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SUMMARY 

 The American Association of State Highway and Transportation Officials Load and 

Resistance Factor Design Specifications (AASHTO LRFD) require the use of longitudinal 

stiffeners in plate girder webs when the web slenderness D/tw is greater than 150. This 

practice is intended to limit the lateral flexing of the web plate during construction and at 

service conditions. AASHTO accounts for an increase in the web bend-buckling resistance 

due to a longitudinal stiffener in a plate girder. However, when the theoretical bend-

buckling capacity of the stiffened web is exceeded under strength load conditions, the 

Specifications do not consider any contribution from the longitudinal stiffeners to the 

girder resistance. That is, the AASHTO LRFD web bend-buckling strength reduction factor 

Rb applied in these cases is based on an idealization of the web neglecting the longitudinal 

stiffener. This deficiency can have significant impact on girder resistance in regions of 

negative flexure. This research is aimed at evaluating the improvements that may be 

achieved by fully considering the contribution of the longitudinal stiffeners to the girder 

flexural resistance. 

 Based on refined Finite Element (FE) test simulations, this research establishes that 

minimum size longitudinal stiffeners, per current AASHTO LRFD requirements, 

contribute significantly to the postbuckling flexural resistance of plate girders, and can 

bring about as much as 60% increase in the strength of the compression flange. A simple 

cross-section Rb model is developed that can be used to calculate the girder flexural 

resistance at the yield limit state. This model is based on test simulations of straight 

homogenous girders subjected to uniform bending, and is tested extensively and validated 

for hybrid girders and other limit states. Hybrid girders use web plates of lower yield 
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strengths than the compression flange plates, leading to early yielding in the web, and 

potential impact on girder strength. 

 In testing the Lateral Torsional Buckling (LTB) limit state, it is found that there is a 

substantial deviation between the AISC/AASHTO LTB resistance equations and FE test 

simulations. A comprehensive parametric study is conducted to determine the appropriate 

parameters to use in FE test simulations. The recommended parameters are identified as 

the ones that provide the best fit to the mean of experimental data. Based on FE simulations 

on unstiffened girders using these recommended parameters, a modified LTB resistance 

equation is proposed. This equation, used in conjunction with the proposed Rb model from 

the yield limit state also provides an improved handling of combined web buckling and 

lateral torsional buckling of longitudinally stiffened plate girders.   

 In the course of evaluating the above limit states, it is observed that the noncompact 

web slenderness limit in the Specifications, which is an approximation based on nearly 

rigid edge conditions for the buckling of the web plate in flexure is optimistic for certain 

cross-sections with narrow flanges. This research shows that the degree of restraint at the 

edges of the web depend largely on the relative areas of the compression flange and the 

area of the web in compression. An improved equation for the noncompact web slenderness 

limit is proposed which leads to a better understanding and representation of the true 

behavior of these types of members. 

 It is found that there is negligible interaction between the Flange Local buckling (FLB) 

limit state and the LTB limit states for noncompact flanges with the flange slenderness 

restricted as per the AASHTO 2014 Specifications. Also, the Rb calculated from the 

proposed model, used along with the current Specification FLB equations is shown to 
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provide a better characterization of the flange local buckling capacity of longitudinally 

stiffened girders. 

 Tests subjected to High-Shear High-Moment, and High-Moment High Shear are 

considered in order to characterize the girder shear resistances and potential moment-shear 

interaction for both homogenous and hybrid girders in the context of the above 

improvements. 

 Preliminary studies on curved homogenous girders indicate that the proposed yield 

limit state model is valid for yield limit state of these types of members.
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INTRODUCTION 

 Current AASHTO Provisions 

 Plate girders used in longer-span bridges typically have slender webs combined with 

longitudinal stiffening to prevent theoretical web bend-buckling during construction and 

under service loads. The current American Association of State Highway and 

Transportation Officials Load and Resistance Factor Design Specifications (AASHTO 

LRFD) (AASHTO 2014) require the use of longitudinal stiffeners on plate girders when 

the web slenderness D/tw is greater than 150. In addition to the above considerations, this 

requirement is largely to alleviate web distortion induced fatigue concerns. The bend-

buckling resistance of a longitudinally stiffened plate girder is higher than that of an 

unstiffened web. However, for cases where the longitudinally-stiffened web bend-buckling 

resistance (i.e., the web local buckling resistance under flexural compression) is exceeded 

by the strength loading combinations, AASHTO LRFD currently neglects the beneficial 

influence of the longitudinal stiffeners in determining the contribution of the postbuckled 

web to the girder flexural resistance. This is due to the fact that the research behind the 

AASHTO provisions has not considered the strength behavior of stiffened web panels in 

the post-buckled condition. The background research considers only the restraining effects 

of the longitudinal stiffeners on the theoretical bend-buckling resistance of the web panels.  

 Once a girder’s web bend buckles, the portion of the web in compression becomes less 

effective in carrying additional load and the corresponding flexural stresses are shed largely 

to the girder’s compression flange. The stress variation through the depth of the web 
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becomes highly nonlinear at postbuckling load levels. The term Rb in AASHTO (2014) is 

a reduction factor on the flexural resistance of the compressive flange that accounts for this 

load shedding from the web. The tension flange stresses are not significantly impacted by 

load shedding from the web (Basler and Thurliman 1961), and as such, the AASHTO 

provisions do not consider any strength reduction in the flexural checks of the tension 

flange. Also, the broader AASHTO provisions ensure that the reduction in the compressive 

flange flexural resistance due to web bend-buckling is negligible in composite sections 

subjected to positive flexure. The factor Rb is a function of the slenderness of the web in 

compression as well as the area of the web relative to the area of the compression flange. 

In cases where web bend-buckling occurs under strength loading combinations, the current 

AASHTO expressions for Rb do not account for the potentially significant effect of web 

longitudinal stiffening on the flexural resistance. These expressions are based 

conservatively on the response of the web neglecting the presence of the longitudinal 

stiffening.  

 The Commentary to Article 6.10.1.10.2 of the AASHTO LRFD Specifications permits 

the use of the compression flange stress at the governing strength condition based on the 

flexural resistance equations with Rb taken equal to 1.0 to be used in place of Fyc in the 

calculation of Rb in case of LTB or FLB when the compression flange stress is smaller than 

Fyc. This approach recognizes the fact that the post-buckled web is generally more effective 

when the compression flange stress is smaller in the governing strength condition.  

 This research is aimed at proposing a new Rb model that accounts for the influence of 

longitudinal stiffeners on increasing the postbuckling girder resistance. This research 
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addresses the resistance of longitudinally stiffened girders under various limit states and 

loading conditions, while making few modifications to the current Specification equations. 

 Origin of Rb in the AASHTO Equations 

 The current equation for Rb in AASHTO (2014) is derived principally from the 

equations developed by Basler and Thurliman (1961) for webs without longitudinal 

stiffeners. The current AASHTO LRFD Specification requirements for Rb neglect the 

contribution of the longitudinal stiffeners toward the development of the girder post web 

buckling flexural resistance. This can have a significant impact in regions of negative 

flexure. Rb is given by AASHTO equation 6.10.1.10.2-3, 

2
= 1- - 1.0

1200 + 300

wc c
b rw

wc w

a D
R λ

a t

   
≤   

   
  (1.1) 

which was originally suggested by Basler and Thurliman for non-longitudinally stiffened 

doubly-symmetric girders, but used in the same form for singly-symmetric girders as well. 

In the equation, awc is the ratio of two times the web area in compression to the area of the 

compression flange, Dc is the web depth in compression, tw is the thickness of the web, and 

λrw is the noncompact web slenderness limit (given by Equation 6.3). 

 In developing the expression for Rb, Basler and Thurliman made several simplifying 

assumptions: 

1.  They assumed that after the bend-buckling of the web, the width of the web 

effective in carrying compressive stresses is only 30tw, located at the top of the web. 
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This assumption was based on a web with slenderness ratio of 360 with no 

longitudinal stiffener. 

2. Their expressions were developed based on the assumption of doubly-symmetric 

girders. 

3. The yield strength of the girders tested directly by Basler and Thurliman was 33 

ksi. 

 Figure 1-1 shows the model Basler and Thurliman used in calculating Rb.  

 

Figure 1-1: Basler and Thurliman’s model used in developing the Rb equations 

 Although AASHTO’s Rb equations have always been intended as a simplified 

conservative characterization of the true behavior, the extent of this conservatism is largely 

unknown for longitudinally stiffened girders. This is partly because the AASHTO 

provisions for sizing of the longitudinal stiffeners do not necessarily ensure that these 

stiffeners can develop a “node line” of negligible lateral deflection for a web that is stressed 

to its postbuckling capacity. It is expected that the AASHTO Rb equation may be 

30tw

Neutral Axis
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considerably conservative when longitudinal stiffeners are used along with smaller web 

slenderness ratios within the slender web range. Hence, there is clearly a need to revisit the 

current AASHTO provisions. 

 Prior research on longitudinally stiffened girders, and the current AASHTO and 

Eurocode provisions is discussed in Chapter 2.  

 Research Scope  

 The research encompasses several types of girder cross-sections, loading conditions 

and limit states.  The following summarize the scope of the current research. 

1. This research is focused primarily on straight girders.  

2. The studies are first conducted on homogenous girders, and then extended to 

hybrid girders. 

3. Tests are subjected to both uniform bending and combined bending and shear. 

The flexural limit states that are studied are compression flange yielding, lateral 

torsional buckling (LTB), flange local buckling (FLB) and tension flange 

yielding (TFY).  

 Research Methodology and Challenges 

 The following section briefly describes the challenges encountered and addressed in 

various aspects of this research. 

1.4.1 Improved Rb Model 

 This research is aimed at evaluating the impact of longitudinal stiffeners on the flexural 

resistance (i.e., the resistance of plate girders subjected to general flexural and shear 

loadings) as well as the requirements on the longitudinal stiffeners to develop the web 
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postbuckling capacity. As such, a comprehensive study is performed to investigate the 

influence of various design parameters such as the panel aspect ratio (do/D), the size of the 

compression flange relative to the web (Afc/Aw), the web slenderness ratio (2Dc/tw), the area, 

slenderness and lateral rigidity of the longitudinal stiffeners (Al, bl/ts and Il), and the 

position of the longitudinal stiffeners through the web depth (ds). This is done by means of 

finite element test simulations using ABAQUS (Simulia 2013). The studies are limited to 

I-girders with single web longitudinal stiffeners. 

 The research first focuses on straight homogenous girders at the yield limit state under 

uniform bending. The term “yield limit state” is used to describe the response 

corresponding to the plateau in the lateral torsional buckling and flange local buckling 

resistance curves, for which AASHTO generally characterizes the resistance of the 

compression flange as RbFyc. For the yield limit state, the “true Rb” values (RbFEA) are 

calculated from the test simulations as Mmax/My, where My is the girder yield moment 

determined including the contribution of the longitudinal stiffener to the section modulus 

of the girder and Mmax is the maximum girder moment developed in the test. A cross-section 

model is proposed that predicts the postbuckling flexural capacity of longitudinally 

stiffened plate girders at the yield limit state and gives estimates comparable to the 

capacities predicted by the test simulations. This is the first time such a model has been 

proposed by looking at various cross-section types, and ultimately validated for all 

potential design limit states. 
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1.4.2 Flange Local Buckling 

 The improved Rb model is evaluated for longitudinally stiffened girders with 

noncompact flanges, with flange slenderness less than 12.0, as limited by AASHTO LRFD 

Specifications.  

1.4.3 Lateral Torsional Buckling 

 The characterization of the LTB resistance of girders is challenging because of the 

disconnect between typical FE test simulations and the current Specifications equations. 

The reasons for this disconnect are evaluated and resolved as part of this research. In doing 

so, minor modifications to the current LTB resistance equations are proposed. The current 

equations are fit to a large volume of experimental data (White 2008). This research also 

takes a fresh look at the experimental data encompassing more recent test results with the 

proposed modifications to the LTB equations.  

 The parameter Cb is a moment modifier used in the inelastic and elastic LTB resistance 

equations of the Specifications. This factor was developed based on elastic buckling 

solutions. The LTB resistance of girders subjected to combined bending moment and shear 

poses interesting questions regarding the rationality of using the moment modifier, Cb 

derived based on such elastic buckling solutions in the inelastic LTB region of the LTB 

resistance curve. It is shown that rigorous inelastic buckling solutions that account for 

stiffness reductions, using computational tools such as SABRE2 (White et al. 2015), 

provide more realistic estimates of the true behavior of girders in the inelastic LTB region. 

 Potential interaction between FLB and LTB for noncompact flanges within the limits 

specified by AASHTO is also assessed in the studies.  
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 Another significant contribution of this research is the recommended improvement to 

the noncompact web slenderness limit, λrw in the Specifications. It is found that the current 

equations result in certain types of narrow flange cross-sections to be erroneously classified 

as noncompact webs, while their true behavior is more akin to slender web cross-sections. 

The proposed improvement accounts for the relative areas of the compression flange and 

the web in determining the web classification. 

 The focus on LTB for homogenous and hybrid girders, with unstiffened and stiffened 

webs is a major component of this research, and is dealt with in detail in Chapters 6-8.  

1.4.4 Hybrid Girders 

 The research evaluates the performance of the proposed Rb model for straight hybrid 

girders. The research is restricted to web plates and longitudinal stiffeners with yield 

strengths only one grade lower than that of the compression flange.  

1.4.5 Horizontally Curved Girders 

 A preliminary evaluation of the proposed Rb model is presented for horizontally curved 

homogenous girders subjected to uniform bending, designed to fail at the yield limit state. 
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LITERATURE REVIEW OF LONGITUDINALLY STIFFENED 

GIRDER RESEARCH 

 There have been experimental tests conducted in Europe, Japan and North America 

during 1950–1980 on longitudinally stiffened girders. The research findings from these 

tests establish the beneficial effects of web longitudinal stiffeners on the girder resistance, 

but do not provide a simple design model that explicitly accounts for the contribution of 

the stiffeners to the girder flexural resistance. The research is however significant in our 

understanding of the physical behavior of these types of members, and has been discussed 

in this chapter.  

 Earliest Work on Longitudinally Stiffened Plates 

 Cooper (1963) reviewed the early work done on longitudinally stiffened plate girders, 

and a brief summary of his review is presented here. Timoshenko (1921) conducted the 

earliest work on the stability of longitudinally stiffened plates for pure compression and 

pure shear loading using energy method. The application of this work is in aircraft and ship 

design. Early research on longitudinally stiffened plate girders was done by Chwalla 

(1936a; 1936b), Hampl (1937) and Massonnet (1940), who presented discussions on the 

stability of simply-supported rectangular plates subjected to uniform bending. It was then 

that Massonet introduced the concept of optimum stiffener rigidity. Minimum stiffener 

requirements were defined by Kromm (1944) and Chwalla (1944), both of whom 

considered longitudinally stiffened plates under uniform bending.  
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  Dubas (1948) established that the optimum position of the longitudinal stiffener on a 

plate subjected to uniform bending is D/5. This has since been validated by several other 

researchers for I-girders, and is the basis of several Specification requirements in both 

Europe and North America. He also provided buckling coefficients for various 

combinations of stiffener rigidity and area for this stiffener position. This work was 

expanded by Kloppel and Scheer (1956) who provided a series of charts that included 

various stiffener positions and loading conditions for simply-supported longitudinally 

stiffened rectangular plates. 

 Subsequent research examined the effects of longitudinal fixity on rectangular plates, 

and the torsional rigidity of the stiffeners on plate girder resistance. Experimental tests were 

limited. Longbottom and Heyman (1956) verified the British Specifications using two 

model tests and two full size tests. Massonet (1960), and Rockey and Leggett (1962) 

provided the first most extensive series of tests, the results of which are discussed in detail 

in this chapter.  

  Most of the prior work was focused on determining the optimum stiffener locations 

for bending and shear, and the ideal stiffness of the longitudinal stiffener column required 

to hold a near zero nodal line of deflection until the ultimate load is reached. (The 

longitudinal stiffener column refers to the combined cross-section that includes the 

stiffener and a portion of the adjoining web, which together acts as an equivalent column). 

In satisfying this criterion by providing very rigid stiffeners, various researchers concluded 

that the stiffeners prevent redistribution of stresses from the web to the compression flange, 

and the girders may be designed without concern for web bend-buckling. However, as 

discussed in Section 1.1, the current AASHTO provisions only require the stiffener to 
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prevent flexing of the web plate under construction loads and service load conditions. The 

current research establishes the contribution of these minimally sized stiffeners to the 

flexural resistance of the girders, despite the fact that the lateral deformations of the web 

plate are not required to be restricted at the ultimate load.  

 This chapter discusses some of the significant early research on I-girders, which 

provides an insight into the provisions in AASHTO and Eurocode. 

 Massonnet (1960) 

 Massonet (1960) conducted experimental tests on doubly-symmetric longitudinally 

stiffened plate girders with D/tw ranging between 250 and 400, and panel aspect ratios, do/D 

ranging between 0.65 and 1.50. The following were his key findings. 

1. He found that D/5 is the optimum location for the longitudinal stiffener from the 

compression flange in a girder with do/D = 1 and subjected to uniform bending, and 

that the stiffener should be placed lower down the panel in the presence of shear. 

This is based on the assumption that the longitudinal edges of the web plate are 

simply-supported. 

2. He developed charts for the optimum stiffener locations based on the ratio of the 

bending stress to the shear stress at a given panel aspect ratio. 

3. He observed, similar to Dubas (1948) that an effective width of the web of 20tw can 

be used in calculating the moment of inertia of the stiffener. He also noted, however 

that it was more accurate to calculate the moment of inertia about the neutral axis 

of the effective stiffener section, instead of along the web centerline, as was the 

practice at that time. 
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4. Massonet published charts to calculate the theoretical rigidity of the stiffener 

required to maintain a zero line of lateral deflection at the location of the stiffener 

until the ultimate load of the girder is reached. This is a factor over the optimum 

rigidity to hold the zero line until the critical buckling stress of the plate is reached. 

The optimum rigidity is primarily a function of the panel aspect ratio, web 

slenderness, the area of the stiffener, and the depth of the stiffener through the web. 

Massonet suggested that a rigidity of 7 times the optimum rigidity is required for a 

stiffener located at the optimum position to facilitate the girder to reach its ultimate 

strength without load shedding. 

5. He also observed that if the flanges of a girder are too flexible, “then when the web 

plate is loaded beyond its buckling load, the flanges will deflect under the lateral 

load imposed by the membrane stresses and the transverse deflections of the web 

will rapidly become excessive.” This indicates that web buckling and postbuckling 

behavior is also dependent on the rigidity of the adjoining flanges. 

6. Importantly, he concluded that an increase of 25% in the safety factor can be 

obtained in the resistance of the girders by virtue of accounting for the longitudinal 

stiffeners. 

 Rockey and Leggett (1962) 

 Rockey and Leggett studied the optimum location of the longitudinal stiffener for 

uniform bending when the longitudinal edges are clamped, i.e., the rotation and deflection 

at the web-compression flange junctures are restrained. They recommended an optimum 

location of 0.22D as opposed to the 0.2D for simply-supported edges. They also 

demonstrated that the required flexural rigidity of the longitudinal stiffener is significantly 
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reduced under the clamped edge condition. They found that the theoretical critical buckling 

load of the stiffened plate under the clamped edge conditions was much higher than the 

solutions derived by Dubas (1948). 

 Cooper (1965; 1967)  

 Cooper’s early work was primarily intended to assess the validity of Basler and 

Thurliman’s equation for Rb discussed in Section 1.2 for girders with slenderness ratios of 

up to 450. He also studied the effects of longitudinal stiffeners on girder flexural and shear 

resistance. He conducted five bending and eight shear tests on doubly-symmetric girders 

with D/tw in the vicinity of 450. 

 In the flexure tests conducted by Cooper (1965), the longitudinal stiffener was 

positioned at the optimum location of D/5 from the compression flange. All girder 

parameters except the panel aspect ratios and the size of the longitudinal stiffeners were 

held constant. Cooper found that while there was an improvement in the deflection control 

of the longitudinally stiffened web, there was no noticeable increase in the girder ultimate 

strength. The strengths attained by the longitudinally stiffened girders were practically the 

same as the girder with no longitudinal stiffener. He concluded that longitudinal stiffeners 

did not contribute to the flexural resistance of the girders, while observing that Basler’s Rb 

equation for girders without longitudinal stiffeners may be used for webs with slenderness 

of 450. It is worthwhile to note that there was a local failure in the longitudinal stiffener in 

addition to compression flange yield and flange vertical buckling in Cooper’ uniform 

bending tests. 

 He subsequently restated that longitudinal stiffeners when proportioned and positioned 

properly, can in fact prevent redistribution of stresses to the compression flange and the 
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girder can attain its ultimate load. This was demonstrated with the aid of an additional test 

in Cooper (1967).  The guidelines given by Cooper form the basis of several Specification 

requirements currently in AASHTO for sizing and proportioning the longitudinal 

stiffeners. He proposed that the following proportioning requirements for longitudinal 

stiffeners be met in order to prevent stress redistribution from the web to the compression 

flange. In the event that these requirements are not met, he suggested the use of Basler and 

Thurliman’s Eq.1.1 for transversely stiffened girders.  

1. He suggested that the stiffener rigidity proposed by Massonnet (1954) given by 

( ) 2= 3.87 +5.1 + 8.82+77.6*

L Lγ α δ α                                                              (2.1)   

be adopted, where, α is the panel aspect ratio, L
δ  is the ratio of the stiffener 

area to area of the web, and 
*

Lγ  is the ratio of the longitudinal stiffener moment 

of inertia to the moment of inertia of the web plate. 

2. In order to control web deflections up to the ultimate load, he postulated that it 

was important to ensure the stability of the longitudinal stiffener column, and 

prevent its failure before the failure of the compression flange column. Thus, 

the requirement for the lateral buckling stress of the longitudinal stiffener 

column at a stiffener depth of D/5 is given by 

0.6cr cr

y yls 1

σ σ

σ σ

   
≥      

   
  (2.2) 

where, the left hand side of the equation gives the lateral buckling stress of the 

stiffener column, and the right hand side gives the lateral buckling stress of the 

compression flange column. 
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Cooper suggested that an effective width of the web equal to 20tw be used along 

with the stiffener in calculating the moment of inertia of the stiffener column 

through an axis passing through the web-stiffener interface. 

 Further, Cooper (1965) studied the contribution of the longitudinal stiffeners to the 

shear strength of the girder and found that longitudinally stiffened girders developed higher 

shear strengths than those predicted by shear strength theories for transversely stiffened 

girders. In his tests, he observed the formation of separate tension fields in each individual 

subpanel. Based on his observations, he recommended that the shear strength of a 

longitudinally stiffened girder may be calculated by computing the shear strength of each 

individual sub-panel and summing them algebraically. However, Cooper used relatively 

rigid longitudinal stiffeners in the shear tests, and does not comment on the validity of 

assuming a formation of two separate tension fields in every longitudinally stiffened girder 

subjected to combined bending and shear. It is shown as part of this research in Chapter 9 

that when stiffeners are sized to meet minimum AASHTO requirements for controlling 

web deflections up to service loads, the formation of two separate tension fields is not 

observed.  

 In addition, a comparison of the test simulation data to Cooper’s model is presented in 

Section 10.5.1. 

 Owen et al. (1970) 

 Owen et al. (1970) studied the influence of the rigidity of a single sided longitudinal 

stiffener on the postbuckled behavior of web plates in bending. They positioned the 

stiffeners at an optimum depth of 0.2D from the compression flange, and only varied the 

size of the longitudinal stiffeners. They tested girders with web slenderness of 750, and 
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designed the girders such that FLB and LTB were precluded from being possible modes of 

failure. The following were some of their key observations. 

1. They noted that an increase in the stiffener size clearly resulted in an increase 

in the ultimate load.  

2. They observed very large deflections in the vicinity of the ultimate load, which 

was in the order of 4.5 times the web thickness. However, the lateral 

deformation of the web at the location of the longitudinal stiffener was 

practically prevented (deflection of 0.83tw) when a very heavy stiffener was 

used. 

3. They noted that a single stiffener located at 0.2D from the compression flange 

on a girder with D/tw of 300, and girder yield stress of 33ksi can have a buckling 

stress equal to the yield stress when the stiffener rigidity is about six times the 

optimum rigidity. 

 Chapter 4 discusses finite element test simulations on longitudinally stiffened girders, 

and observes similar trends where a definite increase in strength is observed with an 

increase in the stiffener rigidity, and a rapid increase in the lateral deflections of the web 

occurs at load levels close to the ultimate load.  

 The final failure mode in all the tests discussed above was generally vertical flange 

buckling after the compression flange had yielded. It is important to note that these tests 

were conducted on extremely slender webs. Cooper’s tests in 1965 failed by premature 

stiffener buckling. 
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 Ostapenko and Chern (1971) 

 Ostapenko and Chern studied the behavior of longitudinally stiffened webs in 

unsymmetric plate girders. They provided an analytical model for combined bending and 

shear loading. 

 In the development of their model, they assumed that two separate tension fields are 

always formed in each web sub-panel, based on studies by Cooper (1965). They also 

assumed that the web plates were fixed, rather than simply-supported at the flanges and the 

longitudinal stiffener. They suggested that in the event of premature failing of the 

longitudinal stiffener, the girder strength may either be computed by limiting the girder 

strength to the stiffener failure load or by calculating the strength of the girder as if it had 

no longitudinal stiffener. Depending on the proportions of the panel and the relative 

magnitudes of moment and shear, one or the other limit will yield a higher value.  

 They demonstrated that a substantial increase in strength can be achieved by 

introducing a longitudinal stiffener for girders subjected to high shear, and high bending 

moment. They showed that their model predicted experimental test results with reasonable 

accuracy. However, the model proposed by them involves lengthy and iterative operations, 

and requires an understanding of the complex behavior of the stiffened girder, and the 

interaction between the various plate elements along with several underlying assumptions 

of the model. Their model, as acknowledged by Ostapenko and Chern, is unsuitable for 

design and normal use.  

 Fukumoto and Kubo (1977) 

 Fukumoto and Kubo (1977) studied the ultimate strength of longitudinally stiffened 

plate girders when the compression flange is likely to fail by lateral torsional buckling. 



 18

They studied two-sided stiffeners placed at 0.2D from the compression flange. They 

recommended a cross-section model with an effective area in compression that includes 

the compression flange, the longitudinal stiffener, and the web compression zone between 

them, with an elastic stress distribution between the edges of the effective compression 

zone. The moment capacity is to be determined as Pu.h, where Pu is the maximum strength 

of the effective cross-section of the beam in compression, obtained by numerical 

integration techniques with assumed residual stresses and imperfections, and h is the 

distance between the resultants of the compressive and tensile forces in the cross-section. 

They found that the longitudinal stiffeners increase the lateral buckling capacity of plate 

girders. They demonstrated an increase ranging between 10 to 30% on account of using 

longitudinal stiffeners in the ultimate moment capacities of the girders.  

 They also observed that one of their tests, which employed a more rigid stiffener but 

possessed a much higher measured initial lateral imperfection, attained a lower strength, 

and failed by inelastic LTB. This clearly showed an impact of the magnitude of initial 

imperfections on the inelastic LTB strength of longitudinally stiffened girders, similar to 

the trends observed in unstiffened girders. 

 However, they did not explicitly note the minimum stiffener rigidity that can provide 

an increase in the lateral stability of such girders. 

 AASHTO (2014) Provisions for Longitudinal Stiffeners 

 This section describes the provisions in the current AASHTO LRFD Specifications that 

give directions on sizing and proportioning of longitudinal stiffeners. AASHTO Section 

6.10.11.3 deals with the provisions on longitudinal stiffeners. The rationale behind these 

provisions were first explained in Vincent (1969). 
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1. AASHTO 6.10.11.3.1-1:  

s f h ys
f R Fφ≤   (2.3) 

where, fs is the flexural stress in the longitudinal stiffener, f
φ  is the resistance factor 

for flexure, Rh is the hybrid factor, and Fys is the yield strength of the longitudinal 

stiffener. 

 This provision limits the flexural stress in the longitudinal stiffener due to 

factored loads at the strength limit state and at construction loads to the yield stress 

of the longitudinal stiffener. Yielding of the stiffeners is not permitted as the 

stiffeners are required to have sufficient rigidity in order to transmit the stresses in 

the longitudinal stiffener column (Cooper 1967). The lateral bending of 

longitudinal stiffeners due to eccentricity of the stiffener with respect to the web 

plate, and due to horizontal curvature is neglected. 

2. AASHTO 6.10.11.3.2-1: 

0.48
l s

ys

E
b t

F
≤   (2.4) 

where, bl is the projecting width of the longitudinal stiffener, and ts is the thickness 

of the stiffener plate. 

 Equation 2.4 limits the maximum width to thickness of the longitudinal stiffener 

in order to avoid local buckling of the stiffener prior to reaching their yield strength 

in uniform axial compression. This provision can be traced back to Ostapenko 

(1964). 
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3. AASHTO 6.10.11.3.3-1: 

2

2.4 -0.133 o
l w

d
I Dt β

D

  
≥   

   
  (2.5) 

where, Il is the moment of inertia of the longitudinal stiffener along with an 

effective width of the adjoining web equal to 18tw, calculated along the neutral axis 

of the combined cross-section. For webs with lower yield strengths than the 

longitudinal stiffener, the effective width of the web plate adjoining the stiffener is 

to be reduced by Fyw/Fys. The horizontal curvature correction factor, β is taken as 

1.0 for straight girders. The effective web width adjoining the stiffener is 

recommended conservatively as 18tw, as opposed to the recommendation of 20tw 

by Cooper (1967) and Massonet (1960).  

 Equation 2.5 gives the minimum stiffness required to maintain a near zero line 

of lateral deflection at the web bend-buckling load level. It is a reasonable fit to the 

results given by Dubas (1948) for a single sided stiffener placed at an optimum 

depth of D/5 from the compression flange, and a limiting ratio of the stiffener area 

to the web area, As/Aw = 0.1. The web bend-buckling resistance of a longitudinally 

stiffened girder in AASHTO (2014) is given by Frank and Helwig (1995). Since 

the results from Dubas are based on linear buckling analysis, Equation 2.5 is 

recommended only for the development of the web bend-buckling resistance. As 

discussed in the previous sections of this chapter, longitudinal stiffeners of rigidity 

6 to 7 times the above limit is required for controlling web deformations up to the 

ultimate load.  
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 Equation 2.5 neglects the influence of the position of the stiffener through the 

web depth, and the web depth in compression on the required stiffener rigidity. It 

has also been conservatively recommended in AASHTO (2014) that the moment 

of inertia of the longitudinal stiffener be neglected in calculating the girder moment 

of inertia or section modulus. 

4. AASHTO 6.10.11.3.3-2: 

0.16

1 0.6

ys

o

yc

h ys

F
d

E
r

F

R F

≥

−

  (2.6) 

where, r is the radius of gyration of the cross-section including the longitudinal 

stiffener and an effective width of web equal to 18tw, taken about the neutral axis 

of the combined cross-section. Equation 2.6 is derived by enforcing that the 

longitudinal stiffener column does not fail by flexural buckling prior to the 

compression flange developing its yield stress. It is assumed that this equivalent 

stiffener column fails by inelastic buckling and the traditional CRC column 

buckling curve is used to obtain the above equation. It is also assumed that the 

stiffener is positioned at the optimum depth of D/5 from the compression flange, 

and that the stress distribution in the web is linear.  

 Eurocode (CEN 2006a) Approach to Calculate Girder Resistance 

 Eurocode imposes minimum requirements on longitudinal stiffeners that are concerned 

with preventing torsional buckling. Section 9.2.2 in CEN (2006a) lists the requirements on 

longitudinal stiffeners. Equation 2.7 (Equation 9.3 in CEN (2006a)) is a criterion for 

stiffeners with open cross-sections. 
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5.3
yt

p

fI

I E
≥   (2.7) 

where, It is the St.Venant torsional constant for the stiffener alone, and Ip is the polar second 

moment of area of the stiffener alone around the edge fixed to the plate. For an open flat 

stiffener, the above equation can be simplified as  

5.3
l s

ys

E
b t

F
≤  (2.8) 

which is more stringent than the requirement in AASHTO, given by Equation 2.4 (Beg et 

al. 2010).  

 Eurocode disallows the consideration of discontinuous longitudinal stiffeners 

(stiffeners that are not connected to either side of transverse stiffeners) in global analysis 

or in the calculation of stresses. It does, however, allow the longitudinal stiffeners to be 

considered in the computation of effective sub-panel widths and in the calculation of elastic 

critical stresses.  

 The Eurocode design provisions (CEN 2006a) do not use the term Rb to quantify the 

increased stresses in the compression flange due to web postbuckling per se. They use an 

explicit effective width approach to account for the behavior of the slender elements of the 

cross-section. 

 As illustrated by Figure 2-1, the Eurocode approach involves calculating effective 

widths of the various sub-panels in a slender web cross-section. The stress distribution in 

this cross-section is assumed to be elastic and to vary linearly through the effective web 

depth. The compression flange stress is taken at the yield stress when quantifying the 

influence of the web post-buckling behavior. The fact that the reduction in the effective 

area of the web is not as large when the compression flange stress is actually smaller than 
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Fyc (e.g., due to lateral torsional buckling or flange local buckling at a stress level less than 

Fyc) is not accounted for in the Eurocode procedures.  

 In the Eurocode model, the reduced effective plate widths of each web sub-panel are 

based on the calculated stress distribution in the full panel. The girder effective area 

includes the area of the longitudinal stiffener. The girder elastic section modulus is 

calculated based on this reduced effective cross-section and used for subsequent 

calculations of the member resistance. 

 

 

Figure 2-1: Effective cross-section of plate girder as per Eurocode 

 The principal shortcoming of the effective width approach in Eurocode has been 

summarized by Johansson and Veljkovic (2009) as “ One objection to  the effective width 

method maybe that a plate in compression may show a sharp drop in resistance after the 

maximum load has been passed. This may be correct for an isolated plate, but if the plate 

is connected to other plates that have not reached their yield strength, the strains will be 

controlled by these other plates. This means that the strains will be elastic and small, and 

the drop in the resistance of the plate that has buckled will be small until the other plates 

reach their yield strength”. This objection is shown to be valid in Chapter 4, where it is 
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demonstrated that in most girders, where the stiffeners satisfy the minimum rigidity criteria 

in AASHTO, the girders continue to take load until the stiffeners begin to yield. 

 In the research reported herein, the effective “Rb” from the Eurocode procedures is 

calculated as RbEC = Sxc.eff/Sxc, where Sxc.eff is the section modulus to the compression flange 

for the effective elastic cross-section and Sxc is the corresponding section modulus for the 

fully-effective (i.e., the gross) cross-section.  



 25

 

FINITE ELEMENT MODELING OF PLATE GIRDERS 

 All the tests presented in this dissertation are full nonlinear finite element (FE) 

simulations using the commercial software ABAQUS (Simulia 2013). This chapter 

describes the various FE modeling parameters used in this research. A basic verification of 

the FE simulation results is presented in Appendix E.  

 Elements and Mesh Discretization 

 The plate girder flanges, the web and the longitudinal stiffener are each modeled using 

four-node shell elements degenerated from a 3D solid element (the S4R shell element in 

ABAQUS). The S4R element is a general purpose shell element with reduced integration, 

at a single centroidal integration point, and a large strain formulation. These elements may 

be used for both thick and thin shells, and are not subject to hourglass effects or transverse 

shear locking. 

 The transverse stiffeners are modeled using the B31 beam element in ABAQUS, which 

is a two-node shear deformable beam element compatible with the S4R shell element. The 

transverse stiffener plate sizes used in this research are such that beam kinematics are 

satisfied, and no local distortion effects within the stiffener are observed or studied.  

 Targeted benchmark studies conducted in this research have found that five integration 

points through the thickness of the shell elements, using Simpson’s rule, provide 

effectively a fully-converged solution with respect to the order of the integration through 

the shell thickness. The finite element mesh used is very dense with 60 elements through 

the web depth, 12 elements across the width of each flange and 10 elements across the 
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width of the longitudinal stiffener. The finite element meshing of the web and longitudinal 

stiffener is relatively dense in order to capture the postbuckling behavior with high 

accuracy, including the consideration of residual stress effects. In the studies focused on 

LTB response of members with no longitudinal stiffeners, 20 elements through the web 

depth is deemed sufficient. The number of elements used along the length of the members 

is selected such that the shell element aspect ratio in the web panels is approximately equal 

to 1.0 within the test specimens. A mesh discretization study is performed and the selected 

mesh is found to perform well in terms of the convergence of the finite element solution.  

 Boundary Conditions 

 The girder test specimens plus any test fixtures are simply-supported units in all of the 

studies conducted in this research, unless noted otherwise. To model a hinge support at the 

left end of a test specimen, all the displacement degrees of freedom are restrained at the 

bottom web flange juncture. To model a roller at the right support, the vertical and out-of-

plane displacement degrees of freedom are restrained at the bottom web flange juncture, 

while releasing the axial displacement degree of freedom. Both ends of the girder are 

restrained against twist by restraining the lateral (out-of-plane) displacements throughout 

the web height. Warping of the flanges is unrestrained at the simply-supported ends of the 

tests.  

 Material Properties 

 In this research, the yield stress of the steel, Fy, is taken as 50 ksi for homogenous 

girders. The longitudinal and transverse stiffeners also are modeled with a yield stress of 

50 ksi. In case of hybrid girders, the flanges are modeled with yield strengths of 70 ksi, 
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while the web is modeled with a yield stress of 50 ksi. The modulus of elasticity, E is taken 

as 29000 ksi. The material is modeled with a small tangent stiffness within the yield plateau 

region of E/1000 up to a strain-hardening strain of εsh = 10εy, where εy is the yield strain of 

the material. Beyond this strain, a constant strain-hardening modulus of Esh = E/50 is used. 

The maximum stress reached in the test simulations is significantly less than the ultimate 

stress of the steel Fu, therefore justifying this common simplified representation of the 

stress-strain response.  

 Nonlinear Analysis using Riks Algorithm 

 It is essential for the current research, that the girder response past the peak load be 

captured accurately, in order to fully understand the postbuckling behavior of the girders. 

The Modified Riks method can be used for unstable postbuckling and geometrically 

nonlinear responses (Simulia 2013). The Riks method is also useful for problems with 

material nonlinearity and for obtaining solutions to limit load problems.  

 The Modified Riks method uses proportional loading, and relies on smooth response 

of the system (i.e. no bifurcation behavior). While the basic algorithm to solve the 

equilibrium equations is the Newton method, it incorporates the arc length procedure in 

tracing the single equilibrium path. It is essential to limit the increment size in order to 

obtain the correct equilibrium path. The initial increment size is provided by the user, but 

is automatically adjusted by the algorithm implemented in ABAQUS for subsequent 

increments depending on the convergence rate and the minimum increment size specified 

by the user. 
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 Nominal Residual Stress for Longitudinally Stiffened Girders 

 The self-equilibrating residual stress pattern shown in Figure 3-1 is based on residual 

stresses measured by Prawel et al. (1974) in three-plate girder construction without 

longitudinal stiffeners. This pattern, which has been employed previously by Kim (2010), 

is taken in this work as a representative nominal residual stress distribution for the flange 

and web plates of general welded longitudinally stiffened I-girders. This pattern will 

henceforth be referred to as the Best-Fit Prawel pattern. 

 

Figure 3-1: Best-Fit Prawel residual stress distribution (Kim, 2010) 

 The web compressive residual stress shown in the above pattern is 0.176 Fyw. However, 

in these studies and in the studies by Kim (2010), this stress is limited to the web buckling 

stress under uniform longitudinal compression, calculated assuming idealized simply-

supported edge conditions. As such, the web residual stress is typically a small fraction of 

0.176 Fyw. The web residual stresses are limited in this way because the physical web 
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cannot be manufactured to develop residual stresses that significantly exceed the web 

longitudinal buckling stress. The web residual stresses in the heat affected zone of the web, 

equal to Fyw in Figure 3-1, are scaled by the ratio of the above approximation of the web 

buckling stress under uniform longitudinal compression to 0.176 Fyw. This maintains the 

self-equilibrating nature of the web residual stress pattern.  

 A self-equilibrating residual stress pattern in the longitudinal stiffener is developed 

based on the assumption of an initial heat affected zone of bl/5. Figure 3-2 shows the 

residual stress distribution in the longitudinal stiffener. This pattern is obtained by starting 

with a representative residual stress pattern where the heat-affected zone has a tensile 

residual stress equal to Fy and the remainder of the plate has a self-equilibrating residual 

compression. This base stress pattern makes the total sum of longitudinal forces equal to 

zero. The elastic flexural stresses necessary to put the plate in moment equilibrium are then 

added to the above base stresses to create a statically admissible residual stress distribution 

in the longitudinal stiffener.  

 

Figure 3-2: Residual stress distribution in longitudinal stiffener 

 Geometric Imperfections for Longitudinally Stiffened Girders 

 To determine the most critical geometric imperfection that may be experienced by the 

test girders, six base imperfection patterns are studied in ABAQUS for the condition of 
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uniform bending. Figure 3-3 shows the six base imperfection patterns used in the 

imperfection sensitivity analyses. The girder dimensions for this study mirror those of the 

test girder LB3 from Cooper’s (1965) experimental tests. The web is 55 inches x 0.125 

inches, and the flanges are 12 inches by 0.75 inches in all cases.  The yield stress of the 

flanges is Fyc = Fyt = 37 ksi and the yield stress of the web is Fyw = 34 ksi. The transverse 

stiffeners are 3 inches x 0.25 inches and are spaced at do = D, and the longitudinal stiffener 

is placed at ds = 0.2D from the top of the web. Table 3-1 shows four specific variations on 

the longitudinal stiffeners considered in this study. 

Table 3-1: Longitudinal stiffeners used in imperfection sensitivity studies on Cooper’s (1965) test 

LB3 

Girder 

Name 

Longitudinal 

Stiffener Size (in) 
Description 

1 NA Girder with no longitudinal stiffener 

2 1.75 x 0.125 
Cooper’s test specimen with the size of longitudinal stiffener set at 

the maximum bl/ts ratio permitted by AASHTO 

3 2.5 x 0.125 Cooper’s test specimen (LB3) 

4 3.5 x 0.25 
Same bl/ts as Girder 2, but with the longitudinal stiffener cross-

section area increased four times. 

3.6.1 Imperfection Sensitivity Studies 

 The imperfection patterns shown in Figure 3-3 are used as the base patterns for the 

imperfection sensitivity studies. The test simulations are first run using these base 

imperfection patterns, and the limit load and failure mode is determined from these 

analyses. The web lateral deflection at the limit load, which is taken as the failure mode 

pattern, is then scaled as described below to form the actual imperfection for the final test 

simulation analysis. In other words, the test simulation is run twice; once with the base 

imperfection patterns shown in Figure 3-3 as the initial geometric imperfection, and then a 
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second time by using the failure mode from the first analysis, scaled to satisfy the AWS 

(2010) tolerances on the maximum web out-of-flatness, as the initial imperfection. In the 

imperfection sensitivity analyses, this process is repeated a third time, by using the failure 

mode from the second analysis, and again scaling it as an imperfection for a third analysis. 

It is observed that the failure mode and the limit load do not change significantly by running 

the analysis a third time. Therefore, the models are only analyzed through the above steps 

one and two for the subsequent parametric studies discussed in this dissertation. This 

relatively elaborate procedure is similar to an approach recommended by Hendy and 

Murphy (2007), and is believed to provide a reasonable estimate of the worst-case 

geometric imperfections for calculation of the “true Rb” of the test girders.  

 

                           (1)                                   (2)                                     (3) 

 

                         (4)                                   (5)                                     (6) 

Figure 3-3: Base imperfection patterns on web for first analyses 
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3.6.2 Characteristics Assessed for Imperfection Sensitivity 

 The following characteristics are assessed as part of the imperfection sensitivity 

studies: 

1. Sensitivity of limit load to the base imperfection pattern. 

2. Sensitivity of limit load to the magnitude of the imperfection. 

3. Sensitivity of limit load to the web slenderness ratio, D/tw. 

a. Cooper’s test girder LB3 (D/tw = 440) is studied as part of the sensitivity 

analyses. 

b. A similar girder with a stockier web (D/tw = 300) is also studied, since this is 

the maximum limit on web slenderness imposed by the AASHTO 

Specifications. 

4. Sensitivity of limit load to the size of the longitudinal stiffener. 

a. As part of assessing the effect of longitudinal stiffener size, girders without 

longitudinal stiffeners are also studied to understand their behavior relative to 

the stiffened girders. 

b. Girders with three different sizes of longitudinal stiffeners are studied. The 

different stiffener sizes are shown in Table 3-1. 

 The maximum web imperfection allowed by AWS (2010) is 1/67 times the least panel 

dimension. The imperfection patterns shown in Figure 3-3 are also analyzed using a 

maximum amplitude of 1/120 of the least panel dimension to assess the sensitivity of the 

girder resistances to the magnitude of the imperfection.  

 The longitudinal stiffener is taken to have a maximum sweep of do/400 in several of 

the base imperfection patterns shown in Figure 3-3. This sweep is based on 
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recommendations by Hendy and Murphy (2007) pertaining to the application of the 

Eurocode 3 EN 1993-2 provisions (CEN 2006b). AWS (2010) does not specify any direct 

limit on the out-of-straightness of web longitudinal stiffeners. 

 The failure modes from the analyses are scaled such that the maximum out-of-plane 

imperfection on the web panel is never greater than D/67 (or D/120), while also 

simultaneously ensuring that the maximum deviation from a straight edge measured in each 

of the web sub-panels is less than 1/67 (or 1/120) times its least panel dimension. The 

scaled failure mode is then seeded as an initial imperfection for the subsequent analysis. 

Flange initial imperfections (i.e., flange sweep and flange tilt) are not considered in these 

imperfection sensitivity studies. Only the web geometric imperfections, taken as web 

displacements relative to a vertical plane through the juncture of the web with the flanges, 

are considered. Flange sweep and flange tilt imperfections are addressed subsequently in 

the studies in Section 8.1 and Section 5.2 respectively. The longitudinal stiffeners are taken 

to follow the profile of the web imperfection without any tilt (the web geometric 

imperfections generally induce some significant torsional rotation of the longitudinal 

stiffener however). 

 Figure 3-4 shows the failure mode profile at the middle of the test panel after the first 

analysis using imperfection pattern 2 from Figure 3-3. This is scaled as described above 

and then used as the web imperfection for the final analysis. One should note that there is 

a measurable lateral deflection at the level of the longitudinal stiffener because of the initial 

imperfection at the stiffener location, but the longitudinal stiffener restrains the web plate 

from larger lateral deflections.  
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 Tables 3-2 and 3-3  show the Rb values obtained for Girders 1 through 4, which have 

an overall web slenderness ratio of D/tw = 440,  with maximum imperfection magnitudes 

of D/67 and D/120. Since Girder 1 does not have a longitudinal stiffener, it was analyzed 

with only a single web out-of-flatness corresponding to an overall bowing of the web panel 

in one direction. This is labeled as imperfection pattern 0 in the table. Table 3-4 shows the 

Rb values obtained for Girders 1 to 4 using an overall web slenderness ratio of D/tw = 300 

and a maximum imperfection magnitude of D/67. Figure 3-5 shows the longitudinal normal 

stresses at the mid-thickness of the web at the test limit load for Girder 4 with a web 

slenderness ratio of D/tw 440 and a maximum imperfection magnitude of D/67. This 

distribution is representative of those obtained for all the girders with different slenderness 

ratios and maximum imperfection magnitudes. 

 

Figure 3-4: Imperfection pattern on web for second analysis (failure mode from first analysis with 

imperfection 2- Not to Scale) 

Imperfection
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Table 3-2: Rb for girders in Table 1 with D/tw =440 with maximum imperfection magnitude D/67 

Girder 

 
Imperfection 

% Difference 

between Max and 

Min Rb 0* 1 2 3 4 5 6 

1 0.92 NA NA NA NA NA NA NA 

2 NA 0.94 0.94 0.94 0.95 0.94 0.95 1.27 

3 NA 0.95 0.94 0.95 0.96 0.97 0.95 2.24 

4 NA 1.00 1.01 1.01 1.00 1.01 1.01 0.75 

        * Imperfection 0 is a simple overall bowing of the web panel in one direction, and applies only to 

Girder 1, which does not have a longitudinal stiffener. 

Table 3-3: Rb for Girders 1 to 4 with D/tw =440 and with maximum imperfection magnitude D/120 

 

Girder 

 
Imperfection 

% Difference 

between Max and 

Min Rb 0 1 2 3 4 5 6 

1 0.93 NA NA NA NA NA NA NA 

2 NA 0.94 0.94 0.94 0.94 0.95 0.94 0.84 

3 NA 0.95 0.95 0.98 0.96 0.97 0.95 3.17 

4 NA 0.98 0.98 0.99 0.98 0.99 0.99 0.95 

Table 3-4: Rb for Girders 1 to 4 with D/tw =300 and with maximum imperfection magnitude D/67 

 

Girder 

 
Imperfection 

% Difference 

between Max and  

Min Rb 0 1 2 3 4 5 6 

1 0.91 NA NA NA NA NA NA NA 

2 NA 0.94 0.93 0.93 0.93 0.94 0.94 0.58 

3 NA 0.95 0.94 0.94 0.96 0.94 0.96 2.23 

4 NA 1.00 1.00 1.00 0.99 1.00 1.00 1.19 

3.6.3 Choosing the Critical Imperfection Pattern 

 From the above tables, it can be surmised that the limit load is not sensitive to the base 

imperfection patterns or the magnitude of the web out-of-flatness, when the flexural limit 

state is governed by compression flange yielding. This observation is consistent with the 

findings presented by Jakab et al. (2006) for girders that fail by via a flange yield limit state 

combined with web bend-buckling. It is also observed that the normal stresses at the mid-

thickness of the web are not sensitive to the base imperfection pattern. Figure 3-5 shows 
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the normal stresses in the web at its mid-thickness in Girder 4 for the different imperfection 

patterns defined in Figure 3-3. Imperfection 2 is one of several imperfection patterns that 

typically produce higher web lateral deflections at the location of the longitudinal stiffener, 

thus tending to place larger demands on the longitudinal stiffener. Imperfection pattern 2 

also is similar to the imperfection patterns measured by Vigh and Dunai (2010) for girders 

with multiple web longitudinal stiffeners. Therefore, this pattern is chosen as the initial 

base imperfection seed to be used in all the parametric studies for longitudinally stiffened 

plate girders discussed in this dissertation. 

 

Figure 3-5: Normal stresses in web – Girder 4 with an amplitude of the initial web out-of-flatness of 

D/67 

 Residual Stress Patterns and Geometric Imperfections in LTB Studies 

 Details of sensitivity studies using various residual stress patterns and different 

magnitudes of imperfections for rolled beams and welded girders with unstiffened webs is 

given in Chapter 6. The residual stress patterns and imperfections recommended for FE 

modeling in Chapter 6 is specific to the studies on LTB failure mode. 
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FLEXURAL RESISTANCE OF STRAIGHT GIRDERS AT THE 

YIELD LIMIT STATE 

 In this chapter, parametric studies are conducted on straight homogenous girders with 

single longitudinal stiffeners. Various design parameters are evaluated for their impact on 

the post web buckling flexural capacity of girders at the yield limit state. That is, in these 

tests, the compression flanges are sized and braced adequately such that Lateral Torsional 

Buckling (LTB) and Flange Local Buckling (FLB) are not possible modes of failure. As 

such, the compression flange may be expected to reach the yield stress in the physical tests 

(the web bend-buckling strength reduction factor Rb reduces the nominal capacity of the 

compression flange to account for load shedding from the post-buckled web). The studies 

presented herein are performed under uniform bending load conditions. 

  Constant Test Parameters 

 The following parameters are held constant in all the tests presented in this chapter: 

1. The yield stress of all plated elements, Fy, is 50 ksi. 

2. The depth of the web panel, D, is taken as 150 inches. 

3. A single-size transverse stiffener is designed to meet the AASHTO (2014) 

minimum requirements for all the tests. 
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 Variable Test Parameters 

 To understand the influence of longitudinal stiffeners on the flexural capacity of plate 

girders in a comprehensive manner, the following parameters are varied to create a suite of 

tests: 

1. D/tw = 300, 240, 200 

2. do /D = 0.75,1.0, 1.5, 2.0 

3. bfc =  D/6, D/5, D/4 

4. tfc = 1.5, 1.75, 2.25 corresponding to the three different values of bfc 

5. Dc /D = 0.5, 0.625, 0.75 

6. Al /Awc, varied as discussed below 

7. Il, varied as discussed below 

8. ds/Dc = 0.266, 0.40, 0.533 

9. bl/ts = 0.6 x (AASHTO limit), 1.0 x (AASHTO limit), 1.2 x  (AASHTO limit) 

where: 

Dc = depth of web in compression, calculated based on the gross cross-sectional area 

neglecting the longitudinal stiffener. 

tw = thickness of web 

do = distance between transverse stiffeners (panel width) 

ds = location of the longitudinal stiffener relative to the top of the girder web. 

bfc = width of compression flange 

tfc = thickness of compression flange 

Al = area of cross-section of longitudinal stiffener 

Awc = area of web in compression 
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bl = projecting width of the longitudinal stiffener 

ts = thickness of the longitudinal stiffener 

Il = moment of inertia of the longitudinal stiffener including an effective width of web 

(18tw) taken about the neutral axis of the combined section 

 In varying the different girder dimensions, the ratios of tf/tw is also varied between 2 

and 4.5. The parameters Al /Awc and Il are varied by designing the longitudinal stiffener to 

meet the minimum requirements per AASHTO. In all cases, unless noted otherwise, the 

stiffeners are sized at the maximum bl/ts limit. Given this selection, the stiffener size is 

governed by the AASHTO Il requirement (AASHTO Eq. 6.10.11.3.3-1). The parameters 

Al /Awc and Il are a function of do/D and D/tw. This process minimizes the area of the 

longitudinal stiffener while satisfying all the AASHTO LRFD longitudinal stiffener 

requirements listed in Section 2.8. The range of Al /Aw studied in this research varies 

between 0.05 and 0.30. 

 Test Setup 

 The straight girders in this study are subjected to four-point bending with the test 

specimen subjected to uniform bending and flanked by an end fixture on each side. The 

end fixtures are designed to develop the flexural strength limit in the test specimens for all 

of the cases studied. The web and flange plates in the end fixtures are significantly thicker 

(2 to 3 times) than the plates used in the test specimens. The test setup is similar to that 

used in Cooper’s experiments (Cooper 1965) and is shown in Figure 4-1. The compression 

flange is compact and is braced adequately such that flange local buckling (FLB) and lateral 

torsional buckling (LTB) do not have any significant influence on the load capacity in these 

tests. 
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Figure 4-1: Test setup for uniform bending 

 Simulation Parameters 

 The residual stresses and imperfections used in the studies are as described in Sections 

3.5 and 3.6.  

 Case Studies 

 The twelve cases defined in Table 4-1 are assessed as part of the parametric studies. 

Each case corresponds to a specific web panel aspect ratio (do/D), a specific approach to 

sizing of the longitudinal stiffener, and a specific ratio of the depth of the longitudinal 

stiffener relative to the depth of the web in compression (ds /Dc). The parameters Dc/D, 

D/tw, and bfc and tfc are varied as follows for each of the cases: 

• Dc /D = 0.5, 0.625 and  0.75, 

• D/tw = 200, 240 and 300, and  

• bfc = D/6, D/5 and D/4. 

• tfc = 1.5, 1.75, 2.25 in corresponding to the three values of compression flange 

width, bfc. 

P P

End Fixture End FixtureTest Specimen

P P
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  For instance, Case 1 is a set of parametric studies with do/D = 1, the longitudinal 

stiffener designed to a minimum size based on the AASHTO requirements, and placed at 

the theoretical optimum position for flexure, 0.4ds/Dc (Dubas 1948; Massonnet 1960). 

Cases 2, 3, and 4 are comparable studies with do/D = 1.5, 2, and 0.75 respectively. In 

addition, the test specimens in Cases 1 through 4 are analyzed without longitudinal 

stiffeners to assess the relative performance of the girders without longitudinal stiffening. 

Table 4-1: Case studies for straight girders at yield limit state 

Case  do/D Longitudinal Stiffener ds/Dc 

1 1 AASHTO min 0.4 

2 1.5 AASHTO min 0.4 

3 2 AASHTO min 0.4 

4 0.75 AASHTO min 0.4 

5 1 
Il same as Case 2 

Il ~ 2.2 x that for Case 1 
0.4 

6 1 Il 3 x that for Case 1 0.4 

7 1 AASHTO min 0.533 

8 1 AASHTO min 0.266 

9 1.5 
bl/ts 0.6 x that for Case2 

Il same as Case 2 
0.4 

10 1.5 
bl/ts 0.6 x that for Case2 

Il  0.7x that for Case 2 
0.4 

11 1.5 
bl/ts 1.2 x that for Case2 

Il same as Case 2 
0.4 

12 1.5 
Same as Case 2,  

Stiffener not continuous 
0.4 

 The longitudinal stiffener sizes for the girders in each case are designed such that they 

are just sufficient to satisfy the corresponding AASHTO design criteria for Il, with the 

exception of Cases 5, 6 and 10. The longitudinal stiffener width-to-thickness ratio, bl/ts in 

Cases 1-8 is set at the maximum limit allowed by the AASHTO provisions, 0.48 / ysE F . 
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This decision is combined with setting the stiffener moment of inertia to the limit given by 

AASHTO Equation (6.10.11.3.3-1), thus resulting in a minimum area of the longitudinal 

stiffeners unless noted otherwise (i.e., Cases 5, 6 and 10). (For a given moment of inertia, 

longitudinal stiffeners with larger bl/ts have a smaller area.)  As alluded to in Section 2.8, 

Equation 6.10.11.3.3-1 in AASHTO is a theoretical minimum required moment of inertia 

for the longitudinal stiffeners to be able to hold a “node line” of near zero lateral deflection 

at incipient bend-buckling of the girder web. Conceptually, this equation does not give a 

stiffener moment of inertia large enough to restrain the lateral movement of the web in its 

postbuckled condition. This is the reason for the conservative AASHTO approximation of 

completely neglecting any contribution of the longitudinal stiffener to the ultimate strength 

of the girder in situations where the bend-buckling stress of the longitudinally stiffened 

web is exceeded. It is found that the AASHTO Equation (6.10.11.3.3-2) for the minimum 

radius of gyration never governs in homogenous girders when the stiffener is sized at the 

maximum permitted bl/ts. The yield strength of the longitudinal stiffeners is taken as Fys = 

50 ksi in all cases in this research.  

 It should be noted that the rigidity requirement for the longitudinal stiffener in 

AASHTO is a function of do/D and thus the minimum rigidity requirement for the 

longitudinal stiffener is greater for larger values of do/D. Thus, Cases 2 and 3 employ 

longitudinal stiffeners with larger area and rigidity than Case 1.  

 To assess the importance of do/D as a parameter, Case 5 is designed with do/D = 1, but 

using the same (larger) stiffener size as used in Case 2 (for do/D = 1.5), thereby making 

every parameter for every girder in Cases 2 and 5 the same except for do/D. The stiffener 

rigidity in Case 5 is approximately 2.2 times that of the stiffener rigidity in Case 1 for the 
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same panel aspect ratio. This allows for some investigation of the influence of increasing 

the longitudinal stiffener size on the girder flexural resistance.  

 Similarly, Case 6 is designed such that every parameter for every test in Cases 1 and 6 

is the same except for the size of the longitudinal stiffener. The longitudinal stiffeners in 

Case 6 have a rigidity that is three times that of Case 1, while also having a width-to-

thickness ratio bl/ts equal to the maximum allowed by AASHTO.  

 The results from Cases 1 through 6 indicate that do/D does not impact the flexural 

resistance of the girders directly. However, do/D influences the minimum required size of 

the longitudinal stiffener, which in turn influences the flexural resistance of the girders. For 

a larger panel aspect ratio, the minimum required lateral rigidity of the stiffener is larger, 

and thus the girder flexural capacity is also increased. In accordance with this observation, 

Cases 7 and 8 are designed with panel aspect ratios of one, and are aimed at evaluating the 

influence of the longitudinal stiffener position through the web depth. The longitudinal 

stiffeners are placed below the optimum depth of 0.4Dc, at 0.533Dc, in Case 7, while they 

are placed above the optimum depth, at 0.266Dc, in Case 8.  

 Cases 9, 10 and 11 are designed to examine the influence of the slenderness of the 

longitudinal stiffener (bl/ts )on the girder flexural resistance. The panel aspect ratio for these 

cases is set to 1.5. The stiffener slenderness bl/ts in Case 9 is only 0.6 times that of the 

AASHTO limit used in Case 2. The longitudinal stiffener rigidity in Case 9 and 2 are the 

same. This allows a direct investigation of the impact of the parameter, bl/ts on the girder 

resistance. Case 10 employs the same ratio of bl/ts, while also reducing the stiffener rigidity 

to a value that is only 0.7 times that of the AASHTO limit used in Cases 2 and 9. This 

serves the dual purpose of assessing the relative importance of bl/ts and Il on the flexural 
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resistance of the stiffened girders, while at the same time evaluating the sufficiency of the 

AASHTO requirement for the stiffener rigidity Il. Case 11 is designed to gage the 

consequences of exceeding the bl/ts limit in the current AASHTO specifications. The 

stiffener in Case 11 has a slenderness of 1.2 times that of the maximum allowable limit, 

while the rigidity is at the minimum value stipulated in the Specifications.  

 In addition to these 11 cases, an additional case (Case 12) is discussed in Section 4.6.8 

that evaluates the integrity of the stiffener in the postbuckling response of the girder, when 

it is not continuous over the transverse stiffeners. 

 A 9.5 x ¾ inch transverse stiffener is used for all of the test simulations in these studies. 

This size satisfies the minimum size requirements from AASHTO for all the girders in all 

cases. For the constant moment flexure tests addressed in this chapter, where the shear 

force is zero within the test specimen, the AASHTO transverse stiffener moment of inertia 

requirements reduce to the value It1 given by AASHTO Equation 6.10.11.1.3-3, 

supplemented by Equation 6.10.11.1.3-9, which is an additional requirement for transverse 

stiffeners in longitudinally stiffened webs. The parameter It1 is a theoretical minimum 

transverse stiffener moment of inertia required to hold a node line of negligible lateral 

deflection along the length of the transverse stiffeners at incipient shear buckling of the 

web panels (if the web panels are subjected to shear force). AASHTO Equation 

6.10.11.1.3-9 essentially requires that the effective elastic section modulus of the transverse 

stiffeners must be greater than or equal to 0.333/(do/D) of the effective elastic section 

modulus of the longitudinal stiffeners. This requirement stems from the restraining action 

of the longitudinal stiffeners on the web that cause concentrated reactions at the transverse 

stiffeners. 
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 In the subsequent studies that focus on the girder resistance under combined moment 

and shear (Chapter 9), the transverse stiffeners are sized based on the limit It2 from 

AASHTO Equation 6.10.11.1.3-4. This equation ensures that the transverse stiffeners are 

able to hold a node line of near zero lateral deflection for all potential shear postbuckling 

conditions of the web panels. In all cases, the transverse stiffener yield strength is Fys = 50 

ksi.  

 The compression flange of the test specimens is braced such that LTB, according to the 

AASHTO LRFD provisions, does not govern any of the resistances in the studies presented 

in this chapter. That is, the effective unbraced length of the compression flange, KLb, is 

always set such that it is less than Lp in the uniform bending tests presented in this chapter. 

Furthermore, all the girder flanges are compact. The largest D/bfc considered in this 

research is 6, which is the limit specified by AASHTO 6.11.2.2-2. Therefore, the girder 

nominal resistance is the “plateau” resistance on the AASHTO LTB strength curve.  

 A total of 324 different girder tests are discussed in this chapter. 

 Results  

 The “true Rb” values are calculated from the test simulations as Mmax/My, where My is 

the girder yield moment determined including the contribution of the longitudinal stiffener 

to the section modulus of the girder and Mmax is the maximum moment developed in the 

test. All the girders studied in this chapter have a nominal resistance of My per the 

AASHTO Specifications when Rb = 1. The inclusion of the longitudinal stiffener in the 

girder moment of inertia (Ix) and elastic section modulus (Sxc) calculations increases the 

girder yield moment. The eccentricity of the longitudinal stiffener with respect to the web 

centerline is neglected in these calculations. That is, it is assumed that the principal axes of 
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the girder are still parallel to and perpendicular to the web in all cases. It is found that the 

maximum Rb values from the test simulations, designated henceforth as RbFEA are closer to 

1.0 when the longitudinal stiffener is included in the calculation of the girder section 

modulus as described above, and that they are larger than 1.0 in a number of cases if the 

contribution of the longitudinal stiffener to Sxc is neglected.  

 Upon a detailed investigation of the girder responses from the tests, the typical failure 

mode of a longitudinally stiffened homogenous girder designed as per the AASHTO 

criteria for the yield limit state is as shown in Figure 4-2. At the limit load, the longitudinal 

stiffener and a portion of the adjacent web are yielded or close to nominal yielding. It is 

this condition that actually determines the ultimate strength for straight girders designed to 

fail at the yield limit state. The light shaded contours are locations where the mid-thickness 

of the plates has yielded.  

 

Figure 4-2:  Typical snapshot of the failure mode at the limit load of uniform bending tests  

4.6.1 Influence of Web and Longitudinal Stiffener Residual Stresses 

 Case 1 is analyzed twice, once with the residual stress distribution discussed in Section 

3.5 and a second time omitting the residual stresses only in the web. Table 4-2 compares 

the values obtained from these two sets of analyses. The difference in the RbFEA values 
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obtained is small (less than 0.5% for most cases). This suggests that the web residual 

stresses have a minor influence on the response. Therefore, the residual stresses in the web 

(which are small, to begin with) are neglected in the remaining studies.  

 Case 2 is also analyzed twice, once with the flange and stiffener residual stresses, and 

another time with only the flange residual stresses, and no residual stresses in the 

longitudinal stiffener, and with no web residual stresses in either set of analyses. Table 4-3 

shows that the case with the residual stresses included often have negligibly higher 

strengths than the case without the stiffener residual stresses. This is because the welding 

of the stiffener to the web causes a tensile yield zone at the web-stiffener junction. Since 

the stiffener is located in the portion of the web that is in compression, this has a mildly 

beneficial effect on the girder strength. However, such a residual stress distribution as 

shown in Figure 3-2 is a reasonable assumption, and hence the flange and the longitudinal 

stiffener residual stresses are included in all of the test simulations.  
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Table 4-2: RbFEA values for Case 1, comparing the results with full residual stresses and with web 

residual stresses neglected 

(a): D/tw = 300 

bfc Dc/D 
W/RS W/O RS % DIFF W/RS W/O RS % DIFF 

WITH LONG. STIFFENER NO LONG. STIFFENER 

D/6 

0.50 0.96 0.96 0.62 0.85 0.86 -1.72 

0.625 0.88 0.88 0.58 0.80 0.79 0.67 

0.75 0.83 0.82 1.40 0.76 0.74 1.61 

D/5 

0.50 0.96 0.96 -0.04 0.87 0.87 0.62 

0.625 0.91 0.90 0.42 0.86 0.84 2.79 

0.75 0.86 0.85 1.02 0.81 0.80 1.17 

D/4 

0.50 0.98 0.98 0.35 0.92 0.92 0.42 

0.625 0.94 0.94 0.21 0.92 0.90 1.31 

0.75 0.91 0.90 0.47 0.87 0.88 -0.21 

(b): D/tw = 240 

bfc Dc/D 
W/RS W/O RS % DIFF W/RS W/O RS % DIFF 

WITH LONG. STIFFENER NO LONG. STIFFENER 

D/6 

0.50 1.01 1.01 0.10 0.85 0.84 0.32 

0.625 0.93 0.93 -0.04 0.79 0.78 0.85 

0.75 0.86 0.85 1.15 0.75 0.74 1.57 

D/5 

0.50 1.01 1.01 0.25 0.89 0.88 0.25 

0.625 0.93 0.94 -1.02 0.84 0.83 0.68 

0.75 0.89 0.88 0.55 0.80 0.79 1.21 

D/4 

0.50 1.01 1.01 0.19 0.93 0.92 1.27 

0.625 0.95 0.95 0.04 0.89 0.89 0.36 

0.75 0.92 0.91 0.15 0.86 0.86 0.66 

(c): D/tw = 200 

bfc Dc/D 
W/RS W/O RS % DIFF W/RS W/O RS % DIFF 

WITH LONG. STIFFENER NO LONG. STIFFENER 

D/6 

0.50 1.03 1.04 -0.62 0.86 0.85 1.39 

0.625 0.99 1.00 0.16 0.79 0.79 0.19 

0.75 0.93 0.93 -0.29 0.75 0.73 1.48 

D/5 

0.50 1.06 1.03 2.67 0.89 0.88 1.38 

0.625 0.99 1.00 -1.05 0.84 0.83 0.18 

0.75 0.93 0.94 -0.46 0.79 0.80 -0.35 

D/4 

0.50 1.01 1.04 -3.01 0.93 0.93 0.61 

0.625 1.00 1.00 -0.34 0.90 0.89 0.32 

0.75 0.95 0.955 -0.41 0.86 0.86 0.05 
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Table 4-3: RbFEA values for Case 2, comparing the results with and without residual stresses in the 

longitudinal stiffener 

(a): D/tw = 300 

bfc Dc/D W/RS W/O RS % DIFF 

D/6 

0.50 0.99 0.99 0.38 

0.625 0.92 0.94 -1.42 

0.75 0.87 0.86 0.87 

D/5 

0.50 0.99 0.99 -0.17 

0.625 0.96 0.96 0.25 

0.75 0.90 0.89 0.71 

D/4 

0.50 1.00 1.00 0.26 

0.625 0.95 0.95 0.29 

0.75 0.93 0.92 0.39 

   (b): D/tw = 240 

bfc Dc/D W/RS W/O RS % DIFF 

D/6 

0.50 1.03 1.01 1.94 

0.625 0.97 0.98 -0.74 

0.75 0.92 0.91 0.65 

D/5 

0.50 1.01 1.01 -0.45 

0.625 0.99 1.00 -1.07 

0.75 0.95 0.94 1.09 

D/4 

0.50 1.01 1.00 0.88 

0.625 1.00 1.00 -0.13 

0.75 0.95 0.94 1.05 

(c): D/tw = 200 

bfc Dc/D W/RS W/O RS % DIFF 

D/6 

0.50 1.08 1.02 5.76 

0.625 1.02 1.03 -0.70 

0.75 0.96 0.96 -0.13 

D/5 

0.50 1.01 1.01 0.16 

0.625 1.03 1.03 -0.03 

0.75 0.98 0.97 0.29 

D/4 

0.50 1.01 1.00 1.19 

0.625 1.03 1.03 -0.07 

0.75 0.99 0.99 -0.05 
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4.6.2 Comparison of Girders With and Without a Longitudinal Web Stiffener 

 Figures 4-3 and 4-4 show the normalized lateral displacement of the web relative to the 

initial imperfect geometry (U/tw) versus the applied moment as a fraction of the girder yield 

moment My. The displacement U is measured at the mid-length of the test panel and at the 

section depth corresponding to the longitudinal stiffener. In addition, My is calculated 

neglecting the contribution of longitudinal stiffener to the girder section modulus in these 

figures. This is done so that the ordinate in both figures is normalized by the same reference 

moment, allowing comparison of the web lateral deformations of stiffened and unstiffened 

webs at identical loads. These figures indicate that, at the limit load of the girders with 

webs that do not have a longitudinal stiffener, the same girder with a longitudinal stiffener 

tends to have a smaller web lateral deflection (up to 78% smaller) at the location of the 

stiffener. It is observed that the longitudinal stiffener tends to reduce the lateral deflection 

more for the stockier webs (D/tw = 200) than for the more slender webs (D/tw = 300). In 

some cases, at lower load levels, the webs with D/tw = 300 have a larger displacement when 

the web is stiffened.  

 The longitudinal stiffeners sized per the minimum AASHTO requirements perform 

better in terms of restraining the web lateral displacement for the stockier webs than they 

do for the more slender webs. 

 The deflections observed at the ultimate load for girders with longitudinal stiffeners are 

less than 1.0tw for girders with D/tw = 200 and in the order of 1.5tw for girders with D/tw = 

300 at the ultimate load, and much smaller than 1.0tw for smaller load levels (service and 

construction). Previous researchers (Rockey and Leggett 1962) considered deflections of 

the magnitude 0.8tw to be negligible. In view of this, it is concluded that AASHTO 
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provisions for minimum stiffener rigidity is sufficient in containing web deflections at 

service and construction loads, and up to the ultimate load for smaller web slenderness 

ratios.  

 
(a) Dc/D = 0.5, D/bfc = 4 

 
(b) Dc/D = 0.75, D/bfc = 4 

Figure 4-3: Normalized lateral displacement at location of longitudinal stiffener (U/tw) for D/tw = 200 

versus M/My, with My calculated neglecting the contribution of the longitudinal stiffener (Case1) 
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(a) Dc/D = 0.5, D/bfc = 4 

 
(b) Dc/D = 0.75, D/bfc = 4 

Figure 4-4: Normalized lateral displacement at location of longitudinal stiffener (U/tw) for D/tw = 300 

versus M/My, with My calculated neglecting the contribution of the longitudinal stiffener (Case1) 

4.6.3 Comparison of AASHTO, Eurocode and FE Test Simulations 

 Tables 4-4 through 4-7 provide RbFEA for Cases 1 (do/D = 1) and 3 (do/D = 2) and 

compare these values with the corresponding resistance ratios estimated from the current 

AASHTO (2014) and Eurocode EN 1993-1-5 (CEN 2006a) provisions. These tables show 

results obtained from the FE test simulations for the girders with and without longitudinal 

stiffeners. The following can be gleaned from these tables. 

1. Tables 4-4 and 4-6 show the results for girders with web longitudinal stiffeners. 
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The results indicate that both AASHTO and Eurocode predict lower strengths than 

those obtained by the FE test simulations. Although the Eurocode equations also 

predict lower strengths, they give higher strengths than the AASHTO equations for 

higher web slenderness ratios. 

RbFEA > RbEC > RbAASHTO 

 The Eurocode calculations are conceptually more rigorous, and more elaborate, 

and take into account the stress states in the web and the stiffener in calculating the 

plate buckling resistance using cross-section effective plate widths, as detailed in 

Section 2.9. 

  For the cases presented in this thesis, the Eurocode provisions predict a smaller 

Rb for smaller D/tw values in girders with no longitudinal stiffening. This can be 

explained physically by the fact that the girders with smaller D/tw in the current 

study have the same overall web panel depth, but thicker web plates. Hence, they 

have larger moments of inertia (Ix), and larger contributions to the moment of inertia 

from the web, than the girders with larger D/tw. This increases the value of My, but 

results in a reduction in the values of Rb due to the loss of effectiveness of the web 

from bend-buckling, based on the Eurocode effective cross-section model. This 

behavior is confirmed by the FE test simulation results. 

2. It is clear that including a longitudinal stiffener always provides an improvement 

in the flexural resistance of the girders, compared to the corresponding girders 

without longitudinal stiffeners, although theoretically the minimum size 

longitudinal stiffeners from AASHTO LRFD are not sufficient to develop more 

than the initial bend-buckling capacity of the girders. 



 54

3. Increasing the ratio of Dc/D or increasing the ratio Awc/Afc results in a reduction in 

the AASHTO LRFD Rb values. This is also the case with the FE test simulations. 

The behavior is more pronounced for more slender webs. However, AASHTO 

significantly under-predicts the true Rb (i.e., RbFEA, as determined by the 

simulations), particularly for higher Dc/D, both with and without longitudinal 

stiffeners. The under-predictions range from 9 to 50%. Tables 4-5 and 4-7 show 

that for high Dc/D ratios of 0.75, RbAASHTO can be significantly conservative even 

for cases that do not have a longitudinal stiffener. This is due to the fact that the 

original derivation of Rb by Basler and Thurliman is based largely on the idealized 

extreme girder geometry discussed previously in Section 1.2 (I-girders with D/tw = 

360), and the fact that the equations are more conservative for larger Awc/Afc. The 

prediction by AASHTO improves for larger bfc/D ratios (i.e., for girders with larger 

flanges compared to the web).  

4. It is observed that the effect of bfc/D on Rb is less substantial than the effect of Dc/D. 

Both of these variables influence the ratio Awc/Afc, which then has a strong influence 

on Rb. However, the influence of bfc/D and Dc/D on the physical girder response is 

more complex than just the influence of these variables on Awc/Afc.  

5. It is also observed that the AASHTO predictions are lower for higher ratios of do/D 

(Case 1 vs. Case 3). This can be attributed to the fact that the rigidity of the 

longitudinal stiffener is higher for the larger do/D (Case 3) and that results in the 

AASHTO equations (which excludes the moment of inertia of the stiffener in the 

calculation of the girder section modulus) being more conservative. 
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Table 4-4: RbFEA values for Case 1 from FE, AASHTO and Eurocode for girders with a web 

longitudinal stiffener 

  (a) Dc/D = 0.5 

bfc D/tw RbAASHTO RbEC  RbFEA RbFEA/RbAASHTO RbFEA/RbEC  

D/6 

300 0.82 0.86 0.96 1.17 1.11 

240 1.00 0.87 1.01 1.01 1.16 

200 1.00 0.90 1.04 1.04 1.16 

D/5 

300 0.86 0.89 0.96 1.12 1.08 

240 1.00 0.90 1.01 1.01 1.13 

200 1.00 0.92 1.03 1.03 1.13 

D/4 

300 0.90 0.92 0.98 1.08 1.06 

240 1.00 0.93 1.01 1.01 1.09 

200 1.00 0.94 1.04 1.04 1.11 

(b) Dc/D = 0.625 

bfc D/tw RbAASHTO RbEC  RbFEA RbFEA/RbAASHTO RbFEA/RbEC  

D/6 

300 0.70 0.81 0.88 1.26 1.09 

240 0.76 0.81 0.93 1.23 1.15 

200 1.00 0.84 1.00 1.00 1.19 

D/5 

300 0.76 0.84 0.90 1.20 1.07 

240 0.81 0.85 0.94 1.17 1.11 

200 1.00 0.87 1.00 1.00 1.15 

D/4  

300 0.83 0.89 0.94 1.13 1.05 

240 0.86 0.89 0.95 1.11 1.07 

200 1.00 0.90 1.00 1.00 1.11 

(c) Dc/D = 0.75 

bfc D/tw RbAASHTO RbEC  RbFEA RbFEA/RbAASHTO RbFEA/RbEC  

D/6 

300 0.55 0.76 0.82 1.48 1.07 

240 0.64 0.76 0.85 1.33 1.11 

200 0.71 0.78 0.93 1.31 1.19 

D/5 

300 0.64 0.81 0.85 1.34 1.06 

240 0.70 0.81 0.88 1.25 1.09 

200 0.76 0.82 0.94 1.24 1.15 

D/4 

300 0.74 0.91 0.90 1.22 0.99 

240 0.78 0.91 0.91 1.17 1.01 

200 0.82 0.91 0.95 1.16 1.04 
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Table 4-5: RbFEA values for Case 1 from FE, AASHTO and Eurocode for girders without a web 

longitudinal stiffener 

(a) Dc/D = 0.5 

bfc D/tw RbAASHTO RbEC  RbFEA RbFEA/RbAASHTO RbFEA/RbEC  

D/6 

300 0.82 0.78 0.85 1.04 1.09 

240 0.87 0.75 0.84 0.97 1.12 

200 0.91 0.74 0.85 0.93 1.15 

D/5 

300 0.86 0.83 0.87 1.01 1.05 

240 0.89 0.81 0.88 0.99 1.09 

200 0.93 0.79 0.89 0.96 1.12 

D/4 

300 0.90 0.88 0.92 1.03 1.05 

240 0.93 0.87 0.92 1.00 1.06 

200 0.95 0.86 0.93 0.98 1.09 

(b) Dc/D = 0.625 

bfc D/tw RbAASHTO RbEC  RbFEA RbFEA/RbAASHTO RbFEA/RbEC  

D/6 

300 0.70 0.72 0.79 1.14 1.10 

240 0.76 0.69 0.79 1.03 1.14 

200 0.82 0.67 0.79 0.97 1.18 

D/5 

300 0.76 0.78 0.84 1.11 1.07 

240 0.81 0.75 0.83 1.04 1.11 

200 0.85 0.72 0.79 0.94 1.10 

D/4 

300 0.83 0.69 0.79 0.95 1.14 

240 0.86 0.67 0.79 0.92 1.18 

200 0.89 0.78 0.84 0.94 1.07 

(c) Dc/D = 0.75 

bfc D/tw RbAASHTO RbEC  RbFEA RbFEA/RbAASHTO RbFEA/RbEC  

D/6 

300 0.55 0.68 0.75 1.36 1.11 

240 0.64 0.65 0.75 1.17 1.16 

200 0.71 0.62 0.75 1.05 1.20 

D/5 

300 0.64 0.75 0.81 1.27 1.08 

240 0.70 0.72 0.80 1.14 1.12 

200 0.76 0.69 0.80 1.05 1.15 

D/4 

300 0.74 0.82 0.87 1.18 1.06 

240 0.78 0.80 0.86 1.10 1.08 

200 0.82 0.78 0.86 1.05 1.11 
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Table 4-6: RbFEA values for Case 3 from FE, AASHTO and Eurocode for girders with a web 

longitudinal stiffener 

(a) Dc/D = 0.5 

bfc D/tw RbAASHTO RbEC  RbFEA RbFEA/RbAASHTO RbFEA/RbEC  

D/6 

300 0.82 0.86 1.00 1.22 1.17 

240 1.00 0.88 1.05 1.05 1.19 

200 1.00 0.90 0.99 0.99 1.09 

D/5 

300 0.86 0.89 1.00 1.17 1.13 

240 1.00 0.90 1.00 1.00 1.11 

200 1.00 0.92 1.03 1.03 1.12 

D/4 

300 0.90 0.92 1.00 1.11 1.09 

240 1.00 0.93 0.99 0.99 1.06 

200 1.00 0.94 1.04 1.04 1.11 

(b) Dc/D = 0.625 

bfc D/tw RbAASHTO RbEC  RbFEA RbFEA/RbAASHTO RbFEA/RbEC  

D/6 

300 0.70 0.80 0.94 1.35 1.17 

240 0.76 0.82 1.00 1.31 1.22 

200 1.00 0.84 1.04 1.04 1.23 

D/5 

300 0.76 0.84 0.98 1.29 1.16 

240 0.81 0.85 1.01 1.26 1.19 

200 1.00 0.87 1.04 1.04 1.20 

D/4 

300 0.83 0.89 0.99 1.19 1.11 

240 0.86 0.89 1.01 1.17 1.13 

200 1.00 0.90 1.04 1.04 1.15 

(c) Dc/D = 0.75 

bfc D/tw RbAASHTO RbEC  RbFEA RbFEA/RbAASHTO RbFEA/RbEC  

D/6 

300 0.55 0.76 0.89 1.61 1.17 

240 0.64 0.77 0.95 1.48 1.23 

200 0.71 0.79 1.00 1.40 1.27 

D/5 

300 0.64 0.81 0.91 1.43 1.13 

240 0.70 0.81 0.96 1.37 1.19 

200 0.76 0.82 1.00 1.31 1.21 

D/4 

300 0.74 0.86 0.93 1.26 1.08 

240 0.78 0.86 0.98 1.25 1.14 

200 0.82 0.87 1.01 1.23 1.16 
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Table 4-7: RbFEA values for Case 3 from FE, AASHTO and Eurocode for girders without web a 

longitudinal stiffener 

(a) Dc/D = 0.5 

bfc D/tw RbAASHTO RbEC  RbFEA RbFEA/RbAASHTO RbFEA/RbEC  

D/6 

300 0.82 0.78 0.82 1.01 1.06 

240 0.87 0.75 0.83 0.96 1.10 

200 0.91 0.74 0.82 0.90 1.11 

D/5 

300 0.86 0.83 0.87 1.01 1.05 

240 0.89 0.81 0.88 0.99 1.09 

200 0.93 0.79 0.86 0.93 1.09 

D/4 

300 0.90 0.88 0.93 1.03 1.05 

240 0.93 0.87 0.92 1.00 1.06 

200 0.95 0.86 0.93 0.98 1.09 

(b) Dc/D = 0.625 

bfc D/tw RbAASHTO RbEC  RbFEA RbFEA/RbAASHTO RbFEA/RbEC  

D/6 

300 0.70 0.72 0.78 1.12 1.08 

240 0.76 0.69 0.76 0.99 1.09 

200 0.82 0.67 0.75 0.92 1.12 

D/5 

300 0.76 0.78 0.84 1.12 1.08 

240 0.81 0.75 0.81 1.01 1.08 

200 0.85 0.73 0.81 0.95 1.10 

D/4 

300 0.83 0.85 0.90 1.08 1.06 

240 0.86 0.83 0.88 1.02 1.06 

200 0.89 0.81 0.87 0.98 1.08 

(c) Dc/D = 0.75 

bfc D/tw RbAASHTO RbEC  RbFEA RbFEA/RbAASHTO RbFEA/RbEC  

D/6 

300 0.55 0.68 0.74 1.35 1.09 

240 0.64 0.65 0.73 1.13 1.12 

200 0.71 0.62 0.71 1.00 1.14 

D/5 

300 0.64 0.75 0.80 1.26 1.07 

240 0.70 0.72 0.80 1.14 1.12 

200 0.76 0.69 0.77 1.02 1.12 

D/4 

300 0.74 0.82 0.87 1.17 1.05 

240 0.78 0.80 0.86 1.11 1.08 

200 0.82 0.78 0.84 1.03 1.09 
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 Table 4-8 shows values of RbFEA obtained for girders with longitudinal stiffeners (the 

primary focus of this research), with the cases arranged in the order of increasing 

longitudinal stiffener size (to emphasize the importance of this parameter). The bl/ts for all 

these cases are approximately 11.5. The values in each subsequent row of the table indicate 

an increase in Rb for larger stiffener sizes. The longitudinal stiffeners are located at the 

optimum position for flexure (ds/Dc = 0.4) in the 162 tests shown in this table. 

4.6.4 Impact of Panel Aspect Ratio 

 In Table 4-8, the difference in values of RbFEA between Cases 2 and 5 is small (1 to 

2%). Figure 4-5 shows the web lateral deflection at the depth of the longitudinal stiffener 

versus the load level for these cases with Dc/D = 0.75 and D/bfc = 4, for D/tw = 200 and 

300. The only difference between Cases 2 and 5 is the value of do/D. These two cases use 

the same girder and stiffener dimensions. While the stiffener size used in these cases is the 

minimum as required for Case 2 (do/D = 1.5), it is much larger than the minimum 

requirements per AASHTO for Case 5 (do/D = 1). These results indicate, as would be 

expected, that do/D plays a negligible role in influencing the Rb value.  

 

Figure 4-5:  Normalized load vs lateral deflection at location of longitudinal stiffener (U/tw) for D/tw = 

200 (left) and D/tw = 300 (right), Cases 2 and 5 with Dc/D = 0.75 and D/bfc = 4 
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Table 4-8: RbFEA values for Cases 1 through 6, arranged in increasing order of longitudinal stiffener 

size 

(a) D/tw = 300 

Case Al Il 

Dc/D

=0.5,

bfc=

D/6 

Dc/D=

0.625,

bfc= 

D/6 

Dc/D=

0.75, 

bfc= 

D/6 

Dc/D

=0.5,

bfc= 

D/5 

Dc/D= 

0.625, 

bfc= 

D/5 

Dc/D=

0.75, 

bfc= 

D/5 

Dc/D=

0.5, 

bfc= 

D/4 

Dc/D=

0.625,

bfc= 

D/4 

Dc/D=

0.75, 

bfc= 

D/4 

4 2.77 23.78 0.93 0.86 0.81 0.95 0.89 0.85 0.97 0.93 0.90 

1 4.38 49.15 0.96 0.88 0.82 0.96 0.90 0.85 0.98 0.94 0.90 

2 6.85 105.33 0.99 0.92 0.87 0.99 0.96 0.90 1.00 0.95 0.93 

5 6.85 105.33 1.00 0.94 0.88 1.00 0.98 0.90 1.00 0.99 0.92 

6 7.72 127.70 1.00 0.95 0.90 1.01 0.96 0.91 1.01 0.97 0.94 

3 9.56 180.87 1.01 0.97 0.91 1.01 0.97 0.93 1.01 0.98 0.95 

(b) D/tw = 240 

Case Al Il 

Dc/D

=0.5,

bfc=

D/6 

Dc/D=

0.625,

bfc= 

D/6 

Dc/D=

0.75, 

bfc= 

D/6 

Dc/D

=0.5,

bfc= 

D/5 

Dc/D= 

0.625, 

bfc= 

D/5 

Dc/D=

0.75, 

bfc= 

D/5 

Dc/D=

0.5, 

bfc= 

D/4 

Dc/D=

0.625,

bfc= 

D/4 

Dc/D=

0.75, 

bfc= 

D/4 

4 3.75 45.50 0.98 0.90 0.84 0.99 0.92 0.87 0.99 0.95 0.91 

1 5.60 88.07 1.01 0.93 0.85 1.01 0.94 0.88 1.01 0.95 0.91 

2 9.08 195.01 1.03 0.97 0.92 1.01 0.99 0.95 1.01 1.01 0.95 

5 12.99 351.64 1.05 1.00 0.94 1.00 1.01 0.95 0.99 1.01 0.97 

6 9.08 195.01 1.03 1.00 0.93 1.04 1.00 0.95 1.03 1.01 0.97 

3 10.51 249.46 1.02 1.01 0.95 1.01 1.01 0.96 1.03 1.02 0.97 

(c) D/tw = 200 

Case Al Il 

Dc/D

=0.5,

bfc=

D/6 

Dc/D=

0.625,

bfc= 

D/6 

Dc/D=

0.75, 

bfc= 

D/6 

Dc/D

=0.5,

bfc= 

D/5 

Dc/D= 

0.625, 

bfc= 

D/5 

Dc/D=

0.75, 

bfc= 

D/5 

Dc/D=

0.5, 

bfc= 

D/4 

Dc/D=

0.625,

bfc= 

D/4 

Dc/D=

0.75, 

bfc= 

D/4 

4 4.88 79.32 1.03 0.96 0.89 1.02 0.97 0.91 1.02 0.98 0.94 

1 7.20 149.08 1.04 1.00 0.93 1.03 1.00 0.94 1.04 1.00 0.95 

2 11.68 335.93 1.08 1.02 0.96 1.01 1.03 0.98 1.01 1.03 0.99 

5 16.64 603.70 0.99 1.04 0.98 1.03 1.04 0.99 1.04 1.04 1.01 

6 11.68 335.93 1.02 1.04 0.98 1.06 1.04 0.99 1.05 1.04 1.00 

3 13.53 430.72 1.01 1.05 0.99 1.07 1.06 1.00 1.05 1.05 1.00 
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4.6.5 Impact of Stiffener Rigidity 

 From Table 4-8 , it is observed that as the size of the longitudinal stiffener is increased, 

a larger value of RbFEA is obtained. When the size of the longitudinal stiffener is increased 

to three times the minimum required lateral rigidity per AASHTO (Case 6), the value of 

RbFEA is increased only 5 to 7%.  

Figure 4-6 compares the applied moment versus the normalized web lateral deflection 

for two different Case 6 and Case 5 girders versus the corresponding Case 1 girders. The 

RbFEA obtained for stiffeners with three times the minimum lateral rigidity (Case 6) is not 

significantly larger than for stiffeners having approximately two times the minimum lateral 

rigidity (Case 5). This is an indication that, while it may be beneficial to increase the 

stiffener rigidity to some extent from the current AASHTO minimum requirements, there 

are diminishing returns as the stiffener size is made larger and larger. 

 It is also observed from Figure 4-6 that for stiffeners with approximately twice the 

minimum AASHTO requirement (Case 5), the lateral web deflection at the location of the 

stiffener is practically restrained (approximately 0.5tw) at the limit load. 

 It is noteworthy that significant improvements over the current AASHTO provisions, 

which neglect the contribution of the longitudinal stiffener to the flexural resistance of the 

girder in the postbuckling range of the response, are obtained by determining the “true Rb” 

even using the current AASHTO minimum size longitudinal stiffener. However, as stated 

above, beyond a certain size of the longitudinal stiffener, no significant increase in RbFEA 

is obtained. That is, the “law of diminishing returns” applies.  

 A brief study on the effect of using a stiffener with lower rigidity that the AASHTO 

minimum is discussed in Section 4.6.7. 
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Figure 4-6: Normalized load vs lateral deflection at location of longitudinal stiffener for D/tw = 200 

(left) and D/tw = 300 (right), Cases 1, 5 and 6 with Dc/D = 0.75 and D/bfc = 4 

4.6.6 Impact of Stiffener Position along Web Depth 

 Table 4-9 compares the results for another 54 longitudinally stiffened girder tests from 

Cases 7 and 8, with ds/Dc = 0.533 and 0.266, to the corresponding results from Case 1. All 

of the tests considered in Table 4-9  have do/D = 1. 

 It is observed that the position of the stiffener slightly influences the overall flexural 

capacity of the girders. It is observed that when the longitudinal stiffener is positioned 

lower through the web depth, the girder flexural capacity marginally increases. This can be 

explained from the observation in Figure 4-2 that the lowered position of the longitudinal 

stiffener delays the progression of yielding within stiffener and the adjacent portion of the 

web panel. However, Table 4-9 shows that this effect is relatively small.  
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Table 4-9: RbFEA values for girders with do/D=1 and different positions of a minimum size 

longitudinal stiffener per AASHTO LRFD  

D/tw =

300 
ds/Dc 

Dc/D

=0.5,

bfc= 

D/6 

Dc/D=

0.625, 

bfc= 

D/6 

Dc/D=

0.75, 

bfc= 

D/6 

Dc/D

=0.5,

bfc= 

D/5 

Dc/D= 

0.625, 

bfc= 

D/5 

Dc/D=

0.75, 

bfc= 

D/5 

Dc/D

=0.5, 

bfc= 

D/4 

Dc/D=

0.625,

bfc= 

D/4 

Dc/D=

0.75, 

bfc= 

D/4 

Case1 0.40 0.96 0.88 0.82 0.96 0.90 0.85 0.98 0.94 0.90 

Case7 0.53 0.96 0.90 0.85 0.98 0.95 0.89 0.99 0.95 0.92 

Case8 0.26 0.93 0.87 0.82 0.95 0.90 0.86 0.97 0.94 0.91 

 

D/tw =

240 
ds/Dc 

Dc/D

=0.5,

bfc= 

D/6 

Dc/D=

0.625, 

bfc= 

D/6 

Dc/D=

0.75, 

bfc= 

D/6 

Dc/D

=0.5,

bfc= 

D/5 

Dc/D= 

0.625, 

bfc= 

D/5 

Dc/D=

0.75, 

bfc= 

D/5 

Dc/D

=0.5, 

bfc= 

D/4 

Dc/D=

0.625,

bfc= 

D/4 

Dc/D=

0.75, 

bfc= 

D/4 

Case1 0.40 1.01 0.93 0.85 1.01 0.94 0.88 1.01 0.95 0.91 

Case7 0.53 0.99 0.97 0.89 1.01 0.99 0.91 1.02 0.98 0.94 

Case8 0.26 0.95 0.89 0.84 0.97 0.92 0.87 0.98 0.95 0.91 

 

D/tw =

200 
ds/Dc 

Dc/D

=0.5,

bfc= 

D/6 

Dc/D=

0.625, 

bfc= 

D/6 

Dc/D=

0.75, 

bfc= 

D/6 

Dc/D

=0.5,

bfc= 

D/5 

Dc/D= 

0.625, 

bfc= 

D/5 

Dc/D=

0.75, 

bfc= 

D/5 

Dc/D

=0.5, 

bfc= 

D/4 

Dc/D=

0.625,

bfc= 

D/4 

Dc/D=

0.75, 

bfc= 

D/4 

Case1 0.40 1.04 1.00 0.93 1.03 1.00 0.94 1.04 1.00 0.95 

Case7 0.53 1.02 1.00 0.93 1.04 1.00 0.94 1.03 1.01 0.97 

Case8 0.26 0.98 0.92 0.87 0.99 0.94 0.90 1.00 0.96 0.93 

4.6.7 Impact of Longitudinal Stiffener Width-to-Thickness Ratio 

 Cases 9, 10 and 11 as described in Section 4.4 are designed to study the influence of 

the width-to-thickness ratio of the longitudinal stiffener plate on the girder flexural 

strength. The results from Case 2 are reproduced here, as a benchmark case for comparing 

the results in this section. Case 2 has a do/D of 1.5, same as in Cases 9, 10, and 11, and with 

the longitudinal stiffener designed to meet the limits of the AASHTO requirements. The 

longitudinal stiffener sizes used in Cases 9, 10 and 11 are duplicated in Table 4-10.  
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Table 4-10: Summary of stiffener parameters used in Cases 9, 10, and 11 

Long. Stiffener Case 9 Case 10 Case 11 

bl/ts 0.6 x (Case 2) 0.6 x (Case 2) 1.2 x (Case 2) 

Il 1.0 x (Case 2) 0.7 x (Case 2) 1.0 x (Case 2) 

 Table 4-11 compares the test results for these three cases along with the results from 

Case 2. The following can be gleaned from the table.  

1. There is negligible difference in girder strengths between Cases 2, and 9, i.e. for a 

given moment of inertia that satisfies the AASHTO rigidity criteria, the width-to-

thickness ratio of the longitudinal stiffener has little influence on the overall 

flexural capacity of the girder. Figure 4-7 shows the load-deflection responses for 

two girders with stiffeners designed as per Cases 2 and 9. It is interesting to note 

that, while the ultimate load carrying response of the girders are essentially the 

same, the response of the girders in Case 9 is less stiff than the girders in Case 2. 

This can be attributed to the fact that the longitudinal stiffener column in Case 9 is 

more slender than the one in Case 2 (the girders in Case 9 have the same rigidity as 

in Case 2, but have a smaller bl/ts and hence have a larger area, and thereby a smaller 

radius of gyration). Thus, the stiffener column in Case 9 is less stiff in the lateral 

direction.  

2. The results for Case 10 help examine the consequence of using a stiffener that does 

not satisfy the minimum rigidity requirement in AASHTO (2014). It is observed 

from Table 4-11 that strengths obtained in Case 10 is lower than the strengths 

obtained in Case 9. This observation corroborates the discussion in Section 4.6.5 

where it was established that the girder strength is sensitive to the lateral stiffness 
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of the longitudinal stiffener column. Figure 4-8 shows the difference in the load-

deflection response between Cases 9 and 10. It is clear that using a stiffener with a 

rigidity of only 70% of the minimum stipulated requirement in AASHTO does not 

hold a near zero line of web lateral deflection at the location of the longitudinal 

stiffener. This also implies that, when the stiffener rigidity requirement is not met, 

Rb cannot be taken as 1.0 at service or construction load conditions.   

 

D/tw = 300, Dc/D = 0.50 and D/bfc = 6 (left) and D/tw = 300, Dc/D = 0.75 and D/bfc = 6 (right) 

Figure 4-7: Normalized load vs lateral deflection at location of longitudinal stiffener Cases 2 and 9  

 

D/tw = 300, Dc/D = 0.50 and D/bfc = 6 (left) and D/tw = 300, Dc/D = 0.75 and D/bfc = 6 (right) 

Figure 4-8: Normalized load vs lateral deflection at location of longitudinal stiffener Cases 9 and 10 
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3. It is also evident from Table 4-11 that the strengths obtained from Cases 2, 9 and 

11 are essentially the same. This shows that when bl/ts is 1.2 times the maximum 

limit in AASHTO, the girder strength is not greatly affected, and suggests that the 

maximum stipulated limit in AASHTO is conservative as noted in Vincent (1969). 

However, small local buckles are observed in the failure mode for the girders in 

Case 11, and it may be prudent to use the currently specified limit on bl/ts. 

Table 4-11: Comparison of RbFEA values for Cases 9, 10 and 11 with Case 2 

(a): D/tw = 300 

bfc Dc/D Case 2 Case 9 Case 10  Case 11 

D/6 

0.50 0.99 0.99 0.94 0.98 

0.625 0.92 0.93 0.88 0.93 

0.75 0.87 0.87 0.83 0.85 

D/5 

0.50 0.99 0.99 0.96 0.98 

0.625 0.96 0.93 0.91 0.94 

0.75 0.90 0.89 0.87 0.88 

D/4 

0.50 1.00 1.00 0.98 0.99 

0.625 0.95 0.95 0.94 0.95 

0.75 0.93 0.93 0.91 0.92 

(b): D/tw = 240 

bfc Dc/D Case 2 Case 9 Case 10  Case 11 

D/6 

0.50 1.03 1.04 1.02 1.02 

0.625 0.97 0.98 0.94 0.97 

0.75 0.92 0.93 0.87 0.92 

D/5 
0.625 0.99 1.00 0.95 0.98 

0.75 0.95 0.95 0.90 0.93 

D/4 

0.50 1.01 0.99 1.02 1.01 

0.625 1.00 1.01 0.96 0.99 

0.75 0.95 0.97 0.93 0.94 
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Table 4-11 (Continued): Comparison of RbFEA values for Cases 9, 10 and 11 with Case 2 

(c): D/tw = 200 

bfc Dc/D Case 2 Case 9 Case 10  Case 11 

D/6 

0.50 1.08 1.08 1.01 1.02 

0.625 1.02 1.03 1.01 1.02 

0.75 0.96 0.97 0.94 0.95 

D/5 
0.625 1.03 1.04 1.02 1.02 

0.75 0.98 0.99 0.96 0.97 

D/4 

0.50 1.01 0.99 1.04 1.05 

0.625 1.03 1.04 1.02 1.03 

0.75 0.99 1.00 0.97 0.98 

4.6.8 Impact of Longitudinal Stiffener Continuity 

 All the tests discussed until now in this chapter (Cases 1-11) are based on the test setup 

shown in Figure 4-1, wherein the longitudinal stiffener is modeled continuous over the 

transverse stiffeners into the end fixtures. In order to assess the effects of the stiffener 

continuity on girder strength, Case 2 is re-modeled with the longitudinal stiffener 

continuous over the transverse stiffener in the central test panel, but stopped 1′ away from 

the end fixture in the end panel of the test specimen.  

 Table 4-12 compares the results for Cases 2 and 12, where Case 12 examines the 

integrity of the post-buckling response of the girder when the longitudinal stiffener is not 

continuous over the transverse stiffeners. It is clear that the girder strength is substantially 

decreased under the condition of discontinuous longitudinal stiffeners. 

 Figure 4-9 shows the typical failure mode of such girders. It is observed that the portion 

of the flange in the unstiffened panel undergoes vertical flange buckling (VFB), i.e. the 

combined effects of the compression flange yielding and the buckled state of the web with 
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no restraint from the longitudinal stiffener has increased the susceptibility of the girder to 

fail by VFB. 

 There is no recommendation for the termination requirements for longitudinal 

stiffeners in CEN (2006a). But, a recommendation of a ≤ 3t is given by Johansson et al. 

(2007) to prevent local failure of the plate elements, where a is the distance between the 

transverse stiffener and the discontinuous edge of the longitudinal stiffener, and t is the 

thickness of the web plate. 

 Further studies are required to evaluate the maximum termination distance of the 

longitudinal stiffener from the transverse stiffener in order to be able to count on the full 

postbuckling capacity of the girder. Based on the current research, it is recommended that 

the contribution of the longitudinal stiffener to the postbuckling flexural resistance of the 

girder be neglected when the panel has discontinuous longitudinal stiffeners. 

 

 

Figure 4-9:  Typical snapshot of the failure mode for tests with discontinuous longitudinal stiffeners  
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Table 4-12: Comparison of RbFEA values for Cases 2 and 12 

(a): D/tw = 300 

bfc Dc/D Case 2 Case 12 

D/6 

0.50 0.99 0.85 

0.625 0.92 0.81 

0.75 0.87 0.78 

D/5 

0.50 0.99 0.90 

0.625 0.96 0.85 

0.75 0.90 0.82 

D/4 

0.50 1.00 0.94 

0.625 0.95 0.92 

0.75 0.93 0.89 

(b): D/tw = 240 

bfc Dc/D Case 2 Case 12 

D/6 

0.50 0.99 0.87 

0.625 0.92 0.82 

0.75 0.87 0.78 

D/5 

0.50 0.99 0.89 

0.625 0.96 0.85 

0.75 0.90 0.82 

D/4 

0.50 1.00 0.95 

0.625 0.95 0.91 

0.75 0.93 0.88 

(c): D/tw = 200 

bfc Dc/D Case 2 Case 12 

D/6 

0.50 0.99 0.88 

0.625 0.92 0.88 

0.75 0.87 0.83 

D/5 

0.50 0.99 0.92 

0.625 0.96 0.86 

0.75 0.90 0.82 

D/4 

0.50 1.00 0.95 

0.625 0.95 0.91 

0.75 0.93 0.88 
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 Proposed Model for Evaluating Flexural Resistance of Straight Girders  

 The cross-section model shown in Figure 4-10 is proposed to predict the overall 

flexural capacity of a plate girder at the yield limit state (i.e., the resistance corresponding 

to the plateau of the AASHTO LTB capacity for a slender-web I-girder). This figure 

indicates the portion of the web in the two sub-panels that is effective at the yield limit 

state. Dc* is the depth of the neutral axis of the cross-section, and is calculated via an 

iterative process such that equilibrium and strain compatibility are satisfied based on the 

stress distribution shown in the compressed portion of the girder. The portion of the web 

adjacent to the compression flange is assumed to be at the yield stress, and the stress is 

assumed to vary linearly and elastically below that portion. Figure 4-11 shows the variation 

of normal stresses through the depth of the web for different depths of the web in 

compression for girders with D/tw = 240 studied as part of Case 1. The stress distribution 

shown is computed as the average stress through the mid-thickness of the web plate. This 

is representative of the general trend in all the cases studied and also for other web 

slenderness ratios. In addition, the stress distribution through the web depth in Figure 4-11 

is clearly different for different Dc/D and exhibits similar behavior for girders with different 

D/bfc but equal Dc/D values.  
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Figure 4-10: Proposed cross-section model and stress distribution 

 

Figure 4-11: Major axis bending stresses in the web, girders with D/tw = 240  

 Figure 4-10 provides a reasonable approximation of the stress distributions obtained in 

Figure 4-11, and can be used to determine the yield limit state flexural resistance of the 

girder using basic strength of materials concepts. The compressive stresses to be used in 
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the flexural capacity calculations are calculated from the stress distribution and the 

effective panel widths shown in Figure 4-10. The neutral axis, Dc* is calculated via an 

iterative process that satisfies equilibrium and strain compatibility. The moment of the area 

of the longitudinal stiffener about the calculated neutral axis, Dc* should be included in the 

calculation of the cross-sectional flexural resistance. The tension stresses are also 

computed to satisfy overall longitudinal equilibrium (i.e., total sum of forces equal to zero 

in the longitudinal direction). In this regard, the tension side of the girder near the bottom 

flange may or may not be yielded. One can write separate equations for the internal moment 

produced by the assumed stress distribution based on the following assumptions:  

1. The entire section is elastic on the tension side of the neutral axis. In this case, the 

elastic stress distribution below the neutral axis is scaled such that the total 

longitudinal force in the cross-section is equal to zero.  

2. Nominal yielding is reached where the elastic stress reaches Fy at some depth on 

the tension side of the neutral axis. In this case, the section is assumed to have a 

constant tensile stress equal to Fy below this depth, and a linearly varying elastic 

stress distribution above this depth up to the neutral axis. 

 The tension force and compression force vary with each iteration of the neutral axis 

until, in the final step both longitudinal equilibrium and strain compatibility is satisfied. 

 For composite sections in negative bending, the calculations are the same as those 

shown above, but the area of the tension reinforcing is included. If the longitudinal stress 

in the reinforcing steel at a given depth exceeds its nominal yield strength, the reinforcing 

bars are assumed to be at their yield strength. Otherwise, the longitudinal stress in the rebar 
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is calculated elastically, based on an assumed linear strain variation from the assumed 

neutral axial location at the depth Dc*.  

 The symbol RbPr denotes the value of Rb predicted using the above proposed model. 

This quantity is calculated as MnPr /My, where MnPr is the moment resistance of the cross-

section model shown in Figure 4-10 using the stress distribution shown. A comparison of 

the statistics for RbPr versus RbFEA for the 297 tests considered in Cases 1-11 in this chapter 

is shown in Table 4-13. One can observe that the proposed model provides an accurate 

prediction of the flexural resistance of longitudinally stiffened plate girders at the yield 

limit state. 

Table 4-13: Statistics for RbFEA/RbPr for straight girders at yield limit state 

Statistical Parameter RbFEA /RbPr 

Mean 1.01 

Coefficient of Variation 0.04 

Maximum 1.10 

Minimum 0.89 

Median 1.02 

 It should be noted that the smallest ratio of ds/Dc considered in these studies is 0.266. 

If this is combined with the largest ratio of Dc/D of 0.75 and with the smallest applicable 

D/tw of 150 (for longitudinally stiffened webs), the sum of the effective widths within the 

portion of the web between the longitudinal stiffener and the compression flange is 

0.2495D, which is larger than 0.266Dc = 0.200D (for Dc/D = 0.75). In any extreme cases 

where the sum of these effective widths exceeds ds, the web is to be taken as fully effective 

between the longitudinal stiffener and the compression flange. Furthermore, the width of 

the effective web plate between the longitudinal stiffener and the neutral axis is 30tw = 
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30(D/150) = 0.2D for the smallest applicable D/tw of 150. The smallest value of Dc – ds 

considered in these studies is (Dc – 0.533Dc) = 0.467Dc = 0.233D (for Dc/D = 0.5). 

Therefore, even for the smallest web slenderness for which AASHTO LRFD requires a 

longitudinal stiffener (D/tw = 150), and for the smallest Dc/D considered in this research, 

the web plate between the longitudinal stiffener and the girder neutral axis is not fully 

effective in the proposed model. Similar to the above, in any extreme cases where the 

effective width 30tw exceeds Dc – ds, the web is to be taken as fully effective between the 

longitudinal stiffener and the neutral axis.  

 Figure 4-12 illustrates how Rb from the proposed model compares with the Rb from 

current AASHTO equations for four of the 11 cases. All other cases show similar trends in 

behavior. It is evident that RbPr is a much better model to predict the true strengths of the 

girders and gives excellent correlation with test simulation results. The values for 

RbFEA/RbPr are consistently around 1.0, while RbAASHTO is extremely conservative for very 

slender webs. It is also observed from (c) and (d) of Figure 4-12 that the predictions are 

slightly conservative for the stiffener located below the optimum depth, and are slightly 

optimistic when the stiffener is located above the optimum stiffener location of 0.4Dc. The 

predictions from the proposed model are the best when ds/Dc = 0.4. However, as shown in 

Table 4-13, the coefficient of variation is reasonably low, and the model can be used for 

any location of the stiffener within the compression area of the web. 

 If the stiffener is located at the neutral axis, or on the tension side of the web, the 

stiffener shall not be considered to contribute to the girder resistance, and should not be 

used in the calculation of the girder section modulus. 
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(a) Case 1, do/D =1, ds/Dc = 0.40 

 
(b) Case 3, do/D =2, ds/Dc = 0.40 

 
(c) Case 7, do/D =1, ds/Dc = 0.53 

Figure 4-12: Comparison of RbProposed with RbAASHTO 
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(d) Case 8, do/D =1, ds/Dc = 0.27 

Figure 4-12 (Continued): Comparison of RbProposed with RbAASHTO 
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neutral axis, while the alternative model fixes the position of the neutral axis at the elastic 

neautral axis of the gross cross-sectional area. 

 
Figure 4-13: Alternative simplified cross-section model for calculating flexural resistance 
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FLANGE LOCAL BUCKLING OF LONGITUDINALLY STIFFENED 

PLATE GIRDERS 

 Selected tests are conducted to assess the performance of the proposed Rb model in 

Chapter 4 while evaluating the strengths of longitudinally stiffened plate girders that are 

controlled by the Flange Local Buckling (FLB) limit state. AASHTO (2014) restricts the 

flange slenderness (bfc/2tfc) to 12 in Section 6.11.2.2. This prevents the use of slender 

flanges for flanges with yield strengths of up to 70ksi. This chapter examines the 

applicability of the flange local buckling resistance in the current AASHTO provisions for 

longitudinally stiffened homogenous girders. Only uniform bending studies are studied in 

this chapter.  

 AASHTO Procedure for calculating FLB Resistance 

 The FLB resistance equations are given in Section 6.10.8.2.2 of the AASHTO 

Specifications. When the compression flange is compact, the local buckling resistance of 

the flange is taken as RbFyc. In case of a noncompact flange, AASHTO Equation 6.10.8.2.2-

2, 

1 1
yr f pf

nc b h yc

h yc rf pf

F
F R R F

R F

λ λ

λ λ

   −
= − −     −    

  (5.1) 

is used to compute the local buckling resistance of the flange. The FLB resistance for 

slender web girders is computed by scaling down the FLB equations for a compact or 

noncompact web plate girder by the load shedding factor Rb. The applicability of these 
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equations in conjunction with the proposed Rb model is discussed in this chapter. The same 

test setup used in Chapter 4 is used in the FLB studies.  

 Simulation Parameters 

 The Best-Fit Prawel residual stresses is used in the FLB test studies, as described in 

Section 3.5. The initial geometric imperfections used in these tests are also modeled via 

the same procedure described in Section 3.6. In addition to the web imperfection, a flange 

tilt as shown in Figure 5-1 is modeled for the FLB sensitive studies in this chapter, also 

satisfying the AWS (2010) criteria.  

 AWS requires a flange tilt, which is the smaller of bfc/100 and 0.25 inches. The failure 

mode from the first analysis is scaled such that this limit on the compression flange tilt, in 

addition to the limit on maximum web out-of-flatness discussed in Section 3.6 is also 

satisfied. 

 

Figure 5-1: Flange tilt imperfection used for studies on FLB limit state 

 Case Studies 

 Only two cases are studied for validating the FLB equations. The cases correspond to 

Cases 1 and 3 in Section 4.5, with do/D = 1, and 2. They are designated as Cases 1-a, and 

3-a in Table 5-1. The compression flange slenderness, bfc/2tfc is set to 12.0 for all the girders 

studied here. The following parameters are varied here, same as in Section 4.5.  

Min (bfc/200 , 0.125)
Min (bfc/200 , 0.125)

Min (bfc/200 , 0.125)
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• Dc /D = 0.5, 0.625 and  0.75, 

• D/tw = 200, 240 and 300, and  

• bfc = D/6, D/5 and D/4. 

• tfc = 1.04, 1.25 and 1.57 corresponding to the three different values of bfc. 

 The clear web depth between the flanges is 150 in, and the yield stress of all the plate 

elements is 50 ksi. The transverse stiffeners sizes are the same as those used in Chapter 4. 

A total of 54 girders are studied in this chapter. 

Table 5-1: Case studies for straight girders at FLB limit state 

Case  do/D Longitudinal Stiffener ds/Dc 

1a 1 AASHTO min 0.4 

3a 2 AASHTO min 0.4 

 Results 

 The results are tabulated in Tables 5-2 and 5-3 for Cases 1-a and 3-a. The results are 

presented as a comparison between Mmax/MnPr and Mmax/MnAASHTO, where Mmax is the 

maximum moment obtained in the FE test simulation, MnPr is the flange local buckling 

capacity calculated using RbPr and MnAASHTO is calculated using RbAASHTO. 
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Table 5-2: Comparison of FLB capacities using RbPr and RbAASHTO for Case 1-a 

(a): D/tw = 300 

bfc Dc/D Mmax/MnPr Mmax/MnAASHTO 

D/6 

0.50 1.11 1.28 

0.625 1.12 1.26 

0.75 1.13 1.22 

D/5 

0.50 1.12 1.42 

0.625 1.11 1.33 

0.75 1.11 1.25 

D/4 

0.50 1.11 1.64 

0.625 1.11 1.49 

0.75 1.11 1.34 

(b): D/tw = 240 

bfc Dc/D Mmax/MnPr Mmax/MnAASHTO 

D/6 

0.50 1.11 1.11 

0.625 1.14 1.14 

0.75 1.14 1.14 

D/5 

0.50 1.14 1.38 

0.625 1.16 1.34 

0.75 1.14 1.26 

D/4 

0.50 1.13 1.50 

0.625 1.14 1.42 

0.75 1.06 1.23 

(c): D/tw = 200 

bfc Dc/D Mmax/MnPr Mmax/MnAASHTO 

D/6 

0.50 1.17 1.17 

0.625 1.16 1.16 

0.75 1.17 1.17 

D/5 

0.50 1.11 1.11 

0.625 1.13 1.13 

0.75 1.14 1.14 

D/4 

0.50 1.14 1.42 

0.625 1.15 1.38 

0.75 1.16 1.32 
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Table 5-3: Comparison of FLB capacities using RbPr and RbAASHTO for Case 3-a 

(a): D/tw = 300 

bfc Dc/D Mmax/MnPr Mmax/MnAASHTO 

D/6 

0.50 1.15 1.33 

0.625 1.14 1.28 

0.75 1.11 1.20 

D/5 

0.50 1.14 1.46 

0.625 1.15 1.39 

0.75 1.13 1.28 

D/4 

0.50 1.13 1.71 

0.625 1.14 1.56 

0.75 1.12 1.37 

(b): D/tw = 240 

bfc Dc/D Mmax/MnPr Mmax/MnAASHTO 

D/6 

0.50 1.12 1.12 

0.625 1.11 1.11 

0.75 1.14 1.14 

D/5 

0.50 1.15 1.41 

0.625 1.16 1.36 

0.75 1.15 1.29 

D/4 

0.50 1.13 1.54 

0.625 1.15 1.47 

0.75 1.16 1.37 

(c): D/tw = 200 

bfc Dc/D Mmax/MnPr Mmax/MnAASHTO 

D/6 

0.50 1.13 1.13 

0.625 1.11 1.11 

0.75 1.10 1.10 

D/5 

0.50 1.14 1.14 

0.625 1.16 1.16 

0.75 1.17 1.17 

D/4 

0.50 1.14 1.46 

0.625 1.16 1.42 

0.75 1.17 1.35 
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 It is evident from the above tables and from Figure 5-2 that the proposed model 

provides satisfactory prediction of the girder resistances for noncompact flange 

longitudinally stiffened girders. This is mainly due to the inherent conservative nature of 

the FLB resistance equations in the Specifications. The FLB resistance has a postbuckling 

reserve that has not been fully utilized by the Specification equations. This is observed in 

a series of tests studied in Chapter 6, the results of which are presented in Appendix A. It 

is also clear that the AASHTO equations tend to under-predict the true capacities by virtue 

of the fact that Rb is highly conservative for singly-symmetric slender web girders, as 

demonstrated in Chapter 4. 

 

(a) Case 1-a, do/D =1, ds/Dc = 0.4 

Figure 5-2: Comparison of MnProposed with MnAASHTO for FLB of longitudinally stiffened girders 
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(b) Case 3-a, do/D =2, ds/Dc = 0.4 

Figure 5-2 (Continued): Comparison of MnProposed with MnAASHTO for FLB of longitudinally stiffened 

girders 

  It is recommended in this research, based on the tests discussed in this chapter, that the 

same form of the equations as in the current Specifications be used for FLB resistance 

calculations. However, Rb may now be computed using the proposed model in Section 4.7.  

 Table 5-4 shows the overall statistics of the proposed Rb model for longitudinally 

stiffened girders governed by the yield limit state. 

Table 5-4: Statistics for Mmax/MnPr for straight girders at FLB limit state 

Statistical Parameter Mmax/MnPr 

Mean 1.13 

Coefficient of Variation 0.02 

Maximum 1.17 

Minimum 1.06 

Median 1.14 
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LATERAL TORSIONAL BUCKLING OF STRAIGHT 

UNSTIFFFENED GIRDERS SUBJECTED TO UNIFORM MOMENT 

 The AASHTO and AISC (2010a) strength curves are based on calibration to a wide 

range of experimental results as discussed by White (2008).  But, it is observed in this 

research, and by others (e.g., Kim (2010)) that in many cases, predictions of flexural 

resistance by FE test simulations, using typical nominal residual stresses and geometric 

imperfections, tend to be somewhat low compared to the experimental test results, 

particularly for the case of uniform bending. It is observed that in many cases, the nominal 

LTB resistance curve recommended by AASHTO (2014) and by AISC (2010a) tends to 

predict higher LTB resistances than those obtained from FE test simulations. Although the 

AISC/AASHTO curves represent a vast collection of experimental data, there are 

indications that there are some shortcomings in capturing the resistances in some areas of 

the design space. The curves have been found to over-predict the capacities from certain 

experimental tests, particularly in the inelastic LTB region (e.g., Righman (2005)). It is 

also true, however, that FE simulations tend to be conservative in many cases due to the 

use of idealized boundary conditions, as well as assumed nominal residual stresses and 

geometric imperfections. This chapter primarily addresses the disconnect between FE test 

simulations and the AISC/AASHTO LTB resistance equations for I-girders with webs 

without longitudinal stiffeners.  

 The LTB curve for I-section members in AISC and AASHTO consists of three 

distinct regions: the plateau region, the inelastic LTB region and the elastic LTB region. 
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The plateau resistance is the plastic moment capacity for compact sections, while for other 

compact and noncompact web sections; it is the yield moment multiplied by the web 

plastification factor, Rpc. The plateau capacity for slender web sections is the yield moment 

reduced by the web bend buckling factor, Rb. Members with unbraced lengths that are 

greater than Lr are expected to fail in uniform bending by elastic LTB and are designed for 

the theoretical elastic LTB strength, where Lr is the limiting unbraced length at which 

yielding effects start to influence the nominal resistance. Members with unbraced lengths 

between Lp and Lr are designed for the inelastic LTB buckling resistance, obtained by 

linearly interpolating between plateau and the elastic LTB anchor points. 

 This chapter presents extensive sensitivity analyses with different magnitudes of 

imperfections and different residual stress patterns using selected experimental tests of 

compact and noncompact web members subjected to uniform bending and having general 

boundary conditions. In addition, sensitivity analyses are conducted using members with 

fork boundary conditions (simply-supported with twist restrained, and lateral bending and 

warping free at ends of the member). Based on these studies, nominal residual stresses and 

geometric imperfections to be used when conducting FE simulations are recommended, 

such that the simulations are more representative of the mean experimental strengths 

captured by the AISC/AASHTO resistance equations.  

 While recognizing that FE test simulations with idealized characteristics often tend to 

be conservative, some incontrovertible inconsistencies in the design resistance curves are 

pointed out. One of the significant shortcomings of the AISC/AASHTO curves is that 

several types of members cannot attain their plateau moment capacities at the limiting 

plateau length, Lp regardless of the residual stress or magnitude of geometric imperfection 



 87

considered in FE simulations. In addition, it is shown that the AISC/AASHTO curves 

indicate larger strengths than FE simulation data throughout the inelastic LTB region in all 

cases where predominant flange compressive residual stresses are considered in the 

simulations. 

 In addition to the recommendation of FE modeling parameters, this research also 

proposes an improved form of the LTB equations that provides a better fit to FE simulation 

data, and experimental data that encompasses more recent research. Both rolled sections 

and welded plate girders are considered in these studies. 

 Simulation Parameters 

 Full nonlinear analyses are performed in ABAQUS with the S4R shell elements for the 

flanges and the web, while the B31 beam elements are used for transverse stiffeners. These 

elements are described in detail in Section 3.1. Twelve elements are used across both 

flanges, and twenty elements are used through the web depth. The material modeling is the 

same as that described in Section 3.3.  

 Imperfection and Residual Stress Sensitivity Studies 

 This section discusses a comprehensive set of sensitivity studies conducted on 

experimental tests, as well as parametric simulation studies with various imperfection 

magnitudes and residual stresses. 

6.2.1 Imperfections 

 Figure 6-1 shows the web initial out-of-flatness, flange tilt and flange sweep assumed 

in this work. Only the flange sweep is considered for rolled beams with compact webs 

while all three types of imperfection are included for members with noncompact and 
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slender webs. The flange sweep is sufficient to capture the dominant attributes of the 

response for compact-section beams; however, noncompact web members can be sensitive 

to the other imperfections as well. 

AWS (2010) allows a maximum web out-of-flatness of D/150 for girders with no 

intermediate stiffeners and a flange tilt equal to the smaller of bfc/100 and 0.25 inches. The 

imperfection magnitudes shown in Figure 6-1 for the web out-of-flatness and flange tilt are 

taken as one-half of the corresponding AWS maximum tolerance (half of that used in 

Chapter 5, Figure 5-1). In addition, AWS allows a maximum flange out-of-straightness of 

Lb/960, where Lb is the unbraced length of the member.  The maximum out-of-straightness 

permitted in the AISC COSP (2010b) is effectively Lb/1000. Sensitivity studies are 

performed with four different magnitudes of flange sweep, Lb/1000, Lb/2000, Lb/4000 and 

Lb/8000. Lb/8000 is effectively a case with near zero imperfection in the flange sweep. It is 

shown that the use of the full tolerance values in FE simulations may be overly 

conservative. The three types of imperfections are superimposed in the directions shown 

in Figure 6-1.  
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(a) Web out-of-flatness 

 

 

(b) Flange tilt 

 

(c) Flange sweep 

Figure 6-1: Initial geometric imperfections used in LTB studies 
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presented in this research. The Dux and Kitipornchai (1983) residual stresses shown in 
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also have measured residual stresses similar to those measured by Dux & Kitipornchai for 

rolled beams. The residual stresses shown in Figure 6-2 (e) do not precisely satisfy 

equilibrium on the cross-section under zero load. In using this residual stress pattern for 

the studies presented in this research, the authors allowed the members to equilibrate under 

these stresses at zero applied loads in the FE program. This means that the initial 

imperfections and residual stresses are slightly different from the nominal values assumed. 

  The other residual stress patterns shown in Figure 6-2 are in equilibrium on the perfect 

member geometry. It should also be noted that ECCS recommends using a peak 

compressive residual stress of 0.5Fy for column type of cross-sections, which will result in 

lower resistances than the peak compressive residual stress of 0.3Fy. However, the 

objective of including this pattern in the studies is to study the sensitivity of resistances to 

the pattern itself, and not the magnitude of the peak compressive residual stress. Hence, 

the ECCS pattern is considered in this research as shown Figure 6-2 (b) for all types of 

cross-sections.  

 The sensitivity of the LTB resistance to the magnitude of the residual stresses is 

evaluated by studying one half and one quarter of the Lehigh and Best-Fit Prawel residual 

stresses. The Best-Fit Prawel residual stress pattern shown in Figure 6-2 (d) is replicated 

here from Figure 3-1. 
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(a) Lehigh (Galambos and Ketter 

1959) 

(b) ECCS (Boissonnade et al. 

2002) 

(c) Polynomial (Szalai and Papp 

2005) 

 

(d): Best Fit Prawel (Kim 2010)          (e): Dux & Kit (Dux and Kitipornchai 1983) 

Figure 6-2: Residual Stress Patterns for LTB Sensitivity Studies 
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6.2.3 Sensitivity Studies on Experimental Test Specimens 

 A total of six uniform bending experimental tests with compact and noncompact webs 

are considered in this section. Residual stresses and imperfections were seldom measured 

in experimental tests. In the events where such data is available, the experimental results 

and FE test simulation predictions are nearly equal (see Kim (2010)). Various imperfection 

magnitudes and residual stresses are hence evaluated to determine the conditions in which 

the simulation results predict the reported experiment values with greatest accuracy. This 

is done to identify the simulation parameters that do not lead to overly unconservative 

predictions relative to the experimental results. The complete details of the test 

configurations are catalogued in White and Jung (2004). The six selected tests are expected 

to fail by inelastic LTB, which is the region with greatest sensitivity to imperfections and 

residual stresses. Table 6-1 lists the tests modeled in the simulation studies. 

Table 6-1: Experimental tests modeled by FE simulations for LTB sensitivity studies 

Reference 
Section 

Type 
Test No Flange Web 

Designation 

in Thesis 

Dux and Kitipornchai (1983) Rolled 6 Compact Compact DK 6 

Wongchung and 

Kitipornchai (1987) 

Rolled 1 Compact Compact WK 1 

Rolled 5 Compact Compact WK 5 

Rolled 9 Compact Compact WK 9 

Richter (1998) 

Welded 5 Compact Noncompact R5 

Welded 9 Compact Noncompact R9 

 Tables 6-2 through 6-4 list the results for the sensitivity studies conducted on the above 

tests. These tables list the ratios of the moment capacities obtained via FE test simulations 

to the reported experimental moment capacities (Mmax/MExp).  
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Table 6-2: Mmax/MExp using Best-Fit Prawel and half Best-Fit Prawel residual stresses 

Residual Stress Best -fit Prawel Half Best-Fit Prawel 

Imperfection Lb/1000 Lb/2000 Lb/4000 Lb/8000 Lb/1000 Lb/2000 Lb/4000 Lb/8000 

DK 6 0.97 0.99 0.99 1.02 1.01 1.03 1.04 1.05 

WK 1 0.84 0.89 0.93 0.94 0.91 0.95 0.96 0.96 

WK 5 0.85 0.88 0.90 0.91 0.92 0.97 0.99 1.04 

WK 9 0.94 0.95 0.96 0.97 0.97 1.00 1.01 1.03 

R5 0.92 0.93 0.93 0.93 0.96 0.97 0.97 0.98 

R9 0.77 0.84 0.87 0.92 0.85 0.97 0.93 1.01 

Mean 0.88 0.91 0.93 0.95 0.94 0.98 0.98 1.02 

Table 6-3: Mmax/MExp using Lehigh and half Lehigh residual stresses 

Residual Stress Lehigh Half Lehigh 

Imperfection Lb/1000 Lb/2000 Lb/4000 Lb/8000 Lb/1000 Lb/2000 Lb/4000 Lb/8000 

DK 6 0.95 0.97 0.98 0.99 0.99 1.02 1.03 1.05 

WK 1 0.84 0.89 0.92 0.93 0.90 0.95 0.96 0.96 

WK 5 0.85 0.89 0.91 0.92 0.92 0.96 0.98 1.01 

WK 9 0.92 0.94 0.95 0.96 0.97 0.99 0.98 1.01 

R5 0.93 0.94 0.95 0.96 0.96 0.97 0.97 0.98 

R9 0.77 0.79 0.84 0.89 0.83 0.92 0.97 1.00 

Mean 0.88 0.90 0.93 0.94 0.93 0.97 0.98 1.00 

Table 6-4: Mmax/MExp using ECCS residual stresses 

Residual Stress ECCS 

Imperfection Lb/1000 Lb/2000 Lb/4000 Lb/8000 

DK 6 0.99 1.01 1.02 1.03 

WK 1 0.87 0.91 0.93 0.96 

WK 5 0.89 0.93 0.95 0.96 

WK 9 0.96 0.98 0.99 1.00 

R5 0.95 0.96 0.96 0.97 

R9 0.81 0.87 0.90 0.92 

Mean 0.91 0.94 0.96 0.97 
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 It can be observed that using the half Best-Fit Prawel residual stresses or half Lehigh 

residual stresses along with a flange sweep of Lb/2000 gives the best correlation with the 

reported experimental test results. These residual stresses and geometric imperfections 

would appear to be good choices for parametric studies to investigate other aspects of the 

LTB resistance. Although imperfection magnitude of Lb/4000 gives comparable results, it 

is shown in Section 6.2.4 that this magnitude of imperfection results in a very flat inelastic 

LTB curve, and is not representative of true girder behavior.  

6.2.4 Sensitivity Studies using FE Simulations on Torsionally Simply-Supported 

Members 

 In this section, LTB curves are generated using FE test simulations for two rolled and 

two welded sections using the various residual stress patterns shown in Figure 6-2 and the 

imperfections shown in Figure 6-1. Four different magnitudes of flange sweep are studied: 

Lb/1000, Lb/2000, Lb/4000 and Lb/8000. Lb/8000 may be considered as a negligible 

imperfection. These studies aim to examine the sensitivities of the LTB resistance curve to 

various imperfections and residual stresses on several types of cross-sections.  

 The members are modeled as flexurally and torsionally simply-supported units with 

twist and lateral deflection restrained at their ends (fork boundary conditions). Equal and 

opposite moments are applied at member ends and Vlasov kinematics are enforced at the 

member ends by the use of multi-point constraints. The LTB effective length factor, K, for 

these members is 1.0. Figure 6-3 shows a representative sketch of the member test setup 

used in all the FE test simulations discussed henceforth in this chapter. 
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Figure 6-3: Flexurally and torsionally simply-supported member with end moments 

6.2.4.1 Sensitivity studies on rolled beams 

 Sensitivity studies are performed using two rolled sections, a W21x44 (d/bfc = 3) and a 

W14x68 (d/bfc = 1.3). The sensitivity of the rolled beam test simulation results to seven 

different residual stress patterns is studied. The Lehigh pattern (Figure 6-2 (a)) is 

considered with its full magnitude, half of its specified magnitude, and one quarter of its 

specified magnitude. In addition, the ECCS pattern (Figure 6-2 (b)), the polynomial pattern 

(Figure 6-2 (c)), the pattern measured by Dux and Kitipornchai (1983) (Figure 6-2 (e)), 

and a case with zero residual stresses are considered. 

 Figure 6-4 shows the results for a W21x44 with a flange sweep of Lb/2000 for various 

residual stress patterns. Figures 6-5 and 6-6 show the results for a W21x44 for various 

imperfection magnitudes at half the Lehigh residual stress and at zero residual stress.  

 It is observed that the sensitivity of the member capacities to the residual stress pattern 

and imperfection magnitude is most significant in the inelastic LTB region. The Lehigh 

residual stress pattern gives the smallest resistance for all imperfection magnitudes, while 

the residual stresses measured by Dux and Kitipornchai (1983) give the highest resistance. 

The relative effects of various residual stresses are essentially the same at imperfection 

magnitudes of Lb/4000 and Lb/8000. However, the capacities in these cases are closer to 

the AISC resistance curves. 

M M
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Figure 6-4: LTB curves for W21x44 with Lb/2000 flange sweep 

 

Figure 6-5: LTB curves for W21x44 with Half-Lehigh residual stress 
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Figure 6-6: LTB curves for W21x44 with zero residual stress 

 Plots for the W14x68 (not shown), which has a smaller d/bfc, show trends similar to the 

W21x44 curves. The “Dux & Kit” residual stresses often give resistances higher than the 

AISC resistance curve in the inelastic and elastic LTB ranges. This is due to the net tensile 

residual stresses in the flanges in these tests. Figures 6-5 and 6-6 show how the resistances 

increase with decreasing imperfection magnitude for a given residual stress pattern, and 

that they are especially sensitive to the imperfection magnitude in the inelastic LTB region. 

This behavior is typical of all the residual stresses studied in this research. Clearly, it is 

imperative to choose an appropriate residual stress pattern and imperfection magnitude if 

test simulations are to be used to evaluate design LTB resistances.  

 It is observed that using the Lehigh pattern, which is a common residual stress pattern 

employed in North America for simulation studies on rolled I-section members, along with 

a flange sweep of Lb/1000, gives capacities up to 28% smaller than the AISC resistance 

equation in the inelastic region for the W21x44, and 19% smaller for the W14x68. Also, 

the AISC prediction with these parameters is 15% larger compared to the test simulation 
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results in the elastic LTB region at an unbraced length of 1.75Lr for the W21x44, while it 

is only 3% unconservative at an unbraced length of 1.75Lr for the W14x68. The plateau 

strength as per AISC for both these beams is less than 4% conservative at 0.5Lp. However, 

as shown in Figures 6-4 to 6-6, the plastic moment is never reached in the FE simulations 

at Lp, even in near-ideal cases with zero residual stress and imperfections of Lb/8000, i.e., 

a smaller unbraced length than Lp is needed to achieve Mp. 

 Tables 6-5 to 6-8 list the results obtained from the FE test simulations at four unbraced 

lengths of the above two members as a function of the various residual stresses and 

imperfection magnitudes. The mean of the simulation strengths for the selected residual 

stress patterns is calculated neglecting the two case studies with flange tensile residual 

stresses and zero residual stresses. These two cases are neglected in order to focus on the 

influence of compressive flange residual stresses. The unbraced lengths Lp and Lr presented 

in the table represent the limiting unbraced lengths of the plateau region and the inelastic 

LTB region while 1.75Lr represents a point significantly into the elastic LTB region. In 

addition, the results are shown for an intermediate unbraced length in the inelastic LTB 

region. Table 6-6 shows the results for an intermediate unbraced length in the inelastic LTB 

region, and Table 6-7 shows the results at Lr. Both of these tables show similar trends, with 

AISC tending to give larger resistances in the inelastic LTB region, as is also evident from 

Figures 6-4 to 6-6. 



 99

Table 6-5: Mmax/ Mn AISC for W21x44 and W14x68 for different residual stresses and imperfection 

magnitudes at the unbraced length Lp 

Section W21x44 W14 x68 

Imperfection Lb/1000 Lb/2000 Lb/4000 Lb/8000 Lb/1000 Lb/2000 Lb/4000 Lb/8000 

Lehigh 0.88 0.89 0.89 0.90 0.89 0.90 0.91 0.91 

0.5 Lehigh 0.89 0.90 0.90 0.90 0.91 0.91 0.93 0.93 

0.25 Lehigh 0.89 0.92 0.92 0.92 0.92 0.93 0.94 0.94 

ECCS 0.89 0.90 0.91 0.91 0.91 0.92 0.93 0.93 

Polynomial 0.89 0.90 0.90 0.91 0.92 0.93 0.94 0.95 

Dux & Kit 0.93 0.93 0.94 0.94 0.94 0.95 0.96 0.96 

Zero RS 0.90 0.91 0.91 0.91 0.93 0.94 0.95 0.95 

Mean neglecting the 

Dux & Kit and Zero 

RS Cases 

0.89 0.90 0.90 0.91 0.91 0.92 0.93 0.93 

Table 6-6: Mmax/ Mn AISC for W21x44 and W14x68 for different residual stresses and imperfection 

magnitudes at the unbraced length Lp + 2/3 (Lr-Lp) 

Section W21x44 W14 x68 

Imperfection Lb/1000 Lb/2000 Lb/4000 Lb/8000 Lb/1000 Lb/2000 Lb/4000 Lb/8000 

Lehigh 0.74 0.80 0.84 0.87 0.81 0.86 0.90 0.93 

0.5 Lehigh 0.82 0.89 0.94 0.98 0.88 0.94 1.00 1.04 

0.25 Lehigh 0.85 0.93 1.00 1.04 0.91 0.98 1.04 1.06 

ECCS 0.79 0.85 0.88 0.90 0.84 0.89 0.93 0.95 

Polynomial 0.80 0.85 0.89 0.92 0.87 0.92 0.96 0.98 

Dux & Kit 0.98 1.05 1.10 1.14 0.97 1.05 1.11 1.12 

Zero RS 0.89 0.97 1.04 1.08 0.94 1.02 1.06 1.12 

Mean neglecting the 

Dux & Kit and Zero 

RS Cases 

0.80 0.86 0.91 0.94 0.86 0.92 0.96 0.99 
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Table 6-7: Mmax/ Mn AISC for W21x44 and W14x68 for different residual stresses and imperfection 

magnitudes at the unbraced length Lr 

Section W21x44 W14 x68 

Imperfection Lb/1000 Lb/2000 Lb/4000 Lb/8000 Lb/1000 Lb/2000 Lb/4000 Lb/8000 

Lehigh 0.72 0.79 0.84 0.89 0.81 0.86 0.91 0.95 

0.5 Lehigh 0.78 0.85 0.91 0.95 0.86 0.92 0.97 1.00 

0.25 Lehigh 0.81 0.88 0.93 0.96 0.88 0.95 0.99 1.02 

ECCS 0.77 0.84 0.89 0.93 0.83 0.89 0.93 0.97 

Polynomial 0.77 0.83 0.88 0.93 0.85 0.91 0.95 0.99 

Dux & Kit 0.94 1.00 1.05 1.07 0.95 1.01 1.05 1.07 

Zero RS 0.83 0.90 0.95 0.98 0.91 0.97 1.01 1.03 

Mean neglecting the 

Dux & Kit and Zero 

RS Cases 

0.77 0.84 0.89 0.93 0.85 0.90 0.95 0.99 

Table 6-8 : Mmax/ Mn AISC for W21x44 and W14x68 for different residual stresses and imperfection 

magnitudes at the unbraced length 1.75Lr 

Section W21x44 W14 x68 

Imperfection Lb/1000 Lb/2000 Lb/4000 Lb/8000 Lb/1000 Lb/2000 Lb/4000 Lb/8000 

Lehigh 0.85 0.89 0.92 0.94 0.97 1.04 1.05 1.06 

0.5 Lehigh 0.91 0.95 0.97 0.98 1.00 1.09 1.10 1.10 

0.25 Lehigh 0.94 0.97 0.99 1.00 1.09 1.11 1.12 1.12 

ECCS 0.97 1.01 1.04 1.05 1.06 1.08 1.08 1.08 

Polynomial 0.93 1.00 1.00 1.01 1.08 1.09 1.10 1.11 

Dux & Kit 1.15 1.20 1.20 1.21 1.15 1.17 1.18 1.19 

Zero RS 0.97 1.02 1.02 1.03 1.01 1.13 1.14 1.14 

Mean neglecting the 

Dux & Kit and Zero 

RS Cases 

0.92 0.97 0.98 0.99 1.04 1.08 1.09 1.09 

6.2.4.2 Sensitivity studies on welded plate girders 

 Sensitivity studies are performed on a noncompact web, compact flange and a slender 

web, compact flange welded plate girders (G1 and G5). Girders G1 and G5 are two girders 

that are part of a series of studies discussed subsequently in Section 6.4. The girder G1 is 
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doubly-symmetric with D = 150 in, D/tw = 130, D/bfc = 6, and bfc/2tfc = 9. Rpc (the web 

plastification or cross-section effective shape factor, which accounts for the typical 

increase in the LTB plateau strength above Myc for noncompact and compact web sections) 

for this girder is 1.03. Hence, its theoretical plateau capacity is close to My. The girder G5 

is also doubly-symmetric with D = 150 in, D/tw = 180, D/bfc = 6, and bfc/2tfc = 9. Rb for this 

member is 0.93. Rpc for a slender homogenous girder is 1.0, while Rb for a noncompact 

web memberr is 1.0. The LTB plateau strength is RbRpcMy. The sensitivity of the test 

strengths to three different nominal residual stress patterns is studied: the Best-Fit Prawel 

in Figure 6-2(d) with its full magnitude, half of its magnitude, and with zero residual 

stresses. The four imperfection magnitudes of Lb/1000, Lb/2000, Lb/4000 and Lb/8000 on 

the flange sweep considered for the rolled beams are studied here as well. In addition, the 

initial geometric imperfections include the flange tilt and web out-of-flatness with the 

magnitudes shown in Figure 6-1. 

 Figure 6-7 shows the results for G1 with a flange sweep of Lb/2000 for various residual 

stress magnitudes. Figures 6-8 and 6-9 show the results for G1 with various imperfection 

magnitudes at half Best-Fit Prawel residual stress and zero residual stress. Tables 6-9 to 

6-12 list the results obtained from FE test simulations at four unbraced lengths for G1 and 

G5 as a function of the different residual stresses and imperfection magnitudes. 
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Figure 6-7: LTB curves for G1 with Lb/2000 flange sweep 

 
Figure 6-8: LTB curves for G1 with Half Best-Fit Prawel residual stress 
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Figure 6-9: LTB curves for G1 with zero residual stress 

 As observed previously, the sensitivity of the capacities to the residual stress pattern or 

imperfection magnitude is significant in the inelastic LTB region. The Best-Fit Prawel 

residual stress pattern gives the lowest resistance for any imperfection magnitude. The 

relative effects of various residual stresses are essentially the same for imperfection 

magnitudes of Lb/4000 and Lb/8000. However, the capacities in these cases are larger in 

the inelastic LTB region than for the cases with smaller imperfection magnitudes. 

Table 6-9 : Mmax/MnAASHTO for G1 and G5 for different residual stresses and imperfection magnitudes 

at unbraced length Lp 

Section G1 G5 

Imperfection Lb/1000 Lb/2000 Lb/4000 Lb/8000 Lb/1000 Lb/2000 Lb/4000 Lb/8000 

Best-Fit Prawel 0.87 0.87 0.88 0.88 0.91 0.92 0.92 0.92 

0.5 Best-Fit 

Prawel 
0.90 0.91 0.91 0.91 0.93 0.94 0.95 0.95 

Zero RS 0.90 0.91 0.92 0.92 0.95 0.96 0.96 0.96 

Mean neglecting 

the case with Zero 

RS 

0.88 0.89 0.89 0.89 0.92 0.93 0.93 0.94 
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Table 6-10: Mmax/MnAASHTO for G1 and G5 for different residual stresses and imperfection magnitudes 

at unbraced length Lp + 1/2 (Lr - Lp) 

Section G1 G5 

Imperfection Lb/1000 Lb/2000 Lb/4000 Lb/8000 Lb/1000 Lb/2000 Lb/4000 Lb/8000 

Best-Fit Prawel 0.73 0.76 0.78 0.79 0.80 0.84 0.86 0.87 

0.5 Best-Fit Prawel 0.81 0.86 0.89 0.90 0.89 0.93 0.96 0.97 

Zero RS 0.91 0.97 1.00 1.02 0.97 1.03 1.06 1.08 

Mean neglecting 

the case with Zero 

RS 

0.77 0.81 0.84 0.85 0.85 0.88 0.91 0.92 

Table 6-11: Mmax/ MnAASHTO for G1 and G5 for different residual stresses and imperfection 

magnitudes at unbraced length Lr 

Section G1 G5 

Imperfection Lb/1000 Lb/2000 Lb/4000 Lb/8000 Lb/1000 Lb/2000 Lb/4000 Lb/8000 

Best-Fit Prawel 0.65 0.70 0.73 0.75 0.73 0.79 0.84 0.86 

0.5 Best-Fit Prawel 0.71 0.76 0.80 0.82 0.77 0.84 0.89 0.92 

Zero RS 0.75 0.81 0.84 0.86 0.81 0.88 0.92 0.94 

Mean neglecting 

the case with Zero 

RS 

0.68 0.73 0.76 0.78 0.75 0.82 0.86 0.89 

Table 6-12: Mmax/ MnAASHTO for G1 and G5 for different residual stresses and imperfection 

magnitudes at unbraced length 1.5Lr 

Section G1 G5 

Imperfection Lb/1000 Lb/2000 Lb/4000 Lb/8000 Lb/1000 Lb/2000 Lb/4000 Lb/8000 

Best-Fit Prawel 0.97 1.01 1.03 1.04 1.05 1.10 1.12 1.14 

0.5 Best-Fit Prawel 0.96 1.00 1.01 1.03 1.06 1.10 1.13 1.14 

Zero RS 0.93 0.97 0.98 0.99 1.06 1.10 1.12 1.13 

Mean neglecting the 

case with Zero RS 
0.96 1.00 1.02 1.04 1.06 1.10 1.13 1.14 

 From Table 6-12, it appears that the AASHTO flexural capacity is conservative for the 

slender web section, G5 in the elastic LTB region. This is due to the fact that AASHTO 

recommends neglecting the St.Venant torsional constant, J in the calculation of the elastic 

LTB strengths of slender web sections.  It is clear that there are certain trends in the rolled 
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sections and welded plate girder type sections that share similarities. The following 

observations can be made from the sensitivity studies in Sections 6.2.4.1 and 6.2.4.2. 

1. For both rolled beams and plate girders, the plateau strength, taken as the 

strength achieved for the smallest unbraced length considered, is insensitive to 

the imperfection magnitude and the residual stress pattern. 

2. The plateau moment capacity is never reached with either of the rolled beam 

sections or the noncompact web and slender web plate girders at Lp, even for 

zero residual stress and near zero imperfections. 

3. At the unbraced length Lp, the AISC/AASHTO resistance is unconservative by 

an average of 10% compared to FE simulations for rolled beams and 

noncompact web and slender web plate girders (note that this strength is 

insensitive to the imperfection magnitude and the residual stress pattern, as 

explained above). This suggests that the actual plateau strength for beams 

having an effective length factor, K = 1 is shorter than that specified by the 

design curves. This assertion is validated further in Section 6.3.  Since the 

Specification curves are calibrated to experimental data, the specified plateau 

length would appear to be a result of incidental and unquantified additional end 

restraints arising from continuity with adjacent unbraced lengths and 

attachment to test apparatus. Although calibrating the design curves to 

experimental data has its merits, it is worthwhile to assess the appropriate K 

factor to assume for incidental restraints, and to question whether K < 1 should 

be built implicitly into the design equations or left to the judgment of the 

engineer. 
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4. The elastic LTB strengths specified by the design codes provide a reasonably 

accurate prediction for rolled sections and doubly-symmetric noncompact and 

slender web plate girders. 

5. The LTB strengths predicted by the Specifications tend to be higher than the 

simulation data throughout the inelastic LTB region. 

 Based on the sensitivity studies on experimental tests and simulations of members with 

ideal fork boundary conditions, the following recommendations are made for the geometric 

imperfections and residual stresses to be used in FE test simulations to achieve a reasonable 

correlation with the Specification equations. The imperfection magnitude of Lb/2000 

combined with one-half of the Lehigh residual stresses provides the best correlation with 

the AISC and AASHTO LTB resistance equations for rolled sections. Also, a flange sweep 

of Lb/2000, and one-half of the AWS tolerances on flange tilt and web out-of-flatness along 

with the half Best-Fit Prawel residual stresses appear to be reasonable FE modeling 

parameters to use for LTB simulation studies on welded plate girders. Combinations more 

severe than these give simulated strengths that are inconsistent with available experimental 

data in a large number of cases. In addition, these values are shown to be logical for 

calculation of the mean results from experimental tests, which often have imperfections 

and residual stresses that are less severe than the fabrication tolerances and the nominal 

residual stress patterns. Imperfection or residual stress magnitudes smaller than these are 

too low, and do not seem appropriate to correlate with the AISC/ AASHTO design curves. 

 As discussed above, even with using the recommended FE test modeling parameters, 

there is a lingering disconnect between the Specifications and the test simulation data in 



 107

the inelastic LTB region.  This is studied further in this chapter, and modifications to the 

LTB resistance equations are proposed such that this disconnect is minimized. 

 In all the subsequent studies on LTB, the above recommended geometric imperfections 

and residual stresses are modeled in FE test simulations. 

 Substantiation of Implicit Kinelastic in the Specification LTB Equations 

 Adams et al. (1964) conducted several experimental tests that are valuable to consider. 

Two of their tests, HT29 and HT36, are rolled beams with compact webs and compact 

flanges, and have Lb ≅ Lp, where Lp is defined as 1.1���� ��	  . The test configuration is 

four-point bending as shown in Figure 6-10. The crosses denote lateral brace locations. 

This configuration gives uniform moment in the middle unbraced length while the adjacent 

segments are less severely loaded and are subjected to moment gradient. The theoretical 

elastic effective factor for the critical segment in this case, obtained from a rigorous elastic 

buckling analysis, is Kelastic = 0.83. 

 
Figure 6-10: Four-point bending test setup by Adams et al. (1964) 

 It is observed that FE modeling of the girders using the reported configuration gives 

the plastic moment capacity as reported by Adams, et al. However, modeling of an isolated 

beam with the same cross-section, fork end conditions and an unbraced length of 0.83Lp 

gives only 0.95Mp. Modeling with fork end conditions is useful in understanding the 

P P
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behavior within an unbraced segment with no restraint effects from adjoining segments. 

When fork end conditions are employed, the unbraced length needs to be reduced to almost 

0.50Lp to achieve the full plastic moment capacity. The state of the beam at failure in the 

original experimental test indicated that, while the critical unbraced length was heavily 

yielded, the adjacent restraining segments were still predominantly elastic. This suggests 

that the calibration of Lp to experimental data, using Kelastic as discussed by White (2008), 

is insufficient to represent the true behavior. The use of the inelastic effective length factor, 

Kinelastic, is more appropriate for the calibration to experimental data. It is evident from the 

above manipulation of Adams’ tests that there is an implicit Kinelastic < Kelastic that is 

necessary to properly calibrate the equations. 

 The use of a calculated Kelastic for the calibration unconservatively shifts the LTB curve 

to the left, leading to an over-prediction of the true capacity in cases that have a true 

effective length factor close to 1.0. It should be noted that AISC uses an alternate equation, 

Lp=1.76ry�E Fy	  , for I-section members with compact flanges and compact webs, which 

further increases the design plateau length for the girders in Adams’ tests by 1.4 times the 

equation 1.1���� ��	 . 

 Proposed Model for LTB Resistance 

 The studies discussed in Section 6.2 and by Kim (2010) have shown that the 

Specification equations tend to give larger member capacities compared to simulation 

results at Lp, and in the inelastic LTB region for compact, noncompact and slender web 

cross-sections. Furthermore, the discussion in Section 6.3 validates the presence of an 

implicit Kinelastic in the current LTB resistance equations. The magnitude of the disconnect 
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between test simulation strength predictions and the Specification strength estimates in the 

inelastic LTB region is particularly worrisome. An improvement to the inelastic LTB 

portion of the strength curve is presented here to rectify the problem. In the proposed 

approach, a reduced value of 0.63 /p t yL r E F=  originally recommended by Kim (2010), 

and a smaller maximum stress level for elastic LTB limit of FL or Fyr = 0.5Fy is 

recommended. The calculations from this model are presented for various doubly-

symmetric and singly-symmetric cross-sections along with FE test simulation strengths 

and current Specification predictions.  

 Table 6-13 lists the compact-web rolled sections selected for the uniform bending 

studies and the moment gradient tests discussed subsequently in Chapter 7. All of these 

sections have compact flanges barring the W14x90 which has a noncompact flange.  

Table 6-13: Rolled beams for uniform moment and moment gradient FE simulation tests 

Girder D/tw D/bfc bfc/2tfc Web Flange 

W 21 x 44 57 3 7 Compact Compact 

W 14 x 68 30 1.3 7 Compact Compact 

W 10 x 30 32 1.6 6 Compact Compact 

W 16 x31 55 2.7 6 Compact Compact 

W 14 x 90 29 0.9 10 Compact Noncompact 

 Table 6-14 summarizes the non-dimensional parameters for 61 welded plate girder 

cross-sections studied in this work. The clear depth of the web panel is 150 inches in all 

girders. These include noncompact and slender web cross-sections with compact and 

noncompact flanges. Selected girders indicated in the table are also subjected to moment 

gradient loadings in Chapter 7. AASHTO disallows slender flanges in bridge girders. 

Cross-sections with slender flanges are expected to fail predominantly by flange local 
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buckling (FLB) rather than LTB, and are not considered in this research. The noncompact 

web slenderness limit, λrw, is equal to 137 for Fy = 50 ksi. The cross-sections with web 

slenderness (2Dc/tw) smaller than this limit are classified as noncompact web sections, 

while the ones with slenderness greater than this limit are classified as slender web sections. 

The limiting slenderness for a compact flange, λpf, is equal to 9.15 for Fy = 50 ksi. Cross-

sections with flange slenderness ratios greater than this limit are classified as noncompact 

flange sections.  

Table 6-14: Welded plate girders for uniform moment and moment gradient FE simulation tests 

Girder D/tw Dc/D 2Dc/tw D/bfc bfc/2tfc 

G1a, c 130 0.50 130.0 6 9 

G2 130 0.50 130.0 5 11 

G3 a, c 130 0.50 130.0 3 9 

G4 130 0.50 130.0 3 11 

G5 a, c 180 0.50 180.0 6 9 

G6 180 0.50 180.0 6 11 

G7 c 180 0.50 180.0 3 9 

G8 180 0.50 180.0 3 11 

G9 a, c 130 0.63 162.4 6 9 

G10 130 0.63 162.5 5 11 

G11 c 130 0.63 162.4 3 9 

G12 130 0.63 162.6 3 11 

G13 a, c 180 0.63 224.9 6 9 

G14 180 0.63 225.1 6 11 

G15 c 180 0.63 224.8 3 9 

a. Selected for moment gradient tests in Chapter 7.  

b. Omitted for moment gradient studies with reverse curvature, as flanges exceed AASHTO limits 

c. Selected for studies on noncompact web slenderness limit in Section 6.6 
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Table 6-14 (Continued): Welded plate girders for uniform moment and moment gradient FE 

simulation tests 

Girder D/tw Dc/D 2Dc/tw D/bfc bfc/2tfc 

G16 180 0.63 224.9 3 11 

G17 c 130 0.75 194.8 6 9 

G18 130 0.75 194.7 5 11 

G19 c 130 0.75 193.8 3 9 

G20 130 0.75 196.0 3 11 

G21 c 180 0.75 271.6 6 9 

G22 180 0.75 271.2 6 11 

G23 c 180 0.75 268.6 3 9 

G24 180 0.75 270.5 3 11 

G25 c 130 0.50 130.0 5 9 

G26 130 0.50 130.0 5 11 

G27 c 130 0.50 130.0 4 9 

G28 130 0.50 130.0 4 11 

G29 c 130 0.63 162.5 5 9 

G30 130 0.63 162.5 5 11 

G31 c 130 0.63 162.4 4 9 

G32 130 0.63 162.5 4 11 

G33 c 130 0.75 194.9 5 9 

G34 130 0.75 194.8 5 11 

G35 c 130 0.75 194.9 4 9 

G36 130 0.75 194.9 4 11 

G37 a, b 130 0.44 114.2 6 9 

G38 130 0.44 115.5 5 11 

G39 130 0.44 114.3 5 9 

G40 130 0.44 115.2 5 11 

G41 130 0.44 115.2 4 9 

G42 130 0.44 115.3 4 11 

G43 130 0.44 115.5 3 9 

G44 a, b 130 0.44 115.6 3 11 

a. Selected for moment gradient tests in Chapter 7.  

b. Omitted for moment gradient studies with reverse curvature, as flanges exceed AASHTO limits 

c. Selected for studies on noncompact web slenderness limit in Section 6.6 
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Table 6-14 (Continued): Welded plate girders for uniform moment and moment gradient FE 

simulation tests 

Girder D/tw Dc/D 2Dc/tw D/bfc bfc/2tfc 

G45 a, b 100 0.44 88.0 6 7 

G46 a 100 0.44 88.4 3 7 

G47 a, c 100 0.50 100.0 6 7 

G48 c 100 0.50 100.0 3 7 

G49 a, c 100 0.63 125.0 6 7 

G50 c 100 0.63 124.9 3 7 

G51 c 110 0.50 110.3 7 7 

G52 c 88 0.63 110.3 7 6 

G53 c 88 0.63 110.7 6 7 

G54 c 88 0.63 110.4 3 9 

G55 c 117 0.50 116.6 7 8 

G56 c 93 0.63 116.6 7 6 

G57 c 93 0.63 116.5 3 9 

G58 c 85 0.63 106.7 7 6 

G59 c 85 0.63 106.9 3 9 

G60 c 104 0.63 130.6 7 7 

G61 c 110 0.63 137.3 7 7 

a. Selected for moment gradient tests in Chapter 7.  

b. Omitted for moment gradient studies with reverse curvature, as flanges exceed AASHTO limits 

c. Selected for studies on noncompact web slenderness limit in Section 6.6 

 Verification of Proposed Model 

 This section discusses the statistics for members at select unbraced lengths tested in 

this research using the cross-sections summarized in Tables 6-13 and 6-14. Predictions 

from the proposed model and from the AISC and AASHTO equations are compared in this 

section. The simulations studies are conducted with fork end conditions as shown in Figure 

6-3. The complete set of results for all the 66 girders in Tables 6-13 and 6-14 is presented 

in Appendix A. 
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6.5.1 Assessment of Proposed Model for Rolled Beams 

 Table 6-15 summarizes the statistics for the proposed model and the current AISC 

equations for rolled beams at specific unbraced lengths. 

Table 6-15: Comparison of simulation test predictions with proposed model and current AISC 

equations at different unbraced lengths for rolled beams in Table 6-13 

Statistics 

Lp
a Lp + 2/3 (Lr – Lp) Lr

a 1.75Lr 

Mmax/ 

MnPr 

Mmax/ 

MnAISC 

Mmax/ 

MnPr 

Mmax/ 

MnAISC 

Mmax/ 

MnPr 

Mmax/ 

MnAISC 

Mmax/ 

MnPr 

Mmax/ 

MnAISC 

Mean 1.00 0.91 1.02 0.94 0.98 0.92 1.07 1.07 

COV 0.02 0.03 0.03 0.04 0.06 0.07 0.12 0.12 

Min 0.97 0.87 0.98 0.89 0.93 0.85 0.95 0.95 

Max 1.03 0.94 1.07 0.98 1.08 1.02 1.26 1.26 

a. Lp and Lr are calculated as per AISC (2010a) 

 The following points can be gleaned from the tests on compact web rolled beams. 

1. It can be observed from the above table that the simulation results fall below the 

Specification strength predictions by an average of ten percent at the limiting 

plateau length, Lp. The proposed model predicts the simulation strengths with a 

mean of 1.0 at Lp. The minimum value is improved from 0.87 using the current 

Specification equations to 0.97 using the proposed model.  

2. In the intermediate inelastic LTB region, and at Lr, the proposed model once again 

performs much better than the Specification equations, with regard to both the mean 

of the simulation data as well as the COV and minimum and maximum values.  

3. The proposed model and the Specification equations coincide at long unbraced 

lengths in the elastic LTB region. It is observed that the theoretical elastic LTB 

strength is a good prediction for compact web rolled beams at long unbraced 
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lengths, but not necessarily at shorter unbraced lengths in the current theoretical 

elastic LTB region. 

 Figures 6-11 through 6-15 show the simulation data along with the proposed model and 

the current AISC and Eurocode (CEN 2005) strength predictions. It can be observed that 

the proposed model correlates best with simulation data. Although the Eurocode equations 

provide a longer plateau length than the proposed Lp, it has been noted by Greiner and 

Kaim (2001) that this cannot be justified from FE simulations. The Eurocode also predicts 

lower strengths in the inelastic LTB region. This is largely due to the use of more severe 

residual stresses and geometric imperfections than recommended in Section 6.2. 

 
Figure 6-11: LTB curves for W21x44 
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Figure 6-12: LTB curves for W14x68 

 
Figure 6-13: LTB curves for W10x30 

 
Figure 6-14: LTB curves for W16x31 
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Figure 6-15: LTB curves for W14x90 

6.5.2 Assessment of Proposed Model for Noncompact Web Members 

 Table 6-16 summarizes the statistics for the proposed model and the current AASHTO 

equations for noncompact webs at specific unbraced lengths. The unbraced lengths at 

which the results are shown in Tables 6-16 and 6-17 are an approximation to indicate the 
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lengths used in all the FE test simulations are reported in Appendix A. The values reported 

are normalized by MnAASHTO because the plateau length Lp is calculated as 1.0rt�E
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	  , per 

AASHTO instead of 1.1rt�E
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	  per AISC. All other calculations for LTB in the two 

Specifications remain the same. 

 The results in Tables 6-16 and 6-17 are grouped by unbraced length using Lr*, which 

is calculated from AASHTO Eq. 6.10.8.2.3-5, which neglects the St.Venant torsion 

constant, J. However, the strengths in Table 6-16 are calculated by including J in the 
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Table 6-16: Comparison of simulation test predictions with proposed and current AASHTO 

equations at different unbraced lengths for noncompact web girders in Table 6-14 (33 girders) 

Dc/D Statistics 

 ~Lp
a ~Lp + 1/2 (Lr* –  Lp) ~ Lr*

 b ~ 1.75Lr* 

Mmax/ 

MnPr 

Mmax/ 

MnAASHTO 

Mmax/ 

MnPr 

Mmax/ 

MnAASHTO 

Mmax/ 

MnPr 

Mmax/ 

MnAASHTO 

Mmax/ 

MnPr 

Mmax/ 

MnAASHTO 

0.5  

(12 No) 

Mean 0.99 0.93 0.97 0.89 0.92 0.79 0.99 0.99 

COV 0.06 0.08 0.09 0.09 0.07 0.07 0.03 0.03 

Min 0.90 0.83 0.84 0.76 0.82 0.70 0.93 0.93 

Max 1.08 1.08 1.08 0.99 1.01 0.88 1.01 1.01 

0.44  

(10 No) 

Mean 1.06 1.05 1.03 0.94 0.97 0.84 1.00 1.00 

COV 0.05 0.05 0.04 0.04 0.04 0.04 0.01 0.01 

Min 0.98 0.97 0.95 0.87 0.91 0.80 0.99 0.99 

Max 1.12 1.12 1.08 0.99 1.03 0.89 1.01 1.01 

0.63  

(11 No) 

Mean 0.92 0.88 0.88 0.83 0.86 0.79 0.84 0.84 

COV 0.08 0.08 0.11 0.11 0.09 0.09 0.05 0.07 

Min 0.86 0.82 0.78 0.73 0.76 0.71 0.79 0.73 

Max 1.02 0.98 1.01 0.95 0.95 0.87 0.91 0.91 

a. Lp is calculated per Eq. 6.10.8.2.3-4 in AASHTO (2014) 
b. Lr * is calculated per Eq. 6.10.8.2.3-5 in AASHTO (2014) 

 The following can be gleaned from the tests on noncompact web section. 

1. As previously observed in Table 6-15 for compact web rolled beams, it may also 

be noted from Table 6-16 that the simulation results predict lower strengths than 

the Specification strength equations at the limiting plateau length, Lp, in the cases 

of doubly and singly-symmetric cross-sections with the larger flanges in tension 

(Dc/D = 0.63). However, both the proposed model, as well as the Specification 

equations predict lower strengths than the simulation data for the singly-symmetric 

sections with the smaller flange in tension (Dc/D = 0.44). These members are 

governed by tension flange yielding. It is observed from the FE simulations that 

Rpt, the web plastification factor (or cross-section effective shape factor) 
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corresponding to the tension flange, which limits the maximum member resistance 

to a value between My and Mp, is typically conservative for these cross-sections.  

2. It appears that the proposed model tends to predict higher strengths than FE 

simulations for some sections in the plateau region. It is observed that some of these 

noncompact sections, which are expected to reach strengths of RpcMyc > Myc tend 

to fail before the nominal yield of the cross-section due to load shedding from the 

web with the advent of web bend-buckling. This behavior is addressed in detail in 

Section 6.6 and a modified equation to calculate the noncompact web slenderness 

limit, λrw is proposed. 

3. It should be noted that the AISC/AASHTO equations (with longer Lp and larger Fyr 

than the proposed model) tend to predict the simulation test strengths of some 

noncompact web sections with D/bfc < 3 and compact flanges better than they do 

for narrow flange sections. However, in examining the overall performance of the 

proposed model, it is a reasonable simplification to use the same limits for wide 

flange sections as wells as narrow flange sections.  

4. In the intermediate inelastic LTB region (Lp + 1/2 (Lr* — Lp)) and at Lr*, the 

proposed model provides a vast improvement (in the order of 13%) over the current 

AISC and AASHTO equations. It can be observed from Table 6-16, that the mean, 

minimum and maximum values of Mmax/MnPr are larger than Mmax/MnAASHTO, while 

also exhibiting a lower coefficient of variation.  

5. The proposed LTB model coincides with the AISC/AASHTO equations at longer 

unbraced lengths in the elastic LTB region, and the current Specification equations 

tend to over-predict the simulation test strengths for cross-sections with Dc/D = 
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0.63. The elastic LTB strength equations are conservative by 30 to 40% if J is 

neglected in the computation of the theoretical LTB strength for these types of 

members. However, the inclusion of J for these cross-section will tend to be slightly 

unconservative, by up to approximately 10%. 

 Figures 6-16 through 6-18 show how the simulation data compare with the proposed 

and current AASHTO and Eurocode equations for select noncompact web sections with 

the current λrw equation. Appendix A shows similar plots for the other girders tested with 

the proposed equation incorporating the λrw proposed in Section 6.6. 

 Figure 6-16 shows the curves for a wide flange noncompact web, compact flange 

section, while Figures 6-17 and 6-18 compare the data for noncompact web, noncompact 

flange sections. It is observed that the proposed model is a better fit to the simulation data, 

especially in the inelastic LTB region.  

 Furthermore, it is observed that the cross-sections with plateau strengths controlled by 

flange local buckling (FLB) typically obtain the theoretical capacity specified in the 

Specification equation for FLB, or obtain higher strengths than the FLB limit states for 

wider (smaller D/bfc, Figure 6-17) noncompact flanges. Hence, the interaction between 

FLB and LTB is not a potential problem for cross-sections sized as per AASHTO 

guidelines. The Eurocode strength predictions are lower than the FE simulation data due 

to the Eurocode philosophy of providing a lower-bound fit to the data, as well as the 

assumption of more severe residual stresses for welded plate girder type cross-sections in 

the development of the Eurocode equations (Greiner and Kaim 2001; Roberts and 

Narayanan 1988).  
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Figure 6-16: LTB curves for welded plate girder with D/tw =130, D/bfc = 3, Dc/D = 0.5, bfc/2tfc = 9 

 

Figure 6-17: LTB curves for welded plate girder with D/tw =130, D/bfc = 3, Dc/D = 0.5, bfc/2tfc = 11  

 

Figure 6-18: LTB curves for welded plate girder with D/tw =130, D/bfc = 6, Dc/D = 0.5, bfc/2tfc = 11 
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6.5.3 Assessment of Proposed Model for Slender Web Members  

 Table 6-17 shows the results from this research for slender web doubly- and singly-

symmetric cross-sections. Per the AISC and AASHTO procedures, the St.Venant torsional 

constant, J, is neglected in the calculations for slender web cross-sections, unlike in the 

cases of compact and noncompact web cross-section. The following are the key 

conclusions made from the tests on slender web section. 

1. The results from this table at Lp indicate that RbMy is a good prediction of the plateau 

capacity for slender web cross-sections. The Rb in the current AASHTO equations 

provides a very reasonable estimate of the influence of web bend-buckling on the 

flexural capacities of slender web cross-sections that are not stiffened 

longitudinally.  

2. The proposed LTB model provides mean Mmax/MnPr values that are larger than the 

Mmax/MnAASHTO values and are closer to 1.0. The proposed LTB model also has a 

lower coefficient of variation and improves the minimum values of Mmax/Mn at Lr 

substantially as compared to the Specification predictions, e.g., the minimum value 

of Mmax/Mn for the doubly-symmetric slender-web cross-sections is increased from 

0.83 to 0.99 at Lr.  

3. The simulation elastic LTB strengths for singly-symmetric cross-sections are larger 

than the strengths from the resistance equations due to the neglect of J in the 

calculations. However, including J in the calculations would make the equations up 

to 50% larger than the simulation strengths. This may be attributed to distortional 

effects in the web which needs to be studied and quantified in further detail. It is 
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recommended that neglecting J for these cross-sections is the better, albeit 

conservative approach in computing the elastic LTB strengths of these extreme 

singly-symmetric cross-sections.  

Table 6-17: Comparison of simulation test predictions with proposed model and current AASHTO 

equations at different unbraced lengths for slender web girders in Table 6-14 (28 girders) 

Dc/D Statistics 

~ Lp
a ~ Lp + 1/2 (Lr*

2-Lp) ~ Lr*
b >= 1.75Lr* 

Mmax/ 

MnPr 

Mmax/ 

MnAASHTO 

Mmax/ 

MnPr 

Mmax/ 

MnAASHTO 

Mmax/ 

MnPr 

Mmax/ 

MnAASHTO 

Mmax/ 

MnPr 

Mmax/ 

MnAASHTO 

0.5 

(4 No) 

Mean 1.03 1.01 1.06 0.97 1.03 0.87 1.12 1.12 

COV 0.04 0.06 0.06 0.06 0.04 0.05 0.03 0.03 

Min 0.99 0.94 1.00 0.91 0.99 0.83 1.10 1.10 

Max 1.08 1.08 1.12 1.02 1.08 0.91 1.17 1.17 

0.63 

(12 No) 

Mean 1.00 0.99 1.05 0.95 1.06 0.90 1.34 1.34 

COV 0.05 0.06 0.06 0.06 0.05 0.05 0.11 0.11 

Min 0.90 0.88 0.95 0.86 0.95 0.82 0.94 0.94 

Max 1.09 1.09 1.13 1.02 1.12 0.95 1.52 1.52 

0.75 

(12 No) 

Mean 1.01 0.99 1.08 0.97 1.10 0.95 1.67 1.67 

COV 0.06 0.07 0.07 0.07 0.07 0.06 0.08 0.08 

Min 0.90 0.86 0.97 0.87 0.98 0.86 1.49 1.49 

Max 1.11 1.11 1.17 1.06 1.19 1.01 1.86 1.86 

a. Lp is calculated per Eq. 6.10.8.2.3-4 in AASHTO (2014) 
b. Lr * is calculated per Eq. 6.10.8.2.3-5 in AASHTO (2014) 

 Figure 6-19 shows the LTB strength curves for a doubly-symmetric slender-web cross-

section that has a wide flange (D/bfc = 3). This is consistent with the observations for 

noncompact web sections that the AISC/AASHTO strength predictions are typically a good 

match of the simulation predictions for cross-sections having wider flanges relative to the 

web depth. 

 To summarize, minor modifications to the LTB resistance equation are proposed, 

which provides a better fit to simulation data (obtained using reduced imperfections and 



 123

residual stresses). The following section discusses a modification to λrw that completes the 

resolution of disconnect between simulation data and Specification strengths. 

 

Figure 6-19: LTB curves for welded plate girder with D/tw =180, D/bfc = 3, Dc/D = 0.5, bfc/2tfc = 9 

 Proposed Modification to Noncompact Web Slenderness Limit 

 The noncompact web slenderness limit, λrw in AISC and AASHTO is based on an 

assumed value of the plate buckling coefficient for a web subjected to flexure that is 

between the values for fixed and simply-supported edge conditions. While the limit 

provided in the current Specifications is a good representation for cross-sections with larger 

flanges, the limit overestimates the magnitude of the restraint provided by the flanges for 

narrow flange sections. This research evaluates this issue and proposes a modified equation 

to rectify the problem.  

6.6.1 Basis of λrw in Specification Equations and Potential Shortcomings 

 The web elastic plate buckling equation for an I-section member web may be written 
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0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7

M
m

a
x
/M

y

Lb/Lp

Mn Proposed 

Mn AASHTO

Mn EC

Mmax



 124

 

2
2

2

.
( )

12(1 )
cr

k E t

b

π
σ

ν
=

−
                                                                                                      (6.1) 

where, k = 23.9 for simply-supported edge conditions and k = 39.6 for fixed edge conditions 

for a doubly-symmetric I-section. By equating σcr to Fyc and performing some algebraic 

manipulations, Equation 6.1 may be expressed in the form  

cr yc

b E E
c c

t Fσ
= =  (6.2) 

The coefficient c in Equation 6.2 is 4.6 or 6.0 corresponding to values of k of 23.9 and 

39.6. The coefficient c in the current AISC and AASHTO Specifications is 5.7. In these 

Specifications, Equation 6.2 is written as the noncompact web slenderness limit  

5.7rw

yc

E

F
λ =  (6.3) 

which is compared generally against an effective web slenderness 2Dc/tw, where Dc is the 

depth of web in compression, and tw is the thickness of the web. Equation 6.3 clearly 

assumes that all I-girder cross-section geometries can provide close to full rotational 

restraint from both flanges. Narrow flange sections can have web slenderness values that 

satisfy the noncompact web slenderness limit, while their physical behavior involves web 

bend-buckling, thus reducing the member plateau strengths to values less than the yield 

moment, Myc. In other words, the narrow flanges do not provide sufficient rotational 

restraint to the web, resulting in a lower web buckling strength. Hence, the current limit of 

λrw in AISC (2010a) and AASHTO (2014) results in classifying some sections with smaller 

flanges as noncompact web sections, whereas these sections should be classified as slender-
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web sections. At small unbraced lengths, noncompact web sections are expected to attain 

strengths RpcMyc > Myc. Slender web sections are expected to fail before attaining Myc at 

strengths equal to RbMyc < Myc. Hence, it is unconservative to design sections that behave 

as slender-web sections as noncompact web sections.  

 It is observed that the cross-sections with λw in the range of 0.8 to 1.0 times the current 

λrw value exhibit the greatest non-conformity to the current code specified classification of 

web slenderness. This research evaluates various cross-sections, with particular emphasis 

on sections with λw in the above range and proposes a coefficient c in Equation 6.2 that is 

a function of the ratio of the area of compression flange to area of web in compression, 

Afc/Awc. The girders tested have compact flanges, and unbraced lengths such that the LTB 

plateau strength is the controlling limit state. 

6.6.2 Test Setup 

 Table 6-14 lists 33 cross-sections which have web slenderness in the range described 

above, and are used for the studies on the noncompact web slenderness limit in this section. 

These cross-sections are marked on a subset of the girders listed in Table 6-14. The 

simulation testes are conducted on members with fork boundary conditions subjected to 

uniform moment. 

 The tests include doubly-symmetric and singly-symmetric cross-sections. However, 

cross-section geometries that have tension flange yielding as the governing limit state are 

precluded from these studies because of the observed conservative nature of Rpt for several 

cross-sections, where Rpt is the web plastification factor for the tension flange which 

increases the flexural capacity of the section beyond the moment at first yield of the tension 
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flange. (The behavior for these types of tests is discussed in Section 6.5). The objective of 

this study is to analyze the variation in the coefficient c for different cross-section 

geometries, and thereby recommend a value of c in Equation 6.2 that accounts for the edge 

restraint on the web from the flanges. The ideal value of c (within the limits of 4.6 and 5.7) 

is computed, which when applied in Equation 6.2, will provide an exact match of the FE 

simulation strength (Mmax) to the theoretical plateau strength (MnAASHTO). The plateau 

strength is RpcMy or RbMy, depending on whether a section is noncompact or slender as per 

the computed value of c for that cross-section. 

6.6.3 Results 

 The database of “c” obtained for the studied cross-sections is analyzed for sensitivity 

to various cross-section parameters. The coefficient c is restricted to a maximum value of 

5.70, which is the coefficient used in the current specifications, since it is observed that 

this is sufficient for most cross-sections with larger flanges to theoretically achieve the 

simulation strengths. The coefficient is also restricted to a minimum value of 4.6. It is 

recognized that the ratio of the area of compression flange to area of web in compression, 

Afc/Awc is the most dominant parameter in influencing c. The variation of c with this ratio 

is shown in Figure 6-20. 
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Figure 6-20: Variation of the coefficient ‘c’ in Equation 6.2 

 It can be seen from Figure 6-20 that 4.6 is a lower bound of c for cross-sections with 

low values of Afc/Awc. The value c may be approximated as a linear variation between 4.6 

and 5.7 for values of Afc/Awc between the limits of 0.75 and 1.04. The coefficient c attains 

a plateau of 5.7 for values of Afc/Awc greater than 1.04.  Based on these findings, the 

modified form is proposed as 
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 The variation of the proposed λrw with Afc/Awc is shown in Figure 6-21. 

4.40

4.60

4.80

5.00

5.20

5.40

5.60

5.80

0 0.5 1 1.5 2 2.5

c 

Afc/Awc



 128

 

Figure 6-21: Variation of the proposed λw with Afc/Awc  

 The improvement in the prediction of simulation strengths by the use of Equation 6.4 

is evaluated by comparing to the current AISC/AASHTO strength predictions. Figures 

6-22 and 6-23 show the ratios of Mmax/MnProposed and Mmax/MnAASHTO for various web 

slenderness values, where MnProposed is the flexural capacity using the proposed λrw. It can 

be observed that all the data points are shifted higher in Figure 6-23  compared to Figure 

6-22. Most of the simulation data points in Figure 6-22 are below 1.0, and are up to 9% 

smaller than the Specification strength predictions. The proposed model shifts the data 

points closer to 1.0 or higher, and limits the smallest values of Mmax/MnProposed to 0.97.  
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Figure 6-22: Variation of Mmax/MnAASHTO with web slenderness ratio λw 

 
Figure 6-23: Variation of Mmax/MnProposed with web slenderness ratio λw 
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slenderness of the web (2Dc/tw – λrw). This effect is most significant for cross-sections with 

λw in the range of 1.0 to 1.2 λrw.  

Table 6-18: Statistics for plateau strengths of noncompact web, compact flange sections comparing 

λwCurrent and λwProposed 

Statistics Mmax/ MnAISC Mmax/ MnProposed 

Mean 0.96 1.02 

COV 0.03 0.03 

Max 1.03 1.08 

Min 0.91 0.97 

Table 6-19: Statistics for plateau strengths of slender web, compact flange sections comparing λwCurrent 

and λwProposed 

Statistics Mmax/ MnAISC Mmax/ MnProposed 

Mean 0.98 1.02 

COV 0.04 0.03 

Max 1.05 1.11 

Min 0.92 0.98 

 It can be observed from Tables 6-18 and 6-19 that the proposed values match the 

simulation strength predictions better than the current Specifications. The minimum values, 

in particular are improved by 6%. This difference is essential to address because, the 

proposed model not only helps to address the difference in the plateau capacities, but also 

the resolves the over-estimation of capacities throughout the inelastic LTB region for these 

types of members. Thus, the proposed Equation 6.4 is an essential part of capturing the true 

LTB curve of a cross-section. 

6.6.4 Re-examining the Proposed LTB Model Using the Proposed λrw    

 Figures 6-24 to 6-26 compare the LTB curves of the current Specifications equations 

and using the proposed LTB model in Section 6.4, both with the current λrw and the 
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proposed λrw given by Equation 6.4, for a few select sections with web slenderness in the 

range of 0.8 to 1.2 times of λrw. Figures 6-24 and 6-25 compare the plots for two 

noncompact web sections, while Figure 6-26  analyzes the plots for a slender web section. 

 
(a) Current λrw 

 
(b) Proposed λrw 

Figure 6-24: LTB curves for welded noncompact web girder with D/tw =130, D/bfc = 6, Dc/D = 0.5, 

bfc/2tfc = 9 
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(a) Current λrw 

 
(b) Proposed λrw 

Figure 6-25: LTB curves for welded noncompact web girder with D/tw =100, D/bfc = 6, Dc/D = 0.63, 

bfc/2tfc = 7 

 The elastic LTB strengths obtained by the current Specification equations is higher than 

the proposed model for the noncompact web sections because the classification of these 

webs change from noncompact to slender, and the constant J is neglected in the 

computations. 
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 Henceforth, in this dissertation, the “Proposed LTB model” shall refer to the improved 

recommendations suggested in Section 6.4, used along with the proposed λrw. 

 
(a) Current λrw 

 
(b) Proposed λrw 

Figure 6-26: LTB curves for welded slender web girder with D/tw =130, D/bfc = 6, Dc/D = 0.63, bfc/2tfc 

= 9 
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 Verification of Proposed Model for Hybrid Girders 

 Bridge girders are often designed with a higher strength bottom flange (compression 

flange in negative flexure regions) than the web plate. To account for the early yielding of 

the web, and hence the reduced contribution of the web to the flexural resistance of the 

girder at the flange yield limit state, AASHTO introduces a hybrid factor, Rh (given by 

AASHTO Equation 6.10.1.10.1-1). Rh is taken as 1.0 for homogenous girders and for built-

up sections with higher strength steel in the webs. The equation is a non-iterative 

conservative adaptation of the research conducted originally on doubly-symmetric cross-

sections to singly-symmetric cross-sections, with importance given to the side of the 

neutral axis that yields first. AASHTO also allows a calculation of Rh based on an iterative 

strain compatibility analysis in lieu of the approximate equation. However, early web 

yielding is found to have little effect on compression flange yielding (ASCE 1968), and 

the effect is noticeable only at stress levels close to the compression flange yield stress. 

The computed values of Rh are typically close to 1.0 and hence the conservative nature of 

Rh as per AASHTO is not expected to be a severe penalty. The Rh expression in AASHTO 

is used in the solutions discussed in this section. The LTB plateau strength is calculated as 

RbRhFyc for slender web sections, and RpcFyc for noncompact and compact web sections. 

Detailed guidelines for calculating the flexural resistance of girders as per the AASHTO 

provisions is given in White (2008). 

 The Eurocode strengths are computed by the calculation of the web effective cross-

section using the compression flange yield stress rather than the yield stress of the web 

plate. This also allows for some ductility and partial plastification in the web (Beg et al. 

2010). Eurocode also restricts Fyc to be not greater than 2Fyw. 
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 The proposed LTB model is based on tests conducted on homogenous girders. Table 

6-20 lists 9 girders that are tested to validate the recommendations from this research for 

hybrid girders. The girders have been numbered from 62 to 70 following the 61 

homogenous girders previously studied in Table 6-14. These tests are modeled with fork 

boundary conditions and subjected to uniform moment. The same residual stresses and 

geometric imperfections used for homogenous girders are used here as well. It has been 

noted by Nethercot (1976) that the residual stress distributions in hybrid girders are similar 

to geometrically similar homogenous girders.  

 As explained in Section 3.3, the hybrid girders are modeled with both flanges with yield 

strengths of 70 ksi and webs of 50 ksi. The noncompact web slenderness limit, λrw as per 

the current AISC/AASHTO equations is 116. Therefore, only G65 and G66 have 

noncompact webs, while the rest have slender webs. Per the proposed λrw limit, only G66 

is a noncompact web section, while G65 is a slender web member. The compact limit for 

the compression flange is 7.73. Only compact flanges are studied in this section, as it has 

been demonstrated sufficiently that under the limits imposed by AASHTO on the flange 

slenderness, there is no coupling of the FLB and the LTB limit states, and that they can be 

considered separately. Girders which are controlled by the TFY limit state are also not 

considered for this selective study. 
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Table 6-20: Welded hybrid plate girders subjected to uniform moment 

Girder D/tw Dc/D 2Dc/tw D/bfc bfc/2tfc 

G62 

130 

0.5 130.0 6 7.14 

G63 0.5 130.0 3 7.69 

G64 0.63 162.6 6 7.14 

G65 

100 

0.5 100.0 6 7.14 

G66 0.5 100.0 3 7.69 

G67 0.63 125.0 6 7.14 

G68 

180 

0.5 180.0 6 7.14 

G69 0.5 180.0 3 7.69 

670 0.63 224.5 6 7.14 

 Figures 6-27 to 6-29 show the results for three of the girders in the above table. The 

complete set of plots for the 9 girders is presented in Appendix A.  

 

Figure 6-27: LTB curves for hybrid girder G62 
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Figure 6-28: LTB curves for hybrid girder G65 

 

Figure 6-29: LTB curves for hybrid girder G69 
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consistent with those made by Nethercot (1976), where he noted that early web yielding in 

hybrid girders has virtually no influence on the lateral stability of the girder, and it is the 

onset of compression flange yielding that causes large reductions in lateral stiffness and 
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rapid reductions in stability. He also noted that in general, hybrid girders demonstrated 

superior strengths as compared to equivalent homogenous girders. Overall, the proposed 

equations work satisfactorily for girders subjected to uniform moment.  

 By allowing the use of a single Fyr or FL of 0.5Fyc in the LTB equations (which currently 

requires Fyr to be the smaller of 0.7Fyc or Fyw, but not less than 0.5Fyc), the design equations 

have been simplified, and recognizes that early web yielding does not greatly influence the 

lateral stability of the compression flange. However, this research is focused on girders 

with the web steel plate only one grade lower than the flange yield plate.  

 Summary 

 The following are the key findings presented in this chapter. 

1. Nominal imperfections, which are half of the AWS or AISC COSP tolerances, 

along with Half-Lehigh (for rolled beams) or Half-Best-Fit Prawel (for welded 

cross-sections) residual stresses are recommended to be used in FE test simulations. 

2. Modifications to the current LTB resistance equations in the Specifications is 

proposed, by recommending a smaller Lp, and a smaller Fyr or FL. 

3. Modifications to the noncompact web slenderness limit, λrw is proposed and shown 

to improve the correlation of test data when used in conjunction with the proposed 

LTB model. 

4. The suggested recommendations are shown to perform well for hybrid girders as 

well, which allows the simplification of the current Specification equations with 

regard to hybrid girders. Fyr is recommended as 0.5 Fyc for both homogenous and 

hybrid girders. 

 Tests with moment gradients are discussed in Chapter 7. 
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LATERAL TORSIONAL BUCKLING OF STRAIGHT 

UNSTIFFENED GIRDERS SUBJECTED TO MOMENT GRADIENT 

 Modifications to the LTB resistance equations are proposed in the previous chapter 

based on uniform bending tests. This chapter evaluates the proposed model for various 

moment gradient loadings for rolled beams and welded homogenous plate girder cross-

sections without longitudinal stiffeners.  

 AISC accounts for moment gradient by applying an LTB moment modification factor 

Cb on the resistance equations for uniform moment. The modifier, Cb is taken equal to 1.0 

for uniform moment, and is calculated per AISC equation C-F1-1  

2

1 1

2 2

2.31.75 1.05 0.3b
M M

C
M M

   
≤   

   
= + +   (7.1) 

for the linear moment diagrams considered in this research. M1 and M2 are the smaller and 

larger moments at the ends of the unbraced lengths respectively. Cb is calculated as per 

AISC Eq. C-F1-2 

max

max

12.5

2.5 3 4 3
b

A B C

M
C

M M M M
=

+ + +
  (7.2) 

when there is transverse loading within the unbraced segment. MA, MB and MC are the 

absolute values of the moments at the three quarter points along the unbraced length, and 

Mmax is the absolute value of the maximum moment within the unbraced segment of the 

beam. The Specification equations scale the flexural resistance of the cross-sections by Cb, 



 140

while limiting the maximum moment to the plateau capacity (Mp for a compact section 

rolled beam, and RbRpcMy for noncompact and slender sections) of the beam. 

 Evaluation of Proposed Model for Rolled Beams Subjected to Moment Gradient 

 Rolled beams are studied for both linear and nonlinear moment diagrams within the 

unbraced segment in the following sections. 

7.1.1 Rolled Beams Subjected to Linear Moment Gradient 

 The five rolled beams listed in Table 6-13 are studied for cases of fork boundary 

conditions and linear moment diagrams, as shown in Figure 7-1. This chapter evaluates 

moment gradients with β = 0.5, 0 and -1, which yield values of Cb equal to 1.3, 1.75 and 

2.3 from Equation 7.1 respectively.  

 

Figure 7-1: Test setup for linear moment gradient studies 

 Figures 7-2 through 7-6 show the results for the moment gradient studies for the five 

rolled sections with the three linear moment gradient cases. Eurocode (CEN 2005) does 

not give explicit directions for the calculation of the moment gradient modifier, Cb. This 

research uses the same values of Cb as given by the AISC equations for computing the 

theoretical elastic LTB resistance per the Eurocode equation, which is then used to 

calculate the slenderness parameter of the member. 
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 The figures also present the moment capacities obtained from SABRE2 (White et al. 

2015). SABRE2 is a computational tool that performs rigorous inelastic buckling solutions 

using stiffness reduction factors based on the AISC & AASHTO LTB resistance equations. 

This tool implicitly captures the moment gradient effects based on the applied loading as 

well as the end restraint effects based on the specified boundary conditions. SABRE2 

provides an option to compute the stiffness reduction factor in the inelastic buckling 

solution based on the proposed LTB equation in Chapter 6. Figures 7-2 through 7-6 show 

SABRE2 results when applied to the proposed LTB equation. 

  

     (a)  Cb = 1.3                                                   (b) Cb = 1.75 

 

            (c) Cb = 2.3 

Figure 7-2 : Moment gradient LTB curves for W21x44 
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     (a)  Cb = 1.3 

 

(b) Cb = 1.75 

 

(c) Cb = 2.3 

Figure 7-3: Moment gradient LTB curves for W14x68 
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(a)  Cb = 1.3 

 

(b)  Cb = 1.75 

 

(c)  Cb = 2.3 

Figure 7-4: Moment gradient LTB curves for W10x30 
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(a)  Cb = 1.3 

 

(b)  Cb = 1.75 

 

(c)  Cb = 2.3 

Figure 7-5: Moment gradient LTB curves for W16x31 
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(a)  Cb = 1.3 

 

(b)  Cb = 1.75 

 

(c)  Cb = 2.3 

Figure 7-6: Moment gradient LTB curves for W14x90 
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 The following can be gleaned from the above figures.  

1. The proposed model gives the best curve-fit to the simulation data for cases with 

Cb = 1.3. The exception for this is the W14 x 90, for which the current Specification 

equations provide the best estimate of the capacities. This can be attributed to the 

fact that the plateau strength is governed by flange local buckling and this mode of 

failure in general exhibits some postbuckling reserve, making the Specification 

equations conservative. Also, this cross-section has a very small web depth to 

compression flange width ratio (D/bfc < 1.0). Such wide flange sections in general 

exhibit larger flexural capacities than narrow flange sections as witnessed in the 

uniform moment tests presented in Section 6.5. 

2. The proposed model and the current Specification equations essentially coincide 

for the cases with Cb = 1.75 and Cb = 2.3. It is also observed that the simulation 

strengths are typically higher than the Specification strength predictions for these 

cases. The AISC curves match the simulation strengths, or are slightly higher in the 

inelastic LTB region for the W21x44. The W21x44 is a beam type section with a 

high ratio of D/bfc. It has been observed that such narrow flange sections tend to 

exhibit lower flexural strengths than sections with wide flanges. However, it is 

noteworthy that the simulation strengths in this research with an initial flange sweep 

of Lb/2000 and one-half Lehigh residual stresses predict capacities that are 

comparable with the Specification equations. Previous work (Kim 2010; Lokhande 

and White 2014) using more severe geometric imperfections and residual stresses, 

that are twice the values used in this research predict much lower capacities than 

the Specification equations. Given that the Specification equations represent the 
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mean of experimental data, the observed results indicate that the FE modeling 

parameters are adequate and not overly conservative.  

3. The LTB moment modifier, Cb, that is currently recommended in the Specifications 

for the linear moment diagrams represents a lower bound to the true value of Cb for 

compact web rolled beams. This is clear from the above figures where the 

simulation data come in consistently higher than the resistance equations in the 

elastic buckling range. This is especially true for the fully reversed curvature 

bending case with Cb = 2.3.  

4. The Eurocode predicts lower capacities in the inelastic LTB range. This is because, 

while Cb yields a higher elastic buckling strength, the inelastic LTB strength in 

Eurocode is not modified by Cb. It is observed that the Eurocode predictions for the 

moment gradient studies on the W21x44 gives excellent correlation with simulation 

data. This suggests that the differentiation in Eurocode for cross-sections with 

different D/bfc values is appropriate for narrow flange sections, and may be 

conservative for wide flange sections. Eurocode also uses more severe geometric 

imperfections and residual stresses, and the curve is a lower-bound to the data 

obtained (Greiner and Kaim 2001; Roberts and Narayanan 1988).  

5. It is interesting to note that SABRE2 correlates well with the FE simulation data. 

This is especially true for the narrower flanges sections. Considering that SABRE2 

is a rigorous inelastic buckling solution using the proposed LTB equations for 

uniform moment, the correlation with test data gives confidence in the validity of 

the proposed model. The proposed model for moment gradient loading tends to 

predict higher strengths than the simulation data, especially in the region around 
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the knee of the LTB curve. This is due to the fact that the moment modification 

factor, Cb used in the Specification equations is derived based on elastic buckling 

solutions, and represents the ratio of the elastic buckling moment under the moment 

gradient to the elastic buckling moment under uniform moment. While this is a 

good representation for the elastic LTB region of the curve, it is higher than the true 

increase in the moment capacity in the beam after the advent of yielding. This 

“inelastic Cb” effect is captured by SABRE2, and represents the better solution. 

Hence, the regions where the proposed model appears to over-predict the data, is 

due to the “inelastic Cb” effect, more than the shortcomings in the model itself.  

 The moment gradient studies in this section are all flexure-controlled, i.e the design of 

these members is governed by the moment resistance equations rather than the shear 

resistance equations in the Specifications. The maximum shear attained in these cases is 

less than 50% of the shear capacity for the case with Cb = 2.3, with the exception of the 

W21x44 which attained 65% of its shear capacity for the smallest unbraced length studied. 

These shear loads are low enough where moment-shear (M-V) interaction is not considered 

to be a factor. 

7.1.2 Rolled Beams Subjected to Transverse Loading 

 Two rolled beams, W21x44 and W14x68 are subjected to transverse loading conditions 

as shown in Figure 7-7. The designation “SS” indicates flexurally and torsionally simply-

supported end conditions, wherein lateral braces are provided such that both lateral 

movement and twist is restrained at that end, while the flanges are free to warp. Fully-fixed 

end condition is indicated by “FF”, where in the beam is both flexurally and torsionally 

fixed (warping and twist fixed) at the end. Cases (a), (b) and (c) in Figure 7-7 are beams 
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with uniformly distributed loads applied at the centroidal axis. Case (d), which has a single 

concentrated load at the mid-span of the beam, is studied for loading at the top flange, 

bottom flange and centroidal axis (shear center for a doubly-symmetric beam). The primary 

objective of this series of studies is to determine the LTB behavior of beams subjected to 

transverse loading, including cases where the maximum moment is away from the brace 

point. The cases with transverse loading also have high shear, so they serve as cases for 

study of potential moment-shear interaction effects. 

         

                 (a)  FF-FF                                                          (b) FF-SS 

     
                                    (c)  SS - SS                                                              (d) SS-SS 

Figure 7-7: Test setup for nonlinear moment gradient studies for rolled beams 

  It should also be noted that the expressions for Cb in the current Specifications have 

been derived based on buckling solutions of beams that are torsionally simply-supported, 

i.e. with warping free at the ends (Helwig et al. 1997). Johnston (1976) and Galambos 

(1988) offer guidance for calculating moment modifiers for limited number of end restraint 

and loading conditions. The value of Cb as per Johnston (1976) for Case (a) is 1.72. 

Galambos (1988) provides equations for loading through the shear center, top flange or 

bottom flange. The equations are provided for two separate loading conditions: a 

concentrated load acting at the mid-span of the beam, and a uniformly distributed load 

acting along the length of the beam. These equations are functions of the cross-section 

properties and the member span length. For instance, Cb computed for Case (a) for the 

W21x44 for a span length of 800 inches (KLb/Lp = 7.5) is 2.18. As previously noted, the 

w w

w P
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expressions are only applicable for limited loading and end restraint conditions. Neither of 

the two resources offer means of calculating Cb for Case (b), which has different end 

conditions at the two ends of the beam. Both of these alternate values of Cb for Case (a) 

(1.72 and 2.18) are lower than 2.381, calculated using Equation 7.2.  Cases (a) and (b) are 

designed to examine the adequacy of the equations for Cb in the Specifications.  

 The transverse loading test cases are tabulated in Table 7-1. The values of Cb listed in 

Table 7-1 are calculated using Equation 7.2 for transverse loading. The values for Cases d-

2 and d-3 with top and bottom flange loadings are calculated using  

2

* 1.4
y

h
b b

C C=    (7.3) 

given by Helwig et al. (1997), where, Cb
* is the modified value of Cb (calculated from 

Equation 7.2) when the loading axis is located at a distance y from the cross-section mid-

height. In case of a bottom or top flange loading, y is taken as ± h/2, where h is the distance 

between flange centroids. The expression given by Helwig et al. (1997) is chosen rather 

than the more complex equation given by Galambos (1988) for the purpose of this 

discussion. 
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Table 7-1: Transverse loading test cases studied for rolled beams 

Case 
Left 

Support 

Right 

Support 
Loading 

Loading 

Axis 
Cb 

Case a FF FF UDL Centroid 2.381 

Case b FF SS UDL Centroid 2.083 

Case c SS SS UDL Centroid  1.136 

Case d-1 SS SS 
Concentrated 

@ mid-span 
Centroid 1.316 

Case d-2 SS SS 
Concentrated 

@ mid-span 

Top 

flange 
0.930 

Case d-3 SS SS 
Concentrated 

@ mid-span 

Bottom 

flange 
1.800 

7.1.2.1 Cases a and b – fixed-fixed and propped cantilever beams with distributed load at 

centroidal axis 

 Cases a and b have warping and twist restrained at the fixed ends. This allows the use 

of an effective length factor, K of less than one for the unbraced length. The effective length 

factor for LTB is taken as K = Ky = Kz = 0.5 for the fixed – fixed beam in Case a and K = 

Ky = Kz = 0.7 for the propped cantilever in Case b. Figures 7-8 and 7-9 show the plots for 

the two cases. The plots also show the maximum shear attained in the tests (Vmax) 

normalized by the shear capacity (per AISC) of the beam. Appendix B provides the 

numerical values for all the data points shown in the plots. All the data points in Cases a 

and b are flexure controlled. 
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(a) W21x44 

 

(b) W14x68 

Figure 7-8: LTB curves for uniformly distributed load acting at centroid, FF-FF edge conditions 
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(a) W21x44 

 

(b) W14x68 

Figure 7-9: LTB curves for uniformly distributed load acting at centroid, FF-SS edge conditions 
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 The following can be observed from the above figures. 

1. Test simulation data are in the order of 10 to 20% higher than the moment capacities 

predicted by SABRE2 at long unbraced lengths (Lb/d = 38 for W 21x44 @ KLb/Lp 

= 7.5 in Figure 7-8 (a)). SABRE2 accurately captures the elastic critical moment of 

the beam. For these particular cases in question, the unbraced lengths are very long, 

and the critical moments are less than 50% of the minor axis yield moments. It is 

observed that these beams tend to exhibit a stable postbuckling response. In such 

cases, the load-deflection response in ABAQUS captures the limit load at the onset 

of yielding in the compression flange. Figure 7-10 shows the failure mode of the 

W21x44 for Case a (warping fixed at both ends) for the left half of the beam. The 

lighter colored portions on the figure indicates spread of yield. It is evident that this 

beam has substantial postbuckling reserve beyond the elastic buckling limit, and 

continues to take load until the onset of compression flange yielding.  

 

Figure 7-10: Failure mode of W21x44 for a fixed-fixed beam at Lb/d = 38 (left half of span) 

2. The test simulation points are as low as 20% below the design equations at the knee 

of the LTB curves. The proposed and current specification equations coincide for 

these high values of Cb (2.38 and 2.08 respectively). It is also observed that FE data 
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from ABAQUS and SABRE2 match closely. The combination of K < 1 and the Cb 

based on no warping restraint, together with an “inelastic Cb” effect yield poor 

predictions of the true girder strengths. This also indicates that the warping 

restraints at the ends of the beam has an influence on Cb, as noted by Johnston 

(1976) and Galambos (1988).  Clearly, the over-prediction of the Specification 

equations in Case a, with a higher level of warping restraint, is more than the over-

prediction in Case b.  

 The LTB resistance predictions are poor for conditions of moment gradient and 

warping fixity. There is clearly a need to research the appropriate moment modification 

factors to use for various levels of torsional fixity. The current expressions for Cb are unsafe 

to use in design under such scenarios. Computational tools such as SABRE2 account for 

the inelasticity in beams along with the influence of end restraints for any given loading 

condition, and offer more accurate estimates of the member strengths. 

7.1.2.2 Case c – simply-supported beam with distributed load at centroidal axis 

 Figure 7-11 shows the plots for the W21x44 and W14x68 beams. SABRE2 results, 

with stiffness reduction factors based on the proposed LTB model are also shown for the 

flexure controlled points.  

 From Figure 7-11, it is evident that the simulation data fall below the proposed and 

current LTB curves in the inelastic LTB region. This behavior is captured by SABRE2, 

which shows that there is an “inelastic Cb” effect here as well. The Eurocode equation gives 

the best fit to the data in this case. 

 The first two data points for the smaller unbraced lengths in the W21x44 and the first 

data point for the W14x68 sections are shear controlled. It is evident that the shear capacity 
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attained by the test simulations is substantially larger than the AISC shear equations, 

despite the presence of large values of bending moment. Hence, M-V interaction need not 

be a concern for design when using the current shear equations and the proposed LTB 

model. 

 

(a) W21x44 

 

(b) W14x68 

Figure 7-11: LTB curves for uniformly distributed load acting at centroid, SS edge conditions  
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7.1.2.3 Case d – three point bending tests with centroidal, top flange and bottom flange 

loading positions 

 Two rolled beams, W21x44 and W14x68, are subjected to a concentrated load acting 

at the center of the beam. The three point bending test setup is analyzed for load at the 

centroidal axis, and at the top and bottom flanges to assess the influence of load height 

effects. Figures 7-12 through 7-14 show the plots for the two rolled beams at the different 

load-height positions. All the data points, barring the shortest unbraced lengths for the top 

flange loading case are flexure controlled. The shears are low enough such that M-V 

interaction is not a concern in these cases. 

 The following observations can be made from Figure 7-12 for the case with the 

concentrated load acting at the centroidal axis.  

1. The FE strength predictions are about 20% lower than the AISC curve, and 15% 

lower than the proposed model at the knee of the LTB curves. 

2. SABRE2 gives results that are higher than the test simulation data, and slightly 

lower than the proposed model. 
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(a) W21x44 

 
(b) W14x68 

Figure 7-12: LTB curves for concentrated load at mid-span, acting at centroid, SS edge conditions 

 Figure 7-13 compares the data for loading at the top flange. The step in the proposed 

and current LTB design curves at the plateau length are due to the fact the Cb is calculated 

from the recommendations given by Helwig et al. (1997) incorporating load height effects. 

Loading above the centroidal axis has a detrimental effect on lateral stability, and hence Cb 
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is less than 1.0. However, the plateau strength is taken as the full plastic moment capacity 

in Figure 7-13. Alternate methods of plotting the design curve would be to conservatively 

restrict the plateau strength to CbMp or to allow the inelastic LTB strength line to intersect 

with the plateau at a length smaller than Lp. AISC (2010a) implicitly assumes that Cb is 

always greater than or equal to 1.0.   

 
(a) W21x44 

 
(b) W14x68 

Figure 7-13: LTB curves for concentrated load acting at mid-span, acting at top flange, SS edge 

conditions 
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 The following observations are made from Figure 7-13, for the case with top flange 

loading. 

1. The proposed LTB curve predicts the simulation data fairly well for the W21x44 

(narrow flange) section, and predicts smaller than simulation strengths for the 

W14x68 (wider flange) section. 

2. Once again, Eurocode provides the best fit to the test simulation data. 

 Figure 7-14 shows the plots for the concentrated load acting on the bottom flange. The 

Cb calculated from Equation 7.3 is 1.8 and is higher than the value calculated for loading 

at the centroid.  

 The following observations can be made from Figure 7-14 for bottom flange loading. 

1. The proposed and current AISC curves are almost coincidental, similar to the 

loading cases with linear moment diagrams that have high values of Cb. 

2. It is evident that the recommended value of Cb for bottom flange loading is 

unconservative in the elastic LTB region for W14x68. This is consistent with the 

observation made by Helwig et al. (1997) that the expression for Cb tends to be 

unconservative for bottom flange loading when Lb/h is larger than 15. They also 

noted that Equation 7.3 becomes conservative for a similar top flange loading (as 

corroborated by Figure 7-13 (b)).  

 In view of the above observation, it is advisable to use a value of Cb = 1.13 (calculated 

for shear center loading) without accounting for additional benefits from bottom flange 

loading. 
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(a) W21x44 

 
(b) W14x68 

Figure 7-14: LTB curves for concentrated load acting at mid-span, acting at bottom flange, SS edge 

conditions 

 Modified LTB Equation 
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location of the lateral brace. This is also corroborated by the fact that the Eurocode LTB 

equation which does not scale the inelastic LTB strength for uniform moment by Cb 

correlates better with the test simulation data. It is also observed in Section 7.1.1 that the 

proposed equation gives satisfactory results when there is a linear moment gradient with 

no transverse loading within the unbraced segment (the maximum moment is at the location 

of the lateral brace), and it is less than 10% higher than simulation data for the extreme 

cases when Cb is 1.75.  Based on these observations, a simple modification to the inelastic 

LTB curve (AISC Equation F2-2) is proposed, 

( )1 1

b p

n b p p yr x p

r p

L L
M f C M M f F S M

L L

  −
= − − ≤   −   

  (7.4) 

where, 

f1 = 1 (when the maximum moment is at the brace location), and 

    = 1/Cb (when the maximum moment is away from the brace location) 

 The current Specification equation is modified by multiplying Cb and Fyr by the factor 

f1. The modified inelastic LTB equation in Equation 7.4 does not change the equations for 

the linear moment diagrams discussed in Section 7.1.1, and it greatly improves the 

correlation of the proposed curve with the FE test simulation data for Cases c and d with 

transverse loading, as shown in Figures 7-15 through 7-18. 
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                                            (a) W21x44                                                            (b) W14x68 

Figure 7-15: Comparison of test data with modified LTB curves for Case c in Table 7-1 

  
(a) W21x44                                                            (b) W14x68 

Figure 7-16: Comparison of test data with modified LTB curves for Case d-1 in Table 7-1 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

M
m

a
x

 / 
M

p

Lb/Lp

Mn Proposed 

Mn AISC

Mmax

0 1 2 3 4 5 6 7

Lb/Lp

Mn Proposed 

Mn AISC

Mmax

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

M
m

a
x
 / 

M
p

Lb/Lp

Mn Proposed 

Mn AISC

Mmax

0 1 2 3 4 5 6

Lb/Lp

Mn Proposed 

Mn AISC

Mmax



 164

  
(a) W21x44                                                            (b) W14x68 

Figure 7-17: Comparison of test data with modified LTB curves for Case d-2 in Table 7-1 

  
(a) W21x44                                                            (b) W14x68 

Figure 7-18: Comparison of test data with modified LTB curves for Case d-3 in Table 7-1 
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maximum moment within the span, and away from the brace location (at the ends). It is 

also observed from Figure 7-17 that the proposed model predicts higher strengths with the 

modification factor, f1 for top flange loading, and brings the curve closer to the simulation 
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data. The following sections of the chapter discuss moment gradient studies on noncompact 

and slender web cross-sections. 

 Welded Noncompact and Slender Web Beams Subjected to Linear Moment 

Gradient 

 The three linear moment diagrams indicated in Section 7.1.1 are also used for the 

studies on noncompact and slender web plate girders. Eleven cross-sections in Table 6-14 

are marked as members studied for LTB responses of welded beams subjected to moment 

gradient loading. These girders are G1, G3, G5, G9, G13, G37, G44, G45, G46, G47 and 

G49. These girders are chosen to represent cross-sections that encompass noncompact 

webs, slender webs with compact and noncompact flanges and different web depths in 

compression. Out of these girders, G37, G44 and G45 are omitted for the studies on reverse 

curvature (Cb = 2.3), as they have flanges that do not meet AASHTO requirements for 

compression flanges. The slender flanges are in tension for the moment gradient loadings 

with Cb = 1.3 and Cb = 1.75.  

7.3.1 Noncompact and Slender Web Girders Subjected to Linear Moment Gradient 

with Cb = 1.3 

 Figures 7-19 through 7-21 show the plots for three girders, that are a selection of 

doubly-symmetric and singly-symmetric cross-sections with noncompact webs and slender 

webs for Cb = 1.3 (β = 0.5 in Figure 7-1). The plots for other girders can be found in 

Appendix B.  These plots show that the proposed model predicts the simulation data with 

good accuracy for all the flexure controlled data points. It is seen that the shears attained 
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by the girders barring the first two data points for the small unbraced lengths, are very low, 

and are not considered to cause M-V interaction. 

 
Figure 7-19: LTB curves for linear moment diagram with Cb = 1.3, girder G1 in Table 6-14 

 
Figure 7-20: LTB curves for linear moment diagram with Cb = 1.3, girder G9 in Table 6-14 
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Figure 7-21: LTB curves for linear moment diagram with Cb = 1.3, girder G49 in Table 6-14 

7.3.2 Noncompact and slender web girders subjected to linear moment gradient with 

Cb = 1.75 and 2.3 

 Figures 7-22 through 7-24 show plots for three girders for a moment gradient case with 

Cb = 1.75. In these cases with higher levels of moment gradient, the shears in the girders 

are also high. It is observed that the FE test simulation results fall well below the current 

and proposed design curves in the inelastic LTB regions.  

 In order to better understand the reasons for this behavior, results from SABRE2 are 

also included. It can be observed that SABRE2 predicts strengths that are higher than the 

results from ABAQUS with nominal imperfections and residual stresses, but lower than 

the proposed curves. While SABRE2 captures the effects of an “inelastic Cb”, it does not 

account for any potential moment – shear (M-V) interaction effects.  

 An elliptical equation has traditionally been used to define moment-shear interaction 

in plate girders. An equation of the form 
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is used to calculate the moment capacity when moment-shear interaction is considered. 

Equation 7.5 is similar to the M-V interaction equation used in AISI (2014).  

 The moment capacity calculated thus is included on Figures 7-22 and 7-23, and labeled 

as Mn Interaction. The moment-shear interaction check is not considered important in the 

case of Girder G49 in Figure 7-24, where it is shown that the shears in the girder are low. 

It is observed from Figure 7-24 that although M-V interaction is not a concern for G49, 

there is an influence of “inelastic Cb” and the simulations strengths are smaller than the 

proposed LTB equation. 

 
Figure 7-22: LTB curves for linear moment diagram with Cb = 1.75, girder G1 in Table 6-14 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7

M
m

a
x

 / 
M

y,
 V

m
a

x
/V

n

Lb/Lp

Mn Proposed 

Mn AASHTO

Mn EC

Mn SABRE2

Mn Interaction

Mmax(Flexure controlled)

Mmax(Shear controlled)

Vmax

Vmax/Vn = 2.5



 169

 
Figure 7-23: LTB curves for linear moment diagram with Cb = 1.75, girder G9 in Table 6-14 

 
Figure 7-24: LTB curves for linear moment diagram with Cb = 1.75, girder G49 in Table 6-14 
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rest are shear-controlled. Tables in Appendix B clearly indicate the controlling limit state 

(shear or flexure) for each of the data points. 

 
Figure 7-25: LTB curves for linear moment diagram with Cb = 2.3, girder G1 in Table 6-14 

 From the above figures, it is evident that for slender webs (G1 and G9), shear influences 

the flexure capacity to some extent. The reasons for smaller predictions in the noncompact 

web girder G49 are explained by the influence of “inelastic Cb”, corroborated by the results 

from SABRE2. Moreover, it is observed that FE test simulations of G1 and G9 with closely 

spaced transverse stiffeners predict capacities (not shown) almost identical to those of 

SABRE2. The closely spaced transverse stiffeners increase the shear capacities of the 

girders, while also reducing potential web distortion. 

 It is found that the behavior of slender web plate girders under high moment-high shear 

is complex and the strengths are influenced by several factors. M-V interaction and 

inelastic Cb are the key factors that reduce the strengths of slender web girders. Web 

distortional effects may also influence the strengths of such members.  
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 Summary 

 The following are the key conclusions from the work conducted in this chapter for 

unstiffened girders subjected to moment gradient loading, with the flexure limit state 

controlled by LTB. 

1. The proposed LTB model in Chapter 6 matches closely with the test simulation 

strengths for moment gradient, for compact web rolled beams with linear moment 

diagrams. A modification factor on the LTB resistance equation is recommended 

for beams with maximum moment away from the brace locations, which is shown 

to greatly improve the correlation of test data with the proposed equation. However, 

it is recommended that further studies be conducted with similar transverse loading 

conditions on noncompact and slender web sections. 

2. An “inelastic Cb” effect is shown to influence the girder strength in the inelastic 

LTB region for compact web and noncompact web sections. This effect is captured 

by rigorous inelastic buckling solutions from SABRE2 using a stiffness reduction 

approach based on the proposed equation.  

3. It is seen that the expressions in the current Specifications for computation of Cb 

are optimistic for girders that have warping fixity at either or both ends. In the case 

of warping restraint, the Specifications allow the use of an effective length factor, 

K in the calculation of the LTB strengths. The combination of K < 1 and the Cb 

from torsionally simply-supported boundary conditions results in unconservative 

predictions of the girder strengths. It is shown that the equations from Johnston 

(1976) and Galambos (1988) predict lower values of Cb. However, they are 

approximate solutions and do not address all possible boundary conditions and 
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loading cases. Computational tools with rigorous inelastic buckling solutions such 

as SABRE2 can account for “inelastic Cb” and end restraint effects for various 

loading conditions. 

4. It is seen that M-V interaction, and possibly web distortion influence the flexural 

strengths of slender web girders when subjected to high moment and high shear 

loading. While the theoretical aspects of the problem have been discussed in this 

chapter, it is worth noting that it is unlikely that bridge girders will be designed 

with no intermediate transverse stiffeners for such long unbraced lengths as 

considered in this research. Hence, in practical situations, it is possible that this 

kind of extreme loading is not witnessed, and the shear capacities will be higher 

due to intermediate transverse stiffeners or cross-frames. The intermediate 

transverse stiffeners also reduce the likelihood of web distortion. 

 The following chapters discuss the LTB resistance of longitudinally stiffened girders, 

for both uniform bending and moment gradient cases in the context of the proposed LTB 

equations from Chapters 6 and 7. 
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LATERAL TORSIONAL BUCKLING RESISTANCE OF STRAIGHT 

LONGITUDINALLY STIFFENED GIRDERS 

 In this chapter, various design parameters are evaluated for their impact on the flexural 

capacity of longitudinally stiffened girders at the LTB limit state. A range of unbraced 

lengths is tested to assess the behavior of the longitudinal stiffeners as well as the 

application of the proposed yield limit state Rb prediction model and the proposed LTB 

equations, as part of the calculation of the flexural resistance for longitudinally stiffened 

girders governed by LTB. Only uniform bending is considered in this chapter. Moment 

gradient is treated separately in the following chapter. 

 Test Setup 

 The test setup for the lateral torsional buckling studies is the same as that for the yield 

limit state studies shown in Figure 4-1. However, the unbraced lengths of the test 

specimens are varied. This allows evaluation of the impact of the longitudinal stiffener on 

the flexural capacity of girders subjected to the yield, inelastic LTB, and elastic LTB limit 

states. The test fixtures are assumed to provide torsionally and laterally fixed boundary 

conditions at each end of the test specimen, i.e., the value of K in KLb is taken as 0.5 in 

estimating the LTB resistances by various potential nominal strength equations. Similar to 

the test setup in Section 4.3, the flange and web plates of the end fixtures are significantly 

larger than the plate thicknesses of the test specimens; therefore, this is an accurate estimate 

of K. The length Lb is taken as the distance between the connection points to the end fixtures 
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(i.e., no lateral bracing is provided within the length of the test specimens, but lateral 

bracing is provided at the ends of the test specimens).  

 In accordance with the findings in Chapter 6, the magnitudes of imperfection used for 

FE modeling are one half of the imperfections discussed in Section 3.6, with an additional 

flange sweep of magnitude Lb/2000. There is not sufficient data to estimate the general 

imperfections found in longitudinally stiffened girders at various unbraced lengths. Hence, 

a comparison of the strengths obtained when using the full AWS tolerance on web 

imperfection and flange sweep as initial geometric imperfections, and full Best-fit Prawel 

residual stresses along with one half of the imperfections and residual stress magnitudes is 

presented.  The sweep in the longitudinal stiffener is taken as do/400, which is the same as 

in the tests at the yield limit state in Chapter 4.  

 Given the fixity at both ends of the unbraced length, a flange sweep imperfection of 

magnitude Lb/2000, amounts to a smaller net imperfection between the inflection points of 

the unbraced length. Only compact flange girders are studied in this Chapter. 

 Case Studies 

 The cases defined in Table 8-1 are assessed as part of the parametric studies discussed 

in this chapter. The unbraced length is different for each of these cases. The different KLb 

values shown in the table belong to different ranges of the AASHTO LTB curve depending 

on the girder dimensions (particularly the bfc/D ratio) for a given test. In general, Case 1 

has an effective unbraced length near the transition between the yield plateau and the 

inelastic lateral torsional buckling regions as defined by AASHTO (i.e., at the length KLb 

= Lp). Cases 2 and 3 have effective unbraced lengths within the inelastic LTB range. Case 

4 has an effective unbraced length near the length Lr on the current AASHTO LTB curve, 
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but located in either the inelastic or elastic LTB region depending on the girder dimensions. 

Cases 5 and 6 are comprised of studies with effective unbraced lengths well within the 

elastic range of the AASHTO LTB resistance curve.  

Table 8-1: Case studies for straight longitudinally stiffened girders at the LTB limit state  

 Case  
KLb (in) 

do/D =1 

KLb (in) 

do/D =2 

1 225 300 

2 375 450 

3 525 600 

4 675 750 

5 825 900 

6 975 1050 

7 1125a 1350 

a. Unbraced length studied only for girders with D/tw = 300, and D/bfc = 5, 4 

For each of the above cases, the following parameters are held constant: 

• D = 150 inches, 

• ds/Dc = 0.4,  

• Longitudinal stiffeners sized based on the minimum requirements from the AASHTO 

LRFD Specifications as explained in Section 2.8, and 

• 9.5 x 0.75 inch transverse stiffeners, which satisfy the minimum requirements from the 

AASHTO LRFD Specifications for all of the girders tested.  

The following parameters are varied: 

• Dc/D = 0.5, 0.625 and 0.75,  

• D/tw  = 200, 240 and 300, and 

• bfc = D/6, D/5, and D/4.  
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• tfc = 1.5, 1.75, 2.25 in corresponding to the different values of compression flange 

widths. 

 A total of 357 test girders are studied in this chapter.  

 Proposed Model 

 A slightly varied form of the existing AASHTO LTB equations is proposed in Chapter 

6. This model, with the modifications discussed below to address the influence of 

longitudinal web stiffening, is proposed in this research as one method that captures the 

test simulation results for longitudinally stiffened girders with improved accuracy. As per 

the recommendations, the LTB strength curve uses a shorter plateau length of 

0.63 /p t yL r E F= , and a smaller maximum stress level for elastic LTB of Fyr = 0.5 Fyc. 

Furthermore, for the longitudinally stiffened plate girders considered in this research, the 

“plateau” resistance used with these equations is calculated by multiplying the yield 

moment capacity by RbPr from the proposed model discussed in Section 4.7.  

 In addition to the above, the bend-buckling stress of the longitudinally stiffened web, 

Fcrw, is calculated using the AASHTO LRFD Article 6.10.1.9.2 provisions. If this stress is 

less than Fyr = 0.5 Fyc, the unbraced length at which the nominal elastic buckling stress Fnc 

is equal to Fcrw is determined. The value Fcrw is the stress level at which Rb effectively 

becomes equal to 1.0, and the corresponding unbraced length is referred to here as L1. The 

inelastic LTB resistance of the longitudinally stiffened plate girder is then determined by 

linearly interpolating between the plateau strength (using the factor RbPr) at Lp and the point 

(L1, Fcrw).  

 Conversely, if Fcrw is greater than Fyr = 0.5Fyc, the inelastic LTB resistance is obtained 

by linearly interpolating between (Lp, RbPrFyc) and (Lr, 0.5Fyc), where Lr is defined here as 
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the length at which the theoretical elastic LTB strength is equal to Fyr = 0.5Fyc (note that 

the current AASHTO provisions define Lr as the length corresponding to Fyr = 0.7Fyc for 

homogeneous slender web plate girders).  

 For compression flange stress levels below the smaller of the values Fcrw or 0.5Fyc, the 

elastic buckling equation in the current AASHTO Specifications, with Rb  = 1 is used to 

compute the LTB resistance. 

 Results and Evaluation of Proposed Model 

 Figures 8-1 through 8-3 compare the FE test simulation data to the current AASHTO 

LRFD and Eurocode predictions as well as to the above proposed model for several tests 

with do/D =1. These figures show comparisons between the data obtained using the 

imperfections as per the full AWS tolerances and the full Best-Fit Prawel residual stresses, 

and with half of the AWS tolerances as imperfections and half Best-Fit Prawel residual 

stresses. In these figures, Mmax refers to the flexural capacity obtained from FE test 

simulations, Mn EC refers to the capacity calculated using the Eurocode EN 1993-1-1 (CEN 

2005) and EN 1993-1-5 (CEN 2006a) provisions, Mn AASHTO (Rb based on Fyc) is the 

capacity computed using the current AASHTO provisions including Rb as calculated by 

AASHTO, as well as using the elastic section modulus that includes the longitudinal 

stiffener, Mn AASHTO (Rb = 1.0) is the same calculation but taking Rb = 1.0, and Mn 

Proposed is the result from the proposed model described in Section 8.3. In these figures, 

the data points that correspond to the “plateau resistance” are obtained from the results in 

Chapter 4. 
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Figure 8-1: Flexural capacity comparing AASHTO, Eurocode and FE simulations, D/tw = 240, Dc/D = 

0.5, D/bfc = 6, do/D = 1 with full AWS imperfections and Best-fit Prawel residual stress (Left) and half 

AWS imperfections and half Best-fit Prawel residual stress (right) 

 Figure 8-1 shows results for a girder that has a value of RbAASHTO = 1.0 (RbAASHTO is equal 

to 1.0 here because the longitudinal stiffener increases the bend-buckling stress Fcrw to a 

value greater than the compression flange stress at the strength limit for all unbraced 

lengths).  

 Figures 8-2  and 8-3 show results for slender web longitudinally stiffened girders with 

RbAASHTO < 1.0. It can be observed from Figure 8-2 that at the point (L1, FcrwSxc), the Mn 

AASHTO (Rb = 1.0) curve tends to over-predict the LTB resistance of the girders obtained 

from the test simulations. One can observe that the proposed model is also somewhat 

unconservative near this point, since the proposed model and the above AASHTO model 

both correspond to the theoretical elastic LTB resistance (with J taken equal to zero) at (L1, 

Fcrw). This over-prediction by the proposed model is greatly reduced in the plots on the 

right that correspond to half the AWS tolerances used as imperfections, and one-half Best-

fit Prawel residual stresses. This behavior is expected based on the results presented in 

Chapter 6. Furthermore, the proposed model still slightly over predicts the test simulation 

results for shorter unbraced lengths within the inelastic LTB for higher values of initial 
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geometric imperfections. The Mn AASHTO (Rb based on Fyc) curve gives a closer prediction 

to the test simulation results in the vicinity of KLb = L1. However, this is largely because a 

single Rb is calculated conservatively by taking the compression flange stress as Fyc and 

then used throughout this curve. The Mn AASHTO (Rb based on Fyc) curve is significantly 

conservative for short effective unbraced lengths.  

  

Figure 8-2: Flexural capacity comparing AASHTO, Eurocode and FE simulations, D/tw = 300, Dc/D = 

0.5, D/bfc = 6, do/D = 1 with full AWS imperfections and Best-fit Prawel residual stress (Left) and half 

AWS imperfections and half Best-fit Prawel residual stress (right) 

  

Figure 8-3: Flexural capacity comparing AASHTO, Eurocode and FE simulations, D/tw = 300, Dc/D = 

0.75, D/bfc = 4, do/D = 1 with full AWS imperfections and Best-fit Prawel residual stress (Left) and 

half AWS imperfections and half Best-fit Prawel residual stress (right)  
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 In the case of singly-symmetric girders having a large tension flange (and hence a large 

Dc/D), the AASHTO LRFD and proposed equations are highly conservative for large KLb 

values when RbAASHTO < 1.0 as shown in Figure 8-3. This is due to the AASHTO and AISC 

based assumption that, due to the slender web and potential distortional lateral buckling, 

the St. Venant torsional stiffness GJ provides no help to the LTB resistance. The AASHTO 

equations neglect the contribution from St. Venant torsion in calculating the elastic 

buckling stress for all slender web I-sections. This is a conservative approximation for the 

girders with large tension flanges studied in this research. For these girders, it is notable 

that the FE predictions compare closely with the calculations based on Eurocode, which 

include the St. Venant torsional stiffness contribution to the LTB resistance.  

 It is important to note that the above behavior for large tension flanges may not always 

be the case. Due to the cross-section distortional deflection of the web, the influence of GJ 

on I-girder LTB resistances can be substantially reduced (White and Jung 2007). However, 

for longitudinally stiffened girders having relatively close spacing of the intermediate 

transverse stiffeners, the frame action of the transverse stiffeners tends to limit the amount 

and impact of the distortional deflections of the web. In order to assess the influence of 

frame action on the flexural capacities of these girders, studies are conducted on a larger 

panel aspect ratio of do/D = 2.0.  

 Figures 8-4 through 8-6 show the LTB resistance curves along with the simulation data 

for girders with do/D = 2.0. These plots show that the proposed model gives the best results 

for doubly-symmetric girders. While the proposed model appears to be conservative in the 

inelastic LTB region, they give excellent correlation in the elastic LTB region for doubly-

symmetric girders. Figure 8-6 is an indication that the web distortion effects are not 



 181

significant enough at do/D = 2.0, and the proposed model is still conservative at large 

unbraced lengths for singly-symmetric girders with large tension flanges. 

 
Figure 8-4: Flexural capacity comparing AASHTO, Eurocode and FE simulations, D/tw = 240, Dc/D = 

0.5, D/bfc = 6, do/D = 2 with half AWS imperfections and half Best-fit Prawel residual stress  

 
Figure 8-5: Flexural capacity comparing AASHTO, Eurocode and FE simulations, D/tw = 300, Dc/D = 

0.5, D/bfc = 6, do/D = 2 with half AWS imperfections and half Best-fit Prawel residual stress 
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Figure 8-6: Flexural capacity comparing AASHTO, Eurocode and FE simulations, D/tw = 300, Dc/D = 

0.75, D/bfc = 4, do/D = 2 with half AWS imperfections and half Best-fit Prawel residual stress 
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Narayanan 1988). The best estimate of the FE test simulation results conducted in this 

research is obtained using the proposed model. The complete set of results are presented in 

Appendix C. These plots show trends similar to those illustrated in Figures 8-1 through 

8-6. 
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model described in Section 8.3 performs better than the current AASHTO and Eurocode 

equations in predicting the simulation-based flexural capacities of these girders.  

Table 8-2: Statistics for 9 longitudinally stiffened girders with do/D =1, Dc/D = 0.5 

(a) KLb = 225 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.05 1.04 1.26 

COV 0.02 0.06 0.06 

Maximum 1.08 1.14 1.36 

Minimum 1.03 0.98 1.15 

(b) KLb = 375 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.11 1.07 1.46 

COV 0.02 0.08 0.09 

Maximum 1.15 1.23 1.63 

Minimum 1.08 1.01 1.28 

(c) KLb = 525 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.10 1.02 1.60 

COV 0.03 0.09 0.08 

Maximum 1.14 1.16 1.74 

Minimum 1.04 0.88 1.43 

 (d) KLb = 675 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.04 1.00 1.63 

COV 0.08 0.09 0.02 

Maximum 1.14 1.13 1.69 

Minimum 0.93 0.87 1.59 
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Table 8-2 (Continued): Statistics for 9 longitudinally stiffened girders with do/D =1, Dc/D = 0.5 

(e) KLb = 825 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 0.99 0.99 1.55 

COV 0.07 0.08 0.05 

Maximum 1.08 1.15 1.65 

Minimum 0.90 0.92 1.44 

(f) KLb = 975 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.00 1.03 1.51 

COV 0.03 0.10 0.05 

Maximum 1.06 1.24 1.60 

Minimum 0.97 0.91 1.43 

(g) KLb = 1125 in (2 girders) 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 0.97 1.11 1.47 

COV 0.04 0.07 0.04 

Maximum 1.00 1.17 1.51 

Minimum 0.95 1.05 1.42 
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Table 8-3: Statistics for 9 longitudinally stiffened girders with do/D =2, Dc/D = 0.5 

(a) KLb = 300 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.12 1.09 1.45 

COV 0.03 0.06 0.10 

Maximum 1.18 1.23 1.67 

Minimum 1.07 1.03 1.25 

(b) KLb = 450 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.11 1.05 1.59 

COV 0.01 0.07 0.11 

Maximum 1.13 1.18 1.84 

Minimum 1.08 0.98 1.37 

(c) KLb = 600 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.09 1.03 1.72 

COV 0.04 0.07 0.08 

Maximum 1.12 1.12 1.93 

Minimum 1.01 0.95 1.54 

(d) KLb = 750 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.05 1.03 1.71 

COV 0.06 0.09 0.04 

Maximum 1.12 1.20 1.85 

Minimum 0.98 0.92 1.65 
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Table 8-3 (Continued): Statistics for 9 longitudinally stiffened girders with do/D =2, Dc/D = 0.5 

(e) KLb = 900 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.04 1.04 1.65 

COV 0.06 0.13 0.04 

Maximum 1.19 1.26 1.77 

Minimum 0.95 0.87 1.56 

(f) KLb =1050 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.03 1.09 1.57 

COV 0.12 0.12 0.06 

Maximum 1.24 1.31 1.73 

Minimum 0.83 0.93 1.39 

(g) KLb = 1350 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.11 1.17 1.47 

COV 0.12 0.11 0.09 

Maximum 1.37 1.37 1.71 

Minimum 0.99 1.00 1.26 

 The following observations can be gleaned from the data presented in Tables 8-2 and 

8-3: 

1. The proposed model performs reasonably well for doubly-symmetric slender web 

girders. In general, this model gives slightly conservative predictions at smaller 

unbraced lengths in the inelastic LTB region, as compared to the AASHTO 

equations. This is due to the low values of initial geometric imperfections and 

residual stresses used in FE test simulations. As noted previously, an initial flange 
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sweep of Lb/2000 is close to Lb/4000 between the inflection points. The influence 

of this low magnitude of imperfection is reflected in Figures 8-1 through 8-6, where 

the simulation data indicate a relatively flat slope within the inelastic LTB region. 

However, plots for twice the values of initial imperfections are also shown in 

Figures 8-1 through 8-3, which indicate excellent correlation with the proposed 

model in the inelastic range, albeit slightly unconservative at the region around Lr. 

In view of these observations, it is reasonable to state that the proposed model is 

safe to use for design in the presence of reasonable geometric imperfections within 

AWS tolerances. 

2. While the current AASHTO model is conservative for the yield limit state cases 

considered in Chapter 4, it tends to over-predict the capacities for the doubly-

symmetric girders in the inelastic and the elastic regions of the LTB curve. The 

current AASHTO predictions are actually quite good for doubly-symmetric girders 

at the smallest unbraced length considered within the inelastic LTB range in these 

studies (KLb = 225 inches and 300 inches, Tables 8-2 and 8-3).  

 It is important to note that the MnAASHTO calculations here are based on the 

calculation of a single Rb using the compression flange yield strength, and the use 

of this Rb for all the unbraced lengths corresponding to a given girder cross-section 

is conservative. If separate larger Rb values are calculated for each of the unbraced 

lengths, as permitted by AASHTO LRFD Article C6.10.1.10.2, the current 

AASHTO LRFD predictions tend to increase for larger KLb values within the 

inelastic buckling range, but not sufficiently large to capture the strengths indicated 

by FE test simulations.   
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3. The proposed model recognizes the fact that Rb =1 at effective unbraced lengths 

long enough where the elastic LTB strength precedes web bend-buckling. This 

ensures that the proposed model is either an excellent prediction of elastic LTB 

strengths (for doubly-symmetric girders) or conservative (for singly-symmetric 

girders with large tension flanges) at large effective unbraced lengths.  

8.4.2 Summary of Results for Singly-Symmetric Girders 

 Tables 8-4 through 8-7 show similar tables for the singly-symmetric girders (Dc/D = 

0.625 and Dc/D = 0.75) studied in this research. The unbraced lengths encompass the 

inelastic and elastic regions of the proposed LTB curve. The data for tests in the plateau 

region are presented in Chapter 4. 

Table 8-4: Statistics for 9 longitudinally stiffened girders with do/D =1, Dc/D = 0.625 

(a) KLb = 225 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.05 1.13 1.21 

COV 0.01 0.10 0.04 

Maximum 1.07 1.26 1.28 

Minimum 1.03 0.96 1.11 

(b) KLb = 375 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.12 1.18 1.36 

COV 0.02 0.12 0.07 

Maximum 1.17 1.40 1.48 

Minimum 1.08 1.00 1.21 
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Table 8-4 (Continued): Statistics for 9 longitudinally stiffened girders with do/D =1, Dc/D = 0.625 

(c) KLb = 525 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.13 1.15 1.42 

COV 0.03 0.12 0.05 

Maximum 1.18 1.32 1.48 

Minimum 1.07 0.93 1.32 

(d) KLb = 675 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.10 1.18 1.39 

COV 0.05 0.14 0.05 

Maximum 1.17 1.45 1.46 

Minimum 1.01 0.94 1.27 

 (e) KLb = 825 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.10 1.23 1.30 

COV 0.06 0.16 0.09 

Maximum 1.19 1.53 1.46 

Minimum 0.98 0.96 1.17 

(f) KLb = 975 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.15 1.33 1.24 

COV 0.07 0.17 0.09 

Maximum 1.31 1.71 1.40 

Minimum 1.06 1.02 1.11 
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Table 8-4 (Continued): Statistics for 9 longitudinally stiffened girders with do/D =1, Dc/D = 0.625 

(f) KLb = 1125 in (2 girders) 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.07 1.36 1.19 

COV 0.12 0.18 0.02 

Maximum 1.16 1.54 1.21 

Minimum 0.98 1.19 1.17 

Table 8-5: Statistics for 9 longitudinally stiffened girders with do/D =2, Dc/D = 0.625 

(a) KLb = 300 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.12 1.20 1.37 

COV 0.03 0.10 0.08 

Maximum 1.17 1.37 1.55 

Minimum 1.08 1.05 1.21 

(b) KLb = 450 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.12 1.16 1.43 

COV 0.02 0.12 0.07 

Maximum 1.15 1.37 1.55 

Minimum 1.08 0.98 1.26 

(c) KLb = 600 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.11 1.18 1.47 

COV 0.03 0.12 0.03 

Maximum 1.15 1.38 1.52 

Minimum 1.06 0.96 1.38 
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Table 8-5 (Continued): Statistics for 9 longitudinally stiffened girders with do/D =2, Dc/D = 0.625 

(d) KLb = 750 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.12 1.23 1.42 

COV 0.06 0.15 0.04 

Maximum 1.24 1.54 1.48 

Minimum 1.04 0.99 1.32 

 (e) KLb = 900 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.15 1.30 1.34 

COV 0.09 0.19 0.06 

Maximum 1.36 1.67 1.44 

Minimum 1.04 0.95 1.23 

(f) KLb =1050 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.19 1.41 1.27 

COV 0.13 0.18 0.05 

Maximum 1.49 1.80 1.36 

Minimum 1.03 1.06 1.17 

(g) KLb = 1350 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.37 1.62 1.18 

COV 0.15 0.19 0.03 

Maximum 1.76 2.09 1.22 

Minimum 1.14 1.21 1.12 
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Table 8-6: Statistics for 9 longitudinally stiffened girders with do/D =1, Dc/D = 0.75 

(a) KLb = 225 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.05 1.30 1.16 

COV 0.01 0.08 0.05 

Maximum 1.07 1.51 1.25 

Minimum 1.03 1.18 1.08 

(b) KLb = 375 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.17 1.41 1.31 

COV 0.04 0.11 0.07 

Maximum 1.23 1.71 1.44 

Minimum 1.10 1.25 1.15 

(c) KLb = 525 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.23 1.47 1.35 

COV 0.05 0.12 0.08 

Maximum 1.32 1.77 1.50 

Minimum 1.15 1.26 1.20 

(d) KLb = 675 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.33 1.71 1.35 

COV 0.08 0.25 0.10 

Maximum 1.53 2.37 1.55 

Minimum 1.21 1.30 1.22 
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Table 8-6 (Continued): Statistics for 9 longitudinally stiffened girders with do/D =1, Dc/D = 0.75 

(e) KLb = 825 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.52 2.07 1.34 

COV 0.15 0.30 0.11 

Maximum 1.96 2.91 1.54 

Minimum 1.31 1.36 1.16 

(f) KLb = 975 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.72 2.46 1.28 

COV 0.21 0.32 0.11 

Maximum 2.35 3.54 1.47 

Minimum 1.32 1.59 1.10 

(f) KLb = 1125 in (2 girders) 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.52 2.22 1.24 

COV 0.27 0.39 0.22 

Maximum 1.81 2.84 1.43 

Minimum 1.24 1.60 1.05 
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Table 8-7: Statistics for 9 longitudinally stiffened girders with do/D =2, Dc/D = 0.75 

(a) KLb = 300 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.13 1.39 1.31 

COV 0.03 0.10 0.08 

Maximum 1.20 1.65 1.43 

Minimum 1.08 1.23 1.15 

(b) KLb = 450 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.16 1.40 1.34 

COV 0.04 0.11 0.07 

Maximum 1.22 1.69 1.47 

Minimum 1.10 1.23 1.18 

(c) KLb = 600 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.23 1.54 1.36 

COV 0.04 0.18 0.09 

Maximum 1.30 1.99 1.54 

Minimum 1.16 1.26 1.24 

(d) KLb = 750 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.34 1.80 1.32 

COV 0.12 0.27 0.10 

Maximum 1.66 2.51 1.50 

Minimum 1.22 1.27 1.18 
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Table 8-7 (Continued): Statistics for 9 longitudinally stiffened girders with do/D =2, Dc/D = 0.75 

(e) KLb = 900 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.52 2.11 1.27 

COV 0.18 0.32 0.11 

Maximum 2.01 3.02 1.44 

Minimum 1.24 1.36 1.10 

(f) KLb =1050 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 1.73 2.50 1.21 

COV 0.23 0.31 0.11 

Maximum 2.39 3.57 1.39 

Minimum 1.29 1.63 1.05 

(g) KLb = 1350 in 

Statistical 

Parameter 

Mmax / 

MnProposed 

Mmax / 

MnAASHTO 

Mmax / 

MnEC 

Mean 2.27 3.30 1.14 

COV 0.26 0.33 0.12 

Maximum 3.28 4.76 1.33 

Minimum 1.58 2.10 1.02 

 The following observations can be gleaned from the data presented in Tables 8-4 

through 8-7: 

4. The current AASHTO LRFD equations can severely under-predict the true strength 

in the case of singly-symmetric girders, especially at longer unbraced lengths in the 

elastic buckling range. The mean professional factor (Mmax/MnAASHTO) for Dc/D = 

0.625 varies between 1.13 and 1.62, and the COV varies between 0.10 and 0.19. 

The mean professional factor (Mmax/MnAASHTO) for Dc/D = 0.75 varies between 1.3 
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and 3.3, and the COV varies between 0.08 and 0.33. The larger means and COVs 

are for the longer unbraced lengths. It is evident that neglecting J in computing the 

elastic unbraced lengths is overly pessimistic for cross-sections with larger tension 

flanges. However, including J and using the form of the proposed or current LTB 

strength equations, will result in a gross over-prediction of the inelastic LTB 

strength of such girders. 

5. The proposed model provides a better prediction with a mean professional factor 

(Mmax/MnProposed) that varies between 1.05 and 1.37, and a COV that varies between 

0.01 and 0.15 for Dc/D = 0.625. The mean professional factor (Mmax/ MnProposed) for 

Dc/D = 0.75 varies between 1.05 and 2.27, and the COV varies between 0.01 and 

0.26. 

6. The current AASHTO model under-predicts the capacity for several reasons. The 

first is that AASHTO’s current calculation of Rb is highly conservative for singly-

symmetric girders as discussed in Section 4.6. The second is the fact that the 

AASHTO elastic LTB equations neglect the St Venant torsional stiffness (GJ) 

contribution to the buckling strength. These factors combine to make the current 

AASHTO predictions significantly conservative for these cases.  

7. The proposed model eliminates the conservatism associated with the first of the 

above reasons. However, it does not address the second reason. As discussed 

previously, one must be cautious in counting upon the contribution from GJ for 

slender web members. However, it is expected that for the close transverse stiffener 

spacing typically used in longitudinally stiffened girders (even when the do/D limit 
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is extended to 2.0), the assumption of J = 0 in writing the LTB resistances tends to 

be generally conservative.  

8. For the singly-symmetric girders studied in this research, the above conservative 

approach of taking J = 0 in the elastic LTB prediction is justified due to lack of 

better characterization of web distortion effects.  

 Based on all the data in Tables 8-2 through 8-7, one can observe that the Eurocode 

model is more conservative than both the current AASHTO and the proposed models. 

However, the under-prediction of the Eurocode model is consistent across various 

unbraced lengths for both doubly and singly-symmetric girders. This conservatism is 

largely due to two reasons:  

1. For slender web girders with unbraced lengths sufficiently short such that the yield 

limit state governs, the Eurocode cross-section model (Section 2.9) is conservative 

compared to the model proposed in Section 4.7 (which provides an accurate 

characterization of the girder yield limit state resistances in the test simulations 

conducted in Chapter 3).  

2. The residual stress pattern considered for slender web I-girders in the Eurocode 

developments is more severe than that considered in this research. 

 Summary 

 The following are the key conclusions from the studies conducted in this Chapter. 

1. The proposed model described in Section 8.3 performs better than the current 

AASHTO model because RbPr is a better estimate of the true cross-section behavior 
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than RbAASHTO, and the model provides a better estimate of the resistance within the 

inelastic buckling range.  

2. The proposed model does not penalize girders with long unbraced lengths by 

scaling the resistance by Rb. Instead, it allows the use of Rb =1.0 when LTB 

precedes web bend-buckling. 

3. The proposed model tends to be overly conservative for larger unbraced lengths in 

cases of singly-symmetric girders with large tension flanges. However, it is 

expected that most bridge girders will fall in the inelastic LTB range for design. It 

is expected that cross-frames and other bracing systems will reduce the unbraced 

lengths such that the long unbraced lengths are typically of no concern in the final 

constructed condition. In the extreme case that such a design is deemed necessary, 

the proposed model is conservative, and safe for design. 
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RESISTANCE OF STRAIGHT GIRDERS SUBJECTED TO 

COMBINED BENDING AND SHEAR 

 Loadings involving high moment and high shear can be particularly important in the 

negative moment regions of continuous-span bridges. The test simulations presented in this 

chapter are designed to evaluate the shear and bending resistances within this realm, 

considering cases where the flexural resistance is governed by the yield limit state or the 

LTB limit state in longitudinally stiffened girders. In evaluating the tests with flexure 

controlled by compression flange yielding, LTB and flange local buckling (FLB) are ruled 

out by the selection of the lateral brace spacing and the compression flange width-to-

thickness ratio. The proposed yield limit state model (Section 4.7) predicts a higher flexural 

capacity compared to the current AASHTO provisions. It is important to ascertain whether 

the use of the proposed model results in any moment-shear strength interaction. The 

proposed LTB model in Section 8.3 is used to study the behavior of longitudinally stiffened 

girders under moment gradient when flexure is controlled by LTB limit state. 

 The current AASHTO LRFD provisions neglect the presence of longitudinal stiffeners 

in predicting the shear resistance of longitudinally stiffened girders. Conversely, Cooper 

(1965) proposed a model where the shear resistances of the individual web sub-panels are 

computed separately using Basler’s equations (shear resistance equations in AASHTO 

LRFD) and then simply added to determine the shear resistance of the entire web. Both the 

current simpler AASHTO LRFD model and Cooper’s model are considered for the 

calculation of the girder shear resistances in the evaluations presented on tests with flexure 
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controlled by compression flange yield. It is demonstrated that the AASHTO shear 

equations perform as well or better than Cooper’s model for the longitudinally stiffened 

girders. Based on this conclusion, only the AASHTO shear equations are considered for 

the moment gradient studies with LTB flexure limit state discussed later in the chapter.   

 AASHTO Equation 6.10.9.3.2-1 requires a check on the ratio of the web area to the 

average flange area of the plate girder, and accordingly requires the use of either the true 

Basler equation or the full tension field action in computing the shear capacity of plate 

girders. This method is used for all the shear capacity calculations in this research. The 

AASHTO LRFD provisions use the true Basler or the complete tension field action 

equations, as appropriate, considering the full web panel, neglecting any assistance from 

the longitudinal stiffener. Conversely, the implementation of Cooper’s model uses the same 

AASHTO LRFD equations for each of the separate sub-panels.  

 High Shear-High Moment Loading with Flexure Controlled by Yield Limit State 

9.1.1 Test Setup 

 The behavior under high-shear high-moment loading is studied herein using three-point 

bending tests as shown in Figure 9-1. The setup for these tests is similar to that used by 

Cooper (1965). The end panels and the bearing and transverse stiffeners are designed such 

that failure occurs in the interior panel next to the mid-span load in all the tests. The web 

thickness used in the end panels is 1.25 in, resulting in a web slenderness ratio of 120. This 

is constant in all test simulations. The residual stress patterns applied in these tests are the 

same as those explained in Section 3.5. The imperfection pattern 2, previously selected for 



 201

the test studies in Chapters 4 and 8, is also used here. This initial imperfection is applied to 

the interior panel on one side of the load. 

 

Figure 9-1: Test setup for high shear and high bending moment (yield limit state) 

9.1.2 Case Studies 

 A total of 123 distinct tests are simulated in this research to evaluate the behavior under 

high shear and high bending moment. Lateral braces are located such that LTB is not a 

mode of failure. The following are the variables considered in these studies:  

• D/tw = 300, 240, and 200 

• do/D = 1.25, 1.5, and 2.0 

• bfc =  D/6, D/5, and D/4 

• tfc = 1.5, 1.75, and 2.25 corresponding to the different values of bfc 

• Dc/D = 0.5, 0.625, and 0.75 

• Al /Awc 

• Il  

• ds/Dc = 0.40 and 0.533 

 In addition to the variation of the above parameters, the overall girder lengths are varied 

such that the test girders have configurations that range from panels that fail in shear when 
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the applied moment is approximately 60% of the recommended moment capacity 

prediction (RbPrMy) to panels that fail in flexure when the applied shear is approximately 

60% of the predicted shear capacity based on the AASHTO shear equations (VnAASHTO). 

The largest number of the test simulations are conducted with loadings and geometries 

such that, approximately, the girders reach their flexural capacity (governed by the yield 

limit state), and shear capacity (including tension field action and calculated per the 

AASHTO LRFD Specifications) simultaneously. It may be noted that it is in the above 

ranges of the moments and shears that we expect the highest potential influence of moment-

shear strength interaction, if any. 

 Six different girder cases considered in these studies are defined in Table 9-1. These 

cases include two values of do/D, 1.25 and 1.5. Subsequent studies focus on the effect of 

extending the current AASHTO limits on do/D to 2.0 for longitudinally stiffened girders. 

The end panel lengths shown in Table 9-1 are selected to provide a desired overall length 

of the girders. Two positions of the longitudinal stiffener through the web depth are studied 

– one at 0.4 Dc and the other at 0.533 Dc. The value 0.533 Dc is closer to 0.5D, which 

theoretically maximizes the girder web shear capacity (however, it should be noted that Dc 

varies from 0.5 to 0.75D in these studies, and thus the longitudinal stiffener for this case is 

not necessarily close to the web mid-depth). Table 9-1 shows the relative position of the 

longitudinal stiffener with respect to the depth of the web (ds/Dc) for all the different girder 

web depths in compression used in the FE test simulations. The area and moment of inertia 

of the stiffener are provided per the minimum AASHTO requirements, as explained in 

Section 2.8. They vary as a function of do/D and D/tw. The moment-to-shear ratios are 

varied by changing the overall girder length, i.e., the moment to shear ratio in the tests 
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(M/V) is equal to one-half of the overall girder length. These values are shown in the right-

most column of Table 9-1.  

Table 9-1: Case studies for straight girders subjected to high shear combined with high bending 

moment 

 Case 
do/D 

IPa 

do/D 

EPa 
ds/Dc 

ds/D 

M/V Dc/D= 

0.5 

Dc/D= 

0.625 

Dc/D= 

0.75 

1 1.5 1.5 0.40 0.20 0.25 0.30 3.0D 

2 1.25 0.75 0.53 0.27 0.33 0.40 2.0D 

3 1.5 0.5 0.53 0.27 0.33 0.40 2.0D 

4 1.5 3 0.53 0.27 0.33 0.40 4.5D 

5 2.0 0.75 0.53 0.27 0.33 0.40 2.75D 

6 2.0 2.25 0.53 0.27 0.33 0.40 4.25D 

a. IP = Interior Panel, EP = End panel 

9.1.3 Results for Cases 1 Through 4 

 The FE test simulation strengths for Cases 1 through 4 are compared to the governing 

strengths from the current AASHTO shear resistance model, Cooper’s shear resistance 

model, and the recommended flexural yield strength model in Tables 9-2 through 9-5. 

Cases 5 and 6 are discussed separately in Section 9.1.4. The term Vmax is the maximum 

shear achieved in the FE test simulations, VnCooper is the shear capacity calculated as per 

Cooper’s (1965) recommendations (but using the true Basler or the Basler complete tension 

field action shear strengths as specified per the current AASHTO LRFD provisions), and 

VnAASHTO is the shear capacity calculated as per the current AASHTO LRFD provisions. 

The term Mmax is the maximum moment achieved in the test simulations. The test strengths 

are moment controlled (i.e., the flexural yield strength as per the proposed Rb governs) 

when Mmax/RbPrMy is greater than Vmax/VnAASHTO or Vmax/VnCooper. Otherwise, the tests are 
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shear controlled. The governing shear or flexural strength ratios are bolded in the table. 

Since this study is considering two different shear resistance models, the values in more 

than one column are bolded for some of the tests, indicating that one strength governs when 

the AASHTO shear resistance model is employed and another governs when Cooper’s 

shear resistance model is employed.  

Table 9-2: Comparison of the test simulation load capacities to the governing strengths from the 

AASHTO shear resistance model, Cooper’s shear resistance model, and the recommended flexural 

yield strength model (Case1) 

D/bfc  Dc/D 

D/tw = 300 D/tw = 240 D/tw = 200 

Vmax/ 

VnCooper 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnCooper 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnCooper 

Vmax/ 

VnAASHTO 

Mmax/  

RbPrMy   

6 

0.5 0.94* 0.77 1.10 0.80 0.67 1.13 0.69 0.88 1.18 

0.625 0.76 0.79 1.09 0.64 0.72 1.13 0.59 0.66 1.15 

0.75 0.85 0.82 1.10 0.66 0.72 1.12 0.58 0.68 1.17 

5 

0.5 0.86 0.93 1.03 0.76 0.82 1.09 0.84 0.72 1.14 

0.625 0.92 0.97 1.03 0.78 0.87 1.10 0.70 0.78 1.12 

0.75 1.04 1.00 1.05 0.81 0.89 1.10 0.68 0.80 1.12 

4 

0.5 0.95 1.04 0.76 0.96 1.04 0.95 0.91 0.99 1.09 

0.625 1.04 1.08 0.78 0.95 1.07 0.93 0.92 1.03 1.05 

0.75 1.25 1.20 0.85 1.06 1.16 1.00 0.91 1.06 1.07 

* Bolded values are the governing strength ratios given the use of one or both shear resistance models. 
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Table 9-3: Comparison of the test simulation load capacities to the governing strengths from the 

AASHTO shear resistance model, Cooper’s shear resistance model, and the recommended flexural 

yield strength model (Case2) 

D/bfc  Dc/D 

D/tw = 300 D/tw = 240 D/tw = 200 

Vmax/ 

VnCooper 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnCooper 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnCooper 

Vmax/ 

VnAASHTO 

Mmax/  

RbPrMy   

6 

0.5 1.17* 0.89 0.94 0.98 0.85 1.06 0.83 0.79 1.06 

0.625 1.00 0.89 0.92 0.82 0.84 1.01 0.71 0.81 1.07 

0.75 1.15 0.97 0.98 0.92 0.89 1.05 0.74 0.90 1.02 

5 

0.5 0.97 0.95 0.77 0.89 0.96 0.93 1.00 0.93 1.00 

0.625 1.08 0.97 0.76 0.95 0.97 0.91 0.84 0.94 1.00 

0.75 1.30 1.10 0.85 1.08 1.05 0.96 0.85 1.05 0.82 

4 

0.5 1.02 1.00 0.53 0.99 1.05 0.69 0.97 1.08 0.81 

0.625 1.17 1.05 0.54 1.06 1.09 0.69 0.97 1.17 0.86 

0.75 1.46 1.24 0.63 1.24 1.20 0.75 1.06 1.24 1.08 

* Bolded values are the governing strength ratios given the use of one or both shear resistance models. 

Table 9-4: Comparison of the test simulation load capacities to the governing strengths from the 

AASHTO shear resistance model, Cooper’s shear resistance model, and the recommended flexural 

yield strength model (Case3) 

D/bfc  Dc/D 

D/tw = 300 D/tw = 240 D/tw = 200 

Vmax/ 

VnCooper 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnCooper 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnCooper 

Vmax/ 

VnAASHTO 

Mmax/  

RbPrMy   

6 

0.5 0.96* 0.98 0.92 1.04 0.95 1.06 0.88 1.24 1.08 

0.625 1.10 1.01 0.92 0.91 0.98 1.04 0.78 0.91 1.09 

0.75 - - - 1.02 1.02 1.07 0.80 0.93 1.09 

5 
0.5 1.01 1.03 0.73 - - - - - - 

0.625 - - - 1.00 1.08 0.90 - - - 

4 0.5 - - - - - - 1.00 1.14 0.80 

* Bolded values are the governing strength ratios given the use of one or both shear resistance models. 
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Table 9-5: Comparison of the test simulation load capacities to the governing strengths from the 

AASHTO shear resistance model, Cooper’s shear resistance model, and the recommended flexural 

yield strength model (Case4) 

D/bfc  Dc/D 

D/tw = 300 D/tw = 240 

Vmax/ 

VnCooper 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnCooper 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

4 

0.5 0.90* 0.91 0.97 - - - 

0.625 1.03 0.95 0.99 0.76 0.81 1.04 

0.75 1.13 0.98 1.01 - - - 

*Bolded values are the governing strength ratios given the use of one or both shear resistance models. 

 Figures 9-2 and 9-3 summarize the above results for the girders with D/tw = 300 for the 

two respective shear resistance models. Figures 9-4 and 9-5 do the same for the girders 

with D/tw = 240, and Figures 9-6 and 9-7 show the results for the girders with D/tw = 200. 

Each of the figures label some of the data points from the test simulations as moment 

controlled and others as shear controlled. It is important to note that some of the tests are 

moment controlled when one shear resistance is employed, and shear controlled when the 

other shear resistance model is employed. Tables 9-6 through 9-8 provide the statistics for 

the governing strength ratios in the above plots.  
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Figure 9-2: Vmax/VnCooper versus Mmax/RbPrMy for high-moment high-shear tests with D/tw = 300 (Cases 

1 through 4) 

 

Figure 9-3: Vmax/VnAASHTO versus Mmax/RbPrMy for high-moment high-shear tests with D/tw = 300 (Cases 

1 through 4) 
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Figure 9-4:  Vmax/VnCooper versus Mmax/RbPrMy for high-moment high-shear tests with D/tw = 240 (Cases 

1 through 4) 

 

Figure 9-5:  Vmax/VnAASHTO versus Mmax/RbPrMy for high-moment high-shear tests with D/tw = 240 

(Cases 1 through 4)  
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Figure 9-6: Vmax/VnCooper versus Mmax/RbPrMy for high-moment high-shear tests with D/tw = 200 (Cases 

1 through 4) 

 
Figure 9-7:  Vmax/VnAASHTO versus Mmax/RbPrMy for high-moment high-shear tests with D/tw = 200 

(Cases 1 through 4) 
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Table 9-6: Statistics for the high-moment high-shear tests (Cases 1 through 4) with D/tw = 300  

Statistical 

Parameter 

AASHTO Cooper 

Moment 

Controlled 

 (12 tests) 

Mmax/ 

RbPrMy 

Shear 

Controlled 

 (12 tests) 

Vmax/ 

VnAASHTO 

Moment 

Controlled  

(7 tests) 

Mmax/ 

RbPrMy 

Shear 

Controlled  

(17 tests) 

Vmax/ 

VnCooper 

Mean 1.02 1.05 1.05 1.10 

COV 0.06 0.09 0.05 0.12 

Maximum 1.10 1.24 1.10 1.46 

Minimum 0.92 0.95 0.97 0.95 

Median 1.02 1.03 1.05 1.08 

Table 9-7: Statistics for the high-moment high-shear tests (Cases 1 through 4) with D/tw = 240  

  

Statistical 

Parameter  

  

AASHTO Cooper 

Moment 

Controlled 

 (13 tests) 

Shear 

Controlled 

 (10 tests) 

Moment 

Controlled  

(14 tests) 

Shear 

Controlled  

(9 tests) 

Mmax/ 

RbPrMy 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy 

Vmax/ 

VnCooper 

Mean 1.08 1.07 1.07 1.04 

COV 0.04 0.07 0.05 0.09 

Maximum 1.13 1.20 1.13 1.25 

Minimum 1.01 0.96 0.93 0.95 

Median 1.07 1.06 1.06 1.00 
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Table 9-8: Statistics for the high-moment high-shear tests (Cases 1 through 4) with D/tw = 200  

  

Statistical 

Parameter  

  

AASHTO Cooper 

Moment 

Controlled 

 (16 tests) 

Shear 

Controlled 

 (6 tests) 

Moment 

Controlled  

(17 tests) 

Shear 

Controlled  

(5 tests) 

Mmax/ 

RbPrMy 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy 

Vmax/ 

VnCooper 

Mean 1.09 1.13 1.09 1.01 

COV 0.05 0.06 0.05 0.04 

Maximum 1.18 1.25 1.18 1.06 

Minimum 1.00 1.05 1.00 0.97 

Median 1.09 1.11 1.09 1.00 

 The following observations can be gleaned from these high-moment high-shear 

strength studies: 

• On average, the AASHTO model gives the better prediction of the shear controlled 

tests for D/tw = 300, but the Cooper model gives a slightly better prediction of the 

shear controlled tests for D/tw = 240 and 200. However, the mean predictions by 

both models are reasonably good. The AASHTO model has the smaller coefficient 

of variation (COV) for D/tw = 300 and 240, and the COV ranges from 0.09 to 0.06 

for the three categories of web slenderness. Cooper’s model has a COV that ranges 

from 0.12 for D/tw = 300 to 0.04 for D/tw = 200. There does not appear to be any 

major compelling reason to implement the more involved calculations of Cooper’s 

model.  

• Usage of the AASHTO shear resistance model, rather than Cooper’s model, results 

in 5 additional tests becoming moment controlled for the girders with D/tw = 300, 

and one less test being moment controlled for the girders with D/tw = 240 and 200. 

For the girders with D/tw = 300 that shift from shear controlled to moment 
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controlled, the corresponding flexural strength ratio (Mmax/RbPrMy) is only slightly 

larger than 0.9. However, this strength ratio is within the scatter band of the results 

discussed in Section 4.7 for the proposed flexural yield limit state model. Therefore, 

these lower flexural strength ratios are considered to be acceptable.  

• In Chapter 4, the proposed flexural resistance model for the yield limit state is 

developed based on uniform bending load conditions. It can be concluded from 

Figures 9-2 to 9-7 that this model may also be used for loading conditions where 

the flexural capacity is governed by the yield limit state, including combination 

with high shear loads.  

• One can observe, generally, that there is a relatively large dispersion in the shear 

strength ratios. This dispersion is representative of past observations in research on 

transversely-stiffened I-girders without longitudinal stiffeners (White and Barker 

2008; White et al. 2008). 

 It should be noted that although Cooper’s model idealizes the separate web sub-panels 

as each developing a separate tension field, this type of behavior is not observed in any of 

the cases studied in this research. Cooper employed longitudinal stiffeners with larger 

rigidities than those required by AASHTO provisions for the shear tests. Figure 9-8 shows 

an example failure mode corresponding to Case 3 with D/tw = 300, Dc/D = 0.5 and D/bfc = 

5. The contours in the figure correspond to the von Mises stresses at the mid-thickness of 

the plates, and the bright red contours indicate regions that have yielded. One can see that 

the tension fields essentially run through the longitudinal stiffeners, at least for the 

minimum size longitudinal stiffeners per AASHTO LRFD employed in this study. Figure 

9-9 shows a comparable result, but where the flexural response is more dominant. 
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Particularly when one of the sub-panels has a small depth compared to its width, it is 

unrealistic to assume development of two separate tension fields in the sub-panels.  

 

Figure 9-8: Typical failure mode for the high-moment high-shear tests, Case 3 with D/tw = 300, Dc/D 

= 0.5 and D/bfc = 5.  

 

 

 

Figure 9-9: Typical failure mode for the high-moment high-shear tests, Case 1 with D/tw = 240, Dc/D 

= 0.75 and D/bfc = 5.  
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9.1.4 Evaluation of Strength Predictions for High-Moment High-Shear Cases with 

Panel Aspect Ratios Exceeding the Current AASHTO Limits (Cases 5 and 6) 

 It is of interest to consider whether the proposed models can be extended to girders 

with panel aspect ratios do/D up to 2.0. The proposed model for calculating Rb is 

independent of the panel aspect ratio, do. Hence the moment capacity RbPrMy calculated for 

any test girder will remain the same in the event of increasing the panel aspect ratio to 2 

(AASHTO currently restricts this value to 1.5). However, the AASHTO shear resistance 

equations are a function of do and the shear capacity of a girder can be expected to decrease 

with an increase in the panel aspect ratio.  

 Tables 9-9 and 9-10 compare the FE test simulation strengths for girder tests with do/D 

= 2.0 to the governing strengths from the AASHTO shear resistance model, Cooper’s shear 

resistance model, and the recommended flexural yield strength model. The tests girders 

consist of two different configurations with different M/V values as indicated in the rows 

in Table 9-1 corresponding to Cases 5 and 6. Figures 9-10 and 9-11 summarize these results 

for the girders with D/tw = 300 for the two respective shear strength models. Figures 9-12 

and 9-13 do the same for the girders with D/tw = 240, and Figures 9-14 and 9-15 show the 

results for girders with D/tw = 200.  
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Table 9-9: Comparison of the test simulation load capacities to the governing strengths from the 

AASHTO shear resistance model, Cooper’s shear resistance model, and the recommended flexural 

yield strength model for girders with do/D = 2.0 (Case 5) 

D/bfc Dc/D 

D/tw = 300 D/tw = 240 D/tw = 200 

Vmax/ 

VnCooper 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnCooper 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnCooper 

Vmax/ 

VnAASHTO 

Mmax/  

RbPrMy   

6 

0.5 1.12* 1.01 1.01 0.94 0.87 1.03 0.80 1.14 1.05 

0.625 0.89 1.01 0.96 0.76 0.94 1.03 0.69 0.85 1.04 

0.75 1.04 1.07 1.00 0.79 0.96 1.03 0.66 0.86 1.03 

5 

0.5 0.97 1.13 0.87 0.92 1.08 1.01 0.98 0.94 1.04 

0.625 1.00 1.13 0.83 0.91 1.12 0.98 0.83 1.02 1.02 

0.75 1.13 1.17 0.85 0.95 1.15 0.99 0.80 1.04 1.02 

4 

0.5 1.03 1.21 0.62 1.08 1.27 0.81 1.07 1.25 0.98 

0.625 1.06 1.20 0.60 1.02 1.25 0.77 1.05 1.29 0.93 

0.75 1.23 1.27 0.63 1.08 1.30 0.79 1.03 1.34 0.95 

*Bolded values are the governing strength ratios given the use of one or both shear resistance models 

Table 9-10: Comparison of the test simulation load capacities to the governing strengths from the 

AASHTO shear resistance model, Cooper’s shear resistance model, and the recommended flexural 

yield strength model for girders with do/D = 2.0 (Case 6) 

D/bfc Dc/D 

D/tw = 300 D/tw = 240 D/tw = 200 

Vmax/ 

VnCooper 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnCooper 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnCooper 

Vmax/ 

VnAASHTO 

Mmax/  

RbPrMy   

6 

0.5 0.75 0.68 1.05* 0.62 0.57 1.04 0.52 0.74 1.07 

0.625 0.62 0.71 1.03 0.50 0.62 1.05 0.45 0.55 1.05 

0.75 0.70 0.72 1.04 0.54 0.65 1.09 0.44 0.57 1.06 

5 

0.5 0.73 0.86 1.02 0.62 0.72 1.04 0.64 0.61 1.05 

0.625 0.78 0.89 1.01 0.62 0.77 1.04 0.54 0.67 1.04 

0.75 0.91 0.94 1.05 0.65 0.78 1.04 0.53 0.68 1.04 

4 

0.5 0.96 1.13 0.90 0.88 1.03 1.02 0.74 0.86 1.05 

0.625 1.00 1.13 0.88 0.88 1.08 1.03 0.76 0.94 1.05 

0.75 1.16 1.20 0.92 0.93 1.12 1.05 0.73 0.95 1.05 

*Bolded values are the governing strength ratios given the use of one or both shear resistance models 
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Figure 9-10: Vmax/VnCooper versus Mmax/RbPrMy for high-moment high-shear tests with do/D = 2 and D/tw 

= 300 

 

Figure 9-11: Vmax/VnAASHTO versus Mmax/RbPrMy for high-moment high-shear tests with do/D = 2 and 

D/tw = 300 
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Figure 9-12: Vmax/VnCooper versus Mmax/RbPrMy for high-moment high-shear tests with do/D = 2 and D/tw 

= 240 

 

Figure 9-13: Vmax/VnAASHTO versus Mmax/RbPrMy for high-moment high-shear tests with do/D = 2 and 

D/tw = 240 
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Figure 9-14: Vmax/VnCooper versus Mmax/RbPrMy for high-moment high-shear tests with do/D = 2 and D/tw 

= 200 

 

Figure 9-15: Vmax/VnAASHTO versus Mmax/RbPrMy for high-moment high-shear tests with do/D = 2 and 

D/tw = 200 
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 Tables 9-11 through 9-13 provide the statistics for the governing strength ratios in the 

above plots. The following observations can be made from these tests: 

•  Unlike the behavior in Cases 1 through 4, on average, Cooper’s model gives the 

better prediction of the shear controlled tests for girders of all web slenderness 

ratios for do/D = 2.0, while the AASHTO equations are conservative. However, the 

mean predictions by both models are reasonably good. The AASHTO model has 

the smaller coefficient of variation (COV) for D/tw = 300, and the COV varies from 

0.07 (D/tw = 300) to 0.10 (D/tw = 200). Cooper’s model has a COV that ranges from 

0.08 for D/tw = 300 to 0.02 for D/tw = 200. Like before, the prediction of shear 

capacity by Cooper’s model improves with lower web slenderness ratios.  

• Usage of the AASHTO shear resistance model, rather than Cooper’s model, results 

in six fewer tests becoming moment controlled for the girders with D/tw = 240, and 

two less tests being moment controlled for the girders with D/tw = 200. No shifting 

in the predicted type of failure occurs for D/tw = 300. For the girders with D/tw = 

240 that shift from moment controlled to shear controlled, the data points fall 

outside the block, which indicate the conservative nature of the AASHTO shear 

resistance equations. 

• It can be concluded from Figures 9-10 to 9-15 that the prediction model proposed 

in Section 4.7 may be used also for girders with panel aspect ratio of 2, which is 

larger than the current AASHTO limit of 1.5, in loading conditions where the 

flexural capacity is governed by the yield limit state, including combination with 

high shear loads.  
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Table 9-11: Statistics for AASHTO and Cooper shear prediction models for D/tw = 300 and do/D =2 

(Cases 5 and 6) 

  

 Statistical 

Parameter 

  

AASHTO Cooper 

Moment 

Controlled 

 (6 tests) 

Shear 

Controlled 

 (12 tests) 

Moment 

Controlled  

(7 tests) 

Shear 

Controlled  

(11 tests) 

Mmax/ 

RbPrMy 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy 

Vmax/ 

VnCooper 

Mean 1.03 1.14 1.02 1.06 

COV 0.01 0.07 0.03 0.08 

Maximum 1.05 1.27 1.05 1.23 

Minimum 1.01 1.01 0.96 0.96 

Median 1.04 1.13 1.03 1.04 

Table 9-12: Statistics for AASHTO and Cooper shear prediction models for D/tw = 240 and do/D =2 

(Cases 5 and 6) 

  

Statistical 

Parameter 

  

AASHTO Cooper 

Moment 

Controlled 

 (9 tests) 

Shear 

Controlled 

 (9 tests) 

Moment 

Controlled  

(15 tests) 

Shear 

Controlled  

(3 tests) 

Mmax/ 

RbPrMy 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy 

Vmax/ 

VnCooper 

Mean 1.04 1.16 1.03 1.06 

COV 0.02 0.08 0.02 0.03 

Maximum 1.09 1.30 1.09 1.08 

Minimum 1.03 1.03 0.98 1.02 

Median 1.04 1.12 1.03 1.08 
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Table 9-13: Statistics for AASHTO and Cooper shear prediction models for D/tw = 200 and do/D =2 

(Cases 5 and 6) 

  

  

 Statistical 

Parameter 

 

AASHTO Cooper 

Moment 

Controlled 

 (13 tests) 

Shear 

Controlled 

 (5 tests) 

Moment 

Controlled  

(15 tests) 

Shear 

Controlled  

(3 tests) 

Mmax/ 

RbPrMy 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy 

Vmax/ 

VnCooper 

Mean 1.04 1.21 1.04 1.05 

COV 0.01 0.10 0.01 0.02 

Maximum 1.07 1.34 1.07 1.07 

Minimum 1.02 1.04 1.02 1.03 

Median 1.05 1.25 1.05 1.05 

 Moment Gradient Studies with Flexure Controlled by LTB Limit State 

 In this section, the behavior of longitudinally stiffened girders under moment gradient 

when the flexure limit state is controlled by LTB is studied.  

9.2.1 Test Setup 

 It is shown in Chapter 8 that the proposed LTB model is adequate or conservative in 

predicting the test simulation strengths for uniform bending depending on the magnitude 

of initial geometric imperfections used. It is also shown in Chapter 7 for unstiffened girders 

that linear moment gradient with the ratio of end moment = 0.5, and Cb = 1.3 has low shear, 

and that the proposed LTB model predicts FE test data very well, with negligible moment-

shear interaction. It is also demonstrated in Chapter 7 that moment-shear interaction begins 

to influence the girder flexural resistance for slender web girders with high shear. In view 

of the above observations, longitudinally stiffened girders are studied in this section for 

linear moment diagrams with no moment at one end, and an applied moment at the other, 

i.e. β = 0 in Figure 7-1, and Cb = 1.75.  
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 The test setup is a longitudinally stiffened girder with fork boundary conditions as 

shown in Figure 7-1. There are no intermediate lateral braces. A small number of uniform 

bending studies on longitudinally stiffened girders with fork boundary conditions are first 

conducted to establish that the results concur with those obtained from the test setup with 

end fixtures for equivalent effective unbraced lengths in Chapter 4. The test setup with fork 

boundary conditions is chosen for its ease of modeling. Moment gradient cases with 

transverse loading are not considered. 

9.2.2 Case Studies 

 It is shown in the studies in Section 9.1, and subsequently in this section that the current 

AASHTO LRFD shear resistance equations are sufficient in predicting the shear capacities 

of longitudinally stiffened girders. The objective of this study is to assess behavior of 

girders under high-moment high-shear, and potential M-V interaction. It is observed that 

wider flanges result in increasing the LTB strengths such that shear is the controlling limit 

state even at long unbraced lengths. Hence, only slender web girders with narrow flanges 

are chosen for this study. 

 Six girders with panel aspect ratio, do/D = 1, ds/Dc = 0.4, and unbraced lengths shown 

in Table 9-14 are chosen for the moment gradient studies. The girder parameters are as 

follows: 

• D/tw = 300, 240  

• D/bfc = 6  

• Dc/D = 0.5, 0.625, 0.75 

• tfc = 1.5 
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Table 9-14: Case studies for longitudinally stiffened girders subjected to moment gradient 

 Case  
Lb (in) 

do/D =1 

1 450 

2 600 

3 750 

4 900 

5 1050 

9.2.3  Results for Moment Gradient Studies at LTB Limit State 

 Figures 9-16 through 9-21 show plots that compare the current and proposed LTB 

resistance equations along with the FE test simulation strengths. Vmax is the ratio of the 

shear capacity obtained in the FE test simulation to the AASHTO shear strength. Vn is the 

design shear strength of the girder as per the AASHTO shear resistance equations. The data 

points representing flexure controlled and shear controlled tests are indicated clearly in the 

figures. For example, in Figure 9-16, the first two data points are shear controlled, and the 

last three data points are flexure controlled. 

  
Figure 9-16: LTB curves for linear moment diagram with Cb = 1.75, D/tw = 240, D/bfc =6, Dc/D = 0.5 
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Figure 9-17: LTB curves for linear moment diagram with Cb = 1.75, D/tw = 300, D/bfc =6, Dc/D = 0.5 

 
Figure 9-18: LTB curves for linear moment diagram with Cb = 1.75, D/tw = 240, D/bfc =6, Dc/D = 0.625 

 
Figure 9-19: LTB curves for linear moment diagram with Cb = 1.75, D/tw = 300, D/bfc =6, Dc/D = 0.625 
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Figure 9-20: LTB curves for linear moment diagram with Cb = 1.75, D/tw = 240, D/bfc =6, Dc/D = 0.75 

 
Figure 9-21: LTB curves for linear moment diagram with Cb = 1.75, D/tw = 300, D/bfc =6, Dc/D = 0.75 

  The following can be gleaned from the above figures. 

1. The shear capacities attained by the longitudinally stiffened girders equal or exceed 

the theoretical shear capacity as per AASHTO shear equations. The data points for 

Vmax for some of the shorter unbraced lengths are not shown on the above plots 

because they are in the order of 1.6 to 3 times Vn AASHTO. The shear capacities in 

the earlier part of the chapter are not as large where the moment gradient within the 

critical unbraced length is much smaller. This suggests that in the presence of steep 

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

M
m

a
x
/M

y,
 V

m
a

x
/V

n

Lb/Lp

Mn Proposed

Mn AASHTO (Rb based on Fyc)

Mn AASHTO (Rb = 1.0)

Mmax (Flexure controlled)

Mmax (Shear controlled)

Vmax

Vmax/Vn = 2.13

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

M
m

a
x
/M

y,
 V

m
a

x
/V

n

Lb/Lp

Mn Proposed

Mn AASHTO (Rb based on Fyc)

Mn AASHTO (Rb = 1.0)

Mmax (Flexure controlled)

Mmax (Shear controlled)

Vmax/Vn = 3.64



 226

moment gradients, there is higher postbuckling shear capacity in longitudinally 

stiffened girders. This precludes any potential moment–shear interaction. 

2. In case of flexure controlled tests, it is evident that the trends observed are 

consistent with those reported in Section 8.4. The LTB strengths of the proposed 

model give excellent correlation with FE test data for doubly-symmetric girders 

(Figures 9-16 and 9-17), while tending to be increasingly conservative for singly-

symmetric cross-sections with increasing web depths in compression (Figures 9-18 

through 9-21). As explained in Section 8.4.2, this is largely due to the resistance 

equations discounting contribution from the St.Venant torsional resistance, which 

is higher for girders with larger tension flanges (larger Dc). 

3. It is observed that the proposed LTB equation for longitudinally stiffened girders 

which use the full elastic LTB strength of the cross-section (neglecting J), with Rb 

= 1.0 for longer unbraced lengths is a good estimate even when the strengths are 

multiplied by Cb.  

4. It is observed, as in the case of the LTB studies under uniform bending in Chapter 

8 that the current AASHTO resistance equation is overly conservative despite the 

magnification factor (Cb) of 1.75 on the design moment resistance. This stems from 

the poor prediction of Rb for longitudinally stiffened girders in the current 

Specifications. 

 Summary 

 The following are the key conclusions from the work presented in this chapter. 

1. The AASHTO shear equations are adequate or conservative in predicting the shear 

resistance of longitudinally stiffened girders. Although the proposed Rb model 
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increases the bending capacity of the girder, it does not cause moment-shear 

interaction. This is established via combined bending and shear studies with flexure 

controlled by the yield limit state, as well as the LTB limit state. 

2. It is shown that the maximum allowable transverse stiffener spacing can be 

increased to at least 2.0D from the current limit of 1.5D. 

3. It appears from the results presented in Section 9.2.3 that the inelastic LTB region 

is virtually indistinguishable except in the case of extremely singly-symmetric 

cross-sections (E.g. Dc/D = 0.75, D/tw = 300), and hence the proposed LTB model 

for longitudinally stiffened girders in Section 8.3 with regard to the interpolation in 

the inelastic LTB region does not come into play. However, bridge girders are often 

designed where situations with “near uniform moment” may be encountered. In 

such cases, the proposed LTB model provides better strength predictions, i.e. it is 

beneficial to incorporate the modified form of the LTB equations for longitudinally 

stiffened girders in Section 8.3, as well as use the proposed Rb model. 
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FLEXURAL RESISTANCE OF HYBRID LONGITUDINALLY 

STIFFENED GIRDERS 

 In this chapter, the proposed Rb model for homogenous girders is expanded in scope to 

allow the calculation of Rb for hybrid girders. Hybrid girders refer to girders with lower 

strength web plates than the compression flange. These studies are restricted to girders with 

longitudinal stiffeners of the same strength as the web plates. 

 The early yielding of the web and stiffener raises the question as to whether the 

longitudinal stiffener column can continue to carry stresses until the compression flange 

begins to yield. It is demonstrated in Section 6.7 that early yielding of the web does not 

significantly affect the lateral stability of the compression flange. It is also validated in 

Chapter 5 that using the proposed Rb model in conjunction with the current FLB equations 

in the Specifications is adequate and usually conservative. Hence the studies in this chapter 

are limited to two objectives. The first goal is to ensure that the Rb model for homogenous 

girders can be extended to hybrid girders without loss of generality. In doing so, the 

extended model functions as a combined model for Rh and Rb, i.e. it simultaneously 

captures the effects of web postbuckling and the different yield strengths of the flange and 

web plates. The shear strength of the girder is principally derived from the web, which has 

a lower yield strength than the flange, and hence theoretically the same shear strength as 

an equivalent homogenous girder. The flexural capacity from the combined model for Rh 

and Rb is however increased with respect to the current AASHTO equations. Thus 

evaluating potential moment-shear strength interaction constitutes the second aim of this 
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chapter. The recommended increased transverse stiffener spacing to 2.0D in Section 9.1.4 

is also evaluated for hybrid girders.  

 AASHTO Provisions for Hybrid Girders 

 The provisions for longitudinal stiffener are listed in Section 2.8. The minimum rigidity 

requirements are not a function of the longitudinal stiffener yield strength Fys. The 

slenderness limit of the stiffener (bl/ts) is a function of Fys but is not influenced by the 

different yield strengths of the stiffener and the compression flange. The AASHTO 

minimum radius of gyration, r, is however greatly increased for girders with lower stiffener 

yield strength than the compression flange. It is worthwhile to note that in the studies on 

homogenous girders, the requirement on r seldom controls, and it is typically the stiffness 

requirement, Il that controls the longitudinal stiffener design. 

 Also, as explained in Section 6.7, the plateau strength is calculated as RbRhFyc, where 

Rh is the hybrid factor, calculated as per AASHTO Equation 6.10.1.10.1.  

 Uniform Bending Tests on Hybrid Longitudinally Stiffened Girders 

10.2.1 FE Modeling 

 The test setup for uniform bending is the same as that used for homogenous girders, 

shown in Figure 4-1. The flanges of the girder have yield strengths of 70 ksi, while the 

web, longitudinal and transverse stiffeners have yield strengths of 50 ksi. The geometric 

imperfections and residual stresses are the same as those used in Chapter 4 for homogenous 

girders. 
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10.2.2 Case Studies 

 The eight cases defined in Table 10-1 are assessed as part of the parametric studies. 

Each case corresponds to a specific web panel aspect ratio (do/D), and a specific ratio of 

the depth of the longitudinal stiffener relative to the depth of the web in compression 

(ds/Dc). As in Chapter 4, the parameters Dc/D, D/tw, and bfc and tfc are varied as follows for 

each of the cases: 

• Dc /D = 0.5, 0.625 and  0.75, 

• D/tw = 200, 240 and 300, and  

• bfc = D/6, D/5 and D/4.       

• tfc = 1.75, 2.0, and 2.5 corresponding to different values of bfc. 

Table 10-1: Case studies for straight hybrid girders at yield limit state 

Case  do/D Longitudinal Stiffener ds/Dc 

1 1 AASHTO min 0.40 

2 1.5 AASHTO min 0.40 

2a 1.5 
AASHTO min for 

Homogenous Girders 
0.40 

3* 1.0 AASHTO min 0.27 

4* 1.0 AASHTO min 0.53 

5 2 AASHTO min 0.40 

6* 2 AASHTO min 0.27 

7* 2 AASHTO min 0.53 

*. Only girders with D/tw =300 are studied in these cases 

 Seven cases with three different panel aspect ratios, 1.0, 1.5 and 2.0 are studied. 

Selected studies are also performed for different stiffener positions through the web depth 

for panel aspect ratios 1.0 and 2.0. In these cases (Cases 3, 4, 6 and 7), only girders with 

D/tw = 300 are studied. These studies are aimed at ensuring that the behavior of the girders 
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at ultimate load and the recommended provisions remain applicable for various positions 

of the longitudinal stiffener. 

  Case 2 is studied twice, once with the minimum size stiffeners as per the requirement 

when Fys < Fyc, and a second time, for stiffeners sized as per Fys = Fyc = 50 ksi, i.e the same 

stiffeners used in Case 2 of Table 4-1. The Case 2a study is designed in order to evaluate 

the validity of the stringent requirements on the radius of gyration of the longitudinal 

stiffener column for girders with Fys < Fyc, and the repercussions of designing the stiffeners 

by treating the girder as if it were homogenous. The longitudinal stiffeners of Case 2 are 

approximately 2.75 times stiffer than the ones in Case 2a. The stiffeners in Case 2a do not 

meet the “r” requirement in AASHTO Specifications. 

 It must be noted that the penalty on radius of gyration for such girders result in 

disproportionately large longitudinal stiffeners for larger panel aspect ratios. For example, 

for a girder with do/D = 2, D/tw = 300, the stiffener size required is 16.5 x 1.45 inches in 

order to satisfy the AASHTO provisions for stiffener sizing. The width of this longitudinal 

stiffener is equal to or greater than the projecting compression flange width in most 

reasonably proportioned girders. In such instances, it may be more economical to use 

thicker webs and reduce the transverse stiffener spacing. However, these results are 

included here for the purpose of discussion.  

 A total of 117 girders are studied for uniform bending of hybrid longitudinally stiffened 

girders. 
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10.2.3 Results 

 This section discusses the results obtained from the uniform bending studies on hybrid 

girders.  

10.2.3.1 Evaluation of the requirement on radius of gyration limit for Fys < Fyc 

 The results for Case 2 and Case 2a are presented in Table 10-2.  It is evident that the 

strengths obtained by the girders with the more rigid stiffeners in Case 2 are 1 to 7% higher 

than the equivalent girders in Case 2a.  

 However, the primary reason behind the radius of gyration requirement is to prevent 

the premature flexural buckling of the longitudinal stiffener column, i.e. to prevent lateral 

displacement of the web at construction loads and service load conditions. Figure 10-1 

shows the load vs displacement for two girders at the mid-span of the member at the 

location of the longitudinal stiffener.  

Table 10-2: Comparison of RbFEA for Case 2 vs. Case 2a 

bfc Dc/D 
D/tw = 300 D/tw = 240 D/tw = 200 

Case 2 Case 2a  Case 2 Case 2a  Case 2 Case 2a  

D/6 

0.5 0.91 0.86 0.92 0.91 0.94 0.94 

0.625 0.87 0.81 0.90 0.84 0.92 0.88 

0.75 0.84 0.77 0.84 0.79 0.88 0.82 

D/5 

0.5 0.97 0.90 0.93 0.93 0.93 0.95 

0.625 0.88 0.86 0.92 0.88 0.94 0.89 

0.75 0.86 0.82 0.87 0.82 0.89 0.84 

D/4 

0.5 0.99 0.93 0.95 0.93 0.94 0.96 

0.625 0.92 0.90 0.92 0.91 0.96 0.92 

0.75 0.91 0.87 0.91 0.87 0.93 0.88 
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Figure 10-1: Normalized lateral web displacement at location of longitudinal stiffener versus M/My 

for Cases 2 and 2a for D/tw = 300 and Dc/D = 0.625, D/bfc = 6 (left), Dc/D = 0.75, D/bfc = 5 (right) 

 From the above figure, it is evident that ignoring the lower yield strength of the 

longitudinal stiffener as compared to the yield strength of the compression flange does not 

provide acceptable displacement control even at lower load levels. The load-deflection 

responses for other girders are similar in nature. It is also observed from the load-deflection 

responses in Figure 10-1 that the minimum stiffener size that satisfies the criteria for “r” 

holds a near zero line of lateral deflection at the location of the stiffener almost up to the 

point of ultimate load, and that the deflections increase rapidly beyond this point. It is 

reasonable to conclude based on these limited studies that the AASHTO requirement for 

the radius of gyration (Equation 6.10.11.3.3-2), which penalizes the stiffness requirement 

on lower strength stiffeners, is justified albeit conservative. 

10.2.3.2 Impact of girder panel aspect ratio and stiffener rigidity on girder strength 

 It is established from Table 10-2 and Figure 10-1 that the capacity of the girder 

increases by as much as 7% when a stiffener of three times the rigidity is used. It is 

concluded in Section 4.6.4 that the panel aspect ratio, do/D does not directly influence the 

girder strength. However the lateral stiffness requirement of the longitudinal stiffener 

column increases directly as a function of do/D. Hence, larger values of do/D requires the 
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use of more rigid stiffeners. Table 10-3 shows the results for Cases 1, 2, and 5 which have 

increasing stiffener rigidity. 

 The results for doubly-symmetric girders for do/D = 2 (Case 5) are omitted because of 

unreliable FE test data, where convergence issues are encountered. FE simulations for these 

cases with large stiffener sizes for the larger values of do/D have convergence issues 

because the stiffener is much more rigid in the lateral direction than the adjoining web, and 

there is difficulty in developing the required stress levels in the longitudinal stiffener 

column. It is observed from the results presented in Table 10-3 that increasing stiffener 

rigidity results in an increase in the girder strength, as in the case of homogenous girders 

discussed in Section 4.6.5. 

 RbAASHTO is independent of do/D and longitudinal stiffener dimensions, and is the same 

for all three cases for a given girder cross-section. It is interesting to observe that, where 

AASHTO predicts an Rb of 1 for doubly-symmetric girders with D/tw of 200, and the 

stiffener located at the optimum position for flexure (ds/Dc = 0.4), the FE test data predicts 

strengths which are 5 to 8% lower. In contrast, FE test simulations of homogenous girders 

with the same girder dimensions, achieve higher strengths than the yield moment of the 

girders. This is because My for the hybrid girders in the definition for RbFEA (Mmax/My) is 

taken as SxcFyc, although the web plate has a lower yield strength. RbAASHTO is less than 1.0 

for alternate stiffener positions (ds/Dc = 0.27, 0.53) for the same girder and stiffener 

dimensions. 
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Table 10-3: Comparison of RbFEA and RbAASHTO for Cases 1, 2 and 5 

(a) D/tw = 300 

bfc Dc/D 
RbFEA 

RbAASHTO 
Case 1 Case 2 Case 5  

D/6 

0.5 0.89 0.91 - 0.82 

0.625 0.83 0.87 0.90 0.70 

0.75 0.78 0.84 0.86 0.57 

D/5 

0.5 0.92 0.97 - 0.85 

0.625 0.87 0.88 0.91 0.76 

0.75 0.83 0.86 0.87 0.64 

D/4 

0.5 0.94 0.99 - 0.90 

0.625 0.91 0.92 0.93 0.83 

0.75 0.88 0.91 0.90 0.74 

(b) D/tw = 240 

bfc Dc/D 
RbFEA 

RbAASHTO 
Case 1 Case 2 Case 5  

D/6 

0.5 0.89 0.92 - 0.86 

0.625 0.82 0.90 0.93 0.75 

0.75 0.77 0.84 0.86 0.64 

D/5 

0.5 0.91 0.93 - 0.88 

0.625 0.86 0.92 0.94 0.80 

0.75 0.81 0.87 0.87 0.70 

D/4 

0.5 0.94 0.95 - 0.92 

0.625 0.90 0.92 0.95 0.85 

0.75 0.87 0.91 0.92 0.78 

(c) D/tw = 200 

bfc Dc/D 
RbFEA 

RbAASHTO 
Case 1 Case 2 Case 5  

D/6 

0.5 0.92 0.94 - 1.00 

0.625 0.83 0.92 0.93 0.80 

0.75 0.78 0.88 0.88 0.70 

D/5 

0.5 0.93 0.93 - 1.00 

0.625 0.86 0.94 0.93 0.83 

0.75 0.81 0.89 0.89 0.75 

D/4 

0.5 0.95 0.94 - 1.00 

0.625 0.90 0.96 0.94 0.88 

0.75 0.86 0.93 0.90 0.81 
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10.2.3.3 Impact of longitudinal stiffener position through the web depth 

 The impact of the location of the longitudinal stiffener through the web depth is 

discussed in Section 4.6.6 for homogenous girders. As before, the impact of the stiffener 

position through the web depth on the girder strength is negligible for hybrid girders. The 

strength only marginally increases for girders with lower positions of the stiffener. The 

girders continue to take load until the longitudinal stiffener column develops stresses 

significant enough to cause its failure. Hence, a lower position of the stiffener delays the 

formation of these stresses due to lower major axis stresses and smaller lateral 

deformations. 

 Tables 10-4 and 10-5 show the comparisons for cases with do/D =1 and 2 with stiffeners 

placed at the optimum location, and above and below this location for girders with D/tw = 

300.  

Table 10-4: Comparison of RbFEA for Cases 1, 3 and 4 for girders with D/tw = 300 

bfc Dc/D 
RbFEA 

Case 1 Case 3 Case 4  

D/6 

0.5 0.89 0.89 0.91 

0.625 0.83 0.82 0.86 

0.75 0.78 0.78 0.81 

D/5 

0.5 0.92 0.92 0.93 

0.625 0.87 0.85 0.89 

0.75 0.83 0.82 0.88 

D/4 

0.5 0.94 0.93 0.96 

0.625 0.91 0.90 0.94 

0.75 0.88 0.88 0.89 
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Table 10-5: Comparison of RbFEA and RbAASHTO for Cases 5, 6 and 7 for girders with D/tw = 300 

bfc Dc/D 
RbFEA 

Case 5 Case 6 Case 7  

D/6 
0.625 0.90 0.84 0.90 

0.75 0.86 0.84 0.86 

D/5 
0.625 0.91 0.90 0.95 

0.75 0.87 - 0.89 

D/4 
0.625 0.93 0.90 0.95 

0.75 0.90 - 0.92 

 Proposed Model for Evaluating Postbuckling resistance of Hybrid 

Longitudinally Stiffened Girders 

 It is observed that the stress distribution patterns and the failure modes observed for 

hybrid girders are similar to those of homogenous longitudinally stiffened girders. Figure 

10-2 shows a typical test specimen of hybrid longitudinally stiffened girders at failure.  The 

lightly shaded regions indicate portions of the girder that have yielded. It can be seen that 

the compression flange and the region around the stiffener and the web have yielded. There 

may or may not be yielding in the tension portion of the cross-section. This is similar in 

nature to the failure mode in Figure 4-2. 

 

Figure 10-2: Typical failure mode of hybrid longitudinally stiffened girder 
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 Figure 10-3 shows the average normal stresses through the mid-thickness of the hybrid 

girder web for girders with D/tw = 300, Case1. Other girders for other cases possess similar 

stress distributions at failure. Again, as in Figure 4-11, the stress distributions are nearly 

identical for different flange widths, but differ in nature for different web depths in 

compression. It is observed that the neutral axis has shifted very little from the elastic 

neutral axis of the cross-section including the stiffener area.  

 

Figure 10-3: Major axis bending stresses in the web, girders with D/tw = 300 

 Furthermore, it is observed in all cases that the compression flange stress at failure is 

70 ksi which is the yield stress of the flange plate (not shown in figure). Figure 10-2 

indicates yielding in the compression flange. Based on these observations, the proposed 

model in Section 4.7  is expanded to hybrid girders as shown in Figure 10-4. 
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Figure 10-4: Proposed cross section model and stress distribution for hybrid girders 

 The cross-section model shown above for hybrid girders is essentially the same as that 

shown in Figure 4-10 for homogenous girders. The effective cross-section widths are the 

same as in homogenous girders. This figure recognizes that Fyc and Fyt are greater than Fyw. 

The neutral axis is located based on equilibrium and strain compatibility. The extreme 

tension stresses in the cross-section may or may not be at yield depending on the cross-

section dimensions. As shown in Figure 10-3, the extreme tension stresses tend to be 

smaller as the web depth in compression becomes larger. 

 Figure 10-5 compares the moment capacities obtained in the FE test simulations to the 

proposed and AASHTO strength predictions. MnAASHTO is calculated as RbRhMyc, where as 

MnProposed is calculated as RbPrMyc, where RbPr is calculated as per Figure 10-4.The RbPr for 

hybrid girders is a combined load shedding and hybrid factor. 

 It is observed from Figure 10-5 that the proposed model predicts the simulation data 

with great accuracy. The greatest discrepancy with AASHTO model is for singly-
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symmetric cross-sections with large web depths in compression. However, even for 

doubly-symmetric cross-sections with D/tw = 300, the savings from using the proposed 

model can be as high as 20% for do/D =1. These savings will be higher when more rigid 

stiffeners are used, or for larger do/D. 

 

(a) Case 1 

 

(b) Case 3 

Figure 10-5: Comparison of MnProposed with MnAASHTO for Cases 1, 3 and 4 
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(c) Case 4 

Figure 10-5 (Continued): Comparison of MnProposed with MnAASHTO for Cases 1, 3 and 4 

 It is also observed from the above figure that the proposed model is slightly optimistic 

for girders with stiffeners located above the optimum depth for flexure (Case 3), and 

slightly conservative for stiffener positions below the optimum depth (Case 4). 

 Table 10-6 shows the statistics for the hybrid girders tested in this Chapter for uniform 

bending at the compression flange yield limit state. It is seen that the recommended model 

gives excellent correlation with test data. 

Table 10-6: Statistics for RbFEA/RbPr for straight hybrid girders at yield limit state 

Statistical Parameter RbFEA /RbPr 

Mean 1.03 

Coefficient of Variation 0.04 

Maximum 1.11 

Minimum 0.94 

Median 1.03 
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 High-Moment High-Shear Tests on Hybrid Longitudinally Stiffened Girders 

 As explained previously, it is essential to verify that the increased design flexural 

capacity of longitudinally stiffened girders does not lead to scenarios of moment-shear 

strength interaction. In order to corroborate the lack of significant moment-shear 

interaction in steel girders, selected tests are conducted. 

 Three-point bending tests similar to that shown in Figure 9-1 are used to setup the high-

moment high-shear studies in this section. The material properties, residual stresses and 

geometric imperfections are the same as those used in Section 10.2.1. The critical base 

imperfection pattern is modeled in one of the interior panels adjacent to the applied load. 

10.4.1 Case Studies 

 The girder cross-section parameters are varied as in Section 9.1.2. As in the case of 

homogenous girders, the overall girder lengths are varied such that the test girders have 

configurations that range from panels that fail in shear when the applied moment is 

approximately 60% of the recommended moment capacity prediction (RbPrMy) to panels 

that fail in flexure when the applied shear is approximately 60% of the predicted shear 

capacity based on the AASHTO shear equations (VnAASHTO). This range of the moments and 

shears is expected to be more prone to moment-shear strength interaction, if any. 

 Six different girder cases considered in these studies are defined in Table 10-7 and 

constitute a total of 162 girders. These cases include two values of do/D, 1.50 and 2.0. Two 

positions of the longitudinal stiffener through the web depth are studied – one at 0.4 Dc and 

the other at 0.533 Dc. Table 10-7 shows the relative position of the longitudinal stiffener 

with respect to the depth of the web (ds/Dc) for all the different girder web depths in 

compression used in the FE test simulations. The area and moment of inertia of the stiffener 
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are provided per the minimum AASHTO requirements, as listed in Section 2.8. The 

moment to shear ratio in the tests (M/V) is equal to one-half of the overall girder length, 

and shown in the right-most column of Table 10-7. The end panels are designed with a web 

thickness of 3 inches, such that D/tw is 50 for these panels. 

 Cases 5 and 6 are identical to Cases 3 and 4 aside from the position of the longitudinal 

stiffener. The longitudinal stiffener is placed farther along the web from the compression 

flange in Cases 5 and 6.  

 Cases 4 and 6 are designed with two interior panels and an end panel on either side of 

the load, such that there are a total of six panels in the girder. However, the first interior 

panel from the end support is designed with the same web thickness and do/D as the end 

panel, so that the interior panel adjacent to the load, with high moment and high shear is 

the critical panel. For the purpose of discussion, and in context of Table 10-7, the first 

interior panel is referred to as an end panel, and the critical interior panel as interior panel. 

Table 10-7: Case studies for hybrid girders subjected to high shear combined with high bending 

moment 

 Case 
do/D 

IPa 

do/D 

EPa 
ds/Dc 

ds/D 

M/V Dc/D= 

0.5 

Dc/D= 

0.625 

Dc/D= 

0.75 

1 1.5 1.5 0.40 0.20 0.25 0.30 3.0 D 

2 1.5 2.5 0.40 0.20 0.25 0.30 4.0 D 

3 2.0 2.0 0.40 0.20 0.25 0.30 4.0 D 

4 2.0 2.0b 0.40 0.20 0.25 0.30 6.0 D 

5 2.0 2.0 0.53 0.27 0.33 0.40 4.0 D 

6 2.0 2.0b 0.53 0.27 0.33 0.40 6.0 D 

a. IP = Interior Panel, EP = End panel 

b. Two “End panels” and one interior panel on either side of the load 
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10.4.2 Results 

 The FE test simulation strengths for Cases 1 and 2 are compared to the governing 

strengths from the current AASHTO shear resistance model. Cooper’s shear resistance 

model for longitudinally stiffened girders is not discussed for hybrid girders, as it has been 

demonstrated that they do not offer a substantial improvement over the AASHTO shear 

resistance equations. The terms Vmax and Mmax are the maximum shear and maximum 

moment achieved in the FE test simulations, and VnAASHTO is the shear capacity calculated 

as per the current AASHTO LRFD provisions. The test strengths are moment controlled 

(i.e., recommended flexural yield strength with RbPr governs) when Mmax/RbPrMy is greater 

than Vmax/VnAASHTO. Otherwise, the tests are shear controlled. The governing shear or 

flexural strength ratios are bolded in the table. 

 Tables 10-8 through 10-13 show the results for Cases 1-6. It is seen that in an all of 

these simulations, the ratio of test capacity over the design capacity is greater than 1.0. This 

indicates that moment-shear interaction is not a concern with the current AASHTO shear 

strength equations and the proposed model for the flexural capacity. 

 It is also observed by comparing Tables 10-10 and 10-12 and Tables 10-11 and 10-13 

that the lower position of the longitudinal stiffener through the web causes a trivial increase 

in the girder capacity. This can be attributed to the slightly higher shear capacity in the 

shorter bottom panels. 
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Table 10-8: Comparison of the test simulation load capacities to the governing strengths from the 

AASHTO shear resistance model, and the recommended flexural yield strength model (Case 1) 

D/bfc  Dc/D 

D/tw = 300 D/tw = 240 D/tw = 200 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnAASHTO 

Mmax/  

RbPrMy   

6 

0.5 1.02 0.98 0.94 1.12 1.21 1.16 

0.625 1.05 0.94 0.99 1.09 0.90 1.15 

0.75 1.12 0.98 1.03 1.10 0.92 1.16 

5 

0.5 1.06 0.79 1.06 0.99 1.00 1.11 

0.625 1.09 0.76 1.09 0.93 1.05 1.06 

0.75 1.19 0.81 1.18 0.99 1.10 1.09 

4 

0.5 1.12 0.57 1.12 0.72 1.12 0.87 

0.625 1.17 0.55 1.16 0.68 1.17 0.83 

0.75 1.33 0.61 1.29 0.75 1.26 0.88 

* Bolded values are the governing strength ratios given the use of one or both shear resistance models. 

Table 10-9: Comparison of the test simulation load capacities to the governing strengths from the 

AASHTO shear resistance model, and the recommended flexural yield strength model (Case 2) 

D/bfc  Dc/D 

D/tw = 300 D/tw = 240 D/tw = 200 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnAASHTO 

Mmax/  

RbPrMy   

6 

0.5 0.87 1.12 0.73 1.15 0.93 1.17 

0.625 0.91 1.07 0.78 1.13 0.70 1.17 

0.75 0.95 1.10 0.80 1.13 0.71 1.17 

5 

0.5 1.01 1.00 0.91 1.12 0.78 1.14 

0.625 1.04 0.95 0.95 1.07 0.84 1.12 

0.75 1.11 0.99 0.98 1.09 0.85 1.12 

4 

0.5 1.09 0.73 1.08 0.91 1.05 1.08 

0.625 1.13 0.70 1.12 0.88 1.08 1.01 

0.75 1.26 0.77 1.21 0.93 1.15 1.06 

* Bolded values are the governing strength ratios given the use of one or both shear resistance models. 
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Table 10-10: Comparison of the test simulation load capacities to the governing strengths from the 

AASHTO shear resistance model, and the recommended flexural yield strength model (Case 3) 

D/bfc  Dc/D 

D/tw = 300 D/tw = 240 D/tw = 200 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnAASHTO 

Mmax/  

RbPrMy   

6 

0.5 1.08 1.10 0.91 1.16 1.15 1.17 

0.625 1.10 1.01 1.02 1.16 0.86 1.18 

0.75 1.15 1.04 1.04 1.17 0.88 1.18 

5 

0.5 1.16 0.92 1.11 1.11 0.94 1.15 

0.625 1.16 0.83 1.15 1.04 1.04 1.14 

0.75 1.22 0.86 1.22 1.08 1.08 1.17 

4 

0.5 1.21 0.66 1.23 0.86 1.21 1.04 

0.625 1.23 0.61 1.27 0.79 1.23 0.95 

0.75 1.33 0.64 1.31 0.81 1.29 0.98 

* Bolded values are the governing strength ratios given the use of one or both shear resistance models. 

Table 10-11: Comparison of the test simulation load capacities to the governing strengths from the 

AASHTO shear resistance model, and the recommended flexural yield strength model (Case 4) 

D/bfc  Dc/D 

D/tw = 300 D/tw = 240 D/tw = 200 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnAASHTO 

Mmax/  

RbPrMy   

6 

0.5 0.76 1.16 0.61 1.15 0.77 1.18 

0.625 0.85 1.16 0.69 1.16 0.59 1.19 

0.75 0.85 1.14 0.70 1.16 0.60 1.20 

5 

0.5 0.96 1.14 0.77 1.15 0.64 1.16 

0.625 1.03 1.10 0.85 1.14 0.70 1.14 

0.75 1.05 1.10 0.86 1.13 0.73 1.17 

4 

0.5 1.16 0.94 1.08 1.11 0.89 1.13 

0.625 1.17 0.85 1.13 1.05 0.97 1.11 

0.75 1.24 0.89 1.17 1.08 0.99 1.11 

* Bolded values are the governing strength ratios given the use of one or both shear resistance models. 
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Table 10-12: Comparison of the test simulation load capacities to the governing strengths from the 

AASHTO shear resistance model, and the recommended flexural yield strength model (Case 5) 

D/bfc  Dc/D 

D/tw = 300 D/tw = 240 D/tw = 200 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnAASHTO 

Mmax/  

RbPrMy   

6 

0.5 1.09 1.16 1.08 1.11 1.11 1.19 

0.625 1.12 1.10 1.13 1.05 0.85 1.24 

0.75 1.17 1.12 1.17 1.08 0.85 1.23 

5 

0.5 1.17 0.96 0.89 1.19 0.93 1.17 

0.625 1.19 0.90 0.99 1.21 1.03 1.19 

0.75 1.23 0.91 0.99 1.19 1.04 1.18 

4 

0.5 1.23 0.68 1.12 1.16 1.26 1.10 

0.625 1.24 0.63 1.18 1.13 1.27 1.03 

0.75 1.33 0.67 1.22 1.14 1.34 1.06 

* Bolded values are the governing strength ratios given the use of one or both shear resistance models. 

Table 10-13: Comparison of the test simulation load capacities to the governing strengths from the 

AASHTO shear resistance model, and the recommended flexural yield strength model (Case 6) 

D/bfc  Dc/D 

D/tw = 300 D/tw = 240 D/tw = 200 

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnAASHTO 

Mmax/ 

RbPrMy   

Vmax/ 

VnAASHTO 

Mmax/  

RbPrMy   

6 

0.5 0.74 1.17 0.60 1.18 0.74 1.19 

0.625 0.82 1.19 0.67 1.21 0.56 1.23 

0.75 0.82 1.16 0.67 1.19 0.57 1.21 

5 

0.5 0.94 1.15 0.76 1.16 0.62 1.17 

0.625 1.01 1.14 0.84 1.19 0.70 1.20 

0.75 1.02 1.13 0.84 1.16 0.70 1.18 

4 

0.5 1.17 0.97 1.08 1.14 0.88 1.15 

0.625 1.19 0.91 1.14 1.11 0.96 1.15 

0.75 1.25 0.93 1.17 1.12 0.97 1.14 

* Bolded values are the governing strength ratios given the use of one or both shear resistance models. 

 Figure 10-6 shows the results in Tables 10-8 and 10-9 for Cases 1 and 2 with do/D = 

1.5. It is clear that all data points are outside of the “interaction zone”. 
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(a) D/tw = 300  

 
(b) D/tw = 240  

Figure 10-6: Vmax/VnAASHTO versus Mmax/RbPrMy for high-moment high-shear tests (Cases 1 and 2) 
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(c) D/tw = 200  

Figure 10-6 (Continued): Vmax/VnAASHTO versus Mmax/RbPrMy for high-moment high-shear tests (Cases 

1 and 2) 

 Figure 10-7 shows a typical failure mode of hybrid longitudinally stiffened girder 

subject to high moment-high shear loading. The lighter shade indicates regions that have 

yielded. It is evident that there is a clear development of a single tension field through the 

stiffener. There is also extensive yielding in the compression flange at the region of 

maximum moment near the center of the girder and in the top panel of the web. The tension 

field in the web continues to develop until the compression flange is yielded sufficiently 

such that it cannot help develop the shear forces any further. 

 

Figure 10-7: Typical failure mode for hybrid girder with high moment-high shear 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.00 0.20 0.40 0.60 0.80 1.00 1.20

V
m

a
x
/V

n
A

A
S

H
T

O

Mmax/ RbPrMy

Moment Controlled

Shear Controlled



 250

 Table 10-14 shows the statistics for the 162 girders tested for high moment- high shear 

and high shear-high moment. It is observed that the mean of the professional factors and 

the minimum values for both the moment controlled and shear controlled tests are greater 

than 1.0. The COV for the moment controlled tests are lower (0.03) than the COV for the 

shear controlled tests (0.06). However, the results are conservative, and the shear strengths 

of the girders are beneficially influenced by the higher strength flanges, although the 

resistance equations do not account for that. 

Table 10-14: Statistics for the high-moment high-shear hybrid girder tests (Cases 1 - 6)  

Statistical 

Parameter 

D/tw = 300 D/tw = 240 D/tw = 200 

Moment 

Controlled 

 (17 tests) 

Mmax/ 

RbPrMy 

Shear 

Controlled 

 (37 tests) 

Mmax/ 

RbPrMy 

Moment 

Controlled 

 (31 tests) 

Mmax/ 

RbPrMy 

Shear 

Controlled 

 (23 tests) 

Vmax/ 

VnAASHTO 

Moment 

Controlled 

 (41 tests) 

Mmax/ 

RbPrMy 

Shear 

Controlled 

 (13 tests) 

Vmax/ 

VnAASHTO 

Mean 1.13 1.17 1.15 1.19 1.16 1.21 

COV 0.03 0.07 0.03 0.06 0.03 0.06 

Maximum 1.19 1.33 1.21 1.33 1.24 1.34 

Minimum 1.07 1.01 1.07 1.06 1.06 1.08 

Median 1.14 1.17 1.15 1.18 1.17 1.21 

 Experimental Verification of the Proposed Rb Model 

 Results from selected experimental tests in the literature are compared against the 

proposed cross-section model. Tests by Cooper (1965; 1967) and Owen et al. (1970) are 

chosen to test the efficacy of the proposed model in predicting the experimental test results. 

These tests have web and flange plates of nearly equal yield strengths. 
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10.5.1 Evaluation of Cooper (1965; 1967) 

 Cooper tested girders LB2-LB5 and reported results in 1965, where he observed no 

benefits from the longitudinal stiffener in the postbuckling capacity. From Table 10-15, it 

appears the AASHTO provides a better prediction of the test capacities reported by Cooper 

than the proposed model. However, Cooper observed in a later publication in 1967 by 

means of an additional test LB6 that longitudinal stiffeners when sized adequately achieve 

their ultimate strengths with almost no stress redistribution in the web. It is found that the 

longitudinal stiffener sizes used in tests LB2 to LB5 have at least 20% larger bl/ts than the 

current AASHTO limits that are intended to prevent local buckling of the stiffener. Cooper 

observed that the failure of the girders was preceded by failure of the longitudinal 

stiffeners. The proposed model predicts higher strengths than the reported results for these 

tests because it only works under the assumption that the stiffeners are sized as per the 

AASHTO requirements which includes a maximum stiffener slenderness (bl/ts). It is 

observed that for LB6, where AASHTO ignores the contribution of the longitudinal 

stiffener, the proposed model predicts a strength 13% higher than AASHTO, and equal to 

the reported value. 

Table 10-15: Comparison of RbExperiment with RbAASHTO and RbProposed from Cooper’s Tests 

Girder D/tw RbReported RbAASHTO RbProposed 

LB2* 444 0.88 0.85 0.95 

LB3* 447 0.89 0.85 0.96 

LB4* 447 0.90 0.85 0.96 

LB5* 447 0.91 0.85 0.96 

LB6 408 0.95 0.82 0.95 

* Longitudinal stiffeners do not satisfy AASHTO requirements 
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10.5.2 Evaluation of Owen et al. (1970) 

 Table 10-16 compares the results from the tests conducted by Owen, et.al. It is observed 

that for this high slenderness, the proposed model is 5 to 12% conservative. This is due to 

the simplified expressions for the effective widths in the model. The test TG 4-1 had a 

longitudinal stiffener that is twice the minimum rigidity requirement in AASHTO and only 

half the maximum slenderness. Girders TG 1-1 and TG 2-1 had stiffeners that were much 

less rigid, but also more stocky. It is clear that the reported strength for TG 4-1 is higher 

due to the more rigid stiffener. AASHTO on the other hand predicts strengths that are 30 

to 38% lower than the reported results.  

 It is also interesting to observe that despite the high web slenderness used in these tests 

(750), the girders achieve almost the full compression flange yield strength on account of 

using the longitudinal stiffeners. The proposed model recommends effective web widths 

as a function of the web depth in compression, based on the studies conducted in this 

research, where D/tw is limited to 300. This is a clear indicator that there is enormous 

potential for using longitudinally stiffened girders with higher web slenderness, and 

achieve much larger strengths than currently predicted by AASHTO. 

Table 10-16: Comparison of RbExperiment with RbAASHTO and RbProposed from Owen et.al 

Girder D/tw RbReported RbAASHTO RbProposed 

TG 1-1 750 0.96 0.66 0.91 

TG 2-1 750 0.99 0.66 0.91 

TG 4-1 750 1.03 0.66 0.91 
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 Summary 

 The following are the key recommendations and findings from the research on hybrid 

longitudinally stiffened girders. 

1. The improved Rb model for homogenous girders proposed previously is expanded 

to serve as a combined Rb and Rh model for hybrid longitudinally stiffened girders. 

2. The model is expanded to hybrid girders without changing any key element of the 

model for homogenous girders. 

3. The proposed model is evaluated for potential moment shear interaction effects and 

is in fact found to be conservative under moment gradient effects. This indicates 

the contribution of the higher strength compression flange in developing post-

buckling shear strength. 

4. Although the tests in this chapter preclude LTB and FLB, it can be surmised from 

the results in Chapters 5, 6 and 8 that the proposed Rb model is conservative for 

FLB and that the proposed LTB model works as well for hybrid girders. The 

recommendations in this chapter are expected to satisfy other limit states. 

5. The comparisons with experimental results indicate that AASHTO model is clearly 

conservative when stiffeners are proportioned such that premature failure of the 

longitudinal stiffeners are avoided. It is seen that the proposed model predicts 

strengths that are much higher and closer to the reported experimental values than 

the current Specifications. It however tends to be conservative for larger web 

slenderness than those considered in this research. This is because the proposed 

expressions for effective panel widths are functions of the web depths in 

compression. 
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PRELIMINARY STUDIES ON CURVED LONGITUDINALLY 

STIFFENED GIRDERS AT YIELD LIMIT STATE 

 In this chapter, parametric studies are conducted on curved homogenous girders with 

single longitudinal stiffeners. The principal parameter varied in addition to those varied in 

the earlier straight girder studies is the curvature parameter  

Z 
20.95

= o

w

d

Rt
  (11.1) 

(as defined by AASHTO). These studies are aimed at understanding the influence of 

horizontal curvature on the ultimate flexural capacity of longitudinally stiffened plate 

girders, with a focus on cases where the girder flexural capacity is governed by the yield 

limit state and where the girder flange lateral bending in relatively small.  

  Constant Test Parameters 

 The following parameters are held constant in all these tests. 

1. The yield stress of all plated elements, Fy is 50 ksi. 

2. The depth of web panel, D is 150 inches. 

3. A single size for all of the transverse stiffeners is designed to meet the AASHTO 

(2014) requirements for all of the tests. The transverse stiffeners are sized at 12.5 x 

0.8 inches. 

4. The width-to-thickness ratio, bl/ts, of the longitudinal stiffeners is set at the 

AASHTO (2014) maximum limit, 0.48 /
ys

E F . 
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5. The width of the compression flange is taken as bfc = D/3. 

  Variable Test Parameters 

 To understand the influence of longitudinal stiffeners on the flexural capacity of 

horizontally curved girders, the following design parameters are varied to create a 

comprehensive suite of parametric studies to study the curved girder response at the yield 

limit state. 

1. D/tw = 300, 240, and 200 

2. do/D = 0.75,1.0, 1.5, and 2.0 

3. Dc/D = 0.5, 0.625, and 0.75 

4. Al /Awc, varied as explained below 

5. Il, varied as explained below 

6. R 

where: 

R = radius of curvature of girder 

 The parameters Al/Awc and Il are varied by designing the longitudinal stiffener sizes to 

meet the minimum requirements as per AASHTO. These requirements are the same as 

described in Section 2.8, except that an additional curvature factor, Z, is applied to the 

rigidity requirement. Therefore, these parameters are varied as a function of do/D and D/tw. 

The radius, R, is varied by placing limits on the AASHTO curvature parameter, Z, which 

is applied to the longitudinal stiffener rigidity. AASHTO limits this to a value of 10. The 

studies evaluate the effect of Z up to a value of 15. 
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  Test Setup 

 The test setup for the curved girders is the same as that for straight girders as shown in 

Figure 3-1 except that a horizontal curvature is introduced. The curvature is constant along 

the length of the test setup. The girders are braced out of plane at top and bottom flanges 

at each of the transverse stiffener locations in the test specimens. 

 Case Studies 

 The studies are conducted on four groups of tests with different panel aspect ratios 

ranging from 0.75 to 2.0. The case studies are summarized in Table 11-1. Each of these 

cases is further subdivided into several tests with different radii, resulting in different 

curvature parameters. For instance, Case 1 is a set of parametric studies for do/D = 1, with 

Dc/D, D/tw, and do/R as variable parameters. Similar to the straight girder studies, the depth 

of the stiffener location is always at 0.4Dc, which has been established as the theoretical 

optimum stiffener location for flexure. Cases 1a, 1b, and 1c are the same girders with 

different radii. The suffix i and o indicate that the longitudinal stiffener is placed on the 

inside (towards the center) or outside (away from the center) of the curve. Cases 2, 3, and 

4 are studies with do/D = 1.5, 2, and 0.75 respectively. Similar to Case 1, each of these 

cases are also subdivided into several cases based on their radii. However, Cases 2, 3 and 

4 are only analyzed with the longitudinal stiffener on the inside of the curve as a result of 

the observations from Case 1. The longitudinal stiffener sizes for each girder in each case 

are designed such that they are just sufficient to satisfy the corresponding AASHTO design 

criteria. A single size transverse stiffener (12.5 x 0.8 inches) is used for all the analyses, 

which satisfies the minimum size requirement from AASHTO for all the girders in all 

cases. The compression flanges of the test panels are compact, and are braced such that 
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FLB and LTB, according to the AASHTO LRFD provisions, does not govern any of the 

resistances in the studies presented in this section. To assess directly the importance of 

curvature of the web in on postbuckling flexural response, Cases 1 and 4 are also analyzed 

as straight girders and the results are presented. 

 A total of 162 different girders are studied in this chapter. 

Table 11-1: Case studies for curved girders at yield limit state 

Case  do/D R (ft) do/R 

1a-i 1 1500.00 0.01 

1a-i2 1 1500.00 0.01 

1a-o 1 1500.00 0.01 

1b-i 1 500.00 0.025 

1b-o 1 500.00 0.025 

1c-i 1 312.50 0.04 

1c-o 1 312.50 0.04 

2a-i 1.5 1875.00 0.01 

2b-i 1.5 815.22 0.023 

2c-i 1.5 535.71 0.035 

3a-i 2 1666.67 0.015 

3b-i 2 1000.00 0.025 

4a-i 0.75 208.33 0.045 

4b-i 0.75 144.23 0.065 

 Calculation of RbFEA 

 RbFEA for the curved girder studies is computed as Mmax/MnPr, where Mmax is the 

maximum moment reached at the maximum load capacity in the FE test simulations, and 

MnPr is the theoretical moment capacity of the girder computed using the one third rule: 
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 The unbraced length Lb for each case is the same as the transverse stiffener spacing, i.e. 

the girders are braced at every stiffener/cross frame location. In the tests presented in this 

chapter, the flange lateral bending stresses fl  are a small fraction (1% to 5%) of the overall 

flexural stresses in the compression flange. Therefore, the maximum reduction in the 
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major-axis bending resistance due to the flange lateral bending is only in the order of 2% 

in these studies. The primary emphasis in these tests is on the influence of the horizontal 

curvature on the longitudinal stiffener behavior.  

 Synthesis of Results 

 All the FE results for the 162 tests associated with the cases from Table 11-1 are 

presented in Tables 11-3 through 11-10.  

11.6.1 Evaluation of Critical Side of Curvature for Base Imperfection  

 The base imperfection pattern used in the parametric studies for curved girders is the 

same as that used in the straight girder studies. However, to check the influence of applying 

this imperfection on the convex or concave side of the curve, a sensitivity study on Case 

1a-i is performed. The imperfection is applied on the opposite side of the stiffener in Case 

1a-i while it is applied on the same side of the stiffener in Case 1a-i2. As previously 

described, the suffix i indicates that the longitudinal stiffener is placed on the side of the 

girder that is towards the center of the curve. Table 11-2 compares the results obtained 

from the two cases. It may be concluded that the effect of the direction of the base 

imperfection pattern is minimal. However, the strengths of the girders are slightly smaller 

when the imperfection is applied on the same side as the stiffener, i.e., when the stiffener 

imperfection is the direction of the side of the web having the longitudinal stiffener. In all 

remaining studies, the base imperfection is applied on the same side as the longitudinal 

stiffener. 
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Table 11-2: RbFEA for girders with web imperfection applied on different sides of the curve  

D/tw Dc/D Case 1a -i Case 1a -i2  

300 

0.5 0.9948 0.9933 

0.625 0.9809 0.9715 

0.75 0.9564 0.9472 

240 

0.5 1.0177 1.0065 

0.625 0.9926 0.9760 

0.75 0.9524 0.9490 

200 

0.5 1.0413 1.0227 

0.625 1.0028 0.9924 

0.75 0.9698 0.9611 

11.6.2 Relative Performance of AASHTO, Eurocode and FE Test Simulations 

 Table 11-3 shows a comparison of RbFEA with RbAASHTO  and RbEC. The relative behavior 

of the curved girder models is similar to the behavior observed in the straight girder studies. 

Similar to the previous studies, the Eurocode predictions are closer to the FE simulation 

results, and the AASHTO predictions are more conservative for higher values of Dc/D. The 

Eurocode calculations are presented only for Case1a-i because all other cases display the 

same trends in their behavior with respect to values predicted by AASHTO and FE. The 

prediction of Rb using the proposed model from Section 0 is evaluated in Section 11.7. 
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Table 11-3: Comparison of RbAASHTO, RbEC and RbFEA (Case 1a – i) 

(a) Dc/D = 0.5 

D/tw RbAASHTO RbEC RbFEA RbFEA/RbAASHTO RbFEA/RbEC 

300 0.93 0.94 0.99 1.06 1.06 

240 1.00 0.94 1.02 1.02 1.08 

200 1.00 0.95 1.04 1.04 1.10 

(b) Dc/D = 0.625 

D/tw RbAASHTO RBEC RbFEA RbFEA/RbAASHTO RbFEA/RbEC 

300 0.88 0.92 0.98 1.11 1.06 

240 0.90 0.92 0.99 1.10 1.08 

200 1.00 0.92 1.00 1.00 1.09 

(c) Dc/D = 0.75 

D/tw RbAASHTO RBEC RbFEA RbFEA/RbAASHTO RbFEA/RbEC 

300 0.82 0.90 0.96 1.16 1.06 

240 0.85 0.90 0.95 1.12 1.06 

200 0.87 0.90 0.97 1.11 1.08 

11.6.3 Comparison of Girders With and Without Longitudinal Web Stiffener 

 Table 11-4 compares the results between stiffened and unstiffened girders for the two 

cases that have the sharpest radii. This helps in quantifying the effect of the longitudinal 

stiffeners in contributing to the overall flexural capacity of curved girders. The table clearly 

shows that the curved girders attain an improvement in strength when they are 

longitudinally stiffened as opposed to the slender web girders with no longitudinal 

stiffeners. It is also clear that a greater value of Dc/D is detrimental to the capacity of the 

girder, and the more slender the web, the smaller the capacity. 
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Table 11-4: Comparison of RbFEA of plate girders with and without longitudinal stiffeners 

D/tw Dc/D Case 4a-i Case 4a-no LS Case 4b-i Case 4b-no LS 

300 

0.5 1.01 0.98 1.02 0.99 

0.625 0.98 0.95 0.99 0.96 

0.75 0.96 0.93 0.97 0.94 

240 

0.5 1.03 0.98 1.03 0.99 

0.625 0.99 0.95 1.00 0.96 

0.75 0.97 0.92 0.98 0.93 

200 

0.5 1.05 0.98 1.05 0.99 

0.625 1.01 0.94 1.02 0.96 

0.75 0.98 0.92 0.99 0.93 

11.6.4 Evaluation of Relative Efficacy of Longitudinal Stiffener When Placed Inside 

or Outside of the Curvature 

 Table 11-5 compares the simulation results for Case 1 when the longitudinal stiffener 

is placed towards (inside) or away (outside) from the center of curvature. While the girder 

appears to have a slight increase in capacity when the longitudinal stiffener is placed on 

the outside of the curve, it is important to note that AASHTO requirements for the 

minimum required longitudinal stiffener rigidity are different depending on the side of web 

where the stiffener is placed. The required stiffener rigidity is larger when the stiffener is 

placed on the outside of the curve. Based on the behavior in straight girders, and on the 

results presented in this chapter, it is reasonable to surmise that the side of the web where 

the stiffener is placed has little bearing on the overall flexural capacity of the girder when 

the AASHTO rules are applied for the stiffener rigidity. 
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Table 11-5: Effect of side of the web at which the longitudinal stiffener is placed (inside or outside) on 

RbFEA 

D/tw Dc/D Case 1a -i Case 1a -o Case 1b-i Case 1b-o Case 1c-i Case 1c-o 

300 

0.5 0.9948 1.0013 1.0137 1.0202 1.0149 1.0225 

0.625 0.9809 0.9703 0.9808 0.9987 0.9916 1.0087 

0.75 0.9564 0.9486 0.9735 0.9783 0.9787 0.9862 

240 

0.5 1.0177 1.0243 1.0290 1.0310 1.0338 1.0368 

0.625 0.9926 0.9908 0.9987 1.0147 1.0082 1.0237 

0.75 0.9524 0.9629 0.9691 0.9853 0.9908 0.9985 

200 

0.5 1.0413 1.0356 1.0492 1.0449 1.0553 1.0478 

0.625 1.0028 1.0178 1.0211 1.0323 1.0316 1.0443 

0.75 0.9698 0.9853 0.9856 1.0039 1.0004 1.0155 

11.6.5 Influence of Degree of Curvature on Ultimate Strength 

 Tables 11-6 through 11-9 show the effect of the curvature on the flexural capacity of 

the girders for different panel aspect ratios. In all these tables, it may be observed that the 

capacity of the girder increases with decreasing R. This is likely due to the increase in the 

longitudinal stiffener size required for the increased curvature. To scrutinize the above 

observation further, 11-10 compares Cases 1 and 4 with and without horizontal curvature. 

It is important to note that, the flange width in all these studies is one-third of the depth of 

the girder, and ranges between one-third to one half of the lateral unbraced length. This 

limits the flange lateral bending stress to a maximum of 5% of the compression flange yield 

stress. The capacities (indicated by RbFEA) are nearly the same in most cases (within 1 to 

2%) which leads to the conclusion that the horizontal curvature has no significant effect on 

the flexural capacity when the base flexural capacity is governed by the yield limit state 

and when flange lateral bending stresses are small. 
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Table 11-6: Effect of degree of curvature on RbFEA (do/D =1) 

D/tw Dc/D 
Case 1a –i (R = 1250 ft) Case 1b-i (R = 500 ft) Case 1c-i (312.5 ft) 

bl x ts (in) RbFEA bl x ts (in) RbFEA bl x ts (in) RbFEA 

300 

0.5 7.2 x 6.3 0.99 7.86 x 0.68 0.99 8.32 x 0.72 0.99 

0.625 7.2 x 6.3 0.98 7.86 x 0.68 0.98 8.32 x 0.72 0.99 

0.75 7.2 x 6.3 0.96 7.86 x 0.68 0.97 8.32 x 0.72 0.98 

240 

0.5 8.32 x 0.72 1.02 9.01 x 0.78 1.03 9.36 x 0.81 1.03 

0.625 8.32 x 0.72 0.99 9.01 x 0.78 0.99 9.36 x 0.81 1.01 

0.75 8.32 x 0.72 0.95 9.01 x 0.78 0.97 9.36 x 0.81 0.99 

200 

0.5 9.36 x 0.81 1.04 9.94 x 0.86 1.05 10.4 x 0.9 1.05 

0.625 9.36 x 0.81 1.00 9.94 x 0.86 1.02 10.4 x 0.9 1.03 

0.75 9.36 x 0.81 0.97 9.94 x 0.86 0.98 10.4 x 0.9 1.00 

Table 11-7: Effect of degree of curvature on RbFEA (do/D =1.5) 

  

D/tw 

  

Dc/D 

Case 2a –i (R = 1875 ft) Case 2b-i (R = 815.22 ft) Case 2c-i (R = 535.71 ft) 

bl x ts (in) RbFEA bl x ts  (in) RbFEA bl x ts (in) RbFEA 

300 

0.5 9.59 x 0.83 1.01 10.51 x 0.91 1.02 11.21 x 0.97 1.02 

0.625 9.59 x 0.83 0.98 10.51 x 0.91 0.99 11.21 x 0.97 1.00 

0.75 9.59 x 0.83 0.95 10.51 x 0.91 0.97 11.21 x 0.97 0.98 

240 

0.5 11 x 0.955 1.03 11.9 x 1.03 1.03 12.6 x 1.095 1.04 

0.625 11 x 0.955 1.00 11.9 x 1.03 1.01 12.6 x 1.095 1.04 

0.75 11 x 0.955 0.97 11.9 x 1.03 0.99 12.6 x 1.095 1.00 

200 

0.5 12.35 x 1.07 1.04 13.23 x 1.145 1.05 13.92 x 1.205 1.05 

0.625 12.35 x 1.07 1.04 13.23 x 1.145 1.06 13.92 x 1.205 1.06 

0.75 12.35 x 1.07 1.00 13.23 x 1.145 1.02 13.92 x 1.205 1.02 



 265

Table 11-8: Effect of degree of curvature on RbFEA (do/D =2.0) 

D/tw  Dc/D 
Case 3a –i (R = 1666.67 ft) Case 3b-i (R = 1000 ft) 

bl x ts (in) RbFEA bl x ts (in) RbFEA 

300 

0.5 12.36 x 1.07 1.01 13.29 x 1.15 1.02 

0.625 12.36 x 1.07 0.99 13.29 x 1.15 1.01 

0.75 12.36 x 1.07 0.96 13.29 x 1.15 0.99 

240 

0.5 14.04 x 1.205 1.02 15 x 1.3 1.03 

0.625 14.04 x 1.205 1.02 15 x 1.3 1.04 

0.75 14.04 x 1.205 1.01 15 x 1.3 1.01 

200 

0.5 15.6 x 1.35 1.03 16.64 x 1.44 1.04 

0.625 15.6 x 1.35 1.06 16.64 x 1.44 1.07 

0.75 15.6 x 1.35 1.02 16.64 x 1.44 1.03 

Table 11-9: Effect of degree of curvature on RbFEA (do/D =0.75) 

 D/tw  Dc/D 
Case 4a –i (R = 208.33 ft) Case 4b-i (R = 144.23 ft) 

bl x ts (in) RbFEA bl x ts  (in) RbFEA 

300 

0.5 6.7 x 0.58 1.01 7.06 x 0.611 1.02 

0.625 6.7 x 0.58 0.98 7.06 x 0.611 0.99 

0.75 6.7 x 0.58 0.96 7.06 x 0.611 0.97 

240 

0.5 7.62 x 0.66 1.03 7.97 x 0.69 1.03 

0.625 7.62 x 0.66 0.99 7.97 x 0.69 1.00 

0.75 7.62 x 0.66 0.97 7.97 x 0.69 0.98 

200 

0.5 8.49 x 0.735 1.05 8.9 x 0.77 1.05 

0.625 8.49 x 0.735 1.01 8.9 x 0.77 1.02 

0.75 8.49 x 0.735 0.98 8.9 x 0.77 0.99 
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Table 11-10: Comparison of RbFEA for curved and straight configurations 

D/tw Dc/D 
Case 1a –i 

(curved) 

Case 1a –s 

(straight) 

Case 4a –i 

(curved) 

Case 4a –s 

(straight) 

300 

0.5 0.99 0.99 1.01 0.99 

0.625 0.98 0.96 0.98 0.97 

0.75 0.96 0.94 0.96 0.95 

240 

0.5 1.02 1.02 1.03 1.02 

0.625 0.99 0.97 0.99 0.98 

0.75 0.95 0.95 0.97 0.96 

200 

0.5 1.04 1.03 1.05 1.04 

0.625 1.00 1.00 1.01 1.00 

0.75 0.97 0.97 0.98 0.97 

 Evaluation of Proposed Model 

 This section compares the results for the 162 girder models considered in this chapter 

against the prediction model presented in Figure 4-10. From Table 11-11, it is evident that 

the same cross-section model proposed for the straight girders may be used for curved 

girders when the base flexural capacity is governed by the yield limit state and when lateral 

bending stresses are within 5% of the compression flange yield stress. To study girders that 

are subjected to higher lateral bending stresses, it is necessary to consider the LTB limit 

state, which is beyond the scope of the current study. 

Table 11-11: Performance of RbPr in comparison to RbFEA for Curved Girders 

Statistical Parameter RbFEA /RbPr 

Mean 1.02 

Coefficient of Variation 0.02 

Maximum 1.07 

Minimum 0.99 

Median 1.02 
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SUMMARY OF FINDINGS AND RECOMMENDATIONS FOR 

FUTURE WORK  

 Summary of Studies Conducted in This Research 

 The following are the primary studies conducted in this research. 

1. The web postbuckling flexural capacity of homogenous longitudinally stiffened 

girders is evaluated at the yield limit state, and a cross-section model is proposed. 

The studies are later expanded to include hybrid girders. 

2. This cross-section model is validated for use with the current FLB equations in the 

Specifications.  

3. The study of the LTB limit state is rendered more complex due to the disconnect 

observed between FE test simulations and the LTB resistance equations in the 

Specifications. An in-depth study of unstiffened compact web rolled beams and 

noncompact web and slender web girders is carried out to determine the appropriate 

initial geometric imperfections and residual stresses for FE test simulations to 

provide correlation with experimental data. Minor modifications to the current 

AISC/ AASHTO LTB resistance equations are also proposed based on uniform 

bending tests. 

 These recommendations are further validated for moment gradient loading. The 

proposed LTB resistance equations are then extended to include longitudinally 

stiffened girders. 
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4. Homogenous longitudinally stiffened girders are then evaluated for loading with 

combined bending and shear loading. The current AASHTO provisions regarding 

the maximum transverse stiffener spacing are examined, and it is determined that 

the limit may be increased. Potential moment-shear strength interaction is gaged 

for both homogenous and hybrid girders under high moment-high shear loading. 

Flexural limit states include both compression flange yield and LTB. 

5. Preliminary studies are conducted on curved longitudinally stiffened girders at the 

yield limit state. 

 Key Contributions in This Research 

 The following are the key contributions of this research. 

12.2.1 Proposed Model for Postbuckling Flexural Resistance of Longitudinally 

Stiffened Girders 

1. A cross-section model is proposed in Section 4.7 which can be used to calculate the 

ultimate moment capacity of a longitudinally stiffened girder. The salient FEtures 

of the proposed model are: 

a. The stress distribution and effective panel widths for the compression side of 

the girder are provided. 

b. The depth of neutral axis, Dc*, is calculated based on an interative computation 

that satisfies both compatibility and equilibrium. 

c. The effective widths in the various sub-panels are taken as simple linear 

functions of Dc* and tw. This is an advantage over the Eurocode model, which 

involves more extensive calculations to determine the plate effective widths. 
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d. An alternate simplified model is provided that can be used when Al/Aw is less 

than 0.15, which provides 3 to 5% higher strengths than the exact model. This 

computation is simpler to use because the depth of the neutral axis can simply 

be taken as the elastic neutral axis of the gross cross-section and the 

compression stress over all effective portions of the web is equal to the yield 

stress of the web. The tension stresses can be calculated using the above depth 

of neutral axis, based on the assumption of a linear strain variation through the 

cross-section depth, and satisfying equilibrium. 

e. The flexural capacity of the girder at the yield limit state, MnPr is calculated by 

integrating the idealized stress distribution over the cross-section, using 

elementary principles of mechanics. The load shedding factor, RbPr, is evaluated 

as MnPr /My, and is limited to a maximum value of 1.0. 

2. It is established that the proposed model used in conjunction with the FLB 

equations for noncompact flanges is satisfactory in predicting the capacities of these 

types of girders. Slender flanges are not studied in this research because AASHTO 

prohibits their use in bridge girders by limiting the maximum flange slenderness to 

12.0. 

3. The model originally provided for homogenous girders is expanded to predict the 

flexural capacity of hybrid girders without changing any component of the original 

model. This model serves as a combined Rb and Rh model for hybrid longitudinally 

stiffened girders, and it is not required to compute the hybrid factor independently 

for the computation of flexural resistance. 
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4. It is noteworthy that while this procedure of calculating RbPr is more elaborate than 

the simple equation in the current AASHTO LRFD, the savings can be substantial. 

It is possible to obtain up to 60% more capacity by this calculation for both 

homogenous and hybrid girders for girders with high web depths in compression 

and narrow flanges (Dc/D = 0.75, D/bfc = 6, D/tw = 300). The least savings obtained 

are in the order of 10% for doubly-symmetric girders with D/tw = 300, and D/bfc = 

4. The savings increase up to 20% for identical girders with D/bfc = 6. However, for 

cases where AASHTO recommends that Rb be taken as 1.0, the proposed and the 

current equations are identical. 

12.2.2 Proposed Modifications to LTB Equations 

1. Based on extensive sensitivity studies considering experimental tests and various 

rolled and welded type plate girder sections, the use of one half of the AWS 

fabrication tolerances are recommended as the initial geometric imperfections to be 

used in FE test simulations. This constitutes using Lb/2000 as the flange sweep, and 

D/300 for the web out-of-flatness for unstiffened girders, and a flange tilt which is 

the smaller of 1/8 in or bfc/200. The web out-of-flatness is D/134 for longitudinally 

stiffened girders. This is to be combined with one-half Lehigh residual stresses for 

rolled beams and one-half Best-fit Prawel residual stresses for welded plate girders. 

2. A smaller plateau length 0.63 /
p t y

L r E F= , and a smaller Fyr = 0.5Fy are 

recommended within the AISC and AASHTO LTB equations based on uniform 

bending studies. The current Specification provisions allow a longer plateau length 

for rolled beams, which cannot be justified based on simulations. The current LTB 
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design equations also limit the value of Fyr to be the smaller of 0.7Fyc or Fyw, but 

not less than 0.5Fyc. The proposed equations simplify the equations by providing a 

single value of Lp and a single value of Fyr for all types of cross-sections. 

3. The recommendations based on uniform bending studies are also evaluated for 

applicability to moment gradient loading. 

a. It is observed that behavior of beams with transverse loading within the 

unbraced length is different from girders with linear moment gradient loading 

with no transverse loading. This is principally due to the location of the 

maximum moment with respect to the brace point. A modification factor to the 

inelastic LTB equation is proposed which addresses this discrepancy, as 

explained in detail in Section 7.2. Further studies on noncompact and slender 

web sections with transverse loading are required to validate the proposed 

equation. 

b. The Cb equations defined in the AISC and AASHTO are based on elastic 

buckling solutions. Scaling of the entire inelastic LTB curve by a Cb based on 

elastic buckling solutions often gives predictions higher than the FE test 

simulation data, especially for cross-sections that have narrower flanges 

compared to web depths. In other words, an “inelastic Cb” effect is observed. 

This behavior is corroborated by rigorous inelastic buckling solutions in 

SABRE2 which are based on the proposed LTB equations. 

c. The Cb equations in the current Specifications are based on the assumption of 

torsionally simply-supported end conditions. It is shown in this research that 

warping fixity at either or both ends combined with an effective length factor, 
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K < 1 results in an over-prediction of FE test data in the elastic LTB region of 

the curve. With greater warping fixity, the K value is smaller and the 

discrepancy with the test data is larger. Further research is required to assess 

the influence of warping rigidity on the moment modification factor. 

d. Moment-shear interaction is not observed for compact web rolled beams, but is 

observed to be a concern for slender web unstiffened girders. A combination of 

moment-shear interaction and an “inelastic Cb” effects, along with potential 

web distortion leads to lower strengths in FE test simulations as compared to 

the current or proposed equations. It is noted that an interaction equation of the 

form similar to the equations in the Specifications for cold-formed steel, AISI 

(2014) gives reasonable predictions of test data in such situations. 

4. The LTB equations are extended to longitudinally stiffened girders as detailed in 

Section 8.3. This model recognizes that the load shedding factor, Rb need not be 

used as a factor on the LTB resistance equations, if LTB precedes web bend-

buckling. The proposed model allows Rb to be taken as 1.0 if the LTB strength of 

the girder is smaller than the web buckling strength, Fcrw. AASHTO allows the 

computation of Rb based on the compression flange stress, but does not include this 

additional test for the relative magnitude of Fcrw and the elastic buckling stress. This 

is a more optimistic approach to the LTB resistances of longitudinally stiffened 

girders than the current AASHTO provisions. 
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12.2.3 Proposed Modifications to Noncompact Web Slenderness Limit 

 In course of the studies conducted on unstiffened girders, it is observed that the current 

noncompact web slenderness limit, λrw in AASHTO and AISC is optimistic for cross-

sections with narrow flanges. By recognizing that the relative areas of the flanges and the 

web influence the web buckling strength of the cross-section, an improved equation for λrw 

is developed in Section 6.6. 

12.2.4 Increased Transverse Stiffener Spacing for Longitudinally Stiffened Girders 

1. It is observed that the longitudinal stiffeners do not contribute significantly to the 

shear strength of the girders, and that the current AASHTO shear strength 

provisions compare reasonably well with FE simulation results. The shear strength 

model recommended by Cooper (1965) is evaluated along with the current 

AASHTO shear strength model and no compelling reasons are found for the use of 

Cooper’s model. That is, there are cases where Cooper’s model gives some modest 

improvements relative to the current AASTHO equations, but there are also cases 

where the AASHTO model performs somewhat better than Cooper’s model.  

2. It is demonstrated that the strengths are predicted accurately to conservatively 

without considering moment-shear strength interaction. The results for high 

moment-high shear tests fall within the scatter-band of results observed by other 

researchers (White et al. 2008) for transversely stiffened girders. 

3. Furthermore, it is shown that the current AASHTO limit of 1.5 on the panel aspect 

ratio (do/D) can be increased safely to 2.0 for both homogenous and hybrid girders. 
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4. The proposed Rb model and proposed LTB equations for longitudinally stiffened 

girders are shown to be valid for moment gradient loading.  

12.2.5 Studies on Curved Longitudinally Stiffened Girders 

 The proposed yield limit state model is also evaluated for its applicability with respect 

to horizontally curved girders with short unbraced lengths, subjected to uniform bending, 

and where the flange lateral bending stresses are small. It is observed that the yield limit 

state model performs well, and that curvature of web has negligible effect on the overall 

flexural capacity of the girder at small values of the flange lateral bending stresses. 

 Recommendations for Future Work 

 The research conducted to date is a comprehensive study of the flexural resistance of 

I-girders. The studies have encompassed various limit states and loading conditions. 

However, there are areas that merit further investigation, some of which are listed below. 

1. The behavior of girders with more than one longitudinal stiffener needs to be 

studied. This will allow the use of girders with more slender webs, and expand the 

possibilities of design. 

2. The behavior of girders with lower strength longitudinal stiffeners than the web 

plate may be studied. 

3. Some Moment-Shear interaction was observed for unstiffened slender web girders 

in Section 7.3, but it merits further research. 

4. It is recommended that further studies be conducted on the appropriate Cb to use in 

the inelastic LTB region, and for conditions with warping fixity at the girder ends. 

It is apparent that computational tools such as SABRE2 using stiffness reduction 
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factors are advantageous over theoretical expressions that may be limited in scope 

with regard to end restraints and loading conditions. 

5. It is recommended that moment gradient effects for unstiffened noncompact and 

slender web plate girders and longitudinally stiffened plate girders be studied with 

transverse loading within the unbraced length. 

6. The behavior of horizontally curved longitudinally stiffened girders under LTB 

limit state should be investigated. The applicability of the one-third rule for the 

compression flange resistance needs to be investigated thoroughly in the context of 

longitudinally stiffened girders. An increase in the limits of the curvature 

parameter, Z is also a potential area of research. 
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APPENDIX A 

ADDITIONAL RESULTS FOR LTB OF UNSTIFFENED GIRDERS 

SUBJECTED TO UNIFORM BENDING 

 This section provides the complete set of results for all rolled beams, and homogenous 

and hybrid welded type plate girders discussed in Chapter 6.These girders are subjected to 

uniform bending. 

 Table A-1 lists the results for rolled beams, while Tables A-2 through A-15 list the 

results for homogenous and hybrid welded girders. 

 The tables are followed by figures that graphically represent the same data.
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Table A-1: Test simulation results and comparison with proposed and AISC equations for rolled 

beams subjected to uniform moment 

W21x44 

Lb (inches) 26.7 40.1 53.4 87.6 121.8 156.0 187.2 218.4 273.0 

Mmax/Mp 0.97 0.92 0.89 0.69 0.59 0.47 0.37 0.30 0.22 

Mmax/MnPr 0.98 0.97 0.98 0.89 0.88 0.87 0.85 0.88 0.89 

Mmax/MnAISC 0.97 0.92 0.89 0.80 0.80 0.79 0.85 0.88 0.89 

W14x68 

Lb (inches) 52.1 78.2 104.3 186.7 269.2 351.6 421.9 492.2 615.3 

Mmax/Mp 0.97 0.94 0.90 0.76 0.65 0.54 0.46 0.40 0.34 

Mmax/MnPr 0.98 0.99 0.98 0.93 0.92 0.91 0.92 0.96 1.04 

Mmax/MnAISC 0.97 0.94 0.90 0.86 0.86 0.86 0.93 0.96 1.04 

W10x30 

Lb (inches) 29.0 43.6 58.1 103.1 148.2 193.2 231.8 270.5 338.1 

Mmax/Mp 1.00 0.97 0.94 0.83 0.72 0.58 0.48 0.41 0.34 

Mmax/MnPr 1.01 1.02 1.03 1.03 1.03 0.98 0.98 1.03 1.07 

Mmax/MnAISC 1.00 0.97 0.94 0.95 0.96 0.93 0.98 1.01 1.07 

W16x31 

Lb (inches) 24.8 37.2 49.6 80.6 111.7 142.8 171.4 199.9 249.9 

Mmax/Mp 0.97 0.94 0.90 0.78 0.67 0.53 0.41 0.33 0.25 

Mmax/MnPr 0.99 1.00 1.01 0.99 1.00 0.95 0.92 0.97 0.96 

Mmax/MnAISC 0.97 0.94 0.90 0.89 0.91 0.86 0.92 0.94 0.96 

W14x90 

Lb (inches) 90.6 135.9 181.2 290.8 400.4 510.0 612.0 714.0 892.5 

Mmax/Mp 0.97 0.95 0.91 0.84 0.74 0.65 0.56 0.49 0.43 

Mmax/MnPr 1.00 1.01 1.02 1.05 1.07 1.08 1.11 1.17 1.26 

Mmax/MnAISC 1.00 0.97 0.94 0.95 0.98 1.02 1.07 1.12 1.26 
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Table A-2: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to uniform moment, Girders G1 – G5 

G1 

Lb 

(inches) 
64.1 96.1 216.4 304.7 481.2 577.4 673.7 842.1     

Mmax/My 0.94 0.91 0.77 0.66 0.49 0.41 0.34 0.25     

Mmax/MnPr 0.97 0.96 0.93 0.89 0.87 0.86 0.97 1.12     

Mmax/ 

MnAASHTO 
0.91 0.89 0.81 0.76 0.70 0.80 0.89 1.01     

G2 

Lb 

(inches) 
72.0 108.0 144.0 242.8 341.9 440.9 540.0 648.0 756.0 944.9 

Mmax/My 0.94 0.93 0.92 0.80 0.76 0.66 0.55 0.43 0.35 0.25 

Mmax/MnPr 1.12 1.11 1.11 0.96 1.01 1.01 0.96 0.90 0.98 1.10 

Mmax/ 

MnAASHTO 
1.00 0.99 0.98 0.85 0.87 0.84 0.77 0.84 0.90 0.99 

G3 

Lb 

(inches) 
157.0 235.5 314.0 530.2 746.5 962.7 1179.0 1414.8 1650.5 2063.2 

Mmax/My 1.05 1.03 1.02 0.94 0.86 0.76 0.63 0.49 0.39 0.27 

Mmax/MnPr 1.03 1.02 1.05 1.06 1.08 1.08 1.01 0.93 0.93 0.98 

Mmax/ 

MnAASHTO 
1.03 1.01 1.00 0.99 0.99 0.96 0.87 0.89 0.93 0.98 

G4 

Lb 

(inches) 
154.3 231.5 308.6 521.2 733.8 946.3 1158.9 1390.7 1622.5 2028.1 

Mmax/My 1.03 1.02 1.01 0.93 0.85 0.75 0.61 0.48 0.37 0.27 

Mmax/MnPr 1.17 1.16 1.15 1.06 1.07 1.07 1.00 0.92 0.94 1.00 

Mmax/ 

MnAASHTO 
1.10 1.09 1.08 1.00 0.98 0.96 0.86 0.89 0.94 1.00 

G5 

Lb 

(inches) 
68.5 102.8 137.0 231.4 325.8 420.2 514.6 617.5 720.4 900.5 

Mmax/My 0.90 0.89 0.88 0.83 0.74 0.66 0.55 0.43 0.34 0.24 

Mmax/MnPr 1.01 1.01 1.04 1.08 1.07 1.08 1.04 0.98 1.05 1.16 

Mmax/ 

MnAASHTO 
0.96 0.95 0.94 0.96 0.93 0.91 0.84 0.94 1.00 1.10 
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Table A-3: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to uniform moment, Girders G6 – G10 

G6 

Lb 

(inches) 
65.9 98.8 131.7 222.4 313.2 403.9 494.6 593.5 692.4 865.6 

Mmax/My 0.86 0.86 0.85 0.78 0.72 0.63 0.54 0.42 0.33 0.23 

Mmax/MnPr 1.13 1.12 1.12 1.03 1.05 1.06 1.04 0.96 1.04 1.14 

Mmax/ 

MnAASHTO 
1.01 1.01 1.00 0.92 0.91 0.88 0.83 0.91 0.99 1.08 

G7 

Lb 

(inches) 
160.8 241.2 321.6 543.1 764.6 986.1 1207.6 1449.2 1690.7 2113.3 

Mmax/My 1.00 0.99 0.97 0.90 0.84 0.76 0.62 0.48 0.38 0.27 

Mmax/MnPr 1.02 1.03 1.05 1.07 1.12 1.14 1.08 0.98 1.05 1.16 

Mmax/ 

MnAASHTO 
1.02 1.02 1.00 1.00 1.02 1.00 0.91 0.98 1.05 1.16 

G8 

Lb 

(inches) 
158.8 238.2 317.5 536.3 754.9 973.7 1192.4 1441.1 1681.3 2101.6 

Mmax/My 0.99 0.98 0.97 0.90 0.83 0.75 0.61 0.47 0.37 0.26 

Mmax/MnPr 1.17 1.16 1.15 1.07 1.11 1.13 1.07 0.98 1.04 1.15 

Mmax/ 

MnAASHTO 
1.11 1.10 1.08 1.00 1.01 1.00 0.90 0.98 1.04 1.15 

G9 

Lb 

(inches) 
60.6 90.9 121.2 204.7 288.2 371.6 455.2 546.2 637.2 796.6 

Mmax/My 0.87 0.84 0.82 0.75 0.69 0.62 0.54 0.45 0.37 0.29 

Mmax/MnPr 0.98 0.95 0.96 0.97 1.00 1.00 1.00 1.00 1.12 1.35 

Mmax/ 

MnAASHTO 
0.92 0.88 0.87 0.85 0.86 0.83 0.80 0.94 1.10 1.32 

G10 

Lb 

(inches) 
68.0 102.1 136.1 229.8 323.5 417.2 510.9 613.1 715.3 894.1 

Mmax/My 0.84 0.83 0.82 0.76 0.70 0.62 0.55 0.45 0.38 0.29 

Mmax/MnPr 1.08 1.06 1.06 0.99 1.00 1.01 1.02 1.00 1.14 1.34 

Mmax/ 

MnAASHTO 
0.96 0.95 0.94 0.88 0.86 0.84 0.82 0.94 1.07 1.26 
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Table A-4: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to uniform moment, Girders G11 – G15 

G11 

Lb 

(inches) 
153.2 229.9 306.5 517.6 728.7 939.8 1150.8 1381.0 1611.2 2014.0 

Mmax/My 0.99 0.98 0.97 0.90 0.83 0.76 0.65 0.52 0.43 0.33 

Mmax/MnPr 1.01 1.02 1.04 1.07 1.10 1.12 1.10 1.06 1.17 1.39 

Mmax/ 

MnAASHTO 
1.01 1.00 0.99 0.99 1.00 0.99 0.93 1.05 1.17 1.39 

G12 

Lb 

(inches) 
150.1 225.2 300.3 507.1 713.9 920.7 1127.5 1352.9 1578.4 1973.0 

Mmax/My 0.95 0.96 0.95 0.89 0.82 0.74 0.63 0.51 0.42 0.32 

Mmax/MnPr 1.12 1.14 1.13 1.06 1.08 1.11 1.08 1.04 1.15 1.36 

Mmax/ 

MnAASHTO 
1.06 1.08 1.06 0.99 0.99 0.98 0.92 1.03 1.15 1.36 

G13 

Lb 

(inches) 
65.4 98.1 130.8 220.9 310.9 401.0 491.1 589.3 687.5 859.4 

Mmax/My 0.83 0.81 0.80 0.74 0.68 0.61 0.54 0.44 0.35 0.26 

Mmax/MnPr 1.03 1.03 1.05 1.07 1.10 1.12 1.13 1.08 1.20 1.38 

Mmax/ 

MnAASHTO 
0.98 0.96 0.95 0.94 0.95 0.93 0.90 1.02 1.13 1.31 

G14 

Lb 

(inches) 
62.5 93.8 125.0 211.1 297.3 383.4 469.5 563.4 657.3 821.6 

Mmax/My 0.77 0.76 0.76 0.71 0.66 0.59 0.51 0.43 0.35 0.26 

Mmax/MnPr 1.15 1.13 1.12 1.05 1.09 1.10 1.09 1.09 1.20 1.40 

Mmax/ 

MnAASHTO 
1.01 1.00 0.99 0.93 0.93 0.91 0.87 1.02 1.13 1.31 

G15 

Lb 

(inches) 
157.8 236.7 315.5 532.9 750.2 967.5 1184.9 1421.8 1658.8 2073.5 

Mmax/My 0.97 0.95 0.94 0.87 0.82 0.74 0.63 0.50 0.40 0.30 

Mmax/MnPr 1.03 1.03 1.06 1.08 1.12 1.15 1.11 1.05 1.14 1.33 

Mmax/ 

MnAASHTO 
1.03 1.02 1.01 1.01 1.02 1.01 0.94 1.04 1.14 1.33 
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Table A-5: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to uniform moment, Girders G16 – G20 

G16 

Lb 

(inches) 
155.4 233.1 310.8 524.8 738.9 952.9 1167.0 1400.4 1633.8 2042.2 

Mmax/My 0.94 0.94 0.93 0.86 0.81 0.73 0.62 0.49 0.39 0.29 

Mmax/MnPr 1.17 1.17 1.15 1.08 1.12 1.15 1.11 1.05 1.14 1.32 

Mmax/ 

MnAASHTO 
1.10 1.10 1.09 1.01 1.02 1.01 0.94 1.05 1.14 1.32 

G17 

Lb 

(inches) 
60.6 90.9 121.2 204.7 288.2 371.7 455.2 546.2 637.2 796.5 

Mmax/My 0.80 0.76 0.75 0.69 0.64 0.57 0.50 0.43 0.37 0.30 

Mmax/MnPr 0.98 0.95 0.97 0.98 1.02 1.03 1.05 1.10 1.28 1.64 

Mmax/ 

MnAASHTO 
0.92 0.87 0.86 0.85 0.87 0.84 0.84 1.02 1.20 1.53 

G18 

Lb 

(inches) 
68.0 102.1 136.1 229.8 323.5 417.2 510.9 613.1 715.3 894.1 

Mmax/My 0.77 0.76 0.75 0.70 0.65 0.58 0.51 0.44 0.37 0.31 

Mmax/MnPr 1.09 1.06 1.06 1.00 1.03 1.04 1.07 1.11 1.30 1.70 

Mmax/ 

MnAASHTO 
0.96 0.94 0.93 0.87 0.87 0.86 0.86 1.04 1.22 1.59 

G19 

Lb 

(inches) 
153.2 229.9 306.5 517.6 728.7 939.8 1150.8 1381.0 1611.2 2014.0 

Mmax/My 0.95 0.94 0.93 0.87 0.81 0.73 0.64 0.53 0.45 0.37 

Mmax/MnPr 1.01 1.02 1.04 1.07 1.11 1.14 1.14 1.13 1.31 1.69 

Mmax/ 

MnAASHTO 
1.01 1.00 0.99 1.00 1.01 1.00 0.96 1.13 1.31 1.69 

G20 

Lb 

(inches) 
150.1 225.2 300.3 507.1 713.9 920.7 1127.5 1352.9 1578.4 1973.0 

Mmax/My 0.90 0.92 0.91 0.85 0.79 0.72 0.63 0.52 0.45 0.37 

Mmax/MnPr 1.13 1.16 1.14 1.08 1.11 1.14 1.15 1.16 1.35 1.75 

Mmax/ 

MnAASHTO 
1.05 1.08 1.06 1.00 1.00 0.99 0.96 1.14 1.33 1.73 
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Table A-6: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to uniform moment, Girders G21 – G25 

G21 

Lb 

(inches) 
65.4 98.1 130.8 220.9 310.9 401.0 491.1 589.3 687.5 859.4 

Mmax/My 0.76 0.75 0.74 0.68 0.64 0.57 0.51 0.41 0.34 0.26 

Mmax/MnPr 1.11 1.10 1.13 1.15 1.20 1.22 1.25 1.24 1.39 1.68 

Mmax/ 

MnAASHTO 
1.03 1.01 1.00 1.00 1.01 1.00 0.99 1.16 1.30 1.57 

G22 

Lb 

(inches) 
62.5 93.8 125.0 211.1 297.3 383.4 469.5 563.4 657.3 821.6 

Mmax/My 0.71 0.70 0.69 0.65 0.61 0.55 0.48 0.40 0.33 0.26 

Mmax/MnPr 1.23 1.21 1.20 1.14 1.19 1.21 1.23 1.26 1.43 1.73 

Mmax/ 

MnAASHTO 
1.07 1.05 1.05 0.98 1.00 0.98 0.97 1.17 1.32 1.60 

G23 

Lb 

(inches) 
157.8 236.7 315.5 532.9 750.2 967.5 1184.9 1421.8 1658.8 2073.5 

Mmax/My 0.93 0.92 0.91 0.85 0.80 0.72 0.61 0.49 0.40 0.31 

Mmax/MnPr 1.05 1.06 1.08 1.10 1.16 1.18 1.16 1.10 1.24 1.49 

Mmax/ 

MnAASHTO 
1.05 1.04 1.03 1.03 1.05 1.04 0.98 1.10 1.24 1.49 

G24 

Lb 

(inches) 
155.4 233.1 310.8 524.8 738.9 952.9 1167.0 1400.4 1633.8 2042.2 

Mmax/My 0.90 0.90 0.89 0.83 0.78 0.71 0.61 0.49 0.40 0.31 

Mmax/MnPr 1.19 1.20 1.18 1.11 1.16 1.19 1.17 1.13 1.26 1.53 

Mmax/ 

MnAASHTO 
1.12 1.13 1.11 1.04 1.05 1.05 0.99 1.13 1.26 1.53 

G25 

Lb 

(inches) 
82.8 124.1 165.5 279.5 393.5 507.5 621.5 745.8 870.1 1088.0 

Mmax/My 0.98 0.98 0.97 0.89 0.80 0.70 0.57 0.45 0.35 0.25 

Mmax/MnPr 1.01 1.02 1.05 1.06 1.06 1.06 0.99 0.92 1.00 1.11 

Mmax/ 

MnAASHTO 
0.96 0.95 0.95 0.94 0.92 0.89 0.81 0.86 0.92 0.99 
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Table A-7: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to uniform moment, Girders G26 – G30 

G26 

Lb 

(inches) 
79.7 119.5 159.3 269.0 378.7 488.5 598.2 717.8 837.4 1046.8 

Mmax/My 0.94 0.95 0.94 0.87 0.77 0.68 0.56 0.44 0.35 0.25 

Mmax/MnPr 1.12 1.13 1.12 1.05 1.03 1.03 0.98 0.91 0.99 1.10 

Mmax/ 

MnAASHTO 
1.00 1.01 1.00 0.93 0.89 0.87 0.79 0.85 0.91 0.99 

G27 

Lb 

(inches) 
110.9 166.3 221.7 374.4 527.1 679.7 832.4 998.9 1165.4 1456.8 

Mmax/My 1.02 1.02 1.01 0.92 0.83 0.73 0.60 0.46 0.36 0.26 

Mmax/MnPr 1.02 1.04 1.06 1.06 1.08 1.08 1.01 0.93 0.99 1.10 

Mmax/ 

MnAASHTO 
0.99 1.00 0.98 0.97 0.96 0.93 0.84 0.88 0.92 0.99 

G28 

Lb 

(inches) 
107.8 161.7 215.6 364.1 512.5 661.0 809.5 971.4 1133.3 1416.6 

Mmax/My 0.97 0.99 0.99 0.90 0.82 0.72 0.59 0.46 0.36 0.25 

Mmax/MnPr 1.14 1.15 1.16 1.06 1.08 1.07 1.00 0.93 0.99 1.10 

Mmax/ 

MnAASHTO 
1.04 1.05 1.06 0.96 0.95 0.92 0.83 0.88 0.92 1.00 

G29 

Lb 

(inches) 
82.8 124.1 165.5 279.5 393.5 507.5 621.5 745.8 870.1 1087.6 

Mmax/My 0.89 0.88 0.87 0.82 0.73 0.66 0.55 0.45 0.37 0.28 

Mmax/MnPr 0.99 1.00 1.03 1.07 1.07 1.09 1.07 1.08 1.21 1.43 

Mmax/ 

MnAASHTO 
0.93 0.92 0.92 0.93 0.90 0.89 0.87 1.01 1.13 1.34 

G30 

Lb 

(inches) 
79.7 119.5 159.3 269.0 378.7 488.5 598.2 717.8 837.4 1046.8 

Mmax/My 0.85 0.84 0.84 0.80 0.70 0.63 0.53 0.44 0.36 0.27 

Mmax/MnPr 1.08 1.08 1.08 1.03 1.02 1.05 1.03 1.06 1.18 1.40 

Mmax/ 

MnAASHTO 
0.96 0.96 0.96 0.91 0.87 0.87 0.85 1.00 1.12 1.33 
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Table A-8: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to uniform moment, Girders G31 – G35 

G31 

Lb 

(inches) 
110.8 166.3 221.7 374.4 527.1 679.7 832.4 998.9 1165.4 1456.8 

Mmax/My 0.94 0.94 0.94 0.86 0.79 0.71 0.59 0.48 0.39 0.29 

Mmax/MnPr 1.00 1.01 1.05 1.07 1.09 1.11 1.08 1.07 1.19 1.40 

Mmax/ 

MnAASHTO 
0.97 0.97 0.97 0.97 0.96 0.95 0.90 1.04 1.16 1.37 

G32 

Lb 

(inches) 
107.8 161.7 215.6 364.1 512.5 661.0 809.5 971.4 1133.3 1416.6 

Mmax/My 0.88 0.89 0.89 0.84 0.76 0.68 0.58 0.46 0.38 0.28 

Mmax/MnPr 1.11 1.12 1.12 1.06 1.08 1.10 1.07 1.07 1.19 1.39 

Mmax/ 

MnAASHTO 
1.00 1.01 1.01 0.95 0.94 0.92 0.89 1.03 1.14 1.34 

G33 

Lb 

(inches) 
82.8 124.1 165.5 279.5 393.5 507.5 621.5 745.8 870.1 1087.6 

Mmax/My 0.82 0.81 0.81 0.76 0.68 0.61 0.53 0.44 0.38 0.31 

Mmax/MnPr 0.98 0.99 1.02 1.07 1.07 1.11 1.10 1.19 1.39 1.79 

Mmax/ 

MnAASHTO 
0.92 0.91 0.91 0.94 0.91 0.91 0.93 1.13 1.31 1.69 

G34 

Lb 

(inches) 
79.7 119.5 159.3 269.0 378.7 488.5 598.2 717.8 837.4 1046.8 

Mmax/My 0.78 0.77 0.77 0.74 0.65 0.59 0.51 0.43 0.37 0.31 

Mmax/MnPr 1.08 1.08 1.08 1.05 1.05 1.08 1.09 1.19 1.40 1.83 

Mmax/ 

MnAASHTO 
0.96 0.95 0.95 0.92 0.89 0.88 0.92 1.12 1.32 1.71 

G35 

Lb 

(inches) 
110.8 166.3 221.7 374.4 527.1 679.7 832.4 998.9 1165.4 1456.8 

Mmax/My 0.88 0.88 0.88 0.81 0.75 0.68 0.58 0.47 0.41 0.34 

Mmax/MnPr 1.01 1.02 1.07 1.09 1.12 1.16 1.15 1.19 1.39 1.79 

Mmax/ 

MnAASHTO 
0.96 0.96 0.97 0.97 0.97 0.97 0.96 1.14 1.33 1.71 
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Table A-9: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to uniform moment, Girders G36 – G40 

G36 

Lb 

(inches) 
107.8 161.7 215.6 364.1 512.5 661.0 809.5 971.4 1133.3 1416.6 

Mmax/My 0.83 0.83 0.83 0.79 0.72 0.64 0.56 0.47 0.40 0.33 

Mmax/MnPr 1.11 1.11 1.12 1.08 1.11 1.13 1.14 1.21 1.41 1.84 

Mmax/ 

MnAASHTO 
0.99 1.00 1.00 0.95 0.95 0.94 0.96 1.15 1.34 1.75 

G37 

Lb 

(inches) 
66.0 99.0 132.0 222.8 313.7 404.6 495.5 594.6 693.7 867.1 

Mmax/My 0.98 0.98 0.97 0.88 0.79 0.69 0.57 0.44 0.35 0.25 

Mmax/MnPr 1.24 1.23 1.21 1.10 1.02 1.01 0.95 0.89 0.96 1.07 

Mmax/ 

MnAASHTO 
1.10 1.09 1.08 0.98 0.90 0.87 0.79 0.85 0.91 0.99 

G38 

Lb 

(inches) 
73.8 110.7 147.7 249.4 351.1 452.7 554.4 665.3 776.2 970.3 

Mmax/My 0.97 0.97 0.97 0.88 0.79 0.69 0.57 0.44 0.35 0.25 

Mmax/MnPr 1.19 1.19 1.19 1.09 1.03 1.02 0.96 0.89 0.96 1.07 

Mmax/ 

MnAASHTO 
1.07 1.07 1.07 0.98 0.90 0.87 0.80 0.86 0.91 0.99 

G39 

Lb 

(inches) 
84.7 127.1 169.6 286.2 403.0 519.7 636.5 763.8 891.1 1113.8 

Mmax/My 0.99 0.99 0.99 0.90 0.81 0.72 0.59 0.45 0.36 0.25 

Mmax/MnPr 1.25 1.25 1.25 1.12 1.04 1.03 0.96 0.89 0.91 0.99 

Mmax/ 

MnAASHTO 
1.12 1.12 1.12 1.01 0.93 0.90 0.82 0.87 0.91 0.99 

G40 

Lb 

(inches) 
81.6 122.4 163.2 275.7 388.1 500.5 612.9 735.5 858.1 1072.7 

Mmax/My 0.97 0.98 0.89 0.89 0.80 0.70 0.58 0.45 0.36 0.25 

Mmax/MnPr 1.20 1.21 1.11 1.11 1.04 1.03 0.97 0.90 0.96 1.07 

Mmax/ 

MnAASHTO 
1.08 1.09 0.99 1.00 0.92 0.89 0.81 0.86 0.92 0.99 
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Table A-10: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to uniform moment, Girders G41 – G45 

G41 

Lb 

(inches) 
112.7 169.0 225.3 380.5 535.7 690.9 846.1 1015.4 1184.6 1480.8 

Mmax/My 1.01 1.01 0.87 0.90 0.83 0.74 0.60 0.46 0.36 0.26 

Mmax/MnPr 1.13 1.13 0.98 1.02 1.05 1.05 0.98 0.90 0.93 0.99 

Mmax/ 

MnAASHTO 
1.13 1.13 0.98 1.01 0.96 0.93 0.84 0.88 0.93 0.99 

G42 

Lb 

(inches) 
109.8 164.7 219.6 370.8 475.0 522.0 673.2 824.4 1154.2 1442.7 

Mmax/My 0.99 1.00 0.99 0.87 0.87 0.82 0.73 0.59 0.36 0.25 

Mmax/MnPr 1.16 1.17 1.16 1.02 1.06 1.05 1.05 0.98 0.93 1.00 

Mmax/ 

MnAASHTO 
1.11 1.12 1.11 0.97 0.97 0.95 0.92 0.83 0.93 1.00 

G43 

Lb 

(inches) 
158.7 238.0 317.4 535.9 754.5 973.1 1191.7 1430.0 1668.3 2085.4 

Mmax/My 0.98 0.98 0.96 0.90 0.85 0.76 0.62 0.48 0.38 0.27 

Mmax/MnPr 1.10 1.10 1.07 1.03 1.08 1.09 1.02 0.92 0.94 0.98 

Mmax/ 

MnAASHTO 
1.10 1.10 1.07 1.00 0.99 0.96 0.87 0.89 0.94 0.98 

G44 

Lb 

(inches) 
156.2 234.4 312.5 527.7 742.9 958.1 1173.3 1408.0 1642.6 2053.3 

Mmax/My 0.99 0.99 0.97 0.91 0.84 0.75 0.62 0.47 0.37 0.26 

Mmax/MnPr 1.13 1.13 1.11 1.04 1.07 1.08 1.01 0.92 0.94 1.00 

Mmax/ 

MnAASHTO 
1.11 1.11 1.09 1.02 0.98 0.96 0.86 0.89 0.94 1.00 

G45 

Lb 

(inches) 
65.8 98.7 131.6 222.2 312.8 403.5 494.1 592.9 691.8 864.7 

Mmax/My 1.08 1.05 1.03 0.92 0.79 0.69 0.57 0.46 0.37 0.27 

Mmax/MnPr 1.15 1.13 1.11 1.01 0.97 0.96 0.92 0.88 0.92 1.00 

Mmax/ 

MnAASHTO 
1.07 1.05 1.03 0.92 0.87 0.85 0.80 0.85 0.92 1.00 
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Table A-11: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to uniform moment, Girders G46 – G50 

G46 

Lb 

(inches) 
158.3 237.5 316.6 534.7 752.8 970.9 1189.0 1426.8 1664.5 2080.7 

Mmax/My 1.00 0.99 0.98 0.88 0.85 0.77 0.64 0.50 0.40 0.29 

Mmax/MnPr 1.00 1.00 1.02 1.00 1.07 1.08 1.02 0.94 0.93 0.99 

Mmax/ 

MnAASHTO 
1.00 0.99 0.97 0.94 0.98 0.96 0.88 0.89 0.93 0.99 

G47 

Lb 

(inches) 
63.8 95.9 127.8 215.8 303.8 391.8 479.9 575.8 671.8 839.8 

Mmax/My 1.07 1.03 1.01 0.89 0.77 0.67 0.56 0.44 0.36 0.27 

Mmax/MnPr 1.00 0.98 1.00 0.97 0.94 0.93 0.89 0.87 0.91 1.00 

Mmax/ 

MnAASHTO 
0.94 0.91 0.89 0.86 0.83 0.82 0.78 0.84 0.91 1.00 

G48 

Lb 

(inches) 
156.5 234.8 313.0 528.6 744.2 959.7 1175.3 1410.4 1645.4 2056.8 

Mmax/My 1.04 1.05 1.05 0.96 0.86 0.77 0.64 0.51 0.41 0.30 

Mmax/MnPr 0.96 0.97 1.01 1.02 1.02 1.03 0.99 0.94 0.93 0.98 

Mmax/ 

MnAASHTO 
0.96 0.96 0.97 0.96 0.94 0.94 0.88 0.88 0.93 0.98 

G49 

Lb 

(inches) 
60.4 90.6 120.7 203.9 287.0 370.2 453.4 544.0 634.7 793.4 

Mmax/My 0.99 0.93 0.90 0.82 0.73 0.66 0.57 0.48 0.41 0.32 

Mmax/MnPr 1.02 0.97 0.98 0.97 0.97 0.99 0.98 0.99 1.15 1.41 

Mmax/ 

MnAASHTO 
0.93 0.88 0.85 0.83 0.81 0.79 0.76 0.74 0.80 0.86 

G50 

Lb 

(inches) 
152.6 228.9 305.3 515.5 725.7 936.0 1146.2 1375.4 1604.7 2005.8 

Mmax/My 1.05 1.04 1.02 0.95 0.86 0.78 0.67 0.56 0.47 0.37 

Mmax/MnPr 1.01 1.01 1.02 1.01 0.99 0.98 0.93 0.85 0.82 0.84 

Mmax/ 

MnAASHTO 
1.01 1.00 0.98 0.97 0.94 0.91 0.85 0.77 0.79 0.84 
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Table A-12: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to uniform moment, Girders G51 – G55 

G51 

Lb 

(inches) 
57.1 85.7 114.2 183.2 252.1 321.0 390.0 468.0 545.9 682.4 

Mmax/My 1.03 0.98 0.94 0.81 0.71 0.62 0.52 0.42 0.34 0.25 

Mmax/MnPr 1.03 1.00 1.00 0.95 0.91 0.90 0.86 0.83 0.89 0.98 

Mmax/ 

MnAASHTO 
0.93 0.89 0.86 0.82 0.78 0.77 0.73 0.81 0.89 0.98 

G52 

Lb 

(inches) 
53.7 80.6 107.4 172.3 237.1 301.9 366.8 440.1 513.5 641.9 

Mmax/My 1.08 0.98 0.92 0.81 0.70 0.63 0.55 0.47 0.41 0.33 

Mmax/MnPr 1.08 1.00 0.98 0.94 0.91 0.92 0.93 0.96 1.13 1.42 

Mmax/ 

MnAASHTO 
0.95 0.86 0.82 0.78 0.74 0.73 0.71 0.70 0.75 0.82 

G53 

Lb 

(inches) 
65.3 98.0 130.7 209.5 288.4 367.2 446.1 535.3 624.5 780.7 

Mmax/My 1.03 0.97 0.93 0.84 0.74 0.66 0.58 0.49 0.42 0.34 

Mmax/MnPr 1.03 0.99 0.99 0.98 0.97 0.98 0.97 1.00 1.16 1.45 

Mmax/ 

MnAASHTO 
0.91 0.85 0.83 0.81 0.79 0.78 0.75 0.74 0.79 0.85 

G54 

Lb 

(inches) 
162.6 243.9 325.2 521.4 717.6 913.8 1110.0 1332.0 1554.0 1942.6 

Mmax/My 1.06 1.07 1.04 0.95 0.85 0.77 0.66 0.55 0.46 0.36 

Mmax/MnPr 0.99 1.02 1.03 1.01 0.98 0.97 0.92 0.87 0.84 0.92 

Mmax/ 

MnAASHTO 
0.97 0.98 0.96 0.94 0.91 0.89 0.84 0.78 0.86 0.92 

G55 

Lb 

(inches) 
57.1 85.6 114.2 183.1 251.9 320.8 389.7 467.7 545.6 682.0 

Mmax/My 1.02 0.96 0.93 0.81 0.70 0.62 0.52 0.42 0.34 0.25 

Mmax/MnPr 1.03 1.00 1.00 0.95 0.92 0.91 0.87 0.84 0.95 1.09 

Mmax/ 

MnAASHTO 
0.94 0.89 0.87 0.82 0.79 0.77 0.73 0.81 0.89 0.98 
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Table A-13: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to uniform moment, Girders G56 – G60 

G56 

Lb 

(inches) 
53.7 80.6 107.4 172.3 237.1 301.9 366.7 440.1 513.4 641.8 

Mmax/My 1.05 0.95 0.90 0.79 0.68 0.62 0.54 0.46 0.40 0.32 

Mmax/MnPr 1.06 0.99 0.97 0.94 0.91 0.92 0.93 0.96 1.12 1.41 

Mmax/ 

MnAASHTO 
0.95 0.86 0.82 0.78 0.74 0.73 0.71 0.70 0.75 0.83 

G57 

Lb 

(inches) 
163.8 245.7 327.6 525.3 723.0 920.7 1118.4 1342.1 1565.7 1957.2 

Mmax/My 1.04 1.05 1.02 0.95 0.85 0.77 0.66 0.55 0.46 0.36 

Mmax/MnPr 0.99 1.02 1.02 1.02 1.00 0.98 0.93 0.87 0.84 0.91 

Mmax/ 

MnAASHTO 
0.97 0.98 0.96 0.95 0.92 0.90 0.85 0.78 0.86 0.91 

G58 

Lb 

(inches) 
53.7 80.5 107.4 172.2 237.0 301.8 366.6 439.9 513.2 641.6 

Mmax/My 1.10 1.00 0.94 0.82 0.71 0.64 0.56 0.48 0.41 0.34 

Mmax/MnPr 1.07 1.00 0.98 0.94 0.91 0.92 0.93 0.97 1.14 1.45 

Mmax/ 

MnAASHTO 
0.95 0.87 0.82 0.78 0.74 0.73 0.71 0.69 0.74 0.81 

G59 

Lb 

(inches) 
161.8 242.6 323.5 518.7 713.9 909.1 1104.3 1325.2 1546.0 1932.6 

Mmax/My 1.06 1.08 1.05 0.97 0.85 0.77 0.66 0.55 0.47 0.37 

Mmax/MnPr 0.98 1.02 1.03 1.02 0.97 0.96 0.92 0.86 0.84 0.91 

Mmax/ 

MnAASHTO 
0.95 0.97 0.95 0.95 0.90 0.88 0.84 0.78 0.86 0.91 

G60 

Lb 

(inches) 
53.7 80.5 107.4 172.2 237.0 301.7 366.5 439.8 513.1 641.4 

Mmax/My 0.98 0.90 0.85 0.75 0.65 0.60 0.53 0.45 0.39 0.31 

Mmax/MnPr 1.03 0.96 0.95 0.92 0.89 0.92 0.93 0.96 1.12 1.40 

Mmax/ 

MnAASHTO 
0.95 0.87 0.83 0.79 0.73 0.73 0.71 0.71 0.77 0.84 
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Table A-14: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to uniform moment, Girders G61 – G65 

G61 

Lb 

(inches) 
54.5 81.8 109.0 174.8 240.6 306.3 372.1 446.5 521.0 651.2 

Mmax/My 0.96 0.88 0.84 0.74 0.64 0.60 0.53 0.45 0.38 0.30 

Mmax/MnPr 1.02 0.96 0.95 0.92 0.89 0.93 0.94 0.97 1.12 1.40 

Mmax/ 

MnAASHTO 
0.96 0.88 0.85 0.81 0.76 0.77 0.75 0.91 1.06 1.32 

G62 

Lb 

(inches) 
60.0 150.0 250.0 300.0 350.0 430.0 600.0 800.0 60.0 150.0 

Mmax/My 0.89 0.85 0.77 0.73 0.66 0.55 0.34 0.22 0.89 0.85 

Mmax/MnPr 0.99 1.03 1.07 1.08 1.06 1.00 1.00 1.14 0.99 1.03 

Mmax/ 

MnAASHTO 
0.96 0.93 0.94 0.93 0.89 0.79 0.96 1.10 0.96 0.93 

G63 

Lb 

(inches) 
150.0 250.0 403.0 600.0 950.0 1203.0 1600.0 2100.0 150.0 250.0 

Mmax/My 0.98 0.96 0.93 0.87 0.68 0.49 0.32 0.21 0.98 0.96 

Mmax/MnPr 1.01 1.03 1.07 1.12 1.11 1.00 1.10 1.26 1.01 1.03 

Mmax/ 

MnAASHTO 
1.01 0.99 1.00 1.02 0.95 0.97 1.10 1.26 1.01 0.99 

G64 

Lb 

(inches) 
50.0 95.0 210.0 310.0 403.0 483.0 600.0 800.0 50.0 95.0 

Mmax/My 0.83 0.78 0.70 0.65 0.54 0.45 0.34 0.24 0.83 0.78 

Mmax/MnPr 1.00 0.97 1.01 1.08 1.06 1.03 1.16 1.43 1.00 0.97 

Mmax/ 

MnAASHTO 
0.96 0.90 0.89 0.91 0.84 0.95 1.11 1.37 0.96 0.90 

G65 

Lb 

(inches) 
67.9 115.0 270.0 330.0 405.0 479.0 600.0 800.0 67.9 115.0 

Mmax/My 0.92 0.88 0.74 0.66 0.54 0.44 0.32 0.21 0.92 0.88 

Mmax/MnPr 0.98 0.99 1.02 1.00 0.95 0.90 1.00 1.17 0.98 0.99 

Mmax/ 

MnAASHTO 
0.93 0.89 0.74 0.67 0.55 0.45 0.33 0.22 0.93 0.89 
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Table A-15: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to uniform moment, Girders G66 – G70 

G66 

Lb 

(inches) 
120.0 240.0 553.0 700.0 1042.0 1230.0 1600.0 2100.0 120.0 240.0 

Mmax/My 1.01 1.00 0.89 0.83 0.59 0.47 0.31 0.21 1.01 1.00 

Mmax/MnPr 1.00 1.03 1.07 1.10 1.00 0.93 0.97 1.04 1.00 1.03 

Mmax/ 

MnAASHTO 
1.00 0.99 0.88 0.82 0.58 0.46 0.31 0.21 1.00 0.99 

G67 

Lb 

(inches) 
50.0 102.0 210.0 300.0 383.0 453.0 600.0 800.0 50.0 102.0 

Mmax/My 0.88 0.79 0.70 0.64 0.54 0.46 0.33 0.24 0.88 0.79 

Mmax/MnPr 0.99 0.94 0.96 1.01 1.00 0.98 1.19 1.53 0.99 0.94 

Mmax/ 

MnAASHTO 
0.95 0.85 0.84 0.85 0.79 0.90 1.13 1.46 0.95 0.85 

G68 

Lb 

(inches) 
60.0 120.0 250.0 300.0 454.0 537.0 650.0 800.0 60.0 120.0 

Mmax/My 0.87 0.85 0.77 0.74 0.56 0.44 0.33 0.23 0.87 0.85 

Mmax/MnPr 1.02 1.04 1.10 1.12 1.09 0.99 1.06 1.15 1.02 1.04 

Mmax/ 

MnAASHTO 
0.99 0.97 0.98 0.98 0.88 0.95 1.03 1.12 0.99 0.97 

G69 

Lb 

(inches) 
150.0 250.0 403.0 600.0 950.0 1230.0 1600.0 2100.0 150.0 250.0 

Mmax/My 0.97 0.95 0.91 0.85 0.69 0.48 0.32 0.21 0.97 0.95 

Mmax/MnPr 1.02 1.04 1.07 1.12 1.14 0.98 1.09 1.23 1.02 1.04 

Mmax/ 

MnAASHTO 
1.02 1.00 1.00 1.02 0.98 0.98 1.09 1.23 1.02 1.00 

G70 

Lb 

(inches) 
50.0 116.0 240.0 330.0 437.0 517.0 600.0 800.0 50.0 116.0 

Mmax/My 0.81 0.78 0.72 0.65 0.55 0.44 0.36 0.24 0.81 0.78 

Mmax/MnPr 1.07 1.07 1.15 1.18 1.18 1.11 1.17 1.38 1.07 1.07 

Mmax/ 

MnAASHTO 
1.02 0.98 1.01 0.99 0.94 1.03 1.12 1.32 1.02 0.98 
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 Figures A-1 through A-67 show the LTB curves along with FE test data for the 61 

homogenous girders and the 9 hybrid girders, whose cross-sections are listed in Tables 6-

14 and 6-20. The results for these girders are presented in Tables A-1 through A-15. 

 

 
Figure A-1: LTB curves for G1 

 
Figure A-2: LTB curves for G2 
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 Figure A-3: LTB curves for G3 

 
 Figure A-4: LTB curves for G4 

 
 Figure A-5: LTB curves for G5 
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 Figure A-6: LTB curves for G6 

 
 Figure A-7: LTB curves for G7 

 
 Figure A-8: LTB curves for G8 
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 Figure A-9: LTB curves for G9 

 
 Figure A-10: LTB curves for G10 

 
 Figure A-11: LTB curves for G11 
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 Figure A-12: LTB curves for G12 

 
 Figure A-13: LTB curves for G13 

 
 Figure A-14: LTB curves for G14 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7
M

m
a
x
/M

y

Lb/Lp

Mn Proposed 

Mn AASHTO

Mn EC

Mmax

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

M
m

a
x
/M

y

Lb/Lp

Mn Proposed 

Mn AASHTO

Mn EC

Mmax

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

M
m

a
x
/M

y

Lb/Lp

Mn Proposed 

Mn AASHTO

Mn EC

Mmax



297 

 

 
 Figure A-15: LTB curves for G15 

 
 Figure A-16: LTB curves for G16 

 
 Figure A-17: LTB curves for G17 
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 Figure A-18: LTB curves for G18 

 
 Figure A-19: LTB curves for G19 

 
 Figure A-20: LTB curves for G20 
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 Figure A-21: LTB curves for G21 

 
 Figure A-22: LTB curves for G22 

 
 Figure A-23: LTB curves for G23 
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 Figure A-24: LTB curves for G24 

 
 Figure A-25: LTB curves for G25 

 
 Figure A-26: LTB curves for G26 
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 Figure A-27: LTB curves for G27 

 
 Figure A-28: LTB curves for G28 

 
 Figure A-29: LTB curves for G29 
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 Figure A-30: LTB curves for G30 

 
 Figure A-31: LTB curves for G31 

 
 Figure A-32: LTB curves for G32 
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 Figure A-33: LTB curves for G33 

 
 Figure A-34: LTB curves for G34 

 
 Figure A-35: LTB curves for G35 
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 Figure A-36: LTB curves for G36 

 
 Figure A-37: LTB curves for G37 

 
 Figure A-38: LTB curves for G38 
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 Figure A-39: LTB curves for G39 

 
 Figure A-40: LTB curves for G40 

 
 Figure A-41: LTB curves for G41 
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 Figure A-42: LTB curves for G42 

 
 Figure A-43: LTB curves for G43 

 
 Figure A-44: LTB curves for G44 
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 Figure A-45: LTB curves for G45 

 
 Figure A-46: LTB curves for G46 

 
 Figure A-47: LTB curves for G47 
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 Figure A-48: LTB curves for G48 

 
 Figure A-49: LTB curves for G49 

 
 Figure A-50: LTB curves for G50 
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 Figure A-51: LTB curves for G51 

 
 Figure A-52: LTB curves for G52 

 
 Figure A-53: LTB curves for G53 
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 Figure A-54: LTB curves for G54 

 
 Figure A-55: LTB curves for G55 

 
 Figure A-56: LTB curves for G56 
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 Figure A-57: LTB curves for G57 

 
 Figure A-58: LTB curves for G58 

 
 Figure A-59: LTB curves for G59 
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 Figure A-60: LTB curves for G60 

 
 Figure A-61: LTB curves for G61 

 
 Figure A-62: LTB curves for G63 
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Figure A-63: LTB curves for G64 

 
Figure A-64: LTB curves for G66 

 
Figure A-65: LTB curves for G67 
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Figure A-66: LTB curves for G68 

 
Figure A-67: LTB curves for G70
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APPENDIX B 

ADDITIONAL RESULTS FOR LTB OF UNSTIFFENED GIRDERS 

SUBJECTED TO MOMENT GRADIENT 

 This Appendix provides the complete set of results for rolled beams and welded type 

plate girders subjected to moment gradient. Results are provided for various linear moment 

gradient loading, and the transverse loading cases discussed in Chapter 7.  

  Table B-1 shows the results for rolled beams subjected to moment gradient, with Cb = 

1.3. Tables B-2 through B-4 list the results for welded type plate girders. Figures B1 

through B8 show the LTB curves for welded plate girders with linear moment diagrams 

described in Section 7.1.1, and Cb = 1.3. Similarly, Tables B-5 through B-8 and Figures B9 

through B-16 show the results for Cb = 1.75; and Tables B-9 through B-11 and Figures B-

17 through B-23 show the results for Cb = 2.3.The moment gradient loading is as shown in 

Figure 7-1.  

 These results are followed by the transverse loading cases discussed in Section 7.1.2 

for rolled beams. The results are listed in Tables B-12 through B-17. 

 These tables list Vmax/VnAASHTO or Vmax/VnAISC for girders when the tests are shear 

controlled (i.e. the design of these members are controlled by the shear resistance equations 

rather than the flexural resistance equations in the Specifications) and Mmax/MnPr and 

Mmax/MnAISC or Mmax/MnAASHTO when the tests are moment controlled. Some tables in which 

the shear ratio is not listed contain all flexure controlled tests.
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Table B-1: Test simulation results and comparison with proposed and AISC equations for rolled 

beams subjected to moment gradient, Cb = 1.3 

W21x44 

Lb (inches) 50.0 75.0 110.0 130.0 188.5 225.0 273.0 

Mmax/Mp 1.03 1.00 0.87 0.80 0.53 0.41 0.31 

Mmax/MnPr 1.03 1.00 0.95 0.96 0.94 0.97 0.99 

Mmax/MnAISC 1.03 1.00 0.87 0.87 0.94 0.97 0.99 

W14x68 

Lb (inches) 100.0 200.0 275.0 340.0 475.0 615.3  

Mmax/Mp 1.09 1.01 0.92 0.82 0.61 0.49  

Mmax/MnPr 1.09 1.01 1.02 1.03 1.08 1.17  

Mmax/MnAISC 1.09 1.01 0.96 0.97 1.08 1.17  

W10x30 

Lb (inches) 103.1 150.0 175.0 200.0 258.0 300.0 338.1 

Mmax/Mp 1.04 0.94 0.85 0.77 0.60 0.53 0.47 

Mmax/MnPr 1.04 1.04 1.04 1.04 1.07 1.12 1.16 

Mmax/MnAISC 1.04 0.97 0.98 1.00 1.07 1.12 1.16 

W16x31 

Lb (inches) 50.0 95.0 125.0 200.0 250.0   

Mmax/Mp 1.04 0.93 0.81 0.47 0.35   

Mmax/MnPr 1.04 0.98 1.01 1.02 1.05   

Mmax/MnAISC 1.04 0.93 0.91 1.02 1.05   

W14x90 

Lb (inches) 250.0 470.0 500.0 650.0 750.0 892.5 1000.0 

Mmax/Mp 1.12 0.95 0.84 0.68 0.61 0.52 0.47 

Mmax/MnPr 1.17 1.16 1.07 1.12 1.18 1.23 1.27 

Mmax/MnAISC 1.12 1.09 1.00 1.12 1.18 1.23 1.27 
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Table B-2: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to moment gradient, Cb = 1.3, Girders G1, G3, G5, G9 

G1 

Lb (inches) 150.0 200.0 403.0 450.0 481.2 600.0 700.0 850.0 

Mmax/My 1.16 1.09 0.81 0.75 0.70 0.54 0.44 0.33 

Mmax/MnPr   1.13 0.96 0.95 0.94 0.94 1.04 1.17 

Mmax/MnAASHTO   1.06 0.80 0.78 0.76 0.87 0.95 1.03 

Vmax/VnAASHTO 1.35               

G3 

Lb (inches) 250.0 600.0 987.0 1178.0 1300.0 1600.0 1800.0 2000.0 

Mmax/My 1.10 1.08 0.93 0.81 0.71 0.53 0.45 0.38 

Mmax/MnPr   1.06 1.02 0.99 0.96 0.93 0.97 0.99 

Mmax/MnAASHTO   1.06 0.92 0.86 0.86 0.93 0.97 0.99 

Vmax/VnAASHTO 2.04               

G5 

Lb (inches) 100.0 350.0 430.0 480.0 514.6 600.0 700.0 800.0 

Mmax/My 1.08 0.88 0.80 0.73 0.69 0.58 0.47 0.39 

Mmax/MnPr     1.02 1.01 1.00 0.98 1.06 1.14 

Mmax/MnAASHTO     0.85 0.83 0.81 0.91 1.01 1.08 

Vmax/VnAASHTO 4.38 1.02             

G9 

Lb (inches) 100.0 200.0 382.0 420.0 455.2 600.0 700.0 796.5 

Mmax/My 1.11 0.97 0.78 0.74 0.70 0.53 0.45 0.39 

Mmax/MnPr   1.08 1.00 1.01 1.01 1.09 1.25 1.39 

Mmax/MnAASHTO   1.02 0.82 0.82 0.80 1.03 1.18 1.31 

Vmax/VnAASHTO 2.32               
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Table B-3: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to moment gradient, Cb = 1.3, Girders G13, G37, G44, G45 

G13 

Lb (inches) 200.0 365.0 430.0 460.0 491.1 600.0 675.0 859.4 

Mmax/My 0.93 0.78 0.72 0.72 0.69 0.56 0.48 0.36 

Mmax/MnPr   1.04 1.06 1.11 1.11 1.11 1.21 1.44 

Mmax/MnAASHTO   0.92 0.87 0.90 0.89 1.04 1.14 1.36 

Vmax/VnAASHTO 2.21               

G37 

Lb (inches) 150.0 300.0 450.0 475.0 495.5 594.6 693.7 867.1 

Mmax/My 1.17 1.00 0.81 0.77 0.74 0.59 0.48 0.35 

Mmax/MnPr 1.47 1.25 1.02 0.98 0.97 0.92 1.01 1.14 

Mmax/MnAASHTO 1.31 1.11 0.91 0.86 0.83 0.89 0.96 1.06 

Vmax/VnAASHTO                 

G44 

Lb (inches) 350.0 500.0 958.0 1000.0 1173.3 1408.0 1642.6 2053.3 

Mmax/My 1.05 1.04 0.92 0.91 0.79 0.62 0.49 0.34 

Mmax/MnPr 1.20 1.19 1.05 1.04 1.00 0.93 0.96 1.02 

Mmax/MnAASHTO 1.18 1.17 1.03 1.02 0.89 0.91 0.96 1.02 

Vmax/VnAASHTO                 

G45 

Lb (inches) 131.6 222.2 312.8 475.0 494.1 550.0 691.8 864.7 

Mmax/My 1.24 1.16 1.00 0.78 0.75 0.67 0.50 0.36 

Mmax/MnPr 1.33 1.24 1.07 0.94 0.93 0.92 0.96 1.05 

Mmax/MnAASHTO 1.24 1.15 1.00 0.82 0.81 0.84 0.96 1.05 

Vmax/VnAASHTO                 
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Table B-4: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to moment gradient, Cb = 1.3, Girders G46, G47, G49 

G46 

Lb (inches) 316.6 534.7 752.8 970.9 1189.0 1426.8 1664.5 2080.7 

Mmax/My 1.07 1.05 1.01 0.94 0.82 0.65 0.52 0.38 

Mmax/MnPr 1.06 1.04 1.00 1.02 1.01 0.94 0.95 1.01 

Mmax/MnAASHTO 1.06 1.04 1.00 0.93 0.88 0.89 0.95 1.01 

Vmax/VnAASHTO                 

G47 

Lb (inches) 100.0 200.0 370.0 391.8 479.9 575.8 671.8 839.8 

Mmax/My 1.26 1.17 0.89 0.86 0.73 0.59 0.48 0.36 

Mmax/MnPr   1.10 0.92 0.92 0.90 0.88 0.93 1.04 

Mmax/MnAASHTO   1.03 0.81 0.80 0.78 0.86 0.93 1.04 

Vmax/VnAASHTO 1.29               

G49 

Lb (inches) 100.0 175.0 250.0 370.2 453.4 521.4 589.36 793.4 

Mmax/My 1.20 1.12 0.96 0.83 0.74 0.65 0.58 0.43 

Mmax/MnPr   1.15 0.99 0.96 0.98 0.99 1.06 1.42 

Mmax/MnAASHTO   1.05 0.91 0.78 0.75 0.71 0.77 0.87 

Vmax/VnAASHTO 1.49               
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Figure B-1: LTB curves for G3, Cb = 1.3 

 
Figure B-2: LTB curves for G5, Cb = 1.3 

 
Figure B-3: LTB curves for G13, Cb = 1.3 
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Figure B-4: LTB curves for G37, Cb = 1.3 

 
Figure B-5: LTB curves for G44, Cb = 1.3 

 
Figure B-6: LTB curves for G45, Cb = 1.3 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7

M
m

a
x

 / 
M

y,
 V

m
a

x
/V

n

Lb/Lp

Mn Proposed 

Mn AASHTO

Mn EC

Mmax(Flexure controlled)

Mmax(Shear controlled)

Vmax

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7

M
m

a
x

 / 
M

y,
 V

m
a

x
/V

n

Lb/Lp

Mn Proposed 

Mn AASHTO

Mn EC

Mmax(Flexure controlled)

Mmax(Shear controlled)

Vmax

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7

M
m

a
x

 / 
M

y,
 V

m
a
x
/V

n

Lb/Lp

Mn Proposed 

Mn AASHTO

Mn EC

Mmax(Flexure controlled)

Vmax



322 

 

 
Figure B-7: LTB curves for G46, Cb = 1.3 

 
Figure B-8: LTB curves for G47, Cb = 1.3
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Table B-5: Test simulation results and comparison with proposed and AISC equations for rolled 

beams subjected to moment gradient, Cb = 1.75  

W21x44 

Lb (inches) 75.0 130.0 150.0 188.5 225.0 273.0 

Mmax/Mp 1.04 0.95 0.88 0.71 0.56 0.43 

Mmax/MnPr 1.04 0.95 0.88 0.94 0.98 1.01 

Mmax/MnAISC 1.04 0.95 0.88 0.94 0.98 1.01 

W14x68 

Lb (inches) 200.0 275.0 340.0 400.0 475.0 615.3 

Mmax/Mp 1.08 1.04 0.99 0.92 0.80 0.64 

Mmax/MnPr 1.08 1.04 0.99 0.99 1.05 1.13 

Mmax/MnAISC 1.08 1.04 0.99 0.98 1.05 1.13 

W10x30 

Lb (inches) 103.1 200.0 258.0 300.0 338.1  

Mmax/Mp 1.12 0.97 0.80 0.70 0.62  

Mmax/MnPr 1.12 0.97 1.06 1.10 1.13  

Mmax/MnAISC 1.12 0.97 1.06 1.10 1.13  

W16x31 

Lb (inches) 50.0 95.0 125.0 150.0 200.0 250.0 

Mmax/Mp 1.09 1.04 0.97 0.88 0.64 0.48 

Mmax/MnPr 1.09 1.04 0.97 0.95 1.03 1.07 

Mmax/MnAISC 1.09 1.04 0.97 0.90 1.03 1.07 

W14x90 

Lb (inches) 250.0 500.0 650.0 750.0 892.5 1000.0 

Mmax/Mp 1.03 0.99 0.88 0.79 0.68 0.62 

Mmax/MnPr 1.08 1.04 1.07 1.14 1.20 1.24 

Mmax/MnAISC 1.03 0.99 1.07 1.14 1.20 1.24 
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Table B-6: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to moment gradient, Cb = 1.75, Girders G1, G3, G5, G9 

G1 

Lb (inches) 150.0 200.0 403.0 450.0 481.2 600.0 700.0 850.0 

Mmax/My 1.09 1.10 0.90 0.84 0.80 0.66 0.55 0.43 

Mmax/MnPr     0.93 0.87 0.83 0.84 0.97 1.13 

Mmax/MnAASHTO     0.87 0.82 0.78 0.78 0.89 1.00 

Vmax/VnAASHTO 2.53 1.93             

G3 

Lb (inches) 250.0 600.0 987.0 1178.0 1300.0 1600.0 1800.0 2000.0 

Mmax/My 0.70 1.10 1.05 0.96 0.89 0.70 0.59 0.51 

Mmax/MnPr     1.03 0.94 0.89 0.91 0.96 1.00 

Mmax/MnAASHTO     1.03 0.94 0.87 0.91 0.96 1.00 

Vmax/VnAASHTO 2.58 1.70             

G5 

Lb (inches) 100.0 350.0 430.0 480.0 514.6 600.0 700.0 800.0 

Mmax/My 0.73 0.88 0.82 0.77 0.74 0.65 0.56 0.48 

Mmax/MnPr             0.93 1.04 

Mmax/MnAASHTO             0.89 0.99 

Vmax/VnAASHTO 5.91 2.05 1.55 1.31 1.17 0.89     

G9 

Lb (inches) 100.0 200.0 382.0 420.0 455.2 600.0 700.0 796.5 

Mmax/My 0.78 1.02 0.82 0.79 0.74 0.63 0.56 0.49 

Mmax/MnPr     0.92 0.89 0.83 0.96 1.15 1.32 

Mmax/MnAASHTO     0.87 0.84 0.78 0.90 1.08 1.25 

Vmax/VnAASHTO 3.27 2.13             
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Table B-7: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to moment gradient, Cb = 1.75, Girders G13, G37, G44, G45 

G13 

Lb (inches) 200.0 365.0 430.0 460.0 491.1 600.0 675.0 859.4 

Mmax/My 0.85 0.76 0.72 0.70 0.74 0.63 0.56 0.44 

Mmax/MnPr             1.04 1.32 

Mmax/MnAASHTO             0.98 1.25 

Vmax/VnAASHTO 4.01 1.98 1.58 1.43 1.42 0.98     

G37 

Lb (inches) 150.0 300.0 450.0 475.0 495.5 594.6 693.7 867.1 

Mmax/My 1.11 1.08 0.91 0.88 0.85 0.72 0.61 0.45 

Mmax/MnPr   1.36 1.14 1.11 1.11 1.08 1.22 1.39 

Mmax/MnAASHTO   1.04 0.93 0.93 0.93 1.07 1.21 1.38 

Vmax/VnAASHTO 2.26               

G44 

Lb (inches) 350.0 500.0 958.0 1000.0 1173.3 1408.0 1642.6 2053.3 

Mmax/My 1.02 1.05 1.03 1.01 0.94 0.79 0.64 0.46 

Mmax/MnPr     1.17 1.15 1.18 1.19 1.26 1.38 

Mmax/MnAASHTO     1.10 1.09 1.01 1.16 1.26 1.38 

Vmax/VnAASHTO 2.17 1.57             

G45 

Lb (inches) 131.6 222.2 312.8 475.0 494.1 550.0 691.8 864.7 

Mmax/My 1.17 1.23 1.15 0.92 0.90 0.82 0.64 0.48 

Mmax/MnPr   1.31 1.23 1.11 1.12 1.13 1.24 1.41 

Mmax/MnAASHTO   1.12 1.05 0.97 0.97 1.03 1.24 1.41 

Vmax/VnAASHTO 1.59               
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Table B-8: Test simulation results and comparison with proposed and AASHTO equations for plate 

girders subjected to moment gradient, Cb = 1.75, Girders G46, G47, G49 

G46 

Lb (inches) 316.6 534.7 752.8 970.9 1189.0 1426.8 1664.5 2080.7 

Mmax/My 1.02 1.07 1.06 1.04 0.97 0.85 0.70 0.52 

Mmax/MnPr   1.06 1.05 1.13 1.19 1.22 1.27 1.38 

Mmax/MnAASHTO   1.06 1.05 1.03 1.03 1.16 1.27 1.38 

Vmax/VnAASHTO 1.65               

G47 

Lb (inches) 100.0 200.0 370.0 391.8 479.9 575.8 671.8 839.76 

Mmax/My 0.98 1.22 1.03 1.00 0.88 0.74 0.62 0.48 

Mmax/MnPr     1.06 1.07 1.08 1.10 1.21 1.38 

Mmax/MnAASHTO     0.93 0.94 0.94 1.07 1.21 1.38 

Vmax/VnAASHTO 2.02 1.25             

G49 

Lb (inches) 100.0 175.0 250.0 370.2 453.4 521.4 589.36 793.37 

Mmax/My 0.79 1.12 1.08 0.94 0.86 0.78 0.71 0.56 

Mmax/MnPr     1.11 0.97 0.88 0.88 0.97 1.37 

Mmax/MnAASHTO     1.02 0.89 0.81 0.74 0.94 1.33 

Vmax/VnAASHTO 1.96 1.58             
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Figure B-9: LTB curves for G3, Cb = 1.75 

 
Figure B-10: LTB curves for G5, Cb = 1.75 

 
Figure B-11: LTB curves for G13, Cb = 1.75 
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Figure B-12: LTB curves for G37, Cb = 1.75 

 
Figure B-13: LTB curves for G44, Cb = 1.75 

 
Figure B-14: LTB curves for G45, Cb = 1.75 
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Figure B-15: LTB curves for G46, Cb = 1.75 

 
Figure B-16: LTB curves for G47, Cb = 1.75 
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Table B-9: Test simulation results and comparison with proposed and AISC equations for rolled 

beams subjected to moment gradient, Cb = 2.3  

W21x44 

Lb (inches) 75.0 130.0 188.5 225.0 273.0  

Mmax/Mp 1.11 1.06 0.96 0.82 0.64  

Mmax/MnPr 1.11 1.06 0.96 1.09 1.15  

Mmax/MnAISC 1.11 1.06 0.96 1.09 1.15  

W14x68 

Lb (inches) 200.0 275.0 340.0 475.0 615.3 700.0 

Mmax/Mp 1.16 1.13 1.10 1.05 0.90 0.80 

Mmax/MnPr 1.16 1.13 1.10 1.06 1.22 1.25 

Mmax/MnAISC 1.16 1.13 1.10 1.06 1.22 1.25 

W10x30 

Lb (inches) 103.1 200.0 258.0 300.0 338.1 400.0 

Mmax/Mp 1.21 1.09 1.05 0.97 0.88 0.74 

Mmax/MnPr 1.21 1.09 1.05 1.16 1.20 1.23 

Mmax/MnAISC 1.21 1.09 1.05 1.16 1.20 1.23 

W16x31 

Lb (inches) 50.0 95.0 125.0 175.0 200.0 250.0 

Mmax/Mp 1.15 1.11 1.07 1.01 0.93 0.72 

Mmax/MnPr 1.15 1.11 1.07 1.01 1.13 1.22 

Mmax/MnAISC 1.15 1.11 1.07 1.01 1.13 1.22 

W14x90 

Lb (inches) 500.0 650.0 750.0 892.5 1000.0  

Mmax/Mp 1.04 1.04 1.03 0.95 0.88  

Mmax/MnPr 1.09 1.09 1.13 1.27 1.33  

Mmax/MnAISC 1.04 1.04 1.13 1.27 1.33  
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 Table B-10: Test simulation results and comparison with proposed and AASHTO equations for 

plate girders subjected to moment gradient, Cb = 2.3, Girders G1, G3, G5, G9 

G1 

Lb (inches) 150.0 200.0 403.0 450.0 481.2 600.0 700.0 850.0  

Mmax/My 0.62 0.72 0.81 0.77 0.74 0.64 0.57 0.49  

Mmax/MnPr       0.76 0.96  

Mmax/MnAASHTO       0.70 0.86  

Vmax/VnAASHTO 2.72 2.40 1.34 1.13 1.02 0.71    

G3 

Lb (inches) 250.0 600.0 987.0 1178.0 1300.0 1600.0 1800.0 2000.0  

Mmax/My 0.35 0.73 1.04 0.95 0.91 0.79 0.72 0.65  

Mmax/MnPr       0.88 0.96  

Mmax/MnAASHTO       0.88 0.96  

Vmax/VnAASHTO 2.60 2.24 1.95 1.49 1.29 0.92    

G5 

Lb (inches) 100.0 350.0 430.0 480.0 514.6 600.0 700.0 800.0  

Mmax/My 0.37 0.76 0.73 0.69 0.66 0.60 0.53 0.48  

Mmax/MnPr          

Mmax/MnAASHTO          

Vmax/VnAASHTO 6.03 3.51 2.75 2.33 2.09 1.62 1.24 0.98  

G9 

Lb (inches) 100.0 200.0 382.0 420.0 455.2 575.0 600.0 700.0 796.5 

Mmax/My 0.41 0.63 0.79 0.78 0.76 0.69 0.69 0.65 0.62 

Mmax/MnPr      1.19 1.30 1.67 2.05 

Mmax/MnAASHTO      1.12 1.22 1.58 1.93 

Vmax/VnAASHTO 3.39 2.64 1.74 1.55 1.40     
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 Table B-11: Test simulation results and comparison with proposed and AASHTO equations for 

plate girders subjected to moment gradient, Cb = 2.3, Girders G13, G46, G47, G49 

G13 

Lb (inches) 365.0 430.0 460.0 491.1 600.0 675.0 859.4   

Mmax/My 0.69 0.68 0.66 0.65 0.61 0.55 0.51   

Mmax/MnPr             1.82   

Mmax/MnAASHTO             1.72   

Vmax/VnAASHTO 3.56 2.97 2.72 2.50 1.93 1.55     

G46 

Lb (inches) 316.6 534.7 752.8 970.9 1189.0 1426.8 1664.5 2080.7 

Mmax/My 0.52 0.80 0.92 0.93 0.89 0.82 0.74 0.59 

Mmax/MnPr       1.02 0.97 0.90 0.92 1.09 

Mmax/MnAASHTO       0.93 0.88 0.81 0.92 1.09 

Vmax/VnAASHTO 1.70 1.53 1.26           

G47 

Lb (inches) 100.0 200.0 370.0 391.8 479.9 575.8 671.8 839.8 

Mmax/My 0.50 0.81 0.95 0.93 0.84 0.76 0.68 0.57 

Mmax/MnPr         0.79 0.71 0.75 0.94 

Mmax/MnAASHTO         0.74 0.66 0.75 0.94 

Vmax/VnAASHTO 2.05 1.66 1.05 0.97         

G49 

Lb (inches) 100.0 175.0 250.0 370.2 453.4 521.4 589.36 793.4 

Mmax/My 0.41 0.63 0.83 0.94 0.90 0.87 0.84 0.74 

Mmax/MnPr         1.11 1.21 1.41 2.25 

Mmax/MnAASHTO         0.90 0.88 1.36 2.19 

Vmax/VnAASHTO 2.01 1.79 1.64 1.25         
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Figure B-17: LTB curves for G3, Cb = 2.3 

 
Figure B-18: LTB curves for G5, Cb = 2.3 

 
Figure B-19: LTB curves for G9, Cb = 2.3 
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Figure B-20: LTB curves for G13, Cb = 2.3 

 
Figure B-21: LTB curves for G46, Cb = 2.3 

 
Figure B-22: LTB curves for G47, Cb = 2.3 
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Figure B-23: LTB curves for G49, Cb = 2.3 
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Table B-12: Test simulation results and comparison with proposed and AISC equations for rolled 

beams subjected to transverse loading, Case a in Table 7-1 

W21x44 

Lb (inches) 200.0 300.0 400.0 550.0 650.0 800.0 

Mmax/Mp 1.00 0.83 0.67 0.57 0.51 0.43 

Mmax/MnPr 1.00 0.83 0.72 1.01 1.15 1.27 

Mmax/MnAISC 1.00 0.56 0.72 1.12 1.55 2.17 

W14x68 

Lb (inches) 500.0 800.0 1000.0 1300.0 1600.0   

Mmax/Mp 1.04 0.88 0.82 0.74 0.68   

Mmax/MnPr 1.04 0.88 0.84 1.02 1.17   

Mmax/MnAISC 1.04 0.88 0.86 1.41 2.02   

Table B-13: Test simulation results and comparison with proposed and AISC equations for rolled 

beams subjected to transverse loading, Case b in Table 7-1 

W21x44 

Lb (inches) 200.0 252.0 300.0 400.0 550.0 650.0 800.0 

Mmax/Mp 0.98 0.82 0.67 0.51 0.41 0.36 0.31 

Mmax/MnPr 0.98 0.83 0.89 1.06 1.31 1.43 1.60 

Mmax/MnAISC 0.98 0.82 0.89 1.06 1.31 1.43 1.60 

W14x68 

Lb (inches) 500.0 628.0 800.0 1000.0 1300.0 1600.0  

Mmax/Mp 0.98 0.83 0.73 0.63 0.50 0.41  

Mmax/MnPr 0.98 0.84 0.97 1.07 1.13 1.16  

Mmax/MnAISC 0.98 0.84 0.97 1.07 1.13 1.16  
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Table B-14: Test simulation results and comparison with proposed and AISC equations for rolled 

beams subjected to transverse loading, Case c in Table 7-1 

W21x44 

Lb (inches) 50.0 75.0 110.0 130.0 188.5 225.0 273.0 

Mmax/Mp 0.84 0.83 0.72 0.65 0.44 0.35 0.26 

Mmax/MnPr     0.90 0.90 0.90 0.94 0.96 

Mmax/MnAISC     0.81 0.82 0.90 0.94 0.96 

Vmax/VnAISC 1.60 1.05           

W14x68 

Lb (inches) 100.0 200.0 275.0 340.0 475.0 615.3   

Mmax/Mp 0.94 0.83 0.73 0.63 0.46 0.37   

Mmax/MnPr   0.92 0.93 0.91 0.94 1.01   

Mmax/MnAISC   0.85 0.87 0.86 0.94 1.01   

Vmax/VnAISC 1.43             

Table B-15: Test simulation results and comparison with proposed and AISC equations for rolled 

beams subjected to transverse loading, Case d-1 in Table 7-1 

W21x44 

Lb (inches) 50.0 75.0 110.0 130.0 188.5 225.0 273.0 

Mmax/Mp 0.90 0.92 0.80 0.73 0.52 0.42 0.32 

Mmax/MnPr 0.96 1.06 1.03 1.02 0.92 0.97 1.00 

Mmax/MnAISC 0.90 0.92 0.80 0.80 0.92 0.97 1.00 

W14x68 

Lb (inches) 100.0 200.0 275.0 340.0 475.0 615.3   

Mmax/Mp 0.98 0.91 0.82 0.72 0.54 0.43   

Mmax/MnPr 1.03 1.08 1.06 1.02 0.95 1.00   

Mmax/MnAISC 0.98 0.91 0.84 0.85 0.95 1.00   
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Table B-16: Test simulation results and comparison with proposed and AISC equations for rolled 

beams subjected to transverse loading, Case d-2 in Table 7-1 

W21x44 

Lb (inches) 24.0 50.0 75.0 100.0 150.0 200.0 300.0 

Mmax/Mp 0.76 0.88 0.82 0.71 0.49 0.33 0.20 

Mmax/MnPr   0.97 1.01 0.97 0.89 0.91 1.00 

Mmax/MnAISC   0.88 0.95 0.92 0.83 0.91 1.00 

Vmax/VnAISC 1.50             

W14x68 

Lb (inches) 40.0 100.0 200.0 300.0 400.0 550.0 700.0 

Mmax/Mp 0.86 0.96 0.81 0.63 0.50 0.38 0.35 

Mmax/MnPr   1.04 1.03 0.97 0.98 1.11 1.31 

Mmax/MnAISC   0.96 1.00 0.95 0.99 1.11 1.31 

Vmax/VnAISC 1.63             

Table B-17: Test simulation results and comparison with proposed and AISC equations for rolled 

beams subjected to transverse loading, Case d-3 in Table 7-1 

W21x44 

Lb (inches) 100.0 160.0 200.0 250.0 300.0 

Mmax/Mp 0.92 0.78 0.67 0.51 0.40 

Mmax/MnPr 1.02 0.95 0.93 1.01 1.02 

Mmax/MnAISC 0.92 0.78 0.93 1.01 1.02 

W14x68 

Lb (inches) 200.0 300.0 400.0 500.0 700.0 

Mmax/Mp 0.95 0.89 0.78 0.64 0.45 

Mmax/MnPr 1.02 0.99 0.91 0.85 0.87 

Mmax/MnAISC 0.95 0.89 0.79 0.85 0.87 
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APPENDIX C 

ADDITIONAL RESULTS FOR LTB OF LONGITUDINALLY 

STIFFENED GIRDERS SUBJECTED TO UNIFORM BENDING  

 This section presents the complete set of results for longitudinally stiffened girders 

under uniform bending. Table C-1 lists the girder names for different cross-sections, and 

Tables C-2 to C-8 show the results for all girders considered for do/D = 1. 

 The tables are followed by Figures C-1 through C-24, which show the results for all 

girders with do/D = 1. Plots for girders LG2, LG3 and LG27 are shown in Chapter 8. 
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Table C-1: Designation of longitudinally stiffened girders 

Dc/D D/bfc D/tw Girder 

0.5 

6 

200 LG1 

240 LG2 

300 LG3 

5 

200 LG4 

240 LG5 

300 LG6 

4 

200 LG7 

240 LG8 

300 LG9 

0.625 

6 

200 LG10 

240 LG11 

300 LG12 

5 

200 LG13 

240 LG14 

300 LG15 

4 

200 LG16 

240 LG17 

300 LG18 

0.75 

6 

200 LG19 

240 LG20 

300 LG21 

5 

200 LG22 

240 LG23 

300 LG24 

4 

200 LG25 

240 LG26 

300 LG27 
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Table C-2: Results from test simulations compared with proposed, AASHTO and Eurocode strength 

predictions for do/D =1, KLb = 225 inches 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG1 0.93 1.07 1.00 1.36 

LG2 0.92 1.04 0.98 1.34 

LG3 0.89 1.03 1.14 1.29 

LG4 0.99 1.08 1.02 1.29 

LG5 0.97 1.06 1.00 1.27 

LG6 0.94 1.04 1.12 1.23 

LG7 1.03 1.08 1.03 1.20 

LG8 1.01 1.05 1.01 1.19 

LG9 0.99 1.04 1.09 1.15 

LG10 0.89 1.03 0.96 1.28 

LG11 0.86 1.05 1.21 1.26 

LG12 0.83 1.03 1.26 1.20 

LG13 0.96 1.05 0.99 1.25 

LG14 0.93 1.06 1.18 1.22 

LG15 0.91 1.07 1.24 1.20 

LG16 1.01 1.06 1.01 1.19 

LG17 0.98 1.05 1.13 1.15 

LG18 0.95 1.03 1.14 1.11 

LG19 0.84 1.06 1.28 1.21 

LG20 0.81 1.04 1.35 1.18 

LG21 0.78 1.04 1.51 1.14 

LG22 0.91 1.07 1.25 1.25 

LG23 0.87 1.05 1.29 1.21 

LG24 0.85 1.04 1.38 1.17 

LG25 1.03 1.13 1.26 1.22 

LG26 0.94 1.05 1.20 1.11 

LG27 0.92 1.04 1.24 1.08 
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Table C-3: Results from test simulations compared with proposed, AASHTO and Eurocode strength 

predictions for do/D =1, KLb = 375 inches 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG1 0.83 1.12 1.01 1.63 

LG2 0.84 1.12 1.01 1.63 

LG3 0.84 1.15 1.23 1.62 

LG4 0.89 1.11 1.01 1.46 

LG5 0.89 1.10 1.01 1.46 

LG6 0.89 1.11 1.17 1.43 

LG7 0.98 1.11 1.04 1.32 

LG8 0.96 1.10 1.02 1.32 

LG9 0.94 1.08 1.11 1.28 

LG10 0.81 1.12 1.00 1.46 

LG11 0.82 1.17 1.32 1.48 

LG12 0.81 1.16 1.40 1.44 

LG13 0.89 1.11 1.02 1.38 

LG14 0.88 1.14 1.24 1.37 

LG15 0.85 1.11 1.27 1.32 

LG16 0.97 1.11 1.04 1.30 

LG17 0.94 1.10 1.17 1.26 

LG18 0.91 1.08 1.17 1.21 

LG19 0.83 1.23 1.46 1.38 

LG20 0.81 1.21 1.56 1.36 

LG21 0.78 1.22 1.71 1.30 

LG22 0.90 1.20 1.37 1.44 

LG23 0.85 1.15 1.39 1.38 

LG24 0.83 1.15 1.48 1.33 

LG25 0.96 1.15 1.26 1.25 

LG26 0.91 1.11 1.25 1.19 

LG27 0.89 1.10 1.28 1.15 
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Table C-4: Results from test simulations compared with proposed, AASHTO and Eurocode strength 

predictions for do/D =1, KLb = 525 inches 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG1 0.62 1.04 0.88 1.72 

LG2 0.64 1.05 0.89 1.73 

LG3 0.67 1.08 1.11 1.74 

LG4 0.78 1.12 0.99 1.66 

LG5 0.79 1.12 0.99 1.65 

LG6 0.80 1.14 1.16 1.64 

LG7 0.87 1.11 1.01 1.44 

LG8 0.88 1.10 1.01 1.44 

LG9 0.88 1.11 1.11 1.43 

LG10 0.62 1.07 0.93 1.42 

LG11 0.64 1.10 1.19 1.45 

LG12 0.66 1.13 1.32 1.48 

LG13 0.78 1.14 1.00 1.47 

LG14 0.79 1.17 1.25 1.48 

LG15 0.79 1.18 1.31 1.46 

LG16 0.87 1.12 1.02 1.35 

LG17 0.87 1.13 1.17 1.35 

LG18 0.86 1.13 1.19 1.32 

LG19 0.70 1.27 1.58 1.32 

LG20 0.70 1.26 1.65 1.35 

LG21 0.69 1.32 1.77 1.33 

LG22 0.81 1.24 1.38 1.50 

LG23 0.80 1.23 1.46 1.50 

LG24 0.78 1.25 1.55 1.46 

LG25 0.88 1.17 1.26 1.27 

LG26 0.86 1.15 1.27 1.24 

LG27 0.84 1.15 1.30 1.20 
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Table C-5: Results from test simulations compared with proposed, AASHTO and Eurocode strength 

predictions for do/D =1, KLb = 675 inches 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG1 0.42 0.96 0.96 1.60 

LG2 0.44 0.94 0.94 1.60 

LG3 0.45 0.93 1.13 1.61 

LG4 0.61 1.03 0.87 1.67 

LG5 0.62 1.04 0.88 1.68 

LG6 0.64 1.06 1.04 1.69 

LG7 0.80 1.13 1.01 1.61 

LG8 0.81 1.13 1.01 1.61 

LG9 0.81 1.14 1.12 1.59 

LG10 0.44 1.08 1.08 1.27 

LG11 0.45 1.04 1.37 1.30 

LG12 0.47 1.01 1.45 1.33 

LG13 0.61 1.07 0.94 1.41 

LG14 0.63 1.09 1.14 1.44 

LG15 0.65 1.12 1.21 1.46 

LG16 0.80 1.15 1.02 1.44 

LG17 0.81 1.17 1.18 1.45 

LG18 0.80 1.16 1.20 1.41 

LG19 0.57 1.53 2.14 1.22 

LG20 0.57 1.43 2.23 1.25 

LG21 0.57 1.40 2.37 1.25 

LG22 0.71 1.29 1.52 1.52 

LG23 0.71 1.28 1.56 1.55 

LG24 0.70 1.32 1.58 1.52 

LG25 0.83 1.24 1.30 1.32 

LG26 0.82 1.21 1.32 1.29 

LG27 0.80 1.22 1.35 1.25 
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Table C-6: Results from test simulations compared with proposed, AASHTO and Eurocode strength 

predictions for do/D =1, KLb = 825 inches 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG1 0.29 1.01 1.01 1.50 

LG2 0.30 0.98 0.98 1.49 

LG3 0.31 0.94 1.15 1.44 

LG4 0.44 0.94 0.94 1.56 

LG5 0.45 0.92 0.92 1.56 

LG6 0.45 0.90 1.04 1.52 

LG7 0.67 1.07 0.92 1.65 

LG8 0.68 1.08 0.93 1.65 

LG9 0.67 1.06 1.01 1.60 

LG10 0.32 1.19 1.19 1.17 

LG11 0.33 1.14 1.50 1.18 

LG12 0.33 1.07 1.53 1.17 

LG13 0.46 1.06 1.06 1.29 

LG14 0.47 1.03 1.28 1.31 

LG15 0.47 0.98 1.29 1.29 

LG16 0.69 1.13 0.96 1.45 

LG17 0.70 1.14 1.12 1.46 

LG18 0.69 1.12 1.13 1.41 

LG19 0.49 1.96 2.75 1.16 

LG20 0.49 1.81 2.82 1.18 

LG21 0.47 1.61 2.91 1.16 

LG22 0.62 1.51 1.99 1.50 

LG23 0.62 1.42 2.03 1.54 

LG24 0.60 1.39 2.01 1.49 

LG25 0.79 1.34 1.36 1.37 

LG26 0.79 1.31 1.40 1.36 

LG27 0.75 1.31 1.39 1.29 
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Table C-7: Results from test simulations compared with proposed, AASHTO and Eurocode strength 

predictions for do/D =1, KLb = 975 inches 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG1 0.22 1.06 1.06 1.45 

LG2 0.23 1.03 1.03 1.44 

LG3 0.24 1.01 1.24 1.43 

LG4 0.33 0.99 0.99 1.48 

LG5 0.34 0.97 0.97 1.48 

LG6 0.35 0.97 1.13 1.49 

LG7 0.53 0.97 0.91 1.58 

LG8 0.54 0.98 0.91 1.59 

LG9 0.55 1.00 1.00 1.60 

LG10 0.25 1.31 1.31 1.11 

LG11 0.26 1.24 1.63 1.13 

LG12 0.26 1.19 1.71 1.14 

LG13 0.36 1.15 1.15 1.20 

LG14 0.37 1.12 1.39 1.22 

LG15 0.38 1.09 1.44 1.24 

LG16 0.56 1.06 1.02 1.36 

LG17 0.57 1.07 1.16 1.38 

LG18 0.58 1.09 1.19 1.40 

LG19 0.42 2.35 3.29 1.10 

LG20 0.42 2.15 3.36 1.12 

LG21 0.41 1.96 3.54 1.12 

LG22 0.52 1.77 2.33 1.41 

LG23 0.52 1.67 2.38 1.45 

LG24 0.52 1.56 2.45 1.47 

LG25 0.69 1.34 1.59 1.28 

LG26 0.69 1.32 1.60 1.30 

LG27 0.68 1.39 1.60 1.28 
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Table C-8: Results from test simulations compared with proposed, AASHTO and Eurocode strength 

predictions for do/D =1, KLb = 1125 inches 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG6 0.27 1.00 1.17 1.42 

LG9 0.44 0.95 1.05 1.51 

LG15 0.30 1.16 1.54 1.17 

LG18 0.44 0.98 1.19 1.21 

LG24 0.45 1.81 2.84 1.43 

LG27 0.51 1.24 1.60 1.05 
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Figure C-1: Curves for LG1, do/D = 1 

 
Figure C-2: Curves for LG4, do/D = 1 

 
Figure C-3: Curves for LG5, do/D = 1 
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Figure C-4: Curves for LG6, do/D = 1 

 
Figure C-5: Curves for LG7, do/D = 1 

 
Figure C-6: Curves for LG8, do/D = 1 
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Figure C-7: Curves for LG9, do/D = 1 

 
Figure C-8: Curves for LG10, do/D = 1 

 
Figure C-9: Curves for LG11, do/D = 1 
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Figure C-10: Curves for LG12, do/D = 1 

 
Figure C-11: Curves for LG13, do/D = 1 

 
Figure C-12: Curves for LG14, do/D = 1 
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Figure C-13: Curves for LG15, do/D = 1 

 
Figure C-14: Curves for LG16, do/D = 1 

 
Figure C-15: Curves for LG17, do/D = 1 
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Figure C-16: Curves for LG18, do/D = 1 

 
Figure C-17: Curves for LG19, do/D = 1 

 
Figure C-18: Curves for LG20, do/D = 1 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

M
m

a
x
/M

y

KLb /Lp

Mn Proposed

Mn AASHTO (Rb based on Fyc)

Mn AASHTO (Rb = 1.0)

Mn EC

Mmax

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

M
m

a
x
/M

y

KLb /Lp

Mn Proposed

Mn AASHTO (Rb based on Fyc)

Mn AASHTO (Rb = 1.0)

Mn EC

Mmax

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

M
m

a
x
/M

y

KLb /Lp

Mn Proposed

Mn AASHTO (Rb based on Fyc)

Mn AASHTO (Rb = 1.0)

Mn EC

Mmax



354 

 

 
Figure C-19: Curves for LG21, do/D = 1 

 
Figure C-20: Curves for LG22, do/D = 1 

 
Figure C-21: Curves for LG23, do/D = 1 
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Figure C-22: Curves for LG24, do/D = 1 

 
Figure C-23: Curves for LG25, do/D = 1 

 
Figure C-24: Curves for LG26, do/D = 1

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

M
m

a
x
/M

y

KLb /Lp

Mn Proposed

Mn AASHTO (Rb based on Fyc)

Mn AASHTO (Rb = 1.0)

Mn EC

Mmax

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

M
m

a
x
/M

y

KLb /Lp

Mn Proposed

Mn AASHTO (Rb based on Fyc)

Mn AASHTO (Rb = 1.0)

Mn EC

Mmax

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

M
m

a
x
/M

y

KLb /Lp

Mn Proposed

Mn AASHTO (Rb based on Fyc)

Mn AASHTO (Rb = 1.0)

Mn EC

Mmax



356 

 

 Tables C-9 through C-15 compare results from test simulations for girders with do/D 

=2.0, with strength predictions from the proposed model, AASHTO and Eurocode. 

Table C-9: Results from test simulations compared with proposed, AASHTO and Eurocode strength 

predictions for do/D =2, KLb = 300 inches 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG1 0.95 1.18 1.08 1.67 

LG2 0.93 1.14 1.05 1.62 

LG3 0.90 1.13 1.23 1.54 

LG4 0.98 1.14 1.06 1.48 

LG5 0.97 1.12 1.04 1.45 

LG6 0.94 1.11 1.18 1.40 

LG7 1.01 1.10 1.04 1.31 

LG8 1.00 1.09 1.03 1.30 

LG9 0.97 1.07 1.11 1.25 

LG10 0.93 1.17 1.07 1.55 

LG11 0.89 1.16 1.34 1.50 

LG12 0.84 1.12 1.37 1.40 

LG13 0.98 1.15 1.07 1.45 

LG14 0.94 1.14 1.27 1.39 

LG15 0.89 1.10 1.27 1.30 

LG16 1.02 1.11 1.05 1.31 

LG17 0.97 1.09 1.16 1.25 

LG18 0.95 1.08 1.18 1.21 

LG19 0.89 1.20 1.45 1.43 

LG20 0.83 1.15 1.50 1.36 

LG21 0.80 1.14 1.65 1.29 

LG22 0.93 1.16 1.35 1.43 

LG23 0.88 1.12 1.37 1.36 

LG24 0.86 1.11 1.46 1.31 

LG25 0.97 1.12 1.23 1.25 

LG26 0.93 1.09 1.24 1.19 

LG27 0.92 1.08 1.28 1.15 
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Table C-10: Results from test simulations compared with proposed, AASHTO and Eurocode 

strength predictions for do/D =2, KLb = 450 inches 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG1 0.75 1.13 0.99 1.84 

LG2 0.76 1.11 0.98 1.80 

LG3 0.76 1.12 1.18 1.75 

LG4 0.84 1.11 1.00 1.61 

LG5 0.84 1.10 1.00 1.59 

LG6 0.84 1.11 1.16 1.56 

LG7 0.92 1.10 1.02 1.42 

LG8 0.91 1.09 1.01 1.40 

LG9 0.90 1.08 1.10 1.37 

LG10 0.73 1.13 0.98 1.55 

LG11 0.74 1.14 1.27 1.55 

LG12 0.74 1.15 1.37 1.52 

LG13 0.83 1.11 1.00 1.46 

LG14 0.83 1.14 1.23 1.46 

LG15 0.81 1.13 1.27 1.41 

LG16 0.91 1.10 1.02 1.35 

LG17 0.90 1.11 1.16 1.32 

LG18 0.87 1.08 1.16 1.26 

LG19 0.74 1.21 1.41 1.37 

LG20 0.74 1.19 1.53 1.37 

LG21 0.71 1.22 1.69 1.33 

LG22 0.82 1.17 1.33 1.47 

LG23 0.81 1.16 1.40 1.45 

LG24 0.79 1.17 1.48 1.40 

LG25 0.90 1.14 1.23 1.27 

LG26 0.87 1.11 1.24 1.22 

LG27 0.85 1.10 1.28 1.18 
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Table C-11: Results from test simulations compared with proposed, AASHTO and Eurocode 

strength predictions for do/D =2, KLb = 600 inches 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG1 0.56 1.07 1.02 1.93 

LG2 0.56 1.03 0.96 1.84 

LG3 0.56 1.01 1.10 1.77 

LG4 0.71 1.10 0.96 1.79 

LG5 0.72 1.10 0.95 1.76 

LG6 0.73 1.11 1.12 1.74 

LG7 0.84 1.12 1.01 1.57 

LG8 0.84 1.12 1.01 1.56 

LG9 0.85 1.12 1.12 1.54 

LG10 0.56 1.10 1.09 1.50 

LG11 0.55 1.06 1.33 1.48 

LG12 0.56 1.06 1.38 1.46 

LG13 0.70 1.12 0.96 1.52 

LG14 0.71 1.13 1.19 1.52 

LG15 0.72 1.15 1.27 1.51 

LG16 0.84 1.13 1.01 1.43 

LG17 0.84 1.14 1.18 1.43 

LG18 0.82 1.13 1.19 1.38 

LG19 0.62 1.30 1.83 1.29 

LG20 0.62 1.22 1.88 1.31 

LG21 0.61 1.30 1.99 1.29 

LG22 0.74 1.23 1.35 1.52 

LG23 0.74 1.22 1.44 1.54 

LG24 0.72 1.25 1.52 1.50 

LG25 0.84 1.18 1.26 1.31 

LG26 0.83 1.16 1.28 1.28 

LG27 0.81 1.17 1.31 1.24 
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Table C-12: Results from test simulations compared with proposed, AASHTO and Eurocode 

strength predictions for do/D =2, KLb = 750 inches 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG1 0.40 1.12 1.12 1.85 

LG2 0.39 1.04 1.04 1.73 

LG3 0.39 0.98 1.20 1.65 

LG4 0.54 1.01 0.96 1.77 

LG5 0.54 0.99 0.92 1.72 

LG6 0.55 0.99 1.04 1.69 

LG7 0.74 1.11 0.97 1.69 

LG8 0.74 1.11 0.97 1.68 

LG9 0.75 1.12 1.08 1.66 

LG10 0.40 1.24 1.24 1.38 

LG11 0.40 1.14 1.50 1.34 

LG12 0.40 1.07 1.54 1.32 

LG13 0.54 1.05 1.03 1.43 

LG14 0.55 1.04 1.22 1.43 

LG15 0.56 1.05 1.26 1.42 

LG16 0.74 1.13 0.99 1.48 

LG17 0.75 1.15 1.15 1.48 

LG18 0.75 1.16 1.19 1.46 

LG19 0.50 1.66 2.32 1.18 

LG20 0.50 1.52 2.37 1.18 

LG21 0.49 1.40 2.51 1.18 

LG22 0.62 1.25 1.65 1.47 

LG23 0.63 1.22 1.69 1.50 

LG24 0.62 1.30 1.73 1.49 

LG25 0.78 1.22 1.27 1.32 

LG26 0.78 1.22 1.31 1.31 

LG27 0.76 1.24 1.34 1.27 
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Table C-13: Results from test simulations compared with proposed, AASHTO and Eurocode 

strength predictions for do/D =2, KLb = 900 inches 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG1 0.29 1.19 1.19 1.77 

LG2 0.28 1.10 1.10 1.65 

LG3 0.28 1.03 1.26 1.56 

LG4 0.40 1.02 1.02 1.68 

LG5 0.40 0.98 0.98 1.62 

LG6 0.41 0.95 1.11 1.59 

LG7 0.60 1.03 0.88 1.68 

LG8 0.61 1.03 0.87 1.67 

LG9 0.62 1.04 0.97 1.66 

LG10 0.31 1.36 1.36 1.30 

LG11 0.30 1.25 1.64 1.26 

LG12 0.30 1.16 1.67 1.23 

LG13 0.42 1.14 1.14 1.33 

LG14 0.42 1.09 1.35 1.32 

LG15 0.43 1.04 1.38 1.31 

LG16 0.62 1.08 0.95 1.43 

LG17 0.63 1.09 1.08 1.44 

LG18 0.64 1.11 1.10 1.44 

LG19 0.42 2.01 2.83 1.10 

LG20 0.42 1.84 2.87 1.11 

LG21 0.41 1.67 3.02 1.10 

LG22 0.53 1.52 2.01 1.40 

LG23 0.53 1.44 2.05 1.43 

LG24 0.53 1.38 2.11 1.44 

LG25 0.69 1.25 1.36 1.28 

LG26 0.70 1.24 1.38 1.29 

LG27 0.69 1.29 1.38 1.26 
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Table C-14: Results from test simulations compared with proposed, AASHTO and Eurocode 

strength predictions for do/D =2, KLb = 1050 inches 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG1 0.22 1.24 1.24 1.73 

LG2 0.22 1.14 1.14 1.61 

LG3 0.22 1.07 1.31 1.51 

LG4 0.31 1.07 1.07 1.61 

LG5 0.31 1.02 1.02 1.55 

LG6 0.31 0.99 1.16 1.51 

LG7 0.47 0.95 0.95 1.61 

LG8 0.48 0.94 0.93 1.59 

LG9 0.49 0.95 1.02 1.58 

LG10 0.25 1.49 1.49 1.25 

LG11 0.24 1.36 1.78 1.21 

LG12 0.24 1.25 1.80 1.17 

LG13 0.33 1.23 1.23 1.26 

LG14 0.33 1.17 1.45 1.24 

LG15 0.34 1.12 1.48 1.23 

LG16 0.50 1.06 1.06 1.35 

LG17 0.51 1.03 1.20 1.35 

LG18 0.52 1.04 1.22 1.36 

LG19 0.37 2.39 3.36 1.05 

LG20 0.36 2.17 3.39 1.06 

LG21 0.36 1.97 3.57 1.06 

LG22 0.45 1.78 2.35 1.34 

LG23 0.45 1.68 2.39 1.37 

LG24 0.45 1.57 2.47 1.39 

LG25 0.61 1.33 1.63 1.21 

LG26 0.61 1.29 1.65 1.22 

LG27 0.61 1.35 1.67 1.22 
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Table C-15: Results from test simulations compared with proposed, AASHTO and Eurocode 

strength predictions for do/D =2, KLb = 1350 inches 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG1 0.15 1.37 1.37 1.71 

LG2 0.14 1.25 1.25 1.58 

LG3 0.13 1.07 1.31 1.36 

LG4 0.20 1.14 1.14 1.52 

LG5 0.20 1.09 1.09 1.45 

LG6 0.20 1.05 1.22 1.41 

LG7 0.31 1.01 1.01 1.47 

LG8 0.31 1.00 1.00 1.45 

LG9 0.32 0.99 1.09 1.43 

LG10 0.18 1.76 1.76 1.21 

LG11 0.17 1.59 2.09 1.16 

LG12 0.17 1.44 2.07 1.12 

LG13 0.23 1.42 1.42 1.17 

LG14 0.23 1.33 1.65 1.15 

LG15 0.23 1.26 1.67 1.13 

LG16 0.35 1.21 1.21 1.22 

LG17 0.35 1.17 1.36 1.22 

LG18 0.36 1.14 1.38 1.22 

LG19 0.31 3.28 4.60 1.03 

LG20 0.30 2.94 4.59 1.02 

LG21 0.29 2.63 4.76 1.02 

LG22 0.36 2.36 3.11 1.29 

LG23 0.36 2.19 3.12 1.32 

LG24 0.35 2.03 3.20 1.33 

LG25 0.47 1.72 2.10 1.09 

LG26 0.48 1.65 2.11 1.10 

LG27 0.48 1.58 2.14 1.10 

 

 Figures C-25 through C-48 show the LTB curves for all girders for do/D = 2. Plots for 

girders LG2, LG3 and LG27 are shown in Chapter 8. 
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Figure C-25: Curves for LG1, do/D = 2 

 
Figure C-26: Curves for LG4, do/D = 2 

 
Figure C-27: Curves for LG5, do/D = 2 
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Figure C-28: Curves for LG6, do/D = 2 

 
Figure C-29: Curves for LG7, do/D = 2 

 
Figure C-30: Curves for LG8, do/D = 2 
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Figure C-31: Curves for LG9, do/D = 2 

 
Figure C-32: Curves for LG10, do/D = 2 

 
Figure C-33: Curves for LG11, do/D = 2 
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Figure C-34: Curves for LG12, do/D = 2 

 
Figure C-35: Curves for LG13, do/D = 2 

 
Figure C-36: Curves for LG14, do/D = 2 
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Figure C-37: Curves for LG15, do/D = 2 

 
Figure C-38: Curves for LG16, do/D = 2 

 
Figure C-39: Curves for LG17, do/D = 2 
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Figure C-40: Curves for LG18, do/D = 2 

 
Figure C-41: Curves for LG19, do/D = 2 

 
Figure C-42: Curves for LG20, do/D = 2 
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Figure C-43: Curves for LG21, do/D = 2 

 
Figure C-44: Curves for LG22, do/D = 2 

 
Figure C-45: Curves for LG23, do/D = 2 
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Figure C-46: Curves for LG24, do/D = 2 

 
Figure C-47: Curves for LG25, do/D = 2 

 
Figure C-48: Curves for LG26, do/D = 2
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APPENDIX D 

ADDITIONAL RESULTS FOR LTB OF LONGITUDINALLY 

STIFFENED GIRDERS SUBJECTED TO MOMENT GRADIENT  

 This appendix lists the results for longitudinally stiffened girders subjected to moment 

gradient, with flexure controlled by the LTB limit state. Tables D-1 through D-5 list the 

results for the six girders considered in Section 9.2 at various unbraced lengths. All the 

plots are shown in Figures 9-16 through 9-21. 

Table D-1: Results from test simulations compared with proposed, AASHTO and Eurocode strength 

predictions for do/D =1, KLb = 450 inches, Cb = 1.75 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG2 0.74 0.74 0.74 1.35 

LG3 0.70 0.72 0.85 1.25 

LG11 0.82 0.87 1.07 1.39 

LG12 0.77 0.85 1.11 1.30 

LG20 0.82 0.93 1.28 1.31 

LG21 0.79 0.92 1.42 1.26 

Table D-2: Results from test simulations compared with proposed, AASHTO and Eurocode strength 

predictions for do/D =1, KLb = 600 inches, Cb = 1.75 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG2 0.77 0.80 0.77 1.76 

LG3 0.79 0.82 0.96 1.77 

LG11 0.75 0.82 1.03 1.50 

LG12 0.76 0.84 1.10 1.52 

LG20 0.81 0.92 1.41 1.41 

LG21 0.83 1.01 1.55 1.45 
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Table D-3: Results from test simulations compared with proposed, AASHTO and Eurocode strength 

predictions for do/D =1, KLb = 750 inches, Cb = 1.75 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG2 0.60 0.92 0.92 1.75 

LG3 0.62 0.89 1.09 1.75 

LG11 0.61 1.01 1.32 1.46 

LG12 0.63 0.96 1.38 1.48 

LG20 0.73 1.28 2.00 1.39 

LG21 0.72 1.17 2.10 1.37 

Table D-4: Results from test simulations compared with proposed, AASHTO and Eurocode strength 

predictions for do/D =1, KLb = 900 inches, Cb = 1.75 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG2 0.47 1.03 1.03 1.72 

LG3 0.48 1.00 1.22 1.71 

LG11 0.50 1.19 1.56 1.41 

LG12 0.52 1.13 1.63 1.43 

LG20 0.69 1.75 2.73 1.41 

LG21 0.68 1.59 2.87 1.41 

Table D-5: Results from test simulations compared with proposed, AASHTO and Eurocode strength 

predictions for do/D =1, KLb = 1050 inches, Cb = 1.75 

Girder Mmax/My Mmax/MnProposed Mmax/MnAASHTO Mmax/MnEC 

LG2 0.37 1.12 1.12 1.69 

LG3 0.39 1.09 1.33 1.68 

LG11 0.41 1.33 1.75 1.35 

LG12 0.42 1.27 1.82 1.37 

LG20 0.63 2.17 3.38 1.38 

LG21 0.62 1.96 3.54 1.37 
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APPENDIX E 

BASIC VERIFICATION OF FINITE ELEMENT TEST 

SIMULATIONS  

 The findings from this research are largely based on results from nonlinear finite 

element test simulations conducted in ABAQUS. Analytical solutions for strengths of 

members that are partially yielded are not available in closed form, rendering direct 

verification of FE solutions of such members difficult. However, it is possible to verify the 

FE simulations via correlation with analytical solutions in the LTB plateau region and with 

elastic buckling solutions. The following points illuminate some of the key characteristics 

of the FE simulations that establish the correctness of the solutions. 

1. Non-longitudinally stiffened girders: 

a. It is observed in Section 6.5 that the test simulations with uniform moment 

attain the plastic moment capacity for rolled beams of very small unbraced 

lengths. The plastic moment capacity is the theoretical maximum 

achievable strength by these sections. 

b. It is also observed in Section 7.1 that the rolled beams attain the plastic 

moment capacity, or higher in tests with small unbraced lengths subjected 

to moment gradient. This corroborates with the expected and often observed 

phenomenon of strain-hardening within such members. 

c. It is further observed in Section 6.5 that rolled beams as well as doubly-

symmetric welded plate girders attain the theoretical elastic LTB strengths 

(same as the Specification elastic LTB strengths) at long unbraced lengths. 
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It is evident that the FE simulations are accurate in the plateau and elastic 

LTB regions. 

d. Section 7.1 introduces a computational tool SABRE2 that performs rigorous 

inelastic buckling solutions using stiffness reduction factors, and compares 

the results from SABRE2 with the FE simulation data obtained using 

ABAQUS. It is demonstrated that the FE test data and SABRE2 strength 

predictions correlate very well. This, along with the excellent correlation of 

the FE simulations with the experimental data in the inelastic LTB region 

(Section 6.2.3), provides confidence in the FE simulations conducted in this 

research for LTB of unstiffened girders. 

2. Longitudinally  stiffened girders: 

a. Section 4.6 presents results for longitudinally stiffened girders governed by 

the yield limit state. Girders that have theoretical bend-buckling strengths 

greater that Fyc are expected to attain their full yield strengths. It is observed 

that test simulation results capture this behavior correctly, with no bend-

buckling or stress redistribution in the webs of such girders. This is 

established by observing that the average compressive stresses through the 

mid-thickness of the web is largely linear at failure of these girders. 

b. Section 8.4 presents results for the LTB strengths of longitudinally stiffened 

girders. As discussed above for non-longitudinally stiffened members, the 

test simulation strengths correlate well with the theoretical elastic LTB 

strengths at long unbraced lengths for doubly-symmetric girders. This 

indicates that the elastic buckling responses of these girders are well 
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captured by the FE simulations. Given these observations and the 

performance of the simulations in capturing the inelastic LTB response of 

unstiffened girders, it is reasonable to state that the inelastic LTB strengths 

captured by FE test simulations are reliable. 

c. It is also clear from Section 10.5 that the proposed cross-section model 

based on FE test simulations predict experimental data available on 

longitudinally stiffened girders with reasonable accuracy.
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