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SUMMARY 

 

 Maintaining health and eliminating diseases are always intriguing topics that 

everyone cares about. Along with medical biology and physiology which cover 

knowledge of human tissues and biochemistry, the study of human genomes now also 

attracts our attention.  Gene mutations can cause diseases, exemplified by mutations in 

the genes BRCA1 and BRCA2 which increase a woman’s risk of breast cancer.  However, 

most disease has a more complex genetic basis that is just beginning to be 

explained.  The completion of the Human Genome Project has led to the development of 

genotyping and sequencing techniques in the past two decades that now allow human 

geneticists to better understand the relationship between genotypes and disease. 

            Discovery of associations between genetic variants and disease status or 

quantitative traits is shedding light on disease mechanisms and promoting improved 

prediction of risk.  For many years the prevalent model of disease risk has been the 

“common disease, common variants” hypothesis. It postulates that common diseases are 

mostly caused by common variants of quite large effect. However, the introduction of 

Genome Wide Association Studies (GWAS) in the mid 2000’s has shown that such large 

effect common variants only explain a small proportion of heritability, leading to the 

“missing heritability” problem. Attention has switched to deep DNA sequencing studies 

of rare variants that may contribute to individual cases. However, exome sequencing has 

dominated and the focus has been on rare coding variants.  Rare regulatory variants have 

not been well studied. 

            This dissertation aims at investigating the association between genotypes and 

phenotypes in human. Both common and rare regulatory variants have been studied. The 

phenotypes include disease risk, clinical traits and gene expression levels. This 

dissertation describes three different types of association study. 
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            The first study investigated the relationship between common variants and three 

sub-clinical traits as well as three complex diseases in the Center for Health Discovery 

and Well Being (CHDWB) study. A post test disease probability for the three diseases - 

coronary artery disease (CAD), type 2 diabetes (T2D) and asthma - was calculated 

incorporating prevalence of the disease and the likelihood ratio for all significantly 

associated common SNPs identified by GWAS. The polygenic risk scores for three traits 

– height, body mass index and triglycerides -were calculated based on the total counts of 

alleles which increase the trait levels. Although I studied a small cohort of ~200 people, 

statistically significant relationships were found between polygenic scores and 

quantitative traits, and also between combined likelihood ratio and Framingham risk 

scores for CAD. The explanatory power of the top-ranked SNPs was compared with that 

of all significantly associated SNPs by adding SNPs stepwise to the regression models. 

The result shows that the top-ranked SNPs could explain as much of the variance as is 

explained by the top few hundred SNPs. While the detection of positive genotype-

phenotype associations in a small cohort is encouraging, the results of this study also 

highlighted the limited clinical potential of risk scores based on common variants 

identified in genome-wide association studies. 

            The second study is GWAS analysis of TNF-α and BMI/CRP conducted as a 

contribution to a meta-GWAS analysis of these traits with investigators at the University 

of Groningen in the Netherlands, and the 1000 Genomes Consortium. The TNF-α 

analysis was performed as a replication study, based on 44 SNPs previously discovered, 

but incorporating a linear mixed effect model to account for longitudinal measures 

obtained over three visits. The top-ranked SNPs all replicated despite the small sample 

size of the CHDWB cohort, and the longitudinal model showed essentially the same 

association significance as the baseline-only model.  The GWAS on BMI/CRP was 

performed as a contribution to meta-GWAS discovery analysis after imputing SNPs 

genome-wide. SNPTEST was implemented for the association test with expected and 
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threshold models that provided alternative candidate SNPs for the meta-analysis. This 

study shows that small cohort is nevertheless capable of serving as replication study for 

meta-GWAS analysis. In addition, it confirms that imputation is an effective way to 

detect GWAS signals even with a low resolution genotyping array. 

            The third study was the most original contribution of my thesis as it assessed the 

association between rare regulatory variants in promoter regions and gene expression 

levels. By targeted sequencing of the promoter regions of 480 genes in 410 individuals, I 

was able to develop a novel burden test for rare variants at the extreme of 

expression.  Burden tests were performed by calculating the summed rare allele counts in 

ranked expression level bins for all individuals, and separately for European-ancestry 

individuals for more targeted analyses avoiding possible influences of population 

structure. The results clearly show an enrichment of rare variants at both extremes of 

gene expression. The rare regulatory variant effects were also partitioned into subsets of 

genes based on their regulatory functions, positions relative to transcription start sites, 

disease relatedness, with some intriguing biases. The enrichment of rare regulatory 

variants in extremely expressed genes was replicated using another cohort and different 

sequencing and gene expression profiling technologies. The effects of three of four rare 

variants with large effect sizes were experimentally validated by CRISPR/Cas9 mediated 

genome editing. 

            This dissertation provides insight into how common and rare variants associate 

with broadly-defined quantitative phenotypes. The demonstration that rare regulatory 

variants make a substantial contribution to gene expression variation has important 

implications for personalized medicine as it implies that de novo and other rare alleles 

need to be considered as candidate effectors of rare disease risk. 
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CHAPTER 1 

INTRODUCTION 

 

Description of the Dissertation 

My dissertation aims to investigate the association between genetic variants and 

broadly-defined phenotypes. The broadly-defined phenotypes here include gene 

expression levels, clinical measures and disease risks. The genetic variants include 

common variants and rare regulatory variants. Association analysis is expected to provide 

a better understanding of the genetic contribution to variation of phenotypes among 

individuals, leading to better insight into genetic prediction of diseases.  

 The studies were based on the CHDWB (Center for Health Discovery and Well 

Being) cohort, which is a collaborative center between Emory University, Georgia Tech 

and the ACTSI. The CHDWB cohort includes in total of 697 healthy adults, among 

whom 651 are Emory employees and the remaining small proportion is from the general 

public and Georgia Tech. The individuals had blood withdrawn every six months, with at 

least 3 time points drawn from most of them. The Center provided health partners who 

provided enrolled individuals with health – related advice including exercise, diet 

recommendations intended to maintain or improve their health status. 

 The dissertation is composed of five studies, each with a chapter. The object of 

the first study was to investigate how well common variants explain three quantitative 

phenotypes and 3 common disease risks (Chapter 2) in the small cohort. The quantitative 

phenotypes were height, body mass index and triglyceride; the 3 common diseases were 



2 

 

coronary artery disease, type 2 diabetes, and asthma. This study was published in 

Genetics Research and the chapter is slightly edited from the version co-written with my 

supervisor, Professor Gibson. In Chapter 3, GWAS analysis of TNF-α and BMI/CRP was 

performed by participation in the meta-GWAS analysis led by group at the University of 

Groningen in the Netherlands and the 1000 Genomes group, with imputed genotypes 

from microarray data. 

 The object of the third study was to extract the detailed genotype information 

from targeted sequencing (Chapter 4). The targeted sequencing was designed to discover 

rare variant within 1kb of each side of the transcription start site (TSS) of 472 genes. 

Different variant calling algorithms were compared. Rare variants distributions were then 

compared among different populations, and among subgroups of genes, conditioned on 

their regulatory functions, disease relatedness, and other attributes. 

 The fourth study aimed for the first time to investigate the hypothesis that there is 

enrichment of rare regulatory variants in promoter regions in the context of extreme gene 

expression levels (Chapter 5). Rare variants in coding regions are now being investigated 

as a source of congenital abnormalities. My thesis asks whether rare regulatory variants 

might contribute to aberrant gene expression, which might in turn promote disease. These 

associations were also analyzed within subgroups of genes conditioned on disease 

relatedness and regulatory functions. Parts of Chapter 5 have been co-written with my 

supervisor as we prepare to submit the paper for publication, whereas Chapter 4 reports 

my more detailed analyses that will be incorporated into the paper. 
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Genetic Variation in Human Genome 

 Genetic variation refers to the difference in DNA sequences among samples or 

between populations. Usually it refers to the differences when comparing the genome of 

one person with a reference genome. Genetic variation is caused by mutation and is 

mainly composed of single nucleotide polymorphism (SNP), copy number variation 

(CNV), insertions and deletions (indels) (Figure 1.1) [1, 2]. SNPs, which are polymorphic 

sites affecting a single nucleotide, are the most commonly occurring type of genetic 

variation. Copy number variation is the variation in the number of copies of longer 

sections of DNA between tens and thousands of kilobases. Indels are most often the 

insertion or deletion of up to 100 nucleotide bases in the DNA. 

  

 

 

 

Figure 1.1 Number of different types of variants in a person’s genome. Taken from 

[1] 

 

 

A series of techniques have been designed in order to detect genetic variation. 

Among those techniques, a commonly used one when I started this thesis was genotyping 
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arrays which were initially designed for SNP detection [3, 4]. The basic principle depends 

on hybridization of fragmented single-stranded DNA to complementary nucleotide 

probes in arrays. Each array contains hundreds of thousands of unique probes. After 

hybridization, the signal intensity of fluorescence at each probe is measured. The raw 

signal intensity is then converted to genotypes via computational algorithms provided by 

the manufacturer, in our case Illumina. These SNP arrays have been widely used by many 

project groups such as HapMap consortium. However, SNP arrays have the drawback 

that there is ascertainment bias due to the non-random distribution of SNP probes 

throughout the genome.  

 Starting around 5 years ago, there was a major shift in variant detection with the 

arrival of next generation sequencing (NGS) methods [5, 6]. Compared with automated 

Sanger sequencing [7] which is considered to be a first generation technology, next 

generation sequencing has revolutionized human genetic analysis. It includes DNA 

sequencing [8, 9], RNA sequencing [10, 11], ChIP-sequencing [12] and others, enabling 

the assessment of a broad range of biological phenomena such as genetic variation, RNA 

expression, chromatin conformation, and DNA-protein interactions. The NGS 

technologies differ from the Sanger method in aspects of massively parallel analysis, high 

throughput, and have reduced cost. With the maturation of sequencing technologies, even 

more sequencings reads can be produced within a shorter time and with much lower 

costs. 

 For my research I have used the Illumina Truseq System protocol [13] on Hiseq 

platform. This is a versatile technology that now dominates the market and has well 
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validated performance with relatively low cost. Typically tens of millions of paired reads 

each 100 nucleotides long are generated from either end of DNA fragments. These are 

then computationally aligned to the reference genome to detect sequence variants. The 

process is called re-sequencing since each individual’s DNA is compared with a 

previously known standard, hg19. 

Bioinformatics Tools for Sequencing Analysis 

 Raw sequencing reads require bioinformatics analysis before they can reveal 

scientific insight. From alignment to variant calling to functional annotation, there are 

many types of analysis tools and software. The most popular sequence aligners are 

Bowtie, Bowtie2 and BWA. Bowtie is a short read aligner based on indexes built with the 

Burrows-Wheeler algorithm [14]. Bowtie 2 uses an FM Index (based on the Burrows-

Wheeler Transform (BWT)) to index the genome [15]. Compared to Bowtie 1, Bowtie 2 

performs faster when aligning reads longer than 50bp and deals more flexibly with 

paired-end alignment. The BWA (Burrows-Wheeler Aligner) is based on backward search 

with the BWT [16]. There are also a number of open source variant calling tools 

available. GATK [17] calls SNPs and indels using Bayesian model with Java code. 

GATK applies machine learning methods to base quality recalibration and variant quality 

recalibration. SAMtools [18] uses HMM & MAQ model with C code. It calls the variants 

that maximize the posterior probability with the highest Phred quality score using a 

general Bayesian framework. There are also several other commonly used variant calling 

tools such as VarScan [19] and SNVer [20]. Varscan  is compatible with several aligners 

like Bowtie and BLAT [21] and can process SAMtools pileup files. VarScan calls variants 
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according to the coverage, quality, as well as the number of supporting reads. In my rare 

variant association study, I used BWA to align my targeted sequence data, and chose 

GATK to perform variant calling after comparing different calling methods. 

Genome Wide Association Studies 

Understanding the genetic basis of diseases helps scientists understand the cause 

of disease, predict disease risk in individuals and develop clinical interventions. Prior to 

2007, most research on mapping genetic loci that have effects on diseases or other 

complex traits was performed by linkage analysis [22, 23]. Linkage analysis is based on 

the co-segregation of causal variants with disease status within pedigrees. It has been 

most successfully applied in discovery of genetic variants which are related to Mendelian 

diseases and traits [24]. Since the development of genotyping techniques, especially the 

development of the HapMap project [25], genome-wide association studies (GWAS) have 

been more popular. These are based on the existence of linkage disequilibrium between 

causal SNPs and tagged SNPs in unrelated individuals. Following theory first proposed 

by Risch and Marikengas [26], in 2005, the first GWAS reported two SNPs found to be 

associated with age-related macular degeneration [27]. Since then, GWAS has been 

widely used to find thousands of disease- and trait- associated genetic variants for 

hundreds of clinical phenotypes.  

 At the early stage, GWAS was focused on common variants, based on expectation 

of the common disease - common variant hypothesis [28, 29]. However, it has been found 

that only a small proportion of variance can be explained by common variants, leading to 

discussion of “missing heritability” problem [30, 31]. Much more variance was expected 
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to be discovered, but we now think that most of it is hidden, rather than missing. This is 

because effects of individual SNPs are very small and there is not enough statistical 

power unless hundreds of thousands of people are studied. Subsequently, the hypothesis 

was proposed that rare variants with moderate to high effect size may also contribute to 

the missing heritability. Evidence that rare variants associate with complex diseases and 

traits has been found for schizophrenia [32], HDL [33] and T1D [34]. The frequency and 

effect size in genetic association analysis is shown in Figure 1.2. 

 

 

 

 

Figure 1.2 The frequency and penetrance in genetic association analysis.  Taken from 

[35] 

 

 

 

Genetic Risk Prediction 

 People care about their health and wellness on a day to day basis. Knowing their 

disease risk may help them to make relevant adjustments to lifestyle, and take precaution 

against diseases enabling them to maintain wellness.  Knowing the classification of high 
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or low disease risk could help people adjust for their lifestyles including eating and 

exercise habits to maintain wellbeing. Disease risk prediction previously was based 

merely on clinical measures such as body mass index, smoking status, lipid levels, and so 

on. With the advent of GWAS, genetic variants have been found to be associated with the 

disease onset and disease status. Incorporating genetic information with clinical measures 

and family history may provide a more informative prediction of the disease risk. While 

most genetic risk prediction is focused on cancers, here I presented a genetic risk 

prediction for 3 quantitative phenotypes height, triglyceride, body mass index, and 3 

common diseases coronary artery disease, type 2 diabetes and asthma, and compared the 

variance explained by genetic information for phenotypes and clinical risk for those 3 

common diseases. However, I concluded that the technology is not yet ready for clinical 

evaluation since too little variance is explained by known SNPs from GWAS. This may 

change in the next 10 years. 

eQTL Analysis 

Gene expression, alongside protein function, is the major source of variation in 

cellular function. The patterns and properties of gene expression influence protein 

activity levels, which then determine cell states. Gene expression also plays an important 

role in disease status by influencing the phenotype. For example, researchers have found 

that the aberrant expression of surfactant protein C may lead to lung disease [36]. As a 

result, gene expression has been attracting scientists’ interest as an intermediate 

phenotype between genetic variants and phenotypic traits. Mutations in the coding region 

may lead to abnormally translated proteins, thus causing change of signaling pathways or 
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other biological processes that the proteins participate in. Abnormally expressed genes 

due to mutations in non-coding regions that for example change affinity of transcription 

factor binding sites, may lead to abnormal genetic regulation and gene expression. 

Therefore, finding the genetic variants that are associated with gene expression levels, 

i.e., expression quantitative trait loci (eQTL), can help reveal the mechanisms of how 

genetic variants influence phenotypes and uncover the genetic basis of many complex 

traits at the molecular level. Recent studies have revealed that there are substantial 

overlaps between eQTLs and genetic variants identified in genome-wide association 

studies which are associated with diseases [37, 38]. It has been shown that trait-

associated QTLs are more likely to be associated with expression levels (Figure 1.3) [38]. 

Therefore, researching the genetic basis for variation in gene expression is not only of 

academic interest, but also provides information relevant to mechanisms of disease. 
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Figure 1.3 The distribution of the number of eQTLs defined with p-value<10-6 

observed for each of 1000 draws of random 1,598 SNPs (bar graphs), with the actual 

number of eQTLs observed in the 1,598 SNPs from the NHGRI GWAS catalog 

(solid circle). Referred and adjusted from [38]. 

 

 

 

Rare Variant Association Analysis 

 Although the improvement of experimental strategies and statistical analysis have 

enlarged the proportion of gene expression variation explained by common variants, the 

vast majority of gene expression variation still needs to be accounted for. Much of this 

variation is likely due to factors not located within the gene that encodes the transcript. 

This can be trans-eQTL (compared with cis-eQTL, located in the gene itself), systemic 

influences like hormones and metabolites, and the environment. There is also the 

potential importance of rare variants contributing to the regulation of gene expression 

levels. Compared to the rare coding variants whose genetic functions have been studied 
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extensively [39-41], rare regulatory variants have not been systematically studied for 

their effects on gene expression regulation.  

 I assume that the rare regulatory variants affect gene expression is based on the 

following reasons. First, it is possible that a common variant association is actually 

attributed to linkage with multiple rare or less common variants which contribute to the 

major effects, a situation known as synthetic association [42]. A well characterized 

example is the Hepatitis C virus-anemia associated locus ITPA, where the minor allele 

frequency of the causal SNP is much lower than the most significantly associated one 

[43]. Second, analogous to the well known fact that rare variants in coding regions affect 

lipid levels (for example, rare NPC1L1 variants affect plasma LDL lipoprotein levels 

[44]) and gene expression levels (for example, a rare synonymous CRP2 variant affects 

serum CRP level [45]), rare polymorphisms in regulatory regions could also influence 

differential transcript abundance, by affecting the regulatory effects of transcription of the 

nearby gene. Promoter regions, which play an important role in regulating the 

transcription process, are an ideal choice for initial regulatory rare variant studies, since 

enhancers vary greatly in their complexity and location relative to TSS. Third, my 

hypothesis is that the observed enrichment of common eSNPs in promoter regions 

(Figure 1.4) [46], may also imply that rare variants in promoter regions also are likely to 

affect transcription. Recent work such as ENCODE project [47, 48] has established the 

complexity of regulatory regions, leading to the expectation that more than one causal 

variant is often present where there is any functional genetic variant at a locuss. 
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Figure 1.4 The probability of a random SNP (or the SNP conditioned on different 

functional sites) to be eSNP as a function of distance to TSS. Taken from [43] 

 

 

 

In standard GWAS, individual variant tests are employed to test common variant 

association. However, considering the small individual effect size and the low allele 

frequency of rare variants, single variant tests will be underpowered to detect rare variant 

effects. In consideration of this, collapsing the rare variants in a region is the most 

commonly used approach for analyzing rare variant association. Among the region-based 

rare variant tests, the most popular ones include burden tests such as the cohort allelic 

sum test (CAST) [49], the combined multivariate and collapsing (CMC) method [50], and 

the weighted sum rare allele rank test (WSRRT) [51]. CAST compares the number of 

individuals with at least one rare variant between affected cases and unaffected controls. 

CMC collapses all the rare variants as a common variant and performs a multivariate 

regression together with other common variants. WSRRT weights the rare variant score 

by the rare allele frequency among unaffected individuals, add ups the ranks of 

individuals based on the weighted score, then performs a permutation to compare the 
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rank sum difference between affected and unaffected groups. There are some other rare 

variant association tests not based on the simple total burden, which take the possible 

different directions of effect into consideration. This is important for regulation of 

transcription, since rare variants might either increase or decrease the activity of the 

promoter. Among these tests are the well-known C-alpha test [52] and Sequence Kernel 

Association Test (SKAT) [53]. The C-alpha test contrasts the expected variance with the 

actual variance of allele frequency distributions, testing for a mixture of effects across a 

set of rare variants. SKAT is a regression based approach which tests for association of 

rare (and common) variants with a dichotomous or continuous phenotype while adjusting 

for covariates.  

However, these tests require sample sizes of at least tens of thousands of 

individuals, and we do not have gene expression datasets that large.  Consequently I 

proposed a pooling strategy, which required the development of a novel test based on the 

significance of the quadratic component of a regression of rare allele burden on rank of 

expression.  This is described in Chapter 5 and shown to provide strong and replicated 

evidence that rare variants are enriched in the tails of transcript distributions.  
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CHAPTER 2 

GENETIC RISK PREDICTION 

 

Introduction 

Despite high heritability, most complex traits and diseases in humans have such a 

polygenic inheritance pattern that prediction of phenotype or liability on the basis of 

genetic risk profile has proven elusive. The possible benefits of genetic risk evaluation 

were recognized more than a decade ago [54-56], but only recently has the application of 

high-density genotyping technology [57] brought us closer to the goal. Polygenic scores, 

which represent the summed effects of multiple trait-associated genetic variants, contain 

more information than single markers and explain more of the variance in phenotype or 

disease risk. This type of analysis has been applied to several complex traits including 

height [58], body mass index [59], and rheumatoid arthritis [60], in each case evaluating 

the joint effects of polymorphisms identified in samples of tens or even hundreds of 

thousands of individuals, in large validation cohorts of several thousand. 

Most cohort studies are focused on a single trait or condition, so do not allow the 

evaluation of genetic risk across multiple phenotypes. Here I report on common variant 

contributions to three traits and three diseases in the Emory-Georgia Tech Center for 

Health Discovery and Wellbeing study of clinically deeply profiled adults, 182 of whom 

have SNP array genotype information available.  Despite the relatively small size of the 

cohort, I nevertheless detect significant association with quantitative traits, and take the 

opportunity to compare methods that do or do not weight allelic effects, while also 
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comparing genetic risk scores with Framingham risk scores for coronary artery disease 

and type 2 diabetes. Examination of the correlations highlights the strong influence of 

outliers on risk prediction, and raises the hope that in a well-characterized cohort it may 

be possible to identify the hidden variables that are shared by such outliers, which may in 

turn suggest strategies for conditional analysis to uncover more of the hidden heritability. 

Some studies have also reported that most of the variation explained by polygenic 

risk scores can actually be explained by the top-ranked markers [61, 62]. The rationale is 

that the top-ranked markers tend to have the largest genetic effects, so explain more of 

the disease or trait than markers that only emerge once large-scale meta-analyses have 

been performed. The proportion of variance that they explain will be a function of the 

distribution of effect sizes, which is itself difficult to estimate due to the high noise level 

in GWAS data. Therefore, the risk attributable to top-ranked SNPs is an empirical 

question, and my dataset allowed me to address performance across phenotypes in the 

same individuals. I applied forward-step regression adding alleles sequentially to 

investigate the influence of adding more marker information to the regression on 

explaining the genetic variance. It turns out that in the small cohort of 182 people 

considered in this Chapter, the inclusion of covariates such as gender and ethnicity, 

influences performance of genetic risk scores, presumably because of residual correlation 

between genotype and those covariates. While the detection of positive genotype-

phenotype associations in a small study is encouraging, the results also highlight the 

limited clinical potential of risk scores based on common variants identified in genome-

wide association studies [63].  
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Materials and Methods 

Participants 

The CHDWB is a longitudinal study of health measures in over 600 employees of 

Emory University.  I describe data for 182 participants for whom genotypic data was 

available, consisting of 136 Caucasians, 34 Africans, 11 Asians and 1 American Indian. 

Two thirds of the individuals were women (120 females and 62 males), and the ages 

ranged from 26 to 79. The data of interest for this study is height (in cm), BMI (weight 

/height2 in kg/m2), serum triglyceride levels (mg/dL), serum cholesterol levels (mg/dL), 

and various measures of blood flow and arterial stiffness.  I also computed Framingham 

risk scores for type 2 diabetes and for coronary artery disease as described in [64, 65]. 

Genotypes 

Whole genome genotypes were measured using Illumina OmniQuad arrays which 

contains 733,202 probes. Identities of 169 Height, 49 BMI, 48 triglyceride, 34 coronary 

artery disease, 66 type 2 diabetes, and 31 asthma related SNPs were collected from the 

dbGaP database hosted by the US NIH, in March 2012. All of the selected SNPs were 

previously reported to be significantly associated with the respective traits or diseases at 

the significance level of p < 10-7. Individual genotypes for each of these SNPs were 

extracted, or if missing from the Illumina genotype data files, were imputed using 

IMPUTE2 [66].  Accuracy of the imputation was estimated to be 98% by comparison 

with 9 individual whole genome sequences (2 African Americans, 7 Caucasians). 

Genetic Risk Score Analyses 
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Three approaches to calculating the proportion of phenotypic variance explained 

by the common genetic variants were considered. All computations were performed using 

R scripts. For the continuous quantitative traits height, BMI and triglyceride level, I first 

calculated the sum of increasing alleles for each individual. Second, I calculated a 

weighted sum of allelic effects according to the effect size of each SNP reported in 

dbGaP. Each of these allelic sum and weighted allelic effect scores was then linearly 

regressed on the relevant phenotype(s), with or without adjustment for gender and 

ethnicity. In the latter case, the genotypic contribution was estimated from the difference 

in the variance explained (R-squared on the Pearson correlation coefficient) by the 

models including the genetic risk (allelic sum, or weighted allelic effect) score, and 

without it. Furthermore, the influences of gender and ethnicity were estimated directly 

from our cohort by including these terms as covariates; or by incorporating reported 

population averages for each gender and ethnicity from the CDC website as “pre-height”. 

For disease risk variants, the third approach was to compute the multiallelic odds 

ratio essentially as described in Ashley et al.[67]. I computed an adjusted relative genetic 

risk by setting each individual’s prior odds as that corresponding to the prevalence for 

their gender and ethnicity as reported by the CDC. In order to obtain the genetic 

contribution to the post-test odds, a slight adjustment to the Ashley et al. [67] method was 

performed as follows.  According to those authors,  

pre-test odds = pre-test probability/(1-pre-test probability);  

post-test odds = pre-test odds×LR;  

post-test probability = post-test odds/(1+post-test odds).  
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Rearranging their equations,  

post-test probability = pre-test probability×LR/(1+pre-test probability×(LR-1)).  

As the reported 95% confidence intervals for genotypic contribution LRs lie between 1.6 

and 0.7, pre-test probabilities range between 4.2% and 14.3%, then post-test probabilities 

range from (0.93~1.04)×pre-test probability×LR. It follows that I can approximate the 

post-test probability as the pre-test probability×LR. That is,  

log10(post-test probability)=log10(pre-test probability)+log10(LR)).  

I confirmed this relationship by observing that this approximated post-test probability is 

highly significantly linearly associated with the post-test probability using Ashley et al’s 

method (P <2×10-16).  The advantage of my portioning is that it allows estimation of the 

genetic contribution to the post-test probability independent of the pre-test probability.  

In order to ask whether addition of more SNPs always improves risk prediction, 

the SNPs were sorted by previously reported effect sizes from larger to smaller. Each 

SNP was added sequentially to the regression model, taking the negative log10 p-value 

and percent variance explained by each successive model. For comparison with random 

SNP selection, I randomly added those SNPs sequentially to the regression model, and 

then averaged the percent of variance explained by each successive model, averaging the 

results over 100 permutations.  

Results 

Regression of Genotypic Risk Scores on Phenotypes 

Significant and positive regression of genotype on phenotype was observed, as 
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expected, for each of the continuous traits (height, BMI, and serum triglycerides) as 

shown in Table 2.1.  In each case, the estimated variance explained by the SNPs was in 

the range of 3% to 5%, which is lower than that reported in the respective discovery 

samples [58, 60, 68]. The inclusion of an estimated effect size in weighted sum scores did 

not significantly improve the model fitting. For each of these traits, gender and ethnicity 

explains considerably more of the variance than the genotypes, and fitting these 

covariates slightly improved the estimate of the genetic contribution (with the exception 

of the weighted sum for BMI). The weighted sum was not calculated for triglycerides 

since the effect sizes were not fully reported in dbGaP. I also fit multiple regression 

models based on jointly fitting all of the SNPs for each trait, and although the variance 

explained reached 16% for height the estimates were not significant after adjustment for 

the number of SNPs included. 

Regressions were also computed for disease-associated risk scores, namely: T2D 

risk with the Framingham T2D risk score, and with serum triglyceride, cholesterol, 

fasting glucose, and insulin levels; CAD risk with the Framingham CAD risk score, 

blood pressure, arterial stiffness, and serum metabolites; and asthma risk with estimated 

VO2-max from treadmill performance. Only two of these analyses (CAD SNPs with 

Framingham CAD risk score, and with cholesterol) yielded nominally significant 

correlations as reported in Table 2.1, and these would not formally survive adjustment for 

multiple comparisons.  Nevertheless, for CAD, the total number of increasing alleles 

showed a surprising positive relationship with total cholesterol levels, even though there 

is little overlap between these SNPs and those associated with cholesterol by GWAS.  
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Table 2.1 Variance explained by genetic risk scores. 

 

SNPs for Trait Score type    Covariate Adj. Rsq         P-value 2 expl. Adj. Rsq     P-value   2 expl. 

Panel 

in 

Figure 

2.1 

          All samples     CAU only     
 Height  Height Allele sum         - 0.027 0.026 2.70% 0.025 0.066 2.50% a 

Height  Height Allele sum Gender/Ethn 0.467 4×10-4 4.00% 0.45 0.002 4.00% 

 Height  Height Weighted sum         - 0.037 0.009 3.70% 0.036 0.027 3.60% b 

Height  Height Weighted sum Gender/Ethn 0.466 5×10-4 3.80% 0.498 0.001 4.20% 

 Height  Height Weighted sum Pre-height 0.027 0.026 2.70% 0.498 0.001 4.20% 

 BMI  BMI Allele sum         - 0.052 0.002 5.20% 0.065 0.003 6.50% c 

BMI  BMI Allele sum Gender/Ethn 0.18 0.001 5.30% 0.087 0.003 6.10% 

 BMI  BMI Weighted sum         - 0.051 0.002 5.10% 0.029 0.049 2.90% d 

BMI  BMI Weighted sum Gender/Ethn 0.169 0.003 4.20% 0.054 0.047 2.90% 

 BMI  BMI Weighted sum Pre-height 0.101 0.005 4.10% 0.054 0.047 2.90% 

 Triglycerides Triglycerides Allele sum         - 0.042 0.005 4.20% 0.067 0.002 6.70% e 

Triglycerides Triglycerides Allele sum Gender/Ethn 0.115 0.003 4.50% 0.115 0.001 7.60% 

 CAD  Cholesterol Allele sum         - 0.044 0.005 4.40% 0.028 0.052 2.80% f 

CAD  Cholesterol Allele sum Gender/Ethn 0.005 0.06 4.30% 0.569 0.04 1.40% 

 CAD  Log10(FHS+1) Log10(LR)         - 0.055 0.02 2.00% 0.053 0.007 5.30% g 

CAD  Log10(FHS+1) Log10(LR) Log10(pre-test) 0.008 0.418 2.30% 0.062 0.006 5.40% 

 CAD  Log10(Chol) Log10(LR)        - 0.015 0.032 3.20% 0.036 0.028 3.60% h 

CAD Log10(Chol) Log10(LR) Log10(pre-test) 0.016 0.042 3.20% 0.046 0.023 3.80%   
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Table 2.1 shows that regression of genotypic risk scores on phenotypes was little 

affected by considering only the Caucasians.  The proportion of variance explained by 

SNPs for triglycerides and CAD was slightly increased relative to the full cohort, likely 

due to better capture of LD between tagging and causal SNPs in Caucasians, but this 

effect is offset by the smaller sample size for other traits.  

Effect of Number of Alleles on Risk Prediction 

 Step forward regression, sequentially adding SNPs in the order of previously 

reported effect size, was performed to address whether the addition of more SNPs to the 

model continuously improves the prediction.  Figure 2.1 shows the results for height, 

BMI, and cholesterol on the left hand panels, compared with average effects for 100 

randomly permuted orders of SNP addition on the right panels. In each case, explanatory 

power of the SNPs increases at least for the first 30 SNPs included in the model. 

 For height (Figure. 2.1 a and b) it is also clear that most of the variance is 

explained by the top 30 SNPs and that sequential addition up to 169 SNPs does not 

improve the fit.  Models without gender and ethnicity covariates (blue and brown curves) 

actually explained the most variance when an intermediate number of SNPs were 

selected. However, since inclusion of more SNPs reduced the estimates to levels more 

consistent with those obtained when gender and ethnicity are included, the scores with 

intermediate numbers of SNPs are likely to be over-estimates.  For BMI (Figure 2.1 c and 

d), there is a suggestion of a plateau effect after 10 SNPs, without a clear further increase 

until 40 SNPs are included in the model. In this case, fitting gender and ethnicity does not 

affect the genetic estimates. For CAD (Figure 2.1 e and f), significant explanation is not 

observed until 30 SNPs are included, but there may be a plateau thereafter, and the 

estimates are not obviously influenced by inclusion of the covariates. For BMI and 

cholesterol, the weighted sum (or likelihood ratio) scores performed slightly less well 

than the simple allelic sum predictors.  
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Figure 2.1  The percentage of variance explained by the models with sequentially 

adding SNPs in the order of their effect sizes and compared with random orders. 

The percentage of variance explained by the model by sequentially adding SNPs (Height, 

BMI and cholesterol-CAD SNPs from top to bottom, (a), (c) and (e)). Right: The 

percentage of variance explained by the models randomly adding SNPs (Height, BMI and 

cholesterol-CAD SNPs from top to bottom, (b), (d) and (f)) averaged over 100 

permutations. SA refers to models with just the sum of alleles score, while eg_SA refers 

to models additionally fitting ethnicity and gender as covariates with the sum of alleles 

score. WS refers to models with sum of weighted allelic effects, while eg_WS and 

pre_WS refer to weighted allelic sum includng ethnicity and gender in the CHDWB 

cohort, or taken as the population averages, as covariates respectively. LR refers to 

likelihood ratio models, with or without pre-test probability as a covariate.  
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Effect of Outliers on Explanatory Power 

Inspection of the regression plots in Figure 2.2 suggests the estimated variance 

explained can be strongly influenced by outliers. Thus, the sum of alleles test for height 

in males shows several men who grow taller than their genetic information predicts 

(asterisks in Figure 2.2). Except for one Asian, all of these men are Caucasians. Removal 

of them improves the percent variance explained from 8% to 37%.   

 

 

 

 

Figure 2.2  Linear regression plot fitting real height by sum of increasing alleles in 

males. Red dots Caucasians; blue American Indian; green African Americans; purple 

Asians. Asterisks: the individuals who are taller than their genetic information would 

indicate. Red line: regression fitting line for all men. Green line: regression fitting line for 

males without those taller than expected men. 

 

 

 

The sum of alleles test plot for triglycerides (Figure 2.3) appears to differ between 

higher and lower triglyceride levels. If the analysis is restricted to individuals with TG 

more than 100 mg/dL, the genotypes explain a trivial 0.5% of the variance, while 

regression on the remaining individuals with lower TG has a similar slope but explains 

5.3% of the variance.  The increased phenotypic variance in the high triglyceride range 

reduces the significance of the overall regression even though the slope is greater than in 

either the low or high TG ranges. Moreover, the association is more significant in 



24 

 

Caucasians than other ethnicities and more significant in males than females. 

 

 

 

 

Figure 2.3  Linear regression plot fitting total triglyceride levels by sum of 

increasing alleles. Dots: TG > 100 mg/ml. Triangles: TG < 100 mg/ml. Red line: linear 

regression for all the individuals (P=0.0053, R2=0.042). Blue line: linear regression for 

individuals with TG > 100 mg/ml (P=0.5453, R2=0.005). Green line: linear regression for 

individuals with lower TG levels (P=0.0169, R2=0.053). 

 

 

 

 

Figure 2.4  Regression of Framingham risk score for heart against likelihood ratio 

and allelic sum score. (a) Regression of log10(FHS for heart disease) against genotypic 

log likelihood in males.  Exclusion of five older Caucasian males (asterisks) elevates the 

regression from P=0.18, R2=0.03 to P=0.0065, R2=0.13. (b) Logistic regression of 

Framingham risk status on sum of CAD risk alleles in all study participants shows a 

significant association (P=0.0221, R2=0.027). Red dots: Caucasians, blue: American 

Indian, green: African Americans, purple: Asians. Circles females, Triangles males.  
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The regression plot for logarithm transformation of Framingham heart disease risk 

score and likelihood ratio for CAD SNPs in males shows that there are five Caucasian 

males (asterisks in Figure 2.4 a) who have higher Framingham risk scores than expected. 

They are all older than the average male ages. Exclusion of those five males results in a 

more significant association (Figure 2.4 a). In addition, I set Framingham risk status as 0 

and 1 based on the Framingham risk scores (0 when FRS <4, 1 when FRS >=4). The 

logistic regression shows a significant association between Framingham risk status and 

sum of CAD risk alleles (Figure 2.4 b), but the area under the ROC curve is just 0.60, 

indicating that this is not a clinically useful predictor [69]. 

For BMI (Figure 2.5 c), the weighted sum regression plot suggests that the 

genotypes are more strongly associated with the BMI in African Americans than 

Europeans. While weighted sum of effects account for 17% of BMI variation in African 

Americans, the effects only explain 3% of variation in Caucasians. The high variance 

explained in African Americans is plausibly an overestimate due to the small sample.  

Stability of Height Predictions to Number of Included SNPs 

I also re-estimated each person's height predictors (allelic sum score, and 

weighted allelic effect score) from the average of 100 bootstrap samples of 50, 75, and 

100 SNPs. The estimates were all highly correlated (Spearman’s rank correlation 

coefficient ρ>0.99) and explained almost the same percentage of variance for height. 

Similarly, the BMI predictors from the average of 100 bootstrap samples of 30, 40 and 49 

SNPs were also highly correlated and contributed similarly to the BMI variance. This 

suggests the increased estimated variance explained for intermediate number of SNPs in 

height and for more than 40 SNPs in BMI is probably just noise contributing false 

positive signal.  A corollary is that an attempt to include all available SNPs in a model is 

not necessarily guaranteed to yield the most accurate predictor, since, for example, had 

only the top 80 SNPs for height been available, more variance would have been 
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explained than is reasonable given the stepwise increments expected for each additional 

SNP.  On the other hand, the addition of the last 10 SNPs markedly reduced the 

proportion of variance explained using just the allelic sum score for height, suggesting 

more stable predictors might sometimes be obtained by considering a range of numbers 

of included SNPs. 
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Figure 2.5 Linear regression between observed traits and predicted traits (or 

predicted disease probabilities). The graphs on the left hand side show the relationship 

between (a) height, (c) BMI and (e) serum triglyceride concentration with sum of 

increasing alleles, while those on the right show the relationships with the weighted sum 

of allelic effects (b) height and (d) BMI. The bottom plots show the regressions with 

CAD risk allele scores, namely between log10(Framingham risk score for heart disease 

+1) and log10(likelihood ratio) (f), between total cholesterol levels and sum of CAD-risk 

alleles (g), and between log10(cholesterol) and log10(likelihood ratio) for the CAD risk 

alleles (h). Circle markers and triangle markers represent females and males. Green 

African Americans; Blue American Indian; Purple Asians; Red Caucasians.  
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Discussion 

According to my results, genotypes ascertained for the most part in large GWAS 

metanalyses are somewhat predictive of the relevant traits in our small study cohort of 

typical residents of Atlanta, Georgia.  In general, however, the amount of variance 

explained was smaller than expected, and for CAD and type 2 diabetes the genotypes 

were not significant predictors of individual disease status.  Approximately 4% of height 

variance was explained by the 169 SNPs whether using sum of increasing alleles, or 

using weighted sum of effects. This contrasts with 10.5% of adult height variance (using 

sum of effects method) being explained by 180 SNPs in the analysis of 133,653 

individuals [58].  The 700 fold difference in sample size may contribute to the halving of 

the variance explained, since inspection of the data suggests that a small fraction of 

outliers (taller than expected men) strongly influence the regression.  Additionally, the 

Atlanta cohort is ethnically diverse, and covers three generations that would have 

experienced very different socio-economic conditions during growth.  On the other hand, 

it is surprising that the amount of variance in BMI explained by our 49 SNPs is similar to 

the 4.1% of variance in BMI that is accounted for by 56 variants in a 3,600 sample 

discovery cohort [61].  The heritability of BMI is considerably lower than that of height, 

and gender and ethnic differences are strong, yet the genotypic risk score was more 

consistent than that for height. 

In comparison with the recorded 10% triglyceride variance explained by common 

SNPs [70], the 48 SNPs in my study explained just 4.5% of triglyceride variation. An 

unexpected finding was that approximately 4.3% and 3.2% of the variation of total 

cholesterol levels could be attributed to the 34 CAD-related SNPs, performing sum of 

increasing alleles and multiplication of likelihood ratios respectively.  This is the same 

order of magnitude of explanation as height and BMI, both of which are due to SNPs 

discovered for the respective trait.  The CAD SNPs are related to all forms of coronary 

artery disease, including atherosclerosis, which is certainly related to cholesterol levels, 
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but there is no obvious enrichment in the SNPs for cholesterol metabolism.  

Correspondingly, variation in the Framingham risk score was also partially explained by 

the likelihood ratio score from the CAD-related SNPs, at a level only slightly less than 

the 4% explained in [71].   

Weighting the allelic effects by the effect sizes reported on dbGaP did not notably 

improve the prediction of height, BMI, triglycerides or cholesterol. This is perhaps not 

surprising since there is large variance in the estimation of effect sizes, and to some 

extent including them in the model adds as much noise as it does signal.  In addition, the 

effect sizes recorded in dbGaP were obtained from the studies which are usually 

composed of one specific ethnicity (generally European). Even in a few studies whose 

samples contain more than one ethnicity, the compositions are different from ours. For 

example, Gudbjartsson et al. [72] recorded effect sizes for 35 of our height SNPs in a 

study composed of 25,174 Icelanders, 2,876 Dutch, 1,770 European Americans and 1,148 

African Americans, which is obviously different from the ethnicity composition in our 

study, which has 19% African American and 6% Asian. These differences in ethnicity 

composition could result in the different effect sizes of the SNPs, further reducing the 

accuracy of the weighted allelic effect scores. It is also the case that reduced linkage 

disequilibrium in Africans should decrease the proportion of causal effects captured by 

tagging SNPs, which should reduce the variance explained in the full model. 

The identification of subsets of outlier individuals who do not fit the general 

correlation between genotype and phenotype has implications both for improved 

estimation of individual genetic effects, and also for prediction.  To the extent that shared 

properties of such individuals can be identified, those properties can be considered as 

covariates in statistical models, either as regular environmental effects or sources of 

genotype-by-environment interaction.  This conclusion is at odds with arguments that 

GE is unlikely to contribute strongly to explained genetic variance [73] or prediction 

[74]. I think it is relevant that interactions such as those in Figure 2.2 are between the 
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environmental property shared by the outliers, and the genotypic risk score, rather than 

with single genotypes.  Since the risk score is the sum of 30 or more effects, individual 

genotype-by-environment interactions can be small, and if they only affect a few 

individuals, they will not make a substantive contribution to risk averaged across the 

population. Marigorta and Gibson [75] on our group explored this possibility by 

simulation and confirmed that Genetic Risk Score-by-Environment effects are much 

easier to detect than Genotype-by-Environment effects. 

In predictive health genetics it may be a problem that variants that exceed GWAS 

thresholds only explain a small fraction of the heritability [63, 76], and yet there is 

widespread intention to use these variants to classify individuals with respect to disease 

risk. A possible rationale for this can be seen in the result that most of the genetic signal 

is actually due to the SNPs with the strongest effect sizes. This is clearly the case for 

height, and to some extent triglycerides and cholesterol, though I do not yet have data on 

whether the addition of a further 100 SNPs would improve the BMI prediction. If effect 

sizes are Poisson-distributed, then the contributions of the top 30 SNPs are likely to be 

much greater than those of the next 100 SNPs, which may just tend to cancel one another 

out and contribute noise. Whole genome regression methods show that inclusion of 

undiscovered variants can improve genetic prediction [77, 78], but my results suggest that 

for individually ascertained SNPs, the top few dozen variants will often be as good as the 

top few hundred.  Although they only explain a small fraction of the variance, in keeping 

with individually small effect sizes, it is notable that the effects are significant across 

multiple traits even in a cohort of fewer than 200 people. 
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CHAPTER 3 

META-GWAS ANALYSIS ON TNF-α and CRP/BMI 

 

Introduction 

GWAS aims to detect variants in particular single-nucleotide polymorphisms that 

are associated with complex traits such as common diseases and clinical quantitative 

traits. In the last decade, hundreds of diseases and traits were investigated by GWA 

studies and thousands of SNP associations have been found. The number of loci found to 

be associated with diseases and traits continues to expand with the development of 

improved genotyping arrays, methods for imputation, next generation sequencing, and 

advanced statistical methods. 

Tumor necrosis factor alpha (TNF-α) is a key mediator of inflammatory disease 

[79]. It is a cytokine involved in inflammation and acute phase reaction stimulation. 

While it can be produced by many cell types such as CD4+ lymphotypes, NK cells and 

neutrophils etc, it is produced mainly by activated macrophages. TNF-α plays an 

important role in cell signaling by activating NF-ĸB, MAPK, and the apoptosis signaling 

pathway after it binds with TNF receptors. Here I performed a replication study for TNF-

α with 44 lead SNPs as the replication component of a meta-GWAS for TNF-α, in which 

16 cohorts were participating with in total > 23,000 individuals. 

C-reactive protein is also an acute-phase protein [80]. The level of CRP rises in 

response to inflammation and tissue damage. Body mass index, defined as body mass 

divided by the square of height, is one of the commonly used criteria for classification of 

underweight, normal, overweight, and obesity. It is also a useful predictor of health 

status. Many studies have shown that there is an association between CRP levels and 

BMI [81, 82]. In order to evaluate whether the correlation is due to causation or 

independent correlation between two phenotypes and another causal variable, an 
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approach known as Mendelian randomization [83] has been proposed.  The genotypes are 

considered to be the possible alternative variable, and their influence on BMI is evaluated 

with and without CRP in the model. Here, I participated in the GWAS meta-analysis of 

CRP/BMI as a proof of the principle of bidirectional Mendelian randomization model. 

Materials and Methods 

Imputation 

a. Samples 

 The CHDWB cohort was genotyped in three batches.  A total of 156 samples 

were genotyped for batch I, and 144 samples for batch II.   The first step of the TNF-α 

GWAS was to impute 8.5 million SNP genotypes based on the 1000 Genomes project 

data.  Prior to imputation, PLINK QC procedures [84] for genotype data cleaning were 

performed following instructions provided by the consortium to ensure comparison 

across contributing studies. The quality for samples was checked including sex 

concordance between annotation and genotypic implication; missing call rate (MCR, set 

at 0.05 for both batches); sample relatedness; and population structure. After the QC 

process, a cleaned dataset of 153 unique samples for batch I and 144 unique samples for 

batch II was yielded. 

b. SNPs 

All samples in CHDWB were genotyped with Illumina genotyping array. 209 

samples (in phase I) were genotyped using Illumina OminiQuad array which contains 

733,202 SNPs, another 156 and 144 samples (in phase II) were genotyped separately in 

two batches using the Illumina CoreExome array. The genotypes were imputed by using 

IMPUTE2. The phase I data was imputed by UW-Seattle group (Cathie Laurie and Sarah 

Nelson). The phase II batches were imputed by me using the same protocol as with phase 

I. Here I only describe the methods and results for the 2 batches in phase II. 
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 Both batches were genotyped on the Illumina Human CoreExome array. The array 

version of batch I was HumanCoreExome-12v1-0_B, which was based on human 

genome build 37 and contains 542,882 SNPs. The array version of batch II was 

HumanCoreExome-12v1-1_B, which was also based on human genome build 37 but 

contains 542,585 SNPs.  The arrays differ from the OmniQuad array used in Phase I by 

having fewer SNPs overall, but a much higher density of all coding region SNPs 

including most known variants down to a minor allele frequency of 0.01 in 

Europeans.  Consequently, the common intergenic variants are sparse and imputation was 

not expected to be as comprehensive as in Phase 1.  PLINK QC procedures were used to 

identify poor quality or otherwise questionable SNPs. The QC checks in SNP level 

included MCR; Hardy-Weinberg equilibrium; and sex differences according to allelic 

frequency or heterozygosity rate. Table 3.1 shows the number of SNPs lost and SNPs left 

after each filter step. Where an observed study SNP had sporadic missing data, the 

missing genotypes were imputed by the pre-phasing software. 

 

 

 

Table 3.1 Summary of SNP quality filters from genotype data cleaning. Top: batch I. 

Bottom: batch II. 

 
Filter SNPs lost SNPs kept 

SNP probes NA 542,882 

missing call rate > 0.05 47,250 495,632 

HWE p-value < E-4 6,335 489,297 

sex difference in allelic frequency >= 0.2 10 489,287 

sex difference in heterozygosity rate > 0.3 0 489,287 

 
Filter SNPs lost SNPs kept 

SNP probes NA 542,585 

missing call rate > 0.05 3,599 538,986 

HWE p-value < E-4 34 538,952 

sex difference in allelic frequency >= 0.2 384 538,568 

sex difference in heterozygosity rate > 0.3 519 538,049 
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c. Data formatting 

 The raw Illumina text files were first re-formatted to long-format fileset (LGEN), 

then converted to PLINK binary file with the samples passing the QC.  

 Before imputation, bed files were made from PLINK binary files for each 

chromosome. The haploid genotypes in chromosome X in male which were called as 

heterozygotes were set as missing. Only the SNPs and samples which have passed the 

QC filtering were included in the output bed files. In addition, the strands of the variants 

were flipped if they were not “+” strands according to Illumina annotation. An example 

of the command line to create the bed files is shown below.  

plink --bfile Coreexome_genotype \  

--extract snp_passquality.txt --flip fliplist.txt \  

--keep sample_keep.txt --set-hh-missing --chr 1 \  

--make-bed -–out Coreexome_chr1 

     d.  Pre-phasing 

 The bed file creation is followed by pre-phasing with SHAPEIT2 haplotype 

estimation tool [85]. SHAPEIT2 could get the best guess haplotypes based on the input 

bed files. Then the best guess haplotypes were used by IMPUTE2 [86] to perform 

imputation. An example of the command line to run pre-phasing is shown below.  

shapeit2 -B Coreexome_chr1 \  

-M genetic_map_chr1_combined_b37.txt \  

-O Coreexome_chr1.haps.gz Coreexome_chr1.sample.gz \  

-S 200 –T 3 -L shapeit_chr1.log 

    e. Reference panel 

 The reference panel data was downloaded from the September 2013 release of 

1000 Genomes on the IMPUTE2 website and the previous March 2012 version was used 

for the X chromosome. As 1000 Genomes sequencing data generally has low coverage 

[87], the variants with very low frequency especially many singletons are likely to be 
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genotyping errors. To avoid imputation errors caused by very low frequency variants, 

imputation was only performed on the variants with at least two copies of the minor allele 

in EUR and AFR samples in 1000 Genomes project. According to the number of samples 

in EUR and AFR group, the filtering cutoff of minor allele frequency of EUR was 0.0026 

and of AFR was 0.004. All three variant types (SNPs, indels, and SVs) were included in 

the imputation. EUR and AFR refer to European and African ancestry individuals. 

f. Imputation 

 An example of the command line to run imputation is shown below. 

impute2-use_prephased_g -m genetic_map_chr1_combined_b37.txt \ 

-h 

ALL.chr1.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.nosing.haplotypes.

gz \ 

-l  

ALL.chr1.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.nosing.legend.gz \ 

-int 0 5000000 -buffer 500 -allow_large_regions \ 

-known_haps_g Coreexome_chr1.haps.gz \ 

-filt_rules_l 'eur.maf<0.0026' 'afr.maf<0.004' \ 

-o Coeexome_imputed_chr1_set1.gprobs -os 0 2 –o_gz\ 

-i Coreexome_imputed_chr1_set1.metrics –verbose 

TNF-α Study 

            TNF-α was measured from buffy coat samples isolated from peripheral blood. 

Buffy coats contain most of the white blood cells and platelets after density gradient 

centrifugation of blood. The unit of TNF-α was pg/ml. There were 266 Caucasians 

(Europeans) in the CHDWB cohort whose TNF-α levels were available. The TNF-α level 

was first transformed to the natural logarithm. Nine samples whose ln(TNF-α) level was 

larger than 4 standard deviation from mean levels were excluded. Therefore, there were 
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257 samples included in the study which were comprised of 98 males and 159 females. 

The age ranged between 19 and 82 with a mean of 50.1 and standard deviation of 10.9. 

            The first visit (baseline) TNF-α ranged from 0.1 pg/ml to 36.2 pg/ml with mean of 

4.1 pg/ml and standard deviation of 3.3. The covariates were sex, age, age2, and BMI. 

BMI has a mean of 26.8 kg/m2 and a standard deviation of 5.0. The first step was to run a 

linear regression on ln(TNF-α) while adjusting for covariates. The regression was 

performed on both sexes combined, and each sex separately. The regression model for 

combined men and women was: ln(TNF-α) = age+age2+BMI+sex. The modes for each 

sex were: ln(TNF-α) = age+age2+BMI. The residuals for each model were saved as the 

phenotype to be used in the association analysis. 

            44 candidate SNPs identified in the discovery phase of the TNF-α meta-analysis 

were provided by Bram Prin’s group at the University of Groningen. There were 6 SNPs 

already genotyped on the arrays, while the remaining 38 SNPs were imputed using 

IMPUTE2 as described above.  Association tests were performed by SNPTEST (v2.5b) 

[88] using the frequentist association test with additive genotype dosages assumed. 

            Subsequently, I performed a longitudinal analysis, using 815 total measures of 

TNF-α. Excluding samples with no covariate information, 778 total measures remained, 

but of these, 19 ln(TNF-α) measures deviated by more than 4 standard deviation units of 

the mean and were removed. The individuals who only had a single visit were also 

removed. If an individual had more than 3 visits, I used the first 3 visit measures. In the 

end, there were 583 measures from 218 Caucasians (84 men and 134 women). The 

additive genotype dosage was calculated using the formula: dosage=1*pij1+2*pij2. 

Pij1 and pij2 are the probability of genotypes AB and BB corresponding to IMPUTE2 

format with coded allele (the same coded allele as provided by Bram Prin’s group) as 

allele B. A linear mixed effect model in R was performed as 

ln(TNF-α) = μ + genodosage + visit + indivID + age + age2 + BMI + sex + ε 
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where visit is an ordinal variable , indivID is a random effect, μ the grand mean, ε the 

residual error assumed to be normally distributed with a mean of zero, and sex was 

excluded for analyses of women and men separately. 

1000G BMI/CRP Study 

 There were 266 samples whose BMI and CRP and covariates age, sex, BMI were 

all available. They were composed of 204 Caucasians and 62 Africans, age ranging 

between 22 and 76, including 77 males and 189 females. Imputation was performed using 

IMPUTE2 as above. In total, there were 8,970,590 variants (including SNPs and Indels) 

included in the study.  

 CRP ranged from 0.1 to 5.5 mg/L with a mean of 0.39 and a standard deviation of 

0.54. The first step was to perform regression models on ln(CRP) while adjusting for 

covariates. Two regression models were used. The first one was fitting ln(CRP) with 

covariates age, sex, and the first ancestry principle component assessed from the 

genotype matrix. The second model was to fit ln(CRP) with the covariates age, sex, the 

first ancestry principle component as well as BMI. Then association tests were performed 

using the residuals from the two models separately, with imputed genotypes in each 

chromosome. SNPTEST v2 was used to perform the association test on autosomes and 

the X chromosome in females. The study was performed with two methods – “threshold” 

and “expected”, both under additive models. The “threshold” method uses intensity data 

for genotype determinations and was performed with 0.8 as the genotype threshold. The 

“expected” method was performed with expected genotype counts. For the X 

chromosome in males, GWAS was performed in R using a linear model with "threshold" 

and "expected" methods similar to SNPTEST, but with the difference that the "threshold" 

method was performed with 0.5 as genotype threshold (to simply avoid NA in the 

analysis), and for SNPs on the X chromosome, one copy of the coded allele was coded as 

2.  
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 BMI ranged from 18.4 to 50.9 kg/m2 with a mean of 28.7 and a standard deviation 

of 5.7. BMI was inverse normally transformed (“inBMI”) using the “rntransform” 

function in GenABEL. The regressions on inBMI were performed by adjusting 

covariates, also with two models. The first model was to regress inBMI on covariates 

age, sex, and the first ancestry principle component. The second model was to regress 

inBMI on covariates age, sex, the first ancestry principle component, and lnCRP. The 

association between residuals and genotypes was then performed as for ln(CRP).  

Results 

Imputation 

 Table 3.2 lists the number of imputed SNPs by chromosome based on the 

indicated number of SNPs on the array and number used for imputation after filtering.  As 

seen by contrasting the top and bottom panels, almost identical numbers of imputed SNPs 

were obtained, even though the Batch 1 genotyping quality was lower than Batch 2 

(Table 3.3), due to a problem with reagents.  

 The qualities of imputation were assessed based on quality data given by 

IMPUTE2 such as “info” which represents the imputation certainty and “concordance” 

which shows the concordance between imputed genotypes and original genotypes for one 

SNP.  Table 3.3 summarizes the quality metrics, based on contrast of imputed genotypes 

with a set of masked SNPs, indicating overall concordance over 95% for SNPs with 

MAF<0.05 and 92% for common variants.  Figure 3.1 shows that the confidence in 

imputation increases as MAF increases, as expected, with a plateau after MAF ~ 

0.2.  Figure 3.2 summarizes confidence scores by chromosome showing slight reduction 

in scores for the shorter chromosomes, possibly due to reduced efficiency of long 

range phasing. 
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Table 3.2 Imputation variant summary. Top: batch I. Bottom: batch II. 

 
Chromosome Study 

SNPs 

Imputation 

basis 

Imputation 

Output 
1 44,777 18,704 668,341 
2 37,164 18,693 720,978 

3 31,241 15,568 618,134 

4 24,671 13,772 637,124 

5 25,776 13,919 558,284 

6 28,390 14,648 593,657 

7 24,235 12,529 511,581 

8 21,294 12,082 476,431 

9 20,558 10,193 377,977 

10 21,897 11,883 441,860 

11 27,634 11,681 426,805 

12 24,172 11,027 416,516 

13 12,851 8,202 320,765 

14 15,591 7,471 286,850 

15 15,689 6,970 250,060 

16 18,281 7,610 268,571 

17 20,249 6,926 235,730 

18 10,519 6,540 250,195 

19 21,046 5,891 206,783 

20 12,531 6,015 193,171 

21 6,178 3,278 124,885 

22 8,826 3,674 123,724 

X 13,026 7,227 272,090 

Total 486,596 234,503 8,980,512 

 
Chromosome Study SNPs Imputation 

basis 

Imputation 

Output 
1 48,430 21,420 668,341 

2 41,224 22,017 720,978 

3 34,656 18,469 618,134 

4 28,550 17,112 637,124 

5 28,894 16,506 558,284 

6 33,678 19,093 593,657 

7 27,039 14,849 511,581 

8 23,840 14,231 476,431 

9 22,681 11,963 377,977 

10 24,059 13,689 441,860 

11 30,020 13,506 426,805 

12 26,540 12,908 416,516 

13 14,900 10,016 320,765 

14 17,156 8,722 286,982 

15 17,020 8,052 250,060 

16 19,434 8,501 268,571 

17 21,346 7,622 235,730 

18 11,951 7,804 250,195 

19 21,910 6,379 206,783 

20 13,380 6,688 193,171 

21 6,887 3,893 124,872 

22 9,215 3,956 123,724 

X 12,675 7,028 267,913 

Total 535,485 274,424 8,976,454 
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Table 3.3 Quality metrics for all masked SNPs, dichotomized into groups of MAF < 

0.05 vs. MAF ≥ 0.05. Top: batch I. Bottom: batch II. 

 
MAF (in study samples) Number of SNPs Mean (Median) of 

Overall Concordance 

Mean (Median) of 

empirical dosage r2 

<0.05 9,695 0.96 (0.987) 0.667 (0.759) 

>=0.05 224,808 0.925 (0.954) 0.839 (0.899) 

 
MAF (in study samples) Number of SNPs Mean(Median) of 

Overall Concordance 

Mean(Median) of 

empirical dosage r2 

<0.05 8,935 0.976 (0.987) 0.729 (0.823) 

>=0.05 265,489 0.934 (0.965) 0.866 (0.925) 
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Figure 3.1 Summaries of quality metrics at imputed variants: SNPs, SVs, and indels 

in chromosome 12 (chromosome randomly picked, for simplicity). In each plot, 

imputed variants are binned by MAF (0.01 intervals) along the x-axis and then mean 

“info” score per bin is plotted on the y-axis. Left panel is for SNPs and right panel for 

indels and SVs. The secondary y-axes indicate the count of variants in each MAF bin. 

Top: batch I. Bottom: batch II. 
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Figure 3.2 A comparison of imputation quality metrics by chromosome for all 

imputed SNPs. “info” in left panel and “certainty” in right panel for SNPs. Outlier 

values are not displayed in these box plots. On the x-axis, “23” denotes the X 

chromosome. Top: batch I. Bottom: batch II. 
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TNF-α 

 Overall, compared to the effect directions reported in the discovery phase meta-

analysis, 30, 25 and 26 out of the 44 SNPs had the same effect direction for baseline 

concentrations of TNF-α in the combined sample, and in men and women, separately.  By 

contrast, 27, 27 and 25 out of the 44 SNPs had the same effect direction for longitudinal 

analyses of the combined sample, and men and women analyzed separately. 

            According to the association significance in the discovery phase, a priority list for 

the replication study was provided by Bram Prin’s group with 11 SNPs in Tier 1 and 9 

SNPs in Tier 2. Table 3.4 shows that all of the significant SNPs in the Tier 1 and Tier 

2 groups (the highest confidence SNPs) had the same effect direction with the meta 

analysis overall direction.  However, rs13112532, which showed the strongest association 

in our cohort, presented in the opposite direction. The association between TNF-α and 

genotype appears to be quite robust in the baseline and longitudinal TNF-α analyses, as 

shown in Figure 3.3.  The top panels show that the relationship between the effect size 

estimates longitudinally and at baseline are always linear, although there is more 

variability in the negative log p-value estimates. 

 

 

 

Table 3.4 TNF-a significant association p-values. (-) means opposite direction in 

comparison with discover phase.  

 
SNP Baseline_

total 

Baseline_

men 

Baseline

_women 

Longitudinal

_total 

Longitudinal

_men 

Longitudinal

_women 

 

rs1089208

2 

0.0231 0.0249  0.0233 0.0341  Tier 1 
rs1311253

2 

7.31E-5(-)  2.07E-

4(-) 

2.13E-4(-)  9.35E-4(-)   

rs644234 0.0254 0.0301  0.0215 0.0225  Tier 1 

rs9940180 0.0321  0.0361 0.0321  0.0357   

rs1077462

5 

 0.0421   0.0463    

rs3184504  0.0460   0.0401  Tier 2 

rs1320731

5 

0.0231  0.0132 0.0302  0.0144 Tier 1 

rs4779129 0.0404 0.0321 0.0483 0.0487 0.0354 0.0464   

rs7182229    0.0459  0.0477 Tier 1 

rs2131355        0.0384(-)     
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Figure 3.3 beta and p-value comparison between TNF-a baseline and longitudinal 

study. Beta comparison in female (A), male (B) and all samples (C). NLP (-log10p) 

comparison in female (D), male (E) and all samples (F). 

 

A 

B 

C 

D 

E 

F 
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1000G BMI/CRP 

 From Table 3.5, BMI has approximately 500 significant associated SNPs (defined 

as p-value < 0.0001) by using either expected or threshold method. CRP has 

approximately 1000 significant associated SNPs by those two methods. Those two 

methods show around 60% overlap in both BMI and CRP studies. In addition, 216 SNPs 

were overlapped between unadjusted expected method and adjusted expected method for 

BMI. 217 SNP were overlapped between unadjusted threshold method and adjusted 

expected method for BMI. As to CRP, the two overlapped SNP numbers were 421 and 

455 respectively. Therefore, the overlapping proportion was approximately 40% for 

unadjusting and adjusting CRP/BMI. There is less than 10 SNPs overlap between SNPs 

of BMI-associated and CRP-associated no matter what the adjustment is. 

 

 

 

Table 3.5  Number of significant SNPs (p-value < 0.0001) for different association 

methods and adjustment models. 

 
  BMI CRP 

adjust CRP unadjust CRP adjust BMI unadjust BMI 

expected 510 473 980 1091 

threshold 476 546 1115 1161 

in common 320 309 592 683 

 

 

 

Discussion 

 There were 10 SNPs found to be associated significantly with TNF-α at 

p<0.05 using 257 Caucasians in the CHDWB cohort. The lack of significant association 

for most of the other 34 SNPs is almost certainly due to the small sample size. However, I 

calculated the HWE_Pvalue for all 44 SNPs with best guess genotype from the 

IMPUTE2 result and observed that rs107744774 (HWE p=3×10-7), rs10892063 (p=1×10-

5), rs17377218 (p=5×10-9) all failed the HWE test, which may have contributed to their 

lack of association detected with TNF-α. 
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            In general, the threshold method detected more significant SNP associations. 

Compared to the expected method, which uses the expected dosage of coded alleles (any 

continuous value between 0 and 2) according to the likelihood of each genotype, the 

threshold method uses the best guess genotype (only 0, 1 or 2 possible). In this way, the 

expected method is more stringent when fitting the models with phenotype. My view is 

that the expected method is more reliable as it takes the likelihood of each genotype into 

consideration and avoids the bias from arbitrary setting of the best guess genotype 

likelihood threshold. 

Preliminary clinical data have suggested TNF-α may be involved in the 

pathogenesis of a variety of human diseases including autoimmune diseases and septic 

shock and inhibition of TNF-α may take a role in disease prevention and treatment [89, 

90]. Anti-TNF-α therapy has been studied for treatment of diseases such as rheumatoid 

arthritis [91]. GWAS on TNF-α would make a better understanding of the genetic basis of 

TNF-α response, and may provide candidate gene targets for pharmacogenetic 

considerations in TNF-α related diseases. Imputation on array genome data has been 

proved to provide a lot of information for GWAS on TNF-α. However, as with the 

development of sequencing techniques, more genetic sites associated with TNF-α 

including rare variants would be likely to be found in future.   

In addition, there are studies showing relationship between the levels of CRP and 

BMI. However, the causal relationship is unclear. The knowledge of genetic variants 

associated with CRP and BMI could play a role in elucidating the causal relationship 

between those two traits with Mendelian randomization, but this is only possible in the 

very large meta-analysis dataset. In addition, CRP is an acute-phase protein, whose level 

rises in response to inflammation and tissue damage [92, 93]. BMI is also a useful 

predictor of health status. It has been shown that many metabolic and disease outcomes 

are related to elevated BMI. For example, coronary artery disease, and type 2 diabetes 

[94, 95] have been found to be more prevalent in people with high BMI. The GWAS 
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analysis of these two traits could therefor provide candidate variants that may have 

implications for development of possible genetic treatment to their related diseases. 

While GWAS analysis on disease-associated traits is very helpful in finding 

genetic positions that are relevant to disease, endophenotype studies such as the ones 

reported in this chapter can also shed light on disease mechanisms and influence drug 

design. This work has shown that genotyping data, in together with imputation of missing 

genotypes, is an efficient way to perform GWAS analysis. However, given the bias and 

incompleteness of genotyping probes, it would be more accurate and more informative if 

sequencing data were used for fine mapping in GWAS.  

According to the results, CRP and BMI have several hundred associated common 

SNPs. The TNF-α discovery phase study found a few hundred candidate SNPs associated 

with the cytokine levels. However, previous studies [96, 97] have shown that hundreds of 

GWAS common SNPs usually only explain less than 20% of the variance. This has also 

been pointed out in Chapter 2. It implies that other factors also contribute to the trait 

variance, for example gene-environment interaction, epigenetic effects, and also rare 

variants, and common variants of very small effect. In the next chapters, I will focus on 

rare regulatory variants and investigate their association with gene expression levels. 
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CHAPTER 4 

DETAILED SEQUENCING OF 472 PROMOTER REGIONS 

 

Introduction 

 Along with the development of sequencing technologies, genomic variant 

detection has become more and more accessible. The large human genome sequencing 

Consortium projects, such as the 1000 Genomes project, have particularly helped 

researchers gain a deeper knowledge of human genome variation. Improved 

understanding of genomic variant structure has also benefitted our insight into disease 

susceptibility and causation. GWAS have successfully identified thousands of genetic 

variants which show association with common diseases. 

            Common variants that have been detected as being associated with complex 

diseases are known to be considerably more enriched for regulatory than coding variants 

[37, 98-100]. Many analyses utilizing data generated by the ENCODE project have 

shown that specific classes of non-coding variants can have complex impacts on cell 

function and phenotype. According to GWAS analysis, 11% of GWAS hits lie in coding 

regions [101] while 57% of GWAS hits lie in broadly-defined DHS regions which span 

42% of the genome [99]. This implies that non-coding regions have a large impact on 

gene functions and in turn phenotypes, and motivates better understanding of non-coding 

regions.. 

            Here, taking the advantage of targeted resequencing technique, I describe an 

investigation of the distribution of rare variants in promoter regions of 472 genes. In the 

following chapter, I will discuss investigation of the association between cis-acting 

regulatory rare variants and quantitative gene expression traits. In this chapter, the focus 

is on the distribution of rare variants with the aim of generating a more explicit picture of 

genomic variants construction. The analysis includes discussion of the impact of variant 
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calling methods on detection, and comparisons of variant counts between different 

subsets of genes as well as between human populations.  I also include a comparison of 

sequence diversity in regulatory regions versus in coding regions, taking advantage of 

public available 1000 Genomes data, and  between genes which are thought to be 

disease-related (or potentially disease-related) and genes which do not harbor disease 

SNPs. 

            A genome-wide scoring system called (Residual Variation Intolerance Score) that 

ranks human genes in terms of their intolerance to standing functional genetic variation in 

the human population was introduced by Petrovski et al [102]. They used empirical single 

nucleotide variant data from the NHLBI Exome Sequencing Project and ranked the genes 

based on whether they have more or less functional genetic variation relative to the 

genome wide expectation. Their work has shown that the genes which harbor fewer or 

more common functional variants may be more or less prone to cause certain kinds of 

diseases in healthy individuals. Here, I utilized the targeted sequencing data to detect the 

intolerance of rare variants in promoter regions and compared the results with Petrovski 

et al’s result with respect to disease-related genes. 

 Benefitting from the accessible genotyping and expression data of the CHDWB 

study cohort, eQTL analysis was performed. I investigated the rare variant distribution in 

genes with strong common eQTL and genes without common eQTL. As studies have 

shown that trait – associated SNPs are more likely to be eQTLs, the genes that show a 

strong signal of eQTL are more likely to be correlated with diseases. In this way, 

comparing the rare variant counts in promoter regions shows the intolerance of rare 

variants between different potential disease – associated gene status. 

            I also used Metabochip and Immunochip identities to investigate the difference of 

intolerance to rare variants in promoter regions in different gene sets. The “Metabochip”, 

a custom Illumina iSelect genotyping array, was designed for the genome-wide 

association tests of diseases and traits relating to metabolic, atherosclerotic and 
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cardiovascular traits [103]. It contains approximately 200,000 SNPs including variants 

with low frequency identified by the 1000 Genomes project. Similarly, the 

“Immunochip” is an Illumina Infinium SNP array which was designed for association 

studies of autoimmune and inflammatory diseases [104]. The genes which harbor SNPs 

represented on the Metabochip are with high probability related to metabolic disease, 

atherosclerosis, and cardiovascular diseases, while, the genes which harbor SNPs on the 

Immunochip are potentially related to autoimmune and inflammatory diseases. 

            While different sequencing techniques and platforms will lead to different 

sequencing qualities, affecting variant calling accuracy, different variant calling 

algorithms could also affect the variant calling result enormously. The commonly used 

software packages for variant calling include the Genome Analysis Toolkit (GATK) [17], 

SOAPsnp [105], VarScan [19], and ATLAS [106]. Here I compared GATK and VarScan. 

Developed by the Broad Institute, GATK is one of the most popular methods for variant 

calling using aligned reads. It is designed in a modular way and is based on the 

MapReduce functional programming approach. Developed by the Genome Institute at 

Washington University in St. Louis, VarScan is an open source tool for short read variant 

detection of SNPs and indels that is compatible with multiple sequencing platforms and 

aligner algorithms such as Bowtie [14] and Novoalign (http://novocraft.com). Some 

variants were then verified by the “gold standard” method of Sanger sequencing. 

 Accurate detection of rare variants also requires that the read depth should be high 

enough to avoid false positives caused by sequencing errors and false negatives caused 

by insufficient coverage to detect heterozygotes. The ideal alternate allele proportion 

is 0.5 for heterozygous site, and 1 for homozygous site. Figure 4.1 shows the alternate 

allele proportion over read depth of the bases. It shows that the alternate allele proportion 

is consistently approximately 0.5 or 1 when the read depth is larger than 100. This 

empirically demonstrates that high read depth is also appropriate and necessary in a study 

focused on rare SNPs. 
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Figure 4.1 alternate allele proportion versus read depth for each base.  
 

 

 

  The variant profile was expected to be somewhat different among different genes 

and populations. Analysis of the 1000 Genomes project phase I based on 1092 sample 

whole genome sequencing data, common and rare variants all show different distributions 

among populations. More than 50% of rare variants (MAF less than 5%) were observed 

in just a single population. Furthermore, rare variants detected in individuals with African 

ancestry were three times as prevalent as those in individuals of European or East Asian 

origin. In addition, individuals from all populations showed an enrichment of rare 

variants relative to some classes of neutral evolutionary model, which has been attributed 

to population size explosion and accompanying geographic differentiation [107, 108]. 

Materials and Methods 

410 Samples 

The 410 Samples included in this study are listed in Table 4.1. They were 

composed of 297 Caucasian Americans, 85 African Americans and 18 Asian Americans. 

There were 274 females and 136 males. Age ranged from 19 to 83 with an average of 50. 
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Table 4.1 Anthropomorphic information for the 410 samples. 

ID AGE GENDER ANCESTRY ID AGE GENDER ANCESTRY ID AGE GENDER ANCESTRY 

Sample1 51 F AFR Sample138 63 F CAU Sample275 48 M CAU 

Sample2 52 M CAU Sample139 48 F CAU Sample276 46 M CAU 

Sample3 50 M CAU Sample140 63 M CAU Sample277 52 M CAU 

Sample4 60 F CAU Sample141 48 F CAU Sample278 61 F CAU 

Sample5 59 F CAU Sample142 47 M ASN Sample279 39 M CAU 

Sample6 69 F CAU Sample143 40 F CAU Sample280 45 F AFR 

Sample7 46 M CAU Sample144 59 F CAU Sample281 41 F CAU 

Sample8 55 F AFR Sample145 48 F AFR Sample282 61 F CAU 

Sample9 57 F AFR Sample146 59 F CAU Sample283 49 F AFR 

Sample10 37 M CAU Sample147 58 M AFR Sample284 55 F CAU 

Sample11 59 M CAU Sample148 33 M CAU Sample285 46 F AFR 

Sample12 44 F CAU Sample149 36 F CAU Sample286 29 F CAU 

Sample13 42 F AFR Sample150 66 M CAU Sample287 45 F AFR 

Sample14 61 F CAU Sample151 53 F ASN Sample288 47 M AFR 

Sample15 49 F AFR Sample152 63 F AFR Sample289 47 F AFR 

Sample16 50 F CAU Sample153 65 M CAU Sample290 40 M CAU 

Sample17 56 M CAU Sample154 52 F AFR Sample291 52 M CAU 

Sample18 59 F AFR Sample155 37 F CAU Sample292 49 F AFR 

Sample19 52 F CAU Sample156 43 M AFR Sample293 53 F CAU 

Sample20 61 M CAU Sample157 34 F AFR Sample294 53 F CAU 

Sample21 54 M CAU Sample158 40 F CAU Sample295 35 F CAU 

Sample22 54 F AFR Sample159 79 M CAU Sample296 54 F CAU 

Sample23 53 F AFR Sample160 70 M CAU Sample297 47 M CAU 

Sample24 55 F CAU Sample161 30 F CAU Sample298 50 F AFR 

Sample25 54 F CAU Sample162 43 F AFR Sample299 51 F CAU 

Sample26 54 F AFR Sample163 59 M CAU Sample300 31 F CAU 

Sample27 60 F CAU Sample164 47 M CAU Sample301 44 F AFR 

Sample28 47 F CAU Sample165 58 M CAU Sample302 68 F CAU 

Sample29 56 M CAU Sample166 51 M ASN Sample303 57 M CAU 

Sample30 53 F CAU Sample167 50 F AFR Sample304 56 M ASN 

Sample31 59 F CAU Sample168 50 F ASN Sample305 66 M CAU 

Sample32 57 M CAU Sample169 54 F AFR Sample306 48 F AFR 

Sample33 60 M CAU Sample170 49 F AFR Sample307 56 F AFR 

Sample34 48 M CAU Sample171 40 F CAU Sample308 59 F CAU 

Sample35 36 F AFR Sample172 46 F CAU Sample309 51 F AFR 

Sample36 54 F CAU Sample173 64 F CAU Sample310 54 F CAU 

Sample37 59 F AFR Sample174 44 F CAU Sample311 51 M CAU 

Sample38 48 F CAU Sample175 54 F CAU Sample312 62 F AFR 

Sample39 55 M CAU Sample176 60 M CAU Sample313 59 M CAU 

Sample40 40 F CAU Sample177 55 M CAU Sample314 57 M CAU 

Sample41 31 F CAU Sample178 52 F CAU Sample315 58 M AFR 

Sample42 35 F AFR Sample179 75 M CAU Sample316 35 F CAU 

Sample43 36 F CAU Sample180 57 F CAU Sample317 48 F CAU 

Sample44 50 F AFR Sample181 53 F AFR Sample318 55 F CAU 

Sample45 50 M CAU Sample182 49 F AFR Sample319 56 F CAU 

Sample46 36 F CAU Sample183 64 M CAU Sample320 46 M CAU 

Sample47 52 F ASN Sample184 41 M CAU Sample321 55 F CAU 

Sample48 58 F CAU Sample185 57 M CAU Sample322 55 F ASN 

Sample49 33 F CAU Sample186 41 F CAU Sample323 40 F CAU 

Sample50 37 F AFR Sample187 43 M AFR Sample324 57 F CAU 

Sample51 55 M CAU Sample188 48 F AFR Sample325 63 M CAU 

Sample52 59 M CAU Sample189 55 F AFR Sample326 41 F AFR 

Sample53 52 F CAU Sample190 45 M CAU Sample327 60 M CAU 

Sample54 57 M CAU Sample191 58 M CAU Sample328 26 M CAU 

Sample55 41 M CAU Sample192 57 M CAU Sample329 56 F CAU 

Sample56 59 F CAU Sample193 66 F CAU Sample330 19 M ASN 

Sample57 50 F AFR Sample194 57 M CAU Sample331 60 M CAU 

Sample58 60 F CAU Sample195 41 F CAU Sample332 53 F CAU 

Sample59 60 F CAU Sample196 64 F CAU Sample333 61 F CAU 

Sample60 29 F AFR Sample197 39 F CAU Sample334 59 F CAU 

Sample61 56 F AFR Sample198 39 F CAU Sample335 44 M CAU 

Sample62 74 M CAU Sample199 29 M CAU Sample336 66 M CAU 

Sample63 55 F CAU Sample200 52 M CAU Sample337 49 M CAU 

Sample64 37 F CAU Sample201 47 M ASN Sample338 71 F CAU 

Sample65 50 F CAU Sample202 37 M CAU Sample339 41 M CAU 

Sample66 59 F CAU Sample203 56 F CAU Sample340 50 F CAU 

Sample67 46 F CAU Sample204 66 M CAU Sample341 42 M CAU 

Sample68 58 M CAU Sample205 40 F AFR Sample342 44 F CAU 

Sample69 31 F CAU Sample206 35 F CAU Sample343 41 F CAU 

Sample70 58 M CAU Sample207 83 M CAU Sample344 36 F AFR 

Sample71 57 M CAU Sample208 38 F CAU Sample345 50 F CAU 
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Table 4.1 (continued) 

Sample72 68 F CAU Sample209 67 M CAU Sample346 59 M ASN 

Sample73 69 M CAU Sample210 45 F AFR Sample347 45 F CAU 

Sample74 47 F CAU Sample211 56 F AFR Sample348 57 M CAU 

Sample75 79 F CAU Sample212 51 F CAU Sample349 41 F CAU 

Sample76 56 F AFR Sample213 34 F CAU Sample350 46 F CAU 

Sample77 42 M CAU Sample214 31 F CAU Sample351 46 F AFR 

Sample78 56 F CAU Sample215 54 F CAU Sample352 44 M CAU 

Sample79 44 F CAU Sample216 59 F AFR Sample353 37 F AFR 

Sample80 53 M CAU Sample217 63 F CAU Sample354 37 F CAU 

Sample81 57 F CAU Sample218 53 F CAU Sample355 38 F CAU 

Sample82 57 F CAU Sample219 44 F AFR Sample356 37 M CAU 

Sample83 50 F CAU Sample220 50 F CAU Sample357 36 F CAU 

Sample84 46 M CAU Sample221 40 F CAU Sample358 51 M CAU 

Sample85 35 F CAU Sample222 54 M CAU Sample359 37 F CAU 

Sample86 48 F CAU Sample223 61 M CAU Sample360 45 F AFR 

Sample87 45 F AFR Sample224 55 F CAU Sample361 35 F CAU 

Sample88 39 F CAU Sample225 55 M AFR Sample362 61 F CAU 

Sample89 54 F AFR Sample226 54 F CAU Sample363 57 M CAU 

Sample90 42 M ASN Sample227 20 F AFR Sample364 62 M CAU 

Sample91 37 F CAU Sample228 65 F CAU Sample365 42 F CAU 

Sample92 49 F CAU Sample229 53 M AFR Sample366 59 M CAU 

Sample93 40 M CAU Sample230 57 F CAU Sample367 44 F CAU 

Sample94 55 F ASN Sample231 43 F CAU Sample368 53 M CAU 

Sample95 57 M AFR Sample232 43 M CAU Sample369 43 F CAU 

Sample96 49 F AFR Sample233 57 F CAU Sample370 28 F CAU 

Sample97 35 F AFR Sample234 55 F AFR Sample371 58 M CAU 

Sample98 35 F AFR Sample235 37 F CAU Sample372 55 F CAU 

Sample99 46 M ASN Sample236 54 M CAU Sample373 39 F CAU 

Sample100 47 F AFR Sample237 49 F CAU Sample374 66 M CAU 

Sample101 36 M CAU Sample238 74 F CAU Sample375 55 M CAU 

Sample102 61 F CAU Sample239 50 F CAU Sample376 54 F CAU 

Sample103 62 F CAU Sample240 49 F CAU Sample377 52 F CAU 

Sample104 53 F CAU Sample241 54 F CAU Sample378 42 F CAU 

Sample105 50 M ASN Sample242 29 M CAU Sample379 53 M CAU 

Sample106 60 M CAU Sample243 26 F AFR Sample380 58 F CAU 

Sample107 63 M CAU Sample244 30 F AFR Sample381 55 M CAU 

Sample108 68 F CAU Sample245 36 F CAU Sample382 39 F CAU 

Sample109 31 F AFR Sample246 26 M ASN Sample383 63 F CAU 

Sample110 38 F AFR Sample247 54 F CAU Sample384 53 F AFR 

Sample111 55 M CAU Sample248 56 M CAU Sample385 63 M CAU 

Sample112 32 F CAU Sample249 49 M CAU Sample386 19 F AFR 

Sample113 56 F CAU Sample250 43 M ASN Sample387 50 F CAU 

Sample114 53 F AFR Sample251 47 F AFR Sample388 55 F CAU 

Sample115 40 F CAU Sample252 58 M CAU Sample389 57 F CAU 

Sample116 58 F CAU Sample253 37 M AFR Sample390 58 F CAU 

Sample117 39 M CAU Sample254 55 F AFR Sample391 49 F CAU 

Sample118 37 F CAU Sample255 57 M CAU Sample392 45 F CAU 

Sample119 64 M CAU Sample256 62 F CAU Sample393 36 M CAU 

Sample120 42 F AFR Sample257 60 F CAU Sample394 45 F AFR 

Sample121 43 M CAU Sample258 65 M CAU Sample395 44 F CAU 

Sample122 50 F CAU Sample259 48 F AFR Sample396 48 F AFR 

Sample123 35 M CAU Sample260 46 F CAU Sample397 43 F CAU 

Sample124 47 F AFR Sample261 35 F CAU Sample398 64 F CAU 

Sample125 53 M CAU Sample262 59 F CAU Sample399 60 M CAU 

Sample126 59 F AFR Sample263 61 F AFR Sample400 36 F CAU 

Sample127 34 F CAU Sample264 22 M CAU Sample401 54 F CAU 

Sample128 61 F AFR Sample265 58 M CAU Sample402 57 F CAU 

Sample129 28 M CAU Sample266 59 F AFR Sample403 52 F AFR 

Sample130 66 F CAU Sample267 30 F AFR Sample404 56 M CAU 

Sample131 41 M AFR Sample268 65 F CAU Sample405 54 F AFR 

Sample132 47 F CAU Sample269 62 F CAU Sample406 36 F AFR 

Sample133 54 F CAU Sample270 55 F CAU Sample407 55 M CAU 

Sample134 48 M CAU Sample271 39 F CAU Sample408 40 F CAU 

Sample135 49 F CAU Sample272 41 F AFR Sample409 56 F ASN 

Sample136 58 F AFR Sample273 39 F ASN Sample410 59 F CAU 

Sample137 46 F AFR Sample274 26 F CAU     
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Gene Selection 

            Table 4.2 lists the genes, which were selected based on the idea of having genes 

harboring common cis-eSNPs (and hence established to be genetically regulated), a 

subset of these also having a high probability of being related with disease traits, with the 

remainder being control genes. The common cis-eSNP results were based on imputed 

genotyping results from analyses described in the previous chapter. I also took advantage 

of Metabochip and Immunochip arrays to choose the gene that have Metabochip or 

Immunochip SNPs in the vicinity so that the genes had a high probability to be involved 

in some diseases or traits.  The gene selection was performed in August 2012, but cis-

eSNP status was updated as my dissertation studies proceeded. 
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Table 4.2 The 472 genes selected in the study. 

 
ACADM ACER3 ADCK3 ADK ANXA11 AOAH B4GALT4 BTN3A2 CARD8 CARD9 

CDA CDK10 CFDP1 CTSH CWF19L1 DNAJC15 DR1 FCER1G FDFT1 GAPT 

GATAD2A GATS GNA12 HIST1H2BD HPS1 HSD17B12 IQCB1 ITGAX KCTD10 KIAA0368 

KLHDC4 MBNL1 MED16 MFN2 MSRA MTMR3 NT5C3 ORMDL3 PASK PDCD4 

PTGS2 RFWD3 RPA1 SF3A3 SIDT2 SIRPB1 SIRPG SLC39A8 SLC40A1 SMAP1 

SNX29 SP110 SPNS1 SUMF1 TATDN2 TBC1D15 TOMM7 TRAK1 TRPC4AP TUFM 

UBE2L3 UGDH USP48 XRCC6BP1 ADSS ALDH2 ALPL APOL3 ARID5B ARPP19 

C1orf38 CD96 CDAN1 CLN3 CPPED1 CRISPLD2 CTDSP1 CTNNAL1 CTSO DDX52 

DEF6 DHRS3 DHX38 DIAPH2 DLAT DOCK10 DOCK11 E2F6 ECHS1 EIF4G3 

EPB41 EXOC4 F13A1 FAM49A FAR2 GAB3 GMCL1 GNPAT HBP1 HSPA4 

IL18R1 IQGAP1 ITGAM ITK KIAA0319L LILRB2 LMAN2L LMNA LRPPRC M6PR 

MAN2A2 MBNL2 MSI2 NEDD9 NUDT5 OXR1 PDK3 POR RBBP4 RNF130 

RNPS1 SERTAD2 SH2D1B SNX14 SRP54 STAT3 STAT4 SUSD3 TAF1C TAF1L 

TBC1D2B TMEM175 TPM1 TSSC1 UBR2 UQCC USO1 USP4 VIM WDFY2 

ZAK ZDHHC17 ZMIZ1 ZNF185 ZNF407 ABCC5 ACOX1 ACP2 ALS2 ATP13A1 

C12orf35 C14orf102 C1orf86 C2orf28 C7orf25 CEP63 CRLS1 DHRS1 DUS2L EEF1G 

EMR3 ERP27 FEZ2 FN3KRP FXYD5 HDDC2 KIAA1598 LACTB LDLRAP1 LINS 

MAU2 MEFV MGST3 MRPS21 NSFL1C PCMTD2 PIGQ PYGB RNF181 RPL13 

RPS6KB2 RUFY1 SAMM50 SENP2 SF3A1 STAT6 STYXL1 SURF6 TAGLN TMEM140 

VAMP1 VAMP8 VASP VEZT ZMIZ2 IPP FCRL3 AHSA2 CAPG ASNSD1 

UBA7 HCLS1 SRI KRIT1 TRIM4 PILRB ZYX TNFSF8 RRP12 ZRANB1 

PRDX5 ALDH3B1 FAM76B TRAPPC4 PEX5 PWP1 POLR1D ACTR10 GALC CLCN7 

DCTN5 GDPD3 ZFP90 CXCL16 SMARCE1 ZNF266 LRRC25 PLAUR SYS1 LTN1 

XBP1 ACTR6 ALKBH1 ASXL2 ATMIN BSDC1 C14orf179 C2orf44 C6orf129 DNAJC8 

E2F2 EIF2AK4 ERCC3 FBXO11 HADH HNRNPC HSPA9 ID3 ILF3 LARP4 

LASS5 LFNG MED22 MRPL17 MSH6 MYC NDUFB10 NEDD8 NUFIP2 OGFOD1 

OGFRL1 PACSIN2 PFDN1 PHF21A PIP4K2B PRRC1 RAB11FIP2 RAB8B RHOT1 RNF135 

SERPINB8 SESN3 SHROOM4 SLC35A3 STARD3NL TRAF5 TSPAN33 UBN1 ZNF787 ZNF839 

CPSF3L MOBKL2C SLC27A3 SLAMF7 TRAF3IP3 MKI67IP ICOS FRG1 DHX29 BRD8 

DKFZp686I15217 TDP2 KATNA1 STOM C9orf114 COBRA1 RPP38 HNRNPH3 SLC3A2 HSPA8 

C12orf32 TUBA1B ADPGK SNRNP25 EIF4A1 STAT5A C18orf21 VPS4B RANBP3 GTF2F1 

TMEM149 ALDH16A1 ZNF613 ADRM1 HSCB TLR7 GSPT2 ATG4A NAA10 ABHD10 

ARL16 ATP5J2 ATP5S ATPIF1 C14orf129 C17orf90 C1orf85 C8orf40 C9orf78 CALR 

CAT CCDC23 CCDC88B CIB1 CKS2 CRIPT CXCL5 DCXR DSTYK EIF2B2 

EIF5 EPHX2 ETS2 EVI2A GPATCH4 GPX7 H1F0 HEBP2 IKBIP IL8 

KIAA1737 LIPT1 MAD2L1BP MR1 MRPL34 MRPL43 MRPL52 MRPL53 NOP10 NUDT18 

NUDT2 NUP43 ORMDL1 PIGN PPIL3 PRKAR1A PTGDR RPL14 RPL36AL RPUSD4 

RRM2B SNAP29 TAPBPL TFG TRAPPC5 TRAPPC6B ABHD8 ACAA2 AKR7A3 ALPP 

AP1G2 AP1S1 ARAF ARGLU1 AZI2 BEX2 BFAR BIRC3 BRF2 BRMS1 

BTK C11orf17 C14orf142 C15orf63 C18orf10 C1orf123 CD160 CHRNB1 CIDECP COMMD4 

COMMD7 COMMD9 CUL4B CXXC5 DDOST DDX41 DGUOK DRAM1 EBP ECH1 

EIF1AX EIF2S3 FAM193B GPAA1 GRK6 HARS2 HBQ1 HDHD1 HIF1AN HSD17B11 

HSP90AB1 KIAA1191 KLF4 LAPTM5 LONP2 LRRCC1 MAF1 MAGEH1 MAPK1IP1L MPHOSPH10 

MPL NFE2L1 NONO PCNA PDCD2 PEA15 PFN1 PIGH PPCS RAB10 

RAB24 RBMX2 RCE1 RPL10A RPL4 RPL9 RPUSD3 SCAND1 SDAD1 SERTAD1 

SETD3 SF3B4 SHCBP1 SNORA70 TCEAL8 TFE3 THAP7 TMEM199 TNFRSF4 TUBA1A 

TXNIP UBL4A UTP18 UXT WAS WDR45 YIF1A YIPF3 ZNF439 ZNF549 

ZNF671 ZNF75D                 
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 The 472 genes have been classified into 8 groups, color coded in Table 4.2, 

according to the following criteria:  

1) Genes which have both Metabochip and Immunochip SNPs, and have cis-eSNPs 

inside the gene body and in the promoter regions. These 64 genes are marked as red in 

Table 4.1.  

2) Genes which have both Metabochip SNPs and Immunochip SNPs inside the gene body 

and in the promoter regions, but don’t have common cis-eSNPs. These 81 genes are 

marked as purple.  

3) Genes which have Metabochip SNPs and common cis-eSNPs inside the gene body and 

in the promoter regions, but don’t have Immunochip SNPs in the vicinity. These 50 genes 

are marked as green.  

4) Genes which have Immunochip SNPs and common cis-eSNPs inside the gene body 

and in the promoter regions, but don’t have Metabochip SNPs in the vicinity. These 36 

genes are marked as blue.  

5) Genes which have Metabochip SNPs inside the gene body and in the promoter regions, 

but don’t have either Immunochip SNPs or common cis-eSNPs in the vicinity. These 49 

genes are marked as orange.  

6) Genes which have Immunochip SNPs inside the gene body and in the promoter 

regions, but don’t have either Metabochip SNPs or common cis-eSNPs in the vicinity. 

These 39 genes are marked as dark blue.  

7) Genes which have common cis-eSNPs inside the gene body and in the promoter 

regions, but don’t have either Metabochip SNPs or Immunochip SNPs in the vicinity. 

These 57 genes are marked as yellow.  

8) 96 randomly chosen genes from which without harboring common cis-SNPs or having 

Metabochip or Immunochip SNPs in the vicinity. They are marked as black. 

 In summary, 207 genes have common cis-eSNPs in the gene body or in the 

promoter regions. 244 genes have Metabochip SNPs in the vicinity while 220 genes have 
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Immunochip SNPs nearby.  

Targeted Sequencing 

            Whole genomic DNA was isolated from buffy coats of 410 CHDWB samples 

using Flexigene DNA kits (QIAGEN, Valencia, CA). The major transcription start site 

(TSS) of each gene was extracted from the UCSC Genome Browser and oligonucleotide 

probes were designed using the Illumina Design Studio so as to pull down 1kb upstream 

and 1kb downstream of the major TSS for each of the 472 genes. 5 oligonuceotide probes 

were designed per each gene to ensure that the percentage of the total length of all 

regions targeted for enrichment was not less than 90%. Sequence capture libraries were 

generated and pooled using Illumina TruSeq DNA Sample Preparation Kits and TruSeq 

Custom Enrichment Kits. The sample preparation steps included DNA shearing with 

Covaris to an average size of 300bp, conversion of the overhangs after fragmentation to 

produce blunts ends, adenylation of 3’ ends to prevent fragments ligating to each other, 

ligation of indexing adapters to the ends of DNA fragments, and amplification of the 

adapter-ligated DNA fragments by PCR. The quality of each library was assessed on an 

Agilent Bioanalyzer 2100, and the DNA concentration was quantified with a Qubit. 

Samples were pooled in groups of 12 samples, and TruSeq Enrichment was performed 

including two rounds of hybridization with capture probes of the targeted regions on 

streptavidin beads. Subsequently, the pooled DNA libraries were amplified with PCR, 

and 24 samples (two of the 12-plex pull-downs) were pooled together and quantified by 

real time-PCR. Paired end 100bp sequencing was performed on an Illumina HiSeq 2500 

at Georgia Tech. 

 FastQC Information 

            Sequence quality is illustrated taking all of the reads for one sample as an 

example.  
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Figure 4.2 Quality score across all bases. The background divides the quality into three 

bins by colors. Green: very good quality calls. Orange: reasonable quality calls. Red: 

poor quality calls. The central red line represents the median value. The yellow box 

shows the inter-quartile range with the upper and lower whiskers representing 

respectively 10% and 90% range. Blue line: mean quality.  
 

 

 

 Figure 4.2 shows that for most of the reads except for the last few bases, the 

quality scores are very high, representing good calling quality. It is common to see base 

calls falling into the reasonable quality orange area, or even the poor quality red area, 

towards the end of a read, as the quality of calls on most platforms degrade as the run 

progresses. 

 

 

 

 

Figure 4.3 Qualtity score distribution over all sequences. The average quality scores 

per read uses Phred score.  
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 From Figure 4.3, it can be seen that over 95% of the reads have high quality 

scores which are larger than 28. The Phred quality score = -10log10P where P represents 

the error rate, shows that most of the reads have an error rate less than 0.16%. 

Furthermore, in Figure 4.4, the lines run parallel with and very close to each other, 

indicating that there is little difference between the proportions of A, G, T and C bases. 

The lines are flat across different positions in read, also showing the base proportion does 

not differ between different positions, as expected of high quality and unbiased data.     

     

 

              

 

Figure 4.4 GC distribution over all sequences. Red: GC count per sequence. Blue: 

theoretical distribution 

 

 

 

 Finally, Figure 4.4 shows that the GC counts per reads do not deviate from the 

normal distribution, indicating that the library is normal random.  The blue line is the 

theoretical GC content distribution. The red line represents the real GC content across the 

whole length of each sequence. 

Variant Calling Method Comparison 

 Variant calling method comparison was implemented in the first batch of 

sequences, which had 12 samples. 
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Following short read alignment with BWA, three different algorithms for variant 

calling were evaluated.  First, the BWA aligner was used to align fastq files to hg19.  

Next, Samtools was used to pileup .bam files, with a minimum mapping quality of 10, 

coverage of 20, and per base quality of 15, and then VarScan was used to call all variants 

with a minimum alternate allele proportion of 0.25.  Alternatively, GATK version 2.7 was 

used to call variants relative to hg19, marking duplicates with Picard, realigning around 

known indels and recalibrating around known SNPs according to recommendations for 

users.  UnifiedGenotyper and HaplotypeCaller were run separately, both with emission 

confidence of 10 and calling confidence of 50.  I then applied a hard filter to call variants 

with QD>=2, FS<=60, MQ>=40, HaplotypeScore<=13, MQRankSum>=-12.5, 

ReadPosRankSum>=-8 based on GATK best practice. 

 Given differences in polymorphism call rates as much as 30% between the 

algorithms, with a notable deficiency of variants observed using VarScan (Figure 4.7), I 

decided to adopt the more theoretically validated Bayesian strategy implemented in 

GATK for rare variant inclusion.  The rare variants were identified in this study with 

minor allele frequency (MAF) less than 0.05 in those 410 samples.  

Rare Variant Comparison Among Sample Subgroups And Gene Subsets 

 The number of rare variants were compared between different sample subgroups 

based on ancestries and genders, and also between different gene subsets based on 

whether the genes harbor common cis-eQTLs, whether they were potentially related with 

diseases, and also between different positions with respect to TSS and RegulomeDB 

classes. Metabochip and Immunochip were used to classify the genes with respect to 

disease relatedness. There were 196,293 SNPs in the Metabochip array and 196,450 

SNPs in the Immunochip array, of which 11,621 SNPs occurring on both the Metabochip 

array and the Immunochip array. There were 2,936 SNPs in the 244 of our 472 genes that 

are on the Metabochip array that are in the gene body and 1kb upstream of the TSS. 
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Similarly, there were 3,778 SNPs on the Immunochip array that were in the gene body 

and 1kb upstream of TSS of the 220 of 472 genes. Of these, 153 SNPs occurred in the 

gene body and upstream region of 472 genes for both arrays. There were 146 genes that 

have both Metabochip SNPs and Immunochip SNPs around the genes, and 319 genes that 

are represented on at least one of the Metabochip or Immunochip SNPs. 

Nucleotide Diversity Calculation and Comparison 

 Nucleotide diversity (π) in promoter region was calculated based on common 

variants and rare variants called by targeted resequencing with CHDWB Caucasian data. 

Nucleotide diversity in coding region was calculated based on 1000 Genomes release 

version 20130502 European data. The coding regions of 472 genes were obtained from 

UCSC Genome Browser. Nucleotide diversity were calculated using VCFtools [109] with 

each variant position. And then summed π’s were divided by the region size to generate 

averaged per site π. As coding regions sometimes overlap with the 2kb promoter regions 

and hence these diversity estimates are not independent, I also calculated averaged 

nucleotide diversity for the regions 1kb upstream of each TSS based on Caucasians in the 

CHDWB cohort.  

Results 

Overall Summary of Sequence Distribution 

 The overall sequencing information was obtained after aligning sequencing fastQ 

files with BWA (with BWA mem), and then running SAMtools flagstat on the BAM files 

after fastQ. For the 410 samples, the total reads ranged from approximately 2 million to 

40 million, with a mean of 14 million and a standard deviation of 5 million. The mapped 

reads proportion was within 94.08% and 99.92% with a mean of 99.33% and a standard 

deviation of 1.05. The properly paired reads ranged from 92.95% to 98.95% with a mean 

of 97.92% and a standard deviation of 1.18 (Figure 4.5). 
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Figure 4.5 The distribution of A. total reads B. mapped reads proportion (%) C. 

properly paired reads proportion (%) for 410 samples.  

 

 

  

 Various data quality checks were performed.  Approximately 75% of the aligned 

reads were mapped to the 2kb promoter regions of the 472 genes, indicating good 

enrichment to the targeted regions. The average read depth across the dataset was more 

than 600X, with over 90% of the genes having more than 80% reads of the 2kb promoter 

regions having more than 20X read depth (Table A.1).  Due to the nature of the pull-

downs, in many cases an extra 500 bp was recovered, but for consistency I restricted our 

analysis to 1kb upstream and 1kb downstream of each major TSS.   

Figure 4.6 shows the read depth distribution across the 2kb promoter regions in 

TNFRSF4. The 5 peaks clearly show 5 probes covering the gene. Over 90% of the 

positions have more than 20 read depth. Inverted triangles below the x-axis also show the 

A B 

C 
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positions where common (blue) and rare (green) variants were discovered.  

 

 

 

 

Figure 4.6 The read depth distribution across the promoter regions of TNFRSF4. 

Green triangle: rare SNPs. Blue triangle: common SNPs. Red horizontal dashed line: 20x 

read depth. Red lines: The possible probe regions. 

 

 

 

Comparison of Different Variant Calling Algorithms 

 For comparison of the different calling algorithms, consider one sample for whom 

the number of SNPs within promoter regions called by different variant calling methods 

was 679 SNPs called by the Samtools/Varscan method and 1007 SNPs and 903 SNPs 

respectively called by HaplotypeCaller and UnifiedGenotyper. The Venn diagrams below 

show the overlap among methods for this one individual.  HaplotypeCaller is reported to 

have a higher sensitivity and lower false positive rate than UnifiedGenotyper, and clearly 

shows a stronger overlap with Varscan.   
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Figure 4.7 Venn diagram of the number of SNPs called by different variant calling 

methods. 
 

 

 

 To quantify the effect of the nature of the reference template on the variant 

calling, I compare the SNPs called by Varscan with hg19 or with just the targeted 2kb 

promoter regions from hg19 as the references, for 12 samples. From Table 4.3, 

approximately twice as many SNPs were called with the targeted regions as the reference, 

compared to ones called with the whole hg19 genome as the reference. The excess SNPs 

had relatively high read depth, and only a few SNPs that were called with hg19 whole 

genome as the reference were not called with targeted regions as the reference, in which 

case those SNPs showed relatively low read depth. A probable explanation of this 

phenomenon is that some reads mapped better elsewhere in the genome, but were forced 

to map to similar sequences in the targeted regions. Consequently, when only using the 

targeted regions as the reference, those reads were incorrectly mapped to the targeted 

regions, resulting in false positive calls. 
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Table 4.3 Comparison of Varscan called SNP counts when aligning with hg19 and 

targeted regions respectively as reference for 18 samples.  

 
 SNP_hg19* SNP_Targeted* SNPs in 

common* 

Targeted-hg19 

SNP* 

hg19-Targeted 

SNP* 

sample_ID # of 

SNPs 

avg rd* # of 

SNPs 

avg 

rd 

# of 

SNPs 

avg 

rd 

# of 

SNPs 

avg rd # of 

SNPs 

avg rd 

Sample 1 681 570 1155 605 671 584 485 635 10 252 

Sample 2 751 616 1303 612 743 630 561 586 8 285 

Sample 3 702 623 1234 635 692 636 544 631 10 329 

Sample 4 704 740 1442 643 695 751 747 544 9 340 

Sample 5 551 690 1169 650 545 705 624 602 6 196 

Sample 6 683 531 1399 497 676 535 723 456 7 201 

Sample 7 741 764 1569 660 733 766 836 556 8 573 

Sample 8 677 497 1186 515 666 501 521 523 11 240 

Sample 9 751 662 1273 668 732 665 541 653 19 562 

Sample 10 823 627 1318 659 810 633 508 695 13 234 

Sample 11 730 739 1295 746 719 744 575 728 11 366 

Sample 12 683 598 1200 602 671 604 530 592 12 265 

Sample 13 709 819 1702 960 701 825 1003 1045 8 304 

Sample 14 685 613 1606 817 665 623 942 932 20 286 

Sample 15 750 658 1647 862 731 669 918 1000 19 199 

Sample 16 722 575 1582 757 709 581 875 878 13 213 

Sample 17 755 748 1676 963 737 760 941 1106 18 252 

Sample 18 753 795 1733 991 743 803 991 1116 10 247 

* “SNP_hg19” means SNPs called with hg19 whole genome as the reference genome.  

* “SNP_Targeted” mean SNPs called with targeted regions as reference.  

* “SNPs in common” means the SNPs which are called with hg19 as reference are also called with targeted 

regions as reference.  

* “Targeted-hg19 SNP” means the SNPs are called with the reference of targeted regions, but not called 

with hg19 as the reference.  

* “hg19-Targeted SNP” is the other way around.  

* “avg rd” means average read depth. 
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Since the UnifiedGenotyper algorithm is more suited to joint mapping of a large 

dataset with GATK version 2.7, the release I used in 2013, namely where all reads are 

aligned together as opposed to combining the results of individual mapping, I decided to 

use it for the final rare variant calling.  Pooling is expected to control the false positive 

rate, and it was infeasible to run HaplotypeCaller on the 472 samples on our cluster. The 

UnifiedGenotyper final processing on 24 nodes used 17Gb of memory and ran for over 

37 hours.  After variant calling, the GATK VQSR tool was used for further variant 

filtering using the Illumina Omni chip array based on the 1000 Genomes Project as the 

training data with the highest confidence SNPs from the 1000 Genomes Project's callset 

used to validate the SNPs. The filtering criteria included QD (quality by depth ratio), DP 

(depth), FS (Fisher’s exact test of strand bias) , ReadPosRankSum (Mann-Whitney Rank 

Sum Test for the distance of reads with the alternate allele to the end of the read), 

MQRankSum (Mann-Whitney Rank Sum Test for mapping qualities) and 

InbreedingCoeff (likelihood-based test for the inbreeding among samples). The Venn 

diagram in Figure 4.8 shows the number of SNPs in one sample called by 

UnifiedGenotyper batch calling followed by VQSR filtering, in comparison with 

HyplotypeCaller, and with UnifiedGenotyper on the sample alone followed by hard 

filtering. Both UnifiedGenotyper and HyplotypeCaller have good overlap with 

UnifiedGenotyper batch calling (with 93.4%, 97.6% overlap respectively). 

However, UnifiedGenotyper batch calling has 95.2% overlap with HyplotypeCaller while 

54.6% overlap with UnifiedGenotyper alone. The smaller proportion of overlap for 

UnifiedGenotyper also occurs when compared with Varscan (hg19 as reference) as shown 

in Figure 4.7. The raw SNPs were then filtered using ts_filter_level of 99.0, 

corresponding to sensitivity that would allow retrieve 99% of true variants from the 

known truth training sets of HapMap and Omni SNPs. 
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Figure 4.8 Venn diagram of the number of SNPs called by HyplotypeCaller, 

UnifiedGenotypeCaller, and UnifiedGenotyper batch calling. 

 

 

 

 After variant calling, I detected 17,584 raw SNPs in total, but these were reduced 

to 10,451 total SNPs passing the filters that lie within the 2kb promoter regions of 472 

genes.  8,833 of the SNPs are rare (defined as MAF < 0.05) and 1,618 are common (with 

MAF >= 0.05), which averages 1.5 rare variants per promoter per individual.  An average 

of 60% of these rare variants are private, meaning that they were only observed in a 

single individual.  Table A.2 lists the number of rare, common, and private SNPs per 

gene, along with an estimate of the polymorphism rate (π) per gene. 

Validation with Sanger Sequencing 

 To verify the accuracy of the high throughput sequencing, I Sanger sequenced 

500bp segments of two genes, TRAF3IP3 and HSPA8. The sequenced region of 

TRAF3IP3 was chr1: 209929132 – 209929708, in which 2 rare SNPs and 4 common 

SNPs were observed in the 410 samples. All of these were included in 96 samples that 

were Sanger sequenced, and all were validated.  The sequenced region of HSPA8 was 

chr11:122932665 – 122933158, which contained 18 rare and 5 common SNPs in the 96 

sequenced samples, which were again verified by Sanger sequencing.  A handful of other 

individuals were nominally positive at some of the rare sites, but manual inspection of the 

traces revealed poor quality sequence toward the ends of the reads in those individuals 
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suggesting a false positive rate that in any case would be less than 0.5%. Five variants 

that were not present in the GATK analysis but were called by Sanger sequencing were 

all with low confidence, whereas all common variants were also validated by the Sanger 

sequencing. 

I also have whole genome genotypes either from Illumina Omni or CoreExome 

arrays, imputed onto 1000G with Impute2, for the majority of individuals.  99.8% 

concordance was observed.  These genotypes were thus used for common variant eQTL 

analysis, which will be described in detail elsewhere. 

Rare Variant Distribution Comparison 

1) different ethnicities/genders 

 

 

 

 

Figure 4.9 Number of rare alleles in promoter regions for 410 samples from different 

ethnicities. AFR: African Americans, ASN: Asian Americans. CAU: Caucasian 

Americans. 

 

 

 

As expected, the number of rare variants per individual varied by ethnicity.  
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Shown in Figure 4.9, on average, there were 233, 74, and 52 variants with MAF<5% in 

each of the African, Asian and Caucasian ancestry samples respectively, representing a 3-

fold excess in Africans relative to Asians, and 4-fold excess relative to Caucasians. The 

difference is highly significant (ANOVA, p = 3x10-263). An excess of rare variants in 

African ancestry samples compared to Asian and Caucasian ancestry samples was also 

observed in the independently analyzed whole genome sequence replication sample, 

where the number of rare variants per promoter of the 472 genes in African ancestry 

individuals was not statistically different from that observed in the CHDWB sample 

Africans, although almost twice as many variants were called per individual in the 

Caucasians.  [1] and [110] also report a 3-fold excess of rare variants genome-wide in the 

1000G genome sequence data, averaged over regulatory, coding and intergenic regions. 

 There was no significant difference of rare allele count between females and 

males, in all three ethnicities (data not shown; t-test p-values 0.54, 0.34, and 0.68 in 

Africans, Asians and Caucasians separately). 

2) eQTL genes vs non-eQTL genes 

 Common eQTL analysis were performed with PLINK using imputed microarray 

genotyping data and microarray expression data. The detailed information will be 

described in the next chapter. 207 genes out of 410 total genes have significant common 

eQTL. There was no significant difference of rare SNP numbers between genes with 

common eQTL and genes without common eQTL (Figure 4.10, P-value of t-test was 

0.13). 
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Figure 4.10 The rare allele count in genes with common eQTL SNPs versus genes 

without common eQTL SNPs. 

 

 

 

3) disease related genes vs non-disease related genes 

 From Figure 4.11, the mean of rare allele count in genes with Metabochip SNPs 

inside the gene body or within the promoter regions was 19.11, while the mean of rare 

allele count in genes without Metabochip SNPs was 18.29. The difference was not 

significant (t-test P-value 0.10). Similarly, the mean rare allele count in genes with 

Immunochip SNPs inside the gene body or within the promoter regions was 19.03, while 

the mean of rare allele count in genes without Immunochip SNPs was 18.44 (t-test P-

value 0.17). The mean of rare allele count in genes with Metabochip SNPs or 

Immunochip SNPs inside the gene body or within the promoter regions was 19.12, while 

the mean of rare allele count in genes without Metabochip or Immunochip SNPs was 

17.86, which is a marginally significant difference (t-test P-value=0.023). 
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Figure 4.11 The rare allele count in gene subsets with respect to Metabochip and 

Immunochip. A. genes with Metabochip SNPs versus genes without Metabochip SNPs. 

B: with Immunochip SNPs versus genes without Immunochip SNPs. C. in genes with 

Metabochip SNPs or Immunochip SNPs versus genes without Metabochip SNPs or 

Immunochip SNPs, in the promoter regions or gene body. 

 

 

 

4) upstream vs downstream 

 Within 1kb upstream region of TSS of 472 genes, there were 4,543 rare SNPs, 

compared with 4,290 rare SNPs within 1kb TSS downstream region of 472 genes (Figure 

4.12). These distributions of rare allele count were not significantly different between 

upstream and downstream, with 95% CI of [2.8, 20] and [3, 19] in upstream and 

downstream separately. 

A B 

C 
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Figure 4.12 The distribution of rare allele counts in upstream (left) and downstream 

(right) of TSS for all 472 genes in all 410 samples. There is no difference between 

those two sets (paired t-test p-value = 0.38) 
 

 

 

5) RegulomeDB classifications 

 

 

 

Figure 4.13 The distribution of the number of rare SNPs in each RegulomeDB class. 

Light green is the downstream region, and dark green is the upstream region.  
 

 

 

 Figure 4.13 shows that the RegulomeDB scores don’t differ significantly between 

upstream region and downstream region. There are 5 genes that harbor the rare variants in 

RegulomeDB 1b and 1f classes. 432 genes harbor the rare variants in RegulomeDB 2a-2c 

classes. 264 genes have rare variants in RegulomeDB 3a and 3b classes. 461 genes have 

rare variants in RegulomeDB 4 class. In addition, 464 genes have rare variant which are 

in RegulomeDB classes 1 through 4, which are the classes with strong evidence that 

those regions encompass functional regulatory elements. So in total, more than 98% of 

those 472 genes have promoter proximal rare variants in regulatory sites. There is thus a 

lot of opportunity for rare variants to have regulatory functions. 



73 

 

Nucleotide Diversity Comparison 

1) Between promoter region and coding region 

The average nucleotide diversity 1kb upstream of TSS is highly correlated with 

that observed in the full 2kb promoter region (p=3.5x10-119, r2=0.68, Figure 4.14A), 

indicating that just the upstream region is a good proxy for the full promoter. Next I 

observed that there is also a significant association between nucleotide diversity in 

upstream promoter regions and in coding regions (slope=0.6, p=1.3x10-22, r2=0.19, Figure 

4.14B).  This indicates that upstream promoter regions have relatively lower sequence 

diversity than coding regions. However the high correlation is likely due to a combination 

of linkage disequilibrium affecting background purifying selection on function, and 

similar constraints on coding and regulatory regions. 

 

 

         
Figure 4.14 Linear regression fitting nucleotide diversity in upstream region on the 

full promoter (A), and on the coding region (B). Red dots in B represent the bottom 

25% genes, with negative relative promoter polymorphism compared to coding regions. 

Blue dots represent the top 25% genes with positive relative promoter polymorphism. 

 

 

Despite this high correlation, there are nevertheless genes that have more promoter 

polymorphism than expected, and genes with less, relative to the coding region. In order 

to better interpret the deviation of promoter polymorphism from the expected value, I 

A B 
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calculated the studentized residuals after regression of per-base nucleotide diversity (π) in 

upstream promoter regions on π in coding regions, generating a parameter I call “relative 

promoter polymorphism”. A residual of 0 means the gene has average level of promoter 

polymorphism. A positive value means the gene has more promoter polymorphism and 

negative value means less promoter polymorphism, with respect to the coding region of 

the same gene. 

Next, I compared the relative promoter polymorphism with the “residual variation 

intolerance scores” (RVIS) as reported by [92]. RVIS is a measure of intolerance to 

functional mutations, and is computed as the ratio of common missense or truncation 

variants (MAF>0.01) to all variants in a gene region. In coding regions, RVIS is highly 

significantly associated with functional measures such as whether a gene is known to 

harbor Mendelian mutations, and has been proposed as a means of scaling the likelihood 

that a rare or de novo coding variant causes disease. There is however no significant 

linear relationship between my relative promoter polymorphism measure and coding 

RVIS.  This implies that tolerance of functional variation in coding regions is not strongly 

correlated with levels of promoter polymorphism. 

2) Between gene subsets with disease related status 

 The genes with Immunochip SNPs show significantly higher nucleotide diversity 

in upstream regions, compared with the genes not harboring Immunochip SNPs (ANOVA 

p=0.036, Figure 4.15A). The genes harboring Metabochip SNPs also show higher 

nucleotide diversity in upstream regions in comparison with the genes without 

Metabochip SNPs (ANOVA p=0.009, Figure 4.15B). 
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Figure 4.15 Comparison of nucleotide diversity in upstream region for genes with or 

without Immunochip SNPs, and for genes with or without Metabochip SNPs. 

 

 

Discussion 

 From the comparison of SNP calling by GATK and VarScan, the calling algorithm 

introduces considerably more bias in SNP detection than does read depth. Other 

researchers have reported similar results: O’Rawe et al [111] reported that different 

variant calling pipelines (including SOAP, BWA-GATK, BWA-SNVer, GNUMAP [112], 

and BWA-SAMtools) only had a 57.4% concordance rate. The reference template also 

causes a big difference in targeted sequencing alignment. As shown in Varscan, using the 

targeted region as template tends to call 4 folds more variants than using hg19 reference. 

When choosing the algorithms for calling the variants, decisions should be guided by the 

nature of the sequencing dataset and the specific questions being asked, and appropriate 

parameters need to be selected for each algorithm. For example, the whole genome 

reference such as hg19 is usually better than targeted sequence as reference, as using 

whole genome reference will get the best mapping position for a read to decrease the 

likelihood that reads are mapped to wrong places. 

            The sequence diversity of rare variants in promoter regions is very high in African 

ancestry samples compared to rare variants in Caucasian and Asian ancestry samples. It 

shows that African ancestry has more diversity compared to Caucasian and Asian 

A B 
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ancestries. The population bottleneck caused by the out-of-Africa migration may serve as 

an explanation of the lower diversity in Caucasian and Asian ancestry samples. The 

hypothesis has been raised [113, 114] that due to the out-of-Africa migration reducing the 

effective population size for modern humans, non-African populations tend to experience 

stronger genetic drift in addition to the founder effect leading to loss of diversity. In 

addition, adaptation to new environments possibly leads to some selection against 

common genotypes or selective sweeps. Further, in comparison with the finding of three 

times the number of rare variants in Africans than in Caucasians from 1000 Genomes, my 

result showed more enrichment of rare variants in Africans. That is possibly because the 

read depth is much higher in my sequencing data compared to 1000 Genomes project, 

leading to higher power to detect rare variants. Another explanation is that the filtering 

method VQSR after GATK variant calling is more stringent than what is used in 1000 

Genomes project, leading to calling of fewer rare variants found in Caucasians. 

The rare SNP count is not obviously different between different regions and 

classes of genes. The only comparison that showed a statistically significant difference 

was that the genes represented on either Metabochip SNPs or Immunochip SNPs have a 

slight tendency to harbor more rare variants. The significant association between 

nucleotide diversity of promoter region and coding region implies that the genes with 

evolutionary constraint on the coding region also show constraint on the promoter region. 

Petrovski et al [102] reported that the genes that are related to immune disease tend to be 

tolerant to more common functional mutations. My result supports their finding to the 

extent that the genes which are potentially related with metabolic disease or immune 

disease tend to have more highly polymorphic promoters.  However, the RVIS score is 

not likely to be a good measure of the intolerance of promoter regions to functional 

variation. Development of a promoter specific intolerance score will require 

incorporation of an estimate of which variants influence gene expression, which is the 

subject of Chapter 5.  
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CHAPTER 5 

RARE REGULATORY VARIANTS ASSOCIATION  

WITH TRANSCRIPT ABUNDANCE 

 

Introduction 

 In recent years, whole exome sequencing has been used effectively to demonstrate 

that there is a burden of rare coding variants in individuals with a variety of neurological 

and developmental conditions [115-118].  Considering estimates that as many as 90% of 

disease associated common variants are regulatory rather than structural [37, 98-100], it 

is reasonable to assume that rare regulatory variants influencing the expression of causal 

genes might also be enriched in individuals with congenital abnormalities. Whole 

genome sequencing may address this issue, but will need to confront multiple comparison 

issues given the enormous size and complexity of regulatory sequences.  

 Gene expression, whose pattern and properties play a fundamental role in 

affecting the functions of genes, cells and also phenotypes [119], has attracted 

considerable attention. As an important intermediate phenotype between gene variants 

and phenotypic traits, gene expression is a key to uncovering the underlying genetic 

mechanisms responsible for variation for complex traits and diseases. While many studies 

have explored the association of genetic variants with gene expression traits, common 

eSNPs can only explain a medium proportion of gene expression variation [120], which 

implies the rare variants may also make a contribution. Whereas the genetic functions of 

rare variants in coding regions are well studied, association of regulatory rare variants 

with expression traits has yet to be described. Here I test for a burden of rare variants 

with gene expression itself, focusing on just the promoter regions of a targeted set of 

genes whose expression was measured by microarray analysis of peripheral blood 

samples. 
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 Power issue is one the most important considerations in rare variant association 

tests. Previous studies have reported that at least 20,000 samples were needed to reach the 

enough power to perform rare variant association test [121, 122]. In this study, I utilized a 

novel pooled burden test to overcome the difficulties when using much fewer samples. As 

the promoter regions of each gene could be viewed as independent and only cis-acting 

variants were considered in this study, it is reasonable to view the promoter regions of 

each gene in each individual as independent measures. The overall test approach I used 

was to combine all the promoter regions across all individuals to enlarge the number of 

independent tests.  

 The burden test was designed to test whether rare variants are enriched in the 

promoters of genes that are at the extreme of transcript abundance. Robust association 

tests were also performed by evaluating a series of rare variant association tests, 

conditioning on common-eSNPs, and regulatory features. The results of this study 

showed an overall signature of association enrichment across subsets of genes, as well as 

provided an estimate the magnitude of rare variant effects. This study provides evidence 

for rare variant association with transcript abundance, strongly supporting a possible 

general and pervasive contribution of cis-regulatory effects of rare variants as a source of 

genetic variance for rare clinical traits. 

Materials and Methods 

Samples 

 The 410 samples were from the Atlanta CHDWB cohort under approval of the 

Emory University and Georgia Tech IRBs for genetic studies. The 410 samples were 

comprised of 274 females and 136 males. The samples were a mixture of 297 Caucasians, 

95 Africans and 18 Asians. The age at entry into the program and initial sampling of 

blood spanned from 19 to 83 with a mean of 50 and standard deviation of 10.6.  
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DNA  Re-sequencing and Variant Calling 

 The targeted capture sequencing of promoter regions was described in detail in 

the previous chapter and is briefly summarized here.  Whole blood was extracted from 

410 samples and DNA was extracted by QIAGEN FlexiGene DNA Kit. 472 genes were 

selected (list and criteria as in Chapter 4). The major transcript start sites (TSS) were 

obtained from UCSC Genome Browser. A capture array was designed using Illumina 

design studio to pull down 1kb upstream and 1kb downstream of the major TSS for each 

of the 472 genes. Sequence capture libraries were generated and pooled using Illumina 

TruSeq DNA Sample Preparation Kits and TruSeq Custom Enrichment Kits. Sequencing 

was performed on an Illumina HiSeq 2500 with the assistance of Ms. Shweta Biliya in Dr. 

Fredrik Vannberg’s group at Georgia Tech, providing an average coverage of 600 X. 

The sequences were aligned by BWA and variants were called using the GATK 

UnifiedGenotyper in one batch for all 410 samples. Variants were defined as rare in this 

study if the minor allele frequency (MAF) was less than 0.05 in the 410 samples. After 

quality filtering using VQSR, there was a total of 10,451 SNPs, including 1,618 common 

SNPs and 8,833 rare SNPs. 

Gene Expression Profiling 

Transcript abundance measures were generated in two batches using Illumina-

HT12 human gene expression arrays. RNA was prepared from whole blood samples 

collected and stored in Tempus tubes (Life Technologies), following manufacturer-

recommended protocols, and quality was confirmed using an Agilent Bioanalyzer such 

that all samples had RIN numbers greater than 8. The first batch of samples was 

processed for hybridization and bead intensity extraction by ExpressionAnalysis 

(Durham, NC) and the second by HudsonAlpha (Huntsville, AL). The raw data is 

available at the Gene Expression Omnibus (GEO) as accession GSE61672, but additional 

data processing steps were employed for this study to account for batch effects that 
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skewed the rare variant association statistics. 

Gene Expression Normalization 

The objective of this study was to evaluate whether or not there is enrichment for 

rare variants at the extremes of the transcript abundance distribution across a population.  

The question is not whether genes that have high or low abundance tend to have more 

rare variants. It is whether individuals with extreme abundance of single genes have an 

excess of rare variants in those genes. If we could measure the abundance of a single 

transcript in 100,000 people, we may expect that promoter regions of genes in the lower 

and/or upper percentiles of the distribution tend to have more rare variants than genes in 

the middle of the distribution.  Since we did not have the resources to perform such a 

comparison, instead I reasoned that we could pool the results of almost 500 genes, each 

measured in more than 400 people, and evaluate whether there is signal in the tails of the 

distributions of all of the genes considered jointly.  The signal for any one gene would not 

likely be significant, but with 472 genes there are over 200,000 gene expression 

measures, providing power. 

For this strategy to be informative, it is essential that there is no relationship 

between polymorphism levels in an individual, and the tendency of individuals to have 

more genes with extreme expression.  For example, if a subset of genes tend to be more 

highly expressed in African Americans, then those genes would be toward the upper tail 

and they would tend to have more polymorphic variants, and hence a regression of rare 

variant count against percentile of gene expression would have a positive slope.  Vice 

versa for genes that tend to have lower expression in the group with higher 

polymorphism, while the combination of both biases would tend to generate concave 

“smile” plots.  It is also relevant to note that biases other than ethnicity could result in a 

significant relationship, including technical batch effects. In the presence of such biases, 

permutation of the genotype and gene expression matrices across individuals would result 
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in significant linear or quadratic terms in our test statistic just as observed for the real 

data.  Actually, such effects were observed in our initial evaluation of the raw data, which 

led us to adopt the normalization strategy outlined here. 

Raw expression data in the form of average bead intensities from the Illumina 

Genome Studio were first transformed to log2 values, and then processed with the 

Supervised Normalization of Microarrays (SNM) [123] algorithm in R.  I fit Age as the 

biological variable, and removed effects of Batch and Ethnicity by including these as 

adjustment variables with the rm=True option.  Individual effects were accounted for as 

the intensity-dependent variable, resulting in overall gene expression profiles with the 

following distribution, colored by Batch. 
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Figure 5.1 Distribution of raw log2 transformed expression (top), and SNM 

normalized expression (bottom). Four colors represent four batches of samples. 
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Figure 5.1 shows the distribution of raw log2 transformed expression and SNM 

normalized expression. The raw expressions have a strong batch effect which is adjusted 

well by SNM normalization. After performing variance component analysis (Figure 5.2), 

batch effect reduced from 74.6% to 0, making 90.8% of the variance explained by 

residuals after SNM normalization.   

 

 

 

      
Figure 5.2 Variance component analysis of raw log2 transformed expression (left), 

and SNM normalized expression (right). 

 

 

 

I next extracted the 472 genes for which we have promoter genotypes, and 

averaged the estimates for 177 genes that are represented by 2 or more probes in the 

Illumina-HT12 arrays.  In order to combine the genes, I next sought to convert each gene 

expression distribution to the same scale, namely to z-scores, which are standard normal 

distributions with a mean of 0 and standard deviation of 1.  To ensure that there was no 

overall batch effect on the variances (namely, that individuals from one batch are not, for 

technical reasons, more likely to have extreme values), I fit the z-scores by batch and 

combined them. 

Rare Variant Burden test 
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 In order to evaluate whether there was a relationship between transcript 

abundance and number of rare variants in the promoter, each gene was placed in one of 

82 equal-sized bins of five individuals based on the rank of the batch-adjusted z-scores.  

For each gene separately, the lowest 5 individuals are in bin 1, the next lowest 5 are bin 2, 

and so forth until the top 5 are bin 82.  The number of rare variants, defined as a variant 

with a MAF < 0.05, in the promoter region of each gene in each bin was summed, and 

subsequently these values were summed across all 472 genes.  The plots in Figure 5.3 

show the strategy obtaining the sum total of rare variants in 472 promoters in bins of 5 

individuals, starting with bin 1 at the left and ending with bin 82 at the right.  I then 

evaluated deviation of the distribution from the null hypothesis of no relationship by 

fitting a quadratic model where the linear term captures bias toward enrichment for either 

higher or lower expression, and the quadratic term captures the effect of bias at both 

extremes simultaneously. 
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Figure 5.3 Schema showing the pooling strategy to evaluate rare variant 

enrichment. 
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 The significance values of the two terms were observed to be very similar to the 

empirical p-values obtained by permuting the sum counts against the bin number.  

However, a more robust permutation is to shuffle the genotype and gene expression 

vectors, keeping the full vector of promoter counts within each individual, and the full 

vector of expression ranks, constant so as to preserve any biological covariance.  With the 

appropriately normalized gene expression data, such permutations generally resulted in 

flat regressions of allele count on expression bin, with non-significant linear and 

quadratic terms.  I then evaluated the significance of the actual data by documenting how 

many permutations out of 10,000 have a more significant overall model fit, which turns 

out to be just a few cases, strengthening support for the inference (i) that the 

normalization has removed systematic biases, and (ii) that there is a true burden of rare 

variants at either extreme of the transcript distribution, averaging across 472 transcripts. 

A further adjustment was made to account for unequal total read counts among 

individuals or in specific genes. In particular, the up to 4-fold difference in rare variant 

counts between African and Caucasian ancestry individuals could bias the analysis if 

certain genes are more variably expressed between ethnicities; and I noticed that not 

infrequently, individuals harbored “extreme genotypes” with three or more private or rare 

polymorphisms in the same gene.  For the analyses involving mixed races, I thus 

performed a haplotype burden analysis by collapsing all multi-SNP promoters down to a 

count of 1, instead of the actual number of rare variants. This should be conservative 

since it will tend to underestimate the contributions of two or more variants in a single 

promoter.  Application of this haplotype burden test to just the Caucasian data reduced 

the significance of the quadratic fit in smile plots, but the general trend remained the 

same as with the full SNP count data. 

A variety of biological factors could mask the effect of rare variants by 

increasing the variance of gene expression. Two obvious effects are the contribution of 

common eQTL, which will tend to cause individuals with the less active polymorphism 
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to be in lower expression bins, and trans-acting sources of gene expression covariance.  

Since peripheral blood preserved in Tempus tubes is a complex mixture of leukocytes 

(residual red blood cell and platelet gene expression is not thought to contribute strongly 

to observed transcript abundance), an obvious source of covariance is cell counts: 

individuals with low T cell counts for example may tend to have coordinate low 

abundance of thousands of transcripts that are enriched in T cells.  Cell counts explain a 

little over a third of the transcriptional variance in the dataset. This is actually half the 

amount explained by seven empirically determined common axes of covariance that 

likely reflect a mixture of contributions of cell counts and coordinate gene regulation for 

example by interferon or other systemic factors.  These seven axes are defined by the first 

principal component of the expression of 10 “blood informative transcripts (BIT)” [124] 

per axis, where the BIT have been defined by comparison of multiple blood gene 

expression datasets.  Fitting PC1 to the 5 or 100 most correlated transcripts in each axis 

results in almost identical scores. 

Simple linear regression was used to fit either eQTL or co-expression Axes or 

both together.  For the eQTL adjustment, I first performed whole genome cis-eQTL 

analysis on the full CHDWB dataset and identified significant eQTL located within 5kb 

of the TSS or in the gene body for 207 of the 472 genes at p<10-4, observing more than 

70% overlap with the Blood eQTL browser variants derived from meta-analysis of over 

5,000 samples.  For 112 genes, multiple additional cis-eQTL were observed conditioned 

on the primary eQTL.  With the assistance of another graduate student in my lab, Biao 

Zeng, stepwise linear regression was useed to fit these empirical eQTL in our dataset, 

also including Age and Sex as covariates in the model (although neither age nor sex 

account for more than a few percent of the variance of any of the 472 genes).  The 

residuals from the eQTL fit were then ranked and placed in bins for the burden test.  For 

the Axis adjustment, I computed the 7 PC1 scores from the full SNM normalized gene 

expression matrix, and then identified which axis was most strongly correlated with the 
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expression of each gene (448 were influenced by an axis at p<10-4).  Univariate linear 

regression was then used to fit the relevant axis for each gene, and again the residuals 

were taken forward to the adjusted burden test.  For the joint fitting of eQTL and Axis 

scores, I performed the regressions in a sequential manner. 

Two other versions of the analysis were performed to confirm the robustness of 

the core result.  First, I performed quantile normalization of the log2 transformed data 

[125].  This procedure results in identical overall transcript abundance distributions by 

ranking gene expression within individuals and assigning each rank the mean value of 

transcript abundance for that rank.  It does not however remove systematic sources of 

variance at the level of individual genes, such as batch or ethnicity effects.  Second, 

rather than ranking each gene separately, I also performed an overall percentile method 

where all of the z-scores of the 472 genes were combined and assigned to 82 bins of 

2,360 transcripts.  This analysis allows the same gene to be present in the same bin in 

multiple individuals, so does not assume that each gene is approximately normally 

distributed.  Clusters of individuals who share a rare variant and extreme expression 

might consequently be further enriched toward the extreme.   

Partitioning the Sources of Rare Variant Burden on Gene Expression 

            As described in the results section, several potential modifiers of the rare variant 

contribution were evaluated by dividing the total Caucasian dataset into subsets and 

comparing the model fit.  For example, to evaluate whether suspected regulatory sites are 

more likely to harbor rare variants, I downloaded the RegulomeDB assignments for each 

SNP and contrasted sites with scores in the ranges 1-4 (likely regulatory) or 5-7 (weak or 

no evidence for regulatory potential).  Similar analyses reported in Table 5.1 contrast 

SNPs upstream and downstream of the TSS; SNPs in genes in the upper of lower halves 

of the overall average transcript abundance spectrum; SNPs in genes in the upper or 

lower halves of the average promoter polymorphism distribution; SNPs in genes with or 
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without common eQTL; and SNPs in genes represented on the Metabochip, Immunochip, 

or neither.  

Replication Dataset 

            In order to replicate the rare variant enrichment on a completely independent 

dataset generated with different gene expression and genotyping technologies, Professor 

David Goldstein provided a small cohort of 75 individuals with whole genome sequence 

and whole blood RNA-Seq at the Duke Center for Human Genome Variation. Most of 

these individuals are from a Schizophrenia study.  Permission to perform genetic analysis 

was obtained under IRB approval of Duke University, affirmed by the Georgia Tech 

IRB.  Analysis of the principal components of the genotypes indicated that the sample 

includes approximately 49 Africans and 26 European Ancestry individuals.  

            Whole genome sequences were obtained on Illumina HiSeq2000 automated DNA 

sequencers and genotypes were called individually with the GATK algorithm.  RNA-Seq 

of whole blood preserved in Tempus tubes was performed also by paired end 100bp 

sequencing on the Illumina platform.  Raw read counts were log2 transformed, and mean 

centered, and linear regression fitting each of the 7 axes of variation (represented by PC1 

of the blood informative transcripts) as well as the overall PC1 of gene expression 

variation (which is correlated with genetically determined ancestry).  Subsequently, I 

assigned the rank of each gene in each individual, and performed quadratic regression of 

the total rare allele counts (MAF<0.05) for each of 75 ranks.  That is, rather than pooling 

5 individuals per bin, the analysis was essentially on bin sizes of 1, necessitated by the 

small sample of individuals.  

Experimental validation of SNP effects by genome editing 

            I chose four SNPs for experimental validation by CRISPR/Cas9 mediated genome 

editing.  Two (rs in TDP1 and rs in COMMD4) were associated with loss of gene 
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expression and two (rs in DHX29 and rs in UQCC) with gain of gene expression in the 

CHDWB targeted sequencing analysis.  For each gene Dr Idowu Akinsanmi in the 

Gibson lab and Dr Ciaran Lee in the laboratory of Professor Gang Bao generated 11 or 12 

independent approximately 10-cell K562 clones targeted by guide RNAs as follows (need 

paragraph from Idy).  Although K562 cells are erythroleukemic, rather than lymphoid or 

myeloid [126], since the variants are promoter proximal, we reasoned that they may have 

effects generally on transcript abundance and this cell line is well established for CRISPR 

experiments. 

            After confirming disruption of the relevant SNP by the T7E1 assay [127], 8 clones 

for each of the 4 genes with average heterozygosity between 16% and 23% were 

selected.  Assuming a 2-fold modification of transcript abundance in one fifth of the cells 

affected by the CRISPR, we require a sensitive gene expression assay capable of 

detecting a 20% modulation of gene expression.  Droplet PCR is a new quantitative PCR 

approach that does not rely on thresholds of product generation in real time, but rather 

consists of 10,000 dilute droplets of RNA [128].  Quantitative transcript abundance 

estimation is generated by scaling the counts of droplets (typically between 500 and 1000 

out of 10,000 for the transcripts considered here) to the number of positive droplets for 

two control genes measured in aliquots of the same RNA sample.  HPRT was a common 

housekeeping gene control, while UQCC was used as the second control for TDP2 and 

DHX29, and TDP2 as the second control for UQCC and COMMD4 disrupted clones. 

Results 

The overall burden test on the full cohort (Figure 5.4A) showed that the rare 

variants were enriched in both increased and decreased gene expression (model R2 = 

0.19, p=0.0003, permutation p=0.0002). In addition, the enrichment of rare variants in 

decreased gene expression is more obvious than the enrichment in increased gene 

expression. The full cohort was composed of 297 Caucasians, 18 East Asians, and 95 
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Africans. Because of the limitation of imputation quality, after fitting common variants 

the cohort included 384 individuals, composed of 279 Caucasian, 18 East Asian, and 87 

African American individuals. As African Americans have differential expression for one 

third of the genes, and almost three times more rare variant counts than Caucasians in the 

promoter regions (consistent with HapMap estimates), I also considered each of the two 

larger population groups separately. In addition, adjusting for covariates which are known 

to affect gene expression improves the rare variant test significance. The covariates 

include common eQTLs and principle component scores for 7 common axes of peripheral 

blood gene expression covariance. These 7 axes collectively explain 26% of the total 

expression variance of the 472 genes. Fitting those two covariates improve the model R2 

from 0.05 to 0.17, p=0.07 to 0.0003 for Caucasians (Figure 5.4B). That is the further 

evidence that the regression models truly capture enrichment for rare variants. Africans 

separate test (Figure 5.4C) also shows the same trend with enrichment of rare variants at 

the two extremes of gene expression. The less significance in Africans may be due to 

smaller samples size compared to Caucasians. It was verified by randomly selecting the 

same number of Caucasians as Africans to perform the test. Besides rare variant count, I 

also used rare haplotype counts as some individuals carry more than one rare SNP. Both 

show the same trend of enrichment in high and low gene expression. I also applied 

different normalization methods for gene expression, including quantile normalization 

and an approach that firstly pooled z-score for all the gene expression measures together 

and then assigned bins. Both normalization approaches show the enrichment of rare 

variants at two extremes of gene expression, meaning the enrichment test is robust with 

different normalization methods (Figure 5.5). In addition, grouping gene expression into 

41 bins with 10 individuals in each bin (Figure 5.6A) or setting the rare variants as MAF 

less than 0.01 (Figure 5.6B) also shows significant enrichment of rare variants at the two 

extremes of gene expression.  
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Figure 5.4 The rare variant burden in sorted expression (SNM normalized) bins. A. 

410 samples, no adjustment B. 279 Caucasian Americans, after fitting SNM expression 

levels by significant common eQTLs and 7 blood transcript axes. C. 87 African 

Americans, after fitting SNM expression levels by significant common eQTLs and 7 

blood transcript axes. 

 

 

 

C. 
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Figure 5.5 The rare variant burden using different normalization method of gene 

expression. A. The rare variant burden in sorted expression (QNM normalized) bins for 

410 samples. (R2=0.16, p-value=0.002) B. The rare variant burden in expression 

percentiles with a pooled z-score method. (R2=0.15, p-value=0.002) 
 

 

 

                
 

Figure 5.6. The rare variant burden using different bin sizes and different minor 

allele frequency cutoff. A. separating gene expression to 41 bins with 10 individuals in 

one bin B. using rare variants with MAF < 0.01 
 

 

A. B. 
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 I also asked if the rare variant enrichment was due to certain subsets of genes or 

gene regions. The result was shown in Table 5.1 and Figure 5.7. I first categorized genes 

by RegulomeDB classifications. Lower classification of RegulomeDB (classes 1 to 4) 

means higher confidence that the variants lie within features such as DNAse 

Hypersensitive Sites or Transcription Factor Binding Sites. It showed that the rare 

variants which lie in class 1 to 4 of RegulomeDB were more enriched at the extremes 

than the variants in classes 5 to 7 (p=0.002 versus 0.08). Second, the variants were 

grouped into two subsets according to if they are in upstream or downstream of TSS. It 

showed that the rare variants in the downstream of TSS were more enriched at the 

extremes of gene expression in comparison of upstream (p=0.00067 vs 0.094). Third, I 

also asked if high or low abundance transcripts and if high or low polymorphic genes 

tend to show different patterns of rare variant enrichment. Result showed that the 

enrichment of rare variants occur in both high abundance transcripts and low abundance 

transcripts (p=0.0062, p=0.0009 separately). Similar result showed that the enrichment 

occur in high polymorphic genes in comparison with low polymorphic genes (p=0.0009 

vs 0.23). 
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Table 5.1 Summary of quadratic model coefficients in different gene subsets. Model significance: * 0.001<p<0.05; ** 0.0001 

<p<0.001; *** p<0.0001 

 
  

  

First Set Second Set 

Linear p Quad p Model R2 Linear p Quad p Model R2 

Caucasian vs African 0.029 0.00046 0.17** 0.16 0.046 0.068* 

RegulomeDB class 1-4 vs 5-7 0.16 0.0013 0.13* 0.08 0.15 0.055 

Upstream vs Downstream 0.12 0.12 0.051 0.12 0.00042 0.15** 

Low vs High Expression 0.00079 0.079 0.14** 0.35 0.0023 0.11* 

Low vs High Polymorphism 0.50 0.12 0.032 0.032 0.0018 0.14** 

with common eQTL vs not 0.027 0.0012 0.15** 0.33 0.058 0.049 

with Metabochip vs not 0.81 0.45 0.007 0.0057 0.000046 0.23*** 

with Immunochip vs not 0.72 0.038 0.048 0.021 0.017 0.11* 
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Figure 5.7 The rare variant burden in sorted expression (SNM normalized) bins for 279 Caucasians in different subsets. A, B. 

rare variants in regulomeDB classes 1-4, and 5-7 respectively C, D. rare variants in upstream and downstream of TSS E, F. genes with 

high and low transcript abundance G-H genes with low and high polymorphic levels. 
 

A C D 

E F G 

B 
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Next, I also investigated the enrichment of rare variants with respect to gene 

function. It showed that rare variants were more enriched in the genes with common 

eQTLs (Figure 5.8A, p=0.0006) compared to the genes without eQTLs (p=0.11). Another 

remarkable finding was that rare variants tend to show more significant enrichment in 

genes that do not harbor SNPs  in Metabochip or Immunochip. (p=9×10-6, Figure 5.8B, 

versus 0.73 for metabolic disease-related genes, and p=0.0047 versus 0.11 for immune-

disease-related genes). This result might be explained by relaxation of purifying selection 

on genes not associated with disease.  

 

 

 

    

Figure 5.8 The rare variant burden in sorted expression (SNM normalized) bins for 

279 Caucasians in different gene sets with respect to gene function. A. in genes with 

common eQTLs B. in genes without metabochip SNPs inside and within 5kb promoter 

regions. 

 

 
 

 The effect size calculation was based on the difference between the average 

expression levels of the samples with rare variants and the average expression levels of 

the rest samples in each SNP position (Figure 5.9A). When simulate with assigning effect 

size as gamma(1.5, 0.12) distributed and expression levels as normally distributed for 

each gene, while keeping the empirical SNP matrix, it got the enrichment results (Figure 

A B 
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5.9C) comparable to the true results. However the simulated distribution has smaller 

variance when compared to the empirical effect size (Figure 5.9B). This is likely due to 

the absence of technical noise in the simulated data. Accordingly, the observed effect 

sizes have only a modestly greater variance than those estimated in 100 random 

permutations (Figure 5.9D).    
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Figure 5.9 Effect size analysis. A. The distribution of absolute effect size. B. The 

distribution comparison of rare SNP effect size in CHDWB Caucasians and simulation. 

C. The rare variant burden with simulated effect size. D. The distribution comparison of 

rare SNP effect size in CHDWB Caucasians with 100 permutations. 
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  I performed a replication test with 75 whole genome sequencing and 

corresponding whole blood RNA sequencing. When using the same 472 genes, the rare 

variants showed a significant enrichment at the extremes of gene expression (p=0.008, 

Figure 5.10A), in which the smaller p-value compared to 410 samples may be caused by 

smaller sample size. However, when enlarging the number of genes to 5000 genes and 

also adjusting the axes of variation, the results showed very significant enrichment of rare 

variants in decreased and increased gene expression (p=2.3×10-11, Figure 5.10B). 

 

 

 

     

Figure 5.10 The rare variant association test with replicates. A. The rare variant 

burden in sorted expression (SNM normalized) bins with 75 individuals and 472 genes. 

B. The rare variant burden in sorted expression (SNM normalized) bins with 75 

individuals and 4633 randomly selected genes. 

 

 

 

In order to experimentally validate rare variant regulatory effects predicted from 

the statistical analysis, we used CRISPR/Cas9 to mutagenize four sites that had estimated 

effect sizes greater than 2.5 standard deviation units, in K562 erythroleukemia cells.  Five 

individual clones were grown for each disruption and cleavage was confirmed using the 

T7E1 assay indicating 16 to 23% average heterozygosity.  Quantitative RT-PCR 

confirmed that disruption of both sites where the rare variant associates with decreased 

A B 
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expression (in genes UQCC and TDP2), resulted in reduced transcript abundance, as did 

disruption of one of the two sites associated with increased expression (in genes 

COMMD4 and DHX29, Figure 5.11).  Since this protocol causes small deletions rather 

than targeted replacement of polymorphisms, it is possible that the disruption removes a 

binding site for an activator in each case, leading to loss of gene expression whereas the 

alleles that associate with increased expression interact more strongly with the relevant 

transcription factor. 
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Figure 5.11 CRISPR / Cas9 mutagenesis validation of rare SNP regulatory effects. 

A. All 5 clones with disruptions in UQCC reduced expression almost by half. B. 3 clones 

with disruptions in COMMD4 weakly increased the expression while 1 clone greatly 

increased the expression. C. 4 clones with disruptions in TDP2 reduced expression to 

varying degrees. D. Only 1 clone out of 5 clones with disruptions in DHX29 weakly 

increased expression. 
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Discussion 

 Whereas many studies working on gene expression regulation focus on common 

variants and rare coding variants, this study presents an analysis of rare variants in gene 

promoter regions with 410 samples. While it has been shown that large samples sizes are 

needed to detect rare variant association with enough power, here I use a novel burden 

test to perform the association test by considering each promoter region as independent 

and summing effects over all the genes. This method has shown the potential of using 

burden test as a method of detecting rare regulatory variants. It also provides candidate 

rare variants significantly associated with gene expression that can be tested in further 

gene-based analysis. Different gene subset regions and gene functions were analyzed 

which provides insight into the sources of the rare variant effects. These demonstrate that 

the position relative to the TSS, RegulomeDB classes that significantly associated rare 

variants belong to, and common eQTL and disease relatedness features, all influence 

whether genes are likely to harbor rare regulatory variant effects. This implies that further 

studies in different tissues and larger samples may pinpoint the sources of rare regulatory 

variants that may also impact gene expression. This study also demonstrates the good 

potential of CRISPR as a screening approach to validate rare regulatory variants that 

would affect gene expression.  

 Gene expression, whose levels could affect cellular functions and cellular states 

[129, 130], is an important intermediate phenotype between genotype and disease status. 

The extreme expression of genes may lead to abnormal phenotypes and even lead to 

diseases [131]. Many common SNPs have been found to be associated with gene 

expression levels [132-134]. Those common eSNPs would affect the average level of 

disease risks for the individual groups. For example, the individual groups carrying 

common risk alleles which increase or decrease the gene expression levels may in 

aggregate have higher disease risk than the groups which don’t carry risk alleles. In 

comparison with the overall effect of common eSNPs, the rare eSNPs in regulatory 
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regions will influence only less than 5% individuals who carry the risk alleles but may 

push their expression to extreme levels that lead to the change of their health status.  

 People may argue that rare variants do not deserve much attention because they 

only exist in a few numbers of individuals and also is likely to be selected against. 

However, Keinan et al [107] have stated that human population is recently under 

explosive growth, which is expanding by more than three orders of magnitude over 400 

generations. This explosive population growth will contribute a larger number of rare 

variants and is likely to increase the individual genetic burden of complex disease risk. 

My result has shown that the rare variants tend to affect gene expression with a similar 

magnitude as common eSNPs. Considering the expanding number of rare variants and 

the three to four fold greater numbers of rare variants than common variants, the potential 

contribution cannot be ignored. In addition, rare coding variants which may directly 

cause change of protein structure and function tend to have strong effects on fitness, 

which would be filtered out by evolution. In contrast, rare eQTLs could have more easily 

escaped purifying selection. So exome sequencing based studies of rare coding variants is 

not sufficient and focus should shift to rare regulatory variants. 

 This study has limitations in some aspects and could be developed in further 

analysis with more accessible resources and funding. One of the limitations is that this 

study only focused on 2 kb regions in the vicinity of TSS. Although enrichment of cis-

eSNPs were found within the regions of 1kb each side of TSS [46, 135], a large number 

of cis-eSNPs are located in more distal regions. This matches with the knowledge that 

many regions with regulatory functions such as DNase hypersensitive sites and 

transcription factor binding sites lie in distal positions relative to TSS [136, 137]. 

Expanding the study regions to tens or hundreds upstream of TSS will enable discovery 

of a more comprehensive list of rare variants that affect gene expression.  

 Here the tests were based on gene sequencing and transcript profiling in 

peripheral blood. It can be expected that if the test could be applied to single cell or tissue 
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types, it will reduce the noises caused by variable environments and cell counts. 

Especially, if the test could be implemented in cell or tissue types that are directly 

relevant to certain diseases, such as cardiac cells for coronary heart disease, it will 

provide more information about the rare variants effect on disease-related gene 

expression. To validate the rare variants effect on gene expression, more experimental 

validations are required such as experiments on knockout/knockdown mouse models. To 

further investigate whether there is similar effect of rare variants in promoter-proximal 

regions on diseases, the approaches applied here are required to implement on individuals 

who have congenital disorders. 

 The most important implication of this study is that the potential contribution of 

de novo and very rare variants to congenital disease cannot be ignored.  Currently whole 

exome sequencing is demonstrating that there is a burden of rare variants in relevant 

subsets of genes in children born with developmental disorders and neurological 

conditions [138].  However, by no means all cases are explained by exome sequencing.  I 

propose that rare regulatory variants that either greatly reduce or overexpress the gene 

product are likely to be an important source of non-syndromic conditions. 
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CHAPTER 6 

CONCLUSION 

 

 This dissertation reveals the association between genetic variants and phenotypes 

in overall. Chapter 2 utilizes the common genetic variants recorded in GWAS database to 

calculate the polygenic risk score for 3 common diseases and 3 quantitative phenotypes. 

The result shows that even in a small cohort, polygenic score could explain 5% variation 

of disease risk and quantitative phenotypes, which is comparable to other studies. Chapter 

3 is GWAS analysis on TNF-α and BMI/CRP with imputed genotypes, by participating in 

GWAS replication and meta-GWA study. The result reveals a replication of the top few 

SNPs being discovered as the most significant variants associated with TNF-α in the 

discovery phase. In addition, it shows that the effect size and effect direction in 

longitudinal model matches with the baseline model. The study also provided candidate 

variants to a meta BMI/CRP study throughout the genome. Chapter 4 makes use of the 

targeted resequencing to make a population genetics comparison focused on rare variants 

in promoter regions. It reveals that the rare variants in promoter regions in Africans are 3 

times more than in Caucasians and 2 times more than Asians. Chapter 5 investigates the 

association between rare variants in promoter regions and gene expression levels. A 

significant enrichment of rare variants for both increased and decreased gene expression 

was observed in the study.  

 The studies were based on small cohorts – approximately 400 samples in 

CHDWB. The small samples would limit the power to detect the significant signals in 

genomic association studies. Spencer et al [139] show that thousands and more samples 

are needed to reach enough power to detect common variants with medium effect sizes in 

GWAS, whereas tens of thousands of samples are needed to detect common variants with 

small effect sizes in GWAS. Furthermore, for variants with smaller minor allele 
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frequency, much more samples compared to common variants are required to detect the 

associated SNPs (Figure 6.1). Their simulation study was based on single SNP analysis. 

More powerful statistical methods such as SKAT [53], C-alpha test [52] etc have been 

used for rare variants analysis, but large sample sizes are still required for association 

analysis.  

 

 

 



108 

 

 

 

Figure 6.1 Power for Common versus Rare alleles based on case-control studies 

simulated in Caucasian population based on CEU HapMap panel. Power is shown as 

solid lines and coverage is represented as dotted lines with y-axis as the value. Increasing 

sample sizes are shown in x-axis. From left to right plots, effect sizes are increasing from 

1.1 to 2. (taken from [139]) 
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The rare variant association test in this dissertation was based on expression levels 

measured in healthy individuals. It would also be interesting to detect how the rare 

variants associate with disease status if a case control cohort were available. A trio study 

comprised of children with diseases and their parents with or without diseases could also 

be a powerful experimental design for the discovery of genetic factors including rare 

variants contributing to diseases.  

 

 

 

 

Figure 6.2 Variation of gene expression in different specimen groups for 45 samples. 

Ranks are based on 3,826 microarray measured genes. DLCL, diffuse large B-cell 

lymphomas. CLL, chronic lymphocytic leukemia. WB, whole blood. PBMC, peripheral 

blood mononuclear cell. Taken from [118] 

 

 

 

 The genetic information, traits and expression levels were all extracted from 

whole blood from the samples. There are several cell types such as lymphocytes, 

neutrophils, monocytes in whole blood. Each cell type may harbor its own expression 

characteristic and different genetic association pattern. Studies based on whole blood 

tends to overlook the underlying patterns in different cell types. Importantly, [140] has 

shown that gene expression variation in the whole blood of healthy samples is smaller 

than the variation observed from samples with bacterial infection, and is much smaller 

than that seen in certain constituent cell types (Figure 6.2). It would be interesting if the 
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study could be performed on isolated cell types, or specific types of stimulated cells.  

 Experimental validation is an important approach to validate the rare variant 

association. The CRISPR/Cas9 results performed in our lab have validated 3 of 4 rare 

variants with large effect sizes, at least with respect to the requirement for the 

transcription factor binding site that is affected by the rare SNP. The ideal situation would 

be that all rare variants with large or medium effect sizes could be validated by 

CRISPR/Cas9 assays. Future work may evaluate whether predictions from evolutionary 

or ENCODE data can help to narrow down causal variants in LD blocks..  

 The association between genetic variants and gene expression or clinical traits 

will shed light on genetic association with diseases, in consideration of how aberrant gene 

expression levels lead to abnormal phenotypes and how clinical traits imply the status of 

health. It helps understand the molecular causes of diseases and identifies genetic 

contribution to variability in persons’ response to treatments.  Each person has a unique 

genome. Thus the information on personal genome and personal genetic variants based 

on the knowledge of genetic variant association will result in personalized medicine 

[141], where genetic information together with clinical information could be used to 

predict health risk. When a certain disease is diagnosed, personal treatment could be 

advised based on the patient’s genetic information, using methods such as that developed 

in this thesis to interpret the function of genomic sequence variants. 
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APPENDIX A 

SUPPLEMENTARY TABLES FOR CHAPTER 4 

  

Table A.1 Read depth summary for 2kb promoter regions of 472 genes 
 

GENE AVERAGE  

READ DEPTH 

PROPORTION 

 >= 20X 

PROPORTION  

>= 100X 

GENE AVERAGE  

READ DEPTH 

PROPORTION  

>= 20X 

PROPORTION  

>= 100X 

ABCC5 967.61 0.89 0.81 LMAN2L 640.11 1 0.90 

ABHD10 232.04 1 0.54 LMNA 374.88 0.97 0.84 

ABHD8 342.62 0.85 0.73 LONP2 613.94 0.97 0.94 

ACAA2 648.05 0.95 0.88 LRPPRC 202.78 0.86 0.54 

ACADM 531.89 0.92 0.77 LRRC25 1202.00 1 0.98 

ACER3 591.86 0.86 0.62 LRRCC1 700.69 0.97 0.93 

ACOX1 732.98 0.99 0.96 LTN1 522.29 0.68 0.59 

ACP2 919.33 1 0.94 M6PR 942.01 1 1 

ACTR10 529.78 0.99 0.96 MAD2L1BP 614.31 0.97 0.81 

ACTR6 800.19 0.97 0.83 MAF1 583.77 0.70 0.56 

ADCK3 791.69 0.92 0.84 MAGEH1 877.61 1 1 

ADK 615.06 0.69 0.56 MAN2A2 879.03 1 0.98 

ADPGK 896.71 0.91 0.89 MAPK1IP1L 612.44 0.90 0.84 

ADRM1 493.36 0.76 0.63 MAU2 790.05 0.96 0.90 

ADSS 659.47 0.85 0.73 MBNL1 857.20 0.96 0.94 

AHSA2 457.19 0.85 0.71 MBNL2 853.06 1 1 

AKR7A3 821.00 0.94 0.91 MED16 594.32 0.93 0.74 

ALDH16A1 760.05 1 0.97 MED22 467.59 0.88 0.75 

ALDH2 794.47 0.85 0.79 MEFV 811.08 0.94 0.85 

ALDH3B1 923.90 1 1 MFN2 802.88 0.89 0.76 

ALKBH1 690.88 0.84 0.73 MGST3 1003.18 0.98 0.95 

ALPL 696.66 0.93 0.84 MKI67IP 571.78 0.99 0.97 

ALPP 740.51 1 0.82 MOBKL2C 378.27 0.90 0.70 

ALS2 815.91 0.92 0.90 MPHOSPH10 679.22 1 1 

ANXA11 695.83 0.94 0.91 MPL 1216.80 1 0.98 

AOAH 945.49 1 1 MR1 783.25 1 1 

AP1G2 621.99 1 0.88 MRPL17 1000.30 1 0.87 

AP1S1 636.69 0.97 0.86 MRPL34 806.25 1 0.94 

APOL3 696.60 1 1 MRPL43 1159.66 1 0.99 

ARAF 425.30 0.97 0.93 MRPL52 859.84 0.87 0.72 

ARGLU1 523.46 0.82 0.75 MRPL53 734.97 1 1 

ARID5B 430.77 0.99 0.90 MRPS21 962.16 0.95 0.88 
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ARL16 565.28 0.92 0.73 MSH6 382.81 0.93 0.80 

ARPP19 564.50 0.95 0.80 MSI2 319.81 0.74 0.65 

ASNSD1 944.69 1 1 MSRA 550.34 0.97 0.92 

ASXL2 627.28 0.92 0.77 MTMR3 564.05 0.78 0.59 

ATG4A 568.33 1 0.99 MYC 732.29 0.92 0.81 

ATMIN 602.45 0.88 0.79 NAA10 865.92 0.83 0.71 

ATP13A1 342.72 0.80 0.49 NDUFB10 740.15 0.89 0.81 

ATP5J2 819.30 0.86 0.77 NEDD8 627.31 0.94 0.87 

ATP5S 597.54 0.90 0.84 NEDD9 925.46 1 1 

ATPIF1 764.53 1 0.97 NFE2L1 791.68 0.94 0.82 

AZI2 670.69 0.92 0.90 NONO 1029.18 1 0.96 

B4GALT4 496.83 0.95 0.75 NOP10 529.59 0.97 0.77 

BEX2 381.95 0.90 0.79 NSFL1C 1296.91 0.99 0.96 

BFAR 970.20 1 1 NT5C3 733.05 0.90 0.77 

BIRC3 401.99 1 0.92 NUDT18 680.49 0.95 0.86 

BRD8 982.92 1 1 NUDT2 619.01 1 0.98 

BRF2 896.46 1 0.99 NUDT5 1049.42 1 1 

BRMS1 1006.70 1 1 NUFIP2 580.26 1 0.93 

BSDC1 789.71 1 1 NUP43 874.54 0.95 0.88 

BTK 808.35 1 1 OGFOD1 782.13 1 1 

BTN3A2 573.32 1 0.87 OGFRL1 474.91 0.81 0.75 

C11ORF17 679.51 0.87 0.64 ORMDL1 497.88 0.85 0.79 

C12ORF32 778.41 0.93 0.90 ORMDL3 845.41 0.95 0.89 

C12ORF35 838.63 0.98 0.92 OXR1 484.16 0.75 0.52 

C14ORF102 520.24 0.99 0.88 PACSIN2 565.73 0.87 0.77 

C14ORF129 565.70 1 0.81 PASK 499.80 0.94 0.78 

C14ORF142 589.99 0.93 0.90 PCMTD2 256.23 0.78 0.69 

C14ORF179 795.58 1 0.97 PCNA 558.55 0.86 0.52 

C15ORF63 1278.31 1 1 PDCD2 493.50 0.88 0.66 

C17ORF90 636.12 0.87 0.76 PDCD4 761.35 0.92 0.87 

C18ORF10 468.48 0.79 0.72 PDK3 912.91 0.95 0.92 

C18ORF21 769.53 0.91 0.88 PEA15 754.35 0.73 0.57 

C1ORF123 572.22 0.85 0.70 PEX5 581.60 0.96 0.84 

C1ORF38 1382.12 0.96 0.94 PFDN1 737.82 1 1 

C1ORF85 494.49 0.89 0.65 PFN1 318.03 0.85 0.64 

C1ORF86 959.24 1 1 PHF21A 269.38 0.81 0.64 

C2ORF28 495.29 0.76 0.59 PIGH 583.53 0.97 0.79 

C2ORF44 1093.54 0.99 0.94 PIGN 876.91 0.87 0.85 

C6ORF129 728.78 1 0.93 PIGQ 614.29 0.82 0.73 

C7ORF25 634.51 0.97 0.82 PILRB 455.11 0.79 0.63 

C8ORF40 838.46 0.97 0.92 PIP4K2B 169.65 0.64 0.48 
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C9ORF114 825.45 0.89 0.82 PLAUR 719.26 1 1 

C9ORF78 665.00 0.96 0.87 POLR1D 385.44 0.95 0.74 

CALR 500.59 0.78 0.58 POR 703.65 0.85 0.82 

CAPG 707.90 1 1 PPCS 980.48 0.94 0.93 

CARD8 513.31 1 0.89 PPIL3 1198.30 1 1 

CARD9 775.91 1 1 PRDX5 1004.16 0.95 0.88 

CAT 589.23 1 0.91 PRKAR1A 611.21 0.94 0.86 

CCDC23 873.38 0.96 0.94 PRRC1 868.20 0.96 0.91 

CCDC88B 970.39 0.87 0.81 PTGDR 643.27 0.97 0.88 

CD160 592.79 0.92 0.87 PTGS2 711.44 1 0.80 

CD96 573.27 1 1 PWP1 478.61 0.92 0.86 

CDA 1353.78 1 1 PYGB 968.42 0.90 0.76 

CDAN1 647.05 0.96 0.78 RAB10 1095.53 0.84 0.78 

CDK10 130.28 0.68 0.45 RAB11FIP2 993.41 0.93 0.91 

CEP63 858.12 0.91 0.89 RAB24 763.83 0.90 0.79 

CFDP1 865.78 0.97 0.91 RAB8B 651.53 0.97 0.88 

CHRNB1 849.92 0.93 0.92 RANBP3 519.86 0.84 0.76 

CIB1 777.10 0.76 0.74 RBBP4 633.70 0.87 0.82 

CIDECP 967.82 1 1 RBMX2 550.77 0.91 0.53 

CKS2 700.91 0.94 0.86 RCE1 958.76 0.92 0.77 

CLCN7 582.31 0.83 0.81 RFWD3 553.91 0.95 0.83 

CLN3 716.00 1 0.97 RHOT1 628.72 0.93 0.91 

COBRA1 899.51 0.81 0.65 RNF130 589.05 0.73 0.64 

COMMD4 1013.46 1 1 RNF135 543.23 0.95 0.85 

COMMD7 565.03 0.99 0.71 RNF181 706.38 1 1 

COMMD9 776.21 1 1 RNPS1 412.63 0.70 0.60 

CPPED1 600.82 0.93 0.76 RPA1 559.61 0.89 0.73 

CPSF3L 449.59 0.93 0.76 RPL10A 770.14 0.89 0.86 

CRIPT 518.45 1 0.92 RPL13 852.95 0.95 0.88 

CRISPLD2 1034.78 0.97 0.96 RPL14 671.29 0.99 0.97 

CRLS1 589.05 0.94 0.83 RPL36AL 574.53 0.84 0.74 

CTDSP1 245.44 0.53 0.42 RPL4 722.99 1 1 

CTNNAL1 645.51 0.90 0.82 RPL9 661.41 0.92 0.88 

CTSH 371.70 0.94 0.86 RPP38 794.70 0.96 0.88 

CTSO 608.93 0.98 0.92 RPS6KB2 973.00 0.96 0.89 

CUL4B 817.25 1 1 RPUSD3 916.80 1 1 

CWF19L1 640.57 1 0.93 RPUSD4 1101.65 1 0.99 

CXCL16 899.39 0.88 0.72 RRM2B 677.43 0.93 0.78 

CXCL5 794.46 1 1 RRP12 673.79 1 0.85 

CXXC5 452.06 0.80 0.62 RUFY1 626.22 0.74 0.66 

DCTN5 674.91 0.86 0.78 SAMM50 642.72 0.96 0.93 
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DCXR 324.40 0.75 0.52 SCAND1 496.43 0.87 0.67 

DDOST 1132.84 1 1 SDAD1 1010.52 1 1 

DDX41 828.38 0.96 0.92 SENP2 838.82 0.95 0.92 

DDX52 873.73 1 1 SERPINB8 803.85 0.92 0.87 

DEF6 561.85 1 1 SERTAD1 1102.76 0.84 0.78 

DGUOK 632.13 1 1 SERTAD2 582.79 0.79 0.70 

DHRS1 705.05 0.99 0.88 SESN3 742.60 0.83 0.80 

DHRS3 334.45 0.94 0.78 SETD3 1150.20 0.86 0.83 

DHX29 767.86 0.87 0.79 SF3A1 530.72 0.85 0.75 

DHX38 1022.45 1 1 SF3A3 1036.68 1 0.97 

DIAPH2 518.43 0.96 0.80 SF3B4 948.31 1 1 

DKFZP686I15217 980.48 1 1 SH2D1B 722.32 1 1 

DLAT 623.66 1 0.90 SHCBP1 828.27 0.96 0.94 

DNAJC15 835.13 1 1 SHROOM4 830.56 0.99 0.93 

DNAJC8 375.05 0.98 0.89 SIDT2 895.54 0.87 0.80 

DOCK10 186.84 0.88 0.56 SIRPB1 894.23 1 1 

DOCK11 416.21 0.77 0.53 SIRPG 979.11 1 0.97 

DR1 473.86 0.95 0.76 SLAMF7 434.43 0.96 0.77 

DRAM1 230.57 0.71 0.49 SLC27A3 640.91 0.84 0.65 

DSTYK 883.87 0.91 0.86 SLC35A3 865.36 0.98 0.92 

DUS2L 739.71 0.97 0.81 SLC39A8 433.18 0.95 0.84 

E2F2 460.43 0.84 0.77 SLC3A2 888.93 0.94 0.90 

E2F6 561.66 0.94 0.78 SLC40A1 781.17 0.94 0.92 

EBP 696.64 0.91 0.82 SMAP1 591.71 0.95 0.87 

ECH1 928.06 1 1 SMARCE1 721.27 1 0.95 

ECHS1 195.40 0.59 0.45 SNAP29 507.51 0.93 0.71 

EEF1G 1240.69 1 1 SNORA70 805.53 1 0.96 

EIF1AX 552.87 0.88 0.70 SNRNP25 430.19 0.88 0.71 

EIF2AK4 781.47 0.95 0.90 SNX14 771.09 0.98 0.91 

EIF2B2 1080.54 1 1 SNX29 873.04 1 0.91 

EIF2S3 601.99 0.90 0.73 SP110 963.83 1 0.87 

EIF4A1 542.22 0.97 0.85 SPNS1 731.89 0.98 0.92 

EIF4G3 294.18 0.78 0.57 SRI 532.23 1 0.85 

EIF5 319.81 0.82 0.68 SRP54 614.96 1 1 

EMR3 649.13 1 0.96 STARD3NL 769.57 0.98 0.94 

EPB41 933.50 0.92 0.86 STAT3 637.01 0.96 0.88 

EPHX2 567.37 0.85 0.78 STAT4 720.58 1 0.95 

ERCC3 442.15 0.98 0.78 STAT5A 908.67 0.96 0.88 

ERP27 658.69 1 0.83 STAT6 1238.77 1 1 

ETS2 303.17 0.88 0.73 STOM 691.30 1 0.95 

EVI2A 735.79 0.99 0.85 STYXL1 870.17 0.93 0.81 
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EXOC4 636.98 1 1 SUMF1 561.63 0.98 0.87 

F13A1 899.97 1 0.97 SURF6 585.70 0.97 0.91 

FAM193B 520.18 0.77 0.62 SUSD3 645.17 0.98 0.91 

FAM49A 528.11 0.80 0.73 SYS1 612.65 1 1 

FAM76B 679.80 0.91 0.88 TAF1C 513.54 0.86 0.67 

FAR2 576.17 1 1 TAF1L 396.71 0.81 0.67 

FBXO11 153.56 0.71 0.49 TAGLN 1038.40 1 1 

FCER1G 941.32 1 0.98 TAPBPL 1231.22 1 0.86 

FCRL3 775.73 0.96 0.80 TATDN2 552.59 0.93 0.79 

FDFT1 732.41 0.96 0.89 TBC1D15 1166.57 1 1 

FEZ2 731.32 0.86 0.64 TBC1D2B 794.52 0.94 0.74 

FN3KRP 654.05 0.90 0.82 TCEAL8 850.76 1 1 

FRG1 559.90 0.98 0.89 TDP2 1093.58 0.99 0.96 

FXYD5 660.71 0.91 0.82 TFE3 712.39 0.86 0.80 

GAB3 835.89 0.87 0.83 TFG 464.63 0.96 0.92 

GALC 787.67 0.97 0.95 THAP7 339.32 0.95 0.80 

GAPT 528.83 1 0.77 TLR7 761.71 1 1 

GATAD2A 505.88 0.75 0.63 TMEM140 564.34 1 1 

GATS 119.20 0.65 0.46 TMEM149 858.12 1 0.90 

GDPD3 1063.49 1 0.96 TMEM175 657.46 0.83 0.73 

GMCL1 658.06 0.86 0.81 TMEM199 706.46 0.98 0.94 

GNA12 722.36 0.90 0.80 TNFRSF4 545.47 0.89 0.82 

GNPAT 947.19 1 0.99 TNFSF8 948.24 1 0.89 

GPAA1 556.60 0.71 0.57 TOMM7 1088.64 1 1 

GPATCH4 1133.92 1 1 TPM1 378.53 0.78 0.75 

GPX7 588.48 0.93 0.81 TRAF3IP3 1277.39 1 1 

GRK6 539.47 0.95 0.79 TRAF5 978.67 0.95 0.89 

GSPT2 703.47 1 1 TRAK1 1273.42 1 1 

GTF2F1 420.48 0.95 0.84 TRAPPC4 834.08 1 1 

H1F0 758.59 0.87 0.66 TRAPPC5 701.23 0.90 0.73 

HADH 795.50 0.94 0.85 TRAPPC6B 798.97 1 1 

HARS2 593.39 1 1 TRIM4 546.64 0.98 0.94 

HBP1 499.89 0.75 0.66 TRPC4AP 909.87 0.97 0.92 

HBQ1 648.99 0.65 0.63 TSPAN33 585.97 0.99 0.98 

HCLS1 1193.39 1 1 TSSC1 685.42 1 0.96 

HDDC2 753.18 0.83 0.75 TUBA1A 862.11 0.98 0.95 

HDHD1 781.23 0.89 0.82 TUBA1B 715.79 0.98 0.96 

HEBP2 544.33 0.89 0.78 TUFM 741.53 1 0.95 

HIF1AN 705.80 1 0.88 TXNIP 969.72 1 1 

HIST1H2BD 701.43 1 0.99 UBA7 720.04 1 0.90 

HNRNPC 932.01 1 0.98 UBE2L3 737.06 0.92 0.88 
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HNRNPH3 453.81 0.97 0.82 UBL4A 866.24 0.85 0.83 

HPS1 524.99 0.97 0.85 UBN1 694.43 0.64 0.42 

HSCB 1029.53 1 1 UBR2 870.48 0.98 0.91 

HSD17B11 543.85 1 0.75 UGDH 564.06 0.90 0.83 

HSD17B12 813.02 1 0.99 UQCC 275.76 1 0.59 

HSP90AB1 663.04 0.96 0.91 USO1 683.82 1 0.91 

HSPA4 534.87 0.88 0.82 USP4 652.99 0.97 0.92 

HSPA8 806.84 1 0.96 USP48 764.11 0.90 0.85 

HSPA9 803.88 0.94 0.92 UTP18 423.66 0.87 0.71 

ICOS 687.29 0.94 0.76 UXT 923.69 1 1 

ID3 614.86 1 0.93 VAMP1 429.91 0.90 0.80 

IKBIP 476.12 0.83 0.67 VAMP8 1193.93 1 1 

IL18R1 660.24 1 1 VASP 559.59 0.87 0.81 

IL8 585.82 1 1 VEZT 686.02 0.98 0.96 

ILF3 621.12 0.90 0.78 VIM 553.86 0.87 0.76 

IPP 802.33 0.98 0.78 VPS4B 746.41 1 0.91 

IQCB1 698.57 1 0.89 WAS 1086.37 1 1 

IQGAP1 865.04 0.95 0.89 WDFY2 463.45 0.86 0.67 

ITGAM 849.98 0.98 0.91 WDR45 469.64 0.91 0.68 

ITGAX 959.37 1 0.99 XBP1 515.17 0.87 0.76 

ITK 588.87 1 0.99 XRCC6BP1 667.70 0.98 0.92 

KATNA1 365.26 0.86 0.76 YIF1A 1041.26 0.97 0.95 

KCTD10 917.67 1 0.83 YIPF3 604.21 1 1 

KIAA0319L 400.98 0.70 0.63 ZAK 826.41 0.94 0.83 

KIAA0368 238.50 0.83 0.69 ZDHHC17 949.15 0.93 0.91 

KIAA1191 676.71 1 0.98 ZFP90 633.00 0.88 0.68 

KIAA1598 828.53 0.81 0.67 ZMIZ1 180.24 0.72 0.38 

KIAA1737 601.89 0.83 0.75 ZMIZ2 1107.48 0.91 0.90 

KLF4 378.59 0.80 0.60 ZNF185 1046.58 1 1 

KLHDC4 303.59 0.78 0.64 ZNF266 958.87 1 1 

KRIT1 733.81 0.95 0.93 ZNF407 764.85 1 1 

LACTB 456.72 0.74 0.65 ZNF439 687.04 1 1 

LAPTM5 1147.57 1 1 ZNF549 815.31 1 0.78 

LARP4 948.51 1 1 ZNF613 913.90 1 1 

LASS5 717.42 0.90 0.76 ZNF671 743.34 1 1 

LDLRAP1 598.40 0.93 0.86 ZNF75D 818.75 1 1 

LFNG 749.90 1 0.94 ZNF787 633.16 0.67 0.66 

LILRB2 1260.17 1 0.99 ZNF839 801.56 0.98 0.95 

LINS 545.28 0.96 0.90 ZRANB1 601.90 0.99 0.72 

LIPT1 614.28 1 0.85 ZYX 184.94 0.67 0.51 
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Table A.2 The number of rare, common, and private SNPs and an estimate of the 

polymorphism rate (Pi) in promoter region for 472 genes. 

 
GENE COMMON 

SNPS 

RARE 

SNPS 

PRIVATE 

SNPS 

PI PER 

BASE 

GENE COMMON 

SNPS 

RARE 

SNPS 

PRIVATE 

SNPS 

PI PER 

BASE 

ABCC5 2 26 11 0.00044 LMAN2L 6 13 7 0.00056 

ABHD10 9 19 11 0.00144 LMNA 2 14 7 0.00044 

ABHD8 5 16 10 0.00165 LONP2 5 23 13 0.00065 

ACAA2 2 17 7 0.00042 LRPPRC 5 45 16 0.00097 

ACADM 11 28 17 0.00214 LRRC25 0 11 5 0.00002 

ACER3 2 10 3 0.00080 LRRCC1 1 24 12 0.00026 

ACOX1 3 18 7 0.00034 LTN1 5 18 12 0.00066 

ACP2 4 11 6 0.00059 M6PR 3 19 9 0.00065 

ACTR10 1 20 12 0.00027 MAD2L1BP 0 15 6 0.00012 

ACTR6 1 25 16 0.00018 MAF1 3 24 11 0.00059 

ADCK3 2 13 6 0.00037 MAGEH1 1 9 5 0.00025 

ADK 2 10 3 0.00072 MAN2A2 4 24 10 0.00089 

ADPGK 1 22 7 0.00037 MAPK1IP1L 3 24 15 0.00081 

ADRM1 0 18 11 0.00011 MAU2 3 16 10 0.00039 

ADSS 1 14 7 0.00029 MBNL1 1 12 10 0.00016 

AHSA2 3 25 15 0.00074 MBNL2 1 11 5 0.00010 

AKR7A3 2 18 10 0.00036 MED16 7 27 21 0.00177 

ALDH16A1 6 26 14 0.00128 MED22 7 21 10 0.00097 

ALDH2 0 8 4 0.00021 MEFV 2 22 13 0.00057 

ALDH3B1 3 35 17 0.00081 MFN2 2 29 17 0.00083 

ALKBH1 4 17 4 0.00044 MGST3 13 26 13 0.00285 

ALPL 2 24 11 0.00031 MKI67IP 1 16 8 0.00023 

ALPP 7 25 11 0.00120 MOBKL2C 5 21 7 0.00061 

ALS2 3 14 9 0.00049 MPHOSPH10 4 18 8 0.00092 

ANXA11 3 12 6 0.00052 MPL 2 18 9 0.00052 

AOAH 8 18 11 0.00191 MR1 2 26 12 0.00043 

AP1G2 0 14 8 0.00003 MRPL17 6 35 15 0.00108 

AP1S1 5 20 12 0.00093 MRPL34 3 13 11 0.00076 

APOL3 5 16 7 0.00109 MRPL43 2 13 6 0.00044 

ARAF 3 13 10 0.00040 MRPL52 5 11 2 0.00089 

ARGLU1 3 18 13 0.00067 MRPL53 1 22 9 0.00029 

ARID5B 3 12 6 0.00047 MRPS21 4 22 12 0.00097 

ARL16 5 16 8 0.00084 MSH6 7 15 12 0.00134 

ARPP19 1 23 8 0.00034 MSI2 1 14 8 0.00048 

ASNSD1 4 24 11 0.00067 MSRA 6 20 14 0.00092 

ASXL2 3 15 8 0.00053 MTMR3 2 14 5 0.00023 

ATG4A 2 5 3 0.00050 MYC 4 20 8 0.00038 
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ATMIN 4 19 12 0.00050 NAA10 3 10 1 0.00050 

ATP13A1 1 25 15 0.00029 NDUFB10 8 24 10 0.00123 

ATP5J2 1 27 9 0.00036 NEDD8 2 17 10 0.00027 

ATP5S 2 24 10 0.00084 NEDD9 3 20 10 0.00041 

ATPIF1 7 19 9 0.00139 NFE2L1 4 14 7 0.00083 

AZI2 2 20 11 0.00054 NONO 0 8 4 0.00002 

B4GALT4 6 15 4 0.00077 NOP10 6 16 4 0.00104 

BEX2 6 9 3 0.00086 NSFL1C 6 19 10 0.00130 

BFAR 1 21 19 0.00007 NT5C3 7 14 6 0.00142 

BIRC3 1 22 11 0.00011 NUDT18 5 17 9 0.00179 

BRD8 3 16 9 0.00071 NUDT2 6 19 10 0.00091 

BRF2 7 19 9 0.00119 NUDT5 2 16 11 0.00025 

BRMS1 0 13 6 0.00003 NUFIP2 1 18 8 0.00016 

BSDC1 0 12 5 0.00004 NUP43 1 13 6 0.00030 

BTK 1 9 5 0.00012 OGFOD1 4 18 8 0.00085 

BTN3A2 9 18 9 0.00119 OGFRL1 5 11 6 0.00068 

C11ORF17 0 16 7 0.00066 ORMDL1 4 30 16 0.00084 

C12ORF32 6 17 7 0.00121 ORMDL3 1 19 7 0.00026 

C12ORF35 4 28 16 0.00078 OXR1 1 12 8 0.00009 

C14ORF102 2 18 10 0.00035 PACSIN2 4 17 4 0.00086 

C14ORF129 3 16 9 0.00045 PASK 4 30 11 0.00115 

C14ORF142 4 15 8 0.00080 PCMTD2 5 10 6 0.00097 

C14ORF179 0 27 18 0.00007 PCNA 3 14 11 0.00026 

C15ORF63 0 23 8 0.00007 PDCD2 5 20 7 0.00094 

C17ORF90 2 14 9 0.00027 PDCD4 4 15 10 0.00045 

C18ORF10 2 12 8 0.00051 PDK3 6 10 5 0.00119 

C18ORF21 3 23 13 0.00065 PEA15 1 10 4 0.00010 

C1ORF123 1 17 11 0.00023 PEX5 3 19 10 0.00080 

C1ORF38 5 17 7 0.00050 PFDN1 2 11 8 0.00044 

C1ORF85 1 15 7 0.00013 PFN1 1 25 14 0.00054 

C1ORF86 4 24 10 0.00091 PHF21A 1 11 2 0.00022 

C2ORF28 3 22 15 0.00046 PIGH 4 30 9 0.00136 

C2ORF44 4 11 5 0.00055 PIGN 3 19 10 0.00033 

C6ORF129 1 17 12 0.00018 PIGQ 1 14 10 0.00029 

C7ORF25 5 12 6 0.00086 PILRB 1 13 6 0.00053 

C8ORF40 1 20 11 0.00056 PIP4K2B 1 16 7 0.00034 

C9ORF114 4 11 4 0.00071 PLAUR 2 15 5 0.00050 

C9ORF78 7 14 8 0.00158 POLR1D 8 30 15 0.00093 

CALR 2 19 8 0.00036 POR 3 14 10 0.00050 

CAPG 3 20 10 0.00055 PPCS 1 18 10 0.00032 

CARD8 18 15 9 0.00351 PPIL3 0 13 6 0.00030 
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CARD9 1 29 20 0.00035 PRDX5 4 28 16 0.00060 

CAT 7 13 4 0.00143 PRKAR1A 1 20 10 0.00025 

CCDC23 3 11 5 0.00072 PRRC1 7 15 7 0.00153 

CCDC88B 6 18 11 0.00110 PTGDR 7 23 12 0.00104 

CD160 2 8 4 0.00020 PTGS2 2 20 9 0.00036 

CD96 9 19 7 0.00190 PWP1 7 16 7 0.00084 

CDA 13 15 6 0.00201 PYGB 5 20 7 0.00119 

CDAN1 4 12 5 0.00070 RAB10 1 19 15 0.00053 

CDK10 5 16 6 0.00121 RAB11FIP2 0 8 5 0.00039 

CEP63 3 23 12 0.00095 RAB24 2 10 6 0.00065 

CFDP1 4 35 20 0.00122 RAB8B 1 25 15 0.00032 

CHRNB1 0 12 10 0.00025 RANBP3 0 6 3 0.00007 

CIB1 5 11 6 0.00150 RBBP4 3 22 11 0.00034 

CIDECP 7 17 14 0.00105 RBMX2 0 14 3 0.00007 

CKS2 9 27 13 0.00104 RCE1 1 10 6 0.00020 

CLCN7 8 12 6 0.00247 RFWD3 8 26 14 0.00166 

CLN3 1 24 14 0.00033 RHOT1 2 20 12 0.00047 

COBRA1 4 18 6 0.00060 RNF130 7 14 7 0.00126 

COMMD4 2 27 14 0.00050 RNF135 0 27 10 0.00081 

COMMD7 1 17 8 0.00020 RNF181 1 16 10 0.00017 

COMMD9 7 15 11 0.00105 RNPS1 2 14 9 0.00088 

CPPED1 4 39 18 0.00096 RPA1 3 20 11 0.00106 

CPSF3L 1 10 5 0.00019 RPL10A 5 27 16 0.00074 

CRIPT 3 34 18 0.00069 RPL13 0 41 18 0.00049 

CRISPLD2 11 21 13 0.00146 RPL14 5 33 15 0.00088 

CRLS1 4 19 11 0.00111 RPL36AL 3 20 8 0.00086 

CTDSP1 4 27 17 0.00063 RPL4 3 26 16 0.00047 

CTNNAL1 2 9 6 0.00086 RPL9 6 27 19 0.00098 

CTSH 8 15 10 0.00161 RPP38 4 36 18 0.00091 

CTSO 13 21 10 0.00203 RPS6KB2 1 11 11 0.00060 

CUL4B 1 8 2 0.00025 RPUSD3 5 24 11 0.00044 

CWF19L1 6 23 15 0.00080 RPUSD4 5 25 14 0.00087 

CXCL16 3 14 6 0.00078 RRM2B 7 22 13 0.00102 

CXCL5 4 17 9 0.00057 RRP12 5 17 9 0.00094 

CXXC5 2 8 3 0.00032 RUFY1 2 27 12 0.00073 

DCTN5 3 23 16 0.00042 SAMM50 2 12 5 0.00039 

DCXR 4 14 5 0.00080 SCAND1 2 15 6 0.00022 

DDOST 2 21 10 0.00035 SDAD1 2 20 9 0.00048 

DDX41 1 17 10 0.00014 SENP2 1 15 8 0.00025 

DDX52 2 22 6 0.00072 SERPINB8 6 23 19 0.00085 

DEF6 2 23 11 0.00055 SERTAD1 3 25 16 0.00062 
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DGUOK 2 17 9 0.00042 SERTAD2 1 16 5 0.00062 

DHRS1 3 18 9 0.00074 SESN3 2 11 2 0.00058 

DHRS3 1 19 11 0.00027 SETD3 2 17 12 0.00055 

DHX29 3 29 15 0.00051 SF3A1 6 10 6 0.00093 

DHX38 4 17 9 0.00088 SF3A3 4 17 9 0.00069 

DIAPH2 4 15 7 0.00031 SF3B4 6 15 9 0.00042 

DKFZP686I15217 2 22 13 0.00037 SH2D1B 3 16 8 0.00078 

DLAT 3 27 12 0.00083 SHCBP1 1 21 9 0.00012 

DNAJC15 11 16 7 0.00225 SHROOM4 1 23 11 0.00034 

DNAJC8 5 16 11 0.00101 SIDT2 1 24 12 0.00021 

DOCK10 3 27 14 0.00100 SIRPB1 4 22 14 0.00083 

DOCK11 2 11 5 0.00015 SIRPG 10 21 12 0.00136 

DR1 5 15 4 0.00084 SLAMF7 0 19 12 0.00004 

DRAM1 9 14 5 0.00128 SLC27A3 3 11 7 0.00033 

DSTYK 3 14 10 0.00062 SLC35A3 3 17 9 0.00051 

DUS2L 2 15 8 0.00021 SLC39A8 1 17 10 0.00018 

E2F2 2 8 7 0.00033 SLC3A2 4 20 12 0.00028 

E2F6 3 22 9 0.00072 SLC40A1 6 13 8 0.00130 

EBP 2 10 5 0.00023 SMAP1 6 16 7 0.00109 

ECH1 4 23 11 0.00056 SMARCE1 1 20 15 0.00025 

ECHS1 1 5 1 0.00045 SNAP29 5 18 7 0.00111 

EEF1G 0 20 14 0.00003 SNORA70 1 10 3 0.00007 

EIF1AX 2 17 12 0.00025 SNRNP25 3 24 12 0.00078 

EIF2AK4 5 27 13 0.00095 SNX14 3 18 9 0.00063 

EIF2B2 2 16 11 0.00053 SNX29 2 11 6 0.00068 

EIF2S3 4 15 9 0.00063 SP110 5 17 10 0.00068 

EIF4A1 5 31 20 0.00083 SPNS1 2 25 11 0.00018 

EIF4G3 1 14 6 0.00040 SRI 4 24 13 0.00070 

EIF5 5 18 10 0.00096 SRP54 8 32 21 0.00163 

EMR3 0 24 13 0.00019 STARD3NL 7 19 9 0.00144 

EPB41 2 14 7 0.00042 STAT3 1 15 9 0.00028 

EPHX2 4 15 3 0.00060 STAT4 4 15 7 0.00063 

ERCC3 0 24 15 0.00007 STAT5A 0 11 6 0.00003 

ERP27 7 25 9 0.00178 STAT6 1 12 4 0.00015 

ETS2 5 11 4 0.00072 STOM 3 23 13 0.00076 

EVI2A 5 16 8 0.00125 STYXL1 5 21 13 0.00157 

EXOC4 0 20 11 0.00045 SUMF1 5 19 10 0.00069 

F13A1 5 29 16 0.00090 SURF6 1 15 10 0.00013 

FAM193B 1 14 7 0.00036 SUSD3 7 16 10 0.00160 

FAM49A 5 11 8 0.00075 SYS1 5 19 10 0.00096 

FAM76B 5 31 19 0.00136 TAF1C 12 31 19 0.00260 
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FAR2 7 14 4 0.00116 TAF1L 1 20 7 0.00022 

FBXO11 2 22 13 0.00038 TAGLN 6 35 14 0.00100 

FCER1G 3 25 20 0.00054 TAPBPL 1 15 4 0.00047 

FCRL3 5 16 7 0.00113 TATDN2 5 21 7 0.00060 

FDFT1 7 51 28 0.00142 TBC1D15 3 9 3 0.00047 

FEZ2 6 25 15 0.00205 TBC1D2B 10 12 6 0.00132 

FN3KRP 2 21 7 0.00044 TCEAL8 1 11 4 0.00024 

FRG1 4 22 10 0.00165 TDP2 4 23 10 0.00064 

FXYD5 4 21 15 0.00068 TFE3 4 9 4 0.00026 

GAB3 0 10 7 0.00001 TFG 4 29 9 0.00106 

GALC 8 19 13 0.00122 THAP7 8 26 11 0.00140 

GAPT 5 32 16 0.00106 TLR7 1 18 8 0.00015 

GATAD2A 2 21 14 0.00046 TMEM140 7 16 12 0.00154 

GATS 0 7 3 0.00019 TMEM149 6 17 11 0.00070 

GDPD3 2 20 11 0.00040 TMEM175 1 10 5 0.00017 

GMCL1 4 22 10 0.00098 TMEM199 1 24 10 0.00014 

GNA12 7 22 16 0.00138 TNFRSF4 4 27 18 0.00046 

GNPAT 5 30 13 0.00121 TNFSF8 5 22 15 0.00141 

GPAA1 0 12 4 0.00025 TOMM7 12 17 5 0.00265 

GPATCH4 0 22 7 0.00052 TPM1 1 14 4 0.00084 

GPX7 4 17 10 0.00106 TRAF3IP3 1 13 10 0.00042 

GRK6 1 11 6 0.00013 TRAF5 1 28 15 0.00025 

GSPT2 2 9 7 0.00033 TRAK1 2 29 18 0.00080 

GTF2F1 1 16 7 0.00048 TRAPPC4 10 30 9 0.00155 

H1F0 1 11 8 0.00023 TRAPPC5 4 17 9 0.00092 

HADH 1 14 7 0.00018 TRAPPC6B 4 19 9 0.00045 

HARS2 3 16 9 0.00061 TRIM4 2 16 15 0.00033 

HBP1 6 21 12 0.00124 TRPC4AP 1 15 7 0.00025 

HBQ1 0 16 6 0.00034 TSPAN33 2 19 12 0.00044 

HCLS1 1 9 5 0.00009 TSSC1 8 20 9 0.00148 

HDDC2 6 17 9 0.00149 TUBA1A 1 18 10 0.00029 

HDHD1 3 13 3 0.00072 TUBA1B 5 27 15 0.00107 

HEBP2 1 20 13 0.00077 TUFM 2 15 8 0.00048 

HIF1AN 6 19 12 0.00107 TXNIP 1 20 13 0.00019 

HIST1H2BD 5 40 21 0.00072 UBA7 0 10 6 0.00002 

HNRNPC 1 19 10 0.00027 UBE2L3 3 19 9 0.00082 

HNRNPH3 0 29 21 0.00026 UBL4A 3 8 3 0.00047 

HPS1 2 21 13 0.00034 UBN1 7 23 13 0.00198 

HSCB 2 18 9 0.00034 UBR2 3 17 13 0.00055 

HSD17B11 5 19 8 0.00096 UGDH 8 21 9 0.00144 

HSD17B12 4 26 12 0.00073 UQCC 2 17 5 0.00054 
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HSP90AB1 12 38 15 0.00199 USO1 4 15 8 0.00056 

HSPA4 3 19 12 0.00062 USP4 1 13 8 0.00023 

HSPA8 15 41 23 0.00139 USP48 4 21 7 0.00066 

HSPA9 0 31 13 0.00017 UTP18 2 27 13 0.00045 

ICOS 6 11 8 0.00068 UXT 0 7 4 0.00002 

ID3 6 42 28 0.00113 VAMP1 11 15 8 0.00201 

IKBIP 2 25 14 0.00043 VAMP8 3 19 7 0.00067 

IL18R1 4 12 9 0.00084 VASP 0 14 4 0.00005 

IL8 3 14 8 0.00081 VEZT 5 15 10 0.00073 

ILF3 4 30 12 0.00109 VIM 1 21 10 0.00050 

IPP 5 21 9 0.00120 VPS4B 0 23 14 0.00010 

IQCB1 2 18 10 0.00036 WAS 0 14 8 0.00008 

IQGAP1 2 17 9 0.00107 WDFY2 0 28 17 0.00007 

ITGAM 2 17 7 0.00056 WDR45 0 10 5 0.00005 

ITGAX 3 20 10 0.00050 XBP1 2 9 7 0.00049 

ITK 2 19 9 0.00028 XRCC6BP1 6 15 10 0.00161 

KATNA1 4 17 6 0.00087 YIF1A 1 12 8 0.00037 

KCTD10 5 13 9 0.00062 YIPF3 2 25 18 0.00033 

KIAA0319L 0 8 6 0.00017 ZAK 0 25 9 0.00099 

KIAA0368 0 17 9 0.00008 ZDHHC17 3 18 7 0.00049 

KIAA1191 4 15 10 0.00059 ZFP90 8 19 8 0.00159 

KIAA1598 0 18 11 0.00013 ZMIZ1 2 17 6 0.00075 

KIAA1737 1 11 3 0.00028 ZMIZ2 0 7 3 0.00031 

KLF4 0 26 16 0.00030 ZNF185 8 14 8 0.00159 

KLHDC4 3 27 13 0.00054 ZNF266 6 21 10 0.00116 

KRIT1 3 17 10 0.00064 ZNF407 5 16 9 0.00070 

LACTB 6 15 8 0.00143 ZNF439 3 32 16 0.00068 

LAPTM5 12 26 22 0.00252 ZNF549 2 25 13 0.00062 

LARP4 0 17 12 0.00003 ZNF613 1 18 8 0.00057 

LASS5 2 22 6 0.00055 ZNF671 1 15 8 0.00029 

LDLRAP1 1 11 5 0.00022 ZNF75D 0 8 6 0.00005 

LFNG 5 32 17 0.00088 ZNF787 0 14 8 0.00019 

LILRB2 5 27 10 0.00092 ZNF839 1 16 7 0.00010 

LINS 7 25 15 0.00128 ZRANB1 3 16 9 0.00058 

LIPT1 5 21 12 0.00117 ZYX 0 12 3 0.00004 
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