+ D)V34sx ¥ [|oo + V17|10l 0o v/,

and for any v,v" € To(r) with r < Cy/m(1 + Cpigs log(n))

l[Si,m(v) — gi,m(U/)H < \/?Q(SXHWHOOmS/Q + 2(CIIfH + 1)\/%“1#"[]003)(

Dy (v — ')
9l 3/2 N Crn /3L )”m—
2 oosxm™ 4 9 llowCp V2L, ) =
Proof. Note

lstan(vm) | = 1(fps, (X 67) VS, Xi,e(X[67,)]

< s, (X Il + lle(X] 65,)]]-

Such that with (6.A.8) and Lemma |6.A.10
l[sim (Uil < (Cpgy + 1)V34sx |9 [loo + V17|t ccv/m. (6.A.14)

For the second claim we use that for each j=1,...,5, — 1

{ ke{2) —2j17—1,...,27" —2(j + 1)17—1 -1} : (6.A.15)

en(XT0) — ex(X]0)| v [e}(X]0) — ef,(X]0)] > 0}| < 34
Furthermore we always have that
ek (X[ 0') — er(X] 0)] < 27°/2 |9 || 5|0 — |-

This implies again using that a > 2 that =% — 0 for r? < Cm and with
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N(j) ¢ N from (6.A.15)

£ (07 X)) — (X[ 6))| (6.A.16)

= 1> m(er(X]0) — (X[ 6)]

k=1
Jm—1
< Y2 D0 w22 16— 0')[[14lsosx
J=0 keN(j)
Jm—1 Jm—1 4
<ol D0 DD a2 A DD D e — )2V
J=0 keN(j) J=0 keN(j)
10 — 0'[[[|14"]|cosx
1 1
m—1 2 [im—1 ' 2 rm2
< \/371<Z n;ik2“> A B
k=0 Jj=0

16— 0" 05
< VBA(C) gy + Dm0 — 0] osx.

and with the same arguments

m 1/2
le(X]6) - e(X] 0)] < (Z len(X] 6) - ex(X] e’>|2> (6.A.17)
k=1

, 1/2
Jm—1
< V34 (Z 23]') 16— 6'l[[|¢ | osx

j=0

< V34m*?)|0 — 6'|[| ¢ o 5x

and

1y (8T X) Vg Xl < s Y I — 0l il l€k (07 X)) (6.A.18)
k=1

im=1 \ 2
< V34|ln —1'[lsx ¢l (Z 23])
=0

< V34||n — '||sx ¢/ | scm®.
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Finally similar to (6.A.14) we have with M (j) C N from (6.A.10)

Jm—1
X0 < D D mller (X[ 0)]
J=0 keM(j)
jm—1 V2 12
VI | S0 ST 2V | [ YD 2w
J=0 keM((j) J=0

jm—1 \?

m—1 1/2
< VITI¥ oo (Z nk|2k4> R
k=0 7=0

< \/371”1#/“00(0”,7*“ + 1)7

where since v/ € 7,(r) and n € N large enough (r? = O(m) and m>(1 +
Chias log(n))/n — 0)

1/2

IN

m—1 1/2 m—1 1/2 m—1
(Z |m§2k4> (Z |77*k|2k4> + (Z I}, — n*kl2k4>
k=1 k=0 k=0
Cipy +m* (In' = mi |l + 1(m5, — ™))
m?(r +r*)

vnenp

IN

< Cjs + < Clg= + 1,

such that

1f7 (X[ 0)(Vipg — Ve )X (6.A.19)
< N oo (Cliey + 1)V34Lvo. |0 — €' sx.
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We get combining (6.A.19)) , (6.A.16)), (6.A.18) and (6.A.17))

15i,m (V) = Gim (V)]
= [If} (0T Xi) Vo X;
+ [ £ (07X0) — 1 (X[ 0)| Vg X,
+1 (X[ 0) (Vg — VPg)X;, e(X] 0) — e(X] )|
< V34| — n'l|sx |9 ]|com®
+V3A(C gy + 1)v/ml|0 — 6|9 sosx
+v/34m*2)|0 — 6'[||¢) | cosx
¢ oo (Cle + 1)V34Lvs |16 — 6|
< VB4(sx [t loom®? + 2(Clp g + DVml|¢" | cosx

2[|Dim (v — )|
Vnep

where we used Lemma in the last step to find that

16 loosxm™ + [ | owCly, V2L )

16— 6|V lIn — =l

IN

VIO =612+ =] < lv -2
_ [Dulv — )
B Vvnep

Crude deviation bounds for sums of random matrices

The next auxiliary Lemma relies on a non-commutative Bernstein inequality;
see Theorem 1.4 of [56].

Lemma 6.A.12. Suppose that v; € RP' are iid random vectors, where
p € N. Define

R R T
S; = -~ Z;vivi — FEfviv, |,
P

and B? = E[||v1||*]. Assume that Hvi,mv;rmﬂ = |IM;|| < U € R then it
holds

P(|Sq]| >n~'t) <2p em{—m}

212



Proof. This lemma is an immediate consequence of the non-commutative
Bernstein inequality (Theorem 1.4 in [56]). We only have to note that

n
> EM;] < 2niE[||v|*) = 2nB>.
=1

Lemma 6.A.13. We have with x < 9n/2 —log(2m) that
1/2
P (1841 2 CarvBim x +tog(2m) vt ) < e
where with ;n, from (6.A.1])
1
1,M 7 m * - *VZ ; .
Z§ § ) n m(vm)
Proof. We want to employ lemma We estimate using Lemma [6.AT7]
I5im(3)5n () TI < 34((Cl gy + DVl + [l ) m =2 Cagom,

such that [[g;ms; || =: [[M;]] < Cyym . Furthermore

T
gi,m

E[lsim(vy)I'] < Ciym?®.

Plugging these bounds into Lemma we get

_ t2
P(||Snll 2 n7t) < 2m eXp{_4nC2 m? + 2CMmt/3}'
M

1/2
Setting t = Cprv/8nm (x + log(Zm)) and x < 9n/2 —log(2m) this gives

P <Hsn|| > ch/ém(x + 1og(2m))1/2/\/ﬁ> <o,

Lemma 6.A.14. We have with x < 9n/2 —log(2m) that
* 4 1/2 —
P (18412 Ve +)*(x-+ log(zm) " /vi) < e
where with ;n, from (6.A.1])

1
Zgzm gzm T - *Vgn(v)
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Proof. We want to employ lemma We estimate using Lemma [6.A.11
and that r° < Cy/p* +x

Sian (0)6i.m (V) | < 3l (V) 17+ 3l1m (V) — G (0)
Do (v — v7)[[*m®
n

< Cym +Cm?c?/n.

< Cym+C

such that |

gi’mg;—mH =: ||M;]|| < Cprm . Furthermore
Blllsim(vp) ][] < €2(m? + m°r? /n?).
Plugging these bounds into Lemma [6.A.12| we get

P(||Sn]l = n~'t)

2
< 2mexp{- 3
= SIeRp 4AnC?(m? + mbrt/n?) + 2C (m + m3x?/n)t/3

1/2
Setting ¢ = v/8nC (m + m3r?/n) (x + log(2m)) /n? and x < 9n/2 —
log(2m) this implies

P (HSnH > V/8C (m + m®r?/n) <X + log(2m)> 1/2/\/ﬁ) <e "

Lemma 6.A.15. We have with
, 1/2
t = C2 | Don(v — v)||2/5/am? <x v log(2m)> :
and x < 9n/2 — log(2m)
P([Sn]l > n~'t) <7,

where with v € Yo(r) and with §;,m from (6.A.1))
1 n
Sp = n Zl(%',m(vl) - Ci,m<v>)(§i,m(vl) - §i,m('v))T

—E(5im (V") = Gim (V) (sim (V') = Gim(v)) "

Cr = V3 (sx[¢/loe +3(Cl gy + 119" oosx
/ / 2
+3[¥ [|oosx + 10 ||ooC||n/||\f2Lv¢A>£-
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Proof. We estimate using Lemma [6.A.11

H(giﬂn(vl) - §i,m(v))(§i,m(v/) - §i,m(v))

<

A

||§i,m (U,) — Si,m ('U)

.
I

I?

34(x¥/lloe + 3(Clp + DI loosx

3|9 cosx + W/Hoo0||n/u\/§LV@.>

4D (v — V) |Pm?

2 1Dl =) Pm?.

n

With the same estimates we obtain

Plugging these bounds into Lemma|6.A.12|we get with d(v,v’)

Coll

P(|Sull > ")

1/2
Setting t = C2,[| D (v — v/)||2\/8/nm? (x + log(2m))
log(2m) this yields

< 2m exp{—

E[]

Sim (V) — G m(V)|[Y] < Cym

2
ncy,

I Dm(v — )"

t2

n2

def
= [|Dm(v—

4d(v,v")ACYn=mS + 2d(v, v')2C%,mPn =1t /3 }

P(ISl| > n ') <.

Conditions (€Dy), (€r) and (ED1,m)

and x < 9n/2 —

Lemma 6.A.16. With probability greater than 1 — 3e™* we have (E€Dyg)

with

gw

= 20°%52,
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and (Er) with

~ 3/2 -1
g(r) = VnepgC <\/'r>n—|—m / r/\/ﬁ> ,
Vim = §2<1 +C <m3/2 + rm2/\/ﬁ> r/\V/n
) 1/2
+C (m + m?r*/n) (x—l—log(Qm)) /\/ﬁ)
where C(gry > 0 is independent of n,m,x,r.
Proof. Lemma m gives with 4 = Vin/zfy/HV},{Q’yH

<VC(U7*n)’rY>]RP* _ <§TV71A(’U*)

,E>Rn.
Vi

Consequently - using Lemma [6.A.11|- we get with p < \/ﬁaflc@'g(((?”n*” +

=T
1)\/3>45x||¢’|loo+\/ﬁ||¢||oo\/ﬁ> , with ¢; ,,, from and assumption
(Cond,)

(VC(vp):7) }

sup log IF. ex
. p{“uvmwmn

yERP”
n

<> sup  log Eexp{u(F,Vy, (v5)sim(vy,))ei}
i=1 YERP, |F]|=1

172,&2’7 (Z gzm gzm )T) ,V’/_TLI(,U*):YJ

7P+ Py TV (o, )nSa V! (v, )7
72?4+ 02, (6.A.20)

IN

IN

where

My =7 ( —ly m) 1/2 S» (n_lvm)_1/2 7,
1
i,m 7 m - *vm ).
Zc m)sim (Vi) " = Vi (v7,)
With Lemma [6.A.13| we infer that if x < 9n/2 — log(2m)

P (HSnH > CM\/§m<X + log(2m)) 1/2/\/ﬁ> <e X
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Consequently with probability greater than 1 —e™* we find that for n € N
large enough

1/2
CM\/§m<x + log(2m)>
< <1
= Vno?c3, -

Thus we get (EDg) with probability greater than 1 —e™* and

)

9 = Vesd((Claey + DV3Esxl| o +VIT[6l|ov/m)

2 _ 92
vy, = 2v°.

Concerning (€r) we bound using the same arguments as in the proof

of Lemma [6.A T8
[V (0) ™ Vi (U )1 < 14 ([T = Vo (0) ™ Vi (05,)* Vi (0) 71|
<14+C (m3/2+rm2/\/ﬁ> r/v/n.

Thus we get with the arguments from above (€r) using Lemma|6.A.14] with
probability greater than 1 —e™ and

o)

—~

2
I

Vienge (vim +m% /i)
Vem = §2<1 +C (m3/2 + rm2/\/ﬁ) r/vn

+C (m + m?r*/n) (x + 10g(2m)) 1/2/\/5) :

O
Lemma 6.A.17. With probability greater than 1 —e™* we have (E€Dq)
with
def \/* —3/20—1
g = Vneprm (EDy)’
w2
\/HC@7
V%,m = DQC(ggl)mQ,

where

Clemyy = V3 (sx]1¥/lloe +3(Clpy + 1)1 oo + 311 o5

HW’HooC'”n;n”\@LVQ)
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Proof. We get with Lemma, with Lemma and with ¢;,, from
A1)

H®;11 (gi,m('u) - §i,m(vl)) H

VTR

S ey 2-° (sl lloem®? + 3(Cy 5y + DVl loosx
=1

2r

+3||¢/||oosxm3/2 + HWHOOC”%H\@LVQ) N

def 2m3/2
= Ceny)——5—1Dm(v =),
(€D1) anD

We get with,

def _ —
n<g = Vnep (rm) 3/20(8191)

def 2

w =
Vnep’

and the same calculations as in (6.A.20) with some v, v’ € Vy(x), v € RP
and |y = 1

T {1 D (VE() = V()
log IE[exp {/‘ w|| Dy (v — V|| }]

fre D) sl

W[ Dm (v — )|

<) log Ecfexp

=1
2772
< - @lIDm(w = v))
n'YT(D;nl (Z(gi,m(v/) - gi,m(v))(gi,m(v/) - §i,m(v))T> Q;LI’YT-
=1

We estimate
7 D! <Z<<i,m<v’> ~ Gim(©)) (sim (V) - <i,m<v>>T> DT
=1
< D |(5im (V) = G (1)) (Siam (V) = Sim (0) | D]
+p

-1
< Bl (n2D0)  (m(®) = Gim (@) + 40,
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where

%h:=\\(n_”91%n>_lsn(n—Lginn)_lw
Sn = %Z(%,m(’vl) — 6im (V) (Sim(V) = Gim(v) T
=1

—E(gi,m(vl) - gi,m(v))(gi,m(vl) - §i,m('v))T-
To controll s, > 0 we apply Lemma and we infer that with ¢ =
172
C2 | Dy (v — v')||2\/5/nm? (x + 10g(2m)> and x <9n/2 —log(2m) the
set {||Snp|| < n~'t} is of dominating probability and on this set we find

O3y 1D v —v') 2 (x4 og2m)) ' m* /57m

— 2
TlCD

An

1/2
C2,V/5m? (x + 10g(2m))

vn
For r < ry < Cp+/p* + x this gives because m5/2/\/ﬁ -0

< W[ Do (v = ")

sn < C%\/(X + 10g(2m))p*.
We caleulate with some (8°,7°) = (J-D,,) 1y
ny "D B | (c1m (@) = 51 (0)) (L (0) = <1m(0))T| Dty
= |{ [7X70) - £, (X 07
e (XT0) = £ (X0
<31 [{[7,(x70) - £, (x"0)] (x 02}
3B | {£X70) - £ (X0}
We estimate separately
B |{[7070) - pyxTo)] (xo72}|
<ask (B (£ X0} |+ 1 ({1070 - fuxTo)}) ).
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We again estimate separately denoting v = (n —n')/|ln — /||

B { £y X0 | = I = /2230 31~ Lo/ 2pinEleiel (XT6)]

k=1 l=k

We have with [ = 2/ 4 5;17—14+r; € N and k = (2jk —1)17+r; € N using
(6.A.4)

Elehej(X0)] < 17C,, 240/ |22 L prrzo. (6.A21)

This implies

1 2
— {f’_ (XTo } }
n — /|2 { - (X 0)
=> > (1~ Lt/2ynEleie(XT0)]
k=1 =k
< 17CPX||1/},HOOZ’Y]€2jk
Jm 29433 A 1/2
0D 2 pan0(20 = 217 — 147, k)
Jj=jr =0
m j 1/2
< 17CPX”1/}/HOO Z’Yijk Z 2271 rQ(J'l*jk)lr?q
k=0 =ik
m j 1/2
= \/El’?cpx‘|wl”o<>2’yk2jk/2 Z 9341
k=0 J=Jk
< 18%Cpm?. (6.A.22)
Furthermore
E [{f:,,<xm) (X700} } 2SS = L/
k=1 =k

B [(e(XT0) — ef(X"0))(e](X76) — /(X" 0))] .
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With (6.A.6]) this gives
2
E {{ fi(X70) - f,’,,(XTaf)} }
< |6 — 0|7 Cpe 9”1 205% 1772 > 2% > 2% 11, 0y

k=1 I=k
< 116 — 0% Coy 10" |35 % 1722

Z 77];22]k (Z 7722/‘64) (Z 1{Ikmll7é®}>
k =k =k

=1

1/2

As always

r < Cy/p*(1 + Cpigs log(n)),
implies m?/y/n — 0 such that

m 1/2
(Z n22k4>

=k

IN

m 2 m 1/2
(Z nfn?k4> + (Z i — nfnzlzk“)
=k =k

2(1 = Cjp));

IN

which gives using (6.3.4)
2
E [{ £1(X76) - f;,,(XTa’)} }

m
< 16 = 017 (1 = Cpye ) Cox [0 |135% 177/ 24m Y ~ j,2%74/2.
k=1

Repeating the same arguments gives
2
E [{f,’?,(XTG) - f;/(XTa’)} }
<16 = 0'[P(1 = Cppe ) Cpx |12 5% 1724m* 2,
such that
'~ T 1Tl T goy2 2 2 2
B |{[£2(X70) - £;,X76)] (X760} | < cm?jo - v'|*(6.4.23)
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Finally we can estimate

E|{fr(X70) - fyr(x"0)}’]

m

m
= 2> > (1= Le—y/2)mpp

k=1 l=k

E [(ek(XTG) —en(XT0))(e)(XTH) — el(xTe'))] .

Using (6.A.5) and very similar arguments as before additionally using that
[n°] < 1/ep

E|{frx70) - £ (x"0)) |

m m
< 116 = 0'PCox 19/ 125% 172 D mi 2 Y~ 2 gy

k=1 =k
1 &N
< |6 — 6'||*Cpyx le\\gos%(175/24m3/267 S 2ik/2y
k=1
1
N (6.4.20)

Putting these bounds together gives

n'YTD;nlE' (gl,m(v/) - §1,m(v))(§17m(vl) - §1,m(v))T D;nl"YT
< Clemyym” [ Dim(v — )| %w?,

This yields (ED1) with

2 ~2~2 2
Vim =V C(8®1)m .

Condition (£y)
Lemma 6.A.18. The condition (Lo) is satisfied where

Ceo) 1% + s} 1
CD\/ﬁ ’

where Cs1,Cs2 >0 only depend on |[{)]loo, [|%[|oos 1" |l C g+ Lva, 5% -

i(r) =
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Proof. We will show that || D2 (v) — D2 (v,)|| < ¢3d(r), which will give
the claim due to

. . 1 «
1 = Dy Vi BIL ()] Dy || € || Dy (v) = Dy (v7)]-
D

We represent

—V3 Bl (v)] € D},(v) = nd2, (v) + 017, (v),

2(v)  am(v e v)?2 Al (v
o) = (G0 T ) (2 86 )
() = JE[(MXTO) — o)) (2] o) )]

vg(v) = 2f1(XT0)VPe X(X) Vg

H (X)X Vg X, -, ],
bm(v) = VX Te T (X70),

such that

D2 @) ~ D33l < - (I1D2(0) — DAl + 2 A () — An(w3)]

+H[H, (v) = Hy (v + (|, (v) — T?n(v:l)H)v
so that we can calculate separately
1 2 20,0k
D) - Do)
< B[|X|? {!((ﬂ,)2 — (fn:))(X70)|
H(f:)2(XT0) = (fr: )2(XT6;))
+2|(f: )2(XT65,)[[[VP(6) X — Vﬂ?(@fn)TXH}]-
Using Lemma [6.A.10] we find
|(fpe XX 0,)[VR(XT6) — VO(X T8y )|
< ¥ lloo(Cyy +1D)V2Lva|6 - 65,
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Furthermore we have M (j) C {1,...,m} in (6.A.10)
E|(fy— f3: )(X0) < |k — ni Elej, (X7 6))| (6.A.25)
k=1

jm 1/2
< Cpxo[¥[lm = m3, | (Z 2j’“|M(j)|)

k=1
< Cllm =y l[l1¢" oo

This implies using (6.A.14) , (6.A.25) and (6.A.22)

B \[((f,)° - (f,’,:n)2)(XTa)|}
< B [|£4(X70)] + £, (XTONI(F) — £, ) (X O]

< E|

(1Fn = Fas )X O)] + 218 (X OISy~ f1e )X TO)]]

< FE

(= e )(XTO)2]

+20¢/ loo (Cy 1 + DV2E[ (= £ /(X 0)]]

IN

rm
n

1l (2||w'uoo<c|f” IV f) mln — ol

IN

cm|ln —

where we used % — 0 for r? < Cm. Finally we derive with (6.A.16]) and
(6.A.14)

1(Fre )2 (X7 0) — (f )2 (XT 65,
17, XTI + | fe (XTO) DI, (X7 0) = f (X767

< (
< AV2|Y oo (Cpy + 1)2Vm[Y" [ cosx |0 — 65

Collecting everything yields with some constant C > 0

1
~[[D*(v) = D*(vy,)|| < Cmljv — v
n

mll
-
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Furthermore

1 *
[ (v) = (o)

= sup Z olal (E[ekel(XTe)] [ekez(XTO;%)D L1nn, 0
WeﬁRTZkl 1

m m
<2 sup Y wnE [(fik (XT6) - k(XTafn)> ez(XTG)] L0
YER™ p 1 1=k
lvl=1

m m
+2 sup Y >

YER™ 11 1=k
[l~v][=1

E [ek(XTG:n) (el(XTB) _ el(XTe;;))] 1y n1eso.

Using (6.A.7)) and (6.3.4) this gives

D> wnE [(ek X'6) - ex(X'0; )) ez(XT‘))} Lynn£0
k=1 1=k

m m
< 116 = 61114 [15%17Cpx D w2 D ulnnz0

k=1 I=k
1/2
< 116 = 05141155 17%/°Cpe vaﬂ Z %
J=Jk
1/2

Jm
< 16 = 65, 10 [|s% 172 Cpuv/m | Y 27

J=1

< 110 = 6, [14']|s% 17%/*Cpyem,

225



and

DD {(61 (X'0) - e(X 0y, )) ek(XTE))} Lynn£0
k=1 1=k

m m
< 116 = 65,114 15% 17 (Coxc + 1llo0) D w22 Y~ 1221, 0
k=1 =k

. 1/2
m Jm
< 10 = 5, 114155 17/ (o + 1ello) D | Y 27
k=1 J=Jk
< 16 = 0 [[14'l1s% 172 (Cp + |9l oc)m

Consequently with some constant Cyg € R

CHm

1 "
—[[H, (v) = Hy, (v])] <

e RGOl | (6.A.26)

Again with some constant C > 0

7"

2(X10) — fr. (X]6;,)

HlAn() = An(wi)l < (B[
[ |va() - vae;,)*] "

77

+JE[ He(XIH) —e(X[]0%)

Note that using (6.A.24])

E[ |exT0) - e(xTo;,)||
< s B|{£(X70) = £ 70|

m°ll=1

16 = 62,112 Cpe [0/ 5% 17724

Using (6.A.23)) this yields

IN

N An(0) ~ An(w)] < Cmllo— ]|
Finally we estimate the fourth term.
(@) = (V)| < B[ F7(X70) = frr, XTO)VE ()] (6.A.27)
(| f;, (XT67,) = g(X)|[[V7, (v5) = Vi ()]
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We estimate separately
E[| £(X"0) = fu, (XT6;,)[1 (V) (0)]]
< B[ £(X78) — fos, (X 07|05 (0)]l]
+IE[| £ (X7 0) = fs, (X706 (V)]

To bound the first term, first note that again using the wavelet structure

| Fr(XT0)| < | £y e (XTO)| + [ fr (X7 6)]

1/2

m 12 fjn—1
< VA (zmk —n;;m) S o) oy
k=0 §=0 "
5/2
/i ES m
< VB oe | D(0 — )| 2 4Gy o

which can be treated as a constant as m®/n — 0. Furthermore using

(6.A.14)) we have for any ¢ € RP~! with |¢| =1

£ (XT0) V2B [X, 0, e < 349 |2.Ce 5% V2 Poy, |l oo-

To control IE|by,(v)||?> we use (6.A.21)) to bound

m
E|bp(v)|* < 5% Y Fej(X'6)?
k=1
m .
s 172Co [[012, ) 2%
k=1

sx17°C2 ||y’ [|2m?. (6.A.28)

IN

IN

This implies for the first summand in (6.A.27)) with constants C,C’ > 0 large
enough

E[| £7(X70) — fu, (XT67,)[V5, ()]
< (B0 £2(X70) = fs, (XTO) )12
] f, (XT0) = fy, (XT05,)[2]1/2) Ca/2
< Cm®|lv — v}, |+ Cm® P B £7(X70) — f (X)),
We estimate using , rm??/\/n — 0 for r < ry and constants
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C,C" > 0 large enough

B[ fn(X70) — fur, (XTO)2]12 = jﬁuﬂmwxn — )l

;ﬁuﬁmw;)(n —5)

) () (0 — 1)

IIHQ() H, (on) 12 (1(m — )| +

1
Vi VR

e’ /) }w%@uivmw — o)

\H2 — H, (w12

IN
—N—

< [ D (v —vp)ll-
\/>
We also find

‘fm*n (XTO) - fni‘n (XTQ:nN

m 12 / m 1/2
< (Z(TI;)%W‘”) (ZGZ(XTOL)IQk‘z‘X) Lya|[X][|6 — 6;,]]

k=1 k=1
< 2V3AC s |V2Lvasx [V ]| 10 — 65,11

Consequently

Cm3/2 .
1D (v = o) |-
ncy

E[| £(X76) — fn, (XT6,)[1V5,(0)]]] <

Furthermore using that |fy: (X'67,) — g(X)| < Cpias
E[|fn;, (X76;,) — g(X)|[[V5(v5) = Vi ()]
< Chias (E[[[vg(vy,) — v (V)] + 2IE||bm (v],) — b (V)]]]) -

For this we estimate With some constants C; that only depend on [[V?®g: |,
X Clifr lloor Cll£L lloo  ©

lvg(vs,) — vg(v)]]
12 ”(XTG))V¢ X(X) Vg — Qfg;l(XTO;*n)VQSg;LX(X)TV¢%H

IN

+”|f17;*n (XT0;>‘2XTv2§p—0rjn [Xa K ] - |f7/7(XT0)‘2XTV2Q03 [X7 K ] H

IN

Co || fps, (XT0)1 = [ £ (XTO)°| + Col f (XT67) — f/(XT0)]
+C3(160 — 6,
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With the same arguments as those wused for the bound
1| D2(w) — D2(v,)]| we find

E ||} (XT6;)]> = [£/(XT0)?| < cmllv — v}, ||.
Furthermore

| Frs, (X1 605) — f(XT0)| < |f. (X765,) — fr. (XT0)]

m

H e (X10) — f(XT6)]

{ he{2 —217— 1, 2" o+ 117 - 1-1}
(X 0') — e!(X] 0] > o}( < 34.

we estimate

| frs, (X1 67) — fr (X7 0)]

Y2 { jm 1/2
V39" o]0 — 6 <Zn*2k 2“) (ZQ(”“’”)

m3/2H0_0:1H7

IN

IN

and

of

. 1/2
Jm
|Fre (XT0) = f1(XT0)| < V17|l — 7| (Z 25”) < cm®2||0 — 65,

j=1
Furthermore
E[bm(vy,) = bm(v)] < CE[€'(X0) — &' (X"6;,)]|
+CE[|€ (X" 6;,)]°]/%(16 — 6.
By we have
Ellle/ (X765, 17"/ < 17C,x |9 cm™?

Furthermore

1/2
E|le/(X70) ~ /(XT6;,)]| < B [|e/(XT0) ~ /(XT0;,))2]

1/2
:<ZJE[ (XT9) — k(XTo;*n))ZD
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With (6.A.6]) we find

m 1/2
Ele'(X"0) — &' (X0, < [[v"s%17]0 — &' (Z 24]"“)
k=1

< 9" |05k 17(16 — 6 m™?,
Together this gives
B[ f;, (X76},) = g(X)| V7 (vr) = Vi (0]
< em®?||v — Hpev*|| 4 ChiasCm®?.

Collecting everything we find

L2 2 (% C 3/2 5/2 *
_ _ < - . _ .
LIDE ) = D)l < s {4 Guiagm™? | Do = 7, )

Such that

B C(Eo) {m3/2 + Cbmsm5/2} r

cpy/n

o(r)

Condition (Lr)

Before we start with the actual proof we cite the following important result

that will be used in our arguments.

The next result is a variant of Theorem 4.3 of [39] and is the key tool of

this subsection.

Theorem 6.A.19. Let for a sequence of independent X; € X for some

space X

Flv)=> fi(v,X;)—e,vel CR”
=1

and assume that with r > rg >0, Yo(r) CT and xp : [0,2b] = R defined

in (6.A.29)

E | sup (Pn—P)xp(v)| <Cy, Ple>Ce) <,
veEYL(r)°

Q) ¥ l%lf : P (fi(v,X;) > br?/n) > 0.
velo(r)C
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Choose
0< A< (Q(2b) —2/n—2C,) /4.

2 2
Then for = > Ce/(Ab) V 1y

P ( 1;1{ : F(v) < )\br2> <exp{-nQ(2p)?/4} + 7.
vEYo (1)

The auziliary function is defined as

0, t <wu;
Xult) = t/u—1, teuw2u); xo@)i = X(fi(v). (6.A.29)
1 t > 2u;

)

Remark 6.A.7. The proof is nearly the same as that of Theorem 4.3 of
[39]. The set Yo(r)¢ C RP" is neither star shaped, nor convex but one can
still use the same arguments.

Now we can start with the proof. We point out that in this Section we
will distinguish 6 € S7 T and g € Wy with D(pg) = O from each other.
The result is summarized in the following Lemma:

Lemma 6.A.20. Assume the conditions (A). Then for n € N large enough
there exist ¢(Q), ¢(£r),C > 0 such that with probability 1 — exp {—m3x} —

exp {—ne(g)/4}

— inf E[L(v,v)] > conr?/2,
et [£(v,v,)] > ceryr”/

as soon as r2 > C(m +x).

Proof. We will prove this claim using Theorem [6.A.19] First note that we
have with expectation taken conditioned on (X) = (X;)i=1,..» C RP and

using
—E[L(v, vy,)] = —E[L(v, v,)|(X)]

= 3 [10(XT0) — for (X0 |y (KT 03,) — fe (XT6°)1
=1

>y [1£(X]6) = £ (X[ 67)P?]

=1
—nIB(| fnz, (X 67,) — Fo- (X[ 67)]
= |(Po = 1P| fy, (X7 6;,) = Fir (X 69)[2].
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We define

¢ C nE( s (X[ 65) — fur (X767

n|(Po = )| £, (X76;,) = Fir (X707

such that
B[ (0,0)|(X)) 2 Y (£a(XT0) ~ fir (XT0%)) .
=1

This hints that Theorem [6.A.19] gives the desired result. Consider the fol-
lowing list of assumptions:

(1) With some C >0

nIE[| fy;, (X7 67,) — f- (XT69)P] < 3(2+ €)™,

(2) With probability 1 — exp {—m3x} and a constant Cy~ >0
n|(Po = P)| iy, (X76;,) — for (X0 < C5,

(3) For some b >0 and for n € N large enough and r > /m

Q(2v) (6.A.30)

def . T - 9 ,
(9771)1€nfro(r)C |:(fn( i 0) fn (X; )) 2 br /n:| >0,

This means that in terms of Theorem under assumptions (1), (2)
and (3) we have C. < 3(2 + C)r*? + Cy and 7. < exp{-m’x}. We
prove assumptions (1), (2) and (3) in Lemmas [6.A.22] [6.A.23| and |6.A.24]
which will give that C. < Cy, + 3(2 + C)r*? with probability greater than
1 — e ™% and that Q(b) > 0 for a certain choice of b > 0 small enough
and for r > Cy/m with some constant C. Lemma completes the
proof. O

Lemma 6.A.21. Under the assumptions (1), (2) and (3) we get

inf  —IE[L(v,v})|(X)] > Abr?
UGTO (I‘)C

with probability greater than 1 — exp {—mSX} — exp {—nQ(2b)2/4} for
r’ > (3(2+C)r*? + Cy)/(Ab) V Cm,
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0< 2 (Q(2b) —2/n+C bg(:””) /4,

for a constant C >0 which is a function of ||¢|cc, ||¥] oo, 5% -

Proof. This is a direct consequence of Theorem It remains to bound
using the proof of Theorem 8.15 of [34]

E [ sup (P, — P)Xb(v)] <F [Sup(Pn - P)Xb(’u)} (6.A.31)
veYo(r)° veY

+9,

n

< 0 E [\/6{1+10gN(6,]—",L1(Pn))}

where N (0, F, L1(P,)) denotes the 0 -ball covering number of F def {xp(v) :
v € 7'} with respect to the norm

1
i=1

The universal constant C* > 0 comes from Lemma 8.2 of [34] (C* =
K(exp(2?) —1)). The function xp : 7, — R is defined via

0, t < u;
_ def __ %
Xult) = t/u—1, teu2u; xo(v)i = Xl fn(X]0) = frr (X 6%)%).
1, t > 2u;

We want to bound the right-hand side of (6.A.31]). For this note that
log N(6,F,L1(Py)) <log N(6/(L(Pn) V1),T,| -l2),
where

L(P,) = sup lIxp(v) — Xb(ii )HLl(Pn)
v,U°EY HU —v ”2
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We estimate using that we have diam(25,) < Cy/m
[Xp(V)i — X (V)]
| Fn(X{0) = fe (X[ 6°)?

+2|(fn(X{ 0) = fie (X 0°))(fn(X] 0) = f- (X 6%))]
2’fnfno(XzT0)|2 + 2|fn°(Xz—‘r0) - fno(Xz—‘rao”Q

IA

IN

/2 Fe (K] 0)2 42| e (X 0) — fipe (X[ 6°)
(X[ 0) — for (X7 07)]

< 2llm — Pl 1% + 216 — 6 2sxam® |2 I
V2 — e PG + 20 — 6 Poxem? [ e 2
Vil + 7 )

< cymd||v — v°| 4 Com?||v — v°|?.

But note that by the triangular inequality we also have |xp(v); — xp(v°);i] <
2. This gives

Ixo(v) = x6(V)|lLy ()
0,0 v —v°[2

2
< sup | —————— A Cym® + Com*||v — v°|2
vee \lv —v°2

= C3m3.
We infer setting § = /p*/n

\/6{1 +log N(6,F, L1 (P,))}

n

+9

< \/6{1 +1log N(6/(L(P,) V1),7,] - l2)} Ly
n
\/6{1 +log(Cm?) +log(1/0)p*}
- n
- Cl\/log(p )+10§(n/p /2 L ST
< Cyy/loB800P"
n
The claim follows with Theorem [6.A.19l O
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It remains to prove the assumptions (1), (2) and (3) which we do in the
following three lemmas.

Lemma 6.A.22. We have for some C >0
|| fn;, (X7 65,) = f-(XT07)]7] < 3(2+C)r*?
Proof. We find with the Taylor expansion, Lemmam (which is applicable

because it only needs (£Lr) for the full model and with center v* € 7°) and
Lemma with some 6° € Conv(0;,,0%)

[, (X76;,) = - (XT6"))
<3n (E[an* (X76;) — for (X0 + B[ - (X 63)11%])
< 3(ID©O°)(6;, — 671> + [H(w},)(mj — £)]2)
<3 ((1+ 11 = D7D (&) D~ D (6}, — 7))
(1 1 =1 ) ) A, — 1))
g3[2+HI—LVU%dXHﬁD_Vﬂ%%WﬁﬁanH@ﬁQ%_W}

1D (v, — 0|
< 3(2 4 C)r*?

O]

Lemma 6.A.23. We have for a constant C > 0 that only depends on
1Vlloo s ¥ |lco and sx2 that

P (0 |(Pa = IP) s, (X7 6,,) = fir (X072 2 CVE) < exp {—mPx}.

Proof. We want to use the finite difference inequality. As above define

n
def * *
Fi QR SR, f(Xa, o X) E Py (XT6}) = e (X702,
i=1
and note that for any ¢ =1,...,n and any alternative realization X} € R

7’L|f(X1,...,Xi,...,Xn)—f(Xl,...,X/u..

(2

7X7L)’
< | fone, (X] 05) = Fr (X] 092+ [ fos, (X'} 62) — 9(X12)|2
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We have
| F, (XT0,) — fnr (XT0°)2 < 3| fe s (X[ 0)
+3| e (X[ 07) = o (X[ 07,
As in Lemma [6.A.11] there are constants C,C’ such that

|fn**rm1 (X;re;kn”?

m 2 © 2
<3 Z — i m)en(X1 05| +3| > nien(X]65,)
m
< 813 ek 05) " i+ 0(x)
=1
jm
< ¢ |3 2| [ — 12 + C567)
§=0
< cml[Hpn* =y, 17 + C(5¢"),

where C(3¢*) < Cm~2¢T! . Furthermore again as in Lemma/6.A.11| there are
constants C,C’ such that

2
| (X 607) — f (X 67,7 <

> i (ek(XIH*) - ek(XiTa;kn))
k=1

Jm
< o Zz3j—2a HG* - 9;‘;”2
j=0

< clo* -6,

This implies with Lemma [6.3.5) and constants C;,Cy > 0

£ (X705~ f (X0 < 0 (o

+m 2a+1> < Cm73
D

Note that r*2m/ n — 0. This gives with the bounded difference inequality

(Theorem that

P (n ‘(Pn — IP)| s, (X1 05) — Fr (XTe*)P] > tCm—3) <exp{—t?}.
From this we infer with ¢ = m3\/x — oo

P (1 |(Py = IP)| fis, (X7 63,) = Fr (X 6Y)| = Cov/) < exp {~m¥x}.
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O]

For a set A C RP we denote by A(A) € R4 its Lebesgue measure and
define

Ae (6.A.32)

e supg A >0: inf P (](v,e(XTH)H > )\) > 3/4
veR™ |lv]|=1
gesh T

Remark 6.A.8. \¢ > R in is strictly greater 0 because the
basis functions are linearly independent and we assumed the distribution of
the regressors X to be absolutely continuous with respect to the Lebesgue
measure.

Lemma 6.A.24. Denote the cylinder
def _
Cpay(®0,90) = {(2,9,2) € R? X RP™?; (z — 20)” + (y — y0)* < p*}.
There is a point (xo,y0) € R? such that Q(2b) in (6.A.30) satisfies

Q(?b) +3*>=-A Cpx)\ (Bh(()) N Ch7x7y(0) N Bsx (.%'0, Yo, 0)

N —

N {(zy) € B2 : sign(yo)y > Sigﬂ(yo)h/2}> ,

for 7= Xe/(8Ly+sx) and

2 2
)\202 ch/*h
2b — (1 _ V2) e-D /\ n 9
( 32 dpr2sk|lpx 2. Clm

and for

4C,,
r>Vm————
N Aev/ (1 =)

Remark 6.A.9. The constants h,cy > 0 are from assumption
n

(Condxg-) .

Proof. We have to prove

br?

n

inf P [(fn(xje) - fn*(xje*))2 >

] >0.  (6.A.33)
vEYH(r)°

We carry out the proof in two steps.
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1. Before we determine b > 0 that allows to prove (|6.A.33)) note that
1D (v = vp) || = | Din (e 0™ — vy)) || < [ D — 07|
< NDm(v — v )| + D (0™ — vy,
Slightly modifying Lemma [4.A.§ with 6 = v gives
| D (v = w3 < (@(m) + 7(m) +26(26%)x" ) E w2 (m),
where due to Lemma and the definition of r* > 0 in Lemma [6.3.5
r<ovim, a(m) = ¢ (m™ 72 4 gm0 Vi,

T(m) < Cm72a+1/2\/ﬁ'

With arguments as above we find that r}(m) > 0 is neglect-ably small for
n € N large enough. We have with some small € > 0

(1= D (v = vp)II* < [Dm(v = ") (6.A.34)
< (14| Dim(v — vy

Assume that n € N is large enough to ensure that € < 1/2. Then we find
for v € Y5(r)¢ and with Lemma [4.A.6{ and (6.A.34) that

ID(ve — wo-)II* + [[Hm(n = n*)|* > (1 = )| Dy (v — 0| > (1 = v)x?/2.

2. Now we show (6.A.30). We treat two cases for (pg,n) € RP~! x R™
separately. The first case is that ||D(pg — pe+)||*> < 1(1 — v)r?. In this
situation we can use the smoothness of fy: and fy« to determine b > 0.
In the second case we use the geometric structure of

2
(f2(X70) — fir (X76%)) " >0,
to obtain a good lower bound.

Case 1: |[D(pg — wg+)||* < 37r*. In this case we simply calculate and
find

fa(XT0) — fr (X707
> | fn(X70) — frr (X7 0)]7
—2|£(X70) — - (XT0)|| f- (X 0) — £ (X7 67)|
> | fn(X70) — fre (X7 0))7
~2/f(X70) = fir- (XT0)|Lyp-5x/10 — 67
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Now

[Fn(X70) = fr (XTO) = |F (X 0)] = | F0.00) (X O)].
We find with probability greater than 3/4
Fan-(XT0)| = |(n — ", e(X )]
= ”Hm<77 - "7*)”)‘8

1
> r)\e§ (1—v2),

where
de WsupdA>0: inf zzv(\<n,H;;e(XT9)>| >)\> >34,
neR™,[n]|=1
gesht

which is larger 0 because the basis functions are linearly independent and
we assumed the distribution of the regressors X to be absolutely continuous
to the Lebesgue measure. Remember that by Lemma

1/2 %2 2 +lp 2
13212 < (177 locCl e + 172VB05K Ly [0 € 7oy ) =2
lof Cim
We use the Markov inequality to obtain

[Ho e |2

<1/4.
ACZm

m
P (|f(0,u*)(XT0)|2 > 4C%%> >

This implies that with probability greater than 1/2=3/4—1/4

Fn(X70) — £ (XTO)] > 1 \/ 1—12) 40,,\/>
(1—v2)Ae
> TL
for
4C,,

- mAe\/(l —?)

We still have to account for the summand Ly-sx||@ — 0% via

Lysx+/T(1 —1v?)
r.

2ep\/n

Ly sx(/0 — 07| <
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This gives for the choice of 7= Aecp/(8Ly+sx)
[Fn(X70) = fir (X1 0)] = 2Ly 5|0 — 67|
<Ae N Ln*SXﬁ) (1-v?)

r

4 cp Vn
_ Aecp/ (1 — 1/2)
B 8/

We obtain in case 1 that Q(2b) > 1/2 for

r

2b/n & A=)y
32n

Case 2: %T(l - I/)I‘2 < HD(()DG - (/79*) 2 < \/5)\maxl)2 .
Take some f:R — R with f/ > ¢ and some (o, 8) € R? with o?+ 3% =1.
Furthermore take any g : R — R. We are interested in determining

def .
v = inf A(A
D= e proe AT
gR—R

A(r) € {(2,y,2) € R2 x RP2, |f(ax + By) — g(x)| > 7}

NCp,z.y(0) N Bsx (20, %0,0) C R? x RP—2,

déf{

Cp,m,y(x(]:y()) (3?, Y, Z) € Rz X RP_QS (.CL‘ - xO)Q + (y - y0)2 S p2}7

where for a set A C RP we denote by A(A) € Ry its Lebesgue measure.
For this observe

> cfy + flax) —g(z), B>0,

f(o‘“ﬂy)‘g(x){gcﬁwf(aa:)—g(w), <0

Consequently for fixed z € [—p, p] we have |f(ax+ By)—g(z)| > pBec/2 on
the set

{y € [~Vp? — 2%\ p? —2?] i [eBy + f(az) — g(z)| > pBec/2},

which always is of a length greater A([—v/p? — 22,/p? — 22]\[—p/2, p/2]) .
Addressing the way a centered cylinder intersects with a shifted ball this
gives that

V(pﬁc/?) > A (Cp,m,y(o) N Bsx (an Yo, 0)
N{(x,y,z2) € R? x RP~2:

(x,y) € R?: — sign(yo)y > — sign(yo)p/Q})
> A(B,/4(0)) >0, (6.A.35)
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for the ball By, 4(0) C RP. Now we can prove the claim. For any (0,7n) =
v €Y, with ||@|| =1, we can represent 6* = a8 + 36° with some 6° € 9+
with ||@°]] = 1 and o + 32 = 1. By assumption (Condxe-) for any
(0,m) =v €7, there exist constants cy, ¢, h >0 and a value (zo,yo) €
{22 + y? < sx} C R? such that for (z,y) € {(x — 20)® + (y — w0)? < h?}
we have [fy.(x)] > ¢y and px > ¢y . We can estimate using

P{(f2(X70%) ~ £,(X70))" > Gh26%/4)

> inf P({X € B (0)} N{X € Chzy(x0,%0)}
fECH(R), >0,
gR—R

A {If (0w + By) — 9(a)] = Cffhm})

= inf A Bax (=20, =%0,0) N Ch44(0
— X earm), pr>0, < sx (=20, =40, 0) h,z,y(0)
gR—R

A {If(az + By) — g(x)| > Cf’hﬁ/2}>

= cpx V(hBcy /2) = M(By4(0)) > 0.

We need to express 8 > 0 in terms of r > 0. We can use elementary

geometry to obtain
60— 0"
B = sin (2 arcsin <H2H>) .

Using that sin(2«) = 2sin(«) cos(«) this yields

_ (16 —6"[[\ [l6 — 67|
8 = cos (arcsm ( 5 5 .

Now as [|@ — 6%]|?> < 2 we get

/1 _ge 1667l
ﬁzcos<arcs1n<\/§>)!’9 0" = 2

Furthermore for any g, vg € Wg we have with (6.A.34]) that

2 2 T
9—0*227800—%9*2271)@0—%09* 2> 1
o -672> 5 1?2 e I WP 2 s
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With Lemma this implies

.
ﬁQ Z I'2
2pm2sk || fx 112, C g

Combined this yields that with

2 1,2

TC /h

2b/n d:ef 2.2 L 2 ’
dnpr? sy [|px|12.Cln~|

it holds
JP{ (fn(XTO) — for (xﬂew*))2 > 9br2/n}
> epABY DA (Bu(0) N {(,y) € B : [y] < 1/2)).

This gives the claim. O

Proof of Condition (£r) with modeling bias

We show the following Lemma

Lemma 6.A.25. We have with some C >0 and with r° >0 from (6.3.6))
that

zp( sup  |BL(v,v") — BL(v,0")] > vx+ pClog(p) +1og<r>]>
vEY, (v/nre)
< e X

Proof. We bound

sup |EL(v,v*) — [EL(v,v")|

vEY, (v/nre)
T 2
< swp (2= ) (90X - £ (X]07)
vEY o (Vnre)
- (o0 - £ax70)" |
T T 2
<n sup |(B= P){£a(X]0) — frr (X[ 07} ‘
vET, (v/nre)

+nCpias sup
v€Yo(v/nr°)

(P = P) | f2(X]0) — fr (X[ 0)

F
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Furthermore

{fn(XiT 0) — fo- <X?6’*)}2 < \fn(XI 0) — fn- (X, 60%)
(Ifnelloo + 1 Fng, oo + Crv/m/v/n) -

Thus we have
sup |FE.L(v,v*) — EL(v,v")]
vEYs (v/Are)
< 1 (Chias + | F+lloo + 1 Fnz, lloo + Cr°v/m)

sup_ (P = IP) | £2(XT0) — f (X[ 67)

'UETO(\/EI‘O)

Define (x(v) dof (P, —IP)| f(X] ) — f- (X, 6%)| . Then we find using that

r° < Cy/p log(p") + %

sup |EL(v,v") — EL(v,v")]
vEY, (v/nre)

< ncm?/? sup  |¢x(v) — ¢x(v™)].
V€Yo (y/nr°)

We want to use Lemma m Define 7y = {v*} and with r;, = 27 %r
with r > 0 to be specified later the sequence of sets 1}, each with minimal
cardinality such that

T € | Be(w), B:i(v) ® {v° € Ty, |D(v° —v)| <}

veYy

We estimate for an application of the bounded differences inequality

{£2(XT0) = £ (XTO) | < £l + 1 £5locllO — ']

We have

m 1/2
[fallo < lmll sup (Zei(w)2> < V7|9 ||Vmz/Vn,
k=1

T€[—sx,5X]

m 1/2
I fp-mlle < =7l sup <Ze§3($)z>
k=1

z€[—sx,5%
< V17| |m* 2 — n/]].
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Consequently again using that r° < C/p*log(p*) +x
{£2(X70) — £ (XT ) }| < ccm®? v~ .

This implies with the bounded difference inequality for any v € 1y

P (n inf |¢x (k) — Cx(vp_1)| > tC<m3/2rk_1> <e?.
Tk—l C‘D

Define r lef (1-1/v2) 1/\[) then we find

]P(n inf [Cx (vr) = ¢x(vp1)| 2 Cm 227D (1 - 1/V2 >) ",

and
7% < exp { ( log(2)k + log(x°) + log(n)/2 + 3 log(m)
+log(1-1/v2))p }.
Set
T(n,m) % log(x°) + log(n)/2 + 3log(m) + log(1 — 1/V/2,
t < Vx+ 1+ 10g(2) + p (10g(2) + T(n,m)),

then we infer with Lemma [6.A.2

P ( sup |EL(v,v")— EL(v,v")| > Ct)
V€Y, (y/nre)

<P (n sup  [(x(v) — ¢x(v7)[ = Cm IOg(m)t>
vEYo(v/nre)

| A

Z exp { [(log(2)k + T(n, m)) — 2"~ (log(2) + T(n, m))|

—2F x4 14 log(Z))}

—X

IN

e

We have as in the proof of Lemma
— EL(v,v)) = BL(v),, v*) > EL(IT-v*,v*) > —r*2. (6.A.36)
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Combining this lemma and Equation (6.A.36]) with Lemma and Lemma
6.3.6| we find for ||D,,(v —v},)||? = r? > 2r*? that with probability greater
than 1 —2e™*

~EL(v,v],) > br%/2 — \/x + Cp[log(p*) + log(n)] — *2.

Consequently we get for r that additionally satisfies

r? > /x4 Cp*[log(p*) + log(n)] /b V 2r*?,
that
~FE.L(v,v}) > br?/4 = DpiasT>

Finally observe that by definition £(v,v},) = Ly, (v, v],).

6.A.9 Proof of Lemma [6.3.1]

Proof. Note that with the definitions and with some v € 15, 0(x), Y0 € RP”
with [0 = 1

D5 V(E — Ee)[£m(vy,) = L ()]

m

< sup DN — ) [V2Aw(v)] Dyl

VEY m,0(x)
o1
~ Vneo

+ sup  |(E - E:) [D;)! ([Ven()] = [V2Lm(vi)]) DM | =

’UETmﬁ (r)

I(E — IE.) [D5 V2 Lo (vy,)] |2

For the first term we obtain with Lemma [6.A.31] and with some constant
cC>0

! — —ly? v T og(p* xr/v/n e *
P (e I = ) [D 752 (w3)] e > 0/oB) +3e/vi ) < e

For the second term we can use similar arguments to those of Lemma [6.3.6
to find with some constant C > 0 that

P( s [ = ) [ ([V2 8 (0)] = [V (i) D] |

> Cy/x + p* log(p*)/\/ﬁ> <e ™

Adding log(2) to x in the above bounds we get the claim after increasing
the constants appropriately. O
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6.A.10 Condition (bias”) is satisfied

Lemma 6.A.26. Under the conditions of Proposition condition
(bias") is satisfied.

Proof. It suffices to show that
Cov(Ve (Li(vy,) = £i(v7))) = 0, Cov(V(y, ) (li(vy,) — li(v7))) — 0.
We calculate

| Cov(Vo (ti(v},) = ti(v")))]
< B|| (£, (X7 63,) = F5-(XT6)) VB(0) X
< SR IB| fp (X] 0,) = f1 (X 69|
< 4% (Bl Sy — (X092 + | £, (X[ 63,) — frs, (XT 69)])

00 2
< dsk (Z €5 lloo (M, — nZ))

k=0

m—1 2
+4sk (Z \eZHoon;*nk> 167, — 6*1*.

k=0

We estimate separately

[e'e) m—1 [e'e)
S leblloc i — 7)< Gl (z 2 )+ 3 k3/2n72>
k=m

k=0 k=0

IN

o 172 / o 1/2
o] S [ e (Z kQaB) (Z 2(17722)
k=m

k=m

1 * *
Cll [l (mzmllﬂm(ﬂp*’v — o)l

IN

. 1/2
++/(2a = 3)/(2a — 4) (Z k2°‘77;§2> )
k=m

The last term tends to 0 because of Lemma because m2r*/y/n — 0
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and because >, 2°n? < oo. Furthermore we get with similar steps

m—1 m—1
(Z HeZHooni%k> 167, — 07[| < [[4"[|]165, — €] (Z k5/277mk>
k=0

k=0

m—1 12 rma 1/2
< 1Y ool|67, — 67 (Z kQ“_E’) (Z kQanZ)
k=0 k=0

<2k5> ID@" — )l

* * 1 * *
< 107l = 0 { e + D (T = w3
* * 1
< ||Dm(HP*U _Um)HmmcH"l*HHwHHoo
1
LD (0 — 3 P e
TLCD

Again the last term tends to 0. Similarly we calculate

Cov(Vigy,...mmy (li(vy) = Li(v7))) < Elle(X] 6;,) — e(X, 67|

m—1 2
s ¢35, — 6|1 <Z k3/2>
k=0

1
8§<Hw’lloo@m3\|®m( po” — o),

IN

IN

which again is a zero sequence. This gives the claim.

6.A.11 Proof of Lemma [6.3.11]

Proof. Define

0, & argmin ||@ — 07|
0eGn
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Then by definition

max L, (00, v
n

> Lon((O0, 1), 05) = Lon(O1, ), U2

- Z(fn:@(xje;;z) - fn;*n(XiTel*))2

=1
+H(g(Xi) = Foe (X 605)) (Fnz, (X 65,) — Fne (X[ 61))
~(Fu, (X 05) — Fop (X[ 0p))ei

We estimate using the smoothness of f;)«
| Fs, (X 63,) — for (X[ 012)] < Csx |61+ — 6}, ]| < Csx
Furthermore the first order criteria of maximality give for some 6° € (9;"“l
B [(9(X:) = Fa5, (X] 0;.)) £, (X[ 0;,)X76°] =0,
We estimate with Taylor expansion

| o, (X7 65) = Fo, (XT60)) = £1:, (K] 020X Vi (00, — 003,

< Cvml|0p — 67, .
Furthermore with the bounded differences inequality

P (1 |(P = P)(9(X0) = o, (K] 03)) (o, (X] 03) = Fo, (X[ 01)

> \/;{CbiasCSXT> <e *.

X

Consequently with probability greater than 1 —e™
L(’IN)(O),U*) > —nC%s% 7% — ChiasC (SxT\/;{ + n\/m7'2)

+ > (Fus, (XL 03,) = Fs, (X 012) e
=1
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Clearly we have due to (Cond.) for A < \/ng/(CsxT)

P* (Z(fn:n (X7 05,) = Fs, (X O0))es > \/ﬁt>

i=1

IN

exp{—At}E® [exp{A Y (F (X[ 03) = oy, (X 01:))ei/ \/ﬁ}]

=1

IN

exp{ =M} [T 1B [expi(Fos, (X[ 0;,) = i, (X] 01 ))ei/ v/} |

i=1
< exp{—\t + 72C%s% 72\ /2}.

Setting A = #5%(72 we get

- 2
L <Z(f":n(xjejn) - fn%(XiTol*))Ei > \/ﬁt) < exp {—2t}

~202 2 2
— VCSXT

With ¢ = DCsx7v/2x and x < 20%g%n/(C?s% %) this gives

n

L (Z(fn:,l (X 65,) = fz, (X 01-))ei > vCsxTV 2nX> <e ™
i=1

Consequently

P (Lm(a(o)a ’U:n) <—-C {(1 + Cbias\/m)rm-2 + (1 + Cbias)\/i'r\/ﬁ}> < 27",

For the second claim note that by Lemma the conditions (€D;) and
(Lo) from Section hold for all r < y/nr®. We define

def
KO(X) = c {(1 + Cbias\/TTL)nT2 + (1 + Cbias)\/gT\/ﬁ} :
This implies with Lemma and Theorem that

Om®?\/p* (1 + Cpias log(n)) + % + (1 + Cpigs/m)nr? + Viry/x
< Cm*2\/p* (1 + Cpias log(n)) + x

o2\ (1 + Cpas/m)nr? + Vir i

Ro(x)

IN

A

We use that 7 = o(m_3/2) if Cpigs =0 and 7 = 0(m‘11/4) if Cpigs > 0 to
find

Ro(x) < Cm®2\/p*(1 + Cpias log(n)) + x + C(v/n + m*/?n1/%).
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Repeating the same arguments as in Section [6.3.4] we can infer that with
probability greater than 1—2e™* the sequence satisfies (vy x(11)) C Yo(Ro)
where

Ro(x) < c\/p*<1 + Chias log(n)) + x + (1 + ChiasvV/m)n72 4+ V/nTV/%.
Furthermore with Lemma [6.3.7]

def m3/2 + Cbiasm5/2

e =90(r)/)r+w=C NG
Consequently for moderate x we find if Cp;qs = 0 that

Ro(x) = O (m3/2 /\/ﬁ> 0 (T\/ﬁ + ﬁnlM) +O(m2/v/n),

such that €Rg(x) — 0 if 7= o(m~3/2). While e\/3(x) = O(m?/\/n) — 0.
If Cpias > 0 we find

eRo(x) = O (m¥2/vn) O (rm!/"/n + VTn!/t) + O(m® log(n) /v/n),

such that it suffices to ensure that 7 = o(m~'"/4) since then mb5/2\/rn~1/4
=o(m=3/8) = 0, due to n > O(m®log(n)?). In this case

e\/3(®) = O(m®/v/n) = 0.

This gives (A3) and completes the proof.

6.A.12 Proof of Lemma [6.3.12
Auxiliary results
First we need the following uniform bounds:

Lemma 6.A.27. There is a generic constant C > 0 such that for any pair

v,v° € Vo(Ry) with G from (6.A.1])
IVSim (™) < CUlIfpe lloo + [+ lloo) (6.A.37)

1D, 2V 6 m (V) = Dy Vg (0°)| (6.A.38)

2 *
3/2 m*(Ro 4 r*) 1/2 o
m <’m/ + <C||f|| +7M% )m / ) [Dim (v —v°)||.

<
B CD\/ﬁ

Proof. Since V%C (v) =0 we can estimate with help of Lemma m
IVGim (V)| < [[Veosim (V)| + [[Vasim(v7)]].
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We estimate separately

IVosim(v)]| < [ e (X] 0°)VE(6") T X, X[ VD(6Y)]
T p* 2 T
+ fr (X 09X V2D(0 X)X, -, |

< Cosk (13- (XT0) + 145 (KT O)]) < Cllfy e + 157 1),

This gives (6.A.37). For the proof of (6.A.38) we again use VZ((v) =0
and estimate with help of Lemma

1D 2V G m (V) = D2V (0| < (V) — Vim(v)]|

1
C@\/ﬁ H Si,m

<

1
~ cepyn

(||Vo<i,m(’0) - Ve%,m(Uo)H + 2||vn§i,m(v) - vn@,m('vo)”) .
We calculate separately

[VoSi,m(v) = Vosim(v°)||
< skl f(X] 0)VD(0)VE(0)T
— fro (X[ 0°)VP(0° X)) V(0° X)) |
+5x | Fn (X 0)X] V2B(0TX;) — f.(X[6°)X] V?B(60°TX,)|.

We again separately estimate

I1£2(X] 0)VO(O)VD(O)T — fr(X] 6°)VP(6° X)) VD(6° X)) |
< |[f7(X[6) — fro (X 6°)]V(8)VD(H) |

+[ fre (X 0°)[VO(0) — VB(6° ' X;)][VE(6) |
+H £ (X[ 0°)VD(0°TX) [VD(0) " — Vo(6° X)) T

We estimate using that ||[V&(0)VH(0)T| <1

117 (X 0) — fr. (X[ 0°)[VD(0)VE(6) |
< | f7(X76) — £ (X 6°)]

< I F7 (X 0) = fre (X O) + (170 (X 0) — fre (X[ 6°)].
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Remember that due to the structure of the basis

IN(j)| <

{ke (29— 2517 —1,..., 2 —2(j + 11T~ 11} :
e} (X 60) — el (X )| V |ef(X 8') — ef(X] )]
Ve (XT 0| > 0}( < 34.

We get with the same arguments as in the proof of Lemma [6.A.11

117X 8) — fre (X[ 6°)][VD(0)VD(O) |

V34 7 m m*(Ro + r*
< 2 (1 ) (D) )

[ D (v — V7).
For the other two summands we estimate
I fre (X[ 0°)[VP(0) — VB(6° T X,)|VE() ||

< || £ (X 0)[[[ { V(0) - V@(0° X)) | VB(6° X))

We can use the smoothness of ¢ : RP~! — §; C R? to find a constant C;
such that

17 (X[ 6°)[VO(0) — V(6° X)) VD(6) |
< |l fr- (X[ 6%)lc2]|6 — 6°]

J7n_1
< Cl|0 —6°l[1w"] D Z np2%/?
j=0 keN(j
Rop + r*)
< 17ci0 - 00" (Cypy 4+ TR EEDN e
< 171l - ") (Cigy + 00T Y

We continue with
1F7(X 0)X V2207 X0) — £ (X[ 0°)X] V*0(6°' X,)|
< | £ (X] ) — fr0 (X[ 6°)][1X] V2(6° " X5)|
£ (X7 0) X[ V220 X)) — X[ V2D (67 X)))].
Using the smoothness of ¢ : RP~! — §; C RP we find constants Cs, Cg such
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that with the same argument as in the proof of Lemma [6.A.11

|1 £5(X]0)XV2D(0TX;) — f1.(X]0°)X] V20(6° T X,)|

V34 1/2 2 m?(Ro + r*)
S o™ 12 (Cosxl|v"|| + 14| + s%Cs) (Cnf LY -7 )
IDm(w — 0]
Finally

[VnSim(v) = Vasim(v°)||
< | (veO)T - vae X)) Xlle(®7X)|
I Ve(6° X)) "X €/ (07X,) — €/(6°TX,)]|.

We estimate separately

1
T _ o\ T I < 2 - .40
| (Vo) - voe)") x| < Cisk o Dm0 = 0],

1/2

Jm
le'(@TX) Il < [1¢'lle { D 2YIN()]
7=0

< [ [looV/34m™2.
Furthermore
IVP(0° T X;) T X;|| < Cssx,

o 1 [¢]
le'(07X;) — €'(6°TXy)|| < IIw”Hoo\/?:lms/QmHDm(v — 7).

Putting all estimates together gives (6.A.38)).

Condition (£D3)
Just as for the conditions (€D;) and (£Dy) we can show:

Lemma 6.A.28. We have (ED2) with

1

- _ _ DZmQC(RO p*)2
Wy = ma g2 = \/ﬁgcwm IC(RO,p*) la V22 = :

2¢cp

)

where with C > 0 in (6.A.38)

o 2 R *
C(Ro,m) = ¢ (m3/2 + <C||f| + %) m1/2> ‘
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Proof. Lemma [6.A.27) gives for any v,v° € ¥'(r) with ¢, from (6.A.1))
D5 Vi (v) = D™V (v°)

c 3/2 m*(Ro +1%)\ /9 o
< CD\/ﬁm (m + (Cf” + NG m | D (v —v°)||

e mC(R0.p)| Do 7). (6.A.39)

def

We get with u < go and assumption (Cond,.) for any pair 1,72 € {||v] =

1}

< K T (D-IV2 [ (v) — ¢ (0°
Beosp{ ip ] (D) - <o) e

7
=F
EeXp{wzuvam(v—vo)u

> e (DY {sim(v) = sim(v)}) '72}

i=1

‘ 1
= | | IE. exp €i

’)’1T (D;zlv {%,m(“) - €z‘,m(UO)}) ’72}

72,2

n
< exp
U {2w%||®m<v —v)?

("/1T (D#V {i.m(v) — Gm(v°)}) ’)’2)2 }

With (6.A.39) this implies

sup log IF. exp a O
2D — )|
llvill=1
T (=192 —12 o DQNQ 2 *\2
Y1 ('Dm Vi((v) =D V((v )) Y2 o < Em C(Ro,p")".
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Bound for Hessian

To control the deviation of D~'V((v*) we apply the following Theorem of
[56]:

Theorem 6.A.29 (Corollary 3.7 of [56]). Consider a finite sequence
(M;), C RP™XP" of independent, selfadjoint, random matrices. Assume
that there is a function g : (0,00) — R4 and a sequence of matrices
(A;) C RP"XP" that satisfy for all u >0

EetMi < 9WA - yhere M < M’ <~ M~y <~ M~, Vv € RP".

Then for all t € R

‘|

Lemma 6.A.30. We have for pn<g

S

i=1

> m

=1

> t) <p*infexp{—tu+ g(pn)r}, where T &
m

Eexp {pD'V?((v")} < exp{g(p)diag(L,...,1)},

;202(‘”./*||OO+HfH*”OO)2M2 . o~ _
P e Rl ey A
0, otherwise.

Proof. Due to Lemma [6.A.27]
D_1V§i,m(v*)

S Hf,’{*!oo)> .

. 1
= ding (=l e + 15

Thus denoting C; % C(l[Frlloo + [ £ loo)

exp {D™'V3((v*)} = exp {MZ Dchi,m(v*)Ei}

i=1

"~ 1 1
= ;i di —Cy,...,—=C .
= exp{,u;e 1ag<\/ﬁ 1 Jn 1)}

Consequently we obtain due to the independence of the ¢;,,(v*) and as-
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sumption (Cond.) for u < \/ngcy!

Eexp {pD V3¢ (v*)}
< Zl;Ildiag (]E’exp {jﬁeicl} ,...,IEexp {jﬁgicl}>

~2 2 ~2 2
< diag <exp{l/2'u C%},...,exp{yzu C%})

"’202 2
:exp{” 21“ diag(l,...,l)}.

O]

Lemma 6.A.31. We have with C(||fy«lloo + [ fplloo) and if x < $(Png?
— log(p"))

P (||~ )| = (i,

s + ||

o) V25 + log(p") ) < e
Proof. With Lemma [6.A.30] and Theorem we obtain for

t < VngC ([ lloo + | Fpellos) ™
that

P ([ v2 )| 2 1)

P2 (|| oo + Il 7 lloo)* 12 }

< p"inf exp {tu +
u 2

2
= i%fexp {_w+172C(||f,’,* oo + ”fqul 00)2'[;}

t2
o {_252C(||f,9*lloo A } |
Defining ¢(x) via
P (| D'V ()| > t(x)) = e7¥,
we find
t(x) < TC(|| felloe + [ fr+lloo) v/ 2% +log(p*), if x < é (§2n§2 —log(p")) .
OJ
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Proof of Lemma

Lemma together with Lemma gives that in this setting

Vol v B0 < S e 187 )V 2+ Tog(p7) Vi

* 7/2 *
+C31(X, 3p ) <m5/2 I m / (Ro +r )) Ro
n Vvnep

+6(Ro + ro),
if x is chosen moderately. As above
51(x,3p") = O(y/x +p*) = O(xo),  [|D7V| < 1/(v/nen)
5(r) /T = O(p™*"* + Chiasm®?) /v/n.

In both cases Cpjqs = 0 and Cpiqs > 0 the dominating term is the third
summand §(Ro + o) .
Lemma [6.3.11] tells us that

Ro=0 (\/p*(l + Cpias log(n)) + nr2 + xm') )

In case Cp;qs = 0 this means that for moderate x

*2 *3/2
#(x,Rg) < C (f/ﬁ + 327 4 %) (14 0(1)),

which tends to zero if p*4/n 30 and 7= 0(p*_3/2) )
In case Cpius > 0 we have

rg = Cy/p*log(n), Ro= C\/p* log(n) + v/p*n72 + /xnT.

Consequently

»#(x,Ro) < C(p*310g(n)/\/ﬁ+p*11/4T

+n1/4m5/2ﬁ)> (14 0(1)),

*—11/4)

which tends to 0 if m3log(n)/n — 0 and 7 = o(p since then

nVAmd2 7 = o(m’3/8).
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6.A.13 Proof of Proposition [6.2.5
Define the set

My (%) o { sup

»+
0es?

M
| < c<x>\/ﬁ} NN,

N (%) def { sup  L(v,v),) < O}

VET R \To(xg)

Ny, Omo= ) (1), Oy 1) € {ID 0y (v = v )l < T0}t}

N sup
mo { VEY (1)

r<r

Dy (Ve @) = Ve i) )| - 222

< Cwri(x + p*)}
N{ID0 ™ VL@ W) | < cv/x+

ﬂ{ sup ||V(EE — E2)[Leqy (V) — Leqy ()]
UETo(l)(r‘x’)

< o+ Ve Vi
N {Conditions of Section hold for (Lc(y, Vim, Dyy) } ,
where o = C(p* +x)M , r§ = C[p**>/p* +x V (p* + x)M] and where
r(x) = Cy/p* + x.

Remark 6.A.10. For M = 1 this is the set on which Proposition
applies.

Lemma 6.A.32. We have on the set My (x) if p*>/n <1

*7/2 *
Ty < Cly/m (p n+X + Vp\/;:x> . (6.A.40)

Proof. We obtain with Proposition that if (0(r)/r + 6riw)ro < 1 and
(0(r)/r 4 6r1w) Cy/x + p* < 1 that then

MM(X) - {17m(1),’5m9*

(l)(l) C To(roo)}a
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where
r(x) < Cy/p* +x.

But by assumption

x5/2
(0(r)/r + 6r1w) Cy/x + p* < Cp\;X — 0,
n
*31 M
(6(x)/x + 611w) To(x) < CL ogi;% RN

Consequently we can restrict our selves to the set 75(r*>°). We show the
claim via induction. For this note that with we already showed the
claim for [ = 1. Assume that the claim is already shown for 0 <l—1 < M .
Remember that

def

() & (f,(X] 0)V0(9) X, (X[ 0)) € BRI

We find with the same arguments as in Lemma and using Lemma
6.A.11] that on the set My, (we suppress -(;) )

sup H@fl (VL(v) = VL(vy,)) + D(v — U;)H

V€Y (r)
< sup HD_I (VLe(v) = VLe(vy,)) + D(v — vy
vEYH (r>)
+  sup H@fl (VL (v) — VLT(’U;;))H
VEY o (x°)
2 n
< Oo(r™,x)+  sup Ti(l = 1) |sim(v) — Sim(vy,
: S o S D @)~ im0
C 3/2.,.00
< O(r™,x) + T — max|mi(l — 1)),
cf i
Denote
By_1) ¥ max|r(l - 1), (6.A.41)
Then we find

HD(z) (Omqy — Uf%(z))”

IN

HD(I)—leE(,) (v;‘n(l))H + cp*7/2 tx cp?By_y)

N
*7/2 +
c (x/p* +x+cl 7 z +p*23(1_1)> -

IN
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It remains to address the bias [|D)(vy,q) — v*))||. Using that the
assumptions (A) hold for all (gq))i=1,..;m we can bound as in Lemma
6.A.7

EL. (v, v* ) < —br?,
where r = || D)(v — v*())||. With Lemma w this gives

1Dy (V) — v @)I” < 2%

where we point out that r* < Cy/nm ™% in (6.3.5) is a uniform upper bound
for all | < M . We derived that on the set Mj; using that r* < Cy/p* + x

1D (@may — v w)||

p*7/2—|—x 9
<¢cC \/p*‘i‘X‘f'CT‘i‘p B(l—l)

Ty, (6.A.42)

Finally we bound
ﬁﬁm(xjenn)_j%mcxjg@)’S’fﬁarﬁm(XTg)
+ ’f"*u) (XTO*(I)) - fn*(z> (XTg(l)) .

We estimate separately using (6.A.42)

IN

1H;" ellrm [|ooCT -1y

CvmT_y)/Vn.

’fn*(z)—ﬁ(m (XT5(1)>’

IN

Furthermore we find with (6.A.42))

[y (XT070) = Fir (X O)| < Coxl e 1T 1)/ V0

@
Consequently

l
o, (XL 0% () = Fii, (X 6s)

s=1

*7/2 = Lo x5/2
p +x  pt+x P
< Clv/m ( o + \/ﬁ ) +CSE B(s—l)'

7iy| =
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Denote

*7/2 * *5/2
ad:efc\/m<p tx VP +X>, pafl

Furthermore define

!
def
Sk = E Sk-1(s-1),  Soy =1
s=1

Then we can write
-1
iy | < a0 Skq),
k=0
which gives with the crude bound Sk(l) < ZZI;ZO 15 = l% < 2[Ft1 that

-1
7| < 200 b*1* < cla,
k=0

if b<l < M. This gives the claim. O

To complete this section we show that the set M ;s is of large probability
as long as M € N is not too big.

Lemma 6.A.33. We have
PMy)>1—-e*—M (12e_X + exp {—mgx} + exp {—nC(Q)/4})

Proof. With Lemma we find

P | sup
gest T

Due to the assumptions we find with Lemma that

T dx)ﬂ) <o

IP (The conditions of Section are met for (L), Tm, D))
>1—4e * —exp {—m3x} — exp {—nc(Q)/4} .

On that set we find as in the proof of Proposition for C > 0 large
enough

P { sup
<IQO vEY ()

< Cwul(x+p*)}> >1—e*

Doy~ (Ve ©) = Ve Wh)) H i
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and
P (HD(Z)AVCE(Z)(U;(Z))H > Cy/x +p*) >1—2e7*.

Furthermore by Lemma We have that

P ( P IVUE — IE¢)[Le (1) (W p) = Ley(v)] = Cx +p*)2r/\/ﬁ>
veloq)(r

< 2%,
For the large deviation bound we proceed as follows. Note that

Loy, vpey:Yiy) = Ley (v, vy, Yip)
#2075l = 1) (£2(XT 0) = Fy, ) (X O) ) -

=1

Using (6.A.41]) we can bound
n

Sl = 1) (Fa(XT0) — Fa ) (X O3

=1
< CB(_1)Vnymr.

As the conditions (A) are satisfied for all { =1,..., M we can establish as
in Lemma for 2 > Cpp*log(n)

~E.) (g(l)(Xi) +é& — fn(XiTO))z
=1

- (g(l) (Xi) + i — Fau, (l)(XZTa;(Z)))? < —byyr?.
Together this implies for r > Cyp*
E-L)(v, 05,0y, Yigy) < —bgyr” + CB_1)v/ny/mr.
This gives for r > CB(_1)y/ny/m and C > 0 large enough
E.L(v, vy, i) < —byyr?/2.

Plugging in (6.A.40|) the lower bound becomes

P72 4 x
rO(l) 2 C p*+X 1+lm7 :C/M(p*+X)
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For the remaining part we proceed as in section This gives the claim.
O
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