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SUMMARY 

 

Chapter 1: Introduction 

 NHC ligands generally form labile bonds to silver and tend to form homoleptic 

complexes, limiting the utility of NHC(silver) complexes beyond their use as NHC-

transfer agents. Particularly bulky, electron-rich NHCs form relatively inert bonds to 

silver, allowing the preparation of a wide variety of interesting heteroleptic NHC-

supported complexes. 

Chapter 2: An NHC-Supported Disilver Hydride 

 A triangular [Ag2H]+ core is stabilized by the NHC ligand 5Dipp. The X-ray 

crystal structure of this complex reveals a short silver-silver distance, and 109Ag NMR 

spectroscopy shows substantial coupling between the silver nuclei. The complex persists 

for hours in solution after exposure to air and moisture. When carbon dioxide is added in 

the form of a Lewis-basic NHC adduct, a rapid reaction results in hydride transfer to form 

a bis(NHC) silver(I) formate.  

Chapter 3: Fluoride-Bridged Complexes of the Group 11 Metals 

 Terminal fluoride complexes of the monovalent group 11 metals, supported by 

NHC ligands, react with one-half equivalent of triphenylmethyl cation to form fluoride-

bridged dinuclear cations. An improved preparation of the starting terminal fluorides is 

introduced. The crystal structures of the cations display bent M–F–M arrangements with 

large intermetallic separations. The bridging fluorides are highly labile, undergoing facile 

hydrolysis. The fluoride-bridged digold complex adds across an allene C=C bond to form 

a diaurated allylic fluoride.  
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Chapter 4: Hydrogen Activation By Hard-Soft Mismatched Silver Complexes 

 Alkoxide-bridged disilver cations react with dihydrogen to form hydride-bridged 

cations, releasing free alcohol. Hydrogenolysis of neutral silver fluorides affords hydride-

bridged disilver cations as their bifluoride salts. These reactions proceed most efficiently 

when the supporting ligands are expanded-ring NHCs derived from six- and seven-

membered cyclic amidinium salts. Kinetics studies show that silver fluoride 

hydrogenolysis is first-order in both silver and dihydrogen.  

Chapter 5: Closing a Cycle: Silver-Catalyzed Hydrogenation of Carbon Dioxide 

 Expanded-ring NHCs increase the rate of CO2 reduction by dinuclear silver. 

Despite unsuccessful attempts to isolate or directly observe terminal silver hydrides, the 

hydrogenolysis of terminal silver alkoxides or fluorides in the presence of CO2 results in 

stoichiometric formate production. The addition of excess alkoxide precipitates sodium 

formate and regenerates silver alkoxide, completing a formal catalytic cycle for CO2 

hydrogenation. 

Chapter 6: Thermally Stable Organosilver Compounds 

A series of mononuclear and dinuclear complexes of silver(I), supported by an 

NHC and bound to sp3-, sp2-, and sp-hybridized carbanions, has been synthesized. 

Synthetic routes include transmetalation from organozinc, organomagnesium, and 

organosilicon reagents, as well as the deprotonation of a terminal alkyne. These 

complexes exhibit greater thermal stability than typical organosilver reagents, allowing 

thorough spectroscopic and structural characterization. The carbanion-bridged disilver 

cations feature three-center, two-electron bonding with short Ag–Ag distances. The 

intermetallic interactions are probed by X-ray diffraction crystallography and 109Ag NMR 
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spectroscopy. A mononuclear vinylsilver complex releases organic homocoupling 

products upon thermal decomposition, while mononuclear alkylsilver complexes exhibit 

nucleophilic behavior, inserting CO2 to form silver carboxylates. 

 



 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 NHC Ligands Employed in This Work 

 A common theme throughout this thesis is the utilization of sterically protective, 

strongly σ-basic N-heterocyclic carbene (NHC) ancillary ligands to stabilize 

unprecedented coordination chemistry about monovalent silver, and to some extent its 

group 11 congeners copper and gold.1 

 Many NHC complexes of silver can be easily prepared by the deprotonation of 

air-stable cyclic amidinium halide salts with silver oxide.2 Because NHC ligands 

generally form labile bonds to silver, and because the preparation of NHC-silver 

complexes is so convenient, the primary application of NHC complexes of silver is as 

NHC transfer agents. NHC ligands readily transfer from silver to many other transition 

metals.1f–g,2,3 

 The lability of NHC complexes of silver often leads to undesired ligand 

redistribution,2,4 significantly limiting the degree to which the structure and reactivity of 

these complexes can be studied beyond NHC-transfer applications. We5 and others4,6 

have found, however, that bulky, strongly σ-donating NHC ligands are less likely to 

exhibit undesired ligand transfers. This affords isolable heteroletpic silver complexes and 

opens the door for applications of NHC-silver complexes in small-molecule activation 

and catalysis. 

 The class of NHC ligands which we have found most useful is a series of 

carbenes of varying ring size derived from the deprotonation of fully saturated cyclic 
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amidines bearing symmetrical N-diisopropylphenyl substituents. Silver complexes of 

these ligands exhibit sharp 13C NMR resonances with well-resolved 13C–107Ag and 13C–

109Ag coupling, indicative of relatively inert Ag–C bonds.3,4,7 The five-membered NHC 

of this class, first isolated as a free carbene by Arduengo and coworkers,8 is commonly 

referred to as SIPr or SIDipp (Figure 1.1). In this document, SIPr is given the name 

5Dipp in order to keep the abbreviation pattern consistent between NHCs of varying ring 

size. Generally regarded as a stronger σ-donor than its 4,5-unsaturated analogue known 

as IPr or IDipp (Figure 1.1),8,9 5Dipp forms more inert bonds to silver, allowing the 

preparation of a more diverse library of heteroleptic complexes. Expanded NHCs, 

derived from six- and seven-membered cyclic amidines, are less commonly employed 

than conventional five-membered NHCs but are becoming increasingly popular due to 

their remarkable σ-basicity, greater steric demand, and facile syntheses.10 Complexes of 

the expanded-ring analogues of 5Dipp, commonly known as 6Dipp and 7Dipp (Figure 

1.1), with silver(I) have been reported.11 Interestingly, the expanded ring size renders 

(NHC)silver halide complexes ineffective for NHC transfer to other metals, presumably 

as a result of stronger Ag–C bonds.11,12 Furthermore, Aldridge and coworkers13 have 

utilized expanded-ring NHC ligands to stabilize highly electrophilic complexes of gold(I) 

and demonstrated that they impart a substantial increase in hydridcity to gold(I) hydride 

complexes. In this document, the ligands 5Dipp, 6Dipp, and 7Dipp are represented in 

schemes as L5, L6, and L7, respectively. 
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Figure 1.1. Chemical structures of NHC ligands used in this work and, for comparison, 
IDipp.  
 
 
 
 Our attempts to prepare highly activated silver complexes using less sterically 

demanding expanded-ring NHC ancillary ligands such as N-xylyl- and N-mesityl-

substituted varieties resulted in undesired ligand redistribution. In our experience, only 

NHCs featuring N-diisopropylphenyl substituents were suitable for the isolation of 

heteroleptic NHC-supported silver alkoxides or fluorides.14 For this reason, we suspect 

the stabilizing effect of expanded-ring NHCs has not only electronic but also steric 

origins. 

 Sterically demanding, strongly basic NHCs open the door for unprecedented 

applications of silver in homogeneous catalysis and small-molecule activation. Much of 

my thesis involves the synthesis and characterization of novel compounds relevant to 

these applications and the demonstration of some fundamental reactivity of these 

compounds. I hope my contributions to this field lay the foundation for further 

development of applications of silver in synthesis and catalysis. 

1.2 Steric and Electronic Properties of NHC Ligands 

 Quantification of steric and electronic properties of NHC ligands is challenging 

and sometimes controversial. Traditionally, the steric and electronic properties of 

phosphine ligands are quantified by parameters introduced by Tolman: the Tolman cone 

angle as a measure of steric bulk and the Tolman electronic parameter (νTEP) as a measure 

NN

SIPr, SIDipp, or 5Dipp (L5) 6Dipp (L6) 7Dipp (L7)

NN

IPr or IDipp

N N N N
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of electron donating strength.15 These parameters served as a means to compare and even 

predict the steric and electronic effects of phosphine ligands on the chemical properties of 

metal complexes, greatly aiding in the selection and rational design of ligands for new 

applications or for the improvement of known applications. 

 Tolman’s notion of a cone angle simply represents the angle of the apex of a cone 

originating at the metal center and encompassing the ligand. However, incredible 

diversification in ligand design lead to the widespread use of ligands such as NHCs and 

biaryl phosphines, whose steric occupancy about a metal center is not modeled very 

accurately as a cone. For instance, NHC ligands such as 5Dipp, 6Dipp, and 7Dipp are 

more sterically demanding in the plane of their N-heterocycle than in other dimensions. A 

popular alternative to Tolman cone angle is a parameter known as percent buried volume 

(%Vbur), which approximates the percentage of a metal’s coordination sphere that a 

ligand occupies.16,17 

 For a class of NHC ligands with identical N-substituents, such as the series 

depicted in Figure 1.1, a more straightforward measure of steric demand is perhaps the 

N–C–N angle. As this bond angle increases, the flanking aryl substituents are projected 

further toward the metal center, thereby limiting access of other potential ligands or 

substrates to the metal center. 

 The N–C–N angles and percent buried volume for the ligands IDipp, 5Dipp, 

6Dipp, and 7Dipp, determined from crystallographic studies of LAuCl complexes, are 

given in Table 1.1.18 Either of these steric parameters indicates 5Dipp is somewhat more 

demanding than IDipp, while the expanded-ring NHCs require substantially more space 

around a metal than the NHCs derived from five-membered heterocycles. The percent 
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buried volume for 6Dipp and 7Dipp is actually greater than 50%.18c This implies that at 

the M–C bond lengths found in the model structures (LAuCl), it would be impossible to 

coordinate two 6Dipp or 7Dipp ligands to the same metal center without deviating from 

the ligand’s ideal stereochemical conformation. Although the rotation of N–C and C–C 

single bonds, which could alleviate steric repulsions between NHCs sharing a metal 

center, are often associated with very shallow potential energy wells such that a percent 

buried volume greater than 50% does not necessarily prohibit the 2:1 coordination of a 

ligand to a metal, attempts to coordinate multiple 6Dipp and 7Dipp ligands to a gold(I) 

center have been unsuccessful.19 Since silver(I) ions are virtually the same size as gold(I) 

ions,20 it is likely that the formation of [L–Ag–L]+ complexes is much less favorable for 

6Dipp and 7Dipp than for 5Dipp, if not completely inaccessible. 

 
 
Table 1.1. Electronic and steric parameters of NHC ligands used in this work and, for 
comparison, IDipp. 
 

	
   pKa	
  (in	
  DMSO)22	
   νTEP	
  (cm–1)23b	
   N–C–N	
  angle	
   %Vbur	
  
IDipp	
   21	
   2050.7	
   102˚	
  18c	
   44.518c	
  
5Dipp	
   22	
   2052.2	
   106˚	
  18b	
   47.018b	
  
6Dipp	
   27	
   –	
   120˚	
  18a	
   50.818a	
  
7Dipp	
   28	
   –	
   126˚	
  18a	
   52.618a	
  
DMSO	
  =	
  dimethylsulfoxide	
  

 
 
 
 The capacity of a ligand, L, to donate electrons, i.e. its Lewis basicity, is often 

quantified using the Tolman electronic parameter, which is defined as the C–O stretching 

frequency of the complex LNi(CO)3 as determined by infrared (IR) spectrscopy.15 The 

stronger the basicity of L, the stronger the π-back-donation from the metal to the carbonyl 

ligands, which decreases the strength of the C–O bond and the C–O stretching frequency. 

Other, more convenient carbonyl complexes, such as LRh(CO)2Cl or LIr(CO)2Cl are 
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often used as alternatives, allowing for the determination of electronic parameters for a 

wide range of ligands.17,19 For phosphines, values of the Tolman parameter span a range 

of over 60 cm–1,15 but for synthetically practical NHC ligands it spans only a narrow 

range (about 10 cm–1), limiting its utility.19,21 While the Tolman parameter does provide a 

measure of basicity which is virtually independent of steric effects, its value largely 

reflects the overall electron density on a metal and does not distinguish between σ and π 

interactions with the L ligand.17,19 

 An alternative measure of the basicity of a ligand may be described as its affinity 

for a proton. Since the only significant acceptor orbital of a proton is its spherically 

symmetric 1s orbital, the proton may be considered a purely σ acceptor. Thus, either the 

ligand’s proton affinity or the pKa of the ligand’s conjugate acid may be regarded as an 

approximate measure of its σ-basicity.22 

 Available measures of electron-donating strength for IDipp, 5Dipp, 6Dipp, and 

7Dipp are given in Table 1.1. Tolman electronic parameters are unavailable for 6Dipp 

and 7Dipp, but in general expanded-ring NHCs give rise to lower C–O stretching 

frequencies than five-membered NHCs.1c,23 Although the Tolman parameter for IDipp is 

very slightly lower than that of 5Dipp (by 0.7 cm–1), 5Dipp has a slightly higher proton 

affinity than IDipp. In practice, 5Dipp and other imidazoline-derived NHCs tend to 

behave as if they are stronger electron donors than their imidazole-derived analogues, 

exhibiting a stronger trans effect and more inert bonds to metals, for instance.8 The 

expanded-ring amidinium ions are substantially less acidic than their five-membered 

relatives, by about 6 to 7 pKa units. 
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 Interestingly, the basicity of the NHCs in this series correlates well with their 

steric demand. The bulkier ligands are more electron-rich. This trend can be rationalized 

by considering that differences in both steric and electronic properties can be largely 

attributed to the coordination geometry about the carbene carbon.17,19 As the N–C–N 

bond angle increases, not only do the aryl groups shift toward the metal coordination site, 

but also the hybridization of the carbene carbon is affected, increasing the p character of 

the carbene donor orbital and thus the orbital’s energy and directionality. This allows 

better spatial overlap with metal acceptor orbitals and results in a stronger σ-bond 

between the NHC and the metal. 

1.3 Interactions of NHC Ligands with Group 11 Metals 

 While the coordination chemistry of most transition metals is dominated by the 

interaction of ligand donor orbitals with empty metal d orbitals, the monovalent group 11 

metals have a completely occupied valence d subshell, and their lowest acceptor orbital is 

an s orbital. Similarities between bimetallic gold complexes and metal hydrides first 

prompted the comparison of the gold cation to a proton24 using the isolobality principle 

popularized by Hoffmann, Stone, and Mingos.25 The isolobal analogy between the gold 

cation and the proton has since been used extensively to approximate the electronic 

structures of a wide variety of gold compounds. Of course, like any other application of 

the isolobality principle, the analogy is imperfect. The gold(I) cation is not completely 

lacking of π-interactions with ligands, and obviously the size discrepancy between gold 

and hydrogen is not trivial in discussions of orbital overlap. The resulting perturbations of 

the electronic properties of gold compounds have been addressed in theoretical studies by 

Pyykkö and coworkers26 and an insightful review by Schmidbaur and Raubenheimer.27 
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Despite its imperfections, the analogy between the gold cation and the proton typically 

serves as a good foundation for a qualitative understanding of the electronic structures of 

coordination compounds of gold(I). 

 The isolobal analogy between the proton and the gold cation can naturally be 

extended to silver and copper cations.25b Arguably, the silver cation, due to a larger 

energy gap between its valence d orbitals and its unoccupied s orbital and therefore less 

mixing of d character into its lowest unoccupied orbital, is even better approximated as a 

pure σ-acceptor than gold. In fact, energy decomposition analyses of (NHC)Ag 

complexes indicate that π-interations account for only about 6% of the attractive forces 

between the NHC ligand and silver, which is less than in analogous copper and gold 

systems.28 Certainly π-interactions are not negligible, but the covalent component of the 

interactions between NHC ligands and group 11 metals, especially silver, is dominated by 

σ-donation from the NHC to the metal. It is therefore likely that the strength of the metal-

ligand bond correlates with the σ-bascity of the NHC ligands used in this work (5Dipp, 

6Dipp, and 7Dipp), increasing with ring size. 
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CHAPTER 2 

AN NHC-SUPPORTED DISILVER HYDRIDE 

 

  

2.1 Background 

 Hydride complexes of the group 11 metals have excited considerable interest, in 

both their bonding and their reactivity. Copper hydride itself was first reported in 1844, 

but its existence and composition were controversial for decades.1 Halpern and 

coworkers, studying the reduction of transition metal ions by dihydrogen, provided 

kinetic evidence for the formation of copper and silver hydride intermediates through a 

heterolytic mechanism.2 Caulton and coworkers, studying model complexes for the 

catalytic hydrogenation of carbon monoxide, showed the remarkable hydrogenolysis of 

copper alkoxides to form (phosphine)copper(I) hydride clusters.3 In the 1980s, Stryker 

and others began to demonstrate the versatility of such complexes in organic synthesis;4 

applications in synthesis,5,6 and more recently in solar energy storage,7 continue to 

emerge rapidly. Discrete gold hydride complexes are rare,8 but appear relevant to gold-

catalyzed reduction processes.8b,c Isolable silver hydride clusters have been described 

only recently by Liu, Saillard and co-workers.9 We sought to explore the potential of 

silver hydrides, the least explored of the coinage metal hydride complexes, as platforms 

for carbon dioxide reduction under mild conditions.10–12  

 Silver hydride clusters have been studied in the gas phase by mass spectroscopy13 

and vibrational spectroscopy.14 Polynuclear silver hydrides, formed through the 

chemisorption of hydrogen on silver-exchanged zeolites, have been characterized in the 
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solid state using magic-angle spinning (MAS) 1H NMR spectroscopy.15 The Ag2H+ 

fragment has been proposed as an intermediate in heterogeneous processes such as the 

activation of methane in zeolites15a and the coupling of allyl halides on silver surfaces.16 

Theoretical studies of Ag2H+ have produced divergent structural predictions, including 

both a linear [Ag–H–Ag]+ arrangement13a and the three-center, two-electron system 

favored by more recent studies.13b,14a,17 

 A number of isolated complexes feature a hydride bridging between silver and 

another transition metal.18 In cases where the other metal contains a spin-active nucleus, 

the magnitude of dipolar coupling between that nucleus and 107/109Ag often implies 

substantial metal–metal bonding. Recently Liu,9 Saillard,9a,c,e Fackler9b and coworkers 

studied silver-only hydride clusters [Ag7H],9a [Ag8H]9b,d,e and [Ag11(µ4-H)]9c stabilized 

by dichalcogenophosphate9a,c–e or ethylenedithiolate9b ligands. Structural and NMR 

spectroscopic characterization show close contacts between the hydrides in these clusters 

and numerous silver atoms.  

 N-Heterocyclic carbene (NHC) ligands have been shown to stabilize a number of 

unusual hydride complexes of group 11 metals, including a copper(I) hydride dimer,19 

terminal gold(I) hydrides8b,e and a hydride-bridged digold cation.8e Numerous 

(NHC)silver complexes are known,20 but in many of these the silver–carbon bond is 

labile, and carbene transfer between the silver centers readily forms [(NHC)2Ag]+ 

cations. Certain NHC ligands are slow to transfer from silver;21 we expected that the use 

of a sufficiently inert ligand would inhibit the formation of homoleptic species, and allow 

the isolation of silver hydrides. 
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 This chapter describes the synthesis of the dinuclear silver(I) hydride complexes 

{[(5Dipp)Ag]2(µ-H)}+X–, 1a, [5Dipp = 1,3-bis-(2,6-diisopropylphenyl)imidazolin-2-

ylidene; X– = CF3SO3
– or BF4

–]. Structural and spectroscopic data suggest considerable 

three-center, two-electron bonding in the [Ag2H]+ core. Although generally inert, the 

disilver hydride cation reacts rapidly with a Lewis base adduct of carbon dioxide, a 

reaction with implications for potential catalytic reduction processes.  

2.2 Results and Discussion 

2.2.1 Synthesis and Structure of {[(5Dipp)Ag]2(µ-OtBu)}+ Salts  

 The starting complex (5Dipp)silver(I) chloride, 2,8e,20d reacts readily with sodium 

tert-butoxide to form (5Dipp)silver(I) tert-butoxide, 3a, (Scheme 2.1a).22 Treatment of 

this complex with (5Dipp)AgOTf (4; OTf = trifluoromethanesulfonate, or triflate) results 

in formation of the tert-butoxide-bridged {[(5Dipp)Ag]2(µ-OtBu)}+ as its OTf– salt 

(5a[OTf], Scheme 2.1b). Diffusion of hexanes into a THF solution of 5a[OTf] affords 

crystals suitable for X-ray diffraction. The resulting structure (Figure 2.1) reveals a nearly 

trigonal arrangement about the oxygen, with an Ag–O–Ag angle of 122.4(1)˚.23 The 

silver centers are nearly linear, with CNHC–Ag–O angles of 173.74(9)˚ and 170.77(9)˚. 

The silver–silver distance is 3.6409(4) Å, more than twice the van der Waals radius of 

1.72 Å.24  
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Scheme 2.1. Synthesis of tert-butoxide silver complexes 3, 5a[OTf], and 5a[BF4].  
 
 
 

 
Figure 2.1. Solid-state structure of 5a[OTf], 50% probability ellipsoids. Anion and co-
crystallized solvent omitted for clarity. Selected interatomic distances (Å) and angles 
(deg): Ag(1)–Ag(2), 3.6409(5); Ag(1)–C(1), 2.066(2); Ag(1)–O(1), 2.080(2); Ag(2)–
O(1), 2.076(2); Ag(2)–C(32), 2.061(2); C(1)–Ag(1)–O(1), 173.66(9); Ag(1)– O(1)–
Ag(2), 122.3(1); O(1)–Ag(2)–C(32), 170.76(9).  
 
 
 
 The same cation may also be synthesized by treatment of the neutral silver 

alkoxide with a suitable Lewis acid. The reaction of (5Dipp)silver tert-butoxide with one-
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half equivalent of Ph3C+BF4
– affords {[(5Dipp)Ag]2(µ-OtBu)}+BF4

–, 5a[BF4], which is 

easily separated from the neutral byproduct Ph3COtBu (Scheme 2.1c).25  

2.2.2 Synthesis and Characterization of [(5Dipp)Ag]2(µ-H)}+ Salts  

  The reaction of 5a[OTf] with phenylsilane (Scheme 2.2) proceeds smoothly in 

THF-d8 solution, affording a single new 5Dipp-containing species as judged by 1H NMR 

spectroscopy. The striking spectral feature of the product complex is an apparent triplet 

of triplets, each roughly 1:2:1, centerd at δ –1.13 ppm (δ  –1.18 ppm in CD2Cl2), 

suggesting the formation of a hydride-bridged disilver cation. Integration of this multiplet 

relative to the 5Dipp ligand resonances is consistent with the formation of a product 

complex {[(5Dipp)Ag]2(µ-H)}+OTf– (1a[OTf]). The tetrafluoroborate salt 

{[(5Dipp)Ag]2(µ-H)}+BF4
–, 1a[BF4] is likewise formed by reaction of 5a[BF4] with 

phenylsilane; its 1H NMR spectrum is essentially identical to that of 1a[OTf]. 

 
 

 
Scheme 2.2. Synthesis of hydride-bridged disilver cation 1a. 

 
 
 

 The observed pattern arises from the superimposition of three resonances, each 

that of an isotopologue in which the hydrogen couples to two silver centers (Figure 2.2a). 

Naturally occurring silver consists of ca. 52% 107Ag and 48% 109Ag, each with a nuclear 

spin of ½.26 A hydride-bridged disilver cation therefore comprises a mixture of roughly 

1:2:1 (27:50:23) of [107Ag–H–107Ag], [107Ag–H–109Ag] and [109Ag–H–109Ag]. Given 
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inequivalent JH–Ag coupling constants, each homonuclear isotopologue gives rise to a 

1:2:1 triplet, with the central peaks coincident. In the heteronuclear isotopologue, the 

resonance for the hydride is split into a doublet by the 109Ag nucleus, then further into a 

doublet of doublets by the 107Ag nucleus.  

 
 

  
Figure 2.2. (a) Hydride region of 1H NMR spectrum for 1a[BF4] in CD2Cl2 solution. 
Inset: interpretation of signals from each isotopologue. (b) Deuteride region of 2H NMR 
spectrum for 1a-d[BF4] in CD2Cl2 solution.  
 
 
 
 The measured 1JH–Ag values are 134 Hz and 116 Hz, directly proportional to the 

gyromagnetic ratios of 109Ag and 107Ag. Well-resolved coupling to 107Ag and 109Ag has 

been observed in the 13C NMR spectra of (NHC)silver complexes,20d,21b and in the 1H 

NMR spectra of heteronuclear Ag–H–M clusters.18 In the fluxional silver hydride clusters 

reported by Liu, Saillard and coworkers, multiplet resonances reflect averaged silver– 

hydrogen coupling constants, but decoupling experiments establish the 1H–107Ag and 1H–

109Ag coupling constants separately.9 

 We prepared the deuteride-bridged analogue of 1a[BF4], 1a-d[BF4], by reaction of 

5a[BF4] with PhSiD3.27 Comparing the infrared spectra of 1a[BF4] and 1a-d[BF4], we 
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could discern no obvious silver–hydrogen or silver–deuterium stretching bands (Figure 

2.17). However, the 1H NMR spectrum of 1a-d[BF4] is identical to that of 1a[BF4] except 

for the absence of the hydride resonance. The 2H NMR spectrum of 1a-d[BF4] (Figure 

2.2b) displays a triplet resonance at δ –1.12 ppm, with an observed 2H–Ag coupling 

constant of 18.7 Hz. Broader linewidths and smaller coupling constants, relative to those 

in the 1H NMR spectra of the hydride, do not permit differentiation between the 2H–107Ag 

and the 2H–109Ag coupling.  

 The 109Ag NMR spectrum28 of 1a[OTf] displays an apparent doublet of triplets, 

actually a doublet superimposed on a doublet of doublets, centered at δ 519.3 ppm 

(Figure 2.3a). The [107Ag–H–107Ag] isotopologue gives rise to no signal. In the [109Ag–

H–109Ag] isotopologue, the two silver nuclei are magnetically equivalent, and their 

resonance is split into a doublet by the bridging hydrogen. In the [109Ag–H–107Ag] 

isotopologue, the signal for the 109Ag nucleus is split into a doublet by the hydrogen, then 

into a doublet of doublets by the 107Ag nucleus. This analysis confirms the assignment of 

the 109Ag–1H coupling constant as 134 Hz, and provides the 109Ag–107Ag coupling 

constant of 113 Hz. In the 109Ag NMR spectrum of 1a-d[BF4] (Figure 2.3b), coupling 

between 109Ag and 2H (nuclear spin = 1) gives rise to a 1:1:1 triplet, which 107Ag splits 

into a 1:1 doublet of 1:1:1 triplets. This pattern reflects the large 109Ag–107Ag coupling 

and the smaller 109Ag–2H coupling. In contrast, the 109Ag NMR spectrum of the tert-

butoxide-bridged 5a[OTf] shows a singlet resonance at δ 541.4 ppm: no coupling is 

observed between 109Ag and 107Ag. The magnitude of silver–silver coupling in 1a[OTf] 

suggests a significant bonding interaction.29  
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Figure 2.3. (a) 109Ag NMR spectrum of 1a[OTf] in CD2Cl2 solution. (b) 109Ag NMR 
spectrum of 1a-d[BF4] in CD2Cl2 solution. Insets: interpretation of signals from each 
isotopologue. 
 
 
 
 Slow diffusion of pentane into a THF solution of 1a[OTf] afforded crystals 

suitable for X-ray diffraction. Complex 1a[OTf] crystallizes in the P21/c space group, 

with two disordered THF molecules in the asymmetric unit. Both solvent molecules and 

the triflate anion are located well outside the metal coordination spheres.  

 The solid-state structure (Figure 2.4) shows a notably short silver–silver distance 

of 2.8087(4) Å, suggesting the contribution of a three-center, two-electron bond to the 

description of the [Ag2H]+ core. The silver-bound hydride was located, and the silver– 

hydrogen distances were found to be 1.69(4) Å and 1.71(3) Å. For [Ag2H]+ in the gas 

phase, DeKock and coworkers calculated a silver–silver distance of 2.86 Å, with silver–

hydrogen distances of 1.69 Å.13b In a gold analogue of 1a[OTf], {[(IDipp)Au]2(µ- 

H)}+OTf– (IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), the hydride could 

not be located, but the gold–gold distance of 2.7099(4) Å likewise implied considerable 

metal–metal bonding.8e The silver–carbon distances, 2.108(3) Å and 2.104(3) Å, are 

slightly longer than those in tert-butoxide-bridged 5a[OTf].  
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Figure 2.4. Solid-state structure of 1a[OTf], 50% probability ellipsoids. Anion and co-
crystallized solvent omitted for clarity. Selected bond lengths (Å) and angles (˚): Ag(1)–
C(1), 2.108(3); Ag(2)–C(28), 2.104(3); Ag(1)–Ag(2), 2.8087(4); Ag(1)–H(1), 1.69(4); 
Ag(2)–H(1), 1.71(3); C(1)–Ag(1)–Ag(2), 158.88(8); Ag(1)–Ag(2)–C(28), 155.46(8); 
C(1)–Ag(1)–H(1), 166(1); C(28)–Ag(2)–H(1), 170(1).  

 
 

2.2.3 Stability and Reactivity of {[(5Dipp)Ag]2(µ-H)}+ Salts  

 The {[(5Dipp)Ag]2(µ-H)}+ salts 1a[OTf] and 1a[BF4] are soluble in THF and 

show moderate stability at ambient temperature. In THF-d8 solution after 24 hours, 1H 

NMR spectroscopy indicates 54% decomposition to salts of the homoleptic 

[(5Dipp)2Ag]+, with a peak for dihydrogen at δ 4.55 ppm,30 and a silver mirror is visible 

on the inner wall of the NMR tube. Decomposition occurs more slowly in CD2Cl2 

solution, to the extent of roughly 8% after 24 h, and produces a new, as yet unidentifed 

5Dipp-containing species as well as those observed previously. No (5Dipp)AgCl, 

potentially formed by reaction with CD2Cl2, is observed after several weeks. In contrast, 

the tert-butoxide-bridged cation 5a forms significant (7%) (5Dipp)AgCl after three hours 

in CD2Cl2 solution, and the more basic (5Dipp)AgOtBu decomposes quantitatively within 

minutes.  
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 The observed decomposition of {[(5Dipp)Ag]2(µ-H)}+ is consistent with solvent-

assisted dissociation of the cluster to form an unstable terminal hydride (5Dipp)AgH, not 

observed, plus the solvated cation [(5Dipp)Ag(solv)]+. Several efforts to prepare the 

terminal hydride independently led to rapid decomposition. Moreover, 1a[OTf] and 

1a[BF4] decompose completely within hours in CD3CN solution, or in CD2Cl2 solution in 

the presence of added triphenylphosphine (1 equiv.). These observations are consistent 

with a Lewis-base-assisted decomposition pathway (Scheme 2.3), in which a Lewis base, 

B, coordinates to 1a, forming a terminal hydridosilver complex (Scheme 2.3a), which 

undergoes bimolecular disproportionation to produce hydrogen, elemental silver, and free 

5Dipp (Scheme 2.3b). Free 5Dipp then displaces the weaker Lewis base or coordinated 

solvent, forming the observed decomposition product [(5Dipp)2Ag]+ (Scheme 2.3c). This 

results in an overall process characterized by the formation of  [(5Dipp)2Ag]+, elemental 

silver, and hydrogen (Scheme 2.3.d). Interestingly, 1a does not react with D2O to produce 

H–D (Scheme 2.3e), although D2O can act as a Lewis base to facilitate  decomposition. 

 Solutions of 1a[OTf] and 1a[BF4] in CD2Cl2 exhibit only partial decomposition, 

25% in 24 h, after exposure to the atmosphere. The addition of a drop of D2O to these 

solutions did not greatly affect the decomposition: the same products were formed, the 

rate was similar (33% after 24 h), and the only form of dihydrogen observed by 1H NMR 

spectroscopy was 1H2. The 1:1:1 triplet resonance of H–D,31 which would arise from 

direct deuterolysis of the hydride, was not observed.  
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Scheme 2.3. Possible sequence for decomposition of 1a. (a) Lewis base, B, coordinates 
to silver, forming a terminal hydridosilver complex. (b) Terminal hydridosilver complex 
undergoes bimolecular disproportionation, producing hydrogen, elemental silver, and free 
5Dipp. (c) Free 5Dipp displaces the weaker Lewis base, forming the observed 
decomposition product [(5Dipp)2Ag]+. (d) The overall decomposition reaction. (e) 1a 
does not react with D2O to produce H–D; however, D2O does increase the rate of Lewis-
base-assisted decomposition. 

 
 
 

 Next we examined the reactivity of the cationic disilver hydride with various 

carbonyl-containing substrates. No reaction was observed between 1a[BF4] and 

benzaldehyde or benzophenone in CD2Cl2 solution at ambient temperature, and gradual 

decomposition was observed on heating. Exposure of 1a[BF4] in CD2Cl2 solution to an 

atmosphere of 13C-labeled carbon dioxide led to a very slow reaction (Scheme 2.4a), 

accompanied by considerable decomposition. The key new feature in the spectrum was a 

doublet resonance centerd at δ 8.0 ppm (1JC–H  = 195 Hz), and a set of 5Dipp resonances 

integrating to two ligands for each newly formed C–H bond. The 13C NMR spectrum of 

the reaction mixture, obtained without the use of decoupling, showed a doublet resonance 

at δ 167.9 ppm (1JC–H = 194 Hz). These resonances are consistent with the assignment of 
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this species as a formate-bridged disilver complex. The reaction was highly incomplete, 

with roughly 5% conversion after four days.  

 Reduction to formic acid derivatives represents an important method for catalytic 

carbon dioxide fixation.10 The key step in such catalysis, the net addition of H– to CO2 to 

produce a metal formate, occurs for a variety of metal hydrides.32 Mechanistic studies 

and computations show that this reaction depends on the Lewis-basic character of the 

hydride,33 and so the observation of any C–H bond formation between CO2 and the rather 

inert 1a was surprising. This process was clearly impractical, however, in light of the low 

conversion and accompanying decomposition over long reaction times.  

 
 

 
Scheme 2.4. Reactions of 1a with CO2. (a) Reaction of 1a with free CO2. (b) Formation 
of NHC–CO2 adduct. (c) Reaction of 1a with NHC–CO2 adduct. 
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Such NHC–CO2 adducts are key intermediates in the transition-metal-free NHC-

catalyzed reduction of CO2 with silanes.11k,o The reduction of an NHC–CO2 adduct by a 

late transition metal hydride, in which the metal centers form far weaker bonds to oxygen 

than does silicon, would represent a step toward catalytic processes using milder reducing 

agents.  

 Addition of 1,3-diisopropylimidazolium-2-13C-carboxylate34 (IiPr–13CO2) to a 

solution of 1a[BF4] in CD2Cl2, precooled to –35˚C and containing 4,4′-dimethylbiphenyl 

as an internal standard, led to visible evolution of gas within one minute after mixing. 

The resulting solution was allowed to warm to ambient temperature, and its 1H NMR 

spectrum was recorded five minutes after carboxylate addition. This spectrum showed the 

complete consumption of the starting hydride, and the formation of a new 5Dipp-

containing complex, accounting for 95% of the starting 5Dipp as judged by integration 

relative to the internal standard. The appearance of a doublet resonance centered at δ 8.67 

ppm, with 1JC–H = 178 Hz, is consistent with the conversion of one equivalent of CO2 to 

the formate anion, HCO2
–. The 13C NMR spectrum, recorded immediately afterward, 

likewise displayed a strong doublet resonance (δ 167 ppm, 1JC–H = 178 Hz) assigned to 

the formate anion. The 1H NMR resonances for the new silver complex are identical to 

those of [(5Dipp)Ag(IiPr)]+BF4
– prepared independently, suggesting that the formate ion 

interacts weakly, if at all, with the silver center in solution. 

 A balanced reaction between 1a[BF4] and IiPr–13CO2 to form [(5Dipp)Ag(IiPr)]+ 

and formate should release half of the NHC-bound 13CO2 (Scheme 2.4c). The signal for 

free CO2 is not observed in the 13C NMR spectrum of the reaction mixture at ambient 

temperature. Because [(5Dipp)Ag(IiPr)]+ is formed nearly quantitatively, we believe that 
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most of the liberated CO2 is present in the headspace of the NMR tube; a spectrum 

obtained after cooling the tube to –78˚C showed a singlet resonance at δ 125.1 ppm. A 

maximum conversion of 50% is of course undesirable in a stoichiometric reduction of 

CO2, but the incorporation of this reaction into a catalytic cycle would lead to recapture 

of the lost CO2 as the reaction proceeded. Studies of possible catalytic turnover steps are 

currently underway (see Chapters 4 and 5). 

2.3 Conclusion 

 The hydride-bridged disilver cation, studied in the gas phase and implicated in 

heterogeneous catalytic processes, has been stabilized using an N-heterocyclic carbene 

ligand. The core of this complex adopts a triangular structure, with a silver–silver 

distance shorter than that of silver metal. Strong dipolar coupling between silver nuclei is 

observed using 109Ag NMR spectroscopy, further suggesting silver–silver bonding 

consistent with a three-center, two-electron bond. The disilver hydride cation reacts 

extremely slowly with an atmosphere of carbon dioxide. The addition of carbon dioxide 

in the form of a Lewis base adduct, reversing the polarity of the substrate, leads to rapid 

hydride transfer without the concomitant formation of a metal–oxygen bond. This process 

is being studied as a key step in potential catalytic cycles. 

2.4 Experimental 

2.4.1 General Considerations 

 Unless otherwise indicated, manipulations were performed in an MBraun 

glovebox under an inert atmosphere of nitrogen, or in sealable glassware on a Schlenk 

line under an atmosphere of argon. Glassware and magnetic stir bars were dried in a 
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ventilated oven at 160˚C and were allowed to cool under vacuum. Compounds of silver 

were stored in the dark as a precaution against photodegradation, and glassware was 

covered with aluminum foil during manipulations to minimize exposure to light. 

 Dichloromethane (BDH), diethyl ether (EMD Millipore Omnisolv), hexane (EMD 

Millipore Omnisolv), tetrahydrofuran (THF, EMD Millipore Omnisolv), and toluene 

(EMD Millipore Omnisolv) were sparged with ultra high purity argon (NexAir) for 30 

minutes prior to first use, dried using an MBraun solvent purification system, transferred 

to Straus flasks, degassed using three freeze-pump-thaw cycles, and stored under nitrogen 

or argon. Anhydrous benzene (EMD Millipore Drisolv) and anhydrous pentane (EMD 

Millipore Drisolv), both sealed under a nitrogen atmosphere, were used as received and 

stored in a glovebox. Tap water was purified in a Barnstead International automated still 

prior to use. 

 Dichloromethane-d2 (Cambridge Isotope Labs) and acetonitrile-d3 (Cambridge 

Isotope Labs) were dried over excess calcium hydride overnight, vacuum-transferred to 

an oven-dried sealable flask, and degassed by successive freeze-pump-thaw cycles. 

Tetrahydrofuran-d8 (Cambridge Isotope Labs) was dried over sodium benzophenone 

ketyl, vacuum-transferred to an oven-dried sealable flask, and degassed by successive 

freeze-pump-thaw cycles. Deuterium oxide (Cambridge Isotope Labs), chloroform-d 

(Cambridge Isotope Labs), and methanol-d1 (Cambridge Isotope Labs) were used as 

received. 

 Sodium tert-butoxide (TCI America), potassium tert-butoxide (Alfa-Aesar), silver 

trifluoromethanesulfonate (Alfa-Aesar), silver nitrate (Alfa-Aesar), triphenylcarbenium 

tetrafluoroborate (Alfa-Aesar), sodium trimethylsilanolate (Sigma-Aldrich), 
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tetrafluoroboric acid (50% w/w aqueous solution, Sigma-Aldrich), 

1,3-diisopropylimidazolium chloride (Sigma-Aldrich), 1,3-diisopropylimidazolium 

tetrafluoroborate (Sigma-Aldrich), trichlorophenylsilane (Sigma-Aldrich), lithium 

aluminum deuteride (Sigma-Aldrich), magnesium sulfate (Alfa-Aesar), sodium metal 

(Alfa-Aesar), benzophenone (Alfa-Aesar), calcium hydride (Alfa-Aesar), 13CO2 

(Cambridge Isotope Labs), potassium bromide (anhydrous, spectroscopic grade, Sigma-

Aldrich), nitrogen (NexAir), and argon (both industrial and ultra high purity grades, 

NexAir) were used as received. Phenylsilane (Sigma-Aldrich) was degassed using three 

freeze-pump-thaw cycles prior to use. 5Dipp·HCl·(EtO)3CH35 and (5Dipp)AgCl36 were 

prepared according to literature protocols and were characterized by 1H NMR 

spectroscopy. Phenylsilane-d3 was prepared by the reaction of trichlorophenylsilane with 

lithium aluminum deuteride in analogy to a published protocol for the preparation of 

alkylsilanes.37 N,N-Dimethylanilinium tetrafluoroborate was prepared according to a 

published procedure.38 

 1H, 2H, 13C, and 109Ag NMR spectra were obtained using a Bruker DSX 400 MHz 

spectrometer, and 19F NMR spectra were obtained using a Varian Vx 400 MHz 

spectrometer. 1H and 13C NMR chemical shifts are referenced with respect to solvent 

signals30 and are reported relative to tetramethylsilane. 2H NMR chemical shifts are 

referenced to solvent signals, with the assumption that the 2H chemical shifts of 

deuterated solvents are identical to the 1H chemical shifts of their protiated isotopologues. 

109Ag NMR chemical shifts were referenced with respect to an external solution of 4.00 

M silver nitrate (Alfa-Aesar) in deuterium oxide (defined as δ 0 ppm). 19F NMR chemical 
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shifts were referenced to external neat hexafluorobenzene (Alfa-Aesar, δ −164.90 ppm) 

and are reported with respect to trichlorofluoromethane. 

 Samples for infrared spectroscopy were prepared as pellets in potassium bromide, 

using a pellet die which was dried in a ventilated oven at 160˚C and cooled under vacuum 

prior to use. The pellets were prepared in the glovebox under an atmosphere of dry 

nitrogen, and were exposed to air as briefly as possible prior to data collection. Spectra 

were recorded using a Perkin Elmer Spectrum 1000 infrared spectrometer. 

 Elemental analyses were performed by Atlantic Microlab in Norcross, Georgia. 

2.4.2 Synthetic Procedures 

2.4.2.1 (5Dipp)Ag(OtBu) (3a) 

 (5Dipp)Ag(OtBu) was prepared by a modification of the reported procedure.39 

Sodium tert-butoxide (0.360 g, 3.74 mmol) was added to a suspension of (5Dipp)AgCl 

(2.000 g, 3.746 mmol) in THF (10 mL) with stirring. The reaction flask was covered with 

foil to exclude light. After stirring for 2 hours, the reaction mixture was filtered through 

Celite, and the filter pad was washed with two portions of THF (5 mL each). The solvent 

was removed from the filtrate under vacuum, and the residue was dried in the dark for 16 

hours at 40˚C under vacuum, affording the product as a white powder (2.283 g, 3.47 

mmol, 93%). In anhydrous CH2Cl2, (5Dipp)Ag(OtBu) rapidly decomposes to 

(5Dipp)AgCl and tert-butanol. The product hydrolyzes readily in the presence of 

atmospheric moisture. 1H NMR (400 MHz, THF-d8): δ (ppm) 7.35 (t, J = 7.8 Hz, 2H, 

para-CH), 7.26 (d, J = 7.8 Hz, 4H, meta-CH), 4.06 (s, 4H, NCH2), 3.15 (sept, J = 6.9 Hz, 

4H, CH(CH3)2), 1.35 (d, J = 6.9 Hz, 12H, CH(CH3)2), 1.31 (d, J = 6.9 Hz, 12H, 

CH(CH3)2), 0.66 (s, 9H, OC(CH3)3). 13C{1H} NMR (100 MHz, THF-d8): δ (ppm) 209.0 
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(app dd, J(13C-109Ag), = 218 Hz, J(13C-107Ag) = 190 Hz, NCAg), 147.5 (ortho-C), 136.4 

(ipso-C), 129.9 (para-C), 124.9 (meta-C), 68.5 (OC(CH3)3), 54.5 (d, J(13C-Ag), = 7 Hz, 

NCH2), 37.13 (OC(CH3)3), 29.3 (CH(CH3)2), 25.5 (CH(CH3)2), 24.2 (CH(CH3)2). 109Ag 

NMR (18.6 MHz, THF-d8): δ (ppm) 677.2 (s). IR: ν (cm–1) 3071 (w), 2981 (s), 2930, 

2870, 1941 (w), 1871 (w), 1800 (w), 1706 (w), 1655 (w), 1489 (s), 1467 (s), 1459 (s), 

1384, 1388, 1342, 1327, 1274 (s), 1249, 1216, 1190 (s), 1180, 1116, 1103, 1060, 1017, 

961 (s), 935, 913, 878, 804 (s), 757 (s), 711, 620, 563, 547, 516, 445. Elemental analysis 

calculated for C31H47N2AgO: C, 65.14; H, 8.29; N, 4.90. Found: C, 64.54; H, 8.13; N, 

4.59. Note: Attempts to purify this complex further, via filtration or recrystallization, 

have failed to result in satisfactory carbon analyses. Both complexes prepared directly 

from this one, 1[OTf] and 1[BF4], were nonetheless isolated in analytically pure form. 

The purity of the (5Dipp)Ag(OtBu) reported here is unsatisfying, but sufficient for 

practical purposes. 

 
 

 
Figure 2.5. 1H NMR (400 MHz, THF-d8) spectrum of (5Dipp)Ag(OtBu). A trace of 
benzene (δ 7.30 ppm)30 is present as the result of benzophenone ketyl decomposition.  
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Figure 2.6. 13C{1H} NMR (100 MHz, THF-d8) spectrum of (5Dipp)Ag(OtBu). 
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3.02 (sept, J = 6.9 Hz, 4H, CH(CH3)2), 1.34 (d, J = 6.9 Hz, 12H, CH(CH3)2), 1.25 (d, J = 

6.9 Hz, 12H, CH(CH3)2). 13C{1H} NMR (100 MHz, CD2Cl2): δ (ppm) 205.3 (app dd, 

J(13C-109Ag), = 304 Hz, J(13C-107Ag) = 264 Hz, NCAg), 147.1 (ortho-C), 134.7 (ipso-C), 

130.4 (para-C), 125.1 (meta-C), 120.4 (q, J(13C-19F) = 320 Hz, O3SCF3),  54.5 (d, J(13C-

Ag), = 10 Hz, NCH2), 29.1 (CH(CH3)2), 25.5 (CH(CH3)2), 24.2 (CH(CH3)2). 19F NMR 

(375 MHz, CD2Cl2): δ (ppm) −76.9 (s). 109Ag NMR (18.6 MHz, CD2Cl2): δ (ppm) 386.7 

(s). IR: ν (cm–1) 3071 (w), 2981 (s), 2930, 2870, 1590, 1491 (s), 1467 (s), 1460 (s), 1384, 

1364, 1342, 1327, 1274 (s), 1233 (s), 1205 (s), 1170 (s), 1061, 1018 (s), 936, 915, 808 

(s), 760 (s), 709, 637 (s), 620, 580, 569, 548, 515, 447. Elemental analysis calculated for 

C28H38N2AgF3O3S: C, 51.93; H, 5.91; N, 4.33. Found: C, 51.73; H, 5.91; N, 4.27.  

 
 

 
Figure 2.7. 1H NMR (400 MHz, CD2Cl2) spectrum of (5Dipp)AgOTf. 
 
 
 
2.4.2.3 {[(5Dipp)Ag]2(µ-OtBu)}+[OTf]– (5a[OTf]) 

 A solution of (5Dipp)AgOTf (0.650 g, 1.00 mmol, 1.00 equiv) in 3 mL THF and a 

solution of (5Dipp)Ag(OtBu) (0.600 g, 1.05 mmol, 1.05 equiv) in THF (3 mL) were 

cooled to −35˚C. The (5Dipp)Ag(OtBu) solution was added via pipette to the 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0
δ (ppm)

2
4

.6
0

4
.0

3

4
.0

0

3
.7

8
2

.0
1

1
.2

6
4

4
1

.3
0

3
3

1
.3

2
6

2
1

.3
3

7
2

1
.3

6
0

3

3
.0

0
0

7
3

.0
2

3
5

3
.0

4
6

4
3

.0
6

9
3

3
.0

9
2

1

4
.1

2
1

6

5
.3

2
0

2

7
.2

8
5

2
7

.3
1

1
1

7
.4

3
6

6
7

.4
6

1
8

7
.4

8
8

3

O

S
O

O

F

F
F

NN

Ag



 32 

(5Dipp)AgOTf solution with stirring, and the reaction flask was covered with foil to 

exclude light. The reaction mixture was allowed to warm to room temperature. After 20 

minutes, a layer of toluene (19 mL) was carefully added above the THF solution. The 

THF and toluene layers were allowed to mix by diffusion at −35˚C for 10 hours, resulting 

in the formation of colorless crystals. The mother liquor was decanted. Two portions of 

toluene (5 mL each) were successively added to the residue and decanted. The residue 

was dissolved in THF (3 mL) and the product was precipitated by the addition of pentane 

(15 mL). The precipitate was collected on a fritted glass filter and was washed with three 

portions of pentane (5 mL each). The filtrand was dried in the dark under vacuum at 40˚C 

for 16 hours, affording the product as a white powder (0.971 g, 0.796 mmol, 80%). The 

product hydrolyzes readily in the presence of atmospheric moisture. 1H NMR (400 MHz, 

THF-d8): δ (ppm) 7.39 (t, J = 7.8 Hz, 4H, para-CH), 7.23 (d, J = 7.8 Hz, 8H, meta-CH), 

4.15 (s, 8H, NCH2), 3.08 (sept, J = 6.9 Hz, 8H, CH(CH3)2), 1.29 (d, J = 6.9 Hz, 24H, 

CH(CH3)2), 1.11 (d, J = 6.9 Hz, 24H, CH(CH3)2), 0.31 (s, 9H, O(CH3)3). 13C{1H} NMR 

(100 MHz, THF-d8): δ (ppm) 205.3 (app dd, J(13C-109Ag) = 265 Hz, J(13C-107Ag) = 229 

Hz, NCAg), 147.5 (ortho-C), 136.1 (ipso-C), 130.2 (para-C), 125.1 (meta-C), 122.4 (q, 

J(13C-19F) = 321.4 Hz, O3SCF3), 72.2 (OC(CH3)3, 55.0 (d, J(13C-Ag), = 9 Hz, NCH2), 

29.1 (CH(CH3)2), 25.6 (CH(CH3)2), 24.0 (CH(CH3)2). 19F NMR (375 MHz, THF-d8): δ 

(ppm) −77.6 (s). 109Ag NMR (18.6 MHz, THF-d8): δ (ppm) 541.4 (s). IR: ν (cm–1): 3071 

(w) 2964 (s), 2926, 2870, 1591 (w), 1492 (s), 1460 (s), 1384, 1363, 1327, 1272 (s), 1220, 

1176, 1148, 1101, 1056, 1032, 931, 805, 757, 706, 637 (s), 572, 548, 513, 447. Elemental 

analysis calculated for C59H85N4Ag2F3O4S: C, 58.13; H, 7.03; N, 4.60. Found: C, 58.11; 

H, 6.91; N, 4.49. 
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Figure 2.8. 1H NMR (400 MHz, THF-d8) spectrum of 5a[OTf]. Benzene (δ 7.30 ppm)30 

is present as the result of benzophenone ketyl decomposition.  
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CD2Cl2): δ (ppm) 7.41 (t, J = 7.8 Hz, 2H, para-CH), 7.19 (d, J = 7.8 Hz, 4H, meta-CH), 

4.02 (s, 4H, NCH2), 2.92 (sept, J = 6.9 Hz, 4H, CH(CH3)2), 1.29 (d, J = 6.9 Hz, 12H, 

CH(CH3)2), 1.03 (d, J = 6.9 Hz, 12H, CH(CH3)2), −1.18 (app tt, 1H, J(1H-109Ag), = 134 

Hz, J(1H-107Ag) = 116 Hz, AgHAg). 13C{1H} NMR (100 MHz, CD2Cl2): δ (ppm) 208.3 

(m, NCAg), 147.0 (ortho-C), 134.5 (ipso-C), 130.3 (para-C), 124.9 (meta-C), 121.5 (q, 

J(13C-19F) = 319.4 Hz, O3SCF3), 54.5 (m, NCH2), 29.0 (CH(CH3)2), 25.7 (CH(CH3)2), 

23.9 (CH(CH3)2). 19F NMR (375 MHz, CD2Cl2): δ (ppm) −77.6 (s). 109Ag NMR (18.6 

MHz, CD2Cl2): δ (ppm) 519.3 (app dt, J(109Ag-1H) = 134 Hz, J(109Ag-107Ag) = 113 Hz). 

IR: ν (cm–1) 3068 (w), 3049 (w), 2963 (s), 2924, 2869, 1591, 1486 (s), 1461 (s) 1383, 

1362, 1327, 1272 (s), 1223, 1181, 1147, 1105, 1059, 1032 (s), 938, 907, 806, 754, 709, 

637 (s), 619, 572, 545, 514, 449, 420. Elemental analysis calculated for 

C55H77N4Ag2F3O3S: C, 57.59; H, 6.77; N, 4.88. Found: C, 57.41; H 6.79; N, 4.95. 

 
 

Figure 2.9. 1H NMR (400 MHz, CD2Cl2) spectrum of 1a[OTf]. 
 

-1.5-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0
δ (ppm)

0
.2

4

0
.4

9

0
.2

5

4
8

.3
8

7
.9

9

8
.0

0

7
.9

7

3
.9

7

-
1

.4
9

-
1

.4
7

-
1

.4
5

-
1

.1
6

-
0

.8
7

-
0

.8
5

-
0

.8
3

1
.0

2
1

.0
3

1
.2

8
1

.3
0

2
.8

9
2

.9
0

2
.9

2
2

.9
4

2
.9

5

4
.0

2

5
.3

2

7
.1

8
7

.2
0

7
.3

9
7

.4
1

7
.4

3

N

N Ag

N

NAg

O3SCF3–+

H



 35 

 
Figure 2.10. Detail of the hydride resonance in the 1H NMR (400 MHz, CD2Cl2) 
spectrum of 1a[OTf]. The splitting pattern, which appears to be a triplet of triplets, is 
more accurately described as three coincident resonances for each of three isotopologues 
of the complex: 107Ag–107Ag (triplet, 27% abundance), 109Ag–109Ag (triplet, 24% 
abundance), and 107Ag–109Ag (doublet of doublets, 50% abundance), where J(1H-107Ag) = 
116 Hz and J(1H-109Ag) = 134 Hz. 
 
 
 

 
Figure 2.11. 109Ag NMR (18.6 MHz, CD2Cl2) spectrum of 1a[OTf]. The splitting pattern, 
which appears to be a doublet of triplets, is more accurately described as two coincident 
resonances for each of two 109Ag-containing isotopologues of the complex: 109Ag–109Ag 
(doublet, 24% abundance), and 107Ag–109Ag (doublet of doublets, 50% abundance), 
where J(109Ag-1H) = 134 Hz and J(109H-107Ag) = 113 Hz. 
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2.4.2.5 {[(5Dipp)Ag]2(µ-OtBu)}+[BF4]– (5a[BF4]) 

 Triphenylcarbenium tetrafluoroborate (0.200 g, 0.606 mmol) was added to a 

solution of (5Dipp)Ag(OtBu) (0.700 g, 1.22 mmol) in THF (4 mL). The reaction flask 

was covered with foil to exclude light, and the mixture was stirred for 4 hours. A layer of 

toluene (12 mL) was carefully added over the THF solution. The layers were allowed to 

mix by diffusion at −35˚C for 16 hours, resulting in the formation of colorless crystals 

from which the mother liquor was decanted. Two portions of toluene (10 mL) were 

successively added and decanted. The crystals were collected on a fritted glass filter and 

were washed with pentane (5 mL). The crystals were dissolved in THF (2 mL) and were 

precipitated by the addition of pentane (12 mL). The precipitate was collected on a fritted 

glass filter and was washed with three portions of pentane (5 mL each). Residual solvents 

were removed in the dark under vacuum at 40˚C for 16 hours, affording the product as a 

white powder (0.603 g, 93%). The product hydrolyzes readily in the presence of 

atmospheric moisture. 1H NMR (400 MHz, THF-d8): δ (ppm) 7.38 (t, J = 7.8 Hz, 2H, 

para-CH), 7.22 (d, J = 7.8 Hz, 4H, meta-CH), 4.14 (s, 4H, NCH2), 3.08 (sept, J = 6.8 Hz, 

4H, CH(CH3)2), 1.28 (d, J = 6.8 Hz, 12H, CH(CH3)2), 1.10 (d, J = 6.8 Hz, 12H, 

CH(CH3)2), 0.31 (s, 9H, O(CH3)3). 13C{1H} NMR (100 MHz, THF-d8): δ (ppm) 205.3 

(app dd, J(13C-109Ag) = 265 Hz, J(13C-107Ag) = 229 Hz, NCAg), 147.5 (ortho-C), 136.1 

(ipso-C), 130.2 (para-C), 125.1 (meta-C), 72.2 (OC(CH3)3, 55.0 (d, J(13C-Ag), = 9 Hz, 

NCH2), 29.1 (CH(CH3)2), 25.6 (CH(CH3)2), 24.0 (CH(CH3)2). 19F NMR (375 MHz, THF-

d8): δ (ppm) −152.30 (s, 10BF4
–), −152.35 (s, 11BF4

–). IR: ν (cm–1) 3071 (w), 2981 (s), 

2930, 2870, 1590, 1488 (s), 1459 (s), 1384, 1364, 1327, 1274 (s), 1180, 1099, 1064 (s), 
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1017, 932, 913, 809, 763, 625, 550, 522, 450. Elemental analysis calculated for 

C58H85N4Ag2BF4O: C, 60.22; H, 7.41; N, 4.84. Found: C, 60.35; H, 7.50; N, 4.83. 

 
 

 
Figure 2.12. 1H NMR (400 MHz, THF-d8) spectrum of 5a[BF4]. Benzene (δ 7.30 ppm)30 
is present as the result of benzophenone ketyl decomposition.  
 
 
 
2.4.2.6 {[(5Dipp)Ag]2(µ-H)}+[BF4]– (1a[BF4]) 

 A solution of {[(5Dipp)Ag]2(µ-OtBu)}+[BF4]– (0.800 g, 0.692 mmol) in THF (2 

mL) and a solution of phenylsilane (0.085 mL, 0.075 g, 0.693 mmol) in THF (2 mL) 

were cooled to −35˚C. The phenylsilane solution was added dropwise via pipette to the 

{[(5Dipp)Ag]2(µ-OtBu)}+[OTf]– solution with stirring, and the resultant mixture was 

stored in the dark at −35˚C for 2 hours. A layer of pentane (12 mL) was carefully added 

over the THF solution, and the layers were allowed to mix by diffusion at −35˚C for 16 

hours, resulting in the formation of colourless crystals. The mother liquor was decanted, 

and the crystals were collected on a fritted glass filter. The crystals were ground to a 
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powder and were washed with three portions of pentane (2 mL each). Residual solvents 

were removed in the dark under vacuum at 40˚C for 16 hours, affording the product as a 

white powder (0.600 g, 0.553 mmol, 92%). The product is stable toward brief exposure to 

air and moisture. 1H NMR (400 MHz, CD2Cl2): δ (ppm) 7.42 (t, J = 7.8 Hz, 2H, para-

CH), 7.19 (d, J = 7.8 Hz, 4H, meta-CH), 4.02 (s, 4H, NCH2), 2.92 (sept, J = 6.9 Hz, 4H, 

CH(CH3)2), 1.29 (d, J = 6.9 Hz, 12H, CH(CH3)2), 1.03 (d, J = 6.9 Hz, 12H, CH(CH3)2), 

−1.18 (app tt, 1H, J(1H-109Ag), = 134 Hz, J(1H-107Ag) = 116 Hz, AgHAg). 13C{1H} NMR 

(100 MHz, CD2Cl2): δ (ppm) 208.3 (m, NCAg), 147.0 (ortho-C), 134.5 (ipso-C), 130.3 

(para-C), 124.9 (meta-C), 54.5 (m, NCH2), 29.0 (CH(CH3)2), 25.7 (CH(CH3)2), 23.9 

(CH(CH3)2). 19F NMR (375 MHz, CD2Cl2): δ (ppm) −152.30 (s, 10BF4
−), −152.35 (s, 

11BF4
−). IR: ν (cm–1) 3071 (w), 2981 (s), 2930, 2870, 1941 (w),  1871 (w), 1800 (w), 

1706 (w), 1655 (w), 1489 (s), 1467 (s), 1459 (s), 1384, 1388, 1342, 1327, 1274 (s), 1249, 

1216, 1190 (s), 1180, 1116, 1103, 1060, 1017, 961 (s), 935, 913, 878, 804 (s), 757 (s), 

711, 620, 563, 547, 516, 445. Elemental analysis calculated for C54H77N4Ag2B1F4: C, 

59.79; H, 7.15; N, 5.16. Found: C, 59.53; H, 7.22; N, 5.09. 
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Figure 2.13 1H NMR (400 MHz, CD2Cl2) spectrum of 1a[BF4].  
 
 
 
2.4.2.7 {[(5Dipp)Ag]2(µ-2H)}+[BF4]– (1a-d[BF4]) 

 The deuteride complex was prepared by analogy to the hydride, using 

phenylsilane-d3 as the deuteride source. 1H NMR (400 MHz, CD2Cl2): δ (ppm) 7.42 (t, J 

= 7.8 Hz, 2H, para-CH), 7.20 (d, J = 7.8 Hz, 4H, meta-CH), 4.03 (s, 4H, NCH2), 2.93 

(sept., J = 6.9 Hz, 4H, CH(CH3)2), 1.30 (d, J = 6.9 Hz, 12H, CH(CH3)2), 1.03 (d, J = 6.9 

Hz, 12H, CH(CH3)2). 13C{1H} NMR (100 MHz, CD2Cl2): δ (ppm) 208.3 (m, NCAg), 

147.0 (ortho-C), 134.5 (ipso-C), 130.3 (para-C), 124.9 (meta-C), 54.5 (m, NCH2), 29.0 

(CH(CH3)2), 25.7 (CH(CH3)2), 23.9 (CH(CH3)2). 19F NMR (375 MHz, CD2Cl2): δ (ppm) 

−152.30 (s, 10BF4
–), −152.35 (s, 11BF4

–). 2H NMR (30.0 MHz, CD2Cl2): δ (ppm) −1.12 (t, 

J(2H-107/109Ag) = 18.7 Hz) 109Ag NMR (18.6 MHz, CD2Cl2): δ (ppm) 522.2 (app tt, 

1:1:1:2:2:2:1:1:1,  J(109Ag-107Ag) = 114 Hz), J(109Ag-2H) = 20.5 Hz). IR: ν (cm–1) 3071 

(w), 2981 (s), 2930, 2870, 1941 (w), 1871 (w), 1800 (w), 1706 (w), 1655 (w), 1489 (s), 
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1467 (s), 1459 (s), 1384, 1388, 1342, 1327, 1274 (s), 1249, 1216, 1190 (s), 1180, 1116, 

1103, 1060, 1017, 961 (s), 935, 913, 878, 804 (s), 757 (s), 711, 620, 563, 547, 516, 445. 

 
 

 
Figure 2.14. 1H NMR (400 MHz, CD2Cl2) spectrum of 1a-d[BF4].  
 
 
 

 
Figure 2.15. 2H NMR (30.0 MHz, CD2Cl2) spectrum of 1a-d[BF4]. 
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Figure 2.16. 109Ag NMR (18.6 MHz, CD2Cl2) spectrum of 1a-d[BF4]. The multiplet, 
which has the appearance of a 1:2:1 triplet of 1:1:1 triplets, is attributable to coincident 
signals from each of the two 109Ag-containing isotopologues of the complex: 109Ag–109Ag 
(1:1:1 triplet, 23% abundance) and 107Ag–109Ag (1:1 doublet of 1:1:1 triplets, 50% 
abundance), where J(109Ag-107Ag) = 114 Hz and J(109Ag-2H) = 20.5 Hz. 
 
 
 

  
Figure 2.17. Overlay of the infrared absorption spectra of the hydride 1a[BF4] (blue 
spectrum) and deuteride 1a-d[BF4] (red spectrum). No discernible hydride or deuteride 
stretching resonances are observed. The feature at ν = 2360 cm–1 is attributable to 
fluctuations in CO2 concentration in the sample chamber of the spectrometer. 
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2.4.2.8 [(5Dipp)2Ag]+BF4
–  

 A solution of (5Dipp)Ag(OSiMe3) (0.150 g, 0.255 mmol) in CH2Cl2 (1.5 mL) was 

prepared in a Schlenk flask equipped with a stir bar, and the flask was sealed with a 

rubber septum. A solution of 5Dipp·HBF4 (0.122 g, 0.255 mmol) in CH2Cl2 (1.5 mL) 

was added dropwise via syringe through the septum, with stirring. The reaction flask was 

covered with foil to exclude light. After stirring for 30 minutes, the flask was opened to 

air and no further attempt was made to maintain anhydrous conditions. The diffusion of a 

layer of hexane into the solution at −20˚C for 24 hours resulted in the formation of 

colorless crystals. The mother liquor was decanted, and residual solvent was removed 

under vacuum in the dark at 50˚C for 6 hours, affording the product as a white solid 

(0.160 g, 0.164 mmol, 64%). The product is stable in the presence of air and moisture. 1H 

NMR (400 MHz, CD2Cl2): δ (ppm) 7.38 (t, J = 7.8 Hz, 2H, para-CH), 7.08 (d, J = 7.8 

Hz, 4H, meta-CH), 3.80 (s, 4H, NCH2), 2.75 (sept., J = 6.9 Hz, 4H, CH(CH3)2), 1.17 (d, J 

= 6.9 Hz, 12H, CH(CH3)2), 0.77 (d, J = 6.9 Hz, 12H, CH(CH3)2). 13C{1H} NMR (100 

MHz, CD2Cl2): δ (ppm) 205.8 (d, J(13C-109Ag) = 178 Hz, NCAg), 146.6 (ortho-C), 134.9 

(ipso-C), 130.3 (para-C), 124.8 (meta-C),  54.5 (m, NCH2), 28.8 (CH(CH3)2), 25.5 

(CH(CH3)2), 24.1 (CH(CH3)2). 19F NMR (375 MHz, CD2Cl2): δ (ppm) −152.30 (s, 

10BF4
−), −152.35 (s, 11BF4

−). 109Ag NMR (18.6 MHz, CD2Cl2): δ (ppm) 386.7 (s). IR: ν 

(cm–1)  3072 (w), 2966 (s), 2926, 2870, 1591, 1479 (s), 1459 (s), 1381, 1365, 1324, 1271 

(s), 1246, 1184, 1094, 1054 (s), 938, 903, 806 (s), 762 (s), 735, 711, 618, 548, 517, 445, 

419. Elemental analysis calculated for C54H76N4AgBF4: C, 66.46; H, 7.85; N, 5.74. 

Found: C, 66.33; H, 7.84; N, 5.72. 
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Figure 2.18. 1H NMR (300 MHz, CD2Cl2) spectrum of [(5Dipp)2Ag]+BF4

–.  
 
 
 
2.4.2.9 [(5Dipp)Ag(IiPr)]+BF4

–  

 A solution of (5Dipp)Ag(OSiMe3) (0.150 g, 0.255 mmol) in CH2Cl2 (2 mL) was 

prepared in a Schlenk flask equipped with a stir bar, and the flask was sealed with a 

rubber septum. A solution of IiPr·HBF4. (0.050 g, 0.25 mmol) in CH2Cl2 (2 mL) was 

added dropwise via syringe with stirring. The reaction flask was covered with foil to 

exclude light. After stirring for 30 minutes, the reaction mixture was dried in the dark 

under vacuum at 80˚C for 16 hours to remove the water and hexamethyldisiloxane 

byproducts. The residue was dissolved in CH2Cl2 (2 mL) and was filtered through Celite. 

A layer of diethyl ether (10 mL) was added over the filtrate. The layers were allowed to 

mix by diffusion at −35˚C for 16 hours, resulting in the formation of colorless crystals. 

The crystals were collected on a fritted glass filter, were washed with diethyl ether (2 

mL), and were ground to a fine powder. Residual solvents were removed in the dark 

under vacuum at 40˚C for 16 hours, affording the product as a white powder (0.109 g, 
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0.148 mmol, 59%). 1H NMR (400 MHz, CD2Cl2): δ (ppm) 7.48 (t, J = 7.6 Hz, 2H, para-

CH), 7.31 (d, J = 7.6 Hz, 4H, meta-CH), 6.90 (d, J(1H-Ag) = 1.8 Hz, 2H, NCHCHN), 

4.24 (s, 4H, NCH2), 3.50 (sept , J = 6.7 Hz, 2H, IiPr CH(CH3)2), 3.13 (sept., J = 6.7 Hz, 

4H, 5Dipp CH(CH3)2), 1.38 (d, J = 6.7 Hz, 12H, 5Dipp CH(CH3)2), 1.29 (d, J = 6.7 Hz, 

12H, CH(CH3)2), 1.02 (d, J = 6.7 Hz, 12H, IiPr CH(CH3)2). 13C{1H} NMR (100 MHz, 

CD2Cl2): δ (ppm) 208.6 (app dd, J(13C-109Ag), = 218 Hz, J(13C-107Ag) = 194 Hz, 5Dipp 

NCAg), 175.3 (app dd, J(13C-109Ag), = 209 Hz, J(13C-107Ag) = 180 Hz, IiPr NCAg), 147.6 

(ortho-C), 135.0 (ipso-C), 130.3 (para-C), 125.0 (meta-C), 118.6 (d, J(13C -Ag) = 6 Hz, 

NCH), 54.4 (d, J(13C-Ag), = 5 Hz, NCH2), 29.2 (5Dipp CH(CH3)2), 25.6 (5Dipp 

CH(CH3)2), 24.2 (5Dipp CH(CH3)2) 23.7 (IiPr CH(CH3)2). 19F NMR (375 MHz, CD2Cl2): 

δ (ppm) −152.30 (s, 10BF4
−), −152.35 (s, 11BF4

−). 109Ag NMR (18.6 MHz, CD2Cl2): δ 

(ppm) 684.0 (s). IR: ν (cm–1) 3168, 3139, 3072 (w), 2966 (s), 2926, 2870, 1591 (w), 1558 

(w),  1491, 1466, 1460, 1397, 1381, 1365, 1324, 1271 (s), 1216 (s), 1184, 1109, 1064 (s), 

935, 916, 811 (s), 764, 744, 681, 606, 621, 548, 522, 444. Elemental analysis calculated 

for C36H54N4AgBF4: C, 58.63 ; H, 7.38; N, 7.60. Found: C, 58.66; H, 7.25; N, 7.50. 
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Figure 2.19. 1H NMR (300 MHz, CD2Cl2) spectrum of [(5Dipp)Ag(IiPr)]+BF4

–.  
 
 
 
2.4.2.10 (5Dipp)Ag(OSiMe3) 

 Sodium trimethylsilanolate (0.210 g, 1.87 mmol) was added to a suspension of 

(5Dipp)AgCl (1.000 g, 1.873 mmol) in THF (2 mL) with stirring. The reaction flask was 

covered with foil to exclude light. After stirring for 2 hours, the reaction mixture was 

filtered through Celite into a Schlenk flask. The solvent was removed from the filtrate 

under vacuum. The residue was dissolved in 10 mL toluene and was filtered once more 

through Celite into a Schlenk flask. The solvent was again removed from the filtrate 

under vacuum. The residue was dissolved in 2 mL CH2Cl2, and a layer of 18 mL diethyl 

ether was added. The layers were allowed to mix in the dark at −35˚C for 72 hours, 

resulting in the formation of colourless crystals. The crystals were collected on a fritted 

glass filter and were ground to a fine powder. The product was washed with diethyl ether 

(2 mL). Residual solvents were removed in the dark for 16 hours at 40˚C under vacuum, 

affording the product as a white powder (0.531 g, 0.605 mmol, 48%). The product 
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hydrolyzes readily in the presence of atmospheric moisture. 1H NMR (400 MHz, 

CD2Cl2): δ (ppm) 7.43 (t, J = 7.8 Hz, 2H, para-CH), 7.28 (d, J = 7.8 Hz, 4H, meta-CH), 

4.07 (s, 4H, NCH2), 3.09 (sept, J = 6.9 Hz, 4H, CH(CH3)2), 1.37 (d, J = 6.9 Hz, 12H, 

CH(CH3)2), 1.35 (d, J = 6.9 Hz, 12H, CH(CH3)2), –0.44 (s, 9H, OSi(CH3)3). 13C{1H} 

NMR (100 MHz, CD2Cl2): δ (ppm) 207.8 (app dd, J(13C-109Ag), = 241 Hz, J(13C-107Ag) 

= 208 Hz, NCAg), 147.2 (ortho-C), 135.4 (ipso-C), 130.0 (para-C), 124.8 (meta-C), 54.2 

(d, J(13C-Ag), = 8 Hz, NCH2), 29.2 (CH(CH3)2), 25.5 (CH(CH3)2), 24.2 (CH(CH3)2), 4.3 

(OSi(CH3)3). 109Ag NMR (18.6 MHz, CD2Cl2): δ (ppm) 645.3 (s). IR: ν (cm–1) 3071 (w), 

2981 (s), 2930, 2870, 1590, 1488 (s), 1459 (s), 1384, 1367, 1327, 1274 (s), 1245, 1230 

(s) 1180, 1103, 1060, 1017, 984 (s) 935, 824 (s), 808 (s), 763, 736, 663, 620, 550, 439. 

Elemental analysis calculated for C30H47N2AgSiO : C, 61.31; H, 8.06; N, 4.77. Found: C, 

61.07; H, 8.13; N, 4.74. 

 
 

 
Figure 2.20. 1H NMR (300 MHz, CD2Cl2) spectrum of (5Dipp)Ag(OSiMe3).  
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2.4.2.11 5Dipp·HBF4 

 1,3-Bis(2,6-diisopropylphenyl)imidazolinium tetrafluoroborate was prepared in 

analogy with the literature protocol for the synthesis of 1,3-diarylimidazolium 

tetrafluoroborate salts.41 The procedure was conducted in air with solvents and reagents 

which were neither dried nor degassed, and in glassware which was not oven-dried. A 

50% w/w aqueous solution of tetrafluoroboric acid (0.047 mL,  0.382 mmol HBF4) was 

added in stoichiometric excess to a solution of 1,3-bis(2,6-diisopropylphenyl)- 

imidazolinium chloride (added as the triethylorthoformate adduct 5Dipp·HCl·(EtO)3CH, 

0.200g, 0.348 mmol) in water (10 mL). The reaction mixture was stirred for 30 minutes, 

and the product was extracted with three portions of CH2Cl2 (5 mL each). The extract 

was dried over excess magnesium sulfate and filtered through Celite, and the filtrate was 

concentrated under vacuum to a volume of 2 mL. The diffusion of a layer of diethyl ether 

(18 mL) at −20˚C for 16 hours resulted in the precipitation of colorless crystals, which 

were collected in a fritted glass funnel. The crystals were triturated and washed with 

diethyl ether (5 mL), affording the product as a white solid (0.130 g, 0.781 mmol, 78%). 

The product was characterized by 1H NMR spectroscopy. Spectral data were in 

agreement with those reported in the literature.42 1H NMR (400 MHz, CD2Cl2): δ (ppm) 

8.58 (s, 1H, N(CH)N), 7.52 (t, J = 7.8 Hz, 2H, para-CH), 7.32 (d, J = 7.8 Hz, 4H, meta-

CH), 4.54 (s, 4H, NCH2), 2.98 (sept, J = 6.9 Hz, 4H, CH(CH3)2), 1.38 (d, J = 6.9 Hz, 

12H, CH(CH3)2), 1.25 (d, J = 6.9 Hz, 12H, CH(CH3)2). 
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Figure 2.21. 1H NMR (300 MHz, CD2Cl2) spectrum of 5Dipp·HBF4.  
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CD2Cl2): δ (ppm) 7.11 (d, J(H-13C) = 0.3 Hz, 2H, NCHCHN), 5.56 (sept, J = 6.8 Hz, 2H, 

CH(CH3)2), 1.48 (d, J = 6.8 Hz, 12H, CH(CH3)2). 

 
 

 

Figure 2.22. 1H NMR (400 MHz, CD2Cl2) spectrum of IiPr·13CO2.  
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temperature en route to the NMR facility. 1H and 13C NMR spectra were promptly 

recorded, and a second 13C NMR spectrum was recorded after cooling the NMR tube at 

−78˚C for 2 hours to increase 13CO2 solubility. The components of the product solution 

were identified as [(5Dipp)Ag(IiPr)]+ (0.95 equiv), free 13C-formate ion (0.66 equiv), and 

13CO2 (not quantified). [(5Dipp)Ag(IiPr)]+ and 13C-formate were quantified by integration 

of peak areas with respect to those of 4,4′-dimethylbiphenyl in the 1H NMR spectrum. No 

unexpected signals were observed in the 19F NMR spectrum of the product solution, 

confirming the BF4
– anion remained unchanged. 

 
 

 
Figure 2.23. 1H NMR (400 MHz, CD2Cl2) spectrum of the reaction of 1a[BF4] with two 
equivalents of IiPr·13CO2 after 5 minutes. Two equivalents of 4,4′-dimethylbiphenyl [δ 
(ppm) 7.49 (d, 4H, J = 7.8 Hz), 7.24 (d, 4H, J = 7.8 Hz), 2.38 (s, 6H)] are present as an 
internal standard. 
 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0
δ (ppm)

2
3

.0
8

5
7

.0
5

1
2

.0
0

8
.5

2

4
.0

2

7
.3

8

3
.7

5

9
.2

3
7

.9
4

1
2

.8
7

0
.3

3

0
.3

3

1
.0

2
1

.0
3

1
.2

9
1

.3
1

1
.3

8
1

.3
9

2
.3

8

3
.1

0
3

.1
1

3
.1

3

3
.4

7
3

.4
9

3
.5

0

4
.0

9
4

.2
4

5
.3

2

6
.9

2

7
.2

3
7

.2
5

7
.3

1
7

.3
3

7
.4

8

8
.4

5

8
.9

0



 51 

 
Figure 2.24. 1H NMR (400 MHz, CD2Cl2) spectrum of [(5Dipp)Ag(IiPr)]+BF4

–
, prepared 

independently by the treatment of (5Dipp)Ag(OSiMe3) with IiPr·HBF4.  
 
 
 

 
Figure 2.25. 13C NMR (100 MHz, CD2Cl2, 1H-nondecoupled) spectrum of the reaction of 
2[BF4] with two equivalents of IiPr·13CO2 after 7 minutes, showing the production of 13C-
formate. 
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Figure 2.26. Detail of the 13CO2 resonance (δ 125.14 ppm) in the 13C NMR spectrum 
(75.5 MHz, CD2Cl2, 1H-nondecoupled, after cooling to –78˚C) of the reaction of 2[BF4] 
with two equivalents of IiPr·13CO2. Resonances arising from the aryl groups of 5Dipp and 
4,4′-dimethylbiphenyl are also visible. 
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Figure 2.27. 13C NMR spectrum (75.5 MHz, CD2Cl2, 1H-nondecoupled) of the reaction 
of 2[BF4] with 160 kPa 13CO2 after 4 days. The doublet at δ 167.9 ppm (J(13C-1H) = 194 
Hz) is believed to indicate 13C-formate complexed with silver. The intense singlet at δ 
125.2 ppm corresponds to 13CO2.30  
 
 
 

 
Figure 2.28. 13C{1H} NMR spectrum (75.5 MHz, CD2Cl2) of the reaction of 2[BF4] with 
160 kPa 13CO2 after 4 days. 1H decoupling reduces the 13C-formate signal at δ 167.9 ppm 
to a singlet. The intense singlet at δ 125.2 ppm corresponds to 13CO2.30 1H decoupling 
also enhances unlabeled 5Dipp-derived resonances, which are observed at δ 146.6 ppm 
and 124.9 ppm and in the range of 29.2–23.9 ppm. 
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Figure 2.29. 1H NMR spectrum (400 MHz, CD2Cl2, 13C-nondecoupled) of the reaction of 
2[BF4] with 160 kPa 13CO2 after 4 days. In addition to 13C-formate, indicated by a 
doublet (J(1H-13C) = 195 Hz) at δ 7.90 ppm, decomposition products including 
[(5Dipp)2Ag]+ and 5DippH+ are also observed. 
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in solution, quantified by the integration of 1H NMR peak area), 5DippH+ (31%), an 

unidentified 5Dipp derivative (28%), and [(5Dipp)2Ag]+ (2%). 

2.4.4 X-Ray Diffraction Studies 

2.4.4.1 {[(5Dipp)Ag]2(µ-OtBu)}+[OTf]– (5a[OTf]) 

 Diffraction-quality crystals were grown by the diffusion of hexane vapor into a 

solution of 5a[OTf] in THF at −35˚C. 

 A suitable crystal was selected from the sample and mounted quickly onto a nylon 

fibre with paratone oil and placed under a cold stream at −100˚C.  Single crystal X-ray 

data were collected on a Bruker APEX2 diffractometer with 1.6 kW graphite 

monochromated Mo radiation.  The detector-to-crystal distance was 5.1 cm. The data 

collection was performed using a combination of sets of ω scans yielding data in the θ 

range 1.81˚ to 32.10˚ with an average completeness of 97.7%. The frames were 

integrated with the SAINT v7.68a.45 A multi-scan absorption correction was carried out 

using the program SADABS V2008-1.46 The structure was solved with JANA200647 and 

refined with Olex248 and SHELX.49 

 The crystal structure contains a {[(5Dipp)Ag]2(µ-OtBu)}+ complex, a triflate 

anion and two THF molecules of crystallization. One THF molecule is badly disordered, 

and was modelled using two components each with similarity restraints in SHELX.  

However, the disorder of this molecule is severe and the electron density ill-defines such 

that the locations of the O atoms cannot be identified with certainty (these too are 

probably disordered). 
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2.4.4.2 {[(5Dipp)Ag]2(µ-H)}+[OTf]– (1a[OTf]) 

 Diffraction-quality crystals were grown by the diffusion of pentane vapor into a 

solution of 1a[OTf] in THF at −35˚C. 

 A suitable crystal was selected from the sample and mounted quickly onto a nylon 

fibre with paratone oil and placed under a cold stream at −100˚C. Single crystal X-ray 

data were collected on a Bruker APEX2 diffractometer with 1.6 kW graphite 

monochromated Mo radiation. The detector-to-crystal distance was 5.1 cm. The data 

collection was performed using a combination of sets of ω scans yielding data in the θ 

range 1.39˚ to 29.61˚ with an average completeness of 99.6%. The frames were 

integrated with the SAINT v7.68a.45 A multi-scan absorption correction was carried out 

using the program SADABS V2008-1.46 The structure was solved with JANA200647 and 

refined with Olex248 and SHELX.49 

 The crystal structure contains a {[(5Dipp)Ag]2(µ-H)}+ complex, a triflate anion 

and two THF molecules of crystallization. Both solvent molecules are disordered, and 

were modelled using two components each with similarity restraints in SHELX. 

2.5 Acknowledgements 

 This research was supported by the Georgia Institute of Technology, through the 

College of Science and the School of Chemistry & Biochemistry. We thank Prof. Seth R. 

Marder and his group for the use of their FT-IR spectrometer. Mr. Joel A. Starch kindly 

provided a sample of phenylsilane-d3. We thank Mr. J. Kevin Busa for helpful 

discussions, and for the preparation of SIDipp•HCl and (SIDipp)AgCl. We thank Dr. 

Thomas J. Robilotto for helpful discussions and for technical assistance.  

  



 57 

2.6 Notes and References 

 

1  (a) A. Wurtz, C. R. Hebd. Seances Acad. Sci. 1880, 90, 22–25; (b) M. Berthelot, 
C. R. Hebd. Seances Acad. Sci. 1879, 89, 1097–1099; (c) A. Wurtz, C. R. Hebd. 
Seances Acad. Sci. 1844, 18, 702–704.  

2  (a) J. Halpern, G. Czapski, J. Jortner, G. Stein, Nature 1960, 186, 629–630; (b) J. 
Halpern, J. Phys. Chem. 1959, 63, 398–403; (c) A. H. Webster, J. Halpern, J. 
Phys. Chem. 1957, 61, 1245–1248; (d) A. H. Webster, J. Halpern, J. Phys. Chem. 
1957, 61, 1239–1245; (e) J. Halpern, E. R. Macgregor, E. Peters, J. Phys. Chem. 
1956, 60, 1455–1456.  

3  (a) G. V. Goeden, J. C. Huffman, K. G. Caulton, Inorg. Chem. 1986, 25, 2484–
2485; (b) T. H. Lemmen, K. Folting, J. C. Huffman, K. G. Caulton, J. Am. Chem. 
Soc. 1985, 107, 7774–7775; (c) G. V. Goeden, K. G. Caulton, J. Am. Chem. Soc. 
1981, 103, 7354–7355.  

4  (a) J. F. Daeuble, C. McGettigan, J. M. Stryker, Tetrahedron Lett. 1990, 31, 
2397–2400; (b) D. M. Brestensky, J. M. Stryker, Tetrahedron Lett. 1989, 30, 
5677–5680; (c) W. S. Mahoney, J. M. Stryker, J. Am. Chem. Soc. 1989, 111, 
8818–8823; (d) W. S. Mahoney, D. M. Brestensky, J. M. Stryker, J. Am. Chem. 
Soc. 1988, 110, 291–293; (e) H. Brunner, W. Miehling, J. Organomet. Chem. 
1984, 275, c17–c21.  

5  Selected recent examples: (a) H. Lv, Y.-B. Cai, J.-L. Zhang, Angew. Chem., Int. 
Ed. 2013, 52, 3203–3207; (b) H. Reeker, P.-O. Norrby, N. Krause, 
Organometallics 2012, 31, 8024–8030; (c) A. Saxena, B. Choi, H. W. Lam, J. 
Am. Chem. Soc. 2012, 134, 8428–8431; (d) K. R. Voigtritter, N. A. Isley, R. 
Moser, D. H. Aue, B. H. Lipshutz, Tetrahedron 2012, 68, 3410–3416; (e) P. 
Hasin, Y. Wu, Chem. Commun. 2012, 48, 1302–1304; (f) G. D. Frey, B. 
Donnadieu, M. Soleilhavoup, G. Bertrand, Chem.–Asian J. 2011, 6, 402–405; (g) 
R. Moser, Z. V. Boskovic, C. S. Crowe, B. H. Lipshutz, J. Am. Chem. Soc. 2010, 
132, 7852–7853.  

6  For a review, see: C. Deutsch, N. Krause, B. H. Lipshutz, Chem. Rev. 2008, 108, 
2916–2927.  

7  R. S. Dhayal, J.-H. Liao, Y.-R. Lin, P.-K. Liao, S. Kahlal, J.-Y. Saillard, C. W. 
Liu, J. Am. Chem. Soc. 2013, 135, 4704–4707.  

8  (a) D.-A. Rosca, D. A. Smith, D. L. Hughes, M. Bochmann, Angew. Chem., Int. 
Ed. 2012, 51, 10643–10646; (b) S. Gaillard, A. M. Z. Slawin, S. P. Nolan, Chem. 
Commun. 2010, 46, 2742–2744; (c) A. Escalle, G. Mora, F. Gagosz, N. Mezailles, 
X. F. Le Goff, Y. Jean, P. Le Floch, Inorg. Chem. 2009, 48, 8415–8422; (d) H. 
Ito, T. Saito, T. Miyahara, C. Zhong, M. Sawamura, Organometallics 2009, 28, 
4829–4840; (e) E. Y. Tsui, P. Müller, J. P. Sadighi, Angew. Chem., Int. Ed. 2008, 



 58 

47, 8937–8940.  

9   (a) C. W. Liu, Y.-R. Lin, C.-S. Fang, C. Latouche, S. Kahlal, J.-Y. Saillard, Inorg. 
Chem. 2013, 52, 2070–2077; (b) P.-K. Liao, K.-G. Liu, C.-S. Fang, C. W. Liu, J. 
P. Fackler, Jr, Y.-Y. Wu, Inorg. Chem. 2011, 50, 8410–8417; (c) C. W. Liu, P.-K. 
Liao, C.-S. Fang, J.-Y. Saillard, S. Kahlal, J.-C. Wang, Chem. Commun. 2011, 47, 
5831–5833; (d) C. W. Liu, H.-W. Chang, C.-S. Fang, B. Sarkar, J.-C. Wang, 
Chem. Commun. 2010, 46, 4571–4573; (e) C. W. Liu, H.-W. Chang, B. Sarkar, J.-
Y. Saillard, S. Kahlal, Y.-Y. Wu, Inorg. Chem. 2010, 49, 468–475.   

10   Selected recent advances in reduction to formate: (a) W. Sattler, G. Parkin, J. Am. 
Chem. Soc. 2012, 134, 17462–17465; (b) J. F. Hull, Y. Himeda, W.-H. Wang, B. 
Hashiguchi, R. Periana, D. J. Szalda, J. T. Muckerman, E. Fujita, Nat. Chem. 
2012, 4, 383–388; (c) R. K. Yadav, J.-O. Baeg, G. H. Oh, N.-J. Park, K.-j. Kong, 
J. Kim, D. W. Hwang, S. K. Biswas, J. Am. Chem. Soc. 2012, 134, 11455–11461; 
(d) C. W. Li, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 7231–7234; (e) C. Das 
Neves Gomes, O. Jacquet, C. Villiers, P. Thuery, M. Ephritikhine, T. Cantat, 
Angew. Chem., Int. Ed. 2012, 51, 187–190; (f) T. J. Schmeier, G. E. Dobereiner, 
R. H. Crabtree, N. Hazari, J. Am. Chem. Soc. 2011, 133, 9274–9277; (g) R. 
Tanaka, M. Yamashita, K. Nozaki, J. Am. Chem. Soc. 2009, 131, 14168–14169.   

11   For recent advances in the deoxygenative reduction of CO2, see for example: (a) 
O. Jacquet, X. Frogneux, C. Das Neves Gomes, T. Cantat, Chem. Sci. 2013, 4, 
2127–2131; (b) Y. Chen, C. W. Li, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 
19969–19972; (c) S. Sato, T. Morikawa, T. Kajino, O. Ishitani, Angew. Chem., 
Int. Ed. 2013, 52, 988–992; (d) J. M. Smieja, E. E. Benson, B. Kumar, K. A. 
Grice, C. S. Seu, A. J. M. Miller, J. M. Mayer, C. P. Kubiak, Proc. Natl. Acad. 
Sci. U. S. A. 2012, 109, 15646–15650; (e) S. Park, D. Bézier, M. Brookhart, J. 
Am. Chem. Soc. 2012, 134, 11404–11407; (f) K. Teramura, S. Iguchi, Y. Mizuno, 
T. Shishido, T. Tanaka, Angew. Chem., Int. Ed. 2012, 51, 8008–8011; (g) S. 
Wesselbaum, T. vom Stein, J. Klankermayer, W. Leitner, Angew. Chem., Int. Ed. 
2012, 51, 7499–7502; (h) C. Costentin, S. Drouet, M. Robert, J.-M. Savéant, 
Science 2012, 338, 90–94; (i) C. A. Huff, M. S. Sanford, J. Am. Chem. Soc. 2011, 
133, 18122– 18125; (j) E. Balaraman, C. Gunanathan, J. Zhang,  L. J. W. Shimon, 
D. Milstein, Nat. Chem. 2011, 3, 609–614; (k) F. Huang, G. Lu, L. Zhao, H. Li, 
Z.-X. Wang, J. Am. Chem. Soc. 2010, 132, 12388–12396; (l) E. B. Cole, P. S. 
Lakkaraju, D. M. Rampulla, A. J. Morris, E. Abelev, A. B. Bocarsly, J. Am. 
Chem. Soc. 2010, 132, 11539–11551; (m) S. Chakraborty, J. Zhang, J. A. Krause, 
H. Guan, J. Am. Chem. Soc. 2010, 132, 8872–8873; (n) L. Gu, Y. Zhang, J. Am. 
Chem. Soc. 2010, 132, 914–915; (o) S. N. Riduan, Y. Zhang, J. Y. Ying, Angew. 
Chem., Int. Ed. 2009, 48, 3322–3325.  

12  For reviews, see: (a) P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. 
Zapp, R. Bongartz, A. Schreiber, T. E. Müller, Energy Environ. Sci. 2012, 5, 
7281–7305; (b) C. Federsal, R. Jackstell, M. Beller, Angew. Chem., Int. Ed. 2010, 
49, 6254–6257; (c) E. E. Benson, C. P. Kubiak, A. J. Sathrum, J. M. Smieja, 
Chem. Soc. Rev. 2009, 38, 89–99; (d) M. Rakowski DuBois, D. L. DuBois, Acc. 



 59 

Chem. Res. 2009, 42, 1974–1982. 

13  (a) R. A. Flurer, K. L. Busch, J. Am. Chem. Soc. 1991, 113, 3656–3663; (b) R. L. 
DeKock, R. D. van Zee, T. Ziegler, Inorg. Chem. 1987, 26, 563–567.  

14  (a) R. Mitrić, J. Petersen, A. Kulesza, M. I. S. Röhr, V. Bonačić-Koutecký, C. 
Brunet, R. Antoine, P. Dugourd, M. Broyer, R. A. J. O’Hair, J. Phys. Chem. Lett. 
2011, 2, 548–552; (b) G. N. Khairallah, R. A. J. O’Hair, Angew. Chem., Int. Ed. 
2005, 44, 728–731; (c) G. N. Khairallah, R. A. J. O’Hair, Dalton Trans. 2005, 
2702–2712.  

15  (a) T. Baba, H. Sawada, T. Takahashi, M. Abe, Appl. Catal., A 2002, 231, 55–63; 
(b) T. Baba, Y. Tohjo, T. Takahashi, H. Sawada, Y. Ono, Catal. Today 2001, 66, 
81–89; (c) T. Baba, N. Komatsu, H. Sawada, Y. Yamaguchi, T. Takahashi, H. 
Sugisawa, Y. Ono, Langmuir, 1999, 15, 7894–7896.  

16  F. Q. Wang, G. N. Khairallah, R. A. J. O’Hair, Int. J. Mass Spectrom. 2009, 283, 
17–25.  

17  (a) S. Zhao, Z.-P. Liu, Z.-H. Li, W.-N. Wang, K.-N. Fan, J. Phys. Chem. A 2006, 
110, 11537–11542; (b) R. Gáspár, I. Tamássy-Lentei, Acta Phys. Acad. Sci. Hung. 
1981, 50, 343–347.  

18  (a) M. Gorol, N. C. Mösch-Zanetti, H. W. Roesky, M. Noltemeyer, H.-G. 
Schmidt, Chem. Commun. 2003, 46–47; (b) T. Beringhelli, G. D’Alfonso, M. G. 
Garavaglia, M. Panigati, P. Mercandelli, A. Sironi, Organometallics 2002, 21, 
2705–2714; (c) H. Brunner, D. Mijolovic, B. Wrackmeyer, B. Nuber, J. 
Organomet. Chem. 1999, 579, 298–303; (d) R. Carreno, V. Riera, M. A. Ruiz, A. 
Tiripicchio, M. Tiripicchio-Camellini, Organometallics 1994, 13, 993–1004; (e) 
A. Albinati, S. Chaloupka, F. Demartin, T. F. Koetzle, H. Ruegger, L. M. 
Venanzi, M. K. Wolfer, J. Am. Chem. Soc. 1993, 115, 169–175; (f) L. F. Rhodes, 
J. C. Huffman, K. G. Caulton, Inorg. Chim. Acta 1992, 198–200, 639–649; (g) A. 
Albinati, C. Anklin, P. Janser, H. Lehner, D. Matt, P. S. Pregosin, L. M. Venanzi, 
Inorg. Chem. 1989, 28, 1105–1111; (h) S. S. D. Brown, P. J. McCarthy, I. D. 
Salter, P. A. Bates, M. B. Hursthouse, I. J. Colquhoun, W. McFarlane, M. 
Murray, J. Chem. Soc., Dalton Trans. 1988, 2787–2796; (i) L. F. Rhodes, J. C. 
Huffman, K. G. Caulton, J. Am. Chem. Soc. 1984, 106, 6874–6876; (j) A. T. 
Hutton, P. G. Pringle, B. L. Shaw, Organometallics 1983, 2, 1889–1891; (k) M. 
Green, A. G. Orpen, I. D. Salter, F. G. A. Stone, J. Chem. Soc., Chem. Commun. 
1982, 813–814.  

19   N. P. Mankad, D. S. Laitar, J. P. Sadighi, Organometallics 2004, 23, 3369–3371. 
For a related complex, see ref. 5f. 

20   See for example: (a) Z. Lu, S. A. Cramer, D. M. Jenkins, Chem. Sci. 2012, 3, 
3081–3087; (b) U. Hintermair, U. Englert, W. Leitner, Organometallics 2011, 30, 
3726– 3731; (c) D. V. Partyka, N. Deligonul, Inorg. Chem. 2009, 48, 9463–9475; 
(d) D. V. Partyka, T. J. Robilotto, J. B. Updegraff, III, M. Zeller, A. D. Hunter, T. 



 60 

G. Gray, Organometallics, 2009, 28, 795–801; (e) P. de Fremont, N. M. Scott, E. 
D. Stevens, T. Ramnial, O. C. Lightbody, C. L. B. Macdonald, J. A. C. Clyburne, 
C. D. Abernethy, S. P. Nolan, Organometallics 2005, 24, 6301–6309; (f) D. J. 
Nielsen, K. J. Cavell, M. S. Viciu, S. P. Nolan, B. W. Skelton, A. H. White, J. 
Organomet. Chem. 2005, 690, 6133–6142; (g) X. Hu, I. Castro-Rodriguez, K. 
Olsen, K. Meyer, Organometallics 2004, 23, 755–764; (h) H. M. J. Wang, I. J. B. 
Lin, Organometallics 1998, 17, 972–975.   

21   (a) D. S. Laitar, P. Müller, T. G. Gray, J. P. Sadighi, Organometallics 2005, 24, 
4503–4505; (b) W. A. Herrmann, S. K. Schneider, K. Öfele, M. Sakamoto, E. 
Herdtweck, J. Organomet. Chem. 2004, 689, 2441–2449.   

22   D. S. Laitar, Ph.D. thesis, Massachusetts Institute of Technology (Cambridge), 
2006, http://dspace.mit.edu/handle/ 1721.1/36268.   

23   Analogous {[(NHC)Au]2OH}+ complexes are known: (a) A. Gómez-Suárez, Y. 
Oonishi, S. Meiries, S. P. Nolan, Organometallics 2013, 32, 1106–1111; (b) A. 
Zhdanko, M. Ströbele, M. E. Maier, Chem.–Eur. J. 2012, 18, 14732–14744; (c) R. 
S. Ramón, S. Gaillard, A. Poater, L. Cavallo, A. M. Z. Slawin, S. P. Nolan, 
Chem.–Eur. J. 2011, 17, 1238–1246.  

24  A. Bondi, J. Phys. Chem. 1964, 68, 441–451. 

25 Treatment of (IDipp)AuOH with one-half equivalent of Et2O•HBF4 likewise 
affords {[(IDipp)Au]2OH}+BF4

–; see ref. 23c. 

26  G. H. Penner, X. Liu, Prog. Nucl. Magn. Reson. Spectrosc. 2006, 49, 151–167.  

27  Prepared from PhSiCl3 and LiAlD4 by analogy to the procedure for PhSiH3: A. E. 
Finholt, A. C. Bond, Jr, K. E. Wilzbach, H. I. Schlesinger, J. Am. Chem. Soc. 
1947, 69, 2692–2696.  

28  For a solid-state 109Ag NMR study of an (NHC)AgCl complex, see: T. Ramnial, 
C. D. Abernethy, M. D. Spicer, I. D. McKenzie, I. D. Gay, J. A. C. Clyburne, 
Inorg. Chem. 2003, 42, 1391–1393.  

29  Dipolar coupling between 109Ag and 195Pt has been interpreted as a measure of the 
metal–metal interaction: A. F. M. J. van der Ploeg, G. van Koten, C. Brevard, 
Inorg. Chem. 1982, 21, 2878–2881.  

30  G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. 
Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176–2179.  

31  B. D. Nageswara Rao, L. R. Anders, Phys. Rev. 1965, 140, A112–A117.  

32  See for example: (a) D. J. Darensbourg, Inorg. Chem. 2010, 49, 10765–10780; (b) 
D. H. Gibson, Coord. Chem. Rev. 1999, 185–186, 335–355; (c) X. Yin, J. R. 
Moss, Coord. Chem. Rev. 1999, 181, 27–59.  



 61 

33  (a) D. J. Darensbourg, H. Pickner Wiegreffe, P. W. Wiegreffe, J. Am. Chem. Soc. 
1990, 112, 9252–9257; (b) S. Sakaki, K. Ohkubo, Inorg. Chem. 1989, 28, 2583– 
2590; (c) D. J. Darensbourg, A. Rokicki, M. Y. Darensbourg, J. Am. Chem. Soc. 
1981, 103, 3223–3224.  

34  B. R. Van Ausdall, J. L. Glass, K. M. Wiggins, A. M. Aarif, J. Louie, J. Org. 
Chem. 2009, 74, 7935–7942.  

35 A. J. Arduengo III, R. Krafczyk, R. Schmutzler, Tetrahedron 1999, 55, 14523–
14534. 

 
36 D. S. Laiter, P. Müller, T. G. Gray, J. P. Sadighi, Organometallics 2005, 24, 

4503–4505. 
 
37 A. E. Finholt., C. Bond Jr., K. E. Wilzbach, H. I. Schlesinger, J. Am. Chem. Soc. 

1947, 69, 2692. 
 
38 F. G. Bordwell, D. L. Hughes, J. Am. Chem. Soc. 1986, 108, 7300. 
 
39 D. S. Laitar, “Synthetic and catalytic studies of Group 11 N-heterocyclic carbene 

complexes,” Ph.D. Thesis, Massachusetts Institute of Technology (Cambridge), 
2006; http://dspace.mit.edu/handle/1721.1/36268 

 
40  E. Y. Tsui, P. Müller, J. P. Sadighi, Angew. Chem. Int. Ed. 2008, 47, 8937–8940. 
 
41 X. Bantreil, S. P. Nolan, Nature Protocols, 2011, 6, 69–77. 
 
42 E. M. Higgins, J. A. Sherwood, A. G. Lindsay, J. Armstrong, R. S. Massey, R. W. 

Alder, A. C. O’Donoghue, Chem. Commun. 2011, 47, 1559–1561. 
 
43  Y. Kayaki, M. Yamamoto, T. Ikariya, Angew. Chem. Int. Ed. 2009, 48, 4194–

4197. 
 
44 M. Fèvre, P. Coupillaud, K. Miqueu, J. Sotiropoulos, J. Vignolle, D. Taton, J. 

Org. Chem. 2012, 77, 10135–10144. 
 
45 Bruker (2009), SAINT V7.68a, BRUKER AXS Inc., Madison, WI, USA. 
 
46 Bruker (2008), SADABS V2008-1, BRUKER AXS Inc., Madison, WI, USA. 
 
47 V. Petricek, M. Dusek, L. Palatinus (2006), Jana2006, The crystallographic 

computing system, Institute of Physics, Prague, Czech Republic. 
 
48 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, 

OLEX2: a complete structure solution, refinement and analysis program. See: (a) 
J. Appl. Cryst. 2009, 42, 339. (b) Supramol. Chem. 2001, 1, 189–191. 

 



 62 

49 G. M. Sheldrick, Acta Cryst. 2008, A64, 112.  



 63 

CHAPTER 3 

FLUORIDE-BRIDGED COMPLEXES OF THE GROUP 11 METALS 

 

  

3.1 Note on Collaborative Efforts 

 This chapter describes a collaborative project that contributes significantly to this 

thesis as well as that of Chelsea M. Wyss.1 The experimental data presented in both 

documents is the same, but the discussion is adapted to the context of each thesis. 

3.2 Background 

  Fluorides of the monovalent group 11 metals exhibit interesting reactivity, in part 

due to their extreme hard-soft mismatch.2 Binary silver(I) salts of chloride, bromide, and 

iodide have remarkably low solubility in water and organic solvents, rendering them 

largely chemically inert, and their precipitation is often used as a driving force for halide 

abstraction in chemical synthesis.3 In contrast, silver(I) fluoride is highly soluble in water 

and somewhat soluble in some polar, coordinating organic solvents such as alcohols and 

acetonitrile.3 Silver(I) fluoride exhibits a broad range of reactivity, forming complexes 

with nitriles, amines, and phosphines,4b,5 and serving as a fluoride source in organic and 

inorganic syntheses.6 The reaction of AgF with perfluoroolefins or organosilanes 

produces perfluoroalkyl complexes of silver,4b which are synthetically useful carbanion 

synthons.7 The NHC-supported fluorosilver complex (5Dipp)AgF, is spectroscopically 

and structurally characterized,8 but prior to our investigation of its reaction with hydrogen 

(See Chapter 4),9 very little was known about its reactivity. 
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 Although silver(I) fluoride is stable as a simple salt, copper(I) fluoride readily 

disproportionates to elemental copper and copper(II) fluoride,10 while gold(I) fluoride has 

only been observed transiently in the gas phase.11 While fluoride complexes of gold(III) 

have demonstrated utility in C–F and C–C bond formation,12 fluorides complexes of 

copper(I) and gold(I), for which one would expect a larger degree of hard-soft mismatch 

compared to the higher oxidation states, were limited until recently to phosphine-

supported copper fluorides,13 though little is known about their reactivity. Recently, 

NHC-supported copper(I) and gold(I) fluorides, as well as the related bifluoride 

complexes, have garnered attention due to their involvement in catalytic fluorination, 

silylation, and C–C coupling reactions.14 

 Interest in dinuclear cationic complexes of the group 11 metals, especially gold, 

has grown recently due to the observation that the second metal center can alter or 

enhance reactivity in stoichiometric or catalytic processes. The coordination of a cationic 

gold fragment to an olefin or terminal alkyne, for instance, increases the acidity of the 

organic substrate, thereby promoting C–H functionalization under mild conditions.15 Due 

to the potential for cooperative reactivity in dinuclear complexes and the synthetic 

expertise which our group has acquired in the preparation of dinuclear group 11 

systems,9,16 we proposed a series of NHC-supported dinuclear fluorides of the 

monovalent group 11 metals. This chapter describes the synthesis and characterization of 

these fluoride-bridged complexes of copper, silver, and gold, as well as some interesting 

observations of reactivity and characterization of the reaction products, include halogen 

exchange with dichloromethane and insertion of a cumulated diene. 
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3.3 Results and Discussion 

3.3.1 Alternative Syntheses of Terminal Fluorides  

 Published procedures for the preparation of terminal group 11 fluorides 

(5Dipp)CuF (6),8  (5Dipp)AgF (7),8 and (5Dipp)AuF14h (8) (M = Cu, Ag, Au) call for 

triethylamine trihydrofluoride (Et3NH+ H2F3
– or treat-HF) as a source of fluoride ion. 

This HF synthon is far less hazardous than gaseous HF, can be handled in glass vessels, 

although glass is not ideal for long-term storage, and has been used in the preparation of 

other fluoride complexes of transition-metals.17 The treatment of alkoxide precursor 

(5Dipp)CuOtBu (9),  (5Dipp)AgOtBu (3), or (5Dipp)AuOtBu (10) with one-third 

equivalent of treat-HF results in the precipitation of 6, 7, or 8. Unfortunately, use of the 

highly hygroscopic reagent treat-HF resulted in the formation of metal-triethylamine 

adducts as side-products, reducing the yield of 6–8, and introduced moisture, which 

forms hydrogen bonds with 6–8 and is difficult to completely remove (Scheme 3.1a). 

 
 

 
Scheme 3.1. (a) The preparation of terminal fluoride complexes 6–8 via treat-HF, 
potentially resulting in impurities such as metal-triethylamine complexes and hydrated 
fluorides. (b) The preparation of terminal fluoride complexes 9–11 via benzoyl fluoride. 
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6  M = Cu   86%
7  M = Ag   88%
8  M = Au   91%

R = tert-butyl
9  M = Cu
3  M = Ag

10  M = Au



 66 

 We found, however, that the aprotic fluoride source benzoyl fluoride, dried over 

calcium hydride, reacts smoothly with group 11 alkoxides 9, 3, and 10 in benzene to 

produce group 11 fluorides 6–8 rigorously in rigorously anhydrous conditions (Scheme 

3.1b). Like treat-HF, benzoyl fluoride is a relatively benign HF synthon but has the 

advantage that it may be throroughly dried and stored in a resealable glass container to 

prevent absorption of atmospheric moisture. Furthermore, the by-product tert-butyl 

benzoate is benzene-soluble and does not tend to form adducts with the metal complexes, 

allowing convenient collection of the fluoride products by filtration and resulting 

consistently in high yields and high purity. 

3.3.2 Syntheses of Fluoride-Bridged Dinucelar Cations  

 In analogy to the preparation of alkoxide-bridged dinuclear cations of copper16a 

and silver,16b treatment of terminal fluorides 6–8 with one-half equivalent of 

triphenylcarbenium tetrafluoroborate (Ph3C+BF4
–) in THF results in the abstraction of 

one-half equivalent of fluoride, and the formation of fluoride-bridged dinuclear cations 

{[(5Dipp)Cu]2(µ-F)]+ (11), {[(5Dipp)Ag]2(µ-F)]+ (12), and {[(5Dipp)Au]2(µ-F)]+ (13) 

(Scheme 3.2). Fluorides 11–13 can be precipitated as colorless tetrafluoroborate salts by 

the addition of a nonpolar solvent, affording convenient separation from the hydrocarbon-

soluble fluorotriphenylmethane byproduct. 

 
 

 
Scheme 3.2. The synthesis of fluoride-bridged dinuclear complexes 11–13. 
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 The fluoride-bridged complexes 11–13 hydrolyze rapidly upon exposure to 

moisture, forming hydroxide-bridged dinuclear complexes, as one might predict 

according to hard/soft acid-base principles. The sensitivity of 11–13 to moisture 

necessitates conscientious exclusion of air during manipulations and thorough drying of 

glassware and solvents. 

3.3.3 19F NMR Spectroscopic Characterization 

 Close inspection of the 19F NMR characteristics of fluoride complexes 6–8 and 

especially 11–13 reveals some interesting implications about the behavior of the 

complexes in solution. The broadness of the 19F NMR signal of 7 shows a dependence on 

hydration, while the 19F NMR chemical shifts of 11–13 are significantly solvent-

dependent. The 19F NMR data of these complexes is summarized in Table 3.1. 

 The 19F NMR resonances of  the terminal fluorides 6–8 appear in the range of δ –

238.5 to –247.2 ppm in CD2Cl2. While the 19F NMR resonances of 6 and 8 are singlets, 

as expected due to the quadrupolar nature of the 63Cu, 65Cu, and 197Au nuclei, the 

resonance of 7 features 19F–107/109Ag coupling. Because the two isotopes of silver are 

unresolved, the resonance is observed as an apparent doublet with J(19F-107/109Ag) = 163 

Hz. After a brief exposure to atmospheric moisture, the 19F NMR signal of 7 broadens to 

the extent that coupling can no longer be distinguished. Likewise, a sample of 7 prepared 

using hydrated treat-HF exhibits a broad singlet  resonance. This dependence of the 

broadness of the 19F NMR resonance of 7 suggests that even traces of moisture interact 

with 7 in solution, as one might expect due to the potential of fluoride to participate in 

hydrogen-bonds. 
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Table 3.1. 19F NMR chemical shifts of fluoride complexes 6–8 and 11–13. 
 

Metal L5–M–F 
(CD2Cl2) 

[(L5–M)2(µ-F)]+ 
(CD2Cl2) 

[(L5–M)2(µ-F)]+ 
(THF-d8) 

Cu –238.5 –311.1 –291.1 
Ag –243.1 –308.5 –302.9 
Au –247.2 –318.5 –272.6 

 
 
 
  Relative to those of the terminal fluorides, the 19F NMR resonances of the 

bridging fluorides 11–13 appear much farther upfield, i.e. at more negative chemical 

shifts, in the range of δ –308.5 to –318.5 ppm in CD2Cl2, and are very broad, even after 

our most conscientious precautions to exclude moisture. No 19F–107/109Ag coupling is 

resolved in 12. Intentional yet brief exposure to atmospheric moisture causes the signals 

of 11–13 to broaden to the extent that they can no longer be resolved from the spectral 

baseline, even for samples which still appear pristinely pure by 1H NMR spectroscopy. 

 Interestingly, in THF-d8 solution, the chemical shifts of the 19F NMR resonances 

of 11–13 appear in the range of δ –272.6 to –302.9 ppm, significantly upfield of their 

positions in  CD2Cl2 and nearer to the chemical shifts of the terminal fluorides 6–8. We 

suspect that this phenomenon may be due to the rapidly reversible coordination of THF to 

one metal center of the dinuclear complex, resulting in an equilibrium concentration of 

terminal fluoride plus solvated [(5Dipp)Ag]+ ion (Scheme 3.3). The solvent dependence 

of the chemical shift of the silver complex 12 is substantial, shifting 5.6 ppm between 

CD2Cl2 THF-d8, and for the copper and gold complexes 11 and 13, the solvent 

dependence is astonishing, with a difference of 20 ppm and 46 ppm, respectively. We 

speculate that each 19F NMR resonance observed in THF-d8 is a weighted average of the 

resonances of the terminal and bridging fluorides, in rapid equilibrium. Despite this 
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apparently significant coordination of THF to 11–13, removal of THF under vacuum 

allows full recovery of solvent-free compounds. 

 
 

 
Scheme 3.3. The proposed coordination of THF to fluoride-bridged complexes 11–13. 

 
 
 

3.3.4 Crystallographic Characterization 

 The fluoride-bridged complexes 11–13 crystallize as their tetrafluoroborate salts 

with identical connectivity and other similar characteristics such as linear coordination 

about each metal and slightly bent geometry about fluorine. Key metrics are summarized 

in Table 3.2. In all three complexes, the BF4
– anion lies well outside the metal 

coordination sphere, and M–C distances are comparable to those of the corresponding 

terminal fluorides (6–8). In contrast to their hydride-bridged analogues, which exhibit 

varying degrees of metal-metal bonding, the distance between metal centers in 11–13 is 

significantly greater than twice the van der Waals radius of each metal, precluding the 

possibility of both metal-metal bonding, which has been observed in hydride- and 

carbanion-bridged analogs (see Chapters 2, 4, and 5),16 and closed-shell metallophilic 

interactions, which have been observed in other halide-bridged complexes of gold.18 

  

L5
M

L5
M

F
+

THF
L5

M
F

+
L5

M
O

+

11–13



 70 

Table 3.2. Selected bond lengths (Å) and angles (˚) for fluoride-bridged complexes 11–
13. 

M M–C M–F M•••M C–M–F M–F–M 
Cu 1.868(3) 1.843(2) 3.5130(7) 176.5(1) 142.99(17) 
 1.876(3) 1.862(2)  172.5(1)  
Cu 1.850(3) 1.836(2) 3.4522(7) 174.5(1) 140.96(16) 
 1.863(3) 1.827(3)  178.4(1)  
Ag 2.053(3) 2.0672(7) 4.0589(4) 176.60(11) 158.09(17) 
  2.0671(7)    
Au 1.944(3) 2.060(1) 3.9495(5) 179.64(11) 146.93(10) 

 
 
 
 The asymmetric unit of the structure of copper complex 11 contains two 

crystallographically distinct molecules, one of which is shown in Figure 1.1. The Cu–F 

distances range from 1.827(3) to 1.862(2) Å, remarkably comparable to that of the 

terminal fluoride 6 (1.8426(10) Å). The M–F–M angles of 6 (140.96(16)˚ and 

142.99(17)˚) are smaller than those of 7 and 8, even though the smaller size of copper 

results in the greatest potential for steric clashes between 5Dipp ligands. 

 
 

 
Figure 3.1. Solid-state structure of fluoride-bridged dicopper complex 11. One of two 
crystallographically distinct molecules is shown. Hydrogen atoms, cocrystallized solvent, 
and BF4

– counterion omitted for clarity. 
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 The structure of the silver complex 12, shown in Figure 2.2 features Ag–F 

distances of 2.0671(7) Å and 2.0672(7) Å, which are very similar to the Ag–F distances 

in the terminal analogue 7 (201682(13) Å). The M–F–M angle of 12 (158.09(17)˚) is 

larger than that of its group 11 congeners, approaching linear coordination about fluorine, 

which one would expect in a system featuring purely ionic bonding. The large Ag–F–Ag 

angle may reflect a larger degree of ionic character in 12 relative to 11 and 13, although it 

is also possible that a shallow potential energy barrier for bending about fluorine allows 

crystal packing forces to dominate the M–F–M angles.  

 
 

 

Figure 3.2. Solid-state structure of fluoride-bridged disilver complex 12. Hydrogen 
atoms, cocrystallized solvent, and BF4

– counterion omitted for clarity. 
 
 
 

 The Au–F distances of the gold complex 13 (both 2.060(1) Å) are subtly shorter 

than those of silver complex 12. This similarity is not surprising considering that despite 

gold’s greater atomic mass, its atomic radius is approximately the same as that of silver 
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due to a combination of the lanthanide contraction and relativistic effects. The M–F–M 

angle of 13 (146.93(10)˚) lies between that of 11 and 12. 

 
 

 

Figure 3.3. Solid-state structure of fluoride-bridged digold complex 13. Hydrogen atoms 
and BF4

– counterion omitted for clarity. 
 
 
 

3.3.5 Reactions of Fluoride-Bridged Dinuclear Complexes 

 The hydrolysis of the fluoride-bridged complexes 11–13 exemplifies their 

chemical behavior from the perspective of the hard-soft acid and base model of reactivity. 

The fluoride ion has far less affinity for a proton than hydroxide does.19 One would 

expect a proton transfer equilibrium to lie many orders of magnitude in favor of H2O and 

F–, rather than HF and OH–. However, clearly H–OH bond breaking and H–F bond 

formation do not account for the full hydrolysis of  11–13. The breaking of weak M–F 

bonds and formation of relatively strong M–OH bonds is the apparent driving force of the 

observed hydrolyses. The hard-soft mismatches between the monovalent group 11 metals 
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and the fluoride ion are quenched, resulting in the formation of less mismatched acid-

base pairs. In addition to their propensity to hydrolyze upon exposure to moisture, the  

fluoride-bridged complexes exhibit further chemical behavior consistent with their high 

degree of hard/soft mismatch. 

 We initially recorded NMR spectra in CD2Cl2 solution in order to mitigate the 

apparent dissociation of the fluoride-bridged complexes that was encountered in more 

strongly coordinating solvents, and 11–13 seemed to be inert during the time required to 

collect NMR spectra. In fact, silver complex 12 does not seem to react with CD2Cl2 at all. 

After 24 h in CD2Cl2 solution, only trace decomposition of 12 to the homoleptic complex 

[(5Dipp)2Ag]+ was observed by 1H NMR spectroscopy. Likewise, copper complex 11 is 

stable in CD2Cl2 overnight. However, after revisiting a solution of the gold complex 13 

after 24 h in CD2Cl2 solution, quantitative conversion of 13 to the chloride-bridged 

complex {[(5Dipp)Au]2(µ-Cl)}+ was observed by 1H NMR spectroscopy. Since the 

solvent was the only source of chloride present, we anticipated that halogen exchange 

between 13 and CD2Cl2 had occurred (Scheme 3.4). Indeed, analysis of the solution by 

19F NMR revealed the presence of CD2ClF and CD2F2. Similar halide exchange processes 

have been observed for fluoride complexes of palladium(II).20 

 

 

 

Scheme 3.4. Reaction of fluoride-bridged digold complex 13 with CD2Cl2. 
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 New methods for the selective and efficient fluorination of organic substrates are 

of interest due to the prevalence of fluorine-containing pharmaceuticals as well as the 

need for rapid preparation of 18F-enriched tracers for positron emission tomography. The 

insertion of an unsaturated organic substrate into a M–F bond could constitute a key step 

in these fluorination processes or potentially in the formation of fluorinated polymers.14,21 

We therefore investigated the reactivity of the fluoride-bridged group 11 complexes 

towards unsaturated C–C bonds and discovered that the gold complex 13 rapidly and 

quantitatively adds across the substituted double bond of the allene 3-methyl-1,3-

butadiene in THF-d8 solution (Scheme 3.5). 1H and 19F NMR characterization of the 

insertion product suggested fluorination of the fully substituted carbon in the 3-position 

and auration of the carbon in the 2-position. Although only one set of 5Dipp resonances 

in the 1H NMR suggested equivalence of the 5Dipp ligands, it was unclear based on 

NMR spectroscopy whether the doubly aurated fluorovinyl carbanion was bound to the 

gold centers in a symmetrical three-centered, two-electron binding mode. Another 

possibility was an asymmetrical σ,π-binding mode15 in which one 5DippAg fragment 

forms a σ-bond to the carbanion while the other forms a π-bond to the remaining C=C 

double bond. This σ,π-binding mode would require rapid exchange of the 5DippAg 

fragments in order to account for the NMR equivalence of the 5Dipp ligands. The allene 

insertion product crystallized as its tetrafluoroborate salt with a significant degree of 

disorder, especially in the 5Dipp ligands, but the connectivity of the gold atoms and the 

bridging fluorovinyl carbanion were determined with confidence via X-ray diffraction 

crystallography, confirming the complex adopts the asymmetrical σ,π-binding mode in 

the solid state. 
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Scheme 3.5. Reaction of fluoride-bridged digold complex 13 with 3-methyl-1,3-
butadiene and proposed exchange of 5DippAu fragments in the resulting fluorovinyl 
digold complex. 
 
 
 
 No sign of reaction between the silver complex 12 and 3-methyl-1,3-butadiene 

was detected by 1H NMR spectrscopy after 24 h in CD2Cl2. Under similar conditions the 

copper complex 11 reacts with the allene, giving rise after 30 min to a doublet in its 1H 

NMR spectrum at δ 0.10 ppm, consistent with the formation of a fluorovinyl species, and 

a new set of 5Dipp resonances. Integration of peak areas suggest the new species 

accounts for less than 10% conversion of the starting complex, and the reaction was not 

found to proceed further after several hours, suggesting that an equilibrium had been 

reached, in which 11 is favored over the insertion product even in the presence of a 

significant excess of the allene. 

 The reactions of silver complexes 7 and 12 with hydrogen likewise reflect 

behavior consistent with their hard-soft mismatched Ag–F bonds and are described in 

Chapter 5. 

3.4 Conclusion 

 Dinculear fluoride-bridged complexes of copper, silver, and gold, supported by 

the NHC ligand 5Dipp, were prepared by partial abstraction of fluoride from known 
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mononuclear terminal fluoride complexes. 19F NMR characterization suggests that 

coordination of solvent may cause dissociation of the complexes. The structures of the 

fluoride-bridged complexes were confirmed by X-ray diffraction studies, which suggest 

varying degrees of ionic versus covalent character in the metal-fluorine bonds, with the 

copper complex having the most covalent character and silver the most ionic. The 

fluoride-bridged complexes exhibit reactivity consistent with the hard-soft mismatch 

between the soft monovalent group 11 metals and the hard fluoride ion. Their tendency to 

hydrolyze required the development of a new reliably moisture-free synthesis of the 

mononuclear precursors, which was achieved through the substitution of benzoyl fluoride 

for treat-HF as the source of fluoride. Other reactions include the exchange of halide 

between the digold fluoride and CD2Cl2 as well as the addition of the digold fluoride to 

an allene to produce a diaurated fluorovinyl complex, which was found to adopt an 

asymmetric σ,π-binding mode in the solid state. 

3.5 Experimental 

3.5.1 General Considerations  

 Unless otherwise indicated, manipulations were performed in an MBraun 

glovebox under an inert atmosphere of nitrogen, or in resealable glassware on a Schlenk 

line under an atmosphere of argon. Glassware and magnetic stir bars were dried in a 

ventilated oven at 160˚C and were allowed to cool under vacuum. Compounds of silver 

were stored in the dark as a precaution against photodegradation, and glassware was 

covered with aluminum foil during manipulations to minimize exposure to light.  

 1H, 13C, 19F, NMR spectra were obtained using a Bruker DSX 400 MHz 

spectrometer, a Varian Vx 400 MHz spectrometer, and a Varian Mercury 300 
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spectrometer. 1H and 13C NMR chemical shifts are referenced with respect to solvent 

signals22 and are reported relative to tetramethylsilane. 19F NMR chem- ical shifts were 

referenced to external neat hexafluorobenzene (Alfa-Aesar, δ –164.90 ppm) and are 

reported with respect to fluorotrichloromethane. 

 Samples for infrared spectroscopy were prepared as pellets in potassium bromide, 

using a pellet die which was dried in a ventilated oven at 160˚C and cooled under vacuum 

prior to use. The pellets were prepared in the glovebox under an atmosphere of dry 

nitrogen, and were exposed to air as briefly as possible prior to data collection. Spectra 

were recorded using a Perkin Elmer Spectrum 1000 or a Bruker Alpha-P infrared 

spectrometer. 

 Elemental analyses were performed by Atlantic Microlab, Inc. in Norcross, GA.  

3.5.2 Materials and Methods  

 Hexanes (EMD Millipore Omnisolv), tetrahydrofuran (THF, EMD Millipore 

Omnisolv), and toluene (EMD Millipore Omnisolv) were sparged with ultra high purity 

argon (NexAir) for 30 min prior to first use, and dried using an MBraun solvent 

purification system. These solvents were further dried over sodium benzophenone ketyl, 

transferred under vacuum to an oven-dried sealable flask, and degassed by successive 

freeze–pump–thaw cycles. Anhydrous benzene (EMD Millipore Drisolv) was stored over 

3Å molecular sieves (Alfa-Aesar) in a glovebox.  

 Dichloromethane-d2 (Cambridge Isotope Laboratories) was dried by stirring 

overnight over calcium hydride. It was then vacuum-transferred to an oven-dried 

resealable Schlenk flask, and degassed by successive freeze–pump–thaw cycles. 

Tetrahydrofuran-d8 (Cambridge Isotope Laboratories) was dried over sodium 
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benzophenone ketyl, transferred under vacuum to an oven-dried resealable flask, and 

degassed by successive freeze–pump–thaw cycles.  

 Sodium tert-butoxide (TCI America), copper(I) chloride (Alfa-Aesar), 

triphenylcarbenium tetrafluoroborate (Alfa-Aesar), 2,6-diisopropylaniline (Sigma–

Aldrich), acetic acid (Alfa-Aesar), glyoxal 40% w/w aqueous solution (Alfa-Aesar), 

methanol (BDH), acetone (BDH), dichloromethane (BDH) hydrochloric acid (EMD), 

sodium borohydride (Alfa-Aesar), benzoyl fluoride (Alfa-Aesar), triethyl orthoformate 

(Alfa-Aesar), formic acid (Alfa-Aesar), potassium carbonate (Alfa-Aesar), 3-methyl-1,2-

butadiene (Sigma–Aldrich), silver(I) oxide (Sigma–Aldrich), dimethyl sulfide (Alfa-

Aesar), tetrachloroauric acid (Strem), sodium metal (Alfa- Aesar), benzophenone (Alfa-

Aesar), calcium hydride (Alfa-Aesar), potassium bromide (Sigma–Aldrich), nitrogen 

(NexAir), and argon (both industrial and ultra high purity grades, NexAir) were used as 

received. 5Dipp•HCl,23 (5Dipp)CuCl,8 (5Dipp)Cu(OtBu),8 (5Dipp)AgCl,14h 

(5Dipp)Ag(OtBu),16b (5Dipp)AuCl,24 and (5Dipp)Au(OtBu),14h were prepared as 

described previously, and characterized by 1H NMR spectroscopy.  

 

3.5.2.1 (5Dipp)CuF (6) 

 Benzoyl fluoride (0.089 mL, 0.102 g, 0.818 mmol) was added to a solution of 

(5Dipp)Cu(OtBu) (0.287 g, 0.544 mmol) in toluene (4 mL) with stirring. After 3 h, a 

white precipitate had formed. The precipitate was collected on a fritted glass filter and 

washed with two portions of toluene (6 mL each) and two portions of hexanes (5 mL 

each). Residual solvents were removed under vacuum at 40˚C over 18 h, affording the 

product as a white powder (0.221 g, 0.467 mmol, 86%). 1H NMR (400 MHz, CD2Cl2): δ 
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(ppm) 7.45 (t, J = 7.8 Hz, 2H, para-CH), 7.30 (d, J = 7.8 Hz, 4H, meta-CH), 4.01 (s, 4H, 

NCH2), 3.07 (sept, J = 6.9 Hz, 4H, CH(CH3)2), 1.36 (d, J = 6.8 Hz, 12H, CH(CH3)2), 

1.35 (d, J = 6.8 Hz, 12H, CH(CH3)2). 13C{1H} NMR (100 MHz, CD2Cl2): δ (ppm) 203.7 

(br NCCu), 147.2 (ortho-C), 135.1 (ipso-C), 130.0 (para-C), 124.9 (meta-C), 54.1 

(NCH2), 29.2 (CH(CH3)2), 25.5 (CH(CH3)2), 24.0 (CH(CH3)2). 19F NMR (375 MHz, 

CD2Cl2): δ (ppm) –238.5. IR: ν (cm–1) 3075 (w), 2962 (s), 2924, 2867, 1591 (w), 1482 

(s), 1458 (s), 1421, 1384, 1361, 1327, 1300, 1269 (s), 1180 (w), 1164 (w), 1099 (w), 

1061, 1017 (w), 993 (w), 936, 925, 807 (s), 766, 708 (w), 619 (w), 560, 543, 504 (w), 477 

(w), 449, 425 (w), 398 (w). Elemental analysis calculated for C27H38N2CuF: C, 68.54; H, 

8.10; N, 5.92; F, 4.02. Found: C, 68.21; H, 7.98; N, 5.79; F, 3.96. 

 

3.5.2.2 {[(5Dipp)Cu]2(µ-F)}+BF4
– (11[BF4]) 

 Triphenylcarbenium tetrafluoroborate (0.025 g, 0.076 mmol) was added to a 

solution of (5Dipp)CuF (0.072 g, 0.152 mmol) in THF (3 mL) with stirring. After 1 h, 

hexanes (15 mL) were added to the reaction mixture, resulting in the formation of a white 

precipitate. The mother liquor was decanted, and the residual solvents were removed 

under vacuum at 35˚C over 18 h, affording the product as a white powder (0.059 g, 0.058 

mmol, 77%). 1H NMR (400 MHz, CD2Cl2): δ (ppm) 7.42 (t, J = 7.8 Hz, 4H, para-CH), 

7.20 (d, J = 7.8 Hz, 8H, meta-CH), 3.99 (s, 8H, NCH2), 2.90 (sept, J = 6.9 Hz, 8H, 

CH(CH3)2), 1.30 (d, J = 6.8 Hz, 24H, CH(CH3)2), 1.06 (d, J = 6.8 Hz, 24H, CH(CH3)2). 

13C{1H} NMR (100 MHz, CD2Cl2): δ (ppm) 200.7 (br, NCCu), 147.1 (ortho-C), 134.6 

(ipso-C), 130.3 (para-C), 125.0 (meta-C), 54.5 (NCH2), 29.1 (CH(CH3)2), 25.6 

(CH(CH3)2), 24.0 (CH(CH3)2). 19F NMR (375 MHz, CD2Cl2): δ (ppm) –153.26 (s, 
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10BF4
−), –153.31 (s, 11BF4

–), –311.11 (br s, CuFCu). IR: ν (cm–1) 3074 (w), 2963 (s), 

2924, 2867, 1490 (s), 1459 (s), 1384, 1363, 1329, 1273 (s), 1176 (w), 1057 (s), 931 (w), 

806, 761, 620 (w), 448 (w). Elemental analysis calculated for C54H76N4Cu2BF5: C, 63.96; 

H, 7.55; N, 5.52; F, 9.37. Found: C, 63.62; H, 7.60; N, 5.37; F, 9.04. 1H NMR (400 MHz, 

THF-d8): δ (ppm) 7.35 (t, J = 7.6 Hz, 4H, para-CH), 7.21 (d, J = 8.0 Hz, 8H, meta-CH), 

4.09 (s, 8H, NCH2), 3.08 (sept, J = 6.8 Hz, 8H, CH(CH3)2), 1.28 (d, J = 6.8 Hz, 24H, 

CH(CH3)2), 1.12 (d, J = 6.8 Hz, 24H, CH(CH3)2). 19F NMR (375 MHz, THF-d8): δ (ppm) 

–152.79 (s, 10BF4
–), –152.84 (s, 11BF4

–), –291.14 (br s, CuFCu). Diffraction-quality 

crystals were grown by layering toluene onto a THF solution of 11.  

 
 

  
Figure 3.4. 1H NMR (400 MHz, CD2Cl2) spectrum of 11[BF4].  
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Figure 3.5. 19F NMR (375 MHz, CD2Cl2) spectrum of 11[BF4].  

 
 

  
Figure 3.6. Detail of µ-fluoride resonance of 19F NMR (375 MHz, CD2Cl2) spectrum of 
11[BF4]. 
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Figure 3.7. 1H NMR (400 MHz, THF-d8) spectrum of 11[BF4]. A trace of benzene (δ 
7.31 ppm) is present as the result of benzophenone ketyl decomposition.  
 
 
 

  
Figure 3.8. 19F NMR (375 MHz, THF-d8) spectrum of 11[BF4].  
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Figure 3.9. Detail of µ-fluoride resonance of 19F NMR (375 MHz, THF-d8) spectrum of 
11[BF4]. 
 
 
 
3.5.2.3 (5Dipp)AgF (7) 

 Benzoyl fluoride (0.374 mL, 0.426 g, 3.43 mmol) was added to a solution of 

(5Dipp)Ag(OtBu) (1.308 g, 2.288 mmol) in benzene (4 mL). The reaction flask was 

covered with foil to exclude light, and the mixture was stirred for 3 h. The resulting white 

precipitate was collected on a fritted glass filter and washed with three portions of 

benzene (2 mL each). Residual solvents were removed in the dark under vacuum at 40˚C 

for 16 h, affording the product as a white powder (1.045 g, 2.019 mmol, 88%). 1H NMR 

(400 MHz, CD2Cl2): δ (ppm) 7.45 (t, J = 7.8 Hz, 2H, para-CH), 7.29 (d, J = 7.8 Hz, 4H, 

meta-CH), 4.07 (s, 4H, NCH2), 3.06 (sept, J = 6.9 Hz, 4H, CH(CH3)2), 1.34 (d, J = 6.9 

Hz, 12H, CH(CH3)2), 1.33 (d, J = 6.9 Hz, 12H, CH(CH3)2). 13C{1H} NMR (100 MHz, 

CD2Cl2): δ (ppm) 206.3 (app. dd, J(13C-109Ag) = 271 Hz, J(13C-107Ag) = 240 Hz, NCAg), 

147.1 (ortho-C), 135.2 (ipso-C), 130.2 (para-C), 125.0 (meta-C), 54.3 (d, J(13C-107/109Ag) 
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= 9 Hz NCH2), 29.1 (CH(CH3)2), 25.5 (CH(CH3)2), 24.1 (CH(CH3)2). 19F NMR (375 

MHz, CD2Cl2): δ (ppm) –243.13 (d, J(19F-107/109Ag) = 163 Hz). IR: ν (cm–1) 3073 (w) 

3036 (w), 2963 (s), 2943, 2868, 1965 (w), 1820 (w), 1718 (w), 1591 (w), 1486 (s), 1477 

(s), 1384, 1364, 1326, 1269, 1180, 1103, 1058, 936, 914, 807, 763, 683, 619, 548, 448. 

Elemental analysis calculated for C27H38N2AgF: C, 62.67; H, 7.40; N, 5.41; F, 3.67. 

Found: C, 62.48; H, 7.31; N, 5.32; F, 3.40. 

  

3.5.2.4 {[(5Dipp)Ag]2(µ-F)}+BF4
– (12[BF4]) 

 Triphenylcarbenium tetrafluoroborate (0.064 g, 0.19 mmol) was added to a 

solution of (5Dipp)AgF (0.200 g, 0.386 mmol) in THF (4 mL). The reaction flask was 

covered with foil to exclude light, and the mixture was stirred for 2 h. A layer of hexanes 

(12 mL) was carefully added over the THF solution, and the layers were allowed to mix 

by diffusion at –35 °C for 16 h, resulting in the formation of colorless crystals. The 

mother liquor was decanted, and the crystals were washed with two portions of hexanes 

(2 mL each). Residual solvents were removed in the dark under vacuum at 40˚C for 16 h, 

affording the product as a white powder (0.177 g, 0.160 mmol, 83%). 1H NMR (400 

MHz, CD2Cl2): δ (ppm) 7.43 (t, J = 7.8 Hz, 2H, para-CH), 7.24 (d, J = 7.8 Hz, 4H, meta-

CH), 4.07 (s, 4H, NCH2), 2.98 (sept, J = 6.9 Hz, 4H, CH(CH3)2), 1.32 (d, J = 6.9 Hz, 

12H, CH(CH3)2), 1.17 (d, J = 6.9 Hz, 12H, CH(CH3)2). 13C{1H} NMR (100MHz, 

CD2Cl2): δ (ppm) 204.9 (app. dd, J(13C-109Ag) = 300 Hz, J(13C-107Ag) = 261 Hz, NCAg), 

147.0 (ortho-C), 134.9 (ipso-C), 130.3 (para-C), 125.0 (meta-C), 54.4 (d, J(13C-107/109Ag) 

= 10 Hz, NCH2), 29.1 (CH(CH3)2), 25.5 (CH(CH3)2), 24.0 (CH(CH3)2). 19F NMR (375 

MHz, CD2Cl2): δ (ppm) –153.60 (s, 10BF4
–), –153.65 (s, 11BF4

–), –308.5 (br s, AgFAg). 
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IR: ν (cm–1) 3073 (w), 2966 (s), 2945, 2871, 1590 (w), 1489 (s), 1462 (s), 1385, 1365, 

1327, 1275 (s), 1183, 1103, 1062 (s), 936, 932, 807, 759, 711, 620, 548, 520, 449. 

Elemental analysis calculated for C54H76N4Ag2BF5: C, 58.81; H, 6.95; N, 5.08; F, 8.61. 

Found: C, 59.07; H, 7.13; N, 5.07; F, 8.38. 1H NMR (400 MHz, THF-d8): δ (ppm) 7.38 

(mult, J = 7.8 Hz, 2H, para-CH), 7.25 (mult, J = 7.8 Hz, 4H, meta-CH), 4.18 (s, 4H, 

NCH2), 3.13 (sept, J = 6.9 Hz, 4H, CH(CH3)2), 1.32 (d, J = 6.9 Hz, 12H, CH(CH3)2), 1.19 

(d, J = 6.9 Hz, 12H, CH(CH3)2). 19F NMR (375 MHz, THF): δ (ppm) –154.23 (s, 10BF4
–), 

–154.28 (s, 11BF4
–), –302.9 (br s, AgFAg). Diffraction-quality crystals were grown by 

cautious layering of toluene onto a THF solution of 12 followed by diffusion in the dark 

at –35˚C.  

 
 

 

Figure 3.10. 1H NMR (400 MHz, CD2Cl2) spectrum of 12[BF4]. Adventitious benzene (δ 
7.31 ppm) and a trace of the known complex [(5Dipp)2Ag]+ are present.  
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Figure 3.11. 19F NMR (375 MHz, CD2Cl2) spectrum of 12[BF4].  
 
 
 

 
Figure 3.12. Detail of µ-fluoride resonance of 19F NMR (375 MHz, CD2Cl2) spectrum of 
12[BF4]. 
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Figure 3.13. 1H NMR (400 MHz, THF-d8) spectrum of 12[BF4]. Adventitious benzene (δ 
7.31 ppm) and a trace of the known complex [(5Dipp)2Ag]+ are present.  
 
 
 

 

Figure 3.14. 19F NMR (375 MHz, THF-d8) spectrum of 12[BF4].  
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Figure 3.15. Detail of µ-fluoride resonance of 19F NMR (375 MHz, CD2Cl2) spectrum of 
12[BF4]. 
 
 
 
3.5.2.5 (5Dipp)AuF (8) 

 Benzoyl fluoride (0.065 mL, 0.074 g, 0.597 mmol) was added to a solution of 

(5Dipp)Au(OtBu) (0.265 g, 0.401 mmol) in toluene (4 mL) with stirring. After 3 h, a 

white precipitate had formed. The precipitate was collected on a fritted glass filter and 

washed with two portions of toluene (6 mL each) and two portions of hexanes (5 mL 

each). Residual solvents were removed under vacuum at 35˚C over 18 h, affording the 

product as a white powder (0.216 g, 0.356 mmol, 91%). 1H NMR (400 MHz, CD2Cl2): δ 

(ppm) 7.47 (t, J = 7.8 Hz, 2H, para-CH), 7.29 (d, J = 7.6 Hz, 4H, meta-CH), 4.05 (s, 4H, 

NCH2), 3.04 (sept, J = 6.9 Hz, 4H, CH(CH3)2), 1.41 (d, J = 6.8 Hz, 12H, CH(CH3)2), 1.34 

(d, J = 6.8 Hz, 12H, CH(CH3)2). 19F NMR (375 MHz, CD2Cl2): δ (ppm) –247.16. The 1H 

and 19F NMR spectra for this sample match those of (5Dipp)AuF prepared according to 

the previously published method.14h 
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3.5.2.6 {[(5Dipp)Au](µ-F)}+BF4
– (13) 

 Triphenylcarbenium tetrafluoroborate (0.019 g, 0.058 mmol) was added to a 

solution of (5Dipp)AuF (0.070 g, 0.115 mmol) in THF (4 mL) in a flame-dried resealable 

flask with stirring. The flask was sealed, removed from the glovebox and brought out to 

the Schlenk line. After 1 h, the solution was concentrated to a volume of about 1 mL. 

Hexanes (ca. 20 mL) were transferred under vacuum from a solution of sodium 

benzophenone ketyl into the reaction mixture, resulting in the formation of a white 

precipitate. The mother liquor was decanted via cannula, and the residual solvents were 

removed over 18 h under vacuum at 35˚C, affording the product as a white powder 

(0.063 g, 0.049 mmol, 84%). 1H NMR (400 MHz, THF-d8): δ (ppm) 7.39 (t, J = 7.8 Hz, 

4H, para-CH), 7.24 (d, J = 8.0 Hz, 8H, meta-CH), 4.21 (s, 8H, NCH2), 3.13 (sept, J = 6.8 

Hz, 8H, CH(CH3)2), 1.30 (d, J = 6.8 Hz, 48H, CH(CH3)2). 13C{1H} NMR (75 MHz, THF-

d8): δ (ppm) 182.2 (br NCAu), 147.7 (ortho-C), 135.1 (ipso-C), 130.5 (para-C), 125.1 

(meta-C), 54.6 (NCH2), 29.3 (CH(CH3)2), 25.5 (CH(CH3)2), 24.1 (CH(CH3)2). 19F NMR 

(375 MHz, THF-d8): δ (ppm) –154.44 (s, 10BF4
–), �154.49 (s, 11BF4

– ), –272.60 (br s, 

AuFAu). IR: ν (cm–1) 3072 (w), 3026 (w), 2967 (s), 2931, 2868, 1595, 1500 (s), 1467 (s), 

1391, 1365, 1345, 1329, 1309 (w), 1280 (s), 1234 (w), 1181, 1102, 1063 (s), 1020, 941, 

809 (s), 760 (s), 704 (w), 664 (w), 625, 588, 549, 526 (w), 451. Elemental analysis 

calculated for C54H76N4Au2BF5: C, 50.63; H, 5.98; N, 4.37; F, 7.42. Found: C, 50.35; H, 

5.83; N, 4.18; F, 7.13. 1H NMR (400 MHz, CD2Cl2): δ (ppm) 7.45 (t, J = 7.8 Hz, 4H, 

para-CH), 7.23 (d, J = 8.0 Hz, 8H, meta-CH), 4.10 (s, 8H, NCH2), 2.90 (sept, J = 6.8 Hz, 

8H, CH(CH3)2), 1.31 (d, J = 6.8 Hz, 24H, CH(CH3)2), 1.21 (d, J = 6.8 Hz, 24H, 

CH(CH3)2). 19F NMR (375 MHz, CD2Cl2): δ (ppm) –153.50 (s, 10BF4
–), –153.55 (s, 
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11BF4
–), –318.45 (br s, AuFAu). Diffraction-quality crystals were grown by cautious 

layering of toluene onto a THF solution of 13. 

 
 

  
Figure 3.16. 1H NMR(400 MHz, CD2Cl2)  spectrum of 13[BF4]. Traces of residual THF 
(δ 3.69 and 1.85 ppm) and hexane (δ 0.89) are present.  
 
 
 

  
Figure 3.17. 19F NMR (375 MHz, CD2Cl2) spectrum of 13[BF4].  
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Figure 3.18. 1H NMR (400 MHz, THF-d8) spectrum of 12[BF4]. A trace of residual 
hexane (δ 0.89) is present.  
 
 
 

  
Figure 3.19. 19F NMR (375 MHz, THF-d8) spectrum of 13[BF4].  
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Figure 3.20. Detail of µ-fluoride resonance of 19F NMR (375 MHz, THF-d8) spectrum of 
13[BF4]. 
 
 
 
3.5.2.7 Halide Exchange Between {[(5Dipp)Au]2(µ-F)}+BF4

– and CD2Cl2 

 A solution of {[(5Dipp)Au]2(µ-F)}+BF4
– (0.060 g, 0.047 mmol) in CD2Cl2 (0.7 

mL) was transferred to an NMR tube equipped with a J. Young valve. After 24 h, the 

solution had turned yellow, and the starting complex had been completely consumed as 

judged by 1H NMR and 19F NMR spectroscopy. New resonances in the 1H and 19F 

spectra were assigned to {[(5Dipp)Au]2(µ-Cl)}+BF4
–, CD2ClF, and CD2F2. 1H NMR (300 

MHz, CD2Cl2): δ (ppm) 7.44 (t, J = 7.8 Hz, 4H, para-CH), 7.22 (d, J = 7.8 Hz, 8H, meta-

CH), 4.10 (s, 8H, NCH2), 2.92 (sept, J = 6.7 Hz, 8H, CH(CH3)2), 1.31 (d, J = 6.9 Hz, 

24H, CH(CH3)2), 1.17 (d, J = 6.9 Hz, 24H, CH(CH3)2). 19F NMR (375 MHz, CD2Cl2): δ 

(ppm) –144.10 (quin, CD2F2), –153.44 (s, 10BF4
–), –153.50 (s, 11BF4

– ), –170.85 (quin, 

CD2ClF). 
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Figure 3.21. 1H NMR (300 MHz, CD2Cl2) spectrum of halide exchange between 13[BF4] 
and CD2Cl2. Traces of residual THF (δ 3.68 and 1.83 ppm) and hexane (δ 0.89) are 
present.  
 
 
 

  
Figure 3.22. 19F NMR (375 MHz, CD2Cl2) spectrum of the halide exchange between 
13[BF4] and CD2Cl2.  
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Figure 3.23. Detail of CD2F2 resonance in the 19F NMR (375 MHz, CD2Cl2) spectrum of 
the halide exchange between 13[BF4] and CD2Cl2. 
 
 
 

  
Figure 3.24. Detail of CD2ClF resonance in the 19F NMR (375 MHz, CD2Cl2) spectrum 
of the halide exchange between 13[BF4] and CD2Cl2. 
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3.5.2.8 Reaction of {[(5Dipp)Au]2(µ-F)}+BF4
– with 3-Methyl-1,2-butadiene 

 A solution of {[(5Dipp)Au]2(µ-F)}+BF4
– (0.063 g, 0.049 mmol) in THF-d8 (0.7 

mL) was transferred to an NMR tube equipped with a J. Young valve. The tube was then 

opened, and 3-methyl-1,2-butadiene (4.8 µL, 0.049 mmol) was added. After 5 min, the 

starting complex had been completely consumed as judged by 1H NMR and 19F NMR 

spectroscopy. New resonances in the 1H and 19F spectra were assigned to 

{[(5Dipp)Au]2[µ-C(=CH2)CF(CH3)2]}+BF4
–. 1H NMR (400 MHz, THF-d8): δ (ppm) 7.37 

(t, J = 7.8 Hz, 4H, para-CH), 7.20 (mult, 8H, meta-CH), 4.89 (d, J = 4.8 Hz, 1H, CCH2), 

4.22 (mult, 1H, CCH2), 4.15 (s, 8H, NCH2), 3.06 (sept, J = 6.8 Hz, 8H, CH(CH3)2), 1.26 

(mult, 24H, CH(CH3)2), 1.18 (d, J = 6.8 Hz, 12H, CH(CH3)2), 1.11 (d, J = 6.8 Hz, 12H, 

CH(CH3)2), 0.31 (d, J = 20.4 Hz, 6H, CF(CH3)2). 13C{1H} NMR (75 MHz, THF-d8): δ 

(ppm) 205.8 (br NCAu), 184.5 (br AuCAu), 147.6 (ortho-C), 140.7 (CCH2), 135.3 (ipso-

C), 130.6 (C(CH3)2F), 130.3 (para-C), 125.2 (meta-C), 125.0 (meta-C), 54.9 (NCH2), 

35.3 (C(CH3)2F), 28.8 (C(CH3)2F, 29.4 (CH(CH3)2), 29.2 (CH(CH3)2), 25.5 (CH(CH3)2), 

25.4 (CH(CH3)2), 23.9 (CH(CH3)2). 19F NMR (375 MHz, THF-d8): δ (ppm) –128.40 

(sept, J = 20.6 Hz, C(CH3)2F), –152.73 (s, 10BF4
–), –152.78 (s, 11BF4

–). Crystals were 

grown by vapor diffusion of hexanes into a THF solution of {[(5Dipp)Au]2(µ-

C(=CH2)CF(CH3)2)}+BF4
–. 
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Figure 3.25. 1H NMR (400 MHz, THF-d8) spectrum of the reaction of 13[BF4] with 3-
methyl-1,2-butadiene. A trace of residual hexane (δ 1.31 and 0.89) and a slight excess of 
3-methyl-1,2-butadiene (δ 4.49 and 1.64) are present.  
 
 
 

  
Figure 3.26. 19F NMR spectrum (375 MHz, THF-d8) of the reaction of 13[BF4] with 3-
methyl-1,2-butadiene. 
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Figure 3.27. 1H NMR spectrum (400 MHz, THF-d8) of the reaction of 11[BF4] with 3-
methyl-1,2-butadiene. A trace of residual THF (δ 3.62 and 1.78) and 3-methyl-1,2-
butadiene (δ 4.48 and 1.66) are present.  
 
 
 
3.5.3 X-Ray Diffraction Studies  

 For each complex, a suitable crystal was selected and mounted on a loop with 

Paratone oil on an ApexII Mo diffractometer (MoKa radiation, k = 0.71073 Å). The 

crystal was maintained at low temperature during data collection. Using Olex2,25 the 

structure was solved with the Superflip26 structure solution program, using the Charge 

Flipping solution method. The model was refined with the SHELXL26 refinement 

package using Least Squares minimization.  

 Refinement of the crystal data for {[(5Dipp)Au]2(µ-F)}+BF4
– gave rise to large 

difference peaks, ascribed to ghost peaks from the gold atoms. The largest peak lies along 

the Au–Au vector, and the distance from this peak to the crystallographic unique Au 

atom (3.95 Å) coincides with the Au–Au distance. These peaks probably arise from 
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undetected twinning and translational disorder. This contribution, however, is small and 

difficult to detect: A search for twinning and/or supersymmetry yielded no results. 

  The crystal structure of {[(5Dipp)Au]2(µ-C(=CH2)CF(CH3)2)}+BF4
–. exhibits 

substantial disorder. In addition to the normal degree of translational disorder, the crystal 

is made of molecules with small differences in orientations. This disorder affects all the 

Au atoms, which were refined as split atoms with two different positions for each atom. 

The distance between split Au atoms was about 0.7 Å. The large peaks close to the Au 

atoms are due to unresolved disorder. No further modeling of this disorder was 

attempted. The structure was modeled after removal of the BF4
– anion, co-crystallized 

solvent and part of the disorder of the main molecules, and after the masking of 

reflections resulting from this disorder. This analysis does not support a detailed 

discussion of metrics in this complex, but it allows confirmation of the assigned 

connectivity, and affords insight into the binding mode of the vinyl anion. 
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CHAPTER 4 

HYDROGEN ACTIVATION BY HARD-SOFT MISMATCHED 

SILVER COMPLEXES 

 

  

4.1 Background 

  Activation of dihydrogen is a key step in the catalytic hydrogenation of alkenes, 

carbonyl compounds, and other substrates.1 Oxidative addition to suitable transition metal 

complexes represents the most thoroughly studied mechanism for dihydrogen activation 

in solution.2 The heterolysis of H2 by Frustrated Lewis Pairs, systems in which reactive 

Lewis acids and Lewis bases coexist, affords active hydrogenation catalysts through non-

redox mechanisms.3 Such pathways are also known for a number of transition metal 

complexes. The hydrogenolysis of ruthenium(II) fluorides has been observed 

spectroscopically in solution.4 More recently, the hydrogenolysis of palladium(II) 

hydroxides, alkoxides and aryloxides has been studied in detail.5 The catalysts developed 

by Noyori6 and Shvo7 for the hydrogenation of C=O and C=N bonds operate through 

outer-sphere mechanisms8 in which the heterolysis of hydrogen is a key step.  

 Among the earliest detailed studies of H2 activation in homogeneous solution are 

those of Halpern and coworkers, who examined the reduction of aqueous copper(II), 

silver(I) and other metal cations.9 Kinetic evidence suggests the formation of [(η2- H2)M] 

cations, followed by rapid deprotonation to generate reactive metal hydrides. These9f and 

subsequent10 studies indicated that fluoride ion serves as a notably effective promoter of 
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the heterolysis. Caulton and coworkers used the hydrogenolysis of tetrameric copper(I) 

tert-butoxide in the presence of phosphines to synthesize a series of (phosphine)copper(I) 

hydride oligomers.11 The reaction of a copper(I)-oxygen bond with dihydrogen is the key 

step in several copper-catalyzed hydrogenation processes.12  

 Copper13 and silver14 hydride clusters have recently been shown to undergo 

photo-induced H2 release. Such complexes could potentially serve as catalysts for the 

release of H2 from promising storage media such as formic acid.15 Examining the reverse 

reaction, we have demonstrated hydride transfer from a dinuclear silver complex16 to 

Lewis-base-activated carbon dioxide, but the hydride was derived from energy-intensive 

phenylsilane. Other isolable silver hydrides have been synthesized using borohydrides as 

the hydride source.17 Combinations of silver salts with certain phosphines, in contrast, 

catalyze the hydrogenation of aldehydes in water at elevated temperatures and 

pressures,18 probably via silver hydride intermediates formed through heterolysis of 

dihydrogen.19  

 This chapter describes the hydrogenolysis of silver(I) alkoxide and fluoride 

complexes to form isolable hydrides. An alkoxy-bridged disilver cation reacts to form a 

(µ-hydrido)disilver cation plus the free alcohol; neutral silver fluorides afford 

(µ-hydrido)disilver cations as their bifluoride salts. The kinetics of these reactions are 

first-order in both silver and H2. This reaction represents a key step in potential new 

catalysis relating to energy storage.  
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4.2 Results and Discussion 

4.2.1 Hydrogenolysis of an Alkoxide-Bridged Disilver Cation  

 While exploring the chemistry of {[(5Dipp)Ag]2(µ-H)}+ salts16 (5Dipp = 1,3-

bis(2,6-diisopropylphenyl)imidazolin-2-ylidene20,21), we observed no reaction of the 

cation with tert-butanol, and inferred that its protonolysis to form alkoxide and H2 might 

be thermodynamically unfavorable. After exposing {[(5Dipp)Ag]2(µ-OtBu)}+[BF4]– 

(5a[BF4]) in CD2Cl2 solution to H2 (3.0 bar), we observed by 1H NMR spectroscopy the 

appearance of {[(5Dipp)Ag]2(µ-H)}+[BF4]– (1a[BF4]) plus free tert-butanol. Although 

promising, this reaction was not preparatively useful: Decomposition of the product to 

[(5Dipp)2Ag]+, Ag0, and H2 became competitive with hydrogenolysis as the reaction 

proceeded (Scheme 4.1). Running the reaction at 0˚C minimized this decomposition, but 

slowed the hydrogenolysis so much that only 55% conversion was observed after 14 

days. More strongly coordinating solvents such as THF-d8 or CD3CN accelerated the 

decomposition of the hydride relative to hydrogenolysis. 

 
 

 
Scheme 4.1. Partial hydrogenolysis of alkoxide-bridged complex 5a. 

 
 
 

4.2.2 Hydrogenolysis of Silver Fluorides  

 Fluoride is markedly less basic than alkoxides, and so might be expected to react 

more slowly in a heterolytic cleavage of H2. The reaction of ruthenium(II) fluorides with 
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H2,4 however, is believed to be thermodynamically driven, and silver(I) fluoride itself 

reacts readily with H2 to form unstable hydrides.10 Fluoride-bridged dinuclear cations of 

the group 11 metals display considerable basicity despite their overall positive charge.22 

We hoped that the hard/soft acid-base mismatch23 of the Ag(I)–F bond, and the strength 

of the resulting H–F bond,24 would facilitate hydrogenolysis both kinetically and 

thermodynamically. Indeed, the fluoride-bridged complex {[(5Dipp)Ag]2(µ-F)}+ BF4
– 

reacted with H2 (3.0 atm) in CD2Cl2 solution, resulting in partial formation of 1a[BF4]. 

We did not observe the inferred byproduct HF by 1H or 19F NMR spectroscopy; it might 

have reacted with the borosilicate glass surface. Regardless, decomposition of the product 

hydride complex to elemental silver, homoleptic [L2Ag]+ and hydrogen again proved 

competitive with hydrogenolysis.  

 Hoping to accelerate the formation of hydride with respect to its decomposition, 

we reasoned that the formation of a hydrogen bond from HF to a suitable base might 

facilitate the desired reaction, depending on the mechanism of hydrogenolysis. The 

strongest known hydrogen bond, really a three-center covalent bond,25 results from the 

interaction of fluoride with HF to form the bifluoride anion, [HF2]–.  

 A free fluoride ion seemed an unlikely counterion to {[(5Dipp)Ag]2(µ-F)}+; the 

equilibrium should lie far on the side of two equivalents of (5Dipp)AgF.26 We therefore 

investigated the potential for (5Dipp)AgF to act as a surrogate for {[(5Dipp)Ag]2(µ-F)}+ 

and F–. Indeed, two equivalents of the terminal, neutral fluoride (5Dipp)AgF (7) react 

with H2 to form the (µ-hydrido)disilver cation as its bifluoride salt (1a[HF2], Scheme 

4.2). This reaction proceeds to a greater extent than those of {[(5Dipp)Ag]2(µ-OtBu)}+ or 

{[(5Dipp)Ag]2(µ-F)}+, reaching 72% conversion after 14 days under H2 (3.0 atm) in 
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CD2Cl2 solution at 0˚C. The apparent reaction rate is too low to be of practical use, 

however, particularly at low concentrations of silver fluoride.  

 
 

 
Scheme 4.2. Partial hydrogenolysis of fluoride complex 7. 

 
 
 

4.2.3 Synthesis of Expanded-Ring (NHC)Silver Complexes  

 Expanded-ring NHCs, including those derived from six- and seven-membered 

cyclic amidinium salts, are stronger σ-donors than imidazolylidenes,27 and their bonds to 

silver(I) are less labile than those of five-membered NHCs.28 Six-membered NHCs 

support the formation of rhodium(I) fluorides,29 and of µ-hydrido- and µ-chlorodigold 

cations formed via strongly electrophilic [(NHC)Au]+ equivalents.30 We hoped that a 

more inert NHC–Ag bond would suppress the formation of homoleptic [L2Ag]+ from the 

[(LAg)2(µ-H)]+ cation.  

 Silver(I) bromide complexes (14a-b) bearing expanded-ring NHCs have been 

described.31 These ligands impose a greater steric demand, resulting from the wider N–

C–N angle, than their five-membered analogues. The tendency of these ligands to form 

homoleptic [(NHC)2Ag]+ cations depends on their N-substituents. We found that 

(6Dipp)AgBr and (7Dipp)AgBr (6Dipp = (1,3-bis(2,6-diisopropylphenyl)-3,4,5,6-

tetrahydropyrimidin-2-ylidene; 7Dipp = 1,3-bis(2,6-diisopropylphenyl)-4,5,6,7-

tetrahydro-1,3-diazepin-2-ylidene) did not react with sodium tert-butoxide or sodium 

tert-pentoxide under conditions used to prepare (5Dipp)silver(I) alkoxides from the 
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corresponding chloride. The readily prepared (NHC)AgOTs complexes (15a-b), 

however, react smoothly with sodium tert-pentoxide (NaOtPent) in THF solution to form 

(6Dipp)Ag(OtPent) (3b) and (7Dipp)Ag(OtPent) (3c) (Scheme 4.3). Addition of 

equimolar (6Dipp)AgOTf (OTf = trifluoromethanesulfonate) to (6Dipp)Ag(OtPent) (3b) 

formed the alkoxide-bridged {[(6Dipp)Ag]2(µ-OtPent)}+[OTf]– (5b[OTf]), in analogy to 

the synthesis of {[(5Dipp)Ag]2(µ-OtBu)}+[OTf]– (5a[OTf]).16 

 

 

 
Scheme 4.3. Syntheses of expanded-ring NHC complexes 15a, 15b, 3b, 3c, 5b, 7b, and 
7c. 

 
 
 

 The neutral alkoxides react rapidly with benzoyl fluoride in THF solution, 

resulting in the precipitation of fluoride complexes (6Dipp)AgF (7b) and (7Dipp)AgF 

(7c). We have been unable to prepare molecular silver fluorides bearing NHC ligands 

with less sterically demanding substituents such as 2,6-xylyl or tert-butyl; all attempts to 

date have resulted in the formation of homoleptic [(NHC)2Ag]+ complexes.  
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 Fluoride complexes 7b and 7c exhibit sharp 19F NMR resonances at chemical 

shifts similar to that of 7 (Table 4.1). In contrast to the latter, well-defined 19F–109Ag and 

19F–107Ag coupling results in an apparent doublet of doublets for each. The presence of 

trace moisture broadens the 19F NMR signals to either doublets or broad singlets. 

 
 
Table 4.1. 19F NMR data for (NHC)AgF complexes. 

 7 7b 7c 

δ, ppm –243.13 –246.03 –246.16 

J (19F–109Ag), Hz 
 
J (19F–107Ag), Hz 

 
163a 

 

176 
 

152 

173 
 

150 

a 19F–109Ag and 19F–107Ag coupling are unresolved; the resonance appears as an apparent 
doublet. 

 
 
 

4.2.4 Hydrogenolysis of Expanded-Ring NHC Complexes  

 The alkoxide-bridged salt 5b[OTf] reacts with hydrogen in CD2Cl2 solution to 

produce 1b[OTf] and tert-pentanol (Scheme 4.4a). Nearly quantitative conversion was 

observed after 4 days under 4.0 bar H2 in CD2Cl2. Addition of hexanes precipitates 

1b[OTf] as an analytically pure solid in 57% isolated yield.  

 The hydrogenolysis of fluoride 7b in CD2Cl2 solution proceeds more rapidly than 

that of 7 (Scheme 4.4b), and does not result in the formation of [(6Dipp)2Ag]+ and silver 

metal at room temperature. In contrast, 1a[BF4] undergoes roughly 25% decomposition 

in CD2Cl2 solution within 24 h. Virtually quantitative conversion to {[(6Dipp)Ag]2(µ-

H)}+[HF2]– (1b[HF2]) was observed after 4 days under H2 (4.4 bar) in CD2Cl2 solution, 

allowing its isolation as colorless microcrystals in 61% yield.  
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 Hydrogenolysis of 7c likewise proceeds at ambient temperature in CD2Cl2 

solution (Scheme 4.4b), without detectable formation of homoleptic byproduct. As shown 

in Figure 4.1, conversion to {[(7Dipp)Ag]2(µ-H)}+[HF2]– (1c[HF2]) is nearly (>95%) 

complete after four days under H2 (4.4 bar), and recrystallization affords analytically pure 

product in 59% yield.  

 
 

 
Scheme 4.4. Preparative hydrogenolyses of  fluoro- and alkoxysilver complexes 5b, 7b, 
and 7c. 
 
 
 

 
Figure 4.1. 1H NMR spectrum of crude (6Dipp)AgF hydrogenolysis product in CD2Cl2. 
Insets are expanded to show bifluoride and bridging hydride resonances clearly. 
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4.2.8 Characterization of Hydrogenolysis Products 

 The 1H NMR spectra of hydride-bridged complexes 1a-c (Table 4.2) exhibit 

hydride resonances upfield of tetramethylsilane, with well-resolved 1H–109Ag and 1H–

107Ag coupling. The hydride resonance appears at higher field as the NHC ring size 

expands, shifting from δ –1.18 ppm for the 5Dipp complex to δ –2.15 ppm for 6Dipp and 

δ –2.46 ppm for 7Dipp. This trend is consistent with increased shielding of the hydride 

nucleus in the expanded-ring NHC complexes resulting from greater electron density 

about the hydrides, but may result from increased crowding of the hydride by the ligand 

aryl groups.32 The magnitude of 1H–109Ag and 1H–107Ag coupling varies trivially among 

the three hydride-bridged cations. In rigorously anhydrous environments, the bifluoride 

counterion exhibits a sharp, well-resolved triplet (1JH–F = 123 Hz) at δ 16.28 ppm.  

 The 109Ag NMR resonances of the hydride complexes shift downfield with 

increasing NHC ring size, from δ 519.3 ppm for 1a to δ 524.6 ppm for 1b to δ 532.0 ppm 

for 1c. These resonances display well-resolved coupling to both 1H and 109Ag; the 109Ag–

107Ag coupling constant decreases from 113 Hz for 1a to 108 Hz for the expanded-ring 

NHC complexes 1b and 1c, possibly reflecting slightly weaker Ag–Ag interactions.  

 
 
Table 4.2. Selected NMR data for [(LAg)2(µ-H)]+ complexes.[a] 

 1a[OTf] 1b[HF2] 1c[HF2] 

δ (1H, hydride), ppm 
δ (109Ag), ppm 
δ (13C), ppm 
J (1H–109Ag), Hz 
J (1H–107Ag), Hz 
J (109Ag–107Ag), Hz 

–1.18 
519.3 
208.3 
134 
116 
113 

–2.15 
524.6 
207.1 
132 
115 
108 

–2.46 
532.0 
217.4 
134 
116 
108 

[a] Complete data are given here for 1a[OTf] because 1a[HF2] has not been isolated; 
however, observed 1H NMR chemical shifts for 1a and 1b are unchanged (≤0.01 ppm) 
between their [OTf] and [HF2] salts. 
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 The 19F NMR spectra of rigorously anhydrous samples of the bifluoride salts 

exhibit a doublet at δ –157.3 ppm in the 19F spectra, with a 1H–19F coupling constant 

matching that observed in the corresponding 1H NMR spectra. Typically the crude 

hydrogenolysis products also exhibit a sharp singlet at δ –127 ppm, which we ascribe to 

the formation of hexafluorosilicate through slow etching of the borosilicate NMR tubes 

by bifluoride. Integration of peak areas suggests that SiF6
2– accounts for less than 2% of 

the fluorine in the crude product.  

 Crystals suitable for X-ray diffraction were obtained by diffusion of hexane into a 

CH2Cl2 solution of 1b[HF2]. The complex forms monoclinic crystals in the P21/c space 

group, with five CH2Cl2 molecules in the asymmetric unit. The methylene carbon of one 

of these lies 3.1(1) Å from the position calculated for the hydride, consistent with a weak 

attractive interaction between the δ+ C–H bonds and the silver-bound hydride (Figure 

4.2).  

 The structure of cation 1b is similar to that of 1a,16 and metrics for the (6Dipp)Ag 

fragments are very close to those reported in the structure of (6Dipp)AgBr.31 The Ag–Ag 

distance of 2.8948(9) Å is longer than that of 2.8087(4) Å in 1a[OTf], consistent with the 

smaller 109Ag–107Ag nuclear spin coupling constant measured by 109Ag NMR 

spectroscopy. The bifluoride ion of 1b[HF2] rests between the 6Dipp backbone and 

several cocrystallized CH2Cl2 molecules, well outside the silver coordination spheres, 

with a closest approach to silver of nearly 8 Å. The fluorine-fluorine distance is 2.290(10) 

Å, essentially equal to that in KHF2 (2.277(6) Å)33 and shorter than in many complexes 

featuring metal-bound bifluoride.34,35 
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Figure 4.2. Solid-state structure of 1b[HF2], shown as 50% probability ellipsoids. Four 
co-crystallized CH2Cl2 molecules omitted for clarity. Selected interatomic distances (Å) 
and angles (˚): Ag(1)–Ag(2), 2.8948(9); Ag(1)–C(1), 2.126(6); Ag(2)–C(29), 2.127(6); 
F(1)–F(2), 2.290(10); C(1)–Ag(1)–Ag(2), 165.00(17); Ag(1)–Ag(2)–C(29), 160.39(16). 

 
 
 

4.2.9 Hydrogenolysis Kinetics 

 The hydrogenolysis of 5b[OTf] in CD2Cl2 solution follows first-order kinetics 

with respect to starting disilver complex (Figure 4.3). The calculated pseudo-first-order 

rate constants are directly proportional to H2 concentration. Overall the reaction follows 

the second-order rate expression –d[5b]/dt = k[5b][H2], where k = 7.0(±0.2) M–1·s–1.  



 113 

 
Figure 4.3. Pseudo-first-order kinetic plot for the hydrogenolysis of {[(6Dipp)Ag]2(µ-
OtPent)}+ OTf– (5b[OTf]) in CD2Cl2: □ [H2] = 7.9(3) µM, R2 = 0.998; ◯ [H2] = 5.21(09) 
µM, R2 = 0.997. 
 
 
 
 A mechanism involving the concerted activation of H2 by an intact [(LAg)2(µ-

OR)]+ cation is consistent with this behavior. A plausible alternative (Scheme 4.5) 

involves the reversible breakup of 5b to form the dihydrogen complex36 [(6Dipp)Ag(η2-

H2)]+ plus the terminal tert-pentoxide complex (6Dipp)Ag(OtPent). Subsequent 

deprotonation of coordinated H2
37 would afford the µ-hydrido complex plus tert-

pentanol. Because both intermediates would be formed together from the starting 

complex, the steady-state approximation leads to a prediction of overall second-order 

kinetics, first-order in silver, regardless of the relative rates of dissociation versus 

deprotonation of coordinated H2. 

 We also investigated the kinetics of fluoride hydrogenolysis to gain insight into 

the activation of dihydrogen by two silver fluorides (Figure 4.4). The kinetics for 

consumption of 7b and 7c are each first-order with respect to silver; again, the pseudo-

first-order rate constants are directly proportional to H2 concentration. 
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Scheme 4.5. Possible sequential pathway for the activation of H2 by {[(6Dipp)Ag]2(µ-
OR)}+OTf– (5b[OTf]; L = 6Dipp, R = tert-pentyl). Rate law derivations are provided in 
Section 4.8. 
 
 
 

 
Figure 4.4. Pseudo-first-order kinetic plots for the hydrogenolysis of (NHC)AgF in 
CD2Cl2 where [H2] is constant. (a) (6Dipp)AgF (7b): △ [H2] = 75.7 µM, R2 = 0.993; □ 
[H2] = 65.8 µM, R2 = 0.994; ◯ [H2] = 36.6 µM, R2 = 0.993. (b) (7Dipp)AgF (7c): + [H2] 
= 63.5 µM, R2 = 0.997; ◇ [H2] = 37.3 µM, R2 = 0.995. 
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 Despite the greater steric encumbrance of 7Dipp relative to 6Dipp,31 the 

hydrogenolysis of 7c (k = 13.6(±0.4) M–1·s–1) proceeds somewhat more rapidly than that 

of 7b (k = 7.5 (± 0.3) M–1·s–1). This difference suggests a stronger trans-labilizing effect 

for the 7Dipp ligand than for 6Dipp. Because the 19F NMR chemical shifts and silver-

fluorine coupling constants in 7b and 7c are remarkably similar (see Table 4.1), such an 

effect probably does not reflect a weaker silver–fluoride bond in the ground state of 7c. 

 Several plausible pathways for the silver fluoride hydrogenolysis are outlined in 

Scheme 4.6. The first-order rate dependence on both LAgF and H2 rules out the 

formation of a disilver complex, such as [(LAg)2(µ-F)]+ or [(LAg)2(µ-F)2], prior to the 

activation of H2 (Scheme 4.6a). A concerted termolecular process38 in which two LAgF 

molecules cooperatively cleave H2 (Scheme 4.6b) is likewise inconsistent with the rate 

law. These pathways should exhibit second-order rate dependence on silver fluoride 

concentration. The observed results are consistent with hydrogen activation through the 

fast, reversible coordination of H2 to a single molecule of LAgF, followed by heterolysis 

to afford LAgH39 and HF (Scheme 4.6c). Formation of a hydride bridge, through 

displacement of fluoride from a second equivalent of LAgF, and protonation of fluoride 

to form bifluoride could occur as rapid subsequent steps. 
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Scheme 4.6. Hypothetical pathways for the hydrogenolysis of neutral silver fluorides. a) 
Intermediate fluoride-bridged disilver complex: –d[7b-c]/dt ∝ [LAgF]2 if k2>>k–1, –d[7b-
c]/dt ∝ [LAgF]2[H2] if k–1>>k2; b) concerted termolecular process: –d[7b-c]/dt ∝ 
[LAgF]2[H2]; c) 1:1 reaction of terminal fluoride with H2: –d[7b-c]/dt ∝ [LAgF][H2]; d) 
intermediate h2-H2 complex: –d[7b-c]/dt = [LAgF][H2] if k2>>k–1, –d[7b-c]/dt ∝ 
[LAgF]2[H2] if k–1>>k2. Rate law derivations are provided in Schemes 4.9 and 4.10. 
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to form a cationic η2-dihydrogen intermediate. Any such intermediate would be transient: 

In an effort to observe a silver(η2-dihydrogen) complex independently, we exposed 

(6Dipp)AgOTf in CD2Cl2 solution to H2 (4.0 bar), and observed no change in the ligand 

or H2 resonances by 1H NMR spectroscopy. The steady-state approximation is again 

useful in considering the hydrogenolysis kinetics.  

 If the displaced fluoride acts as a base, the kinetic picture is analogous to that 

shown in Scheme 4.5, and the overall rate law should be first-order in silver regardless of 

relative rates. This pathway becomes essentially a variant of Scheme 4.6c. Neutral LAgF, 

however, is present in far larger concentration than free F–. If the dihydrogen complex is 

a)

b)

c)

d)

Ag2  L F

7b-c

k1

k–1

AgL F Ag L

AgL
F

Ag L
F

or

+ F–

L
Ag

L
Ag

H +

1b-c

[F H F]–k2

H2

Ag2  L F

7b-c

k1 Ag
L

Ag
L

H
HF F ‡

L
Ag

L
Ag

H +

1b-c

[F H F]–

AgL F

7b-c

k1

k–1
AgL

F

H
H k2 AgL H

F H
+

LAgF
L

Ag
L

Ag
H +

1b-c

[F H F]–

AgL F

7b-c

k1

k–1

H2

AgL
H
H

+ F– k2

LAgF AgL H

+ AgL FH + F–
(fast) L

Ag
L

Ag
H +

1b-c

[F H F]–



 117 

deprotonated by a second molecule of LAgF (Scheme 4.6d), the rate law should be first- 

order in silver only if proton transfer is much more rapid than loss of coordinated H2, i.e., 

if k2 >> k–1.  

 In principle the latter scenario is plausible, but the free energy for dissociation of 

H2 from [(6Me)Au(η2-H2)]+ (6Me is the N,N'-dimethyl analogue of 6Dipp) has been 

calculated at +9.5 kcal/mol.30 Because gold–ligand bonds are generally stronger than the 

corresponding silver–ligand bonds, we regard this figure as a rough upper boundary on 

the barrier for dissociation of H2 from [LAg(η2-H2)]+.40 The deprotonation of coordinated 

dihydrogen, as an intermolecular process, would need to be extraordinarily facile to 

predominate over dissociation.  

4.2.10 Kinetic Isotope Effects in Fluoride Hydrogenolysis 

 The observed rate data for hydrogenolysis rule out the cooperation of two silver 

fluorides during or prior to the rate-limiting step, but are consistent with several 

remaining mechanistic pathways, including scenarios in which H–H bond cleavage is 

rate–limiting, and in which it would need to be extremely rapid. We undertook an 

examination of kinetic isotope effects to differentiate further among these possibilities.  

 The rates of reaction between 7c and H2 versus D2 at two different pressures were 

compared. At 3.0 bar of hydrogen pressure, the kinetic isotope effect (KIE) kH/kD was 

1.56(±0.12); at 5.0 bar the ratio was 1.58(±0.10). Although these values are modest, KIE 

values for reactions in which H–H bond-breaking is likely rate-limiting often fall in the 

range of kH/kD = 1.2–1.6,41 and significantly higher values are rare.42 Several 

explanations, including early transition states43 and complex new vibrational modes as 

the transition state is approached,44 have been invoked for this behavior. The measured 
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KIE for silver fluoride hydrogenolysis thus appears consistent with rate-limiting H–H 

bond cleavage.  

 This does not settle the issue, however, for normal KIEs have been observed for 

the coordination of H2 versus D2 to metal centers.45 Inverse equilibrium isotope effects 

have been measured for both binding46 and oxidative addition47 of H2 versus D2, but the 

kinetic isotope effects46,47a–c are normal: The effect is stronger for the reverse reactions 

than for the forward reactions, making the ratio k1/k–1 smaller for H2 than for D2. If the 

overall rate of heterolysis were determined by formation of an η2-dihydrogen complex, as 

shown in Scheme 4.6d, a KIE near 1.5 would be plausible.  

 To examine the presumed deprotonation of dihydrogen separately from its 

coordination to silver, we carried out the heterolysis of H–D48 by 7c and assessed the 

ratio of {[(7Dipp)Ag]2(µ-D)}+[HF2]– (1c-d[HF2]) to {[(7Dipp)Ag]2(µ-H)}+[DF2]– 

(1c[DF2]) (Scheme 4.7). Because the same η2-dihydrogen complex, if indeed this were an 

intermediate, would give rise to both isotopomers, this ratio should reflect the relative 

rates of H+ versus D+ loss. The measured ratio is 1.58(±0.04).  

 
 

 
Scheme 4.7. Possible sequence for formation of isotopomers by reaction of HD with 
(7Dipp)AgF. Reaction carried out in CD2Cl2 solution. 
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 The observation of a significant isotope effect in the product ratio does not prove 

that hydrogen loss is the rate-limiting step. In the second-order case of Scheme 4.6d, even 

if deprotonation were very fast relative to hydrogen loss, and thus occurred after the rate-

limiting step, a normal KIE for this step would be reflected in the product distribution. 

Other caveats apply: We believe that hydrogen activation is essentially irreversible under 

these conditions. If the reverse reaction were facile, however, the product distribution 

would reflect an equilibrium isotope effect rather than a kinetic isotope effect. Finally, we 

cannot rule out coincidence between the ratio of µ-D and µ-H complexes formed from 

HD and the ratio of overall reaction rates for H2 versus D2. Nonetheless, while the data do 

not conclusively exclude the second-order case (k2>>k–1) of Scheme 4.6d, they are 

consistent with a pathway such as that shown in Scheme 4.6c, in which a single molecule 

of silver fluoride coordinates dihydrogen rapidly and reversibly, then cleaves it in the 

rate-limiting step.  

4.3 Conclusion 

 We have explored the formation of hydride-bridged disilver cations through 

dihydrogen activation. Alkoxide-bridged disilver cations undergo hydrogenolysis with 

loss of free alcohol. The reaction of two neutral silver fluorides with dihydrogen also 

affords hydride-bridged disilver cations, generating bifluoride as the counterion. 

Compared to their five-membered analogues, six- and seven-membered N-heterocyclic 

carbenes impart remarkable stability to the product complexes, suppressing the formation 

of homoleptic [(NHC)2Ag]+ cations and permitting hydrogenolysis to proceed in high 

yield. In the reactions of dihydrogen with two neutral silver fluoride molecules, kinetics 

experiments rule out the participation of two silver complexes during or prior to the rate-
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limiting step. Although other interpretations remain tenable, the results of hydrogen/ 

deuterium competition experiments are consistent with rate-limiting deprotonation of 

coordinated dihydrogen. We are currently exploring the application of these findings to 

the design of new silver-catalyzed hydrogenation processes.  

4.4 Experimental 

4.4.1 General Considerations 

 Unless otherwise indicated, manipulations were performed in an MBraun 

glovebox under an atmosphere of purified nitrogen, or in sealable glassware on a Schlenk 

line under an atmosphere of argon. Glassware and magnetic stir bars were dried in a 

ventilated oven at 160˚C, and allowed to cool under vacuum. Silver complexes were 

stored in the dark to minimize photodegradation.  

 Silver p-toluenesulfonate (Alfa-Aesar), sodium tert-pentoxide (Sigma- Aldrich), 

benzoyl fluoride (Alfa-Aesar), lithium aluminum hydride (Sigma- Aldrich), 1,4-

dimethoxybenzene (Sigma-Aldrich), hydrogen (Sigma- Aldrich), and deuterium (Sigma-

Aldrich) were used as received.  

 (6Dipp)AgBr52 and (7Dipp)AgBr53 were prepared according to literature 

procedures. (6Dipp)AgBr was used without further purification. (7Dipp)AgBr was 

recrystallized by cooling a saturated solution in methanol from 45˚C to –20˚C. 

Complexes {[(5Dipp)Ag]2(µ-OtBu)}+[BF4]– (5a[BF4]), (5Dipp)AgF (7), 

{[(5Dipp)Ag]2(µ-F}+[BF4]–, (12) {[(5Dipp)Ag]2(µ-H)}+[BF4]– (1a[BF4]) and 

{[(5Dipp)Ag]2(µ-H)}+ OTf– (1a[OTf]) have been described previously.16,22 In this study 

these complexes were characterized by 1H and, in the case of the fluorides, 19F NMR 

spectroscopy. 
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 Hexanes, tetrahydrofuran (THF), and toluene were purchased from EMD 

Millipore (OmniSolv grade), sparged with ultra-high purity argon (NexAir) for 45 

minutes prior to first use, and dried over activated 3 Å molecular sieves (1/16”, Alfa-

Aesar), Dichloromethane (BDH) and acetonitrile (EMD Millipore OmniSolv) were dried 

by stirring overnight with calcium hydride (Alfa-Aesar, coarse powder), degassed by 

successive freeze-pump-thaw cycles, and vacuum-transferred into oven-dried resealable 

Schlenk flasks. Anhydrous benzene and anhydrous pentane (EMD Millipore DriSolv) 

were stored over 3 Å molecular sieves in the glovebox.  

 Dichloromethane-d2 and acetonitrile-d3 (Cambridge Isotope Labs) were dried by 

stirring overnight with calcium hydride (coarse powder, Alfa- Aesar), degassed by 

successive freeze-pump-thaw cycles, and vacuum- transferred into oven-dried resealable 

Schlenk flasks. Tetrahydrofuran-d8 and benzene-d6 (Cambridge Isotope Labs) were dried 

over purple sodium benzophenone, degassed by successive freeze-pump-thaw cycles, and 

vacuum-transferred into oven-dried resealable Schlenk flasks. Deuterium oxide 

(Cambridge Isotope Labs) was used as received.  

 1H, 13C, 19F, and 109Ag NMR spectra were obtained at the Georgia Institute of 

Technology NMR Center using a Bruker DSX 400 MHz spectrometer, a Varian Vx 400 

MHz spectrometer, or a Varian Vx 300 MHz spectrometer. 1H and 13C NMR chemical 

shifts are referenced with respect to solvent signals and are reported relative to Si(CH3)4. 

109Ag NMR chemical shifts were referenced with respect to an external solution of 4.00 

M silver nitrate (Alfa-Aesar) in deuterium oxide (defined as δ 0 ppm). 19F NMR chemical 

shifts were referenced to external neat C6F6 (Alfa-Aesar, δ −164.90 ppm) and are 

reported relative to CFCl3.  
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 Infrared spectra were collected using microcrystalline samples on a Bruker Alpha-

P infrared spectrometer equipped with an attenuated total reflection (ATR) attachment. 

Samples were exposed to air as briefly as possible prior to data collection.  

 Elemental analyses were performed by Atlantic Microlab in Norcross, GA. 

Samples for fluorine analysis were prepared separately from those used for C, H and N 

analysis, but the same procedures were followed and the resulting 1H NMR spectra for a 

given complex were identical.  

4.4.2 Synthetic Procedures 

4.4.2.1 (6Dipp)AgOTs (15a) 

Silver p-toluenesulfonate (AgOTs, 0.407 g, 1.46 mmol) was added to a solution of 

(6Dipp)AgBr (1.000 g, 1.463 mmol) in CH2Cl2 (10 mL) with stirring. The mixture was 

stirred for 30 min and then filtered through Celite to remove the silver bromide 

byproduct. The solvent was removed in vacuo, and the residue was dried in vacuo at 

80˚C for 16 h, affording the product as a white powder (1.036 g, 1.32 mmol, 90% yield). 

1H NMR (400 MHz,  CD2Cl2): δ (ppm) = 7.43 (t, J = 7.8 Hz, 2H, para-CH), 7.27 (d, J = 

7.8 Hz, 4H, meta-CH), 7.15 (d, J = 8.0 Hz, 2H, O3SCH), 7.04 (d, J = 8.0 Hz, 2H, 

O3SCHCH) 3.48 (t, J = 5.8 Hz, 4H, NCH2), 3.03 (sep, J = 6.9 Hz, 4H, CH(CH3)2), 2.38 

(quin, J = 5.8 Hz, 2H, NCH2CH2), 2.34 (s, 3H, O3S(C4H4)CH3), 1.31 (d, J = 6.9 Hz, 

12H, CH(CH3)2), 1.28 (d, J = 6.9 Hz, 12H, CH(CH3)2). 13C{1H} NMR (75.5 MHz, 

CD2Cl2): δ (ppm) = 204.4 (app dd, J(13C-109Ag) = 308 Hz, J(13C-107Ag) = 267 Hz, 

NCAg), 145.9 (Dipp-ortho-C), 143.0 (app d, J(13C-109/107Ag) = 3 Hz, Dipp-ipso-C), 141.9 

(OTs-ipso-C), 140.2 (OTs-para-C), 129.7 (Dipp-para-C), 128.9 (OTs-meta-C), 126.1 

(OTs-ortho-C), 125.2 (Dipp-meta-C), 46.4 (app d, J(13C-109/107Ag) = 8 Hz, NCH2), 28.9 
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(CH(CH3)2), 25.0 (CH(CH3)2), 24.8 (CH(CH3)2), 21.4 (NCH2CH2), 20.6 (O3SC6H4CH3). 

IR (ATR): ν (cm–1) = 2957, 2922, 2866, 1520, 1456, 1308, 1264, 1207, 1158, 1111, 

1058, 1026, 999, 936, 808, 763, 678, 586, 564, 553, 564, 553, 454, 410. Elemental 

analysis calculated for C35H47N2AgF3O3S: C 61.49, H 6.93, N 4.10. Found: C 61.21, H 

6.89, N 4.06. 

 
 

 
Figure 4.5. 1H NMR (400 MHz, CD2Cl2) spectrum of (6Dipp)AgOTs. 
 
 
 
4.4.2.2 (7Dipp)AgOTs (15b) 

Silver p-toluenesulfonate (AgOTs, 0.460 g, 1.65 mmol) was added to a solution of 

(7Dipp)AgBr (1.000 g, 1.649 mmol) in CH2Cl2 (10 mL) with stirring. The mixture was 

stirred for 30 min and then filtered through Celite to remove the silver bromide 

byproduct. The solvent was removed in vacuo, and the residue was dried in vacuo at 

80˚C for 16 h, affording the product as a white powder (1.014 g, 1.453 mmol, 88% yield). 

1H NMR (400 MHz,  CD2Cl2): δ (ppm) = 7.38 (t, J = 7.7 Hz, 2H, para-CH), 7.24 (d, J = 
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7.7 Hz, 4H, meta-CH), 7.11 (d, J = 8.0 Hz, 2H, O3SCH), 7.03 (d, J = 8.0 Hz, 2H, 

O3SCHCH) 4.02 (mult, 4H, NCH2), 3.22 (sep, J = 6.9 Hz, 4H, CH(CH3)2), 2.34 (mult, 

4H, NCH2CH2), 2.34 (s, 3H, O3S(C4H4)CH3), 1.32 (d, J = 6.9 Hz, 12H, CH(CH3)2), 1.28 

(d, J = 6.9 Hz, 12H, CH(CH3)2). 13C{1H} NMR (100 MHz, CD2Cl2): δ (ppm) = 214.5 

(app dd, J(13C-109Ag) = 308 Hz, J(13C-107Ag) = 267 Hz, NCAg), 145.7 (app d, J(13C-

109/107Ag) = 3 Hz, Dipp-ipso-C), 145.3 (Dipp-ortho-C), 141.9 (OTs-ipso-C), 140.1 (OTs-

para-C), 129.3 (Dipp-para-C), 128.8 (OTs-meta-C), 126.1 (OTs-ortho-C), 125.3 (Dipp-

meta-C), 54.2 (app d, J(13C-109/107Ag) = 8 Hz, NCH2), 29.0 (CH(CH3)2), 25.4 

(NCH2CH2), 24.8 (CH(CH3)2), 24.8 (CH(CH3)2), 21.4 (O3SC6H4CH3). IR (ATR): ν 

(cm−1) = 2958, 2962, 2868, 1510, 1454, 1385, 1329, 1307, 1263, 1222, 1207, 1181, 1144, 

1104, 1056, 1031, 993, 939, 803, 759, 636, 572, 554, 517, 453. Elemental analysis 

calculated for C36H49N2AgO3S: C 61.97, H 7.08, N 4.02. Found: C 62.20, H 7.09, N 4.07. 

 
 

 
Figure 4.6. 1H NMR (400 MHz, CD2Cl2) spectrum of (7Dipp)AgOTs. 
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4.4.2.3 (6Dipp)Ag(OtPent) (3b) 

A solution of sodium tert-pentoxide (0.080 g, 0.73 mmol) in benzene (2 mL) was 

added dropwise with stirring to a solution of (6Dipp)AgOTs (0.500 g, 0.731 mmol) in 

THF (10 mL). The mixture was stirred for 1 h and then filtered through Celite to remove 

the sodium p-toluenesulfonate byproduct. Solvent was removed from the filtrate in 

vacuo, and the product was dried in vacuo at 70˚C for 16 h, affording the product as a 

white powder (0.420 g, 0.700 mmol, 96% yield). Note: In anhydrous CH2Cl2, 

(6Dipp)Ag(OtPent) decomposes rapidly to (6Dipp)AgCl and tert-pentanol. In THF-d8 

solution, (6Dipp)Ag(OtPent) hydrolyzes rapidly after exposure to atmospheric moisture. 

1H NMR (400 MHz, C6D6): δ (ppm) = 7.16 (t, 2H, para-CH), 7.03 (d, 4H, meta-CH), 

2.96 (sep, J = 6.9 Hz, 4H, CH(CH3)2), 2.70 (t, J = 5.8 Hz, 4H, NCH2), 1.48 (d, J = 6.9 

Hz, 12H, CH(CH3)2), 1.43 (quin, J = 5.8 Hz, 2H, NCH2CH2), 1.37 (q, J = 7.6 Hz, 2H, 

CH2CH3), 1.18 (s, 6H, OC(CH3)2), 1.15 (d, J = 6.9 Hz, 12H, CH(CH3)2), 1.10 (t, J = 7.6 

Hz, 3H CH2CH3). 1H NMR (400 MHz,  THF-d8): δ (ppm) = 7.16 (mult, 2H, para-CH), 

7.21 (mult, 4H, meta-CH), 3.44 (t, J = 5.8 Hz, 4H, NCH2), 3.14 (sep, J = 6.9 Hz, 4H, 

CH(CH3)2), 2.29 (quin, J = 5.8 Hz, 2H, NCH2CH2), 1.36 (d, J = 6.9 Hz, 12H, CH(CH3)2), 

1.29 (d, J = 6.9 Hz, 12H, CH(CH3)2), 0.68 (q, J = 7.6 Hz, 2H, CH2CH3), 0.48 (t, J = 7.6 

Hz, 3H CH2CH3), 0.44 (s, 6H, OC(CH3)2). 13C{1H} NMR (100 MHz, THF-d8): δ (ppm) = 

207.4 (app dd, J(13C-109Ag) = 227 Hz, J(13C-107Ag) = 196 Hz, NCAg), 146.2 (ortho-C), 

144.1 (app d, J(13C-109/107Ag) = 3 Hz, ipso-C), 129.4 (para-C), 125.1 (meta-C), 69.8 

(OC(CH3)2), 46.9 (app d, J(13C-109/107Ag) = 5 Hz, NCH2), 42.2 (CH2CH3), 34.5 

(OC(CH3)2), 29.2 (CH(CH3)2), 24.9 (CH(CH3)2), 24.7 (CH(CH3)2), 21.1 (NCH2CH2), 9.9 

(CH2CH3). IR (ATR): ν (cm–1) = 2958, 2868, 1511, 1455, 1310, 1261, 1204, 1104, 1055, 
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961, 880, 802, 758, 727, 556, 452. Elemental analysis calculated for C33H51N2AgO: C 

66.10, H 8.57, N 4.67. Found: C 64.68, H 8.66, N 4.44. Note: Attempts to further purify 

this complex via recrystallization have not resulted in satisfactory carbon analyses. 

Nonetheless complexes 5b and 7b, prepared directly from this one, were isolated in 

analytical purity. 

 
 

 
Figure 4.7. 1H NMR (400 MHz, THF-d8) spectrum of (6Dipp)Ag(OtPent). 
 
 
 

 
Figure 4.8. 13C NMR (100 MHz, THF-d8) spectrum of (6Dipp)Ag(OtPent).  
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4.4.2.4 (7Dipp)Ag(OtPent) (3c) 

A solution of sodium tert-pentoxide (0.079 g, 0.72 mmol) in benzene (2 mL) was 

added dropwise with stirring to a solution of (7Dipp)AgOTs (0.500 g, 0.717 mmol) in 

THF (10 mL). The mixture was stirred for 1 h and then filtered through Celite to remove 

the sodium p-toluenesulfonate byproduct. Solvent was removed from the filtrate in 

vacuo. The residue was dried in vacuo at 70˚C for 16 h, affording the product as a white 

powder (0.408 g, 0.665 mmol, 93% yield). Note: In anhydrous CH2Cl2, 

(7Dipp)Ag(OtPent) decomposes rapidly to (7Dipp)AgCl and tert-pentanol. In THF-d8 

solution, (7Dipp)Ag(OtPent) hydrolyzes rapidly after exposure to atmospheric moisture. 

1H NMR (400 MHz,  C6D6): δ (ppm) = 7.16 (t, 2H, para-CH), 7.02 (d, 4H, meta-CH), 

3.27 (mult, 4H, NCH2), 3.15 (sep, J = 6.9 Hz, 4H, CH(CH3)2), 1.58 (mult, 4H, 

NCH2CH2), 1.50 (d, J = 6.9 Hz, 12H, CH(CH3)2), 1.35 (q, J = 7.6 Hz, 2H, CH2CH3), 1.17 

(d, J = 6.9 Hz, 12H, CH(CH3)2), 1.14 (s, 6H, OC(CH3)2), 1.09 (t, J = 7.6 Hz, 3H 

CH2CH3). 13C{1H} NMR (100 MHz, C6D6): δ (ppm) = 217.7 (app dd, J(13C-109Ag) = 228 

Hz, J(13C-107Ag) = 199 Hz, NCAg), 145.9 (app d, J(13C-109/107Ag) = 9 Hz, Dipp-ipso-C), 

144.8 (Dipp-ortho-C), 129.0 (Dipp-para-C), 125.1 (Dipp-meta-C), 70.2 (OC(CH3)2),  

53.6 (app d, J(13C-109/107Ag) = 7 Hz, NCH2), 42.2 (CH2CH3), 34.6 (OC(CH3)2), 29.0 

(CH(CH3)2), 25.1 (NCH2CH2), 24.8 (CH(CH3)2), 10.5 (CH2CH3). IR (ATR): ν (cm–1) = 

2960, 2928, 2867, 1651, 1589, 1499, 1452, 1434, 1385, 1362, 1344, 1309, 1289, 1262, 

1181, 1056, 999, 966, 893, 804, 787, 760, 551, 489, 474, 454. Elemental analysis 

calculated for C34H53N2AgO: C 66.55, H 8.71, N 4.56. Found: C 64.43, H 8.65, N 4.44. 

Note: Attempts to further purify this complex via recrystallization have not resulted in 
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satisfactory carbon analyses. Nonetheless, complex 7c, which is prepared directly from 

this one, was isolated in analytical purity. 

 
 

Figure 4.9. 1H NMR (400 MHz, C6D6) spectrum of (7Dipp)Ag(OtPent).  
 
 
 

Figure 4.10. 13C NMR (100 MHz, C6D6) spectrum of (7Dipp)Ag(OtPent). Inset: Detail 
of NCAg signal with increased line broadening (2 Hz). 
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4.4.2.5 (6Dipp)AgOTf 

Silver trifluoromethanesulfonate (AgOTf, 0.217 g, 0.845 mmol) was added to a 

solution of (6Dipp)AgBr (0.500 g, 0.844 mmol) in CH2Cl2 (10 mL), and the solution was 

stirred for 30 minutes. The mixture was filtered through Celite to remove the AgBr 

byproduct, and the solvent was removed from the filtrate in vacuo. The residue was dried 

under vacuum for 4 hours at 40˚C, affording the product as a white powder (0.479 g, 

0.725 mmol, 86% yield). 1H NMR (400 MHz, CD2Cl2): δ (ppm) = 7.42 (t, J = 7.8 Hz, 

2H, para-CH), 7.26 (d, J = 7.8 Hz, 4H, meta-CH), 3.50 (t, J = 5.7 Hz, 4H, NCH2), 3.01 

(sep, J = 6.9 Hz, 4H, CH(CH3)2), 2.39 (quin, J = 5.7 Hz, 2H, NCH2CH2), 1.31 (d, J = 6.9 

Hz, 12H, CH(CH3)2), 1.29 (d, J = 6.9 Hz, 12H, CH(CH3)2). 13C{1H} NMR (100 MHz, 

CD2Cl2): δ (ppm) = 207.1 (app dd, J(13C-109Ag) = 321 Hz, J(13C-107Ag) = 278 Hz, 

NCAg), 145.9 (ortho-C), 143.0 (app d, J(13C-109/107Ag) = 2 Hz, ipso-C), 129.8 (para-C), 

125.3 (meta-C), 46.5 (app d, J(13C-109/107Ag) = 8 Hz, NCH2), 29.0 (CH(CH3)2), 25.0 

(CH(CH3)2), 24.8 (CH(CH3)2), 20.5 (NCH2CH2), O3SCF3 not observed. 19F NMR (376 

MHz, CD2Cl2): δ (ppm) = –78.2 (s, O3SCF3
–). IR (ATR): ν (cm–1) = 2961, 2927, 2871, 

1591, 1520, 1459, 1313, 1232, 1202, 1165, 1033, 1017, 993, 804, 758, 633, 590, 516, 

451. Elemental analysis calculated for C29H40N2Ag2F3O3S: C 52.70, H 6.09, N 4.23. 

Found: C 52.41, H 6.00, N 4.21. 

 



 130 

 
Figure 4.11. 1H NMR (400 MHz, CD2Cl2) spectrum of (6Dipp)AgOTf. 
 
 
 
4.4.2.6 {[(6Dipp)Ag]2(µ-OtPent)}+OTf– (5b[OTf]) 

 Solutions of (6Dipp)Ag(OTf) (0.271 g, 0.396 mmol) and of (6Dipp)Ag(OtPent) 

(0.250 g, 0.417 mmol) in THF (2 mL each) were prepared and cooled to –35˚C. The 

(6Dipp)Ag(OtPent) solution was added dropwise to the (6Dipp)Ag(OTf) solution with 

stirring, forming a pale yellow mixture with traces of black precipitate. This mixture was 
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NCH2CH2), 1.25 (d, J = 6.9 Hz, 24H, CH(CH3)2), 1.09 (d, J = 6.9 Hz, 24H, CH(CH3)2), 

0.25 (q, J = 6.4 Hz, 2H, CH2CH3), 0.14 (t, J = 6.4 Hz, 3H CH2CH3), 0.00 (s, 6H, 

OC(CH3)2). 13C{1H} NMR (100 MHz, CD2Cl2): δ (ppm) = 146.5 (ortho-C), 144.0 (app 

1:1:1 t, J(13C-109/107Ag) = 2 Hz, ipso-C), 130.5 (para-C), 126.1 (meta-C), 74.2 

(OC(CH3)2), 48.1 (app 1:1:1 t, J(13C-109/107Ag) = 3 Hz, NCH2), 34.5 (CH2CH3), 34.5 

(OC(CH3)2), 29.7 (CH(CH3)2), 25.8 (CH(CH3)2), 25.8 (CH(CH3)2), 21.8 (NCH2CH2), 

11.2 (CH(CH3)2), NCAg not observed, O3SCF3 not observed. 19F NMR (376 MHz, 

CD2Cl2): δ (ppm) = –79.0 (s, O3SCF3
–). IR (ATR): ν (cm–1) = 2958, 2926, 2868, 1510, 

1454, 1385, 1329, 1307, 1263, 1222, 1207, 1181, 1144, 1104, 1056, 1031, 993, 803, 759, 

636, 572, 554, 517, 453. Elemental analysis calculated for C62H91N4Ag2F3O4S: C 59.04, 

H 7.27, N 4.44. Found: C 58.77, H 7.37, N 4.48.  

 
 

 
Figure 4.12. 1H NMR (400 MHz, CD2Cl2) spectrum of {[(6Dipp)Ag]2(µ-OtPent)}+OTf– 
(5b[OTf]). 
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4.4.2.7 (6Dipp)AgF (7b) 

 A solution of sodium tert-pentoxide (0.161 g, 1.46 mmol) in benzene (2 mL) was 

added dropwise with stirring to a solution of (6Dipp)Ag(OTs) (1.000 g, 1.463 mmol) in 

THF (10 mL); the mixture was stirred for 1 h and then filtered through Celite to remove 

the precipitated sodium p-toluenesulfonate. To the filtrate was added excess benzoyl 

fluoride (0.200 mL, 1.86 mmol), causing the precipitation of the product as a white solid. 

After stirring for 30 min, the precipitate was collected by filtration. The product was 

washed with benzene (2 × 5 mL) and dried in vacuo at 80˚C overnight, affording the 

product as a white powder (0.706 g, 1.33 mmol, 91%). (6Dipp)AgF is hygroscopic. 1H 

NMR (400 MHz, CD2Cl2): δ (ppm) = 7.41 (t, J = 7.8 Hz, 2H, para-CH), 7.26 (d, J = 7.8 

Hz, 4H, meta-CH), 3.46 (t, J = 5.7 Hz, 4H, NCH2), 3.03 (sep, J = 6.9 Hz, 4H, CH(CH3)2), 

2.37 (quin, J = 5.7 Hz, 2H, NCH2CH2), 1.32 (d, J = 6.9 Hz, 24H, CH(CH3)2). 13C{1H} 

NMR (75.5 MHz, CD2Cl2): δ (ppm) = 204.5 (app dd, J(13C-109Ag) = 295 Hz, J(13C-

107Ag) = 253 Hz, NCAg), 145.9 (ortho-C), 143.2 (app d, J(13C-109/107Ag) = 3 Hz, ipso-C), 

129.6 (para-C), 125.1 (meta-C), 46.5 (app d, J(13C-109/107Ag) = 7 Hz, NCH2), 28.9 

(CH(CH3)2), 25.1 (CH(CH3)2), 24.7 (CH(CH3)2), 20.7 (NCH2CH2). 19F NMR (376 MHz, 

CD2Cl2): δ (ppm) = −246.03 (app dd, J(19F-109Ag) = 176 Hz, J(19F-107Ag) = 152 Hz). IR: 

ν (cm–1) = 2958, 2868, 1514, 1453, 1389, 1333, 1305, 1260, 1208, 1180, 1056, 1033, 

804, 761, 558, 500, 452, 427. Elemental analysis calculated for C28H40N2AgF: C 63.27, H 

7.59, N 5.27, F 3.57. Found: C 63.04, H 7.56, N 5.17, F 3.57.  
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Figure 4.13. 1H NMR (400 MHz, CD2Cl2) spectrum of (6Dipp)AgF (7b). 
 
 
 

 
Figure 4.14. 19F NMR (376 MHz, CD2Cl2) spectrum of (6Dipp)AgF (7b). 
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THF (10 mL); the mixture was stirred for 1 h and then filtered through Celite to remove 

the precipitated sodium p-toluenesulfonate. To the filtrate was added excess benzoyl 

fluoride (0.100 mL 0.919 mmol), causing the precipitation of the product as a white solid. 

After stirring for 30 min, the precipitate was collected by filtration. The solid was washed 

with benzene (2 × 5 mL) and dried in vacuo at 40˚C overnight, affording the product as a 

white powder (0.350 g, 0.642 mmol, 90%). (7Dipp)AgF is hygroscopic. 1H NMR (400 

MHz, CD2Cl2): δ (ppm) = 7.38 (t, J = 7.7 Hz, 2H, para-CH), 7.24 (d, J = 7.7 Hz, 4H, 

meta-CH), 4.00 (mult, 4H, NCH2), 3.24 (sep, J = 6.9 Hz, 4H, CH(CH3)2), 2.33 (mult, 4H, 

NCH2CH2), 1.33 (d, J = 6.9 Hz, 12H, CH(CH3)2), 1.33 (d, J = 6.9 Hz, 12H, CH(CH3)2). 

13C{1H} NMR (100 MHz, CD2Cl2): δ (ppm) = 215.1 (app dd, J(13C-109Ag) = 283 Hz, 

J(13C-107Ag) = 245 Hz, NCAg), 145.8 (app d, J(13C-109/107Ag) = 3 Hz, ipso-C), 145.3 

(ortho-C), 129.2 (para-C), 125.3 (meta-C), 54.3 (app d, J(13C-109/107Ag) = 8 Hz, NCH2), 

29.1 (CH(CH3)2), 25.4 (NCH2CH2), 24.9 (CH(CH3)2), 24.7 (CH(CH3)2). 19F NMR (376 

MHz, CD2Cl2): δ (ppm) = –246.16 (app dd, J(19F-109Ag) = 173 Hz, J(19F-107Ag) = 150 

Hz). IR (ATR): ν (cm–1) = 3641, 3136, 2964, 2952, 2927, 2866, 1952, 1651, 1589, 1502, 

1450, 1385, 1361, 1312, 1291, 1256, 1179, 1095, 1058, 1000, 936, 897, 807, 787, 764, 

681, 495, 453, 425, 402. Elemental analysis calculated for C29H42N2AgF: C 63.85, H 

7.76, N 5.14. Found: C 63.58, H 7.79, N 5.05.  

4.4.3 Preparative Hydrogenolyses 

 Safety note: Great caution should be used when handling pressurized glassware. 

Personal protective equipment, especially eye protection, must be worn, and a blast 

shield is recommended. Pressurized NMR tubes should be transported to the NMR 

facility in secondary containment.  
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4.4.3.1 {[(6Dipp)Ag]2(µ-H)}+OTf– (3b[OTf] 

 A solution of {[(6Dipp)Ag]2(µ-O-t- Pent)}+[OTf]– (0.100 g, 0.079 mmol) in 

CD2Cl2 (1.0 mL) was degassed by two freeze-pump-thaw cycles in an NMR tube 

equipped with a J. Young valve, and the tube was pressurized with hydrogen (4.4 bar). 

The reaction was monitored daily by 1H NMR spectroscopy, and nearly quantitative 

conversion was observed after 96 h. The solution was transferred to Schlenk flask, and 

the solvent was removed in vacuo. The off-white residue was dissolved in CH2Cl2 (2 mL) 

and was precipitated by the addition of hexane (10 mL). The precipitate was collected by 

vacuum filtration and was washed with hexane. The solid was dried in vacuo for 4 h, 

affording the product as a white powder (0.053 g, 0.045 mol, 57%). 1H NMR (400 MHz, 

CD2Cl2): δ (ppm) = 7.30 (t, J = 7.8 Hz, 4H, para-CH), 7.09 (d, J = 7.8 Hz, 8H, meta-

CH), 3.36 (t, J = 5.8 Hz, 8H, NCH2), 2.82 (sep, J = 6.9 Hz, 8H, CH(CH3)2), 2.30 (quin, J 

= 5.8 Hz, 4H, NCH2CH2), 1.23 (d, J = 6.9 Hz, 24H, CH(CH3)2), 0.98 (d, J = 6.9 Hz, 24H, 

CH(CH3)2), −2.14 (app tt, J(1H-109Ag), = 132 Hz, J(1H-107Ag) = 115 Hz, AgHAg). 

13C{1H} NMR (100 MHz, CD2Cl2): δ (ppm) = 207.1 (mult, NCAg), 145.8 (ortho-C), 

142.1 (app d, J(13C-109/107Ag) = 1 Hz, ipso-C), 129.5 (para-C), 124.8 (meta-C), 46.5 (app 

d, J(13C-109/107Ag) = 8 Hz, NCH2), 28.7 (CH(CH3)2), 25.2 (CH(CH3)2), 24.6 (CH(CH3)2), 

20.5 (NCH2CH2), O3SCF3 not observed. 19F NMR (376 MHz, CD2Cl2): δ (ppm) = –79.0 

(s, O3SCF3
–). IR (ATR): ν (cm–1) = 2958, 2926, 2868, 1510, 1454, 1385, 1329, 1307, 

1263, 1222, 1207, 1181, 1144, 1104, 1056, 1031, 993, 939, 803, 759, 636, 572, 554, 517, 

453. Elemental analysis calculated for C57H81N4Ag2F3O3S: C 58.26, H 6.95, N 4.77. 

Found: C 57.98, H 6.93, N 4.69.  
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Figure 4.15. 1H NMR (400 MHz, CD2Cl2) spectrum of {[(6Dipp)Ag]2(µ-H)}+OTf– 
(3b[OTf]). Inset: Detail of hydride resonance. 
 
 
 
4.4.3.2 {[(6Dipp)Ag]2(µ-H)}+HF2

– (1b[HF2]) 

 A solution of (6Dipp)AgF (0.150 g, 0.282 mmol) in CD2Cl2 (1.0 mL) was 
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valve, and the tube was pressurized with hydrogen (4.4 bar). The reaction was monitored 

daily by 1H NMR spectroscopy, and nearly quantitative conversion was observed after 96 

h. The solution was transferred to a vial, and the product was precipitated by the addition 

of hexane (10 mL). The precipitate was collected by vacuum filtration and was washed 

with hexane. The solid was dried in vacuo for 4 h, affording the product as a white 

powder (0.092 g, 0.086 mmol, 61%). 1H NMR (400 MHz, CD2Cl2): δ (ppm) = 16.28 (t, 

J(1H-19F) = 123 Hz, 1H, HF2
–), 7.29 (t, J = 7.8 Hz, 4H, para-CH), 7.09 (d, J = 7.8 Hz, 

8H, meta-CH), 3.35 (t, J = 5.8 Hz, 8H, NCH2), 2.82 (sep, J = 6.9 Hz, 8H, CH(CH3)2), 

2.31 (quin, J = 5.8 Hz, 4H, NCH2CH2), 1.23 (d, J = 6.9 Hz, 24H, CH(CH3)2), 0.97 (d, J = 
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6.9 Hz, 24H, CH(CH3)2), −2.15 (app tt, J(1H-109Ag), = 132 Hz, J(1H-107Ag) = 115 Hz, 

AgHAg). 13C{1H} NMR (100 MHz, CD2Cl2): δ (ppm) = 207.1 (mult, NCAg), 145.8 

(ortho-C), 142.1 (app d, J(13C-109/107Ag) = 1 Hz, ipso-C), 129.5 (para-C), 124.8 (meta-C), 

46.5 (app d, J(13C- 109/107Ag) = 8 Hz, NCH2), 28.7 (CH(CH3)2), 25.2 (CH(CH3)2), 24.6 

(CH(CH3)2), 20.5 (NCH2CH2). 19F NMR (376 MHz, CD2Cl2): δ (ppm) = –157.3 (d, 

J(19F-1H) = 123 Hz, HF2
–). 109Ag NMR (18.6 MHz, CD2Cl2): δ (ppm) = 524.6 (app dt, 

J(109Ag-1H) = 132 Hz, J(109Ag-107Ag) = 108 Hz). IR (ATR): ν (cm–1) = 2958, 2925, 2867, 

1658, 1517, 1453, 1399, 1384, 1328, 1307, 1255, 1207, 1180, 1056, 806, 756, 554, 450. 

Elemental analysis calculated for C57H84N4Ag2F2: C 63.15, H 7.76, N 5.26, F 3.57. 

Found: C 62.97, H 7.76, N 5.26, F 3.52.  

 
 

Figure 4.16. 1H NMR (400 MHz, CD2Cl2) spectrum of {[(6Dipp)Ag]2(µ-H)}+HF2
– 

(1b[HF2]). a) Resonance of the HF2
– ion. b) Detail of the hydride resonance. 
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Figure 4.17. 109Ag NMR (18.6 MHz, CD2Cl2) spectrum of {[(6Dipp)Ag]2(µ-H)}+[HF2]– 
(1b[HF2]). 
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daily by 1H NMR spectroscopy, and nearly quantitative conversion was observed after 96 
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J(1H-19F) = 123 Hz, 1H, HF2
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8H, NCH2CH2), 1.24 (d, J = 6.9 Hz, 24H, CH(CH3)2), 0.97 (d, J = 6.9 Hz, 24H, 

CH(CH3)2), −2.46 (app tt, J(1H-109Ag), = 134 Hz, J(1H-107Ag) = 116 Hz, AgHAg). 
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144.9 (ipso-C), 129.2 (para-C), 125.0 (meta-C), 54.4 (app d, J(13C-109/107Ag) = 6 Hz, 

NCH2), 28.8 (CH(CH3)2), 25.5 (NCH2CH2), 24.9 (CH(CH3)2), 24.7 (CH(CH3)2). 19F 

NMR (376 MHz, CD2Cl2): δ (ppm) = –157.3 (d, J(19F-1H) = 123 Hz, HF2
–). 109Ag NMR 

(18.6 MHz, CD3CN): δ (ppm) = 532.0 (app dt, J(109Ag-1H) = 134 Hz, J(109Ag-107Ag) = 

108 Hz). IR (ATR): ν (cm–1) = 2961, 2927, 2871, 1591, 1520, 1459, 1313, 1232, 1202, 

1165, 1033, 1017, 993, 804, 758, 633, 590, 533, 516, 451. Elemental analysis calculated 

for C58H86N4Ag2F2: C 63.73, H 7.93, N 5.13, F 3.48. Found: C 63.48, H 7.85, N 5.08, F 

3.47. 

 
 

Figure 4.18. 1H NMR (400 MHz, CD2Cl2) spectrum of {[(7Dipp)Ag]2(µ-H)}+HF2
– 

(1c[HF2]). a) Resonance of the HF2
– ion. b) Detail of the hydride resonance. 
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Figure 4.19. 109Ag NMR (18.6 MHz, CD2Cl2) spectrum of {[(6Dipp)Ag]2(µ-H)}+[FHF]– 
(1c[FHF]). 
 
 

4.4.4 Kinetics of Dihydrogen Cleavage 
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4.4.4.1 Summary of Kinetics Data 
 
 
 

Table 4.3. Summary of kinetics data 
hydrogen-
activating 
complex 

experiment 
number p(H2), bara [H2], mMb kobs, s–1 c k, M–1·s–1 calculated 

order in H2 

6DippAgF, 2b 

1 5.00 (± 0.14)  7.57 (± 0.13) 5.8 (± 0.3) × 10–5 7.7 (± 0.4) × 10–3 

1.02 (± 0.05) 
2 4.00 (± 0.14) 6.6 (± 0.2) 4.8 (± 0.2) × 10–5 7.3 (± 0.4) × 10–3 
3 2.5 (± 0.2) 3.66 (± 0.14) 2.72 (± 0.14) × 10–5 7.4 (± 0.5) × 10–3 

average    7.5 (± 0.3) × 10–3 

7DippAgF, 2c 
4 5.00 (± 0.14)  7.40 (± 0.16) 1.02 (± 0.04) × 10–4 1.38 (± 0.06) × 10–2 

1.06 (± 0.07) 5 3.00 (± 0.14) 4.30 (± 0.14) 5.75 (± 0.15) × 10–5 1.34 (± 0.06) × 10–2 
average    1.36 (± 0.04) × 10–2 

{[(6Dipp)Ag]2 

(µ-OtPent)}+, 1b 

6 5.00 (± 0.14)  7.9 (± 0.3) 5.55 (± 0.15) × 10–5 7.0 (± 0.3) × 10–3 
1.03 (± 0.05) 7 3.50 (± 0.14) 5.21 (± 0.09) 3.62 (± 0.07) × 10–5 6.96 (± 0.19) × 10–3 

average    7.0 (± 0.2) × 10–3 
a Uncertainty in pressure represents manufacturer’s precision rating of the pressure gauge (Grade B by standard of the 
American Society of Mechanical Engineers, +/-3-2-3% of 100 psi span). b [H2] represents the average as determined by 
integration of 1H NMR signal relative to an internal standard (1,4-dimethoxybenzene) at intervals throughout each trial. 
Uncertainty in [H2] represents plus or minus two standard deviations. c kobs is determined by a linear regression model of 
the pseudo-first-order kinetic plot for each trial. Uncertainty in kobs represents plus or minus two times the standard error of 
regression. 

 
 
 

Table 4.4. Summary of kinetic isotope effect data 
hydrogen-
activating 
complex 

experiment 
numbera p(D2), barb kobs, s–1 c kH/kD 

7DippAgF, 2c 
D1 5.00 (± 0.14) 6.49 (± 0.19) × 10–5 1.58 (± 0.10) 
D2 3.00 (± 0.14) 3.68 (± 0.09) × 10–5 1.56 (± 0.12) 

average   1.57 (± 0.08) 
a Compare to experiments 4 and 5 in Table 4.3. b Uncertainty in pressure represents manufacturer’s precision rating of 
the pressure gauge (Grade B by standard of the American Society of Mechanical Engineers, +/-3-2-3% of 100 psi 
span). b kobs is determined by a linear regression model of the pseudo-first-order kinetic plot for each trial. Uncertainty in 
kobs represents plus or minus two times the standard error of regression. 
 
 
 

Table 4.5. Summary of HD heterolysis data 
hydrogen-
activating 
complex 

experiment 
number 

p(HD), 
bara 

time of 
measurement (h) 

product 
distribution, 

1c-d:1c 

7DippAgF, 2c 

HD1 2 6 1.60 
HD1 2 12 1.58 
HD2 2 6 1.55 
HD2 2 12 1.57 
HD2 2 24 1.58 

average   1.58 (± 0.04)b 

a HD pressure is estimated by assuming complete consumption of D2O by excess LiAlH4. b Uncertainty in product 
distribution represents plus or minus two standard deviations. 
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4.4.4.2 Kinetic Plots for {[(6Dipp)Ag]2(µ-OtPent)}+ (5b) 
 
 
 

 

 

 
Figure 4.20. Kinetic plots for the hydrogenolysis of {[(6Dipp)Ag]2(µ-OtPent)}+ (5b), as 
its OTf– salt, corresponding to (a) zero-order, (b) one-half-order, (c) first-order, (d) three-
halves-order, and (e) second-order models with respect to silver. 
 
  

0.00	
  

0.01	
  

0.02	
  

0.03	
  

0.04	
  

0.05	
  

0	
   2	
   4	
   6	
   8	
   10	
  

[5
b]
	
  (M

)	
  

!me	
  (h)	
  

a)	
  zero-­‐order	
  plot	
  

R2	
  =	
  0.908	
  	
  
	
  

0.06	
  

0.10	
  

0.14	
  

0.18	
  

0.22	
  

0	
   2	
   4	
   6	
   8	
   10	
  

[5
b]

½
	
  (M

½
)	
  	
  

!me	
  (h)	
  

b)	
  one-­‐half-­‐order	
  plot	
  

R2	
  =	
  0.968	
  	
  
	
  

-­‐5.0	
  

-­‐4.5	
  

-­‐4.0	
  

-­‐3.5	
  

-­‐3.0	
  

0	
   2	
   4	
   6	
   8	
   10	
  

ln
[5
b]
	
  

!me	
  (h)	
  

c)	
  first-­‐order	
  plot	
  

R2	
  =	
  0.997	
  	
  
	
  

4	
  

6	
  

8	
  

10	
  

12	
  

0	
   2	
   4	
   6	
   8	
   10	
  

[5
b]

–½
	
  (M

–½
)	
  

!me	
  (h)	
  

d)	
  three-­‐halves-­‐order	
  plot	
  

R2	
  =	
  0.987	
  	
  
	
  

0	
  
25	
  
50	
  
75	
  
100	
  
125	
  
150	
  

0	
   2	
   4	
   6	
   8	
   10	
  

[5
b]

–1
	
  (M

–1
)	
  

	
  

!me	
  (h)	
  

e)	
  second-­‐order	
  plot	
  

R2	
  =	
  0.942	
  	
  
	
  



 143 

4.4.4.3 Kinetic Plots for (6Dipp)AgF (7b) 
 
 
 

 
 
Figure 4.21. Kinetic plots for the hydrogenolysis of (6Dipp)AgF (7b) corresponding to 
(a) zero-order, (b) one-half-order, (c) first-order, (d) three-halves-order, and (e) second-
order models with respect to silver. 
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4.4.4.4 Kinetic Plots for (7Dipp)AgF (7c) 
 
 
 

 

 
 
Figure 4.22. Kinetic plots for the hydrogenolysis of (7Dipp)AgF (7c), corresponding to 
(a) zero-order, (b) one-half-order, (c) first-order, (d) three-halves-order, and (e) second-
order models with respect to silver. 
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4.4.4.5 Derivation of Rate Law for {[(6Dipp)Ag]2(µ-OtPent)}+ (5b) 
 
 
 

 
 
Scheme 4.8 Derivation of steady-state kinetics for the hydrogenolysis of 
{[(6Dipp)Ag]2(µ-OtPent)}+[OTf]– (5b[OTf]). The overall reaction rate should appear 
second-order regardless of the relative rates of deprotonation versus dihydrogen loss (k2 
versus k–1). 
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4.4.4.6 Derivation of Rate Laws for (6Dipp)AgF (7b) and (7Dipp)AgF (7c) 
 
 
 

 
 
Scheme 4.9. Derivation of steady-state kinetics for the hydrogenolysis of LAgF (7b or 
7c), in the case of a (µ-fluoro)disilver intermediate (see Scheme 4.6). In this scheme the 
second step, the hydrogenolysis of the (µ-fluoro)disilver intermediate once formed, 
should appear first-order in disilver complex and first-order in dihydrogen, whether it 
occurs as a single step or as a series of steps analogous to the (µ-alkoxy)disilver 
hydrogenolysis depicted in Scheme 4.8. The overall reaction rate should be second-order 
in silver fluoride for each of the limiting cases depicted here. 
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Scheme 4.10. Derivation of steady-state kinetics for the hydrogenolysis of LAgF (7b or 
7c), in the case where a silver-bound fluoride deprotonates an (η2-H2) complex (see 
Scheme 4.6). In the case of preequilibrium kinetics, the reaction rate should be second-
order in silver fluoride; only if deprotonation of coordinated H2 is very fast relative to 
loss of coordinated H2 will the kinetics appear first-order in silver. 
 

4.4.5 Heterolysis of H–D 
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Schlenk flask were each degassed by two freeze-pump-thaw cycles. Deuterium oxide 

(0.088 mL, 4.9 mmol) was added to the stirred suspension via syringe, in increments of 8 

to 10 µL over 20 minutes at 0˚C. The resulting HD gas was allowed to expand into the 

PVC tubing and the NMR tube, reaching a calculated pressure of approximately 2 bar. 

The J. Young valve was sealed, and the 1H NMR spectra were recorded at intervals over 

24 h. The total amount of {[(7Dipp)Ag]2(µ-H)}+ and {[(7Dipp)Ag]2(µ-D)}+ was 

determined by integration of the 7Dipp NCH2 signal, and {[(7Dipp)Ag]2(µ-H)}+ was 

quantified by integration of the hydride signal. The ratio of deuteride to hydride complex 

was determined from five measurements taken at different times during two separate 

runs.  

4.4.6 X-Ray Diffraction Studies 

 Crystals of {[(6Dipp)Ag]2(µ-H)]+HF2
– (5b[HF2]) were grown by vapor diffusion 

of hexanes into a CH2Cl2 solution at –35˚C. A suitable crystal was selected and mounted 

on a loop with Paratone oil on a Bruker Apex-II CCD diffractometer. The crystal was 

kept cold during data collection. Using Olex2,49 the structure was solved with the 

Superflip50 structure solution program using Charge Flipping, and refined with the 

ShelXL51 refinement package using Least Squares minimization. CCDC 1048819 

contains the supplementary crystallographic data for this complex. These data can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif.  
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4.4.7 Preliminary Hydrogenolysis Experiments 

4.4.7.1 Reaction of {[(5Dipp)Ag]2(µ-OtBu)}+ (5a) with H2 

 

 

 
Figure 4.23. 1H NMR (400 MHz, THF-d8) spectrum showing the reaction of 
{[(5Dipp)Ag]2(µ-OtBu)}+ (1a), as its BF4

– salt, with H2 (3.0 bar) at 0˚C after 14 days. 
Resonances of dihydrogen and the imidazolylidene backbone (NCH2) of each silver 
complex are labeled. Integration of these resonances indicates 55% conversion of 
{[(5Dipp)Ag]2(µ-OtBu)}+ to {[(5Dipp)Ag]2(µ-H)}+. The signals of the tert-butoxy 
groups of {[(5Dipp)Ag]2(µ-OtBu)}+ and tert-butanol coalesce due to rapid exchange, 
appearing as a singlet at δ 1.12 ppm. Inset: Detail of hydride resonance.  
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4.4.7.2 Reaction of {[(5Dipp)Ag]2(µ-F)}+ (12) with H2 

 
 

 
 
Figure 4.24. 1H NMR (300 MHz, CD2Cl2) spectrum showing the reaction of 
{[(5Dipp)Ag]2(µ-F)}+, as its OTf– salt, with H2 (3.0 bar) at room temperature after 22 
hours. Resonances of dihydrogen and the imidazolylidene backbone (NCH2) of each 
silver complex are labeled. Integration of these resonances indicates {[(5Dipp)Ag]2(µ-
F)}+ comprises 64%, {[(5Dipp)Ag]2(µ-H)}+ 34%, and [(5Dipp)2Ag]+ 2% of the total. A 
faint deposition of elemental silver on the walls of the reaction tube was also observed, 
accounting for the apparent disappearance of silver from the spectrum. Inset: Detail of 
hydride resonance. 
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4.4.7.3 Reaction of (5Dipp)AgF (7a) with H2 

 
 

 
Figure 4.25. 1H NMR (300 MHz, CD2Cl2) spectrum showing the reaction of (5Dipp)AgF 
(7a) with H2 (3.0 bar) at 0˚C after 10 days. Resonances of dihydrogen and the 
imidazolylidene backbone (NCH2) of each silver complex are labeled. Integration of 
these resonances indicates (5Dipp)AgF comprises 28%, {[(5Dipp)Ag]2(µ-H)}+ 72%, and 
[(5Dipp)2Ag]+ 1% of the total. A faint deposition of elemental silver on the walls of the 
reaction tube was also observed, accounting for the apparent disappearance of silver from 
the spectrum. Inset: Detail of hydride resonance. 
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CHAPTER 5 

CLOSING A CYCLE: SILVER-CATALYZED HYDROGENATION 

OF CARBON DIOXIDE 

 

  

5.1 Background 

The activation of hydrogen and the transfer of hydride to carbon dioxide are key 

steps in the catalytic hydrogenation of CO2. The ability to heterolyze H2 (See Chapter 3) 

and reduce CO2 (See Chapter 1) at the same metal center potentially opens the door for 

CO2 hydrogenation catalysis, if those two steps can be incorportated into a 

thermodynamically favorable cycle of kinetically accessible steps. We have therefore 

investigated the application of NHC-supported silver scaffolds in the hydrogenation of 

CO2. 

  The reduction of CO2 by H2 is appealing from several perspectives.1 Hydrogen is 

a clean energy carrier, which can be renewably generated through the electrolysis or 

photolysis of water. In contrast to fossil fuels, the production and use of H2 releases no 

greenhouse gases, acidic oxide gases (COx, NOx, SOx, etc.), particulate matter, volatile 

organic compounds, or heavy metals into the atmosphere. The energy density of H2, 

however, is impractically low, requiring the development of technology for its efficient 

storage and transportation, or chemical conversion to a liquid fuel. Methods for the 

conversion of H2 to carbon-based liquids are well established but conventionally rely on 

the reaction of H2 with carbon monoxide. Mixtures of H2 and CO, known as synthesis 

gas, are generally prepared through the gasification of coal or other nonrenewable 

processes which fail to circumvent the pollution associated with the mining and 
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combustion of fossil fuels and organic matter. A sustainable, carbon-neutral, 

environmentally benign alternative for the storage of hydrogen as a carbon-based liquid 

fuel would require the direct reaction of hydrogen with atmospheric carbon dioxide. 

 The conversion of CO2 and H2 to formic acid is thermodynamically unfavorable. 

However, in the presence of stoichiometric additives such as ammonia or methanol, the 

conversion of CO2 and H2 to formate derivatives is possible (Scheme 5.1).1d Still, these 

processes are kinetically demanding and require catalysts, typically based on transition 

metals or frustrated Lewis pairs. 

 
 

 

Scheme 5.1: Thermodynamic potentials of selected CO2 hydrogenation processes.1d 

 
 
 
 A typical catalytic cycle for metal-catalyzed CO2 hydrogenation involves 

oxidative addition of a H2 to form a metal hydride, followed by insertion of CO2 into the 

resulting metal-hydrogen bond (Scheme 5.2). Other transition metal catalysts involve the 

preliminary coordination of CO2, or a derivative such as carbonate in basic media, to a 

metal center, followed by hydrogenation of the activated CO2. Metal-free catalysts based 

on frustrated Lewis pairs activate hydrogen by heterolytic cleavage of the H–H bond. 
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relatively rare but has been demonstrated for several systems in which the Lewis acid is a 

late transition metal with the potential to coordinate CO2 and possibly reduce the 

activation barrier for C–H bond formation. 

 
 

 

Scheme 5.2: A typical catalytic cycle for metal-catalyzed CO2 hydrogenation.1d 
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5.2 Results and Discussion 

5.2.1 Effect of Expanded-Ring NHC on the Carboxylation of Ag2H+ 

Previously, we observed a very slow insertion of CO2 into the Ag2H+ core of 

{[(5Dipp)Ag]2(µ-H)}+BF4
– (1a), resulting in 5% conversion to a formate-bridged 

complex {[(5Dipp)Ag]2(µ-O2CH)}+BF4
– after four days.4 In order to gauge the effect of 

expanded-ring NHC ligands as well as the potentially noninnocent HF2
– anion resulting 

from the hydrogenolysis of fluorosilver complexes, we investigated the reaction of 

{[(6Dipp)Ag]2(µ-H)}+HF2
– (1b[HF2]) with CO2 (1.7 bar) in CD2Cl2. We anticipated that 

the expanded NHC might enhance the hydricity of 1b in analogy to the effect of 

expanded-ring NHCs on the ability of fluorides (6Dipp)AgF (7b) and (7Dipp)AgF (7c) to 

deprotonate H2. 1H NMR spectroscopy revealed the partial consumption of 1b and the 

appearance of a new species, whose spectrum was consistent with the formate-bridged 

disilver complex {[(6Dipp)Ag]2(µ-O2CH)}+. Conversion of hydride to formate proceeded 

to 25% after 24 h, and to 60% after 96 h. No change was observed in the 19F NMR 

spectrum except for the growth of a resonance corresponding to SiF6
2– (δ –140 ppm), 

presumably resulting from the digestion of glass by HF2
–. Clearly the reaction of 1b[HF2] 

with CO2 was faster than that of 1a[BF4], suggesting a greater degree of hydricity for the 

expanded-ring NHC complex than for the conventional NHC complex. 

5.2.2 Decomposition of Terminal Silver Hydrides 

Based on our observation of CO2 insertion into the dinuclear hydrides 1a and 1b, 

we anticipated that any catalytic hydrogenation of CO2 by hard-soft mismatched silver 

complexes would likely involve the accumulation of intermediate formate. Excess 

formate would potentially coordinate to silver centers, breaking up the dinuclear system. 
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We therefore considered the feasibility of mononuclear silver catalysts. The heterolysis of 

H2 by a terminal silver alkoxide would in theory lead to free alcohol plus a terminal silver 

hydride. Likewise, the reaction of a terminal fluoride in the presence of a 

noncoordinating base would in theory lead to a terminal silver hydride plus a fluoride 

salt. 

Mononuclear gold(I) hydrides5 and neutral copper(I) hydride dimers6 supported 

by NHC ligands and cyclic(alkylamino)carbenes have been isolated and fully 

characterized. The thermal stability of these complexes varies, but thermal decomposition 

can occur at temperatures as low as –40˚C, in the case of [(IDipp)CuH]2, resulting in the 

deposition of elemental copper.6c 

Multiple attempts to prepare a terminal hydridosilver complex, using main-group 

hydrides or via hydrogen activation, have not resulted in an isolable product. Instead, 

elemental silver, dihydrogen, and various ligand decomposition products have resulted 

from these experiments (Scheme 5.3), suggesting that these terminal hydrides are 

thermally unstable and rapidly undergo a bimolecular reductive elimination of H2 with 

concomitant deposition of silver metal. However, we suspect that terminal hydrides, 

though not isolable, may nonetheless serve as viable transient intermediates in the 

hydrogenation of CO2. Our kinetic studies of the hydrogenolysis of silver alkoxides and 

fluorides further substantiate the hypothetical intermediacy of terminal silver hydrides 

(see Chapter 4).3 Likewise, H2 activation by simple aqueous silver salts, including silver 

formate, appears to proceed through short-lived mononuclear hydridosilver intermediates 

resulting from the heterolysis of H2 by silver-ligand bonds.4 Optimistically, the low 
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stability of terminal silver hydrides could translate to high activity under catalytic 

conditions. 

 
 

 
Scheme 5.3: The reaction of terminal alkoxide 3c with H2 (4.4 bar), including a  
hydridosilver intermediate, which was not directly observed. 
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hypothesis. Regardless of the mechanism, these results demonstrate the competence of 

silver in the conversion of H2 and CO2 to formate, with the sacrificial protonation of tert-

butoxide. 

 
 

 
Scheme 5.4: Reaction of L6Ag(OtBu), 2b, with H2 and CO2, showing two potential 
intermediates. 
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demonstrated that triethylamine displaces acetate from (6Dipp)Ag(O2CCH3) in methanol-

d4 solution to form [(6Dipp)Ag(NEt3)]+O2CCH3
–, but no formate production was 

observed when the resulting solution of [(6Dipp)Ag(NEt3)]+ was pressurized with CO2 

(1.0 bar) and H2 (2.0 bar). 

Using sodium tert-pentoxide as a stoichiometric additive, we have formally 

demonstrated the completion of a catalytic cycle (Scheme 5.5) for the following overall 

process, catalyzed by (6Dipp)Ag(OtPent), 3b: 

H2 + CO2 + NaOtPent → NaOOCH + HOtPent 

However, the incorporation of excess alkoxide into a true one-pot catalytic system 

has proven challenging because the alkoxide readily carboxylates, and the resulting 

alkylcarbonate is not sufficiently basic to displace formate from the silver center. Current 

efforts in our lab include the development of legitimately catalytic conditions and 

understanding the mechanism. 

 
 

 

Scheme 5.5: Three steps, demonstrated separately, which if combined would constitute a 
cycle for silver-catalyzed CO2 hydrogenation to formate with sacrificial alkoxide. 
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5.3 Recent Developments in Copper Catalysis 

NHC-supported copper hydrides react readily with alcohols, releasing H2. For this 

reason, we did not investigate the potential for NHC complexes of copper to facilitate 

CO2 hydrogenation. However, Watari, Ikariya, and coworkers7 recently demonstrated 

catalytic CO2 hydrogenation in the presence of DBU, forming the [DBU]H+HCO2
– salt, 

using any of several copper catalysts, including (IDipp)Cu(OtBu). These results suggest 

that the hydrogenolysis of (IDipp)Cu(OtBu), though unfavorable, affords a small 

equilibrium concentration of [(IDipp)CuH]2, which is known to readily carboxylate. The 

addition of DBU provides a driving force for catalytic turnover. Appel and coworkers8 

have also reported a well-defined triphosphine-copper catalyst for the same reaction.  

5.4 Conclusion 

 Although mononuclear silver hydrides are less thermally stable than their isolable 

dinuclear analogs, they may serve as intermediates in the silver(I)-catalyzed 

hydrogenation of CO2 to formic acid derivatives. The three key steps required for such 

catalysis have been demonstrated: H2 activation, CO2 reduction, and regeneration of the 

catalyst. Further studies are needed to determine the optimal conditions for this process 

and to elucidate the mechanism. 

5.5 Experimental 

5.5.1 General Considerations 

 Unless otherwise indicated, manipulations were performed in an MBraun 

glovebox under an atmosphere of purified nitrogen, or in sealable glassware on a Schlenk 
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line under an atmosphere of argon. Glassware and magnetic stir bars were dried in a 

ventilated oven at 160˚C, and allowed to cool under vacuum.  

 1H, and 19F NMR spectra were obtained at the Georgia Institute of Technology 

NMR Center using a Varian Vx 400 MHz spectrometer or a Varian Vx 300 MHz 

spectrometer. 1H NMR chemical shifts are referenced with respect to solvent signals9 and 

are reported relative to Si(CH3)4. 19F NMR chemical shifts were referenced to external 

neat C6F6 (Alfa-Aesar, δ −164.90 ppm) and are reported relative to CFCl3.   

5.5.2 Materials and Methods  

 1,8-Bis(dimethylamino)naphthalene (Sigma-Aldrich), DBU (Alfa-Aesar), 

diisopropylethylamine (Alfa-Aesar), triethylamine (Sigma-Aldrich), ethanolamine 

(Sigma-Aldrich), sodium tert-butoxide (TCI America), sodium 2,4,6-trimethylphenoxide 

(Acros), cesium fluoride (Alfa-Aesar),  sodium bicarbonate (Alfa-Aesar), and hydrogen 

(Flynn Scientific) were used as received. Carbon dioxide (NexAir) was passed through a 

phosphorus pentoxide (Sigma-Aldrich) to ensure dryness. 

 Compounds 1b[HF2], 3b, 3c, 7b, and 7c were prepared as described previously.3 

 Dichloromethane-d2 (Cambridge Isotope Labs) was dried by stirring overnight 

with calcium hydride (coarse powder, Alfa- Aesar), degassed by successive freeze-pump-

thaw cycles, and vacuum- transferred into oven-dried resealable Schlenk flasks. 

Tetrahydrofuran-d8 (Cambridge Isotope Labs) was dried over purple sodium 

benzophenone, degassed by successive freeze-pump-thaw cycles, and vacuum-transferred 

into oven-dried resealable Schlenk flasks. Deuterium oxide (Cambridge Isotope Labs) 

and methanol-d4 (Cambridge Isotope Labs) were used as received.  
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5.5.2.1 Reaction of {[(6Dipp)Ag]2(µ-H)}+HF2
– (1b[HF2]) with CO2 

 A solution of 1b[HF2] (15 mg, mmol) in CD2Cl2 (1.0 mL) in an NMR tube 

equipped with a J. Young valve was degassed by two freeze-pump-thaw cycles and was 

pressurized with CO2 (1.7 bar). The 1H and 19F NMR spectra were recorded at intervals 

over 4 days. New 1H NMR resonances were attributed to {[(6Dipp)Ag]2(µ-O2CH)}+HF2
–. 

 
 

Figure 5.1: 1H NMR (400 MHz, CD2Cl2) spectrum of the reaction of (1b[HF2]) with CO2 
(1.7 bar) after 24 h. 
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Figure 5.2: 1H NMR (400 MHz, CD2Cl2) spectrum of the reaction of (1b[HF2]) with CO2 
(1.7 bar) after 96 h. 
 
 

 
Figure 5.3: 19F NMR (400 MHz, CD2Cl2) spectrum of the reaction of (1b[HF2]) with 
CO2 (1.7 bar) after 96 h. 
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5.5.2.2 Reaction of (7Dipp)Ag(OtPent) (3c) with H2 and CO2 

 A solution of 3c (10 mg, mmol) in THF-d8 (1.0 mL) in an NMR tube equipped 

with a J. Young valve was degassed by two freeze-pump-thaw cycles and was 

pressurized with CO2 (1.0 bar) and H2 (2.0 bar), resulting in a total pressure of 3.0 bar. 

The 1H NMR spectrum was recorded at intervals over 24 hours. The consumption of 3c 

was observed and new 1H NMR resonances were attributed to (7Dipp)Ag(O2CH) and 

tert-pentanol. 

 
 

 
Figure 5.4: 1H NMR (400 MHz, THF-d8) spectrum of the reaction of 3c with H2 (2.0 bar, 
δ 4.54 ppm) and CO2 (1.0 bar) after 24 h. 
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sodium tert-butoxide, sodium 2,4,6-trimethylphenoxide, cesium fluoride, or sodium 

bicarbonate)  in THF-d8, CD2Cl2, methanol-d4 or a mixture of THF-d8 and D2O in an 

NMR tube equipped with a J. Young valve was degassed by two freeze-pump-thaw 

cycles and was pressurized with CO2 (1.0 bar) and H2 (2.0 bar), resulting in a total 

pressure of 3.0 bar. The 1H NMR spectrum was recorded at intervals until substantial 

decomposition was observed or until it became apparent that formate production was not 

catalytic. 

 
 

 
Figure 5.5: 1H NMR (400 MHz, THF-d8) spectrum of the reaction of 3c with H2 (2.0 bar, 
δ 4.54 ppm) and CO2 (1.0 bar) in the presence of 1,8-bis(dimethylamino)naphthalene 
(δ 2.77 ppm) after 24 h. 
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CHAPTER 6 

THERMALLY STABLE ORGANOSILVER COMPOUNDS 

 

  

6.1 Background 

  Although silver participates in a variety of interesting organic transformations, 

the organometallic chemistry of silver is underrepresented in comparison to that of most 

other transition metals, especially its congeners copper and gold. The study of 

organosilver compounds is often limited by their thermal instability and photosensitivity. 

For example, phosphine-supported alkylsilver complexes disproportionate quickly at 

room temperature, giving primarily the coupling products of organic radicals, elemental 

silver, and free phosphine.1 Many organosilver compounds which are stable at room 

temperature, such as alkynylsilver compounds and phenylsilver, form coordination 

polymers, and low solubility limits their utility. Under the right conditions, however, 

organosilver compounds have been effectively utilized as sources of carbon-based 

radicals or carbanions,2 and they are of interest as possible intermediates in silver-

mediated C–C coupling processes.3–5 

 Silver complexes with sp-hybridized carbanions are among the oldest known 

organometallic species and have found relatively widespread synthetic applications.6–9 

The reaction of silver nitrate with acetylene in basic media, first described by Berthelot,10 

results in the precipitation of silver acetylide, which disporportionates violently upon 

thermal or physical shock, leading to its use as a primary explosive.11 Substituted 

acetylides may be prepared under similar conditions and are generally stable at room 
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temperature in the dark.12 Despite their typically low solubility in common solvents, 

alkynylsilver compounds have been utilized as mildly nucleophilic acetylide sources in 

the substitution of acyl halides7 as well as activated carbonyls8 and alkyl halides9 for the 

syntheses of highly functionalized molecules. Alkynylsilver compounds are also likely 

intermediates in silver-catalyzed C–C and C–N coupling processes13 as well as the silver-

catalyzed carboxylation of terminal alkynes.14 

Complexes of silver with sp2 carbanions were also among the early known 

examples of organosilver but are generally more thermally sensitive than acetylides. 

Krause and Schmitz15 prepared phenylsilver by transmetallation from tin, lead, or 

magnesium, isolated it as a complex with AgNO3, and reported its violent decomposition 

upon evaporation of solvent. Later, alternative synthetic routes provided pure, isolable 

phenylsilver, which despite low solubility exhibits some reactivity towards acyl halides, 

producing biphenyl in addition to nucleophilic substitution products.16 Mesitylsilver is 

stable at room temperature in the dark, is soluble in most organic solvents, and has been 

characterized crystallographically as a tetramer with symmetrically bridging aryl 

ligands.17 The more sterically encumbered 2,4,6-(triphenyl)phenylsilver is also stable at 

room temperature but crystallizes as a monomer.18 Diarylargentate ions, isolated as 

lithium salts, decompose slowly at room temperature.19 Vinylsilver1c–d,20 and 

allenylsilver21 compounds have also been studied. 

Early studies of alkylsilver complexes focused on the detection of thermal 

decomposition products. Semerano and Riccoboni22 first inferred the intermediacy of 

alkylsilver compounds in the reaction of tetraalkyllead reagents with silver nitrate, which 

produces alkyl dimers and elemental silver.23 Further studies followed, demonstrating 
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silver-mediated C–C coupling of organomagnesium and -lithium reagents.3d–h Whitesides 

and coworkers carried out mechanistic studies1 of the reaction of Grignard reagents with 

phosphine-supported silver halides. The results suggested that the observed 

disproportionation to elemental silver and alkyl homocoupling products sometimes 

involves homolysis of Ag–C bonds, with release of free alkyl radicals, but in other cases 

proceeds through a concerted bimolecular process. These studies led to the development 

of methods for the silver-mediated synthesis of cycloalkanes,3a and to a variety of silver-

catalyzed C–C coupling processes.2,4 Alkylsilver complexes produced via the 

decarboxylation of silver carboxylates have also been studied in the gas phase.24 

Complexes of electron-deficient carbanions with silver are relatively stable, and 

their reaction chemistry has been more widely investigated. The addition of silver(I) 

fluoride to perfluoroolefins, for example, gives rise to perfluoroalkylsilver compounds,25 

which can mediate the carboxylation of benzyl halides26 and undergo reductive C–C 

homocoupling.27 Perfluoroalkyl and pentafluorophenyl complexes of silver, which are 

generally stable at room temperature, can also be conveniently prepared by treatment of 

AgF with the corresponding trimethylsilyl reagent.28 Synthetic applications of 

perfluoroorganosilver complexes include nucleophilic substitutions of acyl halides,29–30 

chlorosilanes,30 benzyl bromide,30 and alkyl and aryl iodides,30 as well as oxidative 

transfer of the perfluoroorganic group to elemental copper or wide variety of elements of 

groups 12–16.28b–i,30 Other halogens, alkoxy, amino, and trifluoromethyl substituents 

enhance the stability of arylsilver compounds, allowing further investigation of their 

structures and reactivity.31 Silyl-substituted alkyl complexes of silver have also been 

structurally characterized.32 Recently Shen and coworkers33 have prepared NHC-
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supported (difluoromethyl)silver complexes via metathesis of alkoxysilver precursors 

with (difluoromethyl)trimethylsilane, demonstrated silver-mediated difluoromethylation 

and difluorothiomethylation of a range of electrophiles, and developed a method for 

palladium/silver-catalyzed difluoromethylation of aryl halides.  

The insertion of CO2 into Ag–C bonds is inferred from several silver-catalyzed 

carboxylations14,34 but is difficult to study in isolation due to the transient nature of 

intermediate silver-carbanion complexes. Alkyl, aryl, vinyl, and alkynyl complexes of 

copper and gold are generally more thermally stable than their silver analogs, and the 

insertion of CO2 into Cu–C35 and Au–C36 bonds is therefore more thoroughly studied. 

This chapter describes the preparation of a series of stable mononuclear  and 

dinuclear complexes of silver with carbanion ligands featuring sp3-, sp2-, and sp-

hybridization, supported by the NHC ligand 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-

ylidene (5Dipp). We have characterized these complexes using X-ray crystallography and 

109Ag NMR spectroscopy; the dinuclear complexes exhibit significant and varied 

intermetallic interactions. The mononuclear alkylsilver compounds react as carbon 

nucleophiles, adding CO2 to form carboxylate complexes.  

6.2 Results and Discussion 

6.2.1 Terminal Organosilver Complexes 

Various synthetic approaches were employed, including transmetalation from 

organozinc compounds, Grignard reagents, and a trimethylsilyl derivative, using known 

silver precursors (5Dipp)Ag(OtBu) (3a) and (5Dipp)AgCl (2) (Scheme 6.1). The C–H 

bond of phenylacetylene proved sufficiently acidic to permit direct deprotonation by the 
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silver tert-butoxide complex. Collectively, these approaches permit the synthesis of a 

range of carbanion precursors to broaden the scope of available organosilver reagents.  

The preparation of (5Dipp)AgEt (16) via exchange of ligands between 3a and 

one-half equivalent of diethylzinc proceeds rapidly and quantitatively in C6D6 or 

tetrahydrofuran-d8 at ambient temperature (Scheme 6.1a), as judged by 1H NMR 

spectroscopy. Complex 16 can be separated from the hydrocarbon-soluble bis(tert-

butoxy)zinc byproduct by precipitation from THF with the addition of hexanes, allowing 

its isolation in 55% yield. The addition of excess diethylzinc does not impede the reaction 

or the separation of byproducts. The ethyl ligand exhibits 1H NMR resonances with 

defined 1H–107Ag and 1H–109Ag nuclear dipole coupling for both the α and β protons, 

resulting in a superimposed pair of doublets of quartets at δ –0.25 ppm for the α protons 

(Figure 6.1a) and a pair of doublets of triplets at δ 0.89 ppm for the β protons (Figure 

6.1b) in THF-d8. Because the two-bond and three-bond 1H–109Ag coupling constants are 

similar (2J(1H-109Ag) = 12.8 Hz, 3J(1H-109Ag) = 12.1 Hz), the 109Ag NMR signal resolves 

as an apparent sextet (See Figure 6.9). 
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Scheme 6.1: Syntheses of monosilver-carbanion complexes 16–19. 
 
 

 

 
Figure 6.1: 1H NMR (400 MHz, THF-d8) resonances of the (a) CH3 and (b) CH2 protons 
of the ethyl ligand of (5Dipp)AgEt (16) and corresponding splitting diagrams. 
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Rather than using dimethylzinc, we chose to prepare (5Dipp)AgMe (17) using 

methylmagnesium bromide, a relatively inexpensive source of the methyl anion, and 

found that the reaction of MeMgBr with 2 proceeds quickly in C6D6 or THF (Scheme 

6.1b). The magnesium halide byproducts were precipitated as dioxane adducts, allowing 

the isolation of 17 in 85% yield. The methyl ligand of 17 exhibits a 1H NMR doublet at δ 

–1.38 ppm in CD2Cl2. Because coupling to the 107Ag and 109Ag nuclei is not resolved, the 

observed magnitude of 10 Hz is presumed an average of the 1H coupling to the two silver 

isotopes. Indeed, a slightly greater coupling constant of 11 Hz is observed for the quartet 

resonance in the 109Ag NMR spectrum of 17 as expected due to the 15% greater 

gyromagnetic ratio of  109Ag relative to 107Ag. Complex 17 crystallizes as a monomer 

with linear coordination about silver (C–Ag–C = 180.00˚) (Figure 6.2). 

 
 

 
Figure 6.2: Solid state structure of 17, shown as 50% probability ellipsoids. H atoms 
omitted for clarity. 

 
 
 
Treatment of a suspension of (5Dipp)AgCl in C6D6 with vinylmagnesium 

bromide resulted in a clear solution within seconds, indicating rapid consumption of the 
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benzene-insoluble chlorosilver starting material. An 1H NMR spectrum recorded 15 min 

after the addition of vinylmagnesium bromide exhibited broad 1H NMR signals at δ 6.59, 

5.78, and 5.74 ppm, presumably arising from a vinylsilver intermediate. Traces of 1,3-

butadiene, the homocoupling product of the vinyl radical, were also detected. As 

disproportionation continued, the deposition of elemental silver became visibly apparent. 

After 24 hours, the integration of 1H NMR signals against an internal standard suggested 

nearly complete conversion to free 5Dipp (>95%) and 1,3-butadiene (at least 80%37) 

(Scheme 6.2). Because of the thermal instability of the vinylsilver complex, an 

analytically pure sample was not isolated. 

 
 

 
Scheme 6.2: Decomposition of inferred vinylsilver complex. 
 
 
 

Deprotonation of phenylacetylene by 3a affords (5Dipp)Ag(CCPh) (18) (Scheme 

6.1c). This reaction proceeds rapidly and quantitatively in C6D6 or THF-d8, as judged by 

1H NMR spectroscopy. Complex 18 can be separated from the t-butanol byproduct by 

precipitation from THF with the addition of hexanes, affording a 61% yield. Excess 

phenylacetylene may be used without adverse consequences and may be separated 

likewise.  

(5Dipp)Ag(CF3) (19) was prepared by treatment of 3a with 

(trifluoromethyl)trimethylsilane in THF (Scheme 6.1d). Precipitation of the product by 

addition of hexanes allows its isolation in 91% yield. The 19F NMR spectrum of 19 

L Ag C6D6, rt
24 h

Ag0  +  L  +  1/2
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exhibits distinct 19F–107Ag and 19F–109Ag nuclear dipole coupling, giving rise to a pair of 

doublets at δ –291.9 ppm with J(19F–107Ag) = 92 Hz and J(19F–109Ag) = 106 Hz. The 

109Ag NMR spectrum displays a quartet resonance, with the 106 Hz coupling constant 

observed in the 19F NMR spectrum. 

The silver-bound carbon nuclei of the terminal organosilver complexes exhibit 

13C NMR signals as pairs of coincident doublets due to well-resolved coupling to 107Ag 

and 109Ag, as shown in Table 6.1. The 13C NMR signals of the donor carbons of 19 are 

further split into quartets due to coupling to 19F (J(13CNHC–19F) = 5 Hz, J(13CR-19F) = 368 

Hz). 

 
 

Table 6.1. 13C NMR data for donor carbons of monosilver complexes (5Dipp)AgR. 

 
 

 

6.2.2 Carbanion-Bridged Disilver Complexes 

Disilver complexes were prepared either by treatment of the disilver precursor 

{[(5Dipp)Ag]2(µ-OtBu)}+BF4– (5a) with a carbanion source or by the combination of a 

neutral organosilver species with equimolar (5Dipp)AgOTf (OTf = 

trifluoromethanesulfonate), which serves as a ready source of [(5Dipp)Ag]+ (Scheme 

 R δ(13CNHC), 
ppm 

J(13CNHC–107/109Ag), 
Hz 

δ  (13CR), 
ppm 

J(13CR–107/109Ag),  
Hz 

16 Et 214.6 100/115 1.4 129/149 
17 Me 213.4 111/129 –15.7 120/138 
18 CCPh 210.1 156/181 122.3 194/224 
19 CF3 209.6 152/175 154.0 272/314 
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6.3). Analogous dinuclear complexes of gold with carbanions are likely intermediates in 

several gold-catalyzed processes.38 

These complexes feature three-center, two-electron bonding, characterized by 

short Ag–Ag distances, nonlinear geometry about each silver center, and 109Ag–107Ag 

nuclear dipolar coupling, as shown in Table 6.2. This structural motif was previously 

reported for the hydride-bridged disilver complex {[(5Dipp)Ag]2(µ-H)}+ 39 and has been 

postulated in studies of hydrido-, alkyl-, and aryldisilver cations in the gas phase.21f,h 

Crystallographically characterized neutral organosilver oligomers also exhibit similar 

three-center, two-electron bonds.11,13,25 

 

 

Table 6.2. Crystallographic Ag–Ag distances and  109Ag NMR data for carbanion-bridged 
disilver complexes. 

 R Ag–Ag (Å) δ (109Ag), ppma J(109Ag–107Ag), Hz 
8 Et 2.7091(8) 681.2 55 
9 Ph 2.8168(4) 728.4 76 
10 Me 2.706(1) b b 

11 CCPh 
3.3707(7), 
3.2845(6) 

673.9 18 

aChemical shift relative to 4.00 M AgNO3 in D2O. bNo signal detected. 
 
 
 
The ethyl-bridged {[(5Dipp)Ag]2(µ-Et)}+BF4– (20) was prepared by ligand 

exchange of 5a and one-half equivalent of diethylzinc in THF (Scheme 6.3a). 

Precipitation of 20 by the addition of hexanes results in a 90% yield. The SIPrAg 

fragments of 20 are equivalent in solution on the NMR timescale. Although coupling to 

silver is observed for both the α and β protons of the bridging ethyl ligand, the two 

isotopes of silver do not give rise to well-resolved couplings in the 1H NMR spectrum. 
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The two-bond and three-bond 1H–109Ag couplings in 20 are of approximately equal 

magnitude, and coincidentally roughly equal to the vicinal 1H–1H coupling (2J(1H-

107/109Ag) ≈ 3J(1H-107/109Ag) ≈ 3J(1H-1H) ≈ 7 Hz), resulting in 1H NMR signals resembling 

a sextet for the ethyl α protons at δ 0.64 ppm and a quintet for the β protons at δ 0.17 

ppm. The 109Ag NMR spectrum of 20 features an apparent triplet of sextets (Figure 6.3a) 

reflecting the roughly 7 Hz 1H–Ag coupling observed in the 1H NMR spectrum as well as 

substantial 109Ag–107Ag coupling (J(109Ag–107Ag) = 56 Hz). 1H-decoupling reduces the 

109Ag NMR signal of 20 to an apparent triplet, as expected (Figure 6.3b). This signal is 

more properly described as a singlet arising from the homonuclear 109Ag2 isotopologue, 

and a superimposed doublet arising from the heteronuclear 109Ag107Ag isotopologue. 

Complex 20 crystallizes with a triangular Ag–C–Ag structure featuring a Ag–Ag distance 

of 2.7091(8) Å, considerably shorter than twice the van der Waals radius of 1.72 Å 

(Figure 6.4). 

 
 

 
Scheme 6.3: Synthesis of disilver-carbanion complexes 20–23. 
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Figure 6.3. (a) 109Ag and (b) 109Ag{1H} NMR spectra (18.6 MHz, CD2Cl2) of 
{[(5Dipp)Ag]2(µ-Et)}+ (20). 2J(109Ag–1H) ≈ 3J(109Ag–1H) ≈ 7 Hz; J(109Ag–107Ag) = 57 
Hz. Insets show rationalization of the pattern as the coincident signals arising from the 
two 109Ag-containing isotopologues. 
 
 
 

 

Figure 6.4. Solid state structure of {[(5Dipp)Ag]2(µ-Et)}+ (20), shown as 50% 
probability ellipsoids. 
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The phenyl-bridged disilver complex {[(5Dipp)Ag]2(µ-Ph)}+BF4– (21) was 

prepared by treatment of 5a with diphenylzinc in THF (Scheme 6.3a) and precipitated 

with the addition of hexanes in 86% yield. As for 20, the SIPrAg fragments of 21 are 

equivalent according to NMR spectroscopy, and its solid-state structure (Figure 6.5) 

likewise features a triangular Ag–C–Ag core. Interestingly the Ag–Ag distance of 

2.8168(4) Å in 21 is somewhat longer than in 20, implying a slightly weaker interaction, 

yet the 109Ag–107Ag coupling is greater in 21 (J(109Ag–107Ag) = 76 Hz).  

 
 

 
Figure 6.5. Solid state structure of {[(5Dipp)Ag]2(µ-Ph)}+ (21), shown as 50% 
probability ellipsoids. H atoms omitted for clarity. 

 
 
 
We synthesized the methyl-bridged complex {[(5Dipp)Ag]2(µ-Me)}+OTf– (22) by 

treatment of the terminal analogue 17 with one molar equivalent of (5Dipp)AgOTf (4) in 

CH2Cl2 at –35˚C (Scheme 6.3b). Although cold reaction conditions are required to 
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prevent the formation of [(5Dipp)2Ag]+ and Ag0, the dinuclear complex 22 is stable at 

room temperature. The methyl ligand exhibits a singlet in the 1H NMR spectrum of 22, 

lacking the 1H–107/109Ag coupling observed for 17 as well as the ethyl-bridged analogue 

20. We were unable to detect a 109Ag NMR signal for 22. However, the triangular 

structural motif was confirmed by crystallography (Figure 6.6). The Ag–Ag distance of 

2.706(1) Å is virtually equivalent to that of ethyl-bridged complex 20. 

 
 

 
Figure 6.6. Solid state structure of {[(5Dipp)Ag]2(µ-Me)}+ (22), shown as 50% 
probability ellipsoids. H atoms omitted for clarity. 
 
 
 

The disilver phenylethynyl complex {[(5Dipp)Ag]2(µ-CCPh)}+BF4– (23) was 

synthesized via the deprotonation of phenylacetylene by 5a in THF (Scheme 6.3c). The 

phenylethynyl ligand of 23 appears to bridge the metal centers symmetrically on the 

NMR timescale, but the complex crystallizes in an asymmetric σ,π binding mode, similar 

to that of the analogous gold complex reported by Brown and Widenhoefer.38c,40 
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Two crystallographically distinct molecules, one of which is shown in Figure 6.7, 

are present in the asymmetric unit of 11. In contrast to the gold analogue, in which the 

Au–Au distance (3.6235(9) Å) is greater than twice the van der Waals radius of gold 

(1.66 Å), the Ag–Ag distance of 23 (3.3707(7) Å and 3.2845(6) Å) is shorter than twice 

the van der Waals radius of silver, consistent with some Ag–Ag interaction. In fact, the π-

bound silver center is not equidistant from the two alkynyl carbon atoms but lies 

somewhat closer to the terminal carbon, resulting in a T-shaped binding mode.41 We 

therefore believe an attractive intermetallic interaction influences the geometry of 23. The 

complex exhibits an apparent triplet, actually a singlet and coincident doublet, in its 109Ag 

NMR spectrum. At 18 Hz, the 109Ag–107Ag dipolar coupling of 23 is considerably less 

than that of 20 (55 Hz) and 21 (76 Hz).  

 
 

 
Figure 6.7. Solid state structure of {[(5Dipp)Ag]2(µ-CCPh)}+ (23), shown as 50% 
probability ellipsoids. H atoms omitted for clarity. 
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6.2.3 Reactivity of Terminal Alkylsilver Complexes with CO2 

We anticipated that the silver-bound carbanions should exhibit nucleophilic 

behavior. We therefore investigated the reactivity of the NHC-supported organosilver 

compounds towards CO2. Complex 16 reacts with CO2 (1.0 bar) in CD2Cl2, fully 

converting to (5Dipp)Ag(O2CEt) (24) in 16 h (Scheme 6.4). Evaporation of volatiles 

allows isolation of 12 in analytical purity. Complex 17 reacts relatively slowly with CO2. 

After 92 h under CO2 (1.0 bar) in THF-d8, 79% conversion to (5Dipp)Ag(O2CMe) is 

observed,42 while 12% of 17 is unreacted and two unidentified new species comprise 9% 

of the products, as quantified by integration of 1H NMR signals against an internal 

standard.  

 
 

 
Scheme 6.4. Reaction of (5Dipp)AgEt (16) with CO2. 
 
 
 

6.3 Conclusion 

Because NHC ligands, especially those featuring a saturated amidine heterocycle 

and 2,6-diisopropylphenyl N-substituents, e.g. 5Dipp and 6Dipp, have been utilized as 

ancillary ligands to support a number of otherwise thermally unstable complexes of 

silver,33,39,42,43 we sought to use this class of ligand to prepare a series of mononuclear 

silver-carbanion complexes (Scheme 1), as well as a series of carbanion-bridged disilver 

complexes  (Scheme 3), which are stable at room temperature. These series include donor 
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carbons ranging from sp3 to sp2 to sp hybridization, and we therefore suspect the stability 

imparted by the NHC ligands as well as the synthetic methods demonstrated here may be 

generalized to include a wide variety of carbanion ligands. Among these complexes are 

examples of simple alkylsilver complexes which are stable at room temperature. The 

dinuclear series includes several examples of three-center, two-electron systems featuring 

Ag–Ag interactions, as well as an alkynyl-bridged disilver complex with a T-shaped 

coordination mode. Clean insertion of CO2 is observed for the terminal ethyl complex 16, 

while the less nucleophilic methyl analog 17 reacts relatively slowly. 

6.4 Experimental 

6.4.1 General Considerations 

Unless otherwise indicated, manipulations were performed in an MBraun 

glovebox under an inert atmosphere of purified nitrogen (NexAir), or in sealable 

glassware on a Schlenk line under an atmosphere of argon (NexAir). Glassware and 

magnetic stir bars were dried in a ventilated oven at 160°C and were allowed to cool 

under vacuum. 

1H, 13C, 19F, and 109Ag NMR spectra were obtained at the Georgia Institute of 

Technology NMR Center using a Bruker DSX 400 MHz spectrometer or a Varian Vx 400 

MHz spectrometer. 1H and 13C NMR chemical shifts were referenced with respect to 

solvent signals and are reported relative to tetramethylsilane. 109Ag NMR chemical shifts 

were referenced with respect to an external solution of 4.00 M silver nitrate (Alfa-Aesar) 

in deuterium oxide (defined as δ 0 ppm). 19F NMR chemical shifts were referenced to 
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external neat hexafluorobenzene (Alfa-Aesar, δ −164.90 ppm) and are reported with 

respect to trichlorofluoromethane. 

Infrared spectra were collected using microcrystalline samples on a Bruker Alpha-

P infrared spectrometer equipped with an attenuated total reflection (ATR) attachment. 

Samples were exposed to air as briefly as possible prior to data collection. 

Elemental analyses were performed by Atlantic Microlab in Norcross, Georgia. 

6.4.2 Methods and Materials 

Dichloromethane (BDH), diethyl ether (EMD Millipore Omnisolv), hexanes 

(EMD Millipore Omnisolv), and THF (EMD Millipore Omnisolv) were sparged with 

argon for 30 minutes prior to first use and dried over 3 Å molecular sieves (1/16”, Alfa-

Aesar). Anhydrous benzene (EMD Millipore Drisolv) and anhydrous pentane (EMD 

Millipore Drisolv), were stored over 3Å molecular sieves. Dichloromethane-d2 

(Cambridge Isotope Labs) was dried over calcium hydride overnight, vacuum-transferred 

to an oven-dried sealable flask, and degassed by successive freeze-pump-thaw cycles. 

Tetrahydrofuran-d8 (Cambridge Isotope Labs) and benzene-d6 (Cambridge Isotope Labs) 

were dried over sodium benzophenone ketyl, vacuum-transferred to an oven-dried 

sealable flask, and degassed by successive freeze-pump-thaw cycles. Deuterium oxide 

(Cambridge Isotope Labs) was used as received. 

Carbon dioxide (NexAir) was passed through phosphorus pentoxide (Sigma-

Aldrich) to ensure dryness. Phenylacetylene (Sigma-Aldrich) and 

(trifluoromethyl)trimethylsilane (Sigma-Aldrich) were dried by passing through activated 

alumina. Diethylzinc (Acros, 1M in hexanes), 4,4′-dimethylbiphenyl (Sigma-Aldrich), 

diphenylzinc (Strem), methylmagnesium bromide (Strem, 3M in diethyl ether), and 



 190 

vinylmagnesium bromide (Sigma-Aldrich, 0.70 M in THF) were used as received. 

Compounds 3a,39,44 2,45  5a,39  and 439  were prepared according to published procedures. 

 6.4.2.1 (5Dipp)AgEt (16) 

A solution of diethylzinc (1.0 M in hexanes, 0.21 mL, 0.21 mmol) was added 

dropwise to a solution of 3a (200 mg, 0.350 mmol) in THF (2 mL). The solution was 

stirred for 10 minutes, and then hexanes (15 mL) was added, causing the product to 

slowly crystallize. The crystals were allowed to grow for 3 days at –35˚C. The precipitate 

was collected on a fritted glass filter by vacuum filtration, washed with hexanes (3 × 2 

mL), and dried in vacuo for 30 minutes, affording 16 as a white powder (111 mg, 0.194 

mmol, 55%). Compound 16 hydrolyzes readily in the presence of atmospheric moisture. 

1H NMR (400 MHz, THF-d8): δ (ppm) 7.34 (mult, 2H, para-CH), 7.24 (mult, 4H, meta-

CH), 3.99 (s, 4H, NCH2), 3.19 (sept, J = 6.9 Hz, 4H, CH(CH3)2), 1.38 (d, J = 6.9 Hz, 

12H, CH(CH3)2), 1.32 (d, J = 6.9 Hz, 12H, CH(CH3)2), 0.89 (app dtd, 3J(1H-109Ag) = 

12.1 Hz, 3J(1H-107Ag) = 10.7 Hz, 3J(1H-1H) = 8.0 Hz, 3H, CH2CH3), –0.25 (app dqd, 

2J(1H-109Ag) = 12.8 Hz, 2J(1H-107Ag) = 11.4 Hz, 3J(1H-1H) = 8.0 Hz, 2H, CH2CH3). 

13C{1H} NMR (100 MHz, THF-d8): δ (ppm) 214.6 (app dd, J(13C-109Ag) = 115 Hz, 

J(13C-107Ag) = 100 Hz, NCAg), 147.5 (ortho-C), 136.5 (ipso-C), 129.7 (para-C), 124.6 

(meta-C), 54.4 (d, J(13C-107/109Ag) = 4 Hz, NCH2), 29.4 (CH(CH3)2), 25.4 (CH(CH3)2), 

24.0 (CH(CH3)2), 16.9 (d, J(13C-Ag) = 4 Hz, CH2CH3), 1.4 (app dd, J(13C-109Ag) = 149 

Hz, J(13C-107Ag) = 129 Hz, CH2CH3). 109Ag NMR (18.6 MHz, THF-d8): δ (ppm) 790.3 

(sextet, J (109Ag-1H) = 12.5 Hz). IR: ν (cm–1) 2961, 2931, 2837, 1490, 1463, 1275, 1099, 

1049 (s), 804, 758. Elemental analysis calculated for C29H43N2Ag: C, 66.03; H, 8.05; N, 

5.31. Found: C, 65.85; H, 8.21; N, 5.17.  
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Figure 6.8. 1H NMR (400 MHz, THF-d8) spectrum of (5Dipp)AgEt (16). 
 
 
 

 
Figure 6.9. 109Ag NMR (18.6 MHz, THF-d8)  signal of (5Dipp)AgEt (16). 2J(109Ag–1H) 
≈ 3J(109Ag–1H) ≈ 12.5 Hz. The outermost peaks of the sextet are not resolved from noise, 
but the relative intensities of the four inner peaks are consistent with a sextet 
(1:5:10:10:5:1) rather than a quartet (1:3:3:1). Compare to the quartet 109Ag NMR signal 
of 17 in Figure S5. 
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6.4.2.2 (5Dipp)Ag(CH3) (17) 

A solution of methylmagnesium bromide (3.0 M in THF, 0.30 mL, 0.90 mmol) 

was added to a suspension of 2 (400 mg, 0.75 mmol) in THF (2 mL). The mixture was 

stirred until it became clear, less than 5 minutes. Dioxane (18 mL) was added and the 

mixture was stirred for 16 h, inducing precipitation of a magnesium halides as a white 

powder, which was removed by filtration through Celite. Volatiles were removed from 

the filtrate in vacuo, and the product was extracted from the residue with CH2Cl2. The 

extract was filtered through Celite, the solvent was removed in vacuo, and the residue 

was dried in vacuo for 2 h, affording 17 as a white powder (341 mg, 0.66 mmol, 88%). 

Diffraction quality crystals were grown by diffusion of pentane vapor into a solution of 

17 in CH2Cl2 at –35˚C over 3 days. Compound 17 hydrolyzes readily in the presence of 

atmospheric moisture. 1H NMR (400 MHz, CD2Cl2): δ (ppm) 7.45 (t, J = 7.8 Hz, 2H, 

para-CH), 7.29 (d, J = 7.8 Hz, 4H, meta-CH), 3.99 (s, 4H, NCH2), 3.13 (sept, J = 6.9 Hz, 

4H, CH(CH3)2), 1.37 (d, J = 6.9 Hz, 12H, CH(CH3)2), 1.35 (d, J = 6.9 Hz, 12H, 

CH(CH3)2), –1.38 (d, J(1H-Ag) = 10 Hz, 3H, AgCH3). 13C{1H} NMR (100 MHz, 

CD2Cl2): δ (ppm) 213.4 (app dd, J(13C-109Ag) = 129 Hz, J(13C-107Ag) = 111 Hz, NCAg), 

147.4 (ortho-C), 135.7 (ipso-C), 129.6, (para-C), 124.6 (meta-C), 54.1 (d, J(13C-

107/109Ag) = 5 Hz, NCH2), 29.2 (CH(CH3)2), 25.3 (CH(CH3)2), 24.1 (CH(CH3)2), –15.7 

(app dd, J(13C-109Ag) = 138 Hz, J(13C-107Ag) = 120 Hz, AgCH3). 109Ag NMR (18.6 MHz, 

CD2Cl2): δ (ppm) 842.1 (q, J(109Ag-1H) = 11.2 Hz). IR: ν (cm–1) 2962, 2926, 2870, 1481, 

1467, 1457, 1328, 1265, 1258, 809, 763. Elemental analysis calculated for C28H41N2Ag: 

C, 65.49; H, 8.05; N, 5.46. Found: C, 65.73; H, 7.89; N, 5.59.  
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Figure 6.10. 1H NMR (400 MHz, CD2Cl2) spectrum of (5Dipp)AgMe (17). 
 
 
 

 
Figure 6.11. 109Ag NMR (18.6 MHz, CD2Cl2) spectrum of (5Dipp)AgMe (17). 2J(109Ag–
1H) = 11.2 Hz. Note the relative peak intensities are consistent with a quartet (1:3:3:1) in 
contrast to the pseudo-sextet 109Ag NMR signal of (5Dipp)Ag(CH2CH3) in Figure S3. 
 
 
 
6.4.2.3 (5Dipp)Ag(CCPh) (18) 
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0.350 mmol) in THF (2 mL). The solution was stirred for 10 minutes, and then hexanes 

(15 mL) was added, causing the product to slowly crystallize. The crystals were allowed 
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to grow for 3 days at –35˚C. The precipitate was collected on a fritted glass filter by 

vacuum filtration, washed with hexanes (3 × 2 mL), and dried in vacuo for 30 minutes, 

affording 18 as a white powder (128 g, 0.214 mmol, 61%). Compound 18 is air- and 

moisture-stable in the solid state and in solution. 1H NMR (400 MHz, CD2Cl2): δ (ppm) 

7.50 (t, J = 7.8 Hz, 2H, Dipp-para-CH), 7.33 (d, J = 7.8 Hz, 4H, Dipp-meta-CH), 7.19 (d, 

J = 7 Hz, 2H, CCPh-ortho-CH), 7.11 (t; J = 7 Hz; 2H; CCPh-meta-CH), 7.19 (t, J = 7 Hz, 

1H, CCPh-para-CH), 4.05 (s, 4H, NCH2), 3.11 (sept, J = 6.9 Hz, 4H, CH(CH3)2), 1.39 (d, 

J = 6.9 Hz, 12H, CH(CH3)2), 1.38 (d, J = 6.9 Hz, 12H, CH(CH3)2). 13C{1H} NMR (100 

MHz, CD2Cl2): δ (ppm) 210.1 (app dd, J(13C-109Ag) = 181 Hz, J(13C-107Ag) = 156 Hz, 

NCAg), 147.2 (Dipp-ortho-C), 135.2 (Dipp-ipso-C), 131.7 (CCPh-ortho-C), 130.1, 

(Dipp-para-C), 128.0 (CCPh-meta-C), 127.4 (CCPh-para-C), 125.7 (CCPh-ipso-C), 

124.9 (Dipp-meta-C), 122.3 (app dd, J(13C-109Ag) = 224 Hz, J(13C-107Ag) = 194 Hz, 

CCPh) 106.5 (J(13C-107/109Ag) = 54 Hz, CCPh), 54.3 (d, J(13C-107/109Ag) = 6 Hz, NCH2), 

29.2 (CH(CH3)2), 25.6 (CH(CH3)2), 24.1 (CH(CH3)2). IR: ν (cm–1) 3076, 2963, 2929, 

2871, 2093 (C≡C), 1597, 1486, 1464, 1270, 1059, 806, 758, 697, 622, 548, 528, 445. 

Elemental analysis calculated for C35H43N2Ag: C, 70.11; H, 7.23; N, 4.67. Found: C, 

69.88; H, 7.24; N, 4.70.  
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Figure 6.12. 1H NMR (400 MHz, CD2Cl2) spectrum of (5Dipp)Ag(CCPh) (18). 
 
 
 
6.4.2.4 (5Dipp)Ag(CF3) (19) 

(Trifluoromethyl)trimethylsilane (0.155 mL, 1.05 mmol) was added to a solution 

of 3a (500 mg, 0.875 mmol) in THF (4 mL). The mixture was stirred for 30 min, and then 

hexanes (15 mL) was added, causing the product to precipitate. The precipitate was 

collected on a fritted glass filter by vacuum filtration, washed with hexanes (3 × 2 mL), 

and dried in vacuo for 30 minutes, affording 19 as a white powder (451 mg, 0.795 mmol, 

91%). Compound 19 hydrolyzes readily in the presence of atmospheric moisture. 1H 

NMR (400 MHz, CD2Cl2): δ (ppm) 7.46 (t, J = 7.8 Hz, 2H, para-CH), 7.30 (d, J = 7.8 

Hz, 4H, meta-CH), 4.06 (s, 4H, NCH2), 3.08 (sept, J = 6.9 Hz, 4H, CH(CH3)2), 1.35 (d, J 

= 6.9 Hz, 12H, CH(CH3)2), 1.33 (d, J = 6.9 Hz, 12H, CH(CH3)2. 13C{1H} NMR (100 

MHz, CD2Cl2): δ (ppm) 209.6 (app ddq, J(13C-109Ag) = 175 Hz, J(13C-107Ag) = 152 Hz, 

J(13C-19F) = 5 Hz, NCAg), 154.0 (app qdd, J(13C-19F) = 368 Hz, J(13C-109Ag) = 314 Hz, 

J(13C-107Ag) = 272 Hz, CF3), 147.2 (Dipp-ortho-C), 134.9 (Dipp-ipso-C), 130.2, (Dipp-
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para-C), 124.9 (Dipp-meta-C), 54.4 (d, J(13C-107/109Ag) = 5 Hz, NCH2), 29.2 (CH(CH3)2), 

25.3 (CH(CH3)2), 24.1 (CH(CH3)2). 19F NMR (376 MHz, CD2Cl2): δ (ppm) 251.3 (app 

dd, J(107Ag-19F) = 92 Hz, J(109Ag-19F) = 106 Hz). 109Ag NMR (18.6 MHz, CD2Cl2): δ 

(ppm) 601.3 (q, J(109Ag-19F) = 106 Hz). IR: ν (cm–1) 2964, 2926, 2869, 1488, 1469, 

1272, 1110, 938 (s), 807, 762, 446. Elemental analysis calculated for C28H38N2AgF3: C, 

59.26; H, 6.75; N, 4.94. Found: C, 59.11; H, 6.78; N, 5.00.  

 
 

 
Figure 6.13. 1H NMR (400 MHz, CD2Cl2) spectrum of (5Dipp)Ag(CF3) (19). 
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Figure 6.14. 19F NMR (376 MHz, CD2Cl2) spectrum of (5Dipp)Ag(CF3) (19). J(107Ag-
19F) = 92 Hz, J(109Ag-19F) = 106 Hz. 
 
 
 

 
Figure 6.15. 109Ag NMR (18.6 MHz, CD2Cl2) spectrum of (5Dipp)Ag(CF3)  (19). 
J(109Ag–19F) = 107 Hz. 
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formation of a white precipitate. The precipitate was collected on a fritted glass filter by 

vacuum filtration, washed with hexanes (3 × 2 mL), and dried in vacuo for 30 minutes, 

affording 20 as a white powder (171 mg, 0.154 mmol, 90%). Diffraction-quality crystals 

were grown by diffusion of Et2O vapor into a solution of 20 in CH2Cl2 at –35˚C for 48 

hours. Compound 20 hydrolyzes readily in the presence of atmospheric moisture. 1H 

NMR (400 MHz, CD2Cl2): δ (ppm) 7.40 (t, J = 7.8 Hz, 4H, para-CH), 7.18 (d, J = 7.8 

Hz, 8H, meta-CH), 4.02 (s, 8H, NCH2), 2.92 (sept, J = 6.9 Hz, 8H, CH(CH3)2), 1.28 (d, J 

= 6.9 Hz, 24H, CH(CH3)2), 1.01 (d, J = 6.9 Hz, 24H, CH(CH3)2), 0.64 (app sext, 2J(1H-

109Ag) ≈ 2J(1H-107Ag) ≈ 3J(1H-1H) ≈ 7 Hz, 2H, CH2CH3), 0.17 (app quin, 3J(1H-109Ag) ≈ 

3J(1H-107Ag) ≈ 3J(1H-1H) ≈ 7 Hz, 3H, CH2CH3). 13C{1H} NMR (100 MHz, CD2Cl2): δ 

(ppm) 208.8 (mult, NCAg), 146.9 (ortho-C), 135.0 (ipso-C), 130.0 (para-C), 124.8 

(meta-C), 54.4 (app 1:1:1 t, J(13C-107/109Ag) = 6 Hz, NCH2), 28.9 (CH(CH3)2), 25.3 

(CH(CH3)2), 23.9 (CH(CH3)2), 13.4 (t, J(13C-Ag) = 2 Hz, CH2CH3), –1.9 (app tt, J(13C-

109Ag) = 74 Hz, J(13C-107Ag) = 64 Hz, CH2CH3). 109Ag NMR (18.6 MHz, CD2Cl2): δ 

(ppm) 681.2 (app t of sext, 3J(1H-109Ag) ≈ 2J(1H-109Ag) ≈ 7 Hz, J(109Ag-107Ag = 55 Hz). 

109Ag{1H} NMR (18.6 MHz, CD2Cl2): δ (ppm) 681.2 (app t, J(109Ag-107Ag = 55 Hz). IR: 

ν (cm–1) 2957, 2929, 2871, 1490, 1462, 1275, 1099, 1056 (s), 803, 756. Elemental 

analysis calculated for C56H81N4Ag2BF4: C, 60.44; H, 7.34; N, 5.03. Found: C, 60.47; H, 

7.33; N, 4.91.  
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Figure 6.16. 1H NMR (400 MHz, CD2Cl2) spectrum of {[(5Dipp)Ag]2(µ-Et)}+ (20). 
 
 
 
6.4.2.6 {[(5Dipp)Ag]2(µ-Ph)}+BF4– (21) 

Diphenylzinc (23 mg, 0.10 mmol) was added to a solution of 5a (200 mg, 0.173 

mmol) in THF (2 mL). The solution was stirred for 10 minutes, and then hexanes (15 

mL) was added with stirring, causing the formation of a white precipitate. The precipitate 

was collected on a fritted glass filter by vacuum filtration, washed with hexanes (3 × 2 

mL), and dried in vacuo for 30 minutes, affording 21 as a white powder (173 mg, 0.149 

mmol, 86%). Diffraction-quality crystals were grown by diffusion of pentane vapor into a 

solution of 21 in THF at –35˚C for 48 hours. Compound 21 hydrolyzes readily in the 

presence of atmospheric moisture. 1H NMR (400 MHz, CD2Cl2): δ (ppm) 7.38 (t, J = 7.8 

Hz, 4H, Dipp-para-CH), 7.12 (d, J = 7.8 Hz, 8H, Dipp-meta-CH), 6.99 (t, J = 7.5 Hz, 1H, 

µ-Ph-para-CH), 6.69 (t, J = 7.5 Hz, 2H, µ-Ph-meta-CH), 6.14 (mult, 2H, µ-Ph-ortho-

CH), 3.96 (s, 8H, NCH2), 2.82 (sept, J = 6.9 Hz, 8H, CH(CH3)2), 1.22 (d, J = 6.9 Hz, 

24H, CH(CH3)2), 0.84 (d, J = 6.9 Hz, 24H, CH(CH3)2). 13C{1H} NMR (100 MHz, 
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CD2Cl2): δ (ppm) 208.9 (mult, NCAg), 146.9 (Dipp-ortho-C), 144.74 (t, J(13C-Ag) = 3 

Hz, µ-Ph-C) 136.0 (app tt, J(13C-109Ag) = 94 Hz, J(13C-107Ag) = 81 Hz, µ-Ph-ipso-C), 

134.7 (Dipp-ipso-C), 131.5 (µ-Ph-para-C), 130.0, (Dipp-para-C), 127.7 (t, J(13C-Ag) = 3 

Hz, µ-Ph-C), 124.8 (Dipp-meta-C), 54.3 (app 1:1:1 t, J(13C-107/109Ag) = 3 Hz, NCH2), 

28.9 (CH(CH3)2), 25.1 (CH(CH3)2), 24.0 (CH(CH3)2). 109Ag NMR (18.6 MHz, CD2Cl2): 

δ (ppm) 728.4 (app t, J(109Ag-107Ag) = 76 Hz). IR: ν (cm–1) 2956, 2929, 2872, 1490, 

1460, 1273, 1098, 1051 (s), 804, 769, 758. Elemental analysis calculated for 

C31H47N2AgO: C, 62.08; H, 7.03; N, 4.83. Found: C, 62.03; H, 6.91; N, 4.81. 

 
 

Figure 6.17. 1H NMR (400 MHz, CD2Cl2) spectrum of {[(5Dipp)Ag]2(µ-Ph)}+ (21). 
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Figure 6.18. 109Ag NMR (18.6 MHz, THF-d8)  signal of {[(5Dipp)Ag]2(µ-Ph)}+ (21). 
J(109Ag–107Ag) = 76 Hz. 109Ag–1H coupling is not observed. 
 
 
 
6.4.2.7 {[(5Dipp)Ag]2(µ-CH3)}+OTf– (22) 

A solution of 17 (50 mg, 0.097 mmol) in THF (2 mL) and a solution of 4 (63 mg, 

0.097 mmol) in THF (2 mL) were chilled to –35˚C. The (5Dipp)Ag(OTf) solution was 

added to the solution of 12 dropwise with stirring. The mixture was allowed to warm to 

room temperature. After 15 min, the mixture was filtered to remove traces of a barely 

perceptible gray precipitate. Diethyl ether (15 mL) was added to the filtrate, causing the 

formation of a white precipitate, which was collected on a fritted glass filter by vacuum 

filtration, washed with diethyl ether (3 × 2 mL), and dried in vacuo for 2 h, affording the 

product as a white powder (94 mg, 0.081 mmol, 84%). Diffraction-quality crystals were 

grown by the diffusion of a layer of Et2O into a CH2Cl2 solution of 22 at –35˚C over 3 

days. Compound 22 hydrolyzes readily in the presence of atmospheric moisture. 1H NMR 

(400 MHz, CD2Cl2): δ (ppm) 7.40 (t, J = 7.8 Hz, 4H, para-CH), 7.18 (d, J = 7.8 Hz, 8H, 

meta-CH), 3.98 (s, 8H, NCH2), 2.89 (sept, J = 6.9 Hz, 8H, CH(CH3)2), 1.27 (d, J = 6.9 
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Hz, 24H, CH(CH3)2), 0.98 (d, J = 6.9 Hz, 24H, CH(CH3)2), –0.87 (s, 3H, AgCH3). 

13C{1H} NMR (100 MHz, CD2Cl2): δ (ppm) 208.4 (app dd, J(13C-109Ag) = 216 Hz, 

J(13C-107Ag) = 186 Hz, NCAg), 146.9 (ortho-C), 134.8 (ipso-C), 130.1, (para-C), 124.9 

(meta-C), 121.4 (q, J(13C-19F) = 319 Hz, O3SCF3), 54.4 (NCH2), 28.9 (CH(CH3)2), 25.4 

(CH(CH3)2), 23.9 (CH(CH3)2), –15.7 (dd, J(13C-109Ag) = 138 Hz, J(13C-107Ag) = 120 Hz, 

AgCH3), Ag2CH3 not detected. 109Ag NMR (18.6 MHz, CD2Cl2): no signal observed. IR: 

ν (cm–1) 2961, 2927, 2872, 1488, 1457, 1267 (s), 1149, 1031, 804, 759, 637 (s). 

Elemental analysis calculated for C56H79N4Ag2F3O3S: C, 57.93; H, 6.86; N, 4.83. Found: 

C, 58.14; H, 6.80; N, 4.89. 

 
 

 
Figure 6.19. 1H NMR (400 MHz, CD2Cl2) spectrum of {[(5Dipp)Ag]2(µ-Me)}+ (22). 
Diethyl ether (q, δ 3.41 ppm; t, δ 0.99 ppm) is present. 
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Figure 6.20. No signal is apparent in the 109Ag NMR (18.6 MHz, THF-d8) spectrum of 
{[(5Dipp)Ag]2(µ-Me)}+ (22). 
 
 
6.4.2.8 {[(5Dipp)Ag]2(µ-CCPh)}+BF4– (23) 

Phenylacetylene (0.023 mL, 0.21 mmol) was added to a solution of 5a (200 mg, 

0.173 mmol) in THF (2 mL). The solution was stirred for 10 minutes, and then hexanes 

(15 mL) was added with stirring, causing the formation of a white precipitate. The 

precipitate was collected on a fritted glass filter by vacuum filtration, washed with 

hexanes (3 × 2 mL), and dried in vacuo for 30 minutes, affording the product as a white 

powder (188 mg, 0.159 mmol, 92%). Diffraction-quality crystals were grown by 

diffusion of pentane vapor into a solution of 23 in THF at –35˚C for 48 hours. Compound 

23 is air- and moisture-stable in the solid state and in solution. 1H NMR (400 MHz, 

CD2Cl2): δ (ppm) 7.40 (t, J = 7.8 Hz, 4H, Dipp-para-CH), 7.25 (t, J = 8 Hz, 1H, CCPh-

para-CH), 7.19 (d, J = 8 Hz, 8H, Dipp-meta-CH), 7.12 (t; J = 7.2 Hz, 8 Hz; 2H; CCPh-

meta-CH), 6.65 (d, J = 6.9 Hz, 2H, CCPh-ortho-CH), 4.03 (s, 8H, NCH2), 2.96 (sept, J = 

6.9 Hz, 8H, CH(CH3)2), 1.29 (d, J = 6.9 Hz, 24H, CH(CH3)2), 1.05 (d, J = 6.9 Hz, 24H, 

CH(CH3)2). 13C{1H} NMR (100 MHz, CD2Cl2): δ (ppm) 207.3 (app dd, J(13C-109Ag) = 

-200-50150350550750950
δ (ppm)
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233 Hz, J(13C-107Ag) = 201 Hz, NCAg), 147.0 (Dipp-ortho-C), 134.7 (Dipp-ipso-C), 

132.9 (CCPh-ortho-C), 130.2, (Dipp-para-C), 129.3 (CCPh-para-C), 128.4 (CCPh-meta-

C), 125.0 (CCPh-ipso-C) 124.8 (Dipp-meta-C), 121.3 (mult, CCPh), 98.5 (mult, CCPh) 

54.4 (app 1:1:1 t, J(13C-107/109Ag) = 4 Hz, NCH2), 29.0 (CH(CH3)2), 25.5 (CH(CH3)2), 

24.0 (CH(CH3)2). 109Ag NMR (18.6 MHz, CD2Cl2): δ (ppm) 673.9 (app t, J(109Ag-107Ag) 

= 18 Hz). IR: ν (cm–1) 2961, 2930, 2871, 1487, 1459, 1272, 1048 (s), 804, 756, 443. 

Elemental analysis calculated for C62H81N4Ag2BF4: C, 62.85; H, 6.89; N, 4.75. Found: C, 

62.85; H, 6.96; N, 5.76. 

 
 

 
Figure 6.21. 1H NMR (400 MHz, CD2Cl2) spectrum of {[(5Dipp)Ag]2(µ-CCPh)}+ (23). 
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Figure 6.22. 109Ag NMR (18.6 MHz, THF-d8)  signal of {[(5Dipp)Ag]2(µ-CCPh)}+ (23). 
J(109Ag–107Ag) = 18 Hz.  
 
 
 
6.4.2.9 (5Dipp)Ag(O2CEt) (24) 

A solution of (5Dipp)AgEt (120 mg, 0.227 mmol) in CD2Cl2 (1.0 mL) in a J. 

Young NMR tube was degassed by two freeze-pump-thaw cycles, and the tube was 

backfilled with carbon dioxide (1.0 bar). After 16 h, the 1H and 13C NMR spectra of the 

product were recorded. The tube was opened to air and no more effort was made to 

maintain an inert atmosphere. The solution was transferred to a vial and the volatiles were 

removed in vacuo. The residue was dried for 4 h at 40˚C, affording 24 as a white powder 

(123 mg, 0.216 mmol, 95%). Compound 24 is air- and moisture-stable in the solid state 

and in solution. 1H NMR (400 MHz, CD2Cl2): δ (ppm) 7.46 (t, J = 7.8 Hz, 2H, para-CH), 

7.30 (d, J = 7.8 Hz, 4H, meta-CH), 4.08 (s, 4H, NCH2), 3.09 (sept, J = 6.9 Hz, 4H, 

CH(CH3)2), 1.95 (q, J = 7.6 Hz, 2H, CH2CH3), 1.36 (d, J = 6.9 Hz, 12H, CH(CH3)2), 1.35 

(d, J = 6.9 Hz, 12H, CH(CH3)2), 0.87 (t, J = 7.6 Hz, 3H, CH2CH3). 13C{1H} NMR (100 

MHz, CD2Cl2): δ (ppm) 207.8 (app dd, J(13C-109Ag) = 247 Hz, J(13C-107Ag) = 205 Hz, 

NCAg), 180.6 (O2C) 147.2 (Dipp-ortho-C), 135.2 (Dipp-ipso-C), 130.1, (Dipp-para-C), 

124.9 (Dipp-meta-C), 54.5 (d, J(13C-107/109Ag) = 9 Hz, NCH2), 29.4 (CH2CH3), 29.2 
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(CH(CH3)2), 25.4 (CH(CH3)2), 24.1 (CH(CH3)2) 11.1 (CH2CH3). IR: ν (cm–1) 2965, 

2920, 2868,  2850, 1727 (C=O), 1588, 1488, 1461, 1385, 1275, 1058, 805, 760. 

Elemental analysis calculated for C30H43N2AgO2: C, 63.04; H, 7.58; N, 4.90. Found: C, 

62.77; H, 7.64; N, 4.86.  

 
 

 
Figure 6.23. 1H NMR (400 MHz, CDCl3) spectrum of (5Dipp)Ag(O2CEt) (24). 
 
 
 
6.4.2.10 Reaction of Vinylmagnesium Bromide with (5Dipp)AgCl (2) 

A solution of vinylmagnesium bromide (0.70 M in THF) was added to a 

suspension of 2 (30 mg, 0.056 mmol) in C6D6, resulting instantly in transiently clear 

solution from which elemental silver gradually precipitated. The 1H NMR spectrum was 

recorded after 15 min (see Figure 6.24). The reaction was repeated with the addition of an 

internal standard of 4,4′-dimethylbiphenyl (10 mg, 0.056 mmol) in a sealed NMR tube, 

and the 1H NMR spectrum was recorded after 24 h. 
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Figure 6.24. 1H NMR (400 MHz, C6D6) spectrum recorded 15 min after the addition of 
vinylmagnesium bromide (0.70 M solution in THF) to a suspension of (5Dipp)AgCl (2) 
in C6D6. An intermediate benzene-soluble species gives way to 1,3-butadiene, free 
5Dipp, and elemental silver. 
 
 
 
6.4.2.11 Reaction of (5Dipp)Ag(CH3) (17) with CO2 

Several crystals of 4,4′-dimethylbiphenyl (internal standard) were added to a 

solution of 17 (40 mg, 0.076 mmol) in THF-d8 (1.0 mL) in a J. Young NMR tube. A 

preliminary 1H NMR spectrum was recorded to quantify the amount of internal standard 

relative to 17. The solution was degassed by two freeze-pump-thaw cycles, and the tube 

was backfilled with carbon dioxide (1.0 bar). After 92 h, the 1H NMR spectrum was again 

recorded (see Figure 6.25), and the products quantified by integration of NMR signals. 
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Figure 6.25. 1H NMR (400 MHz, THF-d8) spectrum recorded 92 h after the addition of 
CO2 (1.0 bar) to a sample of (5Dipp)Ag(CH3) (17). 
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CHAPTER 7 

CONCLUSIONS 

 

  

This thesis describes the synthesis and characterization of a variety of 

mononuclear and dinuclear coordination complexes of silver supported by bulky, 

electron-rich NHC ligands. Also described are reactions that demonstrate potential 

applications of these complexes in small-molecule activation and catalysis relevant to 

renewable fuels and sustainability. The isolation and characterization of NHC-stabilized 

versions of otherwise unstable organometallic complexes and the demonstration of 

fundamental steps such as H–H bond heterolysis and C–H bond formation in a well-

defined homogeneous system can provide valuable information, including mechanistic 

insight into key chemical transformations and structures of potential catalytic 

intermediates. 

For instance, the activation of hydrogen via oxidative addition to a metal center or 

via heterolysis by a frustrated Lewis acid-base pair has been studied extensively.1 These 

methods of hydrogen activation have been applied effectively in efficient catalytic 

processes and have been incorporated into promising strategies for the production of 

synthetic fuels and hydrocarbons. In contrast, examples of the heterolysis of hydrogen by 

mismatched metal–ligand bonds are relatively uncommon.2 Phosphine-supported copper 

hydrides prepared by the reaction of hydrogen with copper alkoxides have proven highly 

useful as a mild, selective reducing agent in organic synthesis, representing the most 

extensively studied example of hydrogen activation by metal-ligand bonds.3 However, 
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the rational design of ligands to improve or modify the selectivity of this important class 

of copper compounds is limited by a lack of mechanistic understanding.4 Unfortunately 

these systems are difficult to study mechanistically due to the complex, fluxional 

aggregation of copper alkoxides and copper hydrides in solution. Though NHC-supported 

copper alkoxides have more well-defined nuclearity and are competent hydrogenation 

catalysts,5 the equilibrium for hydrogenolysis of these compounds apparently favors the 

alkoxide heavily over the hydride (Chapter 5). The transient nature of the hydrides in 

these systems prevents the study of either the hydrogen activation, or the reduction of the 

substrate, in isolation.6 

The hydrogenolysis of mononuclear and dinuclear silver complexes supported by 

NHC ligands (Chapter 4) provides an avenue to study this class of hydrogen activation in 

a context in which hydrogen activation and subsequent hydride transfer can be studied as 

isolated steps. The study of these complexes in solution is aided by the nuclear properties 

of 107Ag and 109Ag. The observation of coupling to these silver nuclei by NMR 

spectroscopy lends insight into the structure and nuclearity of silver complexes in 

solution, and 109Ag–107Ag coupling allows the identification of metal-metal interactions 

(Chapters 2 and 4). We have learned, for instance, that mechanisms for hydrogen 

activation likely proceed through nonclassical η2-dihydrogen complexes (Chapter 4), 

which are otherwise unknown for the group 11 metals. Furthermore, we can conclude 

that the cooperation of two mononuclear fluoride complexes in dihydrogen cleavage 

likely does not involve the interaction of two fluoride complexes before the coordination 

of H2 (Chapter 4). This mechanistic insight might aid the further development of silver-
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mediated hydrogenation chemistry or may translate to similar systems based on copper, 

gold, or other soft transition metals paired with hard bases. 

In addition to the insight this work may lend to related copper-mediated 

processes, it demonstrates the generalization of hydrogen activation by mismatched 

metal-ligand bonds not only to silver alkoxides but also to silver complexes of the 

substantially weaker base fluoride. By taking advantage of hard-soft mismatches, this 

underexplored method of hydrogen activation has the potential to incorporate hard yet 

relatively weak bases, such as fluoride or carboxylates, when paired with soft late 

transition metals. This could open the door to reactivity distinct from that found in 

conventional metal-free frustrated Lewis pairs, potentially taking advantage of the 

coordination of hydrogenation substrates to the metal center. The borrowing of ideas 

between the various methods of hydrogen activation could also lead to advancements in 

the field. For instance, acid-base pairs featuring both steric frustration and hard-soft 

mismatch might exhibit unique reactivity. 

Further consequences of the hard-soft mismatch in group 11 fluorides are reported 

in this thesis. The exchange of halogens between a fluoride-bridged digold complex and 

dichloromethane (Chapter 3), for instance, represents a fundamental transformation and 

demonstrates the potential utility of NHC-supported group 11 fluorides as aprotic, 

organic-soluble alternatives to HF as a source of fluoride in nucleophilic substitutions. 

The deprotonation of mildly acidic C–H bonds such as those of terminal alkynes by 

alkoxysilver complexes (Chapter 6) extend the applications of mismatched silver-ligand 

bonds to C–H activation. 
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 The potential for silver ions or complexes to mediate C–H activation and other 

transformations of organic substrates underscores the significance of silver complexes of 

carbanions. The stabilizing effect of NHC ligands allows the spectroscopic and 

crystallographic characterization of a wide variety of mononuclear and dinuclear 

complexes of carbanions with silver, revealing interesting structural features such as 

three-center, two-electron bonds with silver-silver interactions in the dinuclear complexes 

(Chapter 6). This study also demonstrates silver-mediated C–C bond formation in the 

form of the homocoupling of vinyl radicals as well as the insertion of CO2 in to Ag–C 

bonds. 

 In addition to the demonstration of several fundamental silver-mediated chemical 

transformations and thorough spectroscopic and structural analyses of a diverse library of 

NHC-supported silver complexes, this body of work highlights the importance of 

carefully choosing an NHC and clearly demonstrates that both steric and electronic 

considerations are critical. The interplay of steric and electronic properties is perhaps best 

demonstrated by the reaction of NHC-supported monosilver fluorides with hydrogen 

(Chapter 4). In this case, the replacement of the conventional five-membered NHC 5Dipp 

with the expanded-ring NHCs 6Dipp or 7Dipp slowed or eliminated an undesired 

decomposition pathway, while increasing the rate of the desired reactivity, namely the 

activation of hydrogen. Based on steric considerations alone, one would expect both 

types of reactivity to be impaired, but clearly the increased basicity of the expanded 

NHCs outweighed their steric effects in this case. However, decomposition was not 

inhibited by less bulky expanded NHCs. The diisopropylphenyl substituents of 6Dipp and 

7Dipp were necessary to prevent the formation of undesired bis(NHC) complexes, 
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suggesting that electronic considerations alone were not sufficient to achieve a system 

suitable for hydrogen activation. 
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Bacsa of the Emory University X-Ray Crystallography Center collected and solved X-ray 

diffraction data. The principal investigator was Joseph P. Sadighi.  
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PERMISSIONS TO REPRODUCE PUBLISHED MATERIAL 

 
 

Chapter 2: An NHC-Supported Disilver Hydride 

 This chapter is largely reproduced from the following article with permission 

from the publisher and copyright holder, the Royal Society of Chemistry: 

Tate, B. K.; Wyss, C. M.; Bacsa, J.; Kluge, K.; Gelbaum, L.; Sadighi, J. P. Chem. 
Sci. 2013, 4, 3068–3074. 
 

Chapter 3: Fluoride-Bridged Complexes of the Group 11 Metals 

 This chapter is adapted from the following article with permission from the 

publisher and copyright holder, Elsevier: 

C. M. Wyss, B. K. Tate, J. Bacsa, M. Wieliczko, J. P. Sadighi. Polyhedron 2014, 
84, 87–95. 
 

Chapter 4: Hydrogen Activation By Hard-Soft Mismatched Silver Complexes 

 This chapter is largely reproduced from the following article with permission 

from the publisher and copyright holder, John Wiley & Sons: 

Tate, B. K.; Nguyen, J. T.; Bacsa, J.; Sadighi, J. P. Chem. Eur. J. 2015, 21, 
10160–10169. 
 

Chapter 6: Thermally Stable Organosilver Compounds 

 This chapter is largely reproduced from the following article with permission 

from the publisher and copyright holder, the American Chemical Society: 

Tate, B. K.; Bacsa, J.; Sadighi, J. P. Submitted to Organometallics.  
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