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Abstract

Interconnection networks represent the backbone of large-scale parallel systems. In order to build
ultra-scale supercomputers larger interconnectionnetworks are being designed anddeployed. As com-
pute nodes becomemore energy-e૿cient, the interconnect is accounting for an increasing proportion
of the total system energy consumption. The interconnect’s energy consumption is, however, only
starting to receive serious attention. Most of this power consumption is due to the interconnection
links. The problem, in terms of power, of an interconnect link is that its power consumption is al-
most constant, whether or not it is actively exchanging data, since both ends stay active to mantain
synchronization.
This thesis complements ongoing eૼorts related to power reduction and energy proportionality of

the interconnection network. The thesis contemplates two directions for power savings in the inter-
connection network; one is the possibility to use lower bandwidth links during the communication
phases and thus save energy, while the second one addresses shifting links to low-power mode during
computation phases when they are unused. To address the ૽rst one we investigate the potential ben-
e૽ts from MPI data compression. When compression of MPI data is possible, the reduction in link
bandwidth is enabled without incurring any performance penalty. Consecutively, lower bandwidth
leads to lower link energy consumption. In the past, several compression techniques have been pro-
posed as a way to improve the performance and scalability of parallel applications. Those works have
shown signi૽cant speed-ups when applying compressors to the MPI transfers of certain algorithmic
kernels. However, these techniques have not seen widespread adoptation in current supercomputers.
In this thesis we will show that although data compression naturally leads to improved perfor-

mance, the bene૽t is small, for modern high-performance networks, and it varies greatly between
applications. In contrast, combining data compression with switching to low-power mode preserves
performancewhile delivering eૼective and consistent energy savings, in proportionwith the reduction
in data rate. In general, application developers view time spent in a communication as an overhead,
and therefore strive to keep it at minimum. This leads to high peak bandwidth demand and latency
sensitivity, but low average utilization, which provides signi૽cant opportunities for energy savings. It

iii



Author: Branimir Dickov
Thesis director: Professor Eduard Ayguadé
Thesis co-directors: Paul Carpenter andMiquel Pericàs

is therefore possible to save energy using low-power modes, but link wake-up latencies must not lead
to a loss in performance. Thus, we propose a mechanism that can accurately predict when links are
idle, allowing them to be switched to more power e૿cient mode. Our runtime system called the Pat-
tern Prediction System (PPS) can accurately predict not only when a link will become unused but also
when itwill become active again, allowing links to be switched oૼduring the idle periods and switched
back on again in time to avoid incurring a signi૽cant performance degradation. Many HPC applica-
tion bene૽t from prediction, since they have repetitive computation and communication phases. By
implementing the energy-saving mechanisms inside the MPI library, existing MPI programs do not
need to be modi૽ed. We also develop more advanced version of the prediction system, Self-Tuned
Pattern Prediction System (SPPS) which is capable of automatically tuning to the current application
communication characteristic and shaping the switching on/oૼ of the links in the most appropriate
way.
The proposed compression and prediction techniques are evaluated using an event-driven simula-

tor, which is able to replay the traces from real execution of MPI applications. Experimental results
show signi૽cant energy savings in the IB links while the performance overhead due to wake-up laten-
cies and additional computation time have negligible eૼects on the ૽nal application performance.
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Chapter 1

Introduction

High-Performance Computing (HPC) is a crucial tool for modern science and engineering. There

is a constant demand for more powerful supercomputers, leading to increasing levels of energy con-

sumption. The industry is working toward a target of 1 ExaFlop in 20MW, which implies a seven-

fold improvement in energy e૿ciency, compared with today’s most energy-e૿cient machine.∗ Such

a large reduction in system energy consumption is only possible if there are signi૽cant improvements

in the energy e૿ciency across all subsystems. Power-saving techniques for processors and memory

are progressing quickly, but there is less progress in reducing the power consumption of the intercon-

nect. With energy-e૿cient processing elements and larger networks, the interconnection network is

expected to account for up to 30% of the system’s total power 52. This fraction can even reach 50% 15

for data center servers since the CPUs operate at lower levels of utilization.

Most of this power consumption is due to the interconnection links. For example, the links in an

IBM eight-port In૽niBand 12× switch consume 64% of the switch power9. The problem, in terms

of power, of an interconnect link is that its power consumption is almost constant, whether or not it

∗The Shoubu machine at RIKEN leads the June 2015 Green500 list with 7.0GF/W.
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is actively exchanging data, since both ends stay active to maintain synchronization.

One possibility to save network power could be to use lower bandwidth links. In this thesis, to ad-

dress this possibility, we investigate the potential bene૽ts ofMPI data compression. If compression of

MPI data is possible, this will allow a reduction in link bandwidth which consequently leads to lower

link energy consumption, while the original performance is preserved. Even though they are always

on, high-speed channels still oૼer dynamic range, in the terms of their ability to vary data rate and

power consumption. Considering the In૽niBand architectural speci૽cation, each link is constructed

from several serialized lanes each operating at the same data rate. To reduce the energy consumption

without aૼecting performance, the link bandwidths are dynamically adjusted by changing the num-

ber of active In૽niBand lanes. This is done in inverse proportion to the compression rate in order to

maintain the original bandwidth of the uncompressed data.

Although compression can reduce considerably the necessary bandwidth and therefore, the energy

consumption of the interconnect, still, a lot of power is wasted during long idle intervals. Our sec-

ond goal is to provide a network that supports energy proportional communication, which means

that the amount of energy consumed is proportional to the tra૿c intensity (volume) in the network.

In general, application developers view the time spent in communication as overhead and therefore

try to minimize it. This leads to high peak bandwidth demands and latency sensitivity, but low av-

erage utilisation, having the network largely idle. This provides signi૽cant opportunities for energy

savings but unfortunately, as mentioned above, current interconnects are not energy proportional, so

the potential energy savings are lost 59.

One approach to reduce network energy consumption during long idle periods is to turn oૼ the

network links (or put them in some low-power mode). The problem is that link state changes, from

oૼ to active, can take up to 10 µs 35. Since state changes add to the latency of MPI messages, and many

HPC applications are highly sensitive to latency, this leads to an unacceptable loss in performance.

An alternative is to lower the voltage and bandwidth of links when utilization is low, which has faster

2



link reactivation, at about 100 ns, but the potential power saving is much lower 15. Both mechanisms

switch between power modes using low-level hardware schemes 59, 56, 17. Common drawbacks are the

inability to capture signi૽cant energy savings, as well as an unknown and uncontrollable performance

penalty. In this thesis, we propose runtime power management support that identi૽es the structure

of the MPI layer communication behavior of an application over the interconnect. Performing end-

to-end, recognition of communication behavior on a higher MPI layer level, provides us with a more

accurate high-level view of order and timing of the link usage. This software-managed technique will

allow us to predict when the link will stay idle, instructing hardware support not only to shift links

to low-power modes when idle but also to get switched back on again in time to avoid incurring a

signi૽cant performance degradation.

Another option to save network power could be to force applications to use the network more

e૿ciently. Overlapping communication and computation will lead to a steady use of the network al-

lowing a reduction in required network bandwidth and most important will reduce time to solution.

Unfortunately, overlapping communication and computation is generally hard for HPC workloads.

Most HPC applications follow the bulk synchronous programming paradigm, in which application

processes are synchronised, either all performing computation at the same time or all involved in com-

munication. Instead of asking to change programs wewant to propose techniques that can work with

the most frequent software stacks and applications.

The contributions of the thesis are the following:

• We introduce the main concepts of compression technology for energy savings and evaluate a

set of compressors. Compression is applied to the data sent and received byMPI 1 library calls.

Our techniques are designed for double-precision ૾oating-point (FP) data, which is the most

common data type passed in the messages of scienti૽c applications. We consider both lossless

compression algorithms aswell as lossy compression algorithms, where the compressor reduces

3



precision based on a target accuracy speci૽cation. When applicable, compression allows to de-

sign systemswith slower components, therefore enabling a reduction in energy and installation

costs.

• While compression is targeted to cover linkpoweroptimizationduring communicationphases,

additional link energy can be saved during large idle phases. The majority of the execution

time in most HPC applications is spent in a large number of iterative execution phases. Since

the communication pattern inside each phase is essentially the same, it is possible to observe

the communication behaviour in one iteration and use the knowledge gained to predict the

behaviour of the subsequent iterations. Speci૽cally, this means detecting the patterns of MPI

calls that are repeating within eachMPI process. To achieve this, we propose to use a software-

managed runtime prediction system that will provide us with insight on when to turn oૼ/on

the links. We developed Pattern Prediction System (PPS) which allows an on-the-૾y detection

of consecutive repeatable MPI communication patterns. This provides a high-level view of

the order and timing of link usage, which permits the transition between diૼerent link power

modes to be made with a minimum impact on performance.

• The basic Pattern Prediction System (PPS) is prone to instability if the chosen critical idle inter-

val length does notmatch the critical idle interval length of the chosen application. Critical idle

interval length is the minimal idle interval length during which link power can be saved. We

refer to this value as the Grouping Threshold (GT), and it has an important in૾uence on the

level of prediction and therefore on energy savings, depending on the application in a complex

way. A larger value of the Grouping Threshold usually leads to higher prediction accuracy,

but lower values can provide better energy savings. We, therefore, propose a histogram-based

self-tuned predictionmechanism that automatically determines the critical idle interval, which

distinguishes short and long idle intervals. The resulting mechanism obtains energy savings in

4



the network edge links of up to 21% with negligible performance overhead.
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Figure 1.1: System stack architecture with our proposals in MPI layer.

Figure 1.1 summarizes our techniques developed inMPI layer. The dashed lines show the hardware

approach for the packMPI library, inwhich theMPI layer is bypassed anddirectly communicateswith

the Host Channel Adapter (HCA) where the compressor (decompressor) rate is set. Therefore, when

communication is started, the original data is transferred to the HCA buૼers fromwhere appropriate

bit-lines are activated in correspondence with the chosen compression rate. Compression can also be

done in software with the higher compression/decompression overheads introduced in the total MPI

data latency. In correspondence with the compression rate, the number of lanes of In૽niBand link is

also deactivated usingLinkPowerManagement (LPM)૽rmware on theHCA.PatternPrediction Sys-

tem (PPS) exploits the MPI pro૽ling interface PMPI to implement its functionality. PPS is wrapped

around actualMPI library invocations. Thismakes the PPS technique portable that can be applied on
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anyMPI application without changing their source code. When a prediction is con૽rmed, switching

the link to low-power mode is done using the LPM ૽rmware.

The thesis is organized as follows. Chapter 2 provides the necessary background on network per-

formance issues, possibilities of data compression to enhance network e૿ciency, network power con-

sumption breakdown and In૽niband network technology. Chapter 3 describes the methodology and

the toolchain used for the experiments. Chapter 4 introduces the main concepts of compression tech-

nology for link power savings and evaluates a set of compressors. Eૼects of compression on application

performance are also discussed. The following Chapter 5 introduces the design of our prediction tech-

niques for link power savings. The related work is summarized in Chapter 6. Finally, in Chapter 7 we

give the main conclusions of this thesis.
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Chapter 2

Background

2.1 System Area Network (SAN) - Interconnection Network

for HPC

In the current High Performance Computing (HPC) landscape, clusters have become the ubiquitous

architecture for accelerating many scienti૽c and engineering applications. These systems consist of

multiple computer nodes that communicate over a network. Figure 2.1 illustrates the communica-

tion path in a large-scale interconnected system from a sender (compute node 0) to a receiver node

(compute nodeM), which consists of the following steps:

• Data are fetched from a processor localmemory and sent to thememory on theNetwork Inter-

face Card (NIC), also known asHost Channel Adapter (HCA) in the In૽niBand terminology,

which is used for attaching the processing node to a network

• NIC transforms data messages into network packets

• Packets go through a number of switches before reaching the destination
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Figure 2.1: Communicaঞon path in a large-scale interconnected system.

• At the destination packets are reformatted by the receiving NIC and sent to the receiving pro-

cessor’s local memory

Communication is not only costly in time, energy costs also need to be taken into account. There-

fore, data transfers are an important component of parallel systems that need to be extensively opti-

mized.

2.2 Communication in Parallel Programs

Scienti૽c applications solve complex problems by splitting the problem into several smaller parts, each

assigned to a single application’s process. The interconnect’s role is to satisfy remote data dependencies

between application’s processes that are executing on diૼerent nodes. Depending on the algorithm

applied to solve the problem, the processes may communicate messages following diૼerent patterns,

such as, a single pair of processes at a time, i.e., point-to-point communication or multiple processes

at time, i.e., usually referred as collective communications.

In general, application’s communication time is the time that an application spends in communi-

cation routines. Depending on the problem size and scale, i.e., the number of processes involved in
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the computation, themessage sizesmay vary as well, making application’s communication bandwidth

or latency-sensitive. Single message transfer would require the following time:

Tmessage = Tlatency +
Message_Size

B

Latency is the time it takes to send zero-byte message from source to destination, whereas band-

width is the actual speed of transmission, or bits per unit time. As communication time doesn’t ad-

vance the actual computation, it is rather seen as an overhead and must be minimized to get the best

performance improvement.

In order to successfully accomplish message delivery, two common message passing protocols are

generally employed:

• Eager - An asynchronous protocol that allows a send operation to complete without acknowl-

edgement from a matching receive

• Rendezvous - A synchronous protocol which requires an acknowledgement from a matching

receive in order for the send operation to complete.

While eager protocol reduces synchronization delays (send process does not need acknowledge-

ment from receive process that it’s OK to send message) the most important disadvantage is that it

is not scalable. Signi૽cant buૼering may be required to provide space for messages from an arbitrary

number of senders. On the other side rendezvous protocol is scalable compared to eager but his dis-

advantage is that it introduces synchronization delays due to necessary handshaking between sender

and receiver. Thus, eager protocol is typically used for “short” messages, while rendezvous protocol is

used for “long” messages.

The performance of a parallel program can be presented by its execution time consisting of compu-

tation and communication components. Figure 2.2 shows the structure of the GROMACS applica-

tion,wherewith light blue is showncomputationphasewhile the communicationphase is represented

with all the rest of the colors.
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Figure 2.2: GROMACS execuঞon trace with corresponding computaঞon and communicaঞon phases

In this thesis, to reduce networkpower consumptionwe aremainly focusedon the bandwidth com-

ponent of the actual transfer time. A reduction in the bandwidth of the link will automatically reduce

its power consumption, but these decisions when to switch to low-power mode are critical, especially

in HPC, where the primary design objective is performance. Therefore, any proposed energy-saving

technique will only be adopted if there is no signi૽cant performance deterioration.

2.3 Data Compression

Data compression, both lossless and lossy, is widely used, across many application domains, to reduce

the demands on storage capacity and communication bandwidth. In HPC, data compression has

been applied to messages on the network in order to minimise application execution time 30,38,23,39,41.

However, in our study, of the impact of compression on performance in Section 4.2, we concluded

that the gains obtained are lower than expected byAmdahl’s law for the used compression rates, where

compression rate is de૽ned as follows:

Compression_rate = (uncompressed size)
(compressed size)

Thus, in this thesis we aim to apply data compression to the problem of energy e૿ciency.

There is an important distinction between lossless and lossy compression. Although lossless com-

pression can be applied to scienti૽c applications indiscriminately, always leading to correct results, our
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results validate previous studies, which have shown that the resulting compression rate is low25,41, 29.

This is because scienti૽c applications pass high entropy ૾oating-point data, which is hard to compress.

In contrast, applying lossy compression requires the involvement of the scienti૽c applicationor library

developer. Previous studies have, however, found that these experts have a good understanding of the

numerical stability of their algorithms, and can determine the required data precision.

2.3.1 Lossless Compression

Lossless compression is the method of choice where preserving the numerical precision of the data is

necessary for correctness, since introducing error in the systemmay cause a signi૽cant deviation in the

૽nal result. General purpose algorithms like GZIP8 or BZIP2 5 can be used for ૾oating-point data,

but generally compressors designed speci૽cally for ૾oating point data will yield better results22. Usu-

ally they are based on a predictive scheme which tries to predict the next value based on the sequence

of previous values. Depending on how they calculate the predicted value, lossless compression algo-

rithms can be classi૽ed into two major groups. The ૽rst group uses arithmetic predictors based on

a polynomial function to predict the next value 38 whereas the second group relies on context based

predictors that store the previous values in a hash table23. These values are then used to predict the

following ones. The diૼerence between the predicted and true value is then computed. If the pre-

diction is close to the true value the diૼerence can then be encoded with fewer bits, resulting in a

compressed form. This can be very eૼective in the case of scienti૽c applications where communicated

data represents adjacent physical quantities, such as in Finite-Diૼerence Time-Domain (FDTD) or

Lattice Boltzmannmethod 38, whose values tend to be highly correlated. Such data patterns may then

be eૼectively captured by predictors.

In this thesis we used following lossless compressors:

• FPC (Floating-Point Compressor) from Burtscher et al.23 is a lossless compression algorithm
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for a linear stream of 64-bit ૾oating-point data which relies on context based predictors. FPC

reportedly achieves good compression rates and it has a compression speed one or two orders

of magnitude faster than competing algorithms.

• MAF (MAkichan for Floating) is another lossless compressor developed by Tomari et al.60. In

MAF, only the exponential part of the double-precision૾oating point data is compressed. This

approach can be very eૼective if the entropy of the data is very high but the magnitudes (i.e.

exponents) do not change much. It is also notable for its high speed which enables low-latency

communication even in software based approaches.

• GZIP is based on theDEFLATE algorithm27, which is a combination of LZ7765 andHuૼman

coding 37.

To bene૽t from transferring compressed data the additional time for compression should be less

than the time saved during the communication primitive. Considering that sending data involves a

message setup overhead and thatmessagesmight be very small, some amount of data is established as a

minimum threshold in order to apply compression. The critical size ofmessage is de૽ned as a product

of latency and bandwidth, which means that all messages smaller than this product will have latency

as a dominant factor in a transfer time and, therefore, the impact of compression would be negligible.

2.3.2 Lossy Compression

In the case of lossy compression, the most straightforward way to compress is to discard the least sig-

ni૽cant mantissa bits. However, care needs to be taken not to jeopardize the correct execution of the

application. It is necessary to provide a criteria of minimum accuracy so that compression does not

invalidate the ૽nal result. For the case of lossy compression it is necessary that the application experts

determine the acceptable error and develop models to predict the required precision of the computa-

tion.
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In this thesis, in order to apply lossy algorithms, the following criteria of accuracy has been estab-

lished:

L2
relative_error_norm =

√
N∑
i=1

(F52i −Gk
i )

2√
N∑
i=1

(F52i )2

where Fi is exact solution (with 52-bits of double-precision ૾oating pointmantissa) andGi is newly

calculated solution after lossy compression is applied (with k- bits of double-precision ૾oating point

mantissa).

Upon consulting with application developers we determined 1% error from the ૽nal result to be

acceptable, thus, if the newly obtained result with lossy compression is within a margin of 1% we take

it as a valid result.

2.4 Interconnection Network Power Consumption

The network fabric power consumption is due to the switch fabric, HCAs, and interconnect links.

The power consumption of the HCAs and switches varies with the data injection rate, being dom-

inated by the active power of the memory elements. In contrast, the power consumption of an in-

terconnect link is almost constant, whether or not is actively exchanging data 59, since both ends stay

active to maintain synchronization. It has been shown that the majority of the total network fabric

power consumption is due to the interconnect links; e.g. for an IBM In૽niBand 8-port 12× switch,

the links are estimated to take 64% of the total switch power9. For this reason, in this thesis our focus

will be on link power.

2.5 Power-saving Support in Interconnection Network Links

Most energyoptimization research is focusedon reducing link energy consumption in interconnection

networks using diૼerent kinds of power-aware techniques. These techniques can be classi૽ed in two
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classes: dynamic voltage-frequency scaling and on/oૼ links.

The on/oૼ technique allows entering to a deeper low-power mode, thus saving more power. The

problem is that link state changes, from oૼ to active, can take up to 10 µs 35. Since state changes add to

the latency of MPI messages, and many HPC applications are highly sensitive to latency, this leads to

an unacceptable loss in performance. Also as links are turned oૼ, a fault-tolerant routing algorithm

has to be used, increasing hardware complexity and possibly introducing additional penalty in net-

work performance. An alternative is to lower the voltage-frequency pair, thus reducing the bandwidth

of links when utilization is low, which has faster link reactivation, at about 100ns, but the potential

power saving is much lower 15. Here, the advantage is that the connectivity throughout the network

is preserved and the same routing algorithm can be used regardless of the power consumption level,

simplifying router design.

2.6 In૽niBand technology

The adapter and switch architecture parameters used throughout the thesis are based on the current

In૽niband adapter and switch architecture employed in many computing systems today. The typical

link bandwidth supported in In૽niBand is 10—40Gbit/s and the switch latency is 100 ns.

In૽niBand links support two physical mechanisms that can be used for power saving. First one al-

lows links to operate at diૼerent data rates, for example betweenQuadDataRate (QDR), at 10Gbit/s

per serial lane, and Single Data Rate (SDR), at 2.5 Gbit/s per lane. This gives a tradeoૼ between band-

width and energy consumption. The switching time between rates is small, on the order of hundreds

of nanoseconds 15, but the power savings are also small.

Second power savingmechanism is derived from the actual In૽niBand link architecture, where the

link is formed by aggregating one or more serial lanes. It is common to use more than one lane, in

order to increase the link’s bandwidth, though power consumption is also multiplied by the same
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factor. Mellanox has recently announced Width Reduction Power Saving (WRPS), a technique that

allows the link’s number of active lanes to be dynamically recon૽gured, assuming ૽rmware support

is enabled in theHCAs and switches 12. For example, usingWRPS a 40Gbit/s 4×QDRport can run

as 10Gbit/s 1×QDRby shutting down three of its four QDR lanes. This reduction in link width re-

duces the power consumption of Mellanox Switch SX6036 to only 43% of its nominal power (when

all four lanes are active) 12. We use this published value of 43% in the evaluation section as the power

consumption of an IB switch in low-powermode. The energy to transfer a single message remains the

same, because energy is power multiplied by time. The energy savings come from relatively short idle

periods between messages.
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Chapter 3

Experimental Methodology

We used two classes of tests for the evaluation of application and system performance. When possi-

ble, we evaluated the performance on a production HPC machine. When our proposals depend on

features that are not supported on current systems, then we used simulation tools. Since this study is

exploring the HPC tra૿c in conjuction with the speci૽c network technology, we used an MPI sim-

ulator that allows a replay of the application’s MPI activity while respecting the communication de-

pendencies between MPI processes which is coupled with an event-driven network simulator which

simulates the network architecture in detail. In this chapterwe introduce theTestBed platformswhere

real execution tests were done, as well as the platform used to generate input traces for the simulator.

Also we describe the set of simulation tools deployed in this thesis, along with the workloads used in

simulation.

3.1 TestBed platforms

The main features of the clusters andMPI implementations used for our evaluation are:
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1. MareNostrum II is an compute cluster based on IBM JS21 blades, eachwith two dual-core IBM

64-bit PowerPC 970MP processors running at 2.3 GHz andwith 8GB of RAM. Communica-

tion itself occurs over a 2GbpsMyrinet network with a fat tree topology. MPICH୅MX is used

as message passing library, which implements the MPI-1 standard.

2. MinoTauro is amachine basedonBull B505nodes, with six-core IntelXeonE5649processors at

2.53 GHz with 24GB RAM. All nodes are connected through In૽niBand network running at

40Gbps and organized as 2-level fat tree network. OpenMPI-1.6.4 is theMPI implementation

used for trace collection onMinoTauro.

3.2 HPC workloads

To evaluate the potential for link power reduction using our MPI layer techniques we have chosen a

wide breadth of HPC production application and benchmarks. For the data compression evaluation

just themainkernels of real applicationswere observedwhile for linkpower reductionusingprediction

system entire applications were considered.

• Real applications:

1. ALYA 3 is a computational mechanics system that is capable of solving diૼerent physics

problems. The problems that we selected in our investigation use the conjugate gradi-

ent(CG) method as the main kernel.

2. GROMACS7 is a molecular dynamics simulator. For the calculation of forces it uses the

Particle Mesh Ewald (PME) method which is the main kernel.

3. MILC 34 performs large scale numerical simulations to study quantum chromodynamics

(QCD). QCD is the theory of the strong interactions of subatomic physics.
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4. PEPC 32 is a tree code for solving the N-body problem.

5. CPMD24 is an ab initio electronic structure andmolecular dynamics (MD) program us-

ing a plane wave/pseudopotential implementation of density functional theory (DFT).

6. QUANTUMESPRESSO 31 is an integrated suite of computer codes for electronic-structure

calculations and materials modeling, based on density-functional theory, plane waves,

and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).

7. WRF (Weather Research and Forecasting model)47 is a next-generation mesoscale nu-

merical weather prediction system designed for both atmospheric research and opera-

tional forecasting needs.

• Kernels:

1. CG (ConjugateGradient) 57 is an iterativemethod for solving systems of linear equations

that arise from the ૽nite element method (FEM).

2. PME (Particle Mesh Ewald) 53 is a method for computing long-range interactions in pe-

riodic systems. In PME the sum of long-range forces is processed in Fourier space where

this sum converges much faster as compared to real space.

• Benchmarks:

1. NASMG (Multi Grid) 13 approximates the solution to a three-dimensional discrete Pois-

son equation using the V-cycle multigrid method.

2. NASBT (BlockTridiagonal) 13 is an algorithmused for solving a synthetic systemof non-

linear partial diૼerential equations.

3. NAS SP (Scalar Pentadiagonal) 13 is another algorithmused for solving a synthetic system

of nonlinear partial diૼerential equations.
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3.3 Extrae - Tracing Tool

In order to collect the application communication characteristics and its performance it is necessary to

insert instrumentation during its execution. Instrumentation captures information during the pro-

gram execution creating an application trace. This process of receiving informative messages about

the execution of an application at runtime is called tracing. To obtain traces of parallel applications at

run time we used Extrae20,the tracing tool developed at Barcelona Supercomputing Center (BSC).

To create traces of MPI calls the MPI pro૽ling interface (PMPI) de૽ned by the MPI standard is

used. This interface allows a tool such as Extrae to interpose a library between the application and the

MPI substrate and intercept one or more MPI calls. The MPI standard requires that each routine is

available with both the MPI and PMPI pre૽x. The application calls with MPI pre૽x are intercepted

and recorded, while PMPI calls are executed. Therefore, Extrae intercepts theMPI calls that are coded

with MPI pre૽x. Usually the collective MPI calls are implemented using PMPI point-to-point com-

munication calls, thus, they are not being recorded by Extrae. For our study, the internal structure of

collectives is very important, thus, to instrument low-level operations of collectives we used adapted

versions of MPICH୅MX and OpenMPI libraries that allow the translation of low-level operations to

MPI_-like names.

To intercept theMPI calls Extrae uses the LD_PRELOADmechanism where at runtime the origi-

nal symbols (MPI) are substituted by those provided by the intstrumentation package (PMPI). Aslo

for the tracing of internals of collective calls the modi૽ed MPI library is loaded. In the Figure 3.1 is

shown the an example script used for trace generation.

During the instrumentation, each sequence of computation activities from the same process is

translated into a trace record indicating a busy time for a speci૽c CPUwhereas the details of the actual

computation performed are not recorded. Communication operations are recorded as send, receive,

or collective operations records, including the sender, receiver, message size, and type of operation.
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bsc18511@nvb127:/gpfs/scratch/bsc18/bsc18511/mnsubmit run.sh

Figure 3.1: Tracing scripts for GROMACS applicaঞon.

3.4 Paraver - Visualization Tool

Paraver 14,51 is the visualization tool developed at BSC and it is used in multiprocessor systems to visu-

alize multithreaded program traces (includingMPI andOpenMP) that are obtained at runtime using

the Extrae tool. It allows the user to view runtime information of function calls and hardware coun-

ters. In Paraver metrics are not hardwired on the tool but programmed. Using a ૽lter and a semantic

module, the analyst can create time-lines, pro૽les and histograms from trace-૽les to selectively display

a huge number of performance metrics. The diૼerent views can be easily combined to ૽nd correla-

tions among the causes of performance drawbacks. To capture the expert’s knowledge, any set of views

can be saved as a Paraver con૽guration ૽le, to be reused in subsequent analyses. With Paraver it is easy

to visualize communication patterns, including the number of bytes exchanged between each pair of

tasks.
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Figure 3.2: Dimemas parameters used to simulate Gromacs applicaঞon with 24 MPI processes where six processes are
run on each node

3.5 Dimemas - MPI simulator

Dimemas 19,42 is an event-driven simulator, which replays a trace of the application’s computation

bursts and MPI activity, preserving its causal relationships and timings. It is driven by traces gen-

erated by the prv2dim tool which converts the original traces suited for Paraver to traces expected

by Dimemas. Each trace contains a sequence of operations for each thread of each task. It contains

CPU intervals and MPI/communication event information (message size, identi૽ers, type, source-

destinations) from the original execution. Dimemas models an architectural machine model with

SMP nodes interconnected with a simple point-to-point network with duplex links. The model is

highly parameterizable, allowing the speci૽cation of parametars such as number of nodes, number of

processors per node, relative CPU speed, number of communication buses, mapping task to nodes,

etc. Computation bursts are not actually performed, but represented by the time the actual computa-

tion would last. Communication operations are send and receive point-to-point communications.

In Figure 3.2 is shown an example set of parameters used in our study. Dimemas generates trace

૽les that are suitable for Paraver enabling the user to conveniently examine any performance problems

indicated by a simulator run.
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3.6 Venus - Network Simulator

Venus49,48 is a generic interconnection simulator capable of simulating many diૼerent kinds of net-

works. It is based on OMNET++61 and provides a socket-based co-simulation interface to the MPI

task simulator, which replays traces obtained using an instrumentation package. It is able to provide a

detailed simulation of the network topology and the processing inside the switches. Detailed models

of switch and adapter hardware corresponding to diૼerent networking technologies, including Eth-

ernet, In૽niBand, Myrinet are supported.

Network topology, routing andmapping of application processes to the nodes are speci૽ed in sep-

arate con૽guration ૽les. Although it can supports diૼerent network topologies our switch models

are arranged in a fat tree topology - speci૽cally an Extanded Generalized Fat Tree (XGFT). By using

Venus xgft tool with option -m and passing the parameters that de૽ne the desired fat tree topology,

the intermediate topology ૽le is generated. For example, to create a topology for a two-level fat-tree

with switch radix 2 is neccesary to run the xfgt tool with following parameters:

xg[ -m 2:2,4:1,2> 2level_[.map

Thanmap2ned tool converts a map ૽le to an OMNEST Network Description ૽le (2level_ft.ned)

corresponding to the speci૽ed topology and a matching initialization ૽le (2level_ft.ini) containing

network address and host/switch labels.

map2ned -v4 2level_[.map

The routing ૽le is generated using xgft tool followed by -r option and a number that represents

speci૽c routing scheme (e.g. 3 for random routing).

Mapping is done through con૽guration ૽le (.scb) that contains one hostname (as known toVenus)

per line; task n is mapped to the host corresponding to the hostname speci૽ed on line n. Relation in

between task mapping in Dimemas and Venus is shown in Figure 3.3.

The link bandwith is de૽ned by twoparameterswhere ૽rst one is theunit_sizewhich is equal to the
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Figure 3.3: Task-to-nodes mapping in Dimemas and Venus. The upper figure shows how various Dimemas tasks are
mapped to the same Venus node while the bo�om figure is showing how each Dimemas task is mapped to different
Venus node.

૾it size of the real network while the second parameter is unit_time which is time needed to transfer

volume of data de૽ned by unit_size over the newtork link.

Dimemas has bus-based interconnect model that does not capture important network-related as-

pects, such as topology, routing policies, ૾ow control, tra૿c contention and congestion, deadlock
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Figure 3.4: Dimemas & Venus co-simulaঞon toolchain.
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prevention, and anything relating to switch and adapter hardware implementations. Therefore, in or-

der to increase simulation accurancy we useDimemas integrated with Venus. The complete toolchain

of Dimemas-Venus co-simulation is given in the Figure 3.4.
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Chapter 4

Enhancing Network E૿ciency UsingMPI

Data Compression

4.1 Motivation for MPI message compression

In order to motivate this work we ૽rst determined an upper bound on the improvement in perfor-

mance due to data compression. Figure 4.1 shows the speedup of the two kernels, Alya’s Conjugate

Gradient (CG), with Input A, which consists of 500,000 doubles, and GROMACS’s Particle Mesh

Ewald (PME), with more than 1,000,000 doubles. This plot also shows the upper bounds, which are

the ideal case where the time spent in certainMPI communication routines is reduced to zero. In this

case, the absolute maximum increase in speedup, due to absence of communication, is 32% for CG

(38.5× instead of 29×, for 256 processors). The absolute maximum increase in speedup for PME is

22% (42.5× instead of 34×, for 256 processors).

The transmission time of MPI messages occupies an important part in the total latency of

the MPI routines. As the size of a message gets bigger, so does the time spent in transmission. In
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Figure 4.2: MPI_Sendrecv latency on IBM J21 Myrinet cluster.

order to measure the latency of MPI_Sendrecv and MPI_Alltoall calls for diૼerent sizes of mes-

sages we used the IMB୅MPI1 part of Intel MPI Benchmarks 11. We measured the performance for

MPI_Sendrecv and MPI_Alltoall functions in order to understand the impact of message size on

the total latency of the MPI call. Figures 4.2 and 4.3 show the latencies for messages of various sizes.

The results show that for messages smaller than 1 KB almost no savings in time can be obtained by

reducing the message size. For message sizes larger than 1 KB, reducing the message size can result in
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Figure 4.3: MPI_Alltoall latency on IBM J21 Myrinet cluster.

signi૽cantly reduced message latency. To reduce the size we apply compression to the MPI messages

and analyze if the reducedtransmission time can also result in improved applicationperformance.

4.2 Evaluation of Performance Bene૽ts

Compression schemes have been proposed to compress data on the network in order to reduce the

overall execution time of applications. In scienti૽c applications this data is frequently formatted as

IEEE-754 double-precision ૾oating point numbers.

In this thesis, we consider both lossless compression algorithms as well as lossy compression algo-

rithms, where for the latter the compressor reduces precision based on a target accuracy speci૽cation.

Besides our goal of using compression to increase the eૼective network bandwidth, it can also be used

to improve memory bandwidth 38 and disk bandwidth in I/O intensive applications63. When appli-

cable, compression allows to design systems with slower components, therefore enabling a reduction

in energy and system costs. In the case of HPC applications it is important that compression can

be done in a single pass in order to minimize the compression latency. When runtime compression

of MPI messages is considered, the overheads introduced by compression and decompression opera-
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tions play an important role. If the communication to computation ratio in an application is not big

enough then these overheads canprevent the compression technique to achieve the expected speedups.

In MPI compression it is necessary to perform one compression and one decompression routine for

every single data transfer. The sum of all these transfers may lead to performance degradation. One

option to remove compression/decompression overheads is to overlap the process of compressing data

with the interchange of previously compressed data, exploiting parallelism to achieve negligible per-

formance degradation as much as possible. An alternative approach is to consider streaming compres-

sion/decompression hardware. In such a scenario the task of compressing the data can be performed

on the ૾y when data is copied frommain memory to the memory on the network interface card. The

procedure is inverted for decompression. Such a compressor/decompressor can appear in the form of

an ASIC, FPGA or it can be a dedicated microcontroller.

4.3 Real Machine Tests

4.3.1 Methodology

Tomeasure the impact of compression and decompression on the execution time of parallel programs

we use the Paraver tool21 to visualize the traces obtained at runtime using the Extrae tool (both

are described in more details in Section 3.3) together with the execution times that programs them-

selves output. Computation time, communication time and the execution overheads due to com-

pression/decompression are measured using Paraver. In order to predict execution times without

compression overheads, which would be the case when assuming streaming compression hardware

or overlapped compression/communication, we subtract the original average communication time

from the unmodi૽ed trace and add the average communication time obtained from the traces with

MPI compression. These numbers are averaged over a series of executions. The resulting number is
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an approximation. The eૼects of compression are distributed across program threads and may also

impact scheduling decisions. It is thus not possible to give an accurate prediction. However, as will be

seen the trends that are observed are consistent with expectations, which raises the con૽dence towards

the obtained results.

The programs are executed on theMareNostrum compute cluster described inmore details in Sec-

tion 3.1. Although the machine contains over 10k cores, we did not run simulations larger than 256

processors. Since we use rather small inputs for our workloads, we already reach a communication-

dominated strong scaling scenariowith amediumnumberofprocessors (∼256). EachnodeofMareNos-

trum machine has two dual-core processors. Therefore, we chose to run the tests with one process

per node and four processes per node. Communication between processes on the same node is done

through shared memory. Our tests for the con૽guration with 4 processes per node starts with 8MPI

processes in order to also have inter-node communication and not just intra-node communication.

When 1 process per node is used, we avoid any other eૼects that could be provoked by multiple pro-

cess sharing the samememory andNIC. In the case of con૽gurationwith 4 processes per node, wemay

have more tra૿c through the NIC and thus, compression should help more, reducing the contention

on the NIC.

In order to analyze compression we adapted several publicly available compressors to the Pow-

erPC970 platform. Among lossless compressors, MAF and GZIP were directly available and did not

require further modi૽cation. In the case of FPC, we had to adapt the code to the big-endian format

of the PowerPC platform. This was not trivial as FPC uses many tricks that rely on the little-endian

format. Our ૽nal port of FPC is not as e૿cient as the original little-endian code, but the diૼerence is

negligible (just a few additional bytes per message).

An important considerationwhen using lossless compression is that the resultingmessage size after

compression cannot be deterministically computed. This is important in the case ofMPI compression

because it means that the receiving process does not know how many bytes it needs to read. In our
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Figure 4.4: Packing algorithm2 for doubles when reducঞon to 5 bytes is chosen

implementationwe solved this problemby splitting the sendprocedure into two steps. In the ૽rst step

just the size of the message is communicated and in the second step the message is sent. This solution

is not optimal as it introduces overheads. A better solutionwould be to allocate the data buૼers inside

the MPI stack dynamically.

To apply lossy compression on CPUs we used a freely available code2 that discards low-order bytes

and packs double-precision ૾oating point data into an array of 32-bit unsigned integers. Thus, a

double-precision ૾oating point number originally of 8 bytes can be cut to 5 or 6 bytes, which corre-

sponds to 29 or 37 bits of mantissa. We modi૽ed the code so that double-precision ૾oating numbers

can be further cut to 3 and 4 bytes, corresponding to 13 and 21 bits precision.

Upon receiving compressed data the unpacking is done. The decompressed data is returned by

extending with zeros to the original double-precision format but now having a reduced accuracy due

to the quantization error resulting from cutting the mantissas. The necessary code for packing and

unpacking along with the original MPI functions is inserted in an MPI wrapper function. A new

library called packMPI was created with all MPI wrapper functions. They have the same arguments

as the originalMPI functions plus one to specify howmanybytes of the originaldouble value to keep.

Thus, theoriginalMPI functions canbe replacedwith thenewwrapperMPI functionspackMPI_Alltoall

and packMPI_Sendrecv at any point in the application where one wants to compress the volume of

transferred data. Figure 4.4 shows how the packing algorithm2 works in a software implementation.

If streaming hardware is considered, the implementation of the packing algorithm is straightforward.
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It stores the words that are sent to theNIC in an input buૼer and activates appropriate bit-lines corre-

sponding to the chosen compression rate. Therefore, only a few cycles of latency will be added, which

can be considered negligible.

4.3.2 Case Study: Alya

The problems that we selected in our investigation use the conjugate gradient (CG)method 57 of Alya

application as themain kernel. The execution of the CG kernel consists of (i) oneMPI point-to-point

communication and (ii) twoMPI group communications. Signi૽cant amounts of data are transferred

in the MPI_Sendrecv point-to-point communication where local parts of the search vector are ex-

changed in order to obtain the ૽nal matrix-vector multiplication result. Group communication is

employed for the ૽nal dot-product summation of vectors in the algorithm but only one double per

MPI call is exchanged at this stage.

Table 4.1: Average size of MPI messages (kB)

N proc Alya CG Alya CG Gromacs PME Gromacs PME
Input A Input B Input A Input B

4 14.4 47.8 559.8 4144.2
8 15.4 47.7 139.9 1036.0
16 7.9 25.8 147.8 259.0
32 3.9 17.4 55.4 350.4
64 2.2 9.2 18.4 135.5
128 1.4 5.0 8.0 53.2
256 0.8 2.9 2.6 16

For theAlyaCGevaluationswe have used two input data setswhichwe callInput A andInput B.

The Input A has size of 5× 105 while Input B is larger and has 4× 106 nodes. The exchanged mes-

Table 4.2: Average compression rates achieved on MPI messages in the SMVM part of CG kernel

Alya CG GZIP FPC MAF
Input A 1.03 1.007 1.05
Input B 1.12 1.086 1.02
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Figure 4.5: Normalized error of soluঞon X for Input A as a funcঞon of size of manঞssa in SMVM communicaঞon
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Figure 4.6: Normalized error of soluঞon X for Input B as a funcঞon of size of manঞssa in SMVM communicaঞon

sages are compressed before sending. After reception, decompression is performed. Table 4.2 shows

the compression rates achieved by using two compression algorithms speci૽cally designed for ૾oat-

ing point data (FPC and MAF) and one general purpose, dictionary-based compression algorithm

(GZIP). As can be seen, none of these algorithms is able to truly understand the data exchanged across

nodes. Thus, the compression rates that we obtained are very poor (larger rate than 1.0 means the

compressed size is smaller than uncompressed size). In addition, as execution proceeds over multiple

iterations, compressibility of the data does not change signi૽cantly. Based on the obtained results,

34



 475

 480

 485

 490

 495

 500

 505

 510

 515

 8  16  32

It
e
ra

ti
o
n
s
 R

e
q
u
ir
e
d

Mantissa [bits](log)

4 processors

8 processors

16 processors

32 processors

64 processors

Figure 4.7: Iteraঞons Required as size of manঞssa in SMVM communicaঞon
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Figure 4.8: Iteraঞons Required as size of manঞssa in SMVM communicaঞon

only lossy compression is meaningful to achieve higher compression rates. In order to apply lossy

compression in scienti૽c simulation a criteria of accuracy has to be established. For this test case, the

application developers determined a 1% deviation in the ૽nal result to be acceptable. The tests of

accuracy have been done in order to determine how many low-order bits of every double can be dis-

carded. Our tests show that keeping only 3 bytes of the original double-precision ૾oating point value

does still produce an acceptable result. Figure 4.5 and Figure 4.6 show how the normalized error of

the resulting array changes with the precision of the mantissa. The results are obtained by using the
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GNUMultiple Precision Floating-Point Reliably (MPFR) library6 to emulate diૼerent precisions in

૾oating point data. MPFR applies rounding when reducing the precision, meaning that these results

are not based on a simple mantissa cut. When reducing the precision we need to be careful with the

eૼects on the latency of the CG kernel. It is known that reducing precision can result in an increase

of the number of iterations necessary for algorithm convergence. This increase in the number of it-

erations can easily oૼset the gains obtained thanks to compression. As we can see in Figure 4.7 and

Figure 4.8 for our test cases the number of iterations until convergence increases by only 1% evenwhen

precision of mantissa is low. Another interesting eૼect that can be observed is that as more processors

are added, more bits of mantissa are required so that the ૽nal solution of the system converges and

satis૽es the criteria of accuracy (1% normalized error - maximum error compared to double precision).

This happens because the number of frontiers exchanged between processes increases and, therefore,

discarding bits of the mantissa has more in૾uence on the ૽nal result.

Performance result using lossy compression with 1 process per node con૽guration
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Figure 4.9: Profile of Alya CG Input A kernel with 1 process per node
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Figure 4.10: Profile of Alya CG Input B kernel with 1 process per node

Execution pro૽les of the Alya CG kernel for both input data sets are shown in Figure 4.9 and Fig-

ure 4.10. We obtained the biggest improvement of 3.6% for Input A when 64 processors are used.

This is because the exchanged MPI messages are still su૿ciently large (average size is 2.2 kB). There-

fore, su૿cient time can be saved when lossy compression is applied and hence, this is re૾ected in the

speedup factor. The average sizes of theMPImessages forInput A andInput B on diૼerent number

of processors are shown in Table 4.1. Since Input B is a larger data set than Input A, more compu-

tation has to be done per processor. This leads to percentually smaller communication time and thus

smaller speedup factors for Input B. But as can be seen from Figure 4.28, speedup factors for Input

B continue to improve, while for Input A (Figure 4.27) they do not follow an ascending curve. This

occurs because for more than 64 processors MPI messages are too small and reducing the size of the

message will only have limited impact on the overall communication times. Although the percent-

age of point-to-point communication time rises with the number of processors, it is not just because

more communication is performed, but also because of synchronization overheads. This means that

during the communication phase processes start to spend more time waiting for each other. There-

fore, we observe that under a larger number of processors compression will have a higher impact and
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Figure 4.11: Speedup factors for Input A achieved applying lossy compression on MPI messages in SMVM part of CG
with 1 process per node
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Figure 4.12: Speedup factors for Input B achieved applying lossy compression on MPI messages in SMVM part of CG
with 1 process per node

overall execution times will decrease linearly. This will happen unless the MPI messages get so small

(<1 KB) that the total latency of theMPImessage becomes dominated by the sending and receiv-

ing overhead and the time of flight (i.e., the time for the ૽rst bit of the packet to arrive at the

receiver) rather than the time corresponding to message transmission.
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Figure 4.13: Profile of Alya CG Input A kernel with 4 processes per node

Performance result using lossy compression with 4 processes per node con૽guration
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Figure 4.14: Profile of Alya CG Input B kernel with 4 processes per node

Depending on the number of processes assigned per node, the performance of the CG kernel will

diૼerbecause thenodes on theMareNostrumcluster are SMPs. However, the communicationpattern

of theCGkernel depends on thedomaindecompositionwhich is donebyMETIS 10. METIS is a graph
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Figure 4.15: Speedup factors for Input A achieved applying lossy compression on MPI messages in SMVM part of CG
with 4 processes per node
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Figure 4.16: Speedup factors for Input B achieved applying lossy compression on MPI messages in SMVM part of CG
with 4 processes per node

partitioning algorithm that partitions the domain with the goal of minimizing the communication

between partitions. Precisely, because of these communication patterns processes on the node could

have almost all communication inside the node or almost all outside of the node. This patterns will

also show up in the pro૽le of the CG kernel, but even more on the speedup factors achieved by the

compression of MPI messages. Figure 4.13 and Figure 4.14 show the pro૽le of the CG kernel with 4
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processes per node for both input data sets. Improvement factors are smaller than in the case when

the 1 process per node con૽guration is used because some communication will stay inside the node

andwill be done using sharedmemory. This is observed when an 8-processor con૽guration was used.

The impact of compression was hardly measurable because just a few MPI messages passed through

the NIC.

4.3.3 Case Study: Gromacs

The second application studied is Gromacs7. Every time-step it computes the forces for all atoms of

the system. For the calculation of the forces it uses the Particle Mesh Ewald (PME) method 53. PME is

themain kernel inGromacs sowe analyze possibilities to compressMPImessages that occur there. For

our tests we obtained two input sets each perform a 200-timestep simulation of a protein consisting

of 145,732 and 1,094,681 atoms respectively.

In PME the sum of long-range forces is processed in Fourier space where this sum converges much

faster as compared to real space. The transformation toFourier space is performed via a 3DFast Fourier

Transform. PME contains other sections with data communication but we restrict ourselves to the

FFT since this kernel is notable for requiring dense communication due to multiple MPI_Alltoall

operations. InGromacs, depending on the number of processors used to run the simulation, 1Dor 2D

domain decomposition is performed. This has in૾uence on the 3D୅FFT execution as either one or two

collective communicationwill need tobeperformedduring the transformation. For 4 and8processors

a 1D domain decomposition is performed and for all other test cases a 2D domain decomposition is

performed.

In the case of 1D decomposition (also called slab decomposition) the FFT is applied to the ૽rst

two dimensions on each node, but for the last one it is necessary to rearrange the elements using a

system wide transpose so that every processor has all elements for the third dimension to locally per-
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form the FFT transformation. In the case of a 2D decomposition (also called pencil decomposition),

two transpose operations are necessary, one between each of the three FFT operations. First, the FFT

is applied in one dimension. Then the ૽rst transpose is performed on a subgroup of processors and

then the FFT transformation in the second dimension is performed. To perform the transformation

in the third dimension, a last transpose is completed between subgroups. For the transpose operation,

standard MPI_Alltoall calls are performed.

Table 4.3 shows the compression rates achieved using the same lossless compressors as in the case of

the Alya system, applied to the data of the transpose communications of the 3D FFTs. The results are

similar. The unpredictability of the data results in very poor compression rates.

Therefore, we proceed to study the applicability of lossy compression algorithms. By looking at

the outputs created by Gromacs we determined that only if we truncate more than 4 bytes of LSBs

of mantissa in the transpose parts of 3D FFT we will observe signi૽cant deviation in the ૽nal result.

Thus, we analyzed reductions to 4, 5 and 6bytes of packed ૾oating point data. Again, by usingMPFR,

we concluded that keeping as few as 16 bits of mantissa would work, but this width is not suited for

general purpose processors that operate on octets. However, other platforms relying on hardware

compressors could bene૽t from this.

Performance results using lossy compression with 1 process per node con૽guration

Execution pro૽les of the PME kernel for both input sets are shown in Figure 4.17 and Figure 4.18.

When going from executions with a smaller number of processors and to a larger number of proces-

Table 4.3: Average compression rates achieved on transpose MPI messages in PME-3D FFT part of Gromacs

PME-3DFFT GZIP FPC MAF
Input A 1.034 0.989 1.076
Input B 1.05 1.012 1.043
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Figure 4.17: Profile of Gromacs PME Input A kernel with 1 process per node
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Figure 4.18: Profile of Gromacs PME Input B kernel with 1 process per node

sors, the contribution of group communication to the total execution time rises. Interestingly, for

Input A with 64 processors we obtain a smaller contribution than with 32 processors. A similar

phenomenon occurs with Input B where the contribution with 256 processors is smaller than with

128 processors. Table 4.1 provides an explanation to this behavior. As we can see, at 64 processors for

Input A and 256 processors for Input B the average size of messages gets below 32KB. 32KB is a
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threshold value used on the compute cluster machine to activate an optimized message passing pro-

tocol known as Eager. In the Eager protocol the acknowledgements used by the general Rendezvoॷ

protocol are removed. In this scenario data is automatically sent to the receiver assuming that he will

always be able to store the message and thus no acknowledgement is waited for.
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Figure 4.19: Speedup factors for Input A achieved applying lossy compression on MPI messages in 3DFFT part of PME
kernel with 1 process per node
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Figure 4.20: Speedup factors for Input B achieved applying lossy compression on MPI messages in 3DFFT part of PME
kernel with 1 process per node

Due to the nature of MPI_Alltoall, tasks tend to be well synchronized. Thus, the applied reduc-
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Figure 4.21: Profile of Gromacs PME Input A kernel with 4 processes per node

tion on the volume of data transferred has a direct in૾uence in the decrease of time spent in communi-

cation. The results are presented in Figure 4.19 and Figure 4.20. Again we observe that speed-ups due

to compression improve when more processors are used. The PME execution improves up to 7.4%

for Input A and 7.3% for Input B when 50% lossy compression is applied on 32 and 128 processor

execution respectively. We observe larger speed-ups on executions with 32 processors than with 64,

128 and 256 processors for Input A, and larger speedup factors for Input Bwith 128 processors than

with 256 processors. This occurs because at that point the originalMPImessages are transferred using

Rendezvoॷ protocol, but compressed message sizes go under the threshold value and the Eagermes-

sage passing protocol is activated. In this case, in addition to the compression eૼect also the eૼect of

optimizedmessage protocol is added. As the number of processors increases, the 3DFFT part of PME

kernel becomes less dominant in overall execution times. Thus, the percentage tends to increase very

slowly when the full PME kernel is observed.
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Figure 4.22: Profile of Gromacs PME kernel Input B with 4 processes per node
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Figure 4.23: Speedup factors for Input A achieved applying lossy compression on MPI messages in the 3DFFT part of
the PME kernel with 4 processes per node

Performance result using lossy compression with 4 processes per node con૽guration

The performance on a cluster of SMPs varies depending on the number of processes used per node.

Beside sharedmemory contention, all 4MPI processes will share theNIC on the same node. Since the

MPI_Alltoall tends to synchronize the tasks, the processes may compete for the NIC at the same

time. The intra-node communication on the tested cluster is done through sharedmemory, although
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Figure 4.24: Speedup factors for Input B achieved applying lossy compression on MPI messages in the 3DFFT part of
the PME kernel with 4 processes per node

we could use MPICH୅MX library with -noshared memory option. We don’t consider that option

because it leads to slower communication on the node. The pro૽les of PME for both input sets are

shown in Figure 4.21 and Figure 4.22. Comparing to con૽gurationwith 1 process per node, we see that

the percentage of time spent on communication is increased. Thus, we are expecting to achieve greater

impact on application performance by compressingMPImessages. In Figure 4.23 and Figure 4.24, we

see that the trend is similar to 1 process per node con૽guration, but with increased speedup factors.

Up to 12% is achieved for Input A and up to 13% for Input B.

4.4 Simulation Tests

In the previous section we showed the production machine tests using compression during certain

inter-node communicationphases inMPI application runs. Although the compression/decompression

overheads are discarded from the ૽nal results they are present during the execution and can have im-

pact on the communication patterns execution. Basically, overhead occuring on one process aૼects

events on the other processes that are causally related. Beside that the impact of the other jobs running
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on themachinewhichuse the same communication system is not negligible. Therefore, weuse simula-

tor environment to further investigate and isolate the eૼects of compression on ૽nal communication

times in anMPI application.

4.4.1 Methodology

Tomeasure the impact of data compressiononapplication execution time,weuse theVenus–Dimemas

simulator49,42. Both simulators are described in detail in Section 3.5 and Section 3.6.

Traces of theAlya andGromacs applicationswere recordedon theMinoTauromachine (Section3.1).

In this architecture, allocatingmultipleMPI processes to the same processor implies sharing of various

resources including the HCA. Data compression could alleviate contention on the HCA, especially if

MPI processes communicate at similar times, which is often the case for scienti૽c applications. In or-

der to measure this eૼect, we generated traces in two con૽gurations, ૽rst with one MPI process per

processor, and second with six MPI processes per processor (one per core). Also, we generated strong

scaling traces, so that as the number of processes was varied, the workload remained the same.

Table 4.4: Parameters used in Simulaঞons

Parameter Value

Simulator Dimemas–Venus
Connectivity XGFT(2;18,14;1,18)
Topology 2-level Extended Generalized Fat Tree
Switch technology In૽niBand
Network Bandwidth 40Gbit/s
Memory Banwidth 2GB/s
Segment Size 2 kB
MPI latency 1 µs
CPU Speedup 1
Routing scheme Random routing
4X୅IB link port power 2W peak
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Table 5.2 gives the parameters of the simulated system. We ૽rst ran the simulation without any

changes in the trace, replicating the original execution times. For the performance analysis , we re-

duced the sizes of the MPI messages in accordance with the compression rate. Using lossy compres-

sion the message size was therefore reduced by 25%, 37.5% or 50%, equivalent to compressing the

double-precision FP data by truncating the 16, 24 or 32 least-signi૽cant bits. Since this is done in

hardware, only a few additional cycles would be needed, which can be considered negligible, validat-

ing the assumption of zero overhead for hardware lossy compression. When multiple MPI processes

are mapped to one node, communication inside the same node is done without compression. Finally,

we simulate the new traces on Venus–Dimemas, and quantify the performance.

4.4.2 Case Study: Alya-CG kernel

We ૽rst investigate the performance bene૽ts of lossy compression for the communications in Alya 3.

Speci૽cally, we applied compression to the Sparse Matrix–Vector Multiplication (SMVM) kernel in

the Conjugate Gradient (CG) algorithm. We use two input sets, a small one denoted Input A and a

large one denoted Input B.

Table 4.5: Average size of MPI messages(kB) with 1 MPI process per node

Number Alya CG Alya CG Gromacs PME Gromacs PME
processes Input A Input B Input A Input B

8 15.4 47.7 139.9 1036.0
16 7.9 25.8 147.8 259.0
32 3.9 17.4 55.4 350.4
64 2.2 9.2 18.4 135.5
128 1.4 5.0 7.9 53.2
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Figure 4.25: Profile of the Alya CG Input A kernel - 1 MPI process per node
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Figure 4.26: Profile of the Alya CG Input B kernel - 6 MPI procecesses per node

Performance using lossy compression with oneMPI process per node

Figure 4.25 gives execution pro૽les of the Alya CG kernel for the two input data sets. For this con૽gu-

ration, all communication is inter-node, so all MPImessages must pass throughHCAs. Compression

leads to smaller MPI messages, meaning that MPI messages arrive sooner. Table 4.5 gives the average

MPI message sizes, in kilobytes, for the two input sets varying the number of processes.

Figure 4.27 and Figure 4.28 shows the speedup for the Alya CG kernel, for both input sets from
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Figure 4.27: Speedup factors for Input A from applying lossy compression onMPI messages in SMVM kernel of CGwith
1 MPI processes per node
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Figure 4.28: Speedup factors for Input B from applying lossy compression onMPI messages in SMVM kernel of CGwith
1 MPI processes per node

eight to 128 processes. Speedup is measured in comparison with the corresponding baseline run with-

out data compression. The general trend is that the speedup increases as the number of processes is

increased, since the application becomes more communication-heavy, due to strong scaling. For In-

put A, the speedup factor slightly decreases for 128 MPI processes. This is because the size of MPI

messages decreases making the application sensitive to latency rather than bandwidth. For Input A re-

duced precision in the computation does not result in an increase in the number of CG iterations until

convergence, even at 50% compression when 32 LSB of mantissa are truncated. For Input B, reduced

precision results in a slightly larger number of iterations, giving low performance improvement for
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Table 4.6: Average size of MPI messages(kB) with 6 MPI processes per node

N proc Alya CG Alya CG Gromacs PME Gromacs PME
Input A Input B Input A Input B

24 4.7 20.8 73.5 540.3
48 2.8 12.8 26.0 192.5
96 1.8 6.6 10.9 78.6
192 1.1 3.8 4.4 26.2
384 0.7 2.1 1.7 9.7

runs with a small number of processes. For runs with 8 and 16 MPI processes, the performance ben-

e૽ts of 50% compression are insu૿ent to compensate for the greater number of iterations, giving a

degradation in performance. For the lower compression rate of 37.5% there is still a small speedup.

Performance using lossy compression with six MPI processes per node

For runswith a small number of processes,most communication in theCGkernel is betweenprocesses

on the same node. As the total number of processes increases, a greater proportion of messages is

between processes on diૼerent nodes. Figure 4.26 shows the pro૽les of the CG kernel with six MPI

processes per node. Table 4.6 gives the average sizes of the MPI messages.
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Figure 4.29: Speedup factors for Input A from applying lossy compression onMPI messages in SMVM kernel of CGwith
6 processes per node
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Figure 4.30: Speedup factors for Input B from applying lossy compression onMPI messages in SMVM kernel of CGwith
6 processes per node

Since compression is only applied to data communicated between diૼerent nodes, multiple pro-

cesses per node leads to smaller performance bene૽ts from compression. Figure 4.29 and Figure 4.30

show the observed speedups. For Input A, as the inter-node to intra-node communication ratio in-

creases, we observe larger speedup factors, especially for 192 and 384 MPI processes. Although the

MPI messages become small, all inter-node communication is done via the HCAs, and the aggregate

size of theMPImessages is signi૽cant. For Input B, we see that the speedup factors increase, but slowly.

With 384MPI processes, the largest performance improvement factor of just 2.3%.

4.4.3 Case Study: Gromacs-PME kernel

The second case study is Gromacs7. Data compression is applied to the all-to-all exchange patterns in

the Particle Mesh Ewald (PME) algorithm.

Performance using lossy compression with oneMPI process per node

Figure 4.31 gives execution pro૽les for the PME kernel for the two input data sets. Figure 4.33 and

Figure 4.34 show that speedup factors tend to increasewith the number ofMPIprocesses, but for Input

Awith 64MPI processes there is a small decrease in the speedup. The reason is that for this particular
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Figure 4.31: Profile of Gromacs PME Input A kernel
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Figure 4.32: Profile of Gromacs PME Input B kernel

workload, Gromacs uses diૼerent domain decompositions for 32 and 64 MPI processes. This results

in an inconsistent execution pro૽le for 64 MPI processes. For the run with 128 MPI processes, we

observe the maximum improvement of a little over 14%. From Table 4.5, we see that Gromacs has

much larger messages than Alya, suggesting a greater performance bene૽t from data compression. In

addition,MPI_Alltoall tends to synchronize the tasks, further increasing the performance bene૽ts from

compression.
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Figure 4.33: Speedup factors for Input A from applying lossy compression on MPI messages in the 3D FFT part of PME
with one MPI process per node
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Figure 4.34: Speedup factors for Input B from applying lossy compression on MPI messages in the 3D FFT part of PME
with one MPI process per node

Performance using lossy compression with six MPI processes per node

With sixMPI processes per node, all cores are occupied. The all-to-all exchange pattern implemented

inMPI_Alltoall uses non-blocking sends and receives, so each process sends data to all recipients before

waiting to receive data. These non-blocking sends and receives can create contention on the HCAs.

Figure 4.32 shows the pro૽le of PME with six MPI processes per node. It is clear that a greater per-

centage of time is spent in communication, comparedwith oneMPI process per node. We expect data

compression to have a greater impact on application performance.
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Figure 4.35: Speedup factors for Input A from applying lossy compression on MPI messages in the 3D FFT part of the
PME kernel with six MPI processes per node
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Figure 4.36: Speedup factors for Input B from applying lossy compression on MPI messages in the 3D FFT part of the
PME kernel with six MPI processes per node

Figure 4.35 and Figure 4.36 show the speedup results, compared with the baseline with no com-

pression. We see that for Input A, the peak speedup is for 192 processes; for 384 processes we get a lower

speedup. For the largest run, the MPI messages become small (≈ 1 KB) and the application becomes

latency sensitive, giving a lower performance bene૽t. Since Input B is larger, the improvements remain

consistent, even with 384 processes, giving a performance improvement of 12%.
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4.5 Data compression for Network Energy Savings

4.5.1 Implementing Data Compression

Data compression and decompression often have high computational costs. Since our lossy compres-

sion scheme is simply truncation of least-signi૽cant bits (LSB) of the ૾oating-point mantissa, it is,

however, relatively inexpensive. If implemented naively in software its cost is still similar to two addi-

tional copies permessage transfer (one on send and one on receive). In some cases these software copies

could bemerged with existing data copies. Since each extra message copy is still a signi૽cant overhead,

we propose to implement truncation in streaming hardware 55,26, while the data is copied from main

memory to the memory on the Host Channel Adapter (HCA). When message words arrive at the

HCA, they are stored in an input buૼer; the compression rate is chosen by powering down the dis-

carded bit lines. On the receiving side, decompression is done by padding with zeros to restore to the

original double-precision format. Since compression is done in theHCA, there is no data compression

on messages betweenMPI processes mapped to the same node.

4.5.2 Power switching

In order to bene૽t from the potential energy savings, we used the following policy. When there is

no communication, all lanes except one are switched oૼ. If all lanes of a link were shut down, the

forwarding tables would have to be updated. By having one lane remain on, management and control

tra૿c will be always available. Also by having one lane always on, we avoid the need for complex

adaptive routing schemes. When communication is about to happen, the appropriate number of lanes

are powered up, depending on the compression rate. For example, if compression is not being used,

then all lanes (four, in our experiments) would be powered up. Alternatively, if 50% compression is

applied, half of the lanes (two lanes) are powered up, preserving the original performance. On 4×
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links, the supported compression rates are therefore 50% and 25%. On 8× links, the granularity is

૽ner, giving a wider range of possible compression rates. It is expected that the number of lanes will

continue to rise. Thus, the idea is that we can have more tuned and optimized support for power

savings supported through compression techniques.

To be sure that links are active when needed, we use two new MPI primitives, one to activate the

appropriate links and one to deactivate unused links44. EachMPI primitive can useWRPSmethod to

tune the links to required width. For turning on/oૼ lanes we take a typical delay of up to 10microsec-

onds (τ = 10 µs) 35. By recognizing the communication patterns or group of patterns (regions) in the

parallel application, the unnecessary overheads that can appear by power switching can be avoided.

This allows changes in link bandwidth (also link power consumption) to be done at coarser granular-

ity than individual communication calls. Therefore, we apply the following policy regarding theMPI

primitives for activation and deactivation:

• Activate the link to the required number of lanes before eachMPI call and deactivate after the

MPI call has ૽nished.

• If the MPI call is part of larger loop where more communication exchanges are done (nearest-

neighbour pattern), activate the link before the loop and deactivate when all MPI calls in the

loop ૽nish.

4.5.3 Methodology

For quantifying link energy savings same simulation environment and the same input traces are used

as in the previous simulation test runs for performance analysis explained in Section 4.4. Here, we

assumed that the link bandwidth was always reduced in accordance with the compression rate.

Rather than implementingnewcode in the simulator todynamicallymodify the linkbandwidths in

proportion to the newmessage sizes, the same eૼect was achieved simply by keeping the original MPI
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message sizes and interconnect bandwidths. It was only necessary to model the switching overheads

by introducing appropriate delays in the traces.

In order to avoid unnecessary overheads that can appear by power switching, it is important to

recognize communication patterns or group of patterns (regions) in the parallel application so that

changes of links bandwidth (also link power consumption) are coupled with them and not with indi-

vidual communication calls.

4.5.4 Analysis of Link Energy Savings

In general, previous works on network energy proportionality has focussed on powering down com-

munication links when idle. Here, we also propose a power saving machanism during communica-

tion phases which relies on data compression. The idea is to dynamically adjust the link bandwidth,

by varying the number of active lanes during communication periods. At the start of each communi-

cation, the number of lanes is increased to two, three, or four, depending on the compression rate. In

any case, there is a reactivation penalty of 10 µs. During idle periods, one lane remains active.

Figure4.37 andFigure 4.38 illustrates thebehaviourof theAlyaCGandGromacsPMEkernels. The

Figure 4.37: Traces showing whether Alya CG kernel is in the applicaঞon or MPI library (grey or black). The lower traces
show 4X-IB link power using the proposed technique
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Figure 4.38: Traces showing whether Gromacs PME kernel is in the applicaঞon or MPI library (grey or black). The lower
traces show 4X-IB link power using the proposed technique

upper traces show whether execution is in the application (no bar) or MPI library (grey or black bar).

The lower part of each sub૽gure shows the link power consumption, using the proposed link power

reduction technique, applying our policy for link activation and deactivation. We see that link power

reduction is possible during computation phases and, if compression is used, also during communica-

tion phases. Whenever compression cannot be used; e.g. for the application-driven communication

in Gromacs, the links are fully operative, consuming full power.
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Figure 4.39: IB edge switch link energy savings for Alya CG kernel for one MPI process per node with Input A

Figure 4.39 and Figure 4.40 show the energy savings for the Alya CG kernel. The energy reduction
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Figure 4.40: IB edge switch link energy savings for Alya CG kernel for one MPI process per node with Input B

is about 70% for eight processes, reducing to about 50% for 128 processes. The total energy savings

decreasewith thenumber of processes, since, assuming strong scaling, the computationphases become

shorter, reducing the lengths of the idle periods. There are, however, greater relative energy savings

from data compression. With 50% compression (Input A), the diૼerence in energy savings between

the smallest and largest runs is just 10%. Considering only the bene૽ts from idle link periods, this

diૼerence increases to about 20%.
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Figure 4.41: IB edge switch link energy savings for Gromacs PME kernel for one MPI process per node with Input A

The larger Input B has a lower drop in energy savings from increasing the number of processes. Data
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Figure 4.42: IB edge switch link energy savings for Gromacs PME kernel for one MPI process per node with Input B

compression will, however, still be important if the number of processes is increased much above 128.

The same observation is relevant for Gromacs, but to a lesser extent, as shown in Figure 4.41 and

Figure 4.42. The communication phases for which compression can be used make up a smaller part

of the overall execution time.
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Figure 4.43: IB edge switch link energy savings for Alya CG kernel for six MPI processes per node with Input A

If more than one MPI process is allocated to a node, the link will be powered up if any of these

processes needs to communicate; i.e. it is powered up when the ૽rst process on the node starts to

communicate and powered down when the last process ૽nishes communication. This should lead to
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Figure 4.44: IB edge switch link energy savings for Alya CG kernel for six MPI processes per node with Input B
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Figure 4.45: IB edge switch link energy savings for Gromacs PME kernel for six MPI processes per node with Input A

higher link utilization, decreasing the potential for link energy savings, compared with a single process

per node. Figure 4.43 and Figure 4.44 show the results for the Alya CG kernel with six processes per

node, which are little diૼerent from the results with one process per node. In contrast, Figure 4.45

and Figure 4.46 show the results for the Gromacs PME kernel, with six processes per node. Here, a

higher link utilization leads to lower link energy savings. This is clearest for Input A, which is consid-

erably smaller, soon reaching the limits of strong scaling. In this case, the link energy savings from

compression, in percentage terms, increase with the number of processes. This is simply because com-

munication phases account for an increasing percentage of the total execution time.
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Figure 4.46: IB edge switch link energy savings for Gromacs PME kernel for six MPI processes per node with Input B

Finally, we investigate the performance overheads caused by the link deactivation and activation

penalties. With one process per node, as shown in Figure 4.47, the maximum increase in execution

time was 6%, but it was usually considerably less. With six processes per node, in Figure 4.48, the

execution time was increased by less than 0.5%. This is because the reactivation penalties were each

time paid by the ૽rst process to communicate, which is generally the fastest process, and therefore not

on the critical path. The communication on the critical path incurs no penalty, preserving the original

performance. The performance loss of Alya CG for Input A is because lossy compression provokes a
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Figure 4.47: Applicaঞons kernels execuঞon ঞme increase due to reacঞvaঞon ঞme penalty and lossy compression for
one process per node configuraঞon
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Figure 4.48: Applicaঞons kernels execuঞon ঞme increase due to reacঞvaঞon ঞme penalty and lossy compression for
six processes per node configuraঞon

small increase in the number of CG iterations until convergence.

4.6 Conclusions

In this chapter, we evaluated the bene૽ts and trade-oૼs of usingMPI compression techniques in two

environments, where one is a real productionHPCmachine and another is anHPC cluster simulator.

For the application kernels evaluated, we showed that the exchanged data does not follow any pre-

dictable pattern which leads to bad lossless compression ratios. To overcome this problem, we used

lossy compression (reducing up to 50%), verifying that the remaining accuracy still leads to correct

results.

Using simulation we obtained similar results as with runs on the HPC production machine. The

gains obtained are lower than expected byAmdahl’s law for the used compression rates. The blocking

nature of point-to-point MPI calls in the nearest-neighbour pattern, where only a single message is

outstanding in communication between each pair of processes, does not overload network resources

at theHCA.More time is spent on scheduling and synchronization inside the communication pattern

than on the actual data transfer. Also, when the size of the messages and the number of neighbour-
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hood processes for each process are variable, the total time of communication is also aૼected. On

the other hand, patterns like all-to-all tend to synchronize the tasks, leading to a larger speedup. This

communication pattern loads the HCA channel with multiple MPI messages, so a reduction in size

improves performance.

On the real machine, for con૽gurations with 4 processes per node executing MPI_Alltoall calls

fromPMEkernels, the speedup factor get closer to the expected values according toAmdahl’s law. For

instance,we get speedupsof 12%and 13% forInput A andInput B respectivelywhileMPI_Alltoall

calls were occupying 26% and 24% of the total execution time (when 50% lossy compression was ap-

plied). The speedup factor also get closer to the expected values for simulation environment where

con૽gurations with 6 processes per node are considered. This suggests that contention created on the

NIC, which can occur serving all 4 (6 in case of simulation tests) processes at the same time, was dom-

inant and reducing the size of the message was clearly re૾ected in obtained speedups. As a side eૼect,

we observed that using compression may result in switching from aRendezvoॷ protocol to the more

optimal Eager message passing protocol, further reducing the execution times. Although speedup

factors were not encouraging, correct result obtained suggests that lower bandwidth networksmay be

implemented, leading to energy and installation cost savings.

To the best of our knowledge, this is the ૽rst time that data compression is investigated for link

energy savings. Using compression allows the number of active lanes to be reduced in proportion to

the compression rate. Thanks to compression, even with reduced network bandwidth, the applica-

tion performance is not aૼected. Reactivation delays typically increased execution time by just a few

percent. Using 50% compression, we obtained in the lowest (edge-level) network links energy savings

of up to 71% for theAlyaCGkernel and 63% forGromacs PME.We also show that strong scaling runs,

in particular, have a large bene૽t from data compression.
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Chapter 5

Runtime Software-Managed Power Savings

in IB Links

This chapter describes and evaluates our approach to reduce network energy consumption, by switch-

ing links oૼ during long idle periods, and using prediction to avoid the wake-up latency. The Static

Pattern Prediction System, presented in Section 5.2, introduces the basic prediction techniques and

methods for link power management. The Self-Tuned Pattern Prediction System, presented in Sec-

tion 5.3, automatically con૽gures itself, in order to build a fully self-contained algorithm.

5.1 Motivation

As discussed above, HPC applications typically follow the bulk synchronous programmingmodel, in

which network tra૿c is concentrated into distinct communication phases. It is reasonable to expect

that, since the network links are idle during computation phases, there is an automatic opportunity

to enter power-saving mode. It is, however, important to take account of the overhead in changing
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Table 5.1: Distribuঞon of link idle intervals with strong scaling

N° proc T idle < 20 µs 20 µs < T idle < 200 µs T idle > 200 µs
N° intervals Intervals [%] Time [%] N° intervals Intervals [%] Time [%] N° intervals Intervals [%] Time [%]

8 3277 58.56 0.001 6 0.11 0.009 2313 41.33 99.99
16 3595 54.98 0.002 606 9.27 0.078 2338 35.75 99.92
32 5052 53.72 0.006 1523 16.2 0.304 2829 30.08 99.62
64 5046 53.68 0.011 2228 23.7 0.779 2126 22.62 99.21G

RO
M
AC

S

128 9067 68.5 0.11 2276 17.2 1.01 1893 14.3 98.88

8 771 22.57 0.024 82 2.4 0.006 2563 75.03 99.97
16 1744 34.08 0.013 811 15.85 0.077 2563 50.08 99.91
32 3642 58.52 0.07 818 13.14 0.99 1763 28.33 98.94
64 6754 71.97 0.27 827 9.29 0.9 1758 18.73 98.83

AL
YA

128 8497 76.72 0.4 1644 14.84 5.05 934 8.43 94.55

8 209357 94.31 0.05 2201 0.99 0.14 10419 4.69 99.81
16 209423 94.34 0.11 2051 0.92 0.26 10503 4.73 99.63
32 209414 94.34 0.3 4014 1.81 0.73 8549 3.85 98.97
64 209284 94.28 1.07 5050 2.28 1.48 7643 3.44 97.45

W
RF

128 209442 94.36 1 6697 3.02 0.51 5833 2.63 98.49

9 9664 78.63 0.009 9 0.07 0.001 2618 21.3 99.99
16 13286 77.63 0.022 5 0.03 0.008 3824 22.34 99.97
36 20522 76.68 0.031 5 0.02 0.009 6236 23.3 99.96
64 27750 76.21 0.094 13 0.04 0.006 8648 23.75 99.9N

AS
BT

100 34996 75.98 0.13 161 0.35 0.22 10902 23.67 99.65

8 5468 54.66 0.095 3794 37.92 3.055 742 7.42 96.85
16 5119 54.85 0.18 3729 39.96 5.87 484 5.19 93.95
32 5503 58.7 0.46 3600 38.4 11.38 271 2.89 88.16
64 5775 60.79 0.97 3458 36.4 8.37 267 2.81 90.66N

AS
M
G

128 7082 84.65 7.04 1123 13.42 6.71 161 1.92 86.25

power mode, which is approximately 10 µs 35. There can be no energy savings from idle periods that

are shorter than the total time to turn the link oૼ and then back on again. A signi૽cant energy saving

is only possible if the idle period is much longer than this overhead. For simplicity in exposition,

we assume that the time to turn the link oૼ is the same as the time to turn it back on again, and

therefore denote both by Treact. In summary, energy savings are only possible for idle periods with

Tidle > 2×Treact.

We evaluated the potential for link power reduction by analysing traces of typicalHPC applications

(Gromacs7, Alya 3, WRF47 and twoNAS Parallel Benchmarks 13) running on theMinoTauro produc-

tion machine (described in Section 3.1). We con૽gured the applications to use one MPI process per

processor. We used strong scaling, in which the same workload was used irrespective of the number
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of processors.

The results are shown in Table 5.1. We see that, for almost all applications, 99% of the link idle

time is inside idle intervals that are longer than 20 µs, which is twice the typical value of Treact. Even

more importantly, in the majority of cases, more than 90% of the total link idle time is in longer idle

intervals of durationTidle > 200 µs, where signi૽cant power can be saved. Only theNASMGbench-

mark when running with a large number of processes, has a ૽gure lower than 90%. Since the goal is

a reduction in operational costs over the lifetime of the supercomputer, the important consideration

is average potential energy savings over all applications. All the results in this thesis are for the typical

andmore challenging case of strong scaling. Better results are expected for weak scaling. Nevertheless,

although, for strong scaling, the number of short intervals (Tidle < 20 µs) rises with the number of

MPI processes, short intervals still contribute a small proportion of the total idle time. Since long idle

intervals account for most of the idle time, reducing link power only during the long idle intervals is

su૿cient to obtain most of the potential energy savings, resulting in close to energy proportionality.

While deactivating IB lanes can be overlapped with computation, reactivation may incur a latency

in subsequent communication. In an ideal case, the IB link lanes would be turned on in time to avoid

a latency penalty on the next message. We solve this problem by providing the necessary knowledge

using a prediction algorithm.

5.2 Pattern Prediction System

5.2.1 Design

This section describes our energy-saving mechanism, which reduces link power consumption during

idle periods, with negligible impact on execution time. Figure 5.1 is a high-level view of our proposal,

which consists of two parts. The ૽rst part, the Pattern Prediction Component (PPC), is invoked be-
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fore every MPI event. It contains the Pattern Prediction Algorithm (PPA), described in detail below,

which builds a table, known as the pattern list. This table contains repeatable MPI communication

patterns. It also generates an output ૾ag, patternPrediction, which is true whenever PPA has deter-

mined that the program is following a known repeatable pattern. If patternPrediction is false, then no

prediction is active, meaning that the link remains in full-power mode.

  

Pattern 
Prediction

Component

P
ow

er of the link

P
attern p redictio n

 is true

Power Mode
Control

Component

Full-power
 mode

Low-power
mode   Controlling and

 shifting the modes

Pattern prediction
is false

MPI events

Figure 5.1: Simplified diagram of MPI process pa�ern predicঞon system that reduces power consumpঞon in intercon-
necঞon links

When patternPrediction is true, however, control of the link’s power modes is transferred to the

second part, the Power Mode Control Component (PMCC). Whenever this component is active, it

is invoked after every MPI event. It compares the actual MPI events with those expected from the

pattern. So long as they continue to match, the length of the next idle interval can be read from the

pattern. At the start of expected long idle intervals, the link is put into low-power mode for the ap-

propriate amount of time. As long as the program continues to follow the pattern, there is no need

to invoke PPA, since the pattern is already known. It is only necessary to continue updating the idle
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intervals with recent values, allowing some adaptation to varying application characteristics. If the

current MPI event does not match the pattern, however, PMCC sets patternPrediction to false. In

that case, PPA is reactivated and the link is kept in full-power mode until the next repeatable pattern.

5.2.2 Pattern Prediction Component

The algorithm uses the concept of n-grams, which is extensively used in the area of natural language

processing. The n-gram extraction approach has been used to e૿ciently detect DNA patterns64 and

patterns in musical notes 50. An n-gram is de૽ned to be a subsequence of n items in a sequence. In

our case, the sequence of items, known as grams, is derived from the MPI events in the program’s

execution. Each gram is one or more consecutive MPI events that are separated only by short idle

intervals, whereas the idle intervals between diૼerent grams are long. An n-gram is a sequence of n

consecutive grams. Note that PPAworks on theMPI events in a single process. Although it is outside

the scope of this thesis, if there are multipleMPI processes per node, prediction should be done inside

eachMPI process separately, with their outputs combined using a single PMCC per node.

  

41-41-41___10___10___41-41-41___10___10

41 41 41 10 10 41 41 41 10 10

gram gram gram gram gram gram

link power saving idle regions

Figure 5.2: Forming the array of grams from the MPI event stream (Alya). Event IDs are 41 forMPI_Sendrecv and 10 for
MPI_Allreduce

Before the PPA algorithm is invoked, the grams need to be formed. Algorithm 1 performs the

grouping of MPI events into grams, based on the idle time interval between adjacent MPI events.

Two consecutive MPI events are considered to be part of the same gram whenever the idle time sep-
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arating them is less than a threshold known as the grouping threshold (GT). The intention is that the

link enters low-power mode between grams but not inside them, so this grouping threshold should

be larger than the critical value of 2×Treact discussed in Section 4.1.

Algorithm 1 Forming Array of Grams
Input: Current MPI event, eventType, and length of preceding idle interval, previoॷIdleTime.
Output: Predicted pattern of MPI events, predictedPattern, and the current partial gram, currentGram, re-

quired by Algorithm 4.
Global: pos : Integer(0) ; patSize : Integer(2) ; posNext = patSize
1: if previousIdleTime > groupingThreshold then

▷ Insert completed gram into array
2: array[pos] = (currentGram, previousIdleTime)
3: pos = pos+ 1
4: clear currentGram
5: append eventType to currentGram
6: if patternPrediction is false then
7: if pos ≥ (posNext+ patSize) then
8: call PPA()

The input to the algorithm is the currentMPI event type, eventType, and the length of the idle time

preceding it, previoॷIdleTime. The output of the algorithm is the predicted pattern of MPI events,

predictedPattern, and the current partial gram, currentGram, required by PMCC.

Here, an array, array, of tuples is created. Each tuple in this array holds the list ofMPI events in the

current gram, as well as the length of the idle interval that follows the gram. Note that the current gram

can only be inserted into array when this latter length is known; i.e. after the idle interval following

it, which is on the ૽rst MPI event of the next gram.

Figure 5.2 illustrates the eૼect of Algorithm 1. Each set of three consecutiveMPI_Sendrecv calls is

grouped together to form a single gram, while eachMPI_Allreduce call is isolated as a separate gram.

These grams will be used as building blocks to construct the repeatable communication patterns. The

building of patterns is done by the PPA algorithm, which is invoked on line 9, only when there is no

currently repeating pattern and a su૿cient number of grams has been seen.
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5.2.3 Pattern Prediction Algorithm

A repeating pattern is a sequence of grams that has been observed to occur at least twice consecutively.

We established the following policy to discover these repeating patterns and accurately predict their

continuation:

• After observing three consecutive occurrences of the same pattern, it is predicted to continue

to repeat for a long time, meaning that the Power Mode Control Component is activated.

• On misprediction, the Power Mode Control Component is deactivated. However, observing

the pattern once more causes it to be detected, meaning that the Power Mode Control Com-

ponent is reactivated.

This policy is implemented by Algorithm 2, the Pattern Prediction Algorithm (PPA). It is based

on an algorithm proposed by Alawneh for the detection of process patterns 16. We modi૽ed the algo-

rithm to adapt it to detect continuous repetitions of patterns in program execution and the prediction

of pattern appearance based on previous appearances.

The input to the PPA algorithm is the array of tuples, array, from Algorithm 1. Each tuple in the

array corresponds to a completed gram, holding the list of MPI events inside it, as well as the length

of the idle interval that follows it. The PPA algorithm builds a uthash 33 hash table, known as the

pattern list, with key the pattern sequence (list of grams) and value a tuple giving the pattern’s length,

its positions in the array, its frequency, the list of idle intervals between grams and the total number of

MPI calls in the sequence. In addition, there are two indices into array, posCur, initially zero, which

points to the current pattern, and posNext, initially equal to patSize, which starts with the value two.

The PPA algorithm is best understood using an example. Figure 5.3 illustrates the execution of the

algorithm for the Alya workload. At the top, in Figure 5.3(a), is the list of MPI events grouped into

grams; it is an extension of the example in Figure 5.2. Next, in sub૽gure (b), is shown the progress of
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Algorithm 2 Pattern Prediction Algorithm (PPA): Algorithm runs for eachMPI process sep-
arately identifying consecutive repeating patterns based on which the prediction is done
1: if newPattern is false and checkConsec is false
2: and patSize < maxPatternSize then

▷Grow the pattern by one gram
3: checkPrevious = true
4: match = false
5: nextPattern = currPattern+ array[posCur+ patSize]
6: patSize = patSize+ 1
7: newPattern = updatePL(nextPattern, curPos)
8: if newPattern is false then
9: if PL[nextPattern].wasUsed is true then

▷ Reactivate previously used pattern
10: predictedPattern = nextPattern
11: patternPrediction = true
12: return
13: Check all previous positions listed in PL[currPattern]
14: if All can be extended to match nextPattern then
15: match = true
16: checkConsec = true
17: currPattern = nextPattern
18: if checkConsec is true then

▷ Check whether the pattern is repeated at posNext
19: if array[posNext : posNext+ patSize] Equals currPattern then
20: consecutiveRepeats + = 1
21: UpdatePL(currPattern, posNext)
22: match = true
23: if consecutiveRepeats Equals 2 then
24: maxPatternSize = patSize
25: PL[currPattern].wasUsed = true
26: predictedPattern = currPattern
27: patternPrediction = true
28: posCur = posCur+ patSize
29: posNext = posNext+ patSize
30: else
31: checkConsec = false
32: if newPattern is true and match is false then
33: posCur = posCur+ (patSize− 1)
34: posNext = posNext+ (patSize− 1)
35: if match is false and checkPrevious is true then
36: remove nextPattern from PL
37: patSize = 2
38: checkPrevious = false
39: else ▷ Insert current gram into pattern list
40: currPattern = array[posCur : posCur+ patSize]
41: newPattern = updatePL(currPattern, posCur)
42: checkConsec = true

the algorithm, with each row corresponding to an MPI event. For simplicity, the lengths of the idle

intervals have been omitted from array. At the bottom, in Figure 5.3(c) is shown the insertions into

the pattern list.
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Algorithm 3 function updatePL
Input: current pattern, currPattern and current position, posCur
Output: Return true if curPattern is a new pattern, else if already exists in PL returns false
1: if currPattern in PL then
2: PL[currPattern].frequency + = 1
3: append posCur to PL[currPattern].position
4: return false
5: else
6: add to PL[currPattern, posCur]
7: return true

We now follow the progress of the algorithm in Figure 5.3(b). The PPA algorithm will not be exe-

cuted until there are su૿cient completed grams in array (line 9 ofAlgorithm 1). Since the initial values

of patSize and posNext are both two, the number of formed grams becomes large enough only on the

ninth MPI call (line 9 in the PPA execution in Figure 5.3(b)). At this point, since newPattern is true

and checkConsec is false, the only action is to insert the current gram into the pattern list (lines 48 to

50). The ૽rst bi-gram, 41-41-41_10, is therefore read from array, and added to the pattern list (lines 48

and 49). This insertion is shown in Figure 5.3(c). The return value from updatePL (described inmore

detail in Algorithm 3) indicates whether this is the ૽rst insertion of that particular pattern sequence.

It is, so newPattern is true.

On the next MPI event, newPattern and checkConsec are both true, so the ૽rst action is to check

whether there are two consecutive identical patterns in the array (line 23). The comparison is between

the bi-grams 41-41-41_10 and 10_41-41-41 at the beginning of the array. These do not match, so

control passes to lines 36 to 40, where checkConsec becomes false, and both posCur and posNext are

shifted one position. On the 11th MPI call, the second bi-gram 10_10 is added to the pattern list, in a

similar manner to the ૽rst. On the 13th MPI call, the third bi-gram is added.

On the 15th MPI event, the 41-41-41_10 bi-gram is encountered for a second time. Since it was

already present in the pattern list, newPattern is set to false (line 49). Inside updatePL, the frequency

count, shown in the third column in the insertions list in Figure 5.3, is increased to two and the list of
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positions is extended to be [0, 3]. Next, on the 16thMPI event, newPattern and checkConsec are both

true, but, as before, there is no consecutive repeat of the bi-gram 41-41-41_10. Therefore, checkConsec

is set to false, but, as now newPattern is set to false, it is necessary ૽rst to check whether the enlarged

pattern can detects its repetitions, before we shift both indices by the patSize− 1.

On the 17thMPI event, newPattern is still false, and checkConsec is now false, since the sequence of

grams, 41-41-41_10 has been seen twice, but they are not consecutive. For this reason, the algorithm

increases the size of this pattern by one gram (lines 3 to 14); in this case, to the tri-gram41-41-41_10_10.

If this pattern had previously been used for prediction, then it would be immediately reactivated (lines

9 and 11), according to the second statement in the policy at the beginning of this section. This is not

the case, so instead, line 15 checks whether all previous occurrences of the bi-gram 41-41-41_10 can be

extended to the new tri-gram. If the newly constructed tri-gram cannot be detected at any previous

position of its pre૽x bi-gram and there’s no consecutive repeats, than it will be removed from the pat-

tern list (line 43) and the size of a n-gram will be set to the minimal value, 2 (bi-gram). Here, it is not

the case, somatch is set to true.

Eventually, on the 17th call, the ૽rst consecutive repetition of the tri-gram 41-41-41_10_10 is found.

At this point, consecutiveRepeats is incremented to 1, and both posCur and posNext are advanced by the

pattern size. When PPA is next invoked on the 21st MPI event, the second consecutive repeat is seen.

The pattern is assigned to predictedPattern and patternPrediction is set to true (lines 28 to 31), since

the PPA algorithm has successfully found the repeating pattern.

In order to recognize the natural (real) iteration in the application and predict each iteration based

on the behaviour of the previous one, we must avoid merging multiple application iterations into a

single pattern. This is done by setting themaximumpattern size to be the length of the current pattern

(line 28). If this were not done, and increasing numbers of application iterationswere combined into a

single pattern, prediction accuracy would suૼer, since idle intervals would be predicted based on older

values frommany iterations previously. The pattern size can therefore vary from the smallest bi-gram
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predicted pattern idle intervals from position

41-41-41_10_10     [t1,t2,t3] 12

# pattern frequency idle intervals position pattern size Nº MPI calls

9 41-41-41_10 1 t1,t2 0 2 4

11 10_10 1 t1,t2 1 2 2

13 10_41-41-41 1 t1,t2 2 2 4

15 41-41-41_10 2 t1,t2 0, 3 2 4

17 41-41-41_10_10 1 t1,t2,t3 3 3 5

17 41-41-41_10_10 2 t1,t2,t3 3, 6 3 5

21 41-41-41_10_10 3 t1,t2,t3 3, 6, 9 3 5

# MPI 
ID

Array of grams Current 
Gram

Action on MPI 
event

Pattern
prediction

1 41 41 Not enough grams false

2 41 41-41 Not enough grams false

3 41 41-41-41 Not enough grams false

4 10 [41-41-41] 10 Not enough grams false

5 10 [41-41-41,10] 10 Not enough grams false

6 41 [41-41-41,10,10] 41 Not enough grams false

7 41 [41-41-41,10,10] 41-41 Not enough grams false

8 41 [41-41-41,10,10] 41-41-41 Not enough grams false

9 10 [41-41-41,10,10,41-41-41] 10 Add pattern to PL false

10 10 [41-41-41,10,10,41-41-41,10] 10 Check consecutive-no false

11 41 [41-41-41,10,10,41-41-41,10,10] 41 Add next pattern to 
PL

false

12 41 [41-41-41,10,10,41-41-41,10,10] 41-41 Check consecutive-no false

13 41 [41-41-41,10,10,41-41-41,10,10,] 41-41 Add next pattern to 
PL

false

14 10 [41-41-41,10,10,41-41-41,10,10,41-41
-41]

10 Check consecutive-no false

15 10 [41-41-41,10,10,41-41-41,10,10,41-41
-41,10]

10 Add next pattern to 
PL- match detected

false

16 41 [41-41-41,10,10,41-41-41,10,10,41-41
-41,10,10]

41 Check consecutive-no false

17 41 [41-41-41,10,10,41-41-41,10,10,41-41
-41,10,10,]

41-41 Add gram 
Consecutive-yes

false

18 41 [41-41-41,10,10,41-41-41,10,10,41-41
-41,10,10]

41-41-41 Not enough grams false

19 10 [41-41-41,10,10,41-41-41,10,10,41-41
-41,10,10, 41-41-41]

10 Not enough grams false

20 10 [41-41-41,10,10,41-41-41,10,10,41-41
-41,10,10, 41-41-41,10]

10 Not enough grams false

21 41 [41-41-41,10,10,41-41-41,10,10,41-41
-41,10,10, 41-41-41,10,10]

41 Check 
consecutve-yes

true

(b) PPA execution:

41-41-41 10 10 41-41-41 10 10 41-41-41 10 10

41-41-41 10 10 41-41-41 10 10 41-41-41 10 10

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17

(a) Array of grams of MPI events formed during an MPI process:

(c) Insertions into Pattern List:

(d) Prediction possible:

Figure 5.3: Example execuঞon of the PPA algorithm for Alya workload

to the size de૽ned bymaxPatternSize value.
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Algorithm 4 Power Mode Control Component
Input: Predicted pattern, predictedPattern and the current (partial) gram, currentGram
1: index : Integer(0)
2: if patternPrediction is true then
3: predictedPatternGram = predictedPattern[index]
4: idleTimeArray = PL[predictedPattern].idleTime
5: if len(currentGram) Equals len(predictedPatternGram) then
6: if currentGram Equals predictedPatternGram then
7: idleTime = idleTimeArray[index]
8: safetyLimit = idleTime× displacementF+ Treact
9: predictIdleTime = idleTime− safetyLimit
10: WRPS_method(predictedIdleTime)
11: index = (index+ 1) mod len(predictedPattern)
12: else
13: patternPrediction = false
14: index = 0

5.2.4 Power Mode Control Component

The Power Mode Control Component is responsible for switching between link power modes, ac-

cording to the current repeatable pattern. The algorithm is presented as Algorithm 4, which is exe-

cuted onlywhen patternPrediction૾ag is true. The ૽rst input to the algorithm is the predicted pattern

from Algorithm 2. This pattern is described by two arrays. The ૽rst array is the sequence of grams,

predictedPattern, and the second array is the sequence of idle time intervals following those grams,

idleTimeArray. The other input to the algorithm is the current gram being built by Algorithm 1.

Algorithm 4 works with the partial gram, and considers it to be complete when it has the correct

length (line 5). If, in addition, the MPI events in the actual gram match the prediction (line 6), then

the predicted length of the upcoming idle period, idleTime, is read from the array. It is modi૽ed by

the displacement factor, as described below, and the Treact, obtaining the ૽nal prediction, predictIdle-

Time. The resulting value can be passed as the argument toWRPS_method, giving the time to remain

in low-power mode. If, on the other hand, the actual gram does not match the prediction, then the

current pattern has ૽nished, and PPA is reactivated by setting the patternPrediction ૾ag to false.

The displacement factor, mentioned above, is a safety factor, used to take account of variability in
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the link idle intervals. To reduce the likelihood that the link is not turned on too late, the predicted

idle time is reduced using the displacement factor (line 8 of Algorithm 4). It is a value between 0 and

1, where 0 means that the predicted idle time is not reduced, and 1 means that it is reduced all the

way to zero. For simplicity in presentation, the displacement factor is expressed as a percentage (so a

displacement factor of 5% is equivalent to a value of 0.05 in the algorithm).

  

displacement 10%

previous pattern

current pattern

prediction phase power mode control phase

without
displacement

Figure 5.4: Controlling IB link power mode during execuঞon of Alya, with displacement factor of 10%. Real idle interval
turned out to be larger than expected.

  

displacement 10%

previous pattern

current pattern

prediction phase power mode control phase

without
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Figure 5.5: Controlling IB link power mode during execuঞon of Alya, with displacement factor of 10%. Real idle interval
turned out to be shorter than expected.

The function of the displacement factor is illustrated in Figure 5.5 and Figure 5.4. Figure 5.4 is

the case when the current pattern has an idle interval slightly larger than predicted. In this case, a

79



displacement factor of 10% reduces the energy savings by slightly more than 10%, compared with op-

timal. Figure 5.5 is the case when the current pattern has an idle interval shorter than predicted. In this

case, the displacement factor of 10% has avoided the latency penalty that would have been incurred

by switching on the link too late. In general, in the context of HPC, it is better to reduce the energy

savings than risk a noticeable degradation in performance. Varying the displacement factor exposes a

trade-oૼ between the two.

5.2.5 Hardware Support
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Figure 5.6: Link Block diagram

Figure 5.6 shows the hardware support that is required for IB link power management. A special

command is required, which enables user code to request that the link enters low-power mode once

any ongoing communication has completed. In order to avoid interrupting theCPUwhen it is time to
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wake up, we propose adding one hardware timer associated with the link. This timer is programmed

using the predicted idle time. After the programmed delay elapses the timer will generate an interrupt

to the ૽rmware, which will reactivate the lanes. Communication between PMCC and the hardware is

unidirectional, meaning that there is no feedback to the system on the correctness of prediction.

5.2.6 Experimental Evaluation

Methodology

The link-level power management described in Section 2.6 is still under development by the In૽ni-

Band switch andNIC vendor, so it is not yet supported in the devices’ ૽rmware. We therefore evaluate

our prediction-basedmechanism and its impact on performance and energy savings using a simulation

environment. We decided to use the Venus–Dimemas49,42 simulator (both are explained in detail in

Section 3)

Dimemas was fed with ૽ve representative HPC applications traces obtained on a MinoTauro ma-

chine (described in Section 3.1). The applications were con૽guredwith oneMPI process per node and

strong scaling (i.e. a ૽xed workload). The parameters of the simulated system are given in Table 5.2.

We ૽rst ran the simulations withoutmodifying the traces, in order to check that the original execu-

tion times were reproduced. Next, we apply PPA to the traces, inserting new events that mark when

prediction is possible and events that mark when links are in low-power mode. When mispredictions

happen delays due to reactivation of a lanes are inserted in the traces. All other overheads associated

with the power saving mechanism are inserted, including the time to execute the PPA algorithm, as

well as the overheads of data collection. Finally, we simulate the new traces on Venus–Dimemas, in

order to quantify the resulting performance and energy savings.

Using the Paraver tool 14, wemeasure the total amount of time forwhich the IB links are fully active,

as well as the time that the links are in low-power mode. Figure 5.7 shows a trace from Paraver. The
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Table 5.2: Parameters used in Simulaঞons

Parameter Value

Simulator Dimemas-Venus
Connectivity XGFT(2;18,14;1,18)
Topology Extended Generalized Fat Trees (two levels of switches)
Switch technology In૽niband
Network Bandwidth 40Gbit/s
Segment Size 2 kB
MPI latency 1 µs
CPU Speedup 1
Routing scheme Random routing
Switch power consumption 43% when in low-power mode ?

dark blue regions represent durations during which the IB links are in low-power state, and bright

blue regions showwhen IB links are in full-power state. Energy savings are somewhat diૼerent for the

various MPI processes. The times used for evaluation are averaged over all MPI processes.

Figure 5.7: Execuঞon trace of the Gromacs applicaঞon with 16 MPI processes, showing when IB links enter low-power
mode
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Results

This section presents and analyzes the experimental results, in terms of execution time and energy

savings. For all benchmarks except NAS BT, we show results for runs with 8, 16, 32, 64 and 128 MPI

processes. Since NAS BT requires the number of processors to be square, we instead run it with 9, 16,

36, 64, and 100MPI processes.
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Figure 5.8: Energy savings in IB edge switch links - strong scaling results with medium displacement factor
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Figure 5.9: Applicaঞons execuঞon ঞme increase - strong scaling results with medium displacement factor
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Figure 5.8 andFigure 5.9 show the energy savings andperformance impact respectively for amedium

value of the displacement factor equal to 5%. Since we used strong scaling workloads, the amount of

communication relative to computation increases with the number of nodes, inevitably reducing the

opportunities for energy savings. We expect this problem to not occurwithweak scaling. For the same

reason, larger scale runs suૼer from a larger increase in execution time, but still the maximum average

increase, across applications, is around 1%. Due to larger inter-process communication the delays in-

troduced in the system coming from our power savingmechanism can accumulate between processes.

Depending on the communication pattern during execution, this could bring the agglomeration of

delays and create a total delay in the entire application that is much larger than a single local delay on

oneMPI process. This can be seen for the Gromacs application, where in a run with 128 processes, we

see more than 4% increase in execution time.
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Figure 5.10: Energy savings in IB edge switch links - results when large displacement factor of 10% is employed

Figures 5.10 and 5.11 and Figures 5.12 and 5.13 explore the trade-oૼ in varying the displacement factor.

Choosing a larger displacement factor reduces the overheads incurred by waking the link up too late,

at the cost of reduced time in the low-power mode. The results for a large displacement of 10%, in

Figure 5.10 and Figure 5.11 show that the average energy reduction is lower at 30.6%, with an almost
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Figure 5.11: Applicaঞons execuঞon ঞme increase - results when large displacement factor of 10% is employed
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Figure 5.12: Energy savings in IB edge switch links - results when small displacement factor of 1% is employed

negligible increase in execution time, compared with the original. Using the smaller displacement

factor of 1%, in constrast, shown in Figure 5.12 and Figure 5.13 gives the largest average energy savings

of 33.5%, at the cost of potentially larger impact on execution time.

The energy consumption of the interconnection network can be reduced further if other compo-

nents in the switches can be turned oૼ; e.g. the input buૼers and crossbars. The reactivation times

of these elements are much longer, at up to a millisecond, which could cause an unacceptably large
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Figure 5.13: Applicaঞons execuঞon ঞme increase - results when small displacement factor of 1% is employed

increase in execution time. We expect that our power saving mechanism can better amortize larger

reactivation times and allow switches to go to deeper low-power modes without any major negative

eૼect on the execution times.

Grouping Threshold (GT) Value

An important parameter in the PPA algorithm is the grouping threshold (GT) value, which deter-

mines whether two consecutive MPI calls should be considered as part of the same gram. Since there

are no opportunities for power savings during idle periods shorter than 2×Treact, the value of GT

should be greater than this value.

Table 5.3 shows the values of the grouping threshold that were used for evaluation, as well as the re-

sulting prediction accuracy. Prediction accuracy is averaged over allMPI calls, including those outside

the iterative parts of the application, which correspond to less predictable initialization and ૽naliza-

tion phases. This is an important consideration for WRF and partially for Gromacs, while for Alya,

NAS BT andNASMG, the majority of calls are inside the iterative phase and the prediction accuracy

is rather large. It is interesting that although theWRF application has the lowest prediction accuracy,
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it has the second-largest power savings; see Figure 5.12. This is because the majority of large idle in-

tervals are inside the iterative phase, while idle intervals in the other parts of the application are quite

small. The opposite is true for the Alya application, where the prediction accuracy is large but the

power savings are smaller. Here, the mayority of the large idle intervals are not in the iterative part of

the application.

Table 5.3: Chosen GT across HPC applicaঞons

Num proc Grouping Threshold, GT MPI call hit rate
(μs) (%)

8 20 42
16 222 44
32 20 48
64 22 44

G
RO

M
AC

S

128 136 59
8 20 93
16 72 93
32 36 93
64 36 93AL

YA

128 20 93
8 56 25
16 30 33
32 30 32
64 36 31W

RF

128 22 31
9 20 97
16 22 98
36 46 98
64 20 98N

AS
BT

100 50 98
8 300 74
16 382 79
32 300 70
64 290 74N

AS
M
G

128 150 74
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Table 5.4: Average PPA overheads: 16 MPI processes

HPC MPI calls when Overhead when Average overhead
workload PPA is invoked PPA invoked (μs) per MPI call (μs)

Gromacs 4.7% 25.1 2.1
Alya 1.2% 16.1 1.2
WRF 0.4% 7.8 1.1
NAS BT 3.7% 6.9 1.1
NASMG 0.5% 26.4 1.05
Average 2.1% 16.5 1.3

SystemOverheads

To measure overheads we relied on the system clock using the gettimeofday system call. The costs of

overheads associated with interception of theMPI call and reading the system time are approximately

1 µs. These overheads occur every MPI call while overheads that come from power saving system are

diૼerent and do not occur on every MPI call. When the algorithm predicts the repeating pattern al-

lowing power saving mechanism to shut down inactive lanes, the PPA is disabled, waiting for pattern

misprediction to be relaunched again. Also, if the number of necessary grams is not enough the PPA

will not be invoked. For activation/deactivation of the IB lanes, we chose a typical latency of 10 µs.

While the deactivation will be overlapped with computation, the reactivation penalty in case of mis-

prediction has to be paid. The penalty could be equal or smaller than reactivation time if reactivation

has already been started. The PPA overheads are also varying and depend on pattern size and number

of all possible patterns detected during the execution. We used uthash 33 hash table to store the pattern

objects where pattern is used as a key. Table 5.4 shows the average overheads of PPA through theHPC

applications. Although the overhead per MPI call on ૽rst sight can seem very large, it only occurs on

small number ofMPI calls (average 2.1%). The overheads associated with PPA can be further reduced

by using faster hash tables.
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5.3 Self-Tuned Pattern Prediction System

5.3.1 Eૼect of Grouping Threshold (GT) value

The Grouping Threshold (GT) de૽nes the threshold between short and long idle intervals. AnMPI

event that is preceded by a long idle interval; i.e. one longer than the GT, becomes the ૽rstMPI event

in a new gram. All consecutiveMPI events that are preceded by short intervals will be included in this

same gram. This grouping of MPI events into grams was shown in Figure 5.2.
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Figure 5.14: Effect of Grouping Threshold on ঞme in low power mode, for NASMG benchmark with 32 MPI processes,
showing data of process 0

Figure 5.14 shows the eૼect of varying the Grouping Threshold for one process of the MG NAS

benchmark. The y-axis is the fraction of time that the link stays in low-powermode, and higher values

are clearly better. The x-axis is the value of the GT, varying from the minimum value of 20 µs, which

is the total time required by the hardware to enter and leave the low-power mode, to an upper value

of around 56ms. After 32ms, the curve reaches zero as even the largest (the one that can be predicted)

idle interval is classi૽ed as short i.e. below the GT value. We observe that the amount of time that the

link stays in low-power mode remains steady around GT values of 400 µs, 2ms and 15ms.

We wish to ૽nd the best value of GT automatically, but the erratic behavior of the function in

Figure 5.14 implies that it will be di૿cult to optimize, without additional context. There is, however,

a connection between the sharp dips in this function and the frequency histogram of the idle interval

lengths, as described in Section 5.3.2, which can be used for optimization.
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5.3.2 Design

Figure 5.15: Simplified block diagram of Self-Tuned Pa�ern Predicঞon System (SPPS)

This section describes the Self-Tuned Pattern Prediction System (SPPS), a software-managed in-

terconnect energy saving mechanism executed in the PMPI pro૽ling layer of the MPI library. The

overall structure of SPPS is shown in Figure 5.15. The front-end groups the MPI events into grams,

each of which contains one or more MPI events separated only by short idle intervals. The ૽rst task

is to determine the Grouping Threshold (GT) which distinguishes between long and short intervals.

For reasons given in Subsection 5.3.2, idle intervals of length close to the GTmay cause problems with

prediction. The front-end therefore checks whether any idle intervals appear close to the GT, in a re-

gion known as the dangeroॷ zone, and, if so, theGTmust be recalculated. Otherwise, theMPI events

are processed according to PPS28, by grouping them into grams and passing them to the back-end. In

the back-end, the Pattern Prediction Component detects repeatable communication patterns and it

uses these patterns to predict the link’s idle intervals. If prediction is possible, then the Power Mode

Control Component (PMCC) shifts between link power modes.

GT detection algorithm approach

This section gives an informal description of the intuition behind the SPPS algorithm. As already

described, the Grouping Threshold (GT) is used to classify each idle interval as short or long. In order
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for the prediction algorithm to function well, this classi૽cationmust be consistent, meaning that each

time the pattern repeats, correspondingMPI events should always be classi૽ed in the same way.
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Figure 5.16: Histogramf: Histogram of number of IDLE intervals for NASMG benchmark with 32MPI processes, show-
ing data of process 0
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Figure 5.17: Histogramcumt: Cumulaঞve histogram of IDLE interval ঞme for NASMG benchmark with 32 MPI pro-
cesses, showing data of process 0

Figure 5.16 is a histogram of the idle intervals, known asHistogramf, for the same example used in

Figure 5.14. Each bin counts the number of idle intervals in the relevant range. For example, there are

268 idle intervals of length between 100 µs and 178 µs. There are a large number of idle intervals of

length less than about 300 µs, with no clear internal structure. There are also three smaller peaks, with

clear gaps separating them from the other peaks. The region below 300 µs is the same region, visible in

Figure 5.14, for which the GT gives poor and unreliable results. We see similar behaviour across many

of the benchmarks.

This suggests that the algorithm should avoid values of the GT close to many idle intervals. If

the GT is close to a large number of idle intervals, it is likely that when a pattern is repeated, some
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of the idle intervals will be classi૽ed diૼerently each time, i.e. they will be on diૼerent sides of the

GT. Such behaviour will mean that the pattern is not recognised, leading to a low prediction rate. To

avoid this we should aim to set the GT in an area without idle intervals, which will cover the region

of at least GT±10% (in the rest of the text we refer to this region as the dangeroॷ zone). The reason

for the size of±10% is that the lengths of idle link intervals are always subject to noise, which makes

corresponding idle intervals have slightly diૼerent lengths. The tolerance of±10% is proposed based

on o଀ine clustering experiments, which have shown that idle intervals tend to be in groups of at most

this size.

Figure 5.17 is a cumulative histogram of the idle time, which is known asHistogramcumt. Each bin

is the percentage of the total idle time that is found in idle intervals of length less than or equal to the

upper bound of the bin. That is, each bin gives the percentage of the total idle time mapped to either

the given bin or a “smaller” bin. The behaviour in the example is typical, as most of the idle time is

contained in long intervals. This supports the decision to put the interconnect into low-power mode

only during comparatively long intervals. The GT should however be small enough to capture most

of the energy savings.

The approach is therefore to use the histogram of the number of idle events, given in Figure 5.16, to

choose only values of GT for which there are zero or few idle intervals of a similar length, and then to

use the cumulative histogram of the total idle time, shown in Figure 5.17, to choose a GT value with

acceptable energy savings.

Description of the GT detection algorithm

The algorithm that ૽nds the best Grouping Threshold (GT) value is known as Automatized Detec-

tion of Grouping Threshold (ADGT) algorithm, and given in pseudocode in Algorithm 5. This algo-

rithm is divided into three phases, which are described in the following subsections.

Con૽guration and Build-Histogram Phase: The ૽rst phase collects a sample of the initial idle in-
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terval lengths, and it builds the two histograms de૽ned in Section 5.3.2. Since many applications start

with an initialization phase signi૽cantly diૼerent from the rest of the application, line 1 skips the ૽rst

few idle intervals. The number of skipped idle intervals is given byfirstIdleIntervals, and is set to 100 in

the evaluation (in a more sophisticated system, the initialization phase could be determined dynam-

ically). Line 2 collects the sample of idle intervals, and lines 5 and 6 build the two histograms. The

number of bins for the histograms is given by a common rule of thumb, which uses the square-root of

the number of idle intervals in the sample. Bothhistograms should use a log-scale representation of the

idle intervals, due to an empirically observed skewness towards shorter intervals. In both histograms,

the last bin, corresponding to the longest idle intervals, should include all idle intervals longer than its

lower bound; i.e. they should also include the idle events longer than the histogram’s nominal upper

bound of 1.7 s. Lastly, we set the demanded time of a link in low-power mode, demCumIdleTime, to

the initial value of 90%. This value was chosen based on our previous study28, which found that 90%

of idle time is spent in relatively large idle intervals. This value is, however, decreased if no solution is

found, as elaborated in the next phase.

Main Phase: The main phase ૽nds a histogram bin containing at most a few idle intervals that still

leads to acceptable energy savings. Line 13 excludes all values of GT that would lead to unacceptable

energy savings, i.e. those where the energy savings would be less than demCumIdleTime. This is done

by pointing indexBin to the “smallest” bin that does not have acceptable energy savings. There is at

least one such bin, since the construction ofHistogramcumt ensures that its “largest” bin always has the

value 100%. Hence, the set of values given to the min operator is non-empty, and since all elements

are valid, the value of indexBin is valid. Line 16 determines the bin with acceptable energy savings

that contains the smallest number of idle intervals. The resulting value of Bin is always valid because

the argmin operator always returns a non-empty set of valid bins. It is not empty because the case

indexBin = 0, which would cause argmin to be evaluated on an empty set, is speci૽cally excluded by

line 14. If several bins count the same number of idle intervals, then the “largest” bin is chosen.
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Algorithm 5 Automatized Detection of Grouping Threshold (ADGT) value
Input: firstIdleIntervals, numberIdleIntervals, demCumIdleTime, α
Output: Grouping Threshold (GT ).

▷ Con૽guration and Build-Histogram Phase
1: skip firstIdleIntervals
2: idleIntervals = collect numberIdleIntervals
3: nBin = ⌊

√
numberIdleIntervals⌋

▷Use Coarse Grain Log-Scale (20μs, 1s)
4: dangNum = ⌊α× (28.6÷ nBin)⌋
5: Histogramf = freqhistogram(idleIntervals, nBin)
6: Histogramcumt = cum-timehistogram(idleIntervals, nBin)

▷Main Phase
7: aFind = false
8: do
9: do
10: binGT = false
11: if demCumIdleTime < 0.1 then
12: return None

13: indexBin =min b
b ∈ {0, · · · , nBin− 1}
Histogramcumt[b] ≥ (100%− demCumIdleTime)

14: if indexBin = 0 then
15: return None
16: Bin = max argmin Histogramf[b]

b ∈ {0, ..., indexBin− 1}
17: if Histogramf[Bin] < dangNum then
18: binGT = true
19: else
20: demCumIdleTime = demCumIdleTime× 0.95
21: while (binGT is false)

▷ Finalization Phase
22: minval = Histogramf.minval[Bin]
23: maxval = Histogramf.maxval[Bin]
24: idleIntervalsInBin = {x ∈ idleIntervals,

minval < x < maxval}
25: sIdleIntervals = sort(idleIntervalsInBin)
26: sIdleIntervals = [minval] ++ sIdleIntervals++ [maxval]
27: for i← 0 to len(sIdleIntervals)− 2 do
28: dist = (sIdleIntervals[i+ 1]÷ sIdleIntervals[i])
29: if dist ≥ 1.494 then
30: aFind = true
31: idx = i
32: break
33: if aFind = false then
34: demCumIdleTime = demCumIdleTime× 0.95
35: while (aFind is false)
36: GT = 1.1× sIdleIntervals[idx]÷ 0.9
37: return GT
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Figure 5.18: Necessary gap in the finalizaঞon stage for successful GT allocaঞon

Line 17 checks the number of intervals in the bin, and if it is su૿ciently low, then there is a high

chance that the ૽nalization phase will be able to ૽nd a valid GT value inside the bin. The bin is ac-

cepted if thenumber of intervals is less than a value knownasdangNum, whose calculation is explained

in Section 5.3.2. When a satisfactory bin has been found, the algorithm proceeds to the ૽nalization

phase by setting binGT to True in Line 18. Otherwise, in Line 20, the value of demCumIdleTime is

decreased by 5%, and the loop is repeated. It is possible, though in practice unlikely, that no bin has

less than dangNum idle intervals, in which case, line 12 causes the algorithm to fail.

Finalization Phase: When an acceptable bin has been found, the ૽nal stage is to choose the value of

GT inside that bin. Lines 22 and 23 determine the shortest and longest idle interval lengths mapped

to the bin. This de૽nes the acceptable range for the GT value. Line 26 calculates a sorted list of idle

interval samples, with theminval andmaxvaldelimiting the endpoints of the bin. The loop on lines 27

to 32 searches for the ૽rst su૿ciently large gap with no idle intervals. As shown in Figure 5.18, the gap

between two consecutive idle interval lengths (represented with crosses) should be large enough to

contain the dangeroॷ zone around the GT, as well as the±10% noise margin around the adjacent idle

interval lengths. It is therefore necessary that the larger idle interval length should be at least 1.494

times the smaller idle interval length.

If there is such a gap, then line 36 calculates the GT value, as illustrated in Figure 5.18, setting it

to a safe distance above the shorter idle interval lengths, rather than placing it in the middle, in order

to maximise the potential energy savings. If it is not possible to ૽nd such a gap, then line 34 reduces

95



  

X1.494 X1.494

minval maxval

1.494(n+1)≤(100.000)
(

1
nBin

)

Simplifying and introducing tolerance factor α:

n<⌊α×( 28.6
nBin )⌋:=dangNum

maxval≥1.494(n+1)×minval

a.)

n+1≤⌊(
1
nBin

)
(log 100.000)

(log1.494)
⌋

b.)

with n idle intervals (n=1):

always have large enough gap if: 

n<⌊(
1
nBin

)
(log 100.000)

(log 1.494)
⌋≈(

28.6
nBin

)

(maxval=minval×(100.000)
(

1
nBin

)

)

One Bin

Figure 5.19: Value of dangNum used in main phase of ADGT. α is tolerance factor, in our tests α = 4

demCumIdleTime by 5%. This is an error condition that returns to the main phase. If no such gap is

ever found, then line 12 will eventually cause the algorithm to fail.

Calculation of dangNum

As remarked in the previous section, a candidate bin is only accepted if the number of idle intervals

that it contains is less than a value known as dangNum. This value is determined as described below.

Figure 5.19(a) shows a single histogram bin containing n idle intervals. As explained above, a value of

GT can be successfully chosen whenever the ratio of two consecutive idle intervals is greater than or

equal to 1.494. There is always at least one such gap whenever maxval ≥ 1.494n+1 × minval. This

is illustrated in Figure 5.19(a), which shows that if the ૽rst n gaps are smaller than 1.494, then the last
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gap must be larger than this value—so they cannot all be smaller. The rest of Figure 5.19(a) simpli૽es

this equation, using the correct value of the bin’s width.∗ We ૽nd, however, that using this value is

too restrictive, so the value is increased slightly using a tolerance factor, α, obtaining the ૽nal formula

for dangNum shown in Figure 5.19(b). For example, if the sample contains 400 idle intervals, then

nBin =
√400 = 20, so if α = 4, then dangNum equals ૽ve.

Restart mechanism

The restartmechanism causes theGroupingThreshold (GT) to be recalculatedwhen doing so is likely

tobebene૽cial. A restart is neededwhen the application changes phase. It is alsoneededwhen random

factors cause the ADGT algorithm to choose a bad value of the GT.

As mentioned in Section 5.3.2, the GT values should not be close to many idle intervals. If several

idle intervals are seen within GT±10%, which is known as the dangeroॷ zone, then the prediction

algorithm is likely to become unstable. In order to restore the proper functioning of the prediction

algorithm, it is restarted, which causes a new automatic detection of the GT. An important question

is how sensitive to make the restart mechanism since, on the one hand, no energy savings are possible

during restart, but on the other hand, it is worthless to continue using a bad value of GT for too long.

On balance we tolerate a single idle interval in the dangerous zone, and restart if a second one appears

within an interval of three times the current pattern size.

∗Referring to Figure 5.16 and Figure 5.17, there are nBins bins in the histogram, which covers the range from
17 µs at the bottom of the ૽rst bin (although the ૽gure speci૽es 20 µs since intervals less than 20 µs are ignored)
to 1.7 s at the top of the last bin (this is unmarked, since the last bin contains all idle intervals longer than 1 s).
Hence the ratio between the upper and lower limits of each bin is given by (1.7 s/17 µs)1/nBin = (100, 000)1/nBin.
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5.3.3 Experimental Evaluation

Methodology

We use the methodology previously described in Section 5.2.6. The traces of ten representative HPC

workloadswere collected on theMinoTauromachine (described in Section 3.1). The applicationswere

con૽gured with oneMPI process per node.

The benchmarks cover a broad range of scienti૽c workloads, with the number of MPI processes

varying between 16 and 128. MILC and QUANTUM were executed with 16 MPI processes, GRO-

MACS, ALYA, WRF and NASMG with 32 MPI processes, and NASSP and NASBT had 36 MPI

processes. PEPC and CPMD had larger runs with 64 and 128 MPI processes respectively.

We measured the execution time overheads for the SPPS algorithm on a real system, by reading

the system clock using the gettimeofday() system call. We use the execution time overheads as

described in Section 5.2.6 (execution time overheads that arise from the Pattern Prediction Compo-

nent (PPC), were on average about 1 µs to 2 µs per MPI call). We measured the additional overheads

that arise from collecting the idle intervals to be far less than 1 µs. We also measured the time to cal-

culate the GT value, following the algorithm in Section 5.3.2, which was between 5 µs and 10 µs. We

included all these overheads in the traces by increasing the lengths of the relevant computation bursts.

Results

This section discusses the experimental results, including a comparison with the existing PPS algo-

rithm28. The results for PPS use a single best value of GT taken from amanual sweep. Since the SPPS

algorithm introduced in the current paper extends the previous algorithm to automatically determine

the GT value, the optimal PPS algorithm results should be seen as ideal results to try to match, rather

than the current state-of-the-art to improve upon.

Themain experimental results are shown in Figure 5.20, which gives the increase in execution time,
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Figure 5.21: Energy savings in InfiniBand edge switch links

and Figure 5.21, which gives the energy savings. For each benchmark we show ૽ve results. The ૽rst

four results are for various con૽gurations of the SPPS algorithm, with a sample size of 100 or 400 idle

intervals, and with or without the restart mechanism. The ૽nal result, “PPS (optimal GT)”, shows

the best possible result from the existing PPS algorithm.

The results for a sample size of 400 have aworst case overhead of about 4% and an average overhead

of less than 1% (Figure 5.20), both only marginally above that of PPSୃOptimal. Regarding the energy

savings, the average interconnect edge link energy savings is 21% (Figure 5.21), which is within 3% of

the average from PPSୃOptimal algorithm. The diૼerence between a sample size of 100 and 400 idle

intervals is, formost benchmarks, small, but there are twobenchmarks (PEPCandNASMG) forwhich

the smaller sample size initially chooses a bad value of the GT. These benchmarks, however, bene૽t

from restart, which allows the algorithm to recover by calculating a new GT value, in which case it

quickly chooses a good value. These benchmarks also bene૽t from restart when the sample size is

400, but to a lesser extent.
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When comparing the dynamic SPPS algorithm against the results for the static PPSୃOptimal al-

gorithm, there are two eૼects to bear in mind. Firstly, the static PPSୃOptimal algorithm has the

advantage of using the best global value of GT. Secondly, the dynamic SPPS algorithm has the ability

to dynamically adjust the GT value taking into account application phases, so long as restart is en-

abled. Among our benchmarks, onlyMILC has multiple identi૽able phases, but the available bene૽t

is small, amounting to about 5% in energy for the 100-interval case. This is the only result for which

the SPPS algorithmhas better energy savings thanPPSୃOptimal. We expect this dynamic adaptability

to lead to a larger bene૽t when running large workloads with multiple phases.

The results show that restart should be enabled, mainly in order to avoid commiting to a poorly-

chosen GT value. As already remarked, PEPC and NASMG show a large reduction in overheads,

when restart is enabled, especially with a 100-interval sample. These overheads are caused by the Pat-

tern Prediction Component (PPC), which has larger overheads than the Power Mode Control Com-

ponent (PMCC), togetherwith the large number ofmispredictions. The remaining benchmarks show

little diૼerence in performance or energy, althoughQUANTUM andNASSP show a drop in energy

savings of about 5%. The average results show that restart provides a large improvement in perfor-

mance, although this eૼect is mostly due to the large bene૽t for PEPC and NASMG.

5.4 Conclusions

In this chapter we have presented a software-directedmechanism for interconnect link energy propor-

tionality. We propose the PPA algorithm, to be executed within the PMPI layer of MPI. Putting the

intelligence in the MPI library allows diૼerentiation by the system integrator and customisation by

the operations department, while avoiding any need for modi૽cations to the user’s source code. This

allows energy savings to be achieved for unmodi૽ed existing MPI applications.

The PPA algorithmdetects the repetitive communication patterns that are typical ofmodern scien-
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ti૽c applications, and it uses this knowledge to predict the durations of the link idle periods. The links

are put into low-powermode during idle periods until a short time before they are expected to become

active again, leading to a signi૽cant reduction in the average link energy consumption at negligible loss

in performance.

We evaluated the possible power savings with strong scaling runs, which gives pessimistic results,

since network utilization, which should be proportional to energy consumption, increases with the

number of nodes. In addition, strong scaling leads to shorter computation periods, meaning that

constant overheads in changing power mode are amortized over short idle periods. Weak scaling runs

would therefore lead to larger observed energy savings. Nevertheless, the results show the possibility

for signi૽cant energy savings in IB edge switch links of up to 33%, with a negligible increase in execu-

tion time of around 1%.

We also show possibilities for further switch energy savings, by powering down other elements in

the switch. Such elements take much longer to change power state, requiring up to a millisecond to

wake, increasing the need for accurate prediction mechanisms such as the PPA algorithm.

In the secondpart of this chapterwepresent Self-TunedPatternPrediction System (SPPS),which is

an automatic software-directedmechanism that is aimed for interconnect link energy proportionality.

SPPS automatically recognises and exploits repetitive patterns in the application’s communication

behaviour. Like PPS, it is implemented in theMPI library, which allows all MPI programs to bene૽t,

without needing changes to their source code.

Our automatic mechanism tries to identify and predict those link idle intervals where the major-

ity of idle link power is spent. Discovering the critical idle interval length, de૽ned by the Grouping

Threshold (GT) value, allows to ૽lter out irrelevant idle intervals in the communication patterns. We

propose to detect GT for an application process based on its characteristics. We analyze and ૽nd the

GT value at runtime without knowing any details about the application. We also show that the SPPS

system is capable of adjusting to diૼerent application regions selecting the new customized GT for
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each region, while keeping the overheads at the minimum.

We evaluate SPPS using an event-driven simulator with traces from a production supercomputer.

When compared to baseline unmanaged execution, our simulations show average energy savings in

the network edge links of up to 21% with an average execution time penalty less than 1%.

The obtained results show that our runtime self-tuned algorithm can work cooperatively with the

on-the-૾y dynamic management. Experimental results con૽rm the eૼectiveness of our pattern pre-

diction approach on large number of applications and benchmarks. Therefore, we believe that our

solution, with its signi૽cant energy-saving potential and low performance overheads, can accelerate

the adoption of runtime power management techniques in HPC systems.
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Chapter 6

RelatedWork

Enhancing Network E૿ciency UsingMPI Data Compression

In the Chapter 4 where compression is proposed for enhancing network e૿ciency the applications

and its kernels worked on IEEE 754 double precision data which is the general data type for numerical

programs. A large bodyof relatedwork focuses onoptimizations of this type of data. Someworks have

applied compression to improve the bandwidth to the I/O subsystem during large scale molecular

dynamic simulations63, while other works focus on compressing MPI messages that are exchanged in

distributed systems.

Burtscher et al.23 proposed the lossless FPC compression algorithm for double precision data. The

FPC algorithm works well for pattern based data sets. The algorithm tries to capture these patterns

and store them in hash tables. In their work they applied FPC to datasets that are the result of numer-

ical simulation, on datasets that contain MPI messages (from NAS Parallel Benchmark (NPB) 18 and

ASCIPurple applications4) and onobservational datasets that comprisemeasurements from scienti૽c

instruments. In some cases they obtain very good compression rates, but in others the compression

rates are very poor. This shows that FPC is not a general FP compression algorithm, but works well
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only for data that follows certain patterns. Previously, the authors proposed theDFCM compressor 39

for double precision data which is a subpart of the later developed FPC compressor. They incorpo-

ratedDFCM in anMPI library to speed upMPI programs running on a cluster of workstations. This

cluster used a low performance network (Fast Ethernet) which created a high communication to com-

putation ratio when the application was executed on a large number of processors. They therefore

achieved good speedups, of up to 98%.

Tomari et al.60 developed the losslessMAF compression algorithmwhich eliminates redundancy in

the exponents of arrays of numbers formatted as IEEE 754 double precision numbers. They reported

that they achieved a compression ratio of 1.2× against data stream in FFT benchmark.

Another lossless algorithm based on arithmetic prediction was proposed by Katahira et al. 38. The

algorithm is implemented in hardware and is used to enhance thememorybandwidth ofLBM(Lattice

BoltzmanMethod) stream-computing accelerators. They achieved compression rates up to 3.5×. Like

FPC this algorithm is based on prediction patterns and we expect it to behave similarly on other data

sets.

Filguera el al. 30 used diૼerent types of compression algorithmswhichwere applied toMPI transfers

at runtimedependingon the typeof data. They achieved good results, butmostly for integer and single

precision FP data.

There is also a large body of work on general-purpose lossless data compression, including GZIP8,

BZIP2 5, etc. However, as described in Section 4.3, these algorithms, speci૽cally GZIP, achieved poor

compression rates for double-precision scienti૽c data (of at most 1.12). In addition, these compres-

sion algorithms are quite complex, making their use a poor trade-oૼ, even in combination with lossy

compression.

The work most similar to ours was done by Kumar et al.41. In their work they also contemplate

the improvements by using both lossless and lossy compression schemes for doubles. Lossless com-

pression schemes are similar to proposed by Burtscher et al23 whereas lossy compression is done by
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reducing the number of mantissa bits, as in our work. They applied both compression schemes in the

communication intensive part of the Community Atmosphere Model application. Using a lossless

compression scheme run on 32 processes they achieve a speedup of 53.58%. Such large speedups were

obtained primarily because they ran the tests on a cluster that uses a low performance network (Giga-

bit Ethernet). The cluster was therefore much more sensitive to the message size. On the other hand,

we ran our tests on aTOP500 supercomputer which uses the high performanceMyrinet interconnect.

In order to use lossy compression algorithms one has to ensure that the ૽nal result will not deviate

signi૽cantly from the correct result. Lopes et al.46 used model predictive control to achieve a satisfac-

tory degree of correctness in the ૽nal result from a conjugate gradient algorithm. This work should

be extended, to cover a greater number of applications.

Runtime Software-Managed Power Savings in IB Links

Optimization of the interconnection network energy consumption optimization is an important tar-

get forHPC systemdesigners. Hoe૾er 35 gives an overview of the power problem and related aspects of

interconnect power, with a focus on supercomputers. Powermodels for the interconnection network,

which characterize the power pro૽le of network routers and links, have been proposed, enabling fur-

ther research into power-e૿cient techniques62. Several network power-saving techniques have been

proposed, most of which are hardware approaches based on the runtime behaviour at a single switch

or link. Shang et al. 56 proposed a history-based dynamic voltage scaling (DVS) policy, where past net-

work utilization is used to predict future tra૿c. Alonso et al. 17 propose a power-saving mechanism

for regular interconnection networks built with high-degree switches and port trunking (also known

as link aggregation). Each trunk link is composed of multiple links that can be individually turned on

and oૼ depending on the load. There is at least one link on, at all times, in order to maintain connec-

tivity. Kim et al.40 use both dynamic voltage scaling and the powering down of under-utilized links.

This technique requires adaptive routing, in order to avoid deadlocks. Saravanan et al. 54 proposes an
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algorithm to turn links on and oૼ using an idle period predictor, which detects repetitive behaviour

at the packet level. Our technique, in contrast, is done at the application level, and before injecting

data into the network. By predicting end-to-end tra૿cwe are able to predict bursty data transmission

more accurately than if prediction is done at the packet level.

Although previouswork shows that hardware-based schemes can be eૼective, they share a common

drawback that theymay be to slow to adjust to sudden changes in the network tra૿c. Soteriou et al. 58

show that hardware-based approaches can incur large performance overheads and propose a compile-

time technique, as part of a parallelizing compiler ૾ow, that generates instructions to dynamically

control networkpower reduction. Li et al.43 propose another compiler-based technique, which inserts

instructions to turn oૼ communication links at the point in each loop nest when they are last used.

The link is reactivated on-demand the next time it is used.

Jian Li et al.44 are focused on non-prediction power-saving techniques. Links are powered up just

before they are needed, by relying on hints from the built-in system events or from macros in MPI

source code. Here, a separate control network is needed which is always on, to enable link activation

messages to ૾ow through. In our approach, we rely on In૽niBand architecture with links that oૼer a

dynamic range in terms of performance and power.

In the work of Abts et al. 15, the authors propose energy-proportional datacenter networks. Link

data rates are selected on the basis of tra૿c intensity in the network. They use the congestion sensing

heuristic to sense tra૿c intensity, dynamically activating links as they are needed. While this work

is focused on datacenter applications, which can tolerate small changes in latency, HPC applications

cannot aૼord such performance loss.

Huang et al 36 propose a table-based tra૿c predictor (ATPT) which can predict the amount of

data injected in the network allowing the suitable working frequency and the corresponding voltages

of the links to be set in advance. The main problem lies in the unknown time interval in tracking and

predicting tra૿c which if not chosen correctly can aૼect the prediction acccuracy. Also the amounts
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of data transmitted are quantized according to the number of discrete voltage-frequency (VF) levels

implying that more adjustable voltage levels will incur more costs.

Finally, the work of Lim et al.45 is complementary to ours, in the sense that both are power saving

techniques in the MPI run-time system. Whereas our technique turns oૼ communication links dur-

ing computation periods, Lim et al. reduces CPU power consumption during the communication

phases. The run-time system identi૽es communication regions and adjusts the processor frequency

to minimize the energy–delay product, without needing pro૽ling or training.
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Chapter 7

Conclusion

One of the biggest challenges in high-performance computing is to reduce the power and energy con-

sumption. Signi૽cant improvements in energy e૿ciency are required across all subsystems, and, as

processors and memory have become more energy e૿cient, attention is turning to the interconnect.

In the ૽rst part of the thesis, we evaluated the bene૽ts and trade-oૼs of using MPI compression

techniques in HPC production environments. We ૽rst tried using general purpose lossless data com-

pressors, such asGZIP. In all cases, we found that thedata exchangedbetweenprocesses had few, if any,

exploitable patterns, which led to poor compression ratios. To overcome this problem, we used lossy

compression (with a compression ratio of up to 2), and we veri૽ed that the remaining accuracy was

still su૿cient to obtain correct results. We ૽rst evaluated the eૼect of data compression on application

performance. Our results showed that the eૼect on performance was generally limited, with speed-

up factors rather lower than expected by Amdahl’s law for the used compression rates. The blocking

nature of point-to-point MPI calls in the nearest-neighbour pattern, where only a single message is

outstanding in communication between each pair of processes, does not overload network resources

at theHCA.More time is spent on scheduling and synchronization inside the communication pattern
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than on the actual data transfer. Also, when the size of themessages and the number of neighborhood

processes for each process are variable, the total time of communication is also aૼected. On the other

hand, patterns like all-to-all collectives tend to synchronize the tasks, leading to a larger speedup. This

communication pattern loads the HCA channel with multiple MPI messages, so a reduction in their

size improves performance.

To the best of our knowledge, we are the ૽rst to apply data compression to link energy savings.

Using compression allows the number of active lanes to be reduced in proportion to the compression

rate. Thanks to compression, even with reduced network bandwidth, the application performance

is not aૼected. Reactivation delays typically increased execution time by just a few percent. Using

50% compression, we obtained in the lowest (edge-level) network links energy savings of up to 71%

for the Alya CG kernel and 63% for Gromacs PME kernel. We also show that strong scaling runs, in

particular, have a large bene૽t from data compression.

In the second part of the thesis we propose techniques to make high performance interconnects

energy proportional, that is, the amount of energy consumed is proportional to the tra૿c intensity

in the network. Now that energy consumption is beginning to account for a signi૽cant fraction of

anHPC system’s total cost of ownership, there is pressure for all system components to becomemore

energy e૿cient. An important characteristic of energy-e૿ciency is energy proportionality. Although

processors andmemories are now close to achieve energy proportionality, high-performance intercon-

nects are not.

This thesis presents a software-directed mechanism for interconnect link energy proportionality.

We propose the Pattern Prediction System (PPS) which is executed within the PMPI layer of MPI.

Putting the intelligence in theMPI library allows diૼerentiation by the system integrator and customi-

sation by the operations department, while avoiding any need for modi૽cations to the user’s source

code. This allows energy savings to be achieved for unmodi૽ed existing MPI applications.

Pattern Prediction System (PPS) with its main PPA algorithm detects the repetitive communica-
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tion patterns that are typical of modern scienti૽c applications, and it uses this knowledge to predict

the durations of the link idle periods. The links are put into low-powermode during idle periods until

a short time before they are expected to become active again, leading to a signi૽cant reduction in the

average link energy consumption at negligible loss in performance.

We evaluated the possible power savings with strong scaling runs, which give pessimistic results,

since increasing the number of nodes increases the communication-to-computation ratio, which re-

duces the proportion of energy that can be saved through energy proportionality. In addition, strong

scaling leads to shorter computation periods, meaning that constant overheads in changing power

mode are amortized over short idle periods. In contrast, weak scaling runs would lead to larger ob-

served energy savings. Nevertheless, the results show the possibility for signi૽cant energy savings in

IB edge switch links of up to 33%, with a negligible increase in execution time of around 1%.

To completely automate the prediction process we further develop the Self-Tuned Pattern Predic-

tion System (SPPS), an automatic software-directed mechanism for interconnect link energy propor-

tionality. SPPS automatically recognises and exploits repetitive patterns in the application’s commu-

nication behaviour.

Our automatic mechanism tries to identify and predict those link idle intervals where the major-

ity of idle link power is spent. Discovering the critical idle interval length, de૽ned by the Grouping

Threshold (GT) value, allows to ૽lter out irrelevant idle intervals in the communication patterns. We

propose to detect GT for an application process based on its characteristics. We analyze and ૽nd the

GT value at runtime without knowing any details about the application. We also show that the SPPS

system is capable of adjusting to diૼerent application regions selecting the new customized GT for

each region, while keeping the overheads at the minimum.

We evaluate SPPS using an event-driven simulator with traces from a production supercomputer.

When compared to baseline unmanaged execution, our simulations show average energy savings in

the lowest (edge-level) network links of up to 21%with an average execution time penalty less than 1%.

111



The obtained results show that our runtime self-tuned algorithm can work cooperatively with the

on-the-૾y dynamic management. Experimental results con૽rm the eૼectiveness of our pattern pre-

diction approach on large number of applications and benchmarks. Therefore, we believe that our

solution, with its signi૽cant energy-saving potential and low performance overheads, can accelerate

the adoption of runtime power management techniques in HPC systems.

We also show possibilities for further switch energy savings, by powering down other elements in

the switch. Such elements take much longer to change power state, requiring up to a millisecond to

wake, increasing the need for accurate prediction mechanisms such as the PPA algorithm.

Finally, it is important to note that the principles of our system are not restricted to In૽niband.

Many modern interconnect technologies, like In૽niband, have multiple lanes at the physical layer.

For example, 40GbE Ethernet has four lanes at 10 Gb/s each, although there is currently no standard

for turning lanes on and oૼ individually. Proposals like ours may have an impact on future standard-

isation eૼorts.
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Chapter 8

Future Work

This thesis proposed two orthogonal directions for reducing the energy consumption of the network

links. During the communication bursts, we use data compression, as described in Chapter 4, to re-

duce the energy consumptionwithout aૼecting performance. During the computation bursts, on the

other hand, we use prediction, as described in Chapter 5, to reduce the number of active lanes while

the network is idle. These directions are compatible, but in this thesis they were evaluated separately.

In future work, they should be combined into a uni૽ed technique, and evaluated as a whole.

The energy-saving techniques are intended to work with the lowest (edge-level) network links. We

would like to extend these techniques to also support power saving in the higher-level links. Since a

single high-level link could be used by multiple MPI processes and potentially multiple applications,

deciding how to combine the individual decisions due to diૼerent compression rates and/or idle time

predictions is an open research question.

We restricted attention to the network links, which, as stated in the introduction, correspond to

about 64% of a (baseline) switch’s power consumption. After obtaining signi૽cant energy savings in

the links, it is necessary to reduce the energy consumption in the remaining parts of the switch and
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NIC. Other components, such as the memory elements, which are dominant in the HCA, excluding

the links, have larger reactivation times that can cause signi૽cant performance penalties. Wewould like

to show, however, that the intelligent power saving mechanisms presented in this thesis could also be

bene૽cial in this context.
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Chapter 9
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