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SUMMARY 

The main topic of this research is the efficient operation of a modernized distribution 

grid from both the customer side and utility side. For the customer side, this dissertation 

discusses the planning and operation of a customer with multiple demand response  

programs, energy storage systems and distributed generators; for the utility side, this 

dissertation addresses the implementation and assessment of voltage/VAR control and 

conservation voltage reduction in a distribution grid with distributed generators.  

The objectives of this research are as follows: (1) to develop methods to assist 

customers to select appropriate demand response programs considering the integration of 

energy storage systems and DGs, and perform corresponding energy management 

including dispatches of loads, energy storage systems, and DGs; (2) to develop stochastic 

voltage/VAR control techniques for distribution grids with renewable DGs; (3) to 

develop optimization and validation methods for the planning of integration of renewable 

DGs to assist the implementation of voltage/VAR control; and (4) to develop techniques 

to assess load-reduction effects of voltage/VAR control and conservation voltage 

reduction.  

In this dissertation, a two-stage co-optimization method for the planning and energy 

management of a customer with demand response programs is proposed. The first level is 

to optimally select suitable demand response programs to join and integrate batteries, and 

the second level is to schedule the dispatches of loads, batteries and fossil-fired backup 

generators. The proposed method considers various demand response programs, demand 
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scenarios and customer types. It can provide guidance to a customer to make the most 

beneficial decisions in an electricity market with multiple demand response programs.  

For the implementation of voltage/VAR control, this dissertation proposes a 

stochastic rolling horizon optimization-based method to conduct optimal dispatches of 

voltage/VAR control devices such as on-load tap changers and capacitor banks. The 

uncertainties of renewable DG output are taken into account by the stochastic formulation 

and the generated scenarios. The exponential load models are applied to capture the load 

behaviors of various types of customers.  

A new method to simultaneously consider the integration of DGs and the 

implementation of voltage/VAR control is also developed. The proposed method includes 

both solution and validation stages. The planning problem is formulated as a bi-level 

stochastic program. The solution stage is based on sample average approximation (SAA), 

and the validation stage is based on multiple replication procedure (MRP) to test the 

robustness of the sample average approximation solutions of the stochastic program.  

This research applies big data-driven analytics and load modeling techniques to 

propose two novel methodologies to assess the load-reduction effects of conservation 

voltage reduction. The proposed methods can be used to assist utilities to select 

preferable feeders to implement conservation voltage reduction.  
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CHAPTER 1 INTRODUCTION  

1.1 Research Motivations and Problem Statement 

The U.S. Energy Policy Act of 2005 (EPACT) states that it is the policy of the 

United States to encourage time-based pricing and other forms of demand response and 

encourage States to coordinate, on a regional basis, State energy policies to provide 

reliable and affordable demand response services to the public. Demand response is 

defined as the changes in electric use by demand-side resources from their normal 

consumption patterns in response to changes in the price of electricity, or to incentive 

payments designed to induce lower electricity use at times of high wholesale market 

prices or when system reliability is jeopardized [1]. 

Demand response offers a variety of financial and operational benefits for electricity 

customers, load-serving entities and grid operators. Demand response benefits include 

avoided capacity costs, avoided transmission and distribution costs, avoided ancillary 

service costs, revenues from wholesale Demand response programs, market price 

suppression effects, avoided environmental costs, participant bill savings, financial 

incentives, improved reliability, etc. There are various demand response programs which 

can be classified into two main categories according to how load changes are brought 

about: price-based programs and incentive-based programs. Price-based demand response 

programs refer to changes in usage by customers in response to changes in the prices they 

pay. Incentive-based demand response programs are established by utilities, load-serving 

entities, or a regional grid operator to provide rebates to customers to reduce the load 

consumption in certain periods.  



2 
 

Utilities usually provide multiple options of demand response programs to customers, 

so as to reduce or shift the peak-time demand, and improve the system operation and 

reliability. For example, Pacific Gas and Electric Company (PG&E) offers time-of-use 

(TOU) program, peak-time rebate program, and critical peak pricing program. A 

customer can select multiple programs to participate in. To facilitate the implementation 

of demand response, energy storage systems can be installed at the customer level. 

Energy storage can store energy when there is less demand and release the stored energy 

back to the system during peak periods, which make it an ideal candidate to improve the 

demand response performance. A customer may also have DGs such as fossil-fired 

backup generators. The operation of these DGs can be optimized to coordinate with the 

demand response schedules and energy storage systems.  

The challenge is that a customer can opt-in/out from multiple demand response 

programs. The variety of customer demand scenarios and the integration of customer-

owned DGs and energy storage bring further challenges. The problem is to design a 

method to assist various types of customers to make the most beneficial plan to 

participate in demand response programs, and to integrate customer-owned energy 

storage and DGs. Meanwhile, the developed method should help the customers to 

schedule DG generation, charging/discharging of batteries, and perform load 

management accordingly. Multiple objectives should be considered in the decision-

making process, which include costs, reliability, and discomfort. The costs include 

electricity purchases as well as investments and operation of energy storage and DGs. 

The reliability is defined as the curtailment index of loads. The discomfort is defined as 

the index of load shifts. The methods developed in this dissertation require computational 
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abilities which may not be available to the average customer. A possible solution is to 

integrate the proposed method with an online computation platform so that a customer 

can upload the data to a server and take advantage of the computational ability of the 

server to receive an optimal result.  

 

Figure 1.1. Illustration of voltage/VAR control with DGs. 

 

Demand response can be implemented on the customer side to increase the 

efficiency and reliability of a power system. On the utility side, voltage/VAR control 

(VVC) can be used to improve the system operation. Voltage/VAR control refers to the 

process of managing voltage levels and reactive power throughout the distribution 

systems. voltage/VAR control is achieved by controlling the tap positions of on-load tap 

changers and VAR compensation devices such as capacitor banks. Fig. 1.1 shows an 

example of a centralized voltage/VAR control for a distribution grid with renewable DGs. 

The increasing penetration of DGs has great impacts on conventional voltage/VAR 
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control because of the uncertain outputs of renewable energy sources-based DGs. The 

stochasticity of renewable DG outputs should be taken into account when making the 

voltage/VAR control dispatches.  

On the other hand, the load behaviors also impact the voltage/VAR control. However, 

most existing literature ignores the load-to-voltage relationship and uses constant-power 

models to represent load behaviors, which may not be accurate in practice. Load models 

have significant impacts on power system operation and analysis. The studies of power 

system stability, operation and planning strongly depend on the accuracy of load models 

and their parameters. The conventional constant-power load models which are normally 

used in previous studies assume that the load is insensitive to voltage, which may not be 

realistic and lead to inaccurate voltage/VAR control dispatches. A variety of load-to-

voltage behaviors exist for different types of customers. This is especially true in 

distribution systems since the load-to-voltage sensitivities may vary from one node to 

another due to the complicated load compositions. The load-to-voltage sensitivities 

greatly impact the effectiveness of voltage/VAR control. The voltage control of power 

systems is a multi-objective optimization problem that requires more effective and robust 

control strategies. A novel voltage/VAR control technique is needed to take into account 

both the uncertain DG outputs and load behaviors. In this dissertation, the exponential 

load model is selected to represent the load-to-voltage relationship; this load model is 

selected because it is a frequently used voltage dependent model in existing papers [2, 3]. 

However, a rigorous way to validate the exponential load model is still outstanding. A 

possible way to validate the load model is to run a few trials to change the tap positions 
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of tap changers to check if the exponential load model can track the load-to-voltage 

behaviors. 

One important function of voltage/VAR control is conservation voltage reduction. 

The main purpose of conservation voltage reduction is to reduce the voltage level of 

distribution grids so as to reduce peak demand and energy consumption. Thus, 

conservation voltage reduction has a similar objective as demand response programs. But 

unlike demand response programs, conservation voltage reduction is imposed by utilities. 

conservation voltage reduction works on the principle that many loads are voltage 

dependent and consume less power when the supplied voltage is reduced. As a popular 

and economical energy-saving measure, conservation voltage reduction has attracted 

many utilities for implementation in their distribution systems. One of the critical 

problems about conservation voltage reduction is how to assess its energy-saving effect, 

which is useful for utilities in selecting candidate feeders to implement voltage reduction 

and conduct cost/benefit analysis. conservation voltage reduction effects are evaluated by 

a conservation voltage reduction factor (CVRf), which is defined as the percentage of 

load consumption reduction resulting from one percent reduction in voltage. Calculating 

CVR factors is challenging for many reasons: there is no benchmark for comparison, i.e., 

the load consumption without voltage reduction during the conservation voltage 

reduction period cannot be measured; conservation voltage reduction factors are small, 

which can be biased by the measurement noises and estimation errors; and conservation 

voltage reduction effects are stochastic since the load behaviors are uncertain. 

Methodologies are needed to assess conservation voltage reduction effects.  
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Besides the implementation of demand response and stochastic voltage/VAR control, 

another important feature of a modernized distribution grid is the integration of 

distributed generators (DGs), which is driven by the energy deficit, load growth, 

environmental consciousness and constraints on building new transmission and 

distribution lines. DG has impacts on voltage profile, power quality, energy efficiency, 

and reliability of distribution systems. The location and size of DG units should be 

carefully selected in order to take advantage of DGs and limit their negative impacts on 

system operations. Because of the uncertain outputs of renewable DGs, the placement of 

such DGs is typically a stochastic mixed-integer multi-objective optimization problem. In 

this dissertation, a solution and validation method is designed for the planning of DG 

integration with the objective to assist the implementation of voltage/VAR control.  

1.2 Research Objectives 

The dissertation objectives are listed as follows: 

(1) Develop a two-stage framework for the implementation of demand response. The 

designed framework is a co-optimization method of planning and operation of a customer 

with demand response programs. The main objective is to maximize the benefits to the 

customer. The first stage is to assist customers in optimally selecting demand response 

programs and integrating energy storage systems. The second stage is to perform energy 

management including load dispatch, generation scheduling of controllable DGs, and 

charging/discharging of energy storage systems. A variety of demand response programs 

and customer demand scenarios are considered in the proposed method. The impacts of 

energy storage systems on the planning and operation of demand response programs are 

analyzed. Table 1.1 summarizes some representative papers on demand response in 
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recent years. This table evaluates whether a paper has considered the energy management 

with demand response, the planning problem (i.e., to select most beneficial programs to 

participate), the existence of DGs and batteries, and multiple demand response programs. 

No paper listed in the table has studied the co-optimization of energy management and 

planning with demand response. The proposed method in this dissertation can assist 

customers to make the most beneficial decision to participate in demand response 

programs, install batteries, and perform the corresponding energy management. Thus, the 

co-optimization of planning and energy management used in the proposed method and is 

a novel contribution of this work.  

Table 1.1 Comparison of existing papers and the proposed method on demand 
response. 

Papers 
Energy 

management 
Planning DG/Battery 

Multiple DR 
programs 

Aalami (2010) 
[4] 

 X  X 

Pourmousavi 
(2012) [5] 

X  X  

Dietrich (2012) 
[6] 

X  X  

Peng (2012) [7] X  X  
Nunna (2013) [8] X  X  
Vlot (2013) [9] X  X  
Parvania (2013) 

[10] 
X  X  

Chen (2014) [11] X  X  
Meng (2014) 

[12] 
X  X  

Chapter 6 in 
dissertation 

X X X X 

 

(2) Develop a stochastic rolling horizon optimization-based method for the optimal 

dispatch of on-load tap changer and capacitor banks considering the load behaviors and 

the uncertainty of DG outputs. A practical distribution system may consist of various 
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types of customers such as residential, commercial and industrial loads. The constant-

power load model which is frequently used in existing voltage/VAR control techniques 

should be replaced by models that can represent load-to-voltage relationships. 

Specifically, an exponential load model is introduced in this dissertation. Each type of 

customer is assigned with assumed exponents in the exponential load models. The 

uncertainties of prediction errors of DG outputs and load consumption are taken into 

account using a scenario-based approach. The probabilistic prediction errors result from 

the integration of renewable DGs, i.e., wind turbines and photovoltaic systems in this 

dissertation. Monte-Carlo simulations are used to generate scenarios. The simultaneous 

backward scenario reduction method is applied to increase the calculation speed while 

maintaining the accuracy of the solution. The stochastic rolling horizon optimization-

based voltage/VAR control problem is formulated as a mixed integer nonlinear program 

with reduced scenarios and then solved by the general algebraic modeling system. Table 

1.2 summarizes some representative journal papers on voltage/VAR control in recent 

years. Most papers have considered the control of on-load tap changers and capacitors. 

There are a few papers have taken into account the stochasticity of load consumption and 

renewable generation. All of the listed papers use constant-power models instead of 

voltage-dependent models to represent load behaviors. However, the aggregated load 

behavior of a feeder is not pure constant-power. At the end of this table is the 

voltage/VAR control method proposed in this dissertation. The novel contribution of the 

proposed method is that it simultaneously considers the load-to-voltage relationship and 

the stochasticity of load consumption and renewable generation.  
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Table 1.2. Comparison of existing papers and proposed method on voltage/VAR 
control. 

Papers OLTC* Capacitors
Stochastic 
DG output

Stochastic 
load 

Voltage-
dependent 
load model

Viawan 
(2007) [13] 

X X    

Hong (2009) 
[14] 

X X X   

Souza (2010) 
[15] 

X X    

Niknam 
(2012) [16] 

X X X X  

Farag (2012) 
[17] 

X X X   

Borghetti 
(2013) [18] 

X X    

Medina 
(2013) [19] 

 X X   

Agalgaonkar 
(2014) [20] 

X X    

Capitanesccu 
(2014) [21] 

X X    

Chapter 4 in 
dissertation 

X X X X X 

*OLTC=on-load tap changer 

 

(3) Develop novel methods to assess the load-reduction effect of conservation 

voltage reduction. Two methods are proposed in this dissertation.  

The first one is based on a big data-driven technique. A multistage support 

vector regression-based method is designed and used to estimate the load 

consumption at normal voltage levels during the conservation voltage reduction 

period. As a powerful machine learning method, support vector regression (SVR) 

is considered as one of the best non-parametric regression techniques, since it 

can approximate any nonlinear function. In order to increase the accuracy of the 

support vector regression model, only the set of profiles that are close to the load 
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profile under prediction is used to train the support vector regression model. The 

selection process is performed by calculating a Euclidian distance-based index in 

the first stage. Support vector regression is used for load estimation in the 

second stage. The model accuracy can be improved by performing the pre-

selection of the training data. To further lower down estimation errors, the 

estimated profiles are re-selected in the third stage.  

The second method is to model loads as functions of voltage and calculate 

conservation voltage reduction factors estimating the load-to-voltage 

sensitivities. A conservation voltage reduction factor is subject to different types 

of uncertainties, depending on load mix, feeder configurations, weather 

conditions, human behaviors, etc. Therefore, this dissertation proposes a 

probabilistic analysis framework based on the Kolmogorov-Smirnov (K-S) 

goodness-of-fit test to identify the most suitable probability distribution 

representing conservation voltage reduction factors of different feeders.  

(4) Develop a solution and validation method to simultaneously consider stochastic 

placement of renewable DGs and voltage/VAR control for energy saving and peak 

demand reduction. This dissertation proposes a novel stochastic DG placement model to 

minimize load consumptions of a distribution grid and maintain the voltage deviations 

along the feeder within a predefined range. The proposed method assumes a centralized 

decision maker such as the distribution system operator who can make the DG placement 

plan for the voltage/VAR control implementation since voltage/VAR control is a measure 

initiated by the utilities. In order to effectively deal with the probabilistic nature of DG 

outputs and load consumption, the DG placement is formulated as a two-stage stochastic 
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programming problem. The first stage includes deterministic variables. The second stage 

includes variables adjusted according to the uncertainties. Sample Average 

Approximation is used to solve the two-stage stochastic formulation. Sample average 

approximation can converge to an optimal solution if the number of samples is large 

enough. Since the sample size cannot be infinite in practice, a new method is proposed by 

combining multiple replications procedure with sample average approximation to 

measure the quality of the solution and find the confidence interval of the gap between 

the sample average approximation solution and the optimal solution. 

1.3 Dissertation Outline 

The outline of the remaining parts of this dissertation is as follows. 

In Chapter 2, background information is provided on the origin of the topic along 

with presently available technologies that are being used. In addition, a thorough 

literature survey is presented that summarizes related research work efforts. In particular, 

this chapter starts with an introduction to existing demand response programs and 

corresponding energy management techniques. The presently utilized technologies for 

voltage/VAR control along with its biases and limitations are presented. The chapter also 

gives a summary of the current technologies and limitations of the implementation and 

assessment of conservation voltage reduction. A literature review on the state-of-the-art 

algorithms utilized for DG placement problem follows. Finally, the load forecasting and 

load model identification technologies are summarized. 

Chapter 3 presents the preliminary research on stochastic optimization in power 

systems. Specifically, it discusses the sample average approximation, scenario generation 
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and reduction for renewable DG outputs and load consumptions, and multiple replication 

procedure for solution validation. 

Chapter 4 presents the detailed mathematical formulations for the rolling horizon 

optimization-based voltage/VAR control and DG placement to assist voltage/VAR 

control. The uncertainties of DG outputs and load consumptions are taken into account by 

modeling the problems as bi-level stochastic programs. The load-to-voltage sensitivities 

and various customer types are considered. This chapter also presents the combined 

sample average approximation-multiple replication procedure solution and validation 

method. Simulation results on an IEEE distribution test system are given at the end. 

Chapter 5 presents in detail the big data-driven and load modeling-driven techniques 

to assess conservation voltage reduction effects. More specifically, a multistage support 

vector regression-based method and a load modeling and identification method are 

presented in details. To deal with the stochasticity of conservation voltage reduction 

effects, a Kolmogorov-Smirnov test-based probabilistic analysis framework is also given. 

Finally, demonstration results with practical utility test data are presented. 

Chapter 6 describes a two-stage co-optimization framework for the planning and 

energy management of a customer with demand response programs. The first stage is to 

assist a customer to select multiple demand response programs to join and make plans to 

integrate energy storage systems to coordinate with demand response programs. The 

second stage is to conduct energy management which includes dispatches of loads, DGs 

and energy storage systems according to the decisions in the first stage. Case studies with 

various practical demand response programs, customer types, and demand scenarios are 

presented in this chapter. 
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Finally, Chapter 7 summarizes the research work and outlines the results and 

contributions of this dissertation. 

 

  



14 
 

CHAPTER 2 LITERATURE REVIEW 

2.1 Overview 

This chapter provides the background information of existing technologies related to 

the proposed research along with a literature review of the research efforts on these topics. 

For the implementation of demand response, section 2.2 presents a review on various 

demand response programs and the existing techniques on optimal operation of power 

systems with demand response programs. For the research on voltage/VAR control, 

section 2.3 summarizes the currently utilized methods in conducting voltage/VAR control 

and assessing the corresponding effects. Section 2.4 introduces the optimal planning of 

distributed generation in distribution grids to assist the implementation of voltage/VAR 

control. In this dissertation, load forecasting and modeling techniques are used to assess 

the performance of voltage/VAR control. Section 2.5 provides a literature review on the 

state-of-the-art algorithms utilized for load forecasting. Section 2.6 summarizes the load 

modeling and identification techniques.  

2.2 Review of Demand Response Programs 

Demand response is a tariff or program established to motivate changes in electricity 

consumption by end-use customers in response to changes in the electricity price over 

time. Further, it can be defined as programs to give incentive payments designed to 

induce lower electricity use at times of high market prices or when grid reliability is 

jeopardized [1]. In the past several years, significant progress has been achieved for both 

wholesale and retail demand response thanks to the support by the U.S. Energy Policy 

Act and the American Recovery and Reinvestment Act. Fig. 2.1 shows the reported 
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potential peak demand reduction from 2004 to 2012 [1-2]. demand response programs 

were estimated to be about 72,000 MW or nearly 9.2 percent of U.S. peak demand in 

2012 [22]. This shows the tremendous increase of demand response programs since the 

demand response capability was estimated to be about 20,500MW, or 3 percent of U.S. 

peak demand by the Department of Energy (DOE) in 2004 [1]. 

 

 

Figure 2.1. Reported potential peak reduction from 2004 to 2012. 

 

Demand response offers a variety of financial and operational benefits which can be 

categorized into four parts: participant, system, reliability, and market performance [23]. 

Customers participating in demand response programs can expect savings in electricity 

bills. Demand response programs also have system-wide benefits such as an overall 

electricity price reduction, a more efficient utilization of existing infrastructures, and an 

avoided or deferred generation/transmission expansion costs. From the perspective of 

reliability, the operator will have more options and resources to maintain system 
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reliability, thus reducing forced outages and interruptions. The electricity market 

performance has been improved by demand response programs since the participants 

have more choices in the market and can affect the market. The price volatility in the spot 

market has also been reduced. Fig. 2.2 shows a cost/benefit analysis for the demand 

response programs in Consolidated Edison Company [24]. The company offers its 

customers direct load control programs, commercial system relief programs (CSRP) and 

distribution load relief programs (DLRP). It can be seen in Fig. 2 that all the demand 

response programs implemented in ConEdison are beneficial. 

 

 

Figure 2.2. Summary of cost-effectiveness results [4]. 

 

There are many types of demand response programs. As shown in Fig. 2.3, demand 

response programs can be classified into two categories: incentive-based programs and 

price-based programs [1]. The incentive-based programs offer participating customers 

rebates when load reduction is requested by the programs sponsor, which can be triggered 

by a grid reliability problem or high electricity prices. Typical incentive-based programs 
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include: direct load control, interruptible/curtailable programs, demand bidding, 

emergency demand response, capacity market, ancillary service market and peak time 

rebate. The price-based programs give customers time-varying rates which reflect the 

value and cost of electricity in different time periods so that customers tend to consume 

less electricity during peak-price periods. Typical price-based programs include real-time 

pricing, critical-peak pricing and time of use tariffs. 

 

 

Figure 2.3. Categories of demand response programs. 

 

Direct load control refers to the load management scheme that allows utilities to shed 

the end-use customer loads unilaterally in order to curtail the system peak load [25]. 

Loads such as air-conditioners and water heaters are good candidates for direct load 
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control. The customers sign contracts with utilities to specify the maximum number of 

events per year and the maximum duration of the given event (usually 4 hours). The 

utilities usually issue little advance notification prior to initiating an event. If the 

customer overrides an event, there could be penalties. Direct load control is one of the 

most economical and straightforward ways to conduct demand response. However, there 

are some drawbacks with the direct load control: the consumers suffer from the 

discomfort and inconvenience due to the load shedding; the reconnection of disconnected 

load may cause another load peak; the effects of pre-scheduling direct load control are 

affected by load uncertainties. Reference [26] proposed a profit-based load direct load 

control technique with the objective to maximize the profit of utilities. The formulation 

was solved by a linear programming algorithm. Reference [25] presented an adaptive 

control strategy for integrating direct load control with interruptible load management to 

provide instantaneous reserves for ancillary services in deregulated power systems.  

In interruptible/curtailable programs, customers receive a discount or incentive in 

exchange for agreeing to reduce load during system contingencies. 

Interruptible/curtailable programs are typically offered by utilities. Customers on 

interruptible/curtailable programs agree to either curtail a specific block of electric load 

or curtail their consumption to a pre-specified level. The participating customers must 

curtail within 30 to 60 minutes when being notified by the utility. The number of hours 

that a utility can request an interruption is usually no more than 200 hours per year. It is 

clear that customers with continuous processes are not suitable for 

interruptible/curtailable programs. Reference [27] introduced the concepts of price 
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elasticity of demand and customer benefit function and presented the economic model of 

interruptible/curtailable programs to maximize the benefits of customers. 

Capacity market programs are another traditional and common type of demand 

response programs which are driven by both reliability and economic needs. Customers 

who join this program are responsible to provide pre-specified load reductions when 

system contingencies arise, and are subject to penalties if they do not curtail when 

directed [27]. Capacity market programs are different from interruptible/curtailable 

programs since capacity market programs are usually offered by wholesale market 

providers such as independent system operators (ISOs) and program providers need to 

call the participated customers when needed. There are some requirements for customers 

to qualify for capacity market programs. The requirements of New York ISO are: 

minimum load reductions of 100 kW, minimum four hour reduction, two hour 

notification, and to be subject to one test or audit per capability period. If no events are 

called, the participants will still receive payments. Reference [27] proposed an economic 

model based on demand-price elasticity and incentives/penalties to maximize the benefits 

of participants. 

In demand bidding programs, consumers bid on specific load reduction in the 

electricity wholesale market. A bid is accepted if it is less than the market price. The 

customer must curtail corresponding to the load specified in the bid once the bid is 

accepted. Otherwise, there will be penalties [23]. 

Emergency demand response programs provide incentive payments to customers for 

load reduction achieved during an emergency event. In certain cases, customers can 

receive up to $65,000 per MW per year to be on standby to reduce a portion of their 
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energy consumption when the supply of the electricity on the grid is threatened. The 

participants are paid even if no event has been called. 

Ancillary service is typically associated with establishing customer load 

commitments in advance. Participants whose market bids are accepted are paid the 

market price for committing to be standby to provide load reductions, usually with less 

than one-hour notice. Ancillary service is usually provided by ISOs and mainly offered to 

large commercial and industrial customers. Reference [28] analyzed the characteristics of 

simultaneous auctions of integrated systems and the pricing mechanisms for 

simultaneously procured energy and ancillary service using an AC-OPF formulation. 

Peak time rebate rewards customers for using less electricity during peak hours. 

Peak-time rebate is different from peak-time pricing programs which change prices more 

for electricity use during peak times. Utilities usually prefer to reward their customers for 

using less electricity rather than punishing them for using more power during peak hours. 

On the other hand, customers also prefer a rate structure with no penalties. Therefore, 

peak-time rebate becomes a popular demand response program. 

Time of use is the most common example of price-based demand response [23]. In 

time-of-use programs, the electricity prices are determined based on the production costs 

in the same period [29]. A typical time-of-use program may have three time blocks: low-

load period with cheap rates, off-peak period with moderate rates and peak period with 

high rates. The prices are usually determined months ahead of time to reflect electricity 

prices under anticipated and average market conditions. By running time-of-use programs, 

it is expected that consumers adjust their electricity usage by prices so that the peak 

demand is reduced and loads is transferred to off-peak or low-load periods. In reference 
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[29], demand response was modeled considering time-of-use programs by using the 

single and multi period load models as well as the concepts of self and cross price 

elasticity. It was shown that demand profiles could be changed due to the running of the 

time-of-use program. 

In critical peak pricing, the basic rate structure resembles time-of-use, but there is a 

short-term rate increase during critical grid conditions. The critical period occurs during a 

certain time on a peak day. For example, in the critical time pricing program of Pacific 

Gas and Electric Company (PG&E), prices will increase either from 2 p.m. to 6 p.m. or 

from 12 noon to 6 p.m. in event days. Participants in critical peak pricing programs are 

expected to shed or shift load in response to the dramatically higher electricity prices in 

the critical period. Critical time prices are used for a limited number of days or hours per 

year [23]. Reference [30] analyzed the results of critical peak pricing experiments in 483 

households. A statistically significant response was found. It was also found that 

customer response to the $0.68/kWh critical-peak price was not higher than response to 

the $0.50/kWh critical-peak price. 

Real-time pricing are programs in which customers are charged based on hourly 

fluctuating prices reflecting the real cost of electricity in the wholesale market [23]. 

Unlike the time-of-use programs whose electricity prices are determined months ahead of 

time, participants of real-time pricing programs are typically notified of prices on a day-

ahead or hour-ahead (sometimes near- or real-time) basis. Reference [31] proposed an 

optimization model to perform hourly load dispatch given the hourly electricity prices. 

The objective of the model was to maximize the utility of the consumer. A robust 

optimization technique is used to model the price uncertainty. 
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After a customer joins certain demand response programs, the optimal energy 

management is one of the most important issues faced by the customer. Many studies 

have been performed on the optimal operation with demand response programs in the 

existing literature. The study in [11] proposes a direct load control scheme for large-scale 

residential demand response based on a consensus algorithm. The objective is to achieve 

the optimal aggregated demand consumptions in a decentralized way. The study in [32] 

proposes an agent-based energy management system with demand response and 

distributed energy storage systems to minimize the supply-demand gap in multiple 

microgrids. A virtual market with demand side management, DGs and energy storage is 

designed to allow neighboring microgrids to trade with each other. The study in [12] 

analyzes scenarios of a household with photovoltaic generators, batteries, and demand 

side management in the electricity market of Texas. The battery capacity and total 

revenue of the household are optimized with real-time market prices. The study in [10] 

proposed a framework to maximize the payoff of a demand response aggregator in a 

wholesale market based on a mixed-integer linear program. Energy storage systems, DGs, 

and demand response programs are used to reduce load consumptions. The study in [33] 

discussed the demand side management for large-scale data centers based on the 

stochastic optimization approach. By optimally shifting the cloud service tasks among 

data centers, the financial benefits can be improved. The study in [34] proposed new 

operation strategies of energy storage systems to facilitate demand response. The 

proposed methods allow energy storage devices be controlled jointly by end customers 

and network operators. The study in [8] proposed an energy management system to 

facilitate power trading among multiple microgrids by using the energy availability from 
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demand response, DGs and distributed energy storage systems. The study in [5] presented 

a central demand response algorithm to regulate frequency in a microgrid. The study in [9] 

introduced three models to characterize the behaviors and load shifting capabilities of 

some domestic appliances, so as to facilitate the implementation of demand response 

programs. The study in [6] proposed a demand shifting and peak shaving measures to 

improve the generation-load balance for a power system with a high wind integration.  

The above mentioned literature assumes that a consumer is already participating in a 

certain demand response program. However, many utilities offer various types of demand 

response programs for customers to participate. For example, PG&E provides time-of-use, 

peak-time rebate and critical time pricing programs. The existing literature only considers 

one demand response program and cannot assist customers to select the 

program/programs to participate. Energy storage systems play an important role in 

demand side management. The joint optimization of energy storage integration and 

demand response participations has not been covered in the above literature. Moreover, if 

a customer joins multiple demand response programs, the corresponding energy 

management problem becomes more challenging. 

2.3 Review of Implementation and Assessment of Voltage/VAR Control 

2.3.1 Implementation of Voltage/VAR Control 

Voltage/VAR control is a secondary control scheme to the daily operation of 

distribution systems. voltage/VAR control is achieved by on-load tap changers and VAR 

compensation devices such as capacitors. The main purpose of voltage/VAR control is to 

coordinate the schedules of tap positions of on-load tap changers and statuses of switched 

capacitors to improve the power quality and operations of distribution systems. The 
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increasing penetration of distributed generators has great impacts on conventional 

voltage/VAR control because of the uncertain outputs of renewable energy sources-based 

DGs [16, 35]. 

Many papers in the literature have investigated the voltage/VAR control problems in 

distribution networks. Reference [36] treated the regulation of on-load tap changers and 

capacitors as two decoupled problems and provided an optimal real-time control scheme. 

Reference [15] studied the coordination of voltage regulators and capacitors. A multi-

objective genetic algorithm was used to deal with the integrated voltage/VAR control so 

as to minimize power losses and voltage deviations. In reference [37], the on-load tap 

changer and capacitors were dispatched hourly based on day-ahead load forecast. 

Reference [38] proposed a two-stage coordinated control between on-load tap changers 

and capacitor banks. The dispatch schedules of capacitor banks were generated using a 

heuristic algorithm based on the forecasted load, and the on-load tap changer was 

controlled in real time. Reference [39] presented an artificial neural network (ANN)-

based optimal coordination control scheme for on-load tap changer and STATCOM in a 

distribution system. However, the existence of DGs was not considered in these papers. 

As the penetration level of DGs has grown, their impacts on voltage and reactive 

power in distribution systems have attracted more and more attention [40]. The outputs of 

RES-based DGs can be highly stochastic. Meanwhile, the value of resistance can be close 

to that of reactance in a distribution circuit, which highlights the impacts of real power 

outputs of DGs on voltage profiles [16]. Reference [41] investigated the coordination of 

the on-load tap changer and capacitors to minimize power losses in a distribution system 

with DGs. The DGs were assumed to be synchronous machine-based ones whose outputs 
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were controllable. Reference [13] proposed a combined centralized and local control 

scheme for voltage/VAR control to minimize losses in the presence of induction 

machine-based DGs. Loads were assumed to be constant-power loads. It was also 

assumed that the wind power can be forecasted without errors. Reference [42] proposed 

an optimal control of distribution voltages with the coordination of voltage regulators, 

capacitors, shunt reactors and static VAR compensators in a distribution system with 

photovoltaic (PV) generation. However, the output of photovoltaic generators was 

assumed to be known. Reference [20] proposed an optimal reactive power coordination 

strategy to minimize the number of tap operations of line voltage regulators in 

distribution systems with high penetration of photovoltaic generators. Reference [43] 

proposed a hybrid voltage/VAR control for a distribution system with photovoltaic 

generators. There are only a few papers considering the stochastic nature of renewable 

energy source-based DGs in solving the voltage/VAR control problems. Reference [16] 

applied a teaching-learning algorithm to schedule voltage/VAR control dispatch, the 

stochastic outputs of DGs were converted to a series of equivalent deterministic scenarios. 

The study in [14] used the genetic algorithm for optimal VAR control considering wind 

farms to minimize system losses. 

All of the above literature ignores the load-to-voltage relationship and use constant-

power models to represent load behaviors, which may not be accurate in practice [2]. 

Load models have significant impacts on power system operation and analysis [44, 45]. 

The studies of power system stability, operation and planning strongly depend on the 

accuracy of load models and their parameters. The conventional constant-power load 

models which are normally used in previous studies assume that the load is insensitive to 
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voltage, which may not be realistic and lead to inaccurate voltage/VAR control 

dispatches. This is especially true in distribution systems since the load-to-voltage 

sensitivities may vary from one node to another due to the complicated load compositions. 

The load-to-voltage sensitivities greatly impact the effectiveness of voltage/VAR control. 

Meanwhile, the ever-increasing penetration of DGs has introduced additional constraints 

and uncertainties into the voltage control of power systems. 

In recent years, there is a trend to use inverters to perform voltage/VAR control. 

Reference [46] proposed a decentralized control technique to perform voltage/VAR 

control based on inverters. Reference [47] analyzed the impacts of fluctuations of solar 

generation on voltage stability, and found that reactive power support provided by 

inverters can improve the system stability. The study in [48] developed an algorithm to 

apply inverters to flatten voltage profile and minimize power losses. This dissertation 

focuses on traditional voltage/VAR control based on load tap changers and capacitors. 

The inverter-based voltage/VAR control is not taken into account since the technique is 

still not widely accepted by utilities in the United States [49].  

2.3.2 Concept of conservation voltage reduction 

Besides providing high-quality power supply to the customer and increase system 

reliability, voltage/VAR control can also make the system run more efficiently by 

applying conservation voltage reduction. Conservation voltage reduction is an established 

idea and one of the most cost-effective ways to save energy. By lowering voltages on the 

distribution system in a controlled manner, conservation voltage reduction can reduce 

peak demand, losses and achieve more energy savings while keeping the lowest customer 

utilization voltage consistent with levels determined by regulatory agencies and 
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standards-setting organizations [50]. Considerable conservation voltage reduction tests 

were performed in the 1980s and 1990s, and achieved significant peak demand or energy 

reduction. More efforts have been made in the industry and academia in conservation 

voltage reduction recently, which is particularly influenced by the increasingly stringent 

requirements for energy saving and environmental protection as well as accommodating 

emerging smart monitoring and control technologies in distribution systems. 

American National Standards Institute (ANSI) Standard C84.1 [51] sets the range for 

voltages at the distribution transformer secondary terminals at 120 Volts ±5% or between 

114 Volts and 126 Volts. Conservation voltage reduction works on the principle that the 

acceptable voltage band can be easily and inexpensively operated in the lower half (114-

120 volts), without causing any harm to consumer appliances [52]. Conservation voltage 

reduction effects can be evaluated by the Conservation Voltage Regulation factor, which 

is defined as the percentage of load consumption change divided by the percentage of 

voltage reduction.  

There are two ways to perform conservation voltage reduction: short-term demand 

reduction and long-term energy reduction, as shown in Fig. 2.4. The left plot of Fig. 2.4 

shows the short-term conservation voltage reduction, voltage reduction is applied during 

peak hours to reduce peak demand. In long-term energy reduction, as shown in the right 

plot of Fig. 2.4, the voltage is reduced permanently to save energy. 
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Figure 2.4. Demonstration of conservation voltage reduction. 

The earliest reported conservation voltage reduction test was performed by American 

Electric Power System (AEP) in 1973 [53]. After that, many utilities such as Southern 

California Edison (SCE) [54], Northeast Utilities (NU) [55], Bonneville Power 

Administration (BPA) [56], BC Hydro [57], Northwest Energy Efficiency Alliance 

(NEEA) [58], Hydro Quebec (HQ) [59] and Dominion Virginia Power [60] conducted 

their CVR tests and obtained significant outcomes of energy savings associated with 

voltage reduction, usually ranging from 0.3% to 1% load reduction per 1% voltage 

reduction. Recent studies show that deployment of conservation voltage reduction on all 

distribution feeders of the United States could provide a 3.04% reduction in the annual 

national energy consumption [61]. Conservation voltage reduction was also widely tested 

in other countries, such as Australia [62] and Ireland [63]. It was found that 2.5% voltage 

reduction resulted in 1% energy savings on residential circuits in Australia. Applying 

conservation voltage reduction to circuits in Ireland could achieve 1.7% energy 

reductions. 

Consumers can benefit from the reduced energy consumption from conservation 

voltage reduction. However, the utilities may lose revenues, which is a common problem 

for many demand-response programs [64]. The conservation voltage reduction benefits 
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for utilities can be summarized as: peak loading relief of distribution network; net loss 

reduction considering both the transformers and distribution lines; potential incentives 

and requirements from regulatory bodies (e.g., California Public Utilities Commission 

encouraged utilities to implement conservation voltage reduction, Northwest Power and 

Conservation Council performed extended research on conservation voltage reduction 

incentives [64]); increasing social welfare such as fuel consumption and emission 

reduction. 

2.3.3 Performance Assessment of Conservation Voltage Reduction 

Assessing the performance of conservation voltage reduction on feeder circuits has 

always been a critical issue in deciding its implementation, selecting target feeders to 

apply voltage reduction and performing cost/benefit analyses. The load consumption 

without voltage reduction during the conservation voltage reduction period cannot be 

measured and provide a benchmark for comparison. How to quantify a credible estimated 

energy-saving effect is the driving force for research and implementation of conservation 

voltage reduction. Skepticism regarding the effect of conservation voltage reduction 

remains a barrier to its acceptance. The major challenge to quantify conservation voltage 

reduction effects is to distinguish the changes in load and energy consumption due to 

voltage reduction from other impact factors. The methodologies for assessing 

conservation voltage reduction effects can be classified into four categories: comparison-

based, regression-based, synthesis-based and simulation-based. 

There are two basic comparison methods for measuring conservation voltage 

reduction effects. The first one is to select two similar feeders in the same performance 

period. In other words, the two feeders have similar configurations, topologies, load 
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conditions, load mix and are close in location. Voltage reduction is applied to one feeder 

(treatment group), while normal voltage is applied to the other feeder at the same time 

(control group). The second way is to perform a conservation voltage reduction test on a 

feeder (treatment group) and apply normal voltage to the same feeder but during another 

time period with similar weather conditions (control group). The conservation voltage 

reduction effects can then be calculated based on the measurements from the two tests. 

The comparison-based method is the most straightforward to calculate the conservation 

voltage reduction factor. However, there are some shortcomings: 1) a good control group 

may not exist; 2) the noises such as weather impacts are not very well considered and 

simple averages may not be sufficient to cancel noises; 3) after averaging the data, it is 

not possible to obtain the conservation voltage reduction factor for a particular time on a 

particular test day, which loses the time-dependant nature of the conservation voltage 

reduction factor. 

In regression-based methods, loads are modeled as a function of their impact factors. 

In references [64-66], loads are modeled as a function of temperature. Models for the 

normal-voltage load process are identified using linear regression, and their outputs are 

compared with the measured reduced-voltage load to calculate the conservation voltage 

reduction factor. As the regression methods are based on linear regression models that 

decompose the load, usually into basic and weather dependent components, they are 

widely used to assess conservation voltage reduction effects because some physical 

interpretations may be attached to model components, allowing utilities to understand the 

model behavior. The regression models can also be used to forecast the conservation 

voltage reduction factors. However, since the conservation voltage reduction effects are 
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usually a few percent of energy reduction, it may fall within the error bound of the 

regression models. It is necessary to distinguish conservation voltage reduction effects 

from the estimation errors. Moreover, the regression methods are heavily dependent on 

the accuracy of regression models. Models used by most papers are basically linear, but 

the load series they try to explain are known to be distinctly nonlinear functions of the 

exogenous variables. 

Synthesis-based methods aggregate load-to-voltage sensitivities to estimate the 

conservation voltage reduction effects of a circuit. There are two ways to perform the 

aggregation: synthesis from load components and synthesis from customer classes. In the 

component-based synthesis, the energy consumption of major appliance loads is modeled 

as a function of voltage, which is identified through laboratory tests. The load shares of 

each appliance are obtained through surveys. Synthesis-based methods can be used to 

obtain a quick estimation of conservation voltage reduction effects before its 

implementation. The basic assumptions of synthesis methods are that all of the appliances 

behave as they did during the lab test and the load composition information is correct. 

However, it is difficult to collect accurate load share information as well as the load-to-

voltage response of every existing electric appliance. Thus, the results obtained from 

synthesis methods should be used with caution. 
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Figure 2.5. Simulation based methods. 

Simulation methods simulate load behaviors using system modeling and power flow 

calculation. This method estimates what the load consumption would be if there were no 

conservation voltage reduction. Fig. 2.5 shows the flowchart of this method.  

Load can be modeled as a function of voltage, time and weather factors. Power flow 

is run based on measured operation data and weather information. The difference 

between power-flow results and measured load consumption is used to calculate the 

conservation voltage reduction factor. The circuits that have detailed models can be of 

high precision. The challenge is how to model the load which contributes to the major 

energy saving effect. Traditional load models such as exponential and ZIP (i.e., a model 

that combines constant power, constant impedance and constant current models) models 

can be used to represent open-loop appliances. For closed-loop loads such as heating, 

ventilation, and air conditioning (HVAC) systems, the equivalent thermal parameter 
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model should be used. In the equivalent thermal parameter model, the power demand of 

the HVAC system is modeled as a function of solar input, temperature, humidity, voltage 

and thermostatic set points. Simulation methods have high precision if the models can 

accurately represent the load behaviors. However, the current simulation methods are 

component-based while it may be too difficult to build models for all existing and 

emerging load components. A better method is to identify the aggregated load models at 

the circuit level. Moreover, it is clear that conservation voltage reduction effects change 

with time, but the current load models are all time-invariant, which may impact the 

estimation results of the conservation voltage reduction factor. Thus, it is necessary to 

make the model adaptive to dynamic changes of feeders and load behaviors. 

Table 2.1 summarizes the existing assessment methodologies. Since it is impossible 

to know the load consumption under normal voltage during the conservation voltage 

reduction period, lack of validity becomes the common roadblock for all assessment 

methodologies. The accuracy of the comparison-based methods depends on the selection 

of comparable groups [67]. The synthesis-based methods require load-share information 

which is difficult to be obtained. The regression-based methods are widely used in 

assessing conservation voltage reduction effects. Simulation methods have the potential 

to be used for validation, if the load behaviors could be accurately modeled. Some of the 

four methods can be combined in certain cases, e.g., simulation-based methods can be 

used to validate regression-based methods. If there is no benchmark for comparison, the 

reported conservation voltage reduction effects cannot be well accepted. Using load-to-

voltage sensitivities for assessing conservation voltage reduction effects is another 

attractive method, since it can reflect the nature of conservation voltage reduction. More 
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sophisticated identification algorithms are needed to filter out noises and detect load-to-

voltage sensitivities. 

Table 2.1. Demonstration of conservation voltage reduction. 

Utilities EST Attributes CVRf 
Snohomish PUD CO (+) easy and straightforward, (-) 

dependent on control group, (-) noise 
vulnerable 

0.50 

Northeast Utilities CO 1.00 

American Electric 
Power 

RE 

(+) clear physical meaning, (+) capable of 
forecasting conservation voltage reduction 
effects, (-) regression error, (-) load model 

is linear 

0.62 

California Public 
Utilities Commission 

RE 1.00 

Northwest Energy 
Efficiency Alliance 

RE 0.61 

Avista Utility RE 0.84 
BC Hydro RE 0.70 

Southern California 
Edison 

RE 1.00 

Bonneville Power 
Administration 

SY 

(+) quick estimation and forecast of 
conservation voltage reduction effect, (-) 
accurate load information is difficult to 

collect 

0.99 

EST: assessment method, RE: regression based, CO: comparison based, SY: synthesis based, SI: 
simulation based, (+) means positive attributes, (-) means negative attributes, CVRf: conservation 
voltage reduction factor 
 

2.3.4 Implementation of Conservation Voltage Reduction 

The early techniques to reduce voltage are open-loop without voltage feedback, such 

as load tap changer, line drop compensation and capacitor-based reduction. The 

installation of supervisory control and data acquisition system and advanced metering 

infrastructure has led many utilities to implement closed-loop voltage/VAR control. 

Conservation voltage reduction becomes an operation mode in these close-loop VVCs, 

while many other control objectives such as loss reduction, power factor improvement 

and voltage deviation minimization are also included. 
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Load tap changer/line drop compensation is the most used method to implement 

voltage reduction. Load tap changer is typically used to control the secondary voltage of 

a substation. To apply voltage reduction merely by load tap changer, the circuits should 

be carefully selected. For a feeder with large voltage drops, the depth of voltage reduction 

may be limited. Line drop compensation can lower the average voltage by 2% to 3% [68]. 

Line drop compensation involves setting the controls on substation voltage regulators or 

load tap changer to keep the most distant portion of the circuit at some minimum 

acceptable voltage levels, such as 114 volts, while the rest of the circuit voltage is 

allowed to vary with load conditions. However, settings of line drop compensation are 

difficult to determine and cannot adapt to the dynamic nature of distribution loads and 

DGs. As most utilities include some safety margin to ensure that the voltage levels 

remain above the minimum requirements, the voltage reduction potential is relatively 

small, which will decrease conservation voltage reduction effects. Switched capacitors 

can be coordinated with voltage control methods to conduct voltage/VAR control to 

implement conservation voltage reduction. For a feeder with a certain conservation 

voltage reduction factor, deeper voltage reduction within the permissible range can lead 

to more energy-savings. The depth of voltage reduction is limited for circuits that 

experience a significant voltage drop. A relatively flat voltage profile along the feeder is 

preferable to achieve an effective implementation of conservation voltage reduction. By 

placing capacitors at multiple locations, it is possible to flatten the voltage profile, correct 

the power factor to near unity, and reduce power losses [69]. The closed-loop 

voltage/VAR control takes advantage of various measurements to determine the best 
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voltage/VAR control actions during certain time periods [70]. Table 2.2 summarizes 

voltage reduction techniques. 

 

Table 2.2. Voltage reduction techniques. 

Utilities VR Attributes VD 

California Public 
Utilities Commission 

LT 
(+) easy and economical, (-) small volt 

reduction, (-) no volt feedback, may result 
in low volt 

2.5% 

Northwest Energy 
Efficiency Alliance 

LD 
(+) end-of-line voltage is controlled, (+) 

larger volt reduction than LT, (-) 
complicated settings, (-) no volt feedback, 

(-) cannot adapt to dynamic changes 

2-3.9%

Duke Energy LD 2% 

Snohomish PUD LD,CA (+) end-of-line voltage is controlled, (+) 
larger volt reduction than LD, (+) less 
power losses, flattened volt profile and 

improved power factor (-) capacitor 
placement is complicated, (-) no volt 

feedback, (-) lack of coordination between 
LD and CA, (-) cannot adapt to dynamic 

changes, (-) high cost 

2.1% 
Bonneville Power 

Administration 
LD,CA 4.6% 

Northeast Utilities LD,CA 3% 

Georgia Power 
Company 

LD,CA 4.1% 

BC Hydro LD,CA (+) larger volt reduction, (+) more reliable 
with volt feedback, (+) adaptive to 

dynamic changes, (-) complicated and 
high cost 

3% 
Avista Utility LD,CA 2.3% 

Dominion Virginia 
Power 

VVO 4% 

VR: voltage reduction method, VD: percentage of voltage reduction, LT: load tap changer, LD: line 
drop compensation, CA: capacitor, VVO: closed-loop voltage/VAR control. (+) means positive 
attributes, (-) means negative attributes. 
 

Integrating DGs into distribution networks is a major trend in a smart grid. There are 

two main research topics on the relationship between DG integration and conservation 

voltage reduction: 1) sizing and placement of DGs for loss reduction and voltage profile 

improvement; 2) the coordination between controls of DGs and voltage/VAR control to 

further optimize conservation voltage reduction effects. A number of objectives can be 

associated with sizing and placement of DGs, among which, to minimize voltage 
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deviation along the feeder and to minimize power losses are closely related to 

conservation voltage reduction. 

2.4 Planning of DG Penetration in Distribution Grids 

This section presents a brief literature survey on the state of the art of the formulation 

and algorithm for the optimal integration of distributed generators. 

The integration of DG in distribution feeders has increased rapidly. DG has impacts 

on voltage profile, power quality, energy efficiency, and reliability of distribution 

systems. The location and size of DG units should be carefully selected in order to take 

advantage of DGs and limit their negative impacts on system operations. The placement 

of DGs is typically a mixed-integer multi-objective optimization problem. A variety of 

objectives have been investigated in the literature, such as loss reduction [71], voltage 

improvement [45], reliability improvement [72], stability enhancement [73], and 

economic considerations [74].  

A wide range of methods have been proposed for DG placement, which can be 

divided into three categories: sensitivity analysis [73, 75], analytical approaches [76, 77], 

and intelligence algorithms (IAs) [78-80]. The authors of [73] used continuous power 

flow to identify the voltage sensitivity of each bus and then allocate DG at the most 

sensitive bus to improve the voltage security margin and reduce power losses. The study 

in [76] presented an analytical approach to identify the optimal location to place a DG to 

minimize power losses. IA is one of the most popular methods to determine the size and 

location of DG. Several works [78, 79] claimed that IAs were suitable for multi-objective 

problems and could achieve a near optimal solution. However, many IAs are sensitive to 

algorithm settings and initial conditions. IAs converge slowly and are easy to converge to 
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a suboptimal solution. All the above existing work assumes that DG is dispatchable and 

controllable, which is clearly not accurate since renewable energy source (RES)-based 

DGs are mostly non-dispatchable power sources with intermittent output. Only a few 

papers have considered the uncertain nature of DG outputs and load consumptions in 

system planning. The authors of [81] presented a probabilistic planning method to 

determine the optimal mix of wind, solar, and biomass units to minimize annual energy 

losses, but the placement of DG units is not considered. The authors of [82] allocated DG 

to improve voltage stability. The probabilistic nature of DG output was mentioned but not 

taken into account in the solution algorithm. 

The integration of DGs increases energy efficiency on the generation side while 

conservation voltage reduction saves energy on the demand side. However, none of the 

above papers optimize the placement of DGs for the purpose of assisting voltage 

reduction. This research proposes a new method to simultaneously consider conservation 

voltage reduction and DG placement for energy saving and peak demand reduction. 

2.5 Load Forecasting Techniques 

Load forecasting plays an important role in the planning, control and operation of 

power systems. Load forecasting is a challenging task for many reasons: the load 

behavior is complex and the load at a given hour is dependent not only on the load at the 

previous hour, but also on the load at the same hour on the previous day, and on the load 

at the same hour on the day with the same denomination in the previous week; there are 

many important exogenous variables that must be considered, specially weather-related 

variables [83]. Many studies have been made in the area of load forecasting and its 

applications. Most forecasting models and methods that have already been tried out on 
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load forecasting can be classified into two categories: time series models, in which the 

load is modeled as a function of its past observed values; and causal models, in which the 

load is modeled as a function of some exogenous factors, specially weather and social 

variables.  

Some methods such as multi-variant linear regression, autoregressive models, and 

Kalman filter-based models are in the first category. Methods such as Autoregressive–

moving-average with exogenous inputs (ARMAX) models, nonparametric regression, 

structural models, and curve-fitting procedures are in the second category. The most 

popular causal models are still the linear regression ones that decompose the load, usually 

into basic and weather-dependent components. Although the linear models cannot fully 

capture the non-linear behaviors of loads, these models are attractive because some 

physical interpretation may be attached to their components, allowing engineers and 

system operators to understand their behavior.  

In recent times, much research has been carried out on the application of artificial 

intelligence techniques and machine learning techniques to the load forecasting problem. 

The study in [84] applied particle swarm optimization and neural networks in load 

forecasting. The investigation in [85] used a support vector machine in mid-term load 

forecasting (i.e., predicting daily load of the next 31 days). Reference [86] combined self-

organized map and support vector machine to solve the short-term load forecasting 

problem (i.e., day-ahead prediction). The study in [87] developed a support vector 

regression model based on locally weighted vectors for load forecasting. However, these 

methods are not designed to analyze the conservation voltage reduction effects. The 

major issue in evaluating the conservation voltage reduction effect is to find what the 
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load would be without voltage reduction during the conservation voltage reduction period. 

This research proposes a short-term load forecasting method to estimate the normal-

voltage load during the voltage-reduction period. 

2.6 Load Modeling and Identification 

Load modeling has significant impacts on power system analysis. Although much 

research has been done in load modeling and identification, it is still a challenging 

problem because of the complexity, stochasticity and time variability of load. Load 

models can be divided into two categories: static load models and dynamic load models. 

Static models describe the relationship among power consumption, voltage and frequency. 

Frequently used static models include exponential and ZIP models. Dynamic models use 

differential equations to represent the relationship between the load and its impact factors. 

Examples of dynamic models are exponential recovery, induction motor and composite 

ZIP-induction motor models. At present, static load models are still commonly used for 

power system analysis. Dynamic models, which can capture dynamic responses of loads 

to disturbances, are used for transient analysis. As shown in [2], load modeling is still a 

challenging topic which receives interests from both industry and academia. The time-

varying and stochastic nature of load behaviors makes it difficult to model loads. In this 

dissertation, the exponential load model as defined in (2.1) is used to represent the load-

to-voltage relationship.  

0
0

( ) pkV
P P

V
                                                   (2.1) 

where P  represents the active power consumption, 0P  represents the nominal active 

power, pk  represents the load-to-voltage dependence, V  and 0V  represent the measured 
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and nominal voltage, respectively. The exponential load model is one of the most widely 

accepted load models to express the input-output relationship between the voltage and the 

power. It has been used by many papers and utilities to represent load behaviors [88]. The 

study in reference [89] claimed that the exponential load model could be used to 

represent the load with respect to the voltage change. The study in [3] even provided 

typical model parameters of the exponential load model for industrial, commercial and 

residential customers.  

Load model parameters can be estimated by solving an optimization problem to 

minimize the difference between measured system outputs and model outputs. The 

methods used to identify load models can be classified into two groups: component-based 

identification [90] and measurement-based identification [91]. The component-based 

approach is an aggregated method, which requires prior knowledge on load models and 

corresponding load model parameters of individual load components. Load 

characteristics at a bus can be derived from known load components and their 

composition. However, since it is very difficult to collect information about load 

components, this method is not popular. The measurement-based approach applies 

system identification techniques to practical data at selected substations and feeders, 

which are readily available for power flow and transient stability measurements. The 

field measurements are obtained in two ways: stage tests and continuous monitoring. In 

stage tests, a certain level of voltage perturbations is artificially imposed on system loads 

by changing tap ratios of transformers. The permissible voltage variation is limited to 

several percent of the operating voltage. The continuous monitoring method records load 

behaviors during faults and small disturbances. 
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After collecting enough measurements, load model parameters can be estimated by 

solving an optimization problem to minimize the difference between measured system 

outputs and model outputs. Some of the published methods to solve this problem include 

[92]: least square-based parameter estimation, on-line recursive identification, gradient-

based parameter estimation [11], genetic algorithms, adaptive simulated annealing-based 

algorithms and artificial neural network-based estimation. All these identification 

methods can be applied to estimate a time-invariant deterministic load model. However, 

the time-dependant property and randomness of load make it difficult to select 

appropriate model parameters for power system simulation and analysis. 

In this dissertation, the load is modeled as a function of voltage by the exponential 

load model, and the conservation voltage reduction effects are assessed using the 

identified load-to-voltage sensitivities.  

2.7 Summary 

This chapter presents an overall description and related work on the research topics 

of this dissertation. In particular, Section 2.2 gives a summary of the demand response 

programs and the corresponding energy management techniques. Section 2.3 summarizes 

the present practices on voltage/VAR control and its limitations. The assessment of 

conservation voltage reduction effects is also discussed. The advantages and 

disadvantages of each assessment method are discussed. Section 2.4 provides a brief 

literature review of the methods on load forecasting. Finally, in Section 2.5, the 

technologies on load modeling and identification are summarized. 
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As discussed in Section 2.2 and 2.3, the energy management with demand response 

and the voltage/VAR optimization with DGs can be formulated as stochastic optimization 

problems. In the next chapter, the stochastic optimization in power systems is introduced.  

  



44 
 

CHAPTER 3 INTRODUCTION TO STOCHASTIC 

OPTIMIZATION OF POWER SYSTEMS 

3.1 Overview 

In this chapter, the stochastic optimization in power systems and its related topics on 

scenario generation, reduction and solution validation are discussed. Stochastic 

optimization is widely used in this dissertation to solve the voltage/VAR control problem 

and DG allocation problem in Chapter 4, and the two-stage demand response planning 

and operation problem in Chapter 6.  

3.2 Stochastic Optimization 

This section summarizes the pertinent contents on stochastic optimization in 

reference [93]. Consider a stochastic problem of the following type 

 min ( ) : [ ( , ( ))]
x X

f x E F x  


                                      (3.1) 

where nX R , F is a real-valued function measuring the performance of the system of 

interest, x  is a decision vector constrained to obey physical and policy rules represented 

by the set X , ( )   is a random vector, and E  is the associated expectation operator. For 

example, the following class of linear models of F  has been widely studied and 

employed in practice: 

0
( , ( )) min

. .

y
F x cx gy

s t Dy Bx d

 


 

 
                                       (3.2) 

where c , g , and d  are known vectors, D  and B  are known matrices, and   is a random 

vector. In nature, this is a two-stage program which designs a system via x  under system-
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operating conditions known through a probability distribution on  . Then, y  represents 

an operational recourse decision that is made after those operating conditions become 

known, i.e., after   is realized. The system design which is represented by x  could 

involve continuous decisions such as the size of DGs, and discrete decisions such as the 

location of DGs, on/off status of capacitor banks, and tap potions of tap changers.  

The expectation of F can be approximated using a sample of the random parameter 

( )  , which is, 

1

1
[ ( , ( ))] ( , )

N
i

i

E F x F x
N

  


                                     (3.3) 

where 1 ,…, N  is a sample of  . Most of the theory on sampling approximation for 

stochastic problems has been developed for independent and identically distributed 

random variables sampling. The identically distributed random variables sampling is also 

applied to this research.  

Given an identically distributed random sample 1 ,…, N  of parameter ( )  , and the 

sample average approximation  of equation (3.1) can be defined as 

1

1
min ( ) : ( , )

N
i

N
x X

i

f x F x
N


 

 
 

 
                                      (3.4) 

The basic idea of the sample average approximation is to approximate the true 

distribution of random variables with an empirical distribution by Monte Carlo sampling 

technology.  

Assume v  to be the optimal value of ( )f x  and consider the set of  -optimal 

solutions: 
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 : ( )X x X f x v                                          (3.5) 

Let Nv  be the optimal solution of a N-sample average approximation of ( )f x , 

( )Nf x : 

1

1
min ( ) ( , ) :

N
i

N N
i

v f x F x x X
N




 
   

 
                             (3.6) 

where 1 ,…, N  is a sample of  . Assume NX   be the set of  -optimal solution of ( )Nf x :  

 : ( )N N NX x X f x v                                          (3.7) 

To guarantee that the sample average approximation problem returns an  -optimal 

solution to the true problem with probability at least (1 )  , it is necessary to have 

( , )1 1NX e                                                  (3.8) 

which means that N must satisfy  

2
max

2

4
log

( )

X
N


 




                                             (3.9) 

where 2
max  represents the maximum variance. It can be seen from equation (3.9) that 

small changes in   imply that N must be increased significantly. Similarly, the variance 

is also an important impact factor. The detailed proof of equations (3.8) and (3.9) can be 

found in [93].  

3.3 Scenario Generation and Reduction 

In the previous section, the general formulation and solution method of a stochastic 

problem have been discussed. In power system planning and operation, the uncertainties 

come from various aspects such as renewable and intermittent generation, load 
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consumption, electricity prices, customer behaviors, etc. This research considers two 

types of renewable DGs: wind turbines and photovoltaic generators. The predicted wind 

and solar power is used in the study. It is known that errors exist in prediction models. 

The normal distribution and beta distribution are used by previous papers to represent the 

wind power prediction errors. It has been shown that the beta function is more 

appropriate than the standard normal distribution in representing predication errors of 

wind power [16]. The prediction errors of solar power are still under study. In [16], the 

beta function has also been used in representing the prediction errors of solar power. In 

Chapter 4, the dispatches of voltage/VAR control devices are calculated based on 

predicted DG outputs. Each time slot corresponds to two beta functions for predication 

errors: one for wind power and the other for solar power. Similarly, beta functions are 

also used to represent uncertainties of predictions of wind and solar power when solving 

the stochastic DG allocation problem. For a predicted power predP , the beta function can 

be defined by two corresponding parameters   and   [16]: 

1 1( ) (1 )f x x x                                                 (3.10) 

The above beta function models the occurrence of real power values x  when a certain 

prediction value predP  has been forecasted. Shape parameters   and   can be calculated 

as 

pred

base

P

S


 


                                                     (3.11) 

2
2( ) ( 1)


   


  

                                            (3.12) 
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where baseS  is the power base for the system, is maximum,   is the error variance and 

can be represented as 

0.2 0.21
pred

cap

P

P
                                                    (3.13) 

where capP  is the maximum power output. Using the predicted DG outputs and the 

equations (3.11)-(3.13), the parameters of beta functions for the current prediction 

horizon can be calculated. A normal distribution is frequently used to represent the 

forecasting uncertainty of load consumptions. Monte-Carlo simulation (MCs) is run 

based on forecasted power and uncertain prediction errors to generate scenarios for DG 

outputs and load consumptions. 

In order to reduce the computation efforts, a scenario reduction technique is 

implemented to reduce the number of scenarios while maintaining a good approximation 

of the system uncertainty. In this dissertation, the simultaneous backward reduction 

method [94] is used for scenario reduction. Let s  (s=1,…, N) denote N different 

scenarios, each with a probability of s , a distance function ( , )s sd     can be defined for 

the scenario pair ( , )s s   : 

( , ) : max{1, , }s s s s s sd                                    (3.14) 

where   is the average value of scenarios. Denote S  as the initial set of scenarios (N 

initial elements) and J  (initially null) as the set of scenarios to be deleted. Assume there 

are N  scenarios and it is necessary to reduce them into n  scenarios. The steps can be 

summarized as follows: 
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Step 1: compute the distances of all scenario pairs , ( , )s s s sd d    ( , 1, , )s s N   . For each 

scenario l , [1]
,: min ( 1, , )l j l l jd j N    , let [1]

1 {1, , }arg minl N l ll    , the first element of J , 

[1]
1{ }J l  can be obtained and S  is updated by [1]

1{ }S S l . 

Step i (i>1) : for each scenario l , [ 1]il S  , compute [ 1]
[ ] [ 1]

,{ }
: min , { }i

i i
kl k kk J l

d k J l 


   , 

then compute [ 1]
[ ] [ ]

{ }
: i

i i
l k klk J l

z  
  

, let [ ]arg min i
i ll z , update J  and S  by [ ] [ 1] { }i i

iJ J l  ,

1 /{ }i i
iS S l , repeat this step for N-n times. 

Step N-n+1: after obtaining the final J  set (with N elements) and the S  set (with n 

elements), for the each remaining scenario s S , its new probability s  can be calculated 

as: 

j
s s jj J

  


                                              (3.15) 

where jJ  can be calculated as follows: for each j J , { arg min ( , )}j h J h jJ d     . 

The number of scenarios can be reduced from N to n through the above procedures.  

3.4 Multiple Replication Procedure 

It is important to assess whether a candidate solution of an optimization problem is 

an optimal or near-optimal solution. Karush-Kuhn-Tucker conditions [79] provide 

necessary and sufficient optimality conditions for certain problems. However, the 

function values and gradients needed to test these conditions for a stochastic program are 

challenging to compute. An alternative approach in stochastic programming is to use 

Monte Carlo sampling-based estimators to assess the optimality gap. Multiple replication 

procedure is a kind of these Monte Carlo sampling-based methods.  
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Let x  denote an optimal solution of the stochastic program defined in (3.1), and z  

denote the corresponding optimal value. Let nx  denote an optimal solution of the problem 

defined in (3.4) through a sampling procedure, and nz  denote the corresponding optimal 

value. In solving the original problem defined in (3.1), a decision x  that hedges against 

all realizations of   can be obtained. When solving the problem defined in (3.4) by the 

sample average approximation, the problem is optimized with respect to a subset of  , 

which means that the original problem is over-optimized. Therefore, nz  gives a lower 

bound of the optimal solution value z . 

In a multiple replication procedure [95], the quality of a candidate solution x̂ , e.g., 

ˆ nx x , can be measured by the optimality gap, ˆ ˆ( , )x Ef x z    . If the gap is 

sufficiently small, then x̂  is of high quality. An upper bound on the optimality gap for x̂  

is given by ˆ( , ) nEf x Ez  , because nEz z  . This quantity can be estimated by [95] 

1 1

1 1
ˆ ˆ( ) ( , ) min ( , )

n n
j j

n
x X

j j

G x F x F x
n n

 
 

                          (3.16) 

where 1 ,…, N  are i.i.d. from the distribution of  . A multiple replications procedure 

can be used to construct a confidence interval (CI) of the form 

ˆ( ( , ) ) 1P EF x z                                           (3.17) 

where x̂ X  is a candidate solution, ˆ( , )EF x   is its true and unknown expected 

performance measure,   is the random CI width, and 1   is the confidence level, e.g., 

0.95. Let ,nt   be the 1   quantile of the t distribution with n degrees of freedom, and, let 
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z  be that of the standard normal. The multiple replication procedure can be summarized 

as follows [95]: 

1. For 1,2,..., gk n   

1.1 Sample i.i.d. observations 1k , 2k ,…, kn  from the distribution of  . 

1.2 Apply sample average approximation to solve the stochastic program using 1k , 

2k ,…, kn  to obtain k
nx  .  

1.3 Calculate 
1

1
ˆ ˆ( ) ( ( , ) ( , ))

n
k kj k kj
n n

j

G x F x F x
n

 



   . 

2. Calculate gap estimate and sample variance by  

1

1
ˆ( ) ( )

gn
k

n g n
kg

G n G x
n 

                                            (3.18) 

2 2

1

1
ˆ( ) ( ( ) ( ))

1

gn
k

G g n n g
kg

s n G x G n
n 

 
                                (3.19) 

3. Let 1, ( )
gg n G g gt s n n  , and output the one-sided CI on x̂ , 

0, ( )n g gG n                                                  (3.20) 

It can be seen that step 1 produces gn  i.i.d. replicates and step 2 forms the resulting 

sample mean ( )n gG n  and sample variance 2 ( )G gs n .  

3.5 Summary 

This chapter introduces the general formulation of stochastic programs and the 

sample average approximation method to solve the problems. Since wind turbines and 

solar panels are considered as renewable DGs in the following chapters, a method to 

generate scenarios to represent prediction errors of wind power and solar power has been 
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presented. A backward scenario reduction technique is applied to enhance a tradeoff 

between the accuracy of the solution and the computational burden. This chapter also 

discusses a multiple replication procedure to quantify the optimality of solutions obtained 

from sample average approximation.  

In the next chapter, the sample average approximation is used to solve the stochastic 

voltage/VAR control and the DG allocation problems. Scenario generation and reduction 

are used to simulate the output of wind turbines and photovoltaic generators. Multiple 

replication procedure is applied to evaluate the optimality of the solutions.  

  



53 
 

CHAPTER 4  IMPLEMENTATION OF VOLTAGE/VAR 

CONTROL IN DISTRIBUTION GRIDS 

4.1 Overview 

Voltage/VAR control can be implemented by a utility to improve the operation of 

distribution grids. The ever-increasing penetration of renewable DGs and the complicated 

load behaviors make the voltage/VAR control problems more challenging. A modern 

voltage/VAR control framework should consider the stochasticity on both the generation 

and demand sides. The uncertain outputs of renewable DGs and load consumptions will 

impact the voltage/VAR control of a distribution grid. However, if well planned, the 

integration of DGs can also assist the implementation of voltage/VAR control and 

improve the system operation. In this chapter, a rolling horizon optimization-based 

method for the optimal dispatches of on-load tap changer and capacitor banks is proposed. 

The stochasticity of DG outputs and load consumption is taken into account by a bi-level 

stochastic formulation. The various load-to-voltage sensitivities for different types of 

customers are considered. This chapter also proposes a novel stochastic model for DG 

placement to assist the implementation of voltage/VAR control. The model is solved and 

verified by a method combining sample average approximation and multiple replication 

procedure.  

Section 4.2 gives the general models for a distribution grid and loads, section 4.3 

introduces the rolling horizon optimization and the stochastic voltage/VAR control model, 

section 4.4 gives the simulation results for the voltage/VAR control, section 4.5 presents 

the stochastic model for DG placement and the combined sample average approximation 
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and multiple replication procedure, and section 4.6 provides the simulation and validation 

results for DG placement.  

4.2 Models for Distribution Grids and Loads 

Consider a distribution system as shown in Fig. 4.1 which includes m  buses indexed 

by 0,1, ,i m  .  

 

 

Figure 4.1. Schematic diagram of a radial distribution grid. 

 

The following equations can be used to describe the complex power flows at each 

node i , which are known as DistFlow equations [48, 96]:  

2 2

1 12
i i

i i i i
i

P Q
P P r p

V
 


       (4.1) 

2 2

1 12
i i

i i i i
i

P Q
Q Q x q

V
 


       (4.2) 
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2 2
2 2 2 2

1 2
2( ) ( ) i i

i i i i i i i i
i

P Q
V V r P x Q r x

V



        (4.3) 

1 1 1 1 1 1,l g l g
i i i i i ip p p q q q                                               (4.4) 

where iP  and iQ  are the active and reactive power flow between nodes i  and 1i  , 

respectively; iV  is the voltage at node i ; ir  and ix  are the line resistance and reactance 

between nodes i  and 1i  , respectively; ip  and iq  are the active and reactive power 

consumption at node i , respectively; 
g
ip  is generated by DGs, which is subject to 

uncertainties and 
g
iq  is generated by VAR compensation devices such as capacitor banks; 

l
ip  and 

l
iq  are the active and reactive power consumption at node i , respectively.  

The DistFlow equations are effective for radial networks. For a meshed network, it 

can be converted to a radial network by breaking the loops through adding dummy buses 

[97]. The DistFlow equations can be simplified using linearization. The linearized power 

flow equations have been extensively used and justified in the literature [96]. 

1 1i i iP P p                                                       (4.5) 

1 1i i iQ Q q                                                       (4.6) 

1 2
0

i i i i
i i

r P x Q
V V

V



                                                 (4.7) 

1 1 1 1 1 1,l g l g
i i i i i ip p p q q q                                               (4.8) 

Many load models have been developed in the past, among which, exponential load 

model is widely used to represent load-to-voltage relationship [3]. The exponential load 

model is defined as 
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pikl b
i i ip P V                                                    (4.9) 

qikl b
i i iq Q V                                                  (4.10) 

where 
b

iP  and 
b
iQ  are the basic active and reactive power for the exponential load 

model, respectively; pik  and qik  are the active power exponent and reactive power 

exponent for the exponential load model, respectively. 

In the constant-power load model, pik  and qik  are assumed to be zero. In fact, the 

exponents pik  and qik  are related with load compositions. Table 4.1 shows the example 

exponent values for different types of loads [3], which are used in this dissertation for 

illustration. In practice, a feeder is not explicitly residential, commercial or industrial [45]. 

Thus, a load class mix should be implemented. 

Table 4.1. Load types and exponent values. 

Load Type kp kq 

Residential 1.04 4.19 

Commercial 1.50 3.15 

Industrial 0.18 6.00 

 

 

Figure 4.2. Demonstration of rolling-horizon optimization. 
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4.3 Stochastic Rolling Horizon Optimization-Based Voltage/VAR 

Control 

This section presents the rolling horizon optimization method [86, 87] and the 

proposed mathematical formulation of the stochastic voltage/VAR control.  

4.3.1 Rolling Horizon Optimization 

In analogy to model predictive control [98, 99], a rolling-horizon optimization is 

employed to make optimal operation decisions [100, 101]. Fig. 4.2 is an illustration of the 

rolling-horizon optimization. An optimization problem is formulated and solved to obtain 

optimal decisions over the optimization window. However, only the decisions for the first 

time interval in the window are implemented in practice. The solutions for other time 

intervals will be discarded. The above process is repeated. It is assumed that a prediction 

algorithm generates estimated load consumption and DG outputs. In practice, the 

prediction errors should be considered. The details on prediction errors have been 

discussed in Chapter 3. 

4.3.2 Mathematical Formulation for Stochastic Voltage/VAR Control 

This subsection proposes a new formulation for voltage/VAR control in a 

distribution grid with renewable DGs and voltage-sensitive loads. Consider using power 

losses of the distribution system and voltage deviations along the feeder as control 

objectives, the multi-objective voltage/VAR control problem for a certain control period 

can be formulated as follows, Table 4.2 shows the nomenclature: 

Table 4.2. Nomenclature for stochastic voltage/VAR control formulation. 

,
loss

t sP  
Active system loss at time t 

in s th scenario ,t sV  
Maximum voltage deviation 

at time t in s th scenario 
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, ,i t sV  
Voltage at node i at time t in s

th scenario pik / qik  
Active/reactive power 

exponent at node i in s th 
scenario 

, ,i t sP / , ,i t sQ  
Active/reactive power flow 
from node i to node i+1 at 

time t in s th scenario 
ir / ix  

Line resistance/reactance 
between node i and i+1 

, ,
l
i t sp / , ,

l
i t sq  

Active/reactive load at node i
at time t in s th scenario , ,

g
i t sP / , ,

g
i t sq  

Active/reactive power output 
of the P at node I at time t in 

s th scenario 

,
pred

i tP  
Predict output of the DG at 

node i at time t  , ,i t s  
Prediction error at node i at 

time t in scenario s 

cap
iQ  Size of the capacitor at node i ,i tc  

Binary indicator of the 
switch status of the capacitor 

at node i at time t 

rV  Input voltage of the regulator   
Max. allowable voltage 

deviation 

tTAP  Tap position at time t 
maxCAP /
maxTAP  

Max. number of tap 
operations/capacitor switch 
times during time t to time 

t+Tp 
 

, ,mi (n ) ,k p

k

loss
t s t s

t T

t t
E P V




   
                                           (4.11) 

Subject to 

 , , , , , , , 1, ,max , , , , ,t s i i t s i t s i t s t sV V V V V i t s                              (4.12) 

2 2
, , , 1( ) , , ,loss

t s i i s i si
P r P Q V t s                                           (4.13) 

1, , , , 1, , 1, , , , , ,l g
i t s i t s i t s i t sP P p p i t s                                           (4.14) 

1, , , , 1, , 1, , , , , ,l g
i t s i t s i t s i t sQ Q q q i t s                                           (4.15) 

1, , , , , , , , 1( ) , , , ,i t s i t s i i t s i i t sV V r P x Q V i t s                                      (4.16) 

, , , , , , , , ,g pred
i t s i t i t sp P i t s                                                    (4.17) 

, , , , , ,g cap
i t s i t iq c Q i t                                                         (4.18) 

1, ,t t sV TAPV t                                                            (4.19) 
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,
, , , , , , ,( ) , , , ,pikl b pred

i t s i t i t s i t sp P V i t s                                             (4.20) 

,
, , , , , , ,( ) , , , ,qikl b pred

i t s i t i t s i t sq Q V i t s                                             (4.21) 

, ,1 1 , , , ,i t sV i t s                                                         (4.22) 

1

max
, , ,k P

k kk

t T
i t t t i tt t

c c CAP



 

                                                (4.23) 

1

max .k P

k kk

t T
t t t tt t

TAP TAP TAP



 

                                             (4.24) 

In the above formulation, the objective function (4.11) minimizes the expectation of 

active power losses and voltage deviations along the feeder during the prediction horizon. 

For illustration, this study assumes that the two objectives are equally weighted. However, 

the distribution system operators can change the weighting factors (priorities) according 

to the specific operational requirements. Equation (4.12) represents the maximum voltage 

deviation of all nodes. Equation (4.13) describes active power losses of the distribution 

network. Equations (4.14)-(4.16) are the linear form of the DistFlow equations defined in 

(4.5)-(4.8), which have been extensively verified and used in the literature. The 

linearization is based on the fact that the nonlinear terms in (4.1)-(4.4) are much smaller 

than the linear terms. The outputs of DG units and capacitors are represented as negative 

loads in constraints (4.14)-(4.15). Equation (4.17) assumes outputs of DG units equal the 

predicted values plus the predicted errors  .   belongs to an uncertainty set, which 

may vary with predicted values and will be discussed in next section . In constraint (4.18), 

,i tc  represents the on/off status of the capacitor at node i during the time interval t . For 

nodes without capacitors, cap
iQ equals zero. In constraint (4.19), sV  represents the 

primary voltage of the transformer at the substation, which is assumed to be 1.0 p.u. in 
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this paper. The secondary voltage is modeled as a function of the primary voltage [15, 

36]. The detailed model can be found in [15]. Voltage regulators are voltage control 

devices often used on long lines and can participate in voltage/VAR control. A single-

phase voltage regulator with an open-delta configuration, 32 taps ([-16,…,+16]) and ±10% 

tap range can be modeled as follows [15]: 

2
, , ,1 3( /16) 3( /16)i t r i t i tV V TAP TAP                                      (4.25) 

where rV  is the input voltage of the VR, ,i tTAP  represents the tap position of the VR of 

node i  at time t . Equation (4.25) can be integrated into the voltage/VAR control 

formulation when voltage regulators exist in the distribution system. 

Constraints (4.20) and (4.21) use the exponential load model to represent active and 

reactive load consumptions. 
,

,
b pred

i tP and 
,

,
b pred
i tQ  change with a load profile which can be 

obtained by using short-term load forecasting techniques. Constraint (4.22) indicates the 

voltage of each node should be within a certain range for proper operation of the 

distribution circuit, ε is usually set to be 0.05. Constraints (4.23) and (4.24) describe the 

maximum number of daily switching operations of load tap changers and capacitors, 

respectively. In some practical cases, a bank of capacitors may be installed at node i . 

Then, the discrete output of the capacitor bank at node i  can be represented as equation 

(4.18) and constraint (4.23) can be modified accordingly as shown in equations (4.26) 

and (4.27). 

, ,
g cap
i t ik t ikk

q c Q                                                     (4.26) 

1

max
, ,

k p

k k

k

t T

ik t t t ik t
t t

c c CAP




 


                                          (4.27) 
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where ikc  is a binary indicator of the switch status of the k-th capacitor in the capacitor 

bank at node i  and 
cap
ikQ  represents the size of the k-th capacitor in the capacitor bank at 

node i . This study considers the case that one capacitor is installed at one node. 

However, it is clear that the proposed method can be applied to solve the voltage/VAR 

control problem with capacitor banks. The maximum number of daily switching 

operations of on-load tap changer and capacitors should be less than the predefined 

values. For illustration, maxCAP  is set to be 3 and maxTAP  is set to be 5 in this paper. The 

DSOs can change these settings according to the characteristics of a specific system. To 

further reduce the non-linearity of the above problem, some constraints can be 

reformulated. Equation (4.12) can be reformulated as follows: 

, 1, , , , , , ,t s t s i t sV V i t s                                                   (4.28) 

, , , 1, , , , ,t s i t s t sV V i t s                                                   (4.29) 

In constraint (4.23), assume that 
1

2
, , ,( )

k ki t i t t t i ts c c
   , since ,i tc  is a binary,

2
, ,i t i tc c ,  

1 1, , , , ,2
k k k ki t i t t t i t i t t t i ts c c c c
                                             (4.30) 

where ,i ts  indicates whether the capacitor at node i  has changed its status from time kt  

to time 1kt   ( , 1i ts  , if the status has changed).  

To linearize the multiplication of 
1, ,k ki t t t i tc c
  , it is assumed that 

1, , ,k ki t i t t t i ta c c
  , and 

,i ta is a binary. Equation (4.23) can be represented as (4.31)-(4.34). 

1, , , ,2
k ki t i t t t i t i ts c c a
                                              (4.31) 
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, ,i t i ta c                                                          (4.32) 

1, , k ki t i t t ta c
                                                      (4.33) 

1, , , 1
k ki t i t i t t ta c c
                                                    (4.34) 

 

Table 4.3. The relationship among s, a and c. 

,i ts  ,i ta  
1, k ki t t tc
   ,i tc  

0 0 0 0 

0 1 1 1 

1 0 0 1 

1 0 1 0 

 

In constraints (4.24), tTAP  is an integer whose range is dependent on the number of taps 

of the load tap changer. Equation (4.24) can be reformulated as follows: 

1k kt t t t tTAP TAP
                                                 (4.35) 

1k kt t t t tTAP TAP
                                                (4.36) 

maxk P

k

t T
tt t

TAP


                                              (4.37) 

The stochastic optimization problem can be represented as follows: 

, ,min

. . (4.13) (4.22), (4.28) (4.29),(4.31) 4

( )

( .37)

k p

k

t T

t t
loss

t s t sE P V

s t




 

  

 
 

                       (4.38) 

To solve the formulation defined in (4.38), Monte-Carlo simulations [81] are used to 

generate scenarios to represent the prediction errors of wind power, solar power and load 
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consumption. The number of scenarios can be reduced from N to n through the 

simultaneous backward scenario reduction method as described in Chapter 3. The 

problem defined in (4.38) can be reformulated using the reduced scenarios as follows: 

, ,
1

min [

. . (4.13)

( )]

(4.22), (4.28) (4.29),(4.31) (4.37)

k p

k

n
t T loss

s t s t st t
s

P V

s t

 




  

  

 
                       (4.39) 

The problem is a mix-integer non-linear programming problem, which can be solved by 

the general algebraic modeling system [102]. The above formulation schedules the 

dispatches of voltage/VAR control devices for the current prediction horizon based on 

predicted DG outputs so as to minimize active power losses and voltage deviations. The 

process is repeated when new observations come at 1kt  . DG outputs can be predicted by 

regression-based methods or machine learning-based techniques, which are beyond the 

contents of this paper. The comprehensive procedure for rolling horizon optimization-

based voltage/VAR control can be summarized as follows (start from kt t ): 

Step 1: Predict DG outputs for the time period[ , ]pt t T ; 

Step 2: Calculate corresponding beta functions for the predicted DG outputs; obtain 

N scenarios of prediction errors using Monte-Carlo simulations; reduce the number 

of scenarios to n; 

Step 3: Solve the mixed-integer nonlinear problem in (4.39) and obtain the 

voltage/VAR control schedule for the time period [ , ]pt t T ; 

Step 4: Implement the voltage/VAR control schedule for the time period 

1[ , ]k kt t t t  . When 1 1k k k kt t t t t     , go to step 1. 
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It is necessary to show how much improvement can be achieved if the stochastic 

prediction errors are taken into account in model predictive control. Define the solution 

of (4.38) as x̂ . For the problem defined in (4.39), the corresponding expected value 

problem can be formulated by replacing the random error   by its expected value. The 

expected value problem is a deterministic optimization problem that can be defined as 

, ,EV min ( ) )( )(k p

k

loss
t s t t

t T

t s tt
P V 


                          (4.40) 

where ( )t tE   denotes the expectation of t . The expected value solution can be 

defined as x . The expected results of using the expected value solution can be 

represented as 

, ,1

1
EEV ( ( ) ( ))

N loss
t s t t s th

P V
N

 


  

                        (4.41) 

The expected results of using the expected value solution measures the performance of 

x , allowing second-stage decision variables to be chosen optimally as functions of x

and  . The N  scenarios of prediction errors are generated by Monte-Carlo simulations. 

The expected results of using the expected value solution and the objective value of (4.39) 

can be compared to see how the stochastic programming outperforms the deterministic 

programming. 

4.3.3 Simulation Results 

For illustration, the proposed method has been examined on the modified IEEE 33-

bus radial distribution network as shown in Fig. 4.3. Details about the test system can be 

found in [96].  
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Figure 4.3. Test distribution system [82]. 

Assume the substation transformer has a ±10% tap range. Switched capacitors are 

installed at nodes 2, 3, 6, 11, 21 and 23, each is 30 kVAR. Photovoltaic generators are 

installed at node 21, wind turbines are located at nodes 11 and 27. The node types are 

listed in Table 4.4. This example sets pT  to be 6 hours, 1k kt t   to be 15 minutes. For 

every 15 minutes, the DG outputs and load consumptions are predicted for the next 6 

hours and the control decisions are made.  
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Table 4.4. Node types for stochastic voltage/VAR control simulations. 

Type Residential Commercial Industrial 

Node number 

2, 3, 4, 5, 6, 7, 8, 9, 

12, 13, 14, 15, 26, 28, 

29 

10, 11, 16, 17, 19, 20, 

21, 22, 27, 30, 33 
18, 23, 24, 25, 31, 32

 

 

Figure 4.4. Profiles of active and reactive load multipliers. 

 

All loads are represented by exponential load models and the load consumption of 

node i  at time t  can be represented as: 

, ,
pikl b p

i t i t i tp P M V                                              (4.42) 
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, ,
qikl b q

i t i t i tq Q M V                                              (4.43) 

The values of basic components b
iP and b

iQ  can be found in [96], the exponents of each 

type of load are shown in Table 4.5. The multipliers p
tM  and q

tM , as shown in Fig. 4.4, 

are used to make the load profile change with time. It is assumed that multipliers of all 

nodes are the same. Fig. 4.5 shows the normalized predicted wind and solar power that is 

used in this study [103]. The power base of the system baseS  is set to be 1 MVA.  

 

 

Figure 4.5. Profiles of solar power and wind power. 

 

As introduced in section 3.3, a beta distribution is used to represent the prediction 

errors of wind/solar power, and the normal distribution is used to represent the prediction 

errors of the load consumption [16]. For the load profiles in Fig. 4.4, the mean value of 
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the normal distribution is the forecasted load and the standard deviation is set to 2% of 

the forecasted value [104]. Each time slot in Fig. 4.5 corresponds to two beta functions 

for predication errors: one for wind power and the other for solar power. For a predicted 

power point predP , the beta function can be defined by two corresponding parameters   

and  ; they can be calculated using (3.11-3.13) and the present predicted wind/solar 

power.  

Different scenarios of prediction errors of DG generation and load consumption can 

be generated by using the beta and normal distributions. 100 scenarios (N=100) are 

generated using Monte-Carlo simulations to represent the prediction errors in the 

prediction horizon. As discussed in the previous section, scenario reduction is applied to 

reduce the computation efforts while maintaining the solution accuracy. The 100 

generated scenarios are reduced to 15 scenarios (n=15) in this case. The above procedure 

is repeated for the whole day. 

The proposed formulation in (4.39) is a mixed-integer nonlinear and nonconvex 

problem. Therefore, it cannot be solved directly by CPLEX. In this simulation, the 

Discrete and Continuous Optimizer (DICOPT) in the General Algebraic Modeling 

System (GAMS) is used to solve the problem. The simulation is performed by using a 

computer with Intel Quad Core 2.40 GHz and 8 GB memory. The computation time for 

the stochastic program with 15 scenarios is around 5 minutes.  

 The stochastic voltage/VAR control problem defined in (4.39) is solved with the 15 

scenarios for every prediction horizon. Fig. 4.6 shows the resulting daily dispatch of on-

load tap changer’s tap positions, in which, “Tap EXL” refers to tap positions with 

exponential load model and “Tap CP” refers to tap positions with the constant-power 
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model. It can be seen that the optimal taps of on-load tap changer are quite different for 

exponential load model and the constant-power model. Since the proposed formulation is 

a mixed-integer non-linear program, a global optimum cannot be guaranteed. The 

following messages from GAMS indicate that there is no mathematical error in the 

proposed formulation, and the solution of the problem could be one of the local optimal 

solutions.  

GAMS Message: 

“REPORT SUMMARY:           0   NONOPT 

                                                   0   INFEASIBLE 

                                                   0   UNBOUNDED 

                                                   0   ERRORS” 

 

 

Figure 4.6. Tap positions with exponential model (Tap EXL) and constant power model 
(Tap CP). 
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Figs. 4.7-4.9 show the switch statuses of capacitors, where “EXL” represents the 

results with the exponential load model, “CP” represents the results with the constant-

power load model. It can be seen that daily dispatches of most capacitors change with 

different load models (capacitor at node 3 does not change). 

 

Figure 4.7. Switch status of capacitors at nodes 2 and 3 with exponential model (Cap 
EXL) and constant power model (CAP CP). 

 

 

Figure 4.8. Switch status of capacitors at nodes 6 and 11 with exponential model (Cap 
EXL) and constant power model (CAP CP). 
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Figure 4.9. Switch status of capacitors at nodes 20 and 23 with exponential model (CAP 
EXL) and constant power model (CAP CP). 

 

 

Figure 4.10. Voltage profiles. 
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Fig. 4.10 shows the voltages of all nodes. Voltage levels at 6:00, 12:00, 18:00 and 

24:00 are selected to be shown due to the space limit. “EXL” represents the voltages with 

the exponential load model, “CP” represents the voltages with the constant-power load 

model and “Base” represents the voltages with DGs and exponential load model, but 

without on-load tap changer or capacitors. Compared with the base case, the proposed 

stochastic voltage/VAR control method considering DGs can largely improve the voltage 

profile no matter which kind of load models is used. All the voltages are within 0.95 p.u. 

to 1.05 p.u., which satisfies the voltage constraint. The optimal voltage levels with the 

constant-power load model are relatively higher than those with exponential load model. 

The reason is that losses are proportional to the square of the current, and the current of a 

constant-power load is inversely proportional to the voltage [13]. Thus, the on-load tap 

changer operates the feeder in the upper bound of the allowable voltage range to reduce 

losses.  

 

Figure 4.11. Peak-time voltage profiles. 
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Fig. 4.11 compares the peak-time voltage profiles with and without the proposed 

voltage/VAR control. The voltage profile becomes flatter by applying the proposed 

voltage/VAR control technique. The total numbers of daily switching operations of 

capacitors are 24 for exponential load models and 31 for constant power load models.  

 

 

Figure 4.12. Active power losses and max voltage deviations (EEV refers to the expected 
results of using the expected value solution). 

 

Fig. 4.12 shows the active power losses and maximum voltage deviation of 

voltage/VAR control with exponential load model, constant-power load model, the 

expected results of using the expected value solution, and the base case without 

voltage/VAR control. It can be seen that the stochastic rolling horizon optimization-based 

voltage/VAR control method can improve the system operation. For example, compared 

with the base case with DGs and without voltage/VAR control, the proposed stochastic 

voltage/VAR control with exponential load model reduces the maximum voltage 

deviation by 65%, and power losses by 77%. Compared with the deterministic 
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voltage/VAR control (labeled as “EEV” in Fig. 4.12), the proposed stochastic 

voltage/VAR control considering prediction errors and exponential load model (labeled 

as “exponential model” in Fig. 4.12) can reduce the maximum voltage deviation by 49% 

and power losses by 72%. Meanwhile, the objective function values of systems with 

exponential load models and the constant-power models are different, i.e., the objective 

function values with exponential load models are slightly lower than those with constant 

power load models. Since loads are sensitive to voltage in practice and different types of 

loads may have various load-to-voltage sensitivities, the proposed voltage/VAR control 

with DGs and different load models are more realistic and effective. 

4.4 Stochastic DG Placement for Voltage/VAR Control 

Energy deficit, load growth, environmental consciousness and constraints on 

building new transmission and distribution lines have created increasing interest in 

voltage/VAR control and conservation voltage reduction as well as DGs. Both techniques 

can be used to save energy and reduce peak load demand. Conservation voltage reduction 

is typically utilized at substations to regulate voltage and operate feeders at the lowest 

acceptable voltage levels [35, 55]. It is known that many loads are voltage dependent and 

consume less power when the supplied voltage is reduced [35, 105]. Conservation 

voltage reduction has been successfully implemented to reduce peak demand/energy 

consumption and increase the system stability margin at a number of utilities such as 

Northwest Energy Efficiency Alliance and BC Hydro. Previous tests indicate that 

significant energy savings can be achieved through voltage reduction. The energy-saving 

effects usually range from 0.3% to 1% load reduction per 1% voltage reduction.  
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The depth of voltage reduction is an important impact factor on the effectiveness of 

conservation voltage reduction. It can be seen from Fig. 4.13 that the level of voltage 

reduction is closely related with the voltage profile along the feeder.  

 

 

Figure 4.13. Demonstration of voltage drop along a feeder. 

 

The ANSI standard [40] requires that the lowest voltage level remains within 5 

percent from the nominal value. If the end-of-line voltage is much lower than the 

substation voltage, then the substation voltage cannot be reduced too much, in order to 

maintain the end-of-line voltage above 114 V on a 120V scale. Deeper voltage reduction 

can be achieved if the end-of-line voltage is maintained near the same level as the voltage 

at the beginning of the feeder. The most popular way to flatten the voltage profile is to 

place capacitor banks to provide reactive power compensation along the feeder. Recently, 

the integration of DGs in distribution feeders has increased rapidly. DG has impacts on 
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voltage profile, power quality, energy efficiency, and reliability of distribution systems. 

The location and size of DG units should be carefully selected in order to take advantage 

of DG and limit its negative impacts on system operations. This dissertation presents a 

new method to simultaneously consider conservation voltage reduction and DG 

placement for energy saving and peak demand reduction. A novel DG placement model 

is proposed to minimize load consumptions of the system and maintain the voltage 

deviations along the feeder within a predefined range. The proposed method assumes a 

centralized decision maker such as the distribution system operator that can make the DG 

placement plan for the conservation voltage reduction implementation since conservation 

voltage reduction is a measure initiated by the utilities. In order to effectively deal with 

the probabilistic nature of DG outputs and load consumption, the DG placement is 

formulated as a two-stage stochastic programming problem. 

4.4.1 Mathematical Formulation for Stochastic DG Placement 

This subsection proposes a novel formulation for the stochastic DG placement to 

assist the implementation of conservation voltage reduction. The objective of 

conservation voltage reduction is to minimize total load consumption through voltage 

reduction. The conservation voltage reduction effect is closely related to load-to-voltage 

sensitivity. In this study, an exponential load model is used to represent load consumption 

as a function of voltage. In order to effectively deal with the uncertain nature of DG 

outputs and load consumptions, it is necessary to formulate the problem into a stochastic 

optimization program. The detailed formulation is described as follows, Table 4.5 shows 

the nomenclature: 

Table 4.5. Nomenclature for stochastic DG placement formulation. 
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,
load
y sP  

Total active load 
consumption in s-th scenario ,t sV  

Maximum voltage deviation 
at time t in s th scenario 

, ,i y sV  
Voltage at node i in s-th 

scenario in year y s / s  
Active/reactive power 

exponent for the exponential 
model in s-th scenario 

, ,i y sP / , ,i y sQ  
Active/reactive power flow 

from node i to node i+1 in s-
th scenario in year y 

ir / ix  
Line resistance/reactance 
between node i and i+1 

, ,
l
i t sp / , ,

l
i t sq  

Active/reactive load at node i
in s-th scenario in year y , ,

g
i t sP / , ,

g
i t sq  

Active/reactive power output 
of the P at node I at time t in 

s-th scenario 

,
b

i yP / ,
b
i yQ  

Base active/reactive load for 
the exponential load model at 

node i in year y 
ftT / fhT

 
Cooling/heating reference 

temperature 

, ,i y sT
 

Temperature at node i in 
scenario s in year y 

 /   

Parameters for 
active/reactive load 

regression model w,r,t, 
temperature 

wt
ia /

pv
ia  

0 if there is no wind 
turbine/photovoltaic 

generator at node i; 1 if there 
is a wind turbine/photovoltaic 

generator at node i 

, ,
g
i y sq  

Reactive power generation at 
node i in scenario s in year y

C
iQ  Size of the capacitor at node i , ,

C
i y nX  

Switch on (1)/off (0) status 
of the capacitor at node i in 

scenario s in year 

,
, ,
g wt
i y sp /

,
, ,
g pv
i y sp  

Active power output of the 
wind turbine /photovoltaic 

generator at node i in 
scenario s in year y 

, ,
wt
i y s / , ,

pv
i y s

Stochastic wind 
turbine/photovoltaic 

generator output of one 
discrete increment at node i 

in scenario s in year y 

wts /
pvs  

One discrete increment of 
wind turbine/photovoltaic 

generator size (MVA) 
,
wt

i yF / ,
pv

i yF
Probabilistic distribution of 

, ,
wt
i y s / , ,

pv
i y s   

iF
/ iF 

 
Probabilistic distribution of 

s / s   ,
T

i yF  
Probabilistic distribution of 

, ,i y sT   

,
wt
i jb / ,

pv
i jb  

0 if the j-th increment in size 
is not necessary to compose 

the wind turbine/photovoltaic 
generator at node i; 1 if the j-

th increment in size is 
necessary to compose the 
wind turbine/photovoltaic 

generator at node i 

,i jc  
Binary indicator 

, ,i j i i jc a b  

aN / bN
 Maximum number of   Binary indicator 
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DGs/size increments in the 
feeder/at a node 

, ,
in

i y sV / , ,
out

i y sV  
Input/Output voltage of the 

voltage regulator at node i in 
scenario s in year y 

tapV
 

Voltage adjustment 
corresponding to one tap 

step 

, ,
tap

i y sT
 

Tap position of the regulator 
at node i in scenario s in year 

y 

max
iT /

min
iT

Maximum/Minimum tap 
position of the regulator at 

node i 

objf
 

The value of the objective 
function 

 /  
Parameters of a beta 

distribution 

z / ẑ
 

True/Approximate objective 
value of the original SP/SPN

k
Mz

 

The objective value 
approximated by MkSP in the 

k-th multiple replication 
procedure 

ˆ k
Mz

 

The objective value 

calculated by using ˆˆ ˆ( , , )a b c

and newly generated M 
scenarios in the k-th multiple 

replication procedure 

kG
 

Optimality gap in the k-th 
multiple replication 

procedure 

 

,min load
y s

y s

P                                                 (4.44) 

Subject to 

, , , , , ,load l
y s i y s

i

P p y s                                             (4.45) 

, , 0 1 , , 2 , , , , ,( ( ) ( )) , , , ,sl b
i y s fh i y s fc i y s i y i y sp T T T T P V i y s                     (4.46) 

, , 0 1 , , 2 , , , , ,( ( ) ( )) , , , ,sl b
i y s fh i y s fc i y s i y i y sq T T T T Q V i y s                     (4.47) 

, ,
1, , , , 1, , 1, , 1, , , , , ,l g wt g pv

i y s i y s i y s i y s i y sP P p p p i y s                                 (4.48) 

1, , , , 1, , 1, , , , , ,l g
i y s i y s i y s i y sQ Q q q i y s                                     (4.49) 

, , , ,
1, , , ,

1

, , , ,i i y s i i y s
i y s i y s

r P x Q
V V i y s

V


                                  (4.50) 

, , , , 1 , , , ,i y s i y sV V V i y s                                             (4.51) 
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,
, , , , , , , , ,g wt wt wt wt

i y s i i j i y s
j

p a b i y s                                           (4.52) 

,
, , , , , , , , ,g pv pv pv pv

i y s i i j i y s
j

p a b i y s                                           (4.53) 

, , , , , , ,wt wt
i y s i yF i y s                                                       (4.54) 

, , , , , , ,pv pv
i y s i yF i y s                                                       (4.55) 

, , ,s iF i s                                                            (4.56) 

, , ,s iF i s                                                             (4.57) 

, , , , , , ,T
i y s i yT F i y s                                                        (4.58) 

,wt pv
i i a

i i

a a N                                                         (4.59) 

, ,
wt pv
i j i j b

j j

b b N                                                          (4.60) 

In the above formulation, the objective function (4.44) minimizes the total load 

consumptions of the system during the planning horizon. The horizon is modeled in 

discrete time with 1-year time step.  

In order to represent the load-to-voltage and load-to-temperature relationships, the 

combined exponential and regression models in [3] are used in constraints (4.46-4.47). 

This study sets 0 = 0 =0.1, 1 = 1 =0.01, 2 = 2 =0.02, fhT =60 F and fcT =70 F [35, 106]. 

The parameters can be obtained using minimum covariance determinant procedure as 

introduced in [31]. The values of ,1
b

iP  and ,1
b
iQ  used in this dissertation can be found in 

[45]. It is also assumed that the annual increasing rate of load is 1% during the planning 
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horizon. The above values are used to demonstrate the effectiveness of the proposed 

stochastic DG placement model.  

Constraints (4.48)-(4.50) are linearized DistFlow equations as discussed in the 

previous section. Constraint (4.51) guarantees that the voltage deviation along the feeder 

is within a predefined range so as to achieve a deeper voltage reduction. In this paper, it 

is assumed the DGs to be connected with the system are wind turbines and photovoltaic 

generators. Constraint (4.52) decides whether there is a wind turbine connected with the 

node, while constraint (4.53) decides whether there is a photovoltaic generator connected 

with the node. To make the formulation more practical, it is assumed that a DG is made 

up by several DG units, which means the size of a DG is discrete as described by 

constraints (4.52) and (4.53) [81]. The sizes of a wind turbine and a photovoltaic 

generator can be represented as ,
wt wt
i jj

b s  and ,
pv pv

i jj
b s , respectively. Constraints (4.54) 

and (4.55) represent the stochastic output of one discrete increment of a wind 

turbine/photovoltaic generator at node i , which has been discussed in Chapter 3. 

Constraints (4.56) and (4.57) assume that the load-to-voltage sensitivities of each node 

are random variables that can be represented using normal distributions [88]. In this 

dissertation, the mean and variance of iF  are set to be 1.0 and 0.08, respectively; the 

mean and variance of iF   are set to be 3.6 and 0.1, respectively. All input parameters can 

be changed according to the available system information. Constraint (4.58) assumes the 

stochasticity of the temperature at node i  can be represented by a normal distribution ,
T

i yF . 

It is assumed that the mean and standard deviation of ,
T

i yF  are 55 F and 25 F, respectively, 

and the temperature distribution during the planning horizon remains the same. 

Constraint (4.59) indicates that the total number of DGs that can be connected to the 
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system is less than or equal to aN . Constraint (4.60) indicates that the total number of DG 

units that can be connected to a node is less than or equal to bN . In this paper, it is 

assumed that aN =3 and bN =6. The purpose of DG placement is to decide the values of ia  

and ,i jb . The system reconfiguration is not considered in the above formulation due to the 

low frequency of reconfigurations in current distribution systems. 

Some of the above constraints can be reformulated to further reduce the non-linearity 

of the problem. Equation (4.51) can be linearized as 

, , , , 0 , , ,i y s i y sV V i y s                                               (4.61) 

, , 0 , , , , ,i y s i y sV V i y s                                               (4.62) 

, , , , ,i y s i y s                                                      (4.63) 

Equations (4.52) and (4.53) include multiplications of two binary variables ia  and ,i jb . 

The bi-linear term ,i i ja b  can be replaced by 

, , ,i j ic a i j                                                       (4.64) 

, , , ,i j i jc b i j                                                      (4.65) 

, , 1, ,i j i i jc a b i j                                                  (4.66) 

, 0, ,i jc i j                                                        (4.67) 

 

 

Table 4.6. The relationship among a, b and c. 

ia  ,i jb  ,i jc  

1 1 1 
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1 0 0 

0 1 0 

0 0 0 

 

For a feeder with voltage regulators and capacitors, it is necessary to model these 

voltage/VAR control devices as follows [107]: 

, , , , , ,g C C
i y s i y s iq X Q y s                                               (4.68) 

, , , , , , , ,out in tap
i y s i y s i y sV V Tap V y s                                          (4.69) 

min max
, , , ,i y sTap Tap Tap y s                                          (4.70) 

Constraint (4.68) represents the on/off status of the capacitor at node i . Constraints (4.69) 

and (4.70) model the input-output voltage relationship of the voltage regulator at node i . 

4.4.2 Proposed Solution Algorithm 

The mathematical formulation proposed in section 4.4.1 is a stochastic optimization 

problem. There are many methodologies to solve a stochastic optimization problem, 

among which, sample average approximation is shown to be an easy and effective 

method. The intuitive idea of sample average approximation is to approximate the 

expectation term in the objective function by sampling. Based on the law of large 

numbers [81], when the size of samples is large enough, the value of the reformulated 

objective function converges to the value of the original objective function. At the same 

time, the feasible region of the reformulated problem would be equivalent to the feasible 

region of the original problem. However, as the sample size is finite in reality, it is 

important to test the quality of the solution, which is performed by the multiple 



83 
 

replications procedure in this dissertation. In this section, a combined multiple replication 

procedure-sample average approximation algorithm is proposed to solve the problem. 

The first step of sample average approximation is to generate scenarios using Monte-

Carlo simulations to replace the true distributions of uncertain variables by an empirical 

distribution which can be obtained using the Kolmogorov-Smirnov test with historical 

data. The Kolmogorov-Smirnov test is a nonparametric test to compare a sample with a 

reference probability distribution. Kolmogorov-Smirnov statistics quantify a distance 

between the empirical distribution function of the sample and the cumulative distribution 

function of the reference distribution to find the best cumulative distribution function to 

represent the empirical distribution function. The Monte-Carlo simulation generates N 

scenarios for year y, each with the same probability 1/N. Thus, there are totally S (S=N*y) 

scenarios. The objective is to obtain the minimum expected load. The general form of the 

problem can be written as 

min ( , , , )z f a b c W                                         (4.71) 

where ,( , , , ) | (4.45) (4.67)load
y sy s

f a b c W P    and W  represents random variables such as 

wind turbine/photovoltaic generator outputs, load model exponents and temperature. 

Equation (4.71) can be denoted as a stochastic program ( SP ) which depends on the 

priori knowledge of the probability distributions of the uncertain variables. Sample 

average approximation is to sample S  independent and identically distributed 

observations from the distribution of W and then solve the approximating problem 

(denoted as sSP ): 

,1

1
ˆ min ( , , , )

N
y sy s

z f a b c W
S 

                                          (4.72) 
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Thus, the original problem in (4.44)-(4.60) can be reformulated to be a mixed-integer 

non-linear program as: 

,1

1
ˆ min ( , , , )

N
y sy s

z f a b c W
S 

                                          (4.73) 

subject to (4.45)-(4.67). 

In the above mixed-integer non-linear formulation, variables ia , ,i jb and ,i jc  are first-

stage variables; variables P , Q , V  gp  and gq  are selected to be second-stage ones 

which change according to the uncertainty realizations. For a specific set of first-stage 

decisions, different costs can be associated with various scenarios.  

It is known from sample average approximation that the solutions ˆˆ ˆ( , , )a b c  are optimal 

to the stochastic program as the sample size grows into infinity. However, since ˆˆ ˆ( , , )a b c  is 

obtained by solving NSP  with a finite sample size in practice, it is necessary to test the 

quality of the solution, which is performed by the multiple replications procedure in this 

dissertation. 

The true optimal solution of the stochastic program is ( , , )a b c    with the optimal 

value z ( min ( , , , )z f a b c W  ). While ˆˆ ˆ( , , )a b c  is obtained from S scenarios in solving 

the stochastic program, new samples with M new scenarios (M is usually larger than or 

equal to N) are generated by K times in multiple replication procedure. This study defines 

the individual problem in the K*M samples as , 1, ,MkSP k K  . A new objective value 

k
Mz  can be obtained by using the same sample average approximation procedure for each 

MkSP . Since k
Mz z  , an upper bound on the optimality gap of ˆˆ ˆ( , , )a b c in the k-th 

multiple replication procedure (denote as kG ) can be estimated by 
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1 1

1 1ˆˆ ˆ( , , , ) min ( , , , )
M Mk k

m mm m
f a b c W f a b c W

M M 
                          (4.74) 

where the M  scenarios are independent and identically distributed random variables from 

the distribution of W , 
1

1 ˆˆ ˆ( , , , )
M k

mm
f a b c W

M   is calculated by using ˆˆ ˆ( , , )a b c  in the newly 

generated M scenarios. Multiple replication procedure is to repeat this procedure for 

multiple times (K times in this paper) and construct the confidence interval for the 

optimality gap. The form of the confidence interval can be describes as 

ˆˆ ˆ( ( , , , ) ) 1P f a b c W z                                     (4.75) 

where   is the confidence interval width, and 1   is the confidence, e.g., 0.95. 

Fig. 4.14 shows the flowchart of the combined sample average approximation and 

multiple replication procedure. The complete steps are as follows. 
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Figure 4.14. Flowchart of combined multiple replication procedure and sample 
average approximation. 

 



87 
 

Step1: generate S scenarios and use sample average approximation to solve the 

stochastic programming problem as defined in (4.73), obtain the candidate solution 

ˆˆ ˆ( , , )a b c ; 

Step2: generate M scenarios and use sample average approximation to solve the MSP

problem and obtain the solution ( , , )k k ka b c    and the objective value k
Mz ; 

Step3: use the solution of stochastic programming problem ˆˆ ˆ( , , )a b c  and the M 

scenarios to calculate
1

1 ˆˆ ˆˆ ( , , , )
Mk k

M mm
z f a b c W

M



  ; 

Step4: calculate the optimality gap: ˆˆ ˆ ˆ( , , ) k k
k M MG a b c z z   ; 

Step5: repeat steps 2-4 for 1,2, ,k K  ; 

Step6: calculate the mean and variance of the optimality gap by 
1

1 ˆˆ ˆ( , , )
K

kk
G G a b c

K 
   

and 2 2
1

1 ˆˆ ˆ( ( , , ) )
1

K
kk

s G a b c G
K 

 
  , then the one-sided confidence interval of the 

optimality gap is
1,

0, sK
G t K

   , where 1,Kt   is the -quartile of the t -distribution 

with 1K  degrees of freedom, this study denotes the confidence interval as [0, ] , 

where 
1, sK

G t K


  ; 

Step7: if the number of iterations exceeds the maximum value Lg, terminate the 

process; otherwise, go to step 8; 

Step8: if ( ) 100%objf  is less than a predefined value  , terminate the process; 

otherwise, increase the number of scenarios by sN  and go to step1,   is defined to 

be 5% in this dissertation. 
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Since most of the previous work in DG placement uses deterministic optimization, it 

is necessary to show how much improvement can be achieved if the stochastic nature of 

DG is taken into account. For the problem defined in equation (4.71), the random 

variable    is replaced by its expected value. The expected value problem (EV), which is 

a deterministic optimization problem, can be defined as 

min ( , , , )EV f a b c W                                      (4.76) 

where ( )W E W denotes the expectation of W . The expected value solution can be 

defined as ( , , )a b c . The expected results of using the EV solution can be represented as 

1

1
( , , , )

N
hh

EEV f a b c W
N






                                      (4.77) 

The expected results of using the expected value solution measure the performance of 

( , , )a b c , allowing second-stage decision variables to be chosen optimally as functions of 

( , , )a b c  and W . In order to measure how good or, more frequently, how bad the decision 

( , , )a b c  is, when compared with ˆˆ ˆ( , , )a b c , Monte Carlo simulation is used. Sscenarios ( S  

is usually larger than S ) are generated. The solution of the SPs problem ˆˆ ˆ( , , )a b c  is used in 

each of S scenarios to calculate ˆˆ ˆ( , , , ), 1, ,hf a b c h N   . The difference between The 

expected results of using the expected value solution and the Monte-Carlo simulation 

result can be defined as 

1

1 ˆˆ ˆ( , , , )
N

hh
D EEV f a b c W

N




 

                                      (4.78) 

Since the formulation is a minimization problem, the larger the D, the more the stochastic 

programming outperforms deterministic programming. The proposed solution algorithm 

is used to solve the stochastic DG placement model in Section 4.4.1. 
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4.4.3 Case Study 

In this research, the proposed DG placement model and solution algorithm are 

illustrated for a 37-bus radial distribution network as shown in Fig. 4.15. Details about 

the 37-bus distribution system can be found in [45]. Appendix B describes the parameters 

of the 37-bus distribution system. Assume the substation transformer is with ±5% tap 

range and 10 tap positions. Switched capacitors are installed at nodes 3, 16 and 32, each 

is 30 kVAR. Details about the test system can be found in Appendix A. The power base 

is 10 MVA, the voltage base is 12.66 kV. Table 4.7 shows the base case (without DG and 

conservation voltage reduction) of the test system. 

 

Figure 4.15. The 37-bus distribution system. 

 

It is assumed that one size increment of a wind turbine and a photovoltaic generator 

is 0.01 p.u. The Monte Carlo simulation is used to generate scenarios of wind 

turbine/photovoltaic generator output to calculate the candidate solution for the 37-node 

network. The planning horizon is assumed to be 10 years and 200 scenarios are generated 

for each year ( 200S  ), thus there are totally 2000 scenarios ( 2000N  ). The stochastic 
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program defined in section 4.4.1 is a mixed-integer nonlinear and non-convex problem. 

In this simulation, the Discrete and Continuous Optimizer (DICOPT) in the General 

Algebraic Modeling System (GAMS) is used to solve the problem. The simulation is 

performed by using a computer with Intel Quad Core 2.40 GHz and 8 GB memory. The 

computation time is around 30 minutes for the stochastic planning problem with 2000 

scenarios.  

 

Table 4.7. Base case of the test system. 

Maximum Voltage 
Deviation (p.u.) 

Active loss (p.u.) 
Total Active Load 

(p.u.) 
Substation Voltage 

(p.u.) 
0.09 0.028 0.3715 1.05 

 

Table 4.8 shows the placement results. The DG penetration level can be defined as the 

total DG generation divided by the system peak load. For the planning results, the DG 

penetration level is 30%.  

 

Table 4.8. DG placement results. 

Node No. Type Size (p.u.) 

8 
Wind turbine 0.01 

Photovoltaic generator 0.01 

13 
Wind turbine 0.03 

Photovoltaic generator 0.01 

31 
Wind turbine 0.03 

Photovoltaic generator 0.02 
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Figure 4.16. Voltage profile of the 37-buse distribution system. 

Fig. 4.16 shows the voltage profiles of the test system. There are four profiles in the 

figure: 1) base case without DG or conservation voltage reduction; 2) average voltages of 

all N scenarios without voltage reduction; 3) minimum voltages of all N scenarios without 

voltage reduction; 4) average voltages of all N  scenarios with conservation voltage 

reduction. In the base case, there is almost no potential for voltage reduction since the 

largest voltage deviation is 0.09 p.u., and the substation voltage is set to be 1.05 p.u. in 

order to make sure the end-of-line voltage is within the standard. After DG integration, 

the voltage profiles are improved largely. The voltage deviations are within 0.03 p.u. 

even for the worst case, which provides enough space for implementing voltage reduction. 

The substation voltage can be reduced from 1.05 p.u. to 0.98 p.u. with optimal placement 

of wind turbines. 
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Figure 4.17. Active load consumption of the 37-buse distribution system. 

 

Fig. 4.17 shows the active total load consumptions of three cases during the planning 

horizon (one year consists of 8760 hours): 1) the base case without DG or conservation 

voltage reduction; 2) the case with stochastic optimal DG placement (the results of the 

stochastic DG placement are shown in Table 4.8) but without voltage reduction; 3) the 

case with stochastic optimal DG placement and with conservation voltage reduction. It 

can be seen that the load consumptions of the base case are much higher than the other 

two cases. This shows the effectiveness of the stochastic optimal DG placement in 

improving the system operation. Moreover, significant load consumptions can be reduced 

by conservation voltage reduction, which shows that more energy savings can be 

achieved if the implementation of conservation voltage reduction and the placement of 

DG are considered simultaneously. 
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Figure 4.18. Optimality gap in multiple replication procedure (the optimality gap is 
defined in equation 4.74). 

 

Table 4.9. Values of optimality gaps in multiple replication procedure. 

K* 1 2 3 4 5 6 7 8 9 
Optimality 

gap 
-0.011 0.012 0.010 0.014 0.012 0.008 0.007 -0.009 0.004

K 10 11 12 13 14 15 16 17 18 
Optimality 

gap 
0.015 0.012 0.009 0.013 0.009 0.013 0.007 0.011 0.007

K 19 20 21 22 23 24 25 26 27 
Optimality 

gap 
-0.001 0.009 0.01 -0.008 0.011 0.019 0.009 0.019 0.002

K 28 29        
Optimality 

gap 
-0.010 0.017        

*K is the number of iterations in the multiple replication procedure 

As discussed in sections 3.4 and 4.4.2, the multiple replication procedure can be used 

to validate the quality and stability of the candidate solutions of the stochastic program. 

The candidate solution is tested against 29 samples ( 29K  ), each with a sample size of 

2500 ( 2500M  ). The optimality gaps are shown in Fig. 4.18, and the values are listed in 
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Table 4.9. The mean value of gaps is 0.007586G  , and the standard deviation is

0.008231s  . The confidence interval for the optimality gap is [0, 0.0102] with 0.05  , 

which means that there is a chance of 95% that the optimality gap is within the 

confidence interval. Thus, the candidate solution of the stochastic programming is very 

stable and of high quality. 

To show the performance of the stochastic program, 3000N   scenarios are 

generated, and use W  in solving the deterministic optimal DG placement. The 

formulation of the deterministic optimal problem is similar to the stochastic formulation; 

the only difference is that all random variables are substituted by their mean values. The 

problem is solved by the general algebraic modeling system [90]. Recall the solution of 

this deterministic problem is defined as the expected results of using the expected value 

solution. 

 

 

Figure 4.19. Comparison of the expected results of using the expected value solution 
(EEV) and Monte Carlo simulation. 
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The DG placement results are: wind turbines should be placed at nodes 6, 8 and 30, 

with the sizes of 0.01 p.u., 0.02 p.u. and 0.03 p.u., respectively, and photovoltaic 

generators should be placed at nodes 6, 8 and 30, with the size of 0.01 p.u., 0.02 p.u. and 

0.01 p.u. As shown in (4.78), Monte Carlo simulation is run to compare the performances 

of the deterministic placement and the stochastic placement. Fig. 4.19 shows the 

comparison results. The deterministic solution is worse when wind turbine output is 

stochastic. Considering the probabilistic nature of DG output in practice, the proposed 

stochastic programming is more suitable and realistic. 

4.5 Summary 

This chapter applies the stochastic optimization theory in Chapter 3 to develop a 

rolling horizon optimization-based method for voltage/VAR control based on forecasted 

DG outputs and load consumptions. The model considers exponential load models and 

the probabilistic nature of prediction errors of DG outputs and load consumptions. The 

voltage/VAR control problem is formulated as a stochastic mixed-integer nonlinear 

program (MINLP) with the purposes to minimize power losses and feeder voltage 

deviations. Different types of customers (residential, commercial and industrial 

customers) in a distribution system are taken into account by assigning corresponding 

exponents in the load models. Monte-Carlo simulations are run to generate scenarios of 

DG outputs. The MINLP is solved with reduced scenarios. Case studies on the modified 

33-bus test system with two wind turbines, one photovoltaic generator and different types 

of loads verify the effectiveness of the proposed voltage/VAR control technique. The 

proposed voltage/VAR control can reduce losses by up to 77% and reduce maximum 

voltage deviations by up to 65%. The stochastic voltage/VAR control technique produces 
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from two to three times greater benefits than the deterministic approach. Finally, it 

appears that significant differences exist in voltage/VAR control dispatches when load 

models are taken into account. Since the practical load is a mixture of constant-power 

loads and voltage-dependent loads, it is more reasonable to use the voltage dependent 

load model to represent load behaviors. Moreover, Fig. 4.12 shows that using the 

exponential load model, the analysis estimates both active power losses and maximum 

voltage deviations to be slightly lower compared to simulations using constant power 

loads. The main differences between the proposed formulation and the existing 

voltage/VAR control techniques are: (1) the proposed formulation uses exponential load 

models to capture the load-to-voltage relationship, while most existing papers use 

constant power load models which cannot correctly represent the load-to-voltage 

behaviors; (2) the uncertainties of load consumption and renewable DG generation are 

fully considered in the proposed formulation. The simulation is only illustrated on an 

IEEE 33-bus distribution system. It would be beneficial to test the proposed method on 

this IEEE 33-bus system with different penetration levels of DGs, and on larger IEEE 

benchmark test systems.  

Based on the sample average approximation and multiple replication procedure 

introduced in Chapter 3, this chapter also presents a new DG placement strategy to assist 

the implementation of conservation voltage reduction. The DG placement is defined as a 

stochastic optimization problem to enable the distribution system to realize deeper 

voltage reduction to decrease load consumptions. In order to deal with the uncertain 

nature of DG outputs and load consumptions, a combined sample average approximation 

-multiple replication procedure-based algorithm is developed to obtain the optimal 



97 
 

solution. The quality of the optimal solution is validated by calculating its confidence 

interval using multiple replication procedure. The case studies show the effectiveness of 

the proposed formulation and prove that significant power reduction can be achieved, if 

the integration of DG and implementation of conservation voltage reduction is considered 

simultaneously. The main contribution of this work is the proposed solution method 

which has combined the sample average approximation and the multiple replication 

procedure.  

This chapter focuses on the implementation of conservation voltage reduction. The 

next chapter discusses methods to assess the conservation voltage reduction effects.  
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CHAPTER 5 ASSESSMENT OF VOLTAGE/VAR 

CONTROL/CONSERVATION VOLTAGE 

REDUCTION EFFECTS 

5.1 Overview 

One important function of voltage/VAR control is conservation voltage reduction. 

Conservation voltage reduction lowers voltages on the distribution system in a controlled 

manner. Conservation voltage reduction can reduce peak demand and achieve energy 

savings, while keeping the lowest customer-utilization voltage consistent with levels 

determined by regulatory agencies and standards setting organizations. Unlike demand 

response programs, conservation voltage reduction is imposed by utilities. Conservation 

voltage reduction is shown to be an established and cost-effective way to reduce peak 

demand and energy consumption, which has motivated many utilities to investigate its 

application in individual systems [52, 55, 108, 109]. The conservation voltage reduction 

effect is evaluated by the Conservation Voltage Reduction factor (CVRf), which is the 

change in load consumptions to the change in voltage, defined as follows [23]: 

( ) /%

% ( ) /
cvroff cvron cvroff

f
cvroff cvron cvroff

P P PLoad Change
CVR

Voltage Reduction V V V


 

                          (5.1) 

where cvronP  and cvroffP  represent the active load consumption with and without 

conservation voltage reduction, respectively; cvronV  and cvroffV  represent the voltage with 

and without conservation voltage reduction, respectively. 

Utilities would like to know which feeders are suitable to implement conservation 

voltage reduction. There are two challenges to answer this question: firstly how to 
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quantify the conservation voltage reduction factor of tested feeders; secondly how to 

select preferred feeders when conservation voltage reduction factors vary from time to 

time and from feeder to feeder. The major issue in evaluating the conservation voltage 

reduction effect is to find what the load would be without voltage reduction during the 

conservation voltage reduction test period. As shown in Fig. 5.1, lines AE, BC and FD 

represent a measured load profile with voltage reduction. The challenge is to estimate the 

dotted line EF. 

 

Figure 5.1. Load profiles with and without voltage reduction. 

 

In this chapter, a data-driven method based on multistage support vector regression is 

proposed to estimate the normal-voltage load consumption during the conservation 

voltage reduction period. To consider the probabilistic nature of conservation voltage 

reduction effects, a statistical method is proposed to assist utilities to select feeders with 

the best conservation voltage reduction performance. In addition, this chapter also 

proposes a model-driven method to assess the conservation voltage reduction effects. 
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This new method is based on load model identification. The model-driven method is 

completely different from the existing methods and calculates conservation voltage 

reduction factors through load-to-voltage sensitivities.  

5.2 Data-driven Assessment by Multistage Support Vector Regression 

This section proposes a multistage support vector regression method to assess the 

conservation voltage reduction effects. In section 5.2.1, the basic concepts of support 

vector machine and support vector regression are introduced. In section 5.2.2, a 

multistage support vector regression method is developed to estimate what the load 

would be if there were no voltage reduction during the conservation voltage reduction 

period.  

5.2.1 Support Vector Machine and Support Vector Regression 

In machine learning, support vector machines are supervised learning models [73] 

with associated learning algorithms that analyze data and recognize patterns, used for 

classification and regression analysis. A support vector machine constructs a hyperplane 

or set of hyperplanes in a high- or infinite-dimensional space, which can be used for 

classification, regression, or other tasks. The two key ideas of support vector machines 

are: the maximum margin solution for a linear classifier; and the “kernel trick” which is a 

method of expanding up from a linear classifier to a non-linear one in an efficient manner. 

The basic concept of support vector regression is summarized from references [73-75] in 

the following parts.  

Suppose there is a set of training data  1
,

n
i i i

x y
 , where ix  is the input pattern, and

1iy    which denotes the associated output value of ix . Let the perpendicular distance 
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from the hyperplane to the nearest +1 class point be denoted d , and similarly d  for -1 

class. The margin is defined as min( , )d d   and the support vector machine solution looks 

for the weight vector that maximizes this margin. If the equation 0( ) w.xf x    defines a 

discriminant function, i.e., the output is sgn( ( ))f x , then the hyperplane 0w.xc c  defines 

the same discriminant function for any 0c  . Thus, the scaling of w  can be chosen so 

that 0 1w.x   . Therefore, 

0 1 1w.x for iy                                               (5.2) 

0 1 1w.x for iy                                               (5.3) 

Equations (5.2) and (5.3) can be combined into one set of constraints 

0( ) 1 1,...,w.x foriy i n                                          (5.4) 

By considering the geometry that for the maximum margin solution d d  , there is at 

least one data point in each class for which 0( ) 1w.xiy   . Consider a point x  for 

which the quality in (5.2) holds; this gives 0 1.wx    . Similarly, for a point x  for 

which the quality in (5.3) holds; this gives 0 1.wx     . Let these two hyperplanes be 

denoted as H  and H , respectively. The perpendicular distance ( )d d   between the two 

hyperplanes can be calculated as ˆ .( ) 2w wx x    , where ŵ  is the unit vector w w  . 

Therefore, to maximize the margin, 2
w  can be minimized subject to the constraints in 

(5.4) as follows: 

w i i i
i

y x                                                         (5.5) 

The constrained optimization problem can be set up using Lagrange multipliers, and 

solved using numerical methods. The form of the solution is 
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2

0

min

. . ( ) 1, 1,...,

w

w.xis t y i n   


                                  (5.6) 

where i  represents non-negative coefficient determined numerically. It can be seen that 

the solution in the form of (5.5) is a linear combination of ix . The key feature of equation 

(5.5) is that i  equals zero for every ix  except those which lie on the hyperplanes H  or 

H , and these points are the support vectors. It is clear that not all of the training points 

contribute to the final solution, which is referred to as the sparsity of the solution. The 

support vectors lie closest to the decision boundary. The optimization problem for finding 

the i  is convex, which means there are no local minima. This is in contrast to the 

optimization problem for neural networks, where there are local minima. After obtaining 

the solution as shown in (5.5), predictions for a new input x  can be made as follows: 

0 0( ) sgn( ) sgn( ( . ))x w.x xi i i
i

g y x                            (5.7) 

It can be seen that x  enters this expression on terms of the inner product .x ix .  

The problem defined in (5.6) is suitable for the linearly separable cases. In practice, 

there are many cases in which the data is not linearly separable. An objective function 

that trades off misclassifications against minimizing 2
w  can be set up to find an optimal 

compromise. A slack variable 0i   should be added for (5.2) and (5.3) to find the 

compromise: 

0 1 1w. fori i ix y                                                 (5.8) 

0 1 1w. fori i ix y                                                 (5.9) 
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Fig. 5.2 shows the idea of adding the slack variable, i.e., the constraints (5.2) and (5.3) 

can be violated, but a penalty will be added [110]. Therefore, the function to be optimized 

is given by  

2
( )w i

i

J C                                                        (5.10) 

where C is the parameter that determines the weights of the slack variables and 2
w . 

 

Figure 5.2. A non-separable example with support vectors shown in ringed points. 

The solution of (5.10) is given by 

w i i i
i

y x                                                         (5.11) 

where i  is obtained from solving a quadratic programming problem. In this case, the 

support vectors with 0i   are not only those data points which lie on the separating 

hyperplanes, but also those that have non-zero i . 

The discriminant function in (5.8) and (5.9) is linear. In order to generalize support 

vector machine to non-linear discriminant functions, it is necessary to apply a kernel trick 

as shown in [110]. It should be noted that the only way the data points appear in the 
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testing phase with a new input x  is as .x ix . Suppose an input x  can be mapped into 

some other space   with a dimension N  by the mapping : dR   .   is the feature 

space defined by the mapping  . The maximum margin algorithm can construct a 

separating hyperplane in the feature space by evaluating inner products in feature space 

of the form ( ). ( )i jx x  . If there was a function so that ( , ) ( ). ( )i j i jk x x x x  , then the 

function k  can be used in the algorithm. The function k  is called the kernel function. 

Thus, predictions for a new input x  can be made by modifying equation (5.7) as: 

0

0

( ) sgn( ( ( ). ( )) )

sgn( ( . ) )

x x

x

i i i
i

i i i
i

g y x

y k x

   

 

 

 



                                   (5.12) 

with the i  and 0  determined by a quadratic programming problem.  

Support vector regression (SVR) is based on the similar idea of support vector 

machine as discussed above. Support vector regression finds a nonlinear map from the 

input space to the output space and maps the input data to a higher dimensional feature 

space through this map. For the classification problem as shown in (5.7), the sgn function 

can be removed and the prediction be expressed as 

0( )x w.xf                                                    (5.13) 

A ε-insensitive error function can be defined as follows: 

( )
0

if

otherwise

z z
E z

   
 


                                                 (5.14) 

By minimizing the following error function 

( ( ))i i
i

C E y f x                                                        (5.15) 

a solution can be obtained as 
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w i i
i

x                                                             (5.16) 

where many of the coefficients i  are zero. The data points which lie inside the ε-tube 

have 0i  , those on the edge or outside have non-zero i . Similarly, the problem can be 

kernelized so that the prediction is expressed as 

0( ) ( , )i i
i

f x k x x                                                     (5.17) 

In general, linear regression in the feature space is made by the following estimation 

function: 

( ) , ( )f x x b                                                          (5.18) 

Where ( )x  is the nonlinear mapping from the input space to the high-dimensional 

feature space,   denotes the coefficients that need to be estimated, and b  is a real 

constant that also has to be estimated. The support vector regression solves an 

optimization problem [86]: 

1

1
min ( )

2

n
T

i i
i

C    



                                                   (5.19) 

subject to 

, ( )i i iy x b                                                         (5.20) 

, ( )i i ix b y                                                        (5.21) 

, 0i i                                                               (5.22) 

where i
 is the slack variable of the upper training error ( i is the lower one) subject to the 

ɛ-insensitive tube ( , ( ) )y x b     , The constant 0C  determines the tradeoff between 

the flatness of f and its accuracy in capturing the training data. The constraints of (5.20)-
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(5.22) imply that most of the data ix are placed inside the tube  . If ix is outside the tube, 

there is an error i or i
 that needs to be minimized in the objective function. Support 

vector regression avoids underfitting and overfitting of the training data by minimizing 

the regularization term T  as well as the training error
1
( )

n
i ii

C  


 . 

By introducing the Lagrange multipliers i and i
 , the support vector regression 

training procedure is to solve the dual problem of (5.19): 

, , 1 1 1

1
min ( )( ) ( , ) ( ) ( )

2

n n n

i i j j i j i i i i i
i j i i

Q x x y
 

        


   

  

             (5.23) 

subject to 

1
( ) 0

n
i ii

 


                                                     (5.24) 

0 ,i i C                                                        (5.25) 

where ( , ) ( ), ( )i j i jQ x x x x  is the kernel function. In this dissertation, the Gaussian 

kernel as defined in (5.26) is used. 

2 2( , ) exp( 2 )i j iQ x x x x                                          (5.26) 

The support vector regression output is: 

1
ˆ ( ) ( ) ( , )

n
i i ii

f x Q x x b 


                                         (5.27) 

5.2.2 Data-driven Assessment by Multistage Support Vector Regression 

The major issue in calculating the conservation voltage reduction factor is to estimate 

cvroffP , which represents what the load would be if there were no voltage reduction during 

the conservation voltage reduction period. Fig. 5.3 demonstrates a peak-time 

conservation voltage reduction test result. The dark bold line represents the measured 
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load profile which can be divided into three parts: preP , redP  and postP . preP  represents the 

load consumption before voltage reduction is applied. redP  represents the load 

consumption during the voltage reduction period. postP  represents the load consumption 

after voltage reduction ends. Therefore, preP  and postP  represent load consumption with 

the normal voltage level, and redP  represents the load consumption with reduced voltage 

level. The dotted line estP  in the figure shows what the load would be if there were no 

voltage reduction during the conservation voltage reduction period. The value of estP  

cannot be measured, and has to be estimated if required. 

 

 

Figure 5.3. Demonstration of conservation voltage reduction test. 

 

If estP  can be estimated, then the conservation voltage reduction factor can be calculated 

as follows: 

2 2( ( ) ) / ( )

( ) /
est cvron est

f
cvroff cvron cvroff

P T P P T
CVR

V V V




                                       (5.28) 
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where  cvroffP  represent the active load consumption without conservation voltage 

reduction; cvronV  and cvroffV  represent the voltage with and without conservation voltage 

reduction, respectively. 

In this dissertation, a multistage support vector regression-based technique is applied 

to estimate estP  so that the conservation voltage reduction factor can be calculated. One 

important characteristic of the conservation voltage reduction test data (i.e., load profiles 

with voltage reduction) is that preP and postP  can be used to find non-test load profiles 

(i.e., load profiles without voltage reduction) that are similar to the test profile. In order to 

estimate what the load consumption would be if there were no voltage reduction, the first 

step is to reconstruct the time series of the load consumption. In this dissertation, the load 

is represented by (5.29). 

1 7( , , , )j j j j jL f L L T H                                         (5.29) 

where jL  represents load of day j, 1jL   and 7jL   are vectors representing load profiles of 

the previous day and of the same day in the previous week, jT  is a vector representing 

temperature profile of day j, jH  is a vector representing humidity profile of day j. 

A load estimation model that is trained based on the entire available data is called 

global estimators. However, a better model can be trained by using only the set of points 

that are close to the point under estimation, which is defined as local estimators [87]. 

preP  and postP  can be used to select load profiles that are similar to the current profile 

under estimation from the entire available load data so as to construct the local-estimator 

subset. Based on the above analysis, a multi-stage support vector regression framework is 

proposed in this dissertation and used to estimate estP . As shown in Fig. 5.4, measurement 
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data such as power and voltage of both test days (i.e., reduced voltage is applied during 

test days) and non-test days (i.e., normal voltage is applied during non-test days) are 

stored in the database. The rest of the flowchart can be classified into three stages. 

 

Figure 5.4. Multistage support vector regression framework for conservation voltage 
reduction analysis (MAPE represents mean average percentage error). 

 
(1) First-stage: Select Similar Profiles by Euclidian Distance 
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The purpose of the first stage is to select load profiles that are similar to the current 

profile under estimation from all available historic data. The similarity between a non-test 

day k  and the test day i  is defined by a Euclidian distance-based index: 

1 3

2

1
,

( )
100%

max( )

N
i ik

pk
i
i T T

P P

P N






 

                                      (5.30) 

where pk  is the Euclidian distance-based power index for the k-th non-test day, iP  

represents active load at time i on a conservation voltage reduction test day, ikP  represents 

active load at time i on k-th non-test day, 1T  and 3T  represent the pre-conservation voltage 

reduction period and post-conservation voltage reduction period as shown in Fig. 5.3, and 

max( )P  represents the maximum active power of all load profiles under investigation. By 

this action, the differences of peak loads of all profiles are maintained. It is clear that the 

smaller the index, the closer the profile is to the one under estimation.  

 

Figure 5.5. Load profiles with and without voltage reduction. 
 

For example, Fig. 5.5 shows three measured load profiles. Profile A represents the 

load consumption on a voltage-reduction day. The purpose is to estimate what the load 
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would be if there were no voltage reduction in profile A. Profiles B and C represent the 

load consumption on two normal-voltage days. Compared with profile C, profile B is 

closer to profile A. Therefore profile B is included in the training set. 

(2) Second-stage: Load Consumption Estimation 

Support vector regression is used as the core algorithm in the second stage to 

estimate estP . In order to show the performance of support vector regression, the support 

vector regression is compared with multi-linear regression using a practical dataset. 

Typical peak-time voltage reduction tests are performed by a utility company on five 

feeders. Overall, data of 275 days are recorded, of which 120 days are voltage-reduction 

days. Data of the 155 days without voltage reduction are used to evaluate the 

performances of support vector regression and multi-linear regression. For the 155 

normal-voltage days, the load data of 55 days are randomly selected to be the validation 

set, and data of the remaining 100 normal-voltage days belong to the training set. The 

estimated load is represented as shown in (5.29). The multi-linear regression model used 

in this section is defined as 

0 1, 2,1,3,7 0,1,7

2 3
3, 4, 5,0,1,7 0,1,7 0,1,7

2 3
6, 7,0,1,7 0,1,7

ˆ
j l j l l j ll l

l j l l j l l j ll l l

l j l l j ll l
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H H
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  

 

  

    

  

  

  

 

 
  
 

                    (5.31) 

Fig. 5.6 shows estimation results of Feeder 1 on a day in February. The SVR model 

developed in this study has a better performance than the MLR benchmarking model as 

specified in (5.31).  
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Figure 5.6. Comparison of support vector regression and multi-linear regression. 

 

The estimation errors of support vector regression and the multi-linear regression 

benchmarking model in (5.31) are quantified by the mean absolute percentage error 

(MAPE), normalized mean square error (NMSE) and relative error percentage (REP). 

The definitions of mean absolute percentage error, normalized mean square error and 

relative error percentage are listed as follows [73]: 
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                                                (5.34) 

where iA  is the actual value and iF  is the forecasted value. Estimation errors of the days 

in the validation dataset are averaged and shown in Table 5.1. It can be seen that the 

support vector regression model provides better estimation than the MLR model. 

 

Table 5.1. Estimation errors of support vector regression and multi-linear regression 

 MAPE REP NMSE 
Support vector 

regression 
1.20 1.48 0.02 

Multi-linear 
regression 

3.81 4.22 0.06 

 

The support vector regression model has smaller estimation errors than the multi-

linear regression benchmarking model. Thus, support vector regression is used in the 

second stage for time-series learning and prediction. The results shown in Fig. 5.6 are 

calculated by models that are trained with the entire-period data. If the support vector 

regression model and the multi-linear regression model are trained with partial-period 

data (e.g., data of only periods T1 and T3 in Fig. 5.3), the performance may be different, 

but a detailed comparison and evaluation of this effect is not included in this study.  

(3) Third-stage: Re-select Load Profiles 

By taking advantage of the pre-selecting step, the proposed method is expected to 

have lower errors. However, the accuracy of conservation voltage reduction effect 

estimation is highly dependent on the accuracy of the estimated load. Detailed analysis of 

impacts of load estimation errors on conservation voltage reduction factor calculation can 
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be found in section 5.2.3. Lower conservation voltage reduction factors and higher mean 

absolute percentage errors can result in larger errors of the estimated conservation voltage 

reduction factors. In this stage, the estimated load profiles are re-selected to further 

reduce the estimation errors. Since cvroffP  is unknown on a voltage-reduction day, the 

mean absolute percentage errors between 1 3( , )estP T T  and preP , postP  are used for re-

selection. If the mean absolute percentage error is smaller than 0.8, estP  is stored for 

further analysis, otherwise, it is discarded. 

In order to show the performance of the proposed multistage support vector 

regression model, this study calculates the relative errors between forecasted loads and 

actual loads in the validation dataset. The relative error of an estimation point i can be 

defined as 

i i
i

i

A F
RE

A


                                                  (5.35) 

where iA  is the actual value and iF  is the forecasted value. The mean of all the RE values 

is 0.134, and the variance is 0.0692. 

The first stage of the proposed method is to select load profiles to form a training 

dataset. The data of voltage-reduction days cannot be used to verify whether the pre-

selection of the training data can improve the accuracy of the load estimation since the 

load at the normal-voltage is unknown. As introduced before, data of 275 days are 

recorded, of which 120 days are voltage-reduction days. Data of the 155 days without 

voltage reduction are used to evaluate the performance improvement by conducting pre 

selection. Fig. 5.9 shows the load profile of one normal-voltage day. It is assumed that 

the first 50-minute data and the last 50-minute data are used to perform the pre-selection. 
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The Euclidian distance based indices of the remaining 154 normal-voltage days are 

calculated by (5.30) and ranked. For illustration, 120 days of these 154 days are selected 

to form the training dataset. If there is no pre-selection, all of the 154 normal-voltage 

days are included in the training set. Fig. 5.9 shows that the estimation performance of 

support vector regression is improved by performing the pre-selection. The mean average 

percentage estimation errors with pre-selection and without pre-selection are 0.29 and 

0.78, respectively.  

 

Figure 5.7. Comparison of support vector regression with and without pre-selection 
in forming the training dataset for a single normal-voltage day. 

 

5.2.3 Impacts of Load Estimation Error on Conservation Voltage Reduction Assessment 

Equations (5.36a)-(5.36d) show how load estimation errors impact the accuracy of 

conservation voltage reduction effect estimation. In (5.36d), feCVR  represents the 

estimated conservation voltage reduction factor, and factCVR  represents the actual 

conservation voltage reduction factor which is impossible to known. cvronV  and cvroffV  



116 
 

represent voltage levels with and without voltage reduction, respectively. cvronP  represents 

the load consumption with voltage reduction, eP  represents the estimated load 

consummation without voltage reduction, actP  represents the actual load consumption if 

there were no voltage reduction and is unknown. ( )act e actP P P    represents the 

estimation error of the load consumption without voltage reduction. If there is no 

estimation error ( 0  ), feCVR  equals factCVR . Though factCVR  is unknown, it can be seen 

that as   becomes larger, feCVR differs more from factCVR . Moreover, the impacts of   

are enlarged if the conservation voltage reduction effect is small (   approximates 1). 
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( ) /
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cvroff cvron cvroff

P P P
CVR

V V V




                                (5.36a) 

( ) /

( ) /
act cvron act

fact
cvroff cvron cvroff

P P P
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V V V


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                              (5.36b) 

(1 ) , /
act e red act

P P P P                                      (5.35c) 
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CVR

CVR

 
 

   
                                   (5.36d) 

Equation (5.36) has shown that the load estimation errors result in the errors of the 

calculated conservation voltage reduction factors.  

In (5.36b), assume ( )cvroff cvron cvroffV V V V   , then 

( ) 1act red act
fact

P P P
CVR

V V

 
 

                                  (5.37) 

1 factV CVR                                                  (5.38) 

By using (5.36d) and (5.38), 
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                                  (5.39) 

For a calculated conservation voltage reduction profile, the band for the corresponding 

actual conservation voltage reduction factors can be calculated by (5.39) and using 

assumed load estimation errors. 

Fig. 5.7 demonstrates the relationship among the mean absolute percentage errors of 

estimation, assumed actual conservation voltage reduction factors and errors of 

conservation voltage reduction effect estimation.  

 

Figure 5.8. Relationship of estimation errors of load, actual conservation voltage 
reduction factors and estimation errors of conservation voltage reduction factors. 
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Figure 5.9. Contour of estimation errors of load, actual conservation voltage 
reduction factors and estimation errors of conservation voltage reduction factors. 

 

Fig. 5.8 shows the contour of the relationship among estimation errors of load, actual 

conservation voltage reduction factors and estimation errors of conservation voltage 

reduction factors. For a certain conservation voltage reduction factor, higher load 

estimation errors indicate larger errors in the assessment of conservation voltage 

reduction effects. For a certain load estimation error, smaller conservation voltage 

reduction factors indicate larger errors in the assessment results, i.e., small conservation 

voltage reduction effects are more sensitive to the accuracy of load estimation. The above 

analysis of impacts of load estimation errors on conservation voltage reduction 

assessment can be used for all assessment methods that are based on estimating what the 

load would be if there were no voltage reduction. For example, the conservation voltage 

reduction factor is 0.84 for Avista Utility in Table 2.1. If the load estimation error is 

assumed to be 1%   , and the voltage reduction level is assumed to be V =4%, then 



119 
 

the range of the actual conservation voltage reduction factors can be calculated by (5.39), 

and the actual CVR factors are within the range between 0.58 and 1.10 . 

5.2.4 Numerical Studies for Data-driven Assessment 

As discussed in section 5.2.2, the typical test data for a day can be divided into three 

parts: pre-conservation voltage reduction period, conservation voltage reduction period, 

and post-conservation voltage reduction period. The proposed multistage support vector 

regression is applied to estimate what the load would be if there were no voltage 

reduction. For illustration, Fig. 5.10 shows how the proposed method works to evaluate 

the conservation voltage reduction effect of Feeder 1 on one of the 120 voltage-reduction 

days. As shown in the figure, conservation voltage reduction starts at 140 minutes and 

ends at 420 minutes; this part of data is defined as redP in Section 5.2.2. The first 140-

minute data and the last 180-minute data are defined as pre-conservation voltage 

reduction ( 1T ) and post-conservation voltage reduction data ( 3T ), respectively. The load 

consumption without conservation voltage reduction on that test day is estimated by a 

trained model. The model is trained by data of 63 pre-selected normal-voltage days. To 

assess the conservation voltage reduction effects of other days, the model needs to be 

retrained by a new training set with reselected data. The estimated load and the load data 

with conservation voltage reduction are shown in Fig. 5.10. 
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Figure 5.10. Voltage profile, actual load profile (with conservation voltage reduction) and 
estimated load profile by multistage support vector regression (MSVR based on 63 

training days). 
 

Fig. 5.11 shows conservation voltage reduction factors calculated by the multistage 

support vector regression. The conservation voltage reduction factors are not constant but 

always fluctuating and tend to decrease during test periods. Therefore, continuous 

monitoring and real-time conservation voltage reduction factor calculations are necessary.  

 

Figure 5.11. Conservation voltage reduction factors calculated by multistage support 
vector regression. 
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For the estimated CVR factors shown in Fig. 5.11, the band for the corresponding actual 

CVR factors can be calculated by (5.39) with the assumption that V =4% and an 

assumed load estimation error of 1%   , and the results are shown in Fig. 5.12. The 

upper bound of the actual CVR factors is about 125% of the estimated CVR factors, and 

the lower bound of the actual CVR factors is around 75% of the estimated CVR factors.  

 
Figure 5.12. Band for actual conservation voltage reduction factors in data-driven 

assessment. 
 

5.2.5 Statistical Analysis 

Because of the variability of conservation voltage reduction factors, it is necessary to 

evaluate the conservation voltage reduction effect of each feeder in a probabilistic way. 

In order to compare the conservation voltage reduction performances of different feeders, 

the Kolmogorov-Smirnov goodness-of-fit test is applied in this study. The purpose of the 

test is to find a distribution (e.g., Normal distribution, Gamma distribution, etc) that can 

represent a dataset. The Kolmogorov-Smirnov test computes the test error  , which is 

the maximum vertical distance between an empirical cumulative distribution function and 
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a fitted cumulative distribution function. This error is compared to a critical value crit , 

and a probability distribution fit that satisfies crit  could be accepted. Fig. 5.12 shows 

the conservation voltage reduction factor for one voltage-reduction day of Feeder 1. 

Similar analyzes are performed for 10 voltage-reduction days of the same feeder and the 

results are summarized in Figs. 5.13 and 5.14.  

Fig. 5.13 shows the differences between the cumulative distribution function of 

conservation voltage reduction factors of Feeder 1 and various other cumulative 

distribution functions (normal, Weibull with 2 parameters, Rayleigh and Exponential). 

The normal distribution is closest to the cumulative distribution of the feeder.  

 

Figure 5.13. Cumulative probability of conservation voltage reduction factors of Feeder 1 

 

Fig. 5.14 shows the histogram of the conservation voltage reduction factors of 

Feeder 1.  
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Figure 5.14. Histogram of CVR factors of Feeder 1. 

Similar analyses can be performed for 10 voltage-reduction days of the other 4 

feeders. Table 5.2 shows the Kolmogorov-Smirnov test errors subject to a normal 

distribution and the maximum likelihood estimates for parameters.   is the mean and   

is the standard deviation, 0.0258crit   for the normal distribution fit to the empirical 

distribution with a level of significance 5%. 

Table 5.2. Results of conservation voltage reduction factor calculations of feeders 

Feeder No.   
 (MEAN)   (STD) 

1 0.0205 0.9716 0.0868 

2 0.0122 1.1061 0.0697 

3 0.0195 1.0191 0.0687 

4 0.0209 1.0503 0.1056 

5 0.0185 0.9702 0.1532 

  represents the Kolmogorov-Smirnov test error,   represents the mean,   represents 
the standard deviation 

 

Fig. 5.15 shows the cumulative normal distribution functions of conservation voltage 

reduction performances of all feeders. The cumulative normal distribution function gives 
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the probability that the variable fCVR  takes a value less than or equal to some specified 

value f spcCVR  .  

 

Figure 5.15. Cumulative normal distribution functions of conservation voltage 
reduction factors of all test feeders. 

 
Table 5.3 summarizes conservation voltage reduction effects of the five studied 

feeders. It shows the percentiles, which represent the certainty level of achieving a 

conservation voltage reduction factor below a particular threshold. The maxfCVR  and 

minfCVR represent maximum and minimum conservation voltage reduction factors at 

different percentile levels. For example, if a line is drawn at 25% cumulative probability 

in Fig. 5.15, the intersections between the line and the cumulative distribution curves 

indicate that CVRf-max=1.0593 (the rightmost intersection) and CVRf-min=0.8673 (the 

leftmost intersection). For all five feeders, the minimum conservation voltage reduction 

factor is 0.6137; and the maximum conservation voltage reduction factor is 1.3279.  
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Table 5.3. Summary of conservation voltage reduction factors of all test feeders 

Percentile 0% 25% 50% 75% 100 

CVRf-max 0.9444 1.0593 1.1062 1.1531 1.3279 

CVRf-min 0.6137 0.8673 0.9708 1.0303 1.1737 

 

If there are no intersections among the cumulative distribution function curves like 

Feeders 1 and 3 in Fig. 5.15, then the cumulative distribution function on the far right of 

the cumulative distribution function chart offers the best opportunity for achieving the 

highest conservation voltage reduction factor at every confidence level, and this feeder is 

the best conservation voltage reduction candidate. If the cumulative distribution function 

curves intersect (as they are in this example), then the best feeder is the one that gives the 

highest conservation voltage reduction factor with the predefined certainty level. For the 

cumulative distribution function curves in Fig. 5.15, if the certainty level is defined to be 

90% for example, then it is clear that Feeder 2 is the best candidate and Feeder 1 exhibits 

the worst performance. 

5.3 Model-driven Assessment 

In section 5.2, a multistage support vector regression-based method is proposed to 

assess the conservation voltage reduction effects. This method requires historic load data 

to train the support vector regression model. Moreover, it can only be applied to assess 

the peak-time conservation voltage reduction since the load consumption before voltage 

reduction and after voltage reduction ends is needed in the first stage of the proposed 

method. In this section, a new method based on load model identification is presented to 

assess the conservation voltage reduction effects. The proposed method in this section 
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can be applied to assess the load reduction effects of both peak-time and continuous 

conservation voltage reduction. Most of the previous methods to assess conservation 

voltage reduction effects are based on the idea to estimate what the load would be if there 

were no voltage reduction during the conservation voltage reduction period and then do 

the comparison. In this section, a new method to assess conservation voltage reduction 

effects is proposed. It is assumed in this method that loads can be modeled as functions of 

the supplied voltage. The conservation voltage reduction effects can be assessed by 

estimating the load-to-voltage sensitivities in these functions. For example, conservation 

voltage reduction effects decrease when load-to-voltage sensitivities change from a 

constant-impedance type load to a constant-power type. Conservation voltage reduction 

factors can be calculated by identifying the time-varying load-to-voltage sensitivities.  

5.3.1 Load Model Identification 

Load model identification refers to the process of finding a particular model that 

satisfactorily (in some sense) describes the observed load behaviors, which is in fact a 

parameter estimation problem [92]. Let z(t) denote the piece of data received at time t. z(t) 

is in general a vector, composed of several different measurements. By assuming that the 

data acquisition takes place in a discrete manner, a sequence of measurements z(1), 

z(2), …, z(t) is assumed to be received at time t. The objective of identification is to infer 

a model of the system from the record z(t), z(t-1),…z(1). For example, ( )z t  can be the 

voltage and power measurements at a substation, and the objective is to find a model to 

represent the load-to-voltage relationship from ( )z t . 
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Normally, a model is parameterized in terms of a parameter vector θ , so the 

objective of identification is actually to determine this vector. Consider the following 

model: 

( ) ( ) ( )Ty t t t                                                (5.40) 

where   represents the parameter set to be estimated, ( )y t  and ( )t  represent 

measurements, ( )t  represents the model error, and t=1,2,…, N. The following objective 

function can be minimized with respect to   to estimate the parameter set.  
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Since the objective function (5.41) is quadratic in  , it can be minimized analytically as 

follows: 
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where ̂  represents the estimated parameter values. Equation (5.42) is the least squares 

estimation and can be written in a recursive fashion as shown in [92].  

It has been shown in [111] that the normal operating data of power system variables 

(e.g., load consumption, voltage, etc) with small variations can be used to estimate the 

parameters of load models. 

5.3.2 Model-Driven Assessment of Conservation Voltage Reduction Effects 

As shown in equation (5.1), the conservation voltage reduction factor can be defined 

as the relating change in active load consumption to the change in voltage. Since active 

power consumption has a direct economic impact on distribution network operators and 
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customers, this section focuses on active power reduction effects. The reactive power 

reduction effects are not included in this study. The conservation voltage reduction factor 

and conservation voltage reduction effects discussed in this section specifically refer to 

the active conservation voltage reduction factor and active conservation voltage reduction 

effects. Conservation voltage reduction factors are calculated in this section by 

identifying the time-varying load-to-voltage sensitivities. The first step is to model the 

load as a function of voltage. A substation supplies power to thousands of load 

components, such as lights, motors and so on. As it is impossible to model every 

individual load, the load model for a substation is usually an aggregate model to represent 

the overall load behaviors of all downstream loads and associated equipments. 

Karlsson and Hill proposed an exponential recovery load model as follows [78]: 

0 0
0 0

( ) ( ) ( ) ( )ps ptk k
p r r

V V
T P t P t P P

V V
   

                          (5.43) 

0
0

( ) ptk
d r

V
P P P

V
                                                   (5.44) 

0 0
0 0

( ) ( ) ( ) ( )qs qtk k
q r r

V V
T Q t Q t Q Q

V V
   

                          (5.45) 

0
0

( ) qtk
d r

V
Q Q Q

V
                                                  (5.46) 

where rP  and rQ  represent the recovery load states for real and reactive power, 

respectively, dP  and dQ  represent the real and reactive power demand, respectively, 0P  

and 0Q  represent the nominal real and reactive power, respectively, pT  and qT  represent 

the real and reactive load recovery time constant, respectively, psk  and qsk  represent the 
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steady-state real and reactive load-to-voltage dependences, respectively, ptk  and qtk  

represent the transient-state real and reactive load-to-voltage dependences, respectively, 

V  and 0V  represent the measured and nominal voltage, respectively.  

Equations (5.43-5.46) use an exponential recovery process to express the relationship 

between power consumption and voltage reduction. The active part of the steady-state 

model is in the following form: 

0
0

( ) psk
d

V
P P

V
                                                  (5.47) 

Equation (5.47) represents the exponential load model which is one of the most widely 

used load models to express the input-output relationship between power and voltage. 

Since the purpose of this study is to analyze energy-saving effects, the steady-state model 

defined in (5.47) can be used. As it is obvious that the load consumption is changing with 

time due to factors such as human behaviors, weather conditions and continuous on/off 

switches of different kinds of loads, parameters of the load model are not constants. Even 

for the same circuit, different load models may be found at different times. Hence, a time-

varying exponential load model is proposed in this study as: 

( )
0

0

( )
( )( ) pk tV t

P P t
V

                                                  (5.48) 

where 0 ( )P t and ( )pk t  are time-varying model parameters that need to be identified. Since 

these two parameters are continuously varying with the time, a recursive identification is 

required. In this dissertation, a nonlinear Kalman-filter based estimator, also called the 

unscented Kalman filter [98] is used to perform the recursive estimation of model 

parameters. The unscented Kalman filter has long been used as a dynamic state estimator. 
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Compared to the extended Kalman filter, the unscented Kalman filter does not require the 

model to be linearized.  

The unscented Kalman filter is an efficient recursive filter able to solve state 

estimation problems [98]. This filter eliminates the inaccuracies introduced by the 

extended Kalman filter by utilizing a nonlinear unscented transform, which does not 

require the calculation of derivatives or linearization of the nonlinear model. Consider a 

nonlinear system modeled by the discrete time state equation 

1( )

( )
k k k

k k k

x f x q

y h x r
 

                                             (5.49) 

where Lx is a discrete state vector; Py is a discrete measurement vector; ( )f   and 

( )h   are non-linear mapping functions representing the system and measurement models 

in term of the state variables; q  and r are a Gaussian process and measurement noise with 

zero mean and covariance matrices Q and R, respectively. The values of q  and r  affect 

the performance of the unscented Kalman filter, and the impacts of these values on the 

state estimation are discussed in section 5.3.4. The procedure for implementation of an 

unscented Kalman filter is as follows [112]: 

A. Sigma Points Calculation 

The calculation of sigma points is based only on the knowledge about variable x . 

Given a 1L state vector 1ˆkx   at time step 1k  and state error covariance matrix 1kP  , 

compute a set of 2 1L sigma points from: 

1, 1 1

, 1 1 1

, 1 1 1

ˆ

ˆ ( ( ) ) , 2,..., 1

ˆ ( ( ) ) , 2,..., 2 1

k k

i k k k i

i k k k i

x

x L P i L

x L P i L L



 

 

 

  

  



    

     
        (5.50) 
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where the parameter   decides the spread of i-th sigma point around 1ˆkx  . The points 

are scaled further from 1ˆkx   if 0   and are scaled towards 1ˆkx   if 0  .   can be 

defined as 

2 ( )L L                                              (5.51) 

where   is a small constant, usually set to 310 , and can be used to control the 

amount of the higher-order nonlinearities around 1ˆkx  .   is another scaling parameter 

which is usually set to 0 or 3 L  to ensure that the kurtosis of the sigma point 

distribution agrees with the kurtosis of a Gaussian distribution. The square root of the 

positive definite matrix 1( ) kL P   can be computed by using the Cholesky 

decomposition. Each column of the sigma point matrix is propagated one step ahead 

through the dynamic process function ( )f   to calculate the transformed sigma points 

at time step k : 

, , 1( ), 1,..., 2 1i k i kf i L                                   (5.52) 

B. Time Update 

A prior state estimate ˆkx  and its corresponding covariance matrix kP are 

approximated by the weighted mean and covariance of the transformed sigma points: 
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


                     (5.53) 

where Q is the process noise covariance matrix. The weights ( )m
iW  and ( )c

iW  are 

defined as: 
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( )
1

mW
L





                                                    (5.54) 

( ) 1
, 2,..., 2 1

2( )
m

iW i L
L 

  
                               (5.55) 

( ) 2
1 (1 )cW

L

  


   
                                      (5.56) 

( ) , 2,..., 2 1
2( )

c
iW i L

L




  
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where   is a parameter used to incorporate prior knowledge of the higher order 

moments of the state distribution. The optimal choice of   for Gaussian distribution 

is 2. 

C. Measurement Update 

The measurements are taken into account in this step. The observations at time step 

k  are calculated as the weighted sum of the projection of transformed sigma points 

through the measurement function ( )h  : 
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                  (5.58) 

where R is the measurement noise covariance matrix. The posterior state estimate 

and its error covariance matrix can be calculated as: 
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In order to estimate parameters of the time-varying exponential load model, the 

problem has to be represented in the state-space form required by unscented Kalman 

filter as follows: 

1 0

2 p

x P

x k



                                                         (5.60) 

which are related through a linear state mapping and a nonlinear measurement 

mapping as follows: 

2, 1

1, 1 1,

2, 1 2,

1 1, 1 1( ) k

k k
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x
k k k

x x

x x

y x V 





  






                                     (5.61) 

The proposed identification algorithm therefore requires only load consumption data 

and voltage, which can be easily obtained from utilities [89].  

Fig. 5.16 shows a schematic of the time-varying framework for conservation voltage 

reduction assessment.  
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Figure 5.16. Time-varying load modeling framework for assessing conservation 
voltage reduction effects. 

 

Measurement devices are installed at substations to continuously monitor system 

operations. The measurement devices provide the basic operation data, such as real and 

reactive power and voltage. To identify load models in (5.48), the identification 

algorithm, which is the unscented Kalman filter in this dissertation, tunes the parameter 

set so as to minimize the difference between model output ˆ ( )P t  and measured system 

output ( )P t . The time step for the time-varying load modeling is set to be one-minute in 

this dissertation. 

For the identified load parameters, the corresponding conservation voltage reduction 

factors can be calculated as follows: 

( ) /%

% ( ) /
cvroff cvron cvroff

f
cvroff cvron cvroff

P P PLoad Change
CVR

Voltage Reduction V V V


 

                          (5.62) 
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


                                           (5.63) 
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( )(1 ( ) ) (1 ( ))pk tcvron cvron
f

cvroff cvroff

V V
CVR

V V
                                    (5.66) 

The proposed identification algorithm requires only load consumption data and voltage, 

which can be easily obtained from utilities. 

As discussed in section 2.3.3, two frequently used methods to assess the performance 

of conservation voltage reduction are the comparison method and the regression method. 

In the comparison method, the reduced voltage is applied to one feeder, and the normal 

voltage is applied to another feeder. The difference of load consumptions of the two 

feeders are compared, and used to calculate the conservation voltage reduction factor. In 

the regression method, a linear regression model is used to represent loads. The load 

consumption without voltage reduction can be estimated from the regression model. The 

basic idea of these two existing methods is to estimate what the load would be if there 

were no voltage reduction (i.e., estP  in Fig. 5.3). In contrast, the proposed method in this 

section is to calculate conservation voltage reduction factors by using exponential load 

models to represent loads and estimating the load-to-voltage sensitivities. Therefore, the 

proposed method does not estimate estP , and no comparison is needed.   

Table 5.4 summarizes the ideas and attributes of the existing approaches and the 

proposed solution in this section.  
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Table 5.4. Comparison of existing approaches and proposed method for assessment 

of conservation voltage reduction effects 

Methods Descriptions Attributes 

Comparison method 
Compare load with and without 

voltage reduction 

Easy and straightforward 

Difficult to find a good control 

group 

Regression method 
Estimate by estP  regression 

method 

Clear physical meaning 

Linear model and regression errors

Proposed method in 

section 5.3 

Model loads as a function of 

voltage without estimating 

estP , and calculate CVR factor 

from load-to-voltage sensitivity

No control group is needed, no day 

on/day off tests 

 

5.3.3 Simulation Verification 

Example 1 

In practice, noise can exist in the measurement data. Meanwhile, load-to-voltage 

sensitivities can change in a continuous manner. Therefore, it is necessary to verify the 

performance of the proposed method before applying it to the field data. The purposes of 

this simulation example are: (1) test the performance of the proposed method in noise-

filtering; (2) test the performance of the proposed method in estimating and tracking the 

non-linear and continuous change of load-to-voltage sensitivities.  

The non-linear signal considered is given by 

kb
k k kky A c                                                    (5.67) 
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where kA , kc , kb  and k  are the amplitude, base, exponent and Gaussian noise, 

respectively. For tracking the non-linear change, kA  and kb  are set as follows for 

purposes of illustration: 

0.2 sin( ) 1kA k                                                (5.68) 

0.5 sin( ) 1kb k                                                (5.69) 

Fig. 5.17 shows the profile of kc , which is used in this example. The variation of kc  in 

Fig. 5.17 is set to be relatively small since the natural variation of the voltage in (5.48) is 

small in power systems. The signal-to-noise ratio (SNR) of kc  shown in Fig. 5.17 is 35 

dB.  

The non-linear signal ky  becomes 

[0.5 sin( ) 1][0.2 sin( ) 1] k
k k ky k c                                  (5.70) 

where k  represents the white noise with a standard deviation of 0.9% ky .  

To test the estimation performance of the unscented Kalman filter, it is assumed that 

ky  and kc  are measurements, and kA and kb  are the parameters that need to be 

estimated. The problem can be summarized as follows: 

· Signal is represented by an exponential model 
by Ac  

· Measurements: ky  and kc  

· Parameters to be estimated: ˆ
kA  and ˆ

kb  
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The values of process noise q and measurement noise r affect the estimation results 

of the unscented Kalman filter. To illustrate the effects of q and r, it is assumed that q and 

r can have values that vary within the following set, 

, (0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.10)q r       (5.71) 

The above set has ten elements. Therefore, there are 100 combinations of q and r. 

The unscented Kalman filter based estimation is run for each combination of q and r. Fig. 

5.18 shows the mean average estimation errors between the actual ky  and the estimated 

ˆky . The smallest error in Fig. 5.18 (MAPE=0.0190) is the result with the combination of 

q=0.05, and r=0.04. Fig. 5.19 compares the actual values of kb  which is defined in (5.69) 

and the estimated values of ˆ
kb  by the unscented Kalman filter with q=0.05, and r=0.04. 

Fig. 5.20 shows the actual values of kA  which is defined in (5.68) and the estimated 

values of ˆ
kA . For this simulated signal, the results show that the unscented Kalman filter 

can track the non-linear change of the parameters. 

 

Figure 5.17. Values of c. 
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Figure 5.18. Mean average percentage estimation errors with different values of q 

and r in simulation example 1. 

 

 

Figure 5.19. Actual and estimated values of b. 
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Figure 5.20. Actual and estimated values of A. 

 

Example 2 

In this example, the conservation voltage reduction is illustrated on the IEEE 123-

bus distribution system as shown in Fig. 5.21. Detailed descriptions about the distribution 

system can be found in [113]. OpenDSS [114] is used to simulate the load and voltage 

profiles with and without voltage reduction. By using OpenDSS, it is possible to simulate 

what the load would be if there were no voltage reduction. Therefore, the actual 

conservation voltage reduction factors can be calculated by (5.1).  

Fig. 5.22 shows the simulated voltage profiles with and without voltage reduction. A 

3% voltage reduction is applied to the substation transformer. The voltage reduction 

starts at 20 minutes and ends at 80 minutes. The load consumption profiles with and 

without voltage reduction measured at the substation is shown in Fig. 5.23. 
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Figure 5.21. IEEE 123-bus distribution system. 

 

 

Figure 5.22. Voltage profiles with and without conservation voltage reduction in 

simulation example 2. 
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Figure 5.23. Load profiles with and without voltage reduction in simulation example 

2. 

 

The exponential load model defined in (5.48) is used to represent the load. The 

unscented Kalman filter algorithm is then applied to estimate the load-to-voltage 

sensitivities and the conservation voltage reduction factors are calculated from the 

estimated load-to-voltage sensitivities by using (5.66).  

The initial values of 0P  and pk  as well as the values of process noise q and 

measurement noise r affect the estimation results. To illustrate these affects, it is assumed 

that 0 (0)P , (0)pk  could have values that vary within the following set, 

0 (0), (0) (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0)pP k                  (5.72) 

It is also assumed that q and r could have values that vary within the following sets, 

(0.01,0.02,0.03,0.04,0.05)

(0.001,0.002,0.003,0.004,0.005)

q

r


                             (5.73) 
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Therefore, there are 2500 combinations of 0 (0)P , (0)pk , q and r. The unscented 

Kalman filter based estimation is run for each combination of 0 (0)P , (0)pk , q and r. Fig. 

5.24 shows the mean average estimation errors. In Fig. 5.24, the smallest error 

(MAPE=0.0086) is the result with the combination of 0 (0)P =0.5, (0)pk =0.4, q=0.02, 

and r=0.005.  

 

 

Figure 5.24. Mean average percentage estimation errors with different values of P(0), 

kp(0), q and r in simulation example 2. 

 

Fig. 5.25 shows the model outputs ˆ ( )P t  calculated from the estimated load model 

and the simulated active power ( )P t . The solid line represents the simulated active 

power. The dashed line represents the active power calculated from the estimated load 

models with the combination of 0 (0)P =0.5, (0)pk =0.4, q=0.02, and r=0.005. To 

demonstrate the impacts of initial values of 0P  and pk  as well as the values of q and r on 
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the estimation, the results by using the combination of 0 (0)P =0.5, (0)pk =0.4, q=0.02, 

r=0.005 and 0 (0)P =0.5, (0)pk =0.4, q=0.02, r=0.005 are also shown. 

 

Figure 5.25. Simulated and estimated load profiles with different combinations of 
P(0), kp(0), q and r in simulation example 2.  

 

 

Figure 5.26. Comparison of actual and estimated conservation voltage reduction 
factors in simulation example 2.  
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Since the load and voltage profiles with and without voltage reduction can be 

simulated, the actual conservation voltage reduction factor can be calculated and is 

shown in Fig. 5.26. This figure also shows the estimated conservation voltage reduction 

factors by using three combinations of 0 (0)P , (0)pk , q and r. The values of 0 (0)P , 

(0)pk , q and r of the unscented Kalman filter affects the assessment results. The 

calculated conservation voltage reduction factors vary with different values of 0 (0)P , 

(0)pk , q and r. It is therefore suggested to select the combination that results in the 

smallest mean average percentage estimation error as the values of the unscented Kalman 

filter algorithm (i.e., 0 (0)P =0.5, (0)pk =0.4, q=0.02, r=0.005 in this example). In Fig. 

5.26, the unscented Kalman filter with the combination of 0 (0)P =0.5, (0)pk =0.4, q=0.02, 

r=0.005 also results in an estimated conservation voltage reduction factor that is closest 

to the actual conservation voltage reduction factor.  

5.3.4 Numerical Studies for Model-driven Assessment 

As discussed in section 5.3.2, an exponential load model is used to represent the 

load-to-voltage relationship. Then conservation voltage reduction factors can be 

calculated from parameters of the exponential load model as shown in (5.66). There are 

two ways to show the performance of the proposed method. The first way is to compare 

the model output ˆ ( )P t  and the measured active power ( )P t . ( )P t  represents the active 

power consumption at the substation, and can be measured directly from measurement 

devices. In (5.74), ˆ( )P t  represents the output of the exponential load model with the 

estimated model parameters.  
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ˆ ( )
0

0

( )ˆ ˆ( ) ( ) pk tV t
P t P

V
                                               (5.74) 

where ( )V t  is the measured voltage at the substation, 0̂ ( )P t  and ˆ ( )pk t  are model 

parameters estimated by the unscented Kalman filter.  

If ˆ ( )P t  is close to ( )P t , then the model parameters estimated by the unscented 

Kalman filter are reasonable, and the exponential load model can track the load behaviors. 

In this section, the mean average percentage error (MAPE) is used to measure the 

difference between the model output ˆ ( )P t  and the measured active power ( )P t . The 

mean average percentage error is defined as follows: 

1

ˆ1 n
i i

i i

P P
MAPE

n P


                                                   (5.75) 

The closer the model output to the measured active power, the smaller the mean square 

percentage error is.  

The second way to show the performance of the proposed model-driven assessment 

of conservation voltage reduction effects is to use a Euclidian distance based comparison 

method. As shown in Fig. 5.3, load and voltage profiles of a voltage-reduction day can be 

divided into three parts: the period before voltage reduction ( 1T ), voltage reduction period 

( 2T ), and the period after voltage reduction ends ( 3T ). In the Euclidian distance based 

comparison method, a normal-voltage day whose load and voltage profiles are similar to 

the profile with voltage reduction is selected. The load consumption of the selected 

normal-voltage day is used to represent what the load would be if there were no voltage 

reduction. The difference between the load consumption of the selected normal-voltage 
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day and that of the reduced-voltage day is considered to be the load reduction effect of 

conservation voltage reduction. The Euclidian distance based indices for a normal-

voltage day k  are defined as follows, 

1 3

2

1
,

( )cvr nocvrN
i ki

pkcvr
i I

i T T

P P

P N






                                       (5.76) 

1 3
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( )cvr nocvrN
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i I

i T T

V V

V N






                                       (5.77) 

Where 

· pk  and vk  are the Euclidian distance-based power and voltage indices for the k-th 

day without voltage reduction, respectively, 

· 
cvr

iP  and cvr
iV  represent active load and voltage at time i on a day with voltage 

reduction, respectively, 

· 
nocvr

kiP  and nocvr
kiV  represent active load and voltage at time i on the k-th day without 

voltage reduction, respectively. 

· I  is the index of the max( ),cvr
iP i , i.e., the maximum power consumption of the 

conservation voltage reduction day is used as the denominator in (5.76) for 

normalization and the corresponding voltage level is used as the denominator in 

(5.77).  

· As shown in Fig. 5.3, 1T  and 3T  represent the period before the voltage reduction and 

the period after the voltage reduction ends, respectively.  
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Practical data of voltage reduction day is used in this section to demonstrate the 

proposed method. Data of 11 voltage-reduction days of a feeder are analyzed. For the 

purposes of illustration, the results of 3 voltage-reduction days are shown in details in this 

section. The assessment results of all 11 days are summarized in section 5.3.5. 

Example 1 

Fig. 5.27 shows the voltage profile of Oct. 16 which is a voltage-reduction day. 

Conservation voltage reduction starts at 140 minutes and ends at 422 minutes. Fig. 5.28 

shows the active power profile measured at the substation on this voltage-reduction day. 

 

 

Figure 5.27. Voltage profile with conservation voltage reduction in example 1. 
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Figure 5.28. Measured load profiles in example 1. 

 

The exponential load model defined in (5.48) is used to represent the load. The 

unscented Kalman filter algorithm is then applied to estimate the load-to-voltage 

sensitivities and the conservation voltage reduction factors are calculated from the 

estimated load-to-voltage sensitivities by using (5.66).  

The initial values of 0P  and pk  as well as the values of process noise q and 

measurement noise r affect  the estimation results. To illustrate the effects of q and r, it is 

assumed that 0 (0)P =1.0 and (0)pk =1.0, and q and r can have values that vary within the 

following set, 

, (0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.10)q r       (5.78) 

The above set has ten elements. Therefore, there are 100 combinations of q and r. The 

unscented Kalman filter based estimation is run for each combination of q and r. Fig. 
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5.29 shows the mean average estimation errors between the measured active power ( )P t  

and the estimated model outputs ˆ( )P t  as defined in (5.74).  

 

 

Figure 5.29. Mean average percentage estimation errors with different values of q 

and r in example 1. 

 

In Fig. 5.29, the smallest error (MAPE=0.0797) is the result with the 31st 

combination of q and r (q=0.04, r=0.01). The second (MAPE=0.0832) and third (0.0963) 

smallest errors are the results with the 41st (q=0.05, r=0.01) and 51st (q=0.06, r=0.01) 

combinations of q and r, respectively. For illustration, the estimation results of using 

these three combinations of q and r are discussed.  

Fig. 5.30 shows the model outputs ˆ ( )P t  calculated from the estimated load model 

and the measured active power ( )P t . The solid line represents the measured active power. 

The other three lines represent the active power calculated from the estimated load 

models with the three combinations of q and r (i.e., q=0.04, r=0.01, q=0.05, r=0.01, and 
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q=0.06, r=0.01), respectively. All estimated model outputs are close to the measured 

power. The closest one is the result calculated by setting q=0.04 and r=0.01 since it has 

the smallest mean percentage estimation error (MAPE=0.0797) as shown in Fig. 5.29. 

 

Figure 5.30. Measured and estimated load profiles with different combinations of q 

and r in example 1.  

Fig.5.31 shows the estimated pk  for the three combinations of q and r. pk  is used to 

the calculate conservation voltage reduction factor, and the results are shown in Fig. 5.32.  

 

Figure 5.31. Estimated load-to-voltage sensitivities with different combinations of q 

and r in example 1. 
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Figure 5.32. Conservation voltage reduction factors calculated by estimated load-to-
voltage sensitivities in example 1 (only the period of 140-422 minutes is CVR period) 

 

The values of q and r of the unscented Kalman filter significantly affects the 

assessment results. The calculated conservation voltage reduction factors vary with 

different settings of q and r. For determined initial values of 0P  and pk , it is suggested 

to select the combination of q and r that results in the smallest mean average percentage 

estimation error as the values of the unscented Kalman filter algorithm (i.e., q=0.04, 

r=0.01 in this example).  

The above example shows the impacts of q and r with 0 (0)P =1.0 and (0)pk =1.0. It 

is necessary to demonstrate the impacts of the combination of 0 (0)P , (0)pk , q and r on 

the estimation results. To illustrate these affects, it is assumed that 0 (0)P , (0)pk  could 

have values that vary within the following set, 

0 (0), (0) (0.5,0.6,0.7,0.8,0.9,1.0)pP k                                (5.79) 
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It is also assumed that q and r could have values that vary within the following sets, 

, (0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1)q r                 (5.80) 

Therefore, there are 3600 combinations of 0 (0)P , (0)pk , q and r. The unscented 

Kalman filter based estimation is run for each combination of 0 (0)P , (0)pk , q and r. Fig. 

5.33 shows the mean average estimation errors. In Fig. 5.33, the smallest error 

(MAPE=0.0796) is the result with the combination of 0 (0)P =1.0, (0)pk =0.9, q=0.04, 

and r=0.01. The second smallest error is the result with the combination of 0 (0)P =1.0, 

(0)pk =1.0, q=0.04, and r=0.01. The third smallest error is the result with the combination 

of 0 (0)P =0.9, (0)pk =0.9, q=0.04, and r=0.01. For purposes of illustration, the estimation 

results of using these three combinations of 0 (0)P , (0)pk , q and r are discussed. 

  

 

 

Figure 5.33. Mean average percentage estimation errors with different values of 

P0(0), kp(0), q and r in example 1. 
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Fig. 5.34 shows the model outputs ˆ( )P t  calculated from the estimated load model 

and the measured active power ( )P t . The solid line represents the measured active power. 

The other three lines represent the active power calculated from the estimated load 

models with the three combinations of 0 (0)P , (0)pk , q and r, respectively. All estimated 

model outputs are close to the measured power. The closest one is the result calculated by 

setting 0 (0)P =1.0, (0)pk =0.9, q=0.04, and r=0.01 since it has the smallest mean 

percentage estimation error as shown in Fig. 5.33. 

 

Figure 5.34. Measured and estimated load profiles with different combinations P0(0), 

kp(0), q and r in simulation example 1.  

 

Fig. 5.35 shows the estimated pk  for the three combinations of 0 (0)P , (0)pk , q 

and r. pk  is used to the calculate conservation voltage reduction factor, and the results 

are shown in Fig. 5.36.  
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Figure 5.35. Estimated load-to-voltage sensitivities with different combinations of 
P0(0), kp(0), q and r in example 1. 

 

 

Figure 5.36. Conservation voltage reduction factors calculated by estimated load-to-
voltage sensitivities in example 1 (only the period of 140-422 minutes is CVR period). 

 

Fig. 5.37 shows the estimated conservation voltage reduction factors calculated by 

setting 0 (0)P =1.0, (0)pk =0.9, q=0.04, and r=0.01 during the voltage reduction period.  
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Figure 5.37. Conservation voltage reduction factors during voltage reduction period 
in example 1. 

 

In sections 5.2.2 and 5.2.3, it is shown that the estimation errors of load consumption 

affect the accuracy of the calculated conservation voltage reduction factors in the data-

driven assessment method. For the model-driven assessment method proposed in this 

section, the estimation errors of pk  result in the errors of the conservation voltage 

reduction factors calculated by (5.66). In (5.66), assume cvron cvroffV V V  , 
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where feCVR  is the estimated conservation voltage reduction factor, factCVR  is the actual 

conservation voltage reduction factor which is unknown in practice, ˆ
pk  is the estimated 

load-to-voltage sensitivity, and pk  is the actual load-to-voltage sensitivity which is 

unknown in practice. Assume ˆ
p pk k  , 
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where   is the estimation error of the conservation voltage reduction factor. If there is no 

error between ˆ
pk  and pk  (i.e., 1  ), then 0   and the estimated conservation 

voltage reduction factor is equal to the actual one. For convenience, it assumed that 
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where   represents the estimation error of pk . Then, (5.85) can be reformulated as 
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If V  is set to 0.96 (i.e., 4% voltage reduction), the relationship among the estimated the 

load-to-voltage sensitivity ˆ
pk , the estimation error of the load-to-voltage sensitivity  , 

and the estimation error of conservation voltage reduction factor   can be calculated 
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from (5.88), and the results are plotted in Fig. 5.38. For a certain estimation error of ˆ
pk , 

the estimation error of conservation voltage reduction factor slightly decreases with the 

increase of estimated values of ˆ
pk . The estimation error of conservation voltage 

reduction factor becomes larger with an increase of the estimation error of ˆ
pk . 

 

Figure 5.38. Contour of relationship of estimation errors of kp, estimated values of kp, 
and estimation errors of conservation voltage reduction factors. 

 

For the calculated conservation voltage reduction factors shown in Fig. 5.37, the 

band for the corresponding actual conservation voltage reduction factors can be 

calculated by (5.86-5.87) with the assumption that V =0.96 and 5%   , and the 

results are shown in Fig. 5.39.The upper bound of the actual CVR factors is about 105% 

of the estimated CVR factors, and the lower bound of the actual CVR factors is around 

95% of the estimated CVR factors.   
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Figure 5.39. Band of conservation voltage reduction factors in example 1. 
 

Besides applying mean average percentage estimation error to measure the 

performance of the proposed model-driven assessment method, the Euclidian distance 

based method can also be used. As shown in (5.76) and (5.77), the basic idea of the 

Euclidian distance based comparison method is to select a normal-voltage day whose 

load and voltage profiles are similar to the profiles with the voltage reduction. The load 

consumption of the selected normal-voltage day is used to represent what the load would 

be if there were no voltage reduction. The voltage reduction shown in Fig. 5.27 was 

conducted on Oct. 16. Table 5.5 shows the available dataset that includes all normal-

voltage days. The Euclidian distance based indices defined in (5.76) and (5.77) can be 

calculated using the load and voltage profiles of these normal-voltage days and the day 

with voltage reduction as shown in Figs. 5.27 and 5.28. Table 5.5 summarizes the 

calculated indices for active power ( p ) and voltage ( v ). 
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Table 5.5. Calculation results of Euclidian distance-based indices in example 1 

Date p (%) v (%) 

Sep 03 5.25 0.025 

Sep 04 5.03 0.043 

Sep 05 4.91 0.034 

Sep 06 4.53 0.024 

Sep 07 4.55 0.030 

Sep 08 4.51 0.034 

Sep 09 2.81 0.026 

Sep 10 2.81 0.026 

Sep 11 2.16 0.031 

Sep 13 1.55 0.031 

Sep 15 2.79 0.034 

Sep 17 3.87 0.024 

Sep 18 2.18 0.031 

Sep 19 1.93 0.032 

Sep 20 1.35 0.029 

Sep 21 2.37 0.033 

Sep 22 2.71 0.034 

Sep 23 2.56 0.034 

Sep 25 1.31 0.032 

Sep 27 1.35 2.44 

Sep 29 2.49 0.029 

Oct 03 1.82 0.042 

Oct 04 1.82 0.030 

Oct 05 2.51 0.037 

Oct 06 2.71 0.037 

Oct 07 3.13 0.026 

Oct 09 0.19 0.034 



161 
 

Oct 11 0.32 0.038 

Oct 13 0.86 0.023 

Oct 15 1.52 0.017 

Oct 17 0.22 0.019 

Oct 19 0.68 0.039 

Oct 20 0.21 0.029 

Oct 21 0.16 0.026 

Oct 22 0.25 0.033 

Oct 23 0.15 0.039 

Oct 25 0.71 0.030 

 

The smallest index for power is 0.15 (Oct. 23). The second smallest one is 0.16 (Oct. 

21). Fig. 5.40 shows the load profiles of Oct. 16 (the voltage-reduction day), 23 and 21. 

Fig. 5.41 shows the corresponding voltage profiles.  

 

 
Figure 5.40. Load profiles with and without voltage reduction in example 1. 
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The conservation voltage reduction factors can be calculated by using the load and 

voltage profiles of normal-voltage days to represent what the load and voltage would be 

if there were no voltage reduction for the reduced-voltage day. Fig. 5.42 shows the 

calculated conservation voltage reduction factors.  

 

Figure 5.41. Voltage profiles with voltage reduction and without voltage reduction in 
example 1. 

 

 

Figure 5.42. Conservation voltage reduction factors calculated by model-driven 
method and comparison method in example 1. 
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Compared to the conservation voltage reduction factors calculated by using the 

Euclidian distance based comparison method, the conservation voltage reduction factors 

estimated by the proposed model-driven method is smooth. Even though the power 

tracking performance is good for the model-driven method as shown in Fig. 5.34, the 

CVR factors calculated by the two methods do not match each other well. A possible 

reason is that the load profile of the single normal-voltage day selected by the Euclidian 

distance based method cannot accurately represent what the load would be if there were 

no voltage reduction during the conservation voltage reduction period. Further studies are 

necessary to verify the performance of the proposed model-driven assessment method.  

Example 2 

Fig. 5.43 shows the voltage profile of Oct. 8 which is a voltage-reduction day. 

Conservation voltage reduction starts at 123 minutes and ends at 181 minutes. Fig. 5.44 

shows the active power profile measured at the substation on this voltage-reduction day. 

 

Figure 5.43. Voltage profile with conservation voltage reduction in example 2. 

 



164 
 

 

Figure 5.44. Measured load profiles in example 2. 

 

As discussed in example 1, the initial values of 0P  and pk  as well as the values of 

process noise q and measurement noise r affect  the estimation results. To illustrate these 

affects, it is assumed that 0 (0)P , (0)pk  could have values that vary within the following 

set, 

0 (0), (0) (0.5,0.6,0.7,0.8,0.9,1.0)pP k                                (5.89) 

It is also assumed that q and r could have values that vary within the following sets, 

, (0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1)q r                 (5.90) 

Therefore, there are 3600 combinations of 0 (0)P , (0)pk , q and r. The unscented 

Kalman filter based estimation is run for each combination of 0 (0)P , (0)pk , q and r. Fig. 

5.45 shows the mean average estimation errors. In Fig. 5.45, the smallest error 

(MAPE=0.0335) is the result with the combination of 0 (0)P =0.5, (0)pk =1.0, q=0.08, 

and r=0.01. The second smallest error is the result with the combination of 0 (0)P =0.6, 
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(0)pk =1.0, q=0.08, and r=0.01. The third smallest error is the result with the 

combination of 0 (0)P =0.7, (0)pk =1.0, q=0.08, and r=0.01. For illustration, the 

estimation results of using these three combinations of 0 (0)P , (0)pk , q and r are 

discussed below. 

  

 

 

Figure 5.45. Mean average percentage estimation errors with different values of 

P0(0), kp(0), q and r in simulation example 2. 

 

Fig. 5.46 shows the model outputs ˆ( )P t  calculated from the estimated load model 

and the measured active power ( )P t . The solid line represents the measured active 

power. The other three lines represent the active power calculated from the estimated 

load models with the three combinations of 0 (0)P , (0)pk , q and r, respectively. All 

estimated model outputs are close to the measured power. The closest one is the result 
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calculated by setting 0 (0)P =0.5, (0)pk =1.0, q=0.08, and r=0.01 since it has the smallest 

mean percentage estimation error as shown in Fig. 5.45. 

 

Figure 5.46. Measured and estimated load profiles with different combinations P0(0), 

kp(0), q and r in simulation example 2.  

Fig.5.47 shows the estimated pk  for the three combinations of 0 (0)P , (0)pk , q and r. 

pk  is used to the calculate conservation voltage reduction factor, and the results are 

shown in Fig. 5.48.  

 

Figure 5.47. Estimated load-to-voltage sensitivities in example 2. 
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Figure 5.48. Conservation voltage reduction factors calculated by estimated load-to-
voltage sensitivities in example 2 (only the period of 123-181 minutes is CVR period). 

 

Fig. 5.49 shows the estimated conservation voltage reduction factors calculated by 

setting 0 (0)P =0.5, (0)pk =1.0, q=0.08, and r=0.01 during the voltage reduction period.  

 

Figure 5.49. Conservation voltage reduction factors during voltage reduction period 
in example 2. 
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As discussed in example 1, the estimation errors of pk  result in the errors of the 

calculated conservation voltage reduction factors. For the calculated conservation voltage 

reduction factors shown in Fig. 5.49, the band for the corresponding actual conservation 

voltage reduction factors can be calculated by (5.86-5.87) with the assumption that V

=0.96 and 5%   , and the results are shown in Fig. 5.50.The upper bound of the actual 

CVR factors is about 105% of the estimated CVR factors, and the lower bound of the 

actual CVR factors is around 95% of the estimated CVR factors.   

 

 

Figure 5.50. Band of conservation voltage reduction factors in example 2. 
 

The voltage reduction shown in Fig. 5.43 was conducted on Oct. 8. Table 5.6 shows 

the available dataset that includes all normal-voltage days. The Euclidian distance based 

indices defined in (5.76) and (5.77) can be calculated using the load and voltage profiles 

of these normal-voltage days and the day with voltage reduction as shown in Figs. 5.43 
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and 5.44. Table 5.6 summarizes the calculated indices for active power ( p ) and voltage 

( v ). 

 

Table 5.6. Calculation results of Euclidian distance-based indices in example 2 

Date p  (%) v  (%) 

Sep 03 3.43 0.0174 

Sep 04 3.35 0.0244 

Sep 05 3.26 0.0139 

Sep 06 3.06 0.0162 

Sep 07 3.06 0.0158 

Sep 08 2.79 0.0135 

Sep 09 1.89 0.0157 

Sep 10 1.89 0.0157 

Sep 11 1.34 0.0159 

Sep 13 0.90 0.0147 

Sep 15 1.88 0.0157 

Sep 17 2.52 0.0163 

Sep 18 1.14 0.0161 

Sep 19 1.39 0.0147 

Sep 20 0.73 0.0143 

Sep 21 1.52 0.0148 

Sep 22 1.78 0.0170 
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Sep 23 1.63 0.0150 

Sep 25 0.80 0.0128 

Sep 27 0.73 1.8312 

Sep 29 1.52 0.0147 

Oct 03 1.12 0.0136 

Oct 04 1.04 0.0127 

Oct 05 1.57 0.0120 

Oct 06 1.67 0.0143 

Oct 07 2.06 0.0130 

Oct 09 0.39 0.0117 

Oct 11 0.21 0.0117 

Oct 13 0.36 0.0139 

Oct 15 0.90 0.0243 

Oct 17 0.32 0.0230 

Oct 19 0.30 0.0135 

Oct 20 0.17 0.0117 

Oct 21 0.34 0.0132 

Oct 22 0.41 0.0111 

Oct 23 0.25 0.0120 

Oct 25 0.29 0.0107 
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The smallest index for power is 0.17 (Oct. 20). The second smallest one is 0.21 (Oct. 

11). Fig. 5.51 shows the load profiles of Oct. 8 (the voltage-reduction day), 11 and 20. 

Fig. 5.52 shows the corresponding voltage profiles.  

 

 
Figure 5.51. Load profiles with and without voltage reduction in example 2. 

 

The conservation voltage reduction factors can be calculated by using the load and 

voltage profiles of normal-voltage days to represent what the load and voltage would be 

if there were no voltage reduction for the reduced-voltage day. Fig. 5.53 shows the 

calculated conservation voltage reduction factors.  
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Figure 5.52. Voltage profiles with voltage reduction and without voltage reduction in 
example 2. 

 

 

Figure 5.53. Conservation voltage reduction factors calculated by model-driven 
method and comparison method in example 2. 

 

Compared to the conservation voltage reduction factors calculated by using the 

Euclidian distance based comparison method, the conservation voltage reduction factors 

estimated by the proposed model-driven method is smooth and nearly constant. Similar to 

the results of example 1, the CVR factors calculated by the two methods do not match 
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each other well. A possible reason is that the load profile of the single normal-voltage day 

selected by the Euclidian distance based method cannot accurately represent what the 

load would be if there were no voltage reduction during the conservation voltage 

reduction period. Further studies are necessary to verify the performance of the proposed 

model-driven assessment method. 

 

Example 3 

This example analyzes the conservation voltage reduction test on Sep. 24. Fig. 5.54 

shows the voltage profile. Conservation voltage reduction starts at 184 minutes and ends 

at 363 minutes. Fig. 5.55 shows the active power profile measured at the substation on 

this voltage-reduction day. 

 

Figure 5.54. Voltage profile with conservation voltage reduction in example 3. 
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Figure 5.55. Measured load profiles in example 3. 

 

To illustrate the impacts of the initial values of 0P  and pk  as well as the values of 

process noise q and measurement noise r on the assessment, it is assumed that 0 (0)P , 

(0)pk  could have values that vary within the following set, 

0 (0), (0) (0.5,0.6,0.7,0.8,0.9,1.0)pP k                                (5.91) 

It is also assumed that q and r could have values that vary within the following sets, 

, (0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1)q r                 (5.92) 

Therefore, there are 3600 combinations of 0 (0)P , (0)pk , q and r. The unscented 

Kalman filter based estimation is run for each combination of 0 (0)P , (0)pk , q and r. Fig. 

5.56 shows the mean average estimation errors. In Fig. 5.56, the smallest error 

(MAPE=0.0603) is the result with the combination of 0 (0)P =1.0, (0)pk =1.0, q=0.05, 

and r=0.01. The second smallest error is the result with the combination of 0 (0)P =0.9, 

(0)pk =1.0, q=0.05, and r=0.01. The third smallest error is the result with the combination 
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of 0 (0)P =0.8, (0)pk =1.0, q=0.05, and r=0.01. For illustration, the estimation results of 

using these three combinations of 0 (0)P , (0)pk , q and r are discussed. 

  

 

 

Figure 5.56. Mean average percentage estimation errors with different values of 

P0(0), kp(0), q and r in simulation example 3. 

 

Fig. 5.57 shows the model outputs ˆ( )P t  calculated from the estimated load model 

and the measured active power ( )P t . The solid line represents the measured active 

power. The other three lines represent the active power calculated from the estimated 

load models with the three combinations of 0 (0)P , (0)pk , q and r, respectively. All 

estimated model outputs are close to the measured power. The closest one is the result 

calculated by setting 0 (0)P =1.0, (0)pk =1.0, q=0.05, and r=0.01 since it has the smallest 

mean percentage estimation error as shown in Fig. 5.56. 



176 
 

 

Figure 5.57. Measured and estimated load profiles with different combinations P0(0), 

kp(0), q and r in simulation example 3.  

 

Fig. 5.58 shows the estimated pk  for the three combinations of 0 (0)P , (0)pk , q and 

r. pk  is used to the calculate conservation voltage reduction factor, and the results are 

shown in Fig. 5.59.  

 

Figure 5.58. Estimated load-to-voltage sensitivities in example 2. 
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Figure 5.59. Conservation voltage reduction factors calculated by estimated load-to-
voltage sensitivities in example 3 (only the period of 184-363 minutes is CVR period). 

 

Fig. 5.60 shows the estimated conservation voltage reduction factors calculated by 

setting 0 (0)P =1.0, (0)pk =1.0, q=0.05, and r=0.01 during the voltage reduction period.  

 

Figure 5.60. Conservation voltage reduction factors during voltage reduction period 
in example 3. 
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As discussed in example 1, the estimation errors of pk  result in the errors of the 

calculated conservation voltage reduction factors. For the calculated conservation voltage 

reduction factors shown in Fig. 5.60, the band for the corresponding actual conservation 

voltage reduction factors can be calculated by (5.86-5.87) with the assumption that V

=0.96 and 5%   , and the results are shown in Fig. 5.61.The upper bound of the actual 

CVR factors is about 105% of the estimated CVR factors, and the lower bound of the 

actual CVR factors is around 95% of the estimated CVR factors.   

 

 

Figure 5.61. Band of conservation voltage reduction factors in example 3. 
 

The voltage reduction shown in Fig. 5.54 was conducted on Sep. 24. Table 5.7 shows 

the available dataset that includes all normal-voltage days. The Euclidian distance based 

indices defined in (5.76) and (5.77) can be calculated using the load and voltage profiles 

of these normal-voltage days and the day with voltage reduction as shown in Figs. 5.54 
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and 5.55. Table 5.7 summarizes the calculated indices for active power ( p ) and voltage 

( v ). 

 

Table 5.7. Calculation results of Euclidian distance-based indices in example 3 

Date p (%) v (%) 

Sep 03 2.29  0.019  

Sep 04 2.16  0.031  

Sep 05 2.10  0.013  

Sep 06 1.88  0.018  

Sep 07 1.88 0.017  

Sep 08 1.77 0.015  

Sep 09 0.79 0.016  

Sep 10 0.79 0.016  

Sep 11 0.36 0.018  

Sep 13 0.38 0.012  

Sep 15 0.81 0.017  

Sep 17 1.44 0.021  

Sep 18 0.37 0.016  

Sep 19 0.45 0.017  

Sep 20 0.36 0.015  

Sep 21 0.51 0.016  

Sep 22 0.74 0.019  

Sep 23 0.62 0.017  

Sep 25 0.25 0.015  

Sep 27 1.20 2.05  

Sep 29 0.58 0.017  

Oct 03 0.41 0.014 

Oct 04 0.30 0.015 
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Oct 05 0.62 0.015 

Oct 06 0.73 0.016 

Oct 07 1.00 0.016 

Oct 09 1.14 0.012 

Oct 11 0.88 0.014 

Oct 13 0.52 0.017 

Oct 15 0.19 0.029 

Oct 17 1.06 0.028 

Oct 19 0.61 0.017 

Oct 20 0.92 0.013 

Oct 21 1.10 0.017 

Oct 22 1.17 0.013 

Oct 23 1.01 0.014 

Oct 25 0.61 0.011 

 

The smallest index for power is 0.19 (Oct. 15). The second smallest one is 0.25 (Sep. 

25). Fig. 5.62 shows the load profiles of Sep. 24 (the voltage-reduction day), Sep. 25 and 

Oct. 15. Fig. 5.63 shows the corresponding voltage profiles.  

 

 
Figure 5.62. Load profiles with and without voltage reduction in example 3. 
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The conservation voltage reduction factors can be calculated by using the load and 

voltage profiles of normal-voltage days to represent what the load and voltage would be 

if there were no voltage reduction for the reduced-voltage day. Fig. 5.64 shows the 

calculated conservation voltage reduction factors.  

 

Figure 5.63. Voltage profiles with voltage reduction and without voltage reduction in 
example 3. 

 

 

Figure 5.64. Conservation voltage reduction factors calculated by model-driven 
method and comparison method in example 3. 
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Similar to examples 1 and 2, the CVR factors calculated by the Euclidian distance 

based comparison method and the proposed model-driven method do not match each 

other well. A possible reason is that the load profile of the single normal-voltage day 

selected by the Euclidian distance based method cannot accurately represent what the 

load would be if there were no voltage reduction during the conservation voltage 

reduction period. Further studies are necessary to verify the performance of the proposed 

model-driven assessment method. 

5.3.5 Statistical Analysis of Assessment Results by Unscented Kalman Filter 

Section 5.3.4 discusses the assessment results of three voltage-reduction days. The 

unscented Kalman filter algorithm is applied to the available data of 11 voltage-reduction 

days of the same feeder. For each day, the settings of unscented Kalman filter that result 

in the smallest mean average estimation error are used. Fig. 5.65 shows the histogram of 

calculated conservation voltage reduction factors of all voltage-reduction days.  

 

Figure 5.65. Histogram of conservation voltage reduction factors calculated by 
unscented Kalman filter. 
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As discussed in section 5.2.4, the Kolmogorov-Smirnov goodness-of-fit test is 

applied to find a distribution that can represent a dataset. The Kolmogorov-Smirnov test 

computes the test error  , which is the maximum vertical distance between an empirical 

cumulative distribution function and a fitted cumulative distribution function. This error 

is compared to a critical value crit , and the probability distribution fit that satisfies

crit  could be accepted. For the normal distribution fit,  =0.0580 and crit =0.0267 

with a level of significance 5%. Therefore, the normal distribution fit cannot be accepted. 

Similarly, the exponential distribution, Rayleigh distribution, and Weibull distribution (2 

parameters) cannot represent the conservation voltage reduction factors either. The 

Weibull and normal distributions are close to the empirical distribution. The mean and 

standard deviation of the fitted normal distribution are 0.996 and 0.148, respectively. The 

two parameters for the fitted Weibull distribution are 1.059 and 7.741, respectively.  

 

Figure 5.66. Cumulative distribution curves of conservation voltage reduction factors 
calculated by unscented Kalman filter. 
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Fig. 5.66 shows the differences between the cumulative distribution function of 

conservation voltage reduction factors of Feeder 1 and various other cumulative 

distribution functions (normal, Weibull with 2 parameters, Rayleigh and Exponential). 

Although none of the distributions in Fig. 5.66 passes the Kolmogorov-Smirnov test, the 

empirical cumulative distribution curve of the conservation voltage reduction factors can 

still be helpful to know the statistical behaviors of conservation voltage reduction effects.  

5.4 Summary 

In this chapter, two new methods to assess conservation voltage reduction effects are 

proposed: data-driven assessment and model-driven assessment. The two methods are 

applied to assess the effects of practical conservation voltage reduction tests conducted 

by utilities.  

For the data-driven assessment method, a multi-stage support vector regression 

technique is proposed to estimate the load consumption without voltage reduction during 

a conservation voltage reduction period. The proposed method is designed for the 

assessment of peak-time voltage reduction. The first stage is to make full use of pre-

conservation voltage reduction and post-conservation voltage reduction data to calculate 

a Euclidian distance-based index, and to select a set of load profiles that are closest to the 

profile under estimation. The selected profiles are used to train the support vector 

regression prediction model in the second stage. Estimated load profiles with large errors 

are filtered out in the third stage. The conservation voltage reduction factor can be 

calculated by using the estimated load profile. The impacts of load estimation errors on 

conservation voltage reduction factor calculation are analyzed. When selecting the 

preferred conservation voltage reduction feeders, the variety of conservation voltage 
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reduction effects is taken into account. A Kolmogorov-Smirnov-test based probabilistic 

framework is used to find the probabilistic conservation voltage reduction performance of 

each of five feeders. 

Section 5.2.3 provides the analysis of impacts of load estimation errors on 

conservation voltage reduction assessment. It is found that larger estimation errors of 

load result in higher calculation errors of conservation voltage reduction factors. The 

relationship among the load estimation errors, values of conservation voltage reduction 

factors, and calculation errors of conservation voltage reduction factors are quantified by 

equations (5.36-5.39). The conclusion of the analysis is generic, and can be applied to all 

conservation voltage reduction assessment methods that require an estimation of the load 

consumption without voltage reduction.  

For the model-driven assessment method, a time-varying exponential load model is 

used to represent loads and the unscented Kalman filter is applied to estimate model 

parameters. Then conservation voltage reduction factors can be calculated using the 

estimated model parameters. The results confirm that conservation voltage reduction 

factors change with the time. In practice, the load-to-voltage sensitivity pk  is usually 

smaller and less variant than the base load 0P . Therefore, the initial guess of the states to 

be estimated (i.e., pk  and 0P  in this section) and the settings of the unscented Kalman 

filter, i.e., the values of process noise q and measurement noise r significantly affect the 

estimation results. These affects are shown in the examples in section 5.3.3 and 5.3.4. In 

this dissertation, multiple combinations of initial state guess, q and r are applied in the 

examples, and it is suggested to select the settings that result in the smallest mean average 

estimation error as the appropriate setting of the unscented Kalman filter. A Euclidian 
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distance based comparison method is developed to show the performance of the proposed 

model-driven assessment method. Simulation examples in section 5.3.3 show that the 

proposed method can track changes of the load consumption and the load-to-voltage 

sensitivity. However, it is found that the results of model-driven method and Euclidian 

distance based method do not match each other well. A possible reason is that the load 

profile of a single normal-voltage day selected by the Euclidian distance based method 

cannot accurately represent what the load would be if there were no voltage reduction 

during the conservation voltage reduction period. Since the actual conservation voltage 

reduction factors are unknown, the accuracy of the proposed method cannot be fully 

verified with the practical data. Further studies on the verification of the estimation 

results of conservatism voltage reduction effects are necessary in the future work.  

Compared to previous efforts on evaluating conservation voltage reduction effects, 

the proposed methods have the following notable advantages: 1) they do not depend on 

the selection of control groups or assumption of a simple linear relationship between a 

load and its impact factors; 2) they capture the nature of conservation voltage reduction 

by modeling load-to-voltage sensitivities; 3) they consider the time-varying and uncertain 

nature of conservation voltage reduction effects. The proposed assessment method can 

potentially be used to guide the selection of suitable substations and appropriate time to 

implement voltage reduction. It can also be used to assist utilities to perform cost/benefit 

analyses. 

Next chapter studies demand response which is implemented on the customer side to 

improve the energy efficiency.  
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CHAPTER 6 IMPLEMENTATION OF DEMAND 

RESPONSE WITH DGs AND ENERGY 

STORAGE SYSTEMS 

6.1 Overview 

Chapters 4 and 5 investigate voltage/VAR control and conservation voltage 

reduction which can be applied by utilities to improve the operating efficiency of 

distribution grids. This chapter investigates demand response. Unlike voltage/VAR 

control which is imposed by utilities, demand response is a measure that can be 

implemented on the customer side to operate the power system in a more efficient and 

reliable way. Utilities usually provide multiple options of demand response programs to 

customers, so as to reduce or shift the peak-time demand, and improve the system 

operation and reliability. On the other hand, customers have various demand profiles. The 

integration of customer-owned DGs and energy storage systems brings further challenges. 

This chapter describes a novel method to assist various types of end-use customers to 

make the most beneficial plan to participate in demand response programs, and to 

integrate customer-owned DGs and energy storage systems. Meanwhile, the developed 

method can also help the customers to schedule DG generation, charging/discharging of 

batteries, and perform load management accordingly. Multiple objectives are considered 

in the decision-making process, which include costs, reliability, and discomfort. The 

costs include electricity purchases and investments of DGs. The reliability is defined as 

the curtailment index of loads. The discomfort is defined as the load shifts.  

The problems that need to be solved can be summarized as follows: 
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· In which demand response program(s) should a customer participate? 

· How many battery units should be installed to coordinate with the demand response 

programs? 

· How to perform energy management (e.g., load shifting, charging/discharging of 

battery units) with the selected demand response programs? 

6.2 Mathematical Formulation 

The proposed two-stage scheme for the selection and energy management of demand 

response (DR) programs is shown in Fig. 6.1. 

 

 

Figure 6.1. Two-stage demand response selection and energy management. 

 

In the first stage, multiple types of demand response programs are considered, e.g., peak-

time rebate, time-of-use and critical peak pricing programs. The integration of consumer-
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owned DGs and energy storage is also taken into account. In the second stage, the load 

dispatch is performed based on the demand response programs selected in the first stage. 

Three objectives are taken into account: cost, reliability, and discomfort. The objectives 

are expected values under uncertainty. The proposed formulation is as follows, and Table 

6.2 shows the nomenclature for the formulation.  

 

Table 6.1 Nomenclature for demand response formulation. 

i  

Index for demand response 
programs: 1-Peak-time 

rebate; 2-Time of use (TOU); 
3-Critical peak pricing (CPP)

,y wr  
Reliability index in scenario 

w in year y 

h  Index for hour of the day ,y wd  
Discomfort index in scenario 

w in year y 
rP Reliability cost dP Discomfort cost 

y  Index for year y  Present worth factor in year y

w  Index for scenario rW Weight for reliability 

cW  Weight for cost dW Weight for discomfort 

wW  Probability of scenario w gOC  Operation cost of generators

, ,h y wg  Output of generators sIC  Investment cost of storage

gIC  Investment cost of generators , ,h y wp  Net electricity price 

sz  
Number of batteries to be 

installed
gz  

Number of generators to be 
installed 

,
dr
i yS  

Sign-on bonus of program i 
in year y , ,

t
h y wp  Carbon tax price 

,
l
y wC  

Total cost of scenario w in 
year y , ,h y wl  Net load consumption 

curtp  Curtailment payment 0
, ,h y wL  

Load consumption without 
demand response programs

, ,
s
h y wl  Shifted load , ,

c
h y wl  Curtailed load 

max
,y wL  

Max. load consumption 
without demand response 

programs 
,

s
h w  Load shifting ratio 

0
yP  

Electricity price without 
demand response programs ,

PTR
y wR  Total peak time rebate 
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, ,h y wPTOU Price change due to time-of-
use program , ,h y wPCPP Price change due to critical 

time pricing 

, ,h y wPTR  Peak time rebate maxG  
Maximum output of 

generator 

, ,h y wa  Capacity factor of generator   Aging factor of energy 
storage system 

, ,
sd
h y wq  Discharging power sM  

Maximum 
charging/discharging of one 

battery unit 

, ,
sc
h y wq

 
Charging power , ,h y ws  

State of charge of energy 
storage system 

d  Discharging efficiency c  Charging efficiency 

l  Battery leakage ocsp  
Operation cost of energy 

storage systems 

sD  
Charging/discharging 

duration ,
c
h w  Load curtailment ratio 

 

, , , ,, ,
min ( ( )) 365 ( )c s s g g dr c l r r d d

i y w y w y w y wi y y w
W IC z IC z S W W C W P r W P d       

(6.1) 

Subject to 

, , , , , , , , , , , , , , ,

,

( ( ( ) ( ))

), , ,

l g t curt c ocs sd sc
y w y h y w h y w h y w h y w h y w h y w h y wh

PTR
y w

C OC g p p l p l p q q

R y w

     

 



  (6.2) 

0
, , , , , , , , , , , , , , , , , ,s c sd sc

h y w h y w h y w h y w h y w h y w h y wl L g l l q q h y w                     (6.3) 

max
, , , , , , , ,h y w h y wl L h y w                                                 (6.4) 

, , 0, , ,s
h y wh

l y w                                                   (6.5) 

0
, , , , , ,( ) , , , ,s s

h y w h w i y h y wi
l z L h y w                                      (6.6) 

max
, , , 1, 3, ,( ) , , , ,c c

h y w h w y y y wl z z L h y w                                      (6.7) 

0
, , 2, , , 3, , , 2, 3, [14,18], , , , ,h y w y y h y w y h y w y y h y wp P z PTOU z PCPP z z PTOU h y w         (6.8) 
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0
, 1, , , , , , ,[14,18]

( ) , , ,PTR
y w y h y w h y w h y wh

R z L l PTR y w


                           (6.9) 

1
, , 1, , , , , ,( ) , , , .l d sd c sc

h y w h y w h y w h y ws s q q h y w  
                          (6.10) 

1
1, , 24, , , , .y s s s

y w y ws s D z M y w                                         (6.11) 

1
, , , , , .sd y s s

h y wq z M h y w                                                  (6.12) 

1
, , , , , .sc y s s

h y wq z M h y w                                                  (6.13) 

1
, , , , , ,y s s s

h y ws D z M h y w                                            (6.14) 

, , , , , ,s
y w h y wh

d l y w                                                     (6.15) 

, , , , , ,c
y w h y wh

r l y w                                                       (6.16) 

max
, , , , , , , ,g

h y w h y wg z a G h y w                                                 (6.17) 

integer, binarysz z                                                        (6.18) 

1, , , , , , , , 0c sd scC r d l g l q q s                                                    (6.19) 

In the above formulation, the objective function (6.1) minimizes the total costs 

during the planning horizon. The costs include the investment and operation costs of 

energy storage systems and distributed generators, the reliability cost, and the discomfort 

cost. The sign-on bonus is considered as a negative cost. It is assumed that there are 365 

days in one year.  

Constraint (6.2) represents the operation costs, the first item is the operation cost of 

distributed generators, the second item is the cost of load consumption, the third item is 

the cost of load curtailment, the fourth item represents the operation cost of energy 

storage systems, and the last item is the total peak-time rebate. Constraint (6.3) represents 
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the net load consumption. The first item represents the original load consumption of the 

customer, the second item represents the generation of distributed generators, the third 

item represents the shifted load, the fourth item represents the curtailed load, and the last 

two items represent the charging and discharging of energy storage systems. Five 

representative scenarios are considered, winter weekdays, winter weekends, summer 

weekdays, summer weekends, and event days (only applicable under certain demand 

response programs).  

Constraint (6.4) indicates that the net load consumption with demand response 

programs should be no larger than the load consumption without demand response 

programs. In constraint (6.5), the net shifted load in a day should be zero, since all shifted 

load consumption can be supplied eventually. Constraint (6.6) represents the maximum 

allowable load shift, which should be a certain portion of the original load consumption. 

Constraint (6.7) represents the maximum allowable load curtailment. Constraint (6.8) 

represents the net electricity price with demand response programs. The first item 

represents the electricity price without any demand response programs. The second item 

represents the price adjustment of time-of-use program. The third item represents the 

price adjustment of critical peak pricing program. If a consumer participates in both time-

of-use and critical time pricing programs, there exists a duplicate charge during peak 

hours, which is deducted by the last item. Constraint (6.9) represents the peak-time rebate. 

Peak time is defined as 2 pm to 6 pm in this dissertation. The operator can change the 

settings according to practical scenarios.  

Constraints (6.10-6.14) represent the operating constraints of energy storage systems, 

which have been used by other researchers [115-118]. Constraint (6.10) calculates the 
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state of charge (SOC) of the energy storage systems for each time period. According to 

the operation requirement of energy storage systems, the state of charge at the end of the 

day should be equal to the state of charge at the beginning of the day, which is indicated 

by constraint (6.11). Constraints (6.12) and (6.13) represent the maximum discharging 

and charging constraints of energy storage systems, respectively. Constraint (6.14) 

indicates the maximum continuously charging/discharging period.  

Constraint (6.15) defines the discomfort index as the total shifted load consumption. 

In constraint (6.16), the reliability index is defined as the total curtailed loads. Constraint 

(6.17) represents the maximum allowable outputs of generators.  

The first-stage decision variables are sz , gz , and ,i yz ; the second-stage decision 

variables are , ,h y wg , , ,
sd
h y wq , , ,

sc
h y wq , , ,h y wl , , ,

s
h y wl , and , ,

c
h y wl . The first stage of the formulation 

assists customers in selecting the most beneficial demand response programs (i.e., time-

of-use, critical time pricing, and peak-time rebate). The first stage also makes decisions 

on the integration of customer-owned DGs and batteries. The second stage performs load 

managing and generation scheduling according to the decision made in the first stage. 

6.3 Numerical Results 

6.3.1 Parameter Settings of Case Studies 

The proposed model in equations (6.1-6.18) is tested with two types of customers: 

small commercial/industrial buildings and large commercial/industrial campuses. Five 

demand scenarios [101] are considered in the case study: 1. summer weekdays, 2. 

summer weekends, 3. winter weekdays, 4. winter weekends, and 5. critical days (event 

days). In general, hot summer weekdays and cold winter weekdays with severe events are 
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considered as critical days. For purposes of illustration, the probabilities of the five 

demand scenarios are set to be W1=0.3425, W2=0.1370, W3=0.3425, W4=0.1370, and 

W5=0.041. Fig. 6.2 shows the load consumption of five scenarios for small 

commercial/industrial buildings. Fig. 6.3 shows the load consumption of five scenarios 

for large commercial/industrial campuses.  

 

Figure 6.2. Five load scenarios for small commercial/industrial buildings. 

 

Figure 6.3. Five load scenarios for large commercial/industrial campuses. 
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The base electricity price 0
1P  is set at 0.20 $/kWh, the price deviations of demand 

response programs are shown in Fig. 6.4 [119]. Equation (6.8) shows that the electricity 

price for a certain time slot is the aggregation of the base price and the corresponding 

price deviations. It is assumed that the annual increasing rate of base electricity price is 

7%. The annual discount rate is 0.95.  

 

Figure 6.4. Price deviations of demand response programs. 

The planning horizon is at 5 years. maxG  is set at 80 kW for small 

commercial/industrial buildings, and 600 kW for large commercial/industrial campuses. 

gOC  is set at $0.1/kWh with the annual increase of 2%. Sign-on bonus is applied to the 

critical peak pricing program, and is set to be $0.5/kW of the maximum load 

consumption. s
hw  is set at 0.05 and c

hw  is set at 0.05. For the energy storage systems, l  

is set at 0.95, c  is set at 0.90, d  is set at 0.90,   is set at 0.9, ocsP  is set at 0.50 $/kWh, 

sD  is set at 4 hours, and sM  is set at 3 kW. It is assumed that the weights of costs, 

reliability index and discomfort index are 0.45, 0.45, and 0.1, respectively. It should be 
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noted that all of the simulation settings are for illustration, operators can change the 

settings according to the operation and available information of a system. Fig. 6.5 shows 

the flowchart of the simulations. The proposed model in (6.1-6.18) is coded in the general 

algebraic modeling system. The inputs of the simulations include the parameter settings 

in Section 6.3.1, load profiles and electricity price. Since the proposed model represents a 

mixed-integer nonlinear and nonconvex problem, the Discrete and Continuous Optimizer 

(DICOPT) in the General Algebraic Modeling System (GAMS) [93] is used to solve the 

problem. The simulation is performed by using a computer with Intel Quad Core 2.40 

GHz and 8 GB memory. The computation time for each simulation case is around 2 

minutes. The outputs of the solver are the optimal selection of demand response programs, 

integration of battery units and energy management.  

 

Figure 6.5. Flowchart of simulation. 

6.3.2 Simulation Results for Small Commercial/Industrial Buildings 

The model defined in equations (6.1-6.18) is tested with a small 

commercial/industrial building. The load profiles of the building are shown in Fig. 6.2. 

The settings of the model parameters are defined in Section 6.3.1. Five demand scenarios 
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[101] are considered: scenario 1. summer weekdays, scenario 2. summer weekends, 

scenario 3. winter weekdays, scenario 4. winter weekends, and scenario 5. critical days 

(event days). The model is solved by the general algebraic modeling system [90] to 

obtain the optimal selection of demand response programs, integration of battery 

units/DGs and energy management. For the selection of demand response programs and 

battery units/DGs, the building installs one DG and 47 battery units, and participates in 

all three demand response programs in the five years. 

(a) Results of Load Shifting 

In order to illustrate the optimal load consumption management with demand 

response programs, this subsection starts with Fig. 6.5 which shows the load shifting 

results in five demand scenarios in the first year. A positive value represents that the load 

is shifted from the corresponding time, and a negative value represents that the load is 

shifted to the time period. Scenarios 1, 4 and 5 have positive load shifting during 11:00 to 

19:00 (peak-hours) and negative load shifting during other periods of a day (off-peak 

hours). The net shifted load consumption of scenarios 1, 4 and 5 during 24 hours is zero, 

which satisfies the constraint (6.5). In Fig. 6.6 the shifted load of scenarios 2 and 3 is zero 

during 24 hours since the two scenarios represent weekend load demand which is usually 

low.  
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Figure 6.6. Load shifting results of a small commercial/industrial building in the first year. 

(b) Results of Optimal Energy Management of Battery Units 

In order to demonstrate the optimal energy management of battery units, this 

subsection starts with Fig. 6.7. The figure shows the aggregated charging/discharging 

operation of all installed battery units in the first year, which is obtained by solving the 

problem defined in equations (6.1-6.18).  

In Fig. 6.7, a positive value represents that batteries are operating at the discharging 

state, and a negative value indicates that batteries are operating at the charging state. In 

general, the fluctuation of charging/discharging power in scenarios 2 and 4 

(summer/winter weekends) is smaller than that of scenarios 1, 3 (summer/winter 

weekdays) and 5 (event days). In scenario 5 (event days), batteries operate in the 

discharging state during the critical period (14:00-18:00). The reason is that grid 

electricity price in the critical period is high as shown in Fig. 6.4, and the building tends 

to support its load using batteries.  
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Figure 6.7. Aggregated charging/discharging of battery units of a small 
commercial/industrial building in the first year. 

 

(c) Results of Imported Power from Grids 

Fig. 6.8 shows the net imported power from the grid in the first year. In scenarios 2 

and 4 (summer/winter weekends), the imported power is zero from 1:00 to 20:00, which 

indicates that the building is self-sufficient during this period. In scenarios 1 and 3 

(summer/winter weekdays), the building imports electricity from the grid. During 14:00-

17:00, i.e., the peak period of event days, the building uses all of its generation and 

storage capacities to be self-adequate, because of the extremely high electricity price as 

shown in Fig. 6.4.  
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Figure 6.8. Power imported from the grid of a small commercial/industrial building in the 
first year. 

 
(d) Imported Power from Grids for a Building without Battery Units 

In order to show the impacts of energy storage systems on customer behaviors, it is 

assumed that there is no battery installed in the building. Fig. 6.9 shows the net imported 

power from the grid in the first year. Compared to Fig. 6.8, the imported power in Fig. 

6.9 becomes smaller during the night for all five scenarios because there is no battery unit 

that needs to be charged. However, the peak demand (14:00 to 18:00) becomes larger in 

scenarios 1, 3 (summer/winter weekdays) and 5 (event days). This is because the demand 

can only be supplied by the grid and DG. In Fig. 6.8, the building can be self-supplied in 

peak hours in event days to avoid paying a much higher energy price. As shown in Fig. 

6.9, the building has to buy electricity at the critical peak price in event days because 

there is no energy storage system.  
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Figure 6.9. Power imported from the grid of a small commercial/industrial building 
without batteries in the first year. 

6.3.3 Simulation Results for Large Commercial/Industrial Campuses 

In this case, simulations are run for a large commercial/industrial campus with load 

profiles showing in Fig. 6.3. The settings of the model parameters are defined in Section 

6.3.1. Five demand scenarios [101] are considered: scenario 1. summer weekdays, 

scenario 2. summer weekends, scenario 3. winter weekdays, scenario 4. winter weekends, 

and scenario 5. critical days (event days). The model is solved by the general algebraic 

modeling system [90] to obtain the optimal selection of demand response programs, 

integration of battery units/DGs and energy management. For the selection of demand 

response programs and battery units/DGs, the campus installs one DG and 468 battery 

units, and participates in all three demand response programs in the five years.  
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(a) Results of Load Shifting 

Fig. 6.10 shows the load shifting results in five demand scenarios in the first year. A 

positive value represents that the load is shifted from the corresponding time, and a 

negative value represents that the load is shifted to the time period.  

 

Figure 6.10. Load shifting results of a large commercial/industrial building in the first year. 

Similar to the load shifting results in the small commercial/industrial building, load 

consumption is mostly shifted during 11:00 to 18:00 in scenarios 1, 3 (summer/winter 

weekdays) and 5 (event days).  

(b) Load shifting for a Building without Battery Units 

In order to show the impacts of energy storage systems, Fig. 6.11 shows the load 

shifting under the assumption that there is no battery installed on campus. Compared with 

Fig. 6.10, the shifted load consumption becomes larger in scenarios 2, 4 and 5, especially 

for scenario 2 (summer weekdays). This is because load can only be supplied by the grid 

and DG if there is no battery unit, more load consumption needs to be shifted to respond 

to the electricity price in peak periods. Shifted load consumption is close to zero for 
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winter weekends since the demand in this scenario is relatively low itself as shown in Fig. 

6.3.  

 

Figure 6.11. Load shifting of a large commercial/industrial campus without batteries in the 
first year. 

 
(c) Results of Optimal Energy Management of Battery Units 

Fig. 6.12 shows the aggregated charging/discharging operation of all installed battery 

units in the first year. A positive value represents that batteries are operating at the 

discharging state, and a negative value indicates that batteries are operating at the 

charging state. 
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Figure 6.12. Aggregated charging/discharging of battery units of a large 
commercial/industrial campus in the first year. 

 

Battery units work in the discharging mode to support demand during peak periods in 

summer/winter weekdays, summer weekends, and event days. The charging/discharging 

power in winter weekends is still small due to the relatively flat and small demand. In all 

five scenarios, battery units are operated in the charging state from 8:00 pm to midnight 

to take advantage of the relatively cheap electricity.  

(d) Results of Imported Power from Grids 

Fig. 6.13 shows the net imported power from the grid in the first year by solving the 

model defined in equations (6.1-6.18). The campus can be self-supported in most periods 

in scenarios 2 and 4 (summer/winter weekends) since the net imported power during 

these periods are zero. During the night of scenarios 2 and 4 (summer/winter weekends), 

the campus imports relatively cheap electricity from the grid to charge the battery units. 

In scenarios 1 and 3 (summer/winter weekdays), the campus needs to buy electricity from 
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the grid. In the peak periods (14:00-18:00) of scenario 5 (event days), the campus tends 

to buy less electricity from the grid, because of the extremely high electricity price in 

event days as shown in Fig. 6.4.  

 

 

Figure 6.13. Power imported from the grid of a large commercial/industrial campus in the 
first year. 

 

Fig. 6.14 shows the net imported power from the grid in the fifth year. Compared to 

the results shown in Fig. 6.13, the campus imports more power from the grid in the fifth 

year. This is because of the increasing load consumption and decreasing available 

capacity of energy storage systems and DGs (because of the aging problems). 
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Figure 6.14. Power imported from the grid of a large commercial/industrial campus in the 
fifth year. 

 

(e) Impacts of Critical Time Price on Customer Behavior 

In order to show the impacts of demand response program design on customer 

behavior, the critical time price shown in Fig. 6.4 is increased by 150%. After running the 

optimization, the customer selects time-of-use and peak-time rebate programs to 

participate in all five years, while participating in critical time pricing programs for the 

first year. Fig. 6.15 shows the net imported power from the grid in the fifth year. 

Compared to the results in Fig. 6.14, the imported power during peak hours increases in 

event days. This is because the customer has already decided not to participate in critical 

time pricing program 
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Figure 6.15. Power imported from the grid of a large commercial/industrial campus in the 
fifth year (with peak-time rebate and time-of-use). 

 

 

Figure 6.16. Power imported from the grid of a large commercial/industrial campus 
without batteries in the first year. 

 

(f) Imported Power from Grids for a Campus without Battery Units 
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Fig. 6.16 shows the net imported power from the grid of the large campus under the 

assumption that there is no battery installed. Compared to Fig. 6.13, the campus does not 

need to import power in night to charge the batteries. However, it needs to buy more 

electricity with a higher price in the peak periods in summer/winter weekdays, winter 

weekends and event days. The total operation costs of the customer with and without 

battery units over a period of 5 years are $693,517 and $940,560, respectively. 

6.4 Summary 

This chapter proposes a two-stage framework for the planning and energy 

management of a customer with demand response programs. In practice, a utility usually 

provides multiple demand response programs to its customers. In the proposed method, 

the first stage is to assist the customer to select the most beneficial programs to 

participate and install an appropriate number of battery units. The second stage is to 

perform energy management according to the decisions made in the first stage, which 

includes dispatches of loads, DGs and energy storage systems.  

For illustration, two types of customers (small commercial/industrial buildings and 

large commercial/industrial campuses) and five demand scenarios (summer/winter 

weekdays, summer/winter weekends, and event days) are considered in the case study. 

The simulation results demonstrate the effectiveness of our method. The impacts of 

batteries and demand response program designs on customer behaviors are also shown.  

Chapter 7 concludes the dissertation and introduces future work direction.  
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

DIRECTION 

7.1 Conclusions and Contributions 

This research focuses on the efficient operation of modernized distribution grids on 

the customer side and the utility side. For the customer side, this research studies the 

optimal demand side management. For the utility side, this research investigates the 

voltage/VAR control and DG integration. Compared to the existing literature, the main 

contributions of this dissertation are as follows:  

(1) A two-stage co-optimization framework is proposed for the planning and energy 

management of a customer with demand response programs. The novel method considers 

multiple demand response programs, various customer types and demand scenarios, and 

the integration of energy storage systems. The designed method can help a customer to 

make the most beneficial plans to join demand response programs and install energy 

storage systems in the planning stage, and optimally schedule the loads, DG outputs and 

batteries according to the decisions made in the first stage. 

(2) A stochastic rolling horizon optimization-based voltage/VAR control technique is 

developed. The uncertainty and variability of DG outputs and load consumptions are 

fully considered in the proposed method. Instead of using the constant-power load model 

which is widely applied in existing voltage/VAR control research, the exponential load 

models are used to capture the load-to-voltage sensitivities of a variety of customers. 

Therefore, the major contribution of this work is to simultaneously consider the 

stochasticity of load and renewable generation, and the load-to-voltage relationship.  
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(3) A multistage support vector regression algorithm is developed to estimate the 

load consumption without voltage reduction during the conservation voltage reduction 

period. Compared to the existing regression-based methods to assess conservation 

voltage reduction effects which assume linear regression models, the proposed big data-

driven method can capture the complicated load behaviors. The probabilistic nature of 

conservation voltage reduction effects is considered when selecting target feeders by a 

proposed stochastic analysis framework based on the Kolmogorov-Smirnov test.  

(4) A load model identification-based method is proposed to assess the conservation 

voltage reduction effects. This method captures the nature of conservation voltage 

reduction by modeling the load as a function of voltage and calculating conservation 

voltage reduction factors from the identified load-to-voltage sensitivities. The proposed 

method does not require long-term day on/day off tests to conduct comparison. The new 

method can assist utilities in assessing the conservation voltage reduction effects of 

feeders.  

(5) A solution and validation method is presented for stochastic DG placement. The 

objective of the DG placement is to assist the implementation of conservation voltage 

reduction. The uncertainties of renewable DG outputs and load consumption are 

considered by formulating the problem as a stochastic program. A combined sample 

average approximation-multiple replication procedure method is developed to solve the 

problem and validate the optimality of the solutions.  

In particular, a two-stage framework to facilitate demand response at the customer 

level is proposed. The objective is to maximize the benefits to the customer. In the first 

stage, the proposed method can assist a customer to select multiple demand response 
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programs to join and install an appropriate amount of batteries to coordinate with demand 

response. The second stage is to perform energy management according the planning 

decisions in the first stage, which includes dispatches of loads, fossil-fired backup 

generators and batteries. The proposed method can be applied to residential, commercial 

and industrial customers with various demand scenarios. For illustration, the simulations 

study two types of customers: large commercial/industrial campuses and small 

commercial/industrial buildings. Five demand scenarios are considered: summer 

weekdays, summer weekends, winter weekdays, winter weekends and event days. Time-

of-use, critical time pricing and peak-time rebate are considered as options of demand 

response programs. The numerical results show the impacts of demand response 

incentives and costs of energy storage systems on the selection and operation of demand 

response programs. The proposed method can be used to assist customers to make the 

most beneficial decisions to participate in demand response. 

To guarantee the efficient and reliable operation of a modernized distribution grid, a 

stochastic rolling horizon optimization-based voltage/VAR control technique is proposed. 

The method considers exponential load models and the probabilistic nature of prediction 

errors of DG outputs and load consumptions. The voltage/VAR control problem is 

formulated as a stochastic program with the purposes to minimize power losses and 

voltage deviations along a feeder. Different types of customers (residential, commercial 

and industrial customers) in a distribution system are taken into account by assigning 

corresponding exponents in the load models. Case studies on the modified 33-bus test 

system with wind turbines, photovoltaic generators and different types of loads verify the 

effectiveness of the proposed voltage/VAR control technique. Compared to the case 
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without voltage/VAR control, the proposed method can reduce losses by up to 77% and 

reduce maximum voltage deviations by up to 65%. It should be noted that the stochastic 

voltage/VAR control produces from two to three times greater benefits than the 

deterministic voltage/VAR control approach. Finally, it appears that significant 

differences exist in voltage/VAR control dispatches when load models are taken into 

account. Compared with previous studies on voltage/VAR control dispatch, the proposed 

method considers both improved load models and uncertain DG outputs.  

The conservation voltage reduction plays an essential role in a smart distribution grid. 

This dissertation develops two novel methods to assess load-reduction effects of 

conservation voltage reduction: data-driven method and model-drive method. The data-

driven method is based on a proposed multi-stage support vector regression technique to 

estimate the load consumption without voltage reduction during a conservation voltage 

reduction period. The first stage is to make use of pre- conservation voltage reduction and 

post- conservation voltage reduction data to select a set of load profiles that are closest to 

the profile under estimation. The selected profiles are used to train the support vector 

regression prediction model in the second stage. Estimated load profiles with large errors 

are filtered out in the third stage. The conservation voltage reduction factors can be 

calculated by using the estimated load profile. In the proposed model-driven method, load 

is modeled as a function of voltage by a time-varying exponential load model. The model 

parameters are recursively identified by recursive least square. The conservation voltage 

reduction factors can be calculated using the identified load-to-voltage sensitivities. A 

conservation voltage reduction factor is subject to different types of uncertainties, 

depending on load mix, feeder configurations, weather conditions, human behaviors, etc. 
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This dissertation uses the Kolmogorov-Smirnov goodness-of-fit test to identify the most 

suitable probability distributions representing conservation voltage reduction effects of 

different feeders. The cumulative distribution functions that represent conservation 

voltage reduction effects of each feeder are used to select candidate feeders. The results 

could potentially be used to select target feeders before making any investments. 

To accommodate the increasing penetration of DGs, this dissertation presents a new 

DG planning strategy to assist the implementation of conservation voltage reduction. The 

DG placement is defined as a stochastic optimization problem to enable the distribution 

system to decrease load consumptions. In order to deal with the uncertain nature of DG 

outputs and load consumptions, a combined sample average approximation-multiple 

replication procedure-based algorithm is developed to obtain the optimal solution. The 

quality of the optimal solution is validated by calculating its confidence interval using a 

multiple replication procedure. The case studies show the effectiveness of the proposed 

formulation and prove that the power reduction can be achieved, if the integration of DG 

and implementation of conservation voltage reduction is considered simultaneously. 

7.2 Future Work Directions 

7.2.1 Future Work for Voltage/VAR Control and DG Placement 

The dissertation proposes a centralized voltage/VAR control technique which 

considers the stochasticity of DG outputs and load behaviors. Possible future work 

directions can be summarized as follows: 

(1) The exponential load model is used to represent the load-to-voltage relationship since 

the model has been widely used in existing papers. However, further investigations are 

needed for the validation of using this model in practice. A possible way is to run a few 
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trials to change the tap positions of tap changers to check if the exponential load model 

can track the load-to-voltage behaviors.  

(2) The proposed voltage/VAR control technique is illustrated on a modified IEEE 33-

bus test system in section 4.3.3. The penetration of renewable DGs affects the 

voltage/VAR control. It would be beneficial to further validate the proposed method on 

the 33-bus test system with different penetration levels of renewable DGs and on larger 

IEEE standard test systems. Simulations and even field tests on real utility systems are 

necessary in the future.  

(3) The costs of the implementation of the proposed voltage/VAR control and the 

benefits of a flattened voltage profile and reduced power losses need to be studied. A 

flattened voltage profile can assist the implementation of conservation voltage reduction 

since the end-of-line voltage is higher than the minimum voltage limit.   

(4) The dissertation does not consider inverter-based VAR control since it is still not 

widely accepted by utilities in the U.S. However, it is a trend to use inverters to provide 

fast-response VAR control of a distribution system. The coordination of inverters and 

traditional voltage/VAR control devices should be studied. Moreover, a fast-response 

voltage/VAR control requires a decentralized communication and control framework for 

voltage regulators and VAR compensation devices.  

(5) Chapter 4 also proposes a stochastic DG placement method to assist voltage/VAR 

control. In practice, many DGs are owned by customers. It is necessary to investigate the 

standards and incentives for the integration of customer-owned DGs.  
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7.2.2 Future Work for Assessment of Conservation Voltage Reduction 

The dissertation proposes two methods for the assessment of conservation voltage 

reduction effects: data-driven assessment method and model-driven assessment method. 

Possible future work directions include: 

(1) Similar to the work on voltage/VAR control, an exponential load model is used to 

represent the load-to-voltage behavior in section 5.3. Even though the load model is 

frequently used in papers, further validations by field tests are necessary.  

(2) The verification of the assessment results by the proposed two methods is still 

outstanding. For the data-driven assessment method, the performance of the support 

vector regression model is better than a multi-linear regression model with normal-

voltage data. For the reduced-voltage data, it is still necessary to study whether the 

proposed model can accurately estimate what the load would be if there were no voltage 

reduction. Tests on more voltage-reduction days are still necessary. The support vector 

regression model needs to be re-trained for a new voltage-reduction day, which is 

complicated. It would be beneficial to investigate model adaptation techniques to 

construct a general support vector regression model that can be easily adjusted by new 

datasets. The proposed model-driven method can track the changes of model parameters 

in the simulation examples in section 5.3.3. But the verification with simulated data 

cannot be directly applied to practical test cases. For the assessment of utility data in 

section 5.3.4, the proposed model-driven method demonstrates good performance on 

tracking the measured load consumption (i.e., the mean average percentage error between 

the model output and the measured active power is small). A Euclidian distance based 

comparison method is developed to show the performance of the proposed method. 
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However, it is found that the calculated conservation voltage reduction factors of the 

proposed method do not match those of the Euclidian distance based method in a good 

way. A possible reason is that the load profile of the normal-voltage day selected by the 

Euclidian distance based method is not an accurate estimation of what the load would be 

if there were no voltage reduction for the day with conservation voltage reduction. 

Therefore, the verification of the assessment results should be further evaluated.  

(3) For the proposed model-driven assessment method, it is found in sections 5.3.3 and 

5.3.4 that the parameter values of the identification algorithm (i.e., the values assumed for 

the process noise level q and measurement noise level r) have impacts on the calculation 

of conservation voltage reduction factors. Different values of q and r lead to different 

assessment results of conservation voltage reduction. In this dissertation, it is suggested 

to use the values of q and r that result in the smallest mean average estimation error. 

Further studies are necessary to evaluate the impacts of algorithm settings on the 

assessment results of conservation voltage reduction.  

7.2.3 Future Work for Demand Response 

The dissertation develops a co-optimization framework for the planning and energy 

management with demand response. Possible future work directions include: 

(1) The developed method in chapter 6 requires significant computation. A customer may 

not have the required computational abilities. A possible solution is to develop an online 

optimization platform that integrates the proposed model so that a customer can upload 

the data and use an online server to perform the computation.  

(2) The demand response program designs have great impacts on customer behaviors. 

Changes in program designs may lead to significantly different cost-effectiveness results 
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and customer reactions. The role of energy storage systems and fossil-fired and 

renewable DGs in the design and operation of demand response programs needs further 

research. The planning of distribution systems considering demand response programs is 

also a promising topic.  

(3) Demand response has been applied by others to conduct peak shaving and frequency 

regulation. It is necessary to study the coordination of demand response programs, 

operation of DGs, batteries and plug-in electric vehicles, and microgrids to improve the 

system-wide efficiency and operation.  

(4) As more measurement data from smart meters become available, the assessment of 

conservation voltage reduction and demand response effects will be more accurate. Big 

data-driven techniques provide abilities to deal with large amounts of data, which can be 

used to analyze and predict the performance of demand response and energy efficiency 

programs.  
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CHAPTER 9 APPENDICES 

Appendix A: IEEE 33-Node Distribution Test System 

The following figure shows the IEEE 33-node distribution test system.  

 

FigureA.1. IEEE 33-node distribution test system. 

The line data for the 33-node test system is listed as follows: 

 

Line No. From Node To Node r (ohm) x (ohm) 

1 1 2 0.0922 0.0470 

2 2 3 0.4930 0.2511 

3 3 4 0.3660 0.1864 

4 4 5 0.3811 0.1941 

5 5 6 0.8190 0.7070 

6 6 7 0.1872 0.6188 

7 7 8 0.7114 0.2351 
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8 8 9 1.0300 0.7400 

9 9 10 1.0440 0.7400 

10 10 11 0.1966 0.0660 

11 11 12 0.3744 0.1238 

12 12 13 1.4680 1.1550 

13 13 14 0.5416 0.7129 

14 14 15 0.5910 0.5260 

15 15 16 0.7463 0.5450 

16 16 17 1.2890 1.7210 

17 17 18 0.7320 0.5740 

18 2 19 0.1640 0.1565 

19 19 20 1.5042 1.3554 

20 20 21 0.4095 0.4784 

21 21 22 0.7089 0.9373 

22 3 23 0.4512 0.3083 

23 23 24 0.8980 0.7091 

24 24 25 0.8960 0.7011 

25 6 26 0.2030 0.1034 

26 26 27 0.2842 0.1447 

27 27 28 1.0590 0.9337 

28 28 29 0.8042 0.7006 

29 29 30 0.5075 0.2585 

30 30 31 0.9744 0.9630 
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31 31 32 0.3105 0.3619 

32 32 33 0.3410 0.5302 

 

Load data for the 33-node test system is listed as follows: 

 

Node No. P (kw) Q (kvar) 

2 100.0 60.0 

3 90.0 40.0 

4 120.0 80.0 

5 60.0 30.0 

6 60.0 20.0 

7 200.0 100.0 

8 200.0 100.0 

9 60.0 20.0 

10 60.0 20.0 

11 45.0 30.0 

12 60.0 35.0 

13 60.0 35.0 

14 120.0 80.0 

15 60.0 10.0 

16 60.0 20.0 

17 60.0 20.0 

18 90.0 40.0 
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19 90.0 40.0 

20 90.0 40.0 

21 90.0 40.0 

22 90.0 40.0 

23 90.0 50.0 

24 420.0 200.0 

25 420.0 200.0 

26 60.0 25.0 

27 60.0 25.0 

28 60.0 20.0 

29 120.0 70.0 

30 200.0 600.0 

31 150.0 70.0 

32 210.0 100.0 

33 60.0 40.0 

 

Appendix B: 37-Bus Distribution Test System 

The following figure shows the 37-bus distribution test system.  
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FigureB.2. 37-bus distribution test system. 

The line data for the 37-bus test system is listed as follows, the base power is 100 

MVA, and the base voltage is 23 kV: 

 

Line No. From Node To Node r (p.u.) x (p.u.) 

1 1 2 0.000574 0.000293 

2 2 3 0.00307 0.001564 

3 3 4 0.002279 0.001161 

4 4 5 0.002373 0.001209 

5 5 6 0.0051 0.004402 

6 6 7 0.001166 0.003853 

7 7 8 0.00443 0.001464 

8 8 9 0.006413 0.004608 

9 9 10 0.006501 0.004608 

10 10 11 0.001224 0.000405 
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11 11 12 0.002331 0.000771 

12 12 13 0.009141 0.007192 

13 13 14 0.003372 0.004439 

14 14 15 0.00368 0.003275 

15 15 16 0.004647 0.003394 

16 16 17 0.008026 0.010716 

17 17 18 0.004558 0.003574 

18 2 19 0.001021 0.000974 

19 19 20 0.009366 0.00844 

20 20 21 0.00255 0.002979 

21 21 22 0.004414 0.005836 

22 3 23 0.002809 0.00192 

23 23 24 0.005592 0.004415 

24 24 25 0.005579 0.004366 

25 6 26 0.001264 0.000644 

26 26 27 0.00177 0.000901 

27 27 28 0.006594 0.005814 

28 28 29 0.005007 0.004362 

29 29 30 0.00316 0.00161 

30 30 31 0.006067 0.005996 

31 31 32 0.001933 0.002253 

32 32 33 0.002123 0.003301 

33 8 34 0.012453 0.012453 
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34 9 35 0.012453 0.012453 

35 12 36 0.012453 0.012453 

36 18 37 0.003113 0.003113 

37 25 38 0.003113 0.003113 

 

Load data for the 37-bus test system is listed as follows: 

 

Node No. P (p.u.) Q (p.u.) 

2 0.1 0.06 

3 0.09 0.04 

4 0.12 0.08 

5 0.06 0.03 

6 0.06 0.02 

7 0.2 0.1 

8 0.2 0.1 

9 0.06 0.02 

10 0.06 0.02 

11 0.045 0.03 

12 0.06 0.035 

13 0.06 0.035 

14 0.12 0.08 

15 0.06 0.01 

16 0.06 0.02 
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17 0.06 0.02 

18 0.09 0.04 

19 0.09 0.04 

20 0.09 0.04 

21 0.09 0.04 

22 0.09 0.04 

23 0.09 0.05 

24 0.42 0.2 

25 0.42 0.2 

26 0.06 0.025 

27 0.06 0.025 

28 0.06 0.02 

29 0.12 0.07 

30 0.2 0.6 

31 0.15 0.07 

32 0.21 0.1 

33 0.06 0.04 

34 0 0 

35 0 0 

36 0 0 

37 0 0 

38 0 0 
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