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SUMMARY

One of the most important parts of engineered and biological systems is the ability to

acquire and interpret information from the surrounding world accurately and in time-scales

relevant to the tasks critical to system performance. This classical concept of efficient

signal acquisition has been a cornerstone of signal processing research, spawning tradi-

tional sampling theorems (e.g. Shannon-Nyquist sampling), efficient filter designs (e.g.

the Parks-McClellan algorithm), novel VLSI chipsets for embedded systems, and optimal

tracking algorithms (e.g. Kalman filtering). Traditional techniques have made minimal as-

sumptions on the actual signals that were being measured and interpreted, essentially only

assuming a limited bandwidth. While these assumptions have provided the foundational

works in signal processing, recently the ability to collect and analyze large datasets have

allowed researchers to see that many important signal classes have much more regularity

than having finite bandwidth.

One of the major advances of modern signal processing is to greatly improve on clas-

sical signal processing results by leveraging more specific signal statistics. By assuming

even very broad classes of signals, signal acquisition and recovery can be greatly improved

in regimes where classical techniques are extremely pessimistic. One of the most success-

ful signal assumptions that has gained popularity in recet hears is notion of sparsity. Under

the sparsity assumption, the signal is assumed to be composed of a small number of atomic

signals from a potentially large dictionary. This limit in the underlying degrees of freedom

(the number of atoms used) as opposed to the ambient dimension of the signal has allowed

for improved signal acquisition, in particular when the number of measurements is severely

limited.

While techniques for leveraging sparsity have been explored extensively in many con-

texts, typically works in this regime concentrate on exploring static measurement systems

xiv



which result in static measurements of static signals. Many systems, however, have non-

trivial dynamic components, either in the measurement system’s operation or in the nature

of the signal being observed. Due to the promising prior work leveraging sparsity for sig-

nal acquisition and the large number of dynamical systems and signals in many important

applications, it is critical to understand whether sparsity assumptions are compatible with

dynamical systems. Therefore, this work seeks to understand how dynamics and sparsity

can be used jointly in various aspects of signal measurement and inference.

Specifically, this work looks at three different ways that dynamical systems and sparsity

assumptions can interact. In terms of measurement systems, we analyze a dynamical neural

network that accumulates signal information over time. We prove a series of bounds on the

length of the input signal that drives the network that can be recovered from the values at

the network nodes [1–9]. We also analyze sparse signals that are generated via a dynamical

system (i.e. a series of correlated, temporally ordered, sparse signals). For this class of

signals, we present a series of inference algorithms that leverage both dynamics and sparsity

information, improving the potential for signal recovery in a host of applications [10–19].

As an extension of dynamical filtering, we show how these dynamic filtering ideas can

be expanded to the broader class of spatially correlated signals. Specifically, explore how

sparsity and spatial correlations can improve inference of material distributions and spectral

super-resolution in hyperspectral imagery [20–25]. Finally, we analyze dynamical systems

that perform optimization routines for sparsity-based inference. We analyze a networked

system driven by a continuous-time differential equation and show that such a system is

capable of recovering a large variety of different sparse signal classes [26–30].
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CHAPTER I

INTRODUCTION

Signal acquisition and estimation is a vital first step in many engineering applications. For

instance, in magnetic resonance imaging (MRI) data acquisition, the MR images are sam-

pled in k-space (spatial frequency space) and need to be transformed into an image prior

before physicians can make a diagnosis. Likewise, in remote sensing applications we must

first measure terrestrial spectral signatures and estimate their material compositions before

useful tasks such as target identification or anomaly detection can be be accomplished.

Measuring and interpreting signals is a complex process with many aspects that must be

considered simultaneously. In this work we consider the acquisition of a signal and extrac-

tion of the useful information contained therein in three parts: observation, estimation, and

implementation. While these tasks are by no means independent of one another, we use

this partitioning to express signal acquisition via the following three questions:

• How can we measure our signal and how can we quantify the measurements’ quality?

• How can we estimate our signal from our measurements?

• How can we compute our estimate quickly and efficiently?

Figure 1 shows the block diagram depicting how the different aspects in this measurement

process partitioning interact with each other. In the first question we discuss how our signal

of interest x ∈ RN is observed, and what quality these measurements have. In particular,

x is rarely observed perfectly, as even the most accurate measuring devices still result in

noisy measurements. These noisy observations, y ∈ RM, can often be modeled as the inner

products of the signal with M measurement vectors,

y = Φx + ε, (1)
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whereΦ ∈ RM×N is the measurement matrix whose rows are the measurement vectors, and

ε ∈ RM is the observation noise. In this first line of inquiry, we try to understand what our

measurement vectors Φ imply for our recovery process by quantifying how Φ preserves

the information of x as well as how robust this process is to the noise term ε. The quality

of these measurements is typically quantified by properties of the matrix Φ. For instance,

if the measurement vectors are too similar, then the signal space is not well sampled, and

signals not in the space spanned by the rows of Φ will not be observable.

In the second question we look at estimation or inference methods that can recover

our signal, or at least the relevant signal statistics, from our measurements. In particular,

we must devise an estimator that translates our measurements into a signal estimate, x̂,

that is fit for later use. For example, k-space measurements obtained in MRI devices, no

matter how accurate, are useless to a physician if not translated from the frequency domain

into a spatial image. Most estimation algorithms accomplish this task by designing and

optimizing a cost function

x̂ = arg min
x

J(x; y,Φ), (2)

where the cost function J : RN → R is a function of our measurement model parameters

and measurements. This cost function is often represented as a sum of terms that represent a

combination of our prior knowledge of the signal and our confidence in our measurements.

This step is extremely important in situations where the quality of the measurements, with

respect to the noise model, is sub-par. A priori knowledge of the signal statistics can

make up for high levels of deficiencies in the measurements, including highly incomplete

measurements as well as high levels of noise.

While often simple to design, optimizing a particular cost function can be very com-

putationally burdensome. The third question considers the actual optimization implemen-

tation and addresses the efficiency of various methods to solve Equation (2) for different

classes of cost functions. In particular, the third question considers the computational cost,
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the generality in terms of the types of cost functions that are solvable, and theoretical guar-

antees on convergence times and solution accuracy for these systems and algorithms.

True Signal

Sensing
System

Signal
Estimation

Measurements Estimated Signal

Cost
Funtion

Prior 
Information

Figure 1: Block diagram of a general sensing paradigm. The incoming signal is observed
by the sensing block to produce a vector of measurements. The measurements are then
used in an estimation algorithm designed using prior information on the signal to recover
an estimate of the original signal.

Recent advances in signal processing have dramatically improved the efficiency of the

measurement process, both in terms of the number of measurements needed to recover high

dimensional signals as well as the efficiency of the recovery algorithms, when the signal

of interest has known statistics. One prominent example used in the fields of compres-

sive sensing [31] and sparse coding [32] assumes that signals have many fewer degrees

of freedom as compared to the ambient dimension. In this case, the signal is said to be

compressible in that any x is composed by a generative model

x =

N2∑
i=1

ψia[i] = Ψa,

where ψi for i ∈ [1,N2] are a set of dictionary elements that combine linearly to form the

signal x, and the vector of linear coefficients a ∈ RN2 is compressible in that the energy in

a is concentrated on at most S � N elements. x is called S -sparse if the energy outside of

those S elements of a is zero. This model, while seemingly abstract, has proven relevant

in a host of applications, from remote sensing to neuroscience [20, 32]. In cases where the
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generative model is suspected to hold, but the dictionary Ψ is not known a priori unsuper-

vised dictionary learning procedures can use example signals from a given class of signals

to learn the underlying dictionary [32,33]. Given these statistics, many cost functions have

been designed to recover the signal by recovering the sparse coefficients. One of the sim-

plest and most effective methods for sparse signal estimation is basis-pursuit de-noising

(BPDN), which solves the optimization program

â = arg min
a
‖y −ΦΨa‖22 + γ‖a‖1, (3)

where ‖a‖1 =
∑

i |a[i]| is the `1 norm, γ is a parameter that trades off between the `2 mea-

surement fidelity term and the `1 sparsity-inducing term, and the estimate is recovered by

x̂ = Ψâ. In addition to improved recovery performance from few measurements (M < N), a

number of highly efficient algorithms, both digital and analog, have been created to quickly

recover the signal estimate [34, 35].

While sparsity-based models have greatly increased the ability and efficiency of sensing

systems, these systems do not account for many signals and systems that have significant

additional structure. Specifically a number of systems depend on dynamically evolving

quantities that may be independent of any sparsity assumptions. For example, there is an

increased interest in recursive neural networks as information accumulators for decision-

based tasks that operate on the information stored in the network nodes. This dynamic

network model is essentially a dynamic measurement system that integrates signal infor-

mation over time into a set of network node values that can be considered measurements of

the signal. As opposed to networks that accumulate information to generate measurements,

another class of temporally evolving networks actually perform computational tasks, tak-

ing in measurements and converging over time to an estimate of the signal which produced

those measurements. These implementations, which use temporally evolving circuits for

signal estimation, have become a popular viewpoint both for understanding the compu-

tational tasks performed in biological neural networks, and laying the foundation for fast

analog solvers which could be implemented in real-time embedded systems [27, 35–38].
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Correct utilization of such systems, both for measuring and inferring signals, hinges on

understanding the capabilities and limitations of such networks. For example the corre-

lations induced between effective measurement vectors in dynamic measurement systems

might limit the signal classes that can be effectively observed. Likewise, dynamic inference

algorithms tied to certain realistic processes may be less flexible than digital algorithms im-

plemented on general computing hardware. Therefore, to make use of dynamic systems,

we need to understand how dynamic systems affect or are affected by signal structure.

As another example, many signal classes have non-trivial dynamic or spatial corre-

lations stemming from set physical process. For instance, the dynamics could dictate a

signal’s evolution through time, or physical constraints on material distributions in terres-

trial imaging can imbue a signal with spatial regularity. In this proposal we will addresses

specific instances where accounting for dynamics or correlations could further improve

sparse signal acquisition. Specifically we address a modified version of the original three

acquisition questions:

• How can a dynamical system measure sparse signals and can we assess the quality

of those measurements?

• How can we efficiently and robustly recover dynamically or spatially correlated

sparse signal from our measurements?

• How can a dynamic system solve sparsity-inducing optimization programs quickly

and efficiently?

This work seeks answers to these three questions in order to expand on the applicability

of structured signal assumptions to problems with additional dynamic structure. In particu-

lar we divide this work up into four main research directions. Three of these directions are

directly related to these three questions, and the fourth demonstrates that the tools derived

for dynamic systems can be used for a broader class of spatially correlated signals. We will
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demonstrate in this work that many dynamical systems can be used in conjunction with

modern sparsity-based signal processing techniques.

In Chapter 3 we address the first of these questions by considering the dynamic echo-

state network (ESN), which can measure streaming signals over time. ESNs, networks

constructed of random recurrent connections between nodes, are a vital tool in the neural

network literature as the computational abilities of such networks are useful in prediction

and classification tasks. As opposed to deep learning networks, ESNs make use of recur-

sive connections to obtain far richer dynamics. Additionally, as opposed to trained recursive

networks, ESNs make use of random connections, bypassing the computational difficulties

in training recursive connections [39, 40]. ESNs have been used for tasks such as speech

recognition [41–43], motion detection [44, 45], event detection [46, 47], and noise model-

ing [48]. This computational utility of the node values imply that the network is integrating

the input sequences over time, forming a set of node values that contain important infor-

mation about the inputs. The work in Chapter 3 explores ESNs as a measurement system,

determining how the node values in the network are influenced over time by the input sig-

nal. Specifically we quantify the measurement quality by deriving non-asymptotic bounds

on the length of the input sequences that the network nodes (i.e. the measurements) can be

used to recover (a quantity known as the short-term memory (STM) of the network). The

STM of the network gives a strong indication of the signal information available through

the network nodes: longer STMs indicate more informative measurements. In addition to

providing bounds for finite and sparse input sequences, this work also addresses infinite-

length input sequences as well as input statistics based on low-rank correlations between

multiple input sequences.

In Chapter 4 we address the second research question, which deals with how we can in-

fer signals that are both sparse and temporally correlated as per a dynamic process. Specifi-

cally, in Chapter 4 we derive a number of different algorithms that can leverage sparsity and

dynamic correlations in a single inference procedure. Initially, it would seem that classical

6



dynamic filtering algorithms conflicts on a number of levels with the optimization programs

popular for sparse signal inference. In particular, dynamic structures are typically used for

low-dimensional signals with known and approximately linear dynamics. Alternatively,

sparse signal assumptions are most efficient for high-dimensional signals and the dynamics

between sparse signals can be complex and nonlinear. Despite these seeming incompati-

bilities, we derive three methods to combine both sets of information. In keeping with the

concepts of measurement efficiency, we first present a simple, computationally-efficient

algorithm and provide convergence guarantees to assist with algorithmic parameter selec-

tion. To increase robustness and accuracy over this initial algorithm, we also present two

more advanced algorithms. One of these algorithms leverages probabilistic hierarchical

models to reduce sensitivity to model mismatches. The second algorithms instead learns

a parameterized dynamics functions that can increase prediction accuracy. Both of these

more advanced algorithms can increase tracking accuracy at an increased computational

cost.

The work in Chapter 4, while derived for dynamically correlated signals, can actually

be generalized to the significantly broader class of spatially correlated signals. In Chap-

ter 5 we expand our hierarchical dynamic filtering to a general stochastic filtering tech-

nique. Specifically, we look at the application of interpreting hyperspectral imagery. In

this chapter we discuss the importance of hyperspectral imagery (HSI), and develop un-

supervised a dictionary learning algorithm that can extract material decompositions from

spatial-spectral measurements. While we discuss a number of applications of the resulting

learned spectral dictionaries, we focus on the problem of spectral super-resolution where

limited coarse measurements can be resolved into high-fidelity spectral shapes. We utilize

a similar hierarchical algorithm to the dynamic filtering algorithm presented in Chapter 4

in order to leverage the high correlations between pixels in HSI scenes. This hierarchical

model demonstrates a high accuracy recovery of HSI data both in simulated and real-data

experiments.
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Finally, to address the third research question, in Chapter 6 we explore how dynamical

systems can solve optimization programs used for sparse signal inference. In particular

we discuss dynamically evolving networks that are driven by a set of measurements and

evolve over time to the signal estimate. We demonstrate that many optimization programs

of interest in the context of sparse signal estimation can be implemented in such a net-

work, including more complex optimization programs such as hierarchical models and

group-sparse optimizations programs. Additionally, we demonstrate that the performance

of the network that solves the most popular of these optimizations, BPDN (Equation (3)),

performs as well in real-data applications as state-of-the-art digital optimization routines.

While the network-based optimization discussed in Chapter 6 was initially designed to

dynamically solve a static optimization program, we also demonstrate a variation of this

network which can causally act on streaming signals, such as audio.
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CHAPTER II

BACKGROUND

2.1 Sparse Signals and Compressive Sensing

One signal model that has greatly increased signal acquisition efficiency assumes that our

signal has many fewer effective degrees of freedom, S , than its ambient dimension, N. In

particular, we can say that our data vector x ∈ RN can be described via a generative model

x = Ψa (4)

where a ∈ RN2 is the sparse vector of coefficients and Ψ ∈ RN×N2 is the matrix whose

columns are used in sparse combinations to produce the data vector x. This type of model

is referred to as a generative or synthesis model, and a is assumed to have at most S non-

zero elements where S � N. While analysis models (i.e. a = Ψx is assumed to have

at most S non-zero elements) also exists, in this work we will focus on the generative

model. As a note, the analysis and generative models are identical when Ψ is a basis of

ortho-normal vectors.

This sparsity assumption on our signal allows us to infer signals with higher accuracy

from many fewer measurements [31, 49, 50]. In particular, compressive sensing has fo-

cused on deriving very efficient methods to model, sense, and infer sparse signals [51–56].

In compressive sensing, the measurement system, cost functions, and optimization proce-

dures all play a role in the acquisition efficiency. In terms of the measurement process,

random projections are shown to capture the signal information robustly, which allows for

performance guarantees on convex optimization programs that can be efficiently solved us-

ing many standard optimization tools. The resulting theory of CS can robustly estimate

sparse signals from many fewer measurements than the signal’s ambient dimension.
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An important part of compressive sensing involves demonstrating that certain measure-

ment systems can conserve the information in sparse signals the measurement space. One

commonly used property that quantifies to what degree a measurement scheme conserves

information from sparse signals is the restricted isometry property (RIP). The RIP quanti-

fies, via a parameter δ, how well distances between any two sparse vectors are preserved

when observed through the linear measurement system Φ. Specifically, we say that Φ is

RIP(2S , δ) if for all 2S -sparse signals

(1 − δ) ‖a2S ‖
2
2 ≤ ‖ΦΨa2S ‖

2
2 ≤ (1 + δ) ‖a2S ‖

2
2 . (5)

Smaller δ values indicate that the distances are preserved more stringently and different

sparse signals are distinguishable from one another. Figure 2 depicts the benefits of RIP,

where ‘good’ measurements preserve distances between any two sparse signals while ‘bad’

measurements allow different signals to project onto arbitrarily close points. Typically,

showing that a system has the RIP is difficult; however, for randomly generated Φ the

RIP can be shown to hold with high probability. For example, random Gaussian sensing

matrices (Φ is a random Gaussian matrix) satisfies the RIP with probability 1 − O(N−1
2 )

when M scales linearly with the sparsity S and logarithmically with the representation’s

ambient dimension N2. Since S � N for many cases, M < N and our signal is recoverable

from many fewer measurements than are needed in classical Shannon-Nyquist sampling.

Although the RIP and other, similar, properties show how well a system measures

sparse signals, signal recovery still depends on the choice in cost function to optimize.

While different philosophies advocate different recovery methods to estimate a sparse sig-

nal from a set of measurements, in this work we focus on the Bayesian maximum a posteri-

ori (MAP) framework. Generally, MAP estimation blends our observations with assumed

prior knowledge by optimizing over probability distributions that represent our relative

confidence in y and our expectations for x. Specifically, the MAP estimate seeks the signal

which maximizes the probability of the signal given the measurements. Equivalently, by

Bayes’ theorem we can maximize the product of the likelihood of our measurements given
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Figure 2: In the compressive sensing framework, we depend on random matrices to provide
us with well behaved measurements. In particular, we need the property where different
S -sparse signals are still distinguishable after applying the measurement operator Φ. For
example two images have different, sparse, wavelet decompositions, as depicted as being
two distinct points on a union of S -dimension subspaces. Any measurement operator to be
used for compressive measurements should retain relative distances, essentially not allow-
ing these two points to become arbitrarily close after the application of Φ.

the signal and the assumed prior distribution,

x̂ = arg max
x

p(x|y) = arg max
x

p(y|x)p(x). (6)

Since many common distributions are in the exponential family, the form

x̂ = arg min
x

[
− log (p(y|x)) − log (p(x))

]
, (7)

is often used. In this work, we assume that the measurement noise ε is a Gaussian random

error with zero mean and covariance matrix σ2
ε IM,

p(ε) =
1

(2σ2
ε )M/2 e−‖ε‖

2
2/1σ

2
ε .

This noise distribution leads to a Gaussian likelihood function with meanΦx and the same

covariance matrix, i.e.,

p(y|x) =
1

(2σ2
ε )M/2 e−‖y−Φx‖22/1σ

2
ε .
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In this case, the first term of Equation (7) simply becomes the `2 norm of y −Φx, and the

MAP estimate becomes a regularized least-squares estimate:

x̂ = arg min
x
‖y −Φx‖22 + γC(x), (8)

where the functional is multiplied through by 2σ2
ε to simplify the first term and the reg-

ulization function γC(x) = −2σ2
ε log(p(x)) is the scaled logarithm of the prior distribution1

.

Of course, the MAP estimate quality depends heavily on the quality of the signal prior.

With no prior information, we ignore the prior term C(x) and our estimate reduces to a

maximum likelihood (ML) estimate (a least-squares estimate). More often, however, the

signal statistics are known to some degree. Here we are interested in priors that reflect

our knowledge that x is S -compressible with respect to some (potentially over-complete)

dictionaryΨ. Distributions which encourage sparsity often have heavier tails than Gaussian

distributions and are more tightly peaked around the origin. In Bayesian terms, we can say

that these priors have high kurtotsis. Many different distributions have high kurtosis and

can induce sparse estimates. For example, in [57], the Cauchy distribution,

p(a) =

N2∏
i=1

1
π(1 + a[i]2)

,

is used as a prior. While having very high kurtosis, this distribution does not result in a

convex optimization, and thus can produce inefficiencies in the actual calculation of the

signal estimate.

Currently, one of the most widely used distributions for sparse signals is the Laplacian

distribution:

p(a) =

(
λ

2

)N2

e−λ‖a‖1 .

MAP estimation under Gaussian measurements and Laplacian priors results in the basis

pursuit de-noising (BPDN) cost function (Equation (3)), which is a convex optimization

1The variable γ is specifically extracted to highlight its role in trading off between the least-squares mea-
surement fidelity term and cost from the prior distribution
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program that can be solved very efficiently in high dimensions. One of the main results in

CS blends the measurement and prior quality to show that if the RIP holds for a given Φ,

the sparse representation can be provably recovered via BPDN up to a recovery error given

by

‖̂a − a‖2 ≤ C1‖ε‖2 + C2
‖a − aS ‖1
√

S
, (9)

where C1 and C2 are constants that depend on the RIP constant δ, and aS is the best S -term

approximation to a (the vector composed of the S largest components of a and zero else-

where). An interesting aspect of the bound in Equation (9) is that it essentially depends on

two parts: a measurement quality term dependent on the energy of the measurement error,

and a model fit term which depends on the `1 energy of the signal off of the main support.

We note here that many alternate estimation procedures to BPDN exist for estimating a

sparse signal from a set of linear measurements, including greedy algorithms [58–61] and

alternate optimization programs such as the Dantzig selector [62]. Additionally, alterna-

tive methods that do not use the RIP exist for proving accuracy bounds on BPDN [63]. In

this work, however, we focus on the BPDN-style optimization programs and the RIP as a

measurement quality measure.

2.2 Re-weighted `1

While theoretical guarantees exist for the Laplacian prior model through analysis of the

BPDN optimization, other algorithms can produce empirically superior estimates. For ex-

ample, priors with higher kurtosis can enforce sparsity more stringently. One such class

of distributions we can consider result in `p norms (with p < 1) replacing the `1 norm in

Equation (3). These distributions, as with the Cauchy distribution, result in non-convex

optimization problems. Another method to increase estimate accuracy is to make the

model more flexible. One way to accomplish this flexibility is to consider a set of hyper-

parameters λ that control relative signal-to-noise ratios between the different coefficients in
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a modified BPDN optimization [64]. We can model each individual coefficient as

p(a[i]|λ[i]) =
λ0λ[i]

2
e−λ0λ[i]|a[i]|. (10)

where λ0 is a baseline SNR. Since we are only using the λ values to introduce flexibility,

and we not necessarily interested in inferring λ, the prior that we actually wish to optimize

over is

p(a) =

∫
λ

p(a|λ)p(λ)dλ,

which can have much higher kurtosis than the Laplacian distribution. The advantage to

describing the model via the hierarchical structure is that while the actual objective may

not be convex, the objective when conditioning on the hyper-parameters can be convex

and efficiently solved. Many variational methods have been designed for these types of

situations where MAP estimates conditioned on one set of variables is easier to solve than

the full MAP estimate [65–67]. Of these methods, one popular algorithm is the expectation-

maximization (EM) algorithm. The EM algorithm was designed for scenarios where the

marginal distributions of one set of variables with respect to the other set of variables is

easily calculated, in addition to the conditional MAP estimate being easily evaluated.

The EM algorithm iteratively refines an estimates of the main variables of interest a

and an estimate of the distribution over a, as parametrized by λ, in order to find a local

optimal point of the original cost function [68–70]. While there is a rich literature on the

EM algorithm, the form we will use here alternates between the following two steps

M-Step: ât = arg max
a

p
(
y|a, λt−1

)
p
(
a|λt−1

)
E-Step: λt = Ep(λ|̂at ,y) [λ]

where the algorithmic time t iterates until convergence. In the M-step, we solve the MAP

estimate given the conditional prior distribution, using an estimate of the distribution pa-

rameters λ. In the E-step, we find a new conditional prior distribution by finding the ex-

pected set of parameters given our new signal estimate. Geometrically, we can think of
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each iteration as finding a lower-bound approximation to the non-concave prior in the E-

step, then maximizing that surrogate function in the M-step. Since the surrogate function

is always less than the actual prior, the iteration can the repeat at the new location, until a

local maximum is found. The EM algorithm is particularly useful, since it is guaranteed to

converge under mild conditions on the probability distributions [68].

In the context of sparse signal estimation, this EM-style estimation procedure is known

as the reweighted-`1 (RWL1) algorithm. In RWL1 we take the conditional Laplacian priors

on a as in Equation (10), and place i.i.d. Gamma distribution with parameters α and θ over

the hyper-parameters λ,

p(λ[i]) =
λα−1[i]
θαΓ(α)

e−λk[i]/θ,

the EM algorithm can be used to iteratively refine the estimates of a and λ by alternating

between the maximization step (M-step):

ât = arg min
a
‖y −ΦΨa‖22 + λ0‖Λ̂

t−1a‖1

where Λ̂t−1 = diag(̂λt−1) is a weighting matrix based on the previous estimate of the hyper-

parameters, and the expectation step (E-step):

λ̂t[i] =
κ

|̂at[i]| + β

where κ and β are constants depending on α and θ, and t indicates algorithmic time (i.e.,

RWL1 iterates over t until some convergence criteria is met). Computationally, the M-step

is a convex optimization that has essentially the same complexity as BPDN, and the E-step

is analytic and requires minimal computation, meaning that RWL1 has the computational

cost of repeated BPDN. We note that the actual prior that is being (locally) optimized can

be calculated as

p(a) =

∫
λ>0

p(a|λ)p(λ)dλ =
∏

i

[
αθλ0

2(θλ0|a[i]| + 1)α+1

]
,
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which is a student-t distribution and has much heavier tails than the Laplacian distribution,

and the EM algorithm essentially finds local optima of

‖y −ΦΨa‖22 + κ
∑

i

log(η|a[i]| + 1),

where κ and η are parameters that depend on the distribution parameters λ0, θ, α and σ2
ε .

2.3 Dictionary Learning

Another way to improve sparse signal estimation deals with the particulars of the sparsi-

fying dictionary Ψ. While the dictionary is often assumed known (e.g. wavelet bases for

images), in other applications it may not be clear what the best basis to describe a class of

signals is. If example data is collected, say a representative pool of data vectors {xk}, we

can consider learning the dictionary Ψ directly from the data. Here we consider a statisti-

cal method of learning dictionaries based on maximizing the probability distribution over

{xk}. In this method we use Equation (4) to write a likelihood probability distribution on x.

Essentially, we assume that the matrix Ψ applied to the vector a approximates the data to

within a Gaussian difference,

p(x|a,Ψ) =
1

(2πσ2
x)N/2 e

−
‖x−Ψa‖22

2σ2
x (11)

where σx is the variance of the reconstruction. To regularize the inference procedure, we

can place the Laplacian sparsity prior on the coefficients a. Using this prior over all data

vectors, we see that the joint posterior distribution over all coefficients for all data vectors

is ∏
k

p(ak|xk,Ψ) ∝
∏

k

p(xk|ak,Ψ)p(ak)

∝
∏

k

e
−
‖xk−Ψak‖

2
2

2σ2
x e−

√
2

σa
‖ak‖1 (12)

where σ2
a is the variance of the Laplacian distribution on the coefficients. In Equation (12),

the constant scaling factors are dropped since they do not effect the arg max of the poste-

rior distribution. Solving the MAP inference problem yields the coefficients {ak}, given a
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dictionary Ψ.

{̂ak} = arg max
{a}k

∏
k

p(ak|xk,Ψ


= arg max

{ak}

∏
k

e− ‖xk−Ψak‖
2
2

2σ2
ε e−

√
2

σa
‖ak‖1


= arg min

{ak}

∑
k

(
‖xk −Ψak‖

2
2 + γ‖ak‖1

)
(13)

where γ = 2
√

2σ2
ε/σa. Minimizing the cost function in Equation (13) (the negative log

of the posterior) with respect to a given Ψ coincides with solving the BPDN optimization

program independently for each exemplar data vector xk. As a computational note, since

these optimization programs are all independent, this procedure is embarrassingly parallel

and can be solved very quickly, making use of parallel processing toolboxes. To optimize

the dictionary, however, the same energy function needs to also be minimized with respect

toΨ. In this Bayesian setting, optimizingΨ can be viewed as either a maximum likelihood

(ML) estimate or another MAP estimate. In the ML version, we wish to find the dictio-

nary that maximizes the probability of the data given the dictionary, p(x|Ψ), which can be

equivalently written as

arg min
Ψ

p(x|Ψ) = arg min
Ψ

∫
RN

p(x|a,Ψ)p(a)da

Optimizing over this distribution, with the integral, would require sampling from the pos-

terior, which can be inaccurate and time intensive. In [57], however, Olshausen and Field

show that the distribution is tight about the maximum peak â, thus the integral can be

estimated by finding the MAP estimate of the coefficients, and instead optimizing the like-

lihood given the MAP coefficient estimate,∫
RN

p(x|a,Ψ)p(a)da ≈ 〈p(x|Ψ, â)p(a)〉, (14)

where the notation 〈·〉 here indicates the empirical mean over the exemplar data. To min-

imize this likelihood, a gradient descent algorithm can be implemented. Given the coeffi-

cients, the gradient step with respect to the ith dictionary element (the ith column of Ψ) is

17



given by

∆ψi ∝ 〈̂a[i](x −Ψâ)〉 (15)

where 〈·〉 again denotes the average over the sample set of the data. We can now use the

MAP estimation for the coefficients given the dictionary and the gradient descent step over

the dictionary given the coefficients to describe an iterative dictionary learning algorithm,

as described in Algorithm 1.

Algorithm 1 Sparse coding dictionary learning algorithm of [57]
Initialize γ, µ, K, ρ
Initialize Ψ as a random Gaussian matrix
repeat

for k = 1 to K do
Choose data example x uniformly at random
{̂ak} = arg mina ‖x −Ψa‖22 + γ‖a‖1
∆ψi(k) = a[i] (x −Ψa)

end for
ψi ←

[
ψi +

µ

K

∑
k ∆ψi(k)

]
Normalize the columns of Ψ
µ← ρµ

until Ψ converges

In Algorithm 1 we initialize the dictionary randomly, and set the SNR sparsity trade-off

γ, the number of data samples to use for each gradient step K, the learning rate µ and the

rate of decay for the learning rate ρ. The decay in the learning rate is necessary to avoid

the algorithm oscillating about a local minimum of the energy function. Additionally, we

note that an additional step is necessary to re-normalize the dictionary elements after each

gradient step. This step is also necessary, since it prevents the algorithm from converging

to a trivial solution where the norms of the columns of Ψ are very large, allowing the

coefficient magnitudes to be small, thereby vacuously abiding by the sparsity constraint.

This inherent bias in the algorithm stems from the approximation in Equation (14) [57].

While this method, and other related methods that seek to optimize similar optimization

functions (i.e. KSVD [33]) have demonstrated utility in signal estimation tasks, additional
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methods have been devised that place a prior over the dictionary as well, transforming the

ML estimate for Ψ into a MAP estimate [71,72] (this method is similar to methods used to

learn dictionaries for manifold transport operators as well [73]),

p(a,Ψ|x) = p(x|a,Ψ)p(a|Ψ)p(Ψ)

∝ e
−
‖x−Ψa‖22

2σ2
x e−

√
2

σa
‖a‖1e

−
‖Ψ‖2F
2σ2

Ψ .

Placing a prior over the dictionary can improve dictionary learning in two ways. First

off, it removes the necessity to re-normalize the dictionary elements at each step. Instead,

the dictionary norms can be restricted via a prior which prefers dictionary elements with

smaller norms. Additionally, placing a prior can alleviate a major detriment to dictionary

learning: the need to specify a priori how many dictionary elements will be learned. By

placing a norm which peaks at dictionary elements with zero-norm, dictionary elements

which are not necessary to represent the data will tend to zero. This means that we can

initialize a dictionary with more elements which we expect to need, and allow extraneous

dictionary elements to be removed through the learning process. One prior which can be

used towards these ends is an i.i.d. Gaussian random prior over the dictionary elements

with zero mean and variance σ2
Ψ

I. The MAP inference is then a joint inference problem

given by

{Ψ̂, â} = arg min
{Ψ,a}

(
‖x −Ψa‖22 + γ‖a‖1 + γΨ‖Ψ‖

2
F

)
,

where γΨ = σ2
x/σ

2
Ψ

. The learning procedure we can now derive is essentially the same as

in Algorithm 1, but with an extra term added to the gradient descent step,

∆ψi ∝ 〈̂a[i](x −Ψâ) − 2γΨψi〉,

and the re-normalization stem removed.
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CHAPTER III

SHORT-TERM MEMORY IN ECHO-STATE NETWORKS1

In the compressive-sensing literature, dynamic-signal observation has played an important

part in attempting to lower analog-to-digital sampling rates. A majority of the literature

has focused on convolving a signal with a random kernel and sampling at a lower rate than

Nyquist (e.g., [74]). However, here we are more concerned with a network framework

where a streaming signal enters a randomly connected network and the network nodes

are measured once, after the stream has fully entered the network. This sampling process

is most closely connected to characterizing the short-term memory (STM) of a network,

(the longest input sequence length of past input values recoverable from the current node

values).

Characterizing the fundamental limits of STM in networked systems is critical to un-

derstanding the computational abilities of these networks [75–82]. Fundamental questions

in this area include determining the effects on memory capacity of network size, connec-

tivity patterns, and input statistics. Toward these questions, several researchers [75, 83, 84]

have recently investigated network models of the form:

v[k] = g
(
Wv[k − 1] + zx[k] + ε̃[N]

)
, (16)

where v ∈ RM are the network states at time k, W ∈ RM×M is the recurrent (feedback)

connectivity matrix, x[k] ∈ R is the input sequence at time k, z ∈ RM is the projection

of the input into the network, ε̃[N] is potential network noise, and g : RM → RM is a

possible element-wise nonlinearity. The general idea is that if W is rich enough (often

1 The work presented in this chapter was performed in collaboration with Dr. Han Lun Yap (Sections 3.1.1,
3.1.2, 3.1.5, and 3.2) and Dong Yin (Section 3.1.3). ASC and HLY contributed equally to the work in
aforementioned sections. ASC developed the initial problem formulation and ran extensive simulations. The
full results presented of these sections are available in [1, 3, 5–9]. ASC and DY also contributed equally to
the work in Section 3.1.3 with full results to be presented in [2] with preliminary results presented in [4].
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taken as random), a single input will reverberate in the network, creating a “memory” of

the past input in the current network states. How past inputs can drive the current network

to different states, providing information necessary to recover the input history is depicted

in Figure 3 .
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Figure 3: The current state of the network encodes information about the stimulus history.
Different stimuli (examples shown to the left), when perturbing the same system (in this
figure, a three-neuron-orthogonal network) result in distinct states v = [v1, v2, v3]T at the
current time (k = 50). The current state is therefore informative for distinguishing between
the input sequences.

The STM capacity of the linear version of this network model (i.e., g (y) = y) has

been extensively studied [75, 83–85], and as such, the focus is on this network in this pro-

posal. While exact definitions of STM capacity vary, each approach attempts to quantify

the amount of information in the current network state available for recovering a past in-

put with some fidelity (e.g., the correlation between the input sequence and the recalled

input estimate and Fisher information). These analyses rely on the stochastic nature of the

input signal x[N], with [75, 85] specifically assuming Gaussian statistics. These analyses

derive STM capacity limits of N ≤ M, meaning that the number of time samples signif-

icantly recoverable by the current network state is limited by the number of nodes in the

network. Instead of standard Gaussian models, sparsity models, such as those used in CS,

can be used in the context of STM. Using sparsity models for the input statistics, Ganguli
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and Sompolinski [84] use an asymptotic statistical mechanics analysis on an approxima-

tion of the network dynamics in Equation (16) to argue that orthogonal recurrent network

structures can have STM capacities that exceed the number of network nodes. While this

work is encouraging, precise bounds based on exact network dynamics would yield deeper

insight into the STM of randomly connected networks. Additionally, much of the literature

also only addresses STM for single input networks. Multiple input networks are also of

interest. These networks evolve similarly as

v[k] = g
(
Wv[k − 1] + Zx[k] + ε̃[N]

)
, (17)

where the input at each time k is now a vector x[k] ∈ RL, and the inputs are projected onto

the network state by a feed-forward matrix Z ∈ RM×L.

Thus, in this chapter we consider dynamics in the observation process. Specifically,

as in [75, 83–85], we analyze the STM capacity of linear neural networks that evolve as

in Equation (16) with g(v) = v. In the STM setting, our measurements are essentially

snapshots of the node values2 at time N (y = v[N]) and the signal we wish to recover is the

input history, x[k] for k ∈ [1,N]. Our goal is to show that we can invert the process and

estimate the perturbations from the node values. As discussed previously, many studies that

place no specific model on the inputs indicate that the recoverable input sequence length is

bounded by the number of network nodes (N ≤ M). From a sampling viewpoint, this bound

is essentially the Shannon-Nyquist sampling rate. Under sparsity assumptions, however,

it appears that we can recover longer sequence (N ≥ M), indicating that the system is

compressively measuring the perturbation sequences [84]. By treating the network as a

measurement system, we can show that the network dynamics satisfy the RIP, thereby

providing theoretical bounds on the STM for sparse stimuli.

2While more generally we can consider reading out the node values in a compressed fashion, i.e., y =

Cv[N] where C has more columns then rows, here we assume that C = I (i.e., we can read the node values
directly) as this assumption isolates the dynamic portion of this problem (information accumulating in v).
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3.1 STM Capacity using the RIP
3.1.1 Network Dynamics as Compressed Sensing

We consider the same discrete-time ESN model used in previous studies [75, 83–85]:

y[k] = f
(
Wx[k − 1] + zx[k] + ε̃[k]

)
, (18)

where y[k] ∈ RM is the network state at time k, W is the (M × M) recurrent (feedback)

connectivity matrix, x[k] ∈ R is the input sequence at time k, z is the (M × 1) projection of

the input into the network, ε̃[k] is a potential network noise source, and f : RM → RM is a

possible pointwise nonlinearity. As in previous studies [75, 83–85], we will consider here

the STM capacity of a linear network (i.e., f (y) = y).

The recurrent dynamics of Equation (18) can be used to write the network state at time

N :

y[N] = Φx + ε, (19)

where Φ is a M × N matrix, the kth column of Φ is Wk−1 z, x = [x[N], . . . , x[1]]T , the

initial state of the system is x[0] = 0, and ε is the node activity not accounted for by the

input stimulus (e.g. the sum of network noise terms ε =
∑N

k=1 WN−kε̃[k]). With this network

model, we assume that the input sequence x is S -sparse in an orthonormal basis Ψ (i.e.,

there are only S nonzeros in a = ΨT x).

3.1.2 Single Finite-Length Input

We first consider the STM capacity of a network with single finite-length inputs, where

a length-N input signal drives a network and the current state of the M network nodes

at time N is used to recover the input history via Equation (3). If Φ derived from the

network dynamics satisfies the RIP for the sparsity basis Ψ, the bounds in Equation (9)

establish strong guarantees on recovering x from the current network states y[N]. Given

the significant structure inΦ, it is not immediately clear that any network construction can

result in Φ satisfying the RIP. However, the structure in Φ is very regular and in fact only
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Single Sparse Input:

Figure 4: Single input with a sparse structure.

depends on powers of W applied to z:

Φ =

[
z | W z | W2 z | . . . | WN−1 z

]
.

Writing the eigendecomposition of the recurrent matrix W = UDU−1, we re-write the

measurement matrix as

Φ = U
[
z̃ | Dz̃ | D2 z̃ | . . . | DN−1 z̃

]
,

where z̃ = U−1 z. Rearranging, we get

Φ = UZ̃
[
d0 | d | d2 | . . . | dN−1

]
= UZ̃F (20)

where Fk,l = dl−1
k is the kth eigenvalue of W raised to the (l − 1)th power and Z̃ =

diag
(
U−1 z

)
.

While the RIP conditioning of Φ depends on all of the matrices in the decomposition

of Equation 20, the conditioning of F is the most challenging because it is the only matrix

that is compressive (i.e., not square). Due to this difficulty, we start by specifying a net-

work structure for U and Z̃ that preserves the conditioning properties of F (other network

constructions will be discussed in Section 3.2). Specifically, as in [83–85] we choose W to

be a random orthonormal matrix, assuring that the eigenvector matrix U has orthonormal

columns and preserves the conditioning properties of F. Likewise, we choose the feed-

forward vector z to be z = 1
√

M
U1M, where 1M is a vector of M ones (the constant

√
M
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simplifies the proofs but has no bearing on the result). This choice for z assures that Z̃ is

the identity matrix scaled by
√

M (analogous to [83] where z is optimized to maximize the

SNR in the system). Finally, we observe that the richest information preservation appar-

ently arises for a real-valued W when its eigenvalues are complex, distinct in phase, have

unit magnitude, and appear in complex conjugate pairs.

For the above network construction, our main result shows that Φ satisfies the RIP in

the basis Ψ (implying the bounds from Equation (9) hold) when the network size scales

linearly with the sparsity level of the input. This result is made precise in the following

theorem:

Theorem 1. Suppose N ≥ M, N ≥ S and N ≥ O(1).3 Let U be any unitary ma-

trix of eigenvectors (containing complex conjugate pairs) and set z = 1
√

M
U1M so that

Z̃ = diag
(
U−1 z

)
= 1
√

M
I. For M an even integer, denote the eigenvalues of W by {e jwm}Mm=1.

Let the first M/2 eigenvalues
(
{e jwm}

M/2
m=1

)
be chosen uniformly at random on the complex unit

circle (i.e., we chose {wm}
M/2
m=1 uniformly at random from [0, 2π)) and the other M/2 eigen-

values as the complex conjugates of these values (i.e., for M/2 < m ≤ M, e jwm = e− jwm−M/2).

Under these conditions, for a given RIP conditioning δ < 1 and failure probability η, if

M ≥ C
S
δ2µ

2 (Ψ) log4 (N) log(η−1), (21)

for a universal constant C, then for any x that is S -sparse (i.e., has no more than S non-zero

entries)

(1 − δ) ≤ ‖ΦΨx‖22 / ‖x‖
2
2 ≤ (1 + δ)

with probability exceeding 1 − η.

The proof of this statement is given in Appendix 8.4 and follows closely the approach

in [53] by generalizing it to both include any basis Ψ and account for the fact that W is a

3The notation N ≥ O(1) means that N ≥ C for some constant C. For clarity, we do not keep track of the
constants in our proofs. The interested reader is referred to [53] for specific values of the constants.
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real-valued matrix. The quantity µ (·) (known as the coherence) captures the largest inner

product between the sparsity basis and the Fourier basis, and is calculated as:

µ (Ψ) = max
n=1,...,N

sup
t∈[0,2π]

∣∣∣∣∣∣∣
N−1∑
m=0

Ψm,ne− jtm

∣∣∣∣∣∣∣ . (22)

In the result above, the coherence is lower (therefore the STM capacity is higher) when the

sparsity basis is more “different” from the Fourier basis.

The main observation of the result above is that STM capacity scales superlinearly with

network size. Indeed, for some values of S and µ (Ψ) it is possible to have STM capacities

much greater than the number of nodes (i.e., N � M). To illustrate the perfect recovery

of signal lengths beyond the network size, Figure 5 shows an example recovery of a single

long input sequence. Specifically, we generate a 100 node random orthogonal connectivity

matrix W and generate z = 1
√

M
U1M. We then drive the network with an input sequence

that is 480 samples long and constructed using 24 non-zero coefficients (chosen uniformly

at random) of a wavelet basis. The values at the non-zero entries were chosen uniformly

in the range [0.5,1.5]. In this example we omit noise so that we can illustrate the noiseless

recovery. At the end of the input sequence, the resulting 100 network states are used to

solve the optimization problem in Equation 3 for recovering the input sequence (using the

network architecture in [35]). The recovered sequence, as depicted in Figure 5, is identical

to the input sequence, clearly indicating that the 100 nodes were able to store the 480

samples of the input sequence (achieving STM capacity higher than the network size).

Directly checking the RIP condition for specific matrices is NP-hard (one would need to

check every possible 2S -sparse signal). In light of this difficulty in verifying recovery of all

possible sparse signals (which the RIP implies), we will explore the qualitative behavior of

the RIP bounds above by examining in Figure 6 the average recovery relative MSE (rMSE)

in simulation for a network with M nodes when recovering input sequences of length N

with varying sparsity bases. Figure 6 uses a plotting style similar to the Donoho-Tanner

phase transition diagrams [54] where the average recovery rMSE is shown for each pair

of variables under noisy conditions. While the traditional Donoho-Tanner phase transitions
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plot noiseless recovery performance to observe the threshold between perfect and imperfect

recovery, here we also add noise to illustrate the stability of the recovery guarantees. The

noise is generated as random additive Gaussian noise at the input (̃ε in Equation (18)) to

the system with zero mean and variance such that the total noise in the system (ε in Equa-

tion (19)) has a norm of approximately 0.01. To demonstrate the behavior of the system,

the phase diagrams in Figure 6 sweep the ratio of measurements to the total signal length

(M/N) and the ratio of the signal sparsity to the number of measurements (S/M). Thus at

the upper left hand corner, the system is recovering a dense signal from almost no measure-

ments (which should almost certainly yield poor results) and at the right hand edge of the

plots the system is recovering a signal from a full set of measurements (enough to recover

the signal well for all sparsity ranges). We generate ten random ESNs for each combina-

tion of ratios (M/N, S/M). The simulated networks are driven with input sequences that are

sparse in one of four different bases (Canonical, Daubechies-10 wavelet, Symlet-3 wavelet

and DCT) which have varying coherence with the Fourier basis. We use the node values at

the end of the sequence to recover the inputs.4

In each plot of Figure 6, the dashed line denotes the boundary where the system is

able to essentially perform perfect recovery (recovery error ≤ 1%) up to the noise floor.

Note that the area under this line (the white area in the plot) denotes the region where the

system is leveraging the sparse structure of the input to get capacities of N > M. We also

observe that the dependence of the RIP bound on the coherence with the Fourier basis is

clearly shown qualitatively in these plots, with the DCT sparsity basis showing much worse

performance than the other bases.

While this first proof was dependent on the deterministic construction for z based on

the eigenvectors of W, there has also been interest in choosing z as i.i.d. random Gaussian

values [83, 84]. In this case, it is also possible to show that Φ satisfies the RIP (with

respect to the basis Ψ and with the same RIP conditioning δ as before) by paying an extra

4For computational efficiency, we use the TFOCS software package [86] to solve the optimization problem
in Equation (3) for these simulations.
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Figure 5: A length 480 stimulus pattern (left plot) that is sparse in a wavelet basis drives
the encoding network defined by a random orthogonal matrix W and a feed-forward vector
z. The 100 node values (center plot) are then used to recover the full stimulus pattern (right
plot) using a decoding network which solves Equation (3).

log(N) penalty in the number of measurements. Specifically, we have also established the

following theorem:

Theorem 2. Suppose N ≥ M, N ≥ S and N ≥ O(1). Let U be any unitary matrix of

eigenvectors (containing complex conjugate pairs) and the entries of z be i.i.d. zero-mean

Gaussian random variables with variance 1
M . For M an even integer, denote the eigenvalues

of W by {e jwm}Mm=1. Let the first M/2 eigenvalues ({e jwm}
M/2
m=1) be chosen uniformly at random

on the complex unit circle (i.e., we chose {wm}
M/2
m=1 uniformly at random from [0, 2π)) and

the other M/2 eigenvalues as the complex conjugates of these values. Then, for a given

RIP conditioning δ and failure probability N− log4 N ≤ η ≤ 1
e , if

M ≥ C
S
δ2µ

2 (Ψ) log5 (N) log(η−1), (23)

Φ satisfies RIP-(S , δ) with probability exceeding 1 − η for a universal constant C.

The proof of this theorem can be found in Appendix 8.5. The additional log factor in the

bound in (23) reflects that a random feed-forward vector may not optimally spread the input

energy over the different eigen-directions of the system. Thus, some nodes may see less
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Figure 6: Random orthogonal networks can have a STM capacity that exceeds the number
of nodes. These plots depict the recovery relative mean square error (rMSE) for length-
1000 input sequences from M network nodes where the input sequences are S -sparse. Each
figure depicts recovery for a given set of ratios M/N and S/M. Recovery is near perfect
(rMSE ≤ 1%; denoted by the dotted line) for large areas of each plot (to the left of the
N = M boundary at the right of each plot) for sequences sparse in the canonical basis or
various wavelet basis (shown here are 4 level decompositions in Symlet-3 wavelets and
Daubechies-10 wavelets). For bases more coherent with the Fourier basis (e.g., discrete
cosine transform-DCT), recovery performance above N = M can suffer significantly. All
the recovery here was done for noise such that ‖ε‖2 ≈ 0.01.

energy than others, making them slightly less informative. Note that while this construction

does perform worse that the optimal constructions from Theorem 3.1.3, the STM capacity

is still very favorable (i.e., a linear scaling in the sparsity level and logarithmic scaling in

the signal length).

3.1.3 Sparse Multiple Finite-Length Inputs

While Theorem and Theorem section dealt with networks where the input was only a single

stream of inputs, we can also address network constructions where multiple input streams

drive the network simultaneously. Specifically we can consider the input to the network at

each time step to be a vector rather than a scalar

y[n] = Wy[n − 1] +

L∑
l=1

zlxl[n] + ε̃[n] = Wyn − 1 + Zx[n] + ε̃[n], (24)

where now x[n] ∈ RL for all n and Z ∈ RM×L is now a feed-forward matrix, which is

composed of concatenating all the individual feed-forward vectors zl. We can analyze this

network as with the single input stream network by iterating Equation (24) in on itself:

yN =

N∑
k=1

WN−kZx[k].
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Multiple Joint-Sparse Inputs:

Figure 7: Multiple inputs with a sparse structure.

As in the single input case, we can rewrite the sum as a matrix-vector multiply,

y[N] =
[
Z,WZ, · · · ,WN−1Z

] [
xT [N], xT [N − 1], · · · , xT [1]

]T
.

and by reorganizing the columns, we can obtain

y[N] = U
[
Z̃1F, Z̃2F, · · · , Z̃LF

] [
xT

1 , x
T
2 , · · · , x

T
L

]T
= Φx̃, (25)

where xl ∈ R
N is the lth input stream (xl = [xl[N], · · · , xl[1]]T ) and Z̃l = diag(U−1 zl)

modulates the Fourier measurements for each block (F and U are as described in the single

input case). From Equation (26) we can see that the current state is simply the sum of

L compressed input streams, where the compression for each block essentially preforms

the same compression as the single stream case. While it may be tempting to complete

the parallel track to the single input analysis, and to define Z̃ based on the eigenvectors of

W, we can quickly see that such a strategy would provide poor results. Specifically, if we

choose each Z̃l such that every Z̃l = I, then we can see that Equation (26) reduces to

yN = U [F, F, · · · , F]
[
xT

1 , x
T
2 , · · · , x

T
L

]T
,

= UF
L∑

l=1

xl, (26)

which clearly indicates that only the sum of the input streams can be recovered, however

the different inputs cannot be distinguished from one another. Instead, we utilize the feed-

forward vector style used in Theorem 3.1.3, choosing Z to be a set of random Gaussian
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vectors with i.i.d. zero-mean, variance-1/M entries. In this way, each input stream projects

differently onto the evolving network state.

Using this setup, we can show a result similar to Theorem 3.1.3, with a few minor

modifications. Specifically, the signal model and the resulting coherence term need to

be modified to accommodate the new signal input structure. For a single input we could

describe the input model as x = Ψa, i.e. x is sparse in Ψ. We can similarly describe

b̃mx = Ψã, i.e. the composite of all input signals is sparse in a basis Ψ ∈ RNL×NL. This

means that each signal stream can be written as xl =
∑L

k=1Ψ
l,kak where Ψl,k is the {l, k}th

NL × N block of Ψ. This signal model is very rich in that a given coefficient can influence

multiple channels, and the network memory can piece together the interdependencies. With

this model, we find it necessary to generalize the coherence parameter used in the previous

results.

µ (Ψ) = max
l,k=1,...,L

max
n=1,...,N

sup
t∈[0,2π]

∣∣∣∑N−1
m=0Ψ

l,k
m,ne− jtm

∣∣∣
‖Ψl,k

m ‖2
. (27)

In the single input case, the coherence parameter focused on the deviation of the sparsity

basis from the Fourier basis. In this multiple input case, each N×N block must be different

from the Fourier basis. This restriction is reasonable, since if a single sub-block of Ψ was

coherent with the Fourier basis, then at least one input stream would be sparse in a Fourier-

like basis and hence would be unrecoverable. Since we are seeking uniform recovery, this

situation is not acceptable. We note that for the case of L = 1, the generalized definition of

coherence reduces to the definition for single inputs.

Theorem 3. Suppose NL ≥ M, NL ≥ S and NL ≥ O(1). Let U be any unitary matrix of

eigenvectors (containing complex conjugate pairs) and the entries of Z be i.i.d. zero-mean

Gaussian random variables with variance 1
M . For M an even integer, denote the eigenvalues

of W by {e jwm}Mm=1. Let the first M/2 eigenvalues ({e jwm}
M/2
m=1) be chosen uniformly at random

on the complex unit circle (i.e., we chose {wm}
M/2
m=1 uniformly at random from [0, 2π)) and

the other M/2 eigenvalues as the complex conjugates of these values. Then, for a given

31



RIP conditioning δ and failure probability N− log4 N ≤ η ≤ 1
e , if

M ≥ C
S
δ2µ

2 (Ψ) log5 (NL) log(η−1), (28)

where the coherence µ (Φ) is defined as in Equation ,Φ satisfies RIP-(S , δ) with probability

exceeding 1 − η for a universal constant C.

The proof of Theorem 3 is in Appendix 8.6. It is important to notice that when L = 1,

Theorem 3 reduces to Theorem 3.1.3. As this result is identical in the variables present in

the signal input case (S , N, M, etc.), we test this result by testing the dependence on the

number of inputs L. Figure 8 depicts the results of a series of simulations where a noiseless

set of L signals of fixed temporal length N are fed into a network. We vary the network size,

and plot the smallest M where the BPDN optimization program can still perfectly recover

the input streams. The resulting relationship between L and M follows a logarithmic curve

very closely, and in fact the best fit poly-logarithmic curve only has an exponential of 1.1

(i.e. M ∝ log1.1 L. This abides by the derived bounds in Theorem 3 and matches the

conjectured bounds [55].

3.1.4 Low-Rank Multiple Finite-Length Inputs

In the low rank case, we assume a different type of low dimensional structure. In the spar-

sity case, the correlations between inputs was defined by the joint dictionary Ψ, wherein

one coefficient could describe activity across time and inputs. In the low-rank structure

we assume instead that the correlations between nodes arise from a different process. We

instead assume that some small number, R, of prototypical signals combine linearly to form

the various input streams. Such a signal structure could arise when the input streams come

from spatially neighboring locations, and some small number of sources can be observed

at each of those locations. In this case, we can write out input matrix in a reduced form

X = QV∗, (29)

where V∗ ∈ RR×N is the matrix whose rows are the prototypical streams and Q ∈ RL×R

represents the mixing matrix that determines how much of each source stream is present
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Figure 8: Driving a network with more input sequences has a logarithmic effect on the
number of nodes needed to effectively store the inputs driving the system. Empirically,
as we increase the number of input streams, the number of nodes needed to recover the
signal increases in a logarithmic manner (shown in solid blue). Shown here are the mean
Mfailure over 10 trials, as well as error bars showing the maximum and minimum Mfailure.
The best fit logarithmic function to this curve (and the maximum and minimum values) has
an exponent of 1.1 (1.08, and 1.077 for the maximum and minimum respectively).

in each input stream. Since we assume both L ≥ R and N ≥ R, this decomposition of X

is a low-rank representation. There is a rich and growing literature dedicated to recovering

low-rank matrices from incomplete measurements, the majority focusing on solving the

so-called nuclear norm minimization,

min ||X||∗ s.t. ||y[N] −A(X)||2 = 0 (30)

where the nuclear norm ||X|| is defined as the sum of the singular values of X [87–92].

Nuclear norm minimization is more complex than more standard regularized least-squares

optimization programs and initially a more tractable trace-norm minimization was consid-

ered [93,94]. Currently, however, proximal methods have made nuclear norm minimization

feasible [95–97].

In terms of proving bounds on the solution of Equation (30), while there does exist a
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Multiple Low-Rank Inputs:

Figure 9: Multiple inputs with a low-rank structure.

comparable property to the RIP for linear operators acting on low-rank matrices, showing

the so-called matrix RIP can be difficult even for simple operators. Instead, much of the

work in this field instead is based on using a dual-certificate approach [88, 98]. The dual

certificate approach uses a proof by construction to show that a dual certificate Y exists,

where the projections of Y into and out of the space spanned by the singular vectors of X

is bounded appropriately. Specifically we consider the singular value decomposition of X

in Equation (29) and the projection PT defined as

PT (W) = QQ∗W + WVV∗ − QQ∗WVV∗

which projects a matrix into the space T spanned by the left and right singular vectors. The

conditions for the dual certificate Y are then thatA is injective on T and that Y satisfies

∣∣∣∣∣∣PT (Y) − QVH
∣∣∣∣∣∣

F
≤

1

2
√

2γ

||PT⊥ (Y)|| ≤
1
2

where the projection PT⊥ is the projection onto the perpendicular space to T ,

PT⊥ (W) = (I − QQ∗) W (I − VV∗)

Using the dual certificate, it has been shown that, as in the case of BPDN, the solution

to nuclear norm minimization has provable bounds on its performance both for noiseless

and noisy measurements [88]. Specifically, if the dual certificate exists, Equation (30) (the
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noiseless measurement case) exactly recovers the low-rank matrix [87]. In the presence of

noise, the dual certificate ensures that the solution to the noisy nuclear norm minimization

min ‖X‖∗ s.t. ‖y[N] −A(X)‖2 ≤ ε, (31)

where ε = ‖ε‖2 is the `2 norm of the measurement error, satisfies the inequality∥∥∥∥X̂ − X
∥∥∥∥ ≤ 4

√
min(N, L)

2NL + M
M

+ 2

 ε. (32)

We note that while this bound is looser than desired in the sense that the bound grows

with the problem size, alternate optimization routines can demonstrate the desired scaling

laws [98]. While these bounds are provable in this case, we present here only the nuclear

norm results to retain mathematical consistency.

Here we use the dual certificate tools to derive the following theorem:

Theorem 4. Suppose NL ≥ M, N ≥ R, N ≥ O(1) and L ≥ O(1). Let z be i.i.d. zero-mean

Gaussian random variables with variance 1
M . For M an even integer, denote the eigenvalues

of W by {e jwm}Mm=1. Let the first M/2 eigenvalues ({e jwm}
M/2
m=1) be chosen uniformly at random

on the complex unit circle (i.e., we chose {wm}
M/2
m=1 uniformly at random from [0, 2π)) and the

other M/2 eigenvalues as the complex conjugates of these values. If the number of nodes

scales as

M ≥ cR
(
N + µ2

0L
)

log3(LN),

where the coherence parameter is defined as

µ2
0 = R sup

ω∈[0,2π]

∣∣∣∣∣∣V∗ fω
∣∣∣∣∣∣2

2
,

then, with probability at least 1 − O((LN)1−β the minimization in Equation (30) exactly

recovers the rank-R input matrix X under noiseless conditions and the minimization (31)

recovers X to within the error (32) under noisy conditions.

The proof of Theorem 4 is in Appendix 8.7 and follows a traditional glofing scheme

to find an inexact dual certificate. In fact, we note that since our architecture is similar

35



mathematically to the architecture in [98], our proof is similar as well. The main difference

is that due to the unbounded nature of our distributions, and the fact that our Fourier vectors

are continuously random, rather than gridded, we can consider our proof as a generalization

of the proof in [98].

3.1.5 STM Capacity of Infinite-Length Inputs

After establishing the perfect recovery bounds for finite-length inputs in the previous sec-

tion, we turn here to the more interesting case of a network that has received an input be-

yond its STM capacity (perhaps infinitely long). In contrast to the finite-length input case

where favorable constructions for W used random unit-norm eigenvalues, this construction

would be unstable for infinitely long inputs. In this case, we take W to have all eigenvalue

magnitudes equal to q < 1 to ensure stability. The matrix constructions we consider in this

section are otherwise identical to that described in the previous section.

In this scenario, the recurrent application of W in the system dynamics assures that each

input perturbation will decay steadily until it has zero effect on the network state. While

good for system stability, this decay means that each input will slowly recede into the past

until the network activity contains no useable memory of the event. In other words, any

network with this decay can only hope to recover a proxy signal that accounts for the decay

in the signal representation induced by the forgetting factor q. Specifically, we define this

proxy signal to be Qx, where Q = diag
([

1, q, q2, . . .
])

. Previous work [75, 83, 85] has

characterized recoverability by using statistical arguments to quantify the correlation of the

node values to each past input perturbation. In contrast, our approach is to provide recovery

bounds on the rMSE for a network attempting to recover the N past samples of Qx, which

corresponds to the weighted length-N history of x. Note that in contrast to the previous

sections where we established the length of the input that can be perfectly recovered, the

amount of time we attempt to recall (N) is now a parameter that can be varied.

Our technical approach to this problem comes from observing that activity due to inputs

older than N acts as interference when recovering more recent inputs. In other words, we
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can group older terms (i.e., from farther back than N time samples ago) with the noise term,

resulting again in Φ being an M by N linear operation that can satisfy RIP for length-N

inputs. In this case, after choosing the length of the memory to recover, the guarantees in

Equation (9) hold when considering every input older than N as contributing to the “noise”

part of the bound.

Specifically, in the noiseless case where x is sparse in the canonical basis (µ (I) = 1)

with a maximum signal value xmax, we can bound the first term of Equation (9) using a

geometric sum that depends on N, S and q. For a given scenario (i.e., a choice of q, S and

the RIP conditioning of Φ), a network can support signal recovery up to a certain sparsity

level S ∗, given by:

S ∗ =
Mδ2

C logγ (N)
, (33)

where γ is a scaling constant (e.g., γ = 4 using the present techniques, but γ = 1 is

conjectured [55]). We can also bound the second term of Equation (9) by the sum of the

energy in the past N perturbations that are beyond this sparsity level S ∗. Together these

terms yield the bound on the recovery of the proxy signal:

∥∥∥Qx − Qx̂
∥∥∥

2
≤ βxmax ‖U‖2

(
qN

1 − q

)
+

βxmax
√

min [S ∗, S ]

(
qmin[S ∗,S ] − qS

1 − q

)
(34)

+ αεmax ‖U‖2
∣∣∣∣∣ q
1 − q

∣∣∣∣∣ .
The derivation of the first two terms in the above bound is detailed in Appendix 8.8, and

the final term is simply the accumulated noise, which should have bounded norm due to

the exponential decay of the eigenvalues of W.

Intuitively, we see that this approach implies the presence of an optimal value for the

recovery length N. For example, choosing N too small means that there is useful signal

information in the network that the system is not attempting to recover, resulting in omis-

sion errors (i.e., an increase in the first term of Equation (9) by counting too much signal
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as noise). On the other hand, choosing N too large means that the system is encountering

recall errors by trying to recover inputs with little or no residual information remaining in

the network activity (i.e., an increase in the second term of Equation (9) from making the

signal approximation worse by using the same number of nodes for a longer signal length).

The intuitive argument above can be made precise in the sense that the bound in Equa-

tion (34) does have at least one local minimum for some value of 0 < N < ∞. First, we

note that the noise term (i.e., the third term on the right side of Equation (34)) does not

depend on N (the choice in origin does not change the infinite summation), implying that

the optimal recovery length only depends on the first two terms. We also note the important

fact that S ∗ is non-negative and monotonically decreasing with increasing N. It is straight-

forward to observe that the bound in equation Equation (34) tends to infinity as N increases

(due to the presence of S ∗ in the denominator of the second term). Furthermore, for small

values of N, the second term in Equation (34) is zero (due to S ∗ > S ), and the first term

is monotonically decreasing with N. Taken together, since the function is continuous in N,

has negative slope for small N and tends to infinity for large N, we can conclude that it

must have at least one local minima in the range 0 <N< ∞. This result predicts that there

is (at least one) optimal value for the recovery length N.

The prediction of an optimal recovery length above is based on the fact that the error

bound in Equation (34)), and it is possible that the error itself will not actually show this

behavior (since the bound may not be tight in all cases). To test the qualitative intuition

from Equation (34), we simulate recovery of input lengths and show the results in Fig-

ure 10. Specifically, we generate 50 ESNs with 500 nodes and a decay rate of q=0.999.

The input signals are length-8000 sequences that have 400 nonzeros whose locations are

chosen uniformly at random and whose amplitudes are chosen from a Gaussian distribution

(zero mean and unit variance). After presenting the full 8000 samples of the input signal to

the network, we use the network states to recover the input history with varying lengths and

compared the resulting MSE to the bound in Equation (34). Note that while the theoretical
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bound may not be tight for large signal lengths, the recovery MSE matches the qualitative

behavior of the bound by achieving a minimum value at N > M.
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Figure 10: The theoretical bound on the recovery error for the past N perturbations to a net-
work of size M has a minimum value at some optimal recovery length. This optimal value
depends on the network size, the sparsity S , the decay rate q, and the RIP conditioning of
Φ. Shown on the right is a simulation depicting the MSE for both the theoretical bound (red
dashed line) and an empirical recovery for varying recovery lengths N. In this simulation
S = 400, q = 0.999, M = 500. The error bars for the empirical curve show the maximum
and minimum MSE. On the left we show recovery of a length-8000 decayed signal (top
left) when recovering the past 500 (top right), 4000 (bottom left), and 8000 (bottom right)
most recent perturbations. As expected, at N = 4000 (approximately optimal) the recovery
has the highest accuracy.

3.2 Other Network Constructions
3.2.1 Alternate Orthogonal Constructions

Our results in the previous section focus on the case where W is orthogonal and z projects

the signal evenly into all eigenvectors of W. When either W or z deviate from this structure

the STM capacity of the network apparently decreases. In this section we revisit those

specifications, considering alternate network structures allowed under these assumptions as

well as the consequences of deviating from these assumptions in favor of other structural

advantages for a system (e.g., wire length, etc.).

To begin, we consider the assumption of orthogonal network connectivity, where the

eigenvalues have constant magnitude and the eigenvectors are orthonormal. Constructed in

this way, U exactly preserves the conditioning of Z̃F. While this construction may seem
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restrictive, orthogonal matrices are relatively simple to generate and encompass a number

of distinct cases. For small networks, selecting the eigenvalues uniformly at random from

the unit circle (and including their complex conjugates to ensure real connectivity weights)

and choosing an orthonormal set of complex conjugate eigenvectors creates precisely these

optimal properties. For larger matrices, the connectivity matrix can instead be constructed

directly by choosing W at random and orthogonalizing the columns. Previous results on

random matrices [99] guarantee that as the size of W increases, the eigenvalue probability

density approaches the uniform distribution as desired. Some recent work in STM capacity

demonstrates an alternate method by which orthogonal matrices can be constructed while

constraining the total connectivity of the network [78]. This method iteratively applies ro-

tation matrices to obtain orthogonal matrices with varying degrees of connectivity. We note

here that one special case of connectivity matrices not well-suited to the STM task, even

when made orthogonal, are symmetric networks, where the strictly real-valued eigenvalues

generates poor RIP conditioning for F.

While simple to generate in principle, the matrix constructions discussed above are gen-

erally densely connected and may be impractical for many systems. However, many other

special network topologies that may be more biophysically realistic (i.e., block diagonal

connectivity matrices and small-world5 networks [100]) can be constructed so that W still

has orthonormal columns. For example, consider the case of a block diagonal connection

matrix (illustrated in Figure 11), where many unconnected networks of at least two nodes

each are driven by the same input stimulus and evolve separately. Such a structure lends

itself to a modular framework, where more of these subnetworks can be recruited to recover

input stimuli further in the past. In this case, each block can be created independently as

above and pieced together. The columns of the block diagonal matrix will still have unit

5Small-world structures are typically taken to be networks where small groups of neurons are densely con-
nected amongst themselves, yet sparse connections to other groups reduces the maximum distance between
any two nodes.
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norm and will be both orthogonal to vectors within its own block (since each of the diag-

onal sub-matrices are orthonormal) and orthogonal to all columns in other blocks (since

there is no overlap in the non-zero indices).

Full Network
1

1

2
2

......

1

2
...

1

2

Modular Network
1

1

2
2

......

1

2

1

2

Small-World Network

Figure 11: Possible network topologies which have orthogonal connectivity matrices. In
the general case, all nodes are connected via non-symmetric connections. Modular topolo-
gies can still be orthogonal if each block is itself orthogonal. Small world topologies may
also have orthogonal connectivity, especially when a few nodes are completely connected
to a series of otherwise disjoint nodes.

Similarly, a small-world topology can be achieved by taking a few of the nodes in every

group of the block diagonal case and allowing connections to all other neurons (either

unidirectional or bidirectional connections). To construct such a matrix, a block diagonal

orthogonal matrix can be taken, a number of columns can be removed and replaced with full

columns, and the resulting columns can be made orthonormal with respect to the remaining

block-diagonal columns. In these cases, the same eigenvalue distribution and eigenvector

properties hold as the fully connected case, resulting in the same RIP guarantees (and

therefore the same recovery guarantees) demonstrated earlier. We note that this is only one

approach to constructing a network with favorable STM capacity and not all networks with

small-world properties will perform well.

Additionally, we note that as opposed to networks analyzed in prior work (in particular

the work in [79] demonstrating that random networks with high connectivity have short
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STM), the average connectivity does not play a dominant role in our analysis. Specifically,

it has been observed in spiking networks that higher network connectivity can reduce the

STM capacity so that is scales only with log(M) [79]). However, in our ESN analysis,

networks can have low connectivity (e.g. 2x2 block-diagonal matrices - the extreme case

of the block diagonal structure described above) or high connectivity (e.g. fully connected

networks) and have the same performance.

3.2.2 Suboptimal Network Constructions

Finally, we can also analyze some variations to the network structure assumed in this paper

to see how much performance decreases. For example, instead of orthogonal connectivity

matrices, there has also been interest in network constructions involving non-orthogonal

connectivity matrices (perhaps for noise reduction purposes [83]). When the eigenval-

ues of W still lie on the complex unit circle, we can analyze how non-orthogonal ma-

trices affect the RIP results. In this case, the decomposition in Equation (20) still holds

and Theorem 3.1.3 still applies to guarantee that F satisfies the RIP. However, the non-

orthogonality changes the conditioning of U and subsequently the total conditioning of

Phi. Specifically the conditioning of U (the ratio of the maximum and minimum singular

values σ2
max/σ

2
min = γ) will effect the total conditioning of Phi. We can use the RIP of F

and the extreme singular values of U to bound how close UF is to an isometry for sparse

vectors, both above by

‖UFx‖22 ≤ σ
2
max ‖Fx‖22 ≤ σ

2
maxC(1 + δ) ‖x‖22 ,

and below by

‖UFx‖22 ≥ σ
2
min ‖Fx‖22 ≥ σ

2
minC(1 − δ) ‖x‖22 .

By consolidating these bounds, we find a new RIP statement for the composite matrix

C′
(
1 − δ′

)
‖x‖22 ≤ ‖UFx‖22 ≤ C′

(
1 + δ′

)
‖x‖22
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where σ2
minC(1− δ) = C′(1− δ′) and σ2

maxC(1 + δ) = C′(1 + δ′). These relationships can be

used to solve for the new RIP constants:

δ′ =

γ−1
γ+1 + δ

1 + δγ−1
γ+1

C′ =
1
2

C
(
σ2

max + σ2
min + δ(σ2

max − σ
2
min)

)
These expressions demonstrate that as the conditioning of U improves (i.e. γ → 1), the

RIP conditioning does not change from the optimal case of an orthogonal network (δ′ = δ).

However, as the conditioning of U gets worse and γ grows, the constants associated with the

RIP statement also get worse (implying more measurements are likely required to guarantee

the same recovery performance).

The above analysis primarily concerns itself with constructions where the eigenvalues

of W are still unit norm, however U is not orthogonal. Generally, when the eigenvalues

of W differ from unity and are not all of equal magnitude, the current approach becomes

intractable. In one case, however, there are theoretical guarantees: when W is rank defi-

cient. If W only has M̃ unit-norm eigenvalues, and the remaining M − M̃ eigenvalues are

zero, then the resulting matrixΦ is composed the same way, except that the bottom M − M̃

rows are all zero. This means that the effective measurements only depend on an M̃ × N

subsampled DTFT

y[N] = UZ̃Fx + ε

= UZ̃

 F̃

0M−M̃,N

 x + ε

= UZ̃1:M̃ F̃x + ε

where F̃ is matrix consisting of the non-zero rows of F. In this case we can choose any M̃

of the nodes and the previous theorems will all hold, replacing the true number of nodes M

with the effective number of nodes M̃.
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3.3 Discussion

This chapter outlines how the tools from the compressive sensing literature can provide a

way to quantify the STM capacity in linear networks using rigorous non-asymptotic recov-

ery error bounds. Of particular note is that this approach leverages the non-Gaussianity of

the input statistics to show STM capacities that are super-linear in the size of the network

and depend linearly on the sparsity level of the input. This work provides a concrete the-

oretical understanding for the approach conjectured in [84] along with a generalization to

multiple-input networks, arbitrary sparsity bases and infinitely long input sequences. This

analysis also predicts that there exists an optimal recovery length that balances omission

errors and recall mistakes.

In contrast to previous work on ESNs that leverage nonlinear network computations for

computational power [101], the present work uses a linear network and nonlinear computa-

tions for signal recovery. Despite the nonlinearity of the recovery process, the fundamental

results of the CS literature also guarantee that the recovery process is stable and robust.

For example, with access to only a subset of nodes (due to failures or communication con-

straints), signal recovery generally degrades gracefully by still achieving the best possible

approximation of the signal using fewer coefficients. Beyond signal recovery, we also note

that the RIP can guarantee performance on many tasks (e.g. detection, classification, etc.)

performed directly on the network states [102].
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CHAPTER IV

TRACKING OF TIME-VARYING SIGNALS1

While the use of sparsity-inducing priors in MAP estimation is discussed in Section 2.1,

another historically important prior is based on dynamic information. Many signals of in-

terest are not independent, but instead result from a process that produces many, correlated

signals:

xn = f (xn−1) + νn, (35)

where n represents the time index, f : RN → RN is the dynamics function that represents

knowledge of how the time-varying signal xn evolves, and ν ∈ RN (called the innovations)

represents the modeling error in the dynamics function. The measurements are again taken

via linear projections:

yn = Φnxn + εn, (36)

where the measurement matrix may differ at each time step. The estimation problem in

this setting becomes more complex, as using the temporal information seems to require a

joint estimation of all the correlated signals. One canonical result, however, states that for

linear f (x) = Fx and Gaussian νn and εn, optimal estimates can be obtained efficiently and

causally (that is that xn can be estimated at time n using only yk for k ≤ n). This algorithm,

the Kalman filter, essentially propagates a distribution of the estimate x̂n forward in time,

using x̂n’s mean and variance with the new measurements to estimate the signal at the next

time step [103]. At each time n, the Kalman filter essentially solves

x̂n = arg min
x
‖yn −Φnx‖22,Rn

+ ‖x − Fx̂n−1‖
2
2,FPn−1 FT +Qn

,

1This chapter is in collaboration with Dr. Salman Asif and Dr. Justin Romberg (Section 4.1), and Dr.
Aurele Balavoine (Section 4.2.2). ASC was the primary author for the work in 4.1 with more details available
in [15]. Full details on other work presented in this section are available in [10–14, 16–19]
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Figure 12: Information propagation in dynamic filtering algorithms. (a) Standard Kalman
filtering approaches propagate the mean and covariance to generate the next state’s prior
distribution. This prior is used in conjunction with the new measurements through the
likelihood function to estimate the new state and its distribution. (b) Particle filters estimate
the prior distribution via an empirical sampling process that approximates the distribution’s
moments. (c) Adding the sparsity prior in directly to the Kalman filter optimization (as in
BPDN-DF) results in a regularization norm which does not promote sparsity as well as
desired. Left: Previous state estimates can still be propagated through the dynamic model
to generate a prior that can be combined with an additional prior to encourage sparsity (both
in red). Right: Combining the two priors from the left diagrams shows a total signal prior
that is curved outward more like an `2 ball. The convex shape is less effective at promoting
sparsity than the `1 ball. (d) RWL1-DF uses the previous estimate to set the parameters of
a prior that has the diamond-like shape known to promote sparse solutions.

where Pn, Rn and Qn are the covariance matrices of x̂n, εn and νn, respectively, and the

matrix `2 norm is defined as ‖x‖22,A = xT A−1x. Geometrically, (depicted in Figure 12(a)) the

Kalman filter can be described as projecting the last estimate’s distribution forward through

the dynamics model, where it is weighted against the measurements by the covariance of

εn. Although this causal estimator is computationally simpler than joint estimation of the

states, it still calculates the same estimate for x̂n as if all of the previous data had been used.

Unfortunately, the analytic simplicity and optimality guarantees of the Kalman filter
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are highly dependent on the linear and Gaussian model assumptions. Although not opti-

mal, many heuristic approaches follow the spirit of the Kalman filter, while incorporating

nonlinear system dynamics or non-Gaussian structure. For example, the Extended Kalman

Filter [104] incorporates (weakly) nonlinear system dynamics via a linear approximation

to f (·). Alternatively, for highly non-linear functions or non-Gaussian statistics, particle

filtering uses discrete points (particles) to approximate relevant distributions and propa-

gate those distributions through nonlinear dynamics. The Unscented Kalman filter [105]

(see Figure 12(b)) is an example of this technique with a deterministic (rather than typical

Monte-Carlo) particles sampling scheme. Though particle filtering approaches do seek the

true prior distribution, these methods become intractable in high-dimensional state spaces

due to the large number of samples needed to characterize the distributions. While these

approaches (and many others) have had some success, no classic techniques explicitly in-

corporate the sparsity structure that has been so powerful in modern signal processing.

With the potential to improve signal estimation in many important applications, recent

work in compressive sensing has begun to address recovery of time-varying sparse signals.

This work can be broadly split into two categories: batch processing and streaming algo-

rithms. Batch processing approaches use all measurements to jointly estimate the states

over all time (e.g., [106–110]). More relevant here, however, are algorithms that also seek

a way to causally estimate signals (i.e., estimating the current state sequentially as new

measurements become available). Within the causal estimation literature, the proposed al-

gorithms can be further divided into algorithms that build off of the traditional Kalman filter

equations, algorithms based on modifying the BPDN cost function to have time-dependent

terms, and algorithms that include temporal information by modifying the weights in a

weighted BPDN optimization.

In the first of these classes, one approach attempts to leverage the Kalman estima-

tor directly by using a pseudo-norm in the update equations to encourage sparser solu-

tions [111], then enforcing an `1 constraint on the state after the Kalman update. Another
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method [112, 113] takes a two-step approach: first performing a support estimation using

`1 cost functions and then running the traditional Kalman equations on a restricted support

set. Both approaches essentially modify the Kalman filter equations directly (including the

propagation of covariance matrices), despite the statistics of the problem being highly non-

Gaussian. From a computational perspective, storing, and inverting full covariance matrices

is also prohibitive for the high-dimensional signal problems, where sparsity models have

been most successful. Additionally, while the work in [112,113] assume sparse innovations

(with the condition that the innovations sparsity is much less than even the state sparsity),

the robustness to model mismatch has not been fully explored in these approaches.

More recent approaches (e.g., [15,114–116]) fall into the second category and start from

the optimization framework rather than the Kalman update equations, using a restricted dy-

namic model for the coefficients’ temporal evolution. In these approaches, additional norms

are appended to the BPDN cost function to include the dynamic state prediction in the es-

timate. Such approaches make explicit strong assumptions on the innovations statistics

and are thus not very robust to model mismatch. Additional models have considered more

direct coefficient transition modeling via Markov models [117,118] either by utilizing mes-

sage passing to propagate support information through time [118] or by using the previous

estimate to influence coefficient selection through a modified orthogonal matching pursuit

(OMP) [117]. These approaches either incorporate restrictive models designed for specific

applications [114–116, 118] (i.e., the approach as specified and implemented restricts the

dynamics function to f (x) = x), have limited robustness due to the fact that they strictly en-

force a support set estimate [15,117] or retain the covariance propagations from the Kalman

setting [116]. None of these approaches strike a balance between utilizing dynamic mod-

els, adapting to improve robustness to model error, utilizing higher-order statistics native to

sparse signal estimation, and retaining the computational efficiency found in either Kalman

filtering and optimized BPDN solvers.

The third of these categories has been the least developed of the three, while showing
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the most promise. A small number of weighted BPDN estimation schemes that can include

prior information has been recently proposed in the literature, with the main approach being

to bias support set estimation using constant multiplicative factors. For example, the work

in [119] shows the benefits of a binary weighting scheme in BPDN (not RWL1) where on-

support and off-support coefficients are weighted by low and high weights, respectively. As

an extreme case, the updating scheme in [115] does not penalize on-support values at all

but continues to penalize off-support coefficients in the typical BPDN fashion. Other work

in [120, 121] uses a reweighted-`2 scheme with weights scaled by a small constant value if

they are expected to be on the support. While these algorithms incorporate general “prior

information,” they have not been proposed or demonstrated for dynamic filtering.

4.1 Basis Pursuit De-Noising with Dynamic Filtering
4.1.1 Optimization Framework for State Estimation

The framework we present here is based on the formulation of the traditional Kalman filter

as a one step optimization problem, i.e only estimates of parameters from the previous

iteration can be used in the cost function. In the Kalman filter, the global solution of the

state estimation problem for the system described by Equations (35) and (36) is given by

the total optimization over the entire time-line

{x̂k}
n
k=0 = arg min

{xk}
n
k=0

 n∑
k=0

‖yk −Φkxk‖
2
Q−1

k ,2 +

n∑
k=1

‖xk − Fkxk−1‖
2
R−1

k ,2

 , (37)

where ‖x‖2Q,2 = xHQx, Qk and Rk are the covariance matrices of of the measurement noise

and innovations, respectively. This optimization program can be defined via a Bayesian

estimator and results in the standard Kalman filter equations, as demonstrated in Ap-

pendix 8.1. The Kalman filter allows us to calculate the latest state estimate x̂n from the

optimization (37) locally using only the previous estimate x̂n−1 and its covariance. The

optimization program that estimates xn alone can be written as

x̂n = arg min
xn

[
‖yn −Φnxn‖

2
Q−1

n ,2 + ‖xn − Fn x̂n−1‖
2
P−1

n|n−1,2

]
, (38)
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where Pn|n−1 is the estimated covariance matrix for time n. Both x̂n−1 and Pn|n−1 are param-

eters that are calculable iteration-to-iteration. By showing that the solution at iteration n is

the same for (37) and (38), the dimension of the optimization to be solved at each iteration

is reduced significantly; The dimension of the solution is decreased from nN to N. Addi-

tionally, by writing the estimation as an optimization program, we can begin to consider

leveraging sparsity by applying appropriate `1 norms in the same way that `1 norms are in-

troduced in static least-square cases. One encouraging application in [122] addresses a case

where this formulation allows for the mitigation of sparse noise in the measurement equa-

tion. We extend this idea to directly incorporate knowledge of sparsity in the innovations

and states themselves in the estimation problem.

4.1.2 Sparsity in the Dynamics

In previous work, the assumptions of sparsity in the system has varied. While many have

assumed some measure of sparsity in the state itself [106, 112, 118], some have assumed

knowledge of sparsity in the innovations [118] as well. Our work here takes both possi-

bilities (sparsity in the state and innovations) and uses the framework presented in order

to determine the potential gains that be realized in the context of state estimation by in-

corporating appropriate `1 norms. We primarily focus on sparsity in the state evolution

equation due to its relevance to specific applications, such as tracking and video. The three

models we present are sparse states, sparse innovations and both sparse states and inno-

vations. In adding the regularization terms for each case, we note that only the first order

statistic of the previous estimation (the expectation) is taken into account and therefore our

optimization programs are not assured to be globally optimal. This differentiates our work

from (38) in that the Kalman filter which propagates second order statistics (the covariance

matrix of the estimate Pn|n−1) to obtain a globally optimal solution. As [122] points out,

when deviating from the optimization problem (38), this matrix of parameters stops having

an interpretation as a covariance matrix. Therefore we do not attempt to estimate second

order parameters, and instead only utilize the state estimate.
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Sparse States

The first type of sparsity we consider is sparsity in the states only. This model still as-

sumes that our estimate is accurate to a Gaussian random variable (e.g. νn ∼ N(0, σ2IN)),

indicating that the predicted dynamics, fn(·), return a dense estimate. Such a model could

potentially be considered, for instance, in a tracking problem where the number of ob-

jects to be tracked are relatively small [123]. In this case, we can add an `1 norm over

the state’s coefficients z to the update equation (representing our knowledge of the sparsity

of the signal). This addition results in the basis-pursuit de-noising with dynamic filtering

(BPDN-DF) with an `2 norm over the innovations,

ân = arg min
a

[
‖yn −ΦnΨa‖22 + λ‖a‖1 + κ‖Ψa − fn(Ψân−1)‖22

]
, (39)

where λ is the sparsity parameter and κ represents the ratio of the measurement variance to

the innovations variance. It is important to note here that while the program (39) does not

rely on linear dynamics and performs well in tracking simulations, it is has no assurance

for global optimality. Thus for linear dynamics ( fn(x) = Fnxn) Kalman filtering still has

assured optimal performance in the steady state tracking regardless of signal sparsity. This

is due to the fact that the Kalman in essence is piecewise updating the solution to a larger

matrix inverse problem. Given enough measurements, this matrix will be full rank, result-

ing in a fully determined system. Thus while our program has no assurance of obtaining a

better steady-state MSE, we do expect that it will converge faster (when the Kalman filter

is still underdetermined).

Sparse Innovations

While including the idea of sparseness in the state is useful during convergence, there is no

apparent gain in the steady state MSE over traditional Kalman filters. Where more signif-

icant gains over the Kalman filter should be realized is in the case of sparse innovations.

The Gaussian assumption is key to the derivation of the Kalman filtering equations, without

which the estimate covariance matrix is not exactly and analytically calculable (making the
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estimate suboptimal). The sparse innovations model leads to using the `1 norm on the error

of the prediction,

x̂n = arg min
x
‖yn −Φnx‖22 + κ‖x − fn(xn−1)‖1, (40)

where κ represents the trade off between reconstruction and sparsity. A setup of this type

was initially presented in [14], only with a buffer that estimated the past P states at once,

effectively smoothing to an extent. In keeping with the fast-update philosophy of Kalman

filtering, a homotopy algorithm was used to update states given new measurements, thereby

decreasing the time for the update. What is interesting in the optimization program (40) is

that under a change of variables νn = x− fn(xn−1) and given a known sparsity on the innova-

tions, the innovations is then recoverable with CS guarantees, given the typical constraints

on Φn. Thus with perfect knowledge of the previous state, the new state is recoverable

with the same guarantees. What is not assured is the convergence of this algorithm from

an erroneous initialization to a steady-state estimation error, as would be desired from a

tracking algorithm. We show from simulation that it takes more measurements to have (40)

converge than either of the algorithms that utilize the state sparsity directly. While obtain-

ing a lower error vs. per-iteration measurement number, [14] shows that when estimating

the past P states together, the this model permits a fast update (faster than using BPDN

directly) using homotopy steps.

Sparse States and Sparse Innovations

The final case we consider in this paper is the case where both the state and the innova-

tions are sparse. This combination is of the most interest to us due to its application to

video where each image can be thought of as sparse in some basis and ‘new’ objects not

predictable from older frames can be thought of as sparse innovations. In this case there

are two forms of sparsity that can be leveraged. We can modify (40) to include the sparsity

inducing term included in (39),

ân = arg min
a

[
‖yn −ΦnΨa‖22 + λ‖a‖1 + κ‖Ψa − fn(Ψân−1)‖1

]
, (41)
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where once again λ trades off for sparsity in the state and κ trades off for sparseness in the

innovations.

4.1.3 Simulations

We test the optimization programs on randomly generated sequences of temporally evolv-

ing signals that include sparsity in the signals and the prediction errors. First, we use a

standard Gaussian innovation and compare the standard Kalman filter with the optimiza-

tions (39), (40), (41), and BPDN performed independently at each iteration (optimiza-

tion (3), denoted CS in the figures) to demonstrate the utility of leveraging only the sparsity

of the signal. We simulate a 20-sparse state of length 500 evolving by a permutation ma-

trix followed by a scaling matrix (both different at each iteration, and assumed known a

priori) with zero-mean, 0.001 variance Gaussian innovations. A Gaussian random matrix

(different at each step) is used to take 30 measurements at each iteration with i.i.d. zero

mean, variance 0.01 measurement noise. For each optimization, λ and κ were chosen by

performing a parameter sweep and choosing the best value. For Figure 13 and all subse-

quent simulations we initialize the state to the zero vector and obtain the expected behavior

by averaging over 40 trials.

Figure 13 demonstrates that while the Kalman filter does indeed reach the noise floor

after enough iteration, (39) does, as predicted, reach a lower relative MSE (rMSE) during

the time frame where Kalman has not yet accumulated enough measurements. Due to

the global suboptimality of (39) it does not reach lower steady-state rMSE. However, the

tracking error is comparable to that of the Kalman filter which is an optimal solution in this

case. What is interesting to note is that (41), the program that attempts to enforce sparsity

in the state and the innovations, seems to outperform in both regimes: It obtains a lower

steady-state rMSE in less iterations.

To show the performance with sparse innovations, we again estimate a simulated 20-

sparse, 500-dimensional vector evolving with the same dynamics as used for Figure 13 with

each of the optimization programs presented and compare to independent BPDN, and the
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Figure 13: By incorporating the state sparsity in the optimization program, the rMSE con-
verges to its steady-state value faster than a traditional Kalman filter. As expected, inde-
pendent BPDN performs identically at each iteration and the least matched model (sparsity
in the innovations only) diverges in terms of the steady-state rMSE.

Kalman filter. In this case, sparse innovations are introduced via a Poisson random variable

with mean 2 (10% of the total number of active coefficients) choosing how many coeffi-

cients (chosen at random with a uniform probability over the support) will be switched.

This effectively simulates a sparse change in the support of the signal. We allow the system

to run for 50 iterations, and record the steady-state rMSE for a different number of ran-

dom Gaussian measurements. Figure 14 shows that the number of measurements needed

(e.g. rows of Φn) for a given steady state tracking error when utilizing both knowledge of

sparsity in the state and innovations is significantly less than using any other method. For

this program, 60 measurements is sufficient to obtain an rMSE of approximately 3%, while

with the same number of measurements independent CS has approximately 17% rMSE

and both models which assume Gaussian innovations have much higher steady-state rMSE

values.

Figure 15 shows results using an identical setup to Figure 14, only fixing the number

of measurements at M = 80 and sweeping the mean number of coefficients changed (half

the effective sparsity of ν). We see that the optimization in (41) again performs better in

terms of the steady-state rMSE. Independent CS recovery performs as expected (the rMSE
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Figure 14: Without Gaussian noise, the Kalman filter has significant trouble tracking the
evolving signal, and requires more measurements than any optimization program which
takes the sparsity of the signal into account, including independent BPDN. Only using
sparse innovations does not outperform any model for small numbers of measurements,
but converges quickly for M > 150.

is independent of innovations), and both models using Gaussian noise obtain very high

errors very quicky with the sparsity of ν. The optimization (40) is not shown here due to its

inability to converge to a steady state error with only M = 80 measurements per iteration.

It would seem that as ν became more dense, the Gaussian model would be a better fit, but

the energy over the support of ν is on the order of the energy on the support in the state

itself, so the sparsity knowledge is required to tease the two apart.

Finally, we can test the situation where only the innovations are sparse, and the state is

dense. Such situations can arise in traditional tracking situations, where the number of tar-

gets is known, however the deviation in the acceleration, position, or velocity of the targets

may suddenly change drastically from an established dynamical model. We similarly gen-

erate sequences of signals as used to generate the data in Figures 14 and 15 (N = 500) but

we set the “sparsity” to S = 500, allowing the states to be dense. We then let the innova-

tions at each time-step be 20-sparse, inducing a “shot-noise” very different from Gaussian

innovations. At each time-step we take M = 200 random Gaussian measurements. Fig-

ure 16 depicts the average convergence of BPDN-DF for p = 1 and p = 2, as well as the
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Figure 15: The optimization taking both sparsity in the state and innovations retained the
lowest steady-state rMSE for more increased innovations sparsity given a fixed number of
measurements (M = 80). The performance for BPDN remains constant, as expected, and
the performance for the models dependent on Gaussian innovations degrades quickly with
additional support deviations from the expectation.

Kalman Filter and time-independent BPDN behavior on these test sequences. The sparse

innovations optimization achieves the lowest steady-state rMSE, as it matches the signal

statistics exactly. Additionally, the sparse-innovations only optimization appears to be the

only tracking method that shows any real convergence behavior at all.

4.2 Guarantees on Basis Pursuit De-Noising with Dynamic Filtering

In basis-pursuit de-noising dynamic filtering (BPDN-DF) [15, 116] we seek an efficient

method that can solve a modified Kalman filtering optimization with an added sparsity

regularizer. While in general the dynamics inducing norm in Equation (41) can be any

p-norm,

ân = arg min
a

[
‖yn −ΦnΨa‖22 + λ‖a‖1 + κ‖Ψa − fn(Ψân−1)‖p

p

]
,

here we consider an `2-norm penalized innovations term. Guarantees for p , 2 would be

useful (i.e. for p = 1 in Section 4.1.2 for sparse innovations), however would require new,

different analysis tools. As depicted in Figure 12(c), BPDN-DF essentially balances the

prediction via the dynamics model with the measurements and the sparsity assumption to
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Figure 16: The overall performance with BPDN-style dynamic filtering depends heavily
on the state and innovations statistics. While when the innovations is Gaussian, algorithms
that leverage state statistics can obtain faster convergence to steady-state and slightly better
steady-state rMSE, when the innovations is sparse, the algorithms that assume Gaussian
statistics perform poorly. In fact, when presented with dense states with sparse innovations,
only the optimization that explicitly utilizes those statistics obtains a good steady-state
rMSE. Even the optimization program that utilized sparse innovations, but also tries to
force sparse state statistics fails to recover the time-varying signal with any fidelity.

obtain an estimate of the current state.

4.2.1 General Convergence Guarantees

Our first result is summarized in the following theorem:

Theorem 5. Suppose that at each time-step n, Φ ∈ RM×N satisfies RIP(2K,δ), γ > 0 and

κ > 0 are known constants. Additionally, suppose that the dynamics function f (·) satisfies

‖ f (a1) − f (a2) ‖2 ≤ f ∗‖a1 − a2‖2 and that for all n ≥ 0 the error and innovations satisfy

‖εn‖2 ≤ ε and ‖νn‖2 ≤ ν. Under these conditions, the result of solving the optimization

program of Equation (41) satisfies

‖̂an − an‖2 ≤ β
n

(
‖e0‖2 −

α

1 − β

)
+

α

1 − β
,

a where the constant α is given by

α = C1
1

√
1 + κ

ε + C1

√
κ

1 + κ
ν + C2

γ

1 + κ

√
q,
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and the linear convergence rate is

β = C1

√
κ

1 + κ
f ∗,

and the constants C1 and C2 are the constants from the bounds on solving the static BPDN

problem with sparsity K and a modified RIP parameter δ̃ = δ/(1 + κ).

The proof for Theorem 6 is provided in Appendix 8.2. This theorem essentially states

that BPDN-DF is guaranteed to converge at a linear rate β so long as β < 1. Solving for κ

in this constraint gives us an upper bound on κ

κ <
1

(C1 ∗ f ∗)2 − 1
C1 ∗ f ∗ > 1

κ >
1

1 − (C1 ∗ f ∗)2 C1 ∗ f ∗ < 1

which guarantees that there will be a range of parameters for which the algorithm is stable.

In the first condition, a larger f ∗ requires a smaller C1 value to have the same rage of

admissible κ values. This means that less smooth dynamics functions need a more accurate

BPDN solver to stay stable. Likewise, a less accurate solver requires a smoother dynamics

function to be stable for the same κ range. In the second of these conditions, κ must be

greater than a negative number, which implies that all positive κ values result in a stable

algorithm.

We validate our bound by comparing to the empirical behavior of BPDN-DF. We run

BPDN-DF on sequences of 100 K = 15-sparse signals of size N = 576. At each time step

we take M = 68 measurements. We recover the sequence of signals using BPDN-DF with

γ = 5.5×10−4 and sweep κ over 30 possible values. We average all our results over 50 trials.

We fit our theoretical bounds by selecting C1 and C2 such that they fall above the empirical

curves. Figure 17 shows That the convergence time increases as predicted by the theory

(nconvergence ∝ log−1 β). The worst-case-scenario nature of the bound, however, creates a

gap in the predicted steady-state error. The theoretical curve for the error does not predict

the dip that occurs for the optimal κ value, and instead has a monotonically increasing
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value from κ = 0, the point that corresponds to simply running BPDN independently at

each iteration.
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Figure 17: The theoretical bound was fit to empirical curves of BPDN-DF’s behavior as a
function of κ. Top: The empirical number of iterations to convergence (solid blue curve)
generally increases as a function of κ, as predicted by theory (dashed red curve). The dip
in the empirical curve corresponds to the crossover point as the steady-state error increases
from being below the initial error to being above the initial error. Bottom: The derived
bound accounts for the worst possible recovery at each time-step, and thus yields an ex-
treme upper bound in terms of the steady-state error.

4.2.2 ISTA based convergence

One detriment of Theorem 6 is that the innovations and measurement error both effect the

overall error bound through constants involving the RIP conditioning δ. The information

obtained through the dynamics function, however, does not involve the measurement matrix

Φ, and therefore the innovations is not distorted by an RIP-matrix. This means that the

innovations terms should not involve δ and Theorem 6 can be strengthened.

While general guarantees would treat the whole concatenated `2 norm as a full matrix

that has a joint RIP constant, we can instead use a method for determining the optimiza-

tion program’s accuracy that analyzes a specific optimization procedure. Specifically, in
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keeping with the philosophy of fast, efficient optimization, we analyze the iterative soft-

thresholding method described in [124, 125]. For BPDN-DF, the ISTA optimization pro-

gram can be written as the following iterative procedure over the algorithmic time l,

ul+1
n = âl

n +
η

1 + κ
ΨT

(
ΦT

n

(
yn −ΦnΨâl

n

)
+ κ

(
f (Ψân−1) −Ψâl

n

))
âl+1

n = Tγ(ul+1
n ), (42)

where, as in Equation 69, u is the un-thresholded version of the signal which gets updated

by the error residual at each algorithmic time-step l, and η is the algorithm’s step size.

To determine convergence and accuracy guarantees on this algorithm and cost function,

we leverage recent techniques employed in [125], which have shown accuracy and conver-

gence guarantees on ISTA when solving BPDN with no dynamics term. We modify this

previous work to account for the fact that in BPDN-DF, as opposed to plain BPDN, only

part of the `2 portion of the optimization is affected by the RIP of the measurements. The

other portion only depends on the properties of the dynamics function f (·). We can obtain

in this way a bound both for the convergence and steady-state error of ISTA applied to

BPDN-DF, as summarized in the following theorem,

Theorem 6. Suppose that at each time iteration n, Φn satisfies RIP(2S ,δ), the dynamics

satisfies || f (x1) − f (x2)||2 ≤ f ∗ ||x1 − x2||2, the error and innovations satisfy ||εn||2 ≤ ε and

||νn||2 ≤ ν, and the coefficient energy is bounded by b. If γ > 0, κ > 0 are known constants,

η < 2/(1 + δ) is the ISTA step size and the following condition is met:

κ
(
(1 − |η − 1| − η f ∗)b − γ

√
q − ην

)
≥ γ
√

q + η
√

1 + δε − (1 − |η − 1| − ηδ) b,

Then the solution to Equation (41) obtained via ISTA satisfies

∣∣∣∣∣∣̂an − an

∣∣∣∣∣∣
2
≤ βn

(
||e0||2 −

α

1 − β

)
+

α

1 − β
,

where the steady-state error is given by

α

1 − β
=

(1 + κ)γ
√

q + η
√

1 + δε + ηκν

(1 + κ)(1 − |η − 1|) − ηδ − ηκ f ∗
,
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where q is a constant that depends on the sparsity S 2, and the linear convergence rate is

β =
ηκ f ∗

(1 − |η − 1|)(1 + κ) − ηδ
,

The proof of Theorem 6 is outlined in Appendix 8.3, and essentially deduces a differ-

ence equation for the estimate accuracy at each algorithmic and temporal time-step, which

can be solved for the error bound at any time. The first thing we note about Theorem 6 is

that if we set κ = 0, we obtain exactly the results in [125] for solving BPDN with no dy-

namic filtering term. Next we can see that the resulting convergence rate implies that ISTA

only converges for the BPDN-DF cost function when β < 1. Since most parameters are

system or signal dependent, and are not controllable, we can interpret this requirement as a

condition on the cost function parameters γ and κ. In particular, since γ does not appear in

the expression for β, we can consider this to be a bound on κ,

κ <
1 − |1 − η| − ηδ
η f ∗ + |η − 1| − 1

if η f ∗ > 1 − |η − 1|, (43)

This condition essentially compares the smoothness of the dynamics function with the RIP

conditioning of the measurements. For example, as ηδ becomes closer to 1 − |η − 1|, the

allowable range of κ is pushed towards smaller values, indicating that the dynamics should

be emphasized less in BPDN-DF. Alternatively, as η f ∗ becomes closer to 1 − |η − 1|, the

range of κ becomes pushed towards larger values, indicating that the dynamics can be

emphasized more in the optimization cost. Interestingly if η f ∗ ≤ 1− |η−1|, β < 1 incurs no

additional restrictions on κ, as the condition that η < 2/(1+δ) ensures that the numerator of

Equation (43) is positive, and with a negative denominator, this condition simply states that

κ must be greater than a negative number. Since κ must already be positive, this condition

is redundant.

In terms of the steady-state error, we can see that the bound depends on both the maxi-

mum measurement error energy ε and the maximum innovations energy ν. The parameter

2The exact relationship between q and S is actually quite involved, and more details can be found in [125].
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Figure 18: The RWL1-DF algorithm inserts the dynamic information at the second layer of
the LSM model for each time step. The graphical model depicts the model dependencies,
where prior state estimates are used to set the hyperpriors for the second level variables
controlling the variances (i.e., SNRs) of the state estimates at the next time step.

κ trades off between the two, where the trade-off takes into account the RIP conditioning δ

as well as the dynamics smoothness f ∗.

4.3 Re-Weighted `1 Dynamic Filtering
Model and Algorithm

In this section we describe the proposed RWL1-DF algorithm for the general dynamics

model in (35) with the linear measurement process in (36). The main idea of the proposed

method is to use the rich signal description available in a hierarchical sparsity model to

propagate second-order uncertainty in dynamic signal estimation (akin to the covariance

matrices in Kalman filtering). This approach leverages the LSM model and its connections

to RWL1 optimization to build a computationally efficient causal estimator. The main

technical innovation we propose is to use the hyper-priors in the LSM model to inject

dynamic information into the sparsity inducing priors, using the variable coefficient SNRs

to encourage or discourage (but not force) coefficient activity based on predictions from the

previous state estimate. The resulting estimation procedure is depicted in Figure 12(d) and

the graphical model is depicted in Figure 18.

Specifically, similar to the original LSM, the proposed model describes the conditional
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distribution on the sparse coefficients a at time k as a zero-mean Laplacian with different

variances:

ak[i] | λk ∼
λ0λk[i]

2
e−λ0λk[i]|ak[i]|. (44)

We also set the scale variables controlling the coefficient variance to be Gamma distributed:

λk[i] ∼
λα−1

k [i]
θαk [i]Γ (α)

e−λk[i]/θk[i], (45)

and allow each of these variables to have different means, (αθk[i] = E[λk[i]]) by modifying

the value of θk[i].

The expected value of each scale variable is set based on dynamic information from the

previous state estimate. In particular, if the model prediction of ak[i] based on the previous

state is large (or small), the variance of that coefficient at the current estimate is made large

(or small) by making λk[i] small (or large). Large variances allow the model flexibility to

choose from a wide-range of non-zero values for coefficients that are likely to be active

and small variances (with a mean of zero) encourage the model to drive coefficients to zero

if they are likely to be inactive. However, by “encouraging” the model through the use of

second order statistics (instead of forcing the model to use a particular subset of coefficients

through a separate support estimation process) the model remains robust and flexible. In

this work we specifically choose

θk[i] = ξ
(
|Ψ−1 fk

(
Ψâk−1

)
[i]| + η

)−1
,

where Ψ−1 fk
(
Ψâk−1

)
[i] is the ith coefficient of the previous signal propagated through the

dynamics, η is a linear offset and ξ is a multiplicative constant. Note that any general model

for the dynamics is allowable and we are not restricting the system to linear dynamical sys-

tems. Note also that the absolute values are necessary because λ determines a variance,

which must be strictly positive. The parameter η determines the distribution of the variance

when the coefficient is predicted to be zero, resulting in Ψ−1 fk
(
Ψâk−1

)
[i] = 0. This param-

eter reflects the magnitude of the innovations in the erroneous model predictions. The joint
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MAP estimate of all model parameters becomes

[̂ak, λ̂k] = arg min
[a,λ]
||yk −ΦkΨa||22 + β

∑
i

|λ[i]a[i]|

−α
∑

i

log (λ[i]) +
λ0

ξ

∑
i

λ[i]
(
|Ψ−1 fk

(
Ψâk−1

)
[i]| + η

)
, (46)

which is identical to the MAP estimate in the LSM except for the appearance of α and the

time-dependencies on the parameters.

As in the LSM case, the optimization in (46) is not easily solved for both ak and λk

jointly, but the model yields a simple form when using an EM approach. The precise steps

of the iteration in this case are

E step: λ̂t
k = Ep(λ|̂at

k) [λ] (47)

M step: ât
k = arg min

ak
− log

[
p
(
ak |̂λ

)]
(48)

where t denotes the EM iteration number and Ep(λ|̂ak) [·] denotes the expectation with re-

spect to the conditional distribution p
(
λ|̂ak

)
. We can write the maximization step as

ât
k = arg min

a
||yk −ΦΨa||22 + 2σ2

ελ0

∑
i

∣∣∣∣̂λt[i]a[i]
∣∣∣∣, (49)

since the MAP optimization conditioned on the λ parameters reduces to a weighted `1

optimization.

While the expectation step is often difficult to calculate, this model admits a simple

closed-form solution. First we can use the conjugacy of the Gamma and Laplacian distri-

butions to calculate the conditional distribution

p (λ|ak) =
p (ak|λ) p (λ)

p (ak)
,

which is separable in λ. We can analytically write this distribution by evaluating

p (ak[i]) =
αθλ0

2 (θλ0 |ak[i]| + 1)α+1

=
α
(
ξ−1|Ψ−1 fk

(
Ψâk−1

)
[i]| + ξ−1η

)−α
2
(
λ0 |ak[i]| + ξ−1|Ψ−1 fk

(
Ψâk−1

)
[i]| + ξ−1η

)α+1 , (50)
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and the expectation can be calculated as

Ep(λ|ak) [λ] =
(α + 1)θ

θλ0 |ak[i]| + 1

=
(α + 1) ξ

ξλ0 |ak[i]| + |Ψ−1 fk
(
Ψâk−1

)
[i]| + η

. (51)

Putting the pieces of the EM algorithm above together results in an iterative re-weighted

`1 dynamic filter (RWL1-DF):

ât
k = arg min

a

||yk −ΦkΨa||22 + 2σ2
ελ0

∑
i

∣∣∣λt
k[i]a[i]

∣∣∣ , (52)

λt+1
k [i] =

2τ
β|̂at

k[i]| + |Ψ
−1 fk

(
Ψâk−1

)
[i]| + η

, (53)

where τ = (α + 1) ξ is a constant scaling value, β = λ0ξ can be interpreted as a trade-

off between the measurement and the prediction, and the signal of interest can again be

recovered via x̂k = Ψâk. The resulting optimization procedure looks nearly identical to

the static RWL1 algorithm except that the denominator in the λ update contains a term

depending on the previous state. This term encourages smaller λ values (i.e., higher vari-

ances) in the elements that are predicted to be highly active according to fk
(
x̂k−1

)
. This

graduated encouragement of coefficients selected by the prediction (rather than direct pe-

nalization) allows the algorithm to perform especially well when the states and innovations

are sparse while retaining good performance when the innovations are denser. Furthermore,

the simple form means that the explosion of recent work in `1 optimization methods can be

leveraged for computationally efficient recursive updates. In particular, since no covariance

matrix inversion is required and many modern `1 estimation methods require only matrix

multiplication (and no inversion), this approach is also amenable to high-dimensional data

analysis.

Convergence and Stability

Despite being highly nonlinear, we can demonstrate some stability and convergence prop-

erties of the proposed algorithm. First, the RWL1-DF algorithm is stable in the sense that
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the estimates of interest (i.e., the coefficient and variance estimates) are guaranteed to be

bounded. This property follows directly from the update equations in (52) and (53). At a

given time step n, for each EM iteration t we can immediately see that the variance esti-

mates are within the range λt+1
k [i] ∈ (0, 2τ/η]. With these variances, the weighted BPDN

optimization in (53) will yield a solution where the output coefficients are also bounded.

In the worst case, if an intermediate coefficient estimate is transiently very large (i.e., tend-

ing towards infinity), the variances would tend to zero and the subsequent iteration of (53)

would be a standard least-squares estimate (which is finite).

General properties of the EM algorithm can also be used to provide some convergence

guarantees for the proposed algorithm. Specifically, existing guarantees for the EM al-

gorithm can be used to show that the EM iterations in proposed algorithm (i.e., an es-

timate at a single time step) have coefficient differences that asymptotically converge to

zero, limt→∞ ‖at
n − at+1

n ‖ = 0 [126]. Stronger convergence results (i.e., the convergence

of the estimate to a fixed value) require continuous derivative of the objective function,

which is not the case here due to the presence of the `1 norm. While some results per-

taining to the convergence and accuracy of the RWL1 algorithm are known [127], these

results hold only in the limit as the denominator of the weight updates approaches |an|

(i.e. |Ψ−1 fk
(
Ψâk−1

)
[i]| + η → 0) and therefore are not applicable in the present case. De-

spite the lack of stronger convergence guarantees (which are often difficult to establish in

non-smooth problems), the numerical results in section 5.3 demonstrate that the algorithm

converges with just a few EM iterations in practice.

4.4 Dynamic Filtering Simulations

While the RWL1-DF inference scheme is a general inference tool with many potential

applications, we focus our evaluation purposes on CS recovery. Compressive sensing offers

systematic ways to specify inference problems (ratios of M to N with respect to the signal

sparsity) that are very challenging for static inference techniques and adequate estimates
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require exploiting dynamic information. In the examples below we implement CS recovery

in both a stylized tracking scenario with synthetic data and an example on a natural video

sequence.

In all simulations, we compare the performance of RWL1-DF to existing algorithms

from the literature where possible, noting in each particular case where algorithms were

unable to be evaluated because they are incompatible or computationally prohibitive. Stan-

dard Kalman filtering is not shown because it performs very poorly in these type of simu-

lations (i.e., it doesn’t converge to a stable estimate with the sparse statistics of the applica-

tions we use) [15]. The performance of independent BPDN (BPDN applied independently

at each time step with no temporal information) and independent RWL1 (RWL1 applied in-

dependently at each time step with no temporal information) are also shown to highlight the

benefit of including dynamic information. The most illustrative comparison is with BPDN-

DF (BPDN modified, as in Equation (41) [15, 116]) due to its similarity in implementation

and philosophy to RWL1-DF.

4.4.1 Stylized tracking scenario

To explore the performance and robustness of RWL1-DF in detail, we first perform infer-

ence on synthetic data that simulates a stylized tracking scenario. The use of synthetic

data provides us with “ground truth” so we can make controlled variations of the data char-

acteristics. In this data, we generate an image with S non-zero moving pixels of various

intensities that move with time and represent targets that must be tracked. The movement

of these non-zero pixels Fk is specified to be constant motion, and the simulated dynamics

includes a sparse innovations term (i.e., dynamic model error) that causes target motion to

change in each time step for some percentage of the pixels p. In other words, at every time

step there is a probability p of each target abruptly changing directions to violate the dy-

namics model assumed by the inference algorithms. This process simulates an innovation

that is approximately 2S p-sparse at every iteration, allowing us to evaluate the algorithm’s

robustness to a type of model mismatch (i.e., shot noise) that is particularly challenging for
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Kalman filter techniques.

We evaluate RWL1-DF by using it to track these moving pixels from M compressive

Gaussian measurements. This simple test captures the model notions of sparse state el-

ements that have changing support locations and values with time, with a significant de-

gree of model mismatch (i.e., sparse innovations). With full control over the synthetic

data, we can evaluate the performance of recovery algorithms in detail, including tempo-

ral convergence properties and variations in model parameters (e.g., number of measure-

ments, degree of model mismatch, noise level, etc.). Note that this scenario is particularly

challenging for many existing algorithms because of the arbitrary model dynamics (e.g.,

Fk , I) that may vary with time. In particular, comparisons with the algorithms described

in [114,115,119,120] (or modifications of them to accommodate arbitrary dynamics) were

attempted and are not shown here because they still performed significantly worse than

static estimation (e.g., BPDN) even after extensive searching for good parameter settings.

Specifically, we create 24x24 pixel videos (N = 242) with 20 moving particles (S = 20).

The vectors are observed with Gaussian measurement matrices (with normalized columns)

that are independently drawn at each iteration, and we add Gaussian measurement noise

with variance σ2
ε = 0.001. We vary the number of measurements to observe the reconstruc-

tion capability of the algorithm in highly undersampled regimes, but the number of mea-

surements per time step is always constant within a trial. All simulations average the results

of 40 independent runs and display reconstruction results as the relative mean-squared error

(rMSE) for each frame, calculated as: ∣∣∣∣∣∣xk − x̂k

∣∣∣∣∣∣2
2

||x||22
. (54)

For independent BPDN, at each iteration we use the value λ = 0.55σ2
ε . For independent

RWL1 we use λ0 = 0.0011, τ = 1 and ν = 0.01. For BPDN-DF we use γ = 0.5σ2
ε and κ =

0.0007/(p + 1). For RWL1-DF we use λ0 = 0.0011, τ = 1 and ν = 1− 2p/S . These param-

eters were optimized using a manual parameter sweep. Furthermore, for comparison we
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Figure 19: Convergence of RWL1 and RWL1-DF. The mean relative change (over 200
frames) in the coefficients is plotted, with the error bars indicating the maximum and min-
imum values. The relative norm difference of the coefficients in the RWL1 and RWL1-DF
algorithms falls quickly over the first 10 iterations. The dynamic information helps the
RWL1-DF algorithm converge faster, requiring approximately 5-7 iterations to converge.

also show the performance of an optimal oracle least-squares solution, where the support

at each iteration is known (Φk becomes overdetermined).

The iterative algorithms based on RWL1 are stopped when the relative norm-squared

difference between coefficients at consecutive iterations ‖at
n − at+1

n ‖
2
2/‖a

t
n‖

2
2 falls below a

specified threshold (we use 0.1%). In practice, we see that this EM convergence happens

in just a few (typically 5-7) iterations. Figure 19 shows the relative coefficient change over

EM iteration, demonstrating that RWL1 (i.e. without dynamics) convergence occurs by 10

iterations and RWL1-DF actually converges faster due to the improved performance from

incorporating dynamic information.

Figure 20(a) shows a single trial with M = 80 measurements and 2S p = 5 innovation

errors at each time step. The estimation provided by BPDN-DF and RWL1-DF improves

with time and converges to steady state values, indicating that both approaches are ex-

ploiting useful dynamic information to sequentially improve over time (in contrast to the

methods that do not incorporate dynamic information, as expected). Note that RWL1-DF
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reaches substantially lower steady-state recovery error than BPDN-DF, illustrating the net

improvements gained by using second-order statistics in the estimation.

To explore the performance of RWL1-DF, Figure 20(b) displays the results of varying

the number of measurements while holding 2S p = 5. While performance for all algorithms

becomes more comparable for large numbers of measurements, it is clear that exploiting

temporal information can most improve performance in the highly undersampled regime.

In particular, RWL1-DF is able to sustain virtually the same steady-state rMSE down to

much more aggressive levels of undersampling than BPDN-DF.

Finally, we explore the robustness of each algorithm to model errors by fixing the num-

ber of measurements (M = 70) and varying the sparsity of the innovations 2S p. Fig-

ure 20(c) shows the results, illustrating that RWL1-DF uses the second-order statistics

to sustain better performance than BPDN-DF when the innovations are sparse (i.e., shot

noise). We note that when 2S p > 8, where RWL1-DF results in much higher rMSE errors,

the total number of model errors is 50% of the signal sparsity and may be better approxi-

mated by a dense (i.e., non-sparse) innovations model.

4.4.2 CS recovery of natural video sequences

To test the utility of RWL1-DF on natural signals, we explore its performance on a simula-

tion of compressively sampled natural video sequences. These results will report in-depth

comparison of a single challenging video sequence (the Foreman sequence3) as well as ag-

gregate statistics from a batch of video from a BBC nature documentary (as used in [128]).

The documentary footage is valuable as broad comparison because it contains many dif-

ferent types of motion, including static frames with localized changes and highly dynamic

frames with moving subjects across large portions of the visual field.

In our simulation of CS video recovery, we take the time-varying hidden state xn to be

the wavelet (synthesis) coefficients at each frame of the video. While the true frame-by-

frame dynamics of natural video are likely to be complex and non-linear, for this simulation

3The Foreman sequence is available at: http://www.hlevkin.com/TestVideo/foreman.yuv
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we use a simple first-order model predicting that the coefficients will remain the same from

one frame to the next: fk (x) = x for all k. While this model is very simple and could cer-

tainly be improved, the objective of this simulation is to evaluate the inference performance

of many algorithms under the same model. An important aspect of this evaluation is the

robustness of the algorithms when the dynamic model is incorrect, which will certainly be

true for this static model under significant movement in the video sequence.

We note that RWL1-DF is not specialized to this simple dynamics model, and an im-

proved model (which could easily be incorporated into RWL1-DF) would presumably im-

prove the recovery performance of any inference algorithm. A additional benefit to as-

suming stationary dynamics is that it allows us to compare recovery performance with a

number of existing algorithms that do not currently have arbitrary dynamics as part of the

approach, including DCS-AMP [129] and modCS [115]. To demonstrate the advantage

of using the coefficient values instead of only support information, we also compare to a

modified version of the algorithm described in [119]. Specifically, the approach described

in [119] weights the coefficients in BPDN with binary values based on an estimate of the

support set, and we modify this approach to use a support set prediction based on the model

dynamics. We call this approach WL1P for weighted `1 with prior information.

To illustrate the effects of the representation (especially in this simple dynamics model)

before performing a broad comparison across many algorithms, we first run two separate

simulations using both the orthonormal Daubechies wavelet transform (DWT) and a four-

times overcomplete dual-tree discrete wavelet transform (DT-DWT) [130]. Compared to

the DWT, we expect the redundancy in the DT-DWT to produce higher levels of sparsity,

which will improve CS recovery overall. Furthermore, we also expect the DT-DWT to

be more shift-invariant, leading to better performance of the simple dynamics model that

assumes stationary coefficients from frame to frame. We simulate CS measurements by
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applying a subsampled noiselet transform [131] to each frame, taking M = 0.25N measure-

ments per frame (where N = 1282) with a measurement noise variance of 10−4.4 We solve

all optimization programs using the TFOCS package [133] due its stability during RWL1

optimization and the ability to use fast implicit operators for matrix multiplications.

In the Foreman video sequence, we simulate CS measurements on a portion comprised

of 128×128 pixels. In the DWT recovery we use the following parameters: λ = 0.01 for

BPDN, λ0 = 0.001, τ = 0.05 and ν = 0.1 for RWL1, γ = 0.01 and κ = 0.4 for BPDN-DF, and

λ0 = 0.001, τ = 0.2 β, = 1 and ν = 0.2 for RWL1-DF. In the DT-DWT recovery we use the

parameters λ = 0.001 for BPDN, λ0 = 0.11, τ = 0.2 and ν = 0.1 for RWL1, γ = 0.01 and κ =

0.2 for BPDN-DF, and λ0 = 0.003, τ = 4, β = 1 and ν = 1 for RWL1-DF. Again, we found

these parameter setting through a manual parameter sweep to optimize performance for

each algorithm for the number of CS measurements. While the number of measurements

was fixed in this simulation for computational tractability, recovery performance could be

altered for all algorithms by adjusting the number of CS measurements.

Figure 21 shows the recovery of 200 consecutive frames of video in the Foreman se-

quence. As expected, we see that all algorithms perform better in the DT-DWT case than

the DWT case due to the increased sparsity of the representation (DT-DWT representa-

tions used approximately 62% of the coefficients necessary in the DWT). In both cases,

RWL1-DF converges to the lowest steady-state rMSE and is able to largely sustain that

performance over the sequence. In contrast, BPDN-DF cycles through periods of good

performance and poor performance, sometimes performing worse than not using tempo-

ral information at all. In essence, BPDN-DF is not robust to model errors, and each time

there is motion in the scene (violating the simple dynamics model) the algorithm has to re-

converge. The RWL1-DF approach does not exhibit this performance oscillation because

the use of second-order statistics to propagate temporal information is less rigid, allowing

for more robustness during model errors. As expected, while BPDN-DF is still susceptible

4We use the noiselet transform because it can be computed with an efficient implicit transform and has
enough similarity to a random measurement that it works well in CS [132].
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BPDN RWL1 BPDN-DF RWL1-DF DCS-AMP WL1P modCS
Mean rMSE 3.84% 3.09% 3.29% 1.63% 3.48% 3.27% 5.22%
Median rMSE 3.85% 3.07% 2.78% 1.61% 2.57% 3.27% 4.58%

Table 1: Mean and median values for compressive recovery of the Foreman video sequence.

to model errors, the fragility in BPDN-DF is somewhat mitigated when using the DT-DWT

because the simple model is more accurate in this case.

Figure 22 shows a comparison of recovery for the Foreman video sequence in the DT-

DWT basis across several existing algorithms, including DCS-AMP, modCS and WL1P.

Again we optimize algorithms parameters manually to achieve the best aggregate perfor-

mance over the video sequence. To summarize the performance over the entire video se-

quence, Figure 23 shows histogram plots of the rMSE values over the 200 frames for each

recovery process using sparsity in the DT-DWT basis. The mean and median for each his-

togram are represented by the green dashed line and the red arrow respectively, and are

listed in Table 1.

As expected, the algorithms with no temporal information are immune to errors in the

dynamic model (since it is not used), reflected in the fact that the mean and median are

virtually the same in each of these cases. In contrast, the recovery errors for BPDN-DF

are much more spread out, achieving nearly the same median error as the independent al-

gorithms and having a much higher mean error due to the large excursions during model

mismatch. In other words, unless a more accurate (and complex) dynamic model can be

used, BPDN-DF actually may be a worse choice than not using any temporal informa-

tion at all. In contrast, RWL1-DF shows a much tighter distribution of errors, having a

mean and median significantly lower than alternate approaches. While other algorithms

are leveraging temporal information for improved performance over the independent algo-

rithms, RWL1-DF demonstrates significant performance improvements over the alternative

approaches in this example.

In addition to the in-depth comparison on the single Foreman video sequence above,
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we also perform the same CS recovery task on a database of video sequences from a nature

BBC documentary to investigate the performance across a wider range of video character-

istics (i.e., including video clips with localized motion and global motion in the scene). We

simulated CS measurements for 24 sequences (48-frames each) in the same manner as the

Foreman sequence and recovered the frames using the same methodology described above

(including parameters optimized during recovery of the Foreman sequence). Figure 24

shows the mean and median improvement of RWL1-DF relative to the other algorithms

being evaluated. Specifically, the plotted mean improvement is the average of the rMSE

difference between RWL1-DF and the comparison algorithm at each frame normalized by

the average rMSE for the comparison algorithm across the whole video clip. The median

improvement is calculated in the same manner.

The recovery results for this video database show consistent performance improvements

for RWL1-DF when evaluated over all video sequences in this database. Additionally, we

note that some video sequences were significantly richer in texture and motion than others,

resulting in a more challenging recovery task. We identified 13 such video clips that were

especially challenging (i.e, those where the average rMSE reconstruction for BPDN is over

1%). For these clips we plot the mean and median percent improvement in Figure 24.

RWL1-DF shows very significant improvements within these video sequences, indicating

that RWL1-DF is especially beneficial in challenging recovery scenarios.

4.5 Learning Dynamics Functions

As mentioned earlier, one of the main challenges in merging dynamic filtering with sparse

signal analysis lies in the statistics of the innovations νn and, thus with the dynamics func-

tion f (·). Simple dynamics functions for sparse signals (e.g. the identity function for video

sequences used in previous simulations in this chapter) lead to innovations that are highly

non-Gaussian and non-stationary. One potential solution we have discussed was to design

filtering algorithms robust to the noise terms. In particular, the RWL1-DF algorithm based
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on the hierarchical Bayesian model achieves such robustness [13]. More advanced infer-

ence models, such as RWL1-DF, however incur additional cost. Even with convergence in

a small number of iterations, the total computational cost can still be many times higher

than simpler algorithms such as BPDN-DF. As an alternative to addressing the robustness

to innovations we can instead address the accuracy of the dynamics model. In particular,

we can move from a more complex signal model that needs to be inferred at each time-step

to a more complex dynamics model which can be learned a priori from exemplar data. As

with dictionary learning procedures, in this case the bulk of the additional computation is

performed in learning the model, and the inference complexity given the learned model re-

mains mostly unchanged. This section will present a parametrized dynamics model which

can be learned in a dictionary learning-type manner. First we will present this model into

the simpler BPDN-DF, allowing us to leverage the efficiency and guarantees on BPDN-

DF with the benefit of more accurate dynamics. We also present a similar model for the

RWL1-DF model, deriving an appropriate EM inference algorithm as well as an alternate

learning algorithm.

4.5.1 Learning a Bilinear BPDN-DF Model

To model out dynamics in a cohesive manner, we introduce the parametrized dynamics

model in terms of the coefficient vector. Specifically, we model the dynamics as

an = f (an−1) + ν

=

L∑
l=1

bn[l]Flan−1 + ν, (55)

where νa is the innovations term in the coefficient space. The actual signal x in this model is

still defined by the linear generative model xn = Ψan. To perform inference in this model

we can make use of the BPDN-DF the cost function where the measurement function is

simply the identity function,

J(an) = ‖xn −Ψan‖
2
2 + γ1 ‖an‖1 + γ2

∥∥∥∥∥∥∥an −

L∑
l=1

Flbn[l]an−1

∥∥∥∥∥∥∥
2

2

+ γ3 ‖bn‖1 . (56)
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This cost function lets us define the contributions of the dynamics functions explicitly.

By To get an equivalent gradient descent method for this cost function, we do a similar

gradient descent as in most variational methods. With respect to the dictionary Ψ, the cost

function is identical (all terms aside from the first term are constant with respect to Ψ).

This means that the update rule for Ψ is

ψi ← µΨ〈an[i](xn −Ψan)〉.

In terms of the dynamics functions, the derivative we need to take to determine the gradient

step is

dJ
dFk

= d‖an −

L∑
l=1

Flbn[l]an−1‖
2
2,

Since the matrix derivative is often simpler to calculate via the element-wise definition, we

can express the derivative elements as

dJ
dFl,i,k

=
d

dFk,i,k

∑
i

an[i] −
L∑

l=1

∑
k

Fl,i,kbn[l]an−1[k]

2

= −2bn[l]

an[i] −
L∑

l=1

∑
k

Fl,i,kbn[l]an−1[k]

 d
dFk,i,k

∑
k

Fl,i,kan−1[k]

= −2bn[l]

an[i] −
L∑

l=1

∑
k

Fl,i,kbn[l]an−1[k]

 an−1[k],

While this learning rule is a little more complicated to derive, the resulting learning rule

is simple once found. In fact this learning rule is very similar to the learning rule for the

dictionary. We can see this by writing the update rule in matrix form as

Fl ← µF

〈
bn[l]

an −

L∑
l=1

Flbn[l]an−1

 aT
n−1

〉
.

As with the learning step over the dictionary, the learning step over the dynamics is an

average of the representation errors weighted by the contributions each dynamics function

to that error. The full learning algorithm is outlined in Algorithm 2.

To test the learning Algorithm 2 we designed a series of tests. First we pick the simplest

case where there is only a single dynamics function (L = 1) and the sparsity dictionary is
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Algorithm 2 Coefficient and Dynamics Dictionary Learning Algorithm
Initialize γ, µΨ, µF , K, ρΨ, ρF

Initialize Ψ, Fl as random Gaussian matrices
repeat

for k = 1 to K do
Choose data example xn uniformly at random
{̂an, b̂n} = arg mina ‖xn −Ψa‖22 + γ‖a‖1 + γ2‖a −

∑L
l=1 Flbn[l]an−1‖

2
2 + γ3‖bn‖1

∆ψi(k) = 1
T

∑T
n=1 an[i] (xn −Ψan)

∆Fl(k) = 1
T

∑T
n=1 bn[l]

(
an −

∑L
l=1 Flbn[l]an−1

)
an−1

end for
ψi ←

[
ψi +

µΨ

K

∑
k ∆ψi(k)

]
Fl ←

[
Fl +

µF
K

∑
k ∆Fl(k)

]
Normalize ψi ← ψi/‖ψi‖2

Normalize Fl ← Fl/‖Fi‖

µΨ ← ρΨµΨ, µF ← ρFµF

until Convergence

simply the canonical basis (Ψ = I). The single dynamics function was simply a permuta-

tion matrix concatenated with a scaling matrix (i.e. signal coefficients could move around

as well as be scaled). Figure 25 shows the results of running Algorithm 2 as well as the

model used to generate the exemplar data. The learned and true models are a very close

qualitative match, differing by a permutation and sign change (the same ambiguity present

in all dictionary learning methods). With the success of our method to learn a simple dic-

tionary, we then test the algorithm on another simulated data-set, where instead of a single

dynamics function, we simulate twelve distinct permutation and scaling functions, two of

which are used at each time-step (i.e. the sparsity of bn is two). We note that different

dynamics can be used at each time step. Figure 26 depicts the results of the learning pro-

cedure, showing that again the sparsity dictionary is learned up to a permutation and sign

change, and the dynamics functions that are learned are again close qualitative matches to

the true dynamics functions.

As a final test, we use the learning algorithm to learn a set of dynamics for natural

image patches (i.e. video segments). For images, we learn a size 64 sparsity dictionary

for 8x8 image patches concurrently with learning 20 64x64 dynamics functions. Since
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no ground truth is available for video sequences, we quantify success by the ability of

the learned model to improve performance in an inverse problem setting. The rational

behind this method is that better models of data should be able to improve our ability to

recover the data from very noisy or incomplete measurements of the data. In keeping with

previous sections, we look at compressive recovery of image patches. We take, for each

image patch in the video, Gaussian random measurements and corrupt the measurements

with white Gaussian noise. The number of measurements was 20% of the size of the

image patches. We then recover the image patches using the learned sparsity dictionary in

BPDN-DF using both the learned dynamics function as well as a simple identity function

in place of the learned dynamics. In the latter case, we are simulating the same BPDN-DF

process that was used in previous results in this chapter. In the former case we utilize the

learned dynamics to show how the learning allows us to improve reconstruction. Figure 27

depicts the histogram of errors over 100 sequences of 20 8x8 image patches taken at random

from a BBC documentary used in [128]. BPDN-DF using the learned dictionary clearly

out-performs BPDN-DF with a simple identity function for the dynamics. Specifically,

while BPDN-DF using the identity dynamics had the majority of the reconstruction errors

clustered about 13% error, using the learned dynamics dropped the majority of these errors,

resulting in a median error of 8%. The average improvement we see in using the learned

dynamics is 33% improvement in rMSE.

4.5.2 Learning a Bilinear RWL1-DF Model

In Sections 4.3 and 4.5.1 we observed that both more robust algorithms and more accurate

models can improve sparse signal tracking performance. The logical extension is to com-

bine both models, deriving a more robust model that can learn and utilize a more accurate

signal model. For this task we merge the RWL1-DF algorithm with a similar dynamics

model as in Section 4.5.1. As a review, RWL1-DF algorithm has a number of advan-

tages over BPDN-DF. For one, there is no explicit assumption of Gaussian innovations. In
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fact there are no explicit assumptions on the innovations at all. This fact allows RWL1-

DF to be more adaptable when the innovations contains large, yet concentrated, energy.

Additionally, the RWL1-DF algorithm does not in any way directly enforce the dynamic

information, instead using the prediction from the previous state to encourage certain sup-

port sets, thereby resulting in a more reliably sparse solution. The algorithm is at the

heart an expectation-maximization algorithm, necessitating an iterative procedure where

each iteration requires solving a BPDN-type optimization program. On the other hand, the

dictionary learning procedure derived for BPDN-DF incurs no significant additional infer-

ence cost, however requires a potentially computationally-intensive learning procedure be

done prior to inference. To merge these two methods we use the hierarchical model as

in RWL1-DF, however we replace the assumed dynamics with the linear dynamics model

from Section 4.5.1. The following sections outline the resulting mathematical model, as

well as the derived inference and learning rules.

4.5.2.1 RWL1-DF Bilinear Cost Function

As the EM procedure and the resulting re-weighted algorithm is more complex, we note

that the actual cost function is rather complicated. The true cost function being optimized,

including the linear mixture model for the dynamics, is

J(an) = ‖xn −Ψan‖
2
2 − 2σ2

N∑
k=1

log

 αξ(|
[∑

l Flbn[l]an−1
]
k | + η)−1

2
(
ξλ0

|an[k]|
|[∑l Fl bn[l]an−1]k |+η

+ 1
)α+1

 .
We can simplify this expression by separated over the logarithms and removing all
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constants that do not effect the actual optimization solution as

J(an) = ‖xn −Ψan‖
2
2 + 2σ2

 N∑
k=1

log

| ∑
l

Flbn[l]an−1


k

| + η


−N log(αξ) + (α + 1)

N∑
k=1

log
(
ξλ0

|an[k]|
|
[∑

l Flbn[l]an−1
]
k | + η

+ 1
)

+ N log(2)


= ‖xn −Ψan‖

2
2 + 2σ2

 N∑
k=1

log


∣∣∣∣∣∣∣
∑

l

Flbn[l]an−1


k

∣∣∣∣∣∣∣ + η


+(α + 1)

N∑
k=1

log
(
ξλ0

|an[k]|
|
[∑

l Flbn[l]an−1
]
k | + η

+ 1
) .

For further clarity, we can further simplify this expression as

J(an) = ‖xn −Ψan‖
2
2 + 2σ2

 N∑
k=1

log


∣∣∣∣∣∣∣
∑

l

Flbn[l]an−1


k

∣∣∣∣∣∣∣ + η


+(α + 1)

N∑
k=1

log

ξλ0|an[k]| +
∣∣∣[∑l Flbn[l]an−1

]
k

∣∣∣ + η∣∣∣[∑l Flbn[l]an−1
]
k

∣∣∣ + η


= ‖xn −Ψan‖

2
2 + 2σ2

 N∑
k=1

log


∣∣∣∣∣∣∣
∑

l

Flbn[l]an−1


k

∣∣∣∣∣∣∣ + η

 +

+(α + 1)
N∑

k=1

log

ξλ0|an[k]| +

∣∣∣∣∣∣∣
∑

l

bn[l]Fan−1


k

∣∣∣∣∣∣∣ + η


+ −(α + 1)

N∑
k=1

log


∣∣∣∣∣∣∣
∑

l

Flbn[l]an−1


k

∣∣∣∣∣∣∣ + η


= ‖xn −Ψan‖

2
2 + 2σ2

(α + 1)
N∑

k=1

log

ξλ0|an[k]| +

∣∣∣∣∣∣∣
∑

l

Flbn[l]an−1


k

∣∣∣∣∣∣∣ + η

−
α

N∑
k=1

log


∣∣∣∣∣∣∣
∑

l

Flbn[l]an−1


k

∣∣∣∣∣∣∣ + η

 . (57)

We can see from the final expression in Equation (57) that the ideal cost function to

optimize comes in three parts. The first term is the traditional measurement fidelity term.

The second term is essentially the same sparsity-inducing cost seen in the ideal RWL1-DF

cost function. The final term penalizes the values of the dynamics coefficients. Balancing

these three terms is exceedingly difficult, especially since two of the terms are not convex.

To obtain appropriate inference procedures, in addition to learning rules to optimize Ψ and

Fl we again derive an EM algorithm based on a hierarchical model.
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4.5.2.2 Inference Rule

Recall that in the RWL1-DF algorithm, where the dynamics function is known (in the

bilinear case, this means that the b’s are known), the inference via the EM algorithm is

ât
n = arg min

a
‖xn −Ψa‖22 + λ0

∑
k

λt−1
n [k] |a[k]|

λt
n[k] =

2(α + 1)ξ
λ0ξ

∣∣∣̂at
n[k]

∣∣∣ +
∣∣∣[ f

(̂
an−1

)]
k

∣∣∣ + η
.

To extend this model and to derive a similar iterative algorithm for the bilinear model,

we first note that inferring a conditioned on b reduces to the same RWL1 process, only

with the update on λ replaced by

λt
n[k] =

2(α + 1)ξ
λ0ξ

∣∣∣̂at
n[k]

∣∣∣ +
∣∣∣[∑l Flbn[l]̂an−1

]
k

∣∣∣ + η

Inferring b, however, is a more involved process. We can, as in the BPDN-DF case, provide

a prior distribution over the dynamics coefficients as well. To retain sparsity, we give b the

same distribution as a. As for a, we again describe the prior over b as a conditional prior

in terms of a set of latent variables γ,

p(b|γ) =
∏

l

γ0γl

2
e−γ0γl |b[l]|

where the latent variables γ have a conjugate distribution

p(γ) =
∏

l

γτ+1
l

θτΓ(τ)
e−γl/θ

The complete maximum a-posteriori estimate should then be

{̂a, b̂} = arg max
a,b

p(a, b|x)

= arg max
a,b

∫
γ

∫
λ

p(a, b, λ,γ|a, b)dλdγ

= arg max
a,b

∫
γ

∫
λ

p(x|a, b, λ,γ)p(a, b,γ, λ)dλdγ

= arg max
a,b

∫
γ

∫
λ

p(x|a)p(a|λ)p(λ|b)p(b|γ)p(γ)dλdγ
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Given the dependence of the latent variables γ and λ, we can use an EM algorithm again,

separating the problem into the two steps

M-step: {̂a, b̂} arg max
a,b

p(a, b|x, λ,γ) (58)

E-step: {̂λ, γ̂} = {Ep(λ,γ|b,a,x) [λ] , Ep(λ,γ|b,a,x)
[
γ
]
} (59)

For the M-step, we can easily write

{̂a, b̂} = arg max
a,b

p(a, b|x, λ,γ)

= arg max
a,b

p(x|a, b, λ,γ)p(a, b|λ,γ)

= arg max
a,b

p(x|a)p(a|λ)p(b|λ,γ)

= arg max
a,b

p(x|a)p(a|λ)p(λ|b)p(b|γ),

where the third step follows from the conditional independence between a and b. Since the

maximum of the product of two functions is the product of their maxima, this optimization

can easily be split into two parts:

â = arg max
a

p(x|a)p(a|λ)

b̂ = arg max
b

p(λ|b)p(b|γ).

The first of these two optimizations is again (after applying the negative log function) a

weighted BPDN optimization:

ân = arg min
a

1
2σ2 ‖xn −Ψa‖22 + λ0

∑
i

λ̂n[i]|a[i]|. (60)

The second optimization is more involved. The conditional probability of the coefficient

variances based on the dynamics coefficients can be derived as

p(λn|bn) =
∏

i

λα+1
n [i]

(∣∣∣[∑l Flbn[l]̂an−1
]
i

∣∣∣ + η
)α

ξαΓ(τ)
e−λi(|[∑l Fl bn[l]̂an−1]i|+η)/ξ.

To simplify this expression, we can define the vector

un,i =
[
[F1̂an−1]i, [F2̂an−1]i, . . . , [FL̂an−1]i

]T ,
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which is essentially the vector made up the ith coefficient predictions from all L dynamics

functions. The simplified conditional probability is then

p(λn|bn) =
∏

i

λα+1
n [i]

(∣∣∣〈un,i, bn〉
∣∣∣ + η

)α
ξαΓ(τ)

e−λn[i](|〈un,i,bn〉|+η)/ξ.

The product with the conditional probability over the dynamics coefficients is

p(λn|bn)p(bn|γn) =

∏
l

γ0γn[l]
2


∏

i

λα+1
n [i]

(∣∣∣〈un,i, bn〉
∣∣∣ + η

)α
ξαΓ(τ)

 e−
1
ξ

∑
i λn[i](|〈un,i,bn〉|+η)−γ0

∑
l γn[l]|bn[l]|

Taking the negative logarithm of this expression, and removing all terms constant with

respect to b, we can see that the MAP optimization is equivalent to

arg min
b

1
ξ

∑
i

λn[i]
∣∣∣〈un,i, bn〉

∣∣∣ + γ0

∑
l

γl|bn[l]| − α
∑

i

log
(∣∣∣〈un,i, bn〉

∣∣∣ + η
)

By letting

Un =
[
F1̂an−1, F2̂an−1, . . . , FL̂an−1

]T ,

and Γ = diag(γn), we can write this second optimization concisely as

arg min
b

∥∥∥∥∥∥∥∥∥


1
αξ
ΛUn

γ0
α
Γn

 bn

∥∥∥∥∥∥∥∥∥
1

−
∑

i

log
(∣∣∣〈un,i, bn〉

∣∣∣ + η
)

(61)

This optimization program is not necessarily convex, however it seems quasi-convex.

For the E-step, We can likewise split the expectation into finding the expectation of two

independent sets of random variables:

λ̂n = Ep(λn,γn |bn,an,xn) [λ]

γ̂n = Ep(λn,γn |bn,an,xn)
[
γ
]
.

Thanks to the conjugacy of the Laplacian and Gamma distributions, both expectations have

closed form solutions, giving the updates

λ̂n[i] =
(α + 1)ξ

ξλ0 |̂an[i]| +
∣∣∣∣[∑l Fl̂bn[l]̂an−1

]
i

∣∣∣∣ + η

γ̂n[l] =
(τ + 1)θ

θγ0 |̂bn[l]| + 1
.
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To summarize, the algorithm alternates between two steps, an update of {̂an, b̂n} and an

update of {̂λn, γ̂n}:

M-step:

ân = arg min
a

1
2σ2 ‖xn −Ψa‖22 + λ0‖Λ̂na‖1 (62)

b̂n = arg min
b

∥∥∥∥∥∥∥∥∥


1
αξ
Λ̂Un

γ0
α
Γ̂n

 b

∥∥∥∥∥∥∥∥∥
1

−
∑

i

log
(∣∣∣〈un,i, bn〉

∣∣∣ + η
)

(63)

E-step:

λ̂n[i] =
(α + 1)ξ

ξλ0 |̂an[i]| +
∣∣∣∣〈un,îbn〉

∣∣∣∣ + η
(64)

γ̂n[l] =
(τ + 1)θ

θγ0 |̂bn[l]| + 1
. (65)

In the M-step, we define Λ̂ = diag(̂λ) and again we define Γ̂ = diag(̂γ).

As mentioned before, most of these steps are easy to solve. In particular, The updates

in Equations (64) and (65) are simple closed-form solutions and easy to evaluate. The

optimization program in Equation (62) is simply a weighted `1 regularized least-squares

optimization for which many fast solvers exist. The difficult optimization is Equation (63),

which is convex over each of 2L + L(N − L) (since L < N distinct regions defined by

the hyperplanes that have the un,i vectors as their normals. Since we can plainly see that

the cost function evaluated at b is identical to the cost function evaluated at −b we can

restrict the number of regions of interest to 2L−1 + L(N − L)/2 regions. To find the global

optimum, the region containing the global minimum needs to be determined. Once that

region is determined, the problem reduces to a convex optimization (optimization of a

convex function over a cone).

While locating the correct region would normally require 2L−1+L(N−L)/2 optimization

problems be solved in parallel, and the answers then compared, we can use the `1 norm and

the behavior of the sum-log function in each region to find a heuristic to choose a single (or

small number of) regions to optimize over. In particular we can use the radial symmetry of

84



the sum-log function to sample each region once, using the single sample in conjunction

with the λ̂ and γ̂ values to test which regions are more or less likely to have the global

minimum.

4.5.2.3 Learning Rule

In the RWL1-DF model, the learning rule for the dictionary Ψ remains the same as in pre-

vious models. This fact is due to all terms in the cost function, aside from the measurement

fidelity term, are not dependent on the sparsity-inducing dictionary. It remains only to cal-

culate the learning rule for the dynamics dictionary. To calculate the learning rule for Fl,

we again need to calculate calculate the derivative of the cost function of Equation (57)

with respect to the dynamics matrices:

dJ
dFl,k,i

= 2σ2 d
dFl,k,i

(α + 1)
N∑

k=1

log

ξλ0|an[k]| +

∣∣∣∣∣∣∣
∑

l

Flbn[l]an−1


k

∣∣∣∣∣∣∣ + η


−α

N∑
k=1

log


∣∣∣∣∣∣∣
∑

l

Flbn[l]an−1


k

∣∣∣∣∣∣∣ + η

 .
To simplify a bit, we note that [Fan−1]k =

∑
i Fk,ian−1[i], or, in the bilinear model we obtain[∑

l Flbn[l]an−1
]
k =

∑
i,l Fl,k,ibn[l]an−1[i]. We can use this to calculate the actual derivative

dJ
dFl,k,i

= 2σ2(α + 1)
d

dFl,k,i
log

ξλ0|an[k]| +

∣∣∣∣∣∣∣∑i,l

Fl,k,ibn[l]an−1[i]

∣∣∣∣∣∣∣ + η


−2σ2α

d
dFl,k,i

log


∣∣∣∣∣∣∣∑i,l

Fl,k,ibn[l]an−1[i]

∣∣∣∣∣∣∣ + η

 .
This can be calculated as

dJ
dFl,k,i

=
2σ2(α + 1) d

dFl,k,i
|
∑

i,l Fl,k,ibn[l]an−1[i]|

ξλ0|an[k]| + |
∑

i,l Fl,k,ibn[l]an−1[i]| + η
−

2σ2α d
dFl,k,i
|
∑

i,l Fl,k,ibn[l]an−1[i]|

|
∑

i,l Fl,k,ibn[l]an−1[i]| + η

dJ
dFl,k,i

=
2σ2(|

∑
i,l Fl,k,ibn[l]an−1[i]| + η − αξλ0|an[k]|)

(ξλ0|an[k]| + |
∑

i,l Fl,k,ibn[l]an−1[i]| + η)(|
∑

i,l Fl,k,ibn[l]an−1[i]| + η)
d

dFl,k,i
|
∑

i,l

Fl,k,ibn[l]an−1[i]|

dJ
dFl,k,i

=
2σ2(|

∑
i,l Fl,k,ibn[l]an−1[i]| + η − αξλ0|an[k]|)sign

(∑
i,l Fl,k,ibn[l]an−1[i]

)
bn[l]an−1[i]

(ξλ0|an[k]| + |
∑

i,l Fl,k,ibn[l]an−1[i]| + η)(|
∑

i,l Fl,k,ibn[l]an−1[i]| + η)

Which gives the gradient-step update for the dictionary elements.
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Figure 20: Behavior of the RWL1-DF algorithm on synthetic data. (a) RWL1-DF converges
to a lower mean rMSE than static sparse estimation or BPDN-DF. Shown for M = 80, N
= 576, S = 20 and p = 0.25. (b) When sweeping the number of measurements M for N =

576, S = 20, and p = 0.25, we observe that the performance improvement for RWL1-DF is
especially distinct in the highly undersampled regime. Each point is the average steady state
rMSE over 40 independent trials. (c) RWL1-DF is also more robust to model mismatch in
the innovation statistics. Shown here for different innovations sparsity (2S p) for M = 70,
N = 576, and S = 20. Each data point is the result of averaging the steady-state rMSE over
40 independent trials. Note that when BPDN-DF starts to perform better (2S p = 10), the
innovations are actually half of the total support set and a Gaussian innovations model may
be more accurate than a sparse innovation model.
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Figure 21: CS recovery of the full Foreman video sequence. Each curve represents the
rMSE for recovery from subsampled noiselets (M/N = 0.25) using either a DWT (top) or a
DT-DWT (bottom) as the sparsifying basis. The independent BPDN recovery (dotted blue
curve) and the independent re-weighted BPDN (solid green curve) retain a steady rMSE
over time. RWL1-DF (dashed cyan curve) converges on a lower rMSE than either time-
independent estimation and remains at approximately steady-state for the remainder of the
video sequence. BPDN-DF (the dot-dash red curve) can converge to low rMSE values, but
is highly unstable and can yield very poor results when the model is not accurate due to
motion in the scene. Compared to using the four-times overcomplete DT-DWT, when the
orthonormal DWT is used as the sparsifying basis all algorithms except RWL1-DF (but
especially BPDN-DF) suffer in performance due to the dynamic signal model being less
accurate.
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Figure 22: A comparison of RWL1-DF with existing recovery algorithms (DCS-AMP,
modCS and WL1P) for the Foreman video sequence. Each curve represents the rMSE for
recovery from subsampled noiselets (M/N = 0.25) using the DT-DWT as the sparsifying
basis.
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Figure 23: Histogram of the rMSE for the compared algorithms when recovering the Fore-
man video sequence with the DT-DWT as the sparsifying basis. RWL1-DF achieves a lower
mean (indicated by the dashed green lines) and median (indicated by the red arrows), with a
tightly concentrated error distribution due to the robustness to model mismatch (producing
few outliers). Specific mean and median values are shown in Table 1.
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Figure 24: Percent improvement of RWL1-DF over other algorithms for compressive re-
covery of video sequences (calculated as described in the text). Displayed is both the mean
improvement (error bars indicating the normalized standard deviation) and the median im-
provement (error bars indicating the 25th and 75th percentile) for each algorithm. (a) Re-
sults for the full database of 24 sequences from a BBC nature documentary. (b) Results for
the 13 sequences that were especially challenging for CS recovery, illustrating the benefits
of RWL1-DF in this particularly difficult regime.
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Figure 25: The dynamics learning algorithm can learn an identity basis and a simple per-
mutation dynamics function.

Learned Dictionary
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Figure 26: The dynamics learning algorithm can learn an identity basis and a set of permu-
tation dynamics functions.
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Figure 27: The proposed model using learned dictionaries recovers video patches with an
average of 33%lower rMSE. While BPDN-DF has most errors cluttered around the 13%
error area, our model reduces those errors to less than 8%.
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CHAPTER V

SPATIALLY CORRELATED INFERENCE IN HYPERSPECTRAL
IMAGERY1

5.1 Hyperspectral Imagery

Hyperspectral imagery (HSI) is a spectral imaging modality that obtains environmental

and geographical information by imaging ground locations from airborne or spaceborne

platforms. While multispectral imagery (MSI) acquires data over just a few (e.g., 3-10)

irregularly spaced spectral bands, HSI typically uses hundreds of contiguous bands that are

regularly spaced from infrared to ultraviolet. For example, the Worldview II MSI satel-

lite [134] uses eight bands to represent the wavelengths from 0.435µm to 1.328µm, while

typical HSI has approximately 60 bands over the same range in addition to many more

bands at higher wavelengths. With spatial resolutions as low as 1m, the increased spectral

resolution of HSI means that estimated ground reflectance data can be used to determine

properties of the scene, including material classification, geologic feature identification,

and environmental monitoring. A good overview of HSI and the associated sensors can be

found in [135].

Exploiting HSI is often difficult due to the particular challenges of the remote sensing

environment. For example, even “pure” pixels composed of a single material would have

reflectance spectra that lie along a nonlinear manifold due to variations in illumination,

view angle, material heterogeneity, scattering from the local scene geometry, and the pres-

ence of moisture [135,136]. Additionally, pure pixels are essentially impossible to actually

observe due to material mixtures within a pixel and scattering from adjacent areas [135].

One of the most common approaches to determining the material present in a given pixel x
1This chapter is in collaboration with Dr. Bruno Olshausen (Sections 5.3 ) and Dr. Nicholas Tufillaro

(Section 5.5). Further details about the work presented in this chapter is available in [20–25].
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(called “spectral unmixing” [137]) is to use a linear mixture model such as in Equation (4),

where {ψk} is a dictionary of approximation elements, {ak} are the decomposition coeffi-

cients and ε is additive noise. Note that {x,ψk, ε} ∈ R
N , where N is the number of spectral

bands and the vectors are indexed by λ (which is suppressed in our notation). When the

dictionary represents spectral signatures of the various material components present in the

scene, they are typically called “endmembers” and the resulting coefficients (assumed to

sum to one) represent the material abundances in each pixel. The endmember vectors are

conceptualized as forming a convex hull about the HSI data (e.g., see the red vectors in Fig-

ure 28). Such a decomposition is often used for detecting the presence of a material in the

scene or classifying the materials present in a pixel. A number of methods have been pro-

posed for determining endmembers, including algorithms which select endmembers from

the data based on a measure of pixel purity [138] or the quality of the resulting convex

cone [139], tools that assist in the manual selection of endmembers from the data [140],

algorithms which optimize endmembers for linear filtering [141], methods based on find-

ing convex cones using principal component analysis (PCA) or independent component

analysis (ICA) decompositions [142–145], iterative statistical methods that optimize the

resulting convex cone [146], and iterative measures to select optimal endmember sets from

larger potential sets [147]. However, these algorithms either rely on postulating candi-

date endmember sets for initialization [147], assume the existence of pure pixels in the

scene [138, 139], attempt to encompass the data within a cone rather than directly repre-

sent the data variations [140, 142, 146], use orthogonal linear filters to attempt to separate

out highly non-orthogonal spectra [141], or attempt to determine spectral statistics from de-

compositions in the spatial dimensions rather than the spectral dimension. [144,145]. None

of these methods attempt to directly learn from the spectral data a good representation of

the low-dimensional, non-linear spectral variations inherent in HSI.

In addition to the difficulties determining the basic spectral components of an HSI
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dataset, there are many resource costs (i.e., time, money, computation, availability of sen-

sor platforms) that result from the high dimensionally of the data. During data acquisi-

tion, the high resolution of HSI data comes at the expense of sophisticated sensors that are

costly and require relatively long scan times to get usable SNRs. After data acquisition,

it is evident that reducing the dimensionality while retaining the exploitation value of the

data would save significant computational and storage resources. If the higher-order statis-

tics of the HSI data can be characterized, this information can be used to perform both

dimensionality reduction of existing high-dimensional data and high-resolution inference

from low-resolution data (collected from either a cheaper MSI sensor or a modified HSI

sensor measuring coarse spectral resolution, thereby lowering scan times). One common

approach to dimensionality reduction is PCA. However, the underlying Gaussian model in

PCA means that it can only capture pairwise correlations in the data and not the higher-

order (and non-Gaussian) statistics present in HSI data.

Following on developments in the computational neuroscience community, the signal

processing community has recently employed signal models based on the notion of sparsity

to characterize high-order statistical dependencies in data and yield state-of-the-art results

in many signal and image processing algorithms [148]. Specifically, this approach models

a noisy measurement vector x as being generated by a linear combination of just a few ele-

ments from the dictionary {ψk}. This is the same model as in (4), but where the coefficients

are calculated to have as few non-zero elements as possible. Much like PCA, sparse coding

can be viewed as a type of dimensionality reduction where a high dimensional dataset is

expressed in a lower dimensional space of active coefficients. However, while PCA cal-

culates just a few principal components and uses essentially all of them to represent each

pixel, sparse coding models typically employ a larger dictionary but use only a few of these

elements to represent each pixel. When cast in terms of a probabilistic model, this sparsity

constraint corresponds to a non-Gaussian prior that enables the model to capture higher

order statistics in the data.
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Due to the high spatial resolution of modern HSI sensors (resulting in just a few domi-

nant materials in a pixel), sparsity models seem especially relevant for this sensing modal-

ity. In fact, initial research into sparsity models for spectral unmixing in HSI has shown

promising results [149,150]. While a sparse decomposition can be estimated for any dictio-

nary, previous research [32] has shown that unsupervised learning techniques can be used

in conjunction with an example dataset to iteratively learn a dictionary that admits opti-

mally sparse coefficients (without requiring the dataset to contain any “pure” signals that

correspond to a single dictionary element). These methods leverage the specific high-order

statistics of the example dataset to find the underlying low-dimensional structure that is

most efficient at representing the data.

In contrast to the typical endmember model described above, the sparse coding model

does not assume that the data lie within the convex hull of the dictionary. Instead, the

learned sparse coding dictionary elements will tend to look like the basic spectral signatures

comprising the scene (early encouraging evidence of this can be found in [151]). In fact,

the sparse coding model may actually learn several dictionary elements to represent some

types of materials, especially when that material spectra demonstrates highly nonlinear

variations within the scene. Because of the sparsity constraint, one would expect these

learned dictionaries to reflect the specific statistics of the HSI data by locally approximating

these nonlinear data manifolds [152] (as illustrated in Figure 28, and in contrast to typical

endmember models that form a convex hull containing the data).

We have modified the unsupervised learning approach described in [32] (or see Sec-

tion 2.3) and applied it to HSI data to learn a dictionary that is optimized for sparse coding.

Importantly, the HSI dataset used in this study has significant ground truth labeling of ma-

terial classes making it possible to examine the characteristics of the learned dictionary

relative to the data. Using this learned dictionary, we make three main contributions. First,

we show that the sparse coding model learns meaningful dictionaries that correspond to
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Figure 28: Typical endmember analysis uses vectors that compose a convex hull around
the data. In this stylized illustration, the data manifold is indicated by the dashed line
and the red vectors represent the endmembers. In contrast, a learned dictionary for sparse
coding attempts to learn a local approximation of the nonlinear data characteristics directly
(indicated here by blue vectors).

known spectral signatures: they locally approximate nonlinear data manifolds for individ-

ual materials, and they convey information about environmental properties such as moisture

content in a region. Second, we generate simulated imagery at MSI-level resolution and

show that the learned HSI dictionaries and sparse coding model can be effectively used

to infer HSI-resolution data with very high accuracy (even for data of the same region

collected in a different season). Finally, we use ground truth labels for the HSI data to

demonstrate that a sparse coding representation improves the performance of a supervised

classification algorithm, both in terms of the classifier complexity (i.e., classification time)

and the ability of the classifier to generalize from very small training sets.
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5.2 Background and Related Work
5.2.1 Methods

Given a pixel x ∈ RN and a fixed dictionary {ψk} with ψk ∈ R
N for k ∈ [1, . . . ,M], the goal

of sparse coding is to find a set of coefficients that represent the data well using as few non-

zero elements as possible. Written mathematically, the goal is to minimize an objective

function that combines data fidelity and a sparsity-inducing penalty. A common choice

is to use a regularized least-squares objective function such as Equation 3 [153]. This

objective is convex in the coefficients when the dictionary is fixed, meaning that solving

{ak} = arg min{ak} Jγ (x, {ak}, {ψk}) is a tractable optimization. This general approach is

applicable directly to HSI with one small modification: we constrain the coefficients to be

non-negative (ak ≥ 0) to maintain physical correspondence between the coefficients and

the relative abundance of material spectra present in the scene. Due to its wide use in the

community, its ability to enforce positive coefficients without a sum-to-one constraint, and

established reputation for quick convergence, we use the specialized optimization package

described in [34] to solve this constrained optimization and calculate sparse coefficients.

While other solvers have been explored in the specific context of HSI [154, 155] that may

be faster in some settings, many of these HSI-specific solvers include additional constraints

which we do not employ (e.g.
∑

k |ak| = 1). The framework we present here is largely

agnostic to the specific solver as long as it returns accurate solutions, so other choices

could be substituted if there were advantages for a given application. A detailed analysis

of various algorithms to optimize (3) in the context of HSI unmixing is given in [150].

An alternate interpretation of the cost function in (3) is to consider the problem as

Bayesian inference as in Section 2.1. This Bayesian formulation allows us to naturally

extend the sparse approximation problem to more general observation models and inverse

problems, such as the high resolution inference task described in Section 5.3.2 and similar

inverse problems described in [156]. Note also that the sparse prior introduces a non-

Gaussianity into the model that is critical for capturing the high-order data statistics. An
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approach such as PCA that fundamentally assumes a Gaussian data model can only learn

from pairwise correlations in the data, and is therefore unable to capture the higher-order

statistics.

To learn an optimal dictionary for sparse coding, we follow the same basic outline as in

Section 2.3 and [32, 57]. As with the coefficient optimization, other algorithms have been

proposed for the learning step that could be substituted for this steepest decent approach.

In particular, many other methods (including the recently proposed K-SVD) use second

order information in the learning step to reduce the number of learning iterations required

for convergence (though this may come at the cost of increasing the batch size per iteration

to get better estimates for the update step) [33, 157].

The results in [32, 57] demonstrate that this unsupervised approach can start with an

unstructured random dictionary and recover known sparse structure in simulated datasets,

as well as uncover unknown sparse structure in complex signal families such as natural

images. We again adopt this general approach with a small modification: we constrain the

dictionary elements to be non-negative (ψk ≥ 0) to maintain physical correspondence with

spectral reflectances. To be concrete, the dictionary learning method we use is specified

in Algorithm 3, and we determine convergence visually by when the dictionary elements

stopped adapting. In our experience, most of the dictionary elements were well-converged

by 1000 iterations of the learning step (approximately 50 minutes of computation on an

8-core Intel Xeon E5420 with 14GB of DDR3 RAM). Some dictionary elements corre-

sponding to less prominent materials (that are randomly selected less often during learning)

seem to require 10,000-20,000 learning iterations to converge (approximately 10-15 hours

on the same machine). We often conservatively let the algorithm run for 20,000 to 80,000

iterations at a smaller step size to assure good convergence. The increasing prevalence

of parallel architectures in multi-core CPUs and graphics processing units should provide

increasing opportunities to speed up this type of unsupervised learning approach.
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Algorithm 3 Sparse coding dictionary learning algorithm of [57], modified for HSI.
Set γ = 0.01
Set µ = 10
Initialize {ψk} to random positive values
repeat

for i = 1 to 200 do
Choose HSI pixel x uniformly at random
{ak} = arg min J ({ak}, {ψk}) s.t. ak ≥ 0
∆ψl(i) = al

(
x −

∑M
k=1 ψkak

)
end for
ψl ←

[
ψl +

µ

200

∑
i ∆ψl(i)

]
+

µ← 0.995µ
until {ψk} converges

Finally, we note that the proposed approach can have local minima or non-unique so-

lutions in at least two respects, especially in the case of HSI. First, though the coefficient

optimization using an `1 sparsity penalty is convex, the ideal `0 sparse solution may not be

unique when the one-sided coherence of the dictionary maxi, j |〈ψi,ψ j〉|/‖ψi‖
2
2 is large [158].

Second, though there are few analytic guarantees about the performance of dictionary learn-

ing algorithms, recent results indicate that the ideal dictionary is more likely to be a local

solution to the optimization presented here when the coherence of the dictionary is also

low [159]. Since many materials have spectral signatures with high correlation in some

bands, typical HSI dictionary databases have coherence values very close to unity [150],

and we observe similar values in our learned dictionaries. Despite not being favorable for

the technical results described above regarding coefficient inference and dictionary learn-

ing, the inferred coefficients and learned dictionaries appear to be robust and useful in the

applications described here. Indeed, it is likely in these cases that despite there being many

local solutions (and a unique minima perhaps even not existing), many of the suboptimal

solutions are also quite good and useful in applications. In particular, we have repeated the

dictionary learning experiments described in this paper many times (with different random

initial conditions), with no significant changes in the qualitative nature of the dictionary

or the performance in the tasks highlighted in Section 5.3. This also corresponds to the
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results in [150] showing that despite the near-unity coherence in a standard hyperspectral

endmember dictionary, these dictionaries can yield good sparse representations useful in

spectral unmixing applications.

5.2.2 Hyperspectral dataset and learned dictionaries

In this paper we apply the dictionary learning method described in Algorithm 3 to learn

a 44-element dictionary for a HSI scene of Smith Island, VA. This scene has 113 usable

spectral bands (ranging from 0.44–2.486µm) acquired by the PROBE2 sensor on October

18, 2001.2 The data has a spatial resolution of approximately 4.5m and was postprocessed

to estimate the ground reflectance. Of the 490,000 pixels in the dataset, 2700 pixels are

tagged with ground truth labels drawn from 22 categories. These categories include specific

plant species and vegetation communities common to wetlands, and were determined by in

situ observations made with differential GPS aided field studies during October 8–12, 2001.

More information about the HSI dataset and the ground truth labels can be found in [160–

163]. The size of the dictionary (44 elements) was made to ensure that there were multiple

elements available for each of the 22 known material classes in this particular dataset. The

number 44 represented a compromise between smaller dictionaries that didn’t perform as

well on the tasks described in Section 5.3 (especially the local manifold approximation),

and larger dictionaries that presented more difficulty getting all of the elements to converge

in the learning.3 In general, determining the optimal number of dictionary elements to learn

for a dataset is an open question and could be a valuable future research direction.

We cross-validated the results of this paper in two ways. First, 10,000 randomly se-

lected pixels were excluded from the dataset before the dictionary learning so that they

2Smith Island is a barrier island that is part of the Virginia Coast Reserve Long-Term Ecological Research
Project. For more details, see http://www.vcrlter.virginia.edu. This dataset was generously provided by
Charles Bachmann at the Naval Research Laboratory.

3While performance in the signal processing tasks we tested did improve with larger dictionaries, we note
that the performance difference was often relatively minor when using 22 element dictionaries and this size
would likely be sufficiently for this dataset in many applications.
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could be used in testing. Second, we also have available data from another HSI collec-

tion of the same geographic region using the same sensor on August 22, 2001. While this

is close enough in time to assume that there are no major geologic changes in the scene,

this data does come from a different season where the vegetation and atmospheric charac-

teristics are potentially different, resulting in different statistics from the data used in the

learning process. We use this dataset specifically to assess the potential negative effects of

mismatch between the statistics of the training and testing datasets when performing signal

processing applications using the learned dictionary.

5.2.3 Related work

Prior work in using unsupervised methods to learn HSI material spectra has used some al-

gorithms that are very related to our present approach. For example, ICA can be viewed as

finding linear filters that give high sparsity, and prior work [143,164,165] demonstrates that

ICA can be effective at determining a range of spectral signatures from preprocessed data.

Other approaches also based on Bayesian inference (but not necessarily a sparsity-inducing

prior) [166] have been used to learn HSI dictionaries, but this approach has trouble includ-

ing information from large datasets and often uses ICA as a preprocessing stage to reduce

the number of pixels to analyze. The technique most closely related to our current approach

is blind source separation based on non-negative matrix factorization (NMF) [167, 168].

While not explicitly incorporating sparsity constraints, results using NMF have been shown

to exhibit sparse behavior [169]. In the NMF setup, the sparsity level of the decomposition

is difficult to control [169] and previous work in [167] mitigates this by adding an explicit

sparsity inducing term. Additionally, the above mentioned approaches all retain the sum-

to-one constraint, which we drop due to the variable power in the pixels throughout the

scene.

In addition to these results on unsupervised learning, as well as additional encouraging

prior work on using sparsity models for spectral unmixing [149, 150] and learning dictio-

naries that resemble material spectra [151], Castrodad et al. [170] have explored using a
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sparsity model and learned dictionaries to improve supervised classification performance

on HSI data.4 In Section 5.3.3 we will explore the advantages of using sparse coefficients

from a learned dictionary in an off-the-shelf classification algorithm. In [170], the authors

use labeled data to learn a separate dictionary for each class and classify data by deter-

mining which of these candidate dictionaries best describes an unknown pixel (defined by

having the minimum value for the objective function in equation (3)). This approach is cus-

tomized to the classification problem, and we expect the classification performance would

outperform the general approach we describe in Section 5.3.3. In contrast, the approach

in [170] requires a more computationally expensive learning process (due to the multiple

dictionaries), requires labeled data before the learning process, and generates a dictionary

that is tailored to the classification task and may not generalize as well to other tasks.

Zhou et al. [156] have explored using a sparsity model and learned dictionaries to effec-

tively solve inverse problems in HSI. In Section 5.3.2 we will explore the ability of sparse

coefficients from a learned dictionary to infer high resolution spectral data from low resolu-

tion imagery by formulating the task as a linear inverse problem. In [156], the authors show

that when removing substantial amounts of data from an HSI datacube, a learned dictionary

can be used to exploit the correlation structure present in each band to infer the missing data

and reconstruct the spatial image associated with each band. This inpainting task is a very

similar inverse problem to the one we examine in Section 5.3.2, differing primarily in the

type of measurement operator used in the model (i.e., blurring vs. subsampling) and the

dimension of the data used in the learning and reconstruction (i.e., spectral vs. spatial).

5.3 Analyzing the Learned Dictionary
5.3.1 Learned Dictionary Functions

While the learning procedure described in Algorithm 3 adapts the dictionary to the high-

order statistics of the HSI data, there are no constraints added that ensure the resulting

4The authors in [170] use a different learning algorithm (K-SVD [33]) from our gradient approach, but it
is attempting to achieve the same goal of learning an optimal dictionary for sparse approximation.
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Figure 29: Example spectra for materials in the labeled classes of the Smith Island dataset
and the learned dictionary element (DE) that is the closest match for each example. The two
obvious gaps in the spectra are bands removed from consideration in the original dataset
due to the interactions with the atmosphere in these regions.

dictionary elements will correspond to physical spectra or be informative about material

properties in the scene. To examine the properties of the learned dictionary, examples

elements are plotted in Figure 29. It is clear that these dictionary elements not only have the

general appearance of spectral reflectances, they also match the spectral signatures of many

of the materials that are known to be in the scene. Using the ground truth labels from the

Smith Island dataset (which denote the dominant material present in the pixel), Figure 29

shows an example spectral signature from a class along with the dictionary element that

has the largest coefficient in the sparse decomposition of that pixel. Despite being given no

a priori information about the data beyond the sparsity model (i.e., without being given the

class labels and corresponding pixels), the algorithm learns spectral shapes that correspond

to a number of component material spectra present in the image. These learned dictionaries

cover a wide variety of distinct material classes for which we have ground truth labels,
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Figure 30: (Left) The top four principal components for the Smith Island dataset (capturing
99.9% of the variance). In contrast to the learned dictionary elements in Figure 29, only
one of the principle components looks generally like a spectral signature. (Right) PCA and
sparse coding coefficients representing every sample of the data from three of the labeled
classes (“Andropogon”, “Sand”, and “Submerged Net”). The brightness at each pixel rep-
resents the intensity of a given coefficient for a specific pixel. Note that PCA uses many of
the same coefficients for different materials (e.g., coefficient 1 is always used), while sparse
coding tends to select distinct coefficients for the different materials.

including “Pine”, “Water”, “Mud” and “Distichlis”, as well as very similar spectra, such as

“Water” and “Submerged Net” or “Pine trees” and “Iva”.

In contrast, Figure 30 shows the first four principal components found through PCA

analysis on the same HSI dataset, which is sufficient to capture 99.9% of the variance in

the data. While the first principal component does have some similarity to a general vege-

tation spectrum, the other spectral components do not correspond to physically meaningful

spectral features. Figure 30 also shows the comparison between the decomposition coeffi-

cient in the sparsity model and PCA for all pixels in four of the labeled classes. The raster

plots show that while the sparse decomposition and the principal components both only

need a few coefficients to represent the data, the sparse decomposition chooses different

coefficients for different spectral shapes (i.e., the material information is encoded in the se-

lection of active coefficients) whereas PCA uses the same four vectors to represent nearly
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Figure 31: Progression of sparse coding coefficients from a row of contiguous pixels in
the Smith Island dataset. (Upper left) The red line indicates a row of 300 pixels selected
for analysis. These pixels (numbered left to right) represent a progression from an inland
region to the water off the east coast of the island. (Upper right) The sparse coding coeffi-
cients for the row of pixels is shown, where the brightness of a pixel indicates the intensity
of each coefficient for each pixel. Note that many of the same coefficients are often active
in the same geographic regions, and the progression from one type of element to another
(e.g., sand to water) can be seen by different coefficients dominating the decomposition.
(Bottom) The spectra for pixels 1, 25, 50, 75, 100, 150, 200 and 300 are shown in the bot-
tom row (in black), along with the two most active dictionary elements in the top two rows
(color coded). The fractional abundance for each dictionary element in each pixel is given
by r = |ai|/‖a‖1. Note that many of the same dictionary elements can be seen dominating
the decomposition in regions with similar material composition.

all of the data. This comparison illustrates that the learned dictionary under the sparsity

model has a much closer correspondence to the individual spectral characteristics found

in the dataset than PCA, indicating that this representation may have many advantages for

tasks such as classification.
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While it is clear that the dictionary elements are learning spectral elements present in

the scene, this representation will be most meaningful if there is consistency in the way

environmental features are represented. In other words, when looking across the scene,

do the sparse decompositions change in a way that reflects the changes in the underlying

geologic features? We extracted a row of pixels from the Smith Island dataset, starting

inland and ending in the water off the coast of the island. The selected row of pixels is

shown in red in Figure 31, superimposed on a magnified RGB rendering of that portion

of the island. Figure 31 shows the coefficient decomposition of each pixel, as well as the

measured spectrum and the two most active dictionary elements at various locations along

the row. Included with each of the two most active dictionary elements is the fractional

abundance r = |ai|/‖a‖1 of that dictionary element in the decomposition. This row starts

with mostly vegetation spectra for the first 75 pixels, changing to sand-like spectra by the

the 100th pixel and eventually to water spectra by the 160th pixel.

We highlight two important properties of the coefficient decompositions over the pixel

progression in the raster plot in Figure 31. First, the sparse coefficients are relatively con-

sistent over contiguous spatial ranges, with the same small sets of coefficients generally

dominating the decomposition over small contiguous regions. While this is evident in the

regions dominated by sand and water, there are also repeated dictionary elements across

several spatial locations in the regions dominated by vegetation (which we would expect to

have much more variability over pixels with 4m resolution). Second, some slowly changing

geologic properties are actually observable in the gradual onset and offset of specific dic-

tionary elements in the decomposition. One prominent example of this is the slow change

from dictionary element 8 to dictionary element 44 over the span of water moving away

from the shoreline, indicating the slow fading of shallow water to deep water (which have

different spectral characteristics and are represented by different dictionary elements). An-

other example of this is the rise of dictionary element 9 from the second most active to the

most active element from pixels 75 and 100, indicating the slowly increasing presence of a
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Figure 32: The nonlinear structure of water pixels is locally approximated by the learned
dictionary. The plots in the upper left, upper right and bottom right all show the spec-
tra water pixels (selected from a contiguous region) projected onto three spectral bands
(14,29,70). Even in three dimensions, it is clear that the data live on a nonlinear manifold,
and there is clear structure in the variability. The vectors represent the projection onto the
same three bands of five learned dictionary elements. The points representing water pixels
are color coded to indicate which dictionary element has the largest value when inferring
the sparse coefficients, showing that contiguous values on the manifold are coded using the
same dictionary element.

particular vegetation characteristic in this region.

In addition to the spectral matches shown in Figure 29 and the spatial coefficient varia-

tions shown in Figure 31, another important aspect of the learned dictionary is to examine

how it represents the nonlinear variations within a particular material class [136].

For example, Figure 32 shows full spectral signatures for a patch of water off the coast

of Smith Island, as well as spectral bands 14, 29 and 70 (0.6278, 0.8572 and 1.4962 µm)

from three different view angles to show the geometry of these points in 3-D spectral space.5

Despite being one material class (“water”), it is evident even in these few bands that the

5These are the same spectral bands and approximately the same region highlighted in Figure 1 of [136].
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measured spectrum lies on a nonlinear manifold. Superimposed on the 3-D spectral plots

are five of the learned dictionary elements projected onto these same three spectral bands.

The measured spectra are color coded to indicate which of these five learned dictionary

elements are dominant in their sparse decomposition. The contiguity of this color coding

over small manifold regions demonstrates that rather than containing the measured spectra

in a convex hull, the learned dictionaries are essentially forming a local linear approxima-

tion to this manifold. So, despite being a linear data model, the dictionary learns multiple

elements that capture the nonlinear spectral variations by locally approximating the man-

ifold structure in a meaningful way. In our experiments with other endmember extraction

algorithms such as [139], the learned sparse dictionary does appear to produce a represen-

tation that more closely tracks the nonlinear variations in the data points (e.g., produces a

smaller relative MSE between the data and the dictionary elements) compared to a method

restricted to finding a convex cone around the data. A more detailed characterization of

the differences between various linear models at representing nonlinear material variations

would be a valuable direction for future research.

5.3.2 Reconstructing HSI-resolution from MSI-resolution data

As discussed earlier, while the high spectral resolution of HSI is valuable, acquiring data

at this resolution comes at a cost. In terrestrial remote sensing, hyperspectral imagers are

relatively rare instruments, and it would be much more resource efficient to perform most

spectral imaging at MSI-level resolution. Data at this resolution could either be gathered

by actual MSI sensors, or by HSI sensors modified to decrease their spectral resolution

(which could potentially decrease scan times). The question we consider here is whether a

dictionary learned on an HSI training set could be used to accurately infer high resolution

spectra from subsequent data collected at MSI-level spectral resolution.

In this basic paradigm, assume that we start with a learned dictionary that has been

adapted to the specific structure of the desired HSI data. This could arise from earlier

HSI of the scene being imaged, or imaging from other geographic regions with similar
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Figure 33: Reconstructing spectra with HSI resolution from measurements with MSI-level
resolution. (Top) A schematic of the process for simulating low resolution spectral data
and performing recovery. The matrix B characterizes the measurement process (i.e., the
sensitivity function of the sensor), simulating the aggregation of high resolution spectral
information into low resolution spectral bands. (Bottom left) A diagram indicating the sen-
sitivity function for MSI resolution measurements, where 113 HSI bands are collapsed into
8 equally spaced measurement bands over the lowest wavelengths (approximately match-
ing the spectral bands reported by the Worldview II MSI sensor). Note that no information
is measured from the highest wavelength regions. (Bottom right) A diagram indicating the
sensitivity function for coarse HSI measurements, where 113 HSI bands are collapsed into
8 nearly equally spaced measurement bands across the whole HSI spectrum.

environmental features (and therefore similar statistics). For the new data acquired at MSI-

level resolution, we assume for a first approximation that each band is a linear combination

of some group of spectral bands in the underlying true HSI data. Specifically, we model

the MSI-resolution data as

y = Bx + ε = B
M∑

k=1

ψkak + ε, (66)

where y ∈ RL (L < N) is the new coarse resolution data and B can be thought of as an (L×N)

“blurring” matrix that bins the spectral bands of the desired HSI data. While B could be

any matrix describing the sensitivity function of the imager acquiring the MSI-resolution

data, we will consider B that simply sums spectral bands over a contiguous range.

This measurement paradigm fits nicely into the well-known framework of Bayesian in-

ference (or equivalently, linear inverse problems in image processing). Essentially, given

the wealth of information about the statistics of the HSI we would like to obtain, Bayesian
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Table 2: Relative recovery error for HSI spectra from coarse HSI measurements (full spec-
trum). Results are reported for testing data collected on the same day (SD) as the training
data used to learn the dictionary, as well as results for testing data collected on a different
day (DD).

Mean Error Median Error
44 Learned DE (SD) 8.249x10−4 4.911x10−4

44 Learned DE (DD) 7.054x10−3 6.005x10−3

44 Exemplar DE (SD) 6.280x10−3 2.709x10−3

44 Exemplar DE (DD) 1.493x10−2 1.105x10−2

44 Random DE (SD) 4.143x10−1 4.524x10−1

44 Random DE (DD) 3.965x10−1 4.165x10−1

inference allows one to optimally answer the question of what underlying HSI data x is

most likely given the observed MSI-resolution data y. Specifically, given the new model

in (66), the likelihood of the data y given the coefficients {ak} is now the Gaussian distribu-

tion

p(y|{ak}) ∝ e
− 1

2σ2
ε

∥∥∥∥∥∥∥y − B
∑

k

ψkak

∥∥∥∥∥∥∥
2

2

.

We can again use an independent Laplacian prior on the sparse coefficients {ak}, and write

the posterior distribution using exactly the same simplifications as before. The optimal

MAP estimate of the sparse coefficients given the observed data y is therefore given by

optimizing the following objective function with respect to the coefficients:

J̃γ (y, {ak}, {ψk}) =

∥∥∥∥∥∥∥y − B
M∑

k=1

ψkak

∥∥∥∥∥∥∥
2

2

+ γ
∑

k

|ak|. (67)

This optimization program is very similar to (3) (and can be solved by the same software

packages), but incorporates the measurement process described by B into the inference.

Given the estimated sparse coefficients, the HSI vector x is reconstructed according to (4):

x̂ =
∑

k ψk̂ak. The full workflow is shown schematically in Figure 33. We note that many

linear inverse problems are formulated in a similar way depending on the choice of B,

including inpainting missing data such as the application considered by [156].

For proof-of-concept simulations we generated simulated data with MSI-level reso-

lution from pixels that were not used in the training dataset, and perform the inference
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Table 3: Relative recovery error for HSI spectra from MSI measurements (no measure-
ments from highest wavelengths). Results are reported for testing data collected on the
same day (SD) as the training data used to learn the dictionary, as well as results for testing
data collected on a different day (DD).

Mean Error Median Error
44 Learned DE (SD) 1.271x10−2 1.791x10−3

44 Learned DE (DD) 2.456x10−2 1.219x10−2

44 Exemplar DE (SD) 1.132x10−2 5.552x10−3

44 Exemplar DE (DD) 2.225x10−2 2.135x10−2

44 Random DE (SD) 7.845x10−1 8.974x10−1

44 Random DE (DD) 7.775x10−1 9.946x10−1

process described above to estimate the high-resolution spectra from the low-resolution

measurements. In the first set of simulations, the matrix B (illustrated in Figure 33) gen-

erates simulated data with 8 equally spaced bands covering the entire spectral range of the

HSI data. This B is intended to model a hyperspectral imager collecting spectral data with

an order of magnitude less spectral resolution than the original data. We used two testing

datasets in this simulation: the 10,000 pixels from the October 2001 scan of Smith Island

that were withheld from the learning process, and 10,000 randomly selected pixels from

the August 2001 scan of the same geographic region. By using HSI collected on a different

date we can examine the effects of using a dictionary that was learned on data with different

statistics than the data we are trying to reconstruct (due to different vegetation character-

istics in the different seasons and different atmospheric conditions present on the different

days).

We infer the sparse coefficients in the HSI dictionary given the simulated MSI-resolution

data by minimizing the objective function in Equation (67) as described above. For com-

parison purposes and to determine the value of the learning process in the reconstruction,

we repeated this recovery process with a 44-element dictionary of random values (i.e.,

the initialization conditions for the dictionary learning) and with an exemplar dictionary

formed by taking two random spectral signatures from each class in the original labeled

HSI data (for a total of 44 dictionary elements). Figures 34 and 35 show examples of the
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Figure 34: Reconstructing HSI data from simulated coarse HSI measurements using train-
ing and testing data collected on the same date. Plots show original HSI spectrum in blue
(113 bands), simulated coarse HSI spectrum (8 bands), inferred sparse coefficients, and
reconstructed HSI spectrum in green. Examples were selected to illustrate a range of re-
covery performance, from examples of the best recovery on top to examples of the worst
recovery on the bottom.

original HSI, the simulated coarse resolution data, the estimated sparsity coefficients in the

learned dictionary, and the subsequent recovered HSI data for the test datasets collected on

the same date (SD) and a different date (DD) as the training dataset. The set of examples

shown in the figure span the range of the most favorable and least favorable reconstructions.

Table 2 reports the average relative MSE for the reconstructions, calculated as

ei =
‖x̂i − xi‖

2
2

‖xi‖
2
2

. (68)

The aggregate results as well as the specific plotted examples demonstrate that the HSI-

resolution data is recovered with less than 0.09% relative MSE for the SD testing set and

less than 0.71% relative MSE on the DD testing set. While the reconstruction is worse on
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Figure 35: Reconstructing HSI data from simulated coarse HSI measurements using train-
ing and testing data collected on different dates (in different seasons). Plots show origi-
nal HSI spectrum in blue (113 bands), simulated coarse HSI spectrum (8 bands), inferred
sparse coefficients, and reconstructed HSI spectrum in green. Examples were selected to
illustrate a range of recovery performance, from examples of the best recovery on top to
examples of the worst recovery on the bottom.

the DD dataset because of the mismatch in the training and testing statistics, the recon-

structions are still very good overall and often capture even fine detail in the HSI spectra.

Also note that the learned dictionary is performing significantly better than both the exem-

plar dictionary (which was chosen using oracle knowledge of the classes to ensure good

coverage of the various materials) and the random dictionary (indicating the value of the

learning process).

In the second set of simulations, the matrix B (illustrated in Figure 33) generates sim-

ulated data with 8 equally spaced bands excluding the highest wavelength regions. This B

is intended to model a multispectral imager, and we selected the bands to approximately

match the reported bands of the WorldView II multispectral sensor. We used the same
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Figure 36: Reconstructing HSI data from simulated MSI measurements using training and
testing data collected on the same date. Plots show original HSI spectrum in blue (113
bands), simulated coarse HSI spectrum (8 bands), inferred sparse coefficients, and recon-
structed HSI spectrum in green. Examples were selected to illustrate a range of recovery
performance, from examples of the best recovery on top to examples of the worst recovery
on the bottom.

SD and DD testing datasets in the simulation, with Figures 36 and 37 showing example

reconstructions and Table 3 reporting average reconstruction results. While the overall per-

formance does suffer compared to the previous experiment when the whole spectral range

was measured, the HSI spectra are again recovered with low error overall: less than 1.28%

for the SD dataset, and less than 2.47% error for the DD dataset. As expected from the

previous simulation, the lower wavelengths can be reconstructed very well. As might be

expected because no data was collected in the higher wavelength range, the recovery in

these spectral bands can suffer from higher errors even despite getting the general shape

correct. Table 3 also shows that overall, both the learned and exemplar dictionaries have

approximately the same mean relative error in this setting. However, the distribution of the
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relative errors over the test pixels is more tightly peaked about the origin for the learned

dictionary, with a median relative error approximately a third of that for the exemplar dic-

tionary. This indicates that while most test pixels were recovered better with the learned

dictionary, there were a minority of pixels that suffered more egregious errors than seen

with the exemplar dictionary.

Though the results of the high-resolution reconstructions given above are very encour-

aging, as with any engineering application it is important to characterize what causes vari-

ations in the performance. Figure 38 shows a more detailed analysis of the errors for the

worst performing case in the above simulations: using simulated MSI data with a dictionary

that was learned on data taken on a different date from the test data. This analysis quan-

tifies the observation that the better the model is at fitting the data, the better we expect

the resulting algorithm to perform. Specifically, we group the pixels in the test dataset into

three groups based on the (normalized) sparsity of their resulting inferred coefficients (i.e.,

how well the data point is fit by a sparsity model) measured by ‖a‖1/‖a‖2. The clear trend

is that the performance in this task is strongly dependent on how amenable that pixel is to

admitting a sparse decomposition. Fortunately, only a small fraction of the data (less than

9%) falls into the worst performing category. Currently we have not found any quantitative

correlations between material classes and model fit, but anecdotally we observe that classes

such as pine trees and water appear prevalent among the pixels with the lowest rMSE in the

reconstruction task, and classes such as mixed vegetation and mud are more prevalent in

the outliers that have higher rMSE. Of course, an interesting topic of future study would be

to understand more precisely how to modify the model to improve the fit with the current

outliers (and subsequently the performance on the current task).

We note that there are many other linear inverse problems that may be of interest, in-

cluding other methods for reducing data acquisition resources. For example, in the field of

compressed sensing [56], a sparsity model is also assumed and data is measured by using

115



Figure 37: Reconstructing HSI data from simulated MSI measurements using training and
testing data collected on different dates (in different seasons). Plots show original HSI
spectrum in blue (113 bands), simulated coarse HSI spectrum (8 bands), inferred sparse
coefficients, and reconstructed HSI spectrum in green. Examples were selected to illustrate
a range of recovery performance, from examples of the best recovery on top to examples
of the worst recovery on the bottom.

a coded aperture that forms each measurement by taking a (generally random) linear com-

bination of the input data. In this case, the original data is recovered by solving the same

optimization problem as in (67). Indeed, similar acquisition strategies have already been

implemented in novel HSI sensors [171, 172]. Looking carefully, the only difference be-

tween the compressed sensing strategy and the approach presented above is in the choice of

B. The “blurring” choice of B in our experiments should actually result in a more difficult

reconstruction problem than when B is chosen to be a random matrix because the introduc-

tion of randomness will tend to improve the conditioning of the acquisition operator. We

have performed similar simulations to the ones above (not shown) using B drawn randomly

and independently from a Bernoulli distribution, and the results indicate that recovery with
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Figure 38: The reconstruction errors when inferring HSI-resolution data from simulated
MSI measurements are closely related to the normalized sparsity ‖a‖1/‖a‖2 of the coef-
ficients. The mean and median errors are shown for 3 categories measuring the sparsity
model fit: High Sparsity represents an excellent model fit (normalized sparsity is between
1 and 1.92), Moderate Sparsity represents a good model fit (normalized sparsity is between
1.92 and 2.3), and Low Sparsity represents only a fair model fit (normalized sparsity is
above 2.3). The data shown is for the reconstructed pixels in the worst performing sce-
nario in our simulations (test pixels from the August 2001 dataset and dictionaries learned
from the October 2001 dataset), and the percentage of pixels falling into each category
are displayed below the category labels. The error bars of the mean rMSE represent the
standard deviation and the error bars on the median rMSE represent the 25th and 75th

percentiles. The differences between these two indicates that the reconstruction errors are
tightly packed for the data points with low normalized sparsity with a few outliers, and
spread out for points with higher normalized sparsity.

similar accuracy is also possible when using this learned dictionary.

5.3.3 Supervised classification

Clearly one of the most important HSI applications is classifying the dominant materials

present in a pixel [160, 161, 173]. Because sparse coding is a highly nonlinear operation

that appears to capture different spectral features by using different dictionary elements

(and not just changing the coefficient values on those elements), we suspect that perform-

ing classification on the sparse coefficients can improve HSI classification performance

compared to classification on the raw data (or other dimensionality reduced representations

such as PCA). Intuition for this approach comes from the well-known idea in machine
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learning that expanding a data representation with a highly nonlinear kernel can serve to

separate the data classes and make classification easier (especially with a simple linear clas-

sifier). Indeed, several researchers have reported that sparse coding in highly overcomplete

learned dictionaries (which is a highly nonlinear mapping) does improve classification per-

formance [174, 175].

To gain further intuition, consider a very simple classifier based on finding the max-

imum sparse coefficient for each pixel in the scene. This sparse decomposition with one

coefficient can be thought of as a type of vector quantization (VQ) [176], and the coeffi-

cient index can be used as a rough determination of the class of the pixel. Figure 39 shows

a segment of the Smith Island dataset, where each pixel is independently unmixed and

colored according to the index of the maximum sparse coefficient representing that pixel.6

Relevant environmental features such as tree lines and sandbanks are clearly distinct, in-

dicating a correlation between the most active dictionary element and the material in the

image. Additionally, variations within a class can be captured by different coefficients. For

example, different water characteristics are clearly visible, including depth changes due to

sandbars (the orange stripes in the left side of the image) and areas with submerged nets

(the red stripes offshore by the sandbanks).

While the simple demonstration in Figure 39 is an encouraging illustration, this ap-

proach clearly going to underperform compared to a classification scheme that includes

information from all of the coefficients simultaneously. To demonstrate the utility of sparse

coefficient representations using learned dictionaries for classification, we performed sev-

eral classification tests on the Smith Island dataset using Support Vector Machines (SVMs)

and verifying the results with ground truth labels. SVMs [177] are a widely used super-

vised learning technique capable of performing multi-class classification. Specifically, we

use the C-SVM algorithm (implemented in the freely available libsvm package [178])

with a linear kernel.
6The colors in Figure 39 are assigned to give as much visual distinction as possible between elements that

are physically adjacent, but have no other meaning.
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Figure 39: Vector Quantization classification of the scene. The color in each pixel indicates
which dictionary element had the largest coefficient value in the sparse code for that pixel.
Distinct shapes consistent with known material structures from the ground truth data (e.g.,
sand bars and tree lines) can be easily seen.

There are two potential factors to consider when performing supervised classification:

overall performance (i.e., classification error) and classifier complexity. While classifica-

tion error on a test dataset is an obvious performance metric of interest, classifier com-

plexity is also an important aspect to consider. For a fixed performance rate, less complex

classifiers take less computation time (which is important in large datasets), and are typi-

cally less prone to over-fitting during the training (which may lead to better generalization

beyond the training data). With linear kernels, the only parameter of the C-SVM algorithm

is the cost variable C which controls the complexity of the classifier by changing the cost

of the wrongly classified points in the training process. We sweep C over a range of values

from 1 to 10000 and observe the probability of error and classification time using the raw

HSI data, reduced dimensionality data using PCA, and sparse coefficient representations

for the learned, exemplar and random dictionaries discussed earlier. For each value of C,

we performed 20 trials where each trial consists of selecting a subset of 17 pixels from the
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Figure 40: Classification on 22 material classes in the Smith Island dataset. (Left) Average
classification error plotted as a function of average classification time (as a proxy for classi-
fier complexity) as the complexity parameter of the SVM is varied. Using coefficients from
a sparse code in a learned dictionary as input to the SVM performs essentially as well as
using the raw data, but with a classifier 30% less complex. (Right) Average classification
error as a function of the training dataset size for each class. The power of the lower com-
plexity classifier is demonstrated in the ability to generalize better, with sparse coefficients
in the learned dictionary clearly showing better performance for the very small training
sets.

labeled data for each of the 22 classes to train a new SVM classifier and then testing the

classification performance on the remaining labeled data withheld from the SVM training.7

We average over all trials and all 22 classes to find the average classification error and aver-

age classification time (as a proxy for classifier complexity). Figure 40 shows the changes

in classification time and probability of classification error.

There are three interesting things to note about the results in Figure 40. First, while

the raw data achieved the lowest overall error for the range of C tested (P(error)=0.0721),

7We choose a training set size of 17 because we want the same amount of training data per class, and the
smallest class has 18 labeled samples (leaving one testing pixel for the cross-validation). Average classifica-
tion performance can be improved significantly on this dataset when larger training samples are used (but at
the expense of consistent training set sizes per class).
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the sparse coefficients in the learned dictionary are nearly as good (P(error)=0.0736) us-

ing a much simpler classifier that operates ∼ 30% faster than the SVM on the raw data.8

Second, while PCA reduces the classification time farther then the other approaches due to

its extremely low dimensionality (4 principle components), it performs significantly worse

than the raw data or the sparse coefficients. Third, using sparse coefficients in the random

dictionary surprisingly performs better (P(error)=0.0838) than sparse coefficients in the

exemplar dictionary (P(error)=0.1262), despite having no apparent relevance to material

spectra in the scene. While this is counter-intuitive, other recent results have shown that

projection onto random dictionaries can be a way to preserve information useful for classi-

fication [174, 179], and it is likely that these dictionaries cover the signal space better than

random pixels drawn from the labeled classes to form the exemplar dictionaries. Despite

this, the coefficients of the learned dictionary do perform better than the random dictionary,

demonstrating the value of the learning process. Finally, we should note that while we only

display average classification errors, there is a wide variety in the per-class classification

errors classes (i.e., some classes are inherently very challenging to distinguish because of

their similar spectral features [136]). In our observations (not plotted), the relative dif-

ficulty of these classes in the classification task is roughly the same in the different data

representations.

As mentioned earlier, one advantage of using classifiers with less complexity is that

they may generalize better from the training data, especially when the training dataset is

very small. We test the generalization ability of the SVM classification approach described

above by repeating the experiment with variable sizes for the training dataset, in the extreme

case using only one training pixel per class. We performed and evaluated this simulation

8We note that in other simulations (not shown), the best classification performance of the SVN does not
improve when using a nonlinear kernel such as a radial basis function (though the complexity obviously
increases compared to the linear kernel). This indicates that linear decision boundaries are nearly optimal
for this particular dataset, and little advantage is gained from a nonlinear mapping of the decision boundary.
While in general we would hope to see lower possible classification error when using sparse coefficients, it
appears that nonlinear mappings simply do not add much value to the decision boundaries for this particular
dataset.
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in largely the same manner as described above, fixing C = 10, 000 to achieve the lowest

classification error and conservatively using 50 trials (i.e., random selections of training

data for calculating a new SVM) to mitigate the increased result sensitivity due to the low

training set size. Figure 40 plots the results, showing that the sparse coefficients in the

learned dictionary do in fact generalize better than the other methods, outperforming the

other data representations for very small training set sizes (less than 12 training pixels from

the total ground truth data).

5.4 Re-weighted `1 Methods for Spectral Super-resolution

In previous sections we have demonstrated the applicability of sparsity-based methods in

spectral super-resolution for HSI [20]. Specifically, by learning a dictionary of spectral

signatures that sparsely decompose the spectral response in each pixel, we learn an approx-

imation to the data manifold that captures rich higher-order statistical structure in HSI data.

This model can then be used to perform spectral super-resolution from MSI-level data to

HSI-level resolution with very high accuracy [20]. In this section we improve on these pre-

vious results by proposing a reweighted `1 spatial filtering algorithm to incorporate spatial

regularity to improve spectral super-resolution. This approach closely follows recent work

in dynamic filtering where temporal correlations have been used to improve recovery of

time-varying signals in a reweighted `1 framework [10]. The main contribution is to show

that more advanced recovery algorithms can produce significant improvements in the spec-

tral super-resolution results for scenes with significant spatial regularity, with most of the

improvement coming from pixels that are not well-modeled by a basic sparsity model.

As a first step to improving super-resolution performance, we generalize the sparsity

model to allow the SNR for each coefficient to be an unknown parameter that is estimated as

part of the inference process. In BPDN (equation (3)), the tradeoff parameter γ depends on

the SNR (the ratio of the variance in the sparse coefficients to the noise variance [20]) and

is the same for each coefficient. In contrast, the reweighted `1 (RWL1) framework [64,180]
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allows each coefficient ai, j,k its own parameter γi, j,k, where a and γ are inferred concurrently.

Specifically, RWL1 is equivalent to using the iterative Expectation-Maximization (EM) al-

gorithm to find a joint estimate of a and γ assuming that γ has an i.i.d. Gamma hyperprior

distribution. While more technical details of the model and algorithm can be found in [64],

the RWL1 algorithm applied to the super-resolution problem can be stated succinctly as

alternating a weighted BPDN optimization and an analytic update to the weights until con-

vergence:

ân
i, j = arg min

a

∥∥∥xi, j − BΨa
∥∥∥2

2
+ γ0

∑
k

γ̂n−1
i, j,kak,

γ̂n
i, j,k =

α∣∣∣∣̂an
i, j,k

∣∣∣∣ + β
,

where α, β and γ0 are parameters related to the hyperprior on γ and n is the iteration number.

One way to intuitively understand the RWL1 algorithm is to understand the effect each

γi, j,k has on the weighted `1 optimization problem. Lowering a given γi, j,k value makes it

easier for the corresponding coefficient to be activated in the next BPDN iteration. By it-

eratively recalculating the weights, coefficients that are activated in the initial optimization

become more easily activated in future iterations (via smaller weights) and unused coef-

ficients are more difficult to activate in future iterations (via higher weights). Additional

literature has linked RWL1 to approximating solutions to `p regularized least squares prob-

lems for p < 1 [181] and asymptotic theoretical guarantees in other inverse problems (e.g.,

compressed sensing) [127].

5.4.1 Reweighted `1 Spatial Filtering (RWL1-SF)

While spectral statistics are informative enough to perform super-resolution in many cases,

spatial regularity can often be leveraged in some types of scenes to improve performance

(especially when the sparsity model is not a good fit for a given pixel). Spatial regular-

ity was also used recently in the context of material classification, indicating its utility

in HSI [182]. Therefore, as a second step to improving super-resolution performance,
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we further generalize the RWL1 model to incorporate spatial information into the infer-

ence process. Specifically, in our proposed reweighted `1 spatial filtering (RWL1-SF), we

update the weights for a given coefficient using a combination of information from the

previous iteration on neighboring pixels (similar to the reweighted `1 dynamic filtering al-

gorithm developed in [10]). In this way, even weak evidence from individual pixels in

a local neighborhood can be aggregated to improve the inference in cases that would be

particularly difficult when just considering individual pixels independently.

To be precise, consider the matrix of all coefficients for the kth dictionary element,

[Ak]i, j = ai, j,k. In each iteration of RWL1-SF, the weight for the kth coefficient at the pixel

in row i and column j is set by a weighted pooling of the previous estimates for the kth

coefficient at the neighboring pixels. While there are many potential ways to implement

this spatial aggregation and weight updating, in this paper we use a simple linear weighted

average:

γi, j,k =
α∣∣∣[K ∗ Ak]i, j

∣∣∣ + β

where the term [K ∗ Ak]i, j represents the {i, j}th term of the kernel K ∈ RL×P convolved with

the spatial field of previous estimates for the kth coefficient. Note that while this spatial

regularization can accumulate weak evidence spread over several neighboring pixels to

perform inference, the model does not force spatial homogeneity so that single-pixel (or

sub-pixel) objects are missed. In other words, rather than low-pass filtering the estimates

of interest (the ai, j,k variables), the spatial averaging is applied to a second order variable

(γi, j,k) that simply biases a sparse inference process. In fact, though an explicit test with

single-pixel anomalies is beyond the scope of this letter, previous work using this approach

for dynamic filtering [10] showed that this method of stochastic filtering is particularly

robust to model mismatch.

The kernel K incorporates the knowledge that dependencies should have a limited spa-

tial extent and will be modulated depending on the distance between the pixels, as de-

picted in Figure 41. The value in the {l, p}th entry of K indicates the amount which the
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Pixel at Kernel Centered at

Figure 41: The kernel K determines the influence from neighboring pixels on coefficient
inference at a given location. When the L × P kernel is centered on the {i, j}th pixel it
describes the weighted summation of neighboring coefficient estimates that influence the
next coefficient estimate in that pixel.

{i + l − L/2, j + p − P/2}th element of Ak influences the {i, j}th element of Ak in the next

iteration of the inference. Typically, the center (0,0) value of K should be unity and the

kernel values should taper off towards the edges to represent the decaying dependence with

distance. In this work we use the same 5 × 5 pixel Gaussian kernel shape for all parts of

the estimation, but in general each coefficient or pixel location could have a different ker-

nel if there was advanced knowledge of the spatial and spectral dependencies in the data.

Indeed, in scenes with very different statistics than the HSI used as an example here (e.g.,

urban scenes), the spatial regularization process may benefit from a specialized treatment

of edges in the image.

5.4.2 Performance Comparisons

We test the performance of RWL1 and RWL1-SF against previous results on segments of

HSI from Smith Island, VA. These two HSI images were taken by the PROBE2 sensor on

October 18, 2001 and August 22, 2001 and have 113 usable spectral bands spanning the

0.44-2.486µm range (after removal of water absorption bands and applying atmospheric

correction to estimate reflectance) and a spatial resolution of approximately 4.5m9. We

simulate MSI measurements by creating a matrix B to represent a response function that

entirely eliminated measurements in higher wavelength regions and pooled the remaining

HSI measurements into eight spectral bands shown in Figure 33 (each row of B has ones

over bands included and zeros otherwise). We learn a 44-element dictionary Ψ on the

9More details about this dataset can be found in [160].
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Table 4: Super-resolution from simulated MSI measurements in terms of relative MSE and
spectral angle (SA).

October 18 (Same Day)
rMSE SA (degrees)

Mean Median Mean Median
BPDN 2.33% 0.35% 5.838◦ 3.205◦

RWL1 0.85% 0.24% 3.817◦ 2.683◦

RWL1-SF 0.68% 0.23% 3.447◦ 2.575◦

August 11 (Different Day)
rMSE SA (degrees)

Mean Median Mean Median
BPDN 6.25% 6.25% 11.812◦ 13.587◦

RWL1 3.34% 3.02% 8.824◦ 9.439◦

RWL1-SF 2.45% 1.89% 7.492◦ 7.382◦

October 18, 2001 image as in [20], and test recovery on both images. Of particular note is

that the two images were taken several months apart, and the statistical changes with the

seasonal variations made the recovery of the August image the most challenging test case

in prior work [20]. We estimate the original 113 bands from the 8 simulated MSI bands for

both images via BPDN, RWL1 and RWL1-SF.

For testing purposes we recover a contiguous 68x288 pixel region (omitting 11 pix-

els with severe sensor errors) from the Smith Island dataset, shown in Figure 42. This

region yielded particularly poor performance when using BPDN for super-resolution in

prior work [20]. As shown in Table 4, the previous mean rMSE was 6.3% and the median

rMSE was 3.3% for this region on the August image, which is considerably worse than the

performance seen on sets of pixels randomly selected throughout the entire image (nearly

triple the 2.456% mean and an order of magnitude higher than the 0.1219% median rMSE

observed on the full dataset [20]). As stated in [20], BPDN super-resolution resulted in the

highest error in portions of the scene that are expected to have more heterogeneous com-

positions, therefore making the basic sparsity model a poorer fit than it is in more homoge-

neous regions. To illustrate this, Figure 42 shows the distribution of BPDN reconstruction

errors (measured in spectral angle) for the same day dataset, highlighting the difference in

performance in distinct regions of heterogeneous materials on the ground. Unsurprisingly,
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the higher errors are also concentrated in the HSI spectral bands that are not measured in

the MSI data. Previous work [20] shows that if the same number of measurements are

taken over the whole HSI spectral range (corresponding to an HSI sensor operating in a

lower spectral resolution mode for higher temporal resolution), this ambiguity is reduced

and performance increases significantly.

Table 4 provides mean and median recovery results, illustrating significant performance

improvements when using RWL1 instead of BPDN, and further substantial improvements

when using RWL1-SF. Figure 43 illustrates two example pixels that are representative of

the easiest and most challenging performance for the October image. For the best case, the

spectra are nearly indistinguishable from the true HSI. For the worst case reconstruction we

note that the errors are clearly concentrated in the unmeasured (high wavelength) spectral

ranges and that the proposed algorithms make substantial improvements in the recovery

over the previous results using BPDN. Figure 44 illustrates that the overall statistics of the

data in the August image are also better preserved when using RWL1-SF instead of BPDN,

with first four principal components of the reconstructed data (accounting for 99.99% of the

energy in the image segment) much more closely approximating the principal components

of the HSI when using RWL1-SF.

5.5 Applications to Oceanic Imagery

While previous sections relied on creating simulated MSI measurements from HSI images

to test our sparsity-based super resolution techniques, we present here results using geo-

graphically co-located images of oceanic water-color. Specifically, we take two images

(one taken with the 89-channel HICO sensor and one taken with the 5-channel VIIRS sen-

sor), and resolve the VIIRS spectra to HICO-resolution spectra.

To perform our super-resolution we first learn a dictionary of material spectra via the

techniques outlined in [20]. Next we estimate the blurring operator by comparing the
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Figure 42: Left: The RGB image of the October region being tested and the heat maps
depicting the spectral angle errors throughout the region using BPDN, RWL1 and RWL1-
SF. The largest improvements over BPDN occur along the shoreline where the material
mixture is very heterogeneous (e.g., water, sand, vegetation) and the sparsity model alone is
insufficient. Right: The cumulative distribution function (CDF) of the spectral angle errors.
Note that the BPDN CDF has a heavy tail, indicating many pixels with poor performance.
RWL1 improves performance significantly. RWL1-SF uses a model of spatial dependence
to further reduce the outliers and improve performance, with 90% of the pixels having
spectral angle errors less than 6.9536 degrees.

relative signal-to-noise ratios for both the VIIRS and HICO sensors over their respec-

tive spectral ranges, which allows us to super-resolve the VIIRS data using our sparsity-

based methodology. We validate our super-resolved VIIRS spectra by comparing to high-

resolution measurements from the HICO sensor. Figure 46 shows some example recovered

spectra. In particular, the most accurate, least accurate and median (typical) recovery, as

based on the spectral angle between the recovered spectra and the HICO spectra at the same

geographical coordinates, are all shown. With a median spectral angle of 7.43 degrees, we

note that the recovered spectra accurately represent the HICO spectra. Figure 47 shows a

distribution of errors, and emphasizes that the majority of errors are small with a few out-

liers. Additionally, we study where and how the super-resolution does not match the HICO

data. For example, as depicted in Figure 48, the best matches occurred over water pixels,

while the worst matches occurred along the shore. One potential source of this shoreline

discrepancy is that along the shore there are typically more materials present, indicating a

model mismatch with the sparsity assumption. Another potential source of the mismatch is

that although the VIIRS and HICO images were acquired at the same geographical location

and at the same date, the images were taken approximately 8 hours apart, indicating that
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Figure 43: Two example spectra super-resolved from MSI-level data. Top plot is repre-
sentative of best-case performance and bottom plot is representative of worst-case perfor-
mance for previous approaches [20]. Note that errors are highly concentrated in unmea-
sured bands.

tidal changes may have actually changed the shoreline composition from water spectra to

land spectra.

Overall, our results indicate that sparsity-based spectral super-resolution techniques can

greatly extend the utility of legacy MSI and HSI instruments via post-processing. Addition-

ally, accurate super-resolution could impact future sensor designs by creating options for

lighter sensors with reduced transmission bandwidth at the cost of additional computation

at base stations.

5.6 Discussion

In this chapter we have shown that a sparse coding model and the dictionary learning ap-

proach described in [57] (with minor modifications) can yield valuable representations of

HSI data using no a priori information about the dataset. The learned dictionary elements

resemble many of the spectra corresponding to known material properties in the scene, and

the sparse decomposition of the HSI data using this dictionary shows that the variations in

the surface properties are often sensibly represented. In particular, in contrast with a typ-

ical endmember approach that seeks to contain the HSI data in a convex hull, this learned
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Figure 44: The first four principal components the recovered HSI spectra compared to the
principal components of the original HSI data.

dictionary captures nonlinear material variations directly by forming a locally linear ap-

proximation to the manifolds observed within a material class.

The learned dictionaries capture many high-order statistics of the data they are learned

from, and this representation showes advantages in applications relevant for remote sensing

scenarios. For example, when coupled with a linear inverse problem, this learned dictionary

demonstrated that HSI-resolution spectra could be recovered with remarkable fidelity from

(simulated) spectra collected with just MSI-level resolution. This performance is only pos-

sible because the learned dictionaries are capable of effectively capturing the high level of

statistical dependencies inherent in HSI data. Furthermore, encouraging results show that

the performance on this task is still very good when there is some mismatch in the statistics

because the training and testing data was collected at different times (i.e., a different sea-

son of the year, with different characteristics in the vegetation and the atmosphere). While
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Figure 45: Blurring matrix which transforms HICO spectra into VIIRS spectra. Matrix
elements were determined by comparing each sensor’s sensitivity function over different
wavelength bands.

this reconstruction problem was intended to mimic a realistic and useful data acquisition

scenario, we note that this linear inverse problem framework captures many problems of

interest (including other acquisition models such as those in compressed sensing [56]).

While initial tests focused on simulated MSI data only, we have also been able to test

our techniques on a second dataset that includes co-located HSI and MSI data, allowing

us to verify the utility of learned dictionaries for spectral super-resolution. Our analysis

concludes that the majority of MSI pixels can accurately be interpolated to HSI-level res-

olutions, a number of outlier errors can still occur. The geographical distribution of these

error, however, lead us to believe that these outlier errors are likely the result of tidal effects,

or changes in the scene in the hours between when the HSI and MSI images were taken,

although further tests on other co-located images will be required to verify this conjecture.

We note that while the approach using BPDN achieved very good performance for

spectral super-resolution in many cases, using enhanced models can substantial improve

recovery in the most challenging test cases. The RWL1-SF algorithm leverages both a

more advanced sparsity models in each pixel, as well as spatial regularity between pixels.

This increased model structure improves super-resolution results significantly, especially

in the pixels that were outliers in previous results due to their poor super-resolution perfor-

mance [20]. Specifically, using additional intra-pixel structure in RWL1 yielded a 35.62%

and 16.29% improvement in the mean and median SA, respectively. Incorporating spatial
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Figure 46: Examples of spectral super-resolution of a VIIRS image taken around the Acqua
Alta Oceanographic Tower (AAOT) near Venice, Italy on February 11, 2012. In each figure
the black dots represent the five VIIRS measurements, the solid blue lines represent the
HICO spectrum captured near that location, and the dashed red line represents the super-
resolved VIIRS spectrum. Shown are examples of the best reconstruction (top left) the
worst reconstruction (top right), bad reconstruction (bottom left) and median reconstruction
(bottom right). As the median reconstruction was fairly accurate, we note that the majority
of the super-resolved spectra (in particular water-color pixels) are recovered well.

dependencies in RWL1-SF boosted these results further, giving a total of 40.96% improve-

ment in the mean SA and 19.66% improvement in median SA. In fact, 90% of the recovered

pixels in the current dataset had a spectral angle error less than 7 degrees, which is well

within the class spectral width of some classifiers currently in use (e.g., 7 degrees to 30

degree in [183]). Again, we note that the presented data includes some of the most chal-

lenging problem aspects (i.e., difficult pixels and MSI measurements with no data from

some HSI bands).

Finally, we showed that the sparse coefficients from this learned dictionary can form

a useful representation for performing classification compared to the raw data, yielding

classifiers with less complexity that generalize better when the training dataset size is very

small. From these results we can conclude that the sparse coding model is a potentially

valuable approach to analyzing HSI data, and the learned dictionaries for this model form a
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Figure 47: The HICO level super-resolution matches the true HICO spectra. Left: the his-
togram of rMSE errors, comparing the super-resolved spectra at each geographical location
to the HICO spectra at the same location. Since the VIIRs spectra are at a lower spatial res-
olution than the HICO spectra, we average 3x3 blocks of HICO spectra around the given
location and compare the average spectrum to the recovered spectrum.

meaningful representation of the high-order statistics in the HSI data. While this approach

shares the same linear model as the common endmember approach for spectral unmix-

ing, the different philosophy of representing the data variations directly appears to have

value both in the general understanding of the data and in specific applications. We believe

that this exploration (along with the other related results in [149, 151, 156, 170]) demon-

strates that more extensive exploration of the utility of this model in HSI is warranted,

and improvements in many specific applications are likely. In the future, in addition to

more thorough application of these ideas to other datasets, it will be valuable to explore the

utility of including increasingly complex models in in the learning process. For example,

there may be potential benefits to learning much larger dictionaries than those shown in

this work, learning joint spectral-spatial dictionaries, learning dictionaries customized for

specific applications (such as in [170]), and learning dictionaries that attempt to explic-

itly capture features such as correlations between pixels and nonlinear variations within

material classes.
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Figure 48: Geographically, the largest errors clustered along shoreline. Right: the RGB
color image of the Venice location. Left: the heat map of rMSE errors distributed geo-
graphically. Given that the HICO and VIIRS images were taken 8 hours apart, the high
errors by the shore-line could indicate errors due to tidal effects.
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CHAPTER VI

NETWORK ARCHITECTURES FOR ANALOG OPTIMIZATION1

In the final piece of the signal acquisition puzzle we seek efficient estimation implemen-

tations. Work along this route has mainly progressed in two directions: digital algorithms

which utilize either convex optimization routines or belief propagation, and analog algo-

rithms which can be built on dedicated hardware.

In the digital domain, many efficient implementations of convex optimization algo-

rithms have been specifically tailored to sparse signal estimation. Several interior point

methods have been proposed in this area, including `1-magic [184] and l1-ls [34]. Alter-

natively, the GPSR algorithm [185] employs a gradient projection approach to solving the

BPDN problem. Homotopy (or continuation) methods [186–188] take an entirely different

approach, solving a series of optimization problems for a decreasing sequence of tradeoff

parameters γ in Equation (3) and utilizing efficient updates to find these sequential solu-

tions. To speed up the recovery process for very large signals, additional work has sought

to leverage parallel hardware configurations such as multicore [189] and GPU architec-

tures [190]. While achieving improvements in solution times, neither of these architectures

provide favorable scaling properties and it is unclear if they could provide real-time solu-

tions for significantly sized problems. Additionally, neither architecture is appropriate for

low-power, embedded computing applications.

Among digital algorithms, the family of iterative thresholding (ITH) methods [124,

191–194] takes a slightly different approach and is closest to dynamical analog systems.

These methods iteratively perform gradient-type steps to minimize the cost function (3)

1This chapter is in collaboration with Dr. Pierre Garrigues (Section 6.2). ASC, PG, and CJR have con-
tributed equally to this work. Specifically, CJR and PG described the initial problem formulation and derived
some of the thresholding functions and ASC derived other thresholding functions and ran significant simula-
tions. More details on this work can be found in [26, 27, 29]
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and apply a thresholding function to enforce the sparsity constraints. One member of the

ITH family that specifically solves the BPDN problem of Equation 3 is the iterative soft-

thresholding algorithm (ISTA). ISTA is essentially a proximal gradient algorithm [195],

however for BPDN-type problems, the proximal projection reduces to a computationally

cheap soft thresholding operation. Specifically, ISTA alternates between updating a resid-

ual of the sparse coefficient vector a using the `2 norm and soft thresholding the coefficients

to enforce sparsity. This optimization program can be written as the following iterative pro-

cedure over an algorithmic time l,

ul+1 = âl
n + ηΨTΦT

(
y −ΦΨâl

)
âl+1 = Tγ(ul+1), (69)

where u is the un-thresholded version of the signal that gets updated by the error residual

at each algorithmic time-step l, and η is the algorithm’s step size. Additionally, approaches

based on linearized Bregman iterations have been shown to have update steps that have a

similar form [154].

In this proposal we are principally concerned with analog dynamical systems that can

solve sparsity-inducing optimization problems. Analog signal processing is of particular

interest here since analog systems can run orders of magnitude faster and in low-power con-

ditions [27]. The most prevalent analog algorithm which has been devised for sparse signal

estimation is the locally competitive algorithm (LCA) [35]. This system was designed as

a Hopfield-type network which updates a series of node values u ∈ RN2 according to a

continuous-time dynamical equation:

u̇t = −
1
τ

(
ut +ΨTΦT y − (ΨTΦTΦΨt − I)at

)
, (70)

where τ is the system’s time constant and the sparse representation a is related to the node

values by a non-linear thresholding function:

a(t) = Tγ(u(t)), (71)
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where the parameter γ is dependent on the cost function. The estimate of the sparse rep-

resentation is then â = limt→∞ a(t). In the case of the BPDN cost of Equation (3), Tγ is

the well-known soft thresholding function. Related work has shown various properties of

this system (i.e., global convergence given certain conditions on Tγ(·) [196] and hardware

implementations [27]). The majority of this work, however, focuses on specific cost func-

tions – in particular the `1 cost. Showing that other sparsity-inducing cost functions could

be likewise implemented in an analog architecture could allow those estimators to also be

used in low-power, real-time applications.

6.0.1 Sparse Coding

In the sparse coding problem, we use probabilistic inference to find the smallest number of

causes for an observed signal under a linear generative model

x = Φa + ε, (72)

where x ∈ RM is the observed signal, a ∈ RN is the coefficient vector, Φ ∈ RM×N is the

dictionary of causes, and ε is Gaussian noise. The coefficient vector is said to be sparse

as we seek a solution with relatively few non-zero entries. The coefficients a are generally

inferred via MAP estimation, which results in solving a non-linear optimization problem

min
a

E =
1
2
||x − Φa||22 + λC̃ (a) , (73)

where C̃ (·) is a cost function penalizing a based on its fit with the signal model, and λ is

a parameter denoting the relative tradeoff between the data fidelity term (i.e., MSE, which

arises from the log likelihood of the Gaussian noise) and the cost function. The cost func-

tion is the non-linear sparsity-inducing regularization term, corresponding to the log prior

of the data model. More details about the formulation of this problem in the Bayesian

inference framework can be found in [57]. Basic signal models frequently assume inde-

pendence among the elements of a, resulting in a cost function that separates into a sum of

individual costs
(
i.e., C̃ (a) =

∑
k C (ak)

)
. One common example is the `p norm, defined as

C̃ (a) = ‖a‖p
p =

(∑
i ap

i

)
.
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6.0.2 Dynamical systems for `1 minimization

As mentioned above, recent work in computational neuroscience has shown that the LCA

dynamical system provably solves the optimization programs in (73) and are efficient for

solving the non-smooth problems of interest in sparse approximation. The LCA [35] ar-

chitecture is comprised of a network of analog nodes being driven by the signal to be

approximated. Each node competes with neighboring nodes for a chance to represent the

signal, and the steady-state response represents the solution to the optimization problem.

The LCA is a specific type of Hopfield neural network, which have a long history of

being used to solve optimization problems [197]. The LCA is a neurally plausible archi-

tecture, consisting of a network of parallel nodes that use computational primitives that

are well-matched to individual neuron models. In particular, each node consists of a leaky

integrator and a non-linear thresholding function, and it is driven by both feedforward and

lateral (inhibitory and excitatory) recurrent connections. This architecture has been im-

plemented in neuromorphic hardware, both as a purely analog system [27] and by using

integrate and fire spiking neurons for each node [198]. We also note that other types of net-

work structures have also been proposed recently to approximately solve specific versions

of the sparse approximation problem [199–202].

Specifically, the kth node of the LCA is associated with φk, the kth column of Φ. Without

loss of generality, we assume each column has unit norm. This node is described at a given

time t by an internal state variable uk(t). The coefficients a are related to the internal states

u via an activation (thresholding) function a(t) = T̃λ (u(t)) that is parametrized by λ. In

the important special case when the cost function is separable, the output of each node

k can be calculated independently of all other nodes by a pointwise activation function

ak(t) = Tλ (uk(t)). Individual nodes are leaky integrators driven by an input proportional

to 〈φk, x〉, and competition between nodes occurs via lateral connections that allow highly
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active nodes to suppress nodes with less activity. The dynamics for node k are given by:

u̇k(t) =
1
τ

〈x,φk〉 − uk(t) −
N∑

j=1
j,k

〈φk,φ j〉a j(t)

 , (74)

where τ is the system time constant. In vector form, the dynamics for the whole network

are given by:

u̇(t) =
1
τ

[
Φtx − u(t) −

(
ΦtΦ − I

)
a(t)

]
. (75)

In [35] it was shown that for the energy surface E given in (73) with a separable, con-

tinuous and piecewise differentiable cost function, the path induced by the LCA (using the

outputs ak(t) as the optimization variable) ensures dE(t)
dt ≤ 0 when the cost function satisfies:

λ
dC (ak)

dak
= uk − ak = uk − Tλ (uk) = T−1

λ (ak) − ak, (76)

where Tλ (uk) is non-decreasing. We use the notation T−1
λ (uk) for convenience when the

activation function is invertible, but this invertibility is not strictly required (i.e., the rela-

tionship in (76) involving just Tλ (uk) is sufficient). The same arguments also extend to the

more general case of non-separable cost functions, ensuring dE(t)
dt ≤ 0 when

λ∇aC̃ (a) = u − a = u − T̃λ (u) = T̃−1
λ (a) − a. (77)

Recent followup work [203] establishes stronger guarantees on the LCA, specifically show-

ing that this system is globally convergent to the minimum of E (which may be a local min-

ima if C (·) is not convex) and proving that the system converges exponentially fast with an

analytically bounded convergence rate.

The relationship in (76) requires cost functions that are differentiable and activation

functions that are invertible. However, the cost function for BPDN (the `1 norm) is non-

smooth at the origin and the most effective sparsity-promoting activation functions will

likely have non-invertible thresholding properties. In these cases, one can start with a

smooth cost function that is a relaxed version of the desired cost and calculate the corre-

sponding activation function. Taking the limit of the relaxation parameter in the activation
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function yields a formula for Tλ (·) that can be used to solve the desired problem. Specifi-

cally, in the appendix we use the log-barrier relaxation [204] to show that the LCA solves

BPDN when the activation function is the well-known soft thresholding function:

C (ak) = |ak| ⇐⇒ ak = Tλ (uk) =


0 |uk| ≤ λ

uk − λsign(uk) |uk| > λ

.

Similarly, the LCA can find a local minima to the non-convex optimization program that

minimizes the `0 “norm” of the coefficients (i.e., number of non-zeros) by using the hard

thresholding activation function [35]:

C (ak) = I (ak , 0) ⇐⇒ ak = Tλ (uk) =


0 |uk| ≤ λ

uk |uk| > λ

,

where I(·) is the standard indicator function.

6.1 CS Recovery via the LCA

In this section, we demonstrate the possible performance of the LCA on large-scale CS

recovery problems by simulating the ideal dynamical system (described in equations (70)

and (71)), illustrating that the potential benefits justify continued efforts to scale up the

current implementation. Specifically, we show the soft-thresholding cost function solves

the BPDN problem of Equation (3) and then provide simulations that analyze the LCA’s

solution quality. In the first set of simulations (Sections 6.1.2 and 6.1.3), we use synthetic

stylized data to thoroughly explore the solution quality and solution times with (simu-

lated) analog and digital approaches for N = 1000. In the second set of simulations (Sec-

tion 6.1.4), we use very high dimensional MRI data to show performance on a large-scale

problem of practical importance.

6.1.1 BPDN optimization through the LCA

To show that the LCA with soft-thresholding solves the BPDN equation, we first rewrite

the desired BPDN problem in an extended formulation to make the variables non-negative.
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Figure 49: Log barrier relaxations of BPDN. (a) The cost function approaches the ideal `1

norm as the relaxation parameter is increased. (b) In a similar way, the nonlinear activa-
tion function derived for the LCA approaches the ideal soft-thresholding operator as the
relaxation parameter is increased.

Define a new M × 2N matrix through the concatenation operation Φ̃ = [Φ −Φ]. Similarly

define a vector z = [z+ z−] of length 2N such that zi ≥ 0 and a = z+ − z−. Essentially

z represents the original variables a by separating them into two subvectors depending

on their sign. We can then write a constrained optimization program that is equivalent to

BPDN:

min
z

1
2

∣∣∣∣∣∣x − Φ̃z
∣∣∣∣∣∣2

2
+ λ

2N∑
k=1

zk s.t. zk ≥ 0. (78)

This reformulation is a standard way to show that `1 cost penalties are equivalent to a linear

function in a constrained optimization program. One can then apply the standard log-barrier

relaxation to convert the program in (78) to an approximately equivalent unconstrained

program:

min
z

1
2

∣∣∣∣∣∣x − Φ̃z
∣∣∣∣∣∣2

2
+ λ

2N∑
k=1

zk +

(
1
γ

) 2N∑
k=1

log(zk). (79)

As γ → ∞, this program approaches the desired program (78). This relaxation strategy

underlies an interior point algorithm (called the barrier method) for solving convex opti-

mization programs, where (79) is repeatedly solved with increasing values of γ [204].

Note that the relaxed problem in (79) fits the form of the general optimization program
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stated in (73) with the differentiable cost function C (zk) = zk −
log(zk)
γλ

. For a fixed value of

γ, this cost function can be differentiated and used in the relationship given in (76) to solve

for zk in terms of uk to find the corresponding invertible activation function:

zk = Tλ (uk) =
1
2


√

4 + γ(λ − uk)2

γ
− (λ − uk)

 .
Finally it is straightforward to show that in the relaxation limit (γ → ∞) where the program

in (79) approaches BPDN, the desired activation function becomes the soft-thresholding

function:

lim
γ→∞

1
2


√

4 + γ(λ − uk)2

γ
− (λ − uk)

 =
1
2

( √
(λ − uk)2 − (λ − uk)

)

=


0 when uk ≤ λ

uk − λ when uk > λ

.

To illustrate the convergence of this relaxation to the desired `1 cost function and the

corresponding soft-threshold activation function, Figure 49 plots C (·) and Tλ (·) in this

relaxed problem for several values of γ. Note that in the extended formulation of BPDN

given in (78), the variables occur in pairs where where only one of them can be nonzero at

a time. Because the activation function is zero for all state values with magnitude less than

threshold, it is possible to represent each of these pairs of variables in one LCA node that

can take on positive and negative values and where the activation function is a two-sided

soft-thresholding function (thereby reducing the number of nodes back down to N).

6.1.2 LCA solution quality

To begin, we investigate the quality of simulated LCA solutions on CS recovery problems

with synthetic data to verify that they are comparable to standard digital algorithms. While

the LCA system is proven to converge asymptotically to the unique BPDN solution, the

approximate solution achieved by any algorithm in finite time can have different character-

istics depending on the particular solution path. In the general problem setup, the unknown
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Figure 50: The solution quality of the simulated LCA on a compressed sensing recovery
task is comparable to the standard digital solvers GPSR and l1-ls. The top row plots the
relative MSE of the estimated signal for synthetic data, with indeterminacy of the system
indexed by δ = M/N, and the sparsity of the system with respect to the number of mea-
surements indexed by ρ = S/M. The middle row plots the value of the BPDN objective
function at the solutions. The bottom row plots the relative MSE in the solutions between
the solvers, indicating the the differences in the LCA solutions are within the normal range
of differences between the digital algorithms themselves. Note that all solvers demonstrate
more variability in regions where the problems are more difficult and signal recovery cannot
be performed well.

signal a0 ∈ R
N is S -sparse and is observed through M < N Gaussian random projections,

y = Φa0 + ν, where ν is additive Gaussian noise. We compare the simulated performance

of the LCA at recovering a0 BPDN against the interior-point method l1-ls [34] and the

gradient projection method GPSR [185]. This investigation will address two main ques-

tions. First, are the solutions produced by the simulated LCA as accurate as the digital

comparison cases? Second, what solution times are possible in the simulated LCA?

We draw the nonzero coefficients of a0 using a Gaussian distribution with variance 1
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Figure 51: Temporal convergence of the simulated LCA compared to GPSR. The plot
shows the relative MSE of the signal recovery as a function of time for sample trials
(N=1000) from the results in Fig. 52 using GPSR (left) the simulated LCA (right). The
convergence behavior is approximately the same, with harder problems taking both algo-
rithms longer and decreasing the fidelity of the recovery. For the easy and medium difficulty
problems where BPDN recovers the signal with good fidelity, GPSR takes 0.1-1 seconds
to converge and the simulated LCA takes 101τ-103τ seconds to converge. For reasonable
values of τ, the LCA solution times can still be as low as 10µs, supporting datarates of up
to 100 kHz

and we draw the locations from a uniform distribution. The choice of regularization pa-

rameter λ depends on the variance of the additive noise ν which is not necessarily known a

priori. We have empirically observed that λ = .01‖ΦT y‖∞ gives good performance in this

task when the noise variance is 10−4. Additionally, we observe that as with many other

algorithms, implementing a continuation method by gradually decreasing λ (similar to that

used in FPC [193]) also improves convergence time in the LCA. Specifically, we initialize

λ = ‖ΦT y‖∞ and allow a multiplicative decay of 0.9 at each iteration of the simulation until

λ reaches the desired value given above. Although the implementation of the current hard-

ware only supports a constant threshold value over time, inclusion of a decaying threshold

is possible by having temporally changing threshold currents Ith at the threshold units. To

ensure that the comparison among the algorithms is fair, we use the same stopping criterion

for convergence based on the duality gap upper bound proposed in [34].

To explore solution quality we display the results of solving the CS recovery optimiza-

tions using plots inspired by the phase plots described by Donoho & Tanner [54]. We
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parameterize the plots using the indeterminacy of the system indexed by δ = M/N, and the

sparsity of the system with respect to the number of measurements indexed by ρ = S/M.

We vary δ and ρ in the range [.1, .9] using a 50 by 50 grid. For a given value (δ, ρ) on

the grid, we sample 10 different signals using the corresponding (M,N, S ) and recover the

signal using BPDN. We compare the results of the simulations by displaying in the top

row of Fig. 50 a phase plot for each algorithm, where the color code depicts the average

relative MSE of the CS recovery for each algorithm (calculated by
∥∥∥̂a − a0

∥∥∥2

2
/ ‖a0‖

2
2). In a

similar vein, the middle row of Fig. 50 shows the energy function (i.e., the BPDN objective

function) evaluated at the solution, 0.5
∥∥∥y −Φâ

∥∥∥2

2
+ λ

∥∥∥̂a
∥∥∥

1
.

The near identical plots for the two metrics above demonstrate that the LCA is indeed

finding solutions of essentially the same quality as the comparison digital algorithms, both

in terms of signal recovery of the compressively sensed signal, and in terms of the opti-

mization objective function. When the LCA and digital solutions are compared directly,

we find that the average difference in the solutions differs only by a relative mean-squared

distance (calculated by
∥∥∥̂aLCA − âDIG

∥∥∥2

2
/
∥∥∥̂aDIG

∥∥∥2

2
) of 1.97 · 10−4 when compared to l1-ls and

6.64 · 10−4 when compared to GPSR. For comparison, the rMSE of the difference between

the l1-ls solutions and the GPSR solutions is 9.71 · 10−4, meaning that the LCA solutions

have variability comparable to what the pair of comparison digital algorithms has between

their solutions. We note that the solution differences are significantly larger between all of

the algorithms in the regimes where CS recovery is difficult and poor solutions are found

by all solvers, as demonstrated by the bottom row of plots in Fig. 50.

6.1.3 LCA convergence time

To observe the potential solution times for the LCA in large-scale CS problems, we com-

pare the convergence of the LCA and GPSR on three specific signals in easy, medium and

hard CS recovery problems with the same synthetic data as above (corresponding to differ-

ent values of δ, ρ). Figure 51 shows the convergence of the relative MSE as a function of

time for GPSR and the simulated LCA for three example signals. GPSR times are reported
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Figure 52: Convergence behavior for the simulated LCA for a number of different problem
sizes (N,δ,ρ). Each plot demonstrates the change in convergence based on easy, medium
and hard CS recovery problems (i.e., 3 combinations of (δ, ρ)) for N = 200 (left), N = 500
(middle) and N = 1000 (right). While there is no appreciable increase in convergence time
with increased problem size (larger N), similar to standard behavior with other optimization
algorithms the LCA convergence time does increase with problem difficulty (smaller δ and
larger ρ).

using measured CPU2 time, and LCA times are reported using the number of simulated

system time constants τ. The simulation parameters used are identical to the previous sim-

ulations. While the solution paths have generally similar characteristics, the time scales are

dramatically different. Focusing on the easy and medium CS problems that produce good

recovery using `1 minimization, GPSR is converging in times on the order of 0.3 seconds,

whereas the LCA is converging in times on the order of ten time constants (10τ). These

simulated times are consistant with the reported times for the hardware implementation

described in [27]. We also note that while the results in Fig. 51 are for individual signals

for direct comparison with GPSR, the analysis of average case convergence for the LCA

shown in Fig. 52 and discussed below also support the same basic conclusions about the

LCA convergence time.

Though the time constant of an analog circuit depends on many factors (including the

2Time is measured on a Dell Precision Desktop with dual Intel Xeon E5420 Processors and 14GB of
DDR3 RAM.
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bias current and resulting power consumption of the circuit), τ = 10−6 is a reasonable pro-

jected value for a dedicated implementation based on the discussion in [27] and previous

reports [205]. Under this assumption, the simulated LCA is converging for CS recovery

problems in approximately 10µs of simulated time. Even state of the art digital solutions us-

ing high performance computing (either multi-core processing [206] or graphical process-

ing units [207]) currently only achieve speeds in the tens of milliseconds for comparably

sized problems. This type of solution speed from the LCA is several orders of magnitude

faster than GPSR and could support solvers running in real time at rates of 100 kHz.

Finally, we also investigate the effect of problem size N and problem difficulty (δ, ρ) on

the convergence speed of the LCA. For the same parameters corresponding to easy, medium

and difficult CS recovery problems as used above, we sample 10 signals at three different

problems sizes (N = 200, N = 500 and N = 1000) to perform CS recovery. Figure 52

displays the relative distance of the signal estimate a(t) from the true solution a as a function

of simulated time, ‖a(t)−a‖2/‖a‖2. The plots are again shown as a function of the simulated

time in terms of the number of system time constants τ. As expected, convergence is faster

and more reliable (i.e., less variance) for easier recovery problems (i.e., lower sparsity or

more measurements). Interestingly, we note that increasing the signal size N does not

appear to increase the number of time constants required for the LCA solution. In a digital

algorithm such as GPSR, while the number of iterations may not increase substantially, the

solution time scales with N2 because the cost of each iteration (e.g., a matrix multiplication)

increases significantly. In an analog system like the LCA, increasing the size of a matrix

multiply requires increasing the circuit size and complexity, which may increase the time

constant [27].

6.1.4 MRI Reconstruction

The previous subsection demonstrated that for stylized problems with synthetic data the

LCA can achieve BPDN solutions and signal recoveries comparable to standard digital
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Actual LCA YALL1

Figure 53: Reconstruction of 256x192 pixel MR images from simulated CS acquisition.
The simulated LCA and the comparison digital algorithm (YALL1) find solutions of ap-
proximately the same quality in terms of relative MSE and image quality. YALL1 finds the
solution in approximately 10s, while the LCA finds the solution in approximately 20 time
constants (20µs with reasonable estimates of the time constant).

solvers. Furthermore the LCA appears to converge to solutions at speeds that would repre-

sent an improvement of several orders of magnitude over digital algorithms. In this section

we demonstrate the potential value of this system on a medical imaging application that

could be significantly impacted by having real-time CS recovery techniques. Specifically,

in this section we simulate the LCA recovery of undersampled MR images to evaluate the

solution quality and speed. Compressive MRI is of particular interest because it allows

shorter scan times, which improves both patient throughput and lowers risk (e.g., shorter

scan times mean that pediatric MRIs may be taken more often without general anesthe-

sia [208]). Furthermore, compressive MR imaging combined with real-time image recon-

struction would potentially allow new medical procedures to be performed using real-time

3-D imaging without using ionizing radiation.

We simulate CS data acquisition on 21 frames of a dynamic cardiac MRI sequence3

by subsampling the Fourier transform of each image (i.e., taking random columns of k-

space). Each image is 256x192 pixels, and we recover the images by solving BPDN to find

sparse coefficients in a wavelet transform. Specifically, we solve the BPDN optimization

3The MRI data used was acquired using a GE 1.5T TwinSpeed scanner (R12M4) using an 8 element
cardiac coil.
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program where the sensing matrix Φ = FWH is an inverse wavelet transform followed

by a subsampled Fourier matrix, and recover the image by taking the wavelet transform

of the solution to the BPDN problem. The choice of wavelet transforms in this case is

very important, as transforms which are coherent with the Fourier subsampling scheme

can result in poor results. We follow the work of [208] and use a 4 level 2-dimensional

Daubechies wavelet transform as the sparsifying basis. The resulting optimization is more

difficult than the synthetic data in the previous two sections because the signals are larger

and the images are sparse in a wavelet basis instead of the canonical basis.

We compare results of recovery using the simulated LCA and another standard digital

solver YALL1 [193]. Figure 53 shows an example MRI image and its reconstruction us-

ing both the LCA and YALL1. The average relative MSE (using λ = 0.001) over all 21

recovered images was 0.0109 for YALL1 and 0.0106 for the simulated LCA. The relative

differences between the LCA and YALL1 solutions was 0.0042, indicating that the solution

quality is essentially the same for both approaches. YALL1 took approximately 10 second

of computation time to reach this solution (on the same computer platform used in the pre-

vious simulations), while the LCA took approximately 20τ simulated seconds. Again using

time constant estimates of τ = 10−6, this translates to solution times of 20µs and datarates

of approximately 50 kHz. Recovery for such large-scale problems may require more nodes

than a single chip can provide. In these cases stringing together a series of smaller chips or

developing a block-wise method of recovery would still allow the benefits of using analog

hardware for the CS recovery.

6.2 Alternate inference problems in the LCA architecture

Using the basic relationships described in (76) and (77), a variety of cost functions can be

optimized in the same basic LCA structure by analytically determining the corresponding

activation function.4 These optimization programs include approximate `p norms, modified

4We also note that a cost function might be easily implementable even in the absence of an analytic
formula for the activation function simply by using numerical integration to find a solution and fitting the
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`p norms that attempt to achieve better statistical properties than BPDN, the group/block `1

norm that induces co-activation structure on the non-zero coefficients, re-weighted `1 and

`2 algorithms that represent hierarchical statistical models on the coefficients, and classic

Tikhonov regularization.

Before exploring specific alternate cost functions in the remainder of this section, it is

worthwhile to make a technical note regarding the optimization programs that are possi-

ble to implement in the LCA architecture. The strong theoretical convergence guarantees

established for the LCA [203] apply to a wide variety of possible systems, but do impose

some conditions on the permissible activation functions. We will rely on these same con-

ditions to analytically determine the relationship between the cost and activation functions

for the examples in this section. Translated to conditions on the cost functions, the con-

vergence results for the LCA [203] require that the cost functions be positive
(
C̃ (a) ≥ 0

)
,

symmetric
(
C̃ (−a) = C̃ (a)

)
, and satisfy the condition that the matrix

(
λ∇2

aC̃ (a) + I
)

is pos-

itive definite (i.e., λ∂2C (ak) /∂a2
k + 1 > 0 for separable cost functions). This last condition

can intuitively be viewed as requiring that the activation function resulting from (77) has

only a single output for a given input.

Some of the cost functions considered here have non-zero derivatives at the origin,

leading to a range of values around the origin where Tλ (uk) is not defined according to

the relationship in (76). In these cases, the smallest value for which the threshold function

is defined results in a zero-valued output (i.e., Tλ (uk) = 0 at uk = limak→0+ λ∂C (ak) /∂ak).

Since the second derivative condition on the cost function constrains the activation function

to be non-decreasing, we can infer that the only allowable value of the activation function

must be zero for the regions that are not well-characterized by the relationship in (76).

Finally, we note that in most cases we will only consider the behavior of the activation

function for uk ≥ 0 because the behavior for uk < 0 is implied by the symmetry condition.

resulting curve.
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Figure 54: Cost functions and their corresponding thresholding functions. Left: The cost
functions are compared for the (top) `1 with λ = 0.5, scale invariant Bayes with λ = 0.5, the
Huber cost with λ = 0.5 and ε = 0.3 and (bottom) `0 with λ = 0.5, SCAD with λ = 0.5 and κ
= 3.7 and transformed `1 with thresh = 0.5 and β = 2. Right: The corresponding nonlinear
activation function which can be used in the LCA to solve the regularized optimization
program for each cost function.

6.2.1 Approximate `p norms (0 ≤ p ≤ 2)

Perhaps the most widely used family of cost functions are the `p norms C̃ (a) = ‖a‖p
p. These

separable cost functions include ideal sparse approximation (i.e., counting non-zeros),

BPDN, and Tikhonov Regularization [209] as special cases (p = 0, 1 and 2, respectively),

and are convex for p ≥ 1. Furthermore, recent research has shown some benefits of using

non-convex `p norms (p < 1) for inverse problems with sparse signal models [210, 211].

While the ideal activation functions can be determined exactly for the three special cases

mentioned above (p = 0, 1 and 2), it is not possible to analytically determine the activation

function for arbitrary values of 0 ≤ p ≤ 2. Elad et al. [211] recently introduced several

parameterized approximations to the `p cost functions that are more amenable to analysis.

In this section, we use these same approximations to determine activation functions for

minimizing approximate `p norms for 0 ≤ p ≤ 2.
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Figure 55: Approximate `p cost functions and their corresponding thresholding functions.
Left: The cost functions are approximated over the parameters c, s for values of p ranging
from 0 to 1 (top) and 1 to 2 (bottom). The true `p costs are shown as dotted lines in the
same shades. Using these values of c and s, a nonlinear activation function that can be used
in the LCA to solve the optimization is plotted (right) using the thresholding equations for
0 < p < 1 (top) and 1 < p < 2 (bottom). The thresholding functions clearly span the ranges
between soft and hard thresholding for the lower range of p and between soft thresholding
and linear amplification for the upper range of p.

Approximate `p for 1 ≤ p ≤ 2

For 1 ≤ p ≤ 2, Elad et al. [211] propose the approximate cost function

C (a) =
∑

k

[
c|ak| − cs log

(
1 +
|ak|

s

)]
,

as a good match for the true `p norm for some value of parameters s and c. In the limiting

cases, c = 1 with s→ 0 yields the `1 norm and c = 2s with s→ ∞ yields the `2 norm. Three

intermediate examples for p = 1.25, 1.5 and 1.75 are shown in Figure 55. For any specific

value of p, we find the best values of c and s by using standard numerical optimization

techniques to minimize the squared error to the true cost function over the interval [0,2].

From this cost function, we can differentiate to obtain the relationship between each uk and

ak as

uk = ak + λ
cak

s + ak
.

We see from this relationship that with c = 1 and s→ 0, we obtain ak = uk − λ for uk >

λ (i.e., the soft-thresholding function for BPDN), while with c = 2s and s → ∞ we obtain
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ak = uk
1+2λ (i.e., a linear amplifier for Tikhonov Regularization). Solving for ak in terms of

uk (restricting the solution to be positive and increasing) yields a general relationship for

the activation function

Tλ (uk) =
1
2

[
uk − s − cλ +

√
(uk − s − cλ) + 4uks

]
.

This solution is shown in Figure 55 for p = 1.25, 1.5 and 1.75 for λ = 0.5.

Approximate `p for 0 ≤ p ≤ 1

For 0 ≤ p ≤ 1, Elad et al. [211] also propose the following approximate cost function as a

good match for the true `p norm for some value of parameters s and c:

C (ak) = cs log
(
1 +
|ak|

s

)
,

where the parameters c > 0 and s > 0 can be optimized as above to approximate different

values of p. Three approximations for p = 0.5, 0.75 and 0.9 are shown in Figure 55. To de-

termine the activation function, we again differentiate and find the appropriate relationship

to be

ak +
λcs

s + ak
= uk.

Solving for ak reduces to solving a quadratic equation, which leads to two possible so-

lutions. As above, we restrict the activation function to only include the solution that is

positive and increasing, resulting in the activation function

Tλ (uk) =
1
2

(
uk − s +

√
(uk + s)2

− 4λcs
)
.

This activation function is only valid over the range where the output is a positive real

number. If cλ ≤ s, this condition reduces to uk ≥ cλ. More generally, this condition

reduces to uk ≥ 2
√

2csλ − s.

6.2.2 Modified `p norms

While the general `p norms have historically been very popular cost functions, many people

have noted that this approach can have undesirable statistical properties in some instances
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(e.g., BPDN can result in biased estimates of large coefficients [212]). To address these

issues, many researchers in signal processing and statistics have proposed modified cost

functions that attempt to alleviate these statistical concerns. For example, hybrid `p norms

smoothly morph between different norms to capture the most desirable characteristics over

different regions. In this section we will demonstrate that many of these modified `p norms

can also be implemented in the basic LCA architecture.

Smoothly Clipped Absolute Deviations

A common goal for modified `p norms is to retain the continuity of the cost function near

the origin demonstrated by the `1 norm, while using a constant cost function for larger

coefficients (similar to the `0 norm) to avoid statistical biases. One approach to achieving

these competing goals is the smoothly clipped absolute deviations (SCAD) penalty [213,

214]. The SCAD approach directly concatenates the `1 and `0 norms with a quadratic

transition region, resulting in the cost function given by

C (ak) =



ak 0 < ak ≤ λ

1
(κ−1)λ (akκλ −

a2
k

2 −
λ2

2 ) λ < ak ≤ κλ

λ
2 (1 + κ) κλ < ak

,

for κ ≥ 1 (κ defines the width of the transition region). An example of this cost function

with λ = 0.5 and κ = 3.7 is shown in Figure 54.

To obtain the activation function we again solve λ dC(ak)
dak

+ ak = uk for ak as a function of

uk. For SCAD (and all of the piecewise cost functions we consider), the activation function

can be determined individually for each region, paying careful attention to the ranges of

the inputs uk and outputs ak to ensure consistency. For 0 < ak ≤ λ, we have λ + ak = uk,

implying that ak = 0 for uk < λ and ak = uk − λ over the interval λ < uk < 2λ. For

λ < ak ≤ κλ, we have

λ
(κλ − ak)
(κ − 1)λ

+ ak = uk =⇒ ak =
(κ − 1)uk − κλ

κ − 2
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over the interval 2λ < uk < κλ. Finally, for κλ < ak we have ak = uk, giving the full

activation function

ak = Tλ (uk) =



0 uk ≤ λ

uk − λ λ ≤ uk ≤ 2λ

κ−1
κ−2uk −

κλ
κ−2 2λ ≤ uk ≤ κλ

uk κλ ≤ uk

,

which is shown in Figure 54 for λ = 0.5 and κ = 3.7. Note that this activation function

requires κ ≥ 2 (Antoniadis and Fan recommend a value of κ = 3.7 [214]). While this is

apparent from consistency arguments once the thresholding function has been derived, this

restriction on κ can also be deduced from the condition λ∂2C (ak) /∂a2
k + 1 > 0.

Transformed `1

Similar to the SCAD cost function, the transformed `1 cost [214, 215] attempts to capture

something close to the `1 norm for small coefficients while reducing the penalty on larger

coefficients. Specifically, transformed `1 uses the fractional cost function given by

C (ak) =
β|ak|

1 + β|ak|
,

for some β > 0. An example of this cost with β = 2 and λ = 0.5 is shown in Figure 54.

After calculating the derivative of the cost function, the activation function can be found by

solving
λβ

(1 + βak)2 + ak = uk

for ak. Inverting this equation reduces to solving a cubic equation in ak. The three roots

can be calculated analytically, but only one root generates a viable thresholding function
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by being both positive and increasing for positive uk. That root is given by

ak =
β uk−2

3 β + 2
2
3

6β

6 β uk − 27 β2 λ + 6 β2 u2
k + 2 β3 u3

k

+ 3
√

3 β3
√
−
λ (4 β3 u3

k+12 β2 u2
k−27 λ β2+12 β uk+4)
β4 + 2

) 1
3

+
β2

1
3 (β uk+1)2

3

6 β uk−27 β2 λ+6 β2 u2
k+2 β3 u3

k+3
√

3 β3

√
−
λ(4 β3 u3

k +12 β2 u2
k−27 λ β2+12 β uk+4)
β4 +2


1
3

.

This solution is viable only when ak is real valued, which corresponds to the range uk ≥(
3
(
λ
4β

)1/3
− 1

β

)
. Outside of this range, no viable non-zero solution exists and so ak = 0. The

full thresholding function is shown in Figure 54 for λ = 0.5 and β = 2..

Huber Function

The Huber cost function [216] aims to modify standard `2 optimization to improve the

robustness to outliers. This cost function consists of a quadratic cost function on smaller

values and a smooth transition to an `1 cost on larger values, given by

C (ak) =


a2

k
2ε 0 ≤ |ak| ≤ ε

|ak| −
ε
2 ε < |ak|

.

An example of the Huber cost is shown in Figure 54 for λ = 0.5 and ε = 0.3. As in the

case of other piecewise cost functions, we calculate the activation function separately over

each interval of interest by calculating the derivative of the cost function in each region.

For the first interval, the relationship is given by λak
ε

= uk − ak, which obviously gives

the activation function Tλ (uk) = εuk
ε+λ

for |uk| ≤ ε + λ. For the second interval, we have

λ ak
|ak |

= uk − ak, which yields the activation function Tλ (uk) = uk

(
1 − λ

|uk |

)
for |uk| > ε + λ.

Putting the pieces together, the full activation function (as expected) is a mixture of the

Tikhonov regularization and the soft thresholding used for `1 optimization given by

ak = Tλ (uk) =


εuk
ε+λ

|uk| ≤ ε + λ

uk

(
1 − λ

|uk |

)
|uk| > ε + λ

,
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which is shown in Figure 54 for λ = 0.5 and ε = 0.3. We can see that as ε → 0, the cost

function converges to the `1 norm and the thresholding function correctly converges back

to the soft-threshold function derived earlier using the log-barrier method.

Amplitude Scale Invariant Bayes Estimation

A known problem with using the `1 norm as a cost function is that it is not scale invariant,

meaning that the results can be poor if the amplitude of the input signals changes signifi-

cantly (assuming a constant value of λ). Many cost functions (including the ones presented

above) are heuristically motivated, drawing on intuition and tradeoffs between the behavior

of various `p norms. In contrast, Figueiredo and Nowak [217] approach the problem from

the perspective of Bayesian inference with a Jeffreys’ prior to determine a cost function

with more invariance to amplitude scaling, similar to the non-negative Garrote [218]. We

consider here the cost function

C (a) =
∑

k

−
a2

k

4λ
+

ak

√
a2

k + 4λ2

4λ
+ λ log

(
ak +

√
a2

k + 4λ2
)
,

which is proportional to the one given by Figueiredo and Nowak [217] and is shown in

Figure 54 for λ = 0.5.

Taking the derivative of this cost function, we end up with the relationship between uk

and ak

uk − ak = −2λ
ak

4λ
+

2λ
4λ

√
a2

k + 4λ2.

Solving for ak as a function of uk yields the following activation function,

ak = Tλ (uk) =


0 uk ≤ λ

(u2
k − λ

2)/uk uk > λ

,

matching the results from Figueiredo and Nowak [217]. This activation function is shown

in Figure 54 for λ = 0.5.

157



6.2.3 Block `1

While all cost functions discussed earlier in this section have been separable, there is in-

creasing interest in non-separable cost functions that capture structure (i.e., statistical de-

pendencies) between the non-zero coefficients. For example, such structure would be im-

portant in performing inference in a complex cell energy model where the energies (i.e.,

magnitudes) are sparse in a complex-valued signal decomposition (e.g., [219]). Perhaps the

most widely cited cost function discussed in this regard is the block `1 norm (also called

the group `1 norm), which assumes that the coefficients representing x are active in known

groups. In this framework, the coefficients are divided into blocks, Al ⊂ {ak} and each

block of coefficients Al is represented as a vector al. For our purposes, we assume the

blocks are non-overlapping but may have different cardinalities. The block `1 norm [220]

is defined as the `1 norm over the `2 norms of the groups,

C̃ (a) =
∑

l

∥∥∥al
∥∥∥

2
,

essentially encouraging sparsity between the blocks (i.e., requiring only a few groups to be

active) with no individual penalty on the coefficient values within a block. Because this

cost is not separable, the activation function will no longer be a point-wise nonlinearity and

will instead have multiple inputs and multiple outputs.

Following the same general approach as above, we calculate the gradient of the cost

function for each block,

∇alC̃ (a) =
al∥∥∥al
∥∥∥

2

,

yielding the following relationship between the activation function inputs and outputs

ul = al + λ
al∥∥∥al
∥∥∥

2

. (80)

While directly solving this relationship for al appears difficult, we note that we can simplify

the equation by expressing
∥∥∥al

∥∥∥
2

in terms of
∥∥∥ul

∥∥∥
2
. To see this, take the norm of both sides

of (80) to get
∥∥∥ul

∥∥∥
2

=
∥∥∥al

∥∥∥
2

+ λ. Substituting back into (80), the relationship simplifies to
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Figure 56: The nonlinear activation function used in the LCA to optimize the non-
overlapping group LASSO cost function has multiple inputs and multiple outputs. The
plot shows an example thresholding function for both elements in a group of size two (λ =

0.5), with each line illustrating the nonlinear effect on a1 while u2 is held constant.

T̃λ

(
ul

)
= al = ul

1 − λ∥∥∥ul
∥∥∥

2


over the range 0 ≤

∥∥∥al
∥∥∥

2
=

∥∥∥ul
∥∥∥

2
− λ, implying λ ≤

∥∥∥ul
∥∥∥

2
.

This relationship yields the block-wise thresholding function

al = T̃λ

(
ul

)
=


0

∥∥∥ul
∥∥∥

2
≤ λ

ul
(
1 − λ

‖ul‖2

) ∥∥∥ul
∥∥∥

2
> λ

.

This activation function can be thought of as a type of shrinkage operation applied to an

entire group of coefficients, with a threshold that depends on the norm of the group inputs.

For the case of groups of two elements (with λ = 0.5), Figure 56 shows the nonlinearities

for each of the two states as a function of the value of the other state.

6.2.4 Re-weighted `1 and `2

Recent work has also demonstrated that re-weighted `p norms can achieve better sparsity

by iteratively solving a series of tractable convex programs [64,180,181,221]. For example,

re-weighted `1 [180] is an iterative algorithm where a single iteration consists of solving
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a weighted `1 minimization
(
C̃ (a) =

∑
k λk|ak|

)
, followed by a weight update according to

the rule

λk ∝
1

|ak| + γ
, (81)

where γ is a small parameter. By having λk approximately equal to the inverse of the

`1 norm of the coefficient from the previous iteration, this algorithm is more aggressive

than BPDN at driving small coefficients to zero and increasing sparsity in the solutions.

Similarly, re-weighted `2 algorithms [181] have also been used to approximate different

p-norms with weights updated as

λk ∝
1(

a2
k + γ

)( p
2−1)

.

Such schemes have shown many empirical benefits over `p norm minimization, and re-

cent work on re-weighted `1 has established theoretical performance guarantees [222] and

interpretations as Bayesian inference in a probabilistic model [64].

One of the main drawbacks to re-weighted algorithms in digital architectures is the time

required for solving the weighted `p program multiple times. Of course, it is also not clear

that a discrete iterative approach such as this could be mapped to an asynchronous analog

computational architecture. Because we have established earlier that the LCA architecture

can solve the `p norm optimizations (and weighted norms are a straightforward extension

to those results), it would immediately follow that a dynamical system could be used to

perform the optimization necessary for each iteration of the algorithm. While this would

be a viable strategy, we show here that even more advantages can be gained by performing

the entire re-weighted `1 algorithm in the context of a dynamical system. Specifically,

we consider here a modified version of the LCA where an additional set of dynamics are

placed on λ in order to simultaneously optimize the coefficients and coefficient weights in

an analog system. While the ideas here are expandable to the general re-weighted case, we

focus on results involving the re-weighted `1 as presented in [64].
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The modified LCA is given by the system equations:

τuu̇(t) = ΦT x − u(t) −
(
ΦT Φ − I

)
a(t)

a(t) = Tλ (u(t))

τλλ̇k(t) = λ−1
k (t) − ν−1 (|ak(t)| + γ)

.

At steady state, λ̇ = 0 which shows that λk (∞) abides by (81) with ν representing the

proportionality constant. While the complete analysis of this expanded analog system is

beyond the scope of this paper, we show in Figure 57a simulations which demonstrate that

this system reaches a solution of comparable quality to digital iterative methods. Figure 57a

plots the relative MSE from a compressed sensing recovery problem with length-1000 vec-

tors from 500 noisy measurements with varying levels of sparsity. We sweep the parameter

ρ = S/M from zero to one and set the noise variance to 10−4, with each plot representing

the relative MSE averaged over 15 randomly chosen signals. Figure 57(a) plots the recov-

ery quality for three systems: iterative re-weighted `1 (using GPSR [185] to solve the `1

iterations), iterative re-weighted `1 (using the LCA to solve the `1 iterations), and dynamic

re-weighted `1 which uses the modified LCA described above. It is clear that the three

systems are achieving nearly the same quality in their signal recovery. Figure 57b plots

the convergence of the recovery as a function of time (in terms of system time constants

τ) for the iterative and dynamic re-weighted approaches using the LCA. The dynamically

re-weighted system clearly converges more quickly, achieving its final solution in approx-

imately the time it takes to perform two iterations of the traditional re-weighting scheme

using the standard LCA.

6.3 Discussion

Sparsity-based signal models have played a significant role in many theories of neural cod-

ing across multiple sensory modalities. Despite the interest in the sparse coding hypothesis

from the computational and theoretical neuroscience communities, the qualitative nature

of much of the supporting evidence leaves significant ambiguity about the ideal form for a
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Figure 57: Re-weighted `1 optimization in digital algorithms and in a modified LCA. (a)
Re-weighted `1 optimization for a signal with N = 1000 and δ = 0.5, with ρ swept from
0 to 1. The traditional iterative re-weighting scheme is performed with both a standard
digital algorithm (GPSR) and the LCA. For comparison, a dynamic re-weighting scheme
where the LCA is modified to have continuous dynamics on the regularization parameter
(rather than discrete iterations) is also shown. Each method is clearly achieving similar
solutions. (b) The temporal evolution of the recovery relative MSE for a problem with
N = 1000, δ = 0.6 and ρ = 0.45. Solutions are shown for the amount of simulated time
(in terms of number of time constants). The dynamically re-weighted system converges
in approximately the time it takes to use the LCA to solve two iterations of the traditional
re-weighted `1 algorithm.

sparsity-inducing cost function. While recent trends favor the `1 norm due the emergence

of guarantees in the signal processing literature, there are many sparsity-inducing signal

models that may have benefits for neural computation and should be candidate models for

neural coding. In this chapter we show that many of the sparsity-inducing cost functions

proposed in the signal processing and statistics literatures can be implemented in a single

unified dynamical system.

From the results presented here, we conclude that neurally-plausible computational ar-

chitectures can support a wide variety of sparsity-based signal models, and it is therefore

reasonable to consider this broad family of models as reasonable candidates for theories

of sensory neural coding. Furthermore, we have shown that even a relatively complex

162



hierarchical probabilistic model resulting in a re-weighted `1 inference scheme can be im-

plemented efficiently in a purely analog system. This observation is particularly interesting

because it illustrates a fundamental potential advantage of analog computation over digital

systems. Specifically, the analog approach to this problem is able to continuously infer two

sets of variables jointly, rather than take an iterative approach that fundamentally must wait

for the computations in each iteration for one variable to fully converge before inferring the

other variable.

Beyond the applicability of these results to theories of neural computation, the recent

shift toward optimization as a fundamental computational tool in the modern signal pro-

cessing toolbox has made it difficult to implement many of these algorithms in applications

with significant power constraints or real-time processing requirements. The results of this

chapter broaden the scope of problems that could potentially be approached through effi-

cient neuromorphic architectures, both in terms of achievable static decompositions, as well

as applications to causal inference of streaming signals. The design and implementation of

analog circuits has traditionally been difficult, but recent advances in reconfigurable analog

circuits [223] have improved many of the issues related to the design of these systems. In

fact, the reconfigurable platform described in [223] has been used to implement a small ver-

sion of the LCA for solving BPDN [27, 198], and preliminary tests of this implementation

are consistent with simulations of the idealized LCA. These results lend encouragement to

the idea that efficient analog circuits could be implemented for the variety of cost functions

described in this paper.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

The main goal of this work was to understand how sparse signal structures can be used in

conjunction with dynamical systems for efficient signal measurements and inference. In

particular, we recall the main questions that we sought to address:

• How can a dynamical system measure sparse signals and can we assess the quality

of those measurements?

• How can we recover dynamically or spatially correlated sparse signal from our mea-

surements?

• How can a dynamic system solve sparsity-inducing optimization programs quickly

and efficiently?

Overall we find that dynamical systems can, in fact, be highly compatible with sparse

signals. For each of these questions, we have provided in this work and the resulting

publications (journal papers [1, 2, 10, 11, 20, 21, 26, 27], conference papers [3, 4, 12–15, 22,

28,224], and conference abstracts [5–9,16–19,23–25,29,30]) answers by analyzing a range

of dynamical systems and signals. Specifically, the three answers are:

A1 In terms of measurement systems, we find that dynamically ESNs can efficiently

measure streaming signals. We identify conditions on the inputs that maximize in-

formation retention and quantify the information retention via RIP-style conditions

which relate the network nodes to the input sequences.

A2 In terms of sparse time-varying signals we derive estimators that make use of both

sparsity and dynamic priors. By defining appropriate signal models we can derive

both fast, efficient estimators as well as more complex robust estimators. In addition
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we show how these results have implications for applications with more general spa-

tially signals by showing the utility of sparsity modeling for hyperspectral imagery.

A3 For optimization implementations, we show that dynamical systems can provide so-

lutions to many important sparsity-inducing optimization programs.

These results are very promising and imply a host of possibilities both for system design

and data analysis techniques. Specifically, the our work provides implications for current

and future theoretical and algorithmic work, as well as a number of applications.

Theoretical Results and Implications

Our theoretical results show that traditional techniques from the compressive sensing liter-

ature can be used to show RIP bounds for dynamically evolving networks as well as con-

vergence guarantees for dynamic filtering of time-varying signals. In the former of these

two, we can see that even when a dynamical sensing system can accrue additional corre-

lations in the measurements, quantitative measures, such as the RIP, can still be shown.

This implies that the measurements in these systems can still be used to obtain robust and

accurate estimates of sparse signals. In the latter results, we can see that, while pessimistic

about the actual error bounds, looking at the theoretical convergence rates can help guide

parameter choices in dynamic filtering procedures.

For both of these theoretical results, there are many interesting avenues for potential

future work. In term of STM for ESNs, our work points to two main theoretical extensions:

networks with non-linear nodes and continuous-time networks. Our work here covers the

basic case of how ESNs can accrue information over time. While laying the foundation for

non-asymptotic analysis of random ESNs, we only consider networks with linear nodes. A

number of important network constructions, however, deal with non-linear nodes. There-

fore one important extension is understanding the theoretical implications of non-linearities

on the ESN’s STM. Recent tools from the deep neural network literature [225] which uses

techniques from [226, 227] provide one potential avenue to analyze non-linear networks.
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While it is not clear how to directly ally these techniques, our success in this work of ap-

plying standard compressive sensing tools to dynamical settings gives some precedent that

this approach may be viable.

Another important extension of our ESN work is in understanding continuous-time

networks. This extension is important in the context of developing compressive sensing

systems based on ESNs. While the work on discrete-time inputs here is applicable to

recovering band-limited input signals whose Nyquist samples are sparse, continuous-time

signals can be much richer in their structure. Specifically, while sparse discrete signals are

often defined by their sparsifying dictionary, continuous time models can be defined by

more flexible low-dimensional parametrized models (i.e. the signal is described as part of

a low-dimensional manifold). As an example, parametrized models can include times and

widths of continuous-time shaped pulses. Recent results in recovering low-dimensional

parametrized signals can be used along with our work to imply that many additional low-

dimensional signal types may be recoverable from random ESNs [228–231].

In terms of our results for dynamic filtering, the main theoretical guarantees focus on

convergence of BPDN-DF and RWL1-DF. While we use these guarantees to guide param-

eter selection for BPDN-DF, the overall bounds for the steady-state estimation errors are

rather pessimistic. One main avenue for future work is to improve these bounds for BPDN-

DF and to create new bounds for RWL1-DF. Towards these ends, recent work in analyzing

optimization programs via statistical dimensions [232], and guarantees for weighted `1

optimization [233] provide a number of tools which may provide the desired, improved

bounds.

Algorithmic Implications

In addition to the theoretical results of this work, we also provide insights into algorithmic

development for dynamic and spatial filtering. In particular, we reinforce the idea that

propagating the confidence in our prediction through higher order moments is a powerful

technique for designing inference procedures for correlated signals. Designing particular
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tracking procedures then required finding efficient methods to propagate the confidence

variables. In particular, these methods should reflect the actual statistics of the signals

being tracked (e.g. variances of Laplacians for sparse signals and covariance matrices

for Gaussian signals). This implies that tracking algorithms should be designed from the

ground up, rather than the popular approach of modifying the traditional Kalman filtering

equations to suit a new need.

As an alternative to designing potentially complex estimation procedures, our work

with learning dynamics functions allows us to settle for sub-optimal algorithms, provided

the signal models are appropriately learned. Thus a more computationally efficient algo-

rithm can be trained on many data examples to yield improved tracking performance. In

future work, we can consider combining the learning procedures with more accurate sig-

nal models to continue enhancing sparse signal tracking. For example, we can consider

learning the major parameters for the RWL1-DF algorithm in Section 4.5.2.

Implications for Applications

Since many signals and systems have non-trivial dynamic-related correlations, out results

have implications for a number of applications. Most generally, out work in tracking sparse

signals can be used to further reduce the sampling necessary for systems such as MRI sys-

tems. Additionally, adaptations of out tracking work could potentially be used in systems

such as RADAR tracking or channel estimation. Our extensions to spatially correlated

signals in HSI also have a number of important implications. In particular, the ability to

spectrally super-resolve MSI data can yield efficient ways to obtain very high-fidelity re-

mote sensing images. Specifically, MSI typically either has either a much finer spatial

resolution or a much larger image area than HSI imagery. Using dictionaries learned from

co-located HSI imagery, the MSI images can super-resolved to provide HSI images with

either improved spatial resolution or much larger imaging areas.

While more theoretical in nature, our work in STM for ESNs can also have implica-

tions for applications. The networked nature of ESNs make them a potential for simplified
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models of biological neural networks. Relating our theoretical STM results to psycho-

logical experiments on human working memory [234–236] can potentially increase our

understanding on how biological networks store information for short-term use.
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CHAPTER VIII

APPENDICES

8.1 Bayesian Approach to Kalman Filtering

The Kalman Filtering process seeks to discover an underlying set of state variables {xk} for

k ∈ [0, n] given a set of measurements {yk}. The process and measurement equations are

both linear and given by

xn+1 = Fn+1xn + νo,n+1 (82)

yn = Φxn + νd,n.

The Kalman filter wants to find, at each iteration, the most likely cause of the mea-

surement yn given the approximation made by a flawed estimation (the linear dynamics Fn.

Figure 58 shows a 2-dimensional graphical depiction. What is important here is not only

that we have the measurement and the prediction, but knowledge of how each is flawed.

In the Kalman case, this knowledge is given by the covariance matrices (essentially fully

describing the distribution of the measurement and prediction for the Gaussian case). In

Figure 58, this knowledge is represented by the ovals surrounding each point. The power

of the Kalman filter comes from it’s ability not only to perform this estimation once (a sim-

ple Bayesian task), but to use both estimates and knowledge of their distributions to find a

distribution for the updated estimate, thus iteratively calculating the best solution for state

at each iteration.

While many derivations of the Kalman filter are available, utilizing the orthogonality

principle or finding iterative updates to the Best Linear Unbiased Estimator (BLUE), here

we derive the Kalman Filter here using a Bayesian approach, where ’best’ is interpreted

in the Maximum A-Posteriori (MAP) sense instead of an L2 sense (which for Gaussian
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Figure 58: The Kalman filter uses the prediction of a current state based on a previous
estimate (blue points) in conjunction with a current measurement (red point) to estimate
the true current state (green point). The error in the dynamics (shown here by the blue
ovals which represent the covariance)is a combination of the error in the past state and the
error in the model of the system. This error in conjunction with the measurement error (the
red ovals) allow the covariance of the state update (green oval) to be calculated, propogating
forward the confidence of each update.

innovations and measurement noise is the same estimate). Bayesian analysis uses Bayes

rule, p(a|b)p(b) = p(b|a)p(a), to express the posterior probability in terms of the likelihood

and the prior. In this case we want to optimize over all states xk:

{
x̂k

}
k∈[0,n] = arg max

 n∏
i=1

p(xi|xi−1)p(yi|xi)

 p(y0|x0)p(x0)


= arg max

p(yn|xn)p(xn|xn−1)

 n−1∏
i=1

p(xi|xi−1)p(yi|xi)

 p(y0|x0)p(x0)

 (83)

In order to find a globally optimal solution at the nth time-step only, a marginalization

is performed by:

x̂n = arg max
xn

∫
Rn

p(yn|xn)p(xn|xn−1)

 n−1∏
i=1

p(xi|xi−1)p(yi|xi)

 p(y0|x0)p(x0)d{xl}l∈[0,n−1]


= arg max

xn

p(yn|xn)
∫
Rn

p(xn|xn−1)

 n−1∏
i=1

p(xi|xi−1)p(yi|xi)

 p(y0|x0)p(x0)d{xl}l∈[0,n−1]


Note that this integral is essentially the prior on xn. Since this prior is an integral of all

Gaussian random variables, the result is a Gaussian random variable (Gaussian distributions

are self conjugate, and marginalizing over a Gaussian yields a Gaussian). Thus while only
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performing a temporally localized update, an updated distribution on xn is used so that

Equation (83) can be written as

x̂n = arg max
xn

[
p(yn|xn)px̂n−1(xn)

]
The updated distribution uses all past information to give in essence a likelihood xn|{yk}k∈[0,n−1].

This estimate comes in the form of a probability distribution on the previous estimate x̂n−1,

and takes the place of the prior on xn.

The Kalman equations can then be derived by using a MAP estimate. Let the prior on

the prediction, p(xn|n−1), be determined by Equation (82). In the case of the regular Kalman

Filter (a linear process), this is the sum of two multivariate Gaussian distributions. Since

the Gaussian is α-stable, this sum is itself a multivariate Gaussian distribution, and can thus

be described completely by finding the mean and covariance matrix. The prior on x̂n takes

the form N(Fn x̂n−1, Fn Pn−1FH
n + Qn). Here Pn−1 is the correlation matrix of the previous

estimate. The MAP estimate is then calculated as:

arg max
x̂n

p(x̂n, yn) = arg max
x̂n

p(yn|x̂n)p(x̂n)

= arg max
x̂n

e−(yn−Φn x̂n)H R−1
n (yn−Φn x̂n)e−(x̂n−Fn x̂n−1)H(FH

n Pn−1 Fn+Qn)−1(x̂n−Fn x̂n−1)

= arg min
x̂n

(yn −Φn x̂n)H R−1
n (yn −Φn x̂n) + (x̂n − Fn x̂n−1)H(Fn Pn−1FH

n + Qn)−1(x̂n − Fn x̂n−1)

This minimum value can be found analytically by setting the derivative equal to zero:

0 =
∂

∂x̂n

(
(yn −Φn x̂n)H R−1(yn −Φn x̂n) + (x̂n − Fn x̂n−1)H(Fn Pn−1FH

n + Qn)−1(x̂n − Fn x̂n−1)
)

=
∂

∂x̂n
(x̂H

n (ΦH
n R−1

n Φn + (Fn Pn−1FH
n + Qn)−1)x̂n − x̂H

n (ΦH
n R−1

n yn + (Fn Pn−1FH
n )−1Fn x̂n−1)

−(yH
n R−1

n Φn + x̂H
n−1FH

n (Fn Pn−1FH
n + Qn)−1)x̂n)

= 2(ΦH
n R−1

n Φ + (Fn Pn−1FH
n + Qn)−1)x̂n − 2(ΦH

n R−1
n yn + (Fn Pn−1FH

n + Qn)−1Fn x̂n−1)
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Let

x̂n|n−1 = Fn x̂n−1 (84)

and

Pn|n−1 = Fn Pn−1FH
n + Qn (85)

be the projected mean and covariance matrix, respectively:

x̂n =
[
ΦH

n R−1
n Φn + P−1

n|n−1

]−1 [
ΦH

n R−1
n yn + P−1

n|n−1 x̂n|n−1

]
=

[
Pn|n−1 − Pn|n−1(Rn +Φn Pn|n−1Φ

H
n )−1Φn Pn|n−1

] [
ΦH

n R−1
n yn + P−1

n|n−1 x̂nn|n−1

]
= x̂n|n−1 − KnΦn x̂n|n−1

+
[
Pn|n−1Φ

H
n R−1

n − Pn|n−1(Rn +Φn Pn|n−1Φ
H
n )−1Φn Pn|n−1Φ

H
n R−1

n

]
yn

= x̂n|n−1 − KnΦn x̂n|n−1 + Kn

[
(Φn Pn|n−1Φ

H
n + Rn)R−1

n −ΦPn|n−1Φ
H
n R−1

n

]
yn

= x̂n|n−1 − KnΦn x̂n|n−1 + Knyn

= x̂n|n−1 + Kn(yn −Φn x̂n|n−1) (86)

Where

Kn := Pn|n−1Φ
H
[
Rn +Φn Pn|n−1Φ

H
n

]−1
(87)

is the definition of the Kalman gain at time n. This is the exact solution that the Kalman

Filter should give as a best estimate of the current state. To continue propagating the

estimate to future iterations, the covariance matrix Pn needs to be calculated as well. Pn

can then be calculated by simply finding E[x̂n+1 x̂H
n+1] using the expression derived for the

estimate.
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E[x̂n x̂H
n ] = E[(x̂n|n−1 + Knyn − KnΦn x̂n|n−1)(x̂n|n−1 + Knyn − KnΦn x̂n|n−1)H]

= (I − KnΦn)Pn|n−1(I − KnΦn)H + KnRnKH
n

= Pn|n−1 − KnΦPn|n−1 − Pn|n−1Φ
H KH

n + Kn(Φn Pn|n−1Φ
H
n + Rn)KH

n

= Pn|n−1 − KnΦn Pn|n−1 − Pn|n−1Φ
H
n KH

n

+Pn|n−1Φ
H
n

[
Rn +Φn Pn|nnΦ

H
n

]−1
(Φn Pn|n−1Φ

H
n + Rn)KH

n

= Pn|n−1 − KnΦn Pn|n−1 − Pn|n−1Φ
H
n KH

n + Pn|nnΦ
H
n KH

n

= Pn|n−1 − KnΦPn|n−1 (88)

The Equations compromising the standard Kalman Filter update are then given by

Equations (84), (85), (87), (86), and (88).

8.2 General Temporal Convergence for BPDN-DF

To prove Theorem 6, we first show that the BPDN-DF optimization problem at each iter-

ation is a BPDN problem where the sensing matrix satisfies the RIP with a better constant

than the associated inference that does not include dynamic filtering. Theorem 6 is then

a direct consequence of using the theoretical guarantees from [125, 237] to obtain a per-

iterate error bound, which can be related to the error at the last iteration, allowing for a

recursive error bound to be determined. First, we assume that the matrix Φ satisfies the

RIP(2K, δ) with respect to signals sparse in Ψ. We then note that we can combine the first

and third terms in the BPDN-DF optimization Equation (41) into an augmented BPDN

optimization

ân = arg min
a

∥∥∥∥∥∥∥∥∥


1
√

1+κ
y√

κ
1+κ

f (Ψan−1)

 −


1
√

1+κ
ΦΨ√
κ

1+κ
Ψ

 a

∥∥∥∥∥∥∥∥∥
2

2

+
γ

1 + κ
‖a‖1,

Which is essentially trying to solve the BPDN problem with the augmented matrix

Φ̃ = [ΨTΦT ,
√
κΨT ]T , and the factor of 1/(1 + κ) is introduced to normalize the columns
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of the augmented measurement matrix. Thus the first step is to show that Φ̃ satisfies the

RIP as well, and for more favorable constants. Since we assumed that Φ had RIP(2K,δ),

we can find the RIP of Φ̃ by observing the upper and lower bounds of the norm of ‖Φ̃a‖22

for any 2K-sparse a:

‖Φ̃Ψa‖22 =
1

1 + κ
‖ΦΨa‖22 +

κ

1 + κ
‖a‖22

≤
C

1 + κ
(1 + δ)‖a‖22 +

κ

1 + κ
‖a‖22

≤
C + κ + Cδ

1 + κ
‖a‖22

≤
C + κ

1 + κ

(
1 +

C
C + κ

δ
)
‖a‖22,

similarly, for the lower bound, we obtain ‖Φ̃Ψa‖22 ≥
C+κ
1+κ

(1 − C
C+κ

δ)‖a‖22. Thus the RIP

constants for Φ̃ are C̃ = (C +κ)/(1+κ) and δ̃ = Cδ/(C +κ). AssumingΦ is well normalized

(i.e. C = 1), these expressions reduce to C̃ = 1 and δ̃ = δ/(1+κ). Since κ is always positive,

this implies that δ̃ < δ and the conditioning on the augmented matrix is improved with

respect to the original system. It remains, however, to show that the improved conditioning

yields any tangible benefits given that new errors are introduced in the innovations term.

In the BPDN bounds we need to know the `2 error of the measurements σn, which in

this case depends on both the actual measurement error as well as the dynamics error. The

augmented system has to account for the errors not only in the dynamics model (the inno-

vations term), but also in the previous estimate. We can thus bound the error by observing

that √
κ

1 + κ
( f (Ψân−1) −Ψan) =

√
κ

1 + κ
( f (Ψân−1) − f (Ψan−1) − νn),

Using the smoothness assumption on f (·), we can see that∥∥∥∥∥∥
√

κ

1 + κ
( f (Ψân−1) −Ψan)

∥∥∥∥∥∥
2

≤

√
κ

1 + κ
( f ∗‖e + n − 1‖2 + ‖νn‖2),

With this inequality, and the assumptions that ‖εn‖2 ≤ ε and ‖νn‖2 ≤ ν for all n, the
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effective measurement error on the augmented is then

σn = ‖̃yn − Φ̃an‖2

≤
‖εn‖2
√

1 + κ
+

√
κ

1 + κ
f ∗‖en−1‖2 +

√
κ

1 + κ
‖νn‖2

≤
1

√
1 + κ

ε +

√
κ

1 + κ
f ∗‖en−1‖2 +

√
κ

1 + κ
ν (89)

where f ∗ is the Lipshitz constant for the function f .

The general form of the BPDN solution satisfies

‖an − ân‖2 ≤ C1σn + C2γ
√

q,

where C1 and C2 are constants, which can vary depending on the techniques used [125,237].

We can use this bound with the per-time-step σn from Equation (89) to find the time-

dependent bound

‖en‖2 ≤
C1

(
ε +
√
κ f ∗‖en−1‖2 +

√
κν

)
√

1 + κ
+

C2γ

1 + κ

√
q

=

(
C1

√
κ

1 + κ
f ∗

)
‖en−1‖2 +

(
C1ε
√

1 + κ
+ C1

√
κ

1 + κ
ν +

C2γ

1 + κ

√
q
)

= β‖en−1‖2 + α

where

β = C1

√
κ

1 + κ
f ∗

and

α = C1
1

√
1 + κ

ε + C1

√
κ

1 + κ
ν + C2

γ

1 + κ

√
q

This relationship is essentially a simple linear difference equation and is easily solved for

the error at each time step:

‖en‖2 ≤ β
n

(
‖e0‖2 −

α

1 − β

)
+

α

1 − β

indicating that this algorithm converges linearly with rate β when β < 1 and the steady state

error as n→ ∞ is ‖e∞‖2 ≤ α/(1 − β).
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8.3 ISTA-based Temporal convergence for BPDN-DF

To prove Theorem 6, we first need to prove the following theorem about the norm of ISTA’s

intermediate variables. For ease of notation, we omit the temporal subscripts, assuming that

all variables, unless otherwise stated, have temporal subscript n. Additionally, we define

the previous (steady state) estimate as ân = ã and for clarity we refer to a†n as the true

coefficients at time n. To prove this bound we define two subsets of the sparse vector a:

J and J′.We define the index subset J = J[l + 1] as the union of the current set of active

coefficients in the ISTA algorithm Γ[l], the q largest elements of the vector u ∆[l], and the

true active set Γ†. In [125] it is shown that |J| = |∆[l + 1] ∪ Γ[l] ∪ Γ†| ≤ S + 2q. Similarly

we define J‘ = J[l + 2] = ∆[l + 1] ∪ Γ[l + 1] ∪ Γ†.

To start, we bound the energy of u at each algorithmic step at time n with the following

lemma:

Lemma 1. Suppose that the same conditions as in Theorem 6 hold. Additionally, assume

that
∣∣∣∣∣∣a†n∣∣∣∣∣∣22 ≤ b for all n. The vector ul

J (the ISTA variables ul restricted to the support

subset J) at each algorithmic iteration l obtained via ISTA (iterating Equation (42)) with a

step size of µ satisfies

‖ul
J‖2 ≤

(
|η − 1| +

ηδ

1 + κ

)
γ

1 + κ

√
q +

(
η + η

κ f ∗ + δ

κ + 1

)
b + η

√
1 + δ

1 + κ
ε +

ηκ

1 + κ
ν,

And with the restriction

η̃(κ + κ f ∗ + 1 + δ)b + η̃
√

1 + δε + η̃κν ≤

(
1 −
|̃η(1 + κ) − 1| + η̃δ)

1 + κ

)
γ
√

q

then
∣∣∣∣∣∣ul

J

∣∣∣∣∣∣
2

is simply bounded by

∣∣∣∣∣∣ul
J

∣∣∣∣∣∣
2
≤ γ
√

q,

Proof:

We start by writing the norm using the definition of u in the ISTA algorithm:

∣∣∣∣∣∣ul
J

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣∣∣al
J +

η

1 + κ
ΨTΦT

J

(
y −ΦΨal

)
+

ηκ

1 + κ
ΨT

J

(
f (Ψã) −Ψal

)∣∣∣∣∣∣∣∣∣∣
2
.
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Using the fact that y = ΦΨa† + ε,

∣∣∣∣∣∣ul
J

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣∣∣al
J +

η

1 + κ
ΨTΦT

JΦΨ
(
a† − al

)
+

η

1 + κ
ΨTΦT

J ε +
ηκ

1 + κ
ΨT

J

(
f (Ψã) −Ψal

)∣∣∣∣∣∣∣∣∣∣
2

(90)

To properly reduce the portion of this expression depending on the dynamics f (·), we

note that since the dynamics satisfies Ψa†n = f (Ψa†n−1) + νn,

f (Ψã) −Ψal = f (Ψã) −Ψa† +Ψa† −Ψal

= f (Ψã) − f (Ψa†n−1) − ν +Ψa† −Ψal.

Setting η̃ = η/(1 + κ) and collecting similar terms,

∣∣∣∣∣∣ul
J

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣∣∣al

J + η̃ΨT
(
ΦT

JΦ + κIJ

)
Ψ

(
a† − al

)
+ η̃ΨT

(
ΦT

J ε − κν
)

+ η̃κΨT
J

(
f (Ψã) − f (Ψa†n−1)

)∣∣∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣∣∣al
J + η̃ΨT (ΦT

JΦ + κIJ)Ψ
(
a† − al

)∣∣∣∣∣∣∣∣
2

+ η̃
√

1 + δ ||ε ||2 + η̃κ ||ν||2

+η̃κ
∣∣∣∣∣∣∣∣ΨT

J

(
f (Ψã) − f (Ψa†n−1)

)∣∣∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣∣∣al
J + η̃ΨT (ΦT

JΦ + κIJ)Ψ
(
a† − al

)∣∣∣∣∣∣∣∣
2

+ η̃
√

1 + δ ||ε ||2 + η̃κ ||ν||2 + η̃κ f ∗ ||en−1||2

≤
∣∣∣∣∣∣(̃ηΦT

JΦ − (1 − κη̃)IJ)Ψal
J

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣̃η(ΦT

JΦ + κIJ)Ψa†
∣∣∣∣∣∣

2
+ η̃
√

1 + δ ||ε ||2

+η̃κ ||ν||2 + η̃κ f ∗ ||en−1||2 .

where the first and third inequalities follow from the triangle inequality, the fact that ||Ψ|| ≤

1 and the RIP of Φ, the second inequality follows from the smoothness condition on f (·).

To further simplify the above expression, we use the following inequality which follows

from Φ satisfying RIP((|J|, δ) with respect to the bases Ψ,

∣∣∣∣∣∣α(ΨΦ)T
J (ΦΨ)J + βIJ

∣∣∣∣∣∣
2
≤ |α + β| + αδ. (91)

for any constants α, β. Using this inequality, the first two terms of the previous bound can

be bounded using the Cauchy-Schwartz inequality and Equation (91)

∣∣∣∣∣∣ul
J

∣∣∣∣∣∣
2
≤ (|̃η + κη̃ − 1| + η̃δ)

∣∣∣∣∣∣al
∣∣∣∣∣∣

2
+ η̃(κ + 1 + δ)

∣∣∣∣∣∣a†∣∣∣∣∣∣
2

+ η̃
√

1 + δ ||ε ||2 + η̃κ ||ν||2 + η̃κ f ∗ ||en−1||2
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Simplifying, we obtain∣∣∣∣∣∣ul
J

∣∣∣∣∣∣
2
≤ (|̃η(1 + κ) − 1| + η̃δ) γ̃

√
q + η̃(κ + 1 + δ)b + η̃

√
1 + δε + η̃κν + η̃κ f ∗ ||en−1||2 ,

where b is the maximum energy of a† (i.e.
∣∣∣∣∣∣z†∣∣∣∣∣∣

2
≤ b) and γ̃ = γ/(1 + κ).

Ideally, this Lemma should be independent of the previous estimation error norm ||en−1||2

in order for the Lemma to hold for all n. If we initialize the estimate with the zero vector,

the first error has ||e0||2 =
∣∣∣∣∣∣a†0∣∣∣∣∣∣2 ≤ b. Thus, setting ||en−1||2 < b results in the Lemma state-

ment and it will remain to ensure, through choice of algorithmic parameters, that ||en||2 ≤ b

in order for this bound to hold for all n.

First Recursion

With Lemma 1, we seek a recursive expression for the estimation error at algorithmic iter-

ation l + 1,∣∣∣∣∣∣el+1
∣∣∣∣∣∣

2
=

∣∣∣∣∣∣al+1 − a†
∣∣∣∣∣∣

2

=
∣∣∣∣∣∣al+1 − ul+1

J′ + ul+1
J′ − a†

∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣al+1 − ul+1

J′
∣∣∣∣∣∣

2
+

∣∣∣∣∣∣ul+1
J′ − a†

∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣ul+1

J′
∣∣∣∣∣∣

2
+

∣∣∣∣∣∣∣∣aJ′ − a† + η̃ΨT
(
ΦT

JΦΨ(a† − al
J′) +ΦJ′ε + κ( f (Ψã) −Ψal)

)∣∣∣∣∣∣∣∣
2

=
∣∣∣∣∣∣ul+1

J′
∣∣∣∣∣∣

2
+

∣∣∣∣∣∣(̃ηΨTΦT
JΦΨ − IJ′)(a† − al

J′) + η̃ΨTΦJ′ε + η̃κΨT ( f (Ψã) −Ψal)
∣∣∣∣∣∣

2

≤ γ
√

q + η̃κ f ∗ ||en−1||2 + η̃
√

1 + δε + η̃κν + (|̃η + η̃κ − 1| + η̃δ)‖el‖2

Where the first inequality follows from the triangle inequality, the second inequality follows

from the nature of the thresholding function and the definition of u and the third inequality

follows from Lemma 1 and a similar set of steps as used to prove Lemma 1 used on the

second term. This recursive formula can be solved for
∣∣∣∣∣∣el

∣∣∣∣∣∣
2

in terms of all other variables

as

||e[l]||2 ≤ (|η − 1| + η̃δ)l

∣∣∣∣∣∣e0
∣∣∣∣∣∣

2
−
γ
√

q + η̃κ f ∗ ||en−1||2 + η̃
√

1 + δε + η̃κν

1 − |η − 1| − η̃δ

 +

γ
√

q + η̃κ f ∗ ||en−1||2 + η̃
√

1 + δε + η̃κν

1 − |η − 1| − η̃δ
,
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which gives an upper bound on the steady-state error of

||en||2 =
∣∣∣∣∣∣e∞n ∣∣∣∣∣∣

2
≤
γ
√

q + η̃κ f ∗ ||en−1||2 + η̃
√

1 + δε + η̃κν

1 − |η − 1| − η̃δ
.

Second Recursion

This steady state error of the ISTA algorithm with respect to the algorithmic steps can be

treated as a new recursive equation on ||en||2 in terms of the signal time-step n which can be

solved for ||en||2

||en||2 ≤

(
η̃κ f ∗

1 − |η − 1| − η̃δ

)n ||e0||2 −
γ
√

q + η̃
√

1 + δε + η̃κν

1 − |η − 1| − η̃δ − η̃κ f ∗


+
γ
√

q + η̃
√

1 + δε + η̃κν

1 − |η − 1| − η̃δ − η̃κ f ∗
,

which yields a bound for the error at every iteration n.

The only remaining task is to ensure that ||en||2 ≤ b for all n, in order for Lemma 1 to

hold. If b bounds the error at each n, then

βn(||e0||2 −
α

1 − β
) +

α

1 − β
≤ βn(b −

α

1 − β
) +

α

1 − β
≤ b

holds. Simplifying,

α(1 − βn)
1 − β

≤ (1 − βn)b→
α

1 − β
≤ b,

or in terms of the model and system parameters,

(1 + κ)γ
√

q + η
√

1 + δε + ηκν

(1 + κ)(1 − |η − 1|) − ηδ − ηκ f ∗
≤ b.

Since the only parameters we can change at will are κ and γ, we can interpret this bound as

a restriction on κ:
κ >

γ
√

q+η
√

1+δε−(1−|η−1|−ηδ)b
(1−|η−1|−η f ∗)b−γ

√
q−ην if (1 − |η − 1| − η f ∗)b − γ

√
q − ην > 0

κ <
γ
√

q+η
√

1+δε−(1−|η−1|−ηδ)b
(1−|η−1|−η f ∗)b−γ

√
q−ην if (1 − |η − 1| − η f ∗)b − γ

√
q − ην < 0

Which completes the proof.
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8.4 RIP for Single Input with Optimal Feed-Forward Vectors

In this appendix, we show that the matrix Φ = UZ̃F satisfies the RIP under the conditions

stated in Equation (21) of the main text in order to prove Theorem 3.1.3. We note that [53]

shows that for the canonical basis (Ψ = I), the bounds for M can be tightened to M ≥

max
{
C S
δ2 log4 N, C′ S

δ2 log η−1
}

using a more complex proof technique than we will employ

here. For η = 1
N , the result in [53] represents an improvement of several log(N) factors

when restricted to only the canonical basis for Ψ. We also note that the scaling constant C

found in the general RIP definition of Equation (5) of the main text is unity due to the
√

M

scaling of z.

While the proof of Theorem 3.1.3 is fairly technical, the procedure follows very closely

the proof of Theorem 8.1 from [53] on subsampled discrete time Fourier transform (DTFT)

matrices. While the basic approach is the same, the novelty in our presentation is the in-

corporation of the sparsity basisΨ and considerations for a real-valued connectivity matrix

W.

Before beginning the proof of this theorem, we note that because U is assumed uni-

tary, ‖ΦΨx‖2 = ‖Z̃FΨx‖2 for any signal x. Thus, it suffices to establish the conditioning

properties of the matrix Φ̂ := Z̃FΨ. For the upcoming proof, it will be useful to write

this matrix as a sum of rank-1 operators. The specific rank-1 operator that will be useful

for our purposes is XlXH
l with XH

l := FH
l Ψ, the conjugate of the l-th row of FΨ, where

FH
l :=

[
1, e jwl , · · · , e jwl(N−1)

]
∈ CN is the conjugated l-th row of F. Because of the way

the “frequencies” {wm} are chosen, for any l > M
2 , Xl = X∗

l− M
2
. The l-th row of Φ̂ is z̃lXH

l

where z̃l is the l-th diagonal entry of the diagonal matrix Z̃, meaning that we can use the

sum of rank-1 operators to write the decomposition Φ̂HΦ̂ =
∑M

l=1 |̃zl|
2XlXH

l . If we define the

random variable B := Φ̂HΦ̂ − I and the norm ‖B‖S := sup
y is S -sparse

yH By
yH y

, we can equivalently

say that Φ̂ has RIP conditioning δ if

‖B‖S :=
∥∥∥∥Φ̂HΦ̂ − I

∥∥∥∥
S

=

∥∥∥∥∥∥∥
M∑

l=1

|̃zl|
2XlXH

l − I

∥∥∥∥∥∥∥
S

≤ δ.
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To aid in the upcoming proof, we make a few preliminary observations and rewrite the

quantities of interest in some useful ways. First, because of the correspondences between

the summands in Φ̂HΦ̂ (i.e. Xl = X∗l−M/2), we can rewrite Φ̂HΦ̂ as

Φ̂HΦ̂ =

M/2∑
l=1

|̃zl|
2XlXH

l +

M/2∑
l=1

|̃zl|
2
(
XlXH

l

)∗
,

making clear the fact that there are only M
2 independent wm’s. Under the assumption of

Theorem 3.1.3, z̃l = 1
√

M
for l = 1, · · · ,M. Therefore,

E

M/2∑
l=1

|̃zl|
2XlXH

l

 =

M/2∑
l=1

|̃zl|
2E

[
XlXH

l

]
=

M/2∑
l=1

1
M
ΨHE

[
FlFH

l

]
Ψ =

1
2

I,

where it is straightforward to check that E
[
FlFH

l

]
= I. By the same reasoning, we also

have E
[∑M/2

l=1 |̃zl|
2
(
XlXH

l

)∗]
= 1

2 I. This implies that we can rewrite B as

B =

M∑
l=1

(
|̃zl|

2XlXH
l

)
− I

=

M/2∑
l=1

|̃zl|
2XlXH

l −
1
2

I

 +

M/2∑
l=1

|̃zl|
2
(
XlXH

l

)∗
−

1
2

I


=: B1 + B2.

The main proof of the theorem has two main steps. First, we will establish a bound on

the moments of the quantity of interest ‖B‖S . Next we will use these moments to derive a

tail bound on ‖B‖S , which will lead directly to the RIP statement we seek. The following

two lemmas from the literature will be critical for these two steps.

Lemma 2 (Lemma 8.2 of [53]). Suppose M ≥ S and suppose we have a sequence of

(fixed) vectors Yl ∈ C
N for l = 1, · · · ,M such that κ := maxl=1,··· ,M ‖Yl‖∞ < ∞. Let {ξl} be a

Rademacher sequence, i.e., a sequence of i.i.d. ±1 random variables. Then for p = 1 and

for p ∈ R and p ≥ 2,E

∥∥∥∥∥∥∥

M∑
l=1

ξlYlYH
l

∥∥∥∥∥∥∥
p

S




1/p

≤ C′C1/pκ
√

p
√

S log(100S )
√

log(4N) log(10M)

×

√√√∥∥∥∥∥∥∥
M∑

l=1

YlYH
l

∥∥∥∥∥∥∥
S

,
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where C,C′ are universal constants.

Lemma 3 (Adapted from Proposition 6.5 of [53]). Suppose Z is a random variable satis-

fying

(E [|Z|p])1/p
≤ αβ1/p p1/γ,

for all p ∈ [p0, p1], and for constants α, β, γ, p0, p1. Then, for all u ∈ [p1/γ
0 , p1/γ

1 ],

P
[
|Z| ≥ e1/γαu

]
≤ βe−uγ/γ.

Armed with this notation and these lemmas, we now prove Theorem 3.1.3:

Proof. We seek to show that under the conditions on M in Theorem 3.1.3, P [‖B‖S > δ] ≤

η. Since B = B1 + B2 and {‖B1‖S ≤ δ/2} ∩ {‖B2‖S ≤ δ/2} ⊂ {‖B‖S ≤ δ}, then,

P [‖B‖S > δ] ≤ P [‖B1‖S > δ/2] + P [‖B2‖S > δ/2] .

Thus, it will suffice to boundP [‖B1‖S > δ/2] ≤ η/2 since B2 = B∗1 implies thatP [‖B2‖S > δ/2] ≤

η/2. In this presentation we let C,C′ be some universal constant that may not be the same

from line to line.

To begin, we use Lemma 2 to bound Ep :=
(
E

[
‖B1‖

p
S

])1/p
by setting Yl = z̃∗l Xl for

l = 1, · · · , M
2 . To meet the conditions of Lemma 2 we use a standard “symmetrization”

manipulation (see Lemma 6.7 of [53]). Specifically, we can write:

Ep =
(
E

[
‖B1‖

p
S

])1/p

≤ 2

E

∥∥∥∥∥∥∥

M/2∑
l=1

ξlYlYH
l

∥∥∥∥∥∥∥
p

S




1/p

= 2

E

∥∥∥∥∥∥∥

M/2∑
l=1

ξl |̃zl|
2XlXH

l

∥∥∥∥∥∥∥
p

S




1/p

,

where now the expectation is over the old random sequence {wl}, together with a newly

added Rademacher sequence {ξl}. Applying the law of iterated expectation and Lemma 2,
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we have for p ≥ 2:

Ep
p := E

[
‖B1‖

p
S

]
≤ 2pE

E

∥∥∥∥∥∥∥

M/2∑
l=1

ξl |̃zl|
2XlXH

l

∥∥∥∥∥∥∥
p

S

| {wl}




≤
(
2C′C1/p√pκ

√
S log(100S )

√
log(4N) log(5M)

)p
E


∥∥∥∥∥∥∥

M/2∑
l=1

|̃zl|
2XlXH

l

∥∥∥∥∥∥∥
p/2

S


≤

(
C1/p√pκ

√
C′S log4(N)

)p

E



∥∥∥∥∥∥∥

M/2∑
l=1

(
|̃zl|

2XlXH
l −

1
2

I
)∥∥∥∥∥∥∥

S

+
1
2
‖I‖S


p/2

≤

(
C1/p√pκ

√
C′S log4(N)

)p
√√√
E



∥∥∥∥∥∥∥

M/2∑
l=1

(
|̃zl|

2XlXH
l −

1
2

I
)∥∥∥∥∥∥∥

S

+
1
2


p

≤

(
C1/p√pκ

√
C′S log4(N)

)p
√(

Ep +
1
2

)p

.

In the first line above, the inner expectation is over the Rademacher sequence {ξl} (where we

apply Lemma 2) while the outer expectation is over the {wl}. The third line uses the triangle

inequality for the ‖ · ‖S norm, the fourth line uses Jansen’s inequality, and the fifth line uses

triangle inequality for moments norm (i.e., (E [|X + Y |p])1/p ≤ (E [|X|p])1/p + (E [|Y |p])1/p).

To get to log4 N in the third line, we used our assumption that N ≥ M, N ≥ S and N ≥ O(1)

in Theorem 3.1.3. Now using the definition of κ from Lemma 2, we can bound this quantity

as:

κ := max
l
‖Yl‖∞ = max

l
|̃zl|‖Xl‖∞ =

1
√

M
max

l
‖Xl‖∞ =

1
√

M
max

l,n
|〈Fl,Ψn〉| ≤

µ(Ψ)
√

M
.

Therefore, we have the following implicit bound on the moments of the random variable of

interest

Ep ≤ C1/p√p

√
C′Sµ(Ψ)2 log4(N)

M

√
Ep +

1
2
.

The above can be written as Ep ≤ ap

√
Ep + 1

2 , where ap = C1/p√p
√

4C′Sµ(Ψ)2 log4(N)
M . By

squaring, rearranging the terms and completing the square, we have Ep ≤
a2

p

2 + ap

√
1
2 +

a2
p

4 .

183



By assuming ap ≤
1
2 , this bound can be simplified to Ep ≤ ap. Now, this assumption is

equivalent to having an upper bound on the range of values of p:

ap ≤
1
2
⇔

√
p ≤

1
2C1/p

√
M

4C′Sµ(Ψ)2 log4(N)

⇔ p ≤
M

16C2/pC′Sµ(Ψ)2 log4(N)
.

Hence, by using Lemma 3 with α =

√
C′Sµ(Ψ)2 log4(N)

M , β = C, γ = 2, p0 = 2, and

p1 = M
16C2/pC′Sµ(Ψ)2 log4(N)

we obtain the following tail bound for u ∈ [
√

2,
√

p1]:

P

‖B1‖S ≥ e1/2

√
C′Sµ(Ψ)2 log4(N)

M
u

 ≤ Ce−u2/2.

If we pick δ < 1 such that

e1/2

√
C′Sµ(Ψ)2 log4(N)

M
u ≤

δ

2
(92)

and u such that

Ce−u2/2 ≤
η

2
⇔ u ≥

√
2 log(2Cη−1),

then we have our required tail bound of P [‖B1‖S > δ] ≤ η/2. First, observe that Equa-

tion (92) is equivalent to having

M ≥
CSµ(Ψ)2 log4(N) log(η−1)

δ2 .

Also, because of the limited range of values u can take (i.e., u ∈ [
√

2,
√

p1]), we require

that

√
2 log(2Cη−1) ≤

√
M

16C2/pC′Sµ(Ψ)2 log4(N)
=
√

p1

⇔ M ≥ CSµ(Ψ)2 log4(N) log(η−1),

which, together with the earlier condition on M, completes the proof.
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8.5 RIP for Single Input with Gaussian Feed-Forward Vectors

In this appendix we extend the RIP analysis of Appendix 8.4 to the case when z is chosen

to be a Gaussian i.i.d. vector, as presented in Theorem 3.1.3. It is unfortunate that with

the additional randomness in the feed-forward vector, the same proof procedure as in The-

orem 3.1.3 cannot be used. In the proof of Theorem 3.1.3, we showed that the random

variable ‖Z1‖S has p-th moments that scale like αβ1/p p1/2 (through Lemma 2) for a range

of p which suggests that it has a sub-gaussian tail (i.e., P [‖Z1‖S > u] ≤ Ce−u2/2) for a range

of deviations u. We then used this tail bound to bound the probability that ‖Z1‖S exceeds a

fixed conditioning δ. With Gaussian uncertainties in the feed-forward vector z, Lemma 2

will not yield the required sub-gaussian tail but instead gives us moments estimates that

result in sub-optimal scaling of M with respect to N. Therefore, we will instead follow

the proof procedure of Theorem 16 from [238] that will yield the better measurement rate

given in Theorem 3.1.3.

Let us begin by recalling a few notations from the proof of Theorem 3.1.3 and by

introducing further notations that will simplify our exposition later. First, recall that we let

XH
l be the l-th row of FΨ. Thus, the l-th row of our matrix of interest Φ̂ = Z̃FΨ is z̃lXH

l

where z̃l is the l-th diagonal entry of the diagonal matrix Z̃. Whereas before, z̃l = 1
√

M
for

any l = 1, · · · ,M, here it will be a random variable. To understand the resulting distribution

of z̃l, first note that for the connectivity matrix W to be real, we need to assume that the

second M
2 columns of U are complex conjugates of the first M

2 columns. Thus, we can write

U = [UR | UR] + j [UI | − UI], where UR,UI ∈ R
M× M

2 . Because UHU = I, we can deduce

that UT
R UI = 0 and that the `2 norms of the columns of both UR and UI are 1

√
2
.1

With these matrices UR,UI , let us re-write the random vector z̃ to illustrate its structure.
1 This can be shown by writing

UHU =

([UT
R

UT
R

]
− j

[ UT
I

−UT
I

])
([UR | UR] + j [UI | − UI])

=

([
UT

R UR UT
R UR

UT
R UR UT

R UR

]
+

[
UT

I UI −UT
I UI

−UT
I UI UT

I UI

])
+ j

([
UT

R UI −UT
R UI

UT
R UI −UT

R UI

]
+

[
UT

I UR UT
I UR

−UT
I UR −UT

I UR

])
.

Then by equating the above to I + j0, we arrive at our conclusion.
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Consider the matrix Û := [UR | UI] ∈ RM×M, which is a scaled unitary matrix (because

we can check that ÛT Û = 1
2 I). Next, consider the random vector ẑ := ÛT z. Because

Û is (scaled) unitary and z is composed of i.i.d. zero-mean Gaussian random variables of

variance 1
M , the entries of ẑ are also i.i.d. zero-mean Gaussian random variables, but now

with variance 1
2M . Then, from our definition of U in terms of UR and UI , for any l ≤ M

2 ,

we have z̃l = ẑl − ĵzl+ M
2

and for l > M
2 , we have z̃l = ẑl− M

2
+ ĵzl. This clearly shows that

each of the first M
2 entries of z̃ is made up of 2 i.i.d. random variables (one being the real

component, the other imaginary), and that the other M
2 entries are just complex conjugates

of the first M
2 . Because of this, for l ≤ M

2 , |̃zl|
2 = |̃zl+ M

2
|2 = ẑ2

l + ẑ2
l+ M

2
is the sum of squares of

2 i.i.d. Gaussian random variables.

From the proof of Theorem 3.1.3, we also denoted

Z := Φ̂HΦ̂ − I =

M/2∑
l=1

|̃zl|
2XlXH

l −
1
2

I

 +

M/2∑
l=1

|̃zl|
2
(
XlXH

l

)∗
−

1
2

I

 =: Z1 + Z2.

It is again easy to check that E
[∑M/2

l=1

(
|̃zl|

2XlXH
l

)]
= E

[∑M/2
l=1

(
|̃zl|

2
(
XlXH

l

)∗)]
= 1

2 I. Finally,

Φ̂ has RIP conditioning δ whenever ‖Z‖S ≤ δ with ‖Z‖S := sup
y is S -sparse

yHZy
yHy

.

Before moving on to the proof, we first present a lemma regarding the random sequence

|zl|
2 that will be useful in the sequel.

Lemma 4. Suppose for l = 1, · · · , M
2 , |̃zl|

2 = ẑ2
l + ẑ2

l+M/2 where ẑl for l = 1, · · · ,M is

a sequence of i.i.d. zero-mean Gaussian random variables of variance 1
2M . Also suppose

that η ≤ 1 is a fixed probability. For the random variable maxl=1,··· ,M/2 |̃zl|
2, we have the

following bounds on the expected value and tail probability of this extreme value:

E

[
max

l=1,··· ,M/2
|̃zl|

2
]
≤

1
M

(
log

(C1M
2

)
+ 1

)
, (93)

P

 max
l=1,··· ,M/2

|̃zl|
2 >

C2 log
(
C′2Mη−1

)
M

 ≤ η. (94)

Proof. To ease notation, every index l used as a variable for a maximization will be taken

over the set l = 1, . . . , M
2 without explicitly writing the index set. To calculate E

[
maxl |̃zl|

2
]
,
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we use the following result that allows us to bound the expected value of a positive random

variable by its tail probability (see Proposition 6.1 of [Rauhut]):

E

[
max

l
|̃zl|

2
]

=

∫ ∞

0
P

[
max

l
|̃zl|

2 > u
]

du. (95)

Using the union bound, we have the estimate P
[
maxl |̃zl|

2 > u
]
≤ M

2 P
[
|̃z1|

2 > u
]

(since the

|̃zl|
2 are identically distributed). Now, because |̃z1|

2 is a sum of squares of two Gaussian

random variables and thus is a (generalized) χ2 random variable with 2 degrees of freedom

(which we shall denote by χ2),2 we have

P
[
|̃z1|

2 > u
]

= P
[
χ2 > 2Mu

]
=

1
Γ(1)

e
−2Mu

2 = C1e−Mu,

where Γ(·) is the Gamma function and the 2Mu appears instead of u in the exponential be-

cause of the standardization of the Gaussian random variables (initially of variance 1
2M ). To

proceed, we break the integral in (95) into 2 parts. To do so, notice that if u < 1
M log

(
C1 M

2

)
,

then the trivial upper bound of P
[
maxl |̃zl|

2 > u
]
≤ 1 is a better estimate than C1 M

2 e−Mu. In

other words, our estimate for the tail bound of maxl |̃zl|
2 is not very good for small u but

gets better with increasing u. Therefore, we have

E

[
max

l
|̃zl|

2
]
≤

∫ 1
M log

(
C1 M

2

)
0

1 du +

∫ ∞

1
M log

(
C1 M

2

) C1M
2

e−Mu du

=
1
M

log
(C1M

2

)
−

C1M
2

[
1
M

e−Mu

]∣∣∣∣∣∣∞1
M log

(
C1 M

2

)
=

1
M

log
(C1M

2

)
+

C1

2
e− log

(
C1 M

2

)
=

1
M

(
log

(C1M
2

)
+ 1

)
.

This is the bound in expectation that we seek for in Equation (95).

In the second part of the proof that follows, C,C′ denote universal constants. Essen-

tially, we will want to apply Lemma 3 that is used in Appendix 8.4 to obtain our tail bound.

In the lemma, the tail bound of a random variable X can be estimated once we know the
2 The pdf of a χ2 random variable χq with q degrees of freedom is given by p(x) = 1

2q/2Γ(q/2) xq/2−1e−x/2.

Therefore, it’s tail probability can be obtained by integration: P
[
χq > u

]
=

∫ ∞
u p(x)dx.
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moments of X. Therefore, we require the moments of the random variable maxl |̃zl|
2. For

this, for any p > 0, we use the following simple estimate:

E

[
max

l
|̃zl|

2p
]
≤

M
2

max
l
E

[
|̃zl|

2p
]

=
M
2
E

[
|̃z1|

2p
]
, (96)

where the first step comes from writing the expectation as an integral of the cumulative dis-

tribution (as seen in Equation (95)) and taking the union bound, and the second step comes

from the fact that the |̃zl|
2 are identically distributed. Now, |̃z1|

2 is a sub-exponential random

variable since it is a sum of squares of Gaussian random variables [239].3 Therefore, for

any p > 0, it’s p-th moment can be bounded by

E
[
|̃z1|

2p
]1/p
≤

C′

M
C1/p p,

where the division by M comes again from the variance of the Gaussian random variables

that make up |̃z1|
2. Putting this bound with Equation (96), we have the following estimate

for the p-th moments of maxl |̃zl|
2:4

E

[
max

l
|̃zl|

2p
]1/p
≤

C′

M

(CM
2

)1/p

p.

Therefore, by Lemma 3 with α = C′
M , β = CM

2 , and γ = 1, we have

P

[
max

l
|̃zl|

2 >
eC′u

M

]
≤

CM
2

e−u.

By choosing u = log
(

CM
2 η

−1
)
, we have our desired tail bound of

P

max
l
|̃zl|

2 >
C2 log

(
C′2Mη−1

)
M

 ≤ η.

Armed with this lemma, we can now turn out attention to the main proof. As stated

earlier, this follows essentially the same form as [238] with the primary difference of in-

cluding the results from Lemma 4. As before, because P [‖Z‖S > δ] ≤ P [‖Z1‖S > δ/2] +

3 A sub-exponential random variable is a random variable whose tail probability is bounded by exp−Cu for
some constant C. Thus, a χ2 random variable is a specific instance of a sub-exponential random variable.

4We remark that this bound gives a worse estimate for the expected value as that calculated before because
of the crude bound given by Equation (96).
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P [‖Z2‖S > δ/2] with Z2 = Z∗1, we just have to consider bounding the tail boundP [‖Z1‖S > δ/2].

This proof differs from that in Appendix 8.4 in that here, we will first show that E [‖Z1‖S ]

is small when M is large enough and then show that Z1 does not differ much from E [‖Z1‖S ]

with high probability.

Expectation

In this section, we will show that E [‖Z1‖S ] is small. This will basically follow from

Lemma 2 in Appendix 8.4 and Equation (93) in Lemma 4. To be precise, the remainder of

this section is to prove:

Theorem 7. Choose any δ′ ≤ 1
2 . If M ≥ C3Sµ(Ψ)2 log5 N

δ′2
, then E [‖Z‖S ] ≤ δ′.

Proof. Again, C is some universal constant that may not be the same from line to line. We

follow the same symmetrization step found in the proof in Appendix 8.4 to arrive at:

E := E [‖Z1‖S ] ≤ 2E

E

∥∥∥∥∥∥∥

M/2∑
l=1

ξl |̃zl|
2XlXH

l

∥∥∥∥∥∥∥
S

|{wl}, z̃


 ,

where the outer expectation is over the Rademacher sequence {ξl} and the inner expec-

tation is over the random “frequencies” {wl} and feed-forward vector z̃. As before, for

l = 1, · · · , M
2 , we set Yl = z̃∗l Xl. Observe that by definition κ := maxl=1,··· ,M/2 ‖Yl‖∞ =

maxl |̃zl|‖Xl‖∞ and thus is a random variable. We then use Lemma 2 with p = 1 to get

E ≤ 2C
√

S log(100S )
√

log(4N) log(5M)E

κ
√√√∥∥∥∥∥∥∥

M/2∑
l=1

|̃zl|
2XlXH

l

∥∥∥∥∥∥∥
S


≤

√
4CS log4(N)

√
E

[
κ2]√√√E 

∥∥∥∥∥∥∥
M/2∑
l=1

|̃zl|
2XlXH

l

∥∥∥∥∥∥∥
S


≤

√
4CS log4(N)

√
E

[
κ2]√E +

1
2
, (97)

where the second line uses the Cauchy-Schwarz inequality for expectations and the third

line uses triangle inequality. Again, to get to log4 N in the second line, we used our as-

sumption that N ≥ M, N ≥ S and N ≥ O(1) in Theorem 3.1.3. It therefore remains to cal-

culate E
[
κ2

]
. Now, κ = maxl |̃zl|‖Xl‖∞ ≤ maxl |̃zl|maxl ‖Xl‖∞. First, we have maxl ‖Xl‖∞ =

189



maxl,n |〈Fl,Ψn〉| ≤ µ(Ψ). Next, (93) in Lemma 4 tells us that E
[
maxl=1,··· ,M/2 |̃zl|

2
]
≤

1
M

(
log

(
C1 M

2

)
+ 1

)
. Thus, we have E

[
κ2

]
≤

µ(Ψ)2

M

(
log

(
C1 M

2

)
+ 1

)
. Putting everything to-

gether, we have

E = E [‖Z1‖S ] ≤

√
CS log4(N)

(
log

(
C1 M

2

)
+ 1

)
µ(Ψ)2

M

√
E +

1
2
.

Now, the above can be written as E ≤ a
√

E + 1
2 , where a =

√
CS log4(N)

(
log

(
C1 M

2

)
+1

)
µ(Ψ)2

M . By

squaring it, rearranging the terms and completing the squares, we have E ≤ a2

2 + a
√

1
2 + a2

4 .

By supposing a ≤ 1
2 , this can be simplified as E ≤ a. To conclude, let us choose M such

that a ≤ δ′ where δ′ ≤ 1
2 is our pre-determined conditioning (which incidentally fulfills

our previous assumption that a ≤ 1
2 ). By applying the formula for a, we have that if

M ≥ C3Sµ(Ψ)2 log5(N)
δ′2

, then E ≤ δ′.

Tail Probability

To give a probability tail bound estimate to Z1, we use the following lemma found in [53,

238]:

Lemma 5. Suppose Yl for l = 1, · · · ,M are independent, symmetric random variables such

that ‖Yl‖S ≤ ζ < ∞ almost surely. Let Y =
∑M

l=1 Yl. Then for any u, t > 1, we have

P
[
‖Y‖S > C(uE [‖Y‖S ] + tζ)

]
≤ e−u2

+ e−t.

The goal of this section is to prove:

Theorem 8. Pick any δ ≤ 1
2 and suppose N− log4(N) ≤ η ≤ 1

e . Suppose M ≥ C4Sµ(Ψ)2 log5 N log η−1

δ2 ,

then P [‖Z1‖S > δ] ≤ 8η.

Proof. To use Lemma 5, we want Yl to look like the summands of

Z1 =

M/2∑
l=1

(
|̃zl|

2XlXH
l − E

[
|̃zl|

2XlXH
l

])
.
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However, this poses several problems. First, they are not symmetric5 and thus, we need to

symmetrize it by defining

Ỹl = |̃zl|
2XlXH

l − |̃z
′
l |

2X′l (X
′
l )

H

∼ ξl

(
|̃zl|

2XlXH
l − |̃z

′
l |

2X′l (X
′
l )

H
)

where z̃′, X′l are independent copies of z̃ and Xl respectively, and ξl is an independent

Rademacher sequence. Here, the relation X ∼ Y for two random variables X,Y means

that X has the same distribution as Y . To form Ỹl, what we have done is take each summand

of Z1 and take it’s difference with an independent copy of itself. Because Ỹl is symmetric,

adding a Rademacher sequence does not change its distribution and this sequence is only

introduced to resolve a technicality that will arise later on. If we let Ỹ :=
∑M/2

l=1 Ỹl, then the

random variables Ỹ (symmetrized) and Z1 (un-symmetrized) are related via the following

estimates [53]:

E
[
‖Ỹ‖S

]
≤ 2E [‖Z1‖S ] , (98)

P [‖Z1‖S > 2E [‖Z1‖S ] + u] ≤ 2P
[
‖Ỹ‖S > u

]
. (99)

However, a second condition imposed on Yl in Lemma 5 is that ‖Yl‖S ≤ ζ < ∞ almost

surely. Because of the unbounded nature of the Gaussian random variables z̃l and z̃′l in Ỹl,

this condition is not met. Therefore, we need to define a Yl that is conditioned on the event

that these Gaussian random variables are bounded. To do so, define the following event:

F =

max
{
max

l
|̃zl|

2, max
l
|̃z′l |

2
}
≤

C2 log
(
C′2Mη−1

)
M

 .
5A random variable X is symmetric if X and −X has the same distribution.
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Using Equation (94) in Lemma 4, we can calculate P [Fc], where Fc is the complemen-

tary event of F:

P [Fc] = P

max
{
max

l
|̃zl|

2, max
l
|̃z′l |

2
}
>

C2 log
(
C′2Mη−1

)
M


≤ P

max
l
|̃zl|

2 >
C2 log

(
C′2Mη−1

)
M

 + P

max
l
|̃z′l |

2 >
C2 log

(
C′2Mη−1

)
M


≤ 2η.

Conditioned on event F, the ‖ · ‖S norm of Ỹl is well-bounded:

∥∥∥Ỹl

∥∥∥
S

=
∥∥∥|̃zl|

2XlXH
l − |̃z

′
l |

2X′l (X
′
l )

H
∥∥∥

S
≤ 2 max

{
max

l
|̃zl|

2, max
l
|̃z′l |

2
} ∥∥∥XlXH

l

∥∥∥
S

=
2C2 log

(
C′2Mη−1

)
M

sup
y is S -sparse

{
yHXlXH

l y
yHy

}

≤
2C2 log

(
C′2Mη−1

)
M

sup
y is S -sparse

{
‖Xl‖

2
∞

‖y‖21
‖y‖22

}

≤
2S C2 log

(
C′2Mη−1

)
M

max
l
‖Xl‖

2
∞ ≤

CSµ(Ψ)2 log
(
C′2Mη−1

)
M

:= ζ,

where in the last line we used the fact that the ratio between the `1 and `2 norms of an

S -sparse vector is S , and the estimate we derived for maxl ‖Xl‖
2
∞ in Appendix 8.4.

We now define a new random variable that is a truncated version of Ỹl which takes for

value 0 whenever we fall under event Fc, i.e.,

Yl := Ỹl IF = ξl

(
||̃zl|

2XlXH
l − |̃z

′
l |

2X′l (X
′
l )

H
)
IF ,

where IF is the indicator function of event Fl. If we define Y =
∑M/2

l=1 Yl, then the random

variables Y (truncated) and Ỹ (un-truncated) are related by [238] (see also Lemma 1.4.3

of [240])

P
[
‖Ỹ‖S > u

]
≤ P [‖Y‖S > u] + P [Fc] . (100)

When z̃, z̃′, Xl, X′l are held constant so only the Rademacher sequence ξl is random, then the

contraction principle [238, 241] tells us that E [‖Y‖S ] ≤ E
[
‖Ỹ‖S

]
. Note that the sole reason
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for introducing the Rademacher sequences is for this use of the contraction principle. As

this holds point-wise for all z̃, z̃′, Xl, X′l , we have

E [‖Y‖S ] ≤ E
[
‖Ỹ‖S

]
. (101)

We now have all the necessary ingredients to apply Lemma 5. First, by choosing δ′ ≤ 1
2 ,

from Theorem 7, we have that E [‖Z‖S ] ≤ δ′ whenever M ≥ C3Sµ(Ψ)2 log5 N
δ′2

. Thus, by chaining

(101) and (98), we have

E [‖Y‖S ] ≤ E
[
‖Ỹ‖S

]
≤ 2E [‖Z1‖S ] ≤ 2δ′.

Also, with this choice of M, we have

ζ =
CSµ(Ψ)2 log

(
C′2Mη−1

)
M

≤
Cδ′2 log

(
C′2Mη−1

)
log5 N

.

Using these estimates for ζ and E [‖Y‖S ], and choosing u =
√

log η−1 and t = log η−1,

Lemma 5 says that

P

‖Y‖S > C′
2δ′√log η−1 +

Cδ′2 log
(
C′2Mη−1

)
log η−1

log5 N


 ≤ 2η.

Then, using the relation between the tail probabilities of Y and Ỹ (100) together with our

estimate for P [Fc], we have

P

‖Ỹ‖S > C′
2δ′√log η−1 +

Cδ′2 log
(
C′2Mη−1

)
log η−1

log5 N


 ≤ 2η + P [Fc] ≤ 4η.

Finally, using the relation between the tail probabilities of Ỹ and Z (99), we have

P

‖Z1‖S > 2δ′ + 2C′δ′
√

log η−1 +
CC′δ′2 log

(
C′2Mη−1

)
log η−1

log5 N

 ≤ 8η,

where we used the fact that E [‖Z1‖S ] ≤ δ′. Then, for a pre-determined conditioning δ ≤ 1
2 ,

pick δ′ = δ

3C′′
√

log η−1
for a constant C′′ which will be chosen appropriately later. With this

choice of δ′ and with our assumptions that δ ≤ 1
2 and η ≤ 1

e , the three terms in the tail
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bound becomes

2δ′ =
δ

3C′′
√

log η−1
≤

1
C′′

δ

3
,

2C′δ′
√

log η−1 =
2C′

C′′
δ

3
,

CC′δ′2 log
(
C′2Mη−1

)
log η−1

log5 N
=

CC′δ2(log(C′2M) + log η−1)

9 (C′′)2 log5 N

≤
CC′(log(C′2M) + log η−1)

3 (C′′)2 log5 N

δ

3
.

As for the last term, if η ≥ 1
C′2 M , then CC′(log(C′2 M)+log η−1)

3(C′′)2 log5 N
≤

2CC′ log(C′2 M)

3(C′′)2 log5 N
≤ 2CC′

3(C′′)2 (where we

further supposed that N ≥ O(1)). If N− log4 N ≤ η ≤ 1
C′2 M (where the lower bound is from

the theorem assumptions), then CC′(log(C′2 M)+log η−1)

3(C′′)2 log5 N
≤

2CC′ log η−1

3(C′′)2 log5 N
≤ 2CC′

3(C′′)2 . By choosing C′′

appropriately large, we then have

P

[
‖Z1‖S >

δ

3
+
δ

3
+
δ

3

]
≤ 8η.

Putting the formula for δ′ into M ≥ C3Sµ(Ψ)2 log5 N
δ′2

completes the proof.

8.6 RIP with Multiple Sparse Inputs

In this appendix we show analyze the RIP of networks with multiple input streams, proving

Theorem 3. The main approach follows very closely to the proof of Theorem 3.1.3 in

Appendix 8.5. As the majority of the proof is identical, we will describe in this appendix

the deviations from the previous proof.

Expectation

As in Appendix 8.5, we can define the productΦHΦ as the sum of rank-1 operators, XlXH
l ,

where XH
l :=

∑L
k=1 b̃mZl,kFH

l Ψ
k,l, the conjugate of the l-th row of [Z̃1F, Z̃2F, · · · , Z̃LF]Ψ,

where FH
l :=

[
1, e jwl , · · · , e jwl(N−1)

]
∈ CN is the conjugated l-th row of F. With this small

change in the definition of XH
l , the majority of the proof in Appendix 8.5 holds. In fact all

the steps up to Equation (97) can be followed, yielding
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E ≤
√

C1S log4(NL)
√
E[κ2]

√
E +

1
2

(102)

where instead of using N ≥ M and S ≥ S and N ≥ O(1) we use NL ≥ M and NL ≥ S

and NL ≥ O(1). From Equation (102) note that the main difference in the expectation

bound for the single input model is that the κ, the maximum infinity norm of Xl, bounds

a different quantity. Instead of bounding the max-inf of a set of vectors maxl |̃zl|‖Xl‖∞ =

maxl |̃zl|‖Ψ
HFl‖∞, we instead need to bound the max inf of sums of vectors maxl

∑L
k=1 ‖Z̃l,kΨ

k,lFl‖∞.

To replace the bound on E(κ2) we note that the kth element of Xl is essentially a sum of

independent Gaussian random variables, weighted by the inner product Xl(k) =
∑L

i=1 z̃iFH
l Ψ

l,i
k .

κ can then be described as the maximum of MLN/2 random variables

κ = max
1≤l≤M/2
1≤p≤NL

|Xl(p)|.

To bound this quantity, we can replace the previously used Lemma 4 with the following

lemma corollary:

Lemma 6. Suppose that there are n independent complex Gaussian random variables,

z1, z2, · · · zn. And zi = xi + jyi, where xi and yi are the real and imaginary part of zi. xi

and yi are independent Gaussian random variables with zero mean and variation 1/2M.

φ1, φ2, · · · φn are n random variables which are independent of zi and satisfy

n∑
i=1

|φi|
2 ≤ µ2

0.

Let w =
∑n

i=1 ziφi, then

P(|w|2 > u) ≤ e
− Mu
µ2

0 . (103)

Proof. We use x and y to denote the real and imaginary part of w, ai and bi to denote the
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real and imaginary part of φi. There is

w =

n∑
i=1

(xi + jyi)(ai + jbi)

=

n∑
i=1

(aixi − biyi) + j
n∑

i=1

(aiyi + bixi)

= x + jy

When ai and bi are considered constant, x and y are Gaussian distributed (N(0, 1
2M

∑n
i=1(a2

i +

b2
i ))). Next we need to show that x and y are independent. We note that

Cov(aixi − biyi, aiyi + bixi|ai, bi) = Cov(aixi, bixi|ai, bi) + Cov(−biyi, aiyi|ai, bi)

=
aibi

2M
−

aibi

2M
= 0.

With the independence of xi, yi and x j, y j when i , j, we know that x and y are independent.

Therefore 2M∑n
i=1 (a2

i +b2
i ) |w|

2 has a χ2 distribution when ai and bi are regarded as constants. We

use χ2 to denote a χ2 random variable with 2 degrees of freedom. According to the results

of χ2 distribution, there is

P(|w|2 > u|ai, bi) = P
(
χ2 >

2Mu∑n
i=1 (a2

i + b2
i )
|ai, bi

)
= e

− Mu∑n
i=1 (a2

i +b2
i ) ≤ e

− Mu
µ2

0 . (104)

Since (104) holds for any possible ai and bi, we have

P(|w|2 > u) ≤ e
− Mu
µ2

0 . (105)

Corollary 1. For Q independent random variables w1, w2, · · · , wQ, assume wi =
∑n

l=1 zi,lφil,

zi,l = xi,l + jyi,l and all xi,l, yi,l, 1 ≤ i ≤ Q, 1 ≤ l ≤ n are i.i.d Gaussian random variables

with zero mean and variance 1/2M. Suppose that for any i, there is

n∑
l=1

|φi,l|
2 ≤ µ2

0.

Let wmax = max1≤i≤Q |wi|, then for η > 0, there is

P(w2
max >

µ2
0

M
ln

Q
η

) ≤ η,
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and

Ew2
max ≤

µ2
0

M
(ln Q + 1).

Proof. According to Lemma 6, by taking a union bound, there is

P(w2
max > u) ≤ Qe

− Mu
µ2

0 . (106)

Let η = Qe
− Mu
µ2

0 . There is

P(w2
max >

µ2
0

M
ln

Q
η

) ≤ η. (107)

Then we have

Ew2
max =

∫ ∞

0
P(w2

max > u)du

≤

∫ µ2
0

M ln Q

0
1du +

∫ ∞

µ2
0

M ln Q
Qe
− Mu
µ2

0 du =
µ2

0

M
(log Q + 1).

By Corollary 1 we can see that we can bound

P(κ2 >
µ2(Ψ)

M
ln

MNL
2η

) ≤ η,

and

Eκ2 ≤
µ2(Ψ)

M
(ln

MNL
2

+ 1) ≤ C2
µ2(Ψ)

M
ln (NL),

which when combined with Equation (102) gives us that E < δ′2 when

M ≥
C3Sµ2(Ψ) ln5 (NL)

δ′2
. (108)

Tail Probability

With the new expectation bound, the tail bound also closely follows Appendix 8.5. Here

we also leverage Lemma 5, however while we have the new, correct expectation bound, we

need to also re-derive ζ to match the new matrix structure. We can again symmetrize as

Z =

M/2∑
i=1

(
XiXH

i − X′i X
′H
i

)
. (109)
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and derive the value ζ that bounds ‖Z‖S in probability. First we use a Cauchy-Swartz

inequality to bound

‖Z‖S = ‖XiXH
i − X′i X

′H
i ‖K ≤ 2 max{‖XiXH

i ‖K , ‖X
′
i X
′H
i ‖K},

and we can bound the maximum of

‖XiXH
i ‖K ≤ sup

y is S−sparse
‖Xi‖

2
∞

‖y‖21
‖y‖22

≤ S κ2.

From our previous results on bounding κ, we can see that

P

(
‖XiXH

i ‖S >
Sµ2(Ψ)

M
log

MNL
2η

)
≤ η,

which gives us the probability that the event F, defined as

F =

{
max{‖XiXH

i ‖S , ‖X
′
i X
′H
i ‖S } ≤

Sµ2(Ψ)
M

log
MNL

2η
:= ζ

}
, (110)

that our random variables are bounded is 1 − η (i.e. P(FC) ≤ 2η). Using this new tail

probability ζ along with the new expectation bound in Lemma 5 as in Appendix 8.5 yields

the desired result, that

P

‖Z1‖S > 2δ′ + 2C̃δ′
√

log η−1 + C̃ ln η−1 C4δ
′2 ln (1

2 NLMη−1)

ln5 (NL)

 ≤ 8η,

for constants C̃ and C4, and Z1 is as defined in Appendix 8.5. Using the same finishing

steps as in Appendix 8.5, we can see that if (NL)− ln4 (NL) ≤ η < 1/e then we obtain our

desired result, i.e. when

M ≥
CSµ2(Ψ) log5 (NM) log (η−1)

δ2 . (111)

then

P(‖Z1‖S > δ) ≤ 8η,
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8.7 RIP for Multiple Low-Rank Inputs

In this appendix we prove Theorem 4 that a low-rank input matrix X can be recovered

from the network state x[N] via the nuclear norm optimization program (30). To prove this

theorem we utilize the concept of the dual certificate, which has been used to prove similar

results in [63, 87, 98, 242]. In this methodology we seek a certificate Y whose projections

into and out of the space spanned by the singular vectors of X are bounded appropriately.

Specifically if we consider the singular value decomposition of X as

X = QΣV∗

and we consider the projection PT which projects a matrix into the space T spanned by the

left and right singular vectors,

PT (W) = QQ∗W + WVV∗ − QQ∗WVV∗ (112)

the conditions for the dual certificate are that A is injective on T and there exists a matrix

Y which satisfies

∣∣∣∣∣∣PT (Y) − QVH
∣∣∣∣∣∣

F
≤

1

2
√

2γ
(113)

||PT⊥ (Y)|| ≤
1
2

(114)

where the projection PT⊥ is the projection onto the perpendicular space to T ,

PT⊥ (W) = (I − QQ∗) W (I − VV∗)

A (W) = vec (〈An,W〉) (115)

The remainder of this proof will be devoted to demonstrating that there does exist a

certificate Y by iteratively devising Y via a golfing scheme [98, 242]. The golfing scheme

essentially generates an iterative method which defined a series of certificate vectors Yk for
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k ∈ [1, · · · , κ] which converge to a certificate Yκ which satisfies the necessary conditions.

As in [98], we can initialize the 0th iterate to zero, and define the kth iterate in terms of the

Yk−1 as

Yk = Yk−1 + κA∗kAk(QV∗ − PT (Yk−1)). (116)

We can see that since every iterate hasA∗k applied to it, every iteration is projected in to the

range of A∗, indicating that the final iteration Y will also be in the range of A∗. In [98],

Asif and Romberg define a simpler iteration

Ỹk = (PT − κPTA
∗
kAkPT )Ỹk−1,

which is expressed in terms of the modified certificate

Ỹk = PT (Yk) − QV∗.

What remains now is to demonstrate that this iterative procedure converges, with high

probability, to a certificate which satisfies the desired dual certificate conditions. We start

by using Lemma 7 and observing that the Forbenious norm of the kth iterate is well bounded

with probability 1 − O((LN)−β) by

∣∣∣∣∣∣∣∣Ỹk

∣∣∣∣∣∣∣∣
F
≤ max

k

∣∣∣∣∣∣PT − κPTA
∗
kAkPT

∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣Ỹk−1

∣∣∣∣∣∣∣∣
F

≤ 2−k
∣∣∣∣∣∣∣∣Ỹ0

∣∣∣∣∣∣∣∣
F

≤ 2−k ||QV∗||F

≤ 2−k
√

R,

so long that M ≤ cβκR(N + µ2
0L) log2(LN). As in [98] we observe that when we choose κ ≥

0.5 log2(8γ2R), the bound for the Frobenious norm of Ỹκ is bounded by
∣∣∣∣∣∣∣∣Ỹκ

∣∣∣∣∣∣∣∣
F
≤ (2
√

2γ)−1.

To show that the second condition on the certificate is also satisfies, we utilize Lemma 8.

We begin with writing the quantity we wish to bound in terms of the past golfing scheme
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iterate

||PT⊥ (Yκ)|| ≤
κ∑

k=1

∣∣∣∣∣∣∣∣PT⊥
(
κA∗kAkỸk−1

)∣∣∣∣∣∣∣∣
=

κ∑
k=1

∣∣∣∣∣∣∣∣PT⊥
(
κA∗kAkỸk−1 − Ỹk−1

)∣∣∣∣∣∣∣∣
≤

κ∑
k=1

∣∣∣∣∣∣∣∣κA∗kAkỸk−1 − Ỹk−1

∣∣∣∣∣∣∣∣
≤

κ∑
k=1

∣∣∣∣∣∣∣∣κA∗kAkỸk−1 − Ỹk−1

∣∣∣∣∣∣∣∣
F

≤

κ∑
k=1

max
k∈[1,...κ]

∣∣∣∣∣∣∣∣κA∗kAkỸk−1 − Ỹk−1

∣∣∣∣∣∣∣∣
F

≤

κ∑
k=1

max
k∈[1,...κ]

1
2

2−k

≤

κ∑
k=1

1
2

(117)

We use Lemma 8 to bound the maximum spectral norm of κA∗kAkỸk−1 − Ỹk−1 with proba-

bility 1 − O((LN)1−β). Taking κ ≥ log(LN) completes the proof.

This bound shows that the final certificate Yκ satisfies all the desired properties. Thus

there exists a unique minimum to the nuclear norm optimization program, and the low-rank

set of inputs are recoverable from the network node values.

Bound on
∣∣∣∣∣∣κPTA

∗
kAkPT − PT

∣∣∣∣∣∣
Lemma 7. Let PT be defined as in Equation (112) and Ak be the restricted measurement

operator as defined in Equation (115). Then if the number of nodes scale as

M ≥ cβκR
(
N + µ2

0L
)

log2(LN)

for a constant β > 1, then with probability greater then 1 − O(κ(LN)−β, we have

max
k∈[1,...,κ]

||κPTA
∗APT − PT || ≤

1
2
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Proof. This lemma bounds the operator norm∣∣∣∣∣∣κPTA
∗
kAkPT − PT

∣∣∣∣∣∣ .
Since E

[
A∗kAk

]
= 1

κ
I, this norm is equivalent to

κPTA
∗
kAkPT − PT = κPTA

∗
kAkPT − E

[
κPTA

∗
kAkPT

]
= κ

∑
n∈Γk

(PT (An) ⊗ PT (An) − E [PT (An) ⊗ PT (An)])

We can also define here Ln(C) = 〈PT (An),C〉PT (An) which has ||Ln|| = ||PT (An)||2F

which gives us

κPTA
∗
kAkPT − E

[
κPTA

∗
kAkPT

]
= κ

∑
n∈Γk

(Ln − E [Ln])

To calculate the variance, we can use the symmetry of Ln to only calculate

κ2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[
L2

n

]
− E [Ln]2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ κ2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[
L2

n

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

= κ2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣E

∑
n∈Γk

‖PT (An)‖2FLn


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

We now need to bound ‖PT (An)‖2F , which can be done by the following:

||PT (An)||2F = 〈PT (An), An〉

= 〈QQ∗zn f ∗n, zn f ∗n〉 + 〈zn f ∗nVV∗, zn f ∗n〉 − 〈QQ∗zn f ∗nVV∗, zn f ∗n〉

= ‖ fn‖
2
2‖Q

∗zn‖
2
2 + ‖zn‖

2
2‖V

∗ f n‖
2
2 − ‖Q

∗zn‖
2
2‖V

∗ f n‖
2
2

≤ N‖Q∗zn‖
2
2 + ‖zn‖

2
2‖V

∗ f n‖
2
2

Using this we can write∣∣∣∣∣∣∣
∣∣∣∣∣∣∣E

∑
n∈Γk

||PT (An)||2F Ln


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[(

N‖Q∗zn‖
2
2 + ‖zn‖

2
2‖V

∗ f n‖
2
2

)
Ln

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

≤ N

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣E

∑
n∈Γk

‖Q∗zn‖
2
2Ln


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣E

∑
n∈Γk

‖zn‖
2
2‖V

∗ f n‖
2
2Ln


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

≤ N

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[
‖Q∗zn‖

2
2Ln

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ + sup ‖V∗ f n‖∞

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[
‖zn‖

2
2Ln

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

≤ N

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[
‖Q∗zn‖

2
2Ln

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ + Rµ2

0

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[
‖zn‖

2
2Ln

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
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We now need to bound these two quantities. First we look to bound the first quantity∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[
‖Q∗zn‖

2
2(PT (An) ⊗ PT (An))

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ ‖PT ‖

∣∣∣∣∣∣∣∣E [
‖Q∗zn‖

2
2(An ⊗ An)

]∣∣∣∣∣∣∣∣ ‖PT ‖

≤

∣∣∣∣∣∣∣∣E [
‖Q∗zn‖

2
2(An ⊗ An)

]∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣E [
‖Q∗zn‖

2
2{zn[α]z∗n[β] f n f ∗n}α,β

]∣∣∣∣∣∣∣∣
Expanding, we have:

∗ =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣E

 L∑
l=1

‖ql‖
2
2|zn[l]|2 + 2

∑
l,m

Re(〈ql, qm〉zn[l]z∗n[m])

 zn[α]z∗n[β]IN


α,β

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

 1

M2

L∑
α=1

‖qα‖22 + 2
∑
l,m

E
[
Re(〈ql, qm〉zn[l]z∗n[m])zn[α]z∗n[β]

] IN


α,β

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 1

M2

L∑
l=1

‖ql‖
2
2INδα=β +

2
M2 〈qα, qβ〉INδα,β


α,β

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

=
1

M2

∥∥∥∥{‖Q‖2F INδα=β + 2〈qα, qβ〉INδα,β
}
α,β

∥∥∥∥
giving us ∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∑n∈Γk

E
[
‖Q∗zn‖

2
2(PT (An) ⊗ PT (An))

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ 1

Mκ
‖Q‖2F + ‖QQ∗‖

≤
R + 1
Mκ

Similarly, for the second term we can take Q = IL to get∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[
‖zn‖

2
2(PT (An) ⊗ PT (An))

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ 1

Mκ
‖I‖2F

=
L

Mκ

Putting the pieces together, we get

σ2
X = κR

N + µ2
0L

M

To use the matrix Bernstein inequality, it now remains to bound the Orlicz-1 norm

κ ||Ln − E [Ln]||ψ1 . We can use the PSD quality of Ln and its expectation to obtain

||Ln − E [Ln]||ψ1 ≤ max
{
||Ln||ψ1 − ||E [Ln]||ψ1

}
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The norm of ||E [Ln]|| can be calculated via

‖E [Ln]‖ = ‖E [PT (An)]‖2F = E

∑
m

|zn[m]|2| fn[m]|2
 =

1
M
‖ fn‖

2
2 =

N
M
,

which indicates that the second of these two terms is simply ‖E [Ln]‖ψ1 = N/(M log(2)).

To calculate ‖E [Ln]‖ψ1 , we use the definition of the Orlitcz-1 norm:

||E [Ln]||ψ1 = inf
{
y : E

[
e||Ln ||/y

]
< 2

}

||E [Ln]||ψ1 =
∣∣∣∣∣∣||PT (An)||22

∣∣∣∣∣∣
ψ1

≤
∣∣∣∣∣∣N‖Q∗zn‖

2
2 + ‖zn‖

2
2‖V

∗ f n‖
2
2

∣∣∣∣∣∣
ψ1

≤
∣∣∣∣∣∣N‖Q∗zn‖

2
2 + RNµ2

0‖zn‖
2
2

∣∣∣∣∣∣
ψ1

≤ N
∣∣∣∣∣∣‖Q∗zn‖

2
2

∣∣∣∣∣∣
ψ1

+ RNµ2
0

∣∣∣∣∣∣‖zn‖
2
2

∣∣∣∣∣∣
ψ1

Using the result in Equation (121) with σ2 = 1/M in the first term and in σ2 = R/M in

the second term yields

||E [Ln]||ψ1 ≤ N
∣∣∣∣∣∣‖Q∗zn‖

2
2

∣∣∣∣∣∣
ψ1

+ RNµ2
0

∣∣∣∣∣∣‖zn‖
2
2

∣∣∣∣∣∣
ψ1

≤ 2
N

2M(1 − 4−
1
R )

+ 2
Rµ2

0

2M(1 − 4−
1
L )

≤
1
M

(
N

M(1 − 4−
1
R )

+
Rµ2

0

1 − 4−
1
L

)
≤

2
log(2)M

(
NR + LRµ2

0

)
≤

2R
(
N + Lµ2

0

)
log(2)M

We now have appropriate bounds on both the variance and the Orliscz norm, which
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allows us to bound the largest singular value using the Matrix Bernstein inequality Specif-

ically, we can see that the first term in Theorem 9 is bounded as

σX

√
t + log(L + N) ≤

√
κR

N + µ2
0L

M
(
t + log(L + N)

)
(118)

Letting t = β log(LN) > log(N + L) gives

σX

√
t + log(L + N) ≤

√
2κRβ

N + µ2
0L

M
log(LN)

Likewise we can bound the second term:

U1 log
(

MU2
1

σ2
X

) (
t + log(L + N)

)
≤ 2βU1 log

(
MU2

1

σ2
X

)
log(LN)

≤ 2βU1 log
(
4∆κR(N + µ2

0L)

log2(2)M

)
log(LN)

≤
8βκR(N + µ2

0L)
log(2)M

log
(
R(N + µ2

0L)
)

log(LN)

≤ c
βκR(N + µ2

0L)
M

log
(
R(N + µ2

0L)
)

log(LN)

≤ c
βκR(N + µ2

0L)
M

log2(LN)

Thus to appropriately bound

∣∣∣∣∣∣κPTA
∗
kAkPT − PT

∣∣∣∣∣∣ ≤ c max


√
κRβ(N + µ2

0L)
M

log(LN),
βκR(N + µ2

0L)
M

log2(LN)


we can see that we would need

M ≥ CβκR(N + µ2
0L) log2(LN)

and taking the union bound over the κ partitions completes the proof of the lemma.
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Bound on ‖(A∗A− I)(G)‖

Lemma 8. Let Ak be defined as in Equation (115), κ < M be the number of steps in the

golfing scheme and assume that M ≤ LN. Then as long as

M ≥ cβκmax
(
N + µ2

0L
)

log2(NL),

where µ2
k is the coherence term defined by

µ2
k = R sup

ω∈[0,2π]

∥∥∥∥Ỹ∗k fω
∥∥∥∥2

2
, (119)

, then with probability at least 1 − O(M(LN)−β), we have

max
k

∣∣∣∣∣∣∣∣κA∗kAk(Ỹk−1) − Ỹk−1

∣∣∣∣∣∣∣∣ ≤ 2−(k+1).

Proof. Lemma 9 essentially bounds the operator norm of κA∗A−I. In particular, to prove

Theorem 2, the reduced version with κ = 1 is needed. Lemma 8 uses the matrix Bernstein

inequality to accomplish this task, taking

Xn = κ(〈G, An〉An − E [〈G, An〉An])

and we just need to control
∣∣∣∣∣∣∑E [

XnX∗n
]∣∣∣∣∣∣ and

∣∣∣∣∣∣∑E [
X∗nXn

]∣∣∣∣∣∣. To bound the second of these,

we can calculate ∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[
X∗nXn

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ κ2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[
|〈G, An〉|

2 An A∗n
]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

= κ2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[
|〈G, An〉|

2 zn f ∗n f n z∗n
]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

= κ2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E

[∣∣∣∣∣∣ f n

∣∣∣∣∣∣2
2
|〈G, An〉|

2 zn z∗n
]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

= Nκ2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[
|〈G, An〉|

2 zn z∗n
]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

≤
3Nκ2

M2 ||G||
2
F

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

IM

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

=
3Nκ
M
||G||2F
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where the third inequality is due to Lemma 9. For the other expectation∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[
XnX∗n

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ κ2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[
|〈G, An〉|

2 A∗n An

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

= κ2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[
|〈G, An〉|

2 f n z∗n zn f ∗n
]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

= κ2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[
||zn||

2
2 |〈G, An〉|

2 f n f ∗n
]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

=
Lκ2

M2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

E
[
‖G f n‖

2
2 f n f ∗n

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

≤
Lκ2

M2 µ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

sup
ω

(‖G f n‖∞)E
[
| f n f ∗n|

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

=
Lκ2

M2 sup
ω

(‖QΛV∗ fn‖
2
∞)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n∈Γk

1N

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

≤
Lκ
M
‖V‖2F‖Λ‖

2
F sup

ω

(‖V∗ f n‖
2
∞)

≤
Lκ
MR
‖Q‖2F‖G‖

2
Fµ

2

=
Lκ
M
µ2‖G‖2F

Using these bounds, with κ = 1 we can write

σ2
X ≤

κ

M
‖G‖2F max {µ0L, 3N}
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and to use Proposition 1 we just need to bound ‖X‖ψ2 . To start, we can see that

U1 = ||X||ψ1 ≤ 2κ ||〈G, An〉An||ψ1

≤ 2κ ||〈G, An〉 ||An||F ||ψ1

≤ cκ ||〈G, An〉||ψ2 ||||An||F ||ψ2

≤ cκ ||〈G, An〉||ψ2

√∣∣∣∣∣∣||An||
2
F

∣∣∣∣∣∣
ψ1

≤ cκ ||〈G, An〉||ψ2

√∣∣∣∣∣∣∣∣∣∣∣∣∣∣ f n

∣∣∣∣∣∣2
2 ||zn||

2
2

∣∣∣∣∣∣∣∣
ψ2

= cκN ||〈G, An〉||ψ2

√∣∣∣∣∣∣||zn||
2
2

∣∣∣∣∣∣
ψ2

= cκ

√
N

M
(
1 − 4−1/L) ||〈G, An〉||ψ2

= cκ

√
N

M
(
1 − 4−1/L) ∣∣∣∣∣∣|trace( f n z∗nG)

∣∣∣∣∣∣
ψ2

= cκ

√
N

M
(
1 − 4−1/L) ∣∣∣∣∣∣|trace(z∗nQΛV∗ f n)

∣∣∣∣∣∣
ψ2

= cκ

√
N

M
(
1 − 4−1/L) ∣∣∣∣∣∣||Λ||F ∣∣∣∣∣∣V∗ f n

∣∣∣∣∣∣
2 ||Q

∗zn||2

∣∣∣∣∣∣
ψ2

≤ cκ

√
N

M
(
1 − 4−1/L)‖Λ‖F ∣∣∣∣∣∣‖V∗ f n‖2‖Q

∗zn‖2

∣∣∣∣∣∣
ψ2

≤ cκ

√
Nµ2

0

MR
(
1 − 4−1/L)‖G‖F ||‖Q∗zn‖2||ψ2

≤ cκ

√
Nµ2

0

MR
(
1 − 4−1/L)‖G‖F √∣∣∣∣∣∣‖Q∗zn‖

2
2

∣∣∣∣∣∣
ψ2

≤ cκ

√
Nµ2

0

MR
(
1 − 4−1/L)‖G‖F

√
1

M
(
1 − 4−1/R)

≤ cκ

√
Nµ2

0‖G‖
2
F

M2R
(
1 − 4−1/L) (1 − 4−1/R)

≤ cκ

√
NLµ2

0‖G‖
2
F

M2

We can now apply the matrix Bernstein theorem with the calculated values of U1 and
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σX. Again using t = β log(LN), the first portion of the bound is

σX

√
t + log(L + N) ≤ ||G||F

√
κ

M
max{µ2

kL,N}(β log(LN) + log(L + N))

≤ c ||G||F

√
κβ

M
max{µ2

kL,N} log(LN)

and the second portion of the bound is

U1 log
(
∆U2

1

σX

)
(t + log(L + N)) ≤ U1 log

(
∆U2

1

σX

)
(β log(LN) + log(L + N))

≤ c ||G||F κ

√
LNµ2

k

M
log

c ||G||2F κ2 LNµ2
k

M2

M
κ ||G||2F max{µ2

kL,N}

 β log(LN)

≤ c ||G||F κ

√
LNµ2

k

M
log

(
c∆κ

LNµ2
k

M
1

max{µ2
kL,N}

)
β log(LN)

≤ cβ ||G||F κ

√
LNµ2

k

M
log

(
c

LNµ2
k

max{µ2
kL,N}

)
log(LN)

≤ cβ ||G||F κ

√
LNµ2

k

M
log

(
min{µ2

kL,N}
)

log(LN)

This yields a bound of

||(A∗A− I)G|| ≤ c ||G||F max


√
κβ log(LN)

M
log(max{µ2

kL,N}),√
µ2

kLN
βκ

M
log(LN) log(min{µ2

kL,N})
}

We can now use Lemma 10 to bound µ2
k ≤ µ2

0 with probability 1 − O(M(LN)−β) and

Lemma 7 to bound ||Gk||F ≤ 2−k
√

R, which gives us

||(A∗A− I)G|| ≤ c2−k/2 max


√
κβR log(LN)

M
log(max{µ2

0L,N}),√
µ2

0LN
βκ

M
log(LN) log(min{µ2

0L,N})
}

Or, simplifying the bound using R ≤ min{L,N},

||(A∗A− I)G|| ≤ c2−k/2 max


√
κβR log(LN)

M
log(LN),√

µ2
0LN

βκ

M
log2(LN))

}
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Taking

M ≥ cβκR max{N, Lµ2
0} log2(LN),

proves the lemma. To simplify the bound on the probability, we note that Lemma 10 holds

with probability 1 − O(M(LN)−β) and this lemma holds with probability 1 − O(κ(LN)−β).

Since κ < M and assuming that M ≤ LN, we can write that the result holds with probability

1 − O((LN)1−β). Additionally, since Lemma 10 holds when

M ≥ cβκR
(
N + Lµ2

0

)
log2(LN),

≥ cβκR max{N, Lµ2
0} log2(LN),

Then both lemmas hold under the same condition.

Bound on E
[
|〈C, An〉|

2 zn z∗n
]

Lemma 9 essentially bounds the spectrum of the expected matrix

E
[
|〈G, An〉|

2 zn z∗n
]

:

Lemma 9. Suppose An = zn f ∗n be defined as the outer product of an i.i.d. random Gaussian

vector zn with zero mean and variance 1/M and a random Fourier vector f n. Then the

operator |〈C, An〉|
2 zn z∗n satisfies

Ez

[
|〈C, An〉|

2 zn z∗n
]
�

3
M2 ‖C

∗ f n‖
2
2IM

and

Ez, f

[
|〈C, An〉|

2 zn z∗n
]
�

3
M2 ‖C‖

2
F IM

Proof. To begin the proof, we look at the expectation of each element of the matrix. We
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first calculate the expected value with respect to zn,

· = Ez


∣∣∣∣∣∣∣

L∑
l=1

zn[l]c∗l f n

∣∣∣∣∣∣∣
2

zn[α]z∗n[β]


= Ez


 L∑

l=1

zn[l]c∗l f n

∗  L∑
l=1

zn[l]c∗l f n

 zn[α]z∗n[β]


= Ez

 L∑
l=1

|zn[l]|2|c∗l f n|
2zn[α]z∗n[β] + 2

∑
k,l

Re
(
z∗n[l]zn[k]〈c∗l f n, c

∗
k f n〉

)
zn[α]z∗n[β]


=

(
3

2M2 |c
∗
α f n|

2 +
1

M2 ‖C f n‖
2
2

)
δα=β +

2
M2 〈c

∗
α f n, c

∗
β f n〉δα,β

We can then use the matrix formulation

Ez

[
|〈C, An〉|

2 zn z∗n
]

=
3

2M2 diag(C f n f ∗nC∗) +
1

M2 ‖C f n‖
2
2IM +

2
M2 C f n f ∗nC∗ +

2
M2 diag(C f n f ∗nC∗)

=
1

M2 ‖C f n‖
2
2IM + 2C f n f ∗nC∗ −

1
2

diag(C f n f ∗nC∗)

�
1

M2 ‖C f n‖
2
2IM + 2C f n f ∗nC∗

�
3

M2 ‖C f n‖
2
2IM

where to obtain the result we first use the linearity of the expectation with the fact that

diag(C f n f ∗nC∗) is positive-semidefinite, proving the fist portion of the Lemma. To prove

the second portion we simply take an expectation with respect to f n:

Ez, f

[
|〈C, An〉|

2 zn z∗n
]
� E f

[
3

M2 ‖C f n‖
2
2IM

]
�

3
M2 ‖C‖

2
F IM

thus completing the proof. This gives us the desired property

Contractive property of µ2
k

Lemma 10. Let µ2
k be the coherence factor as defined in Equation (119), and additionally

assume that L > 1 and that LN > Rµ4
0. If

M ≥ cβκR
(
N + Lµ2

0

)
log2(LN),
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then with probability at least 1 − O(κ(LN)−β),

µ2
k ≤ 2−1µ2

k−1,

for all k ∈ [1, · · · , κ]

Proof. In this lemma we would like to show that the coherence term at each golfing itera-

tion

µ2
k =

1
R

sup
ω

L∑
l=1

〈Ỹk, el f ∗〉2

=
1
R

sup
ω

L∑
l=1

〈(κPTA
∗
kAkPT − PT )Ỹk−1, el f ∗〉2

=
1
R

sup
ω

L∑
l=1

∑
n∈Γk

κ〈PT (An), el f ∗〉〈Ỹk−1, An〉 − 〈Ỹk−1, el f ∗〉


2

=
1
R

sup
ω

L∑
l=1

∑
n∈Γk

κ〈PT (An), el f ∗〉〈Ỹk−1, An〉 − E
[
κ〈PT (An), el f ∗〉〈Ỹk−1, An〉

]
2

(120)

In order to bound this quantity we use the scalar Bernstein inequality on each of the

inner quantities∑
n∈Γk

Xn =
∑
n∈Γk

κ〈PT (An), el f ∗〉〈Ỹk−1, An〉 − E
[
κ〈PT (An), el f ∗〉〈Ỹk−1, An〉

]
As in the matrix Bernstein formulation, we need to find both the variance and Orlicz norm.

First we find the variance,∑
n∈Γk

E
[
XnX∗n

]
= κ2

∑
n∈Γk

E
[
|〈PT (An), el f ∗〉|2|〈Ỹk−1, An〉|

2
]
− |E

[
〈PT (An), el f ∗〉〈Ỹk−1, An〉

]
|2

≤ κ2
∑
n∈Γk

E
[
|〈PT (An), el f ∗〉|2|〈Ỹk−1, An〉|

2
]

= κ2
∑
n∈Γk

E
[
|〈QQ∗zn f ∗n, el f ∗〉 + 〈zn f ∗nVV, el f ∗〉 + 〈QQ∗zn f ∗nVV∗, el f ∗〉|2|〈Ỹk−1, An〉|

2
]

≤ κ2
∑
n∈Γk

E
[(
|〈QQ∗zn f ∗n, el f ∗〉|2 + |〈zn f ∗nVV∗, el f ∗〉|2 + |〈QQ∗zn f ∗nVV∗, el f ∗〉|2

)
|〈Ỹk−1, An〉|

2
]

≤ κ2
∑
n∈Γk

E
[(
|〈QQ∗zn f ∗n, el f ∗〉|2 + |〈 f ∗nVV∗, f ∗〉zn[l]|2 + |〈QQ∗zn f ∗nVV∗, el f ∗〉|2

)
|〈Ỹk−1, An〉|

2
]
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This sum consists of three terms, the first of which can be bounded by again leveraging

Lemma 9,

∑
n∈Γk

E
[
|〈QQ∗zn f ∗n, el f ∗〉|2|〈Ỹk−1, An〉|

2
]

=
∑
n∈Γk

E
[
| f ∗n f 〈ql,Q∗zn〉|

2|〈Ỹk−1, An〉|
2
]

≤
∑
n∈Γk

E
[
f ∗n f f ∗ f nq∗l Q∗zn z∗nQql|〈Ỹk−1, An〉|

2
]

≤
∑
n∈Γk

E
[
f ∗ f n f ∗n f q∗l Q∗|〈Ỹk−1, An〉|

2 zn z∗nQql

]
≤ 3

∑
n∈Γk

E

[
f ∗ f n f ∗n f q∗l Q∗

∣∣∣∣∣∣∣∣Ỹk−1 f n

∣∣∣∣∣∣∣∣2
2

ILQql

]
=

3
M2 ||ql||

2
2

∑
n∈Γk

E

[
f ∗ f n f ∗n f

∣∣∣∣∣∣∣∣Ỹk−1 f n

∣∣∣∣∣∣∣∣2
2

]
≤

3Rµ2
k−1

M3 ||ql||
2
2

∑
n∈Γk

f ∗E
[
f n f ∗n

]
f

≤
3Rµ2

k−1

M3 ||ql||
2
2

∑
n∈Γk

f ∗IN f

=
3Rµ2

k−1

M3 ||ql||
2
2 |Γk|N

=
3NRµ2

k−1

κM2 ||ql||
2
2

For the second term we have

∑
n∈Γk

E
[
|〈 f ∗nVV∗, f ∗〉|2|zn[l]|2|〈Ỹk−1, An〉|

2
]

=
∑
n∈Γk

E
[
|〈V∗ f n,V

∗ f 〉|2|zn[l]|2|〈Ỹk−1, An〉|
2
]

=
∑
n∈Γk

E
[
|〈V∗ f n,V

∗ f 〉|2|〈Ỹk−1, zn[l]An〉|
2
]

=
∑
n∈Γk

E
[
f ∗VV∗ f n f ∗nVV∗ f |〈Ỹk−1, zn[l]zn f ∗n〉|

2
]

Using the fact that |zn[l]|2 = e∗l zn z∗nel and Lemma 9, we obtain
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∑
n∈Γk

E
[
|〈 f ∗nVV∗, f ∗〉|2|zn[l]|2|〈Ỹk−1, An〉|

2
]
≤

3
M2

∑
n∈Γk

E

[
f ∗VV∗ f n f ∗nVV∗ fe∗l

∣∣∣∣∣∣∣∣Ỹk−1 f n

∣∣∣∣∣∣∣∣2
2

ILel

]
≤

3
M2

∑
n∈Γk

E

[
f ∗VV∗ f n f ∗nVV∗ f

∣∣∣∣∣∣∣∣Ỹk−1 f n

∣∣∣∣∣∣∣∣2
2

]
≤

3Rµ2
k−1

M2

∑
n∈Γk

E
[
f ∗VV∗ f n f ∗nVV∗ f

]
≤

3Rµ2
k−1

M2

∑
n∈Γk

f ∗VV∗ f

≤
3Rµ2

k−1

M2 |Γk| ||V∗ f ||22

≤
3Rµ2

k−1

κM1 ||V
∗ f ||22

≤
3R2µ2

k−1µ
2
0

κM1

Finally, for the third term, we have

∑
n∈Γk

E
[
|〈QQ∗zn f ∗nVV∗, el f ∗〉|2|〈Ỹk−1, An〉|

2
]

=
∑
n∈Γk

E
[
|〈V∗ f n,V

∗ f 〉|2|〈ql,Q∗zn〉|
2|〈Ỹk−1, An〉|

2
]

=
∑
n∈Γk

E
[
f ∗VV∗ f n f ∗nVV∗ f |〈ql,Q∗zn〉|

2|〈Ỹk−1, An〉|
2
]

=
∑
n∈Γk

E
[
||V∗ f ||22 |〈ql,Q∗zn〉|

2|〈Ỹk−1, An〉|
2
]

≤
∑
n∈Γk

E
[
||V∗ f ||22 q∗l Q∗zn z∗n|〈Ỹk−1, An〉|

2Qql

]
≤

3
M2

∑
n∈Γk

E

[
||V∗ f ||22 q∗l Q∗IL

∣∣∣∣∣∣∣∣Ỹk−1 f n

∣∣∣∣∣∣∣∣2
2

Qql

]
≤

3
M2

∑
n∈Γk

E

[
||V∗ f ||22 q∗l ql

∣∣∣∣∣∣∣∣Ỹk−1 f n

∣∣∣∣∣∣∣∣2
2

]
≤

3
M2 ||ql||

2
2 ||V

∗ f ||22
∑
n∈Γk

E

[∣∣∣∣∣∣∣∣Ỹk−1 f n

∣∣∣∣∣∣∣∣2
2

]
≤

3R2

M2 ||ql||
2
2 µ

2
0µ

2
k−1|Γk|

≤
3R2µ2

0µ
2
k−1

κM
||ql||

2
2
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Summing these three together, and using ||ql|| ≤ 1 yields

σ2
X ≤ 9κ

(
NRµ2

k−1

M2 ||ql||
2
2 + 2

R2µ2
0µ

2
k−1

M

)
All that remains to use the Bernstein inequality is to find the Orlicz-1 norm of Xn. First,

from Lemma 8 we have that

∣∣∣∣∣∣∣∣〈Ỹk−1, An〉

∣∣∣∣∣∣∣∣2
ψ2

=
∣∣∣∣∣∣∣∣z∗nỸk−1 f n

∣∣∣∣∣∣∣∣2
ψ2

≤
∣∣∣∣∣∣||Q∗zn||2

∣∣∣∣∣∣Λk−1V∗ f n

∣∣∣∣∣∣
2

∣∣∣∣∣∣2
ψ2

≤ c
Rµ2

k−1

M

For the first term we have

∣∣∣∣∣∣ f ∗n f 〈ql,Q∗zn〉
∣∣∣∣∣∣2
ψ2
≤

∣∣∣∣∣∣∣∣∣∣∣∣ f ∗n∣∣∣∣∣∣2 || f ||2 |〈ql,Q∗zn〉
∣∣∣∣∣∣2
ψ2

≤
∣∣∣∣∣∣N ||ql||2 ||Q

∗zn||2

∣∣∣∣∣∣2
ψ2

≤ N2
∣∣∣∣∣∣q∗l Q∗zn

∣∣∣∣∣∣2
ψ2

≤ cN2
(
||ql||2

1
M

)2

≤ c
N2 ||ql||

2
2

M2

For the second term we have

∣∣∣∣∣∣〈V∗ f n,V
∗ f 〉zn[l]

∣∣∣∣∣∣2
ψ2
≤
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2 ||V

∗ f ||2 zn[l]
∣∣∣∣∣∣2
ψ2

≤ R2µ4
0 ||zn[l]||2ψ2

≤ c
R2

M
µ4

0

And for the final term we have
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0
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M
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2
2
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Now we can calculate the total Orlicz norm via

||Xn||
2
ψ1
≤ cκ2 Rµ2

k−1

M

(
N2 ||ql||

2
2

M2 +
R2

M
µ4

0 +
R2

M
µ4

0 ||ql||
2
2

)
≤ cκ2 Rµk−1

M2

(
N2 ||ql||

2
2

M2 +
2R2

M
µ4

0

)
≤ c

κ2RN2

M3 ||ql||
2
2 µ

2
k−1 + c

2κ2R3

M2 µ4
0µ

2
k−1

Since we wish to bound the square of the sum of terms, we calculate the square values

of the two terms in the Bernstein inequality. The first term is bounded by

tσ2
X ≤ ctκ

R
M
µ2

k−1

( N
M
||ql||

2
2 + 2Rµ2

0

)
≤ cβκ

R
M
µ2

k−1

( N
M
||ql||

2
2 + 2Rµ2

0

)
log(LN)

and the second term is bounded by

t2U2
α log2

(
|Γk|U2

α

σ2
X

)
≤ t2U2

α log2

c |Γk|Mκ2Rµ2
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(
N2

M ||ql||
2
2 + 2R2µ4

0

)
M2κRµ2

k−1

(
N
M ||ql||

2
2 + 2Rµ2

0

) 
≤ t2cκ2 R

M2µ
2
k−1

(
N2

M
||ql||

2
2 + 2R2µ4

0

)
log2

c N2

M ||ql||
2
2 + 2R2µ4

0
N
M ||ql||

2
2 + 2Rµ2

0


≤ t2cκ2 R

M2µ
2
k−1

(
N2

M
||ql||

2
2 + 2R2µ4

0

)
log2

c N2 ||ql||
2
2 + 2MR2µ4

0

N ||ql||
2
2 + 2RMµ2

0


Assuming that L > 1 and LN > Rµ4

0 gives

∗ ≤ t2cκ2 R
M2µ

2
k−1

(
N2

M
||ql||

2
2 + 2R2µ4

0

)
log2 (LN)

≤ cβ2κ2 R
M2µ

2
k−1

(
N2

M
||ql||

2
2 + 2R2µ4

0

)
log4 (LN)

Each summand is then bounded by the maximum of these two quantities with probability

1 − O(|Γk|(LN)−β), the |Γk| term coming from the union bound over all terms in each inner

sum.

Using this bound on each summand, we obtain the total bound by taking a union bound,

summing over l ∈ [1, · · · , L], and dividing by R, yielding a bound of the maximum of

tσ2
X ≤ cβκ

R
M
µ2

k−1

( N
M

+ 2Lµ4
0

)
log(LN)
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and

t2U2
α log2

(
|Γk|U2

α

σ2
X

)
≤ β2cκ2 R

M2µ
2
k−1

( N
M

+ 2RLµ2
0

)
log4 (LN)

with probability 1 − O(M(NL)−β). To complete the proof, we note that if we have

M ≥ cβκR
(
N + Lµ2

0

)
log2(LN)

then both terms in this bound are less than µ2
k−1, proving that the coherence is non-increasing

over the coarse of the golfing scheme.

8.7.1 Matrix Bernstein Inequality and Olicz Norm

The majority of the proofs required to show out main result depend heavily on the matrix

Bernstein inequality, as outlined in [243]. This inequality essentially utilizes the variance

measure and Oricz norm of a matrix to bound the largest singular value of the matrix. The

matrix Bernstein inequality is outlined as

Theorem 9 (Matrix Bernstein’s Inequality). Let Xi ∈ R
L,N , i ∈ [1, . . . ,M] be M random

matrices such that E [Xi] = 0 and ||Xi||ψα < Uα < ∞ for some α ≥ 1. Then with probability

1 − e−t, the spectral norm of the sum is bounded by∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

M∑
i=1

Xi

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤ C max

{
σX

√
t + log(L + N),Uα log1/α

(
MU2

α

σ2
X

) (
t + log(L + N)

)}
for some constant C and the variance parameter defined by

σX = max


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

M∑
i=1

E
[
XiX∗i

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1/2

,

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

M∑
i=1

E
[
X∗i Xi

]∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1/2

where the Orlicz-α norm ||X||ψα is defined as

||X||ψα = inf
{
y > 0|E

[
e||X||

α/yα
]
≤ 2

}
In particular we will utilize the matrix Bernstein inequality with the Orlicz-1 and Orlicz-

2 norms, since subgaussian and subexponential random variables have bounded Orlicz-2

and -1 norms, respectively. To calculate these norms, we will find the following lemmas

from [98, 243] useful:
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Lemma 11 (Lemma 5.14 in [243]). A random variable X is subgaussian iff X2 is subexpo-

nential. Furthermore,

||X||2ψ2
≤

∣∣∣∣∣∣X2
∣∣∣∣∣∣
ψ1
≤ 2 ||X||2ψ2

.

Lemma 12 (Lemma 7 in [98]). Let X1 and X2 be two subgaussian ranfom variables. Then

the product X1X2 is a subexponential random variable with

||X1X2||ψ1 ≤ c ||X1||ψ2 ||X2||ψ2 .

Lemma 11 essentially relates the Orlicz-1 and -2 norms for a random variable and

it’s square. Lemma 12 allows us to factor an Orlicz-1 norm of a sub-exponential random

variable when the random variable can be written as the product of two subgaussian random

variables. Finally we find useful the following calculation for the Orlicz-1 norm of the norm

of a random Gaussian vector zn with i.i.d. zero-mean and variance σ2 entries:
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1
√

2πσ
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R
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1
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}
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√
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√
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1
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√
y

y − 2σ2 ≤ 2
1
M

}
= inf

y : y ≥ 2
4

1
Mσ2

4
1
M − 1
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= inf

{
y : y ≥

2σ2

1 − 4−
1
M

}
=

2σ2

1 − 4−
1
M

(121)
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8.8 Derivation of recovery bound for infinite length inputs

In this appendix we derive the bound in Equation (34) of the main text. The approach

we take is to bound the individual components of Equation (9) of the main text. As the

noise term due to noise in the inputs is unaffected, we will bound the noise term due to

the unrecovered signal (the first term in Equation (9) of the main text) by the component

of the input history that is beyond the attempted recovery, and we will bound the signal

approximation term (the second term in Equation (9) of the main text) by the quality of the

signal recovery possible in the attempted recovery length. In this way we can observe how

different properties of the system and input sequence affect signal recovery.

To bound the first term in Equation (9) of the main text (i.e., the omission errors due to

inputs beyond the recovery window), we first write the current state at any time N∗ as

x[N∗] =

N∗∑
n=0

WN∗−n zs[n].

We only wish to recover the past N ≤ N∗ time steps, so we break up the summation into

components of the current state due to “signal” (i.e., signal we attempt to recover) and

“noise” (i..e, older signal we omit from the recovery):

x[N∗] =

N∗∑
n=N∗−N+1

WN∗−n zs[n] +

N∗−N∑
n=0

WN∗−n zs[n]

=

N∗∑
n=N∗−N+1

WN∗−n zs[n] + ε

= Φx + ε2.

From here we can see that the first summation is the matrix multiplyΦx as is discussed

in the paper. The second summation here, ε2, essentially acts as an additional noise term

in the recovery. We can further analyze the effect of this noise term by understanding

that ε2 is bounded for well behaved input sequences s[n] (in fact all that is needed is that

the maximum value or the expected value and variance are reasonably bounded) when the

eigenvalues of W are of magnitude q ≤ 1. We can explicitly calculate the worst case
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scenario bounds on the norm of ε2,∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
N∗−N∑
n=0

WN∗−n zs[n]

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≤
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≤ ||U||2
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∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

,

where D = diag(d1, . . . , dM) is the diagonal matrix containing the normalized eigenvalues

of W. If we assume that z is chosen as mentioned in Section 3.1.2 so that U−1 z =
(
1/
√

M
)

1,

the eigenvalues of W are uniformly spread around a complex circle of radius q, and that

s[n] ≤ smax for all n, then we can bound this quantity as∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2

=
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√
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√√√
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k=1
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N∗−N∑
n=0

qN∗−ndN∗−n
k

∣∣∣∣∣∣∣
2

≤ smax ||U||2

∣∣∣∣∣∣∣
N∗−N∑
n=0

qN∗−n

∣∣∣∣∣∣∣
≤ smax ||U||2

∣∣∣∣∣∣qN − qN∗

1 − q

∣∣∣∣∣∣
where dk is the kth normalized eigenvalue of W. In the limit of large input signal lengths

(N∗ → ∞), we have N∗ � N and so qN � qN∗ , which leaves the approximate expression

||ε2||2 ≤ smax ||U||2

∣∣∣∣∣∣ qN

1 − q

∣∣∣∣∣∣ .
To bound the second term in Equation (9) (i.e., the signal approximation errors due to

imperfect recovery), we must characterize the possible error between the signal (which is

S -sparse) and the approximation to the signal with the K∗ largest coefficients. In the worst

case scenario, there are S − K∗ + 1 coefficients that cannot be guaranteed to be recovered
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by the RIP conditions, and these coefficients all take the maximum value smax. In this case,

we can bound the signal approximation error as stated in the main text:

β
√

K∗
‖s − sS ∗‖1 ≤

β
√

K∗

S∑
n=K∗+1

|qnsmax|

=
βsmax
√

K∗

(
qK∗ − qS

1 − q

)
.

In the case where noise is present, we can also bound the total power of the noise term,

α

∥∥∥∥∥∥∥
N+N∗∑
k=0

Wk z̃ε[k]

∥∥∥∥∥∥∥
2

2

,

using similar steps. Taking εmax as the largest possible input noise into the system, we

obtain the bound

α

∥∥∥∥∥∥∥
N+N∗∑
k=0

Wk z̃ε[k]

∥∥∥∥∥∥∥
2

2

< αεmax ||U||2
∣∣∣∣∣ q
1 − q

∣∣∣∣∣
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[76] W. Maass, T. Natschläger, and H. Markram, “Real-time computing without stable
states: A new framework for neural computation based on perturbations,” Neural
computation, vol. 14, no. 11, pp. 2531–2560, 2002.

[77] D. Verstraeten, J. Dambre, X. Dutoit, and B. Schrauwen, “Memory versus non-
linearity in reservoirs,” in The 2010 International Joint Conference on Neural Net-
works (IJCNN), pp. 1–8, 2010.

[78] T. Strauss, W. Wustlich, and R. Labahn, “Design strategies for weight matrices of
echo state networks,” Neural Computation, vol. 24, no. 12, pp. 3246–3276, 2012.

[79] E. Wallace, R. M. Hamid, and P. E. Latham, “Randomly connected networks have
short temporal memory,” Neural Computation, vol. 25, pp. 1408–1439, 2013.

[80] J. Dambre, D. Verstraeten, B. Schrauwen, and S. Massar, “Information processing
capacity of dynamical systems,” Scientific reports, vol. 2, 2012.

[81] D. Verstraeten, B. Schrauwen, M. dHaene, and D. Stroobandt, “An experimental uni-
fication of reservoir computing methods,” Neural Networks, vol. 20, no. 3, pp. 391–
403, 2007.
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