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CHAPTER 1

INTRODUCTION

DSMOX LZWBW YFDGU LPJKK PCLCF AXT

This apparently meaningless sequence of letters is the encryption¹ of “Georgia Institute of Tech-

nology” by the Enigma machine, one of the most famous encryption devices in history. The

Enigma machine, which was invented in 1919 by Hugo Koch and looked like a simple typing

machine, played a pivotal role in the 20th century. This encryption device was used extensively

by the German army during World War II and was considered unbreakable. However, the

Allies and the team of cryptanalysts at Bletchley Park led by Alan Turing and Gordon Welch-

man proved them wrong. Even if the most complicated version of this machine used by the

Kriegsmarine had nearly 159 quintillion possible settings, the efforts of the cryptanalysts allowed

the Allies to break the code and disclose essential pieces of information regarding the German

U-boats. Turing’s team used several flaws in the encryption mechanism that yielded residual

correlation between the cyphertext and the plaintext. This correlation originated from a major

design flaw of the reflector ring, which was introduced to perform both encryption and decryp-

tion with the same device and settings (reciprocity). Using such a mechanism prevents a letter

from being encrypted as itself. From this observation, Turing developed a method to locate

cribs, which are sequences one could expect to be sent (e.g. “Weather Report”), within the

cyphertext. Using other flaws in the encryption mechanism and an electromechanical device

called the Bombe, the Allies were finally able to collect valuable intelligence and gain a signifi-

cant advantage over the Germans. Breaking the Enigma code, or at least being able to decipher

some messages, helped the Allies weaken the U-boats’ dominance in the North Atlantic Ocean

and conduct the Normandy landings. Without Enigma, the operation could have been delayed

¹The setting for encryption/decryption for this introduction is PHD for the key setting, AJP for the ring setting,
rotors I, II and III, and plugboard setting PO ML IU KJ NH YT GB VF RE DC.
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by at least a year, with millions of lives at stake and a potential stalemate between the Allies and

the Axis.

Half a century later, cryptography is no longer a science limited to war times and has settled

into everyone’s life, whether one is using a credit card, filing taxes online, connecting to a Wi-Fi

network or placing a phone call. Even if the Enigma machine looks quite primitive compared

to the modern cryptographic systems we use every day (e.g., RSA, DES, AES), the most recent

algorithms are not impervious to attacks. The endless growth of networks has made security

one of the main challenges of the 21st century to guarantee end-user privacy, protection of

industrial secrets, and military confidentiality.

Thus far, the development of cryptography has followed a succession of new encryption

schemes and new attacks, leading to sophisticated solutions (e.g., elliptic curves, quantum cryp-

tography). Although there is no guarantee that widespread systems such as AES or RSA will

remain secure forever,² the main problem may be hidden elsewhere. More than any potential

weakness of a given cryptographic scheme, the way the end-user uses this scheme can cause

major security breaches and compromise the overall security of an information system. For

instance, using a sophisticated encryption algorithm for an email account is ineffective when

the password is as common as 123456 or password. Similarly, using an AES encryption al-

gorithm for a Wi-Fi hotspot provides little security if the password remains the same for years.

The paradigm behind information-theoretic security is different in many extents. If cryp-

tographic security relies on the computational complexity of cracking the system, information-

theoretic security guarantees statistical independence between the secret messages and eaves-

dropped communications. The security of such systems does not rely on the expected secrecy

of a key, but rather on the fact that the eavesdropper observation does not provide any in-

formation regarding the legitimate messages. The goal is to provide mechanisms immune to

cryptanalysis and end-user shortcoming.

²If cryptanalysis can be used against some of these algorithms, using long enough keys still suffices to consider
them as secure for public use.
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Physical-layer security provides secrecy at virtually no cost and opens promising perspectives

by leveraging the imperfections of the physical medium. Physical-layer security mechanisms

are proposed as another layer of security to improve the security of existing communications

systems, requiring neither extensive changes nor additional end-user inputs. Physical-layer secu-

rity exploits not only the random behavior of a communication channel, but also the feedback

and interference arising from bidirectional communications.

This dissertation focuses on some of the main information-theoretic security techniques for

multi-user communications and encompasses both theoretical and experimental results. Theory

shows the fundamental limits of those techniques and gives insight into the design of actual

physical-layer security systems. Experimentation then shows how well those systems would

work in a real setting, highlighting additional issues that must be taken into account before

practical implementation.

This dissertation is organized as follows. This chapter provides further details on the basic

mechanisms behind the notion of physical-layer security. Chapter 2 recalls the main informa-

tion theory notions used to prove the results presented in this dissertation. Chapter 3 introduces

the simplest theoretical model to analyze multi-user physical-layer security, namely the two-way

wiretap channel. Chapter 4 focuses on the challenges of implementing of secret-key generation

mechanisms based on channel variations. Chapter 5 presents practical codes designed to exploit

codeword interference between users for secrecy purposes.

1.1 From Mathematical Cryptography to Physical-Layer Security

The rapid development of information networks and the increasing diversity of exchanged data

bring both promising advances and new potential issues. For commercial purposes, the histor-

ical challenge was to transfer data as fast as possible, whereas the problem of secrecy was only a

concern for military, diplomatic, and industrial data. This difference was and remains due to

the required balance between data sensitivity and security complexity. However, new informa-

tion technology paradigms—such as cloud storage and computing, near field communications,

biometric passports, and online banking—make the problem of security part of everyone’s
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life. The historical approach, called cryptography, is to use allegedly complicated mathematical

problems to encrypt data. Cryptographic techniques range from the simple “Cæsar’s cypher,”

which consists in permuting letters according to a predefined order, to the elaborate elliptic

curves cryptography. This evolution stems from the fact that, whenever an attack is designed

to break a cryptographic scheme, it has to be patched or superseded. The exponential growth

of the available computational power makes more and more schemes obsolete. New problems

have recently appeared with the diversification of users. If military or diplomatic agencies gener-

ally know the rules to guarantee that a cryptographic scheme is secure—especially regarding its

secret-key characteristics—it might not be the case for an average user. For instance, few people

use distinct complex passwords across different services and people usually keep the sameWi-Fi

password forever. The main security concern does not lie in the strength of the cryptographic

primitives used to protect data but in the way people use them. One solution to overcome this

problem is to avoid input from the end user, for instance, by providing a key. Physical-layer secu-

rity, which directly uses the inherent random behavior of communication channels to provide

secrecy, is one of the solutions to avoid a user external input. For instance, it may be possible

to refresh a Wi-Fi password automatically by using some random variations of the wireless link

without the user help. The idea is not to replace the well-tested cryptographic schemes, but to

augment them in a cost-effective manner. The analysis and the development of physical-layer

security primitives involve the notion of information-theoretic security, which is presented in

the next section.

1.2 Information-Theoretic Security: the Wiretap Channel

The first information theoretic model that introduces physical layer security was provided by

Wyner in 1975 [107]. The analysis of this model called the degraded wiretap channel introduces

many mathematical tools to consider security constraints in a communication system. As il-

lustrated in Figure 1.1, this model is an extension of the point-to-point channel introduced

by Shannon in which a sender called Alice tries to communicate with a receiver called Bob.

Wyner’s model further considers a third user called Eve that eavesdrops a degraded version of
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Alice Bob

Eve
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Degraded Wiretap
Channel

M̂
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pY |X

pZ |Y

M

Figure 1.1 – Communications over the degraded wiretap channel.

the main channel output. The objective is to ensure both reliable communications between

Alice and Bob and secrecy with respect to Eve, which should be prevented from getting infor-

mation about transmitted messages.

Mathematically, the channel is a one-input two-output channel with transition probability

pYnZn |Xn , which is, in the case of a memoryless degraded wiretap channel,

pYnZn |Xn (yn, zn |xn) =
n∏
i=1

pY |X
(
y(i)|x (i)) pZ |Y (

z(i)|y(i)) .
The reliability metric for a wiretap code C is, as usual, the average probability of error

Pe(C) ≜ P(M̂ , M |C) between the sent message M and the estimated received message M̂ .

The secrecymetricmeasures statistical independence with themutual information I (M ;Zn).
For a given code C, the quantity L(C) ≜ I (M ;Zn |C) is called the information leakage and

corresponds to a strong secrecymetric. For cases difficult to analyze with a strong secrecy criterion,

there exists a weak secrecy metric called the leakage rate L(C) ≜ 1
n I (M ;Zn |C). Leakage rate is a

weaker metric because of the normalization by the blocklength n. Many other metrics can be

considered with different levels of guaranteed security [17].

If sent messages are chosen uniformly at random in a set of 2nR elements, R corresponds to

the rate of the code. A rate is strongly (resp. weakly) achievable if there exists a code C such

that both Pe(C) and L(C) (resp. L(C)) go to zero as n goes to infinity; the supremum of all

achievable rates is called the strong (resp. weak) secrecy capacity of the channel.

In the case of weakly symmetric channels, [60] shows that the secrecy capacity is the differ-

ence between the capacity of the main channel and the capacity of the eavesdropper channel.
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In particular it means that the secrecy capacity is zero as soon as the eavesdropper’s channel is

less noisy than the main channel—that is, I (X ;Y ) ⩽ I (X ;Z ).

2

nR0
codewords per subcode

M

M 0

codeword

···
···

···
···

···

···
···

···

· · ·
· · ·

· · ·
· · · · · ·

· · ·

· · ·
· · · 2

n
R

s
u
b
c
o
d
e
s

Figure 1.2 – Nested structure of a wiretap code.

Random encoding The crucial part to provide secrecy is to introduce randomness in the

encoder. Intuitively, the randomness is introduced to mislead and confuse the eavesdropper,

but it can be formally proven with information theoretic tools. The randomness is introduced

with a random auxiliary messageM′ drawn uniformly at random in J1, 2nRK. As represented in
Figure 1.2, a wiretap code has a nested structure: messageM selects one of 2nR subcodes andM′

picks a codeword within the 2nR′ possible codewords of the subcode.

Channel capacity Channel resolvability

Xn XnZn Zn

Figure 1.3 – Capacity versus resolvability.

Capacity vs. resolvability To find the capacity of a wiretap channel, one has to identify

the optimal auxiliary message R′ rate that introduces enough randomness to mislead the eaves-

dropper without wasting the communication rate. There are two conceptual approaches to
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deal with this problem, which are illustrated in Figure 1.3. The first called coding for channel

capacity relies on the fact that I (M ;Zn) = I (Xn;Zn) − H(M′) + H(M′|MXn). It may seem

logical that H(M′) cancels I (Xn;Zn), if the encoder is random enough; however, dealing with

H(M′|MXn) is far less intuitive. Indeed, to cancel H(M′|MXn) the code must allow a virtual

user obtaining Zn and M to retrieve M′. This can be done if subcodes are capacity-achieving

codes for Eve’s channel with auxiliary rates R′ lower than the eavesdropper’s channel capacity.

The second approach, called coding for channel resolvability, attempts to design subcodes such

that Eve’s output distribution is independent of the sent messages, making them indiscernible.

This time, the solution is to work at auxiliary message rates R′ higher than the eavesdropper’s

channel. Even if both approaches give the same secrecy capacity under a weak secrecy criterion,

it is only possible to provide strong secrecy with resolvability-based codes [17, 64].

1.3 Multi-User Information-Theoretic Security

Alice Bob

EveLegitimate User 1 Legitimate User 2

A

Wireless Bidirectional Communication

Eavesdropper

B

A B

Eavesdropping

Figure 1.4 – Simple multi-user scheme with eavesdropper.
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The degraded wiretap channel introduced by Wyner does not take into account several

aspects of muti-user communications. For the sake of illustration, consider the setting repre-

sented in Figure 1.4, which consists of two legitimate users trying to communicate reliably and

secretly with respect to a third-party user that eavesdrops on the conversation. Even if the goals

(reliability and secrecy) are the same as for the wiretap channel, considering bidirectional com-

munications brings new ways of providing secrecy. For instance, the legitimate parties may use

the interference between transmitted signals to “hide” secret information, and the feedback to

exchange side information to “increase” secrecy. A more formal analysis is required to clarify

the notions of “hiding information” and “increasing secrecy”.

Considering a multi-user scheme with two users communicating in two directions as rep-

resented in Figure 1.4 takes into account both feedback and interference. A scheme involving

more users would allow to consider other securing techniques such as relaying [58] or multi-

user secret-key generation [25]. Another limitation related to this model is the assumption that

the eavesdropper doesn’t communicate over the channel. For instance, an active eavesdropper

would be able to jam the communication and interfere with the legitimate users.

1.3.1 Cooperative Jamming and Coded cooperative jamming

A natural attempt to increase secure communication rates consists in jamming Eve with noise

to decrease her signal-to-noise ratio. This strategy, called cooperative jamming (with noise) [62],

forces one user to stop transmitting information to jam the eavesdropper. To overcome this

limitation, Alice and Bob can use codewords whose interference also has a detrimental effect

on Eve without sacrificing as much information rate. This scheme is called coded cooperative

jamming and was introduced by Tekin and Yener [92, 93].

1.3.2 Key Exchange

Key exchange works as follows: one user sacrifices part of its secret rate to transmit a secret-key

to the other, which then uses the secret-key to encrypt a message, thus augmenting its secret

rate. This mechanism illustrated in Figure 1.5 only transfers secure rate from one user to the

other, but does not generate new secrecy.
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Alice

Bob

Secure part Unsecure part 

Secure part Unsecure part 

Before key exchange After key exchange

Secret-key encryption

Used for secret communications

Not used for
secret communications

⊕

Figure 1.5 – Secret-key exchange.

1.3.3 Secret-Key Generation Strategy

It is also possible to provide secrecy by using the physical layer as a source of randomness.

Suppose Alice, Bob and Eve observe the outputs of a correlated continuous source, respectively

denoted (X ,Y ,Z ) ∈ X × Y × Z. To agree on a common key, the legitimate users exchange

messages over an authenticated, noiseless, public channel with unlimited capacity. Let K ≜

J1, 2nRK denote the alphabet for the key, where R is called the secret-key rate.

A secret-key generation strategy with unlimited public communication Sn consists of the

following operations: Alice observesn realizations of the sourceXn while Bob observesZn; Alice

transmits a public message F ; Alice computes K(Xn) ∈ K while Bob computes K̂(Yn, F ) ∈ K.

The performance of such a secret-key generation strategy Sn is assessed in terms of:

1. reliability, measured by the average probability of error Pd(Sn) ≜ P(K , K̂ |Sn);

2. (strong) secrecy, measured by the leakage L(Sn) ≜ I (K ;ZnF |Sn);

3. (strong) uniformity, measured by the quantity U(Sn) ≜ log
�
2nR

�
−H(K |Sn).

The conditioning on Sn reflects the fact that the eavesdropper knows the strategy.

A secret-key rate R is achievable if all those three metrics tend to zero as n goes to infinity,

and the supremum of all these achievable rates is called the secret-key capacity, which is denoted

by Cs .
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1.4 Experimental Aspects

The information theory results rely on the existence of random phenomena. For several physical

reasons (noise, environment modifications, mobility, etc.), a wireless channel exhibits some

variability that can be exploited as a source of randomness in a security system. In particular,

one can exploit the reciprocity of wireless channels to generate strongly correlated observations

between two users, and the diversity between channels so that an external eavesdropper obtains

little information about the correlated observations.

Several works, such as [49, 63, 72, 98, 109–111] and references therein, study the problem

of secret-key generation with reconciliation and privacy amplification [9, 67]. They used differ-

ent solutions to induce the source of randomness from the channel (gain, phase, etc.). However,

the security analysis is often performed with metrics (probability of error for the eavesdropper,

NIST tests, decorrelation, etc.) that do not guarantee information-theoretic security. From an

information-theoretic perspective, their analyses do not suffice to ensure secrecy, which is one

of the objectives addressed in the next chapters.

1.5 Contributions

This dissertation extends multiple aspects of multi-user communications from the theoretical

model to practical implementations.

Section 2.3, parts of which have been published in [74], investigates the separation of chan-

nel intrinsic randomness and channel resolvability. The proposed joint exponents are compared

to the tandem exponents obtained with a separate approach. This proves at once, achievability

results for channel intrinsic randomness, random number generation, and channel resolvability.

Chapter 3, parts of which have been published in [76], considers the problem of secure

communications over the two-way wiretap channel under a strong secrecy criterion through a

resolvability-based approach. This also improves on previous works by developing an achievable

region based on strategies that exploit both the interference at the eavesdropper’s terminal and

cooperation between legitimate users. This chapter shows how the artificial noise created by
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cooperative jamming induces a source of common randomness that can be used for secret-

key agreement. The proposed coding technique shows significant improvements for different

configurations of the Gaussian two-way wiretap channel.

Chapter 4, parts of which have been published in [75], analyzes the practical limitations of

a secret-key generation system from channel gain variations in a narrowband wireless environ-

ment. In particular, different assumptions usually made for theoretical purposes are verified

with an actual system based on software-defined radios. It is important not only to characterize

the source of common randomness induced by channel gain variations, but also to estimate

achievable secret-key rates in the finite key-length regime. The secret-key generation system

based on channel gain variations is extremely sensitive to external modifications of the envi-

ronment, and such system should adapt accordingly to guarantee a given level of information-

theoretic secrecy.

Chapter 5, parts of which have been published in [77], presents a practical coded cooper-

ative jamming scheme for the problem of secure communications over the two-way wiretap

channel. This scheme uses low-density parity-check (LDPC) based codes whose codewords in-

terfere at the eavesdropper’s terminal, thus providing secrecy. This chapter offers a comparison

between constructions based on classical LDPC codes and spatially coupled LDPC codes, and

shows that the latter guarantees low information leakage rate.
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CHAPTER 2

INFORMATION-THEORETIC SECURITY¹

In this chapter, several metrics are introduced to clarify notation and recall several well-known

properties, which appear with further details in [16, 23]. These information-theoretic proper-

ties are the base to introduce several notions including:

• the channel capacity, which represents the maximum number of bits one can reliably

transmit;

• the problem of source coding with side information, which considers the problem of com-

pression for a correlated source of randomness;

• the channel intrinsic randomness, which defines the maximum uniform randomness that

can be extracted from a channel independently of its input;

• the channel resolvability, which corresponds to the process of transforming a uniform

random number into another one with a different distribution.

All these notions are the essential ingredients to analyze the security of multi-user schemes

and are useful to provide asymptotical limits, error exponents, finite-length results, and insight

into the design of practical systems. In particular, channel intrinsic randomness and source

coding with side information are both essential results for secret-key generation, while channel

resolvability is used to show the fundamental limits of strongly secure schemes.

2.1 Tools of Information Theory
2.1.1 Entropy and Mutual Information

The entropy, which was introduced by Shannon, is a statistical metric of the information, or,

more precisely, of the uncertainty of the outcome of a random variable.

¹Parts of the material in Section 2.3 have appeared in [74]: Pierrot, A. J., Bloch, M. R., “Joint Channel
Intrinsic Randomness and Channel Resolvability”. In: Proceedings of the 2013 IEEE Information Theory Workshop
(ITW). Sept. 2013, pp. 1–5. ©IEEE 2013.
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Definition 1 Let X ∈ X be a discrete random variable with distribution pX . The Shannon

entropy (or entropy for short) of X is defined as

H (X ) ≜ −
∑
x∈X

pX (x) logpX (x) ,

with the convention that 0 log 0 ≜ 0. Unless otherwise specified, all logarithms are taken to

the base two and the unit for entropy is called a bit. ♢

If X = {0, 1}, then X is a binary random variable and its entropy solely depends on the

parameter p = P(X = 0). The binary entropy function is defined as

Hb(p) ≜ −p logp − (1 − p) log(1 − p). (2.1)

For instance forX ∼ B(p), if p is equal to 1/2 , the uncertainty onX is maximal andHb(p) = 1.

Lemma 2.1 For any discrete random variable X ∈X

0 ⩽ H (X ) ⩽ log |X| .

The equality H (X ) = 0 holds if and only if X is a constant while the equality H (X ) = log |X|
holds if and only if X is uniform onX. ♢

This first simple lemma is of primary importance since the notion of uniformity is one of the

pivotal aspects of information-theoretic security. Uniformity corresponds to the maximum

possible uncertainty of a random variable, which is one of the desirable properties for a secret-

key.

The notion of entropy can be further extended to joint and conditional distributions.

Definition 2 LetX ∈X and Y ∈ Y be two discrete random variables with joint distribution

pXY . The joint entropy of X and Y is defined as

H (XY ) ≜ −
∑
x∈X

∑
y∈Y

pXY (x ,y) logpXY (x ,y) . ♢
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Definition 3 LetX ∈X and Y ∈ Y be two discrete random variables with joint distribution

pXY . The conditional entropy of X given Y is defined as

H (Y |X ) ≜ −
∑
x∈X

∑
y∈Y

pXY (x ,y) logpY |X (y|x) . ♢

Using Bayes’ rule, one can obtain the following relationship called the chain rule of entropy

H (XY ) = H (X ) +H (Y |X ) .

This also generalizes to the entropy of a random vector Xn = (X1, . . . ,Xn) as

H (Xn) =
n∑
i=1

H
�
Xi |X i−1�

,

with the convention that H
�
X1|X 0

�
≜ H (X1).

Lemma 2.2 (“Conditioning does not increase entropy”) Let X ∈ X be a discrete ran-

dom variable, Y ∈ Y either discrete or continuous, with joint distribution pXY . Then,

H (X |Y ) ⩽ H (X ) . ♢

In other words, this lemma asserts that the knowledge of Y cannot increase the uncertainty

about X . From an information-theoretic point of view, it illustrates that it is important to take

into account the side information an eavesdropper can obtain since it may reduce its uncertainty

on the content of the legitimate communication.

The introduction of joint and conditional entropies illustrates how two random variables

can be related. For instance, the mutual information between two variables X and Y represents

the difference between the uncertainty on X and the uncertainty on X when Y is known.

Definition 4 LetX ∈X and Y ∈ Y be two discrete random variables with joint distribution

pXY . The mutual information between X and Y is defined as

I (X ;Y ) ≜ H (X ) −H (X |Y ) .

Let X ∈X, Y ∈ Y and Z ∈ Z be discrete random variables with joint distribution pXYZ . The

conditional mutual information between X and Y given Z is

I (X ;Y |Z ) ≜ H (X |Z ) −H (X |YZ ) . ♢
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The mutual information between X and Y can be also viewed as the expectation of the

following random variable:

I (X ;Y ) ≜ iX ;Y (X ;Y ) with iX ;Y ≜ log
pXY
pXpY

.

Using the chain rule of entropy, one obtains the chain rule of mutual information

I (Xn;Y ) =
n∑
i=1

I
�
Xi ;Y |X i−1�

,

with the convention that I
�
X1;Y |X 0

�
≜ I (X1;Y ).

Lemma 2.3 Let X ∈ X and Y ∈ Y be two discrete random variables with joint distribution

pXY . Then,

0 ⩽ I (X ;Y ) ⩽ min (H (X ) ,H (Y )) .

The equality I (X ;Y ) = 0 holds if and only ifX and Y are independent. The equality I (X ;Y ) =
H (X ) (resp. I (X ;Y ) = H (Y )) holds if and only if X is a function of Y (resp. Y is a function

of X ). ♢

Along with the notion of uniformity, the notion of independence is also important for

information-theoretic security. Ensuring that the eavesdropper in a security scheme observes

something completely independent of the legitimate communication guarantees the maximum

desirable level of security. Guaranteeing independence avoids justifying security by means of

computational complexity as it is done in classic cryptography.

Lemma 2.4 Let X ∈ X, Y ∈ Y and Z ∈ Z be three discrete random variables with joint

distribution pXYZ . Then,

0 ⩽ I (X ;Y |Z ) ⩽ min (H (X |Z ) ,H (Y |Z )) .

The equality I (X ;Y |Z ) = 0 holds if and only ifX and Y are conditionally independent given Z .

In this case, X → Y → Z is called a Markov chain. The equality I (X ;Y |Z ) = H (X |Z ) (resp.
I (X ;Y |Z ) = H (Y |Z ) ) holds if and only if X is a function of Y and Z (resp. Y is a function of

X and Z ). ♢
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Lemma 2.5 (Data Processing Inequality) LetX ∈X, Y ∈ Y and Z ∈ Z be three discrete

random variables such that X → Y → Z forms a Markov chain. Then,

I (X ;Y ) ⩾ I (X ;Z ). ♢

This inequality is equivalent to H (X |Y ) ⩽ H (X |Z ), which means that, on average, processing

Y can only increase the uncertainty about X . This property illustrates, for instance, that it is

important not to suppose than the eavesdropper processes its observation to fully assess the

security of a secrecy scheme.

Lemma 2.6 (Fano’s Inequality) Let X ∈ X be a discrete random variable and let X̂ be any

estimate of X that takes values in the same alphabetX. Let Pe ≜ P
�
X , X̂

�
be the probability

of error obtained when estimating X with X̂ . Then,

H
�
X |X̂ �

⩽ Hb(Pe) + Pe log(|X| − 1),

where Hb(Pe) is the binary entropy function defined earlier. ♢

Fano’s inequality is another element of several proofs since it relates the information-theoretic

quantity H
�
X |X̂ �

to an operational quantity, the probability of error Pe.

Since encoding and decoding operations correspond to applying a function to random

variables, it is important to characterize the effects of such processing on the informationmetrics

mentioned above. If there is no general rule for all the functions, some classes of functions

exhibit interesting behaviors from an information-theoretic perspective. It is, for instance, the

case for convex functions.

Definition 5 A function f : I→ R defined on a set I is convex on I if for all (x1,x2) ∈ I2

and for all λ ∈ [0, 1],

f (λx1 + (1 − λ)x2) ⩽ λ f (x1) + (1 − λ)f (x2).

If the equation above holds with strict inequality, f is strictly convex on I. A function f :

I → R defined on a set I is (strictly) concave on I if the function −f is (strictly) convex

on I. ♢
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Applying a convex function to a random variable yields the following properties.

Lemma 2.7 (Jensen’s inequality) Let X ∈X be a random variable and let f : X → R be a

convex function. Then,

E(f (X )) ⩾ f (E(X )) .

If f is strictly convex, then equality holds if and only if X is a constant. ♢

By exploiting the convexity of − log and Jensen’s inequality, several properties ensue.

Lemma 2.8 Let X ∈ X and Y ∈ Y be two discrete random variables with joint distribution

pXY . Then

• H (X ) is a concave function of pX ;

• I (X ;Y ) is a concave function of pX for pY |X fixed;

• I (X ;Y ) is a convex function of pY |X for pX fixed. ♢

2.1.2 Rényi Entropy

There exist several variations of the notion of entropy in the literature. These variations are

useful tools in information theory even if their operational meaning is not as intuitive as the

Shannon entropy or the mutual information. The first variation is called the Rényi entropy [84]

and is meant to be a generalization of the entropy that would preserve fundamental properties,

such as the additivity of independent events.

Definition 6 Let X ∈X be a discrete random variable with distribution pX . Let ϵ ⩾ 0. The

Rényi entropy of order α ∈ R+\{1} of X is defined as

Hα (X ) ≜ 1
1 − α log

∑
x∈X

pX (x)α . (2.2)

♢

One can see the Rényi entropy as a counterpart of the p-norms in Euclidean spaces. The

limit of Hα (X ), when α goes to one, is equal to the Shannon entropy H(X ). The second

order Rényi entropy is also called the collision entropy (also denoted Hc(X )) and appears in
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the problem of privacy amplification. The limit of Hα (X ) as α goes to infinity is called the

min-entropy

H∞(X ) ≜ lim
α→∞

1
1 − α log

∑
x∈X

pX (x)α = − logmax
x∈X

PX (x). (2.3)

In 2004, Renner and Wolf [83] further extended the notion of Rényi entropy for opera-

tional purposes in secret-key generation.

Definition 7 Let X ∈X be a discrete random variable with distribution pX . Let ϵ ⩾ 0. The

ϵ-smooth Rényi entropy of order α , with α ∈ R∗+\{1}, of X is defined as

Hϵ
α (X ) ≜ 1

1 − α inf
qX ∈Bϵ (X )

log
∑
x∈X

qX (x)α , (2.4)

where Bϵ (X ) ≜ {qX ,V(pX ,qX ) ⩽ ϵ} is the set of distributions qX that are ϵ close to pX in

terms of variational distance. ♢

The quantityHϵ
α (X ) converges as α goes to infinity to the ϵ-smooth min-entropy. All these

metrics have conditional formulations [6, 33, 51], in particular for two random variables X

and Y , one definition of the conditional ϵ-smooth min-entropy of X given Y is

Hϵ
∞(X |Y ) = max

qXY ∈Bϵ (XY )
min
y∈Y

min
x∈X

log
pY (y)

qXY (XY ) . (2.5)

2.1.3 Other Metrics

The previous section has illustrated the spirit of information theory, which is how one can relate

the notion of information to quantities as abstract as probability distributions. In this section,

several other metrics are introduced, and even if their meaning is not as intuitive as the entropy

or the mutual information, they are primal intermediaries to conduct proofs.

Definition 8 Let X and X ′ be two discrete random variables defined on the same alphabet

X. The (total) variational distance between X and X ′ is

V(pX ,pX ′) ≜ max
A⊆X

(PX (A) − PX ′(A)) ≡ 1
2

∑
x∈X

|pX (x) − pX ′(x)| . ♢

This distance is simply half of the L1 distance between two distributions and all the associ-

ated properties (in particular the triangular inequality) hold.
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Proposition 2.9 (Triangular inequality) Let X , X ′, and X ′′ be three discrete random

variables defined on the same alphabetX. Then,

V(pX ,X ′′ ) ⩽ V(pX ,pX ′) + V(pX ′,pX ′′). ♢

There is also a counterpart of the data processing inequality for the variational distance.

Proposition 2.10 (Data Processing Inequality) Let X and X ′ be two random variables

defined on the same alphabetX. Consider a function f : X → Y mapping X to Y and X ′ to

Y ′. Then,

V(pY ,pY ′) ⩽ V(pX ,pX ′). ♢

Fortunately, the variational distance can be related to the entropy through the following

inequality [26].

Proposition 2.11 (Csiszár & Körner) Let X and X ′ be two discrete random variables de-

fined on the same alphabetX. Then,

�
H (X ) −H (X ′)� ⩽ V(pX ,pX ′) log |X|

V(pX ,pX ′) . ♢

This proposition can also relate the mutual information to the variational distance [50].

Corollary 2.12 Let X and Y be two discrete random variables defined on their respective

alphabets X and Y. If card|X| ⩾ 4, then

I (X ,Y ) ⩽ V(pXY ,pXpY ) log |X|
V(pXY ,pXpY ) . ♢

Another important metric that relates two probability distributions, without being an actual

distance, is the Kullback-Leiber (KL) divergence.

Definition 9 Let X and X ′ be two discrete random variables defined on the same alphabet

X. The Kullback-Leiber (KL) divergence between X and X ′ is

D (pX ∥pX ′) ≜
∑
x∈X

pX (x) log pX (x)
pX ′(x) ,

if ∀x ∈X, pX ′(x) = 0⇒ pX (x) = 0, with the convention 0 log 0 = 0. ♢
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The mutual information can be expressed with the Kullback-Leiber divergence between

specific distributions.

Lemma 2.13 Let X ∈X and Y ∈ Y be two discrete random variables with joint distribution

pXY and respective marginal distributions pX and pY . Then

I (X ;Y ) ≡ D (pXY ∥pXpY ). ♢

The KL divergence also relates to the variational distance through Pinsker’s inequality [26, 78].

Proposition 2.14 (Pinsker) Let X and X ′ be two discrete random variables defined on the

same alphabetX. Then,

V(pX ,pX ′) ⩽
√
2ln(2)D (pX ∥pX ′). ♢

Similar to the entropy, the KL divergence can also be extended to a Rényi divergence [84].

Definition 10 Let X and X ′ be two discrete random variables defined on the same alphabet

X. The Rényi divergence of order α ∈ R∗+\{1}, between X and X ′ is

Dα (pX ||pX ′) ≜ 1
α − 1 log

∑
x∈X

pX (x)αqX (x)1−α ,

with the conventions 0/0 = 0 and x/0 = ∞ for x , 0. ♢

Note that, when α goes to one, the Rényi divergence is strictly equivalent to the Kullback-

Lever divergence. The reader is invited to refer to [30] for a complete list of properties for the

Rényi divergence.

2.1.4 Typical Sequences

The notion of typical sequence is at the center of information theory proofs. Intuitively, a

typical sequence is a sequence whose statistics are representative of the behavior of its associated

random variable. These sequences have interesting properties presented in this subsection. Two

notions of typicality exist: the strong typicality is the most intuitive, while the weak typicality

is mostly an information theory concept.

2.1.4.1 Strongly Typical Sequences

Let xn ∈Xn be a sequence whose n elements are in a finite alphabetX.
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Notation N (a;xn) denotes the number of occurrences of a symbol a ∈ X in the sequence

xn, and {N (a;xn)/n : a ∈X} represents the empirical distribution of xn.

Definition 11 (Strong typical set) Let pX be a distribution on a finite alphabetX and let

ϵ > 0. A sequence xn ∈Xn is (strongly) ϵ-typical with respect to pX if

∀a ∈X
����1nN (a;xn) − pX (a)���� ⩽ ϵ pX (a) .

The set of all ϵ-typical sequences with respect topX is called the strong typical set and is denoted

byTn
ϵ (X ). ♢

This definition is quite intuitive since a typical sequence has an empirical distribution “close”

topX . Typical sequences are particularly useful in information theory because of a result known

as the asymptotic equipartition property (AEP for short).

Theorem 2.15 (AEP) Let pX be a distribution on a finite alphabet X and let 0 < ϵ <

minx∈X pX (x). LetXn be a sequence of independent and identically distributed (i.i.d.) random

variables with distribution pX . Then,

1 − δϵ (n) ⩽ P
�
Xn ∈ Tn

ϵ (X )� ⩽ 1

(1 − δϵ (n))2n(H(X )−δ (ϵ)) ⩽
�
Tn
ϵ (X )� ⩽ 2n(H(X )+δ (ϵ))

∀xn ∈ Tn
ϵ (X ) 2−n(H(X )+δ (ϵ) ⩽ pXn (xn) ⩽ 2−n(H(X )−δ (ϵ)). ♢

The three inequalities given in this theorem can be translated as:

1. for n sufficiently large, the probability that a sequence is strongly typical is close to one;

2. the number of strongly typical sequences is close to 2−nH(X ), making a direct connection

with the entropy of a random variable;

3. strongly typical sequences are almost uniformly distributed.

Remark There exist explicit expressions for δϵ (n) and δ (ϵ) [55], but the rough characterization
used in Theorem 2.15 is sufficient for the subsequent analysis. The exact dependence on n
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or ϵ is not needed because of some operational properties such as δ (ϵ) ± δ (ϵ) = δ (ϵ) and
δϵ (n) ± δϵ (n) = δϵ (n).

The notion of typicality generalizes to multiple random variables. Assume that (xn,yn) ∈
Xn × Yn is a pair of sequences with elements in finite alphabetsX and Y. The number of oc-

currences of a pair (a,b) ∈X× Y in the pair of sequences (xn,yn) is denoted by N (a,b;xn,yn).

Definition 12 (Jointly typical set) Let pXY be a joint distribution on the finite alphabet

X × Y and let ϵ > 0. Sequences xn ∈ Xn and yn ∈ Yn are ϵ-jointly typical with respect to

pXY if

∀(a,b) ∈X × Y
����1nN (a,b;xn,yn) − pXY (a,b)���� ⩽ ϵ pXY (a,b) .

The set of all ϵ-jointly typical sequences with respect to pXY is called the jointly typical set and

is denoted byTn
ϵ (XY ). ♢

Since Tn
ϵ (XY ) ⊆ Tn

ϵ (X ) ×Tn
ϵ (Y ), if two sequences xn and yn are jointly typical, then they are

also individually typical. The following corollary of Theorem 2.15 is a direct consequence of

this property.

Corollary 2.16 (Joint AEP) Let pXY be a joint distribution on the finite alphabetsX × Y

and let 0 < ϵ < min(x ,y)∈X×Y pXY (x ,y). Let (Xn,Yn) be a sequence of i.i.d. random variables

with joint distribution pXY . Then,

1 − δϵ (n) ⩽ P
�(Xn,Yn) ∈ Tn

ϵ (XY )
�
⩽ 1

(1 − δϵ (n))2n(H(XY )−δ (ϵ)) ⩽ �
Tn
ϵ (XY )

�
⩽ 2n(H(XY )+δ (ϵ))

∀(xn,yn) ∈ Tn
ϵ (XY ) 2−n(H(XY )+δ (ϵ)) ⩽ pXnYn (xn,yn) ⩽ 2−n(H(XY )−δ (ϵ)). ♢

A conditional version of the AEP exists for conditional typical sets.

Definition 13 Let pXY be a joint distribution on the finite alphabets X × Y and let ϵ > 0.

Let xn ∈ Tn
ϵ (X ). The set

Tn
ϵ (XY |xn) ≜

�
yn ∈ Yn : (xn,yn) ∈ Tn

ϵ (XY )
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called the conditional typical set with respect to xn. ♢

Theorem 2.17 (Conditional AEP) Let pXY be a joint distribution on the finite alphabets

X × Y and suppose 0 < ϵ′ < ϵ ⩽ min(x ,y)∈X×Y pXY (x ,y). Let xn ∈ Tn
ϵ ′(X ) and let Ỹn be a

sequence of random variables such that

∀yn ∈ Yn pỸn (yn) =
n∏
i=1

pY |X (yi |xi) .

Then,

1 − δϵϵ ′(n) ⩽ P
�
Ỹn ∈ Tn

ϵ (XY |xn)
�
⩽ 1

(1 − δϵϵ ′(n))2n(H(Y |X )−δ (ϵ)) ⩽
�
Tn
ϵ (XY |xn)

�
⩽ 2n(H(Y |X )+δ (ϵ))

∀yn ∈ Tn
ϵ (XY |xn) 2−n(H(Y |X )+δ (ϵ)) ⩽ pYn |Xn (yn |xn) ⩽ 2−n(H(Y |X )−δ (ϵ)). ♢

2.1.4.2 Weakly Typical Sequences

Even if the notion of strong typicality is intuitive, it does not apply to continuous random vari-

ables. A weaker definition exists to cope with continuous random variables [23] by defining a

typical sequence as a sequence whose empirical entropy is close to the true entropy of the corre-

sponding random variable. The discrete formulation also has practical operational advantages,

which will be exploited in the subsequent chapters.

Definition 14 (Weakly typical set) Let pX be a distribution on a finite alphabetX and let

ϵ > 0. A sequence xn ∈Xn is (weakly) ϵ-typical with respect to pX if

����−1n logpXn (xn) −H (X )���� ⩽ ϵ .

The set of a all weakly ϵ-typical sequences with respect to pX is called the weakly typical set and

is denoted An
ϵ (X ). ♢

For weak typicality, the AEP is directly obtained from the weak law of large numbers.

Theorem 2.18 (AEP) Let pX be a distribution on a finite alphabet X and let ϵ > 0. Let

Xn be a sequence of independent and identically distributed (i.i.d.) random variables with

distribution pX . Then,
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• for n sufficiently large, P
�
Xn ∈ An

ϵ (X )� > 1 − ϵ ;

• if xn ∈ An
ϵ (X ), then 2−n(H(X )+ϵ) ⩽ pXn (xn) ⩽ 2−n(H(X )−ϵ);.

• for n sufficiently large, (1 − ϵ)2n(H(X )−ϵ) ⩽
�
An
ϵ (X )� ⩽ 2n(H(X )+ϵ). ♢

The notion of joint typicality follows in a similar way.

Definition 15 (Jointly weak typical set) Let pXY be a joint distribution on the finite al-

phabets X × Y and let ϵ > 0. Sequences xn ∈ Xn and yn ∈ Yn are jointly (weakly) ϵ-typical

with respect to pXY if ����−1n logpXnYn (xn,yn) −H (XY )���� ⩽ ϵ����−1n logpXn (xn) −H (X )���� ⩽ ϵ����−1n logpYn (yn) −H (Y )���� ⩽ ϵ

The set of a all jointly weakly ϵ -typical sequences with respect topXY is called the jointly weakly

typical set and is denoted An
ϵ (XY ). ♢

Theorem 2.19 (joint AEP) Let pXY be a joint distribution on the finite alphabetsX× Y and

let ϵ > 0. Let (Xn,Yn) be a sequence of i.i.d. random variables with joint distribution pXY .

Then,

• for n sufficiently large, P
�(Xn,Yn) ∈ An

ϵ (XY )
�
> 1 − ϵ ;

• if (xn,yn) ∈ An
ϵ (XY ), then 2−n(H(XY )+ϵ) ⩽ pXnYn (xn,yn) ⩽ 2−n(H(XY )−ϵ);.

• for n sufficiently large, (1 − ϵ)2n(H(XY )−ϵ) ⩽
�
An
ϵ (XY )

�
⩽ 2n(H(XY )+ϵ). ♢

Even if there is no exact counterpart to the conditional AEP given in Corollary 2.17 for weakly

typical sequences, the following result still holds.

Theorem 2.20 Let pXY be a joint distribution on the finite alphabetsX×Y and let ϵ > 0. Let

Ỹn be a sequence of i.i.d. random variables with distribution pY and let X̃n be an independent

sequence of i.i.d. random variables with distribution pX then,

P
�(X̃n,Yn) ∈ An

ϵ (XY )
�
⩽ 2−n(I(X ;Y )−δ (ϵ)). ♢
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2.1.5 Markov Chains and Functional Dependence Graphs

For some information theoretic models and coding schemes, it may be rather difficult to de-

scribe the different relationships between random variables. A functional dependence graph is

a convenient tool to analyze these possibly complicated relationships by graphically identifying

the different Markov chains.

XnXi

M

YnYiY1

ZnZiZ1

X1

Figure 2.1 – Functional dependence graph of Example 2.1.5. Independent random variables are indicated

by •, while functions of these random variables are indicated by ◦.

Definition 16 (Functional dependence graph) Form independent random variables and

n functions of these variables, a functional dependence graph is a directed graph withm+n ver-

tices. Each edge between two nodes represents the existence of a mapping between two random

variables. ♢

Example Let M ∈ M and Zn ∈ Rn be two independent random variables, and {fi}n be a

set of functions from M to Rn. For i ∈ J1,nK, define the random variables Xi = fi(M) and
Yi = Xi + Zi . The functional dependence graph of the random variables M , Xn

i , Y
n
i , and Z

n
i is

illustrated in Figure 2.1.

Definition 17 (d-separation) LetX, Y, andZ be disjoint subsets of vertices in a functional

dependence graph G. The subsetZ is said to d-separateX from Y if there exists no path between

a vertex ofX and a vertex of Y after the following operations have been performed:

26



• construct the subgraph G′ consisting of all vertices inX, Y, and Z, as well as the edges

and vertices encountered when moving backward starting from any of the vertices inX,

Y, or Z;

• in the subgraph G′, delete all edges coming out of Z;

• remove all arrows in G′ to obtain an undirected graph. ♢

The usefulness of d-separation is justified by the following theorem.

Theorem 2.21 LetX, Y, andZ be disjoint subsets of the vertices in a functional dependence

graph. If Z d-separates X from Y, and if one collects the random variables in X, Y, and Z,

in the random vectors X , Y , and Z , respectively, then X → Z → Y forms a Markov chain. ♢

Theorem 2.21 is particularly useful in the converse proofs of channel coding theorems.

Example From the functional dependence graph of Figure 2.1, for any i , j Xi → X j → Yj .

2.1.6 Information-Theoretic Bounds

Some additional inequalities are useful to bound the probabilities of rare events.

Lemma 2.22 (Markov’s inequality) Let X be a non-negative real-valued random variable.

Then,

∀a > 0 P(X ⩾ a) ⩽ EX (X )
a
. ♢

This Lemma induces a result that is useful in the code selection step of achievability proofs

relying on a random code generation.

Lemma 2.23 (Selection lemma) Let Xn ∈Xn be a random variable and let F be a finite set

of functions f : Xn → R+ such that |F| does not depend on n and

∀f ∈ F EXn (f (Xn)) ⩽ δ (n).

Then, there exists a specific realization xn of Xn such that

∀f ∈ F f (xn) ⩽ δ (n). ♢

Another useful consequences of Markov’s is the Chernoff bound.
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Lemma 2.24 (Chernoff bound) Let X be a real-valued random variable. For all a > 0,

∀s > 0 P(X ⩾ a) ⩽ EX

�
esX

�
e−sa,

∀s < 0 P(X ⩽ a) ⩽ EX

�
esX

�
e−sa. ♢

2.2 Coding Primitives

The previous section provides the necessary tools to analyze many communication systems

from an information-theoretic perspective. This section introduces four fundamental primi-

tives: channel capacity, source coding with side information, channel intrinsic randomness,

and channel resolvability. The analysis of multi-user communications relies on several of these

primitives, which introduces the pivotal proof mechanisms used throughout this dissertation.

The example of point-to-point communications illustrates the fundamental aspects of these

coding primitives.

2.2.1 Channel Capacity

Introducing security constraints in the communicationmodel does not mean ignoring the prob-

lem of reliability in communications. The goal is indeed twofold: providing reliable communi-

cations for the legitimate users, and ensuring security with respect to an external eavesdropper.

The problem of reliable point-to-point communications has been introduced by Shannon in

his seminal work [88] and was studied extensively for other channels (esp. the multiple-access

channel).

Xn

ENC DECM
Yn

M̂pY |X

Figure 2.2 – Point-to-point communications.

The channel capacity for the problem of point-to-point communications depicted in Fig-

ure 2.2 is defined as the maximum bit rate a user can reliably transmit on a noisy channel.
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Theorem 2.25 (Channel Coding Theorem) The capacity of a discrete memoryless channel

(DMC)
�
X,pY |X , Y

�
is

C = max
pX

I (X ;Y ).

In other words, if R < C then R is an achievable transmission rate and an achievable transmis-

sion rate must satisfy R ⩽ C. ♢

Theorem 2.25 proves that the channel capacity is equal to the maximum over all possi-

ble input distributions of the mutual information between the channel input and the channel

output.

The proof of this theorem relies on a random coding argument, which consists in drawing

the symbols of codewords independently at random. Showing that there exists a code such that

the probability of error goes to zero as n (the code blocklength) goes to infinity yields an upper

bound on the transmission rate. This random code is only a technical tool and not a practical

code that can be used as an actual coding scheme. The mechanisms presented in the following

achievability proof are essential to tackle more complicated models.

Input Output Input Output

Binary Symmetric 
Channel

Binary Erasure 
Channel

0

1

0

1

0

1

0

1

?
p

1 � p

1 � p

p
�
�

1 � �

1 � �

Figure 2.3 – Binary symmetric channel and binary erasure channel.

Example Figure 2.3 depicts two binary channels that are particularly useful in information

theory. The binary symmetric channel BSC(p) flips bit values with a crossover probability p

and has a capacity of 1 − Hb(p) bits. The binary erasure channel BEC(ϵ) erases bits a with a

probability ϵ and has a capacity of 1 − ϵ bits.
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The additive white Gaussian noise (AWGN) channel also has a prominent role in informa-

tion and communication theory to describe a practical communication scheme. The AWGN

channel captures, in particular, the impact of thermal noise and interferences in wireless com-

munications. The channel output at each instant i ⩾ 1 is Yi = Xi + Ni , where Xi denotes the

transmitted symbol and {Ni}i⩾1 are i.i.d. random variables with distribution N(0,σ 2). With-

out further restriction the capacity of the AWGN channel is infinite; however, by adding an

average power constraint in the form of

1
n

n∑
i=1

E
�
X 2
i

�
⩽ P ,

, the capacity becomes finite.

Theorem 2.26 The capacity of a Gaussian channel is given by

C =
1
2
log

(
1 +

P

σ 2

)
,

where P denotes the power constraint and σ 2 is the variance of the noise. ♢

2.2.2 Source Coding with Side Information

Along with channel coding, the problem of source compression is at the core of information

theory. Information-theoretic tools are used to derive fundamental limits regarding the bit rate

at which a source can be compressed without any loss. For instance, for a source (X,pX ), the
minimum number of bits that must be stored or transmitted is nH (X ), where n is the length

of the source sequence.

The fundamental paper by Slepian and Wolf [89] considers the separate encoding of corre-

lated sources as illustrated in Figure 2.4.

DEC
ENC

ENC

Xn

Yn

⇣
X̂n , Ŷn

⌘
R1

R2

pX ,Y

Figure 2.4 – Separate encoding of correlated sources (Slepian-Wolf problem).
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Consider a DMS (XY,pXY ) with two outputs X and Y with joint distribution pXY . As

depicted in Figure 2.4, the outputs are processed by two different encoders that compress Xn

into a message of rate R1 and compresses Yn into a message of rate R2. Both these messages are

processed jointly by a single decoder, whose goal is to estimate Xn and Yn. Since this model

considers two different encoders one can expect that the best thing to do is to encode X at a

rate R1 > H (X ) and Y at a rate R2 > H (Y ). This procedure guarantees that the probability

of error vanishes as n goes to infinity but exploits neither the correlation of the source nor the

common decoder. It turns out that it suffices to ensure that the sum rate R1+R2 is greater than

H (XY ), which is in general smaller thanH (X )+H (Y ). To achieve such a surprising result the
encoders and the decoder must be properly designed [16, 23, 89].

Definition 18 A (2kR1, 2kR2,k) distributed source code Ck for the discrete memoryless source

(XY,pXY ) consists of

• two message sets M1 =
q
1, 2R1

y
and M2 =

q
1, 2nR2

y
;

• an encoding function f1 : Xk →M1, x
k 7→m1;

• an encoding function f2 : Yk →M2, y
k 7→m2;

• a decoding function д : M1 ×M2 → (Xk × Yk) ∪ {?}, (m1,m2) 7→ (x̂k , ŷk), where ?
represents the error symbol. ♢

The performance of a code Ck is measured in terms of the average probability of error

Pe(Ck) ≜ P
((X̂k , Ŷk) , (Xk ,Yk)��� Ck

)
.

Definition 19 A rate pair (R1,R2) is achievable if there exists a sequence of (2kR1, 2kR2,k)
codes {Ck}k⩾1 such that

lim
k→∞

Pe(Ck) = 0.

The achievable rate region is defined as

Rsw ≜ cl({(R1,R2) : (R1,R2) is achievable}) . ♢
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The achievable rate region with separate encoding was first characterized by Slepian and

Wolf. The region is often called the Slepian-Wolf region and codes for the distributed source

coding problem are often referred to as Slepian-Wolf codes.

Theorem 2.27 (Slepian-Wolf Theorem) The achievable rate region with separate encoding

for a source (UV,pUV ) is

Rsw ≜


(R1,R2) :

R1 ⩾ H (X |Y ) ,
R2 ⩾ H (Y |X ) ,
R1 + R2 ⩾ H (XY )


♢

Figure 2.5 illustrates the typical shape of the Slepian-Wolf region RSW.

R1

R2

Rate Region
for

SW Encoding

0

H(Y |X )

H(X |Y ) H(X )

H(Y )

Figure 2.5 – The Slepian-Wolf region for a discrete memoryless source (XY,pXY ).

Proof (Heuristic) The underlying principle of the proof is called random binning. It con-

sists in labeling the typical sequences in such a way that the decoder can use the labels to select

the right sequence with high probability. Exploiting the properties of the joint typicality is a

solution to achieve a better compression rate. Let ϵ > 0 and k ∈ N∗. Let R1 > 0 and R2 > 0

be rates to be specified later. The (2kR1, 2kR2,k) code Ck is constructed as follows.
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• Binning: For each sequence xk ∈ Tk
ϵ (X ), draw an index uniformly at random in the setq

1, 2kR1
y
. For each sequence yk ∈ Tk

ϵ (Y ), draw an index uniformly at random in the setq
1, 2kR2

y
. The index assignments define the encoding functions

f1 : X
k →

q
1, 2kR1

y
and f2 : Yk →

q
1, 2kR2

y
,

which are revealed to all parties.

• Encoder 1: given the observation xk , if xk ∈ Tk
ϵ (X ), output m1 = f1(xk); otherwise

outputm1 = 1.

• Encoder 2: given the observation yk , if yk ∈ Tk
ϵ (Y ), output m2 = f2(yk); otherwise

outputm2 = 1.

• Decoder: given messagesm1 andm2, output x̂k and ŷk if they are the unique sequences

such that (x̂k , ŷk) ∈ Tk
ϵ (XY ) and f1(x̂k) =m1, f2(ŷk) =m2; otherwise, output ?.

. . .

. . .

. . .

. . .

. . .

. . .

. . .
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. . .

. . .
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Figure 2.6 – Binning procedure for the Slepian-Wolf coding. Each pictogram represents one of the 2nH(XY )

jointly typical pairs (xn ,yn).

Figure 2.6 represents how the binning procedure work. The bins are designed in such a

way that each of the 2nH(XY ) jointly typical pairs (xn,yn) receives a unique pair of indices. The

reader is invited to refer to [16, 23] for the detailed technical proof.
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One of the special cases of the Slepian-Wolf problem consists in supposing that one the

components of the DMS (XY,pXY ), say Y , is directly available at the decoder as side infor-
mation and only X should be compressed. This problem is known as source coding with side

information.

Corollary 2.28 (Source coding with side information) Consider a DMS (XY,pXY )
and assume that (X,pX ) should be compressed knowing that (Y,pY ) is available as side infor-
mation at the decoder. Then,

inf{R : R is an achievable compression rate} = H (X |Y ) . ♢

This result confirms that a source with low entropy can be compressed more than a source

with higher entropy. Corollary 2.28 plays a pivotal role in physical layer security and, in par-

ticular, for secret-key generation. To distill a secret-key from the physical medium, two users

must observe a correlated source of randomness. This correlated source of randomness does not

provide identical observations, thus requiring a reconciliation procedure. To agree on a com-

mon key, the two users exchange messages that allow them to agree on a common sequence,

which is then used to distill a key. Source coding with side information generalizes the problem

of source coding when additional side information is available either to both users or only one.

2.2.3 Channel Intrinsic Randomness

Zn Xn

�n YnpX |Z

Figure 2.7 – Channel Intrinsic Randomness (CIR) basic scheme.

The Channel Intrinsic Randomness (CIR for short) is defined in [13] as the “maximum

bit rates that can be extracted from a channel output independently of an input with known

statistics.” This problem is of primary importance to analyze secret-key generation schemes to

provide strong security.
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Formally, consider a discrete memoryless channel (Z,X,pX |Z ), and suppose that the dis-

tribution controlling the channel is pZ . Channel intrinsic randomness consists in designing a

mapping φn such that, for any ϵ > 0

V
�
pZnφn(Xn),pZnqYn

�
⩽ ϵ,

where qYn represents a desired target distribution. For an arbitrary distribution qYn is called

channel number generation.

The following proposition yields a condition on the process {Yn}n⩾1 to ensure the existence

of such a mapping φn.

Proposition 2.29 (Achievability of CIR) If H (X |Z ) > H (Y ), then

∀0 < ϵ < 0.1, ∃φn : Xn → Yn, V
�
pZnφn(Xn),pZnqYn

�
⩽ ϵ, (2.6)

and

∀0 < ϵ < 0.1, ∃φ′n : Xn → Yn, D
�
pZnφn(Xn)∥pZnqYn

�
⩽ ϵ . (2.7)

♢
In [13], the author presents a result that holds for sources with memory, but all the analysis

done in the subsequent chapters will only focus on channels without memory.

Proof This results can be proven as a corollary of Corollary 2.31 and Pinsker’s inequality.

2.2.4 Channel Resolvability

Xn
�n

Yn
KnpK |Y

Figure 2.8 – Channel Resolvability basic scheme.

The paradigm behind the wiretap coding consists in ensuring that the observation of the

eavesdropper is independent of the secret messages. A sufficient way to guarantee security con-

sists in ensuring that the eavesdropper’s statistics are not affected by the messages exchanged by

the legitimate parties. In that case, the eavesdropper cannot resolve what message was transmit-

ted since it doesn’t observe significant variations on its end. This approach called channel resolv-

ability ensures strongly secure communications, while capacity based approaches only provide
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weak secrecy. Channel resolvability [39] aims at simulating a target distribution at the output

of a channel by controlling its input with a uniform random number.

Formally, consider a discrete memoryless channel (Y,K,pK |Y ), and suppose that the dis-

tribution controlling the channel is pK . Channel intrinsic randomness consists in designing a

mapping φn such that, for any ϵ > 0

V
�
pZnφn(Xn),pZnpKn

�
⩽ ϵ . (2.8)

The same result holds for the KL divergence.

2.3 Joint Analysis of Channel Intrinsic Randomness and Resolvability

This section introduces a scheme that includes and extends the problems of channel resolvability

and channel intrinsic randomness. The model consists of a discrete memoryless source that is

sent through a first discrete memoryless channel, which output is then processed to feed the in-

put of a second channel. The objective is to simulate a random process with fixed distribution at

the second channel output independently from the first channel input. A joint scheme is intro-

duced to find joint exponents and asymptotic limits that can be specialized to the well-known

schemes previously mentioned. This scheme also provides, for instance, a direct extension of

channel intrinsic randomness with a non-uniform target distribution.

The joint approach does not improve asymptotic limits since separation holds in some cases,

but the joint exponents are larger than the tandem exponents that would be obtained by using

an intermediate uniform random number. Even if the model is more general, the subsequent

results are connected to some of the separation approaches investigated in [96, 97] and to

channel resolvability with non-uniform input [14, 42].

2.3.1 Definitions and Assumptions

Consider the setting illustrated in Figure 2.9 consisting of:

• a discrete memoryless source (DMS) (Z,qZ ) that outputs i.i.d. sequences Zn ∈ Zn;

• a discrete memoryless channel (DMC) (Z,W1,X) with transition probabilityW1, which

outputs i.i.d sequences Xn ∈Xn when Zn is present at the input;
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Intrinsic Randomness

Resolvability

Zn
W1

Xn
�n

Yn

W2
Kn

Figure 2.9 – Joint channel intrinsic randomness and resolvability.

• an encoding function φn : Xn → Yn, Xn 7→ Yn;

• a second DMC (Y,W2,K) with transition probability W2, which outputs Kn ∈ Xn

when Yn is present at the input.

The problem consists in simulating a target i.i.d distribution qKn at the output of the chan-

nelW2 independently of Zn. The target probability qKn is defined via a fixed i.i.d distribution

qYn as

qKn (kn) =
∑

yn∈Yn

W2(kn |yn)qYn (yn).

In what follows, Ỹ and K̃ denote the target processes with distribution qY and qK , respectively.

Mathematically, the constraints are formalized as follows.

• The simulated distribution pKn and the target distribution qKn should be asymptotically

close in terms of KL divergence:

lim
n→∞

D(pKn ||qKn ) = 0.

• The simulated process Kn and the input process Zn should be asymptotically statistically

independent:

lim
n→∞

D(pKnZn ||pKnqZn ) = 0.

These two conditions can be merged by requiring that

lim
n→∞

D(pKnZn ||qKnqZn ) = 0.

For particular choices of DMSs and DMCs in the scheme mentioned above:
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• if Y = K,W2 = idK , and qKn ∼ UJ1, 2nRK, it corresponds to channel intrinsic random-

ness;

• ifW1 = qX , qXn ∼ UJ1, 2nRK, it corresponds to channel resolvability.
2.3.2 Achievability and Exponents
2.3.2.1 Joint Exponent Derivation

The joint exponent derivation derives from a proof technique introduced by Hayashi [40, 41]

(see also [48]). First, the joint coding scheme is constructed at random; the encoding function

φn is randomly defined by mapping every sequence xn ∈ Xn to a sequence yn ∈ Yn drawn

according to qYn . The corresponding random variable is denoted Φn.

For 0 < α < 1,

D(pKnZn ||qKnqZn ) (a)
⩽

∑
zn∈Zn

qZn (zn)D(pKn |Zn=zn ||qKn )
(b)
⩽

∑
zn∈Zn

qZn (zn)D1+α (pKn |Zn=zn ||qKn ), (2.9)

Inequality (a) follows from the law of total probability, and (b) holds because the Rényi

divergence is increasing with respect to α (see for instance [29]).

By taking the expectation of inequality (2.9), over all encoding function Φn and with

Jensen’s inequality,

EΦn (D(pKnZn ||qKnqZn ))

⩽ 1
α

∑
zn∈Zn

qZn (zn) × log *,
∑

kn∈Kn

qKn (kn)−αEΦn

�
pKn |Zn (kn |zn)1+α �+- . (2.10)

By the law of total probability and observing that Zn → Xn → Yn → Kn forms a Markov

chain and for a given realization φn of Φn,

pKn |Zn (kn |zn) =
∑

yn∈Yn

W2(kn |yn)
∑

xn∈Xn

W1(xn |zn)1 {φn(xn) = yn} . (2.11)
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Therefore,

EΦn

�
pKn |Zn (kn |zn)1+α �
=

∑
xn∈Xn

∑
yn∈Yn

∑
φn(xn)∈Yn

qYn (φn(xn))W1(xn |zn)W2(kn |yn)1 {φn(xn) = yn}

× Exn

Φn
*.,
∑
x̃n ,ỹn

W1(x̃n |zn)W2(kn |ỹn)1 {φn(x̃n) = ỹn}+/-
α

, (2.12)

where Exn

Φn
is the expectation over all possible mapping Φn where the value φn(xn) is fixed. This

expectation can be upper bounded as follows

Exn

Φn
*.,
∑
x̃n ,ỹn

W1(x̃n |zn)W2(kn |ỹn)1 {φn(x̃n) = ỹn}+/-
α

(a)
⩽ Exn

Φn
(W1(xn |zn)W2(kn |yn)1 {φn(xn) = yn})α

+ Exn

Φn
*.,

∑
x̃n,xn

∑
ỹn,yn

W1(x̃n |zn)W2(kn |ỹn)1 {φn(x̃n) = ỹn}+/-
α

(b)
⩽ (W1(xn |zn)W2(kn |yn))α

+
*.,

∑
x̃n,xn

∑
ỹn,yn

Exn

Φn
(W1(x̃n |zn)W2(kn |ỹn)1 {φn(x̃n) = ỹn})+/-

α

(c)
⩽ (W1(xn |zn)W2(kn |yn))α

+

( ∑
x̃n,xn

W1(x̃n |zn)︸            ︷︷            ︸
=1

∑
ỹn,yn

W2(kn |ỹn)qYn (ỹn)︸                       ︷︷                       ︸
qKn (kn)

)α

⩽ (W1(xn |zn)W2(kn |yn))α + qKn (kn)α . (2.13)

Inequality (a) is obtained by splitting the sum and because x 7→ xα is concave for 0 < α <

1; inequality (b) because of Jensen’s inequality and 1 {φn(xn) = yn} ⩽ 1; and inequality (c)

because Exn

Φn
(1 {φn(x̃n) = ỹn}) = qYn (ỹn) for x̃n , xn.
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Plugging (2.13) into (2.12), yields after some calculations,

EΦn

�
pKn |Zn (kn |zn)1+α �

⩽ qKn (kn)1+α
(
1 +

∑
xn∈Xn

W1(xn |zn)1+α
∑

yn∈Yn

qYn (yn)
(
W2(kn |yn)
qKn (kn)

)1+α )
. (2.14)

EΦn (D(pKnZn ||qKnqZn ))
⩽ 1

α

∑
zn∈Zn

qZn (zn)

× log *.,
∑

kn∈Kn

qKn (kn) *.,1 +
∑

xn∈Xn

W1(xn |zn)1+α
∑

yn∈Yn

qYn (yn)
(
W2(kn |yn)
qKn (kn)

)1+α+/-
+/-

⩽ 1
α
log *.,1 +

∑
zn∈Zn

∑
kn∈Kn

qZn (zn)qKn (kn)
∑

xn∈Xn

W1(xn |zn)1+α
∑

yn∈Yn

qYn (yn)
(
W2(kn |yn)
qKn (kn)

)1+α+/-
⩽ 1

α

∑
kn∈Kn

∑
yn∈Yn

W2(kn |yn)1+αqYn (yn)qKn (kn)−α
∑

zn∈Zn

∑
xn∈Xn

W1(xn |zn)1+αqZn (zn) (2.15)
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Figure 2.10 – Comparison of joint and tandem exponents for different values ofκ whenω = 0.3, for channel

intrinsic randomness and source resolvability.

Finally, equation (2.15) brings the following proposition
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Proposition 2.30 There exists a mapping φn : Xn → Yn, such that

D(pKnZn ||qKnqZn ) ⩽ e−nEj (qZ ,qK ,W1,W2),

with

Ej(qZ ,qK ,W1,W2) = max
α∈[0,1]

Ec(α ,qZ ,W1) − Er (α ,qY ,W2), (2.16)

and

Ec(α ,qZ ,W1) = − log *,
∑
z∈Z

qZ (z)
∑
x∈X

W1(x |z)1+α+-
Er (α ,qY ,W2) = log

∑
k∈K

∑
y∈Y

W2(k |y)1+αqY (y)qK (k)−α . (2.17)
♢

Remark Using the same upper bound as in [41],

Er (α ,qY ,W2) ⩽ log *.,
∑

kn∈Kn

*.,
∑

yn∈Yn

qYn (yn)W2(kn |yn) 1
1−α +/-

1−α+/-
≜ E′r (α ,qY ,W2). (2.18)

Corollary 2.31 If H (X |Z ) ⩾ I (Ỹ ; K̃), then there exists a mapping φn : X → Y, such that

lim
n→∞

D(pKnZn ||qKnqZn ) = 0.

♢

Proof Thekey behind the asymptotic results consists in observing thatEΦn (D(pKnZn ||qKnqZn ))
goes to 0 as n goes to infinity if Ej(qZ ,qK ,W1,W2) > 0.

First notice that Ej(0,qZ ,qK ,W1,W2) = 0, meaning that Ej(qZ ,qK ,W1,W2) ⩾ 0. It is

therefore sufficient to show that the derivative of s 7→ Ej(0,qZ ,qK ,W1,W2) in 0 is positive

to ensure Ej(qZ ,qK ,W1,W2) > 0 since Ej(α ,qZ ,qK ,W1,W2) is non-negative, non-decreasing,
convex in α . Note that

∂Ec(α ,qZ ,W1)
∂α

�����α=0 = H (X |Z ) . (2.19)

In addition, −E′r (α ,qY ,W2) is non-negative, non-decreasing, convex in α , and

−∂E
′
r (α ,qY ,W2)
∂α

�����α=0 = −I (Ỹ ; K̃). (2.20)
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Therefore, the joint exponent is positive if

H (X |Z ) − I (Ỹ ; K̃) > 0.

2.3.2.2 Comparison with Tandem Exponents

Figure 2.10 illustrates the gain of joint channel intrinsic randomness and source resolvability.

The problem of simulating a random process with a target distribution qKn from the output

of the channelW1 independently from its input corresponds to having Yn = Kn,W2 = idKn .

For qZn = qnZ with qZ ∼ B(1/2),W1 = BSC(ω), and qKn = qnK with qK ∼ B(κ) the joint
exponent becomes

Ecirj (κ,ω) = max
α∈[0,1]

Ecirj (α ,κ,ω), (2.21)

where

Ecirj (α ,κ,ω) = − log �
ω1+α + (1 − ω)1+α �

− log
�
κ1−α + (1 − κ)1−α �

. (2.22)

The separate approach consists in achieving the desired result in two distinct and indepen-

dent steps:

1. The DMCW1 is first used to extract an intermediate uniform random variable that takes

values in
q
1, 2nR

y
(channel intrinsic randomness);

2. The uniform random variable is then used to generate the desired target process qKn

(source resolvability).

The exponents for these steps are derived as special cases of the joint exponent.

• For channel intrinsic randomness, the exponent to optimize is

E1(α ,qZ ,W1,R) = − log *,
∑
z∈Z

qZ (z)
∑
x∈X

W1(x |z)1+α+- − αR, (2.23)

which consists in taking Er (α , 2−nR, idK) = αR in the joint exponent.

• Similarly, for source resolvability, the exponent to optimize is

E2(α ,qK ,R) = αR − log
∑

kn∈Kn

qKn (kn)1−α . (2.24)
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Although there is no claim of optimality behind this result, note that these exponents are close

to the best exponents obtained by Hayashi [41] for variational distance. A slight improvement

of the exponents can be obtained in some cases, as shown by Watanabe [102].
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Figure 2.11 – Determining the tandem exponent as the intersection of CIR and source resolvability exponents

and comparison with the joint exponent for κ = 0.2 and ω = 0.3.

As illustrated in Figure 2.11, the tandem exponent corresponds to the intersection of the

functions

R 7→ max
α∈[0,1]

E1(α ,qZ ,W1,R),

and R 7→ max
α∈[0,1]

E2(α ,qK ,R).

In general, this intersection is below the optimal value of the joint exponent.

2.3.3 Converse

The following proposition presents a converse result for the joint scheme.

Proposition 2.32 For any DMC (Z,W1,X) and any DMSs (Z,pZ ) and (Y,qY ), joint chan-
nel intrinsic randomness and source resolvability requires

H (X |Z ) ⩾ H (Ỹ ) . ♢
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Proof Assume that joint channel intrinsic randomness and source resolvability is possible. For

any ϵ > 0, there exists a mapping φn such that D (pYnZn∥qKnqZn ) ⩽ ϵ . Using [26, Lemma

2.7] and Pinsker’s inequality gives the counterparts of Fano’s equality in traditional source and

channel coding.

• Since D (pYn∥qYn ) ⩽ δ (ϵ), then
1
n
|H (Yn) −H (Ỹn)| ⩽ δ (ϵ),

where δ (ϵ) denotes an arbitrary function of ϵ going to 0 with ϵ .

• Since D (pYnZn∥pYnqZn ) ⩽ δ (ϵ),
1
n
I (Yn;Zn) ⩽ δ (ϵ).

Therefore,

H (Ỹ ) (a)
=

1
n
H (Ỹn) (b)

⩽ 1
n
H (Yn) + δ (ϵ)

=
1
n
H (Yn |Zn) + 1

n
I (Yn;Zn) + δ (ϵ)

(c)
⩽ 1

n
H (Yn |Zn) + δ (ϵ)

(d)
⩽ 1

n
H (Xn |Zn) + δ (ϵ)

(e)
⩽ H (X |Z ) + δ (ϵ). (2.25)

Steps (a) and (e) follow since the source is memoryless, (b) arises from the continuity of the

entropy rate, (c) from of the near independence of Yn and Zn, and (d) from the data processing

inequality since Yn is a function of Xn.

Proposition 2.33 For any DMC (Z,W1,X), any DMS (Z,pZ ) and (Y,qY ), and any ad-

ditive noise channel (Y,W2,K), joint channel intrinsic randomness and channel resolvability

requires

H (X |Z ) ⩾ I (Ỹ ; K̃). ♢
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Proof If the DMC (Y,W2,K) is an additive channel, then K̃ = Ỹ + E, where E is some

additive noise independent of the input Ỹ . In this case,

I (Ỹ ; K̃) (∗)
=

1
n
I (Ỹn; K̃n) = 1

n
H (K̃n) − 1

n
H (K̃n |Ỹn)

⩽ 1
n
H (Kn) − 1

n
H (En) + δ (ϵ)

=
1
n
H (Kn) − 1

n
H (Kn |Yn) + δ (ϵ)

=
1
n
I (Kn;Yn) + δ (ϵ)

⩽ 1
n
H (Yn) + δ (ϵ). (2.26)

Step (∗) comes from the memoryless nature of the source and channel. Following the same

steps as in the proof of Lemma 2.32 gives 1
nH (Yn) ⩽ H (X |Z ) + δ (ϵ).

2.3.4 Discussion

If the channels are not memoryless, the analysis with the KL divergence does not carry over.

Nevertheless, to obtain asymptotical results in the general case, one may use variational distance

by replacing the criterion (2.3.1) by

lim
n→∞

V(pKnZn ,qKnqZn ) = 0. (2.27)

Using [38], the following sufficient condition obtained with a separate approach ensures the

existence of an encoding mapping φn:

p-liminf
n→∞

1
n
H (Xn |Zn) > p-limsup

n→∞

1
n
I (Ỹn; K̃n), (2.28)

where H (Xn |Zn), and I (Ỹn; K̃n) are defined as

H (Xn |Zn) ≜ log
1

pXn |Zn (Xn |Zn) and I (Ỹn; K̃n) ≜ log
W2(K̃n |Ỹn)
qK (K̃n) ,

and

p-limsup
n→∞

Ξn ≜ inf
{
ξ

���� limn→∞
P(Ξn > ξ ) = 0

}
p-limsup

n→∞
Ξn ≜ sup

{
ξ

���� limn→∞
P(Ξn < ξ ) = 0

}
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for an arbitrary sequence of random variable {Ξn}∞n=1 [39]. Note that, for a memoryless process,

p-liminf
n→∞

1
n
H (Xn |Zn) = H (Xn |Zn) , and p-limsup

n→∞

1
n
I (Ỹn; K̃n) = I (Ỹn; K̃n)). (2.29)

A matching converse whenW2 = idK can be found in [13].

Appendix 7.1 briefly provides some details of the construction of practical codes with polar

codes [7].
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CHAPTER 3

THE TWO-WAY WIRETAP CHANNEL¹

The wiretap channel is limited to some particular aspects of a multi-user scheme, but does not

take into account cooperation, jamming, and feedback as means to increase secure communica-

tion rates. The two-way wiretap channel, in which users communicate over a noisy bidirectional

channel while an eavesdropper observes interfering signals, combines all the effects present with

multiple users because users have the possibility of cooperating while simultaneously jamming

the eavesdropper. This model was first investigated by Tekin and Yener [92, 93] who showed

that jamming with noise or controlled interference between codewords could provide secrecy

gains. However, this strategy, called cooperative jamming, does not exploit feedback. It was

later shown by He Yener [46] and Bloch [12] that strategies based on the feedback can per-

form strictly better than cooperative jamming alone. Recently, El Gamal et al. [28] proposed

an achievable region for the two-way wiretap channel combining cooperative jamming and a

secret-key exchange mechanism to transfer secure rate between users.

From a practical perspective, the two-way wiretap channel captures some of the limitations

of real systems because all communications are intrinsically rate-limited. The two-way wire-

tap channel also generalizes many models; for instance, the works of Amariucai and Wei [3],

Gündüz et al. [37], and Lai et al. [59] are special cases that focus on secure communication

for one user only. Similarly, the model of Ardestanizadeh et al. [5] is a two-way wiretap chan-

nel in which one of the links is confidential and unheard by the eavesdropper. Many works

on secret-key agreement with rate-limited public communication can be analyzed within this

framework [24, 103] as well.

This chapter extends existing results in several directions: it is possible to design powerful

coding schemes by partially decoupling the feedback and the interference and by relying on the

¹Parts of the material in this chapter have appeared in [76]: Pierrot, A. J., Bloch, M. R., “Strongly Secure
Communications Over the Two-Way Wiretap Channel”. In: IEEE Transactions on Information Forensics and
Security 6.3 (Sept. 2011), pp. 595–605. ©IEEE 2011.
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strategies presented in Section 1.3: cooperative jamming, secret-key exchange and secret-key

generation.

Strong secrecy results, which require the eavesdropper to obtain a negligible amount of in-

formation instead of a negligible rate of information, exploit the concept of channel resolvabil-

ity [11, 38–40, 90] to analyze cooperative jamming. Channel resolvability provides a concep-

tually convenient interpretation of cooperative jamming, which allows analyzing what happens

when transmitting beyond the capacity of the eavesdropper’s channel.

The outline of this chapter is as follows. Section 3.1 introduces the definitions pertaining

to the two-way wiretap channel and a wiretap code. Section 3.2 presents a region of strongly

secure rates achievable with cooperative jamming based on channel resolvability. This first step

yields a result similar to what Tekin and Yener [92, Theorem 2] obtained for weak secrecy. In

Section 3.3, the region is improved by introducing the secret-key exchange mechanism pro-

posed in [28, 46]. The region is further extended by performing secret-key generation from a

source induced by the noise used in cooperative jamming. Finally, Section 3.4 illustrates the

achievable region in the Gaussian case.

3.1 Problem Statement

The problem of secure communication over a two-way wiretap channel is illustrated in Fig-

ure 3.1, in which:

• a legitimate user called Alice (or transmitter 1) sends messageM1 and estimatesM2;

• another legitimate user called Bob (or transmitter 2) sends messageM2 and estimatesM1;

• an eavesdropper called Eve observes Zn.

The channel is supposed to be full-duplex, which means Alice and Bob communicate simultane-

ously over the channel. This assumption is relevant for some communication systems; however,

it may be hard to realize in practice and many experimental communication systems operate

with half-duplex, potentially yielding lower rates.
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Definition 20 A two-way wiretap channel, denoted by

(
X1,X2, Y1, Y2,Z,

�
pYn

1 Y
n
2 Z

n |Xn
1 X

n
2

	
n⩾1

)
,

consists of two arbitrary input alphabets X1 and X2, three arbitrary output alphabets Y1, Y2

and Z, and a sequence of transition probabilities
�
pYn

1 Y
n
2 Z

n |Xn
1 X

n
2

	
n⩾1 such that:

∀n ∈ N∗,∀ �
xn1 ,x

n
2

�
∈Xn

1 ×Xn
2 ,∑
yn1 ∈Yn

1

∑
yn2 ∈Yn

2

∑
zn∈Zn

pYn
1 Y

n
2 Z

n |Xn
1 X

n
2

�
yn1 ,y

n
2 , z

n |xn1 ,xn2
�
= 1. (3.1)

♢

Alice Bob

Eve

M1 M̂1

M̂2 M2

X n
1

X n
2

Z n

CODECCODEC

Two-Way Wiretap
Channel

Y n
1

Y n
2

pY n
1Y

n
2Z n|X n

1X
n
2

Figure 3.1 – Communication over a two-way wiretap channel.

The subsequent analysis is limited to a memoryless wiretap channel, but this approach gen-

eralizes in part to arbitrary channels using information spectrum methods [38].

Definition 21 A memoryless two-way wiretap channel, denoted by

�
X1,X2, Y1, Y2,Z,pY1Y2Z |X1X2

�
,

is a two-way wiretap channel for which:

∀ �
xn1 ,x

n
2 ,y

n
1 ,y

n
2 , z

n�
∈Xn

1 ×Xn
2 × Yn

1 × Yn
2 ×Zn,

pYn
1 Y

n
2 Z

n |Xn
1 X

n
2

�
yn1 ,y

n
2 , z

n |xn1 ,xn2
�
=

n∏
i=1

pY1Y2Z |X1X2

(
y(i)1 ,y

(i)
2 , z

(i)|x (i)1 ,x (i)2
)
. ♢

A code for the two-way wiretap channel is formally defined as follows.
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Definition 22 A
�
2nR1, 2nR2,n

�
two-way wiretap channel code Cn consists of:

1. Two message alphabets: M1 =
q
1, 2nR1

y
and M2 =

q
1, 2nR2

y
.

2. Two local sources of randomness
�
R1,pR1

�
and

�
R2,pR2

�
independent of the channel and

messages.

3. Two sets of encoding functions that map a message and past channel observations to a

channel input symbol:

• n encoding functions for transmitter 1:

∀i ∈ J1,nK, f (i)1 : M1 × Yi−1
1 × R1 →X1;

• n encoding functions for transmitter 2:

∀i ∈ J1,nK, f (i)2 : M2 × Yi−1
2 × R2 →X2.

4. Two decoding functions that map channel observations to a message or an error symbol

“ ?”:

• д1 : Yn
1 ×M1 × R1 →M2 ∪ {?};

• д2 : Yn
2 ×M2 × R2 →M1 ∪ {?}.

The performance of a code Cn is assessed in terms of the following quantities:

• the probability of error:

Pe(Cn) ≜ P
�(M1,M2) , (M̂1, M̂2)|Cn

�
;

• the information leakage to the eavesdropper:

L(Cn) ≜ I (Zn;M1M2|Cn). ♢
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Definition 23 A rate pair (R1,R2) is achievable for a two-way wiretap channel if there exists

a sequence of codes {Cn}n⩾1 meeting the reliability and strong secrecy constraints:

• lim
n→∞

Pe(Cn) = 0 (reliability);

• lim
n→∞

L(Cn) = 0 (strong secrecy). ♢

Definition 24 The strong secrecy capacity region R̄2W is defined as:

R̄2W ≜ cl ({(R1,R2) : (R1,R2) is achievable}) ,

whereas R2W denotes the weak secrecy capacity region. ♢

It is rather difficult to obtain a closed-form expression for the entire region of achievable rate

pairs (R1,R2). In principle, the coding scheme in Definition 22 could simultaneously exploit

the interference of transmitted signals at the eavesdropper’s terminal and feedback. To obtain

some insight, it is simpler to partially decouple these two effects.

• First, the interference penalizes the eavesdropper and increases secure communication

rates. The interference can be of two types: interference between codewords or jamming

with noise.

• Next, the feedback allows to increase the secrecy rate by means of key exchange and key

generation. With secret-key exchange, one user sacrifices part of its secure communica-

tion rate to exchange a secret-key, whereas, with secret-key generation, both users exploit

channel randomness to distill keys. Those keys are then used to encrypt messages with a

one-time pad.

3.2 Resolvability-Based Cooperative Jamming
3.2.1 Cooperative Jamming

A natural attempt to increase secure communication rates consists in jamming Eve with noise,

in order to decrease her signal-to-noise ratio. This strategy, called cooperative jamming [62],

forces one user to stop transmitting information to jam the eavesdropper. To overcome this
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limitation, Alice and Bob can use codewords whose interference also has a detrimental effect

on Eve without sacrificing as much information rate. This scheme is called coded cooperative

jamming and was introduced by Tekin and Yener [92, 93]. It is possible to combine both

strategies and have Alice and Bob perform coded cooperative jamming while simultaneously

jamming the eavesdropper with noise. Simultaneous cooperative jamming can be implemented

by prefixing an artificial discrete memoryless channel (DMC) before the two-way wiretap chan-

nel (TWWTC) and sending codewords through the concatenated channels. This technique is

therefore called prefixing in [28].

Note that cooperative jamming does not exploit feedback, which corresponds to using only

two encoding functions f (1)1 and f (1)2 in Definition 22. Using cooperative jamming is then

equivalent to studying the simplified channel model illustrated in Figure 3.2, in which the

eavesdropper observes the output of a multiple-access channel.

Alice

Eve

M1

M̂1

M̂2

M2

X n
1

X n
2

Z n

ENC Two-Way
Wiretap
Channel

Y n
1

Y n
2pY n

1Y
n
2Z n|X n

1X
n
2ENC

DEC

DEC
Bob

Figure 3.2 – Communication over a two-way wiretap channel without feedback.

3.2.2 Achievable Region

A first achievable region can be derived using the notion of channel resolvability, where uni-

formly distributed auxiliary messages M′1 ∈ M′
1 ≜ J1, 2nR′1K and M′2 ∈ M′

2 ≜ J1, 2nR′2K re-

spectively play the role of the sources of randomness
�
R1,pR1

�
and

�
R2,pR2

�
. Proposition 3.1

provides the region for rates (R1,R2,R
′
1,R
′
2).
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Proposition 3.1

R = Proj
R1,R2

∪
p∈P



*..........,

R1

R2

R′1

R′2

+//////////-
∈ R4

+

��������������������

R1 + R
′
1⩽ I (Y2;C1|X2)

R2 + R
′
2⩽ I (Y1;C2|X1)

R′1 + R
′
2⩾ I (C1C2;Z )

R′1⩾ I (C1;Z )
R′2⩾ I (C2;Z )


⊂ R̄2W, (3.2)

where ProjR1,R2
is the projection on the plane of rates (R1,R2) and

P = {pX1X2C1C2Y1Y2Z factorizing as: pY1Y2Z |X1X2 pX1|C1 pC1 pX2|C2 pC2}. (3.3)
♢

Remark A similar result has been independently established by Yassaee and Aref [108] using a

related technique based on approximation of output statistics. However, their proof only holds

for discrete memoryless channels because it involves strongly typical sequences. The following

proof relies on Steinberg’s results [90], which hold for Gaussian memoryless channels.

Proof Two types of transmitted messages are considered to introduce randomness. First, the

main messages must be transmitted between Alice and Bob reliably and securely with respect

to Eve. Second, the auxiliary messages are used to perform coded cooperative jamming and

introduce randomness to mislead the eavesdropper. Although auxiliary messages do not carry

information by themselves, Alice and Bob must decode them reliably. The scheme also includes

prefixing DMCs to perform simultaneous cooperative jamming.

The proof uses a random coding argument with fixed distributions pC1 , pC2 , pX1|C1 , and

pX2|C2 and a fixed ϵ > 0.

Code creation The code consists of randomly generated codewords with encoding and

decoding functions.

• Code generation: Generate
�
2nR1

��
2nR

′
1
�
i.i.d. sequences cn1(µ1) with µ1 = (i, j) ∈M1 ×

M′
1 according topC1 , and

�
2nR2

��
2nR

′
2
�
i.i.d. sequences cn2(µ2)with µ2 = (i, j) ∈M2×M′

2

according to pC2 . Here, i represents the index of the main message and j the index of the
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auxiliary message. The random variableCn represents the generated code, and Cn one of

its realizations.

• Encoding: If Alice wants to send µ1 ∈M1 ×M′
1, she computes cn1 (µ1) and transmits xn1

obtained by sending cn1 through a DMC with transition probability pX1|C1 .

Similarly, if Bob wants to send µ2 ∈ M2 ×M′
2, he computes cn2 (µ2) and transmits xn2

obtained by sending cn2 through a DMC with transition probability pX2|C2 .

The DMCs with transition probability pX1|C1 and pX2|C2 are prefix channels used for si-

multaneous cooperative jamming to confuse the eavesdropper.

• Decoding: the decoder is a typical set decoder.

For simplicity, let An
1,ϵ ≜ An

ϵ (X1,C2,Y1) and An
2,ϵ ≜ An

ϵ (X2,C1,Y2).

If yn1 is received by Alice, she selects µ̂2 such that
�
xn1 , c

n
2 (µ̂2) ,yn1

�
∈ An

1,ϵ . If such a tuple

exists and is unique, output µ̂2, otherwise declare an error (µ̂2 =?).

Similarly, if yn2 is received by Bob, he selects µ̂1 such that
�
xn2 , c

n
1 (µ̂1) ,yn2

�
∈ An

2,ϵ . If such

a tuple exists and is unique, output µ̂1, otherwise declare an error (µ̂1 =?).

Probability of error analysis The probability of error is defined as

Pe(Cn)≜P
�(M1,M2,M

′
1,M

′
2), (M̂1, M̂2, M̂

′
1, M̂

′
2)

�
Cn

�
. (3.4)

The following lemma provides conditions on rates such that this probability of error goes

to zero as n goes to infinity.

Lemma 3.2 (Probability of error) For ϵ > 0,


R1 + R

′
1 < I (Y2;C1|X2)

R2 + R
′
2 < I (Y1;C2|X1)

⇒ lim
n→∞

E(Pe(Cn)) ⩽ δ (ϵ). (3.5)
♢

Proof See Appendix 7.3.1 on page 128.
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Remark Lemma 3.2 provides conditions for reliable communication regardless of the eaves-

dropper, which is intuitive because reliability only depends on what is happening between the

two legitimate users. However, this differs from the proof in [92], in which additional reliability

constraints that depend on the eavesdropper are introduced to compute the leakage.

Leakage analysis The leakage is defined as

L(Cn) ≜ I (Zn;M1M2|Cn). (3.6)

Lemma 3.3 (Leakage) For ϵ > 0,



R′1 + R
′
2 > I (C1C2;Z )

R′1 > I (C1;Z )

R′2 > I (C2;Z )

⇒ lim
n→∞

E(L(Cn)) ⩽ δ (ϵ). (3.7)
♢

Proof See Appendix 7.3.2 on page 130.

Remark Interpreting this result requires to precisely understand the role of auxiliary messages

M′1 and M′2. These messages replace the sources of randomness and Lemma 3.3 offers lower

bounds on the rates of these auxiliary messages. This result is also intuitive: more random-

ness must be introduced in the encoding process to prevent Eve from recovering the messages.

Lemma 3.3 demonstrates that there exist minimum values of the rates that allow zero asymp-

totic leakage.

It is important to remember that, because of the constraints imposed by Lemma 3.2, in-

creasing auxiliary message rates reduces the amount of information one can transmit through

the channel.

Code selection Lemma 2.23 (“Selection Lemma”) proves the existence of a specific se-

quence of codes {Cn}n⩾1 such that

lim
n→∞

Pe(Cn) ⩽ δ (ϵ) and lim
n→∞

L(Cn) ⩽ δ (ϵ).
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Remark Each code Cn consists of a pair of codes (C1, C2). Although the codes C1 and C2

are generated according to independent distributions, note that both codes are jointly selected;

therefore, the codes are used independently by Alice and Bob but optimized jointly to guarantee

secrecy.

Conclusion For any ϵ > 0, there exists a code such that the probability of error and the

leakage are smaller than δ (ϵ). Therefore, it is possible to create a sequence of codes {Cn(ϵn)}n⩾1

with ϵn −→
n→∞

0.

Combining the rate constraints in (3.5) and (3.7) yields the result provided in Proposi-

tion 3.1.

The secure achievability region is obtained by elimination of the auxiliary rates R′1 and R
′
2.

Corollary 3.4 (Strongly secure achievable region)

R =
∪
p∈P


*..,
R1

R2

+//- ∈ R
2
+

����������������

R1⩽ I (Y2;C1|X2) − I (C1;Z )
R2⩽ I (Y1;C2|X1) − I (C2;Z )

R1 + R2⩽ I (Y2;C1|X2) + I (Y1;C2|X1)
− I (C2C2;Z )


⊂ R̄2W, (3.8)

where

P = {pX1X2C1C2Y1Y2Z factorizing as: pY1Y2Z |X1X2 pX1|C1 pC1 pX2|C2 pC2}. (3.9)
♢

Proof (Corollary 3.4) With (3.2),

R1 + R
′
1 + R2 + R

′
2 ⩽ I (Y2;C1|X2) + I (Y1;C2|X1)

R1 + R2 ⩽ I (Y2;C1|X2) + I (Y1;C2|X1) − R′1 − R′2
R1 + R2 ⩽ I (Y2;C1|X2) + I (Y1;C2|X1) − I (C2C2;Z ).

Using (3.7),

R1 + R
′
1 ⩽ I (Y2;C1|X2)

R1 ⩽ I (Y2;C1|X2) − R′1
R1 ⩽ I (Y2;C1|X2) − I (C1;Z ).
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Similarly, R2 ⩽ I (Y1;C2|X1) − I (C2;Z ).

0

R02

lim
n!1

L( Cn ) = 0I(C1C2;Z )

I(C2;Z |C1)

I(C2;Z )

I(C1;Z ) I(C1;Z |C2) I(C1C2;Z ) R01

MAC

Figure 3.3 – Constraints on R′1 and R
′
2 in (3.2).

The region described in (3.8) is identical to the one obtained by Tekin and Yener in [92,

93] for weak secrecy. However, a closer look at the proof shows that their result is obtained by

projecting the region R′ defined as:

R′ =
∪
p∈P



*..........,

R1

R2

R′1

R′2

+//////////-
∈ R4

+

��������������������

R1 + R
′
1⩽ I (Y2;C1|X2)

R2 + R
′
2⩽ I (Y1;C2|X1)

R′1 + R
′
2 = I (C1C2;Z )

R′1⩽ I (C1;Z |C2)
R′2⩽ I (C2;Z |C1)


. (3.10)

This region differs from 3.2 only for the constraints on auxiliary message rates (R′1,R′2). The

difference is illustrated in Figure 3.3, where the dark area corresponds to constraints (3.7) and

the light one to the constraints on (R′1,R′2) in (3.10). Note that the latter corresponds to the

achievable region of aMultiple-Access Channel (MAC).This is not surprising because the proof

of (3.10) relies explicitly on the analysis of the probability of error for the eavesdropper, who
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obtains its signal through a virtual multiple-access channel as depicted in Figure 3.2. In contrast,

the present approach analyzes the secrecy constraint directly, which leads to lower bounds on

the auxiliary message rate required to confuse the eavesdropper. The projection of both regions

on the plane of rates (R1,R2) is the same because it corresponds to having the auxiliary message

rates on the diagonal edge, which is common to both. In terms of code structure, the approach

of Tekin and Yener consists in augmenting the number of auxiliary messages until the leakage

to the eavesdropper become negligible, which only happens on the slope of the MAC region.

The constraints directly yield a region with negligible leakage and the approach consists in

finding the minimum number of auxiliary messages needed to confuse the eavesdropper, thus

augmenting the number of secret messages to the maximum possible value.

3.3 Secret-Key Exchange and Secret-Key Generation

The results in the previous section exploit the benefits of coded cooperative jamming and si-

multaneous cooperative jamming but do not consider the possibility of feedback. In particular,

two mechanisms leverage feedback.

• First, the techniques presented in [46] and [28] allow transferring secret rate from one

user to the other.

• Next, the randomness introduced by cooperative jamming is used to induce a source to

distill secret-keys. Results for secret-key agreement with rate-limited public communi-

cation [24, 103] prove useful since information can be only exchanged through a rate-

limited channel.

3.3.1 Key Exchange

Key exchange takes place on top of the cooperative jamming scheme by splitting the main and

auxiliary messages into multiple parts. The sub-messages facilitate the exchange of a secret-key

using the secret channel and encrypt part of the public message. Because of the “secret rate

transfer,” the rates must be redefined accordingly.
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Consider a code for cooperative jamming with secret message rates (R1,R2) and auxiliary

messages rates (R′1,R′2). For i ∈ {1, 2}, the main messageMi is split into two parts.

• A key, which is used for encryption by the other user Ki ∈ Ki = J1, 2nRk
i K; user i needs

to sacrifice a part of its secret message to transmit this key.

• A secret message Ms
i ∈ Ms

i =
q
1, 2nR

s
i
y
; this part corresponds to the part of the secret

message user i does not sacrifice.

The auxiliary messageM′i is also split into two parts.

• An encrypted versionMe
i ∈Me

i =
q
1, 2nR

e
i
y
of a messageM/ei . Encryption is done with a

secret-key provided by the other user and a one-time pad to ensure perfect secrecy [35].

• An open messageMo
i ∈Mo

i =
q
1, 2nR

o
i
y
; this corresponds to the part of the message that

remains public and is still perfectly decipherable by the receiver.

By convention, if no secret-key is available Re
i = 0, otherwise, by construction, Re

1 ⩽ Rk
2 ,

Re
2 ⩽ Rk

1 . Since Mi = Ki ×Ms
i and M′

i =Me
i ×Mo

i , the various rates relate as

R1 = Rs
1 + R

k
1, R2 = Rs

2 + R
k
2, R′1 = Ro

1 + R
e
1, and R

′
2 = Ro

2 + R
e
2. (3.11)

Although (R1,R2,R
′
1,R
′
2) still represents the rates provided by cooperative jamming, they

are no longer the rates of interest after the secret-key exchange. In fact, part of the auxiliary

message is encrypted while part of the secret message is sacrificed to exchange a key. Thus, the

rates to consider are the following:

• a pair of secret rates: R̃1 = Rs
1 + R

e
1 and R̃2 = Rs

2 + R
e
2;

• a pair of public rates: R̃′1 = Ro
1 and R̃

′
2 = Ro

2.

Remark Because the secret-key sent by one user cannot be used simultaneously by the other,

the secret-key exchange scheme must operate in several rounds. The secret-key comes from the

previous one, except in the first round where no secret-key is available. A code of length n is
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used B times, giving a new code of length n′ = Bn; the first message does not use secret-key

exchange, but the next B − 1 do. If the communication rate for the first message is R∗, for the

other (B − 1 is R, and the overall rate is

R̄ =
nR∗ + n(B − 1)R

nB
=

B→∞
R.

Thus, the first round incurs a negligible rate penalty as B goes to infinity.

For weak secrecy, the authors of [28] prove the following proposition:

Proposition 3.5 (El Gamal et al.)

RF =
∪
p∈P



*..........,

R1

R2

R′1

R′2

+//////////-
∈ R4

+

����������������

R1⩽ I (Y2;C1|X2)
R2⩽ I (Y1;C2|X1)

R1 + R2⩽ I (Y2;C1|X2) + I (Y1;C2|X1)
− I (C2C2;Z )


⊆ R2W, (3.12)

where:

P = {pX1X2C1C2Y1Y2Z factorizing as: pY1Y2ZX1X2 pX1|C1 pC1 pX2|C2 pC2}. (3.13)
♢

Based on Section 3.2, this result also holds for strong secrecy: RF ⊂ R̄2W.

Remark Comparing (3.8) and (3.12) proves that secret-key exchange improves the individual

bounds on R1 and R2, but not the bound on the sum-rate. Individual bounds on R1 and

R2 correspond to the capacity of the channel between the two users and cannot be improved;

therefore, any improvement in the region should modify the sum-rate constraint.

3.3.2 Key Generation from Induced Source

Key exchange requires sacrificing part of the secret rate of one user. In addition, the channel

randomness introduced for simultaneous cooperative jamming can be used to extract secret-

keys. Although users must exchange additional messages to agree on a common secret-key,

secret-key generation only comes at the expense of public message rate.

The next section focuses on the Gaussian two-way wiretap channel and explicitly demon-

strates how cooperative jamming induces a discrete memoryless source that can be used to distill
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a secret-key. The existence of this DMS is not obvious because the noise introduced by cooper-

ative jamming is already exploited to harm the eavesdropper. It is a priori unclear if it could be

used simultaneously as a source of common randomness for secret-key agreement. First, one

must clarify what knowledge of the eavesdropper needs to be considered to identify the DMS.

LetK be the secret-key to distill and letM1,M2,M′1 andM
′
2 be the secret and auxiliary messages

used in the cooperative jamming code. The secret-key and secret messages must be indepen-

dent and both must be hidden from the eavesdropper, that is, for ϵ > 0, I (M1M2K ;Zn) ⩽ ϵ .

Notice that

I (M1M2K ;Z
n) = I (M1M2;Z

n) + I (K ;Zn |M1M2)
= I (M1M2;Z

n) + I (K ;ZnM1M2). (3.14)

The term I (M1M2;Zn) can be smaller than ϵ/2 by construction of the cooperative jamming

code, which requires I (K ;ZnM1M2) ⩽ ϵ/2; this means that the secret-keymust be hidden from

an eavesdropper having access not only to the observation Zn but also to the secret messages

M1 andM2. Furthermore, note that

I (M1M2K ;Z
n) = I (M1M2;Z

n) + I �
K ;ZnM1M2M

′
1M
′
2

�
− I

�
K ;M′1M

′
2|ZnM1M2

�
. (3.15)

If the cooperative jamming code is chosen to provide the highest secrecy rate, the public message

rates must be chosen to lie on the boundary of the region in (3.8), for which [92, 93] shows

that H
�
M′1M

′
2|ZnM1M2

�
⩽ ϵ/2. In this case,

I (M1M2K ;Z
n) ⩾ I (M1M2;Z

n) + I �
K ;ZnM1M2M

′
1M
′
2

�
− ϵ

2
. (3.16)

In other words, the secret-key K must be kept secret from an eavesdropper observing not only

the channel output Zn, but also knowing the secret and auxiliary messages transmitted by the

legitimate users.

3.3.3 Achievable Region with Secret-Key Exchange and Secret-Key Generation

Adding secret-key exchange and secret-key generation primitives to the coding scheme creates

new dependencies between the random variables of the different blocks. Splitting the messages
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also introduces additional rate constraints and increases the dimension of the achievable rate

region.

3.3.3.1 Fundamental Considerations

The results of Lemma 3.3 relies on resolvability results for the multiple-access channel by Stein-

berg [90]. However, this proof does not take into account several subtleties that appear when

secret-key exchange and secret-key generation are performed over the two-way wiretap channel:

• the auxiliary messagesM′1 andM
′
2 are no longer uniformly distributed;

• the eavesdropper does not have prior knowledge of the public messages sent;

• there exist dependencies between blocks since the secret-key is used across different blocks.

Non-uniform auxiliary messages The proof of Lemma 3.3 relies on the assumption that

the auxiliary messages are uniformly distributed. Part of the auxiliary message is encrypted

with a secret-key that is almost uniform, while the other part is used for the public message

communication. Since both these sub-messages are not exactly uniform, Lemma 3.3 cannot be

used directly and needs to be extended for the case of non-uniform messages.

Rate-limited secret-key generation is similar to the Wyner-Ziv problem [27], in which two

users distill identical sequences from a correlated source by exchanging messages over a rate-

limited public channel. In a similar fashion, the codebook generation operates as follows:

• the observation X̃n is sent trough a virtual channel, whose transition probability pU |X is

controlled by Alice;²

• sequences U n are labeled with three indices F ∈ J1, 2nRf K, K ∈ J1, 2nRk K, C ∈ J1, 2nRc K
independently and uniformly distributed.

Using results from Chapter 2, several results follows:

²The case where Bob is generating the secret-key is similar.
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1. channel intrinsic randomness ensures that indices are uniform and independent of Z̃n,

i.e. V
�
pFKCZ̃n ,uF uK uC pZ̃n

�
⩽ ϵ , if

R f + Rk + Rc < H(U |Z̃ ); (3.17)

2. Slepian-Wolf coding guarantees that it is possible to reconstructU by observing Ỹn know-

ing indices F and K , i.e. there is a decoding function д such that P
�
U , д(Ỹn,C)� ⩽ ϵ ,

if

R f + Rc > H(U |Ỹ ); (3.18)

3. channel intrinsic randomness with respect to X̃n establishes that indexC is independent

of X̃n, i.e V
�
pCX̃n ,uC pX̃n

�
⩽ ϵ , if

Rc < H(U |X̃ ). (3.19)

These three constraints imply R f > I
�
U ; X̃

�
= I

�
U ; Ỹ

�
. The philosophy behind this approach

is to design a code for the virtual source (U , X̃ , Ỹ , Z̃ ) based on the random binning of U with

three indices. The index F represents the public message that will be exchanged over the rate-

limited public channel; the index K represents the secret-key generated by both parties. The

role of indexC is less intuitive since it is used to select a code among all possible codes provided

by this procedure. The first and third constraints guarantees secrecy, the second guarantee

reliability.

The next step consists in showing that designing a code for the virtual source (U , X̃ , Ỹ , Z̃ ) is
equivalent to designing a code for secret-key generation. The source joint probability is denoted

pUX̃ỸZ̃ , while the original joint probability representing the problem of secret-key generation is

denoted p̃UX̃Ỹ Z̃ . Including the auxiliary indices the total joint probability for the virtual source

is

pUX̃nỸnZ̃nFKC(u,xn,yn, zn, f ,k, C)
= pFKC |U (f ,k, C|u)pU |X̃n (u |xn)pX̃nỸnZ̃n (xn,yn, zn), (3.20)
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where Φ, Ψ and ϒ represents the random encoding functions respectively giving indices F , K ,

and C for a givenU . Note that

pFKC |U (f ,k, C|u) = 1{Φ(u) = f ,Ψ(u) = k, ϒ(u) = C}.

To show that the code previously designed works also for the problem of secret-key generation

with rate-limited public communications, it suffices to verify that pUX̃ỸZ̃ is close to p̃UX̃Ỹ Z̃ .

V
�
pUX̃nỸnZ̃n , p̃UX̃nỸnZ̃n

�
= V

�
pUX̃Ỹ Z̃ , p̃UX̃nỸnZ̃n

�
= V

(
pUX̃nFKC ,uCpFK |U pU |CX̃npX̃n

)
= V

(
pFK |U pU |CX̃npCX̃n ,uC pFK |U pU |CX̃npX̃n

)
= V

�
pCX̃n ,uC pX̃n

�
⩽ ϵ . (3.21)

The indexC needs to be eliminated so that the same code can be used for any source observation

with an argument similar to the selection lemma.

P
�
U , д(Ỹn,C)� ⩽ ϵ =

2nRc∑
C=1

P
�
U , д(Ỹn, C)�C = C

�
uC (C)

= EI

�
P

�
U , д(Ỹn,C)�C��

⩽ ϵ . (3.22)

Markov’s inequality implies PI

�
P

�
U , д(Ỹn,C)�C�

> 2ϵ
�
⩽ 1/2, thus there exists a particular

codebook C0 such that P
�
U , д(Ỹn, C0)� ⩽ 2ϵ

This coding scheme also guarantees that the message F and the secret-key K are almost uni-

form in terms of variational distance. The following lemma extends lemma 3.3 when auxiliary

messagesM′1 andM
′
2 are not exactly uniform.

Lemma 3.6 If the following three conditions

lim
n→∞

1
n
H2(M′1,M′2) > I (X1X2;Z ), lim

n→∞
1
n
H2(M′1) > I (X1;Z ), and lim

n→∞
1
n
H2(M′2) > I (X2;Z )

(3.23)

are satisfied, then

∃β > 0, ECn (V(pM1M2Zn ,pM1pM2pZn )) ⩽ 2−βn . (3.24)

♢
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Proof See Appendix 7.3.3 on page 133.

The proof of this lemma also relies on resolvability arguments but does not directly pro-

vide constraints on the communication rate. Instead, this lemma yields three constraints on

the second order Rényi entropy of the auxiliary messages. For the encrypted message Me
i (for

i ∈ {1, 2}), the encryption is performedwith a one-time pad by using a secret-keyKi . The secret-

key Ki corresponds to the index K presented above and obtained from the previous round of

communication is almost uniform, that is V
�
pKi ,uKi

�
⩽ ϵ , where uKi is the uniform distri-

bution with same support as Ki . The encryption operation is Me
i ≜ M/

e
i ⊕ Ki where M/

e
i is

the part of the auxiliary messages that needs to be encrypted. Additionaly, qMe
i
represents the

distribution of the encrypted message whenM/
e
i is uniformly distributed. Since the encryption

is performed with a one-time pad qMe
i
≡ uKi . The triangular inequality yields

V
(
pMe

i
,uKi

)
⩽ V

(
pMe

i
,qMe

i

)
+ V

(
qMe

i
,uKi

)︸        ︷︷        ︸
≡0

. (3.25)

Using the data processing inequality for the variational distance,

V
(
pMe

i
,qMe

i

)
⩽ V

�
pKi ,uKi

�
⩽ ϵ . (3.26)

Therefore V
(
pMe

i
,uKi

)
⩽ ϵ .

The remaining part of the auxiliary message corresponds to the open message Mo
i that is

used as a public channel for the secret-key generation. This message corresponds to the index

F in the scheme presented before, which is such that V
(
pMo

i
,uF

)
⩽ ϵ .

As for the total auxiliary message pM ′i = pMo
i
pMe

i
, and since Mo

i and Me
i are independent,

then

V
(
pM ′i ,uM ′i

)
= V

(
pMo

i
pMe

i
,uMo

i
uKi

)
⩽ V

(
pMo

i
pMe

i
,pMo

i
uKi

)
− V

(
pMo

i
uKi ,uMo

i
uKi

)
= V

(
pMe

i
,uKi

)
− V

(
pMo

i
,uMo

i

)
⩽ 2ϵ (3.27)
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Prior knowledge of the eavesdropper The constraint (3.17) incidentally guarantees

that the public messages exchanged for the reconciliation are independent of the eavesdropper’s

statistics.

Dependencies between random variable Secret-key exchange and secret-key generation

require passing messages through different blocks. This introduces additional dependencies

among the random variables that must be taken into account in the analysis. For the sake of

simplicity, suppose both Alice and Bob simultaneously distill and use a secret-key.

independent/dependent r.v.

A EBr.v. associated to Alice r.v. associated to Bob r.v. associated to Eve

dependence within/between step

B

BB

A

A

A

AA A

AB

B

E

A

B

BB

A

A

A

AA A

AB

B

E

A
Block i Block i+1

/ /

M2,i+1

M2,i

M 02,i

M 01,i
M 01,i+1

M 02,i+1

Ki Ki+1

Xn
1,i Xn

1,i+1

Xn
2,i+1Xn

2,i

M1,i M1,i+1Cn
1,i

Si Si+1

Pi+1Pi

Cn
2,i Cn

2,i+1

Cn
1,i+1

Zn
i Zn

i+1

Figure 3.4 – Dependence graph when secret-key generation is used over the two-way wiretap channel (Alice

generates/uses the secret-key).

Figure 3.4 illustrates the initial steps of secret-key generation, when Alice both generates

and uses the secret-key, and represents the dependencies between the different blocks. For the

secrecy analysis the following term must be upper bounded

I
(
M1,1:BM

′
1,2:BM2,1:B ;Z

n
1:B

)
,

where B represents the total number of blocks. The following lemma bounds the increase in

information brought by the observation of Zi+1.
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Lemma 3.7 Let i ∈ J1,B − 1K. Define Li ≜ I
(
M1,1:BM

′
1,2:BM2,1:B ;Zn

1:i

)
. We have

Li+1 − Li ⩽ δn(ϵ). (3.28)
♢

Proof See Appendix 7.3.4 on page 137. This proof is given when Alice both generates and

uses the secret-key, but the result still holds for the three other configurations.

We then have

L1 = I
(
M1,1:BM

′
1,2:BM2,1:B ;Z

n
1

)
= I

�
M1,1M2,1;Z

n
1

�
+ I

(
M1,2:BM

′
1,2:BM2,2:B ;Z

n
1

���M1,1M2,1

)
⩽δn(ϵ) + I

(
M1,2:BM

′
1,2:BM2,2:B ;Z

n
1

���M1,1M2,1

)
⩽ δn(ϵ) + I

(
M1,2:BM

′
1,2:BM2,2:B ;Z

n
1M1,1M2,1

)
(∗)
= δn(ϵ),

where (∗) follows from independence of M1,2:BM
′
1,2:BM2,2:B and the random variables of Block

1.

Hence, the strong secrecy over multiple blocks follows from Lemma 3.7 by remarking that

I
(
M1,1:BM

′
1,2:BM2,1:B ;Z

n
1:B

)
= L1 +

B−1∑
i=1

(Li+1 − Li)

⩽ δn(ϵ) + (B − 1)(δn(ϵ))
= Bδn(ϵ).

3.3.3.2 Practical Considerations

Let one assume the existence of a DMS (X̃ , Ỹ , Z̃ ) independent of all other observations induced
by cooperative jamming. The statistics of the DMS depend both on channel statistics and the

code used for communications but does not need to be characterized completely.
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First, note that substituting the rates defined in (5.17) in Proposition 3.1 provides a set of

constraints that achievable rates must satisfy:

Rs
1 + R

k
1 + R

o
1 + R

e
1 ⩽ I (Y2;C1|X2) (3.29)

Rs
2 + R

k
2 + R

o
2 + R

e
2 ⩽ I (Y1;C2|X1) (3.30)

Ro
1 + R

e
1 + R

o
2 + R

e
2 ⩾ I (C1C2;Z ) (3.31)

Ro
1 + R

e
1 ⩾ I (C1;Z ) (3.32)

Ro
2 + R

e
2 ⩾ I (C2;Z ). (3.33)

Introducing the secret-key generation by splitting the codewords in multiple parts requires

to consider slightly different rates. For instance, the rates of interest for Alice become the

following.

• R̃s
1 = Rs

1 since secret-key generation does not change anything for the secret message rate.

• R̃k
1 = Rk

1 since secret-key generation does not change anything for the secret-key rate used

for secret-key exchange.

• R̃o
1 = Ro

1 − R̄
p
1 − R̄e

1. A part R̄p
1 of the open message rate is used for secret-key generation

while a part R̄e
1 is used to transmit an encrypted message with that same key. Notice that

the constraint Ro
1 ⩾ R̄

p
1 + R̄

e
1 must be satisfied.

• R̃e
1 = Re

1 + R̄
e
1, thus increasing the encrypted message rate thanks to the secret-key gener-

ation mechanism.

Alice’s total secure communication rate is then R̃s
1 + R̃

e
1. Bob modifies his rates in a similar way.

Even if the DMS was characterized exactly, the secret-key capacity of a source with rate-

limited public communication is not known. Therefore, one may consider a suboptimal secret-

key agreement strategy in which a single user sacrifices a fraction R̄p of its open message rate for

communication and a single user uses the secret-key generated from the source for encryption.
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Table 3.1 – Additional constraints for secret-key generation.

Public Communication

Encryption Alice Bob

Alice: R̄e
1 = R̄k

1, R̄
k
2 = 0 R̄

p
1 + R̄

k
1 ⩽ Ro

1 R̄
p
1 ⩽ Ro

2, R̄
k
1 ⩽ Ro

1

Bob: R̄e
2 = R̄k

2, R̄
k
1 = 0 R̄

p
2 ⩽ Ro

1, R̄
k
2 ⩽ Ro

2 R̄
p
2 + R̄

k
2 ⩽ Ro

2

In this case, the optimal secret-key generation rate R̄k that can be distilled with rate-limited

public communication is known [24, Theorem 2.6]:

R̄k < I
�
V ; X̃ |U �

− I
�
V ; Z̃ |U �

,

where the random variables U and V are such that U → V → Ỹ → X̃ Z̃ forms a Markov

chain and

I
�
V ; Ỹ

�
− I

�
V ; X̃

�
⩽ R̄p.

Additional constraints on R̄p and R̄k exists, depending on which user performs public discus-

sion and which user encrypts a message. Specifically, there exist four possible configurations

presented in Table 3.1.

3.4 Gaussian Two-Way Wiretap Channel

This section focuses on the evaluation of some achievable regions based on the strategies devel-

oped in previous sections for the Gaussian two-way wiretap channel. The relationships between

inputs and outputs are 
Yn
1 = √д1Xn

1 + X
n
2 + N

n
21,

Yn
2 = Xn

1 +
√
д2X

n
2 + N

n
12,

Zn =
√
h1X

n
1 +
√
h2X

n
2 + N

n
e .

(3.34)

In addition, the inputs are subject to the power constraints:

1
n

n∑
i=1

E
((
X (i)
1

)2)
⩽ ρ1 and

1
n

n∑
i=1

E
((
X (i)
2

)2)
⩽ ρ2.
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The additive noises Nn
21, N

n
12, and Nn

e are supposed i.i.d. zero-mean unit-variance Gaussian

vectors. Cooperative jamming is performed by prefixing an additive white Gaussian noise

(AWGN) channel before each input of WTC2. This is equivalent to considering a modified

channel with inputs C1 and C2, with:

Xn
1 = C

n
1 + N

n
11 and Xn

2 = C
n
2 + N

n
22, (3.35)

where Nn
11 ∼ N(0, ρn1In) and Nn

22 ∼ N(0, ρn2In) correspond to the noise introduced by users to

realize cooperative jamming. For ρn1 ⩽ ρ1 and ρn2 ⩽ ρ2, the modified power constraints are

1
n

n∑
i=1

E
((
C(i)
k

)2)
⩽ ρk − ρnk = ρck , k = 1, 2.

With minor modifications of the proof presented in Section 3.2 to account for the power con-

straints, an achievable region for the Gaussian two-way wiretap channel can be obtained by

substituting the random variables C1 ∼ N(0, ρc1) and C2 ∼ N(0, ρc2) in the bounds obtained

earlier.

3.4.1 Randomness Source Extraction

Key extraction requires an explicit characterization of the DMS induced by cooperative jam-

ming. Define: 
X̃1= N11, Ỹ1 = X̃2 + N21,

X̃2= N22, Ỹ2 = X̃1 + N12,

Z̃ =
√
h1 X̃1 +

√
h2 X̃2 + Ne .

(3.36)

Proposition 3.8 The triple (X̃ , Ỹ , Z̃ ) with X̃ = (X̃1, Ỹ1) and Ỹ = (X̃2, Ỹ2) is an independent

DMS that can be used for secret-key generation. Alice, Bob and Eve observe the components

X̃ , Ỹ , and Z̃ , respectively. ♢

Proof Since Alice generates the noise N11, she obtains X̃1 directly. She also observes the

channel output Yn
1 = Cn

2 + Nn
22 + Nn

21 +
√
д1X

n
1 ; since she knows X

n
1 and can decode Cn

2 with

high probability, she can obtain Ỹ1. Similarly, Bob can obtain X̃2 and Ỹ2.

Eve observes the channel output Zn =
√
h1X

n
1 +
√
h2X

n
2 +N

n
e and, as discussed in Section 3.3,
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she obtains Cn
1 and Cn

2 as side-information. Therefore, Eve can compute Z̃ , but one needs to

show that Z̃n is a sufficient statistic for X̃n and Ỹn given (Zn,Cn
1 ,C

n
2 ). This is the case since

H
�
X̃n, Ỹn |ZnCn

1C
n
2

� (a)
= H

�
X̃n, Ỹn |Z̃nCn

1C
n
2

� (b)
= H

�
X̃n, Ỹn |Z̃n�

, (3.37)

because (a): ZC1C2 7→ Z̃C1C2 is bijective and (b): (X̃ , Ỹ , Z̃ ) is independent of (C1,C2).
The DMS (X̃ , Ỹ , Z̃ ) is a vector source, for which there is no known closed-form expres-

sion for the secret-key capacity with rate-limited public-rate communication. However, if Al-

ice and Bob ignore one of their observations, the DMS reduces to a degraded scalar source.

By [103, Corollary 2], there exists a closed-form function f

f : Rp 7→
1
2
log

Var(Y |XZ )e−2Rp + Var(Y |Z )(1 − e−2Rp )
Var(Y |XZ ) , (3.38)

which relates the public communication rate to the secret-key generation rates.

• If Alice ignores Ỹ1 and Bob ignores X̃2, Ỹ2 → X̃1 → Z̃ : if Bob sends public messages at

rate R̄p , Alice and Bob can distill a secret-key at rate R̄k , such that R̄k ⩽ f
(
R̄p,pỸ2X̃1Z̃

)
.

• If Bob ignores Ỹ2 and Alice ignores X̃1, Ỹ1 → X̃2 → Z̃ : if Alice sends public messages at

rate R̄p , Alice and Bob can distill a secret-key at rate R̄k , such that R̄k ⩽ f
(
R̄p,pỸ1X̃2Z̃

)
.

With the explicit characterization of the DMS induced by cooperative jamming and the

function f , it is possible to compute new achievable rates for the strategy described in Sec-

tion 3.3. Although there is no known closed-form expression for the resulting region R̄K, it is

possible to prove that the region strictly includes the region R̄F in Proposition 3.5 strengthened

for strong secrecy.

Proposition 3.9 Consider R̄F, R̄K, and R̄2W defined as before. In general: R̄F ⊆ R̄K ⊆

R̄2W. There exist channels such that R̄F ⊂ R̄K.

Proof The first statement follows directly from the definition of the secret-key generation

strategy in Section 3.3. For the second statement, consider the example of a channel for which:

0 < ρ1 <
h2 − 1
h1

and 0 < ρ2 <
h1 − 1
h2
.
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In this case I (C1;Y2|X2) < I (C1;Z ) and I (C2;Y1|X1) < I (C2;Z ), thus the region R̄F is empty.

However, since the power constraints are non-zero, a fraction of the power can be used to induce

a DMS while still maintaining a positive auxiliary message rate. By [103, Theorem 3], it is

possible to obtain a non-zero secret-key rate and, therefore, a non-zero secure communication

rate.

Remark Although the proof yields R̄F ⊂ R̄K by exhibiting a dummy example, the numerical

results in the next section clearly confirm improvements in various cases.

3.4.2 Results

ρ1 = 1 ρ2 = 100 h1 = 1 h2 = 0.1 д1 = д2 = 1

ρ1= ρ2 = 1 h1 = h2 = 1.5 д1 = д2 = 1
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Figure 3.5 – Region evaluation for д1 = д2 = 1, ρ1 = 1, ρ2 = 100, h1 = 1, h2 = 0.1.

The first situation considers that the secret-key generation provides little gain because coop-

erative jamming leaves little room for improvement. Figure 3.5 illustrates the achievable region

with simultaneous cooperative jamming and secret-key exchange R̄F, and the achievable region

that also includes secret-key generation R̄K obtained for ρ1 = 1, ρ2 = 100, h1 = 1, h2 = 0.1,

and д1 = д2 = 1. The upper left corner of the region corresponds to a situation in which Alice

uses all her power to jam (ρn1 = ρ1) while Bob uses all his power to transmit (ρc2 = ρ2). A

secret-key can be extracted from the source induced by Alice; however, since h1 = 10, Eve’s
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source observation is highly correlated to Alice’s, which severely limits secret-key rates. The

upper right corner of the region corresponds to a situation in which both Alice and Bob use

their entire power to transmit (i.e., ρc1 = ρ1 and ρc2 = ρ2) and, therefore, no source is induced.

For comparison, the figure also illustrates the region R̄ obtained using secret-key generation

alone (no cooperative jamming). Although this strategy is clearly suboptimal, note that there

exist practical coding schemes for secret-key generation over Gaussian channels; therefore, the

region R̄ provides an estimate of rates achievable with current codes. These results can be com-

pared to the best-known outer region R̄out for the two-way wiretap channel computed by He

and Yener [43].
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Figure 3.6 – Region evaluation for д1 = д2 = 1, ρ1= ρ2 = 1, h1 = h2 = 1.5.

Figure 3.6 illustrates the regions R̄F and R̄K obtained for ρ1 = ρ2 = 1, h1 = h2 = 1.5,

and д1 = д2 = 1. This corresponds to a situation in which Eve obtains a better observation

than either Alice or Bob and in which Alice and Bob have little power available. In such a case,

secret-key generation provides a significant improvement.

Finally, Figure 3.7 illustrates the region R̄F and R̄K obtained for ρ1 = ρ2 = 0.9, h1 = h2 = 10,

and д1 = д2 = 1. In this case R̄F = ∅, but secret-key generation is possible.
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Figure 3.7 – Region evaluation for ρ1 = ρ2 = 0.9, h1 = h2 = 10, д1 = д2 = 1.

3.5 Conclusion and Discussion

This chapter provides an achievable region of strongly secure rates based on strategies that par-

tially decouple the use of interference and feedback for secrecy. The coded cooperative strategy

exploits the interference, while secret-key exchange and secret-key generation exploit the feed-

back. This combined approach shows significant improvements in the Gaussian case. More

recently, several results have considered new models of multi-user communications. For in-

stance in [46], the authors consider both full-duplex communications and half-duplex commu-

nications with an untrusted relay. For the first model, not exploiting the feedback induces an

unbounded loss in secrecy rate in some cases. For the latter model, the penalty is negligible if

the relay power is unlimited. The authors derive an achievable region with a simple cooperative

jamming scheme that does not exploit feedback while showing near-optimal performances.

74



CHAPTER 4

EXPERIMENTAL ASPECTS OF SECRET-KEY GENERATION¹

As seen in the previous chapters, physical-layer security promises new ways of providing secrecy

through the utilization of the intrinsic randomness present in any communication medium,

such as noise and interferences. Although the theory behind physical-layer security has been

extensively studied, designing and implementing a physical-layer security system in a wireless

environment remains a challenge. Without additional experimental validation, there is a risk

that the models considered in theoretical works may be fairly disconnected from real systems

since they rely on assumptions that cannot be met in a real wireless setting.

Table 4.1 – Literature comparison.

Reference Experiments Statistics Security Analysis

[100, 101, 111] No
Postulated or N/A Non information-theoretic[19, 63, 98] Simulations

[52, 72, 79, 80]
Yes

[61] I (X ;Z ) = 0 because of
decorrelation

[49, 99, 105, 109]
Estimated from
experimental
measurements

Asymptotic
information-theoretic

Proposed Yes
Estimated from
experimental
measurements

Finite Length

As summarized in Table 4.1, several works have already experimentally investigated the

generation of secret-keys from wireless channels. In fact, the gains of wireless channels pro-

vide a natural source of randomness, for which reciprocity guarantees that legitimate users

obtain strongly correlated channel observations, while diversity ensures that the observations of

¹Parts of the material in this chapter have appeared in [75]: Pierrot, A. J., Chou, R. A., Bloch, M. R., “Experi-
mental Aspects of Secret Key Generation in Indoor Wireless Environments”. In: Proceedings of the 14th Workshop
on Signal Processing Advances in Wireless Communications (SPAWC). June 2013, pp. 669–673. ©IEEE 2013.
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a third-party eavesdropper disclose little information about the legitimate users’ measurements.

However, while these works are often motivated by an information-theoretic formulation, the

information-theoretic model is not fully developed. In particular, common assumptions about

the eavesdropper’s statistics, such as the decorrelation of channel gains at distances larger than

half the wavelength, as well as the use of asymptotic values of secret-key generation, lead to over-

simplifications of the protocols and over-estimations of the achievable information-theoretic

secret-key rates. Consequently, while canonical theoretical models of wireless channels have

proved incredibly useful to design reliable communication systems, their use for the design of

secret-key generation systems requires more care. Similarly, checking that generated keys pass

statistical tests [6]–[9], which have been primarily designed for mathematical cryptography

and only verify some desirable statistical property of the key, does not guarantee information-

theoretic secrecy.

The objective of this chapter is to investigate the practical effect of eavesdropper’s statistics by

implementing a secret-key generation system from wireless channel gain with software-defined

radios, and by carrying out a careful information-theoretic analysis. The weakness of previously

reported system lies in themodeling of the source of randomness, but not in the operation of the

subsequent protocol; therefore, this chapter does not attempt to develop a complete secret-key

generation system. The results obtained in this chapter yields the following conclusions:

1. assuming that the eavesdropper does not get any information because of decorrelation

with distance is not exact in a real wireless system;

2. the existence of a correlated eavesdropper’s observation makes the evaluation of the finite-

length secret-key rates much more intricate.

Section 4.1 recalls the basic principles of secret-key generation from channel variations,

with the underlying mathematical formalism and assumptions. Section 4.2 describes the exper-

imental setup used to induce a source of randomness by leveraging the variations of the channel
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gains. Section 4.3 assesses the robustness of the scheme regarding the diversity assumption. Sec-

tion 4.4 presents an achievable secret-key rate with a finite number of samples, which is then

evaluated with the experimental measurements. Finally, Section 4.5 provides some conclusions

and discussions regarding the possible limitations for the design of practical physical-layer se-

curity systems with an example of potential application.

4.1 Key Generation from Channel Variations

This section formalizes a generic process that extracts a source of randomness from the channel

and then describes how the secret-key is generated from such a source.

4.1.1 Secret-Key Generation Strategy

4.1.1.1 Randomness in Wireless Channels

In a wireless channel with impulse response h(t), the signal i(t) emitted by a terminal and the

corresponding signal o(t) received at another are related as

o(t) = (h ∗ i)(t) +w(t).

The thermal noise w(t) appears at the receivers because of the thermal agitation in the

electronic circuits. This noise is highly random, unpredictable, and has a short coherence time.

It is not suitable for secret-key generation since there is no correlation among the thermal noises

at different terminals.

The impulse response h(t) of a wireless channel between two terminals results from the

reflections and attenuations underwent by the transmitted signal along different paths. This

chapter focuses on narrowband channels with approximately 1MHz bandwidth, for which the

received signal is essentially a delayed version of the original one attenuated by a random com-

plex gain G(t) exp(ȷφ(t)). This complex gain accounts for the aggregated effect of attenuation

and phase change of each path; note that reciprocity guarantees that the gain GAB(t) between
two points A and B is the same as the gainGBA(t) between the points B and A. The coherence

time during which the gain G(t) and the phase φ(t) remain constant scales approximately as

Tc ≈ λ/v, where λ is the wavelength and v is the characteristic speed of the environment. For
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instance, in the experimental setup described later, the objects around the receiver move at

about one meter per second, so that the coherence time is on the order of milliseconds for wire-

less communications at 2.5GHz. It is easier to exploit the randomness of the channel gainG(t)
since precise measurements of the phase φ(t) require a precise synchronization of the terminals.

4.1.1.2 Randomness Extraction

Alice's terminal Bob's terminal

Eve's terminal

Legitimate Parties

Eavesdropper

Setting characteristics
Central frequency: 2.484 GHz
Bandwidth: 4 MHz
Switch period: 80 ms

hAB

hBA

hAE hBE

Figure 4.1 – Experimental testbed with software-defined radios.

Following common practice, and as illustrated in Figure 4.1, the channel gains between

the two legitimate terminals are measured in Time-Division-Duplex mode as follows. The first

terminal, Alice, sends a complex probe signal b(t) with unit energy, whose duration β is much

smaller than the coherence time Tc , so that the channel gain G remains almost constant over

the pulse duration. The second terminal, Bob, measures from the channel a delayed and faded

version b̃(t) of b(t). Using his knowledge of the probe signal, Bobs matches b⃗(t) = b̃(t + Td)
and b(t) as

Td = argmaxτ (b⃗ ∗ b)(τ ). (4.1)
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Then, Bob estimates the channel gain from Alice to Bob as

GAB =

√∫
β

���b⃗(t)���2 dt , (4.2)

by measuring the energy of the delayed received probe signal. Simultaneously, an eavesdropper,

Eve, obtains a channel gainGAE . Alice estimates the channel gainGBA in a similar fashion from

Bob’s probe signal, which also provides Eve with a channel gain GBE in the process.

4.1.2 Mathematical Formalism

Once n measurements are performed, Alice, Bob, and Eve, effectively observe the components

of a noisy source (XnYnZn,pXnYnZn ), in whichXn consists of n channel gainsGn
BA, Y

n consists

of the channel gain Gn
AB, and Z

n consists of both sequences Gn
AE and Gn

BE . A secret-key gener-

ation strategy Sn for the source (XnYnZn,pXnYnZn ) with unlimited public communications

consists of the following operations.

• Reconciliation: Alice transmits a public message F over the public authenticated channel,

which allows Bob to construct an estimate X̂n of Xn from Yn and F .

• Privacy amplification: Alice chooses a function G uniformly at random in a family of

universal2 hash functions, which is disclosed to all parties. Alice then computesG(Xn) ∈
K while Bob computes G(X̂n). Setting K ≜ J1, 2nRK, R is called the secret-key rate.

In principle, Alice and Bob could interactively exchange messages, but this strategy is restricted

to unidirectional operation. The secret-key generation strategy Sn must ensure the following:

1. reliability, measured with the probability of disagreement

Pd(Sn) ≜ P(K , K̂ |Sn);

2. (strong) secrecy, measured by the leakage

L(Sn) ≜ I(K ;ZnF |Sn);
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3. (strong) uniformity, measured by

U(Sn) ≜ log
�
2nR

�
−H(K |Sn).

Computing the aforementioned metrics requires the knowledge of source statistics, including

that of the eavesdropper.

A secret-key rate R ≜ 1
n log |K | is achievable if the three above metrics tend to zero as n

goes to infinity, and the supremum of achievable secret-key rates is called the secret-key capacity

Cs . Most recent works have focused on the calculation of Cs , which is an asymptotic limit

obtained for infinitely many realizations of the source; in contrast, the analysis conducted in

Section 4.4 focuses on a finite length behavior that only requires L(Sn) and U(Sn) to be small,

but non-zero.

4.1.3 Assumptions behind the secret-key generation model

The secrecy guaranteed by a secret-key generation strategy rely on three common assumptions.

Availability of an authenticated public channel of unlimited capacity This as-

sumption is not unreasonable if one aims at generating low secret-key rates for which the

amount of public communication is negligible compared to the channel capacity. If one explic-

itly introduces a rate limitation, reconciliation with vector quantization can be used [21, 24]

without fundamentally affecting the operation of the secret-key agreement strategy.

Existence of enough randomness Mobility in the environment is required to ensure that

wireless channel gains have enough entropy. Mobility results from the movements of objects

around the terminals or the terminals themselves; in indoor wireless environments, this channel

gains experience variability as soon as people move around the communication terminals.

Knowledge of eavesdropper’s statistics In an information-theoretic secret-key gener-

ation model, one requires the knowledge of the statistical dependencies between Eve’s obser-

vations and the legitimate users’ to assess the secrecy of the keys. Unfortunately, there exists

no indirect way to estimate these statistical dependencies of the eavesdropper without perform-

ing measurements at Eve’s terminal position. In addition, as pointed out in [52], the statistics
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should not be influenced by the eavesdropper to prevent the induction of artificial, determin-

istic, and predictable variations of the channel parameters. In principle, if Eve only has partial

control of the environment, any uncontrolled movement would suffice to induce variations she

cannot predict. This assumption might be even more easily satisfied in wideband and MIMO

systems since it would require more advanced capabilities from the attacker.

The knowledge of the eavesdropper’s statistics is the most crucial assumption for the proper

operation of a secret-key generation system. This could be avoided by operating in a quantum

setting, e.g. [104], but such systems are only efficiently implemented in optics. In the classical

wireless setting, the assumption is often circumvented by assuming that there exists enough

diversity in the environment, so that one can either assume that I (GAB ;GAEGBE) = 0 meaning

the eavesdropper’s observations are completely independent of the legitimate users’, or, at least,

that I (GAB ;GAEGBE) is upper bounded. However, it is crucial to precisely assess the conditions

under which the diversity assumption may hold, so as to define situations in which secret keys

can be safely generated. Moreover, it is considerably easier to analyze secrecy assuming that

I (GAB ;GAEGBE) = 0 and that the eavesdropper only observes public communication. Privacy

amplification and reconciliation are simply linked using the result of Cachin and Maurer [18],

and counting the number of bits disclosed during privacy amplification is sufficient to establish

the final key length. In contrast, when I (GAB ;GAEGBE) , 0, the final secret key length depends

on the eavesdropper’s statistics and one must factor in the effect of statistical deviations from

the mean when using a finite number of samples n.

4.2 Experimental Source Induction

This section describes the experimental setup and the procedure to characterize the statistics of

the wireless channel gains. The gain measurements are reported for a source that is induced

using a communication chain representative of a typical wireless system.
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4.2.1 Setup Description

The system features three USRPs (see Appendix 7.2 for more details) with XCVR2450 daugh-

terboards that operate in the 2.5GHz and 5GHz bands, typically used for Wi-Fi communi-

cations. However, the bandwidth is not wide enough (8MHz maximum) to allow for actual

Wi-Fi communications according to the IEEE standards, which would require over 20MHz of

bandwidth. Consequently, the reported secret-key rate is likely to be much smaller than what

could be obtained on top of an IEEE802.11 transmission. RF signals are transmitted using

standard Wi-Fi antennas with a transmission power below 100mW.

The experiments are conducted in two ordinary office rooms representative of an indoor

environment: one is the former Arcom wireless communication laboratory at Georgia Tech

Lorraine, and the other is a conference room. The choice of which room used for the experi-

ments was only motivated by convenience.

All radios are connected to a single computer that processes the transmission and reception

data stream. There is no external hardware synchronization between the terminals, and the

same configuration is used for all terminals, both in hardware and software. The first samples

of the data stream are used to overcome hardware discrepancies by scaling all measurements to

obtain the same received energy. After calibration, the scaling is kept constant through each

experiment since no significant drift was observed during acquisition.

4.2.2 Communication Chain

All experiments were conducted using the three-user setup represented in Figure 4.1. The mod-

ulation frequency is 2.484GHz, which corresponds the 14th WLAN channel. This channel is

not used in for Wi-Fi communications and does not interfere with other Wi-Fi channels. Since

XCVR2450 daughterboards are limited to half-duplex operation, the channel gains cannot be

measured simultaneously. This limitation occurs in a majority of communication systems since

full-duplex communication requires complex hardware and software implementation [10]. To

circumvent the problem, the radios are continuously switching between the Rx and Tx modes.

Because of further hardware restrictions, the minimum half-duplex cycle time is limited to
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Figure 4.2 – Communication chain for channel gain estimation.

80ms. Consequently, motion in the environment is limited to 1m.s-1 so that the channel gain

would not vary much between an Rx/Tx switch, thus maintaining channel reciprocity. If the

hardware allowed faster half-duplex cycle to capture faster fades, higher secret-key generation

rates would be achieved in a high mobility environment, but the security analysis would remain

essentially the same.

4.2.3 Characterization of Induced Source Statistics.

The estimation of the channel gains is performed using a probe message sent through the com-

munication chain described in Figure 4.2. The gain present in the transmission chain allows

power control and is kept constant throughout the entire duration of the experiment. Dur-

ing the reception, the USRP performs demodulation and analog-to-digital conversion. An

automatic gain controller (AGC) scales the received signal to match the optimal range of the

subsequent processing block. Note that it is tuned to be slow enough not to remove the gain

variations over the timescale of interest. Because the system operates at a high carrier frequency,

a phase-locked loop (PLL) is used to suppress any residual modulation resulting fromminor dif-

ferences between modulation and demodulation frequencies. The demodulated signal is then

used to compute the transmission gain. Note that all parties know the probe signal and that the
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Figure 4.3 – Channel gain measurements.

transmission chain behavior is entirely deterministic so that all users also know the shaped sig-

nal and can compute the channel gain. The probe signal, which is a fixed randomly-generated

sequence, is also used to synchronize the different radios in software.

A total of 500 gain measurement experiments were acquired, each lasting approximately

ten seconds. Alice and Bob’s terminals were separated by 1.5m and Eve’s terminal was approxi-

mately 1m away from both Alice and Bob. Figure 4.3 illustrates the evolution of the following

four channel gains: the channel gainGAB from Alice to Bob, its reverseGBA from Bob to Alice,

the channel gainGAE from Alice to Eve, and the channel gainGBE from Bob to Eve. It appears

that GAB closely follows GBA, confirming the existence of channel reciprocity. Eve’s channel

gains GAE and GBE are seemingly not related to the channel gains GAB and GBA, potentially

confirming the existence of channel diversity. According to Jake’s model, diversity should hold

as soon as Eve is farther from Alice and Bob than the coherence distance, which is ℓc = λ/2 ≈

6 cm, at 2.484GHz. The next section analyzes diversity more precisely.

It is desirable to operate on a memoryless source of randomness to make the statistical char-

acterization tractable. Decimating the raw measurements in Fig. 4.3 is a way to remove the
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time correlation by keeping a single sample per coherence interval; since the coherence time

is on the order of magnitude of λ/v, Tc should be on the order of one second. It is possible

to obtain a more precise characterization of the value of Tc with an estimation of the mutual

information I(X0;Xν ) between a sample X0 and the ν -th next sample Xν , obtained by viewing

each of the experimental time series as the realization of the same ergodic random process. The

lower I(X0;Xν ) is, the less dependent the samples are. To use more samples for the estimation,

the gains are supposed wide sense stationary, which was empirically confirmed by verifying that

the quantity I(X0;Xν ) remained the same for different choices of X0. Unless mentioned other-

wise, all information metrics are estimated with the technique presented in [73]. As illustrated

in Figure 4.4, the mutual information I(X0;Xν ) decays rapidly and vanishes after a dozen sam-

ples, corresponding to approximately one second, as expected. Operating on the down-sampled

measurements instead of the original measurements would result in a lower achievable secret-

key rate, which might seem an unnecessary simplification since it is possible to characterize

achievable secret-key rates for sources with memory [17, 19]. However, without an accurate

parametric model, the estimation of the statistics of a source with memory turns out to be a

much more difficult problem.
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The final step is then to estimate the joint statistics pXYZ of the memoryless source, which

poses two challenges. First, one would in principle need to analyze the estimation error and

include it in the subsequent calculation of achievable key rates; the results presented in this

chapter do not take this into account and assume that the estimation is accurate enough to be

used as the true joint statistics. Second, the measurements only provide quantized measure-

ments XQ , YQ and ZQ of the true channel gains X , Y , and Z , respectively. The quantization of

X and Y is not critical since it reduces achievable secret-key rates by only affecting the reconcil-

iation step. However, the quantization of Z results in an underestimation of the eavesdropper’s

knowledge, therefore one should assume that the eavesdropper can keep Z continuous. Since it

is not possible to acquire a continuous-valued Z with the software-defined radios, the first step

consists in constructing a histogram corresponding to pXQYQZQ ′ from the measured data, where

ZQ ′ is a quantized version ofZ . Then the histogram is interpolated with respect toZQ ′ to obtain

pXQYQZ . The raw data was acquired with a 14 bits resolution, which was further quantized to

obtain a 4-bit resolution for XQ and YQ , and a 6.5-bit resolution for ZQ ′.

4.3 Statistics of the Channel Gain Observations
4.3.1 Empirical Gain Distribution

The histogram of the values of the source is represented Figure 4.5. In a wireless environment

with many diffractive and reflective objects, one can show that (see [94]) channel gains follow

a Rician distribution of the form

fR(r ) = 2(K + 1)r
Ω

exp

(
−K − (K + 1)r 2

Ω

)
I0 *,2

√
K(K + 1)

Ω
r+- ,

with (K ,Ω) ∈ R2
+.

The parameter K is the ratio between the line of sight energy transmission and the reflected

or diffracted paths energy. In this case, estimating the parameters K and Ω from the empirical

moments [2] yields the distribution in Figure 4.5.

The distribution fitting yields the following parameters K = 2,48 and Ω = 1. This value

for K confirms a strong line of sight between the two terminals. Regarding Ω, its small value

can be justified because of the small number of diffractive objects.
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4.3.2 Robustness of the Diversity Assumption

Diversity is desirable to facilitate the generation of keys at a high rate so that the eavesdropper’s

observations are not correlated to legitimate users’. The ideal case would be a perfect statisti-

cal independence between these observations. However, even intuitively, it seems unlikely to

happen; for instance, if Eve is close to either Alice or Bob, she may be able to obtain a strongly

correlated observation of the channel gain. In an ideal case, the correlation would decay with

distance, but this also depends on the configuration of the objects populating the environment.

A series of measurements² was conducted in the building conference room to verify whether

diversity holds in a narrowband wireless setting. The room is about 40 square meters and is

furnished as illustrated in Figure 4.6. Experiments were conducted off-hours to avoid any

unwanted motion outside of the room. Two radios were placed in the middle of the room

on the conference table two meters apart. A third radio terminal represents the eavesdropper,

which was moved in the room across 60 possible positions. The channel gains GAB and GAE

obtained by Bob and Eve is then used to evaluate information leakage. These experiments only

²Acknowledgment: Alan Dong for his invaluable help for those experiments.
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involved one-way communications (Alice-to-Bob and Alice-to-Eve), thus avoiding the problem

of half-duplex operation and allowing to gather data at a faster pace. Each experiment lasted

one minute, yielding about 50,000 channels gain values at a 1 kHz sampling rate. The first

and last hundred of samples were removed to eliminate artifacts when starting and stopping

the radios.

The results of the measurement campaign are presented in Figures 4.6 and 4.7. Eve is placed

across the positions indicated by the black “+” marks, which correspond to a coarse square grid

of one meter and additional positions to cover interesting locations and the room borders. The

brightness represents the normalized secrecy-rate (for GAB = GBA) between the gains obtained

by Eve and those obtained by Bob, which is computed as

Normalized secrecy-rate ≜ I (GAB ;GBA) − I (GAB ;GAE)
I (GAB ;GBA)

= 1 − I (GAB ;GAE)
H (GAB) , (4.3)

where GAB and GAE are the channel gains measured by Bob and Eve, respectively. This nor-

malization compensates the entropy variations of the wireless channel gains across different

experiments. This quantity is close to one (white) when the gains are independent, and equal

to zero (black) when there is a one-to one mapping between GAB and GAE .

The first series of measurement, reported in Figure 4.6, is conducted without movement

and serves as a benchmark. In this situation, there is no fluctuation of the channel gains, except

those induced by the noise at the receivers’ terminals. Therefore, the quantity I (GAB ;GAE) is
small since the receiver noise is independent from one radio to another. When Eve and Alice use

the same antenna, the darker spot comes from the electronic coupling between the terminals.

In a second series of measurements, represented in Figure 4.7, the operator is walking in

the upper left corner of the room. High correlations appear when Bob and Eve’s antennas are

huddled together, and a fast decay of this correlation with distance, with leaked information

reaching almost zero after a few centimeters. However, the leaked information increases again

further away, even reaching values as high as 10% in the upper left corner. Since this corner
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Figure 4.6 – Normalized secrecy rate without motion.

was actually the area where the operator was moving during the experiment, it suggests that

measurements close to the motion source provide a better insight into the legitimate channel

fluctuations. Therefore, defining a simple zone of guaranteed secrecy for key generation is not

straightforward. From a security standpoint this proves that one cannot ignore the information

leaked to the eavesdropper when channel variations come from the motion in the environment.

It confirms that a secret-key generation must include a stage of privacy amplification to deal

with unforeseeable levels of leaked information.
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4.3.3 Environment Influence

The environment has a significant influence on the secret-key generation rate since the gain

fluctuations used as a source of randomness are induced by external motion. The number

of secret-key bits generated per second mainly depends on two factors: the entropy of the

channel gain value provided by the source and the number of samples provided by the source

per second. The latter depends on the coherence time of the channel since the decimation of

the gain measurements relies on this value.
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The experimental testbed used to analyze the influence of the environment is slightly dif-

ferent from previous experiments and consist of two radios placed on a cart to estimate the

channel gain in one direction. The experiments were performed in the following situations:

1. the cart is moved in a hallway at a slow pace (about 2 km/h);

2. the cart is moved in a hallway at a normal pace (about 4 km/h);

3. the cart is moved in a hallway at a fast pace (about 6 km/h);

4. the cart is parked in the hallway with nobody moving around;

5. the cart is parked in the hallway between classes;

6. the cart is spun inside the building lobby;

7. the cart is parked outside;

8. the cart is moved outside at a fast pace (about 6 km/h);

9. one radio is shaken, while the other stays still.

The gain measurements are further filtered to remove the measurement noise and to solely

keep the gain fluctuations, using a running average filter with a span of 20ms, which is much

lower than the typical time of the gain fluctuations for motions slower than 10 km/h.

Table 4.2 – Gain measurement entropy and secret-key rate upper bound in various situations.

Situation 1 2 3 4 5 6 7 8 9

Gain entropy (b.p.g.v.) 6.86 7.49 8.33 2.00 2.81 9.78 6.15 9.95 8.61
Coherence Time (ms) 510 328 181 18,904 9,474 322 4,230 57 148
Max secret-key rate (bit/sec) 13.4 22.8 46.0 0.11 0.30 30.4 1.45 175 58.1

Table 4.2 confirms that the gain entropy only depends on the presence of motion. The

gain entropy is limited to 12 bits, which is the resolution of the analog-to-digital converters.

The coherence time appears to be more sensitive to motion, which is what one would expect
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from the direct relationship between the coherence time and the velocity of moving objects in

the environment. This table also provides an upper bound on the secret-key bitrate by taking

the ratio of the gain entropy over the coherence time, even though this may be far from what

can be obtained considering the entire secret-key generation scheme with reconciliation and

privacy amplification. As expected, the secret-key rates are higher when there is more mobility

in the environment; bitrates are also higher in an outdoor environment, probably because the

experiments conducted in the hallway involved a limited number of scatterers.

4.4 Secret-Key Generation in the Finite Blocklength Regime

Once the statistics pXQYQZ of the source are characterized, one can easily compute asymptotic

achievable secret-key rates I
�
XQ ;YQ

�
−I

�
XQ ;Z

�
. However, these rates may be far too optimistic

when operating on a finite number of samples, and it is crucial to avoid overestimating the num-

ber of secret bits that one can effectively extract with reconciliation and privacy amplification.

The analysis in 4.4.1 is based on the detailed study of privacy amplification with continous

eavesdropper’s observation, which differs from the finite-length analysis in [95, 102] restricted

to discrete observations. The numerical results in 4.4.2 are also obtained for the memoryless

sourcepXQYQZ characterized experimentally in Section 4.2, and not from computer simulations.

The only approximation in this analysis is that the source statistics estimated in Section 4.2.3

correspond to the true statistics; the entire analysis in Section 4.4.1 is exact.

4.4.1 Finite-Length Analysis for a Continuous Observation Z

As stated in 4.2.3, the following finite-length analysis assumes that the eavesdropper’s observa-

tionZ is continuous and that the estimation of the statistics of the source made in Section 4.2.3

is accurate.

The finite key-length analysis relies on a sequential strategy [16, 67], in which the recon-

ciliation step is performed with error correction codes and the privacy amplification step is

performed with hash functions. However, since Z is continuous, it is not possible to directly
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use previous approaches [9, 67], which are only valid for discrete random variables, or that can

only be extended to continuous random variables in an asymptotic regime [20, 21].³

The reconciliation protocol is performed on the quantized versions XQ and YQ of X and Y ,

and Prec
e corresponds to the probability of error of the reconciliation step, while ℓrec represents

the number of information bits leaked during the process.

A lower bound on H(K |GZnF ) is needed to determine the final secret-key length obtained

after privacy amplification with a hash functionG chosen at random. This quantity represents

the uncertainty obtained by the eavesdropper with its own observation Zn, the knowledge of

G, and the public message F . The strategy Sn is also known by the eavesdropper, but is omitted

in the subsequent analysis to simplify the notation.

The goal is to bound the equivocation H (K |ZnFG). This section explains how to bound

this quantity as

k − δϵ (n) ⩽ H (K |ZnFG) ⩽ k, (4.4)

where k represents the size of the output of the hash function G used to distill the key. The

finite length analysis consists in estimating k for a given n. Using the results in [102, Corollary

2] for privacy amplification, it follows that

E (V(pKZnFG ,uKnpZnFG)) ⩽ 2ϵ +
1
2

√
2nR−H

ϵ
∞

(
Xn
Q |ZnFG

)
. (4.5)

This expression involves the ϵ-smooth min-entropy of Xn
Q given the information available

at the eavesdropper’s terminal. This quantity cannot be directly evaluated, but relates to other

information theoretic metrics that can be estimated.

Lemma 4.1 Let S andU be two random variables and let r > 0. Then, with probability at least

1 − 2−r ,

Hϵ
∞ (S) −Hϵ

∞ (S |U = ū) ⩽ log |U| + r . (4.6)
♢

³Note that, in principle, it is possible to quantizeZ since by [78][32][23, Section 8.5][8, Lemma 2][21, Lemma
1.2], for any δ > 0, if a quantized version ZQ ′ of Z is fine enough,

|I (K ;AZ ) − I �
K ; FZQ ′

�| < δ .
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Proof See the proof in Appendix 7.3.5 on page 138.

Lemma 4.1 proves that, with high probability, the decrease caused by conditioning the ϵ-

smooth min-entropy on U is bounded by log |U| + r . To leverage this lemma, consider the

following random variable

ϒ ≜ 1
�
Hϵ
∞(Xn

Q |ZnG) −Hϵ
∞(Xn |ZnG, F = frec) ⩽ log |F| + √n	

, (4.7)

which is such that P(ϒ = 1) ⩾ 1 − 2
√
n.

From [47, Theorem 1], the ϵ-smooth entropyHϵ
∞

(
Xn
Q |Zn

)
is lower bounded by the condi-

tional entropy H(XQ |Z ) as

∀0 < ϵ < 1, Hϵ
∞

(
Xn
Q |Zn

)
⩾ nH

�
XQ |Z �

−
√
2n log(|X| + 3)

√
log ϵ−1. (4.8)

Since Lemma 4.1 guarantees that

Hϵ
∞(Xn

Q |ZnG, F = frec , ϒ = 1) ⩾ Hϵ
∞(Xn

Q |ZnG, ϒ = 1) − log |F|︸ ︷︷ ︸
ℓrec

−
√
n, (4.9)

combining (4.8) and 4.9 yields

Hϵ
∞(Xn

Q |ZnG, F = frec , ϒ = 1) ⩾ nH
�
XQ |Z �

−
√
2n log(|X|+ 3)

√
log ϵ−1 − ℓrec −

√
n. (4.10)

Combining this equation with (4.5), provides an upper bound on E (V(pKZnFG ,uKnpZnFG))
that can be evaluated. The last step consists in relating this variational distance to the leakage

L ≜ I (K |ZnFG), thanks to Csiszàr inequality:

V
�
pKZnFG,ϒ=1,uKnpZnFG,ϒ=1

�
log

2k

V
�
pKZnFG,ϒ=1,uKnpZnFG,ϒ=1

�
⩾ |k +H (ZnFG |ϒ = 1) −H (KZnFG |ϒ = 1)|
= |k −H (K |ZnFGϒ = 1)|
⩾ |H (K) −H (K |ZnFGϒ = 1)|
≜ I (K |ZnFG) ≜ L (4.11)
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4.4.2 Numerical Evaluation

The experiments provide four different channel measurements. Since both Alice and Bob trans-

mit probe signals, they can respectively obtain the channel gains GBA and GAB. Incidentally,

Eve can also estimate the channel gains GAE and GBE . The source of randomness is therefore

(X ,Y ,Z ), where X = GBA, Y = GAB, and Z = (GAE,GBE).

GAB

GAB GBA

GBA

GBE

GBE

GAE

GAE

Figure 4.8 – Correlations between the different normalized channel gains.

Figure 4.8 illustrates how the channel gain measurements conducted in Section 4.2.3 are

correlated with each other. This figure shows that the channel gains GBA and GAB are strongly

correlated and confirms the hypothesis of reciprocity. The correlation is, however, not perfect,

thus justifying the reconciliation phase in the secret-key generation protocol. On the other

hand, there is no substantial correlation either between both Eve’s observations GAE and GBE ,

or between Eve’s observations and the legitimate users’ observations. This second observation

confirms the hypothesis of diversity when Eve is not located near one of the antennas of the legit-

imate parties. Looking solely at the distributions of the channel gains yields similar conclusions
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since GBA and GAB have similar distributions (reciprocity), while GAE and GBE have different

distributions due to the different path followed by the electromagnetic waves (diversity).

If the reconciliation protocol has an efficiency β ∈ [0, 1] (see [16]), then lrec = n(H(X ) −
βI (X ;Y )) bits are leaked to the eavesdropper. The best case scenario, obtained for β = 1, would

yield H(X |Y ) bits leaked during the reconciliation step. Note that the value of β may change

depending on the blocklength n.

Asymptotically, it is known that the corresponding achievable secret-key rate is Rlow ≜

I (X ;Y ) − I (X ;Z ), which is a lower bound of the secret-key capacity Cs [66].
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·104
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Blocklength n

R
at
io
η

β = 1
β = 0.95
β = 0.90
β = 0.85
β = 0.80

Figure 4.9 – Ratio η, for U < 10−3 and L < 10−3.

The gap between the finite and the asymptotic regime is quantified using the ratio

η ≜ k/n

Rlow
,

where Rlow ≈ 1.46 bits is a known achievable rate, which is upper bounded by the secrecy

capacity Cs , which is such that Cs ⩽ I (X ;Y |Z ) ≈ 1.76 bits.
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4.5 Conclusion and Discussion

The main limitation of a secret-key generation scheme relying on channel variations is the

difficulty to clearly establish the conditions to provide secrecy without precise knowledge of the

eavesdropper’s statistics. The experiments show that there is no simple relationship between

the eavesdropper’s proximity and the correlation of its observations. Even worse, it appears that

if the eavesdropper induces motion, it might be able to obtain an accurate estimation of the

legitimate users’ own observations. This is consistent with the observations made in [52] when

the adversary controls the environment to induce a predictable channel behavior.

As already seen in [65, 109], there is also a strong relationship between the environment

mobility and the achievable secret-key rate. The secret-key generation scheme should account

for these variations to avoid extractingmore randomness than possible. For instance, depending

on the degree of mobility of the environment, the coherence time will change and the length

of the secret-key should change accordingly.

Estimating the source statistics not only allows one to assess the security of the system,

but also to define the source induction functions and to select the hash function output size.

However, the estimation of the source statistics is a problem in itself, especially because the

eavesdropper’s observations are not available to legitimate users.

Finally, the achievable secret-key generation rate also depends on the blocklength. Thus a

lightweight scheme that operates with short codes will have much lower performances than a

scheme operating with infinitely long codes.

To increase secret-key generation rates, one possibility is to consider other channel para-

meters to obtain a source with more randomness. In theory, the channel phase is uniformly

distributed and may exhibit more entropy than the gain magnitude. However, designing a

secret-key generation scheme using the channel phase would be technically challenging and

would require complex synchronization between terminals.

To maintain a minimum level of secrecy regardless of the environment properties, it is

crucial to address the lack of eavesdropper channel state information (CSI) for the legitimate
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users. For instance, one can obtain a significant advantage by using multiple antennas [20, 43,

99]. Again, this improvement would make the system more complex, and such choice would

depend on the final desired level of secrecy.
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CHAPTER 5

PRACTICAL CODED COOPERATIVE JAMMING¹

Historically, coding theory has focused on designing codes that are good for reliability, but

not directly meant to do binning for the wiretap codes. However, the growing interest for

physical-layer security has spurred the development of new coding techniques for secrecy based

on powerful error-correcting codes, such as low-density parity-check (LDPC) codes and polar

codes.

The underlying ideas behind coding for secrecy, which are motivated by the analysis of the

wiretap channel byWyner [107], are twofold. Randomness should be introduced to confuse the

eavesdropper by sending a random sequence along with the actual message and the codebook

should exhibit a binning structure. One approach [4] consists in employing two-edge LDPC

codes with a coset encoding technique in which the binning is controlled by the two-edge

structure. Another approach [54, 106] is to use punctured LDPC codes to create a nested linear

code structure. Both constructions exhibit performances close to the weak secrecy capacity

when employed with spatially coupled LDPC codes [4, 53, 57, 82]. A last approach consists

in exploiting polar codes to achieve the secrecy capacity as described in [22, 64] and references

therein. All these works open up new directions for the design of practical codes for secrecy.

This section presents a code construction based on punctured LDPC codes for the multiple-

access channel to perform coded cooperative jamming. This scheme guarantees weak secrecy

and its performances are analyzed for both classical and spatially coupled LDPC codes.

The outline of this chapter is as follows. Section 5.1 introduces and motivates the two-way

wiretap model considered in this chapter. Section 5.2 introduces spatially-coupled LDPC codes

for the multiple-access channel. Section 5.3 describes how to use SC-LDPC codes to provide

¹Parts of the material in this chapter have appeared in [77]: Pierrot, A. J., Bloch, M. R., “LDPC-Based Coded
Cooperative Jamming Codes”. In: Proceedings of the IEEE Information Theory Workshop. Lausanne, Switzerland,
Sept. 2012, pp. 462–466. ©IEEE 2012.
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secrecy and assesses the performances of the proposed coding scheme. Section 5.4 concludes

this chapter and discusses some of the model assumptions.

5.1 Coded Cooperative Jamming for the Two-Way Wiretap Channel
5.1.1 General Model

CODEC
Xn

1

Xn
2

M1

M̂2

M̂1

Nn
1

Nn
2

Nn
e

M 0
1 M 0

2

Two-Way Wiretap
Channel

Legitimate
User 1

Legitimate
User 2

Eavesdropper

h1 h2

Y n

M2

CODEC

Figure 5.1 – Communications over the Gaussian two-way wiretap channel.

Consider a special case of the model presented in the previous section called the binary-

input memoryless Gaussian two-way wiretap channel, which is presented in Figure 5.1. N1 and

N2 represent the noise at legitimate users’ terminals. From the eavesdropper’s standpoint,

Z =
√
h1X1 +

√
h2X2 + Ne , (5.1)

where

• X1,X2 ∈ {−1, 1} are BPSK modulated symbols;

• + is the usual real number addition;

• Ne is a centered Gaussian noise with variance σ 2 and independent of channel inputs; and

gains are unitary h1 = h2 = 1.

The hypothesis of equal-gained interferences may appear restrictive since this situation is

unlikely to naturally arise in a real wireless setting as shown in Section 5.4. However, one can
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imagine a situation in which the eavesdropper is an honest-but-curious third user that also

communicates, but should not access some of the information exchanged over the network.

Since this user communicates over the network, it is possible to estimate its channel parameters

and to induce pure interferences at its terminal by appropriately scaling power.

This model neglects the interferences between codewords at the legitimate receivers’ termi-

nals since the interferences that occur between exchanged codewords may be canceled by the

knowledge of the transmitted sequences.

5.1.2 Erasure MAC

To make code design more tractable, the model is further simplified thanks to the following

lemma.

Lemma 5.1 Any memoryless q-input channel
�
X,pY |X , Y

�
(the output alphabet can be either

continuous or finite) is stochastically degraded with respect to the q-ary erasure channel with

erasure probability ϵ∗ defined as

pZ |X =

ϵ if Z =?
1 − ϵ if Z = X

0 otherwise

ϵ∗ ≜
∫

Y
min

u∈J0,q−1KpY |X (y|u)dy.
♢

Proof Let
�
X,pZ |X ,Z

�
be a q-ary erasure channel with erasure probability ϵ∗ < {0, 1}:

pZ |X = ϵ∗1{Z =?} + (1 − ϵ∗)1{Z = X},

withX = J0,q − 1K and Z =X ∪ {?}. Now, define the channel
�
Z,pY |Z , Y

�
as follows

pY |Z (y|?) = 1
ϵ∗

min
u∈J0,q−1KpY |X (y|u) , (5.2)

pY |Z (y|z) = 1
1 − ϵ∗

(
pY |X (y|z) − min

u∈J0,q−1KpY |X (y|u)
)
, if z ∈ J0,q − 1K. (5.3)
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For any (x ,y) ∈X × Y,

∑
z∈Z

pY |Z (y|z)pZ |X (z|x) = pY |Z (y|?) ϵ∗ +
∑

z∈J0,q−1KpY |Z (y|z) (1 − ϵ
∗)1(z = x)

= min
u∈J0,q−1KpY |X (y|u) + pY |X (y|x) − min

u∈J0,q−1KpY |X (y|u)
= pY |X (y|x) . (5.4)

In particular, this shows that the channel ({−2, 0, 2},pY |X1+X2,R) is stochastically degraded
with respect to a ternary erasure channel. This observation allows to further simplify the model

by considering the erasure multiple-access channel defined as follows

Z =


X1 + X2 with probability 1 − ϵ

? with probability ϵ
, (5.5)

where ϵ = 2Q (2/σ ) .This channel is not strictly equivalent to the initial model, but the data

processing inequality ensures that the information received by the eavesdropper from the actual

channel is smaller than the information it would obtain from the output of the erasure multiple-

access channel.

The achievable communication rates (R1,R2) for such an erasure channel must satisfy

R1 ⩽ I (X1;Y |X2) = 1 − ϵ,

R2 ⩽ I (X2;Y |X1) = 1 − ϵ,

R1 + R2 ⩽ I (X1,X2;Y ) ≜ Csum = 3(1 − ϵ)/2, (5.6)

which is obtained with uniform input symbols. Equivalently, the maximum erasure rate cor-

rectable by codes of rates R1 and R2 is

ϵShannon = min (1 − R1, 1 − R2, 1 − 2/3(R1 + R2)) . (5.7)

5.1.3 Leakage Analysis

Codes for the MAC are used in the following way to obtain secrecy for the two-way wiretap

channel.
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• Xn
1 (resp. Xn

2 ) corresponds to the codeword sent by legitimate user 1 (resp. user 2) over

the channel and obtained from secure message M1 ∈ J1, 2nR1K (resp. M2 ∈ J1, 2nR2K)
randomly encoded with an auxiliary messageM′1 ∈ J1, 2nR′1K (resp. M′2 ∈ J1, 2nR′2K).

• Zn corresponds to the observation of an eavesdropper at the output of the erasuremultiple-

access channel. This eavesdropper must not get any information about the secure mes-

sagesM1 andM2.

The secrecy metric is chosen to be the leakage rate (weak secrecy criterion); for a given code

Cn, ensuring secrecy requires

lim
n→∞

L (Cn) = 0, with L(Cn) ≜ 1
n
I (Zn;M1,M2|Cn). (5.8)

It can be shown that (for simplicity, the conditioning on Cn is dropped)

nL(Cn) = I (M1M2;Z
n)

= I
�
M1M2M

′
1M
′
2;Z

n�
− I

�
M′1M

′
2;Z

n |M1M2
�

= I
�
Xn
1X

n
2 ;Z

n�
+ I

�
M1M2;Z

n |Xn
1X

n
2

�︸                  ︷︷                  ︸
=0 (M1M2→Xn

1 X
n
2→Zn)

−I
�
Xn
1X

n
2 ;Z

n |M1M2
�

= I
�
Xn
1X

n
2 ;Z

n�
−H

�
M′1M

′
2|M1M2

�
+H

�
M′1M

′
2|M1M2Z

n�
= I

�
Xn
1X

n
2 ;Z

n�
−H

�
M′1M

′
2

�
+H

�
M′1M

′
2|M1M2Z

n�
⩽ nCsum − n(R′1 + R′2) +H

�
M′1M

′
2|M1M2Z

n�
. (5.9)

Hence, to provide secrecy, the code rates R′1 and R′2 must compensate Csum and minimize

H
�
M′1M

′
2|M1M2Z

n
�
. This last condition corresponds to considering a virtual receiver capable

of decoding (M′1,M′2) from (M1,M2,Z
n). For code that allows this with an error probability

P ′e , Fano’s inequality ensures

H
�
M′1M

′
2|M1M2Z

n�
⩽ Hb

�
P ′e

�
+ nP ′e(R′1 + R′2).

5.2 LDPC Codes for the MAC

The previous chapters have shown that coded cooperative jamming is one of the mechanisms

for providing secrecy in a multi-user scheme. However, the analysis only provides some insight
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into the general structure of the code without providing any efficiently implementable codes.

This section introduces spatially coupled low-density parity-check codes (SC-LDPC) for the MAC

as presented in [56].

5.2.1 Spatially-Coupled LDPC Codes

Spatially coupled LDPC codes, SC-LDPC for short, are based on the standard LDPC codes

that aim at increasing the belief propagation (BP) threshold by coupling individual LDPC

codes. This construction, which has been introduced by Felström and Zigangirov [53] and fur-

ther analyzed by Kudekar et al. [57], is capacity-achieving for the binary erasure channel. The

capacity-based approach for secrecy relies on the use of good codes for reliability. This subsec-

tion presents the basic construction of SC-LDPC codes to clarify the mathematical definitions

and properties of such ensembles. These codes also exhibit better floors than classical irregular

LDPC codes and better finite-length performances than polar codes.

5.2.1.1 The (l,r, L) Ensemble

The construction of the (l,r, L) ensemble [57] consists in repeating and coupling several LDPC

protographs, which are based on small regular (l,r) LDPC codes.

Definition 25 A protograph P = (V, C, E) is a bipartite graph that consists of a set of

variable nodes V, a set of check nodes C, and a set of edges E. Each edge e ∈ E connects a

variable node ve ∈ V to a check node ce ∈ C. A variable node and a check node are connected

by multiple edges. ♢

For the construction of the (l,r, L) ensemble [57] where r = kl and l is odd, the pro-

tograph PSC consists of one check node and k variable nodes, where each variable node is

connected to the unique check node by r edges. For example, Figure 5.2 depicts the proto-

graph of a standard (3,6)-regular ensemble. The protograph is then repeated 2L + 1 times and

then for each check node:

• keep only one edge and disconnect the l − 1 remaining ones;
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... ...

... ...

Check Node Variable Node

Figure 5.2 – Spatially-coupled LDPC ensemble construction.

• connect a pair of edges to the first adjacent check nodes, a pair to the second adjacent

variable nodes, etc.;

• if there is no available adjacent check node, remove the edge.

This construction based on protograph can be generalized for cases where r is not a multiple

of l, but l is still odd.

1. Take 2L + 1 sets of M variable nodes vi,j with i ∈ J−L,LK and j ∈ J1,MK. The total

number of variable nodes is thereforeM(2L + 1).

2. Take 2(L + l̂)+ 1 sets ofMl/r check nodes ci,j with i ∈ J−L − l̂,L + l̂K, l̂ = (l− 1)/2,
and j ∈ J1,Ml/rK.

3. At each position i ∈ J−L− l̂,L+ l̂K, there are exactlyMl check node sockets. Randomly

connect the check nodes to the variable nodes vi,· with i ∈ Ji − l̂, i + l̂K.
5.2.1.2 The (l, r,L,w) Ensemble
The (l, r,L) ensemble is rather complicated to analyze and can be simplified by introducing

another level of randomization in the construction. The construction consist of

1. 2L + 1 sets ofM variable nodes vi,j with i ∈ J−L,LK and j ∈ J1,MK;
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2. an infinity of candidate check nodes ci,j with i ∈ N, l̂ = (l − 1)/2, and j ∈ J1,Ml/rK.
Each check node still hasMl sockets.

The construction considers an additional parameterw used to further randomize how vari-

able and check nodes are connected. Each of the l connections of a variable node at position i

is chosen from the range Ji, i +w − 1K. Each of the r connections of a check node at position

i is randomly chosen from the range Ji −w + 1, iK.
Design Rate [57] The design rate of the (l, r,L,w) ensemble forw ⩽ 2L is

Rd(l, r,L,w) =
(
1 − l

r

)
− l
r(2L + 1)

*,w + 1 − 2
w∑
i=0

( i
w

)r+- (5.10)

Performances Theperformances of the (l, r,L,w) ensemble are extensively presented in [57].

In particular, the belief propagation (BP) threshold for this ensemble reaches the maximum-a-

posteriori (MAP) threshold for the binary erasure channel.

5.2.2 Spatially-Coupled LDPC Codes for the MAC

This subsection introduces the construction of Spatially-Coupled LDPC Codes for the MAC

as presented in [56]. As illustrated in Figure 5.3, this construction consists in connecting the

variable nodes of two spatially-coupled LDPC codes pairwise through functional nodes.

Consider the (l1, r1, l2, r2,L,w)² ensemble for the MAC, where

• (l1, r1) and (l2, r2) represent the degree of variable nodes and check nodes respectively,

for the first and second codes;

• M variable nodes are placed in positions J−L;LK, whereM corresponds to a free parameter

that controls the length of the code;

• M · li/ri (for i ∈ {1, 2}) check nodes are placed in positions J−L;L +w − 1K;
• finally, the parameter w controls how connections are chosen since a variable node in

position j can only be connected to a check node in position Jj, j +w − 1K.
²In the present chapter, (l, r,L,w) denotes the ensemble (l, r, l, r,L,w).
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Figure 5.3 – LDPC construction for the MAC.

Decoder During the decoding process, variable nodes from associated factor graphs ex-

change information through the functional nodes:

• if the received symbol is −2 or 2, there is no uncertainty about the symbol values;

• if the received symbol is 0, the symbol pairs are either (−1, 1) or (1,−1), which can be

used to find a bit value whenever its counterpart is discovered;

• if the received symbol is ?, there is no relationship between paired symbol values;

• a functional node receives from variable nodes extrinsic information;

• a functional node receives the channel a priori as an input;
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• a functional node sends to variable nodes intrinsic information in the following sense

λ(1)int ,i = log
P(Zi |X (1)

i = 0)
P(Zi |X (1)

i = 1)

= log

∑
x P(Zi |X (1)

i = 0,X (2)
i = x)exλ(2)ext,i∑

x P(Zi |X (1)
i = 1,X (2)

i = x)exλ(2)ext,i

λ(2)int ,i = log

∑
x P(Zi |X (2)

i = 0,X (1)
i = x)exλ(1)ext,i∑

x P(Zi |X (2)
i = 1,X (1)

i = x)exλ(1)ext,i
.

Design rate For i ∈ {1, 2}, the design rates of such a multi-user code are provided by [56,

Lemma 3]

Rd,i = 1 − li
ri
− li
ri

1
2L + 1

*.,w + 1 − 2
w∑
j=0

( j
w

)ri +/- . (5.11)

Note that this rate goes to the usual rate 1 − li/ri as L goes to infinity for a fixedw .

Density Evolution equations for the BEC If x (t)i (resp. y(t)i ) corresponds to the prob-

ability that a variable-to-check (resp. a check-to-variable) message carries an erasure for user

i ∈ {1, 2}, the density evolutions (DE) equations are

y(1)j = 1 − *,1 − 1
w

w−1∑
k=0

y(1)
j−k

+-
r1−1

(5.12)

x (1)j =
*.,ϵ +

1 − ϵ
2

*, 1
w

w−1∑
k=0

y(2)
j+k

+-
l2+/- *, 1

w

w−1∑
k=0

y(1)
j+k

+-
l1−1

(5.13)

y(2)j = 1 − *,1 − 1
w

w−1∑
k=0

y(2)
j−k

+-
r2−1

(5.14)

x (2)j =
*.,ϵ +

1 − ϵ
2

*, 1
w

w−1∑
k=0

y(1)
j+k

+-
l1+/- *, 1

w

w−1∑
k=0

y(2)
j+k

+-
l2−1

, (5.15)

where

• x (i)j denotes the average erasure probability sent from the variable node side to the check

node side for user i ∈ {1, 2}, for a node at position j ∈ J−L,LK;
• y(i)j denotes the average erasure probability flowing from the check node side to the vari-

able node side for user i, for a node at position j ∈ J−L,L +w − 1K.
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5.3 Punctured LDPC Codes for the MAC
5.3.1 Code Construction

The code construction is an extension of the notion of code puncturing [54, 106] for the wiretap

channel to the two-way channel defined earlier. The puncturing scheme operates as follows.

1. Choose LDPC codes (C1, C2) for the MAC [56] with parity-check matrices H1 and H2

of the same size.

2. Split the matrix H1 ∈ Mm−l ,m(F2) as H1 = [A1 B1], with B1 ∈ GLm−l (F2). Similarly,

split the matrix H2 ∈ Mm−l ,m(F2) as H2 = [A2 B2], with B2 ∈ GLm−l (F2).

3. Form the temporary codeword X̃m
1 = [m1,m

′
1, s1] ∈ C1 withm1 ∈ Fk2 ,m′1 ∈ Fl−k2 s1 =

[m1,m
′
1]A⊺

1(B−11 )⊺ ∈ Fm−l2 . The second user does the same with X̃m
2 = [m2,m

′
2, s2] ∈ C2

withm2 ∈ Fk2 ,m′2 ∈ Fl−k2 s2 = [m2,m
′
2]A⊺

2(B−12 )⊺ ∈ Fm−l2 .

4. Puncture this code by only keeping Xn
1 = [m′1, s1] and Xn

2 = [m′2, s2], with n =m − k .

Puncturing induces a nested linear code structure, which is an algebraic counterpart of the

binning suggested by information-theoretic proofs. The rate of the mothercode is denoted by

Rd ≜ l/m and the secret rate for user i ∈ {1, 2} by Ri ≜ k/n. If the fraction of punctured bit

is p,

p =
k

m
⇒ Ri ≜

k

n
=

k

m − k =
p

1 − p . (5.16)

The quantity

R′i ≜
l − k
m − k =

l − pm
m − pm =

Rd − p
1 − p (5.17)

represents the auxiliary message rate for user i ∈ {1, 2}.
Encoding Use the punctured LDPC codes for data transmission as follows. User 1 setsm1

to be the secret message, m′1 the auxiliary message and s1 the check sum defined above, and

sends [m′1, s1] over the channel. User 2 performs similar encoding with independent sequences

m2 andm′2.
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Decoding for the legitimate receivers If user i ∈ {1, 2} receives ri , its decoder performs

belief propagation with [?m−n, rni ] as the channel a priori since it has no access to the punctured
bits, to estimate X̃m

i .

Decoding for the virtual receiver To minimize the last term of (5.9), a virtual user

should be able to retrieve messages M′1 and M′2 provided (M1,M2,Z
n). The decoder estimates

X̃m
1 and X̃m

2 using its channel observation and knowing the punctured bits.

Puncturing increases the decoding capabilities of the virtual receiver, thus providing secrecy.

However, when the number of punctured symbol increases, the communication rate decreases.

5.3.2 Leakage Analysis

Consider the (l1, r1, l2, r2,L,w) ensemble for the MAC presented in the previous section.

From Charlie’s point of view, it consists in setting the a priori inputs of coupling nodes to the

actual value of m. The density evolution equations remain the same, but the initialization is

different. The a priori informations become

• Bob: [? . . .? , d′i , e′i ], therefore the density evolution initialization is

x (0) = |c |
n
+
n − |c |
n

ϵ .

• Charlie: [c, d′′i , e′′i ], therefore the density evolution initialization is

x (0) = n − |c |
n

ϵ .

Recall that since the virtual user must be able to recover (M′1,M
′
2) from (M1,M2,Yn), the

puncturing consists in providing the virtual user with the values of themessages at the punctured

position. If p denotes the puncturing rate, note that this is not equivalent to setting the erasure

probability topϵ in the density evolution equations derived in [56]. Indeed, whenever a symbol

is punctured, the virtual receiver obtains the values of x1 and x2 at this position, not x1 + x2;

therefore, not only the erasures are removed in positions of punctured bits, but the interferences

when the symbol pairs are (−1, 1) and (1,−1) are also resolved.
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Variable-to-check equation A variable node returns an erasure if all of the following hap-

pens:

1. the variable node is not punctured, which occurs with probability 1 − p;

2. the l1 − 1 adjacent edges carry erroneous messages;

3. the received value is erased (with probability ϵ), or the received value corresponds to a

collision (with probability (1 − ϵ)/2) and the opposite variable node is unknown.

Therefore, the average probability of erasure is

x (1)j = (1 − p) *.,ϵ +
1 − ϵ
2

*, 1
w

w−1∑
k=0

y(2)
j+k

+-
l2+/- *, 1

w

w−1∑
k=0

y(1)
j+k

+-
l1−1

. (5.18)

Check-to-variable equation A check node sends an erasure to a variable node if at least

one of the r1 − 1 other adjacent edges is an erasure:

y(1)j = 1 − *,1 − 1
w

w−1∑
k=0

x (1)
j−k

+-
r1−1

. (5.19)

Similar equations are obtained for user 2.

The following proposition allows to avoid the analysis of density evolution for every possible

pair of codewords.

Proposition 5.2 ([85]) The average behavior of the previous density evolution can be ob-

tained for Xn
1 corresponding to the all-zero codeword and Xn

2 corresponding to a type one-half

codeword (equal number of −1 and 1). In that case Xn = Xn
1 +X

n
2 = Xn

2 corresponds also to a

type one-half codeword.

Proof The proof can be found in [85] for the Z-channel and holds for the multiple-access

channel.

Assume that Xn
1 + X

n
2 is a type one-half codeword. Define the set

Hδ =

{
Xn,

1
2
− δ
√
n
⩽ 1

n
wt(Xn) ⩽ 1

2
+

δ
√
n

}
.
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The probability that a codeword does not belong to that set is small and because of the sym-

metries in the decoding scheme, the behavior of the decoder is the same for all type one-half

codewords. The analysis can be restricted to the codewords Xn
1 = 1 and Xn

2 = h, where h is of

type one-half.

Notice that a type one-half codeword Xn = Xn
1 + Xn

2 captures the behavior of the code

ensemble since, for the erasure multiple-access channel, it represents a sequence with half inter-

ferences and half known values, which is a typical interference pattern.

5.3.3 Reliability Analysis

Suppose the channel from user 1 to user 2 is a BEC(ϵ1) and the channel from user 2 to user

1 is a BEC(ϵ2). Puncturing the codewords is equivalent to increasing the erasure probability

respectively to p + ϵ1 and p + ϵ2. If the codes C1 and C2 respectively have threshold ϵ∗1 and ϵ
∗
2 ,

one can ensure reliable communications if

ϵ1 ⩽ ϵ∗1 − p and ϵ2 ⩽ ϵ∗2 − p. (5.20)

The code thresholds ϵ∗1 and ϵ
∗
2 can be found using the density evolution equations for the

(l, r,L,w) SC-LDPC code ensemble

∀j ∈ {1, 2}, yj = 1 − *,1 − 1
w

w−1∑
k=0

yj−k+-
r−1

and xj = ϵ *, 1
w

w−1∑
k=0

yj+k+-
l−1

. (5.21)

For instance, ϵ∗(3, 6, 200, 3) = 0.4807, ϵ∗(4, 8, 200, 4) = 0.4893 and ϵ∗(5, 10, 200, 5) =
0.4908.

5.3.4 Numerical Results

The density evolution equations [85] with puncturing allow to determine the asymptotic be-

havior of the SC-LDPC code ensemble for different code parameters and puncturing rate p as

the blocklength goes to infinity. The erasure probability thresholds in Table 5.1 are computed

in various cases with the density evolution equations.

The secrecy performance of the scheme is measured by the leakage rate. Whenever the

threshold of the code ensemble is not exceeded, it is possible to decode auxiliary messages M′1
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Table 5.1 – Advantages of spatially coupled LDPC codes.

Code parameters (3,6,3,6)-MAC-LDPC (3,6,3,6,200,3)

p Rs ϵShannon Rp ϵ∗ δ Rp ϵ∗ δ

0 0 0.3333 0.5 0.1226 0.2107 0.4977 0.3322 0.0011
0.1 0.1111 0.4074 0.4444 0.2136 0.1938 0.4419 0.4052 0.0022
0.2 0.2500 0.5000 0.3750 0.3210 0.1790 0.3722 0.4958 0.0042
0.3 0.4286 0.6190 0.2857 0.4497 0.1693 0.2825 0.6109 0.0081
0.4 0.6667 0.7778 0.1667 0.6079 0.1699 0.1629 0.7621 0.0157

Code parameters (4,8,4,8,200,4) (5,10,5,10,200,5)

p Rs ϵShannon Rp ϵ∗ δ Rp ϵ∗ δ

0 0 0.3333 0.4965 0.3332 0.0001 0.4953 0.3333 0.0000
0.1 0.1111 0.4074 0.4406 0.4072 0.0002 0.4392 0.4074 0.0000
0.2 0.2500 0.5000 0.3706 0.4994 0.0006 0.3691 0.4999 0.0001
0.3 0.4286 0.6190 0.2807 0.6178 0.0012 0.2790 0.6188 0.0002
0.4 0.6667 0.7778 0.1609 0.7750 0.0028 0.1588 0.7772 0.0006

Note that the value Rp for p = 0 corresponds to the mothercode rate. The quantity δ corresponds to the gap
between ϵ∗ and ϵShannon.

andM′2 providedM1,M2, and Zn, with a probability arbitrarily close to one. For a given code

C in the ensemble with threshold ϵ∗, if ϵ ⩾ ϵ∗, then L(C) ⩽ Csum(ϵ∗) − 2Rp, where Rp is the
auxiliary message rate given in (5.17).

In Figure 5.4, the leakage rate is plotted with respect to the secret and auxiliary message

rates. It shows that, the higher the number of punctured bits, the higher the secrecy rate is,

since the punctured part of the codewords carries secret messages. However, the leakage rate

increases because the gap between the erasure threshold and the Shannon limit increases with

the puncturing rate. Figure 5.4 also shows that coupled codes have better performances than

classical LDPC codes and that their performance improve as the degree increases. Leakage val-

ues smaller than 10−3 bits can be reached, meaning that, on average, less than one per thousand

bits is not secured. Finally, even if classical LDPC codes of degrees (4,8) and (5,10) do not work

for the multiple-access channel (see [56]), they can be used for secrecy. However, they exhibit
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Figure 5.4 – Leakage v.s. communication rate for various codes and puncturing rates. Codes with w = 1

correspond to classical LDPC codes.

poor performance. For instance, the leakage rate is about 0.5 bits for a classical (4,8)-LDPC

code.

Finite length effects Density evolution shows that spatially coupled LDPC codes provide

good results for secrecy with low leakage rate. However, for actual codes, the effects of finite

length decrease the performance for two reasons:

• the difference between Csum and R′1 + R
′
2 may not be negligible since one must remain

below Csum(ϵ∗) to have P ′e small;

• if the probability of error is non-zero, the termH
�
M′1M

′
2|M1M2Y

n
�
is not negligible and

the upper bound on the leakage worsens.

Consequently, the predicted performances of actual codes can be far from asymptotic results.

For instance, spatially coupled codes with L = 25, M = 216, l = 3, r = 6, w = 3, and
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n = 11,016 bits provide leakage rate in the order of one half, which is far from the expected

asymptotic performances for such codes. Even if these codes appears to be better than a classical

LDPC code, they are not sufficient to provide low leakage rate.

These poor performances are likely caused by the small size of the code and the looseness

of the upper bound. Studying longer codes and comparing their performances with other

constructions is a subject of future investigation.

Remark The previous scheme only provides weak secrecy and only guarantees a low leakage

rate. Constructions based on polar codes for the multiple-access channel [86], could provide

strong secrecy.

5.4 Conclusion and Discussion

This chapter presents a constrcution based on spatially-coupled LDPC codes for coded cooper-

ative jamming over the two-way wiretap channel. The construction uses random puncturing to

design a nested code structure to create codebooks, whose codewords detrimentally interfere at

the eavesdropper’s terminal. Spatially-coupled LDPC codes show significant advantages over

classical LDPC codes in terms of leakage and secret rate. However, such a scheme presents

some limitations in a real setting.

• The design involves a random an uniform puncturing, which is not practical.

• The model relies on the assumption that the interferences are perfect because the channel

gains between Alice and Eve and between Bob and Eve are both unitary. Guaranteeing

perfect interference also requires a precise synchronization between the legitimate users,

which is challenging for a real communication system.

Uniform Puncturing In [54], the authors investigate the impact of replacing the random

puncturing by an optimized puncturing scheme obtained with Differential Evolution [91].

They show gains of up to 0.4 dB over random puncturing. However, it is unclear how these

conclusions extend to spatially-coupled LDPC codes over the two-way wiretap channel. If it
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appears that a fixed puncturing pattern decreases the performance of the system, it is still possi-

ble to compensate the loss with a higher puncturing rate in practice. Increasing the puncturing

rate directly impacts the legitimate users since they would need to increase their transmit power

to compensate the rate loss.

Gain Imbalance The previous analysis relies on having equal gains to create perfect interfer-

ence. Such an assumption is rather unrealistic in a real wireless environment. An experimental

setting similar to the one presented in the previous section is a good way to assess the validity

of the model introduced in Section 5.1. The following experiment is conducted using WARP

programmable radios, which performs better than the USPRs presented in the previous chapter.

The experimental setting consists of the following.

1. Two WARP radios (Alice and Bob) separated by 1m that communicate on the 11th

WLAN channel (2.462GHz).

2. A third radio (Eve) that receives on the 11th WLAN channel and that can be moved to

different locations.

3. The first radio transmits a sinusoidal wave at 5MHz, while the other transmits a sinu-

soidal wave at 5.2MHz.

4. The third radio uses the waves to compute the received gains GAE and GBE .

5. All the terminals are connected to the same computer and synchronized. The radios all

use the same type of isotropic antenna and the transmit gains for Alice and Bob are the

same.

Figure 5.5 shows how the gains GAE and GBE are actually imbalanced at the third radio

terminal. The left side of the map represents the theoretical behavior one could expect from

the simplified Friis equation [34],

Pr
Pt
= GtGr

(
λ

4πd

)2
. (5.22)
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Figure 5.5 – Gain imbalance between GAE and GBE .

This equation represents the ratio of the received power Pr to the transmitted power Pt for

isotropic receiving and transmitting antennas with respective gains Gr and Gt separated by a

distance d; additionally, λ corresponds the wavelength of the carrier frequency. If both transmit

antennas have the same gain, the gain ratio GAE to GBE in decibel is simply

GAE

GBE

�����dB = 20 log10
dBE
dAE
, (5.23)

wheredAE anddBE respectively represent the distances between Alice and Eve and between Alice

and Bob. The left-hand side of the map in Figure 5.5 shows this theoretical gain imbalance,

while the right-hand side corresponds the actual gain imbalance measured with the WARPS.

Figure 5.5 shows that, in theory, gains should be balanced if Eve is far enough from Alice

and Bob; however, experimental measurements show that this is not the case in a real wireless

setting. There are several reasons that can explain this difference.
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• Equation (5.22) is a very simple approximation of the path loss that does not take into

account some properties of the antennas, such as their imperfect isotropy, their reflection

coefficient of the antennas, and their polarization vectors.

• The environment is not free space, and the presence of reflecting and absorbing objects

also affects the propagation of the wireless signal.

Managing this gain imbalance at the eavesdropper’s terminal is challenging, but one can

consider the following workarounds.

• The simple solution would consist in compensating the gain imbalance by adapting the

transmit power of Alice and Bob’s terminal. However, this solution requires a good

knowledge of Eve’s statistics.

• The best way to theoretically guarantee the performances of the coded cooperative jam-

ming code is to refine the model presented in Section 5.1 to account for the gain im-

balance. This solution is rather complicated since there is no simple degraded channel

model in that case.

• Finally, one could design codes based on the simple theoretical model presented in Sec-

tion 5.1 and verify how they perform in a real setting.

Terminal Synchronization The synchronization between Alice and Bob is another criti-

cal element to guarantee perfect interference at eve’s terminal. If the codewords are not fully

synchronized, the eavesdropper can gain additional information regarding the transmitted code-

words. The radios should transmit codewords at the same time with each bit perfectly aligned,

but it is also important to have synchronized local oscillators so that the signals are modulated

at exactly the same frequency. Software-defined radios can achieve both goals, either by using

an external clock or by using a GPS disciplined oscillator (GPSDO).
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CHAPTER 6

CONCLUSION

6.1 Contributions

This dissertation has developed a comprehensive study of the coding mechanisms for multi-

user physical layer security, with a particular emphasis on understanding how to best exploit

interference and feedback for secrecy. The originality of the study lies in the combination of in-

formation theory, coding theory, and experiments conducted with software-defined radio. The

results obtain have confirmed the promising possibilities of multi-user physical layer security

but have also highlighted some of the practical challenges faced when deploying physical-layer

security systems in a real wireless setting.

Chapter 2 has introduced the basic information-theoretic primitives and technical tools

required to develop physical layer security schemes. In particular, this chapter has emphasized

the crucial roles of channel resolvability and channel intrinsic randomness as primitives for

the design of strongly secure schemes. One original result developed in this chapter is a joint

exponent of channel resolvability and channel intrinsic randomness, which illustrates how to

use some of the more intricate proof techniques required in subsequent chapters.

From the primitives presented in Chapter 2, Chapter 3 has developed an information-

theoretic analysis of the coding mechanisms for the two-way wiretap channel. In particular,

the analysis combines resolvability results for the multiple-access channel with secret-key gen-

eration and secret-key exchange. The resulting communication scheme has improved the state

of the art by not only providing strong secrecy but also increasing the set of known achievable

rates. The performance of this coding scheme has been illustrated for the Gaussian two-way

wiretap channel, which is a model of practical interest.

Motivated by the crucial role of secret-key generation for the coding scheme in the coding

scheme of Chapter 3, Chapter 4 has examined the practical limitations of a secret-key genera-

tion system in a real wireless setting. In particular, the study has focused on commonly made
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assumptions regarding the reciprocity and diversity of the wireless channel. The rate penalty

incurred by the use of a final number of samples as well as imperfect diversity and reciprocity

have been precisely quantified using experimental channel gain measurements acquired with

software-defined radios. While the results do not compromise the validity of the approach,

they do suggest that many previously reported results may be overly optimistic.

Finally, Chapter 5 has proposed a code construction for the Gaussian two-way wiretap

channel based on spatially-coupled LDPC codes. The resulting coding scheme exhibits low

leakage rate but relies on perfect interferences at the eavesdropper’s terminal, thus requiring

good synchronization between the legitimate parties. This chapter has also investigated some

of the limitations of the model used to design codes by comparing it again experimental mea-

surements.

6.2 Perspectives

The work presented in this dissertation could be extended in several directions.

Strongly secure practical coded cooperative jamming codes The codes developed

in Chapter 5 only offer weak secrecy. Polar codes could be used to provide strong secrecy [22],

but the construction of low-complexity codes with good performance at reasonable block length

might prove challenging.

Implementation of practical coded cooperative jamming schemes As discussed in

Chapter 5, it may be challenging to design a practical coded cooperative jamming scheme since

codeword interference is not a simple signal addition. As in Chapter 4, it would be valuable to

implement such a system on software-defined radios to assess its performances in a real wireless

environment. Since coded cooperative jamming requires an almost perfect synchronization of

the terminals, it is important to assess the impact of imperfect synchronization on the overall

secrecy rate. One could also expect that the position of the eavesdropper affects its abilities

to gather information about the legitimate communications, although recent works [44, 45]

suggest that this could be circumvented.
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Hybrid solutions Chapter 4 describes how to generate a secret key between different termi-

nals, but it does not investigate how the secret-key could be later used to provide secrecy. One

could imagine a situation in which the secret-key serves in classical cryptographic primitives.

For instance, one could used secret-key generation to refresh the WPA key of a Wi-Fi network

periodically. This hybrid solution using both physical-layer security and cryptography would

offer an additional layer of protection at no cost. The difficulty lies in the analysis of the overall

solution since physical-layer security and cryptography do not rely on the same tools. Recent

results [71] offer promising research directions.
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CHAPTER 7

APPENDIX

7.1 Coding with Polar Codes

It is difficult to provide a simple joint coding scheme based on polar codes for the problem

considered in Section 2.3. However, this appendix briefly illustrates how polar codes achieve

the maximal achievable rates for some sources and channels with a separate approach. What

follows assumes that n ≜ 2m for somem ∈ N.

For channel intrinsic randomness, consider the situation where Zn is i.i.d. and B(ζ ), and
Xn is such thatXn = Zn⊕W n withW n i.i.d. B(ω) and independent ofZn. Polar codes (see [7]

for notation) are used to encodeXn, the output of the encoder is denotedU n = XnG⊗m, where

G⊗m is the Arıkan transform. For δn ≜ 2−n
β with β ∈ (0; 1/2), define the bit sets

Gcir
n ≜

�
i ∈ J1,nK,H �

Ui |U i−1Zn�
⩾ 1 − δn

	
, (7.1)

Bcir
n ≜ ∁J1,nK Gcir

n . (7.2)

One can then show [1, 22] that

lim
n→∞

log |Gcir
n |

n
= H (X |Z ) and lim

n→∞
D

(
pU [Gcir

n ]Zn



qU nqZn

)
= 0, (7.3)

where pU [Gcir
n ] is the distribution of the bits of U n in position Gcir

n and qU n ≜ UJ1, 2nRK.
For channel resolvability, if Ỹn is i.i.d. according to B(1/2) and if the channelW2 is sym-

metric, the corresponding channel output K̃n is simulated as follows. Sequence Yn is created

from an n bit sequence V n as Yn = V nG⊗n. The bits of V n belong to either one of the sets

Gres
n ≜

{
i ∈ J1,nK,C (

W (i)
n

)
⩾ δn

}
and Bres

n ≜ ∁J1,nK Gres
n , (7.4)

whereC(W (i)
n ) is the capacity of the i -th bit-channel for bitVi . If uniform bits are transmitted

in positions Gres
n , references [15, 64] prove that these codes are channel resolvability codes of

rate I
�
Ỹ ; K̃

�
, i.e.

lim
n→∞

log |Gres
n |

n
= I

�
Ỹ ; K̃

�
and lim

n→∞
D (pKn∥qKn ) = 0. (7.5)

122



Consequently, one can combine channel intrinsic randomness and channel resolvability by

transmitting the nearly uniform bits of U n obtained in positions Gcir
n on the position Gres

n of

V n, which is possible if H (X |Z ) > I (Ỹ ; K̃).
The solution in [64] guarantees both weak secrecy and reliability, but does not ensure reli-

ability under a strong secrecy criterion. A solution to this problem consists in designing multi-

block polar coding schemes with a secret-key exchange mechanism used to encrypt part of

the non-secure bits [22, 87]. Such a construction achieves the secrecy capacity of symmetric

degraded wiretap channels while also ensuring reliability.

7.2 Universal Software Radio Peripherals (USRPs)

USRPs (Universal Software Radio Peripheral) [31] are software-defined radios that can be used

to communicate in various frequency ranges (DC-5GHz). USRPs are commonly used with

the GNURadio [36] software suite that offers a wide range of possibilities for experimental

communication systems.

Figure 7.1 – USRP1 with two daughterboards plugged in.

At a high level, the architecture of a USRP presented in Figures 7.1 and 7.2 consists of a

motherboard and between one and four daughterboards. Themotherboard handles the process-

ing of baseband signals while the daughterboards are designed to achieve frequency translation

of the baseband signals.
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Table 7.1 – Comparisons of the different USPR models.

Features USRP1 N200 N210 E100 E110 E310 B200 B210 X300 X310

FPGA Altera

Cyclone

Spartan

3A1800

Spartan

3A3400

OMAP3

720MHz

OMAP3

720MHz

Zynq

7020

Spartan

675

Spartan

6150

Kintex7

325T

Kintex7

410T

Min freq. DC DC DC DC DC 70MHz 70MHz 70MHz DC DC

Max freq. 6GHz 6GHz 6GHz 6GHz 6GHz 6GHz 6GHz 6GHz 6GHz 6GHz

Bandwidth 16MHz 50MHz 50MHz 8MHz 8MHz 56MHz 56MHz 56MHz 120MHz 120MHz

Connection USB 2.0 GbE GbE GbE GbE GbE/USB USB 3.0 USB 3.0 GbE GbE

MIMO ✓opt ✓opt ✓opt × × ✓ × ✓ ✓ ✓

DBoards ✓ ✓ ✓ ✓ ✓ × × × ✓ ✓

Standalone × × × ✓ ✓ ✓ × × × ×

GPS Sync ✓opt ✓opt ✓opt ✓opt ✓opt ✓ ✓opt ✓opt ✓opt ✓opt

Price $707 $1,515 $1,717 $1,310 $1,515 $2,700 $675 $1,100 $3,900 $4,800

There is a wide family daughterboards, covering different frequency bands from DC to

5GHz. While the experiments described in Chapter 4 are performed with the first version of

the USRP, several new versions have came out with improved characteristics. The current offer

by Ettus is summarized in Table 7.1.

According to the frequency range used, different antennas may be used. Most experiments

were performed in the 2.5GHz and 5GHz bands. TheWi-Fi-compliant antennas are perfectly

adapted to transmit these signals. Although the center frequencies are 2.5GHz and 5GHz, the

emission bandwidth is limited by the transfer speeds of the USB port to 8MHz. This limitation

makes USRPs incompatible with the IEEE802.11 protocol.

Figure 7.3 provides a representation of the internal operation of a USRP:

FPGA TheFPGA (Field-Programmable Gate Array) performsmany preprocessing operations

to allow data to be transmitted through the USB port. The FPGA and the USB controller to

which it is connected, are fully programmable via USB2.0. The FPGA is in charge of the
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Figure 7.2 – Overview of a software-defined radio (USRP1).

distribution of signals between different daughterboards. It also allows various operations such

as interpolation and decimation.

Analog/Digital converters The motherboard has four A/D converters of 12 bits. The

sampling rate of the converter is 64 million samples per second. Although ADCs have a cutoff

frequency of 150MHz, if the bandwidth is greater than 32MHz aliasing may occur. It is

possible to use other sampling frequencies whenever they are in multiples of 128MHz.

The board also contains four digital/analog converters of 14 bits. The sampling rate is

128MHz. While the Shannon frequency is 64MHz, it is best to stay below 50MHz to make

filtering easier. This offers a total of four inputs and four outputs with real numbers or two

inputs and two outputs with complex numbers.

Daughterboards Daughterboards are pluggable circuits that, depending on the model,

have different features. The motherboard can accommodate two Rx boards and two Tx boards

or two dual mode transmitter boards. These boards are in charge of frequency translation. Each

board has two SMA connectors for connecting the card to the antennas. Several daughterboards

are available:
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Figure 7.3 – General diagram of a software-defined radio.

• Basic RX / Basic TX: these boards do not perform any operation apart from connecting

the converters outputs to SMA connectors.

• LFRX / LFTX: it is quite similar to the two previous boards, except that they include

differential amplifiers to work with continuous signals.

• TVRX: Equipped with a MicroTuner, it can receive UHF and VHF signals and is there-

fore useful for receiving FM signals or TV.

• DBSRX: it can translate the baseband signals to frequencies between around 800MHz

and 2.4GHz. It also contains a channel filter adjustable between 1MHz and 60MHz.

• XCVR2450: it can work in the frequency range of IEEE 802.11n. It works in both

transmission and reception. This is the board that is used for the experiments described

in Chapter 4.

The ease of use software-defined radios largely stems from the fact that most of the processing is

performed on baseband signals. The general idea is to observe that a bounded spectrum signal

can be seen as a signal in baseband (centered around zero frequency) modulated by a signal

of desired frequency. The modulation frequency corresponds to a translation of the signal

spectrum.
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�f �f

f0

Figure 7.4 – Modulation.

Signal emission Several steps are necessary to emit a signal and are summarized in Figure 7.5

below.

AD9862

Interpolator

Fine
Modulation
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Modulation

s(t)

FPGA

4th Order 
Interpolator

Gain

↑R↑R DACG

exp(2� ��
0

n) exp(2� ��
1

n)

Figure 7.5 – Signal modulation and transmission.

The main steps are:

• Interpolation: to avoid clogging the USB port, the interpolator transmits only some of

the points needed to represent signals. The interpolation is then necessary to achieve the

number of samples the DAC needs. However, it is important to note that the interpola-

tion rate affects the bandwidth of the transmitted signal.

• Coarse modulation: a first modulation allows coarsely approaching the center frequency

of the desired modulation.

• Fine modulation: a second modulation allows precisely adjusting the center frequency

of translation.
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• Gain: A variable gain allows adapting the amplitude of signals to be transmitted at the

level necessary to emit the wave with the antennas.

• Digital/Analog conversion: Finally, the digital signal is converted into an analog signal

to be transmitted by the antennas in the form of an electromagnetic wave.

FPGAAD9862

Demodulation

4th Order
Decimator

Gain Half-band 
Decimator

G ADC ↓R ↓R

exp(2� ��
1

n)

Figure 7.6 – Signal reception and demodulation.

Signal Reception The reception is performed with a mechanism similar to that of the emis-

sion. Again, it is important to be attentive to the decimation rate used. The higher this rate, the

narrower the bandwidth of the received signal is. The demodulation is done only once. If the

modulation and demodulation frequencies are slightly different (which is the case with asyn-

chronous transmission), a modulation frequency (equal to the difference between the deviation

of the frequency modulation and demodulation) will appear. It is necessary to find mechanisms

to overcome this issue.

7.3 Proofs of Lemmas

7.3.1 Proof of Lemma 3.2

Define: M1 ≜
�
2R1

�
, M2 ≜

�
2R2

�
, M′1 ≜

�
2R
′
1
�
and M′2 ≜

�
2R
′
2
�
, and let C be the random

variable representing a randomly generated code. Let ϵ > 0.
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Without loss of generality, the analysis can be restricted to the transmission of a single message

since

E(Pe(C)) = E *.,
∑

µ1∈M1×M′
1

∑
µ2∈M2×M′

2

Pe(C |µ1, µ2 sent)P(µ1, µ2 sent)+/-
=

∑
µ1∈M1×M′

1

∑
µ2∈M2×M′

2

P(µ1, µ2 sent)EC(Pe(C |µ1, µ2 sent))︸                    ︷︷                    ︸
EC (Pe(C |1,1 sent))

(a)
= E(Pe(C |1, 1 sent))
(b)
⩽ E(P(µ1 , µ̂1|1, 1 sent,C)) + E(P(µ2 , µ̂2|1, 1 sent,C)). (7.6)

Equality (a) follows from the symmetry of the random code construction, while inequality (b)

comes from the union bound.

Each term can be expressed using the following events:

• E(i, j) = {�
Xn
1 ,C

n
2 (i, j),Yn

1

�
∈ An

1,ϵ

}
• F(i, j) = {�

Xn
2 ,C

n
1 (i, j),Yn

2

�
∈ An

2,ϵ

}
The probability of error is therefore

E(P(µ2 , µ̂2|1, 1 sent,C)) = P
(
Ec(1, 1) ∪

∪
(i,j),1

E(i, j)
)
⩽ P(Ec(1, 1))︸      ︷︷      ︸

⩽δ (ϵ)
+

∑
(i,j),1

P(E(i, j)) (7.7)

∑
(i,j),1

P(E(i, j)) ⩽ δ (ϵ) +
∑
(i,j),1

∑
(xn1 ,cn2 ,yn1 )∈An

1,ϵ

pXn
1 Y

n
1
(xn1 , cn1)pCn

2
(cn2)

⩽ δ (ϵ) +M2M
′
2︸︷︷︸

⩽ 2n(R2+R
′
2+δ (n))
2n(H(X1C2Y1)+ϵ)2−n(H(C2)−ϵ)2−n(H(X1Y1)−ϵ)

= δ (ϵ) + 2n(R2+R
′
2−I(C2;Y1|X1)+δ (n)+3ϵ). (7.8)

Remark The second inequality follows from the union bound and the penultimate from the

AEP.

129



If the rate constraints in (3.5) are satisfied, there exists aγ > 0 such thatR2+R
′
2 < I (Y1;C2|X1)−

γ , and choosing ϵ such that γ + 3ϵ > 0, then

lim
n→∞

EC(P(µ2 , µ̂2|1, 1 sent,C)) ⩽ δ (ϵ).

By symmetry and a similar reasoning on F,

lim
n→∞

EC(P(µ1 , µ̂1|1, 1 sent,C)) ⩽ δ (ϵ).

7.3.2 Proof of Lemma 3.3

Letϵ > 0.

An upper bound for the leakage using divergence

L(C) ≜ I (Zn;M1M2|C) (7.9)

= D
�
pM1M2Zn |C∥pM1M2|CpZn |C

�
=

M1∑
m1=1

M2∑
m2=1

∑
zn∈Zn

pM1M2Zn |C(m1,m2, z
n) log2

pM1M2Zn |C(m1,m2, z
n)

pM1M2|C(m1,m2)pZn |C(zn)

=

M1∑
m1=1

M2∑
m2=1

∑
zn∈Zn

pZn |M1M2,C(zn |m1,m2)pM1M2(m1,m2) log2
pZn |M1M2,C(zn |m1,m2)

pZn |C(zn)

=
1

M1M2

M1∑
m1=1

M2∑
m2=1

D
�
pZn |m1,m2,C∥pZn |C

�
⩽ 1

M1M2

M1∑
m1=1

M2∑
m2=1

D
�
pZn |m1,m2,C∥pZn |C

�
+ D

�
pZn |C∥pZn

�
because: D (·∥·) ≽ 0

=
1

M1M2

M1∑
m1=1

M2∑
m2=1

D
�
pZn |m1,m2,C∥pZn

�
. (7.10)

Taking the expectation and using the symmetry of the random code construction, yields

EC(L(C)) = I (Zn;M1M2|C) ⩽ 1
M1M2

M1∑
m1=1

M2∑
m2=1

EC

�
D

�
pZn |m1,m2,C∥pZn

��
= EC

�
D

�
pZn |1,1,C∥pZn

��
. (7.11)
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An upper bound for the divergence:

D(pZn |1,1,C∥pZn ) =
∑

zn∈Zn

pZn |1,1,C(zn) log2
pZn |1,1,C(zn)
pZn (zn)

=
∑

zn∈Zn

pZn |1,1,C(zn) log2
pZn |1,1,C(zn)
pZn (zn) 1

{
pZn |1,1,C(zn)
pZn (zn) ⩽ ϵ

}
+

∑
zn∈Zn

pZn |1,1,C(zn) log2
pZn |1,1,C(zn)
pZn (zn) 1

{
pZn |1,1,C(zn)
pZn (zn) > ϵ

}
⩽ ϵ +

∑
zn∈Zn

pZn |1,1,C(zn) log2
pZn |1,1,C(zn)
pZn (zn) 1

{
pZn |1,1,C(zn)
pZn (zn) > ϵ

}
. (7.12)

By the law of total probability:

pZn (zn) =
∑

cn1 ∈ Cn
1

∑
cn2 ∈ Cn

2

pZn |Cn
1C

n
2

�
zn |cn1 , cn2

�
pCn

1

�
cn1

�
pCn

2

�
cn2

�
⩾

∑
cn1 ∈B1(1)

∑
cn2 ∈B2(1)

pZn |Cn
1C

n
2

�
zn |cn1 , cn2

�
pCn

1

�
cn1

�
pCn

2

�
cn2

�
⩾ M′1M

′
2p

n
min1

pnmin2︸              ︷︷              ︸
pnmin

pZn |1,1,C(zn) ,

where Bi(m), for i ∈ {1, 2}, represents the set of codewords associated with messagem for user

i. To obtain the last inequality, the p.d.f. of C1 and C2 must have compact support, which

can always be obtained by cropping (to get a compact support) and scaling (to keep an unit

area) the p.d.f. If Č1 and Č2 are derived from C1 and C2 with discrete or Gaussian p.d.f., it

is possible to get V
(
pC1,pČ1

)
and V

(
pC2,pČ2

)
as small as desired. Since I (X ;Y ) viewed as a

function of pX , with pY |X fixed, is continuous, the mutual informations involved in (3.7) are

hardly modified by using Č1 and Č2 instead of C1 and C2.

By taking the expectation of (7.12) and with [90],

EC(L(C)) = I (Zn;M1M2|C) ⩽ ϵ + n log2

(
1

pmin

)
Jϵ , (7.13)
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where Jϵ is defined as:

Jϵ ≜
∑

c
(2)
1 ∈ Cn

1

· · ·
∑

c
(M ′1)
1 ∈ Cn

1

∑
c
(2)
2 ∈ Cn

2

· · ·
∑

c
(M ′2)
2 ∈ Cn

2

pCn
1

(
c(2)1

)
· · ·pCn

1

(
c
(M ′1)
1

)
pCn

2

(
c(2)2

)
· · ·pCn

2

(
c
(M ′2)
2

)

×
∑

c
(1)
1 ∈ Cn

1

∑
c
(1)
2 ∈ Cn

2

∑
zn∈Zn

pCn
1C

n
2 Z

n

(
c(1)1 , c

(1)
2 , z

n
)
1

{
1

M′1M
′
2

exp2
(
iCn

1C
n
2 ;Z

n

(
c(1)1 , c

(1)
2 ; zn

))
+

1
M′1M

′
2

∑
(i,j),(1,1)

exp2
(
iCn

1C
n
2 ;Z

n

(
c(i)1 , c

(j)
2 ; zn

))
> 1 + 4ϵ

}
.

An upper bound for Jϵ : Recall the following assumption from (3.7):

R′1 + R
′
2 > I (C1C2;Z )

R′1 > I (C1;Z )

R′2 > I (C2;Z )
The quantity Jϵ can be upper bounded as (see [90]):

Jϵ ⩽ J (1) + J (2) + J (3) + J (4), (7.14)

where J (1), J (2), J (3), and J (4) are defined as:

J (1) = P
( 1
M′1M

′
2

exp2
(
iCn

1C
n
2 ;Z

n

(
C(1)
1 C(1)

2 ;Zn
))
> ϵ

)
J (2) = P

( 1
M′1M

′
2

n∑
i=1

n∑
j=1

exp2
(
iCn

1C
n
2 ;Z

n

(
C(i)
1 C(j)

2 ;Zn
))
> 1 + ϵ

)
J (3) = P

( 1
M′1M

′
2

n∑
i=1

exp2
(
iCn

1C
n
2 ;Z

n

(
C(i)
1 C(1)

2 ;Zn
))
> ϵ

)
J (4) = P

( 1
M′1M

′
2

n∑
j=1

exp2
(
iCn

1C
n
2 ;Z

n

(
C(1)
1 C(j)

2 ;Zn
))
> ϵ

)
.

Now, each term are studied individually.

• First, J (1) can be upper bounded as follows:

J (1) ⩽ P(exp2(I
�
Cn
1C

n
2 ;Z

n�) > exp2(−nϵ + nR′1 + nR′2))
= P

( 1
n
I
�
Cn
1C

n
2 ;Z

n�
> −ϵ + R′1 + R′2

)
= P*,1n

n∑
i=1

I
�
C1,iC2,i ;Zi

�
> R′1 + R

′
2 − ϵ+-
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since R′1 + R
′
2 > I (C1C2;Z ), there exists γ > 0 such that R′1 + R

′
2 > I (C1C2;Z ) + γ . By

taking ϵ < γ to guarantee R′1 + R
′
2 − ϵ > I (C1C2;Z ) + γ − ϵ︸︷︷︸

>0

and to apply the Chernoff

bound, then

∃αγ−ϵ > 0, J (1) ⩽ e−αγ−ϵn .

• With a similar reasoning, the terms J (2), J (3), and J (4) can also be upper bounded by

quantities going exponentially to zero under the given conditions.

Conclusion: Jϵ goes exponentially to zero as n goes to infinity. Therefore,

lim
n→∞

E(L(C)) ⩽ δ (ϵ).

7.3.3 Proof of Lemma 3.6

Define the joint distribution qXn
1 X

n
2 Z

n as

∀(xn1 ,xn2 , zn) ∈Xn
1 ×Xn

2 ×Zn, qXn
1 X

n
2 Z

n (xn1 ,xn2 , zn) = pZn |Xn
1 X

n
2
(zn |xn1xn2 )pXn

1
(xn1 )pXn

2
(xn2 ).

First, the variational distance between distributionspM1M2Zn andpM1M2pZn can be upper bounded

as

V(pM1M2Zn ,pM1M2pZn ) = EM1M2(V(pZn |M1M2,pZn ))
⩽ EM1M2((V(pZn |M1M2,qZn ) + (V(qZn ,pZn ))
⩽ 2EM1M2((V(pZn |M1M2,qZn )), (7.15)

By averaging over every code and by symmetry of the random code construction,

ECn (V(pM1M2Zn ,pM1M2pZn )) ⩽ 2ECn (V(pZn |M1=1,M2=1,qZn )),

where

pZn |M1=1,M2=1(zn) =
M ′1∑

m′1=1

M ′2∑
m′2=1

WZn |Xn
1 X

n
2
(zn |xn1 (1,m′1),xn2 (1,m′2))pM ′1(m′1)pM ′2(m′2).
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For any zn ∈ Zn,

ECn

�
pZn |M1=1,M2=1

�
= ECn

*.,
M ′1∑

m′1=1

M ′2∑
m′2=1

WZn |Xn
1 X

n
2
(zn |xn1 (1,m′1),xn2 (1,m′2))pM ′1(m′1)pM ′2(m′2)+/-

=

M ′1∑
m′1=1

M ′2∑
m′2=1

ECn

(
WZn |Xn

1 X
n
2
(zn |xn1 (1,m′1),xn2 (1,m′2))

)
pM ′1(m′1)pM ′2(m′2)

= qZn (zn). (7.16)

Now define

p(1)(zn) ≜
M ′1∑

m′1=1

M ′2∑
m′2=1

WZn |Xn
1 X

n
2
(zn |xn1 (1,m′1),xn2 (1,m′2))pM ′1(m′1)pM ′2(m′2)

×1{(xn1 (1,m′1),xn2 (1,m′2), zn) ∈ Tn
ϵ (X1X2Z )}

p(2)(zn) ≜
M ′1∑

m′1=1

M ′2∑
m′2=1

WZn |Xn
1 X

n
2
(zn |xn1 (1,m′1),xn2 (1,m′2))pM ′1(m′1)pM ′2(m′2)

×1{(xn1 (1,m′1),xn2 (1,m′2), zn) < Tn
ϵ (X1X2Z )},

which are used to upper bound V(pZn |M1=1,M2=1,qZn ) as

V(pZn |M1=1,M2=1,qZn ) ⩽
∑

zn<Tn
ϵ (Z )

|pZn |M1=1,M2=1(zn) − qZn (zn)|

+
∑

zn∈Tn
ϵ (Z )

���p(1)(zn) − E(p(1)(zn))��� + ∑
zn∈Tn

ϵ (Z )
���p(2)(zn) − E(p(2)(zn))���

The first and last terms involving non-typical and non-jointly typical sequences vanish as n goes

to infinity. By using Jensen’s inequality, the concavity of x 7→
√
x guarantees

E ���p(1)(zn) − E(p(1)(zn))��� ⩽ √
Var(p(1)(zn))
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The variance of Var(p(1)(zn)) is

Var(p(1)(zn)) ⩽ *.,
M ′1∑

m′1=1

M ′2∑
m′2=1

pM ′1(m′1)2pM ′2(m′2)2+/-E
�
W 2

Zn |Xn
1 X

n
2
(zn |Xn

1 (1, 1),Xn
2 (1, 1))

×1{(Xn
1 (1, 1),Xn

2 (1, 1), zn) ∈ Tn
ϵ (X1X2Z )}�

+
*.,

M ′1∑
m′1=1

pM ′1(m′1)2+/-E
�
WZn |Xn

1 X
n
2
(zn |Xn

1 (1, 1),Xn
2 (1, 1))

×WZn |Xn
1 X

n
2
(zn |Xn

1 (1, 1),Xn
2 (1, 2))1{(Xn

1 (1, 1),Xn
2 (1, 2), zn) ∈ Tn

ϵ (X1X2Z )}�
+

*.,
M ′2∑

m′2=1

pM ′2(m′2)2+/-E
�
WZn |Xn

1 X
n
2
(zn |xn1 (1, 1),xn2 (1, 1))

×WZn |Xn
1 X

n
2
(zn |Xn

1 (1, 2),Xn
2 (1, 1))1{(Xn

1 (1, 2),Xn
2 (1, 1), zn) ∈ Tn

ϵ (X1X2Z )}�
Using the AEP on the first term yields

E
�
W 2

Zn |Xn
1 X

n
2
(zn |Xn

1 (1, 1),Xn
2 (1, 1))1{(Xn

1 (1, 1),Xn
2 (1, 1), zn) ∈ Tn

ϵ (X1X2Z )}�
⩽ exp2(−n(H(Z |X1X2) +H(Z ) − δϵ )). (7.17)

Similarly, the second term is upper bounded by

E
�
WZn |Xn

1 X
n
2
(zn |Xn

1 (1, 1),Xn
2 (1, 1))WZn |Xn

1 X
n
2
(zn |Xn
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2 (1, 2))

× 1{(Xn
1 (1, 1),Xn

2 (1, 2), zn) ∈ Tn
ϵ (X1X2Z )}�

⩽ exp2(−n(H(Z |X1) +H(Z ) − δϵ )), (7.18)

and the third term by

E
�
WZn |Xn

1 X
n
2
(zn |Xn
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1 X
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2
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× 1{(Xn
1 (1, 2),Xn

2 (1, 1), zn) ∈ Tn
ϵ (X1X2Z )}�

⩽ exp2(−n(H(Z |X2) +H(Z ) − δϵ )). (7.19)
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Combining the previous upper bounds,

Var(p(1)(zn)) ⩽ *.,
M ′1∑

m′1=1

M ′2∑
m′2=1

pM ′1(m′1)2pM ′2(m′2)2+/- exp2(−n(H(Z |X1X2) +H(Z ) − δϵ ))

+
*.,

M ′1∑
m′1=1

pM ′1(m′1)2+/- exp2(−n(H(Z |X1) +H(Z ) − δϵ ))

+
*.,

M ′2∑
m′2=1

pM ′2(m′2)2+/- exp2(−n(H(Z |X2) +H(Z ) − δϵ ))

= exp2(−H2(M′1M′2) − n(H(Z |X1X2) +H(Z ) − δϵ ))
+ exp2(−H2(M′1) − n(H(Z |X1) +H(Z ) − δϵ ))
+ exp2(−H2(M′2) − n(H(Z |X2) +H(Z ) − δϵ )),

where H2 is the second order Rényi entropy. Finally,

∑
zn∈Tn

ϵ (Z )
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( 1
n
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(
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n
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(
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2
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n

+ I (X1X2;Z ) − δϵ
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+ exp2

(
−n
2

(H2(M′1)
n

+ I (X1;Z ) − δϵ
))

+ exp2

(
−n
2

(H2(M′2)
n

+ I (X2;Z ) − δϵ
))
, (7.20)

Therefore, if

lim
n→∞

1
n
H2(M′1,M′2) > I (X1X2;Z ), lim

n→∞
1
n
H2(M′1) > I (X1;Z ), and lim

n→∞
1
n
H2(M′2) > I (X2;Z ),

(7.21)

the sum vanishes as n goes to infinity.
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7.3.4 Proof of Lemma 3.7

Let i ∈ J1,B − 1K. We have

Li+1 − Li = I
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= δn(ϵ) + I �
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2,iZ

n
i ;KiPi+1
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where (a) holds by the chain rule and positivity of mutual information, (b) holds by indepen-

dence of M1,1:i+2:BM
′
1,2:i+2:BM2,1:i+2:B with all the random variables of the previous blocks, (c)

holds thanks to the result on secret-key generation, in (d) the random variables Pi+1 and Ki are
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introduced, (e) holds because of the data processing inequality and because the conditioning on

Pi+1 and Ki breaks the dependencies between the random variables of block (i + 1) and the ran-
dom variables of the previous blocks, (f ) holds because (Pi+1,Ki) and (Cn

1,1:i−1,C
n
2,1:i−1,Z

n
1:i−1)

are independent and also because Pi+1 and Ki break the dependencies between consecutive

blocks.

7.3.5 Proof of Lemma 4.1

To show that PU (Hϵ
∞ (S) −Hϵ

∞ (S |U = ū) > log |U| + r ), first note that

Hϵ
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log
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log (qS (s)) + log (pU (ū))

= Hϵ
∞ (S) + log (pU (ū)) (7.28)

where the inequality follows because for all (s,u) ∈ S × U, qSŪ (s, ū) ⩽ pS (s). Hence,
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