

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

UNIVERSITAT POLITÈCNICA DE CATALUNYA
Departament d’Arquitectura de Computadors

Low-Cost And Efficient
Fault Detection And Diagnosis
Schemes for Modern Cores

A thesis submitted in fulfillment of
the requirements for the degree of

DOCTOR OF PHILOSOPHY / DOCTOR PER LA UPC
by

Javier Sebastián Carretero Casado
Barcelona, 2015

Advisor: Xavier Vera Rivera (Intel Corporation)
Tutor: Antonio González Colás (UPC)

ii ·

· iii

Mientras iba de tu mano hacia la montaña,

unos d́ıas eran fuego y otros eran llamas.

Dentro del espejo donde no me reflejaba,

la promesa que en la cima nos aguardaba.

Pero una vez alĺı las nubes no nos dejaban ver el suelo

y una sensación que tuve fue miedo.

El camino de bajada era más estrecho,

se podŕıa decir una bajada a los infiernos.

Te ped́ı que me guiaras cuando estaba ciego,

la montaña fue quien respondió con eco,

un eco que reprodućıa exactamente mis lamentos,

los sueños que una vez teńıa y ya no tengo.

San Juan de la Cruz - Los Planetas

All these saints that I move without

I lose without in vain

All these saints, they move without

They moved without again

Well, all these places will lose without

They lose without a name

St. Apollonia - Beirut

iv ·

Abstract

Continuous improvements in transistor scaling together with microarchitectural ad-

vances have made possible the widespread adoption of high-performance processors

across all market segments. However, the growing reliability threats induced by tech-

nology scaling and by the complexity of designs are challenging the production of

cheap yet robust systems.

Soft error trends are haunting, especially for combinational logic, and parity and

ECC codes are therefore becoming insufficient as combinational logic turns into the

dominant source of soft errors. Furthermore, experts are warning about the need to

also address intermittent and permanent faults during processor runtime, as increas-

ing temperatures and device variations will accelerate inherent aging phenomena.

These challenges specially threaten the commodity segments, which impose re-

quirements that existing fault tolerance mechanisms cannot offer. Current tech-

niques based on redundant execution were devised in a time when high penalties

were assumed for the sake of high reliability levels. Novel light-weight techniques are

therefore needed to enable fault protection in the mass market segments.

The complexity of designs is making post-silicon validation extremely expensive.

Validation costs exceed design costs, and the number of discovered bugs is growing,

both during validation and once products hit the market. Fault localization and

diagnosis are the biggest bottlenecks, magnified by huge detection latencies, limited

internal observability, and costly server farms to generate test outputs.

This thesis explores two directions to address some of the critical challenges in-

troduced by unreliable technologies and by the limitations of current validation ap-

proaches.

We first explore mechanisms for comprehensively detecting multiple sources of

failures in modern processors during their lifetime (including transient, intermittent,

permanent and also design bugs). Our solutions embrace a paradigm where fault

tolerance is built based on exploiting high-level microarchitectural invariants that

are reusable across designs, rather than relying on re-execution or ad-hoc block-

vi ·

level protection. To do so, we decompose the basic functionalities of processors into

high-level tasks and propose three novel runtime verification solutions that combined

enable global error detection: a computation/register dataflow checker, a memory

dataflow checker, and a control flow checker. The techniques use the concept of end-

to-end signatures and allow designers to adjust the fault coverage to their needs, by

trading-off area, power and performance. Our fault injection studies reveal that our

methods provide high coverage levels while causing significantly lower performance,

power and area costs than existing techniques.

Then, this thesis extends the applicability of the proposed error detection schemes

to the validation phases. We present a fault localization and diagnosis solution for

the memory dataflow by combining our error detection mechanism, a new low-cost

logging mechanism and a diagnosis program. Selected internal activity is continuously

traced and kept in a memory-resident log whose capacity can be expanded to suite

validation needs. The solution can catch undiscovered bugs, reducing the dependence

on simulation farms that compute golden outputs. Upon error detection, the diagnosis

algorithm analyzes the log to automatically locate the bug, and also to determine its

root cause. Our evaluations show that very high localization coverage and diagnosis

accuracy can be obtained at very low performance and area costs. The net result

is a simplification of current debugging practices, which are extremely manual, time

consuming and cumbersome.

Altogether, the integrated solutions proposed in this thesis capacitate the indus-

try to deliver more reliable and correct processors as technology evolves into more

complex designs and more vulnerable transistors.

Acknowledgements

Esta tesis no hubiera visto la luz sin la ayuda y el apoyo constante de varias personas.

Quiero empezar estos agradecimientos con Xavier Vera: director de tesis, jefe y

amigo. Xavi es quien me ha iniciado en el mundo de la investigación, me ha enseñado,

gúıado, aconsejado y quien me ha discutido ideas con una paciencia inacabable. De

él he aprendido la importancia de desarrollar el pensamiento cŕıtico, la autoconfianza

y el esṕıritu de luchador. Gràcies!

Junto con Xavi, Jaume Abella ha sido como un segundo director. Gran parte de

lo que sé se lo debo a él. Ojalá algún d́ıa tenga su capacidad de saber plantear las

preguntas adecuadas, de saber esquivar y meter goles con argumentos, o de perseguir

la simplicidad y la novedad en las soluciones. Aquesta tesi és teva també.

A Antonio González tengo que agradecerle la confianza que tuvo en mı́, desde el

d́ıa que me contrató en Intel, aśı como cuando me sugirió la posibilidad de realizar

esta tesis. Gracias por estas oportunidades.

Mil gracias también a los compañeros de Intel y UPC por las risas, coñas, viajes

y buenos momentos compartidos. En especial a los ’Rancis’, a Matteo, Rakesh R.,

Demos, Juan F., Kyriakos, Gaurang U., Qiong, Pepe y a Pedro M., entre otros.

Fuera del laboratorio, quiero dar las gracias a mis amigos/as de Barcelona y de

Barahona. Me habéis ayudado a desconectar de las dificultades de la tesis y del

trabajo. Sois una parte importante de mi vida, y con vosotros he podido respirar aire

fresco y ver las cosas con una perspectiva más amplia. Ya no hay más excusas para

no veros más a menudo.

Para acabar, me gustaŕıa dedicar unas palabras a mi familia. A todos ellos, gracias

por hacerme sentir querido y tener fe en mı́. En especial, a mis hermanos (Charo,

Maŕıa José y Patxi) por su apoyo constante. A mis cuñados y a los bichejos por hacer

al clan aún más divertido. Y sobre todo a mis padres, a quien va dedicada esta tesis:

nunca podré apreciar ni llegar al nivel de vuestra dedicación.

viii ·

Contents

Abstract v

Acknowledgements vii

Contents ix

List of Figures xiii

List of Tables xvii

Glossary of Acronyms and Abbreviations xix

1 Introduction 1

1.1 Motivation: Reliability Challenges . 2

1.1.1 Impact of Transistor Scaling on Lifetime Reliability 2

1.1.2 Growing Design Complexity and Validation Costs 6

1.2 Problem Statement . 7

1.2.1 Lifetime Reliability Mechanisms for Multiple Sources of Failures 7

1.2.2 Overheads of Error Detection Solutions 8

1.2.3 Tackling Observability and Reproducibility During Post-Silicon

Validation . 9

1.2.4 System-Level Simulation for Error Discovery and Diagnosis . . 10

1.3 Thesis Approach . 11

1.4 Thesis Contributions . 12

1.5 Thesis Organization . 14

2 Background 17

2.1 Economic Costs of Hardware Reliability 17

2.2 Reliability Concepts and Metrics . 18

2.2.1 Basic Terminology and Classification of Errors 18

x · CONTENTS

2.2.2 Fault Tolerance Metrics . 20

2.3 Hardware Failure Phenomena: How Electronics Fail 21

2.4 Aspects of Fault Tolerance . 24

2.5 Validation and Debugging: Background 26

2.5.1 Pre-Silicon Validation . 26

2.5.2 Post-Silicon Validation . 26

2.5.3 Runtime Validation . 27

3 Related Work 29

3.1 Re-execution- Based Hardware Techniques 30

3.2 Error Coding Techniques . 35

3.3 Circuit-Level Techniques . 38

3.4 Software-Level and Hybrid Techniques 40

3.5 Industrial Validation Techniques . 43

4 Evaluation Framework 47

4.1 Benchmarks, Tools and Simulators 47

4.1.1 Benchmarks . 47

4.1.2 Timing Simulator . 48

4.1.3 Fault Coverage Evaluation Methodology 51

4.1.4 Area, Power and Delay Evaluation Methodology 54

4.2 RAS Features in the Baseline Processor 58

5 Register Dataflow Validation 61

5.1 Introduction . 61

5.2 Register Dataflow Failures . 62

5.3 End-to-End Dataflow Validation . 64

5.3.1 Signature-Based Protection: General Idea 64

5.3.2 Failure Recovery . 68

5.3.3 Microarchitectural Changes 69

5.4 End-to-End Register Value and Dataflow Validation 70

5.4.1 Implementing End-to-End Residue Checking 70

5.4.2 Integrating Signatures with Residues 73

5.4.3 Microarchitectural Changes 75

5.4.4 Examples . 77

5.5 Signature Generation Policies . 80

5.5.1 Round-Robin Policies . 81

CONTENTS · xi

5.5.2 Minimum In-Flight Use Policy 83

5.5.3 Physical Register Policy . 83

5.5.4 Static Policy . 84

5.5.5 Enhanced Static Policy . 86

5.6 Evaluation . 90

5.6.1 Coverage Results . 91

5.6.2 Overheads . 95

5.7 Related Work . 101

5.8 Conclusions . 105

6 Control Flow Recovery Validation 107

6.1 Introduction . 107

6.2 Control Flow Recovery in Modern OoO Processors: Overview 108

6.3 Control Flow Recovery Failures . 110

6.4 End-To-End Validation of RAT State Recovery 113

6.4.1 RAT State Signature Tracking 113

6.4.2 RAT State Signature Validation 118

6.4.3 Microarchitectural Changes 119

6.5 End-To-End Validation of Instruction Squashing 120

6.5.1 Bogus Region Tracking . 120

6.5.2 Bogus Region Validation . 122

6.5.3 Microarchitectural Changes 124

6.6 Evaluation . 124

6.6.1 Coverage Results . 124

6.6.2 Overheads . 128

6.7 Conclusions . 132

7 Memory Flow Validation 135

7.1 Introduction . 135

7.2 Load-Store Queue: Overview . 136

7.3 Load-Store Queue Failures . 138

7.4 LSQ Memory Ordering Tracking and Validation: General Idea 140

7.4.1 Microarchitectural Changes 141

7.4.2 LSQ Memory Ordering Tracking 142

7.4.3 LSQ Memory Order Validation 143

7.4.4 Failure Recovery . 145

7.5 Design #1: MOVT Access at Execute 145

xii · CONTENTS

7.6 Design #2: Minimal prodID Acquisition 148

7.7 Design #3: MOVT Access at Allocate 150

7.8 Evaluation . 153

7.8.1 Fault Coverage Methodology 153

7.8.2 Area Overheads . 154

7.8.3 Evaluation of Design #1: MOVT Access at Execute 155

7.8.4 Evaluation of Design #2: Minimal prodID Acquisition 158

7.8.5 Evaluation of Design #3: MOVT Access at Allocate 159

7.9 Conclusions . 163

8 Automated Fault Localization and Diagnosis 165

8.1 Introduction . 165

8.2 Automated Fault Localization and Diagnosis: Proposed System Overview166

8.3 Event Generation . 167

8.4 Diagnosis Algorithm . 170

8.5 Logging System Implementation . 176

8.5.1 Microarchitectural Changes 177

8.5.2 System-Level Interaction . 180

8.6 Evaluation . 182

8.6.1 Diagnosis Coverage Results 182

8.6.2 Overheads . 186

8.7 Related Work . 188

8.8 Conclusions . 191

9 Conclusions 193

9.1 Publications . 194

9.2 Open Research Directions . 195

Appendix:

A Baseline Processor Microarchitecture 197

A.1 Processor Frontend . 197

A.2 Processor Backend . 199

Bibliography 209

List of Figures

1.1 SER trends for SRAM cells, latches and combinational logic 3

1.2 Chip-level SER trends for caches and logic 4

1.3 Wear-out failure phenomena FIT contribution breakdown 6

2.1 Classification of faults effects . 19

2.2 Vendors fault tolerance metrics . 21

2.3 Particle strike causing current disturbance 22

2.4 Physical wear-out phenomena, open and short creation 23

2.5 Validation domains and characteristics 25

4.1 Global structure of our evaluation framework 48

4.2 Baseline processor microarchitecture 50

5.1 Register signature assignment among dependent instructions: an ex-

ample . 64

5.2 End-to-end signature checking: extensions in the core dataflow 65

5.3 End-to-end signature checking: extensions in the backend logic 66

5.4 Concurrent error detection with residue codes 71

5.5 End-to-end residue checking: extensions in the backend logic 72

5.6 Combined end-to-end signature and residue checking scheme: exten-

sions in the backend logic . 74

5.7 End-to-end signatures and residues operation: fault-free scenario ex-

ample . 77

5.8 End-to-end signatures and residues operation: Selection of wrong in-

puts example . 79

5.9 End-to-end signatures and residues operation: Wrong Register File

Access example . 80

5.10 Distribution of usage for the different logical registers across all bench-

marks . 85

xiv · LIST OF FIGURES

5.11 Signature masking enhancement to boost coverage for ’Selection of

wrong inputs’ case: extensions in the backend logic 88

5.12 Coverage results for all policies and error scenarios for 2-bit signatures 92

5.13 Coverage results for all policies and error scenarios for 3-bit signatures 94

6.1 Failure scenarios related to RAT state history reconstruction 111

6.2 Failure scenarios related to identification of control-flow dependent in-

structions . 112

6.3 RAT state signature generation: extensions in the rename logic 114

6.4 f and f−1 blocks implementation . 117

6.5 RAT state signature reconstruction: extensions in the commit logic . 118

6.6 BCT mechanism: extensions for bogus region tracking and validation . 121

6.7 BCT mechanism: extensions in the commit logic 123

6.8 Coverage for end-to-end RAT state signatures 125

6.9 Breakdown of number of younger resolved bogus regions for each mis-

predicted branch . 126

6.10 Coverage for identification of control-flow dependent instructions (1 to

4 BCT entries) . 127

7.1 A typical LSQ configuration . 136

7.2 Failure scenarios related to LSQ operation 138

7.3 MOVT hardware template . 141

7.4 Memory ordering tracking and validation: an example 144

7.5 MOVT hardware for design #1: prodID acquisition at execute time . 146

7.6 MOVT hardware for design #2: minimal prodID acquisition 149

7.7 MOVT hardware for design #3: prodID acquisition at allocate time . 151

7.8 Coverage and slowdown for different fully-associative MOVT s based

on prodID acquisition at execute time 156

7.9 Detailed evaluation of a 16 entries, 4-way MOVT based on prodID

acquisition at execute time . 157

7.10 Coverage and slowdown for different minimalist MOVT s configurations 159

7.11 Flushed loads for different minimalist MOVT s configurations 160

7.12 Coverage and slowdown for different MOVT s based on prodID acqui-

sition at allocate time . 161

7.13 Breakdown of speculative prodID comparisons for a 32-entries fully-

associative MOVT based on prodID acquisition at allocate time . . . 162

LIST OF FIGURES · xv

7.14 Breakdown of pipeline flushes for different MOVT s based on prodID

acquisition at allocate time . 162

8.1 Event driving latches: extensions in the processor 167

8.2 Diagnosis algorithm showing failure type determination: high-level code173

8.3 Log of a LSQ failure: an example . 174

8.4 Accumulated diagnosis coverage versus log size 175

8.5 Address hashing undistinguishable failure scenarios: an example . . . 176

8.6 Activity logging mechanism: hardware design and integration 178

8.7 Log buffer: hardware organization . 179

8.8 Breakdown of number of LSQ log events generated per cycle 183

8.9 Diagnosis coverage and dropped events for different ’LOG buffer ’ con-

figurations. ’Xwr,Yrows’ stands for number of writable events per cy-

cle, total number of ’event rows ’ . 184

8.10 Diagnosis coverage for a ’5wr,12rows LOG buffer ’ configuration . . . 185

8.11 Slowdown induced by a ’5wr,12rows LOG buffer ’ configuration . . . 187

xvi · LIST OF FIGURES

List of Tables

3.1 Comparison of hardware-level global re-execution techniques 32

3.2 Comparison of error coding techniques 36

3.3 Comparison of circuit-level techniques 40

3.4 Comparison of software and hybrid techniques 41

4.1 Benchmarks used to evaluate our solutions 49

4.2 Simulator configuration . 52

5.1 Register signature mismatches corresponding to real register dataflow

errors . 68

5.2 Values, residues, signatures and combined residues-signatures for fault-

free example . 78

5.3 Mask table for a processor with two execution ports (P0 and P1), two

bypass levels (BL0 and BL1) and the write-back port (WB) 89

5.4 Values of the masks set up at every bypass level and execution port . 89

5.5 Area and power overheads for the different signature generation poli-

cies when end-to-end residue is absent. 97

5.6 Area and power overheads for the different signature generation poli-

cies when end-to-end residue is implemented. 99

5.7 Overheads summary of implementing end-to-end signature checking

and end-to-end residue checking. 100

5.8 Comparative table of techniques that detect errors in the register

dataflow . 101

5.9 Blocks and logic protection for register dataflow validation techniques 103

6.1 Commit time assertion checks for instruction squashing verification . 123

6.2 Area and power overheads. nb SGN stands for n-bits RAT state sig-

natures. 129

6.3 Area and power overheads. ne BCT stands for n BCT entries. 130

xviii · LIST OF TABLES

6.4 Area and power overheads. nb SGN stands for n-bits RAT state sig-

natures and ne BCT for n BCT entries. 131

7.1 Protocol when loads hit the MOVT at commit time (Design #1) . . 147

7.2 Protocol when loads miss the MOVT at commit time (Design #1) . . 147

7.3 Protocol when loads hit the MOVT at commit time (Design #2) . . 149

7.4 Protocol when loads miss the MOVT at commit time (Design #2) . . 150

7.5 Protocol when loads hit the MOVT at commit time (Design #3) . . 152

7.6 Protocol when loads miss the MOVT at commit time (Design #3) . . 152

7.7 Area overhead w.r.t. the LSQ, for different MOVT sizes 155

7.8 Coverage, slowdown and area cost for different MOVT configurations 155

8.1 Diagnosable LSQ failure scenarios: descriptions and required analysis

window size . 172

8.2 Area, peak dynamic power and cycle time overhead for different ‘LOG-

GING systems ’ . 188

8.3 Comparative table for fault localization, logging and diagnosis techniques190

Glossary of Acronyms and

Abbreviations

ACE Architecturally Correct Execution.

AGEN Address Generation.

AGU Address Generation Unit.

ALLOC Allocation.

ALU Arithmetic and Logic Unit.

AR-SMT Active and Redundant Simultaneous Multi-Threading.

ATE Automatic Test Equipment.

ATPG Automatic Test Pattern Generation.

AVF Architecture Vulnerability Factor.

BCS Beta Core Solution.

BCT Bogus Check Table.

BER Backward Error Recovery.

BICS Built-In Current Sensor.

BIST Built-In Self Test.

BTB Branch Target Buffer.

CAM Content Addressable Memory.

CFCSS Control Flow Checking by Software Signatures.

CFG Control Flow Graph.

ch RAT Checkpoint RAT.

CMOS Complementary Metal-Oxide Semiconductor.

CMP Chip Multiprocessor.

CPU Central Processing Unit.

CRAFT CompileR Assisted Fault Tolerance.

CRC Cyclic Redundancy Code.

CRT Chip-level Redundant Threading.

CRTR Chip-level Redundant Threading with Recovery.

CSM Continuous Signature Monitoring.

D$ Data Cache.

DDFV Dynamic DataFlow Verification.

DDR3 SDRAM Double Data Rate type three Synchronous Dynamic Random-Access Memories.

DEC-TED Double Error Correction Triple Error Detection.

xx · GLOSSARY

DFCM Differential Finite Context Method.

DFG Data Flow Graph.

DFT Design for Testability.

DIVA Dynamic Implementation Verification Architecture.

DMR Dual Modular Redundancy.

DRAM Dynamic Random-Access Memory.

DRR Double Round Robin signature generation policy.

DUE Detected Unrecoverable Error.

DVFS Dynamic Voltage and Frequency Scaling.

ECC Error Correcting Code.

EDDI Error Detection by Duplicated Instructions.

EM Electromigration.

FER Forward Error Recovery.

FIFO First In First Out.

FIT Failure In Time.

FL Free List.

FO4 Fan-out of 4.

FP Floating Point.

FRITS Functional Random Instruction Testing at Speed.

FWD Forwarding.

GDXC Generic Debug eXternal Connection.

HCI Hot Carrier Injection.

HPC High-Performance Computing.

I$ Instruction Cache.

IC Integrated Circuit.

IFRA Instruction Footprint Recording and Analysis.

INT Integer.

I/O Input/Output.

IQ Issue Queue.

ISA Instruction Set Architecture.

JEU Jump Execution Unit.

L2$ Second Level Cache.

LD Load.

LDEXEC Load Execution.

LdQ Load Queue.

LEA Load Effective Address.

LLC Last Level Cache.

LRR Logical Round Robin signature generation policy.

LRU Least Recently Used.

LSQ Load/Store Queue.

MCA Machine Check Architecture.

MIN Minimum signature generation policy.

MOB Memory Order Buffer.

MOD Modulo signature generation policy.

· xxi

MOVT Memory Order Validation Table.

MRR Minimum Round Robin signature generation policy.

MSHR Miss Status Holding Register.

MTBF Mean Time Between Failures.

MTTF Mean Time To Failure.

MTTR Mean Time To Repair.

MUX Multiplexor.

NBTI Negative Bias Temperature Instability.

NMOS N-type Metal Oxide Semiconductor.

OS Operating System.

PBTI Positive Bias Temperature Instability.

PC Program Counter.

pdst Physical Register Destination.

PHT Pattern History Table.

PLA Programmable Logic Arrays.

PMOS P-type Metal Oxide Semiconductor.

PRF Physical Register File.

PSA Path Signature Analysis.

PSMI Periodic State Management Interrupt.

QRR Quad Round Robin signature generation policy.

RAN Random signature generation policy.

RAS Reliability-Availability-Serviceability.

RAT Register Alias Table.

RF Register File.

RMT Redundant Multi Threading.

RNA Register Name Authentication.

ROB Re-Order Buffer.

RR Round Robing signature generation policy.

RTL Register Transfer Language.

SBU Single Bit Upset.

SDC Silent Data Corruption.

SEC-DED Single Error Correction Double Error Detection.

SelR Selective Replication.

SER Soft Error Rate.

SEU Single Event Upset.

SGN Signature.

SHREC SHared REsource Checker.

SIMD Single-Instruction Multiple Data.

SIS Signatured Instruction Streams.

SlicK Slice-Based Locality Exploitation for Efficient Redundant Multithreading.

SMT Simultaneous Multi Threading.

SpecIV Speculative Instruction Validation.

SRAM Static Random-Access Memory.

SRMT Software-based Redundant Multithreading.

xxii · GLOSSARY

SRT Simultaneously and Redundantly Threading.

SRTR Simultaneously and Redundantly Threaded with Recovery.

ST Store.

StQ Store Queue.

SW Software.

SWIFT Software Implemented Fault Tolerance.

TAC Timestamp-based Assertion Checking.

TBFD Trace-Based Fault Diagnosis.

TDDB Time Dependent Dielectric Breakdown.

TDP Thermal Design Power.

TLB Translation Lookaside Buffer.

TMR Triple Modular Redundancy.

TRUMP Triple Redundancy Multiplication Protection.

TTF Time To Failure.

TVF Time Vulnerability Factor.

VLIW Very Long Instruction Word.

XOR Exclusive Or.

CHAPTER 1

INTRODUCTION

Historically, fault tolerant designs have been applied to niche safety-critical and

mission-critical segments to provide high reliability levels against hardware faults.

However, the increasing transistor miniaturization and subsequent supply voltage

reductions, together with growing design complexities are amplifying the susceptibil-

ity of all computing systems to runtime errors: reliability is becoming a concern for

products ranging from mobile devices up to mainstream computers.

Depending on the target market segments, processors are designed considering

certain error rate specifications. However, whereas these specifications stay constant

across product generations, the inherent error rates due to transient, permanent and

design errors do increase. Meeting error rate specifications requires trading off per-

formance, power or cost to implement fault tolerance techniques or to improve the

validation phases.

Traditional fault tolerance solutions based on re-execution were devised in a time

when high performance and power penalties were assumed for the sake of high relia-

bility levels. However, commodity segments are extremely customer-sensitive and im-

pose requirements that existing approaches cannot offer. Resorting to error detection-

correction codes to protect memory arrays in commodity segments will soon not suf-

fice, as combinational logic turns into the dominant source of failures. In the absence

of new fault tolerance solutions, traditional online error detection methods would

counteract the benefits of technology scaling and would offset the actual growth of

the microprocessor industry.

At the same time, the increasing design complexity together with shortening time-

to-market schedules are imposing important challenges in guaranteeing that proces-

sors are error-free before shipment. The costs of post-silicon validation currently

2 · Chapter 1. Introduction

overpass the costs of the design phases, and the number of bugs found in the valida-

tion phases and once products hit the market is projected to rapidly increase.

In this thesis we focus on the error detection, error localization and diagnosis

aspects of fault tolerance. Error detection is a pre-requisite to support other aspects

of fault tolerance, whereas bug localization and debugging dominate validation efforts.

This thesis explores two directions to address some of the critical challenges in-

troduced by unreliable technologies and by the limitations of current validation ap-

proaches. We first explore low-cost effective solutions to detect multiple sources of

failures in commodity processors during their lifetime. Then, we explore post-silicon

approaches that target the problems of bug detection, localization and diagnosis by

relying on the features of our error detection mechanisms.

This chapter is organized as follows. Section 1.1 provides a detailed motivation

for this work by presenting the main reliability challenges and trends targeted in this

thesis. In Section 1.2 we state the research problems and the main objectives targeted

in this thesis. Section 1.3 describes the new approaches that thesis proposes to effec-

tively address the research objectives. Section 1.4 enumerates the main contributions

of our work, and finally we describe the organization of this document in Section 1.5.

1.1 Motivation: Reliability Challenges

There are several reliability challenges brought by technology scaling and by the

complexity of designs that have driven the research of this thesis. We describe them

in the following two sections.

1.1.1 Impact of Transistor Scaling on Lifetime Reliability

The everlasting transistor miniaturization is radicalizing the error rates caused by

particle strikes, also known as soft errors [129]. Furthermore, other sources of failure

that were considered as a manufacturing problem in the past, are now emerging as a

threat to processor lifetime reliability. We describe for these failure mechanisms the

error rate trends introduced by technology scaling.

Increasing Cell and Control Logic Susceptibility to Soft Errors

Prediction of soft errors scaling trends for CMOS are haunting. On one hand, as

SRAM cells shrink their soft error rate (SER) is expected to decrease due to a re-

duction in the susceptible area. On the other hand, SRAM cells will operate with

1.1. Motivation: Reliability Challenges · 3

Fig. 1.1: SER trends for SRAM cells, latches and combinational logic [175]

lower charges and the Qcrit will decrease, amplifying the range of harmful particles.

The former factor has dominated and offset the latter one in the past. However, this

fact no longer seems to persists for SRAM cells. Alan Wood et al. [51] have reported

that Oracle’s technology scaling from 180nm to 65nm in the past caused a significant

reduction in the SER error rates per bit, but from 40nm onwards to 28nm there was

a reversal of this trend. Intel and Oracle [51, 133] indicated that the SER/bit for

SRAM cells was slightly reducing after 45nm, and becoming almost constant.

The vulnerability for control logic has been traditionally lower than for SRAM

cells or latches due to logical, electrical and timing masking effects [174]. However,

Shivakumar et al. [175] estimated that the SER from logic would rise exponentially.

Their study indicated that the effect of latching-window masking would be reduced

drastically as transistors would shrink in size or frequency would increase (or pipe

stages would decrease in length) [174, 175].

Figure 1.1 shows the soft error rate estimations for SRAM cells, latches and com-

binational logic for different pipeline depths and technologies1. It can be observed

that the error rate trends for combinational logic was projected to increase at an

1Error rates are expressed in FITs, that stands for Failures In Time. One FIT corresponds to

one failure in one billion (109) hours.

4 · Chapter 1. Introduction

SER Trend: Full Chip

1

10

180 130 90 65 45 32
Technology (nm)

S
E

R
 N

or
m

 to
 1

30
nm

cache arrays

logic2x bit/latch count
Increase per
generation

Fig. 1.2: Chip-level SER trends for caches and logic [133]

exponential rate for all pipeline depths. Also, from 50nm onwards the SER of a

6/8/12/16 FO4 logic and the SER per latch were projected to be higher than the

SER per SRAM cell. The study also estimated that logic would become the dominant

source of soft errors and the SER contribution of unprotected SRAM cells would stay

relatively constant (in absolute terms) [175].

This SER trend for combinational logic has been confirmed to be true nowa-

days [15]. In 2014, Intel has reported [133] that the contribution of caches to the

chip SER is becoming flat, while at the same time the SER for chip logic continues

to increase because the SER per latch is not decreasing fast enough with respect to

Moore’s Law (Figure 1.2).

Moreover, Wood has observed for 40nm and 28nm technologies that the SER

of combinational logic approximately doubles when dropping voltage from 1.25V to

0.7V, and doubles again when reducing from 0.7V to 0.5V [51]. Therefore, designs will

be limited in core-count and performance due to voltage limitations, unless efficient

fault tolerance techniques (specially for logic) are found.

These results are game-changing: solutions like ECC or parity to reduce the

SRAM SER will quickly become insufficient as logic becomes the dominant source of

soft errors. Therefore, new efficient methods for protecting combinational logic are

becoming essential to construct reliable systems.

1.1. Motivation: Reliability Challenges · 5

New Sources of Failures Affecting Lifetime Reliability

Wear-out vulnerability, permanent faults and variations have traditionally been ex-

clusively dealt by circuit and process engineers, because it has been considered as pure

manufacturing problems, and not problems to be handled during runtime (i.e. not

lifetime reliability problems). However, supply voltages are not scaling accordingly

to transistor scaling2, resulting in increasing power densities, which at the same time

is accelerating the problems of aging phenomena3 and affecting processor lifetime

reliability at a higher pace for new technologies.

Srinivasan et. al [191] have determined that the failure rate of a 65nm POWER4-

like processor is 300% higher than the 180nm version of the processor. Time-dependent

dielectric breakdown (TDDB) and electromigration (EM) represent the most damag-

ing failure mechanisms, as Figure 1.3 shows. Failure rates caused by these phenomena

will become more frequent and will radicalize due to their exponential dependence

on temperature and because of decreasing interconnect dimensions.

With shrinking geometries, interconnects and transistors are becoming more vul-

nerable to the impact of variations introducing during the fabrication process. The

thickness of the layers varies over the die area and as a consequence wear-out phenom-

ena like electromigration will produce more frequent opens in the narrower portions,

or shorts between neighboring or crossing conductors [42]. High-frequency circuits

with minimal frequency guardband will be more prone to suffer from delay faults be-

cause of increased resistance induced by wearout, or because of the static variations of

transistors parameters [23]. Similarly, bridging faults will appear due to short-circuit

scenarios caused by electromigration.

Current testing approaches based on screening out processor infant mortality

through temperature and voltage induce aging are therefore becoming obsolete and

inadequate [23, 204]. As a consequence, an increasing number of faults due to

weaker, variable transistors or due to latent manufacturing defects will manifest once

the processor has been shipped and will cause failures before the target lifetime.

These facts call for new runtime solutions that are able to expand their error

detection capabilities beyond soft errors, as new failure phenomena are becoming a

problem for lifetime reliability.

2Due to cell stability issues, leakage power hazards, etc.
3Aging phenomena includes electromigration, stress migration, gate oxide or time dependent

dielectric breakdown, thermal cycling [192], negative-bias temperature instability [6], among others.

6 · Chapter 1. Introduction

Fig. 1.3: Wear-out failure phenomena FIT contribution breakdown [192]

1.1.2 Growing Design Complexity and Validation Costs

Technology scaling has enabled performance breakthroughs through increasing tran-

sistor densities. On the other hand, a system FIT rate is rapidly increasing due to

Moore’s Law exponential pace: there is a higher probability that at least one of them

suffers from faults during their lifetime or during fabrication. Therefore, the cost and

complexity to keep current reliability levels for future technology where billions of

devices are guaranteed to work during several years with a low failure rate is going

to be huge.

However, growing transistor density is also materializing as an increasing proces-

sor design complexity, which directly puts a tremendous pressure in the processor

validation phases. This growing complexity has fueled the importance of post-Silicon

validation and debug phases during the production cycle of a processor [87, 121]. The

validation phases currently overpass in cost the design phases. Around 35% of the

product cost are spent on them, and it has been reported [148] that microprocessor

companies staff their teams with three verification engineers per designer. At the

same time, Intel has reported that the number of bugs found in the validation phases

is increasing at a 3x to 4x rate for each generation, and this trend is proportional to

the number of lines of structural RTL [88, 201]. The growing design complexity and

the shrinking timelines for product delivery are aggravating these facts.

Even though post-silicon validation can leverage real silicon speeds to achieve high

1.2. Problem Statement · 7

coverage for subtle component interactions, it poses problems to error detection and

diagnosis.

Sometimes bugs elude the validation phases and end up in the market, potentially

causing massive financial and reputation impacts. The number of escaped bugs is

increasing at a high pace: as an example, for Core 2 Duo designs researchers have

reported a discovery rate that is 3 times larger than that of the Pentium 4 [43]. Under

this scenario, the number of bugs debbugged in the validation phases is projected to

rapidly increase, as well as the speed in which they are discovered once products hit

the market (affecting millions of purchases).

These facts are calling for research advances in novel techniques and tools to im-

prove the post-silicon validation phases, as well as in runtime verification approaches

that provide processor lifetime correctness under undiscovered bugs. According to the

ITRS [80, 81, 82], ”without major breakthroughs, verification will be a non-scalable,

show-stopping barrier for further progress in the semiconductor industry”.

1.2 Problem Statement

The described challenges brought by the increasing vulnerability of silicon technolo-

gies and by the inefficiency of existing post-silicon validation methods, introduce

several problems that we address in this thesis. In the following subsections we dis-

cuss them, we critically analyze the short-comings of some existing work, and we

state the high-level research objectives that this thesis addresses to alleviate these

problems.

1.2.1 Lifetime Reliability Mechanisms for Multiple Sources of Failures

Reliability trends show that multiple wear-out and permanent sources of failure are

emerging as important contributors to microprocessors failure rates, rendering soft

errors not the only reliability concern to be taken care of during product lifetime. At

the same time, design complexity is causing an increase in design bugs eluding the

post-silicon validation phases and impacting processor lifetime reliability.

As it will be thoroughly analyzed in Chapter 3 (Related Work), most state-of-art

error detection solutions are designed for a specific error type, or for a few of them. For

pure hardware reexecution-based techniques (Section 3.1), permanent faults cannot

be targeted by solutions relying on temporal redundancy [64, 93, 143, 157, 162, 183,

196, 205, 207], whereas design bugs cannot be detected by solutions based on spatial

(and design) redundancy [63, 127, 182, 197, 198]. Software-implemented redundant

execution approaches (Section 3.4) also fail to detect multiple sources of failures

8 · Chapter 1. Introduction

for the same reasons: they can either detect soft errors [138, 158, 160] or cannot

comprehensively detect design bugs [34, 211]. Circuit-level techniques (Section 3.3)

are limited to soft error mitigation [61], soft error detection detection [161, 202], or

cannot detect permanent fault or design bugs in a cost-effective manner [47, 203].

On the other hand, built-in self-test circuits [2] cannot detect soft errors. Traditional

error coding techniques like parity, ECC or CRC (Section 3.2), can detect soft and

hard errors but just target data protection [70, 90, 210] and not combinational logic

(an important contributor to processors failure rates).

Therefore, one major goal of this thesis is to:

• Explore and evaluate novel on-line mechanisms for comprehensively detecting

multiple sources of failures in modern microprocessor cores during their lifetime

(including transient, intermittent, permanent faults and design bugs). We look

for unified mechanisms that can deal with all these sources of failure at the

same time.

1.2.2 Overheads of Error Detection Solutions

The radical increase in raw error rates will pervade and threaten all commodity

market segments. These segments impose challenging requirements to fault tolerance

mechanisms that existing ones do not offer. Most of the error detection mechanism

were devised for high-end segments where extreme reliability levels were targeted,

in spite of severely weighing down global performance. However, reliability is not a

primary design goal in commodity systems and some amount of fault coverage can be

traded-off as long as processor performance, power and area are not severely impacted

by runtime error detection solutions.

As it is described in Chapter 3, state-of-art error detection solutions are gener-

ally not suitable from a performance, power or area perspective when dealing with

multiple sources of failures. Reexecution-based techniques covering soft and hard

errors [63, 127, 198] suffer extreme power and power performance overheads because

they redo at every microarchitectural block all the state and internal activity that con-

stitute a computation. Reexecution-based techniques exploiting loose synchroniza-

tion [182] or ineffectual instruction removal [197] to minimize performance slowdowns,

still incur high power overheads and sacrifice a hardware thread context from another

core to execute redundant computations. Advanced solutions exploiting both spatial

redundancy and design heterogeneity [10] protect against soft errors, hard errors and

design bugs. However, their power overheads and area costs are not affordable.

Software-implemented redundant execution approaches targeting soft and hard

errors [34, 211] suffer from the same performance and power problems, even though

1.2. Problem Statement · 9

they require minimal area overheads. Compiler support has also been exploited by

hybrid software-hardware solutions to avoid re-execution and to compute the expected

microarchitectural activity to be observed during an error-free execution [131, 171,

219]. However, these techniques can only detect failures for the fetch and decode logic,

and require extending the processor instruction set. Finally, error coding techniques

implemented as self-checking circuits [12, 17, 136, 152] can detect soft errors, hard

errors and design bugs with tolerable power and area overheads while causing no

slowdown, though they are designed to detect errors in data and functional units.

Globally, existing solutions based on re-execution cannot strategically protect se-

lected critical blocks or functionalities in a cost-effective and targeted way: they are

global all-or-nothing approaches. Furthermore, these solutions do not offer flexibility

to processor designers who may prefer modulating error coverage and power, perfor-

mance and area overheads.

Hence, this thesis also aims at:

• Satisfying the needs for efficient reliability solutions with minimal costs in per-

formance, power and area, while at the same time reaching similar reliability

levels of traditional defect tolerance techniques.

• Exploring alternatives to reexecution-based techniques that can provide a more

flexible trade-off between coverage and overheads, and that are also designed

to be more modular for targeting specific blocks or functionalities.

1.2.3 Tackling Observability and Reproducibility During Post-Silicon Validation

The increasing design complexity and transistor integration is posing critical problems

to error detection, localization and diagnosis during the post-silicon validation phases.

Processor are like black boxes where observing internal state or activity is ex-

tremely difficult. Common techniques like scan chains [2], hold-scan flip-flops [94]

and cycle breakpoints [18] allow high-speed state inspection at a given execution

moment. However, these techniques are prone-to error and require long iterative

non-automated trial-and-error processes to hunt down the moment when the fault is

exercised (as their use is extremely dependent on the experience of validators). Mod-

ern solutions based on on-chip embedded trace buffers [1, 103, 220] can continuously

sample the internal state for a given time period, by storing traced data into dedicated

memory. They are however limited by the limited capacity of on-chip storage buffers

and the pin I/O bandwidth to extract them. On-chip trace buffering have fixed and

limited capacity: these solutions fail at capturing the internal activity for common

scenarios where errors manifest thousands of cycles after faults are exercised. In case

10 · Chapter 1. Introduction

of a failure, the log may have been overflown with traces without information about

the real cause. Furthermore, on-chip trace buffers [1, 103] require important area

overheads. Hardware features added for post-silicon validation purposes are costly

and useless to the user once a product goes into production. Therefore, companies

normally rely on scan-based techniques to increase the internal observability.

A big problem found during post-silicon validation are non-reproducible errors,

which are important contributors to the high cost of current post-silicon approaches [84].

Existing tracing solutions aggravate the reproducibility problem: when attempting

to reproduce an error, frequent and time-consuming scan chain and external logic

analyzer operations can introduce interferences and non-determinism into the nor-

mal program timing, potentially hiding the error. Independently of the interference

caused by current state acquisition methods, many bugs are non-reproducible in na-

ture because of the unique conditions that are needed for them to manifest (such as

temperature, voltage fluctuations, etc).

To enhance the post-silicon validation phases, in this thesis we also:

• Pursue advancements in system observability through microarchitectural log-

ging technologies that can enable bigger and more flexible buffering capacities,

while at the same time have a very low area impact (hardware cost).

• Look for new validation approaches that can extend coverage to non-reproducible

errors and that minimally interfere with system performance and operation.

1.2.4 System-Level Simulation for Error Discovery and Diagnosis

The limited internal observability is drifting validation towards methodologies based

on rooting errors once an architectural state mismatch is found. Post-silicon valida-

tion is principally driven by software tests that are run during a massive number of

cycles on real silicon samples. These software tests are generated by specific appli-

cations [146], whereas RTL processor models are used to to compute the expected

error-free architectural results. As a consequence, big server farms are needed to

keep in pace with the validation flow. The biggest issue of these approaches is that

catching errors by means of architectural state mismatches incurs huge detection la-

tencies, which ultimately leads to extremely time consuming and complex debugging

processes to narrow down the time interval when the fault is exercised.

Once a reproducible error is discovered, methods to transfer and synchronize

the silicon state to the RTL simulator [178] are used as a means to debug it. The

objective is to help validators to understand the wrong system behavior, to reason

about the error-free behavior and to locate the fault. System-level simulation of

1.3. Thesis Approach · 11

RTL models is an inestimable and powerful tool, but it comes at a high price: it is

generally 7-8 orders of magnitude slower than actual silicon [16]. Furthermore, when

facing design bugs, RTL system-level simulation cannot help much because the bug

may probably be present in the models. In addition, debugging the location and root

cause behinds errors is a complex and manual step that requires a deep understanding

of the microarchitecture.

These facts indicate several research objectives. In this thesis we also aim to:

• Explore alternatives to error discovery methods that rely on golden state gen-

eration and slow architectural-state mismatch sighting.

• Enrich the debugging practices with new methods to automatize the error lo-

calization and error diagnosis steps. We specially want to minimize the depen-

dence on costly system-level failure simulations. Given the increasing design

complexity, we also want to provide tools to help rooting the cause of errors

(wrong system behavior and the expected error-free one).

1.3 Thesis Approach

This thesis explores several approaches to address the mentioned research objectives.

We embrace a paradigm shift where error detection is built based on dynamically

checking microarchitectural invariants, rather than relying on performance-oppressive

redundant execution, or limited fine-grain circuit-level approaches.

Our solutions are end-to-end in nature: instead of individually checking low-level

microarchitectural blocks, end-to-end approaches allow verifying high-level function-

alities whose implementation is scattered across many components, in a uniform and

implementation-independent manner. An end-to-end scheme involves generating a

protection code at a source point, and checking for errors only at the end of the path,

where information is ultimately consumed.

This thesis approaches the problem by first decomposing the functionalities of a

modern processor into high-level tasks that can be verifiable in a cost-effective man-

ner and that when combined together can ensure the correctness of almost the whole

core. Specifically, we propose three new approaches to detect errors during runtime,

which encompass the following high-level functionalities of modern out-of-order cores:

computation-register dataflow, control flow recovery and memory dataflow. This the-

sis proposes error detection mechanisms for these functionalities because of several

reasons. First, the involved blocks are difficult to protect in a cost-effective manner.

Second, these functionalities represent around 78.35% of the area of the baseline pro-

12 · Chapter 1. Introduction

cessor described in Chapter 4 (excluding protected structures like caches, TLBs, and

queues). And third, according to our previous studies [205], it contributes to around

94% of the SDC SER FIT 4 (excluding protected structures, too).

Then, this thesis addresses the problems of current validation methodologies. We

begin by adding value to our error detection mechanisms by extending their appli-

cability to the post-silicon validation phases. Since our error detection methods can

catch design bugs (and transient, permanent and intermittent), we minimize the need

for slow system-level simulation to perform bug discovery. We also advocate that new

transparent continuous logging techniques combined with flexible on-chip buffer ca-

pacities allows debugging non-reproducible errors and reduces the dependence on

costly external tools.

1.4 Thesis Contributions

The main contributions of this dissertation span two different areas: targeted lightweight

runtime error detection and cost-effective post-silicon fault localization and diagnosis.

The key results related to run-time fault detection are as follows:

1. Register dataflow logic runtime validation is first deeply studied. We propose a

novel runtime technique to detect errors in the register dataflow logic. The so-

lution introduces a novel concept called signature checking that detects errors

by attaching a token to each produced register value and by matching con-

sumed signatures against source signatures. We show through fault injection

campaigns that the rename tables, wake-up logic, select logic, bypass control,

operand read and write-back, register free list, register release, register alloca-

tion, and the load replay logic are protected with high coverage. The approach

is shown to be very effective in detecting faults, and allows designers to choose

the coverage ratio by amplifying the signature size.

We also propose nine different signature allocation policies with different area

and power requirements. We show that in-flight signature distribution can be

controlled to increase coverage for different register dataflow failure scenarios.

2. We introduce a new microarchitecture that combines register dataflow checking

and register value checking. We particularly show how to improve our register

dataflow checking technique by integrating it with an end-to-end residue check-

ing scheme. Our evaluations show that a significant amount of power and area

4Silent Data Corruption failure rate caused by soft errors, as described in Chapter 2.

1.4. Thesis Contributions · 13

can be amortized by combining both solutions, while at the same time protec-

tion is extended to the functional units, load-store queue data and addresses,

bypass values and register file values.

3. Efficient control flow logic runtime validation is then studied. Even though a

myriad of targeted solutions exist to detect faults in the instruction sequencing

(fetch, decode and allocate logic), none of them can check the complex logic

involved in implementing efficient control flow recovery. We propose two tech-

niques to validate the rename state recovery and the squashing functionalities

of high-performance out-of-order cores. The proposal uses end-to-end rename

state signature checking and tracking of squashed regions to detect faults in the

ROB, the rename state recovery logic, the checkpoint rename tables, and in the

instruction squashing mechanism. Our evaluations demonstrate the effective-

ness of our approach: very high failure reduction rates are achieved with minor

power and area overheads.

4. Finally, we target the runtime validation of the memory dataflow logic imple-

mented by the load-store queue. Our proposed solution (MOVT), relies on a

tiny cache-like structure that keeps the last producer id’s for tracked addresses.

At commit time, loads are checked to have obtained the data from the youngest

older producing store. We have shown that by exploiting the fact that most

forwarding store-load pairs are close to each other, coverage can be increased

for small set-associative MOVTs by conservatively flushing the pipeline and

restarting execution under some scenarios. Three different implementations of

the technique with different trade-offs are proposed and evaluated. The so-

lution presents very high fault coverage with attractive area and performance

overheads. Moreover, MOVT can be used to solve the vulnerability hole inher-

ent to redundant multi-threading designs where the load-store queue activity is

not replicated across threads.

The key results related to cost-effective fault localization and automated diagnosis

are the following:

5. Existing tracing solutions are constrained by the capacity and area of on-chip

logs. A new software-hardware logging system to increase the internal observ-

ability is proposed to alleviate these issues. First, we show that by sequestering

physical memory pages from the application being run and re-purposing them

to store activity logs we can increase observability by means of logs that can be

sized to suite validation needs and without requiring big hardware structures.

We then propose a hardware structure that temporally buffers internal activity

14 · Chapter 1. Introduction

at full speed and connects with the data cache to access the log pages. We study

its efficiency and show that by offloading the buffer during idle cache cycles and

by letting the application allocate lines as needed, performance is not critically

impacted.

6. We show how to combine our error detection mechanisms together with the

described logging system to construct a novel post-silicon validation method-

ology. As a practical example, we particularly focus on the memory dataflow

logic implemented by the load-store queue. By using our runtime bug-detection

mechanisms together with the proposed non-intrusive logging system, we elimi-

nate the simulation steps required to generate golden outputs for test programs

and we extend coverage to non-reproducible errors without any intervention to

orchestrate the activity logging.

7. Current debugging practices are manual and cumbersome. We present a diag-

nosis algorithm that analyzes the log produced by our validation system and

automatically localizes and diagnoses errors in the load-store queue. Not only

the fault location is determined, but also the wrong behavior and the failure-free

expected one. We evaluate its efficiency and show that a very high percentage

of errors can be automatically diagnosed for different precision levels.

1.5 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 presents basic background information and the basic concepts neces-

sary for proper understanding of this document. Chapter 3 contains a survey and

a critical analysis of related work in the area of fault tolerance and post-silicon val-

idation. Chapter 4 describes the evaluation framework. This chapter details the

processor performance simulator, the benchmarks, and the area/power/delay/error

coverage models that have been used in this thesis. We also describe the baseline

error detection mechanisms that our processor model incorporates.

We distribute the main contributions of this thesis in the next four chapters:

• In Chapter 5 we present a runtime solution to detect errors in the register

dataflow logic, register data values and computation. Several implementations

with different coverage, area and power trade-offs are also studied.

• In Chapter 6 we detail two runtime solutions to detect errors in the control flow

recovery logic of modern out-of-order processors. The first one implements an

1.5. Thesis Organization · 15

end-to-end validation of the rename state recovery, whereas the second one is

an end-to-end solution for validating the instruction squashing.

• In Chapter 7 we describe a proposal that targets the runtime validation of the

memory dataflow logic implemented by the load-store queue. We present three

different implementations, with varying degrees of error detection coverage,

performance costs and design complexity.

• In Chapter 8 we detail a novel hardware-software solution to discover, locate

and diagnose errors during post-silicon validation. To show the potential of our

approach, we focus on how to apply it to the memory dataflow logic imple-

mented by the load-store queue.

Finally, Chapter 9 draws the main conclusions of this dissertation and points

out some ideas for future work. The microarchitecture description of our baseline

processor is found in Appendix A.

16 · Chapter 1. Introduction

CHAPTER 2

BACKGROUND

The scope of this Chapter is to present some basic concepts that are relevant to

the general topic of this thesis. In Section 2.1 we describe the economic impact of

hardware vulnerability in computing systems. Section 2.2 defines some basic concepts

related to faults, errors and metrics. Hardware failure mechanisms are categorized

in Section 2.3. Some relevant fault tolerance fields are introduced in Section 2.4. We

finally include in Section 2.5 an overview of the different processor validation phases.

2.1 Economic Costs of Hardware Reliability

Technology reliability problems are already making an impact in the industry across

all sectors that rely on information systems. Despite being a sensitive problem for

microprocessor companies, several reliability issues have been notoriously public.

Sun Microsystems was one of the first affected companies affected by technology

scaling issues. In 2000 it was reported that their UltraSparc II servers were crashing at

an alarming rate. After arduous works to understand the reason behind this behavior

and significant dissatisfaction from their clients, Sun found that the problem was

caused by bit flips in their insufficiently protected cache memories [3, 14]. In 2004,

Cyprus reported an incident where soft errors brought down an automotive factory

every month [129]. In 2005, HP revealed that a CPU farm in Los Alamos National

Laboratory crashed frequently due to particle striking several cache tag arrays [117].

Other examples of reliability hazards related to design bugs have also hit the

microprocessor industry. In 1994 it was discovered that the Intel Pentium micropro-

cessor made occasional errors in floating point divisions [150]. Intel ended up offering

to replace all flawed Pentium processors, and despite a small fraction of consumers

18 · Chapter 2. Background

requested a replacement, a cost of 475 million dollars was incurred. In 1997, it was

found a bug affecting the 6x86 Cyrix microprocessors series. The bug allowed to build

unprivileged programs that would halt the system in an infinite loop. Fortunately, a

workaround at the OS level allowed avoiding the recall of all products [218]. In 2007,

a flaw was discovered in the TLB of several AMD Phenom processors series that could

cause a system lock-up in rare circumstances. Initial BIOS and software workarounds

disabled the buggy TLB, incurring in performance degradations of 10%-15% on av-

erage. The bug put a temporary stop to the production and severely harmed AMD

reputation [180].

Regarding degradation errors, Intel announced in 2011 a problem in the 3Gbps

SATA ports of its Cougar Point chipset familily. The problem was located in a faulty

and leaky transistor that caused the degradation of the IO link over time. Despite

Intel performed stress burn-in tests before releasing the product, the problem was

detected by OEMs. Intel halted the shipment of affected products, recalled the faulty

ones and incurred an estimated cost of 700 million dollars [95].

The impact of faulty hardware is spreading across to the whole spectrum of compa-

nies. Standish Group Research reports that hardware failures are involved in around

21% of companies unplanned outages [53]. The operations of current companies is

increasingly linked to their computing infrastructure, and any system downtime di-

rectly hampers the productivity of a company. Despite planned downtime represents

90% of downtime [185], the unexpected nature of outages are more damaging for a

company. It has been reported [185] that on average, businesses lose between 1400

and 1800 dollars for every minute of information technology (IT) system downtime.

Furthermore, market segments like financial services, telecommunications, manufac-

turing and energy are more susceptible to a high rate of revenue loss during IT

downtime. A brokerage firm was estimated to lose around 108.000 dollars per down-

time minute (6.5 million dollars per hour) on average in 2008 [53]. Furthermore, the

economic consequences of outages do not take into account the change in the client

fidelity or the opportunity loss when the computing infrastructure was not available.

2.2 Reliability Concepts and Metrics

This section reviews basic concepts related to faults, errors and metrics.

2.2.1 Basic Terminology and Classification of Errors

A fault is defined as an undesired event or physical imperfection, such as a design

bug, a manufacturing defect or a bit flip due to cosmic particle strikes.

2.2. Reliability Concepts and Metrics · 19

Fig. 2.1: Classification of faults effects

The activation of a fault is termed as error, and can propagate up to higher

levels (e.g. circuit, microarchitecture and application). However, masking effects

can avoid an error from manifesting to the upper levels whenever the output of the

affected blocks continue being correct [126, 128, 175]. As an example, a transient

error in a mispredicted instruction will not affect the application output, or at the

application level, a bit flip in the result of a dead instruction will be harmless.

A non-masked and non-corrected error can result in a failure: an unexpected be-

havior that is visible at the architectural or user level (wrong register values, memory

or I/O updates). Hence, a failure is a special case of an error [129], and both terms

are generally interchangeably used. Failures include data corruption, system crashes

and hangs.

Architecturally, errors are further classified into two groups, as shown in Fig-

ure 2.1. Faults that manifest and are undetected are termed as silent data cor-

ruption errors (SDC) if they are visible at the user level. The most insidious

manifestation of SDC errors is the invisible alteration of user sensitive data. On

the other hand, faults that manifest but are simply detected are called detected

unrecoverable errors (DUE). Depending on if the error would have manifested

as a failure or not, DUE errors are further classified as True DUEs or False DUEs,

respectively. Faults that are not exercised or faults that do not affect the program

outcome are simply benign faults and are not considered as errors.

20 · Chapter 2. Background

2.2.2 Fault Tolerance Metrics

Microprocessor designers commonly express error rates as FITs units (Failures in

Time) because they are additive across the components of a system. One FIT cor-

responds to one failure in a billion (109) hours. The sum of SDC and DUE FIT is

usually referred to as the processor FIT value.

The FIT value of every microprocessor component is estimated based on two

factors: the raw device error rate for different sources of failure (such as soft errors

or degradation) and a derating term called architectural vulnerability factor

(AVF). AVF is the probability that a fault will end up being a DUE error (DUE

AVF, meaning detected) or SDC error (SDC AVF, meaning undetected).

Whereas the raw device error rates depend on process technology, AVF depends

on masking effects at higher-level abstractions, including circuit, microarchitecture,

architecture and software designs. An important aspect of estimating error rates

is considering that not all faults affect the final outcome of a program: (i) at the

circuit level, such effects include logical masking, electrical masking and latching-

window masking, (ii) at the microarchitectural level masking effects are encountered

when errors affect idle, invalid, mispeculated or prediction state/activity, (iii) at the

architectural and software level, faults can be masked when exercised by performance

enhancing or dynamically dead instructions, or when logically masked [128, 175].

Instead of FIT values, other reliability metrics are often used, because they are

more meaningful to the end user. A reliability metric indicates the probability that

a system has been operating correctly since moment 0 until a moment t. Vendors

express SDC and DUE error rates to costumers in terms of Mean Time Between

Failures (MTBF) units, which expresses the mean time elapsed between two errors

(either failures or not). Mean Time To Repair (MTTR) and Mean Time to

Failure (MTTF) are also popular metrics. MTTR indicates the mean time required

to repair an error once it is detected (either through specific recovery mechanisms or

through regular system restart). MTTF captures the mean time to produce the first

incorrect output. MTTF is inversely proportional to the FIT value of a system. As

Figure 2.2 shows, MTBF = MTTF +MTTR. However, since none of these metrics

are additive across the components of a system, designers normally work with FIT

values.

Reliability is the most well-known term but, it is not very indicative of the fault

tolerance of a system. Availability is a metric that indicates the probability of a

system being correctly operative at a given time, and is computed as Availability =
MTTF

MTTF+MTTR
= MTTF

MTBF
. Availability is popularly quantified in 9s. As an example, a

system with 99.999% availability (which corresponds to 5 minutes of downtime per

2.3. Hardware Failure Phenomena: How Electronics Fail · 21

���� �������� ����

�����	 ��
�� ��

���
�� �
��� ��������

��	������� ��

������� �
���
�� �
��� ��������

��	������� ��

������� �
���
��

����

���� ����

Fig. 2.2: Vendors fault tolerance metrics

year) is said to have five nines of availability.

Also, serviceability is a broad qualitative term describing how easily faulty com-

ponents are identified, diagnosed and/or isolated.

These three related attributes are commonly referred to as the RAS (Reliability,

Availability, Serviceability) features of a system and are considered when designing,

manufacturing, purchasing or using a computer product.

2.3 Hardware Failure Phenomena: How Electronics Fail

Traditionally, hardware errors have been divided into four main categories according

to their nature and duration: transient faults, intermittent faults, permanent faults

and design bugs.

Transient faults are non-permanent faults caused by several phenomena in-

cluding voltage fluctuations, electromagnetic interference and electrostatic discharge.

However, the major cause is radiation to the chip [129]. High energy cosmic particles

interact with atmospheric nuclei and create a cascaded generation reaction of many

nucleons such as neutrons, protons, muons, etc. These particles, normally neutrons,

strike silicon devices randomly in time and location. When the particles hit the

silicon devices they generate electron hole pairs resulting into generation of charge,

as Figure 2.3 shows. When this charge exceeds a critical charge (Qcrit) [222], they

can corrupt a data bit stored in the memory or create a current glitch in any gate

in logic. Since the corruption does not harm the transistor structure, the fault will

disappear once the cell or transistor output is overwritten. Transient faults manifest

as transient errors, also known as soft errors. Whereas packaging radiation and alpha

particles can generally be minimized through specific material manufacturing, cos-

mic rays are unavoidable and their flux increases exponentially with altitude [222].

Transient faults has been considered one of the most predominant source for errors

in microarchitectures for current and past silicon technologies [188].

Intermittent faults appear and disappear repeatedly but not continuously in

22 · Chapter 2. Background

Fig. 2.3: Particle strike causing current disturbance [111]

time. These faults are non-permanent, as in the case of transient faults. As opposed

to transient faults, the replacement of the affected device eliminates an intermittent

fault. Errors induced by intermittent faults usually occur in bursts when the fault

location is exercised. Generally, voltage peaks and falls, as well as temperature fluctu-

ations originate intermittent faults. Intermittent faults often precede the occurrence

of permanent faults [42]. High frequency circuits will initially suffer from intermittent

delay faults, before open faults occur.

Permanent faults, also known as hard faults, involve errors that are irreversible

due to physical changes. These faults are either caused by run-time aging or are orig-

inated during the chip fabrication process. Until disabled or repaired, a permanent

fault will potentially keep producing erroneous results. There are mainly two sources

for permanent faults [186]:

• Physical wear-out. Several sources of failures can be classified as aging phe-

nomena. Electromigration [92] refers to the displacement of the metal ions

caused by the current density flowing through the conductor. As seen in Fig-

ure 2.4, the depletion and accumulation of material creates voids and hillocks,

which can lead to open and short faults, respectively. Negative-bias tempera-

ture instability [6] (NBTI) breaks progressively silicon-hydrogen bonds at the

silicon/oxide interface whenever a negative voltage is applied at the gate of

PMOS transistors. The main consequence is a reduction in the maximum op-

erating frequency and an increase in the minimum supply voltage of storage

structures to cope for the delay faults. Oxide gate breakdown [194] ultimately

manifests as a conduction path from the anode to the cathode through the

gate oxide as a result of the reduced dimensions of transistors’ gates. Other

2.3. Hardware Failure Phenomena: How Electronics Fail · 23

Fig. 2.4: Physical wear-out phenomena, open and short creation [59]

physical events that can reduce the reliability of devices are stress migration

for wires, thermal cycling for the package and pins, and hot carrier injection for

transistors.

• Fabrication defects. Chip fabrication is an imperfect process, and product

samples can be fabricated with inherent faults. Defects at manufacturing time

cause the same problems as wear-out faults but from the very first moment.

Plus, it is more likely to have multiple fabrication defects in a chip than multiple

wear-out faults manifesting in the field at the same moment. Similarly, tolerable

latent fabrication defects can exacerbate during lifetime and lead to intermittent

contacts [42].

Design bugs are a special type of permanent faults. Even in an ideal scenario

with perfect manufacturing process and total reliability against transient faults, a

fabricated microprocessor may not operate correctly in all situations due to a mis-

match between the implementation and the specification, or due to an incomplete

specification. These kinds of faults are normally referred to as functional faults or

design bugs [35, 208].

24 · Chapter 2. Background

2.4 Aspects of Fault Tolerance

Dealing with hardware and design faults involves several challenges that constitute

in a broad sense the field of fault tolerance research. The fault tolerance area is

generally classified into several overlapping fields:

• Error detection. The most crucial aspect of fault tolerance is determining

whether the system operation was affected by an error or not. To achieve

detection capabilities, error detection mechanisms are included into the mi-

croprocessor design in order to regularly check the internal state and activity

during its lifetime (after the microprocessor has been sold). Adding error de-

tection (but not correction) to a structure eliminates SDC errors, converting

those faults to DUE errors. As a consequence, error detection mechanisms al-

low reducing the SDC FIT. Error detection is the pillar capability that allows

enabling other fault tolerance aspects.

• Error diagnosis. Error diagnosis has been traditionally conducted during the

post-silicon validation phases, as a method to understand the reason behind

failures and bugs and guide their correction. However, diagnosis is also used in

mission critical segments during their lifetime. Their objective is to guide an

adequate higher-level repair or reconfiguration mechanism that can deal with

the affecting fault. Since errors can be caused by faults with different nature,

error diagnosis is often needed to pinpoint the error type as well as the location

of the error. The diagnosis latency is not generally a problem because its cost

is paid after an error has been detected. Therefore, software solutions are also

attractive and cost-effective.

• Hardware repair and error reconfiguration. Once an error has been de-

tected and diagnosed, additional actions are taken in order to avoid that the

fault will be exercised again during the processor lifetime. If the fault is per-

manent or intermittent, repair and reconfiguration can be handled through

disabling the faulty parts of the affected component if possible [26, 149]. Re-

pair and reconfiguration can also be conducted at a higher granularity, through

physical replacement of the microprocessor, or by means of disabling the faulty

core and using a spare one: the ubiquitous chip multiprocessor (CMP) systems

makes repair and reconfiguration a realistic and simple approach. Software ap-

proaches like software circumvention [116] are a viable solution for single core

designs. For transient faults, there is no need for repair or reconfiguration.

• Error Recovery. After repair and reconfiguration, the last step is to recover

the system state in such a way that no trace of the fault exists anymore and

2.4. Aspects of Fault Tolerance · 25

Fig. 2.5: Validation domains and characteristics

normal execution can restart. As a consequence, recovery allows improving

the DUE FIT rate. Any state or data possibly corrupted by the fault must be

restored and prevented from being visible to the software. A plethora of effective

solutions have been proposed for error recovery, a well-studied field [186]. There

are two approaches to error recovery: Forward Error Recovery (FER), that

corrects the error without reverting to a fault-free state and Backwards Error

Recovery (BER), that restores the state to an old known fault-free state.

Multiple efficient BER recovery solutions exist, spanning from pure hardware

techniques to pure software approaches. Hardware BER recovery solutions

range from simply flushing the speculative state [186] of the microprocessor

pipelineto relying in hardware checkpoints [151, 187, 214] / transactional mem-

ory [123] for shared-memory multiprocessors. Software BER recovery schemes

do not require hardware modifications, because they save a snapshot of the

application’s state. Software BER schemes have been also proposed for parallel

and distributed high-performance computing (HPC) applications [217]. These

BER options do not incur severe overheads in terms of performance penalty

for saving state. However, BER hardware solutions require important design

complexity and area overheads depending on the error detection latency and

the confinement capabilities, whereas BER software solutions impact the appli-

cation design.

FER recovery schemes basically include Triple Modular Redundancy (TMR)

systems, which are extremely costly in terms of performance, power and area

overheads.

26 · Chapter 2. Background

2.5 Validation and Debugging: Background

Microprocessor validation efforts are commonly structured into three domains: pre-

silicon, post-silicon and runtime validation. Figure 2.5 summarizes the characteristics

of each one of these domains, with their own features.

2.5.1 Pre-Silicon Validation

Pre-silicon validation aims at detecting bugs before silicon prototype are available.

A register-transfer level (RTL) model is verified by means of simulation-based and

formal techniques to check the equivalence with the reference model.

Simulation-based pre-Si techniques run small [4] tests in the RTL model and

compare the outcome to the golden architectural model. Simulation is orders of

magnitude slower than real silicon, not exhaustive and severely constrained by limited

scope models. Formal verification methods determine the absence of faults, and they

are locally applied to small units because of their extreme algorithmic complexity.

High controllability and full observability is available to the validators during pre-

silicon validation, and most of faults are found in this phase and debugged using

affordable methods.

When sufficient validation coverage is obtained, the RTL is synthesized into an

optimized circuit netlist [67] that is sent to the fabs (taped-out) to obtain a first

prototype. The post-Silicon validation phase starts after.

2.5.2 Post-Silicon Validation

Post-silicon validation uncovers most of the faults undetected during the pre-silicon

validation phase, but the fixes requires producing new expensive prototype samples.

Fabrication defects, electrical faults and design bugs are discovered during post-silicon

validation through structural testing and functional validation.

Structural Testing Structural testing aims at uncovering faults introduced by the

manufacturing process. The netlist is used as the golden model, and is used by Au-

tomatic Test Pattern Generation (ATPG) software to infer optimized test sequences

and golden outputs that are ultimately probed in the real silicon to expose differ-

ent types of faults. Engineers do normally incorporate design for testability (DFT)

features into processors to increase the minimal system observability and controlla-

bility. By using DFT features, engineers can inject arbitrary states (tests), freeze the

execution or obtain some internal state.

2.5. Validation and Debugging: Background · 27

Functional Post-Silicon Validation Functional post-silicon validation aims at mainly

debugging design and electrical bugs. High coverage can be attained by executing

longer sequences of tests because the full execution performance of the silicon is orders

of magnitude higher than RTL simulation.

Functional post-silicon validation is principally driven by random tests and com-

mercial applications that are run at orders of magnitude of higher throughput than

during pre-silicon verification. The objective is to exercise the interaction of the com-

ponents and corner cases by stressing them under a burst of similar stimuli. This step

requires a farm of servers running system-level simulation of RTL models to obtain

the golden output for the tests being run.

The debug process starts by observing result mismatches, a system crash, deadlock

or data corruption. The reproducibility of the bug is first attempted, so that the

triggering conditions can be identified. If bug reproducibility is obtained, tracing

techniques [1, 103, 178, 220] are used to increase the observability and controllability.

These solutions allow capturing the succession of events that lead to the failure.

Validators also attempt to transfer and synchronize the silicon state to the RTL

model, as a way to achieve higher observability [178]. System-level RTL simulation

is therefore heavily used both for the error discovery process and to help in the the

debugging of these errors, even though it is extremely slow.

2.5.3 Runtime Validation

Despite designs are tested extensively before being released to the market, sometimes

undetected bugs slip into the final product. Runtime verification is a new research

topic meant to complement the validation phases so that a higher fault tolerance

efficiency is achieved against undiscovered bugs.

Current processors do not incorporate solutions to catch or diagnose undiscovered

bugs during their lifetime. These are actually debugged by processor companies, who

include in their products solutions such as instruction patching andmicrocode updates,

that allow fixing non-critical errors once they have been detected in the field. In the

case of serious bugs (those related to the computation correctness), nowadays vendors

have few solutions other than retiring the shipped products.

28 · Chapter 2. Background

CHAPTER 3

RELATED WORK

In this Chapter we summarize the wide spectrum of related work in the area of fault

tolerance and post-silicon validation. The objective is providing an overview on how

traditional approaches have dealt with these aspects and what problems they have

exhibited. State-of-art solutions relevantly related to our proposed solutions and to

our approach are described in the following Chapters.

In this Chapter we make an overview of different approaches implemented at

different levels, ranging from circuit-level up to software-level. We describe the most

paradigmatic ones, and we focus on those that are able to detect (or mitigate) faults

in the microprocessors hardware. We also cover existing industrial solutions that are

used in post-silicon validation. It is important to note that this Chapter does not

analyze solutions for recovery, repair or reconfiguration, as these are not objectives

of our thesis. Similarly, we do not detail solutions for the memory or uncore.

Section 3.1 analyzes the most important architectural- and microarchitectural-

level techniques that rely on redundant execution without software intervention, Sec-

tion 3.2 describes common coding schemes to protect data (storage) and functional

units, Section 3.3 covers some of the existing solutions to detect or mitigate faults at

the circuit level and Section 3.4 describes software or hybrid solutions that provide er-

ror detection by means of redundant execution. For each one of these approaches, we

include a table that summarizes the described solutions and compares their features.

For every technique, we also highlight their weakest or not desirable aspects. Finally,

in Section 3.5 we cover existing industrial mechanisms, techniques and methodologies

that are used during post-silicon validation to increase the observability or controlla-

bility of silicon samples, or that are used to increase processor debugability.

30 · Chapter 3. Related Work

3.1 Re-execution- Based Hardware Techniques

One of the most studied reliability mechanism is to use the existing temporal and/or

physical redundancy at the microarchitectural and architectural level. This is the

case of the family of techniques that detect faults by comparing the outputs of two

redundant executions of a thread without software intervention. The rationale is that

a fault will affect just one of the two redundant executions, and hence, a fault can

be caught by comparing the outputs at the architectural level, once the fault has

propagated to a visible point.

Rotenberg’s AR-SMT [162] is a seminal work exploiting the concept of redundant

re-execution. Two threads are defined: the A (active) and R (redundant) threads.

The A thread always runs ahead of the R thread, and provides R the outputs of its

computations through a special buffer. A result match allows the instruction from the

R thread to commit its results, hence accumulating a golden architectural state that

can be used for recovery in the face of a soft error failure. AR-SMT requires a huge

hardware overhead, eliminates the opportunity to execute another non-redundant

thread, and it suffers from performance stalls whenever the buffer saturates. Also,

high power costs are paid.

The SRT (Simultaneously and Redundantly Threaded) proposal by Reinhardt and

Mukherjee [157] introduced the novel concept of sphere of replication. All activity

within the sphere is replicated. Values crossing the sphere are the outputs and inputs

that require comparison and replication, respectively. A large sphere replicates more

state; however, updates to that state occur independently in each execution copy,

with no need for synchronization. SRT’s sphere of replication includes the register

file (as opposed to AR-SMT), which avoids checking the result for every instruction,

and reduces the communication and synchronization among threads. Checking is

performed just for store addresses, store data, and load addresses. However, none of

the redundant architectural register files can be used for recovery. The memory space

is not replicated: only the leading thread accesses the data cache and forwards the

value and address to the trailing thread through a special FIFO. The trailing thread

issues loads in program order and non-speculatively to that queue, and performs

address checking. The trailing thread does not make use of the load-store queue

logic. This fact introduces a vulnerability hole, since any fault affecting the load-

store queue state or activity will remain undetected.

Vijaykumar et al. [207] adds soft error recovery capabilities to SRT processors

having spheres of replication including the register file. SRTR stalls the leading

thread from committing instructions until the trailing thread checks the instructions

for faults. To reduce stalls due to pressure on the core resources, SRTR checks

3.1. Re-execution- Based Hardware Techniques · 31

the outcomes of an instruction as soon as the trailing instruction completes, rather

than at commit time. SRTR uses a special value queue to store register values for

redundant checking. The biggest issue is the complexity in hardware required to form

the dependence chains and store the leading thread outcome values.

The main constraint on the performance achievable by solutions based on hard-

ware redundant execution is the bottleneck imposed by sharing the issue, the func-

tional unit bandwidth, as well as the ROB [183]. SHREC (SHared REsource Checker)

was proposed [183] as a soft error tolerant alternative to alleviate these issues. SHREC

uses asymmetric reexecution [10] to relieve that pressure. In asymmetric redundant

execution, an instruction is checked by its redundant version after the original instruc-

tion has executed and using input operands already available from the first (original)

execution. Redundant dependent instructions can be reexecuted simultaneously be-

cause each of them will consume the values produced by the original execution. To

achievo so, instructions in the ROB that have executed are moved in program order

to a small in-order issue queue to perform the checking (functional units are shared

between the normal issue queue and the in-order issue queue). Redundant instruc-

tions fill the issue bandwidth left idle by the original instructions. Redundant loads

obtain their values directly from the data cache. Given that the accesses are done in

program order, no need for memory disambiguation is required. This implies that the

load-store queue state and logic is protected by SHREC. Recovery can be achieved in

the face of transient faults, because no instruction leaves the pipeline without having

being checked. SHREC provides soft error protection for the backend of a core, unlike

RMT techniques which extend the protection to the frontend.

Replicating all instructions comes at the cost of significant performance degra-

dation and power consumption. Thus, the research community has explored the

possibility of replicating only a subset of the instructions.

Gomaa and Vijaykumar’s [64] approach attempts to reduce the performance

penalty by replicating instructions during low-IPC phases and L2 misses. In or-

der to enable partial explicit redundancy, the technique requires a big structure to

continuously communicate the redundant thread the resume-point state. Low soft

error coverage is thus achieved for medium and high-IPC application. To alleviate

this issue, implicit redundancy is exploited through instruction reuse techniques [184].

Reuse avoids redundant computations (no redundant thread is needed) but at the cost

of a loss of coverage that is subsumed by the program inherent value reuse capabilities.

However, there is no performance loss because there is no explicit reexecution.

Vera et al. propose a Selective Replication [205] (SelR) scheme guided by the

vulnerability of the instructions. SelR re-executes instructions that have a significant

contribution to the vulnerability, replicating the minimum number of instructions.

3
2
·

C
h
a
p
ter

3
.

R
ela

ted
W
o
rk

Table 3.1: Comparison of hardware-level global re-execution techniques

Performance,
Recovery Domain

Sources Of CPU HW Cost
Coverage

Full Detection

Power Costs Failure Featuring (complexity) Re-execution Latency

AR-SMT [162] Very High
Yes

(ECC in RF)
Full Soft errors SMT High Full Yes Bounded

SRT [157] High No Full Soft errors SMT Medium Full Yes Unbounded

SRTR [207] Very High Yes Full Soft errors SMT High Full Yes Bounded

SHREC [183] Medium
Yes

(ECC in RF)
Backend Soft errors None Low

Full at

backend
Yes (Asymmetric) Bounded

Opportunistic [64] Low No Full Soft errors SMT Medium Low
Partial

(low IPC phases)
Unbounded

SelR [205]
Low slowdown,

Medium power

Yes

(ECC in RF)
Backend Soft errors None Low

Very High

at backend

Partial and

Asymmetric (AVF

prediction)

Bounded

SlicK [143]
Medium slowdown,

High power
No Full Soft errors SMT Very High Full

Partial

(value prediction)
Unbounded

SpecIV [93]
Medium slowdown,

High power
No Full Soft errors SMT Very High Full

Partial

(value prediction)
Unbounded

Slipstream [197] Speed-up, High power Yes Full
Soft + hard

errors
CMP High Very High

Partial (ineffectual

insts. removal)
Bounded

Lockstepping [198] High No Full
Soft + hard

errors
CMP Low Full Yes Bounded

Fingerprinting [182]
Low slowdown, High

power

Yes

(checkpoints)
Full

Soft + hard

errors
Lockstep Low Full Yes

Bounded

(huge)

CRT [127] High No Full
Soft + hard

errors

CMP

+ SMT
Medium Full Yes Unbounded

CRTR [63] Very High Yes Full
Soft + hard

errors

CMP

+ SMT
High Full Yes Bounded

DIVA [10]
Low slowdown,

Medium power

Yes

(ECC in RF)
Backend

Soft + hard

errors, bugs
None High

Full at

backend
Yes Bounded

BCS [196] Low Yes Full Bugs None Medium Unclear
Partial (signature

locality)
Bounded

3.1. Re-execution- Based Hardware Techniques · 33

The AVF of an instruction is estimating by the time it spends residing in the issue

queue. SelR can be seen as an evolution of SHREC to deal with its performance

overhead, because replicas are placed into the in-order issue queue upon allocation,

rather than re-circulated at commit time. This further alleviates the pressure in the

ROB.

SlicK (Slice-Based Locality Exploitation for Efficient Redundant Multithread-

ing) [143] also makes use of explicit partial redundancy in the context of an SRT

processor. SlicK relies on the use of predictors for values exiting the sphere of repli-

cation. The leading thread is executed entirely but it uses a set of predictors to

attempt to verify the outputs of the leading thread without re-execution. Instruc-

tions that belong to the backward slices of outputs that the predictors were not able

to verify are reexecuted by the trailing thread. Slick requires big predictors and

complex hardware blocks to perform on-line backward slice extraction.

Speculative Instruction Validation [93] (SpecIV) extends the concept of value pre-

diction in the leading thread to any kind of instruction. SpecIV does not require slice

formation and reduces the performance impact of the original SRT implementation.

Nevertheless, the technique requires a big area overhead in the form of value predic-

tors, as well as deep modifications to the existing core microarchitecture. Futhermore,

a general problem inherent to reliability solutions based on value prediction is the

loss of coverage whenever a fault corrupts the leading thread data in such a way that

it exactly matches with the predictor’s output.

The Slipstream processor [197] was a pioneer reliability solution based on partial

replication of the leading thread. The trailing thread is monitored to find ineffectual

and highly-confident branch predictions. The future instruction slice instances leading

to these ineffectual computations are removed from the A thread. The leading thread

is a partial and speculative redundant version of the trailing thread, but is sped up

because it has less instructions to process. At the same time, the trailing thread is

sped up by the leading thread by warming up the caches and by providing branch

outcomes. Slipstream processors provide incomplete fault tolerance because not all

instructions are explicitly and redundantly executed. Slipstream poses two main

disadvantages: (i) the added hardware is complex and costly in area, and (ii) the

detection coverage is partial.

Redundant re-execution has also been studied for other computing processors not

implementing SMT. Redundant threads can run on two different cores within the

same multicore processor, or on the different cores from two separate processors. We

next detail them.

Lockstepping is an example of systems exploiting physical redundancy by inte-

grating two or three different processors on a dual or triple modular redundancy

34 · Chapter 3. Related Work

configuration. The cores are tightly synchronized so that there is cycle-by-cycle in-

put replication and output comparison, as well as fully deterministic execution (same

internal activity) [181, 198]. Clearly, design heterogeneity is not possible for lockstep-

ping. Fault detection is guaranteed for transient faults and hard faults, but on the

other hand lockstepping is not well suited for market segments other than mission

critical. The cost in performance, power and validation is skyrocketing.

Smolens et al. [182] evaluate the efficiency of lockstepped systems that create

checkpoints of system state and rollback processor execution when a soft or hard

error is detected. They observe that no previous lockstepped systems can provide

at the same time satisfactory error detection latency and comparison bandwidth.

Their solution, called Fingerprinting, allows to alleviate this trade-off. A fingerprint

is a hash value computed over the sequence of updates to a processor’s architectural

state during program execution during a checkpoint interval. Fingerprints are less

costly or intrusive than other redundant re-execution schemes that check results on a

per-instruction basis, but on the other hand, fingerprints extend the error detection

latency. Fingerprints’ aliasing probability is low and can be reduced by increasing the

hash size. Moreover, given a fingerprint size, its detection capabilities are independent

of the number of updates (hash additions) to the code.

Mukherjee et al. [127] proposed CRT (Chip-level Redundant Threading), an im-

plementation of SRT under a chip-multiprocessor (CMP). Compared to a SMT im-

plementation, using a CMP for SRT avoids resource contention among the threads

and extends the coverage to permanent faults.

Similarly, the concept of SRT and SRTR was expanded to multiprocessors by

Gomaa et al. Threaded processors with Recovery (CRTR) [63] are the adaption to

CMP processors of SRT and SRTR, respectively. Despite the fact they are able to

target hard faults, the performance and power overheads are still massive.

New proposals extend the error coverage to design bugs, by exploiting physical

redundancy through design heterogeneity: an ISA-compatible core different to the

main core is added to work as a checker. We next detail them.

Austin proposed DIVA (Dynamic Implementation Verification Architecture), a

ground-breaking work [10, 38, 215]. DIVA uses an incomplete checker in-order core.

Instructions arriving to the ROB are moved in program order to the DIVA checker,

together with their input operands and still speculative results. For every instruction,

the DIVA checker: (i) verifies that the proper result was produced by the main core

and (ii) verifies that operand values flow correctly from one instruction to another.

After verification, results are committed to the architectural state. For verifying the

computation, DIVA exploits asymmetric execution which completely eliminates in-

struction dependencies. As many checking functional functional units are added as

3.2. Error Coding Techniques · 35

the main core has, to catch up with the main core IPC. The redundantly computed

values are compared against the pre-computed ones. Regarding operand flow check-

ing, the DIVA core verifies that the received source operands match with the ones

read from architectural storage. The data cache is also redundantly accessed by loads.

All architectural registers and memory are protected with ECC. DIVA offers several

advantages: it extends the coverage to hard faults and design errors , and does not

require a SMT processor. However, it does not scale well to big high-performance

cores and is not suitable for small in-order cores due to its overheads. The operand

flow checkers require a huge and messy operand bypass network, which is costly and

complex from a design perspective.

A recent work, the Beta Core Solution (BCS) [196] reduces the power cost of

full re-execution. BCS uses a minimal complete in-order checker core, as opposed to

DIVA. For every bundle of instructions waiting for retirement, a signature is gener-

ated by incorporating timing and microarchitectural information. The signature is

searched in two signature tables: one keeping track of signatures corresponding to

a-priori bugs or bugs discovered during run-time, and another tracking signatures of

correctly verified previous bundles. Missing both tables indicates an unverified com-

putation and requires transferring control and state to the checker core to determine

if computation was correct or not, updating the tables accordingly. The checker core

is simpler than the DIVA one because it does not need to execute 100% of the time

and it does not need to keep up with the main big core. However, the biggest issues

are that it is is not clear what is the signature construction method and which subset

of control signals are used to detect any possible bug. BCS is not able to detect faults

in the checker core and there is still a minimal performance degradation.

3.2 Error Coding Techniques

The theory of error coding is a rich area in mathematics. Coding schemes are one of

the most popular microarchitectural error protection mechanisms.

Error Coding Techniques for Memories

Error codes are generally applied to storage elements. From an implementation per-

spective, error coding is suitable when the data being protected is almost static (this

is, generated once but not modified during its lifetime) and wide enough to amor-

tize its overheads. Otherwise, multiple costly code generators and checkers would be

required at every consumption and modification point.

Parity codes are possibly the simplest error detection technique. A parity code

36 · Chapter 3. Related Work

Table 3.2: Comparison of error coding techniques

Recovery Separable Domain
Supported HW Cost Sources of Concurrent

Operators (complexity) Failure Error Detection

Parity [210] No Yes Data - (data) Minimal
Soft + hard

errors
Yes

ECCs [70] Yes Yes Data - (data)
Very low to

Medium

Soft + hard

errors
Yes

CRCs [90] No Yes Data - (data) Very low
Soft + hard

errors
Yes

AN

Codes [12]
No No

Logic and

Data
INT/FP +, − Low

Soft + hard

errors, bugs†
No

Berger

Codes [17]
No Yes

Logic and

Data

INT +, −,

logic ops,

shifts, rotators

Low
Soft + hard

errors, bugs†
Yes

Residue

Codes [152]
No Yes

Logic and

Data

INT/FP +, −,

∗, /, SQRT,

FMA, rotators,

shifts, logic ops

Low
Soft + hard

errors, bugs†
Yes

Parity Pre-

diction [136]
No Yes

Logic and

Data
INT +, −, ∗, / Low

Soft + hard

errors, bugs†
No

† : Protects against bugs in ALUs

is a single bit aggregated to a wider data word. An ’even’ parity bit is set if the

binary data word has an odd number of ones. Similarly, an ’odd’ parity bit is set if

the the data word has an even number of ones. Parity codes are able to detect all

single and all odd number of faults. In memories, parity codes are normally used for

register files and reorder buffers as well as in low-level write-through caches, to allow

for recovery methods [118, 199].

Common Error Correction Codes (ECC) use Hamming [70] and Hsiao [73] codes

that provide single-bit correction, double-bit detection (SEC-DEC). Higher reliability

levels are achieved with Double-bit Error Correction Triple-bit Error Detection codes

(DEC-TED), symbol codes and b-adjacent codes. SEC-DED and DEC-TED [24, 72]

allow the detection and correction for any possible location of faults, whereas symbol

and b-adjacent codes [25, 39, 40] are restricted to adjacent locations. It can be

observed that the higher degree and flexibility of correction, the higher overhead

they pay [195]. SEC-DED and DEC-TED are normally used in second and third level

caches which allows low-latency encoding/decoding while at the same time providing

a tolerable overhead. On the other hand, extreme symbol based codes are used to

provide Chipkill [48] support for DDR2 and DDR3 devices [83] and GDDR5 [32].

Cyclic redundancy checking codes (CRC) are interesting codes because of their

high degrees of error detection and their simplicity. They are suited for the detection

of burst errors in communication channels. The CRC code is the remainder of the

division of a data word by a generator polynomial of length n where all its coefficients

3.2. Error Coding Techniques · 37

are either a 0 or a 1. n−1 zero bits are attached at the end of the word and then it is

divided by the CRC polynomial: the resulting n− 1 bits are attached to the original

word, constituting the CRC word. A CRC word is valid if it is exactly divisible by

the polynomial. All errors in an odd number of bits will be detected. All burst errors

of length n can be detected by any polynomial of degree n or greater.

Error Coding Techniques for Control Logic

Whereas regular memory arrays can be efficiently protected through coding tech-

niques, few control logic blocks such as arithmetic and logic functional units are

amenable for error detection through arithmetic codes. Arithmetic codes are pre-

served by correct arithmetic operations, that is, a correctly executed operation taking

valid code words as input produces a result that is also a valid code word.

AN codes, represent an integer N multiplied by a constant A [12]. Before an arith-

metic operation is performed on two numbers N1 and N2, each of them is multiplied

by a constant A. Let R be R = AN1 ∗AN2, if R is not exactly divisible by A then at

least one error has occurred. This invariant is true for many operators including inte-

ger and floating-point addition/substraction [170]. AN-codes are non-separable: the

data part and the code part are processed and combined together, and the data value

cannot directly be read from the code word. Input values are already multiplied by

A, and as a consequence since the functional units operate with already transformed

values, the required circuitry is increased and gets more complex.

Berger codes [17] are separable codes. The check bits are a binary representation

of the number of zeros contained in the data. A codeword is valid if the value of

the check bits equals the numbers of zeros in the data word. Since no mathematical

property is exploited it is not easy to generalize Berger codes to any arithmetic or

logical operation. Practical implementations exist for integer addition/substraction,

logic operations and for shifters and rotators [107, 108]. Also, there are research

proposals for multipliers and dividers [106], as well for FP operations [104]. However,

the area and delay overheads can be non-acceptable in some designs [12].

Residue codes are separable codes. They have been deeply studied in the literature

due to their cost-effectiveness, their capability in handling most operations as well as

their levels of fault tolerance. Given two input values N1 and N2, and R being the

chosen residue value, the arithmetic property ((N1 mod R) • (N2 mod R)) mod R =

(N1 • N2) mod R, holds true for most of the common operations • implemented by

microprocessors. R is called the pre-selected residue base. Academia has proposed for

most of the common operations effective residue functional units (functional blocks

computing the expected results’s residue from the operands’ residues). Residue func-

38 · Chapter 3. Related Work

tional units have been studied for integer arithmetic operations, including addition,

substraction, multiplication, division and square root [96, 141, 152, 153, 169, 189, 210].

Similar ideas have been also applied to logical operations, including AND, OR, XOR

operations [19, 58, 125, 177, 213] as well as shifts [74]. Residue functional units for

single precision and double precision floating point operations (such as addition, sub-

straction, multiplication, division, multiplication with addition and multiplication

with substraction) are also supported [46, 68, 76, 77, 105, 124]. Residue checking

has also been generalized for vector (SIMD) operations [21, 77]. Generally, residue

codes are smaller than the Berger codes, and the residue functional units require

much less area than Berger functional units [96, 105]. Residues are not intrusive

into existing designs: execution units are left as they are, while the computation of

the residue of the result is done in parallel without impacting the delay of the orig-

inal circuit. Moreover, given its separability feature, for the cases where a residue

functional unit is not cost-effective (for example for small logic blocks), the separa-

bility allows the designers to skip the checking of the operation, while still providing

error detection for the source operands and computability of the result’s residue, as

opposed to non-separable schemes. Recent products like the Fujitsu’s SPARC64 V

processor also adopted 2-bit residue checkers for the multiply/divide unit (as well as

parity prediction for ALUs and shifters) [8]. IBM z6 incorporates residue codes in

its pipeline [216]. IBM Power6 - 7 [156] incorporate residue checking for decimal and

binary floating-point units, and vector ones [102].

Parity can be used to protect arithmetic units by means of parity prediction cir-

cuits. Parity is not predicted in a speculative way, but actually in a safe, deterministic

manner. The generation of the result’s parity bit is based on the source operands

parity and some properties of the carry chains of the computation to be checked.

Parity prediction circuits have also been proposed for addition, substraction, division

and multiplication [134, 135, 136]. Whereas parity prediction is very amenable for

small adders and small multipliers, residue codes are cheaper for large multipliers

and adders (as most commercial processors have) [134]. Moreover, despite parity

prediction is a separable code, its circuitry invades the existing design to forward

existing carry signals towards the redundant parity computation block.

3.3 Circuit-Level Techniques

Reliability can also be enhanced from a circuit-level perspective.

Upsani et al. [202] propose deploying a group of acoustic wave detectors [69] on

silicon together with a hybrid hardware/firmware system that detects and locates the

occurrence of a transient fault based on solving a system of equations that capture

3.3. Circuit-Level Techniques · 39

the wave arrival times to the detectors. Fault detection latencies for caches are much

shorter than traditional schemes where the detection is performed upon consumption

time. However, the localization of the fault can take several cycles because solving

the equations requires computation.

Asynchronous built-in current sensors (BICS) are circuits connected to the power

lines of memory cells to monitor current variations caused by hard faults or soft

errors. A BICS commonly monitors the memory cells belonging to the same column

and shares the power bus of the column [60, 203]. BICS are often combined with

parity codes associated to data words, so that whenever a parity mismatch occurs for

a word, the affected bit can be deduced and corrected. Combining BICS and parity

requires low area overhead, but they increases the correction latency. BICS can also

protect combinational logic [132], but the overheads make them quite unpractical.

Circuit-level techniques can also be applied to provide mitigation against tran-

sient faults. There are two approaches: either increasing the capacitance of the

node, thereby reducing the spectrum of particle charges that can upset the circuit,

or using cells commonly referred to as radiation-hardened. Despite increasing the

capacitance reduces the SER [86], it also negatively affects performance and power.

As an alternative, capacitance can be added to the most vulnerable gates in a logic

circuit [61, 122]. This selective approach is not able to provide complete error cover-

age while requiring less than twice the area. Radiation hardening, on the other hand,

is applied to storage SRAM cells, latches or flip-flops. A radiation-hardened cell uses

extra transistors that restore the state of the original circuit in the case of a particle

strike (by maintaining a redundant copy of data) [30, 120, 161]. However, the area,

power, and delay costs of radiation hardening approaches (often exceeding 100%)

make these solutions impractical and are just used for specially selected circuits.

Some hardware schemes have been proposed to detect faults arising from varia-

tions and degradation. Razor [54] is a solution for detecting and correcting timing

faults. Razor modifies existing stage flip-flops with a shadow latch so that they per-

form a double sampling: once with the normal clock, and another after a fixed delay.

The skewed clock is set so that the shadow latch can capture most worst-case delays

arising from degradation or variations. Upon a timing violation, the main latch and

shadow latch will have different values, and the shadow latch is considered to hold

the correct value. Razor must guarantee that there must not be a short path that can

cause the output of the logic to change before the shadow latch latches the previous

output. Razor can only guarantee correctness when the range of possible delays for

a circuit output (delaymax − delaymin) falls within a window of size T − hold where

T is the clock period and hold is the output latch hold time. Hence, Razor’s main

drawback is its requirement of redoing all designs to guarantee a minimum short-path

40 · Chapter 3. Related Work

Table 3.3: Comparison of circuit-level techniques

Detection Recovery
Sources Of Performance, HW Cost

Domain Adequacy
Failure Power Costs (complexity)

Accoustic de-

tectors [202]

Yes

(unprecise

location)

No Soft errors
No slowdown,

Minimal power
Minimal

Data +

Logic
Wide

BICS [203] Yes

Yes

(adding

parity)

Soft +

hard errors

No slowdown,

Minimal power
Low Data Wide

Increased Ca-

pacitance [61]

No (miti-

gation)
No Soft errors High High

Data +

Logic

Non-critical

paths

Radiation

Harden-

ing [161]

Yes Yes Soft errors High Very High Data

Vulnerable

circuits and

non-critical

paths

RAZOR [47] Yes Yes
Soft errors,

delay faults

Speed-up,

power benefits
Medium Logic

Circuits with

limited range

of delays

delay, which is a huge overhead in design time and cost. Razor was later extended [47]

to detect transient faults within the flip-flop and in the combinational logic.

3.4 Software-Level and Hybrid Techniques

Software techniques to detect faults are very popular in the literature because of

their simplicity and low-cost. These techniques provide certain reliability levels for

processors implementing no fault tolerance techniques.

Since the early 80s, a myriad of ad-hoc techniques have been proposed to detect

control flow errors concurrently with the processor operation. SIS (Signatured In-

struction Streams [171]), PSA (Path Signature Analysis [131]) and CSM (Continuous

Signature Monitoring [219]) are some of these hybrid software-hardware approaches

that provide detection of control flow errors in the fetch and decode logic. In sig-

nature checking schemes, checking is done at the hardware level [110] but compiler

support is needed to appropriately partition the source code into sets of code se-

quences. Code blocks (’nodes’) are selected to have one entry point and one or more

exit points. Control flow checking is checked within nodes but not for edges among

nodes. The compiler generates as many signatures as the number of exiting points.

Every signature starts at the node entry point and includes all younger instructions

(in program order) up to the exiting instruction, capturing its flow under a fault-free

scenario. Each of these signatures are then embedded into the object code. The

processor fetches instructions normally, and regenerates these signatures. A special

3.4. Software-Level and Hybrid Techniques · 41

Table 3.4: Comparison of software and hybrid techniques

Recovery
Sources of Purely Performance/ Detection CPU

Coverage
Failure SW Power Costs Latency Featuring

SIS [171],

PSA [131],

CSM [219]

No
Soft + hard

errors, bugs
No Low Unbounded None

CF errors (Just

intra-BB’s)

CFCSS [137] No
Soft + hard

errors, bugs
Yes Low Unbounded None

CF errors (Just

inter-BB’s)

EDDI [138] No Soft errors Yes Very High Unbounded None Whole core

SWIFT [158] No Soft errors Yes Very High Unbounded None

Whole core

(LDs/STs still

vulnerable)

CRAFT [160] No Soft errors No Very High Unbounded None Whole core

SRMT [211] No
Soft + hard

errors
Yes Very High Unbounded CMP Whole core

SWIFT-R,

TRUMP [34]
Yes

Soft + hard†

errors, bugs†
Yes Extremely High Unbounded None Whole core

† : Protects against hard errors or bugs in data operands and ALUs

hardware compares the dynamic signatures against the embedded ones. This in-

creases the pressure in the instruction cache and thereby degrades the performance.

Moreover, the error detection latency is unbounded and instructions can update the

architectural state before they are completely checked.

CFCSS [137] (Control Flow Checking by Software Signatures) is a pure software

solution for control flow checking. It extends the coverage of previous approaches to

verify that control is transferred to a valid successor basic block. However, CFCSS

does not ensure that the correct direction of the conditional branch is taken (a branch

should fall-through but it actually takes the path, or viceversa). CFCSS extends

the program to perform the instruction sequencing checking, based on the a-priori

allowed transition among nodes. This solutions is able detect design bugs related to

the instruction sequencing among/within nodes, flags generation/consumption and

branch execution. However, all these techniques cannot validate the control logic in

charge of performing efficient control flow recovery for out-of-order processors.

Redundant execution schemes can also be implemented in software. Software-

based redundant execution allows executing the redundant instructions within the

same thread hardware context. Since a fault in the fetch logic can affect both, the

outcome of control-flow instructions must also be redundantly compared. Perfor-

mance overheads are bigger than for purely hardware versions because there are

more points of checking and extra instructions to do so.

The seminal work by Oh et al., EDDI (Error Detection by Duplicated Instruc-

42 · Chapter 3. Related Work

tions [138]), duplicates the instructions and adds extra checking instructions, so that

both copies of the program uses different registers and memory locations and they do

not interfere among them. Stores and branches are considered as comparison points.

Checking is done through regular instructions. EDDI incurs a significant memory

overhead because the memory space and all instructions are replicated.

SWIFT (SoftWare Implemented Fault Tolerance) [158, 160] is an evolution of

EDDI. SWIFT splits the register file for the two execution streams but does not

duplicate the memory because it assumes it is protected through coding techniques.

This avoids the duplication of stores instructions, but forces stores, loads and branches

to be synchronization points. SWIFT builds on top of CFCSS and extends its con-

trol flow protection to also ensure that the correct branch directions are actually

taken: SWIFT has some points-of-failure for non-replicated instructions that cannot

be avoided by pure software solutions: a fault between the checking of the operands

of a load/store and their use can happen and cause silent data corruption.

CRAFT (CompileR Assisted Fault Tolerance) is a hybrid solution [159, 160] that

augments SWIFT with hardware structures to cover against SWIFT vulnerability

gaps. CRAFT introduces two hybrid techniques to protect store and load opera-

tions. For the treatment of stores, a special buffer is introduced for keeping the

store addresses and data to write: store instructions simply update this structure,

whereas the replica store instruction accesses the buffer entry for checking. The buffer

commits then the entry to memory. Loads are handled equivalently: replica loads

will access this structure for checking the address and obtaining the data. Globally,

CRAFT performance is better than SWIFT because the use of hardware structures

removes the need for some of the comparison instructions.

Wang et al. introduced Software-based Redundant Multi-Threading (SRMT [211])

for transient fault detection. SRMT uses the compiler to automatically generate re-

dundant threads so that they can run on general CMP systems. Those threads

communicate and synchronize through a reserved memory space.

Software-level reliability techniques can also provide fault recovery. Chang et

al. propose several software recovery solutions [34]: SWIFT-R, intertwines three

copies of the program and adds majority voting before stores and loads. TRUMP

(Triple Redundancy Multiplication Protection) executes two copies of the program,

but one of them implements software AN-codes. The AN version inherently offers

error detection and globally, correction.

3.5. Industrial Validation Techniques · 43

3.5 Industrial Validation Techniques

Due to the inherent imprecision of the photolithographic process, imperfections are

accidentally introduced during manufacturing. Post-silicon structural testing is hence

aimed to uncover these faults. The gate netlist is used as the golden reference model,

and is used by ATPG (Automatic Test Pattern Generation) software to infer op-

timized test sequences and golden outputs that are ultimately probed in the real

silicon. However, structural testing faces limiting ’controllability’ and ’observability’

issues. To counteract these limitations, engineers do normally incorporate design for

testability (DFT) features into processors. DFT techniques enable ways to write and

sample flip-flops and latches of circuits, so that the combinational logic can be tested

by ATPG-generated input vectors.

Some examples of DFT techniques include scan chains, hold-scan flip-flops and

BIST circuits [2, 94].

By using scan chains, engineers can inject an arbitrary state value through a

special I/O pin across the flip-flops constituting the scan chain, enabling a finer

controllability of the circuit. Engineers can also freeze the execution, scan out the

values of the flip-flops forming the chain through the special I/O pin and analyze

it, hence gaining in observability. However, scan chains increase the area and the

interconnection complexity. Furthermore, the scan-in process introduces interferences

and non-determinism into the regular processor activity, and the scan-out process

does not allow resuming execution afterwards, because the scan elements are assumed

to be unstable. Hold-scan flip-flops are an evolution of the scan chains, and avoid

having to stop the processor execution while obtaining and inserting the scan outs

and scan ins, respectively. Despite hold-scans provide higher validation flexibility,

their overhead is very high. As a consequence, a small subset of the core logic is

covered by this technique. Furthermore, an efficient usage of scan-based techniques

is extremely dependent on the validators experience. The data capture of a scan

chain is performed by externally asserting the enable pin, and is not triggered by

internal conditions.

At-speed Built-in Self-Test (BIST) adds special circuitry into existing hardware

units to test them using their own hardware (at full speed). The advantages are their

low cost (no dependence on costly Automated Testing Equipment - ATE) and their

capability to perform tests during processor lifetime. However they achieve a reduced

coverage due to their inability to test big and interacting components. Furthermore,

they cannot detect transient or intermittent faults.

Whereas structural testing targets the detection of manufacturing errors, func-

tional post-silicon validation aims at detecting and debugging design bugs. Func-

44 · Chapter 3. Related Work

tional post-silicon validation is driven by directed and parameterized random tests.

Direct tests are often written by component designers and their expected outcome is

normally known a-priori. Parameterized random tests allow uncovering more errors

than directed tests, because they introduce non-determinism in the timings of in-

ternal activity but require slow architectural simulators to obtain the golden output.

These tests allow uncovering complex errors because they introduce non-determinism

in the timings of internal activity.

FRITS [146] (Functional Random Instruction Testing at Speed) is a software-

based technique that enables automated test generation. DFT equipment is used to

inject an automatically generated binary (the kernel) into the caches of the design

under test. The kernel repeatedly executes pseudo-random or directed instruction

sequences. For every execution of the kernel, the results (register file and memory)

are compressed and stored in the cache. The DFT equipment then extracts those re-

sults and an architectural simulator validates the generated results. However, FRITS

cannot validate the uncore because kernels cannot generate any cache miss because

address-data-control pins are under the tester control. In order to keep the pace of

the validation flow, big server farms are used to simulate the random tests and ob-

tain their expected outcome, so that they can be compared against the prototype’s

results. The biggest concern is the dependence on large server farms for generating

FRITS kernels and golden outputs for validation [163].

The debug process starts by collecting microarchitectural traces through tradi-

tional DFT techniques or by means of specific tracing (logging) technologies [1, 103],

as a way to increase the internal observability. An analysis of the traces is conducted

to reveal the succession of events that lead to the bug manifestation (either a system

crash, deadlock, data corruption, or as a violation of some internal assertion).

In the case of tracing technologies, they use dedicated on-chip buffers to tempo-

rally store the internal activity as well as expensive machinery to obtain the data out

of these buffers. However, they are rarely implemented because of their high area

overheads. Tracing technologies have been used in the industry to increase observ-

ability. Intel Generic Debug eXternal Connection (GDXC) [220] was introduced in

the Sandy Bridge processor [220] to debug the uncore. GDXC allows selecting and

forwarding messages across the ring interconnect to an external analyzer for diagnosis

purposes. This solution has many drawbacks. GDXC is restricted to uncore, and no

internal observability is possible for the activity in the core. Moreover, since GDXC

just forwards internal activity to an external analyzer through slow processor I/O

pins, intense activity periods can clog the I/O pins or can cause the dropping of trace

packets. Also, it is extremely costly when using logic analyzers, and on-chip buffering

is constrained to trace the internal activity for only few hundreds of cycles, while bugs

3.5. Industrial Validation Techniques · 45

may visibly manifest tens of thousand cycles later (e.g. hangs, data corruption).

One of the first steps to simplify the capture of traces is finding a way to freeze

the system close to the bug root-cause, before the bug activation. Cycle breakpoint

support [18] is used in combination with DFT techniques. Breakpoints can be defined

by programming custom checks or assertions [103, 206] on available signals.

An important issue here is the capability to efficiently reproduce failures on the

RTL model of the system under test. The biggest challenge is achieving a complete

synchronization between the behavior of the silicon and the the RTL simulator. The

PSMI (Periodic State Management Interrupt) methodology [178] is a well-known

solution for this. PSMI periodically asserts a special processor pin, while the processor

executes a test or application, forcing it to enter into a manually crafted software

handler. The handler first dumps the content of the architectural state into memory,

making it visible on the processor system bus (Dump point). Then, it pre-defines a

state in some arrays and state machines (Sync point). The dumping allows validators

to obtain checkpoints for initializing the RTL model, close to the error manifestation

point. A successful state transfer provides full internal observability in the RTL model

while eliminates the need of executing the whole test in that slow model. However,

the main problem consists in the interference introduced by the Synch points. The

Synch points in the handler can cause the elimination of the manifestation of bug

that originally existed. More importantly, PSMI involves an extremely iterative hand-

tuning process which requires deep knowledge of the underlying microarchitecture.

46 · Chapter 3. Related Work

CHAPTER 4

EVALUATION FRAMEWORK

This Chapter describes the evaluation framework that we have used to implement

and evaluate our proposed solutions. The baseline fault tolerance capabilities of our

baseline processor model are also presented.

4.1 Benchmarks, Tools and Simulators

The global structure of the evaluation framework is depicted in Figure 4.1. It inte-

grates a processor timing simulator that runs a set of benchmarks. Connected to the

performance simulator, our framework integrates a fault injection model that allows

computing the error coverage of the proposed solutions, based on the dynamic be-

havior of the simulated processor. Similarly, our infrastructure also incorporates a

power and area model that based on the microarchitecture of the processor is able

to compute the power and area overheads of our proposals. Section 4.1.1 details our

benchmarks, Section 4.1.2 describes the performance (timing) model and the base-

line processor that is simulated, Section 4.1.3 delves into our fault coverage evaluation

model and Section 4.1.4 discusses the area, power and delay models.

4.1.1 Benchmarks

The focus of this thesis is reducing the vulnerability of advanced out-of-order su-

perscalar processors, while at the same time minimizing the area, power and perfor-

mance impact. Hence, one of the most suitable benchmarks are those for common

high-performance and commodity systems. We use the SPEC CPU2000 suite, that

is an industry-standardized CPU-intensive benchmark suite [190].

48 · Chapter 4. Evaluation Framework

� !"# $%&'(#)*%
+*,'"

-.("'/"'0'"
1'23*24 %('

+*,'"

1*5'2/62' +*,'"
789:;<=>?@;89

:;ABC

DB9EFG?>HC IB>:8>G?9EB
JC@;G?@BC

K>B? ?9L I8MB>
NIB?HOP=9@;GBQ

JC@;G?@BC

R?=A@ 78SB>?<B
JC@;G?@BC

TUVWXWVY
Z[\]V^_`

a^UbWc\^`d
e\VU[f^

gh]i[f
jh\kV`

Fig. 4.1: Global structure of our evaluation framework

The benchmark suite consists of 12 integer programs and 14 floating point pro-

grams. For the sake of generality we have used both the integer and the FP programs

in the whole thesis.

Table 4.1 shows the description of the benchmarks used across all our studies. We

have used the ref input data set. The benchmarks have been compiled using IntelR©

ICC 8.0 C and Fortran Compilers, using the -O3 and -O4 flags, respectively.

To simulate significant parts of the programs, we have used the PinPoints [147]

tool. As noted by the authors, we have configured it with 250M instruction slices,

a parameter of max clustering of 10, and have picked the region with the highest

weight. The first 150M instructions are used to warm-up the caches and the rest of

micro-architectural blocks. In the rest of the thesis, the default number of instructions

simulated is 100M (the rest of the 250M slice), except otherwise stated.

4.1.2 Timing Simulator

All the techniques presented in this thesis have been evaluated using an execution-

driven microarchitectural simulator that runs IntelR© x64 applications. The base

simulator we have used is a detailed industrial path-finding performance simulator

developed by the IntelR© Barcelona Research Center team.

The simulator is highly configurable and is able to model advanced out-of-order

processors that include register renaming and physical register files. Table 4.2 shows

the values for the most important configuration parameters for all the evaluations,

unless a different configuration is stated. At a high-level, the microarchitecture re-

sembles the one found in the IntelR© Core
TM

Sandy Bridge processor [79, 85, 130, 173],

but does not totally correspond with it at every detail. For example, parameters such

as the size and bandwidth of structures, etc. have been scaled down to account for

4.1. Benchmarks, Tools and Simulators · 49

Table 4.1: Benchmarks used to evaluate our solutions

INT programs

Benchmark Description

bzip2 Data compression utility

crafty Chess program

eon Ray tracing

gap Computational group theory

gcc C compiler

gzip Data compression utility

mcf Minimum cost network flow solver

parser Natural language processing

perlbmk Perl

twolf Place and route simulator

vortex Object Oriented Database

vpr FPGA circuit placement and routing

ammp Computational chemistry

applu Parabolic/elliptic partial differential equations

FP programs

Benchmark Description

apsi Solves problems regarding temperature, wind,

velocity and distribution of pollutants

art Neural network simulation; adaptive resonance theory

equake Finite element simulation; earthquake modeling

facerec Computer vision: recognizes faces

fma3d Finite element crash simulation

lucas Number theory: primality testing

mesa 3D Graphics library

mgrid Multi-grid solver in 3D potential field

sixtrack Particle accelerator model

swim Shallow water modeling

train-galgel Fluid dynamics: analysis of oscillatory instability

wupwise Quantum chromodynamics

50 · Chapter 4. Evaluation Framework

������

����	

���
�

��

�����
�

������

����������
����
�����

������

�����������
 ���

!
�����

"���������

 ���

#�$$��

������

�%&���
���'��(

����)��*
 "���+�
��)�����
$�	��
�� �

��
�����
�������

,��

 "

��+�

,��

 "

��+�

�����

,��

 "

��+�

���������

����������

-����
���-�

�����
-����
��-�

,		�������
#�$$��

Fig. 4.2: Baseline processor microarchitecture. Light green blocks are protected by existing

techniques

mobile segments.

Our evaluations focus on single-thread performance on a single core configuration,

so we have scaled down the last-level cache accordingly.

The processor pipeline is shown in Figure 4.2: IntelR© x64 instructions are fetched

from the first level instruction cache, accessing the branch predictors if required.

Then, macro-instructions are decoded into several micro-instructions (micro-ops [85]),

following program order.

Micro-instructions are later sent to the rename logic, which is required to support

out-of-order execution. Renaming instructions enforces the register dataflow specified

by the programmer/compiler even though instructions may be executed not following

original program order. After that, micro-ops are allocated in the Reorder Buffer, in

4.1. Benchmarks, Tools and Simulators · 51

the Load-Store Queue if they are memory operations and in the Issue Queue. In the

issue queue they wait until their operands are ready, so that they can be then issued

to the execution ports for out-of-order execution.

When instructions are issued, they wake up the dependent instructions. When

instructions finish their execution, they write-back their results into their allocated

physical registers. At execution, unresolved branches find out if they were mispre-

dicted or not. In case of misprediction the pipeline and rename table is recovered.

Once executed, instructions send a completed signal to their ROB entries. Finally,

the instructions at the head of the ROB commit, leave the pipeline and release mi-

croarchitectural resources. Store instructions access memory at this stage.

4.1.3 Fault Coverage Evaluation Methodology

The fault injection methodology in this thesis aims at modeling the faults caused

by any source of error (transient error, intermittent error, design bug or other hard

faults) in an advanced out-of-order processor pipeline, and study the response of the

proposed techniques in detecting or diagnosing them.

From a circuit-level perspective, a fault can affect a stored bit in a sequential

element or affect the transistors and wires of combinational logic blocks. However,

modeling these faults requires a gate-level model of the processor pipeline. Even

though gate-level modeling allows accurate measurements, microarchitectural-level

fault injection regimes are more desirable from a design perspective [155]:

• Simulation speed Fault simulation at the gate-level is extremely time con-

suming. These models are very detailed, and their simulation speed is orders

of magnitude lower than for performance simulators. Given that many fault

injections are required for a high degree of confidence, simulating them at the

circuit-level becomes almost impossible.

• Reliability decisions during design path-finding Fault injection at the

circuit-level is not suitable for use during design phases. Early reliability esti-

mates must be made in order to guide and adapt the design, in a similar manner

as it is done with power or temperature budgets. This fact calls for reasonably

accurate cost-effective methods to obtain error coverage metrics, and therefore,

microarchitectural-level models (such as timing simulators) represent a sweet

spot. Furthermore, abstract models are the ones available during these stages,

and not circuit-level models.

• Fault masking Fault injection at a gate-level has the downside of fault mask-

ing [165]. Quantifying masking effects is critical when computing accurate (non-

52 · Chapter 4. Evaluation Framework

Table 4.2: Simulator configuration

Parameter Value

Frequency 2.8 GHz

Technology 32 nm

Voltage 1.1 V

DDR3-1600‡, 48ns/54 for open/random RAM page
Main Memory

+ 27 cycles for load-to-use latency

2 MB, 16-way, write-back, 27 cycles load-to-use, 2 slices,
Last-Level Cache (LLC)

1 R/W port of 32B each. Runs at core f /V, 32B ring

256 KB, 8-way, write-back, 12 cycles load-to-use,
Unified Second-Level Cache (L2$)

1 R/W port of 64B

32KB, 8-way, write-back, 2 cycles hit†
Data Cache (D$)

2 R/W ports of 32B, 64B lines

Miss Status Holding Register

(MSHR)
16 outstanding misses

32KB, 8-way, 3 cycles hit,
Instruction Cache (I$)

1 R/W port of 16B

Data/Instruction Translation

Lookaside Buffer (DTLB/ITLB)
128 entries, 8-way, 25 cycles per miss

GShare [112] PHT-BTB 8K entries bimodal 4-way,

Branch Predictors 16-bit history, 16 entries return-address stack

14 cycles misprediction penalty

Decode width up to 4 micro-instructions

Rename width up to 4 micro-instructions

Allocator Queue (Alloc) 12 entries (micro-instructions)

Allocate width up to 4 micro-instructions

Rename Tables (RATs) 1 frontend RAT, 8 checkpoint RATs

Issue Queue (IQ) 32 entries scheduler, connects to 6 exec ports

Issue width up to 6 micro-instructions

ALU [0/1/5], LEA [0/1], Shift [0/5],
INT Operations [exec ports]

Mult-Div [1], Jump Unit [5]

FP Operations [exec ports] Adder [1], Mult-Div [0]

SIMD INT:

SIMD INT/FP ALU [1/5], Mult-Div [0], Shift [0/5], Other [1/5]

Operations [exec ports] SIMD FP:

Add [1], Mult-Div [0], Other [5]

Load-Store Queue (LSQ) 30 loads, 20 stores (up to 2 loads and 1 store per cycle)

Memory Operations [exec ports] Load Address [2/3], Store Address [3], Store Data [4]

Register Files (RF) 128 INT, 128 FP-SIMD, 2 bypass levels

Reorder Buffer (ROB) 128 entries

Commit width up to 4 micro-instructions (max. 1 non-bogus store)
† : +2 cycles for load-to-use latency due to address calculation.

‡ : 10-10-10-28 tCL-tRCD-tRP-tRAS timings

4.1. Benchmarks, Tools and Simulators · 53

pessimistic) processor failure rates, but masked faults must be ignored when

evaluating the error coverage potential of a fault-tolerance technique. A bet-

ter approach is to directly model at a microarchitectural simulator non-masked

anomalies or failure scenarios caused by faults at the circuit-level. These

simulators are aware of several sources of masking. Instructions belonging to

wrong paths or mispeculated, instructions with dead results and instructions

suffering some types of logical masking can be identified and be avoided dur-

ing the fault injection. The net result is that the incidence of unmasked faults

is higher when using these models, resulting in a rigorous evaluation of the

fault-tolerance techniques.

We use a fault injection approach where faults locations at the microarchitectural-

level that end up manifesting in the same visible failure scenario are grouped to-

gether [155]. For example, faults in a register scoreboard entry, or in a shift-register,

or in a select request or bid signal, or in the latency of producers, etc. can result

in prematurely issued instructions. To do so, the pipeline stages and processor com-

ponents described in Appendix A are thoroughly inspected to identify the high-level

visible faults that can be modeled in a timing simulator, enabling a fast and reason-

ably accurate evaluation. We have used fault studies, such as Reddy’s [155], to guide

the finding of our particular failure scenarios. For fault locations not analyzed in

previous works, we have conducted fault injection studies in order to understand the

resulting manifesting failure scenario, and to reason about the conditions when they

mask or manifest.

In each of the next chapters, we detail the different failure scenarios that can

arise when faults affect the hardware involved in implementing the register dataflow,

memory dataflow and control flow recovery logic. For each failure scenario we list

the hardware components that, when faulty, can end up causing each type of failure.

For every considered failure scenario, 1000 effective faults are injected per bench-

mark. The fault injection is performed one-at-a-time during the first 10M instruc-

tions, in a random manner. Then, each experiment is allowed to run for 100M

instructions, to let the fault manifest. An injection experiment is rejected (not effec-

tive) when the fault is masked. Masking happens when these conditions are satisfied:

(i) the architectural state in the functional simulator is not corrupted (i.e the state

matches the expected golden state), (ii) the functional simulator does not report an

error (no assert in the benchmark is raised and no wrong exit status is returned by

the simulated benchmark), and (iii) the watchdog timer (described in Section 4.2)

does not trigger.

The timing simulator and the interface to the functional simulator have been

deeply modified to support explicit fault injection. First, it has been extended to ex-

54 · Chapter 4. Evaluation Framework

plicitly model micro-architectural structures that were originally implicitly modeled.

This includes hardware blocks like the bypass network, the bypass-register file data,

branch coloring fields for wrong-path tracking, logical register destinations, latency

fields in the issue queue, ready fields, etc. In addition, the performance simulator has

been modified to include buggy methods. The objectives are twofold: first, it allows

supporting fault injection for hardware locations that cannot be explicitly modeled

at a micro-architectural level, and second, by using buggy methods we can guarantee

that the proposed solutions can cover against functional design bugs. Some examples

include: buggy methods for the wake-up logic, select logic, load-store queue logic,

instruction squashing logic, input multiplexors, and ROB walk logic.

For locations explicitly modeled in the performance simulator, faults are injected

as single bit flips. For locations not explicitly modeled, faults are modeled as acti-

vation of the buggy simulator methods. The duration of the injected faults have no

fundamental impact on the coverage of end-to-end schemes, as noted by Meixner [186].

For non-transient faults, instead of letting faults persist during the whole experiment

execution, we have chosen a more pessimistic approach where they behave like ”short

intermittent” faults. This approach provides lower-bounds on error detection cover-

age for permanent faults, as the opportunity to detect them is limited by only one

fault activation, and not be consecutive ones. It is important to note that by relying

on spatial redundancy, permanent faults can be detected (the checked hardware is

different to the hardware implementing error detection). Furthermore, design het-

erogeneity covers against design bugs (the checker logic is different to the checked

logic).

Methods like AVF analysis [126, 128] have not been used because despite be-

ing suitable for computing estimates for SRAM and CAM structures, they cannot

estimate the vulnerability for combinational logic.

4.1.4 Area, Power and Delay Evaluation Methodology

One of the objectives of this thesis is to satisfy the needs for efficient reliability

solutions with minimal costs in performance, power and area, while at the same

time providing the high reliability levels of traditional defect tolerance techniques.

Therefore, area, power and delay studies also require specific evaluation tools and

methodology.

We use an in-house 1 path-finding power, area and delay tool that models the

processor micro-architectural blocks and units. This model allows driving power,

area and delay analysis and takes into consideration the particular implementation

1Developed by the Intel R© Barcelona Research Center team.

4.1. Benchmarks, Tools and Simulators · 55

of specific micro-architectural blocks. For cache-like and array structures, our model

is based on CACTI 5.3 [200]. For the rest of structures (such as combinational logic,

wiring and clocking), our model ports and extends Wattch 1.0 [27]. As opposed

to Wattch, our model works with new CACTI versions, interfaces into an advanced

timing simulator and incorporates specific IntelR©-internal values. An alternative

model like McPAT [99] has not been used because it became publicly available and

stable after we had begun evaluating some of our techniques. The models have been

parameterized for a 32nm technology node.

Note that our model does not rely on costly and slow computer-aided

design circuit tools (such as HSPICE), nor on electronic design automation

tools. The reasons are twofold. First, the circuit-level implementation of our baseline

processor was not available. And second, tools like CACTI and Wattch provide

processor architects with power, area and delay modeling at abstraction levels above

circuits and schematics. This enables the possibility to explore and cull the design

space early on, using faster, higher-level tools [27, 200].

The power component also counts the number of times some predefined microar-

chitectural events occur. For example, we count the number of times a register is

read or written. This is done for every major block in the micro-architecture during

program execution. The peak power of individual units and these machine utilization

statistics are used to calculate the runtime power dissipation. However, to evaluate

the power overheads of our solutions, we focus on peak dynamic power 2. Peak

power numbers are obtained based on maximum activity factors and maximum peak

energy-per-event. Peak power ends up defining the maximum power consumption of

a processor and provides upper bounds estimates. Furthermore, this power metric

critically impacts the reliability of the processor [191]. The power overheads we show

are clearly pessimistic, as a consequence.

The main blocks that the model incorporates fall into these categories:

• Array structures: Caches, cache tag arrays, TLBs, branch prediction struc-

tures, rename tables, free lists, register files, the ROB, the issue queue payload

RAM and register scoreboard, as well as the load-store queue payload RAM.

• Fully Associative Content-Addressable Memories: Issue queue wake-up

logic, load-store queue memory checks.

2In CMOS processors, dynamic power consumption (Pd) is the main source of power consumption,

and is defined as: Pd = C ∗ Vdd
2 ∗ a ∗ f . C is the load capacitance, Vdd is the supply voltage, and f

is the clock frequency. The activity factor, a is a value between 0 and 1 indicating how often clock

ticks lead to switching activity on average.

56 · Chapter 4. Evaluation Framework

• Combinational Logic: Decoders, renaming intra-bundle dependency check-

ing, selection logic, functional units and ROB walk (RAT recovery) logic.

• Data wires: Result and bypass buses.

• Global clocking: Clock buffers, clock wires, etc.

The design, structure and sizing of micro-architectural blocks (described in Ta-

ble 4.2) are used to derive their representation and parametrization in our power-

area-delay model. A single high-level logical microarchitectural structure sometimes

is represented as several components in the model. As an example, the issue queue

is represented as a CAM memory and a RAM memory (modeled by CACTI), and as

combinational logic and as wiring (modeled as in Wattch).

For array structures and CAM memories CACTI allows specifying a block config-

uration based on parameters such as: cache type (i.e. data arrays, data+tag arrays,

and DRAM arrays), structure size, associativity, line size, number of read, write and

read/write ports, technology, voltage, frequency, temperature, number of banks, out-

put/input bus width, explicit tag size, tag and data access mode (i.e. fast, sequential,

normal) and transistor type (high-performance, low stand-by power, low operating

power, DRAM).

CACTI allows specifying optimization criteria and constraints in order to find

a design that better suits the user needs. This allows the user to skip over many

of the low-level details of the components being modeled and lessen the burden on

the architect to figure out every detail. Configurations are evaluated by assigning

a weight to each optimization criteria (delay, leakage power, dynamic power, cycle

time and area), and the solution space is pruned based on maximum deviation with

respect to the best solutions found during the process. Alternatively, the user can

specify a design exploration criteria based on energy-delay (ED) or energy-delay

square (ED2).

ED2 optimization criteria has been chosen for most blocks, as we target performance-

oriented processors. Those blocks affected by our techniques are checked to meet the

processor cycle time (the target clock rate is used as a design constraint). Those that

are time-critical have been optimized by CACTI using other constraints. For exam-

ple, the bypass network is time critical because it is routed over the functional units

and the register files [140]. As a consequence, the register files have been optimized

by prioritizing the area and dynamic power.

For combinational logic, data buses and clocking structures, our power-area-delay

model is heavily based in Wattch. Next we provide details of several of our microar-

chitectural components.

4.1. Benchmarks, Tools and Simulators · 57

• Instruction Decoders: In this case, we have used internal values from

previous Intel R© products scaled by process technology and frequency.

• Intra-Bundle Dependency Checking Logic: Two parallel intra-bundle

dependency checking blocks handle RAW and WAW dependencies. The area

and power of each block is computed based on the number of comparators and

their capacitance. Delay is assumed to be lower than the RAT access time, as

noted by Palacharla et al. [140].

• Functional Units: In this case, we have used internal values from previous

Intel R© products scaled by process technology and frequency.

• Write-Back Bus and Bypass Network: The number of wires equals to

the data width times the number of stacks that produce a value within all

the execution ports multiplied by the number of stacks of the same type. The

result bus power is computed based on specific internal wire capacitances from

the technology and clock frequency. The area of the functional units and the

register files are used to compute the result bus length [140], which is multiplied

by the capacitance per unit of length. Tristate buffers are used to model input

multiplexors.

• Select Logic: We follow the approach of Wattch (and McPAT): we model it

as a tree of cascaded arbiters, where each arbiter in the tree handles up to four

selection requests. Select requests traverse the tree down to the root arbiter,

and a bid answer traverses up to a leaf arbiter which eventually selects an in-

struction. An arbiter is modeled as OR gates and as priority encoders. Globally,

as many trees as the number of execution ports are modeled. The centralized

select logic that manages resource conflicts is included in our framework.

• Wake-up Logic: We follow the approach of Wattch (and McPAT): the CAM

search operation serves as the wakeup logic for the issue queue. We model

both the tag drive (including the power and area to write new tags) and the

tag match components. This includes the buffers to drive the destination tags,

taglines, comparators, wordlines, bitlines, matchlines and OR gates to produce

the readiness bits [139].

• LSQ Checking Logic: The CAM search operation also models the detection

of store-to-load forwarding and memory ordering violations scenarios. The full

length of addresses are used in CAM matches. The load and store queue CAM

memories are modeled separately but in as a similar way as in the previous

item. Our power and area model also accounts for the comparators that handle

58 · Chapter 4. Evaluation Framework

age information and the priority encoders to choose the youngest but older

forwarding stores, as opposed to Wattch.

• ROB Walk Logic: The modeling is handled similar to the second item. In

this case, only WAW dependencies are handled, but given that the RAT can be

recovered by undoing or redoing register mappings, two independent blocks are

needed. They are modeled as in the second item. In addition, we also account

the power and area needed to store and access the register mapping fields (that

are kept at separate ROB banks).

• Global Clock: We enhance Wattch’s H-tree model where the global clock

signal is routed to all portions of the chip using equivalent length metal wires

and clock buffers. The model also accounts for the bits required to latch each

stage, and uses the processor area number computed by CACTI or obtained

from internal IntelR© values, as opposed to Wattch.

4.2 RAS Features in the Baseline Processor

This section lists the error protection mechanisms that are included in the baseline

processor. Modern advanced out-of-order processors include few simple RAS features

to protect critical structures from an area and vulnerability perspective.

Therefore, our baseline processor also includes simple error code protection mech-

anism in several structures. Figure 4.2 shows in light green the arrays that we as-

sume protected by an error code scheme, and in light red the blocks that cannot

be protected by existing mechanisms (components heavily implemented by means

of combinational logic). Cache structures such as the instruction cache, data cache,

second-level cache and the TLBs are protected by error detection-correction codes.

Whereas TLBs are protected by means of parity, the caches are protected by ECC

codes that support error correction. The second-level and LLC caches are protected

by stronger SEC-DED schemes.

Other storage structures, like buffers, are protected by simple error detection

codes. The fetch buffer is protected by parity codes that are extracted from the

instruction cache. Other arrays like the allocation buffer, or the entries in the issue

queue payload RAM are protected by explicitly generated parity bit (they are wide,

and non-mutable). Faults can be simply detected by checking the information code,

and non-permanent faults can be recovered by means of the pipeline-flush and restart

mechanism provided by the baseline core. The register files are protected by a parity

bit, and the parity generators and checkers reside at the inputs of the write and read

ports, respectively.

4.2. RAS Features in the Baseline Processor · 59

As most processors, ours also includes a watchdog timer that monitors the hard-

ware for signs of deadlock. Specifically, the watchdog timer monitors the ROB: if no

instructions commit for an extremely long time that exceeds a predefined threshold,

then the watchdog timer reports that an error has occurred, the pipeline is flushed

and execution is re-started from the instruction at the head of the ROB.

Instruction control flow and allocate logic is protected by this watchdog timer and

a special checker residing in the ROB [49, 155]: the Program Counter (PC) of each

instruction is checked against the following instructions PC to ensure correct program

order. Sequential committing instructions add their length (recorded at decode time)

to the retirement PC and branches update the retirement PC with their calculated

PC. Comparing a committing instructions PC with the retirement PC will detect

discontinuities. Detected failure scenarios include: wrong PC generation, unintended

instructions (dis)appearing in the frontend, overwriting instructions in the frontend

queues, instructions being moved forward in an unordered manner, allocation in

wrong ROB/LSQ/issue queue entries (potentially overwriting).3

Decoders logic and PLAs (Programmable Logic Arrays) are protected using the

method described in [37], due to their large area.

3Allocating an instruction in a wrong ROB entry is detected by means of the PC checker. If

an instruction is wrongly allocated in the issue queue / LSQ (overwriting an existing unexecuted

one), the ROB complete bit of the overwritten instruction entry will not be activated, leading to a

deadlock.

60 · Chapter 4. Evaluation Framework

CHAPTER 5

REGISTER DATAFLOW

VALIDATION

5.1 Introduction

Whereas classical error detection mechanisms based on re-execution were amenable

for high-end segments where high area, power and/or performance penalties could be

tolerated, the radical increase in raw error rates calls for fault tolerance mechanisms

that can be deployed in commodity segments. New requirements include negligible

area, power and slowdown overheads, while at the same time providing the high

reliability levels of traditional defect tolerance techniques.

On another axis, whereas critical SRAM structures (such as caches and register

files) are already protected with parity or error correction codes in most commercial

processors, limited research efforts have been devoted to design cost-effective error

detection strategies for the wrapping control logic of high-performance microproces-

sors. Currently it plays a critical role for the whole microprocessor correct operation,

and it represents a significant portion of the die area and testing and validation costs.

In this chapter we propose a low-cost online end-to-end protection mechanism that

protects the control logic involved in the register dataflow. This includes the rename

tables, wake-up logic, select logic, input multiplexors, operand read and writeback,

the register free list, register release, register allocation, and the replay logic. Our

proposal is based on microarchitectural invariants (applicable to any processor design)

and allows detecting multiple sources of failures, including design bugs.

End-to-end protection is based in generating a protection code at the source where

vulnerable data is generated, sending the vulnerable data with the protection code

62 · Chapter 5. Register Dataflow Validation

along the path, and checking for errors only at the end of the path, where it is

consumed. Faults caused by any logic gates, storage elements, or buses along the

path are detected at the consumption site. Instead of individually checking specific

low-level microarchitectural blocks, our solutions verifies high-level functionalities

whose implementation is scattered across many components.

The centerpiece of the proposed solution is a signature-based protection mecha-

nism. The implementation cost and the coverage provided by the protection frame-

work depends, primarily, on the signature width and, secondarily, on how signatures

are generated. We propose and thoroughly assess different multiple ways of generat-

ing and handling signatures. For each policy, we discuss the error coverage and their

cost in area and power.

In this chapter, we also study how to extend fault coverage to cover against errors

in register values. To achieve this, we first exploit the potential of residue codes

to build an end-to-end self-checking microarchitecture that computes with encoded

operands. Then, we describe how this end-to-end residue checking system can be

smoothly embedded into our register dataflow end-to-end protection scheme, in order

to amortize costs. The net result is that functional units, load-store queue data and

addresses, register file storage and data buses are also protected at a low cost.

The rest of the chapter is structured as follows: Section 5.2 reviews how faults

in the dataflow may manifest. Section 5.3 reviews our framework for a dataflow

self-test mechanism. Section 5.4 overviews an end-to-end residue coding scheme and

explains how to integrate it with our proposal. In Section 5.5 we propose and assess

different policies for generating and handling the signatures. Section 5.6 discusses how

the different signature generation policies impact the overall coverage and processor

overheads. Section 5.7 reviews some relevant related work. We summarize our main

conclusions in Section 5.8.

5.2 Register Dataflow Failures

Faults in the dataflow could result into different architectural errors. We classify

them by error location, and depict some possible faults that caused them.

1. Selection of wrong inputs : The input multiplexors and the selection logic that

chooses the input operands from the bypass/register file and feeds the functional

units may select a wrong input, causing an incorrect data to be consumed.

2. Wrong register file access : A read access to the register file may provide a wrong

data value. The causes might be: (a) a “register read” access that reads from a

5.2. Register Dataflow Failures · 63

wrong entry, (b) a “register write” access that writes into a wrong register (in

this case, the readers will suffer the consequences), or any other cause.

3. Premature issue: A prematurely issued instruction will consume a wrong data

value. Some causes are: (a) incorrect operation of the wake-up logic, (b) incor-

rect operation of the select logic, (c) incorrect assignment of the latency of a

producer instruction (the consumers suffer the effects), etc.

4. Wrong tag : An instruction may depend on a wrong instruction (i.e. through a

wrong register tag) and consume its data. The causes might be: (a) incorrect

contents in the rename table, (b) wrong access to the rename table, (c) faults

in the rename dependence checking inside the rename bundle, or (d) corruption

of a tag tracking a register dependence in the issue queue.

5. Data stall in the bypass network : If the latches placed in the different levels of

the bypass do not latch a new value (e.g. due to a missing or delayed clock

signal) it may happen that it gets stalled with an old data value.

6. Register free-list misuse: If the register free list does not operate correctly

(including wrong register release and allocation), the register tags might get

corrupted. We also consider the situation when the old or current mapping in

the ROB may get corrupted. The net result is that a physical register may

simultaneously be the destination location for two different instructions.

7. Load replay errors : If the replay logic does not work properly, it may neither

identify nor reissue all the instructions that depend on a load that misses in

the data cache. 1 As a consequence, there could be silent commitment of bogus

values, potentially corrupting the architectural state.

8. Deadlock : A deadlock will happen if the oldest instruction waits (incorrectly)

for a tag that is not in-flight and, hence, cannot trigger a wake-up. This is a

sub-case of a “wrong tag” with a different microarchitectural result.

Faults that result in a deadlock can be easily detected by means of a watchdog

timer, already implemented in many current microprocessors [7, 78] and in our base-

line processor (Appendix A). However, the other faults result in instructions operat-

ing with a wrong data value, and require more sophisticated detection mechanisms.

These faults are the target of our protection mechanism.

1Also, these instructions could be replayed due to a TLB miss, bank conflicts in the data cache,

or write port conflicts in the register file

64 · Chapter 5. Register Dataflow Validation

5.3 End-to-End Dataflow Validation

This section describes our proposal for an efficient mechanism to perform online val-

idation of the register dataflow logic. We first explain the signature-based protection

scheme and the different high-level steps it is composed of. We then comment on how

register dataflow faults can be recovered when detected by our technique. We finally

analyze the required hardware changes needed to support our proposed solution.

5.3.1 Signature-Based Protection: General Idea

We propose a novel technique that is based on marking every data value flowing

through the pipeline with a signature. A signature is a token associated to a chunk

of information. Whereas codes such as residue, parity or ECC are a function of the

data they are associated with, signatures in its general definition do not depend on

any property of the protected information.

lmn opqrslmnt ouv opqrsouvt

wxy z{| } ~� ��� �� � �

{ll z{| } z{| � �� ��� �� z{| o~

{ll z�| } z{| � �� ��� �� z{| o�

Fig. 5.1: Register signature assignment among dependent instructions: an example

Our online validation technique is exemplified in Figure 5.1, which shows three in-

structions with their corresponding destination and source signatures. Each operand,

including sources and destination, receives a signature that allows tracking the dataflow.

Each a priori source signature is compared with a posteriori signature obtained dur-

ing execution. The signature obtained during execution can be considered as the

result of the control logic that is protected, potentially faulty. If both signatures mis-

match, an error is detected. Otherwise, the destination signature is written back and

forwarded along with the data to any potential consumer. This way, the producer-

consumer loop is continuously monitored through a hand-shake mechanism.

We now precisely describe the main signature-based protection scheme dividing

it into three steps: signature assignment, signature flow and signature check. The

complete flow is depicted in Figure 5.2.

5.3. End-to-End Dataflow Validation · 65

������ ������ ����� ��
�������

����

¡
¢
£

¤

¡
¢
£¥

¦§

¨©ª«¬­®¯° ±²³´µ¬­¬ ±²³´ ¨©ª«¬­®¯° ¶ µ¬­¬ ±²³´

�������·�

���������� ¸¹º¸¹º

����

Fig. 5.2: End-to-end signature checking: extensions in the core dataflow

Signature Assignment

Signature assignment is performed in two steps, similar to register allocation. All

instructions that generate a register value obtain a destination signature. Immediate

values are also assigned a signature. Since the number of immediate operands is low,

we will concentrate in the rest of the chapter on register operands.

Destination signature assignment can be performed as soon as the logical registers

destinations have been identified. Without loss of generality we assume this is per-

formed during the rename stages, although this could be done during decode time.

Once instructions have been renamed, the destination signatures are stored into the

rename table together with the allocated register physical tags. Since signatures can

be arbitrarily generated for destination registers, the hardware in charge of gener-

ating them is independent of the proposed design framework. Different signature

assignment policies will be discussed in Section 5.5, and it will be shown that they

have a direct impact in complexity and coverage.

Source operands receive their corresponding signatures at rename time from the

rename table. 2 In a fault-free scenario, the rationale is that such signatures must

match the destination signature of the producer instruction of that operand. Overall,

every instruction flows after the rename stage with 3 signatures (as shown in Fig-

ure 5.3 and Figure 5.2): the signature of the data it will produce (Sign(Dst)), and

the signatures of the producers of its two operands (Sign(Src1) and Sign(Src2)).

2Except for one signature assignment policy, as it will be discussed in Section 5.5.

66 · Chapter 5. Register Dataflow Validation

From RF
(src 2)

Execution
port

=? =?

ok?

From RF
(src 1)

From
Bypasses

From
Bypasses

Data

Opcode Tag comparison

1 2
To RF

(write-back)

T
o

 B
yp

a
ss

e
s

Sign(Src1)

Sign(Src2)

T
o

 B
yp

a
ss

e
s

Destination
TagSign(Dst)

S1’

S2’

Fig. 5.3: End-to-end signature checking: extensions in the backend logic (signatures hardware is

shown colored

Signature Flow

Figure 5.2 depicts how data and signatures flow through the pipeline. After being

renamed, the issue queue receives instructions with two source and one destination

signatures. At the issue queue, instructions wait until they are ready for execution.

Once an instruction issues, it reaches the multiplexors at the input of the functional

units (’Execute’ box). Such multiplexors select among the different data paths the

value to consume (i.e. a bypass path or register file entry in our design). There-

fore, since data and signatures travel together, the operand selection also selects the

signature that flows with it.

Once the instruction finalizes execution, it sends the result with its corresponding

signature (Sign(Dst)) to all register datapaths in order to reach all potential con-

sumers. Again, for our baseline processor, this includes the bypass network and the

5.3. End-to-End Dataflow Validation · 67

register file. For other schemes where speculatively produced values are stored in the

ROB, the signatures would also be temporally stored in that structure. By sending

the signature through the bypass and storing it in the register file and all dataflow

structures, subsequent instructions that consume it (either correctly or wrongly) can

perform the flow check.

Special treatment must be paid on loads: processors speculate whether loads will

be able to obtain the data from the cache (will hit), in order to allow dependent

instructions to issue back-to-back, without paying the latency to wait for actual hit

status. A misprediction implies that dependent instructions consume bogus data and

must therefore be identified, nullified and re-issued later to consume the correct data.

We extend the signature flow step to also protect against faults in the load replay

system. We transform the existing signature infrastructure into a poison propagation

network (a serial verification scheme [89]) where corrupted signatures correspond to

instructions depending (directly or indirectly) on a load that misses in the data cache.

The corruption process starts with the detection of a load missing in cache: its

destination signature is immediately corrupted and propagated. A small circuit called

spoil circuit performs this. The directly dependent instructions will observe the

corrupt signature upon execution, and this will cause them to recursively corrupt and

forward their own destination signature to inform any potential indirect consumer.

Signature Check

As shown in Figure 5.3, the dataflow checks are performed after the input multi-

plexors select the data that the functional unit will use. At that point, we have the

information required to validate that everything went right: (i) the signatures asso-

ciated to the source data values that the functional unit will consume, and (ii) the

expected signatures for the values the functional unit should consume, which were

obtained at the rename stage and read out from the issue queue upon issue.

Two signature comparators are placed next to the functional units (one for each

source operand); if any of the signatures mismatch an error is detected unless it

corresponds to an instruction that needs to be replayed by the load replay system.

To filter out signature mismatches that correspond to instructions that must be

replayed due to load latency mispeculations, an additional action is taken. In par-

allel to the signature checking, we use the signal ’replay? ’ provided by the load

replay system, which tells whether an instruction should be replayed or make forward

progress. Notice that in case of a load latency misprediction, we expect a mismatch

in the signatures. Based on the output of the signature comparators and based on

the ’replay? ’ signal provided by the existing load replay system, Table 5.1 indicates

68 · Chapter 5. Register Dataflow Validation

Table 5.1: Register signature mismatches corresponding to real register dataflow errors

Signatures mismatch? Replay Is Needed? Flag Error?

no no no

no yes yes

yes no yes

yes yes no

the cases when a signature mismatch corresponds to a real error scenario. Note that

both signals do not share any control logic and hence, are redundant. It can be seen

that in case both signals agree, nothing is done. Otherwise, a failure is detected and

a recovery action is attempted.

5.3.2 Failure Recovery

We rely on flushing the pipeline to restore correct state in the event of an error

detection. This mechanism is already provided by the processor to handle scenarios

like the recovery of wrong memory ordering detection in the load-store queue, or to

handle branch misprediction recovery.

Re-execution will start from the instruction observing a signature mismatch. By

flushing the pipeline we can recover from multiple sources of failures that affect the

dataflow and values, as long as the faults alter speculative state. However, faults

affecting the architectural state that are later exercised, consumed and detected by

an instruction cannot always be recovered by flushing the pipeline. The reason is that

the causing instruction may have already left the pipeline. These failure scenarios

correspond to faults that result in wrong data being written back to the register

file, written to a wrong register file location, or simply corrupting the data stored

in the register file. The same applies for faults in the rename table: wrong updates

(entry or tag) to the rename table, or simply bit upsets in the rename table cannot

always be recovered by flushing the pipeline. For these cases, we must rely on existing

recovery mechanisms like checkpointing (recall Chapter 2) to roll-back the processor

to a pristine state. Otherwise, we can just simply flag a machine check exception and

guarantee that no silent data corruption has occurred.

After the pipeline flush and during re-execution the faulty hardware will not be

exercised for those failures that can be effectively recovered. However, for those faults

that have a permanent nature, we would like to disable the affected hardware. How

the faulty block is disabled or replaced is out of the scope of this work.

5.3. End-to-End Dataflow Validation · 69

5.3.3 Microarchitectural Changes

We describe now the changes in the processor stages and hardware structures required

for implementing the proposed mechanism. Figure 5.3 and Figure 5.2 show a close

view of the hardware changes required in the backend and in the core. A detailed list

of the microarchitectural changes follows (assuming B bits per signature for a total

of M = 2B signatures).

• Rename stages. The modifications in these stages depend on the signature

assignment policy. We will assess them in Section 5.5.

• Allocation stages. Additional space in the instruction queues to hold the

source and destination signatures (3 signatures of 3 bits).

• Issue queue. The CAM memory or bit matrix [166] to track register depen-

dences is left unchanged. Hence, the delay of the critical wake-up/select loop

is not affected. Conversely, we enlarge the payload RAM. Each entry in the

payload RAM will hold extra fields for keeping the signatures of the sources

and the destination (3 signatures of B bits). Input allocation write ports and

output issue read ports are resized accordingly.

• Register files. Additional space and wires to store the signature per register

(B bits per register).

• ROB. It will depend on the the control-flow recovery implemented and the

signature assignment policy. We will assess it in Section 5.5.

• Bypass network. Additional wires to carry the signature of each register value

(B bits per value), and wider input multiplexors at the inputs of the execution

ports.

• Execution units. Signature checkers that compare the signature of the register

value received at the execution units with the expected signature (2 comparators

of B bits).

• Write-back network. Additional wires to carry the signature of each value

(B bits per value).

• Replay logic. The added hardware to implement the error detection for the

replay logic is just the spoil circuits. The spoil circuits can be implemented

with just an XOR inverter, since we only want to corrupt the signatures. We

require one spoil circuit for every functional unit that propagates a destination

register and signature, including the load execution ports.

70 · Chapter 5. Register Dataflow Validation

Large part of the hardware overhead mainly comes from (i) the additional register

file storage, (ii) the additional wires in the bypass network, and (iii) the additional

fields in the ROB. Therefore, the signatures should be as narrow as possible.

5.4 End-to-End Register Value and Dataflow Validation

This section starts with an overview of residue coding and an end-to-end implemen-

tation that protects the register data values and computation. Next, we detail how

to integrate it with our end-to-end register dataflow protection mechanism, in such a

way that their overheads are shared but the detected failure scenarios are expanded.

Microarchitectural changes needed to support our combined solution are also ana-

lyzed. We finally exemplify how our combined end-to-end signatures and residues

technique works together to detect failures in the register dataflow logic, values and

computation.

5.4.1 Implementing End-to-End Residue Checking

Arithmetic codes have been deeply studied in the past for protecting data but also for

protecting arithmetic and logic functional units (computation). They are based on

attaching a redundant code to every data word. While data is protected by verifying

the associated redundant code, arithmetic operations are protected by operating in

parallel the data and the codes. This is, arithmetic codes are preserved by correct

arithmetic operations: a correctly executed operation taking valid code words as

input produces a result that is also a valid code word. Several arithmetic codes exist

(see Section 3.2), such as AN codes, Berger codes, residue codes and parity codes.

We choose residue codes [11, 58, 96] to build a system where register values and

computation is covered against errors. Among the different available separable arith-

metic codes, the size of a residue code is much smaller than the size of a Berger code,

and also the residue functional units require much less area than Berger functional

units [96, 105]. Compared to parity prediction, residue codes are less invasive and

cheaper for wide multipliers and adders [134].

Residue codes are based on the property that the residue of the result of an arith-

metic operation can be computed from the residues of the operands as well as through

a modular division of the result. Given two input values N1 and N2, and R being the

chosen residue value, the arithmetic property ((N1 mod R) • (N2 mod R)) mod R =

(N1 •N2) mod R, holds true for most of the common operations ’•’.

Figure 5.4 shows a typical implementation of how residue checking works. The

computation⊗ is performed independently for both the regular data (operating A and

5.4. End-to-End Register Value and Dataflow Validation · 71

»

» ¼½ ¾ ¼¿

¾ ¼½ ¼¿

À ¼½¿

ÁÂÁÂ

À ¼Ã ÄÅÆ

¼¼ ¼Ã

ÇÇ

ÇÇ ÇÇ

Fig. 5.4: Concurrent error detection with residue codes

B and producing O) and the redundant codes (operating RA and RB and producing

RAB). Then, in order to verify that both the data values A and B as well as the

functional unit operation are correct, the redundant code of O is computed through

function R(O) and compared against RAB. A mismatch indicates an error.

If R is in the form of R = 2k−1 for some k (for example R being 3, 7, 15, etc.), the

residue code is called low-cost, because it allows a simple calculation of the residue

value.3 It is important to note that low-cost residues leave one value of the code

unused (specifically, the value 2k). The reason is that residues of the form 2k cannot

be used, because any fault affecting the word at position i, where i ≥ k, will remain

undetected. From a fault coverage perspective, if multiple faults add or substract a

value by a multiple of 2k − 1, the faults will be undetectable (faults that alias back

into the same residue value). A modulo-3 residue can detect not only all single-bit

errors, but also most of 2-bit errors. When using a low-cost residue, burst faults of

up to k−1 bits are guaranteed to be 100% detectable [11, 13, 213]. We choose R = 3;

previous works [105, 141, 189] show that the implementation costs are rather small.

It will be discussed in Section 5.6.

The research community and the industry have proposed, for most of the common

operations, effective residue functional units (this is, functional blocks computing the

expected results’s residue from the operands’ residues).

Residue functional units have been studied for integer arithmetic operations, in-

3The residue of an n-bit number is computed by dividing the binary number into k-bit chunks,

and then summing these numbers through modulo-k addition. This allows the implementation of

the residue encoders to be extremely simple, because no division or multiplication is needed [57, 210].

72 · Chapter 5. Register Dataflow Validation

From RF
(source 2)

Execution
port

ok?

From RF
(source 1)

From
Bypasses

From
Bypasses

Data

Opcode Tag comparison

1 2
To RF

(write-back)

T
o

 B
yp

a
ss

e
s

T
o

 B
yp

a
ss

e
s

Destination
Tag

RA

RB

Residue
check

RO

Fig. 5.5: End-to-end residue checking: extensions in the backend logic (residue hardware is shown

colored)

cluding addition, substraction, multiplication, division and square root [96, 141, 152,

153, 169, 189, 210]. Similar ideas have been also applied to logical operations, includ-

ing AND, OR, XOR operations [19, 58, 125, 177, 213] as well as shifts [74]. Residue

functional units for single precision and double precision floating point operations

(such as addition, substraction, multiplication, division, multiplication with addition

and multiplication with substraction) are also supported [46, 68, 76, 77, 105, 124].

Residue checking has also been generalized for vector (SIMD) operations [21, 77].

The separability of residue codes simplifies the implementation of the checking

component. Residues are not intrusive into existing designs: execution units are left

as they are, while the computation of the residue of the result is done concurrently

without impacting the delay of the original circuit. Moreover, for the cases where

a residue functional unit is not cost-effective and is not implemented (for example

5.4. End-to-End Register Value and Dataflow Validation · 73

for small logic blocks), the separability allows the designers to skip the checking

of the operation, while still providing error detection for the source operands and

computability of the result’s residue through function R(O).

There are two different possibilities for embedding a residue code in a self-checking

system: residue codes can just be applied locally inside the functional units, or the

complete system computes with encoded operands [96, 119].

During the beginning of the arithmetic code era, residue codes were applied locally

inside the functional units. This basic design option is commonly referred to as a

”self-checking system” [209]. In this design, the residues of the source operands are

computed before they are fed into the residue functional unit, possibly introducing

extra delay in the computation and checking part.

Forty years later, Iacobovici extended the concept to out-of-order processors where

the complete processor computes with encoded operands [96, 119] and baptized this

kind of residue protection as ”end-to-end residue checking” [75, 76]. Figure 5.5 shows

an implementation of such end-to-end residue checking scheme. Residue codes are

calculated where data is originated: (i) loads from the data cache, and (ii) output

from the functional units. Residue codes flow through the bypass network, and are

stored in the register file. This way data is protected in an end-to-end fashion:

from the point it is originated, to the point it is consumed. Notice that for this

implementation, we substitute parity with residue coding, since both protect the

data. Correctness of functional units is achieved by the residue checkers placed next

to them. Furthermore, this design option not only avoids adding residue generators

to compute codes on-the-fly for the source operands, but also minimizes the delay

introduced.

5.4.2 Integrating Signatures with Residues

Comparing Figure 5.3 and Figure 5.5, and the detailed hardware modifications listed

in Section 5.3.3 and Section 5.4.3, one observes that end-to-end signature checking

and end-to-end residue checking implementations have pretty much the same hard-

ware requirements. Therefore, we adopt the end-to-end residue checking design and

propose to merge the calculated signatures attached to values with the residue values

flowing through the backend of the processor.

We share the hardware infrastructure and amortize costs for implementing both

error detection techniques simultaneously: we encode a new residue value that is a

function of the original residue and the signature of the destination register. Similarly,

each encoded residue value is decoded back to the original residue using the signature

of the corresponding source (obtained at rename time).

74 · Chapter 5. Register Dataflow Validation

From RF

(source 2)

Execution
port

ok?

From RF
(source 1)

From
Bypasses

From
Bypasses

Data

Opcode Tag comparison

1 2
To RF

(write-back)

T
o

 B
yp

a
ss

e
s

T
o

 B
yp

a
ss

e
s

Destination
Tag

RA’

RB’

Residue
check

Sign(Src1)

Sign(Src2)

Sign(Dst)

ÈÈ
RA RB

RO

RO’

ÈÈ

ÈÈ

Fig. 5.6: Combined end-to-end signature and residue checking scheme: extensions in the backend

logic (added hardware is shown colored)

The transformation function must be easy to implement. Besides, it has to be

possible to construct the inverse function, so residues can be recovered. An extremely

simple and fast function of this type is the bitwise XOR function (whose inverse func-

tion is also the XOR function). For example, given a residue of 01 and a destination

signature of 11, a XOR-based encoding will forward a transformed residue value of

10 to the register dataflow paths. Reversely, given a transformed residue value of 10

and a source signature of 11, a XOR-based decoder will provide an original residue

value of 01.

For those functional units implementing a concurrent residue functional unit, there

is no need to keep the signature comparators. Specifically, we leave the residue

checkers and remove the signature checkers. The rationale is that if there is an

error in any of the different end-to-end paths that we protect, we will not be able to

decode a correct residue, and the residue checker will suffice to flag that an error has

5.4. End-to-End Register Value and Dataflow Validation · 75

been detected. Conversely, for those functional units lacking residue functional units,

we need residue generators for each incoming source operand value and a residue

comparator for each incoming source residue value (after it has been decoded back

using the expected signature). A residue generator for the produced value will also

be needed.

Special attention must be paid to execution ports lacking ALUs. For example, the

store data execution unit may just access the register file and write back the value

and transformed residue value into the Load-Store Queue. In that possible scenario,

we must extend these execution ports with residue decoders, in order to obtain the

real residue (not the transformed one). It will be the residue generators and checkers

of the consuming execution ports that will detect a possible failure at retire time,

increasing the failure coverage therefore.

The whole encode/decode process is depicted in Figure 5.6. When an instruction

is executed it writes back Data into the register file. Then, its residue Ro is XOR-ed

with the destination signature Sign(Dst) of the instruction writing back (assigned

at rename time). This encoded residue Ro’ will be written back into the register file

and will travel through the bypass network together with its associated data.

A consumer instruction requires the correct signature to retrieve the original

residue Ro. Consumers use the signatures received from the rename stage (Sign(src1)

for the left operand and Sign(src2) for the right one) to decode the input residues

(R′
A and R′

B). If an error happens in the dataflow, the decode process will generate

an incorrect residue. If an error in a data value happens, the residue decoders will

obtain a residue that does not correspond to the expected for the the wrong input

value, and the residue checker will detect the error.

When combining the signatures with the residues, the implementation of the spoil

circuits (needed to protect the load replay system, as described in Section 5.3.1) also

changes. Instead of corrupting the destination signatures, we corrupt the residues.

We spoil residues by using the invalid residue value 11: residue functional units are

modified so that when one of the sources is this invalid value, the output will also

be the invalid residue. This way all instructions depending on the missing load will

observe a wrong output residue.

5.4.3 Microarchitectural Changes

Assuming we need R bits per residue and B bits per signature, and being K =

max(R,B), the mechanism requires the following hardware modifications:

• Rename stages. Same as for our signature checking scheme (Section 5.3.3).

76 · Chapter 5. Register Dataflow Validation

• Allocation stages. Same as for our signature checking scheme (Section 5.3.3).

• Issue queue. Same as for our signature checking scheme (Section 5.3.3).

• Register files. Additional space to store per each register its transformed

residue (K bits per register).

• ROB. Same as for our signature checking scheme (Section 5.3.3).

• Bypass network. Additional wires to carry the transformed residue of each

value (K bits per value). In addition, wider input multiplexors to obtain the

proper transformed residue per operand are required.

• Execution units. For every functional unit, we need a signature decoder
⊕

for each source operand so that its transformed signature can be converted into

a residue (two XOR functions operating on K bits each). In addition, for every

functional unit, a residue unit that operates with these incoming residues, a

residue generator for the produced value by the functional unit, and a residue

checker that validates (compares) both redundantly generated residues.

For each execution unit that cannot operate with the incoming residues (no

residue functional unit implemented), we need residue generators for the in-

coming values, residue comparators (to compare against the pre-computed ones)

and a residue generator for the produced value (if any). Note that this design

does not need comparators for the source signatures.

Finally, a signature encoder
⊕

is also needed to encode the produced residue

with the destination signature of the instruction being executed.

• Write-back network. Additional wires to carry the transformed residue of

each value (K bits per value).

• Data cache. A residue generator for every load port.

• Replay Logic. Residue functional units are modified in such a way that when-

ever they observe an invalid residue as an input, they produce an invalid residue

as an output. For every data cache read port, we add a spoil circuit that pro-

duces an invalid residue in case of a miss.

• Load-Store Queue. Additional space to store the residue for the data and

address per entry (2 ∗R bits per entry).

5.4. End-to-End Register Value and Dataflow Validation · 77

Fig. 5.7: End-to-end signatures and residues operation: fault-free scenario example

5.4.4 Examples

For the sake of clarity, we provide three examples on how our combined end-to-end

signatures and residue works together to detect failures in the register dataflow.

Example of fault-free operation

We begin with a working example where we show how residues and signatures work

together to validate the register dataflow in the common case of fault-free operation.

In this first example, we take a look on how instruction pr7 ← pr1 + pr4 executes.

Table 5.2 shows for the two source operands (pr1 and pr4) the value they contain,

the corresponding residue, the signature used to encode the residue, and the result of

this encoding. Last row shows the outcome of executing the instruction (for physical

register destination pr7). Step-by-step operation is shown in Figure 5.7.

Figure 5.7(1) shows how the bypass-RF operands values (in dark blue) and their

78 · Chapter 5. Register Dataflow Validation

Table 5.2: Values, residues, signatures and combined residues-signatures for fault-free example

value residue sgn sgn
⊕

residue

pr1 8 10 10 00

pr4 17 10 01 11

pr7 25 01 10 11

corresponding transformed residues (in green) arrive to the functional unit input

multiplexors. The expected source signatures (10 and 01, in red) and the assigned

destination signature (10, also in red) are retrieved from the issue queue upon in-

struction issue. Figure 5.7(2) depicts how the the input operand values (8 and 17,

in dark blue) and the input transformed residues (00 and 11, in green) are selected

based on the existing Input Mux Control signals (in pink). Furthermore, the selected

transformed residues are decoded by the two
⊕

blocks using the expected source

signatures, producing the expected input residue values (10 and 10, in light blue). In

Figure 5.7(3), the input residue values 10 and 10 are consumed by the residue func-

tional unit (ALU Residue Stack) to produce the expected residue for the value being

produced by the functional unit (ALU stack). The residue functional unit produces

residue 100 that is reduced by residue generator Rg to 01 (in light blue). Concur-

rently, the functional unit sums the input operand values to produce the resulting

value (25, in dark blue). This value feeds a wider residue generator Rg that produces

the associated residue value 01 (in light blue).

Finally, block =? in Figure 5.7(4) successfully compares both residues (OK signal

in pink asserts). The produced value (25) is written back to the register file (To WB

path, in dark blue), and flows through the bypass network (To Bypasses paths, in

dark blue too). In parallel, the produced residue (01, in light blue) is encoded with

the destination signature (10, in red) by means of a
⊕

block. The transformed

residue (11, in green) is also written into the register file (To WB path in green) and

flows through the bypass network (To Bypasses paths) to any potential consumer.

Example of Selection of Wrong Inputs

Next example depicts how selection wrong input scenarios can be detected when com-

bining signatures and residues. Specifically, Figure 5.8 shown an incorrect generation

of the multiplexors control signals. In this case, instruction i3 : pr0 ← pr4 + pr7

should grab its operands values from pr4 (produced by instruction i1) and pr7 (pro-

duced by instruction i2), but the multiplexors signals make the instruction to wrongly

obtain the operand in the right from pr1 (produced by instruction i0).

5.4. End-to-End Register Value and Dataflow Validation · 79

Fig. 5.8: End-to-end signatures and residues operation: Selection of wrong inputs example

However, during rename time instruction i3 was given the expected (correct)

source signatures (00 for pr4 and 01 for pr7). When instruction i3 executes, the

transformed residue from pr1 will be decoded using the signature used to encode

the residue of pr7, rather than the signature used to encode pr1 (which is 11). As

a consequence, the
⊕

block will yield a wrong register value. Upon computation,

the expected residue of the generated value (residue 00 for value 3) will not match

the computed residue (01). Hence, an error is detected by the residue checker and

reported.

Example of Wrong Register File Access

Figure 5.9 shows how our combined scheme would detect an error for case (3) Wrong

Register File Access. For this particular example, we assume that we want to execute

instruction i0 : pr1 ← pr2 − pr3 . The register file shows on the left hand side, the

80 · Chapter 5. Register Dataflow Validation

stored value prior to execution and the transformed residue value. To its right, for

every physical register we list its residue and the signature used to encode it.

Let’s assume that due to an error, instead of reading physical register pr3, we

read pr1. As a result, instead of reading out the value 2 with the encoded residue

11, we read out value 7 with the encoded residue 10. As a result, when decoding

10 with the signature that we obtained at rename time 01, we obtain 11 instead of

10. The residue checker does the rest, signaling an error because the residue of the

substraction of the operands is different from the residue obtained operating with the

incoming residues (by the residue functional units).

ÉÊËÉÌÍ Î ÌÌÏ ÐÑÒÓÔÐÕÖ ÎÌÌ

ÉÊËÉ×Í Î Ì×Ï ÐÑÒÓÔÐÕÖ Î××

ÉÊËÉØÍ Î ÌÌÏ ÐÑÒÓÔÐÕÖ ÎÌ×

ÉÊËÉÙÍ Î ×ÌÏ ÐÑÒÓÔÐÕÖ ÎÌ×

ÚÛÜÝÞßÛÚ
àÝáÛ

â

ã

ä

å

æç

èè

éè

èé

éé

çç

ê

ë

ìíîïðñòóô õóöñ

÷ø ⊕⊕⊕⊕ ÷ø ù ÷÷
ø÷ ⊕⊕⊕⊕ ÷ø ù øø

úû úû

üýþ ÿ �� �ù üý÷÷ÿøø�

���

��

��

Fig. 5.9: End-to-end signatures and residues operation: Wrong Register File Access example

5.5 Signature Generation Policies

Given a signature, the probability to match another signature will depend on the

total number of signatures and the way they are generated/assigned. An error may

not be detected if the signature observed when there is an error is the same one

as the expected one (i.e. aliasing). When using B bits to encode the signature,

assuming they are uniformly distributed and used, the average case probability of

having aliasing is 1
2B
. Therefore, the expected average-case coverage in this case

would be 1− 1
2B
. For example, if B = 2 then fault coverage would reach 75% and for

B = 3 it would be 87.5%.

This is true as long as signatures are evenly used. However, the way we use the

signatures will depend on the generation mechanism; for instance, one policy may

tend to use a lot a given signature for a sequence of instructions that reuse a lot a

5.5. Signature Generation Policies · 81

particular logical register in a short interval of time. In this case, some signature

could be used more than the others (i.e. there is low signature variability), which

would hurt coverage.

In the next subsections we propose five different paradigms of signature generat-

ing policies: Section 5.5.1 describes round-robin policies based on auto-incremented

counters, a minimum in-flight signature policy that favors the least present signa-

ture is described in Section 5.5.2, a register policy based on the physical register

tag representation is presented in Section 5.5.3, Section 5.5.4 shows a static policy

that is based on the logical destination register, and an enhanced static policy that

boosts coverage for the cases where the static policy underperforms is introduced in

Section 5.5.5.

5.5.1 Round-Robin Policies

Round-robin signature generation policies are based on the value provided by auto-

incremented counters. We have explored different flavors of such round-robin policies:

1. Basic round-robin policy (RR). We just use one modulo counter, that is

checked and auto-incremented for every destination register. Although this

policy is simple to implement, there is a high probability of repeating a signature

for the same physical register because the physical registers are used round-robin

(the free list works as a queue). This “wrap-up phenomenon” aggravates when

the number of physical registers is a multiple of the number of signatures. This

could decrease the coverage for situations such as (3) Premature issue: early

issued instructions will consume the data from the register file stored by the

previous producer. Since the physical register will have the same signature, the

error will be undetected. In order to mitigate the “wrap-up phenomenon” we

next propose pseudo round-robin policies that we describe in the next bullets.

2. Minimum-based round-robin policy (MRR). We have just one round-robin

counter, but every cycle it is reset to the least-present signature in the register

file. During renaming it will provide different signatures for each instruction

in the rename bundle. This policy attempts to maximize the distribution of

signatures across the register file.

Notice that we require 2B counters to keep track of how many live signatures we

have of each class. The counter is incremented when signatures are allocated,

and decremented at rename time when the old register mapping is read.

3. Multiple round-robin policy (nRR). Instead of having just one modulo auto-

incremented counter, we use multiple of them. Then, each logical register is

82 · Chapter 5. Register Dataflow Validation

statically paired to one of the counters, which can be done randomly, or manu-

ally based on profile information. In this way, we avoid the signature “wrap-up

phenomenon” while maintaining the benefits of an homogeneous signature dis-

tribution. We named these pseudo round-robin schemes DRR when using 2

counters, and QRR when using 4 counters.

4. Logical register round-robin policy (LRR). We have one round-robin counter

for each logical register. It corresponds to the nRR policy where n is the number

of logical registers. Signatures are given in a local manner: we maximize the

randomness for each logical register, but diversity for a given cycle is not guar-

anteed across different logical registers, since they use different counters. This

may decrease coverage for situations as (5) Data stall in the bypass network.

Hardware modifications

Round-robin policies generate signatures once the logical registers are known. Besides,

signatures must be stored on the rename table, in such a way that the consumers can

obtain their expected signature. On top of the modifications detailed in Section 5.3.3,

we would require:

• Rename stage.

– A different number of counters depending on the specific round-robin pol-

icy: 1 counter of B bits for RR, 2 counters of B bits for DRR, 4 counters

of B bits for QRR, 2B counters of log2(R) bits (where R is the number of

physical registers) for MRR, or as many counters as logical registers of B

bits for the LRR policy.

– An additional B-bit field per register in the rename table to store the last

assigned signature.

– Wider multiplexors in the operand override logic to select the proper sig-

nature for every instruction register tag.

• ROB. Since the control-flow recovery of a branch misprediction is implemented

using a ROB-walk mechanism, we require additional space and wires to store

the signatures of the old and new register mappings (2 signatures of B bits per

entry).4

4If the processor does not support rename state recovery for any arbitrary position in the ROB,

but rather at fixed locations that have associated shadow checkpoint tables, no extra hardware

would be introduced in the ROB.

5.5. Signature Generation Policies · 83

5.5.2 Minimum In-Flight Use Policy

Round-robin policies work in an incremental manner. While this approach works for

most of the cases, it cannot guarantee the balance in the usage of signatures. For

example, it may happen that many long-lived physical registers may have assigned a

small subset of signatures. While these physical registers are not released, they may

create un unbalanced distribution of signatures. Therefore, we try to increase the

balance by assigning all the time the signature with the minimum presence in the

register file (MIN). In order to keep track of the usage of each signature, we use the

same mechanism implemented in the MRR policy.

Whereas MRR provides different signatures for each instruction in a rename bundle,

MIN can assign the same one for all of them. The good side of this policy is that it

targets a high variability per physical register (i.e. it benefits case (3) Premature

issue). However, signatures are given in bundles (many different physical registers

close in time will have the same signatures since signature can be repeated while

they are the less utilized), which hurts most of the other cases - especially case (1)

Selection of wrong inputs and (5) Data stall in the bypass network.

Hardware modifications

Similar to MRR policy, the MIN policy generates signatures once the logical registers

are known. Besides, signatures must be stored on the rename table, in such a way

that the consumers can obtain their expected signature. The hardware requirements

are the same as the ones described for the MRR policy (described in Section 5.5.1).

5.5.3 Physical Register Policy

The physical register policy assigns signatures based on the destination register tag.

Specifically, we opt to use the modulo of the physical register tag as the signature

(MOD). This approach simplifies the implementation because we do not need to keep

track of the assigned signatures in the rename table; the assigned signatures can be

obtained from the already existing physical register tag (available after renaming has

been completed). However, faulty situations like (3) Premature issue and (6) Register

free-list misuse would remain unprotected because a physical register will always have

the same signature.

84 · Chapter 5. Register Dataflow Validation

Hardware modifications

The implementation of this policy is very simple, since we do not need to keep sig-

natures in the rename table. On the other hand, the modulo calculation starts once

the physical register tag is known, which is at the rename stage. On top of the

modifications detailed in Section 5.3.3, we would require:

• ROB. Since the control-flow recovery of a branch misprediction is implemented

using a ROB-walk mechanism, we require additional space and wires to store

the signatures of the old and new register mappings (2 signatures of B bits per

entry).

5.5.4 Static Policy

Static policy is based on statically coupling each logical register to a fixed signa-

ture value. This is, every logic register RAX, RBX, etc, will always be mapped to the

same signature. Note that a physical register is not always tied to the same signa-

ture for this policy, as opposed to the MOD policy. Like MOD, signature generation is

generated independently of the rename operation, and therefore we can reduce the

area overhead in the rename table and the ROB. However, we focus on improving

cases (3) Premature issue and (6) Register free-list misuse, where MOD is expected to

underperform.

Given the limited number of signatures, many logical registers will share the

same signatures: a good register distribution must be found so that signature usage

is balanced. We run our set of SPEC benchmarks (described in Section 5.6) and

count every use of the logical registers as an operand source. Figure 5.10 shows

the distribution in terms of percentage over all accesses. One can see that the total

number of logical registers accessed is very small and nicely distributed.

We build the following buckets for a 2-bit signatures scheme, although other buck-

ets could have been chosen:

• Signature 00. RSP, RDI, MM3, TMP1, for a total usage of 24.96%.

• Signature 01. RAX, RBP, FTMP0, MM7, MM5, OTHER, for a total usage of 24.97%.

• Signature 10. TMP0, RSI, RBX, MM6, MM1, for a total usage of 25.12%.

• Signature 11. RCX, RDX, MM0, MM2, MM4, FTMP1, for a total usage of 24.95%.

When moving to a 3-bit signature scheme, the chosen signature distribution is as

follows:

5.5. Signature Generation Policies · 85

�� 	�
� ��
� ��� �	� �
� ��� �
�

���
���

����
���
���
���
���
���
���

�����
���
���

��	

���
���
��

���
���

����
�����
��� �

! "# $%&' &((%))%)

*+
,-
./
01
2
,-
34
2
5

Fig. 5.10: Distribution of usage for the different logical registers across all benchmarks

• Signature 000. RSP, for a total usage of 16.22%.

• Signature 001. RAX, for a total usage of 11.91%.

• Signature 010. TMP0, FTMP1, for a total usage of 11.66%.

• Signature 011. RCX, MM3, OTHER, for a total usage of 11.66%.

• Signature 100. RDX, MM7, MM1, for a total usage of 12.50%.

• Signature 101. RSI, MM0, MM6, MM5, for a total usage of 12.32%.

• Signature 110. RBP, FTMP0, MM2, TMP1, for a total usage of 12.08%.

• Signature 111. RDI, RBX, MM4, for a total usage of 11.65%.

These distribution were empirically determined so that signature usage is bal-

anced. However, it is interesting to note that as the number of signatures increases

beyond 8 (3-bits), the distribution is ultimately determined by single logical regis-

ters having the biggest percentage of accesses. For example, logical register RSP will

always cause that a signature has a minimum of a 16.22% of usage.

86 · Chapter 5. Register Dataflow Validation

Hardware modifications

Our mechanism just requires a hard-wired table that indicates the signature for each

particular logical register. Access to this table is done in parallel and independently

of the regular operation. Since the signatures depend on the logical register, we do

not need to keep the signatures in the rename table or the ROB, since we can obtain

this information from the mapping table. On top of the modifications detailed in

Section 5.3.3, we would require:

• Rename stage. A mapping table that holds the signature for every logical

register. Based on our experiments, that would be a table with 32 entries, B

bits each.

5.5.5 Enhanced Static Policy

The Static policy will tend to use a lot a given signature for codes that reuse a lot

a particular logical register in a short interval of time. In this case, some signatures

will be used more than the others (i.e. there is low signature variability), which may

hurt coverage. Some of the failure scenarios described in Section 5.2 suffer from this

phenomenon.

In case (1) Selection of wrong inputs, the probability of not detecting an error

grows since the chance of a wrong entry’s signature to be the same as the correct

entry’s one will be higher than in the average case.

For case (5) Data stall in the bypass network, a coverage lower than the average

case is expected since the probability of two consecutive writes storing the same

signature will grow.

In cases (2)-(4) Wrong register file access, Premature issue, Wrong tag, we do

not expect a noticeable impact. The reason is that the number of “wrong choices”

is big enough so that the probability of aliasing is the average one. In this case, the

short-term variability is not so important as the long-term one, which is expected to

be as good as the average case.

The following sections describe signature handling optimization that can be ap-

plied to the Static policy. These approaches solve the variability problem for cases

(1) Selection of wrong inputs and (5) Data stall in the bypass network, as well as an

additional enhancement to boost coverage for case (3) Premature issue. We refer to

this policy as Enhanced Static.

5.5. Signature Generation Policies · 87

Signature Masking

If a functional unit input multiplexor selects a wrong input it may happen that such

error remains undetected due to signature aliasing. In order to alleviate the aliasing

problem in selection of wrong inputs, the variability of signatures at its inputs must

be maximized. By doing so we minimize the probability of picking a wrong input

and not detecting the error.

In order to increase signature variability for the static policy, we propose to

dynamically transform the signatures flowing through the bypass network (actually,

the transformed residues) by XOR-ing them with a mask. Such mask will be statically

defined for each combination of bypass level and execution port. Our proposal is

depicted in Figure 5.11. Note that the figure does and the description is given for an

implementation without residue integration, for clarity’s sake.

The whole process is as follows:

• When a value is produced, we continuously transform its destination signature

(Sign(Dst)) with different masks as it moves around the bypass network and

its levels. The masks will vary depending on the execution port and the bypass

level. In the example depicted in Figure 5.11 we assume only one execution

port P0, and two bypass levels BL0 and BL1. When the value generated in

P0 is currently available in the bypass level BL0, its destination signature is

masked with mask L0. The next cycle, when the value and signature will be

located at the next bypass level (BL1, the signature will be XOR-ed with mask

L1.

• When an instruction issues, the expected signatures for its operands (the ones

read out from the issue queue) are XOR-ed with the proper masks (m1 andm2).

The information to select the proper mask is determined by tag comparison

(that decides from where the operand is to be grabbed from). This information

indexes a hardwired table mask table to obtain the proper mask.

Masks tables are built by trying to equally distribute the occurrence of masks

reaching to each execution port. A possible mask table is depicted in Table 5.3. For

instance, a signature grabbed from bypass level BL1 in port P1 will be XOR-ed with

01. We apply the neutral mask 00 to the signatures coming from the register file.

Table 5.4 shows the different masks that are dynamically applied to signatures

traveling in the bypass network so that the specifications shown in Table 5.3 are met.

Example. If a Sign(Dst)=10 gets through the execution port P0 and reaches

the first level bypass BL0, it will be XOR-ed with 01, resulting in a transformed

88 · Chapter 5. Register Dataflow Validation

From RF
(source 2)

Execution
Port P0

=? =?

ok?

From RF
(source 1)

From
Bypasses

From
Bypasses

Data

Opcode Tag comparison

1 2
To RF

(write-back)

T
o
 B

yp
a

ss
e
s

T
o

 B
y
p
a

s
se

s

Destination
Tag

S1’

S2’

6

6
67

8

6

9:;<
=:>?@

Sign(Dst) Sign(Src1)

Sign(Src2)

7
A

B
A

B
C

Fig. 5.11: Signature masking enhancement to boost coverage for ’Selection of wrong inputs’ case:

extensions in the backend logic. L0 is the mask for the bypass level BL0, whereas L1 is the mask

for the bypass level BL1

signature Sign(Dst)=11. When it later reaches bypass level BL1, it will be XOR-

ed with 11, obtaining a transformed signature Sign(Dst)=00. An original source

signature Sign(Src) that is supposed to obtain the value from port P0 and bypass

level BL1, would use the mask 10 according to Table 5.3:

Sign(Dst) XOR 01 XOR 11 = Sign(Src) XOR 10

Rotating Signature Masking

Assume the same signature being written by two different data values in consecutive

cycles in a given bypass latch. If that latch fails to store the second write, such error

(Data stall in the bypass network) will remain undetected. This will happen even if

we apply masks per bypass/port (since the masks are hard-wired in each stage).

5.5. Signature Generation Policies · 89

Table 5.3: Mask table for a processor with two execution ports (P0 and P1), two bypass levels

(BL0 and BL1) and the write-back port (WB)

BL0 BL1 WB

P0 01 10 00

P1 11 01 00

Table 5.4: Values of the masks set up at every bypass level and execution port

P0 P1

BL0 01 11

BL1 11 10

To increase coverage against this failure scenario, we improve the masking tech-

nique by rotating every cycle the masks that are applied at each bypass path. This

way, even though the signatures reaching the latches might be identical, they are

transformed with different masks in different cycles prior to being latched.

This requires the mask table at the input multiplexors to be also accessed in a

rotated fashion, which allows the issued instructions to use the proper mask.

Signature-Based Free Lists

An instruction suffering from a premature issue will consume an old version of a

physical register (since it will not find the value in the bypass network). Although

the static policy does not seem to suffer much this situation (unlike RR policy), we

have proposed a mechanism to boost the probability of detecting such an error: we

enforce that in two consecutive allocations physical registers are assigned a different

signature.

To guarantee this property we arrange one free-list per signature, instead of hav-

ing just one free list. The sum of all capacities equals the capacity of the original

free list. We return to free-list i all registers which in their last allocation were

paired to signature Sign(i). At rename time, an instruction that receives Sign(i)

as destination signature will pick its physical register from any free-list but i. This

guarantees that in its previous allocation, a physical register was signed with a signa-

ture Sign(j), Sign(j) 6= Sign(i). In addition, in order not to penalize performance,

if the only free-list containing registers is Sign(i) we choose not stall the pipeline and

proceed with one of its registers. When releasing a register, if the destination free

90 · Chapter 5. Register Dataflow Validation

list is full any other is chosen for the same reason.

Note that in order to choose from a convenient free-list the destination signa-

tures must have been assigned prior to the rename stage (i.e. in the decode stages).

Therefore, choosing among free-lists is off the critical path.

Hardware modifications

In order to enhance the static policy, on top of the hardware requirements described

in Section 5.5.4 it is needed:

• Issue system.

– We need the mask table to perform signature masking. The mask table

is accessed upon issue, because at that moment it is known where the

operand will be grabbed from. Every entry in the table has B bits; and

the total number of entries is the number of execution ports multiplied by

the number of bypass levels. To access the table in a rotated manner, we

need an auto-incremented modulo counter to offset the entry address.

– After accessing the mask table, the source signatures obtained from the

issue queue need to be masked. This is achieved by means of two XOR

functions of B bits each, per execution port.

• Bypass network.

– For every bypass latch, we need hardwired masks of B bits each. To

implement the masking rotation, we need as many masks per bypass latch

as the number of bypass levels.

– For every bypass latch, we need a XOR function of B bits to mask the

signatures.

• Allocation logic.

– The register free list containing R tags is split into 2B free lists containing

R/2B tags each. For small values of B the overhead is negligible.

5.6 Evaluation

This section presents a detailed evaluation of the proposed register dataflow validation

system. We evaluate it in terms of area, power and coverage for our baseline processor.

5.6. Evaluation · 91

5.6.1 Coverage Results

From a global perspective, our previous studies [205] based on AVF analysis indicate

that all the hardware involved in implementing register dataflow/computation func-

tionalities represents 74.58% of the SDC FIT rate caused by soft errors (excluding

protected structures, like caches, TLBs, etc.). Previous studies [212] report similar

error rates using fault injection methodologies. Furthermore, 61.06% of the baseline

processor area is exposed to other sources of failures, including wear-out, design and

hard faults (again, excluding protected structures). By analyzing the microarchitec-

tural blocks and by means of fault vulnerability studies (as described in Section 4.1.3),

we have determined that the proposed technique is able to potentially cover 60.56%

of the baseline processor area, and to potentially target 70.38% of the SDC SER FIT.

Given these area and potential soft error rate targets, actual error detection cov-

erage is assessed by computing the capability of our framework to detect the faulty

situations described in Section 5.2: (1) Selection of wrong inputs, (2) Wrong register

file access, (3) Premature issue, (4) Wrong tag, (5) Data stall in the bypass network,

(6) Free-list misuse, (7) Load replay errors, and (8) Deadlock. Residue coding fault

coverage has been deeply studied in the literature and shown to be about 90% for

2-bit residue codes, so we just focus on its hardware costs. Load replay errors has

100% coverage since we enforce the usage of a wrong signature to trigger the error

detection mechanism. For the Deadlock case, a watchdog timer is enough. Therefore,

for the rest of the evaluation, we will concentrate on cases (1)–(6).

Coverage results have been obtained by means of error injection, as described in

Chapter 4. For each SPEC benchmark, we perform 1000 effective fault injections for

each class of error independently. Error injection is performed at the microarchitec-

tural level (e.g. a tag is corrupted, an instruction issues too early, etc). We allow

the fault to propagate and check wether the fault is detected or not. Each fault has

been randomly injected during the ten first million executed instructions, after the

warm-up period. Each experiment has been allowed to run for 100M instructions, as

described in Chapter 4.

As we have discussed in Section 5.5, when using B bits to encode the signature,

the average case probability of having aliasing is 1
2B
. Therefore, the expected average-

case coverage of our technique in this case would be 1 − 1
2B
. We now compare this

theoretical numbers with results obtained experimentally.

We focus on 2-bit (see Figure 5.12) and 3-bit (see Figure 5.13) signatures, since a

small number of signatures has a larger impact on the expected average-case coverage

and the efficiency of the signature allocation policy. Our experiments with 4-bit

signatures show that the variability is enough and we achieve the expected coverage

92 · Chapter 5. Register Dataflow Validation

DE

FDE

GDE

HDE

IDE

JDE

KDE

LDE

MDE

NDE

FDDE

OPQ OO ROO SOO TOO UOO RVQ RWS XYZY[\]^_Z^\`a

Obc^a Obd[^ XYZY[\

e
f
gh
ij
kh

lmnop qorstu lmnop vw xyyzuu {mz|xtsmz quusz lmnop txp }~rxuu �xtx utx�� w� |qusuz

Fig. 5.12: Coverage results for all policies and error scenarios (1)-(6) for 2-bit signatures

in all situations. Note that for 2-bit and 3-bit signatures, expected average-case

coverage is 75% and 87.5%, respectively (dotted lines in Figures).

A random assignment policy, RAN, is shown for comparison purposes. Although

RAN is not a real implementation, it serves the purpose of showing the coverage of

a signature generation mechanism that offers homogeneous signature usage. As one

can see in both Figure 5.12 and Figure 5.13, the coverage achieved by RAN is almost

the expected average case for all cases.

Round-Robin Policies

We can first notice that RR, DRR and QRR show similar trends, whereas MRR and LRR

behave a bit worse (MRR specifically for 3-bit signatures).

We start analyzing the RR policy. We observe in Figure 5.12 that when we only

have 4 (2-bit) signatures, the coverage is below the expected average for the (3)

Premature issue case. However, it works fine when the number of signatures is 8

(Figure 5.13). This was expected and it is caused by the “wrap-up phenomenon” (see

Section 5.5.1). Our results show that for 2-bit signatures DRR does not help in this

case since we do not increase enough the signature variability. However, QRR increases

coverage from 69% up to 76%. For 3-bit signatures, we have observed that this class

5.6. Evaluation · 93

of round-robin policies behave very similarly (RR does not underperform for case (3)

Premature issue), because in that case the variability is high enough to naturally

avoid the wrap-up phenomenon. However, for 3-bit signatures DRR still misbehaves

(2 counters are still not enough to counteract the “wrap-up phenomenon”).

For 2-bit signatures, MRR achieves an average coverage close to the expected one.

This is due to the fact that MRR tries to balance the amount of different signatures

in the pipeline by starting the assignment with the least present signature. The first

instruction in a rename bundle will be given the least present signature, in order to

try to balance its distribution. The rest of the instructions in the rename bundle

will be given consecutive signatures, potentially introducing additional unbalancing.

However, with few signatures, less consecutive rename cycles are required to balance

them again. As we increase the number of signatures, balancing cannot be rapidly

achieved. This implies that for 3-bit signatures a subset of the 8 signatures will

be generated in consecutive cycles. As a consequence, cases (1) Selection of wrong

inputs, (5) Data stall in the bypass network and (6) Register free-list misuse are

specially impacted, and show a coverage below the expected one (in dotted lines).

For both 2-bit and 3-bit signatures, LRR shows similar behavior. As discussed in

Section 5.5.1, case (5) Data stall in the bypass network suffers the most. The reason

behind is that diversity for a given cycle is not guaranteed across different logical

registers because they use different counters. It could happen that a small loop may

have all its instructions mapped to different round-robin counters having the same

value. In this case, the signature assignment distribution would have no diversity

during each rename cycle. Cases (1) Selection of wrong inputs, (2) Wrong register

file access and (3) Premature issue also suffer because of that reason.

Finally, when comparing RR, DRR and QRR against MRR and LRR, we notice that

for failure scenario (5) Data stall in the bypass network, the former ones show better

coverage. The reason behind is that these policies maximize the distance between

two consecutive uses of the same signature, and therefore, the probability of reading

a stalled latch with the same expected signature is lower.

Minimum In-Flight Use Policy

The goal of this policy is maximizing the variability for each physical register, which

is achieved, as shown by the good coverage numbers in cases (3) Premature issue and

(4) Wrong tag. However, the same minimum occurring signature can be assigned

to many consecutive instructions, which decreases the variability in the rest of the

pipeline, and therefore, hurts the coverage for cases (1) Selection of wrong inputs, (5)

Data stall in the bypass network, (6) Register free-list misuse.

94 · Chapter 5. Register Dataflow Validation

��

���

���

���

���

���

���

���

���

���

����

��� �� ��� ��� ��� ��� ��� ��� ������ ��������

� ¡�� � ¢�� ������

£
¤
¥¦
§̈
©¦

ª«¬­® ¯­°±²³ ª«¬­® ´µ ¶··¸³³ ¹«¸º¶²±«¸ ¯³³±¸ ª«¬­® ²¶® »¼°¶³³ ½¶²¶ ³²¶¾¾ µ¿ º¯³±³¸

Fig. 5.13: Coverage results for all policies and error scenarios (1)-(6) for 3-bit signatures

Physical Register Policy

It is worth noting that, as discussed in Section 5.5.3, cases (3) Premature issue and

(6) Register free-list misuse are unprotected because each physical register is always

given the same signature.

The signature variability achieved for case (4) Wrong tag is lower than expected

in either of the two configurations (2-bit and 3-bit signatures); the reason behind is

that modulo 4 (i.e. using 4 signatures) allows detecting errors only in the two least

significant bits. When using 8 signatures we work with modulo 8, which can detect

errors in the three least significant bits of the word it is protecting. In order to solve

this coverage problem we would need to use different modulo (e.g. 3 or 5), but this is

much more costly to implement and will use less signatures. Overall, results indicate

that MOD is not attractive from a coverage point of view.

Static Policies

Now, we assess the coverage for the static and enhanced policies. Although it

has a lower hardware cost that the previously discussed policies, the coverage is

below round-robin policies for many of the scenarios. Our results for the static

5.6. Evaluation · 95

policy confirm the intuition that cases (1) Selection of wrong inputs and (5) Data

stall in the bypass network obtain a lower than expected coverage. This is specially

significant for case (5) Data stall in the bypass network, which is 15% worse than the

expected coverage for both signature sizes. Low variability of signatures is suffered

during program phases using few logical registers. In summary, the results show a

coverage ranging between 60% and 75% for 2-bit signatures. A similar behavior can

be observed for 3-bit signatures: coverage ranges from 70% to 85%.

When we apply the enhancements mechanism (enhanced static policy), cover-

age hits the expected value. Furthermore, the Signature-Based Free Lists enhance-

ment for case (3) Premature issue failure boosts coverage above 95%. In summary,

the coverage for the targeted special cases ranges between 72-96% and 84-98% for

2-bit and 3-bit signatures respectively. A good design point can be found for 3-bit

signatures where the average coverage is around 90%.

5.6.2 Overheads

This section details the impact of our framework in terms of cycle time, power and

area. We took the detailed design of our baseline processor, and modeled the extra

hardware to implement our schemes on top of the area-power-delay model described

in Section 4.1.4.

Delay

When implementing the signatures stand-alone, checking the signatures is done in

parallel to execution and has a delay lower than the functional units. We also increase

the width of some multiplexors and the bypasses. Although wider multiplexors and

bypasses may make them a bit slower, our assessment shows that it is not enough to

impact the cycle time.

When implementing the signatures on top of residue checking, we only add two

blocks of XOR gates. Adding one level of XOR gates to decode the transformed

residues into source signatures does not impact the critical path of the execution

stages, because residue functional units take less than half a cycle to compute the ex-

pected residue values. Similarly, encoding the produced residue with the destination

signature is done with the expected residue computed by the residue functional unit.

The signature/residue checking does not need to be accounted into the execution

delay, and can be performed cycles after the full computations, as long as no instruc-

tion is retired before it has been checked. This staggered error checking approach is

possible if the lag is lower than the writeback-to-retire latency of the processor.

96 · Chapter 5. Register Dataflow Validation

Finally, signature allocation is performed in parallel with current logic for all

different policies, and therefore, has no impact in the cycle time.

Area and Power

We classify the different signature generation policies in four different groups depend-

ing on their costs (see Section 5.5).

For a stand-alone signature checking implementation (Section 5.3.3), all policies

require modifying the allocation stages, the issue queue, the register files, the bypass

network, the execution units (to do signature checking) and the replay logic (to

initially corrupt the signatures upon a miss). The hardware to perform signature

checking in the execution units is negligible as shown in the following results, and

the overhead to extend the replay logic has been accounted on top of the Load-Store

Queue block (LSQ row in the result tables).

For an implementation on top of end-to-end residue checking (Section 5.4.3), the

data cache interface and the Load-Store Queue need to be modified as well. The

data cache interface is modified to compute residues for the data retrieved by loads,

whereas the Load-Store Queue is modified to hold residues for both addresses-data.

For all the policy groups, on top of the required hardware previously mentioned,

we detail the differences in hardware to implement them:

• Class round-robin . It includes all round-robin policies and also the MIN

policy. The cost of their counters are roughly the same, and these policies

require extending the rename tables and the ROB to track for each physical

register its associated signature.

• Class MOD . It includes the MOD policy. The most important characteristic in

terms of overhead is that there is no additional cost in the rename stage/tables

because signatures depend on the physical tag and there is no need to store

them to infer them.

• Class static. It includes the static policy. There is no cost in the ROB, and

no cost in the rename tables. There is a small cost in the Rename block to

implement a hardwired table that indicates the fixed signature assigned to the

each logical registers.

• Class enhanced . It includes the enhanced policy. It requires the same hard-

ware modifications as the previous item, but we account for the extra cost of

the mask tables, the rotating masks (accounted in the Issue Queue block) and

the signature-based free lists (accounted in the Allocation block).

5
.6
.

E
v
a
lu
a
tio

n
·

9
7

Table 5.5: Area and power overheads for the different signature generation policies when end-to-end residue is absent. In each cell, we show the

results for the 4 classes of policies: round-robin / MOD / static / enhanced when they are different

Area Power

Block % ∆% % ∆%

Original Sign-2 Sign-3 Original Sign-2 Sign-3

Bypass 5.28 3.13 4.69 4.97 3.13 4.69

FUs 17.98 0.0 0.00 13.73 0.00 0.00

L2$ 18.15 0.0 0.00 2.72 0.00 0.00

Rename 2.33 25.71/0.00/4.11/4.11 38.57/0.00/6.17/6.17 5.27 25.71/0.00/4.11/4.11 38.57/0.00/6.17/6.17

IQ 3.89 1.81/1.81/1.81/2.26 2.72/2.72/2.72/3.40 6.73 0.77/0.77/0.77/1.22 1.15/1.15/1.15/1.83

RF 2.92 2.37 3.55 8.10 2.37 3.55

D$ 15.02 0.00 0.00 12.73 0.00 0.00

ROB 2.54 4.71/4.71/0.00/0.00 7.06/7.06/0.00/0.00 9.85 4.71/4.71/0.00/0.00 7.06/7.06/0.00/0.00

Alloc 1.69 1.00 1.00 1.99 1.00 1.50

LSQ 7.11 0.50 1.50 3.02 0.50 1.50

Frontend 23.09 0.00 0.00 24.17 0.00 0.00

CLK N/A N/A N/A 6.72 1.07/0.48/0.45/0.47 1.66/0.76/0.72/0.75

Total 100.00 1.07/0.48/0.45/0.47 1.66/0.76/0.72/0.75 100.00 2.33/0.93/0.68/0.71 4.20/1.42/1.05/1.09

98 · Chapter 5. Register Dataflow Validation

Stand-Alone End-to-End Signature Implementation We first detail the area and power

overheads for all classes of policies in Table 5.5, for a scenario where signatures are

implemented stand-alone (no end-to-end residue infrastructure is available). We show

in the ’Sign-2’ and ’Sign-3’ columns at the left side, the relative area increase due

to the hardware additions required to implement them (with respect to the baseline

core). Notice that when there are differences in terms of overhead for the different

classes, we list them separated by slashes (round-robin/MOD/static/enhanced).

The results estimate that the overall area increase is small with respect to our

baseline core. For 2-bit signatures, the largest area increase is 1.07% for 2-bit signa-

tures, and 1.66% for 3-bit signatures, that corresponds to the round-robin class.

Static and enhanced policies just require a mere 0.45%-0.47% and 0.72%-0.75%

area overhead for 2-bit and 3-bit signatures, respectively. Clearly, these policies

provide a very high coverage for the different failure scenarios, while at the same time

they have a negligible area overhead. MOD incurs 0.48% and 0.76% area increase

for 2-bit and 3-bit signatures, respectively; its area costs are worse than for the static

and enhanced policies and the same time the coverage was shown to be below the

expected. We therefore discard the MOD policy in the rest of analysis.

We show the detailed power analysis on the right-hand side of Table 5.5. The

overheads are stated with respect to the whole core for an end-to-end stand-alone

signature implementation.

For the most expensive 2-bit signature protection scheme (round-robin class), we

estimate a 2.33% power increase, and 4.20% for 3-bit signatures. Static and enhanced

policies incur a minimal 0.68%-0.71% and 1.05% and 1.09% power cost, for 2-bit and

3-bit signatures. This low overhead (compared to round-robin policies) is possible

because the ROB is not enlarged, and the rename stages are minimally modified.

Integration with End-to-End Residue Checking We now detail the overheads when

signature checking is implemented on top of a processor with residue checking.

Column ’Residue 3’ in Table 5.6 shows the area overhead (with respect to the

baseline core) that is needed to implement an end-to-end residue checking with a

residue divisor of 3 (2-bit residues). We use previous works [58, 74, 76, 96, 102, 119,

125, 141, 169, 189] to estimate the area and power overhead for 2-bit residue for our

baseline processor. It can be observed that an area of 2.43% is paid with respect to

the baseline core, and the overhead mainly comes from the functional units, bypass

network and register files. Note that the overhead in the register file is lower than

when a 2-bit signature scheme is implemented stand-alone: the baseline register file

is protected by parity, and residue coding can replace it.

5
.6
.

E
v
a
lu
a
tio

n
·

9
9

Table 5.6: Area and power overheads for the different signature generation policies when end-to-end residue is implemented. In each cell, we

show the results for the 4 classes of policies: round-robin / MOD / static / enhanced when they are different

Area Power

Block %
∆% w.r.t

∆% w.r.t Residue 3 %
∆% w.r.t

∆% w.r.t. Residue 3
Baseline Baseline

Original Residue 3 Sign-2 Sign-3 Original Residue 3 Sign-2 Sign-3

Bypass 5.28 3.13 0.00 1.52 4.97 3.13 0.00 1.52

FUs 17.98 10.00 0.00 0.00 13.73 5.00 0.00 0.00

L2$ 18.15 0.00 0.00 0.00 2.72 0.00 0.00 0.00

Rename 2.33 0.00 25.71/0.00/4.11/4.11 38.57/0.00/6.17/6.17 5.27 0.00 25.71/0.00/4.11/4.11 38.57/0.00/6.17/6.17

IQ 3.89 0.00 1.81/1.81/1.81/2.26 2.72/2.72/2.72/3.40 6.73 0.00 0.77/0.77/0.77/1.22 1.15/1.15/1.15/1.83

RF 2.92 1.18 0.00 1.17 8.10 1.18 0.00 1.17

D$ 15.02 1.00 0.00 0.00 12.73 1.00 0.00 0.00

ROB 2.54 0.00 4.71/4.71/0.00/0.00 7.06/7.06/0.00/0.00 9.85 0.00 4.71/4.71/0.00/0.00 7.06/7.06/0.00/0.00

Alloc 1.69 0.00 1.00 1.00 1.99 0.00 1.00 1.50

LSQ 7.11 4.00 0.50 1.50 3.02 4.00 0.50 1.50

Frontend 23.09 0.00 0.00 0.00 24.17 0.00 0.00 0.00

CLK N/A N/A N/A N/A 6.72 2.43 3.27/2.68/2.65/2.67 3.86/2.96/2.93/2.95

Total 100.00 2.43 0.82/0.24/0.21/0.23 1.39/0.52/0.48/0.51 100.00 1.35 2.10/0.73/0.48/0.51 3.28/1.21/0.84/0.89

100 · Chapter 5. Register Dataflow Validation

Table 5.7: Overheads summary of implementing end-to-end signature checking and end-to-end

residue (residue is 3 for all configurations). ∆% with respect to a our baseline processor.

Round-Robin MOD Static Enhanced

Size Expected Coverage
Area Power Area Power Area Power Area Power

2-bit 75.00% 3.27% 3.48% 2.68% 2.08% 2.65% 1.84% 2.67% 1.87%

3-bit 87.50% 3.86% 4.67% 2.96% 2.58% 2.93% 2.20% 2.95% 2.25%

4-bit 93.75% 4.44% 5.85% 3.25% 3.06% 3.20% 2.56% 3.24% 2.63%

Conversely, signatures are not meant to protect data, and must be accumulated

with the parity bit. Regarding power costs, the overhead for the end-to-end residue

checking implementation has been estimated around 1.35%.

Columns ’Sign-2’ and ’Sign-3’ in Table 5.6 show for each block, the area and

power overhead with respect to a processor implementing end-to-end residue checking.

We can first observe that the area overheads are very small when end-to-end

residue is the baseline infrastructure, even for round-robin policies. For 2-bit signa-

tures and for the round-robin class, the largest area increase is 0.82%.

For 3-bit signatures area costs are 1.39% with respect to a baseline processor

implementing end-to-end residue checking. Power increase is limiting as signature

size increases: the overheads in the power-hungry structures like rename tables and

ROB are big contributors. In these cases, the power costs are around 2.10% and

3.28% for 2-bit and 3-bit signatures, respectively.

By adopting the Static and Enhanced policies, these overheads can be minimized

because those structures are not modified. Area costs are just 0.21%-0.23% and

0.48%-0.51% for 2-bit and 3-bit signatures, with respect to a baseline processor im-

plementing end-to-end residue checking. From a power perspectives, static and en-

hanced policies incur 0.48%-0.51% extra power for 2-bit signatures, and 0.84%-0.89%

for 3-bit signatures.

We finally show in Table 5.7 a summary of the costs of implementing a combined

system performing end-to-end signature checking and end-to-end residue checking

(overheads are computed with respect to the baseline processor described in Ap-

pendix A). Results were obtained for the different policy classes and for several

signature sizes. The end-to-end residue checking system uses a residue base of 3

(2-bit residues) for all configurations. We include results for 4-bit signatures and

we show the average-case coverage 5 just to illustrate the general overheads trends.

Data shows that implementing a static or an enhanced signature checking scheme

plus an end-to-end residue checking scheme incurs low costs. For 3-bit signatures,

area increases at most by 2.95% and dynamic peak power by 2.25% with respect to

51− 1

2B
, where B is signature size

5.7. Related Work · 101

Table 5.8: Comparative table of techniques that detect errors in the register dataflow

Recovery
Detection Sources of µarchitecture SW HW Cost Performance/

Latency Failure Specific Support (complexity) Power Costs

RNA [154] No Unbounded
Soft + hard

errors, bugs
No No Low-Medium

Very low power,

No performance

TAC [154]
Yes

(pipe flush)
Bounded

Soft + hard

errors, bugs
No No Low-Medium

Very low power,

No performance

Scoreboard

/ Tag

Reuse [33]

Yes

(pipe flush)
Bounded Soft errors Yes No Very low

Very low power,

No performance

DDFV [115] No Unbounded
Soft + hard

errors, bugs
No

Yes + ISA

extensions
High Medium

Argus [114] No Unbounded
Soft + hard

errors, bugs
No

Yes + ISA

extensions
High Medium

Our

approach

Yes

(pipe flush)
Bounded

Soft + hard

errors, bugs
No No Very low

Very low power,

No performance

our baseline core. We can also see for these two policies that increasing the signa-

ture size boosts coverage considerably at a small extra cost: area and peak dynamic

power overheads grow almost linearly while at the same time the number of unde-

tected faults is divided by half (coverage grows in a logarithmic trend). However,

the overheads for the round-robin class are noticeable even for 2-bit signatures: the

area requirements are roughly similar to the area requirements for a 4-bit enhanced

configuration (but at a fraction of the achieved coverage). We therefore conclude that

an enhanced policy is the best choice for the coverage-overhead design space.

5.7 Related Work

A few dynamic verification techniques have been proposed to detect errors in the

control logic and hardware blocks implementing register dataflow tasks. Table 5.8

summarizes the features and pros and cons of each one of them.

Reddy et al. [154] propose two ad-hoc hardware assertion checkers. The first one,

Register Name Authentication (RNA), aims at detecting errors in the destination

tags. RNA assumes there is an additional rename table at the commit stage holding

architectural mappings. When an instruction is renamed, the previous register tag

is stored in the ROB. When the instruction retires, the register mapping in the

redundant rename table will necessary contain the previous physical register in the

ROB. RNA reads it and compares it with the one in the ROB. In order to detect

faults in the free list and in the register allocation, RNA proposes managing two extra

bits for every register tag in the free list: a ready and a free bit. When an instruction

writes its result back, these bits are accessed and checked to be zero. RNA detects

102 · Chapter 5. Register Dataflow Validation

faults affecting the tags in the rename table, faults in the architectural rename table,

faults in the shadow rename tables, faults affecting the destination tags in the ROB,

and faults in the free list and in the register allocator. However, RNA has several

limitations and problems: (i) it is not able to detect errors in the source tags, (ii)

the detection latency is unbounded, and an error can be architecturally committed

before it is detected, and (iii) it requires adding a redundant architectural rename

table with non-negligible area and latency overheads.

The second technique, TAC (Timestamp-Based Assertion Checking), detects er-

ror in the issue logic by checking that a chain of dependent instructions follow a valid

chronological order. TAC assigns timestamps to instructions when they issue, and

compares consumer timestamps with producer timestamps. TAC is hard to imple-

ment because every instruction must know its issue timestamp, the issue timestamp

of its producers, and the latency of its producers. The size of a timestamp is big (13

bits) and does not scale with respect to the ROB and with respect main memory la-

tency, incurring in non-negligible hardware costs. Furthermore, TAC does not catch

the scenario where an instruction ends consuming wrong values from other datapaths.

Carretero et al. [33] propose two light-weight ad-hoc techniques to protect the

issue logic. The detection of errors is achieved by: (i) redundantly checking at issue

time operand availability by using idle register scoreboard read ports, and (ii) repli-

cating the source tag in the CAM storage for those instructions that only require

one renamable operand. Faults in the select logic, in the tag broadcast buses, in

the CAM memories-matchlines, and in the ready bits can be detected with minimal

modifications. However, faults affecting the register scoreboard go unnoticed. Most

importantly, these techniques fail to define a comprehensive correct behavior for the

register dataflow logic and they are tailored for a specific issue queue design.

Meixner’s DDFV scheme (Dynamic DataFlow Verification) [115] detects faults

and bugs in the fetch, decode, and register dataflow logic. DDFV is similar to control

flow checkers that verify intra-block instruction sequencing by means of compiler sup-

port. DDFV dynamically verifies that the dataflow graph specified by an application

is the same as the one computed and executed by the core. First, the compiler com-

putes for every basic block a compact representation of its static (expected) dataflow

graph, and embeds these signatures into the application binary. At runtime, the

dataflow graph for every basic block is reconstructed and compared against the ref-

erence one.

A state history signature (SHS) is computed for each architectural register: it cap-

tures the instruction that generated the value and the history of the input operands,

but not their values. Hence, a signature is recursively dependent on the chain of

backward register-dependent instructions. Every register, data bus, value in the

5.7. Related Work · 103

Table 5.9: Blocks and logic protection for register dataflow validation techniques

Fetch Decode Rename
Free List - Issue Ld/St

ALU
RF +

Data
Load CF

ROB pdsts Queue Queue Bypasses Replay Recovery

RNA [154] No No Yes Yes No No No No No No No

TAC [154] No No No No Yes No No No No No No

Scoreboard

/ Tag

Reuse [33]

No No No No Yes No No No No No No

DDFV [115] Yes† Yes† Yes† Yes† Yes† No No Yes† Yes No No

Argus [114] Yes Yes N/A N/A Yes† N/A Yes§ Yes† Yes No Yes

Our

approach
No No Yes Yes Yes No Yes Yes Yes Yes No

† : Protection within basic block, not across basic blocks
§ : ALU uses different error detection mechanisms than the one used for protecting values

ROB, etc. is extended to keep the SHS associated to that value. When the last

instruction in a basic block commits, the SHSs are combined to form the execution-

time DFS (dataflow graph signature). DGSs are 24 bits and SHSs are 10 bits each.

Big area overheads are clearly required. The most critical issue is that checking is

not supported for registers crossing basic blocks, as this information is unknown at

compile time. In addition, there is a pressure during fetch, decode and commit be-

cause of the extra instructions and the added extra commit cycle. Errors are detected

at the end of basic blocks, causing unbounded error detection latencies and errors

being committed before being caught. Furthermore, SHSs must be saved by the OS

to support exception and interrupt handling.

Argus [114] proposal by Meixner et al. extends DDFV to include computation and

control flow checking capabilities. Argus is however meant for simple in-order cores.

Unlike DDFV, Argus embeds into each basic block the DGSs of potentially two legal

successors, rather than inserting its own DGS. During execution, Argus picks among

the two DGSs the one belonging to target basic block. For computation checking,

Argus uses residue checking or operand shifting. Even though Argus extends DDFV’s

coverage, it poses the same problems: ISA and OS modifications, compiler support,

no failure containment and big area and performance overheads.

Table 5.9 summarizes for each of these register dataflow validation techniques the

different features, control logic or blocks that are covered.

To begin with, DDFV and Argus are the only solutions that perform control

flow checking (’Fetch’ and ’Decode’ are covered): they build upon existing control

flow checker techniques that verify intra/inter-block instruction sequencing by means

of compiler support (recall Section 3.4). However, DDFV only provides protection

104 · Chapter 5. Register Dataflow Validation

within basic blocks, which ultimately ends up limiting the achievable coverage. Our

technique does not check the control flow, but the baseline RAS features described

in Section 4.2 can actually cover them in a simple manner.

The rename table, rename logic (’Rename’ column), as well as the free list and

register allocation-release functionalities (’Free List - ROB pdsts’ column) are covered

to a varying degree. RNA detects errors in the rename table and rename logic as long

as they affect destination tags, not source operands. DDFV covers all these scenarios

but at a basic block level. Conversely, our technique extends the protection to all

’Wrong tag’ and ’Register free list misuse’ cases by removing this basic block level

restriction. Argus is meant for in-order cores, and thus these blocks are not covered.

None of the techniques cover the ’Load-Store Queue’ logic. For DDFV or Argus,

the compiler cannot help identifying producer-consumer memory instruction pairs.

In Chapter 7 we introduce a unique solution to verify the Load-Store Queue logic in

a targeted manner, so that coverage can be further extended.

ALUs are not covered by DDFV: a parity bit is just added to each produced reg-

ister value. Argus does computation checking, but it relies on a set of techniques that

are different than the mechanism used to protect values (parity). As a consequence,

DDFV and Argus introduce extra delay before and after computation to check and

produce the codes for the sources/results. Our technique protects computation and

values using a unified mechanism, avoiding extra delays.

Regarding access to the RF and bypasses, neither TAC nor the Scoreboard Reuse

techniques protect against scenarios like ’Wrong register file access’, ’Selection of

wrong inputs’ or ’Data stall in the bypass network’. DDFV and Argus cover them as

long as the consumed operands are produced within the same basic block. Our tech-

nique removes this severe constraint and covers against any possible failure scenario.

The ’Issue Queue’ column captures faults manifesting as ’Premature Issue’ and

’Wrong Tag’ scenarios. TAC can just detect scenarios where instructions are issued

prematurely but cannot detect errors in the operand tags. [33] catches faults in

tags for single source instructions, and ’Premature Issue’ is covered as long as the

scoreboard is not faulty. DDFV and Argus protect against ’Premature Issue’ and

’Wrong Tag’ scenarios, as long as the wrongly consumed value belong to the same

basic block.

None of the existing techniques, but ours, are able to detect ’Load replay errors’.

Since DDFV or Argus signatures do not capture value information, a load hitting or

missing in the cache will have the same signature.

Finally, in column ’CF Recovery’ we list the techniques that validate that the

state of the processor is correctly recovered upon a control flow recovery event (such

5.8. Conclusions · 105

as a mispredicted branch, or an exception/interrupt). DDFV cannot validate this

because all checking is done within basic blocks. Argus targets in-order cores, and

control flow recovery just involves flushing the pipeline. In Chapter 6 we propose a

solution for the control flow recovery logic, so that when combined with our baseline

RAS features (described in Section 4.2), control flow can be protected.

5.8 Conclusions

In this chapter we have presented a novel continuous online validation solution to

detect multiple sources of failures and bugs in the register dataflow logic, data values

and computation. Our approach is and end-to-end solution that exploits microarchi-

tectural register dataflow invariants.

We propose a novel technique that is based on signing every produced value

flowing through the pipeline with a signature. Register consumers validate by means

of signature matching that the value being consumed has been produced by the

expected producer, independently if the producer belongs to the same basic block or

not. Signatures flow together with values through the different register data paths and

storage. Signature checking is performed upon execution and allows detecting errors

with a bounded and small detection latency (allows recovery and fault isolation).

We have also described how our technique lends itself to a beneficial integration

with end-to-end residue checking. First, both techniques have similar hardware re-

quirements, and therefore the area cost can be amortized. And second, protection

can be extended to values and computation.

Different implementations of the technique have be instantiated based on how

signature generation is handled, and how big signatures are. This flexibility allows

designers tuning the solution to better suit their area-power budgets as well as their

FIT budgets. We propose nine different implementations for the signature allocation

policies, and evaluate their coverage and overheads. Overall, our design is able to

protect the rename tables, wake-up logic, select logic, input multiplexors, operand

read and writeback, the register free list, register release, register allocation, and the

replay logic. By combining it with an end-to-end residue coding scheme, we extend

the protection to the functional units, Load-Store Queue data and addresses, bypasses

and the register file storage.

Our studies show that the our approach is extremely light-weight in terms of

power, area or slowdown (as opposed to global general techniques based on re-

execution). Evaluations show that for a scheme with 2-bit signatures, total area

overhead (depending on the chosen signature assignment policy) ranges from 0.21%

to 0.82% with respect to a core implementing a 2-bit end-to-end residue checking

106 · Chapter 5. Register Dataflow Validation

scheme. Similarly, power moves from 0.48% to 2.10% also with respect to a core

implementing 2-bit end-to-end residue. For 3-bit signatures (and 2-bit end-to-end

residue), area moves from around 0.48% to 1.39% and power varies between 0.84%

and 3.28%.

The proposed technique is able to potentially cover 60.56% of the baseline pro-

cessor area against faults, and to potentially target 70.38% of the SDC SER FIT

(excluding protected structures). Given these area and potential error rate targets,

actual error detection coverage depends on signature size and signature generation

policies. On average, for most signature generation policies error detection coverage

stays above the expected one (75% and 87.5% for 2-bit and 3-bit signatures, with

respect to the mentioned potential area and error rate targets). However, it has been

shown that specific failure scenarios are better handled by certain signature assign-

ment policies. No impact on performance is introduced, and no ISA or OS changes are

needed. Globally, an enhanced static signature assignment provides the best trade-off

between fault coverage and area-power overheads: few hardware structures need to

be modified or expanded while at the same time coverage is above the expected one.

CHAPTER 6

CONTROL FLOW RECOVERY

VALIDATION

6.1 Introduction

Control flow recovery logic plays a critical role in current microprocessors, being in-

volved in the execution of hardware performance improvement techniques like control-

flow speculation, or functional issues like handling exceptions and interrupts.

Actually, a myriad of hybrid hardware-software techniques have been proposed

since the early 80s to detect control flow errors in the fetch and decode stages, as

described in Section 3.4. Recently, simple yet effective hardware solutions have also

been presented to detect multiple sources of failures in the control flow, decode and

allocation stages (described in our processor baseline RAS features). However, none

of these solutions can validate the control flow recovery logic of modern processors.

In this chapter we propose, to our knowledge, the first solution to protect in a

targeted way the whole control flow recovery control logic. Coupled with our processor

baseline RAS features described in Section 4.2, the control flow logic can therefore

be protected in an effective manner.

To achieve comprehensive failure detection in the control flow recovery logic, we

exploit microarchitectural invariants that are validated at end-to-end paths. Similar

to the control flow recovery logic, we split the validation process in two independent

validation steps: (i) validating that the rename table (also known as RAT, register

alias table) state recovery logic works correctly, and (ii) validating the squashing

of instructions dependent on mispredicted control flow paths by providing a fault

tolerant identification of these instructions.

108 · Chapter 6. Control Flow Recovery Validation

This chapter presents two novel and light-weight continuous on-line testing tech-

niques that cover the control flow recovery logic against multiple sources of failures

(including soft, intermittent, hard errors and design bugs).

The rest of the chapter is organized as follows. Section 6.2 delves into the cur-

rent implementation of control flow recovery in modern out-of-order processors. Sec-

tion 6.3 describes the failures that this control logic may suffer. Section 6.4 and

Section 6.5 present the end-to-end microarchitectural solutions for detecting errors in

the control flow recovery logic. Afterwards, Section 6.6 evaluates our techniques in

terms of fault coverage, area and power overhead. Finally, we summarize the main

conclusions in Section 6.7.

6.2 Control Flow Recovery in Modern OoO Processors: Overview

Modern out-of-order processors rely on speculative execution to boost performance.

By predicting the target of branch instructions before they have been resolved, control

flow speculation allows the processor to exploit higher instruction level parallelism.

Moreover, multiple mispredicted paths can simultaneously coexist with instructions

belonging to the corresponding corrected paths. Current processors also demand pre-

cise exception/interrupt handling. A precise exception means that exceptions must

be taken in program order, in such a way that only instructions prior to the offending

instruction can be completed, whereas the following instructions are skipped. In all

cases, the processor needs to handle the unexpected change in the control flow, re-

store the microarchitectural state and resume the execution correctly. Whereas these

features improve the processor performance, this also clearly requires an important

overhead in terms of area and complexity [221].

Modern processors devote a significant amount of hardware and complex control

logic to provide an efficient implementation of control flow recovery. Next, we provide

a high-level description on how a branch misprediction typically affects the microar-

chitectural state, and what microarchitectural components and logic is required to

support control flow recovery. For the sake of simplicity, in the rest of the chapter we

will focus on the branch misprediction mechanism. Notice that control flow recovery

for exceptions and interrupts and other speculative performance solutions use similar

mechanisms.

Restoring State. Modern processors hold the register speculative state in the re-

name table (RAT). The main approach to assist RAT recovery is based on mechanisms

that take checkpoints of the register mappings and roll back to the proper checkpoint

upon a control flow misprediction. A low-complexity (but inefficient) approach con-

sists in progressively reconstructing the RAT state. This is typically achieved by

6.2. Control Flow Recovery in Modern OoO Processors: Overview · 109

accumulating on a retirement (architectural) RAT the register map changes of all

the previous in-flight instructions [71]. This old scheme restricts the frontend from

renaming instructions belonging to the corrected path until the branch commits, and

therefore degrades performance. Conversely, a checkpoint of the RAT can be imme-

diately copied to the frontend RAT. Therefore, there is a clear trade-off between the

number of checkpoints and the branch misprediction recovery efficiency.

Modern designs use hybrid solutions that combine both benefits. For example,

the RAT recovery process may be proactive: different shadow RATs can continu-

ously monitor and walk through the Reorder Buffer regions as branches resolve (in

parallel to the instruction execution). During the ROB walk, the shadow RATs are

updated with register mappings so that whenever a branch misprediction occurs, the

corresponding shadow RAT already reflects the register mappings up to the branch

instruction [22]. Reactive recovery schemes are also possible: when a branch is re-

solved as mispredicted, these solutions identify the closest valid RAT checkpoint and

copy it into the frontend RAT. Then, the frontend RAT is reconstructed by travers-

ing the ROB from the checkpoint position until the mispredicted branch entry and

undoing all the register updates that should have not been reflected. This introduces

few cycles to traverse the ROB region, but results in a simpler yet efficient design [5].

Squashing of Control-Flow Dependent Instructions. Whenever a branch

resolves as mispredicted, a squashing mechanism takes care of identifying, and mark-

ing the instructions that belong to the wrong path created. The instructions that are

control-flow dependent on a mispredicted branch are frequently referred to as ’bogus

instructions’ for conciseness purposes. We will use this term hereafter.

The challenge is that multiple unresolved (and potentially mispredicted) branch

instructions may be in-flight across different pipeline stages. Thus, any instruction

may depend on multiple outstanding branch predictions. Selectively squashing in-

structions without introducing too much tracking complexity is a microarchitectural

design problem, particularly when instructions may be executed out of order. As

described in Appendix A.2, branch coloring/tagging mechanisms are commonly used

to tag and to invalidate speculative instructions. These squashing mechanisms are

in charge of marking fetched branch instructions with a unique tag (one-hot bit-

vector) and all fetched instructions with a branch path tag (aggregation of all pre-

vious branch tags). Upon execution, if a branch turns out to be mispredicted it

sends to all in-flight instructions a squash broadcast signal, using its branch tag. In-

structions whose branch path tag include the mispredicted branch tag are therefore

identified. Conversely, if a branch turns out to be correctly predicted, it sends to

all in-flight instruction a clear broadcast signal. The branch tag is then recycled for

future usage. Therefore, complex hardware is needed to: allocate-deallocate colors,

110 · Chapter 6. Control Flow Recovery Validation

implement broadcast buses to flush/clear colors, and store color bit-vectors for all

in-flight instructions.

Typically, once the squashing mechanism marks as squashed the instructions in

the ROB (with a ’bogus’ bit), they are not removed from it until commit time (as the

rest of instructions) because: (i) bogus instructions may have uncontrollable activity

(such as pending cache misses) that may otherwise affect instructions allocated to

that entry, and (ii) the ROB entries indicate the bogusly allocated physical registers

that must be released back to the free list, and this would be time critical if done

during branch recovery.

To further improve performance, modern processors also nullify the instructions

in the wrong path that have not been yet executed and therefore reside in other

backend structures (like in the issue queue). This means that non-executed bogus

instructions are forced to release their backend entries and are not allowed to execute.

This is typically performed to achieve a fast drain of these instructions, releasing

resources from the backend in such a way that instructions from the correct path can

be allocated and executed as fast as possible. Notice that even if nullification is not

implemented, if a branch resolves as mispredicted but belongs to a wrong path, no

fetch redirection must be performed. Otherwise, we could be violating the program

instruction sequencing.

Finally, it is necessary to provide the frontend engine the correct target address

and stall the rename logic until all the recovery steps have been performed.

6.3 Control Flow Recovery Failures

Unlike RAM-like structures that can be protected by coding techniques like par-

ity/ECC/residue, the dynamic control logic and the elements implemented around

RAM cells (e.g. decoders, word-lines, etc) can hardly be protected by coding tech-

niques. Faults and bugs in the control flow recovery logic could result into different

microarchitectural errors. We start discussing the faults related to the state recovery,

shown in Figure 6.1:

(A) Wrong RAT flash-copy : an error may arise when copying the frontend RAT into

a checkpoint RAT. For example, we could be copying the RAT into a wrong

checkpoint, either free or already in use. Similarly, a wrong checkpoint RAT

could be restored when performing the recovery.

(B) ROB mapping information error : the ROB may suffer from faults in the reg-

ister mapping information, such as the destination logical register, previous or

6.3. Control Flow Recovery Failures · 111

ROB
bank 0

ROB
bank 1

ROB
bank 2

ROB
bank 3

R
O

B
 w

al
ke

r

RAT
recovery

logic

ch RATRAT

jump ROB
entry

FE continue

C

C

C
A

A

B

Fig. 6.1: Failure scenarios related to RAT state history reconstruction

current mapping. As a consequence, if the faulty ROB entry is used to per-

form the frontend RAT recovery, an instruction from the corrected path would

consume or release a wrong register.

(C) Wrong ROB walk : recovering the RAT state requires traversing the ROB from

the checkpoint entry up to the instruction whose control flow was mispeculated.

The “ROB walking” control logic can also experience errors: some entries may

not be accessed, the ROB bank pointer generation may pose design bugs, etc.

Similarly, the frontend may start renaming the instructions from the correct

path before the whole RAT state recovery has finished.

Next, we discuss the faults that may impact our ability to squash control-flow

dependent instructions. They are shown in Figure 6.2:

(D) Wrong identification of bogus instructions : instructions have associated fields

indicating their bogusness (such as the bogus? bit in Figure 6.2). In addi-

tion and as commented in the previous section, the processor must implement

mechanisms to identify and mark (i.e. squash) wrong-path instructions as bo-

gus. The branch tags, path tags, tag broadcast buses, management logic, etc.

can suffer from faults. The net result is that the commit logic may perceive

112 · Chapter 6. Control Flow Recovery Validation

I0
I1
I2
J0

J1

0

1
0

0 1
0

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1 J0

J1

ROB
tail

BB0 :

BB1:

BB2: BB3:

BB4:

ROB
head

WP

WP

CP

CP

bogus?

E

D

E

4

13
14

19

Fig. 6.2: Failure scenarios related to identification of control-flow dependent instructions

an instruction as bogus when the architectural state should be updated. The

opposite scenario, where a correct instruction is perceived as bogus, may also

happen.

(E) Wrong fetch path redirection: An error may cause that some non-executed

instructions are not nullified once a branch resolves as mispredicted (in case

of exceptions and interrupts, it could be a control-flow break). Whereas for

non-branches this would simply cause a performance degradation, branches not

being nullified can induce functional correctness problems. For example, in

Figure 6.2 branch J0 executes and resolves as mispredicted. Branch J0 must

nullify all the instructions residing at positions 4 to 13 in the ROB (that belong

to basic blocks BB0, BB1 and BB2). This includes nullifying branch J1, that has

not been executed yet. However, it could happen that because of a fault or

bug, branch J1 is not nullified and later executes and resolves as mispredicted.

J1 would squash instructions belonging to the correct path: instructions at

positions 14 to 19 in the ROB (that belong to basic block BB4). Moreover,

branch J1 would then redirect the fetch path to basic block BB3, which is not

a successor of branch J0.

We propose two light-weight microarchitectural end-to-end error detection solu-

tions. The first one will target failure scenarios A, B and C (Section 6.4), whereas

6.4. End-To-End Validation of RAT State Recovery · 113

the second one will deal with D and E (Section 6.5).

6.4 End-To-End Validation of RAT State Recovery

In order to detect errors in the RAT state recovery control logic, we use an end-

to-end RAT state signature generation-validation mechanism. The end-to-end path

begins at the rename stage by computing for each instruction a small token (the RAT

state signature) that summarizes the set of register mappings carried by all older

instructions. The RAT state signature is based on the encoding of the logical and

physical registers pairs. The end-to-end path ends once the recovery for a mispredicted

branch is completed; after recovery, the signature of the frontend RAT state should

match the signature that the mispredicted branch obtained at rename time.

Since we redundantly reconstruct the signature of the frontend RAT as we per-

form the misprediction recovery, we can validate the recovery logic by comparing the

signature generated at rename time with the signature of the recovered RAT.

Hence, a simple end-to-end generation-validation mechanism is enough to detect

errors in the RAT state recovery logic. Note that this concept also allows to dynami-

cally check the RAT recovery upon another unexpected event (such as an exception,

interrupt, etc.).

Section 6.4.1 describes how we generate the RAT state signature at rename time

for each instruction. We will also show how the RAT state signature flows through

the pipeline. Later, Section 6.4.2 will explain how we perform the validation upon a

branch misprediction.

6.4.1 RAT State Signature Tracking

The end-to-end path begins at the rename stage. At this point, each instruction is

given a codeword that summarizes the set of register mappings, including the own in-

struction mapping. These codewords flow with the instructions through the pipeline

until they reach the issue queue (instruction scheduler), where they are allocated.

Similarly, each of these codewords are read out from the issue queue once their in-

structions are issued.

For the sake of clarity, we start assuming that each of these codewords precisely

encode the RAT state upon its instruction renaming. Conceptually, a RAT state Ri

for an instruction Ii is a set Ri ∈ R ⊆ l × p, where l and p are the set of logical

and physical registers, respectively. Each mapping is a pair of logical and physical

register (li, pli) | li ∈ l, pli ∈ p. Note that it does not mean that logical register li is

114 · Chapter 6. Control Flow Recovery Validation

f

p
d

st
0

p
d

st
1

p
d

st
2

p
d

st
3

p
re

v 0

p
re

v 1

p
re

v 2

p
re

v 3

S
R

A
T

S
0

S
1

S
2

f f f

S
0

S
1

S
2

S
3

ld
st

0

ld
st

1

ld
st

2

ld
st

3 RAT

ch0 RAT

ch0 RAT

ch0 RAT

ch0 RAT

sgn ch0

sgn ch1

sgn ch2

sgn ch3

sgn RAT

rename bundle

I0 I1 I2 I3

Fig. 6.3: RAT state signature generation: extensions in the rename logic

always bound to physical register pli.

One may think of generating a RAT state Ri by inspecting the mapping for every

renamable logical register after renaming instruction Ii. However, this generation

scheme is impractical. Since the rename stage is performed in parallel for a rename

bundle and the RAT is updated atomically at the end of the cycle, any instruction

not being the last of its rename bundle would never observe a RAT state reflecting

all the register renames up to these instructions. Moreover, such implementation

would require (i) large area overhead for storing the RAT state, and (ii) a complex

hardware, since many RAT read ports would be necessary to access the RAT entries

in order to build the set of pairs for Ri.

In order to solve the issues mentioned in the previous paragraph, we introduce

the concept of RAT state signature. The objective of a RAT state signature Si is

to encode a RAT state with a fraction of its codeword size. However, since some

information is lost, a RAT state signature may correspond to multiple RAT states.

We will discuss its impact in the coverage study in Section 6.6.

Figure 6.3 shows the process involved in generating the RAT state signature Si ∈ S

for every instruction Ii. As described in Appendix A.2, each renamable instruction

in the rename bundle obtains a new physical register tag (pdst) and the old physical

register tag (prev) mapped to its logical register destination (ldst). We exploit the

following property: the RAT state for a given instruction Ii is the RAT state for

6.4. End-To-End Validation of RAT State Recovery · 115

the previous instruction Ii−1, just replacing the contents of the logical register being

renamed (this is, prev) with the new destination mapping pdst (replacing the pair

(Ii.ldst, Ii.prev) with (Ii.ldst, Ii.pdst)). This approach allows computing a RAT state

in a forward and accumulative way, avoiding traversing all the RAT mappings to

build it.

The remaining step consists in applying this generation approach to RAT state

signatures, in order to avoid big codeword overheads. The next subsection shows how

to achieve this and what properties implementations must satisfy.

RAT Signature Generation: Formal Properties

As commented, the RAT state for a renamed instruction Ii is the RAT state for the

immediately previous renamed instruction (instruction Ii−1) but just replacing the

pair (Ii.ldst, Ii.prev) with (Ii.ldst, Ii.pdst).

We can formally define a function RAT that computes the RAT state for any

instruction Ii ∈ I. Equation 6.1 shows that an instruction RAT state depends on

the instruction mapping information but also depends on the RAT states of all pre-

vious instructions (including the boot-time RAT state ⊥<R>). The add and remove

function are defined in Equation 6.2 and Equation 6.3.

RAT (Ii) =

{

⊥<R> : i = 0

add(remove(RAT (Ii−1), Ii.ldest, Ii.prev), Ii.ldest, Ii.pdst) : i > 0

(6.1)

add(Ri, li, pi) = Ri ∪ {(li, pi)} (6.2)

remove(Ri, li, pi) = Ri \ {(li, pi)} (6.3)

We can compute the RAT signature of a RAT state by means of a SGN function,

as defined in Equation 6.4. To achieve so, we must define a function h : l, p→ S and

also a function ⊕ : S, S → S that must be associative and commutative. We refer to

h as a hashing function and to ⊕ as a combining function.

SGN(Ri) =

{

h(l0, p0) : Ri = {(l0, p0)}

SGN(Ri−1)⊕ h(lL, pL) : Ri = Ri−1 ∪ {(lL, pL)}
(6.4)

From Equation 6.2 and Equation 6.4 we can deduce Equation 6.5. However, up to this

point we can not deduce the equivalence for the remove function. As a consequence,

we define it as described in Equation 6.6, by introducing a function ⊖ : p, l → S.

116 · Chapter 6. Control Flow Recovery Validation

(lk, pk) /∈ Ri
6.2,6.4
⇒ SGN(add(Ri, lk, pk)) = SGN(Ri)⊕ h(lk, pk) (6.5)

(lk, pk) ∈ Ri ⇒ SGN(remove(Ri, lk, pk)) = SGN(Ri)⊖ h(lk, pk) (6.6)

A forward and accumulative signature generation mechanism could be imple-

mented if we could prove that the result of applying the SGN function (Equation 6.4)

to every RAT state generated by a forward RAT state generation mechanism is the

same result as if we applied Equation 6.5 and Equation 6.6 in a forward manner.

If Ri = RAT (Ii) = {(l1, p1), . . . , (lk, pk), . . . , (lL, pL)}, and lk = Ii+1.ldst, pk =

Ii+1.prev, pm = Ii+1.pdst, then we deduce Ii+1 signature from Ri+1 as follows:

SGN(Ri+1) = SGN(add(remove(Ri, lk, pk), lk, pm) =

SGN(add(remove({(l1, p1), . . . , (lk, pk), . . . , (lL, pL)}, lk, pk), lk, pm))
6.3
−→

SGN(add({(l1, p1), . . . , (lL, pL)}, lk, pm))
6.2
−→ SGN({(l1, p1), . . . , (lk, pm), . . . , (lL, pL)})

6.4∗
−−→

h(l1, p1)⊕ . . .⊕ h(lk, pm)⊕ . . .⊕ h(lL, pL)

On the other hand, if Ii+1 signature is computed in a forward manner then we

deduce its equivalency as:

SGN(add(remove(Ri, lk, pk), lk, pm))
6.5
−→ SGN(remove(Ri, lk, pk))⊕ h(lk, pm)

6.6
−→

SGN(Ri)⊖ h(lk, pk)⊕ h(lk, pm) =

SGN({(l1, p1), . . . , (lk, pk), . . . , (lL, pL)})⊖ h(lk, pk)⊕ h(lk, pm)
6.4∗
−−→

h(l1, p1)⊕ . . .⊕ h(lk, pk)⊕ . . .⊕ h(lL, pL)⊖ h(lk, pk)⊕ h(lk, pm)

As a consequence, the equivalency

h(l1, p1)⊕ . . . ⊕h(lk, pk) ⊕ . . .⊕ h(lL, pL) ⊖h(lk, pk)
︷ ︸︸ ︷

⊕h(lk, pm)

=

h(l1, p1)⊕ . . .
︷ ︸︸ ︷

⊕h(lk, pm)⊕ . . .⊕ h(lL, pL)

holds true if if we are able to find a commutative and associative function⊕ : S, S → S

that has as an inverse function ⊖. Note that no restrictions apply for h.

From an implementation perspective, we define both ⊕ and ⊖ as bit-wise XOR

operation. Other (more complex) design choices could be possible by defining S ≡ Zn

, ⊕ as modulo addition (’+’) and ⊖ as modulo substraction (’−’). Similarly, we define

’h’ as a folding function implemented by means of XOR gates. Other generic hash

functions are also possible, as described in [167].

6.4. End-To-End Validation of RAT State Recovery · 117

+

-

h h

ld
st

p
re

v

p
d

stS

S
n

ew

f

nhph

+

-

h

ld
st

p
re

v

p
d

st

S
n

ew

S

f-1

h
phnh

(a) f (b) f−1

Fig. 6.4: f and f−1 blocks implementation

Implementation of RAT Signature Generation

As soon as each instruction Ii has obtained its new pdst and the old physical des-

tination mapping prev, the RAT state signature generation can start. This can

be accomplished with very simple hardware shown in Figure 6.4(a); the centerpiece

hardware is f , which is in charge of generating for each instruction its RAT state

signature.

The logical destination and previous physical mapping are combined together

using function h to form an individual register mapping hash signature (ph). The

same happens with the new physical mapping (nh). Afterwards, function − will

remove the old register mapping hash from the previous instruction signature (S) and

function + will add the new register mapping hash. As a result, f produces Snew. It

can be observed that ’f ’ implements SGN(RAT (Ii−1))⊖ h(Ii.ldst, Ii.prev)⊕

h(Ii.ldst, Ii.pdst).

Each ’f ’ block forwards its output to the next ’f ’ block input. Note that the first

instruction in the rename bundle will obtain the previous instruction signature from

an instruction not in the rename bundle (because it was renamed cycles ago). This

implies that at the end of the rename process, the signature for the last instruction in

the rename bundle must be stored. This is accomplished by extending the frontend

RAT to store the last renamed instruction’s signature. Hence, the first instruction

in the rename bundle will obtain the previous instruction’s signature directly from

the frontend RAT. Moreover, in order to implement the forward signature generation

scheme, the frontend RAT signature must be reset to a static signature value at boot

time. This signature is known a priori and consequently can easily be hardcoded. This

118 · Chapter 6. Control Flow Recovery Validation

f -1

pdst4

pdst3

pdst2

pdst1

prev4

prev3

prev2

prev1

SRAT

S3

S2

S1

f -1
f -1

f -1

S3

S2

S1

ldst4

ldst3

ldst2

ldst1

ch 1

prev ldst pdst S…

--- --- --- SJJ0

S1

S2

S3

S4

I1

I2

I3

I4

…

…
ch 0

ch 1 RAT

SJ

To Rename
Unit

To
 F

ro
n

te
n

d

R
A

T

RAT State
recovery

logic

ÀÁÂÃÄÅÆÇÈÀ
ÀÅÉÇÈÊ ÁÃ
ÀËÌÈÊÆÍÈÇ

ROB

Fig. 6.5: RAT state signature reconstruction: extensions in the commit logic

value corresponds to SGN(⊥<R>). We also change the checkpoint RATs to store the

RAT state signature. This is necessary because checkpoint RAT state signatures are

used during the validation step, as it will be explained next.

Once the rename process has been completed, every instruction has a RAT state

signature that is written into the issue queue upon allocation.

6.4.2 RAT State Signature Validation

The end-to-end path ends once a control flow recovery action has been completed.

At that point we can check whether during the RAT recovery process the proper

sequence of steps were performed. This is simply accomplished by comparing the

RAT state signature of the mispredicted branch (read from the issue queue upon

instruction issue), with the RAT state signature obtained after recovering the RAT

state.

The generation of the recovered frontend RAT signature is performed in parallel

to the ROB walk recovery process (described in Appendix A.2), by mimicking the

steps it performs (which can be potentially faulty). Figure 6.5 shows how this step

6.4. End-To-End Validation of RAT State Recovery · 119

is performed. As the ROB keeps the mapping information and the checkpoint RATs

have been extended to hold their own signatures, we can regenerate the signature of

the frontend RAT by piggybacking on the ROB walk logic while it recovers the RAT

state.

We start with the signature of the checkpoint RAT that the recovery process

chooses for recovering. Then, we transform it so that all the changes introduced by

the instructions covered by the checkpoint up to the mispredicted branch are removed

from the checkpoint signature. For the example in Figure 6.5, this corresponds to the

register mappings of instructions I4 to I1. In other words, for every instruction we

walk, we remove the new register mapping hash (nh) from the RAT state signature

and add the one from the old mapping (ph). We implement such function through a

backward signature generation hardware f−1.

As a starting point, the new register mapping hash of instruction I4 would be

removed from checkpoint ch1 signature, and instruction I4 old register mapping hash

would be added to the resulting RAT signature. This would produce signature S3 in

Figure 6.5. Figure 6.4(b) shows the implementation details for f−1. It can be observed

that f−1 implements SGN(RAT (Ii+1))⊖ h(Ii.ldst, Ii.pdst)⊕ h(Ii.ldst, Ii.prev) .

In parallel, the RAT state signature of the mispeculated branch is sent to the

rename logic from the issue queue for checking purposes. Once the recovery has

been performed and before the rename of the instructions from the corrected path

has started, we determine whether the signature generated at rename time (the one

obtained from the issue queue) matches with the signature generated at recovery

time. In case of a mismatch, a failure is detected.

6.4.3 Microarchitectural Changes

The mechanism requires the following hardware modifications (assuming N bits per

signature).

• Frontend RAT and checkpoint RATs. Every RAT contains its own signa-

ture of N bits. Only 1 read/write port is needed for this extra field.

• Rename logic. As many f blocks as number of instructions in the rename

bundle are needed. Every f block internally works with 3 signatures of N bits.

• Issue Queue. The CAM memory and wake-up/select logic is left unchanged.

We enlarge the RAM memory, so that each entry in the payload RAM holds

an extra field for keeping the RAT signature for that instruction (N bits per

entry). The allocate and issue logic is widened in order to write and read out

the instruction signatures.

120 · Chapter 6. Control Flow Recovery Validation

• RAT State Recovery Logic. The ROB walk logic is extended with as many

f−1 blocks as the maximum number of ROB entries that can read out during

a RAT recovery cycle. Every f−1 block works with 3 inputs of N bits.

6.5 End-To-End Validation of Instruction Squashing

In order to detect errors in the mechanisms that implement the identification and

squashing of control-flow dependent instructions, we use an end-to-end mechanism

that tracks the range of instructions within the ROB that should be considered as

bogus. The end-to-end path starts when a branch executes and resolves as mis-

predicted, because this is the earliest moment when a sequence of wrongly fetched

instructions can be identified and tracked. At this point, the technique will update

a small structure called bogus check table (BCT). Each entry of the BCT will store the

range of instructions under the shadow of a given mispredicted branch. The end-

to-end path ends when an instruction retires, because this is the very last moment

when it is possible to check if the processor instruction squashing mechanism has

been faulty or not. Furthermore, since our baseline processor (see Appendix A.2)

can recover from control-flow mispeculations before the mispredicted branch reaches

the head of the ROB (hence, supporting multiple in-flight corrected fetch paths), it is

necessary to check the validity of branches upon execution as well. Otherwise, in case

a mispredicted jump inside a mispeculated path was not squashed, it could corrupt

our tracking mechanism. In case the processor recovers from control-flow mispredic-

tions at retire time, this second check would not be necessary. However, due to the

performance loss this latter option is rare.

Therefore, retiring instructions will access the BCT to check whether they belong

to a wrong path interval (case (D) in Section 6.3) and mispredicted branches will

access it at execution time in order to verify that they redirect the fetch path only

when they are not under the shadow of an older mispredicted branch (case (E)).

Next, we will show how we generate the entries in the BCT and later, how we

validate that the execution is resumed correctly.

6.5.1 Bogus Region Tracking

The end-to-end path starts when a branch is executed and resolved as mispredicted.

Our idea is validating that we only commit the right instructions by tracking the

ones that are control-dependent on mispredicted branches. We show in Figure 6.6

the information that we keep in each BCT entry. Since instructions are allocated in

the ROB in sequential order, we can summarize the range of bogus instructions in a

6.5. End-To-End Validation of Instruction Squashing · 121

wj j wt t

w
f

f
w

l
l >

≥≥≥≥

≤≤≤≤

<

covers0

overlaps0

b?

nullify0

error0

v?
jump info

B
C

T
 e

nt
ry

 in
fo

wl lwf fv?
wl lwf fv?

BCT

Fig. 6.6: BCT mechanism: extensions for bogus region tracking and validation

compact manner: we only store in the BCT the oldest and youngest instruction that

are under the shadow of a mispredicted branch.

Once a branch executes and resolves as mispredicted it will fill an unused BCT

entry by storing its ROB entry (f field in the BCT entry), the ROB tail value (l field),

jointly with their corresponding wrap bits (wf and wl fields) to allow total age order

determination among in-flight instructions [36, 142]. Note that this information is

easy to obtain since each instruction in the issue queue keeps its ROB entry position

and that the ROB tail value can be obtained upon a branch misprediction. Once the

BCT entry is filled, it is marked as valid (v? field).

The BCT can become eventually full. Therefore, some branches may not allocate

a free entry when resolved as mispredicted. For our particular implementation we

add a special BCT entry, called Lost Intvl, to track the ROB region which cannot be

verified. Clearly, this implies some coverage loss. Whenever a branch mispredicts and

the BCT is full, it fills the Lost Intvl entry. In the case that the entry is already in use,

we update its ROB start field f from the Lost Intvl entry with the branch position if

the branch is older than the branch contained in the Lost Intvl entry. Similarly, the

ROB tail field l is updated in case it now points to a younger instruction.

122 · Chapter 6. Control Flow Recovery Validation

Reducing the number of BCT entries.

Modern processors implement out-of-order resolution of branches. This gives us an

opportunity to reduce the required number of entries in the BCT, since out-of-order

resolution of branches may cause two BCT entries to have in common some wrong-path

instructions. This may happen whenever, within a fetch stream, a branch resolves as

mispredicted after a younger branch has already resolved as mispredicted and filled a

BCT entry. This scenario will render useless the BCT entry of the mispredicted branch

that was resolved first, as the current ROB tail must point to an instruction no older

than the ROB end slot for the previous resolved branch. The BCT entry that needs

to be filled for the later branch will clearly cover the other branch entry.

We take this opportunity to reduce the total number of BCT entries by determining

whether a BCT entry is covered by the region of a given misprediction, and hence,

whether we can reuse the entry or not. It is important to note that the invalidation

of BCT entries does not require modifying the Lost Intvl entry: a mispredicted branch

can allocate a new BCT entry despite it is located in the Lost Intvl region. The

validation step will take care of that situation.

We show in Figure 6.6 the checks that we implemented for a given entry. The

branch is located at position (wj, j), where wj is the wrap bit and j is its ROB entry.

Similarly, the instructions under the shadow of that branch span until the ROB tail

(wt, t), where wt is the current wrap bit. The BCT entry groups bogus instructions

from ROB entry (wf , f) to entry (wl, l). In case (wt, t) ≥ (wl, l) , and (wj, j) ≤ (wf , f)

and the branch was not previously marked as bogus, the nullify signal is asserted. If

the nullify signal is asserted, the entry contents can be nullified and replaced with

the covering branch information. Otherwise, an idle BCT entry must be allocated and

filled.

Despite these are complex checks, the total overhead is very small because few

BCT entries may be needed to achieve high error coverage.

6.5.2 Bogus Region Validation

The end-to-end validation step is carried at two points: once instructions commit

and once mispredicted branches resolve during execution. Typically, upon a branch

misprediction, all younger instructions in the issue queue and ROB are identified,

squashed (marked as bogus). Furthermore, wrong-path instructions in other resources

are also nullified (to avoid executing them), and potentially cleared.

Figure 6.7 depicts the commit time validation process. As usual, the commit

logic obtains the possible retiring instructions out of the ROB banks by means of the

6.5. End-To-End Validation of Instruction Squashing · 123

ptr
gen
logic

ROB
bank 0

ROB
bank 1

ROB
bank 2

ROB
bank 3

cr
os

sb
ar

 s
w

itc
h

commit
logic

ptr 0
ptr 1
ptr 2
ptr 3

b?0

b?3

b?2

b?1

∈
∈

∈
∈

⊕

⊕
⊕

⊕

Lost itvl
f0 l0
f1 l1

head

error

Fig. 6.7: BCT mechanism: extensions in the commit logic

Table 6.1: Commit time assertion checks for instruction squashing verification

Belongs to Belongs to Error

BCT? Lost Intvl? Check

No No Must not be bogus (i.e. not in wrong path)

No Yes Nothing (coverage loss)

Yes No Must be bogus (i.e. in wrong path)

Yes Yes Must be bogus (i.e. in wrong path)

pointer generation logic (ptr gen logic in the figure). Then we obtain the oldest BCT

entry (head pointer) and the Lost Intvl entry and check whether the instructions were

marked as bogus or not. We take different actions depending on whether the commit

pointer belongs to the BCT interval or Lost Intvl. We summarize them in Table 6.1.

Note that as explained before, an instruction in the domain of Lost Intvl cannot be

checked against errors despite it updates the architectural state. Hence, coverage loss

is suffered.

Our mechanism detects a wrong instruction nullification scenario when a mispre-

dicted branch finds an overlapping bogus region in the BCT (see overlaps and error

signals in Figure 6.6). For instance, if a mispredicted branch spans from entry (wj, j)

to entry (wt, t), and a BCT entry keeps the interval (wf , f) to (wl, l), then the branch

must have been marked as bogus if (wt, t) < (wf , f) ∨ (wj, j) > (wl, l). In case the

overlaps signal is asserted but the instruction is not marked a bogus, an error has

been detected.

124 · Chapter 6. Control Flow Recovery Validation

BCT entries are freed as the ROB head advances. Every BCT entry whose ROB

tail field l points to an instruction that is older than the instruction contained in the

current ROB head, marks its valid v? bit as false.

6.5.3 Microarchitectural Changes

A detailed list of the microarchitectural changes follows (assuming E is the number

of bits required to indicate a ROB position jointly with its wrap bit).

• BCT. We implement the BCT table within the ROB module. The BCT consists

of B entries, and each one of them requires 2 fields of E bits. Also, every entry

has a valid bit indicating whether it is idle or in use.

• Commit Logic. Additional control logic is needed to access the BCT table

during instruction commit time. This includes a BCT head pointer of log2B

bits to indicate the youngest in-flight bogus region. Also, we need to provide

the BCT with as many read ports as the number of committing instructions.

Finally, we need extra logic to perform the assertion checks listed in Table 6.1.

This includes two comparators per committing instruction to determine whether

its ROB entry belongs to a wrong-path or not (2 comparators of E bits).

• Branch Execution Stages. The branch ROB entry and the current ROB

tail must be obtained during execution in order to check and/or update the

BCT table. Since the instruction ROB entry is read upon instruction issue, we

just need an extra read port for the ROB tail pointer. Furthermore, we need

four comparators of E bits per BCT entry, as shown in Figure 6.6. Two of them

are used to compute the cover signal and the other two are used to compute

the overlap signal.

6.6 Evaluation

This section presents a detailed evaluation of the proposed end-to-end techniques.

We evaluate them in terms of area, power and coverage for our baseline processor.

6.6.1 Coverage Results

From a global perspective, our previous studies [205] based on AVF analysis indicate

that all the hardware involved in implementing control flow recovery functionalities

represents 11.40% of the SDC FIT rate caused by soft errors (excluding protected

6.6. Evaluation · 125

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2-bit 3-bit 4-bit 5-bit

%
 c

ov
er

ag
e

(m
ea

n)

RAT signature size

Fault injection Expected coverage

Fig. 6.8: Coverage for end-to-end RAT state signatures

structures, like caches, TLBs, etc.). Furthermore, 4.56% of the baseline processor

area is exposed to other sources of failures, including wear-out, design and hard

faults (again, excluding protected structures). By analyzing the microarchitectural

blocks and by means of fault vulnerability studies (as described in Section 4.1.3), we

have determined that the proposed technique is able to potentially cover 3.86% of

the baseline processor area, and to potentially target 9.65% of the SDC SER FIT.

Given these area and potential soft error rate targets, actual error detection cov-

erage has been obtained by means of error injection, as described in Chapter 4. For

each SPEC benchmark, we perform 1000 effective fault injections for each class of

error (see Section 6.3) independently. For every error class we inject errors in two

manners: some faults are modeled as a flip of storage information and other faults

are modeled as control logic misbehavior (by introducing bugs in the simulator). For

both cases, we allow the fault to propagate and check at commit time and at RAT

recovery time whether the fault is detected or not. For example, mapping informa-

tion or bogusness information stored in the ROB is modeled as bit flips, whereas the

wrong ROB walk failure scenario is modeled by implementing buggy code in the sim-

ulator. Each fault has been randomly injected during the ten first million executed

instructions, after the warm-up period. Each experiment has been allowed to run for

100M instructions, as described in Chapter 4.

126 · Chapter 6. Control Flow Recovery Validation

84%

86%

88%

90%

92%

94%

96%

98%

100%

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

bm
k

tw
ol

f

vo
rt

ex vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

ga
lg

el

%
 m

is
pr

ed
ic

te
d

ju
m

ps

7+ 6 5 4 3 2 1 0

Fig. 6.9: Breakdown of number of younger resolved bogus regions for each mispredicted branch

RAT State Recovery

First, we have evaluated the ability of our technique to detect the injected errors

related to the state recovery process for different sizes of the RAT state signatures.

Reliability techniques based on signatures do not have perfect error coverage because

of signature aliasing. Given a signature, the probability to match another will depend

on the total number of signatures and the way they are generated. An error may not

be detected if the signature observed when there is an error is the same as the expected

one. When using n bits to encode the signature, the average case probability of having

aliasing is 1
2n
, assuming they are uniformly distributed. Hence, the expected error

detection coverage in this case would be 1− 1
2n

.

Figure 6.8 shows the expected coverage when RAT signatures are uniformly dis-

tributed, and the actual error detection coverage achieved through error injection

experimentation. The achieved error detection coverage is very close to the expected

one for all the considered signature sizes. On average, the difference with respect

to the expected coverage is -0.58%, -0.47%, -0.60% and -0.94% for 2, 3, 4 and 5-bit

RAT signatures, respectively. Specifically, 3 bit signatures allows detecting 87.03% of

all the failures on average across benchmarks, whereas when moving to a 4-bit RAT

signature we are able to increase the coverage to 93.15% on average. In all these

cases, the errors are detected timely and without polluting the architectural state.

6.6. Evaluation · 127

97,5%

98,0%

98,5%

99,0%

99,5%

100,0%

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

bm
k

tw
ol

f

vo
rt

ex vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

ga
lg

el

%
 c

ov
er

ag
e

4 entries
3 entries
2 entries
1 entry

Fig. 6.10: Coverage for identification of control-flow dependent instructions (1 to 4 BCT entries)

Squashing of Control-Flow Dependent Instructions

We have conducted a similar analysis for the the technique shown in Section 6.5. In

order to achieve 100% error coverage we would need as many BCT entries as ROB

entries, because the most pessimistic scenario would be the one where each in-flight

instruction is a mispredicted branch and they are resolved in age order. However, on

average, there is a small number of mispredicted branches in flight and therefore, few

BCT entries will be probably needed most of the cycles.

First, we have quantified how the out-of-order resolution of mispredicted branches

allows reusing existing BCT entries. Figure 6.9 shows the number of younger resolved

bogus regions that valid mispredicted branches would find upon resolution. On aver-

age, roughly 5% of the branches do not need to allocate a new BCT entry because they

can reuse an existing one due to out-of-order execution, which relieves some pressure

from the BCT (7.72% on average for SPECint and 2.18% for SPECfp).

Now, we take a look to the coverage of our technique for different number of BCT

entries. Figure 6.10 shows a stacked chart indicating the coverage achieved. Our

results show that on average, 1 entry obtains 99.12% and 99.94% error detection

coverage for SPECInt and SPECfp, respectively. When moving to 2 entries, coverage

raises to 99.96% and 99.99%, respectively. A BCT of 3 entries is able to provide 99.99%

coverage, on average. Most of the cycles we would not need more than 1 or 2 entries

in the tracking mechanism. Hence, the hardware overhead and the table management

128 · Chapter 6. Control Flow Recovery Validation

complexity can be minimized.

6.6.2 Overheads

This section details the impact of our techniques in terms of delay, power and area

(by following the methodology described in Section 4.1.4).

Delay

From an implementation perspective, RAT signature generation is performed in a

staged manner during the two halves of the rename cycle. At the beginning of the

first half, the current physical register ids are already available, and therefore the

computation of h(Ii.ldst, Ii.pdst) can happen in parallel for every instruction i. In

addition, a partial computation of the RAT signature takes place, where Si−1 ⊕

h(Ii.ldst, Ii.pdst) is performed for every instruction i in the rename bundle, generating

S ′
i and requiring a global delay of 1 +W XOR gates, where W is the rename width.

During the second half of the rename cycle, the previous physical register ids are

already available, and h(Ii.ldst, Ii.prev) is computed in parallel for every instruction

i. In addition, acci =
j=i⊕

j=0

h(Ij.ldst, Ij .prev) is computed for every instruction i in

the rename bundle. The final RAT signature for every instruction i is generated as

Si = S ′
i ⊖ acci, needing a global delay of 1 +W XOR gates.

We have analyzed any possible impact by means of the area-power-delay frame-

work described in Section 4.1.4. Our Wattch studies indicate that for 2, 3, 4 and 5

bit RAT signatures no impact is introduced into the delay: the reason is that access

to the big rename tables during the two halves of the rename cycle dominates the

total delay, as noted by Palacharla [140].

Signature re-generation logic piggybacks on the ROB walk logic. As described

in Appendix A.2, during the first half of every RAT recovery cycle, the existing

logic obtains from the ROB the register mapping of as many instructions as avail-

able ROB read ports-banks (in our case up to 4 instructions can be committed per

cycle). Furthermore, every f−1 block grabs this register mapping information and

starts re-computing the signature for every instruction (as described in the previous

paragraph). This step starts during the second half of the cycle, and finishes in the

first half of the next cycle, in parallel to the frontend RAT updates.

Regarding the BCT, it is filled upon branch misprediction. Given that a minimum

of one cycle is spent in recovering the frontend RAT (for the case when the checkpoint

RAT is copied into the frontend RAT, with no register mapping updates) and that

6.6. Evaluation · 129

Table 6.2: Area and power overheads. nb SGN stands for n-bits RAT state signatures.

Area Power

Block % ∆% % ∆%

Original 3 bits 4 bits 5 bits Original 3 bits 4 bits 5 bits

Bypass 5.28 0.00 0.00 0.00 4.97 0.00 0.00 0.00

FUs 17.98 0.00 0.00 0.00 13.73 0.00 0.00 0.00

L2$ 18.15 0.00 0.00 0.00 2.72 0.00 0.00 0.00

Rename 2.33 0.14 0.19 0.24 5.27 0.14 0.19 0.24

IQ 3.89 2.44 3.25 4.07 6.73 0.58 0.77 0.96

RF 2.92 0.00 0.00 0.00 8.10 0.00 0.00 0.00

D$ 15.02 0.00 0.00 0.00 12.73 0.00 0.00 0.00

ROB 2.54 0.03 0.04 0.05 9.85 0.03 0.04 0.05

Alloc 1.69 0.40 0.50 0.63 1.99 0.50 0.66 0.83

LSQ 7.11 0.00 0.00 0.00 3.02 0.00 0.00 0.00

Frontend 23.09 0.00 0.00 0.00 24.17 0.00 0.00 0.00

CLK N/A N/A N/A N/A 6.72 0.11 0.14 0.18

Total 100.0 0.11 0.14 0.18 100.0 0.07 0.09 0.11

the branch is not allowed to retire until the recovery is complete, we can check and

update the BCT during the first and second half of the recovery cycle.

Area and Power

We have evaluated the area and power introduced by the hardware needed to imple-

ment our runtime validation techniques. To do so, we have extended our power and

area models as described in Chapter 4.

Left-hand side of Table 6.2 summarizes the area overhead for the end-to-end RAT

state validation mechanism. We show in the first column the contribution of every

block to the total processor area. Columns 3 to 5 show the extra area overhead when

using different number of bits for the RAT signatures. The results show that the

overall area increase is small. When using 3-bit signatures (8 different signatures),

the core area increase is 0.11%. Columns 3 and 4 show the area overhead when using

16 and 32 different signatures. With respect to the core, an area overhead of 0.14%

and 0.18% is required. Note that increasing the signature size affects the Issue Queue,

Rename and ROB area. The issue queue must be enlarged because every instruction

holds its own RAT signature. Moreover, every RAT must be extended in order

to accommodate its own signature. Adding the signature generation / regeneration

control logic does not impact much the area. The rename block sees an area overhead

that ranges from 0.14% to 0.24%, primarily caused by the need to store the signatures

130 · Chapter 6. Control Flow Recovery Validation

Table 6.3: Area and power overheads. ne BCT stands for n BCT entries.

Area Power

Block % ∆% % ∆%

Original 1e BCT 2e BCT 3e BCT Original 1e BCT 2e BCT 3e BCT

Bypass 5.28 0.00 0.00 0.00 4.97 0.00 0.00 0.00

FUs 17.98 0.00 0.00 0.00 13.73 0.00 0.00 0.00

L2$ 18.15 0.00 0.00 0.00 2.72 0.00 0.00 0.00

Rename 2.33 0.00 0.00 0.00 5.27 0.00 0.00 0.00

IQ 3.89 0.00 0.00 0.00 6.73 0.00 0.00 0.0

RF 2.92 0.00 0.00 0.00 8.10 0.00 0.00 0.00

D$ 15.02 0.00 0.00 0.00 12.73 0.00 0.00 0.00

ROB 2.54 1.73 2.59 3.46 9.85 2.35 3.53 4.71

Alloc 1.69 0.00 0.00 0.00 1.99 0.00 0.00 0.00

LSQ 7.11 0.00 0.00 0.00 3.02 0.00 0.00 0.00

Frontend 23.09 0.00 0.00 0.00 24.17 0.00 0.00 0.00

CLK N/A N/A N/A N/A 6.72 0.04 0.07 0.09

Total 100.0 0.04 0.07 0.09 100.0 0.23 0.35 0.47

for the frontend and checkpoints RATs. The control logic for signature generation

is minimal, as well as the control logic for the regeneration at the commit stages.

Our studies show that it ranges from 0.03% to 0.05% for 3 to 5 bit signatures (with

respect to ROB block, that implements the RAT state recovery functionality). In

our particular design, the + and − functions are implemented with the bitwise XOR

function (whose inverse is itself) and hence the implementation consists of a shallow

and small XOR tree. Results in Table 6.2 also show that 3-bit RAT signatures have

a 2.44% area impact over the issue queue. When moving to 4-bit signatures, area

overhead moves to 3.25%. Clearly, 3 and 4-bit signatures are the most desirable ones:

for larger bit counts error coverage does not increase at the same pace, but area

overhead increases almost linearly for some structures.

For the BCT scheme, left-hand side of Table 6.3 also summarizes the area overhead

for our baseline processor model. The BCT structure is the new hardware block

required to implement the mechanism, with minimal additional modifications added

to the ROB block. The area overhead mainly comes from the BCT structure and has

been accounted as extra area in the ROB block. For 1, 2 and 3 BCT entries, the area

overhead moves to 1.73%, 2.59% and 3.46% respectively. This translates into a global

area requirement that spans from 0.04% to 0.09%.

When combining both techniques, the results in Table 6.4 also show that the

overall area increase is small.

6
.6
.

E
v
a
lu
a
tio

n
·

1
3
1

Table 6.4: Area and power overheads. nb SGN stands for n-bits RAT state signatures and ne BCT for n BCT entries.

Area Power

Block % ∆% % ∆%

3b SGN 3b SGN 4b SGN 5b SGN 3b SGN 3b SGN 4b SGN 5b SGN
Original

1e BCT 2e BCT 2e BCT 2e BCT
Original

1e BCT 2e BCT 2e BCT 2e BCT

Bypass 5.28 0.00 0.00 0.00 0.00 4.97 0.00 0.00 0.00 0.00

FUs 17.98 0.00 0.00 0.00 0.00 13.73 0.00 0.00 0.00 0.00

L2$ 18.15 0.00 0.00 0.00 0.00 2.72 0.00 0.00 0.00 0.00

Rename 2.33 0.14 0.14 0.19 0.24 5.27 0.14 0.14 0.19 0.24

IQ 3.89 2.44 2.44 3.25 4.07 6.73 0.58 0.58 0.77 0.96

RF 2.92 0.00 0.00 0.00 0.00 8.10 0.00 0.00 0.00 0.00

D$ 15.02 0.00 0.00 0.00 0.00 12.73 0.00 0.00 0.00 0.00

ROB 2.54 1.76 2.62 2.63 2.64 9.85 2.38 3.56 3.57 3.58

Alloc 1.69 0.40 0.40 0.50 0.63 1.99 0.50 0.50 0.66 0.83

LSQ 7.11 0.00 0.00 0.00 0.00 3.02 0.00 0.00 0.00 0.00

Frontend 23.09 0.00 0.00 0.00 0.00 24.17 0.00 0.00 0.00 0.00

CLK N/A N/A N/A N/A N/A 6.72 0.15 0.17 0.21 0.24

Total 100.0 0.15 0.17 0.21 0.24 100.0 0.30 0.42 0.44 0.46

132 · Chapter 6. Control Flow Recovery Validation

When using 3-bit signatures (8 different signatures), and 1 BCT entry, the core

area increase is 0.15%. For the same number of signatures but using 2 BCT entries,

overhead moves to 0.17%. Columns 3 and 4 show the area overhead when using 4-bit

and 5-bit RAT signatures (16 and 32 different signatures, respectively) and a BCT of

2 entries. With respect to the core, an area overhead of 0.21% and 0.24% is required.

Note that the ROB and the Issue Queue blocks are the ones with bigger changes.

We have also evaluated the total peak dynamic power increase due to the proposed

solutions. For a RAT signature scheme that uses 8 different signatures, we obtained

a 0.07% power increase with respect to the whole core, as shown in the right-hand

side of Table 6.2. Minimal peak power overhead of 0.09% and 0.11% is introduced

when using 16 and 32 signatures, respectively.

Regarding the BCT technique, the global peak dynamic power penalties are a bit

higher. The current BCT entry is continuously accessed by each instruction being

committed and two age comparators are permanently being active. Furthermore,

every branch in the worst case needs to access all the BCT entries for both error

detection and entry reuse detection. These facts translate into an increase in the

ROB dynamic peak power that ranges from 2.35% to 4.71% (Table 6.3).

However, given that the ROB power represents the 9.85% of the total power

consumed, the impact is slight at the core level: global power overheads of 0.23%,

0.35% and 0.47% are required for 1, 2 and 3 BCT entries, respectively.

For both techniques combined together, results in the right-hand side of Table 6.4

shows that for a scheme using 8 different signatures and 1 BCT entry, we obtained

a 0.30% dynamic peak power increase with respect to the whole core. Peak power

overhead of 0.42%, 0.44% and 0.46% is introduced when using 2 BCT entries and 8,

16 and 32 signatures, respectively. As it can be observed, the biggest contributor to

the global power are the BCT entries that are continuously accessed.

6.7 Conclusions

Modern processors devote a significant amount of hardware and complex control logic

to provide an efficient implementation of control flow recovery required by branch

prediction, exceptions, interrupts and other speculative performance solutions. To

our knowledge, we have proposed the first solution to protect in a targeted way

the whole control flow recovery control logic. It provides continuous runtime error

detection for multiple sources of failures (including design bugs). Coupled with the

control-flow checking baseline RAS features described in Section 4.2, control flow can

therefore be protected in an effective manner.

6.7. Conclusions · 133

Our solution exploits high-level microarchitectural invariants to protect the con-

trol flow recovery logic in an end-to-end way.

The proposed technique is able to potentially target 9.65% of the SDC SER FIT

and cover 3.86% of the baseline processor area against other faults (excluding pro-

tected structures). Given these area and potential error rate targets, our evaluations

show that the techniques provide an excellent error coverage against all types of in-

jected faults, without polluting the architectural state. For failures affecting the RAT

recovery logic, we can achieve different coverage ratios by changing the amplitude of

our error detection signatures. We have evaluated signatures sizes varying from 3 bits

to 5 bits, and error coverage has proven to span from 87.03% to 95.93%, on average.

For failures affecting the identification of wrong-path instructions, coverage is always

above 98% on average.

No performance slowdown is introduced and area and dynamic peak power over-

heads with respect to the core are rather modest (little impact is introduced on the

hardware structures implementing control flow). For our technique targeting the de-

tection of errors in the RAT state management logic, area and dynamic peak power

overheads for the biggest signature scheme are 0.18% and 0.11%, respectively. Our

second technique just requires areas overhead between 0.04% and 0.09%, while dy-

namic peak power overhead stays around 0.23% and 0.47%.

134 · Chapter 6. Control Flow Recovery Validation

CHAPTER 7

MEMORY FLOW VALIDATION

7.1 Introduction

The Load-Store Queue is one of the most complex structures in a modern out-of-order

processor that is in charge of allowing out-of-order execution of memory instructions

while at the same time guarantees that all these memory instructions update the

processor state as if they were executed in program order. The LSQ holds in-flight

memory instructions and supports simultaneous associative searches to honor memory

dependencies.

Unfortunately, most of the existing global hardware (Section 3.1) or software

reexecution-based techniques (Section 3.4) cannot protect the memory dataflow be-

cause loads and stores from a redundant execution get their data from the original

execution, which can be potentially faulty. To our knowledge, no specific solutions ex-

ist for protecting the memory dataflow of a processor in a targeted and cost-effective

manner. Furthermore, access time of the LSQ is critical because it is a component

of the load-to-use latency [144, 172]; therefore, error detection mechanisms that are

not intrusive and do not increase the LSQ complexity or delay [193] are needed.

In this chapter we propose a simple yet effective idea for validating that the LSQ

logic performs correct out-of-order memory ordering. More important, our solution

allows implementing different schemes with varying degree of error coverage, perfor-

mance overhead and design complexity. Our technique runs in parallel to the LSQ

and relies on a small cache-like structure that keeps track of the last producer (store)

for each cached address. Our results show that we can achieve up to 99.91% coverage

with a very small area increase with respect to the LSQ. Moreover, several sources of

failures can be corrected by flushing and re-executing the pipeline because faults are

detected before the architectural state is irrevocably updated.

136 · Chapter 7. Memory Flow Validation

 LdQ

StQ

0xEF010xEF01 55

address ready

0x00010x0001

dataaddress age

11

age

0xEF010xEF01 77
0xABCD0xABCD 66

88 00

young

old

Fig. 7.1: A typical LSQ configuration (simplified)

The rest of the chapter is organized as follows. Section 7.2 reviews the LSQ

architecture and Section 7.3 analyzes the kind of failures that it may experience.

Section 7.4 presents the general idea for validating the correct functioning of the LSQ.

Section 7.5, Section 7.6 and Section 7.7 describe three different implementations of

the technique. We discuss some results in Section 7.8. Finally, we offer our concluding

remarks in Section 7.9.

7.2 Load-Store Queue: Overview

Load-Store Queues are used in modern out-of-order processors to allow early out-of-

order execution of memory instructions to increase overall performance [56]. However,

a LSQ must guarantee that all memory instructions will update the architectural

processor state as if they were executed in program order. To implement this, the LSQ

performs address matching and age prioritization to detect read-after-write memory

dependencies among instructions residing in the LSQ, and their possible violations.

This process is performed both for loads and stores. Write-after-read and write-after-

write dependencies are ensured by committing stores in program order.

Figure 7.1 shows a possible LSQ implementation. LSQs are typically divided in

three main components: (i) a CAM & SRAM queue that holds information of in-flight

loads (called load buffer or load queue-LdQ), (ii) a CAM & SRAM queue that holds

information of in-flight stores (called store buffer or store queue-StQ), and (iii) a

complex control logic that uses address, age and size information (age and size fields

in the load and store queues) to allow out-of-order execution while ensuring correct

7.2. Load-Store Queue: Overview · 137

memory ordering. A LSQ is often managed as a circular queue. Entries in the load

queue and store queue are allocated to instructions in consecutive and program order.

Similarly, LSQ entries are deallocated in program sequential order at commit time.

To achieve out-of-order execution, high-performance LSQ designs support load

bypassing and load forwarding. Load bypassing happens when a load is allowed to

execute by ignoring older in-flight stores (and loads) in case no store address alias-

ing exists (conservative memory disambiguation design) or in case it is predicted

that there will not be aliasing (speculative memory disambiguation design). Load

forwarding happens when a load executes and finds a memory dependence with an

older store residing in the LSQ. In this scenario the load is directly satisfied from the

youngest older matching store buffer entry if the address is valid and the data is avail-

able in the store buffer. As a consequence, loads do not need to wait to execute until

all previous stores are committed to the cache. Speculative memory disambiguation

is the common choice in modern processors: load bypassing or load forwarding are

allowed even when not all prior store addresses have been resolved. This option can

result in a store S being executed and finding younger and already executed loads

with memory dependencies (matching addresses). If any of these matching loads was

not forwarded by a store younger than store S, then a memory ordering violation is

detected and corrected. We refer to memory ordering violation detection as memory

ordering violation for the sake of brevity.

We next detail how load bypassing, load forwarding are implemented and how

memory ordering violations are detected and corrected.

Load Bypassing and Load Forwarding Once a load instruction (load) is ready (i.e. its

source operands have been computed), it is issued to the execution units and as a

result its effective address is calculated. This effective address is then written-back

into its allocated load queue entry. After that, the LSQ will access the data cache

to obtain a value for that load and in parallel it will perform an associative search

in the store queue among the older stores. If an address match is found in the store

queue, then the youngest older matching store value is retrieved from the store queue

and the value coming from the data cache is ignored (it is stale). If the store value is

not ready upon a match, then the load operation is frozen until it is available.

Memory Ordering Violation Detection Similarly, when a store instruction (store) exe-

cutes, its effective address is computed and is written-back into its store queue entry.

From that moment, and no later than when the store instruction commits/retires,

the LSQ will perform an associative search in the load queue in order to determine if

there has been a read-after-write dependence violation for that store address. If this

138 · Chapter 7. Memory Flow Validation

ST A

LD A

ST A

LD B

ST A

LD A

ST ’ A ST A/B

LD A

ST B

LD A ST A/B

LD A

ST A

LD A

a b e f
c d g

ST A

LD ’ A

LD A

h

Fig. 7.2: Failure scenarios related to LSQ operation

is the case, younger instructions starting from the oldest matching load (including it)

need to be recovered. Recovery is usually implemented with a pipeline flush start-

ing from the oldest matching load. Implementations where all consuming loads and

their recursively dependents are replayed are extremely costly from an implementa-

tion perspective and not practical due to the rarity of these events. Furthermore,

processors implement different flavors of memory dependence predictors to reduce

the occurrence of memory ordering violations (see Appendix A.2). For the rest of the

chapter, and without loss of generality, we will assume a recovery mechanism based

on flush and re-execution.

7.3 Load-Store Queue Failures

Techniques like parity, ECC or residues can detect errors in SRAM-like structures (for

example, the data value in the store queue entries), or even in CAM data (such as the

addresses in the load queue and store queue entries). In fact, the proposed end-to-end

register dataflow validation technique described in Chapter 5 is used to protect the

LSQ addresses and values in a cheap and unified manner. However, control logic like

address and size comparators, matchlines, age priority encoders, or dynamic storage

such as the ready bits cannot be protected with coding techniques. Incoming bits

can match against a CAM entry in the presence of a fault when it should really

have mismatched (false-positive case). Alternatively, incoming bits may not match

any CAM entry, although they should have really matched (false-negative case), age

comparators can operate incorrectly, priority selectors based on the output of age

comparators can fail, etc.

Figure 7.2 shows a taxonomy of the different kind of failures that a LSQ may

suffer as a result of different sources of failure (including soft errors, design bugs,

hard faults, degradation, etc). A broad spectrum of high-level functional failures are

7.3. Load-Store Queue Failures · 139

included, resulting from multiple low-level fault scenarios. Instructions are listed in

program order top-down. Shadowed instructions are the ones that execute and cause

the failure. Straight lines show the actions taken, whereas dashed lines represent the

missing actions.

Cases a to d correspond to an incorrect determination of store-to-load forwarding.

Cases a–b arise with address-related faults, whereas cases c–d appear due to faults

in the age prioritization logic, bit flips in the ready bits, etc.

(a) A forwardable store-load pair is wrongly ignored. When the LD A resolves

the address, it should obtain the data from ST A(already executed). However,

the LSQ logic ignores this, and therefore, LD A gets the wrong data from the

memory (cache).

(b) A store-load pair that does not access the same address is wrongly matched by

the LSQ logic. In this case, LD B resolves the address and LSQ logic decides

to forward the wrong data from a previous executed ST A.

(c) A load has a value wrongly forwarded from an older matching store when there

is an additional matching store older than the load but younger than the for-

warding store. The LD A should get the data from ST’ A; however, due to a

fault, it gets the wrong data from an older ST A.

(d) A store forwards a value to an older load. The LD A gets the wrong data from

a store that appears later in program order.

Cases e to h correspond to an incorrect determination of memory ordering vio-

lation that are triggered when stores resolve their address. Cases e–g appear due

to address-related faults, whereas cases f–h arise with fault in the age prioritization

logic, etc.

(e) The LSQ logic wrongly identifies a memory ordering violation between a store

with a younger already executed load having a different address. In the figure

we show how a ST B invalidates a younger LD A. This case would result in

an unnecessary pipeline flush, but it would not cause any failure.1

(f) The LSQ logic identifies a memory ordering violation between a store and an

older already executed load. Similar to the previous case, this would result in

an unnecessary pipeline flush.2

1Unless recovery is implemented by a mechanism that re-forwards the store value to the wrongly

executed load, and re-executes all dependent instructions, committing wrong data.
2Unless recovery is implemented by a mechanism that re-forwards the store value to the wrongly

executed load, and re-executes all dependent instructions, committing wrong data.

140 · Chapter 7. Memory Flow Validation

(g) A store matching with a younger already executed load is not detected by the

LSQ logic. In this case, ST A should have invalidated LD A, but due to a

fault in the LSQ logic, the LD A commits with wrong data.

(h) A store matches with more than one younger already executed loads but the

prioritization logic does not perform the recovery for the oldest one. ST A

should invalidate both LD A and LD’ A. However, LD’ A is not invalidated

and commits with the wrong data.

7.4 LSQ Memory Ordering Tracking and Validation: General Idea

We present a low-cost solution that provides fine-grain error detection for the LSQ.

Our approach is based on verifying the microarchitectural behavior of the LSQ by:

(i) tracking the memory ordering imposed by stores and (ii) by validating that loads

gets the data generated by the youngest previous matching store (in program order).

At the base of our approach we have a small cache-like structure called Memory

Order Validation Table (MOVT) that is in charge memory ordering tracking. MOVT

is indexed with memory addresses, updated by stores and read by loads. Each entry

keeps a ”store identifier” (StID), a small id that is written by the last store that

updated the corresponding address.

All stores update theMOVT when they commit. We leverage the in-order commit

for validation purposes, as described in some memory disambiguation approaches [29].

Given that stores update the MOVT with their address and StID at commit time

and in program order, the MOVT will hold a set of the references accessed during

the program execution together with their last producer id.

During their lifetime, loads will acquire a StID from their producer, which is also

necessary for memory ordering tracking. Depending on the way or stage where loads

obtain the StID , we will have different implementations with different trade-offs for

error coverage, performance, area and design complexity.

Memory ordering validation is checked for loads. Validation is done during commit-

time and is common to all of the techniques described here: loads access the MOVT

with their address and compare the producer StID obtained during execution with

the one stored in the MOVT .

In the next subsections we detail the common hardware changes needed to imple-

ment our proposal. Then, we describe how to use the MOVT to track the memory

order and validate the LSQ ’s behavior. Finally we discuss error recovery.

Next, in Sections 7.5 to 7.7 we explore three possible different implementations

7.4. LSQ Memory Ordering Tracking and Validation: General Idea · 141

Load Queue

Store Queue

Format
Data

To D$

From D$

St-ld frwd?

Data

Data

Address

Ld Producer Info

Match?

To RF

Data

StID

Address MOVT

Load Queue

Store Queue

Ld P
roducer Info

MOVT

M
atch?

AddressStID

Address

StID Hit?

Error
detection

logic

StID
Error?

Flush pipeline?
matched?

To D$
Data

Address

(a) Common hardware changes for (b) Common hardware changes for

memory order tracking memory order validation

Fig. 7.3: MOVT hardware template

of this global idea. These three designs differ in the way loads acquire the StID

from their producers, providing different coverage-slowdown-complexity trade-offs.

Section 7.5 describes one scheme where loads obtain their producer StID at the exe-

cution stages, Section 7.6 characterizes a scheme with minimal design complexity and

intrusiveness where just forwarded loads obtain a StID. Finally, Section 7.7 explores

one scheme where address prediction is used to speculate on loads StIDs as a way to

potentially remove timing constraints when accessing the MOVT.

7.4.1 Microarchitectural Changes

Our mechanism requires minimal extensions to the LSQ organization and logic. These

hardware changes are global to any implementation, but each particular LSQ imple-

mentation may require extra specific changes.

The main hardware involved is shown in Figure 7.3. LSQ original logic is repre-

sented by thin lines and white boxes, whereas the new hardware is shown in thick

lines, dotted lines and grey boxes.

As mentioned, the core of our technique is the Memory Order Validation Table

(MOVT) that tracks the memory ordering. For each store queue entry, we add a field

to store its identifier (the StID). Similarly, each load queue entry holds a field that

indicates the producer of the value consumed during the load lifetime (i.e. StID).

We call this field Load Producer Info, or prodID. We also add an extra match? bit to

keep record of whether a store-to-load forwarding has happened (if the existing LSQ

implementation does not have it). For visual simplicity Figure 7.3 shows Ld Producer

Info (prodID) and match? as separate blocks, but actually they are simply extra

fields inside the load queue.

142 · Chapter 7. Memory Flow Validation

Our approach to error detection in the LSQ works in parallel with the current

LSQ logic. Therefore, we do not expect any impact in the critical path.

7.4.2 LSQ Memory Ordering Tracking

We now give a global view of how we track the memory ordering through the MOVT.

Section 7.5, Section 7.6 and Section 7.7 will detail how this general implementation

accommodates to particular MOVT design choices.

Allocate Stage

At allocate, each store is given a StID, which is later stored in its store queue entry.

In order to avoid aliasing among different StIDs, we only need to guarantee that

there are as many different StIDs as possible live stores. We need as many StIDs

as the maximum number of entries in the MOVT or store queue: few bits suffice

to encode the StID (e.g. 5 bits). StIDs are generated by incrementing a counter

each time an instruction is allocated in the LSQ. This step is common across all the

implementations.

ProdID Acquisition Stage

At some point during the load lifetime, it will access the MOVT to obtain its pro-

ducer StID and will store it in the Ld Producer Info field (dashed green line flow in

Figure 7.3(a)). This step is implementation dependent: loads can obtain their prodID

at different pipeline stages, resulting in different instantiations of the technique. Since

the MOVT size is bounded, it is possible that a load misses in the MOVT during

prodID acquisition. In this situation, the MOVT will return a special NULL value.

Execution Stage

This is a common step for all the implementations, and has been depicted in Fig-

ure 7.3(a) (dashed grey line flow). Once a load is issued, a regular LSQ would access

the data cache and perform an associative search in the store queue looking for pos-

sible producers.

When a store-to-load forwarding situation is detected by the LSQ logic, the load

writes the StID of the forwarding store in the load prodID field (potentially over-

riding any previous prodID) and also annotates in the match? bit that it has been

7.4. LSQ Memory Ordering Tracking and Validation: General Idea · 143

forwarded.3

7.4.3 LSQ Memory Order Validation

We now give a global view of how memory dataflow is validated through the MOVT.

Commit Stage

This is a common step for all the implementations, and has been depicted in Fig-

ure 7.3(b): when a store commits it updates its address reference in the MOVT with

its own StID, to change the state of the tracking mechanism.

At commit time loads finally validate that they have obtained the data from the

expected producer. We do so by comparing the prodID obtained during loads lifetime

with the information stored in the MOVT. If a load’s prodID field matches the StID

stored in the MOVT, it means that everything went fine. Otherwise, it will indicate

that there has been potential error in the memory dataflow.

Assuming an unboundedMOVT, comparing the prodID field with the StID grabbed

at commit time is enough to validate the LSQ. However, for a finite MOVT some

entries may get lost due to evictions. Therefore, it is possible that a load misses in the

MOVT either during the prodID acquisition or at commit time. The Error detection

logic in Figure 7.3(b) decides if there has been a fault in the LSQ logic. For each

particular MOVT design choice, this logic will take different actions depending on

the load prodID, its match? bit and the StID obtained from the MOVT at commit

time. Specific details will be given later for each of the different implementations.

Example

We will illustrate how our mechanism works by using an example (shown in Fig-

ure 7.4). We depict the state of the load and store queues, as well as the state of the

MOVT before -upper figures- and after -lower figures- store execution, store commit,

load prodID acquisition and load commit. Figure 7.4(a) shows the changes in the

state when a store executes.

3In case the LSQ implements memory ordering violation detection where offending loads and

their dependents are replayed, further modifications are required. Stores detecting the memory

ordering violation would forward their value together with their StID to the wrongly executed loads.

Furthermore, the match? bits would be set and any prodID would be overriden with the stores’

StIDs. As a consequence, memory ordering violations would ultimately behave as load forwarding

scenarios. Nevertheless, these LSQ designs are extremely rare.

1
4
4
·

C
h
a
p
ter

7
.

M
em

o
ry

F
lo
w

V
a
lid

a
tio

n

 LdQ

StQ

55

address StIDdataaddress prodID

MOVT

tag StID

age

99

age

 LdQ

StQ

0xABCD0xABCD 55

address StID

0x00000x0000

dataaddress prodID

MOVT

tag StID

age

99

age

 LdQ

StQ

0xEF010xEF01 66

address StID

0x00010x0001

dataaddress prodID

MOVT

tag StID

age

1010

age

0xABCD0xABCD 99

0xEF010xEF01 88 - - -- - -
0xABCD0xABCD 77 - - -- - -

 LdQ

StQ

address StIDdataaddress prodID

MOVT

tag StID

ageage

0xABCD0xABCD 99

0xEF010xEF01 88 1010
0xABCD0xABCD 77 99

0xEF010xEF01 1010

Initial State

(a) Store execution (b) Store commit (c) Load prodID acquisition (d) Load commit

Final State
 LdQ

StQ

address StIDdataaddress prodID

MOVT

tag StID

ageage

0xABCD0xABCD 55 0x00000x0000 99

 LdQ

StQ

address StIDdataaddress prodID

MOVT

tag StID

ageage

0xABCD0xABCD 99

 LdQ

StQ

address StIDdataaddress prodID

MOVT

tag StID

ageage

0xABCD0xABCD 99

0xEF010xEF01 88 1010
0xABCD0xABCD 77 99

0xEF010xEF01 66 0x00010x0001 1010

 LdQ

StQ

address StIDdataaddress prodID

MOVT

tag StID

ageage

0xABCD0xABCD 99

0xEF010xEF01 88 1010

0xABCD0xABCD 77 99

0xEF010xEF01 1010VERIFICATION

Fig. 7.4: Memory ordering tracking and validation: an example

7.5. Design #1: MOVT Access at Execute · 145

At allocate, the store was given an entry in the store buffer and the StID. Once

it executes, it resolves the address and data, updating only the store queue. When

a store commits (Figure 7.4(b)), it releases its entry in the store buffer, and fills an

entry of the MOVT with its StID. Note that the MOVT works as a cache, and hence,

if at commit time it does not keep an entry holding information for the store address,

another entry will be used (either a free one or evicting one). Top of Figure 7.4(c)

shows that after the store with age 5 committed, one younger store and two younger

loads entered the pipeline and computed their effective address. Specifically, the

figure shows that the store with age 6 (store 6) wants to update address 0xEF01

with data 0x0001, and the loads 7 and 8 will access addresses 0xABCD and 0xEF01,

respectively. Bottom of Figure 7.4(c) reflects that a load can obtain its prodID either

from the MOVT or from the store queue: load 7 obtains its prodID exclusively from

the MOVT (because there is no older in-flight store to address 0xABCD), whereas

load 8 obtains it from the store queue at execution time. As a result, load 7 will

receive the StID from store 5, and load 8 will get it from store 6. When a load

commits, it releases the entry in the load queue and compares the prodID value with

the corresponding StID in theMOVT. Figure 7.4(d) shows that after store 6 commits,

load 7 hits the MOVT when committing and checks its prodID.

7.4.4 Failure Recovery

We rely on flushing the pipeline to restore correct state in the event of an error

detection. This mechanism is already used to handle the recovery of wrong memory

ordering detection in the load-store queue, or to handle branch misprediction recovery.

By flushing the pipeline we can recover from multiple sources of failures. Re-

execution will start from the offending load, and therefore, since the pipeline and

MOVT will be empty, the load will go directly to cache and bypass the LSQ logic.

For permanent / intermittent faults, we would like to disable/replace the affected

hardware to avoid performance overheads when exercising a fault repeatedly. How

this is done is out of the scope of this thesis. The real challenge is indeed locating

the fault and diagnosing it, so that (i) the repair and reconfiguration mechanism can

be conducted and (ii) to help validators understand the reason behind the recovered

error. The diagnosis of failures in the LSQ will be covered in Chapter 8.

7.5 Design #1: MOVT Access at Execute

In this section we describe an implementation of the general design proposed in

Section 7.4, that performs the prodID acquisition during load execution. This means

146 · Chapter 7. Memory Flow Validation

Load Queue

Store Queue

Format
Data

To D$

From D$

St-ld frwd?

Data

Data

Address

Ld Producer Info

Match?

To RF

MOVT

Data
PROD

StID

StID

StID

Address

Fig. 7.5: MOVT hardware for design #1: prodID acquisition at execute time

that after a load has resolved its effective address, it will access the MOVT in order

to obtain its producer StID.

ProdID Acquisition

Figure 7.5 shows how the prodID acquisition works in the execute stage. Once a

load is issued, a regular LSQ would access the data cache and perform an associative

search in the store queue looking for possible producers. The particularity of this

design is that the load also accesses (in parallel) the MOVT. If there is no forwarding

from the store queue, the prodID field of the executing load is filled with the StID

obtained from the MOVT.

In case a load does not find a matching store either in the store queue or in the

MOVT at execution time, its prodID field is updated with a special NULL value.

Validating Memory Ordering

When loads commit, they check the MOVT to see if there is information of the

producer (store instruction) that produced their data. In the best case, the load

will hit in the MOVT and will find the StID of the store that produced the data.

7.5. Design #1: MOVT Access at Execute · 147

Table 7.1: Protocol when loads hit the MOVT at commit time (Design #1)

prodID match? bit Action

VALID N/A Check

NULL N/A Fix

Table 7.2: Protocol when loads miss the MOVT at commit time (Design #1)

prodID match? bit Action

N/A Set Fix

N/A Unset None

However, due to the limited space of the MOVT it may happen that a later store

evicted the information.

Table 7.1 shows the different actions taken when loads effectively hit in theMOVT

at commit. Notice that the match? bit is not important in this first case:

(i) The prodID field holds a valid StID if the load hit in the MOVT at the execute

stage or obtained it through forwarding. We compare the StID stored in the

prodID and the StID obtained from the MOVT. A mismatch indicates an error.

(ii) It may happen that the load missed in the MOVT at execute time. This means

that the load checked the stores in the store queue and the MOVT without

finding any match. If that is the case, the prodID field would have the NULL

special value. At commit time, the MOVT holds a subset of the information

stored in the MOVT and store queue at execute time. Therefore, a load that

hits at commit time can only correspond to a failure. The load should have

obtained a StID during execution, either through store-to-load forwarding case

or through the corresponding entry in the MOVT.

Due to address aliasing, entries from the MOVT may be evicted, or some memory

locations may have never been accessed by a store. As a consequence, some loads

may miss in the MOVT at commit time when they check whether the StID they

carry in the prodID is correct. Table 7.2 shows the different scenarios:

(iii) If the match? bit is set, it means that the store producing the data is very

close. Thus, we would expect the load to hit when accessing the MOVT table.

However, it is possible that a forwarded load misses in the MOVT, because the

producer store could be evicted.

We observe that such scenario when a load misses the MOVT after getting the

value through forwarding is very rare because most of the store-load matching

148 · Chapter 7. Memory Flow Validation

pairs are close to each other. Therefore, we consider this scenario as suspicious

of a potential error and apply the correction mechanism conservatively (flush

the pipeline and restart execution).

(iv) If match? bit is unset, the most likely situation is one where it was not for-

warding store. In that case, the behavior would be correct in most of the cases.

However, it may be the rare case where there was a forwarding store which was

not identified by the LSQ logic, the store updated the MOVT and that entry

was evicted later on. As mentioned, the case where a load gets the data through

forwarding and does not hit in the MOVT is very unlikely. Therefore, we opt

for ignoring this case (at the expense of coverage), and no action is taken.

Potential Issues

For this implementation, the MOVT is accessed simultaneously from two different

pipeline stages (the commit stage and the execute stage).

One of the possible problems with this approach is that depending on the proces-

sor layout it may be hard to accommodate the MOVT accesses within the existing

processor timing restrictions. For some designs, if the ROB and LSQ are distant in

the processor die, design efforts would be required to implement the technique. In

Section 7.6 and Section 7.7 we explore two designs to alleviate this potential difficulty.

7.6 Design #2: Minimal prodID Acquisition

In this section we describe another instantiation of the general design proposed in

Section 7.4, that targets design simplicity. This design exclusively performs memory

ordering tracking for forwarded loads.

ProdID Acquisition

Figure 7.6 depicts the hardware necessary for memory order tracking. The scheme

that is proposed here is the simplest implementation of the general idea presented

in Section 7.4. For this design, no load will access the MOVT to obtain its prodID

only forwarded loads will obtain the prodID from the StID entries in the store queue.

Therefore, no specific prodID acquisition is conducted. A NULL value is kept in the

prodID field for those loads that are not forwarded.

7.6. Design #2: Minimal prodID Acquisition · 149

Load Queue

Store Queue

Format
Data

To D$

From D$

St-ld frwd?

Data

Data

Address

Ld Producer Info

Match?

To RF

Data

StID

Address

Fig. 7.6: MOVT hardware for design #2: minimal prodID acquisition

Table 7.3: Protocol when loads hit the MOVT at commit time (Design #2)

prodID match? bit Action

VALID Set Check

NULL N/A None

Validating Memory Ordering

This minimalist MOVT design takes a different approach for validating the LSQ.

Given that loads will only have a valid prodID in case they have been forwarded their

values (this is, their match? bit is set), we will only be able to check those loads that

coexist in the LSQ with a matching store.

Table 7.3 shows the actions taken when loads hit in the MOVT at commit.

(i) Same actions and explanations as in design #1 when a load hits the MOVT

and has a valid prodID. Note that a committing load with a valid prodID will

have its match? bit set.

(ii) As opposed to design #1, in case the prodID is NULL, we will not flush the

pipeline. Since the MOVT is not accessed at execution time, we can not reason

about the existence of a failure for this case. Hence, on this situation no recovery

action will be taken and it will imply coverage loss.

Similarly, loads may miss the MOVT at commit, either because they did not

obtain a valid prodID from the LSQ, or because there were stores operations that

150 · Chapter 7. Memory Flow Validation

Table 7.4: Protocol when loads miss the MOVT at commit time (Design #2)

prodID match? bit Action

N/A Set Fix

N/A Unset None

evicted the information required by the committing load. Table 7.4 summarizes the

heuristic implemented by the Error detection logic:

(iii) Same actions and explanations as in design #1 when a load misses the MOVT

but has its match? bit set.

(iv) Same actions and explanations as in design #1 when a load the MOVT and

has its match? bit unset.

Potential Issues

This minimal prodID acquisition implies that only MOVT accesses are required at

commit time, achieving a low complexity design. As a consequence, this option will

overcome the potential problem of timing constraints introduced by processor layouts.

However, since only those loads that have been forwarded a value will obtain a prodID,

this design will pay a higher coverage loss.

7.7 Design #3: MOVT Access at Allocate

Motivation

In this section we describe an implementation of the general design proposed in Sec-

tion 7.4, that performs the prodID acquisition during load allocation. As commented

previously, the rationale behind is to propose an alternative design for scenarios

where it may be hard to accommodate due to timing restrictions accesses to the

MOVT from the commit and execute stages. This is a challenging fact, since with

this design loads must obtain their prodID before their address generation has been

done (it is performed in the execution stages at the backend of the processor).

Our strategy for overcoming the problem of accessing the MOVT at the frontend

of the processor, consists on using address prediction. We provide loads with spec-

ulative prodIDs and allow an access to the MOVT off the critical path, because it

moves the prodID acquisition to the allocate stages, which is usually physically close

7.7. Design #3: MOVT Access at Allocate · 151

Address
Predictor

hit/miss?

Predicted
Address

Predicted
StID

MOVT

Ld Producer Info

InstructionIP/UIP

Gen
StID

To LdQ
To StQ

StID

is load?

is store?

Fig. 7.7: MOVT hardware for design #3: prodID acquisition at allocate time

to the commit stages. As there are several stages between allocation and execution,

this design can tolerate delays when accessing the MOVT .

Speculating the memory references of loads and stores has been shown to be

very amenable for prediction [101]. In fact, the effective addresses of most memory

instructions follow an arithmetic or repetitive progression. Actually, a myriad of

effective value predictors have been proposed [168].

ProdID Acquisition

Figure 7.7 shows how the allocate stages are extended by the proposed mechanism.

In order to achieve this functionality at the frontend of the processor, our technique

provides a predicted prodID rather than a real prodID. To do so, for each load we

build a hash signature using the instruction pointer (program counter). This index

is used to access the address predictor.

For every predicted load, we use its predicted address to access the MOVT table.

Upon a hit, a speculative prodID is obtained and later allocated to its Ld Producer

Info field. 4 Those loads not obtaining a speculative prodID will set a NULL prodID

in its corresponding load queue entry. Even if a load hits the MOVT at the allocate

stage, its prodID field can be overridden at the execute stage whenever the LSQ logic

4Note that the speculative prodID accuracy will depend on many parameters, including the type

of predictor, its size, its confidence, possible index aliasing, and of course, on the predictability of

memory addresses.

152 · Chapter 7. Memory Flow Validation

Table 7.5: Protocol when loads hit the MOVT at commit time (Design #3)

prodID match? bit Action

VALID N/A Check

NULL N/A None

Table 7.6: Protocol when loads miss the MOVT at commit time (Design #3)

prodID match? bit Action

N/A Set Fix

N/A Unset None

detects a store-to-load forwarding scenario. Similarly, the load will set its match? bit

to be used later for load validation.

Regarding the address predictor, we opt to update it at commit time. 5

Validating Memory Ordering

Each speculative prodID is compared to the StID stored in the MOVT. Note that

the real effective address is used to access the MOVT at commit, not the predicted

one (which is no longer used after the allocate stage). Now, a StID mismatch does

not necessarily indicate the occurrence of a failure but rather the possibility, due to

an address misprediction leading to accessing a wrong StIDs at allocate time.

Table 7.5 summarizes the actions taken by the Error detection logic when a load

hits in the MOVT at commit time.

(i) If we have a valid prodID for the commiting load and have obtained a StID

from the MOVT at commit time, we can compare both IDs. If the match?

bit is set then it cannot correspond to a false positive, because the store’s

StID will override the load speculative prodID. Conversely, if it is not set, then

a false positive could have happened in case a wrong address was predicted.

Upon a mismatch, we perform a corrective action: the pipeline is flushed and

re-execution starts from the offending load.

(ii) A load hitting the MOVT at commit time but with no valid prodID will not

always correspond to a failure. It is possible that a load misses the MOVT at

allocate time. Address misprediction is another reason leading to missing in

5Although updating it at the execution stage could potentially achieve faster update-to-use la-

tency, it has the cost of storing the hash index in the load queue. Moreover, our studies showed a

negligible difference in prediction accuracy.

7.8. Evaluation · 153

the MOVT. Even if the address is correctly predicted it can happen that the

producing store is close enough in the pipeline. In this case, the producing

store will not have enough time to update the MOVT with its StID before the

consuming load accesses it.

In this case, the design #3 does not perform any action and ignores this case.

The consequence is coverage loss.

Due to conflicts, entries from the MOVT can be evicted and loads can miss at

commit time. Table 7.6 summarizes the different possible scenarios:

(iii) Same actions and explanations as in previous designs when a load misses the

MOVT but has its match? bit set.

(iv) Same actions and explanations as in previous designs when a load the MOVT

and has its match? bit unset.

Potential Issues

With this design, possible timing constraints are avoided because it moves the prodID

acquisition to the allocate stages, which are physically close to the commit stages.

On the other hand, since this scheme works with speculative prodID it can pay a

cost in coverage loss and also in processor performance (due to extra pipeline flushes

caused by false positives).

7.8 Evaluation

In this section, we present a detailed evaluation of the three designs presented in

Section 7.5, Section 7.6 and Section 7.7. We will evaluate these designs in terms

of area, error coverage and performance slowdown (due to pipeline flushes) in the

baseline out-of-order processor described in Appendix A.

7.8.1 Fault Coverage Methodology

From a global perspective, our previous studies [205] based on AVF analysis indi-

cate that all the hardware involved in implementing memory dataflow functionalities

represents 8.47% of the SDC FIT rate caused by soft errors (excluding protected

structures, like caches, TLBs, etc.). Previous studies [212] report similar error rates

using fault injection methodologies. Furthermore, 12.73% of the baseline processor

154 · Chapter 7. Memory Flow Validation

area is exposed to other sources of failures, including wear-out, design and hard faults

(again, excluding protected structures). By analyzing the microarchitectural blocks

and by means of fault vulnerability studies (as described in Section 4.1.3), we have

determined that the proposed technique is able to potentially cover 12.60% of the

baseline processor area, and to potentially target 8.39% of the SDC SER FIT.

As opposed to the rest of the chapters where we perform fault injection campaigns

to evaluate the actual error detection capabilities of the proposed solutions, here we

follow a different methodology. No sampled fault injection is introduced because

coverage con be deduced from properties of the producing and consuming memory

instructions. We compute it as follows.

We have analytically quantified the error coverage as the number of committing

load operations that can be validated completely with our on-line mechanism. For

each technique, we classify each committing load based on Tables 7.1–7.2, 7.3–7.4 and

7.5–7.6. Those loads that fall under actions Check or Fix are counted as protected.

For those loads whose action is None, we compute an upper bound of the coverage

loss. For this situation, we count as not protected those loads whose producer is

close enough so that a forwarding would have been possible. We check that there are

at most 2 ∗ S stores between the load and the producer, where S is the number of

entries in the store buffer. The rationale behind is that no store-to-load forwarding

or memory ordering violation scenarios can arise given this producer-consumer dis-

tance. Each execution has been allowed to run for 100M instructions, as described in

Chapter 4.

7.8.2 Area Overheads

Clearly, the size of the MOVT will determine the degree of coverage that our designs

can achieve: bigger tables allow more loads to check their ordering. However, we

are faced with the problem of minimizing the area overhead while providing a high

coverage.

We have first evaluated the area overhead for different fully-associative MOVT

configurations, as shown in Table 7.7. To do so we have extended our area and power

models as described in Chapter 4. We have configured the MOVT to have 6 read

ports (4 for loads that may commit, 2 for the two loads that may execute), and 1

write port (only 1 non-bogus store may commit since we only have 1 write port in

the data cache). Area numbers are relative to those of the LSQ.

The 8-entries fully-associative MOVT has an area overhead over the area of the

LSQ of 7.39%. However, the 16-entries fully-associative MOVT incurs in a 21.32%

overhead, whereas the 32-entries fully-associative MOVT is almost as big as our

7.8. Evaluation · 155

Table 7.7: Area overhead w.r.t. the LSQ, for different MOVT sizes. e stands for entries, w for ways

32e, 32w 16e, 16w 16e, 8w 16e, 4w 16e, 2w 8e, 8w

Area overhead 74.33% 21.32% 14.78% 3.20% 2.34% 7.39%

Table 7.8: Coverage, slowdown and area cost for different MOVT configurations that perform

prodID acquisition at execute time. Results for coverage and slowdown is shown in pairs (µ, σ)

across all benchmarks. e stands for entries, w for ways

16e, 16w 16e, 8w 16e, 4w 16e, 2w 8e, 8w

Coverage (99.99%, 0.06%) (99.98%, 0.07%) (99.91%, 0.20%) (99.73%, 0.56%) (98.73%, 3.33%)

Loads flushed (0.02%, 0.05%) (0.03%, 0.06%) (0.09%, 0.14%) (0.28%, 0.71%) (0.47%, 0.85%)

Slowdown (0.06%, 0.13%) (0.09%, 0.16%) (0.24%, 0.42%) (0.89%, 2.52%) (1.20%, 2.32%)

Area 21.32% 14.78% 3.20% 2.34% 7.39%

processor’s LSQ. Clearly, we can see in gray that designs as big as a 16-entries fully-

associative MOVT begin being extremely costly.

In order to further minimize area overheads while having a reasonable capacity,

we have then evaluated the area of different MOVT designs implemented by means of

set-associative caches. Set-associative caches are less complex than fully-associative

caches; however, they usually have more conflicts and hence evictions, which in our

case turns into higher performance cost due to extra misses. This behavior is partic-

ularly radicalized in the face of caches with few sets or strided patterns. We opt to

use XOR-based mapping functions [65] to improve the behavior of our set-associative

MOVT to achieve similar results to those of a fully-associative MOVT. Last row of

Table 7.8 shows area overheads for different MOVT configurations, including fully-

associative versions and set-associative versions with XOR-based mapping functions.

It can be observed that a MOVT holding 16 entries can be implemented with a mod-

erate area overhead when using a 4 or 2-way associative cache. For a 16e, 2w MOVT

the area overhead is just 2.34% with respect to the LSQ, whereas a 16e, 4w MOVT

just requires an area overhead of 3.20%.

7.8.3 Evaluation of Design #1: MOVT Access at Execute

Coverage Results

We count as not protected the percentage of loads described in case (iv) in Section 7.5;

and we compute an upper bound of the coverage loss by tracking the distance between

producing stores and consuming loads (see Section 7.8.1).

We have evaluated three different fully associative configurations: MOVTs of 4,

8 and 16 entries. On the right axis of Figure 7.8 we show the total coverage (notice

156 · Chapter 7. Memory Flow Validation

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0%

5%

10%

15%

20%

25%

30%

35%

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

ga
lg

el

%
 lo

ad
s

co
ve

re
d

%
sl

ow
do

w
n

SPEC2K traces

slowdown - 16e, 16w
slowdown - 8e, 8w
slowdown - 4e, 4w
coverage - 16e, 16w
coverage - 8e, 8w
coverage - 4e, 4w

Fig. 7.8: Coverage and slowdown for different fully-associative MOVT s based on prodID

acquisition at execute time

that it starts at 50%). Results show that on average for the SPEC benchmarks, for

a 8 fully-associative table, 98.96% of loads would be covered, whereas if we used a

16 fully-associative table, we would cover 99.99% of the loads. However, a 4 entries

fully-associative table falls short and only covers 95.79% of the loads on average, with

glass-jaw cases like fma3d, mesa and eon. For these benchmarks the producing stores

and consuming loads pairs are close enough that they could co-exist in the LSQ but

the StID of the stores are evicted before the consuming loads commit (falling into

case (iv) and being computed as coverage loss, as described in Section 7.8.1).

A 16 fully-associativeMOVT is enough to achieve an excellent coverage. However,

its area overhead is huge (recall Table 7.7). In order to understand the implications

on coverage of XOR-based mapping functions, we have also conducted several exper-

iments for set-associative MOVTs. We summarize the results in Table 7.8. Shadow

column shows the best configuration: a 16-entries, 4-way set-associative cache with

XOR-mapping, achieves an average coverage around 99.91%, and an area overhead of

3.20%. This configuration achieves better coverage per area than a 16-entries 8-way

MOVT with XOR-mapping (which needs an area overhead of 15.78% for just 99.97%

error coverage - additional 0.06%). Given that this MOVT configuration offers the

best trade-off in area vs. coverage, we will also evaluate it for the rest of designs.

Detailed evaluation for all benchmarks is depicted in Figure 7.9. Notice that the

right axis starts at 97%. It is interesting to note the differences in performance of

7.8. Evaluation · 157

95,0%

95,5%

96,0%

96,5%

97,0%

97,5%

98,0%

98,5%

99,0%

99,5%

100,0%

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

ga
lg

el

%
lo

ad
s

co
ve

re
d

%
sl

ow
do

w
n

/ %
lo

ad
s

ex
tr

a
flu

sh
es

SPEC2K traces

slowdown - 16e, 4w, xor
loads flushed - 16e, 4w, xor
coverage - 16e, 4w, xor

Fig. 7.9: Detailed evaluation of a 16 entries, 4-way MOVT based on prodID acquisition at execute

time

the proposed technique for different benchmarks. The difference in error coverage

between benchmarks is basically caused by the distribution in the distance between

the producing store and the consuming load. This is common to all three techniques.

Performance Results

As we have explained in Section 7.5, in case (iii) we apply the recovery mechanism

conservatively.

Left axis of Figure 7.8 shows the slowdown caused by the proposed design due to

the loads that call for a conservative recovery action (for fully associative MOVT).

Results show that the performance cost is very low. On average, as summarized in

Table 7.8, an 8-entries fully-associative table would cause an 1.2% slowdown, whereas

performance would drop 0.06% in case of a 16-entries fully-associativeMOVT. Similar

to the coverage, the performance cost incurred by a 4-entries fully-associative MOVT

is larger: 3.95%, with some programs having over 30% slowdown.

When moving to set-associative and XOR-based mapping functions, a 16-entries

4-way MOVT induces just a 0.24% performance overhead (0.52% on average for

SPECint and 0.00% for SPECfp). This fact also confirms that XOR-based mapping

functions are a good option to reduce the area overhead, while at the same time

158 · Chapter 7. Memory Flow Validation

providing similar coverage and slowdowns to the ones achieved with fully-associative

MOVTs. Figure 7.9 details for every SPEC benchmark the performance penalty and

the coverage when using a 16-entries 4-way XOR-based MOVT. Since performance

cost depends much on the number of pipeline flushes, right axis of Figure 7.9 also

shows their percentage with respect to the total number of loads. Results show that

on average 0.09% of loads are flushed (0.17% for SPECint and 0.01% on average for

SPECfp), with few outliers like eon, gzip, perlbmk or vortex. It can also be observed

that the percentage of flushed loads has a direct (but not exact) correlation with the

observed slowdown. The absolute number of loads, the application IPC and other

factors also determine the slowdown and the benchmark tolerance to pipeline flushes.

7.8.4 Evaluation of Design #2: Minimal prodID Acquisition

Coverage Results

Right axis of Figure 7.10 depicts the coverage achievable with the minimalist MOVT

design.

If we consider a MOVT configuration of 16-entries, 4-way and XOR remapping,

the achievable coverage is 91.68% on average. However, for 14 out of 26 benchmarks

this scheme is below 95.00%. Specifically, some benchmarks have a rather bad cov-

erage (eon, vpr, mesa and fma3d obtain a coverage value of 82.44%, 78.85%, 77.04%

and 48.42%, respectively). The reason is the same as for design #1.

However, if we take into account the fact that the MOVT is accessed exclusively

at commit time, the coverage lower bound suggests that a good part of the coverage

can be reaped by exclusively accessing the MOVT at commit time.

Similar results are obtained if we use a 32 fully-associative or 16 fully-associative

MOVT.

Performance Results

For this minimalist MOVT design, just one case requires flushing the pipeline in the

absence of failures (case (iii)).

Left axis of Figure 7.10 shows the performance slowdown suffered from different

configurations. A 32 fully-associative MOVT is able to achieve a negligible 0.01%

slowdown on average. If we move to a 16 fully-associative MOVT slowdown increases

slightly: on average, it represents 0.04%. Finally, a 16-entries 4-way MOVT renders

0.23% slowdown. The worst cases correspond to benchmarks eon, gzip and perlbmk,

7.8. Evaluation · 159

0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%
100%

0,0%

0,3%

0,5%

0,8%

1,0%

1,3%

1,5%

1,8%

2,0%

2,3%

2,5%

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

ga
lg

el

%
lo

ad
s

co
ve

re
d

%
sl

ow
do

w
n

SPEC2K traces

slowdown - 32e, 32w, xor
slowdown - 16e, 16w
slowdown - 16e, 4w, xor
coverage - 16e, 4w, xor

Fig. 7.10: Coverage and slowdown for different minimalist MOVT s configurations

which degrade performance in 0.94%, 1.31% and 2.08% respectively (same bench-

marks as for design #1). These slowdown results are slightly better than the ones

achieved in design #1.

Figure 7.11 exposes the percentage of flushed loads, for different MOVT config-

urations. These results are lower than the ones shown in Section 7.8.3 (design #1).

For example, results for a 16 fully-associative minimalist MOVT indicate that on

average 0.02% of the loads are flushed. For a 16-entries 4-way MOVT 0.06% of the

loads require a conservative recovery action, whereas design #1 required 0.09% of

the loads. The number of flushed loads is a bit lower than for design #1 because no

interferences are introduced from the prodID acquisition: for design #1, the prodID

acquisition for loads that are not being forwarded could displace the LRU information

of the StIDs of those stores that have forwarded the value and are awaiting to be

checked.

7.8.5 Evaluation of Design #3: MOVT Access at Allocate

Coverage Results

This subsection will evaluate the implications of a speculative MOVT scheme on

error coverage, and will show whether it is able to achieve a similar coverage to

non-speculative designs.

160 · Chapter 7. Memory Flow Validation

0,00%

0,05%

0,10%

0,15%

0,20%

0,25%

0,30%

0,35%

0,40%

0,45%

0,50%

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

ga
lg

el

SPEC2K traces

%
 fl

us
he

d
lo

ad
s

flushed loads - 32e, 32w
flushed loads - 16e, 16w
flushed loads - 16e, 4w, xor

Fig. 7.11: Flushed loads for different minimalist MOVT s configurations

In order to reduce the effect of address misspredictions on coverage, we have evalu-

ated the technique with a big state-of-the-art value predictor, the DFCM (Differential

Finite Context Method) predictor [62]. 6

Clearly, as the predictor introduces big area overheads, this design option is vi-

able in case the predictor is amortized for other purposes, such as for supporting

data prefetching [41], or for supporting speculative execution of load and store in-

structions [66].

We have evaluated the error detection capability for three different MOVT con-

figurations (for design #3). Right axis of Figure 7.12 shows that achievable error

coverage is much below the coverage provided by design#1 but notably above design

#2. When using a 16-entries 4-way MOVT, coverage ranges from 84.15% (eon) to

100.00% (lucas). From the the total set of benchmarks, this MOVT configuration ob-

6The DFCM predictor is one of the most accurate state-of-art non-hybrid predictors and is able to

predict constant, strided and complex memory access patterns. The DFCM is a two-level predictor,

just like the FCM. An instruction maps to an entry of the level-1 table, and the entry stores the last

value and a hashed history of differences between the recently occurring values (the context). The

level-2 table is accessed by means of the context obtained from the level-1 table and contains the

next difference, updated by a recurring past history of differences. The prediction is computed by

adding the last observed value to the predicted delta. We have configured the DFCM predictor to

have 216 entries for the level-1 table and 216 entries for the level-2 table. The length of the history

(aka order) has been set to 4, as recommended in [62].

7.8. Evaluation · 161

65,0%

67,5%

70,0%

72,5%

75,0%

77,5%

80,0%

82,5%

85,0%

87,5%

90,0%

92,5%

95,0%

97,5%

100,0%

0%

2%

4%

6%

8%

10%

12%

14%

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

ga
lg

el

%
 lo

ad
s

co
ve

re
d

%
 s

lo
w

do
w

n

SPEC2K traces

slowdown - 32e, 32
slowdown - 16e, 16w
slowdown - 16e, 4w, xor
coverage - 32e, 32w
coverage - 16e, 16w
coverage - 16e, 4w, xor

Fig. 7.12: Coverage and slowdown for different MOVT s based on address prediction (prodID

acquisition at allocate time)

tains a coverage higher than 95.00% for 19 out of 26 benchmarks. Results show that

on average, this configuration can cover 96.26% of the loads against errors. If we use a

fully-associative MOVT of 16 entries, coverage remains very similar (96.32%). It can

also bee seen that if the MOVT is configured as a 32 fully-associative table, coverage

increases, but is not able to reach a coverage comparable to the one obtained with the

scheme that performs prodID acquisition at execute time (a 32 entries MOVT con-

figuration for design #3 provides 97.10% load coverage on average, whereas design

#1 scored 99.99% with a 16 fully-associative MOVT). It is worth noting that the

coverage of this MOVT design suffers from several glass jaws: for 16-entries MOVT s,

benchmarks like eon, vpr or mesa observe a coverage below 87.5%.

Performance Results

Left axis of Figure 7.12 shows performance results. For a 16-entries 4-way MOVT

slowdown is quite high: 0.85% on average (1.40% for SPECint and 0.37% for SPECfp).

Very similar results are achieved when moving to a fully associative MOVT of 16

entries. Furthermore, for both configurations some outliers (5 out of 26 benchmarks)

manifest with non-acceptable slowdowns that are above 2%. Comparing with the

scheme described in Section 7.5 (design #1), we can see that this design pays a

higher overhead (design #1 causes 0.52% and 0.00% slowdown for SPECint and

162 · Chapter 7. Memory Flow Validation

0%

10%

20%

30%

40%

50%

60%

70%
bz

ip
2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

ga
lg

el

SPEC2K traces

%
 s

pe
c

S
T

id
 c

om
pa

ris
on

s

misspredicted prodID
correctly predicted prodID

Fig. 7.13: Breakdown of speculative prodID comparisons for a 32-entries fully-associative MOVT

based on address prediction (prodID acquisition at allocate time)

0,0%

1,0%

2,0%

3,0%

4,0%

5,0%

6,0%

7,0%

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

ga
lg

el

%
 fl

us
he

d
lo

ad
s

SPEC2K traces

misspredicted prodID - 16e, 4w, xor
missing forwarding loads - 16e, 4w, xor
flushed loads - 32e, 32w
flushed loads - 16e, 4w, xor
flushed loads - 16e, 16w

Fig. 7.14: Breakdown of pipeline flushes for different MOVT s based on address prediction (prodID

acquisition at allocate time)

7.9. Conclusions · 163

SPECfp using a 16 entries 4-way MOVT).

However, we observe that as the MOVT gets bigger the penalty in performance

grows significantly. Specifically, for a 32 fully-associative MOVT average slowdown

grows to 1.88% (2.53% for SPECint and 1.32% for SPECfp). In order to under-

stand the impact of prodID prediction on the processor performance degradation,

Figure 7.13 classifies for a 32 fully-associative MOVT the percentage of loads that

hit at commit time, that do not obtain their prodID by means of store-to-load for-

warding and that have a valid prodID (not NULL). Despite many loads are able to

obtain a correct prodID, there are still many that fail to correctly validate it. A 32

fully-associative MOVT will flush 1.60% of all loads, whereas a 16 fully-associative

MOVT this would decrease to a 0.74%, as shown in Figure 7.14. Note that these

percentages do not include the forwarded loads missing the MOVT at commit time.

The lines in Figure 7.14 depict the total number of flushed loads for three different

MOVT configurations. The most important aspect here is that the number of loads

that obtain their prodID by means of store-to-load forwarding and miss the MOVT at

commit time are negligible with respect the number of loads that have a misspredicted

prodID and hit at commit time. In fact, the number of forwarded loads that are

opportunistically flushed for a 16 entries 4-way MOVT (for design #3) is very similar

to an equivalent MOVT under design #1. The percentage is 0.07% on average and

is always below 0.43% (eon). The prodID mispredictions is therefore the dominating

cause to performance loss. Benchmarks with difficult StID predictability (such as gap,

twolf, crafty, lucas or sixtrack) are the ones suffering a high slowdown, whereas for

design #1 and design #2 the worst performing were the ones with a high percentage

of forwarded loads that missed the MOVT at commit time.

7.9 Conclusions

The LSQ is one of the most complex structures in a modern out-of-order processor.

Unfortunately, most of global hardware or software error detection techniques based

on re-execution are unable to protect the LSQ logic because they do not replicate the

load-store queue activity across threads.

In this chapter we have proposed a light-weight on-line error detection method

that targets the runtime validation of the memory dataflow logic implemented by

the load-store queue. The proposed technique is able to potentially cover 12.60%

of the baseline processor area against faults, and to potentially target 8.39% of the

SDC SER FIT (excluding protected structures). Our tecnique (MOVT) leverages the

microarchitectural knowledge of the runtime behavior, and it is independent of the

particular LSQ implementation. The technique relies on a small cache-like structure

164 · Chapter 7. Memory Flow Validation

that keeps track of the last store id to each cached address. Load are checked to have

obtained the data from the youngest older producing store. Non-permanent faults

can be corrected by flushing and re-executing the faulting instructions. Moreover, this

general technique can be implemented at several forms, offering different trade-offs

for error coverage, performance overhead and design complexity.

We have presented and evaluated three different implementations, with different

design complexities. The designs differ in how a load obtains its producing store

id (prodID acquisition): the first design obtains them during execution, the second

obtains them exclusively from forwarding stores (minimal acquisition), and the third

one obtains them at allocate time by means of address prediction.

Overall, it can be observed that a MOVT design that performs full memory

ordering tracking at the execution stage (design #1) is an excellent design point. On

average, this design can validate 99.91% of the loads against errors, with an average

negligible performance overhead of 0.24%. Area is increased just by 3.2%.

We have also shown that the other two designs are not able to achieve the error

detection coverage and the performance overheads of the design performing prodID

acquisition during execution. The design with minimal prodID acquisition requires

minimal extra processor complexity because the MOVT is accessed exclusively at

commit. It achieves an average error coverage of 91.68% with 0.23% performance

degradation. In addition, several glass-jaw benchmarks obtain a rather bad coverage,

making the design attractive only for designs where fault tolerance is secondary.

Finally, we prove for the third design (prodID acquisition at allocate time) that

address prediction fails at enabling an efficient MOVT design: high misprediction

rates sink processor performance while at the same time coverage is below than the

achieved for the first design.

We conclude that the design doing prodID acquisition at execution time (design

#1) configured as a tiny 16 entries 4-way MOVT is the option that provides the best

coverage per area and the best coverage per performance overhead, while at the same

time being extremely amenable for implementation due to its minimal costs.

CHAPTER 8

AUTOMATED FAULT

LOCALIZATION AND DIAGNOSIS

8.1 Introduction

In the previous chapters we have presented low-cost solutions to exclusively detect

failures during runtime.

However, several facts suggest the possibility of adding extra value to our solu-

tions by extending their applicability to the post-silicon validation phases. The first

observation is that since dynamically checking micro-architectural invariants allows

detecting multiple sources of failures (including design bugs), the reliance on simula-

tion farms to generate tests and golden outputs could be minimized. Test programs

and applications could be directly executed and errors could be detected without

needing to perform signal or architectural state comparisons. The second observa-

tion is that finding errors by comparing the architectural state against an expected

one incurs very high detection latencies. Big latencies lead to time-consuming and

complex debugging methods to narrow down relevant execution activity. On the other

hand, by dynamically checking micro-architectural invariants errors can be detected

as soon as they affect an instruction. The third observation is that minimal interfer-

ence is required during system validation, and our techniques fulfill this requirement

because they run concurrently and transparently with the checked hardware.

However, more problems plague current post-silicon validation practices. Current

state acquisition techniques (like scan chains or on-chip tracing buffers) are inefficient

when trying to increase the limited internal observability: small buffer capacities and

frequent system interruptions to extract internal state require long trial-and-error

manual processes and skilled staff. In addition, non-reproducible errors can hardly be

166 · Chapter 8. Automated Fault Localization and Diagnosis

debugged with existing solutions because they cannot continuously trace the internal

activity.

In this Chapter we introduce a novel hardware-software solution to locate and

diagnose errors during post-silicon validation. We build it by combining the features

of our error detection schemes with new logging and diagnosis techniques.

To show the potential of our approach, we have particularly focused on how to

apply it to validate a specific functionality of an advanced out-of-order processor:

the memory dataflow implemented by the Load-Store Queue. However, the approach

could be instantiated to other core functionalities, such as the register dataflow logic

or the control flow logic.

The rest of the chapter is organized as follows. Section 8.2 introduces our post-Si

and runtime validation technique. Next, Section 8.3, Section 8.4 and Section 8.5 delve

into the specific details of the implementation. Afterwards, Section 8.6 evaluates

our work in terms of diagnosis coverage, performance, area and power overheads.

Previous work is reviewed in Section 8.7. Finally, we summarize the main conclusions

in Section 8.8.

8.2 Automated Fault Localization and Diagnosis: Proposed System Overview

Our validation proposal is a hybrid hardware-software system built of several com-

ponents to achieve automated localization and diagnosis.

We introduce a mechanism that logs the microarchitectural activity for later anal-

ysis. This logging mechanism allows continuously storing traces that reflect the sys-

tem internal activity during program execution, at processor full-speed. We define

as an event a microarchitectural activity or a change of state related to the circuit

under debug. A selected set of event types are tracked by the logging mechanism

and an aggregate of their possible instantiations constitute the activity log used for

debugging. With minimal changes in the OS, the log can be stored in one or more

pages of the memory space of each application being run. This way, we can store long

logs without adding big memory structures in the processor or impacting the per-

formance of applications when stealing large part of the cache. Events generated by

the processor are temporally stored in a small hardware buffer while waiting for data

cache idle cycles. The data cache acts as a proxy to the rest of the memory hierarchy.

This component allows alleviating the problem of reduced internal observability and

reproducibility.

Connected to the logging mechanism, we integrate our on-line, concurrent, timely

error detection mechanism. Specifically, we choose the MOVT mechanism described

8.3. Event Generation · 167

Fig. 8.1: Event driving latches: extensions in the processor

in Chapter 7), because we focus on the debugging of the memory dataflow logic

implemented by the Load-Store Queue. The timely feature of our error detection

mechanisms allows detecting errors before they cause data corruption, and allows

having a precise, unpolluted state in the processor microarchitecture and in the ac-

tivity logs upon error detection (no events past the error manifestation point are

logged, reducing log capacity requirements). The on-line concurrent feature allows

detecting failures arising from multiple sources of failures (including design bugs and

transient faults) and eliminates the dependence on system-level simulation of RTL

models to obtain golden outputs to compare against.

Finally, the last component of our validation method is a software-based diagnosis

algorithm. Once an error is detected by the error detection mechanism, this algorithm

will examine the log and will root the cause for such error. Validation is performed

by analyzing the events stored in the log, and the location and root cause of the error

is attempted to be identified in an automatic manner.

Next, we detail how the different components are integrated into the processor

and how they interact with each other.

8.3 Event Generation

The first necessary modification consists in forwarding the microarchitectural LSQ

activity to the core-level logging mechanism, and collecting it. Every memory op-

eration has associated several types of activity events that may be generated out of

program order. The activity log is built incrementally by aggregating the events that

168 · Chapter 8. Automated Fault Localization and Diagnosis

occur within the same cycle. This way, the log reflects the activity introduced in the

pipeline in a timely manner, not necessarily in program order.

Figure 8.1 shows the layout locations where events are generated. Based on the

baseline processor microarchitecture described in Appendix A, we have defined 4

types of events related to the activity of the LSQ that we will use in order to root a

fault. Each event carries some important piece of information that is used later by

the software diagnosis:

1. ALLOC event: we generate this event when a load is allocated. The information

associated to this event consists of the memory size it reads from memory (3

bits), its position within the Load Queue (5 bits), and the Store Queue head

and tail pointer values upon its allocation (both 5 bits).

2. COMMIT event: we generate it when a store commits. This event contains the

store position within the Store Queue (5 bits), and a bogusness bit indicating

whether the store belongs to a wrong control path or not (1 bit).

3. AGEN event: we generate an AGEN event for every executed store. This event

contains: the store position within the Store Queue (5 bits), its effective size

(3 bits), its linear address (32 bits) and two extra fields indicating whether

the store detected a load introducing a memory order violation (1 bit) and the

corresponding load position within the Load Queue (5 bits).

4. LDEXEC event: for every executed load, we generate a LDEXEC event that in-

dicates the load’s Load Queue position (5 bits), its linear address (32 bits),

the read port used to move the load out of the Load Queue (1 bit), and two

extra fields to tell whether there was a store-forwarding situation (1 bit) and

the corresponding forwarded Store Queue position (5 bits).

Note that there is no ALLOC event for stores and no COMMIT events for loads. Store

allocation information is implicitly included in loads’ ALLOC events. Load commit

information is exclusively needed by our error detection solution (Chapter 7) to iden-

tify the load that observed a failure. Since this information is available at the error

detection mechanism, there is no need to continuously log it.

Every event type and its associated information are generated in one pipeline

stage and one microarchitectural structure. This means that for the case of LSQ

diagnosis, there is no need to gather information from other parts of the core. As a

consequence, events are generated locally but stored on a centralized structure, called

the ’LOG buffer ’. However, due to layout constraints it may happen that the delay

required to move events to the hardware log may vary depending on the event type

8.3. Event Generation · 169

(pipeline location). In order to solve this issue, we add latches so that every event

type generated during the same clock cycle arrives to the log at the same time. The

number of latches to be inserted per event type is determined by the worst delay.

Nevertheless, given that it is not necessary to log events on the very same cycle they

are generated, inserting latches does not pose any problem to the operating frequency.

It is worth noting that the entries that constitute the log are not meant for specific

event types. This means that any event can be written to any position within the

log. In order to distinguish among event types, we add decode information to every

generated event. This adds 3 bits per event: 2 for the event type and 1 to indicate if

it is valid or not.

Hence, an ALLOC event requires 21 bits, a COMMIT event 9 bits, an AGEN event 49

bits and a LDEXEC event 47 bits.

Next, we describe two possible optimizations in the design space of event genera-

tion: an event fusing optimization and an address hashing optimization. Whereas the

first one reduces the number of generated events by merging some events of the same

type, the second one reduces the size of certain event types in order to accommodate

more events in the log. Note that both optimizations are incompatible (applying one

optimization would not allow applying the other one): the first one increases the size

of the fused events, whereas the latter reduces the sizes.

Event Fusing Optimization

The quantity of information required per event type is different. It is clear that ALLOC

and COMMIT events require fewer bits than AGEN and LDEXEC events, because the size

of the addresses dominates over the rest. This means that small events will have

spare bits in the log entries.

We make use of this situation and propose to fuse consecutive ALLOC events and

fuse consecutive COMMIT events (not ALLOC and COMMIT events together). This allows

us reducing the number of events to be written to the log per cycle.

ALLOC events are fused by storing the number of loads allocated in the same cycle.

Our baseline microarchitecture can allocate a maximum of 4 loads in the same cycle

(as described in Chapter 4), so 2 extra bits are needed. On top of this, it necessary to

add their corresponding sizes (12 bits), the first load Load Queue position (5 bits), the

Store Queue head pointer and the tail Store Queue pointer values observed during

their allocation (20 and 20 bits, respectively). This optimization makes an ALLOC

event 62 bits long.

Our architecture only allows one non-bogus store commit per cycle. However, we

170 · Chapter 8. Automated Fault Localization and Diagnosis

compress COMMIT events for bogus stores into a single event. To do so, we indicate the

number of bogus stores retired (2 bits, because at most 4 instructions can be retired

per cycle), the initial store’s Store Queue position (5 bits) along with the bogusness

bit set to true (1 bit). As a consequence several COMMIT events can be fused to 11

bits.

After applying this optimization, every event stored in the log will require around

64 bits of space (the maximum event size across all event types). Moreover, a max-

imum of 6 events can be generated per cycle in our baseline processor: 1 ALLOC, 1

AGEN, 2 LDEXEC and 2 COMMIT events (whereas if no optimization is applied, 11 events

can be generated per cycle in the worst case).

Address Hashing Optimization

A second possible optimization, consists in reducing the size of the larger events

so that more event entries can fit in a given area budget. To do so, we compress

addresses of AGEN and LDEXEC events. In this case, a full 32 bit address would be

reduced to a smaller number of bits by means of address hashing. Depending on the

selected hash size, we may have AGEN events ranging from 18 to 48 bits and LDEXEC

events ranging from 16 to 46 bits (for an interval between 1-bit and 31-bit addresses

hashes, respectively).

Clearly, this design alternative allows minimizing the required size of an event in

the log, at the expense of some loss in the diagnosis coverage.

When using a reasonable hash size (like 8-bit), every event in the log will require

32 bits of space. We will later show that we discard this option for coverage reasons.

8.4 Diagnosis Algorithm

The logging of the processor activity is done in parallel to processor operation. When

an error is detected a failure is flagged and we insert into the log the information of

the committing load that observed a failure. For the case of LSQ diagnosis, the

position of the load in the Load Queue suffices.

Different levels of precision may be implemented by the diagnosis algorithm, de-

pending on the amount of information that designers want to obtain as feedback. We

have identified two possible diagnosis levels. For example, the diagnosis algorithm

may signal a failure case where ”a load at LDQ position 2 with address 0x82ba1700

has been nullified by an older store with address 0x92ba1700 ” or it may even ex-

tend it with the information that ”the load should actually have been forwarded from

8.4. Diagnosis Algorithm · 171

the store at STQ position 8 with address 0x82ba1700 ”. Clearly, the second output

provides much more valuable information for debuggers because besides determining

the failure that actually happened during the processor operation, it also allows to

determine the expected behavior. However, it is clear that as we increase the di-

agnosis precision, the bigger will be the number of events to be analyzed. The log

subsequence used to conduct the diagnosis is called the analysis window.

In order to conduct a theoretical coverage study, we consider several common fail-

ure scenarios in the LSQ logic. These bugs include the failure scenarios described in

Chapter 7, that mimic bugs found during the validation phases of modern processors.

The 19 failure scenarios are described in Table 8.1. The first column corresponds to

the failure name, the second column describes the failure scenario and the third col-

umn indicates the size of the analysis window required to identify the actual failure

scenario. Specifically, two different window sizes are required to diagnose the con-

sidered failure scenarios. The first group of failures can be diagnosed by considering

an analysis window starting at the failing load ALLOC event (and ending in the last

logged event for the load observing the failure). The second group of failures can

only be diagnosed when increasing the analysis window up to the farthest AGEN event

belonging to an older store and whom the processor did not COMMIT before the failing

load LDEXEC time. This analysis window is bigger than the previous mentioned one,

and is the one that allows determining the expected failure-free case.

We implement a localization and diagnosis algorithm based on classifying fail-

ures depending on a decision tree. As nodes are visited (groups of failure scenarios),

the failure scenarios are refined depending on the outcomes of different tests. Fig-

ure 8.2(a) and Figure 8.2(b) depict at a very high level the implemented diagnosis

algorithm for the failure scenarios described in Table 8.1. Note that this code snippet

does not provide the expected error-free LSQ behavior (only the faulty one).

The algorithm is constructed in such a way that the first failure types to be

considered are those who require the smallest analysis window. Later, if these failure

types do not correspond to actual failure case, the rest of failure types are considered

(increasing the analysis window). Hence, the number of events to examine in order

to identify what went wrong is not fixed a priori. It depends on the actual failure

case, and the degree of diagnosis precision desired by debuggers.

Figure 8.3 shows an example of a short log capturing a failure in the LSQ oper-

ation. To clarify things, events marked as --- are not captured in the log but have

been added to clarify the temporal evolution of the microarchitectural activity. The

diagnosis algorithm will determine that the failing load is the one in slot 7 in the Load

Queue (load 7). This information is provided by the error detection mechanism.

1
7
2
·

C
h
a
p
ter

8
.

A
u
to
m
a
ted

F
a
u
lt
L
o
ca
liza

tio
n
a
n
d
D
ia
g
n
o
sis

Table 8.1: Diagnosable LSQ failure scenarios: descriptions and required analysis window size

Failure Scenario Description Analysis Window

FWD FROM YOUNGER Load was forwarded from a younger store From ALLOC
FWD FROM IDLE Load was forwarded from an idle STQ position From ALLOC
FWD FROM BOGUS Load was forwarded from a bogus store From ALLOC
FWD FROM OLDER NOT YET Load was forwarded from a previous store that From farthest
EXECUTED did not compute its address AGEN event
FWD FROM OLDER YET NON Load was forwarded from an older non matching From farthest
OVERLAPPING store AGEN event
FWD AND KILL FROM YOUNGER Load was forwarded but there was a younger From ALLOC

store that wrongly killed the load
FWD AND KILL FROM BOGUS Load was forwarded but then was killed by a From ALLOC

bogus store
FWD AND KILL FROM OLDER Load was forwarded from an older matching store From ALLOC
BUT OLDER THAN FWD but there was a matching store older than the

forwarding one which wrongly killed the load
FWD AND KILL FROM OLDER Load was forwarded but a previous non matching From ALLOC
YET NON OVERLAPPING store later killed the load
FWD BUT KILL NOT PERFORMED Load was forwarded but there was an older store, From ALLOC

younger than the forwarding one which should
have invalidated the load

FWD BUT OTHER POSSIBLE FWD Load was forwarded from an older store but should From farthest
have been forwarded from a store older than the AGEN event
load but younger than the wrong forwarding store

KILL FROM YOUNGER Load was killed by a younger store From ALLOC
KILL FROM BOGUS Load was killed by a bogus store From ALLOC
KILL FROM OLDER YET NON Load was killed by an older store but its From ALLOC
OVERLAPPING address did not match
KILL BUT INVALID ST Load was killed by the correct store, but From ALLOC
ACTING AFTER afterwards another store performed an invalid

kill or fwd action
KILL BUT VALID YOUNGER Load was killed by an older matching store, but From farthest
FWDABLE STORE there was an older store younger than the killing AGEN event

one that should have performed a forwarding
KILL BUT VALID YOUNGER Load was killed by an older matching store, but From ALLOC
SHOULD KILL an older store younger than the killer one should

have killed it
FWD NOT PERFORMED Load should have been forwarded From farthest

AGEN event
KILL NOT PERFORMED Load should have been killed by an older matching From ALLOC

store

8
.4
.

D
ia
g
n
o
sis

A
lg
o
rith

m
·

1
7
3

Î Ï Ð Ñ Ò Ó Ô Ñ Õ Ö Õ × Õ Ø Õ Ð Ù Ú Û Ò Ñ Ü Ý Ó Þ Ï Ù Ï Ó Ð

Õ Ö Ù ß Ô × Ù Ò Ó Ô Ñ Ô Ñ Ñ ß Õ Þ Þ Ô Ð Ñ Þ Ï à Õ

Õ Ö Ù ß Ô × Ù Î Ó ß á Ô ß Ñ Ï Ð â Ï Ð Î Ó

ã á Ô Þ Ò Ó Ô Ñ Î Ó ß á Ô ß Ñ Õ Ñ ä

ã Þ Ù Ü Ý Ó Þ Ï Ù Ï Ó Ð Ó Î Î Ó ß á Ô ß Ñ Ï Ð â Þ Ù Ó ß Õ

Î Ï Ð Ñ Ò Ó Ô Ñ Ô Ò Ò Ó × Õ Ø Õ Ð Ù Ú Û Ò Ñ Ü Ý Ó Þ Ï Ù Ï Ó Ð

Õ Ö Ù ß Ô × Ù Þ Ù Ü å Õ Ô Ñ æ Ù Ô Ï Ò Ý Ó Ï Ð Ù Õ ß Þ

Þ × Ô Ð Ò Ó â Î ß Ó ç Ò Ó Ô Ñ Ô Ò Ò Ó × Ñ Ó á Ð á Ô ß Ñ Þ

ã × Ò Ô Þ Þ Ï Î Û Þ Ù Ü Ý Ó Þ Ï Ù Ï Ó Ð Þ Ú Û Ô â Õ Ô Ð Ñ Þ Ù Ô Ù Õ

Ò Ó Ô Ñ á Ô Þ

Î Ó ß á Ô ß Ñ Õ Ñ ä

Û Õ Þ

Î á Ñ Þ Ù Ó ß Õ

Þ Ù Ô Ù Õ æ Ô â Õ ä

Î Ô Ï Ò è ß Õ é

Î á Ñ ê Î ß Ó ç ê Ï Ñ Ò Õ

Î Ô Ï Ò è ß Õ é

Î á Ñ ê Î ß Ó ç ê Û Ó è Ð â Õ ß

Î Ô Ï Ò è ß Õ é

Î á Ñ ê Î ß Ó ç ê Ú Ó â è Þ

Ð Ó

Î Ï Ð Ñ Î á Ñ Þ Ù Ó ß Õ Ô â Õ Ð Õ Ø Õ Ð Ù

Î ß Ó ç Ò Ó Ô Ñ Õ Ö Õ × Õ Ø Õ Ð Ù è Ý á Ô ß Ñ Þ

Ð Ó

Î Ó è Ð Ñ äÎ Ô Ï Ò è ß Õ é

Î á Ñ ê Î ß Ó ç ê Ó Ò Ñ Õ ß ê Ð Ó Ù

ê Û Õ Ù ê Õ Ö Õ × è Ù Õ Ñ

Õ Ö Ù ß Ô × Ù Þ Ù Ó ß Õ Ô Ñ Ñ ß Õ Þ Þ Ô Ð Ñ Þ Ï à Õ

Û Õ Þ

Ò Ó Ô Ñ

Ó Ø Õ ß Ò Ô Ý Þ ä

Î Ô Ï Ò è ß Õ é

Î á Ñ ê Î ß Ó ç ê Ó Ò Ñ Õ ß ê Û Õ Ù

ê Ð Ó Ð ê Ó Ø Õ ß Ò Ô Ý Ý Ï Ð â

Ð Ó
Î Ï Ð Ñ Þ Ù Ó ß Õ Ô â Õ Ð Õ Ø Õ Ð Ù ë Ï Ò Ò Ï Ð â

Ò Ó Ô Ñ ì Î ß Ó ç Ò Ó Ô Ñ Õ Ö Õ × Ñ Ó á Ð á Ô ß Ñ Þ

Û Õ Þ

Î Ó è Ð Ñ ä Ð ÓÛ Õ Þ

Õ Ö Ù ß Ô × Ù ë Ï Ò Ò Ï Ð â Þ Ù Ó ß Õ

Þ Ù Ü Ý Ó Þ Ï Ù Ï Ó Ð
Þ Ù Ó ß Õ

Þ Ù Ô Ù Õ æ Ô â Õ ä

Î Ô Ï Ò è ß Õ é

Î á Ñ ê Ô Ð Ñ ê ë Ï Ò Ò ê

Î ß Ó ç ê Û Ó è Ð â Õ ß

Î Ô Ï Ò è ß Õ é

Î á Ñ ê Ô Ð Ñ ê ë Ï Ò Ò ê

Î ß Ó ç ê Ú Ó â è Þ

Î Ï Ð Ñ Ó Ò Ñ Õ ß Þ Ù Ó ß Õ á Ï Ù å

Ó Ø Õ ß Ò Ô Ý Ý Ï Ð â Ô Ñ Ñ ß Õ Þ Þ ì Î ß Ó ç

Ò Ó Ô Ñ Õ Ö Õ × Õ Ø Õ Ð Ù Ñ Ó á Ð á Ô ß Ñ Þ

Î Ó è Ð Ñ ä
Î Ô Ï Ò è ß Õ é

Î á Ñ ê Ú è Ù ê Ó Ù å Õ ß

ê Ý Ó Þ Þ Ï Ú Ò Õ ê Î á Ñ

Î Ô Ï Ò è ß Õ é

Î á Ñ ê Ú è Ù ê ë Ï Ò Ò ê

Ð Ó Ù ê Ý Õ ß Î Ó ß ç Õ Ñ

Û Õ Þ Ð ÓÛ Ó è Ð â Õ ß Ú Ó â è Þ Þ Ù Ó ß Õ

Ó Ø Õ ß Ò Ô Ý Þ ä

Ó Ò Ñ Õ ß

Î Ô Ï Ò è ß Õ é

Î á Ñ ê Ô Ð Ñ ê ë Ï Ò Ò ê Î ß Ó ç

ê Ó Ò Ñ Õ ß ê Ú è Ù ê Ó Ò Ñ Õ ß ê

Ù å Ô Ð ê Î á Ñ

Î Ô Ï Ò è ß Õ é

Î á Ñ ê Ô Ð Ñ ê ë Ï Ò Ò ê Î ß Ó ç

ê Ó Ò Ñ Õ ß ê Û Õ Ù ê Ð Ó Ð ê Ó Ø

Õ ß Ò Ô Ý Ý Ï Ð â

Û Õ Þ Ð Ó

Û Ó è Ð â Õ ß Ó Ò Ñ Õ ß Ï Ñ Ò Õ Ú Ó â è Þ

í í í

î ï ð ñ ò ð ó

ô ï õ ò ð õ ñ ö ñ ÷

ø ö ó

ù ù ù

ú ï

ô û ú ñ ð ó ü ï õ ö ð ý ö ú ö þ ö ú ü

ÿ û î î û ú ý ü � ö î ï ð ñ � ô õ ï � î ï ð ñ

ö
 ö � ö þ ö ú ü ñ ï ò ú ò ð õ ñ ó

ô ï � ú ñ ÷

ö
 ü õ ð � ü ó ü ï õ ö ó ü � � ï ó û ü û ï ú

ó ü ï õ ö

ó ü ð ü ö � ð ý ö ÷

ô ð û î � õ ö �

ÿ û î î � ô õ ï � � ø ï � ú ý ö õ

ô ð û î � õ ö �

ÿ û î î � ô õ ï � � � ï ý � ó

ø ï � ú ý ö õ � ï ý � ó

ï î ñ ö õ

ô ð û î � õ ö �

ÿ û î î � ô õ ï � � ï î ñ ö õ � ø ö ü

� ú ï ú � ï þ ö õ î ð � � û ú ý

ô û ú ñ ð ó ü ï õ ö ð ý ö ú ö þ ö ú ü

ï î ñ ö õ ü � ð ú ó ü ï õ ö ò �

ï þ ö õ î ð � � û ú ý ð ñ ñ õ ö ó ó � ô õ ï �

î ï ð ñ ö
 ö � ö þ ö ú ü ñ ï ò ú ò ð õ ñ ó

ø ö ó ú ï

ó ü ï õ ö

ï þ ö õ î ð � ó ÷

ô û ú ñ ð ó ü ï õ ö ò � ï þ ö õ î ð � � û ú ý

ð ñ ñ õ ö ó ó ø ï � ú ý ö õ ü � ð ú ÿ û î î û ú ý

ó ü ï õ ö ð ú ñ ï î ñ ö õ ü � ð ú î ï ð ñ � ô õ ï �

î ï ð ñ ö
 ö � ö þ ö ú ü ñ ï ò ú ò ð õ ñ ó

ú ï

ø ö ó
ô ï � ú ñ ÷

ú ï
ô ð û î � õ ö �

ÿ û î î � � � ü � û ú þ ð î û ñ � ó ü � ð �

ü û ú ý � ð ô ü ö õ

ö
 ü õ ð � ü ó ü ï õ ö ð ý ö ú

� ï ó û ü û ï ú ð ú ñ î ï ð ñ

ö
 ö � � ï ó û ü û ï ú û ú î ï ý

ø ö ó

� 	 � �
 � � � � �

� �
 �
 � � � � �

ô ð û î � õ ö �

ÿ û î î � � � ü � þ ð î û ñ � ø ï � ú ý ö õ

� ô ò ñ ð � î ö � ó ü ï õ ö

ô ð û î � õ ö �

ÿ û î î � � � ü � þ ð î û ñ � ø ï � ú ý ö õ

� ó ü � ó � ï � î ñ � ÿ û î î

ø ö ó
ú ï

ô ï � ú ñ ÷

ô ð û î � õ ö �

ÿ û î î � ú ï ü � � ö õ ô ï õ � ö ñ

ô ð û î � õ ö �

ô ò ñ � ú ï ü � � ö õ ô ï õ � ö ñ

ø ö óú ï

ô û ú ñ î ï ð ñ ö
 ö � ö þ ö ú ü � ø î ñ � � ï ó û ü û ï ú

ö
 ü õ ð � ü î ï ð ñ ð ñ ñ õ ö ó ó ð ú ñ ó û � ö

ö
 ü õ ð � ü ô ï õ ò ð õ ñ û ú ý û ú ô ï

! ò ð ó î ï ð ñ ô ï õ ò ð õ ñ ö ñ ÷

! ó ü � � ï ó û ü û ï ú ï ô ô ï õ ò ð õ ñ û ú ý ó ü ï õ ö

ô û ú ñ î ï ð ñ ð î î ï � ö þ ö ú ü � ø î ñ � � ï ó û ü û ï ú

ö
 ü õ ð � ü ó ü � � ö ð ñ � ü ð û î � ï û ú ü ö õ ó

ó � ð ú î ï ý ô õ ï � î ï ð ñ ð î î ï � ñ ï ò ú ò ð õ ñ ó

! � î ð ó ó û ô ø ó ü � � ï ó û ü û ï ú ó � ø ð ý ö ð ú ñ ó ü ð ü ö

(a) Decision-tree when failing load was b) Decision-tree when failing load was

forwarded at execution time not forwarded at execution time

Fig. 8.2: Diagnosis algorithm showing failure type determination: high-level code

174 · Chapter 8. Automated Fault Localization and Diagnosis

� � �

� � �

���� "#$ %&'()*% + ,- %./0 + 1�- 2334 + - 5.*67 + 8*- 63'(5.*6 + 8*

���� 99:; 63'()*% + <- %./0 + 1�- %&'(=023 + ,- %&'(&2.6 + ,

>>> 99:; %&'()*% + �? >>>

>>> 99:; %&'()*% + �� >>>

>>> 99:; %&'()*% + �� >>>

��?� "#$ %&'()*% + ��- %./0 + 1�- 2334 + - 5.*67 + 8*- 63'(5.*6 + 8*

�,� "#$ %&'()*% + �?- %./0 + 1�- 2334 + - 5.*67 + 8*- 63'(5.*6 + 8*

�@� "#$ %&'()*% + ��- %./0 + 1�- 2334 + A- 5.*67 + 8*- 63'(5.*6 + 8*

�B� 9C#D#; 63'()*% + <- 2334 + ;-)4& + ?- E4F37 + 8*- %&'(E4F3 + 8*

�<� 99:; 63'()*% + B- %./0 + 1�- %&'(=023 + ,- %&'(&2.6 + ��

�G� ;:HHIJ %&'()*% + ,- K*LM%7 + 8*

>>> ;:HHIJ 63'()*% + < �8* 044*4� >>>

�N� 9C#D#; 63'()*% + B- 2334 + -)4& + ?- E4F37+ O0%- %&'(E4F3 + �?

�1� ;:HHIJ %&'()*% + �?- K*LM%7 + 8*

��� ;:HHIJ %&'()*% + ��- K*LM%7 + 8*

��� ;:HHIJ %&'()*% + ��- K*LM%7 + 8*

>>> ;:HHIJ 63'()*% + B �044*4 30&0P&03 KO H:QJ� >>>

R
S
T
U

Fig. 8.3: Log of a LSQ failure: an example

The failing load LDEXEC event occupies position [4] in the log, and it indicates

that the load has address A and was forwarded by the store in slot 10 of the Store

Queue (store 10). The failing load ALLOC event occupies position [6] and it indicates

that upon its allocation, stores 9/10/11/12 were already in the Store Queue and were

older.

Scanning the log from this event down to event in position [4], we can refine all

store ages and states. Since store 9 was COMMITed in position [5], before the failing

load executed, it is now considered as idle (it disappeared from the Store Queue).

Also, older stores 10/11/12 are determined to be not bogus. Hence, the algorithm

follows the edge called OLDER, as shown with dashed lines in Figure 8.2(a). Then, the

forwarding store AGEN event is found (analysis window is extended to position [9])

and its address and size are obtained. For this example, store 10 overlaps with the

failing load (it has the same address and size) and was executed before. Next, the

algorithm finds no AGEN event killing the failing load (from event [4] downwards).

Finally, the analysis window is extended to event [10]> to find that there is an

AGEN event from store 11, younger than store 10, and it is overlapping. Hence,

the diagnosis algorithm concludes that load should have been forwarded by store 11

(FWD BUT OTHER POSSIBLE FWD failure scenario).

8.4. Diagnosis Algorithm · 175

Diagnosis Coverage versus Log Size

The diagnosis algorithm described is able to identify faults for an ideal scenario where

the log is unbounded, there is no limit on the number of events that can be logged

per cycle and addresses are not compressed. Figure 8.4 shows the average required

number of logged events to locate and diagnose a fault for the SPEC benchmarks. In

this case, we have used the highest level of diagnosis precision, and have also applied

the ’event fusion’ optimization. As one can see, if our log keeps the last 180 events,

we are able to root almost all possible faults (99.96%). Note that we are considering

the log as unbounded and with no implementation restrictions. In case the log is

bounded to a fixed size, a failure will not be diagnosable if the algorithm runs out

of events in the log and has not taken any decision. This may happen because of a

structural limitation (buffer size, number of writable events per cycle) some events

may not be appended to the log, and hence would get lost.

It is important to note that the address hashing optimization has implications on

the achievable diagnosis coverage. A failure observed for a load will not be able to

be diagnosed in case there is more than one store whose address hash matches the

load address hash. Similarly, in case there is more than one store whose full address

matches the load address, then the load will not be diagnosable for any hash size

VW

XVW

YVW

ZVW

[VW

\VW

]VW

^VW

_VW

`VW

XVVW

a
b
c

b
d

c
e

f
g

f
a

e
c

e
d

h
e

a
g

a
a

i
c

i
d

d
e

j
g

j
a

b
g
c

b
g
d

b
b
e

b
c
g

b
c
a

b
f
c

b
f
d

b
e
e

b
h
g

b
h
a

b
a
c

b
a
d

b
i
e

b
d
g

b
d
a

kl
m

nop qrst

uvwx yzw{w

|}~�xw ��zw�

�}~�xw ��zw�

�}~�xw ��zw�

�}~�xw ��zw�

�}~�xw ��zw�

���� �

Fig. 8.4: Accumulated diagnosis coverage versus log size

176 · Chapter 8. Automated Fault Localization and Diagnosis

i3: ST A

i2: LD A

i1: ST A

i3: ST B

i2: LD A

i1: ST A

i3: ST A

i2: LD A

i1: ST B

i3: ST h

i2: LD h

i1: ST h

?

Distinguishable if hash size increasedNeed full addresses

h(A) = h(B)

??

fwd
kill

fwd

kill

fwd

kill

fwd

kill

Fig. 8.5: Address hashing undistinguishable failure scenarios: an example

smaller than the length of the address. Whereas in the first case this can be allevi-

ated by increasing the hash size, in the latter case this can only be solved by avoiding

address hashing. Figure 8.5 shows one of the cases where the diagnosis algorithm could

not choose the correct failure scenario among KILL BUT VALID YOUNGER FWDABLE STORE,

FWD AND KILL FROM OLDER YET NON

OVERLAPPING and FWD FROM OLDER YET NON OVERLAPPING. Lines marked as ’fwd’ de-

note store-to-load forwarding, whereas lines marked as ’kill’ represent memory or-

dering violation (kill) detection.

Figure 8.4 also depicts the overall diagnosis coverage loss for different hash sizes

for our benchmark suite. It is interesting to note that 8-bit hashes addresses shows

the best trade-off since they represent the 99.84% diagnosability potential of the

address hashing optimization. However, the percentage of faults that cannot be

diagnosed when using this technique (’Lost cases ’) is 2.91%, which is pretty high for

a diagnosis method. Moreover, some specific failure scenarios would never be detected

when using the address hashing optimization (such as FWD BUT OTHER POSSIBLE FWD,

KILL BUT VALID YOUNGER FWDABLE STORE, etc.). Since the ’event fusion’ and the

’address hashing ’ optimizations are exclusive, we opt to use the ’event fusion’

optimization.

8.5 Logging System Implementation

The upper-bound coverage results from the previous section show that in order to

achieve a coverage near to 100%, around 180 hardware log entries would be necessary

8.5. Logging System Implementation · 177

for diagnosing errors in the LSQ control logic. Clearly, it is not practical to implement

them in a hardware log, because big area overheads would be introduced into the

processor. Instead, we propose a new mechanism to minimize the required extra

hardware and design effort, while keeping a good diagnosis coverage.

To solve these issues, we propose a more adaptable hybrid software-hardware solu-

tion. We modify the OS to sequester one or more physical pages from the application

being run (each one being 4KB) to work as a circular buffer for the events. Notice

that a page gives enough room to store the required 180 events to fully diagnose a

large percentage of faults. Connected to the (first-level) data cache, we introduce

a small hardware buffer to temporally keep the events generated by the processor.

This buffer sends the events to the main log (in memory) through the data cache,

whenever it is idle (otherwise it would be necessary to steal to the running appli-

cation both cache ports, causing a potential decrease in performance). Hence, the

data cache is used as a proxy to the bigger logging storage space. Events generated

by the processor will be stored in specific cache lines (cache line events) and will be

treated as any regular memory access and be stored on any way, controlled by the

cache replacement policy. Moreover, cache line events can be replaced as needed by

the application in an adaptive manner and can move through the memory hierarchy.

This is not possible in previous scheme that sequester ways or sets: cache line events

cannot disappear from the data cache since they are directly dumped out of the data

cache upon failure detection.

8.5.1 Microarchitectural Changes

From a hardware perspective, the required changes introduced in the processor are

depicted in Figure 8.6 and have been tagged as ’LOGGING system’.

The inputs to the logging component are two: (i) the events that have been

generated in their corresponding pipeline stages and (ii) a signal indicating whether

the data cache (’D$ ’) is going to be available (idle) during the current cycle. Next,

we will detail the different hardware components that form our logging system.

Merging line: Given that events are offloaded to consecutive positions in mem-

ory, we use a special buffer called ’merging line’ which is as big as a cache line (64

bytes). The main purpose of the ’merging line’ is to: (i) offload as many events

whenever the cache is idle, (ii) cluster the events in the minimum number of cache

lines and (iii) reduce power by using less idle cache write cycles.

The ’merging line’ is dumped to the data cache in bulk mode whenever the ’Dump

logic’ determines so. Different decision mechanisms can be implemented to decide

when to dump the ’merging line’; one extreme option is to dump it only when it

178 · Chapter 8. Automated Fault Localization and Diagnosis

rd port 0 / wr port 0

w0 … w7…

routing

@ / size

D$
(data cache)

he
adta
il

0001

#events in
merging line

0x412ab753

dumping physical
address

event
merging line

LO
G

bu
ffe

r

LOGGING
system

D
u

m
p

lo

g
ic

Events from
processor

01
00

#e
ve

nt
s

in

LO
G

 b
uf

fe
r

D$ write ports
available? (from
RETIRE logic)

rd port 1 / wr port 0

Fig. 8.6: Activity logging mechanism: hardware design and integration

is full. Another extreme option is dumping it whenever the cache is idle. For our

experiments, we dump the ’merging line’ whenever the cache is idle and there is at

least one event in the ’merging line’. Note that when using the 64-bit events, the

’merging line’ is able to store 8 events.

LOG buffer: The ’LOG buffer ’ stores the events generated by the processor and

is the interface with the rest of the processor. The ’LOG buffer ’ is designed in such a

way that every cycle it can store a fixed number of generated events, unless it is full.

Events from the ’LOG buffer ’ are moved out to the ’merging line’ each cycle if

enough space is available.

As Figure 8.7 shows, the ’LOG buffer ’ is organized as a two-banked structure

(instead of a multi-ported structure). Events generated by the processor in the same

cycle are stored together in an ’event row ’ (a group of as many latches as the number

of writable events per cycle). Every ’bank ’ is organized as multiple chains of ’event

rows ’, and every cycle the events inside an ’event row ’ advance and are latched

into the next ’event row ’, if the destination is idle and the source has some events.

8.5. Logging System Implementation · 179

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

ba
nk

 0

ba
nk

 1

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

p1 p2 p3 p4 p5 p6 p7 p8
event merging line

row
buffer

event row event row

LOG
buffer

������� ������� ������
��������� ���� �� ��¡ ¢������ £���¤ �¥ �¢¦¡§ ¨�� ¡�� �� ��¡ �©�¥ �
¨¡ ¡�� ��¨� ©ª �¨«� ¬¨�­ �¨ � � ��¡¥®

¯° ±²³²´ µ¶ µ· ¸¹º»¼³½ ¾¿¼À Áº¾´Â
ÃÄÅÆ ÇÆÅÆÈÉÊ ËÄÌÊÍ ÎÉ ÉÏÆ ÏÆÎÐ ÄÑ ÆÎÒÏ ÓÎÈÔ ÕÈÉÄ ÉÏÆ ÇËÄÌ ÓÖÑÑÆËÍ
×ËÄØ ÇÆÅÆÈÉ ËÄÌÊÍ ÎÉ ÉÏÆ ÏÆÎÐ ÄÑ ÆÎÒÏ ÓÎÈÔ
ÆÙÚØÙÛ ÆÜÚØÜÛ ÆÝÚØÝÛ ÆÞÚØÞ ßÐÎÉÎØÎÉÏÊà á
¯° âã µ¶ ´¼À²ä åå«©¢¢©� «¨¥�
¯° âæç µ¶ ´¼À²ä åå«©¢¢©� «¨¥�
ÆèÚØéÛ ÆêÚØèÛ ÆëÚØêÛ ÆìÚØë ßÐÎÉÎØÎÉÏÊí î
×ÖïØ ÇïÆËðÕÈð ñÕÈÆÍ ÕÈÉÄ ÒÎÒÏÆ ÌÏÆÈ ØÄÊÊÕÓñÆ

ò½¶´ åå �¨�� «¨¥�
×ÖïØ ÇïÆËðÕÈð ñÕÈÆÍ ÕÈÉÄ ÒÎÒÏÆ ÌÏÆÈ ØÄÊÊÕÓñÆ
óËÎÈÊÕÊÉÕÄÈ ÉÄ ÇóÌÄôÊÉÆØ ÐÖïØ ïÄÐÆÍ

ò½¶´ åå �¨�� «¨¥�
ÆéÚØé õÐÎÉÎØÎÉÏà î
×ÖïØ ÇïÆËðÕÈð ñÕÈÆÍ ÕÈÉÄ ÒÎÒÏÆ ÌÏÆÈ ØÄÊÊÕÓñÆ
óËÎÈÊÕÊÉÕÄÈ ÉÄ ÇóÌÄôÊÉÆØ ÐÖïØ ïÄÐÆÍ

ò½¶´ öö÷¡¨¡� �¥ ���©å÷¡�¦ �ø¢¦ù©��¤
ÆèÚØÞÛ ÆêÚØéÛ ÆëÚØèÛ ÆìÚØêÛ ÆÙúÚØë õÐÎÉÎØÎÉÏÊà î
×ÖïØ ÇïÆËðÕÈð ñÕÈÆÍ ÕÈÉÄ ÒÎÒÏÆ ÌÏÆÈ ØÄÊÊÕÓñÆ
óËÎÈÊÕÉÕÄÈ ÉÄ ÇûÄËïÎñ ÐÖïØ ÃÄÐÆÍ

Fig. 8.7: Log buffer: hardware organization

Events from the same cycle are written into the banks in a rotative manner. As

a consequence, ’event rows ’ in the same positions in different banks must advance

simultaneously, so that time ordering across banks is maintained.

In order to increase the read bandwidth when moving events from the ’LOG buffer ’

into the ’event merging line’, two ’event rows ’ are read every cycle out from the two

banks into a buffer called ’row buffer ’ whenever it is empty. The rationale for using

two banks and reading two ’event rows ’ is to exploit the common case where four or

less events are generated per cycle, being able to fit into the ’event merging line’ two

’event rows ’ per cycle. Note that a multi-ported configuration would allow reading

events from as many different cycles as the number of read ports. Some empty events

may be present in the ’row buffer ’ and in the ’event merging line’, so we mark them

at write time so that the diagnosis algorithm may identify them.

The events in the ’row buffer ’ advance and are finally moved into the ’event

merging line’, once the ’merging line’ has been dumped to the memory hierarchy (i.e.

it is empty). A clean ’event merging line’ allows associating fixed positions among

the events in the buffer and the positions in the ’event merging line’, avoiding full

shuffling trees and wide multiplexors. On the other hand, this restricts using the

full capacity of the ’event merging line’ and can introduce cycles where the dumping

cannot be performed.

Given that the number of non-empty events in the buffer may surpass the capacity

of the ’event merging line’, it may be necessary to dump the events in a two-step

manner (in two different cycles). However, the ’LOG buffer ’ is designed in such a

way that a single-step dump can be performed for the common case where 4 or less

180 · Chapter 8. Automated Fault Localization and Diagnosis

events are generated per cycle (a total of 8 events, the size of the ’event merging line’).

The ’dumping control logic’ manages this and the rest of situations, as the pseudo-

code in Figure 8.7 shows. This average-case design requires fewer event multiplexors

than the full shuffling tree. Please note that even though the ’Dumping Control

Logic’ described in Figure 8.7 is the particular implementation for the case where

’event rows’ hold 5 events each, it can be generalized to any configuration with bigger

’event rows’.

Due to bandwidth reasons, it may happen that the ’merging line’ can not accom-

modate events from the ’LOG buffer ’. In case the cache is busy for several cycles,

the ’LOG buffer ’ may also end up being full (’#events in LOG buffer ’ saturates). As

a consequence, some events may not be logged. Also, it may happen that during a

cycle more events are generated than the number of events that potentially can be

written. To address these issues we propose that whenever an event cannot be added

to the log, the next successfully written event will be extended with a ’barrier ’ bit.

From the diagnosis perspective this means that in case a ’barrier’ bit is found by the

algorithm, the failure is not diagnosable.

We will analyze the trade off between hardware complexity and diagnosis coverage

in Section 8.6.

Physical memory addressing: The logging system also contains a pointer to

the physical memory position (aligned to a cache line boundary) where the ’merg-

ing line’ will be offloaded. The ’dumping physical address ’ is incremented after the

’merging line’ has been moved to the data cache, and the increment is triggered by

the ’Dump logic’.

The allocated physical page (or pages) is used as a circular buffer. The hardware

logging system knows when the ’dumping physical address ’ is going to point to a

physical location past the allocated physical page boundary, and hence also has head

and tail pointers to physical addresses.

An interesting aspect of our mechanism is that given that the dumping address

is a physical address, there is no need to perform a TLB translation. This eludes the

cost of introducing complex design changes in order to deal with TLB misses that

are not caused by the application itself.

8.5.2 System-Level Interaction

From a software perspective, few changes must be introduced in our logging system.

We opt to have the OS responsible of sequestering the physical page and providing

the ’dump physical address ’ to the hardware logging component.

8.5. Logging System Implementation · 181

Whenever the OS is going to create a new process it obtains from the free pages

pool as many consecutive physical pages as required by the structure to be diagnosed,

and then assigns it to the logging system. For diagnosing failures in the LSQ control

logic, one physical page suffices to achieve a good diagnosis coverage (worst case

would be 3 4KB physical pages when storing a single event per cache line). In order

to simplify the hardware design these physical consecutive pages are pinned by the

OS (cannot be swapped). Once the pages are allocated, the OS must communicate

the physical address to the hardware component. The easiest option to implement so

is considering the ’dumping physical address register ’ as a memory mapped register

and accessing it by regular I/O (IN and OUT) instructions.

Application switching: Whenever a new task is going to be switched in by

scheduler, the OS will update the ’dumping physical address ’ register value. When

a task is switched out, the OS reads the corresponding physical address pointer and

stores it in the process OS structure for next use.

Clearly, the logging physical pages will be invisible to any process and their ad-

dresses will not be stored in any translation table (hence, not accessible). Only the

OS will know about their existence.

From a system-level perspective, once a failure is detected the following steps are

taken:

1. Pending events residing in the ’LOG buffer ’ and the ’event merging line’ are

drained off to the physical page, through the data cache.

2. The information gathered by the error detection mechanism (the load queue

position of the load that raises the error), the log’s head and tail physical address

pointers are then dumped to the logging physical page. This information is

stored in the first 64 bytes of the logging physical page (hence, the logging of

events would start on the second cache line boundary of that page).

3. A MACHINE CHECK exception is thrown. In order to do so, we rely on existing

features to report hardware errors [45]. The processor modifies the respec-

tive control and status registers from the corresponding error-reporting register

banks in order to indicate that non-diagnosed LSQ error has been reported.

Once the exception has been thrown, the OS takes the final steps.

4. The OS exception routine will identify that an error in the LSQ operation has

been detected and then would dump the logging physical pages to a file dump

for later analysis in a fault-free processor/core.

182 · Chapter 8. Automated Fault Localization and Diagnosis

It is important to note that our scheme allows having a log per process and allows

continuing building a log across different context switches. Furthermore, this logging

scheme is not restricted only for diagnosis errors in the LSQ structure. In fact it

could be adapted for diagnosing errors for other processors components or logic.

8.6 Evaluation

This section evaluates our technique in terms of diagnosis coverage, area, power and

performance overheads.

8.6.1 Diagnosis Coverage Results

Diagnosis coverage has been performed by means of error injection, as described in

Chapter 4. For every failure scenario and SPEC benchmark we have simulated the

injection of 1000 effective faults. Each fault has been randomly injected during the

ten first million executed instructions, after the warm-up period (see Chapter 4). We

have allowed faults to propagate, manifest and being catched by the MOVT error

detection mechanism (during a maximum period of 100M instructions). Once every

failure has been detected, we have frozen the simulation and have run the diagnosis

algorithm to determine the diagnosis coverage. To do so, we have considered the

highest diagnosis precision level (the one that allows diagnosing the actual failure

scenario and provide the expected failure-free one).

Using the highest level of diagnosis precision allows diagnosing any failure scenario

because we are using the biggest possible analysis window. The same fault injections

have been performed across the different considered configurations, so that we can

compare in a fairly way.

First, we have evaluated the number of generated events per cycle. Figure 8.8

shows this statistic for each benchmark. As it can be observed, 3 or less events are

generated for 97.29% of the cycles, on average. Despite the maximum number of

events generated per cycle is 6, this situation happens seldom. Our analysis shows

that allowing 5 writable events accounts for 99.96% of the cycles.

We have also run a sensitivity analysis for 27 different ’LOG buffer ’ configurations.

These configurations are organized in 9 different groups. The 9 groups vary in the

number of maximum writable events per cycle and the total number of ’event rows ’,

but all of them having two logical banks. Results are summarized in Figure 8.9;

each configuration Xwr,Yrows stands for number of writable events per cycle (size of

an ’event row ’), and total number of ’event rows ’, respectively. As an example, the

8.6. Evaluation · 183

üý

þüý

ÿüý

�üý

�üý

�üý

�üý

	üý

üý

�üý

þüüý

�
��
�
�

�

�
��
�

�
�
�

�
�
�

�
�
�

�
��
�

�
�
�

�
�

�
�

�
�

�
�
�
�

��
�
��

�
�

�
�
�

�
�

�
�
�

��
�

�
�
�
�

�
�
�
�!

�
�
�
�

�

�

�
"
!
�
�
�

��
�
�

�
�

��
�
#
$

�!
��
�

�
�
��

�
�

�
$

�
��
�

�
�
�

��
��

�

�
��
�
�
��
�
�

�
!
�
�
��
�

�
�
�

��

�
�
�

�
%

& '(')*+ , '(')*+ - '(')*+ . '(')*+ / '(')*+ 0 '(')* 1 '(')*+

Fig. 8.8: Breakdown of number of LSQ log events generated per cycle

4 wr,12rows has 12 ’event rows ’ and each one of them is able to store up to 4 events

generated by the processor in the same cycle. This means that potentially the ’LOG

buffer ’ can keep up to 48 valid events.

The 9 configuration groups have been formed by considering 6, 5 and 4 writable

events per cycle and 12, 10 and 8 ’event rows ’. Note that an ’event row ’ of 6 events is

able to store the maximum number of generated events per cycle (for the case of the

LSQ diagnosis). Hence, only capacity hazards may arise when using this configuration

(lost events will be dropped just because the ’LOG buffer ’ is full).

It can be observed that even when avoiding buffer write structural hazards (6wr

configurations), the diagnosis coverage does not reach 100%. This is caused because

the buffer has finite size and in some situations it cannot be emptied timely to the

’event merging line’, because the data cache experiences bursts of very busy phases,

or because the ‘Dumping Control Logic’ spends too many cycles in ‘Two-Step’ mode.

One observation worth highlighting is that configurations with a lower number of

writable events per cycle are able to achieve a similar diagnosis coverage, when keeping

constant the number of ‘event rows ’. This is the case for 5wr vs 7wr configurations

(but not 4wr vs 5wr). Hence, the best choice is a 5wr configuration.

For each of the 9 groups we have considered three different ’LOG buffer ’ designs

(rendering a total of 27 different configurations). The ’Avg Shuffle’ design exploits

184 · Chapter 8. Automated Fault Localization and Diagnosis

23

43

53

63

73

83

93

:3

;3

<3

423

23

423

523

623

723

823

923

:23

;23

<23

4223

9 =>? 45

>@=A

9 =>? 42

>@=A

9=>? ; >@=A 8 =>? 45

>@=A

8 =>? 42

>@=A

8 =>? ;

>@=A

7 =>? 45

>@=A

7 =>? 42

>@=A

7 =>? ;

>@=A

B

C
DE
F
F
G
H
G
I
G
J
KL

B

C
MN
O
J
E
L
ML
P
E
I
G
DN
O
G

3 Q@RS>TUS VWXX YZW[[XS 3 Q@RS>TUS \RU YZW[[XS 3 Q@RS>TUS]@ YZW[[XS

3 ^>@__S` aRSbcA VWXX YZW[[XS 3 ^>@__S` aRSbcA \RU YZW[[XS 3 ^>@__S` aRSbcA]@ YZW[[XS

Fig. 8.9: Diagnosis coverage and dropped events for different ’LOG buffer ’ configurations.

’Xwr,Yrows’ stands for number of writable events per cycle, total number of ’event rows ’

the common case where 4 events are generated per cycle, as Section 8.5.1 details.

Two extreme designs have also been considered: ’Full Shuffle’ and ’No Shuffle’: the

first one allows moving any event from the ’row buffer ’ to any position in the ’event

merging line’, whereas the second has fixed mappings among events and positions.

For a ’No Shuffle’ configuration this means that for a Two-step Dump, the first

8 events from the ‘event merging line’ would be first dumped, and during another

cycle the last 8 events (having marked as ’empty’ those events that were dumped the

previous time). Note both of them rely on a ’two-step dump’ process for the worst

case, but the first one allows using the full capacity of the ’event merging line’ and

flexible packing of events.

Results in Figure 8.9 show that the ’Avg Shuffle’ configuration is able to bridge the

gap between the ’No Shuffle’ and ’Full Shuffle’ designs. This means that a diagnosis

coverage similar to ’Full Shuffle’ can be achieved with simpler control logic. This is

specially notable for the ’6wr’ configurations, because the ’No Shuffle’ design would

always fall into a ’two-step dump’ process whenever the number of non-empty events

in the second bank is bigger than two. This translates into a higher pressure in the

’LOG buffer ’, which in turns translates into a bigger percentage of dropped events.

For the ’6wr’ configurations, when using 12 ’event rows ’, the ’Full Shuffle’ achieves a

diagnosis coverage of 91.98%, the ’Avg Shuffle’ achieves 89.20% and the ’No Shuffle’

8.6. Evaluation · 185

dedf

gehf

hedf

iehf

jdedf

jgehf

jhedf

jiehf

gdedf

ggehf

ghedf

giehf

kdedf

kgehf

khedf

kiehf

ldedf

lgehf

lhedf

liehf

hdedf

mn

omn

pmn

qmn

rmn

smn

tmn

umn

vmn

wmn

ommn

x
yz
{
|

}
~�
��
�

�
�
�

�
�
{

�
}
}

�
y
z{

�
}
�

{
�
~�
�
~

{
�
~�
x
�
�

��
�
��

�
�
~�
�
�

�
{
~

�
�
�
{

�
{
{
��

�
{
�
z

�
~�

�
�
�
�
�
�

��
}�
~�
}

��
�
�
�

��
}�
�

�
�
��

�
�
~z
�

�
z�
�~
�
}
�

�
�
z�

�~
�
z�
�
�
��
�
�

�
�
{
�
z�
�

�

�
��
�
�
�
�
�
�
�
�
��

�

�
��

�
�
�
��
¡
�
�
�
��

�

¢ £¤¥¦§¨©¤© ª¨«¬­¥¦¬ ¢ £¤¥¦§¨©¤© ª¨«¬­¥¦¬ ®¯¤¦° ±­¬²¤©¤¨§³ ¢ £­¨´´¬µ ¶«¬§·©

Fig. 8.10: Diagnosis coverage for a ’5wr,12rows LOG buffer ’ configuration

81.45%, on average. On the other hand, for the 4wr configurations both the ’Avg

Shuffle’ and ’No Shuffle’ designs behave identically, because no two-step dumping is

performed and all events from the two ’event rows ’ fit in the ’event merging line’.

For an ’Avg Shuffle’ or ’Full Shuffle’ configuration where the number of ’event

rows ’ is fixed, the percentage of dropped events minimally grows when reducing the

number of writable events per cycle from 6 to 5. For 4wr writable events, these

increases start growing noticeably. For a ’No Shuffle’ configuration, the percentage

of dropped events follows an inverse trend: as more events can be written per cycle,

a higher percentage of the cycles the ’event merging line’ needs to be dumped in a

two-step mode, leading to contention in the ’LOG buffer ’.

Finally, average diagnosis coverage does not increase linearly as we increase the

number of ’event rows ’. In fact, it slightly increases from 10 ’event rows ’ on: for 6wr

configurations, a ’Full Shuffle’ configuration with 10 ’event rows ’ achieves an average

coverage of 91.40% whereas if we use 12 ’event rows ’ the average diagnose coverage

just increases to 91.98%. For these configurations, the availability of the data cache

write ports for dumping events ends up limiting the achievable coverage. From these

results, a ’Avg Shuffle’ design configured as 5wr,12rows seems the best design choice.

On average, it is able to offer a diagnosis coverage of 87.79%.

186 · Chapter 8. Automated Fault Localization and Diagnosis

The diagnosis capability shown by our technique varies from one application to

another. This fact is shown in Figure 8.10 where we show the achieved diagnosis cov-

erage when running the whole SPEC benchmark suite on a logging system configured

as our best choice (5wr,12rows design with ’Avg Shuffle’). Recall that coverage loss

would be caused by dropped events when having a full ’LOG buffer ’ or when the

number of generated events in a cycle is bigger than 5.

Figure 8.10 also shows the diagnosis coverage that can be achieved when using a

lower precision in the diagnosis algorithm. Specifically, this precision level allows the

algorithm to pinpoint the actual failure type, not the expected failure-free scenario.

Results show that for this LOG buffer configuration, the average diagnosis coverage

can be increased to 89.84% (from 87.79%). It is interesting to highlight that from a

post-silicon validation standpoint, even when the diagnosis algorithm is not able to

pinpoint the root cause for a given fault injection, if we permanently allow the same

fault to manifest again and again, then the system is able to diagnose all the failures

and failure types (at least on one application). However, for runtime validation,

the localization of faults will not be possible for undiagnosed errors, and the system

would have to resort to coarse-grain mechanisms for recovery (rather than flushing the

pipeline and re-executing) because the architectural state would be already reflecting

a wrong state.

There is not a clear linear relationship between the percentage of dropped events

and the diagnosis coverage. As an example, gcc has a higher percentage of dropped

events compared to gap, eon or vortex, but gcc has a higher diagnosis coverage.

Similarly, mcf and perlbmk have a similar percentage of dropped events, but mcf

obtains a much bigger diagnosis coverage. We also notice that applications such as

eon and fma3d obtain poor diagnosis coverage due to the fact that a huge amount of

consecutive cycles (15 or more) the data cache is used by the application. During the

length of this period, more events need to be allocated than the number of events that

can be dumped from the ’event merging line’ to the memory hierarchy (a maximum

of 8). When these busy periods dominate the execution of the program a large

percentage of events are lost and diagnosis coverage decreases. For these glass-jaw

cases even a ’LOG buffer ’ of 32 ’event rows ’ would not be able to provide diagnosis

coverage above 60%, which is already too expensive for a post-Si or runtime validation

technique.

8.6.2 Overheads

We have also quantified the performance impact introduced by our activity logging

technique. Area, power and delay overheads have also been computed with respect

8.6. Evaluation · 187

¸¹¸º

¸¹»º

¼¹¸º

¼¹»º

½¹¸º

½¹»º

¾¹¸º

¾¹»º

¿¹¸º

¿¹»º

À
Á
ÂÃ
Ä

Å
ÆÇ
ÈÉ
Ê

Ë
Ì
Í

Î
Ç
Ã

Î
Å
Å

Î
Á
ÂÃ

Ï
Å
È

Ã
Ç
ÆÐ
Ë
Æ

Ã
Ë
ÆÑ
À
Ï
Ò

ÉÓ
Ì
ÑÈ

Ô
Ì
ÆÉ
Ë
Õ

Ô
Ã
Æ

Ç
Ï
Ï
Ã

Ç
Ã
Ã
ÑÖ

Ç
Ã
Ð
Â

Ç
ÆÉ

Ë
×
Ö
Ç
Ò
Ë

ÈÇ
Å
Ë
ÆË
Å

ÈÏ
Ç
Ø
Ù

ÑÖ
Å
Ç
Ð

Ï
Ë
ÐÇ

Ï
Î
ÆÂ
Ù

Ð
ÂÕ
ÉÆ
Ç
Å
Ò

ÐÓ
ÂÏ

ÉÆ
Ç
ÂÍ
Î
Ç
ÑÚ

Ó
Ö
Ã
Ó
ÂÐ
Ë

Û
Ü
Ý
Þ
Ä
ß

àáâ ãáäåæâçèé

êëì ãáäåæâçèé

íîïàêðèññçéñ

Fig. 8.11: Slowdown induced by a ’5wr,12rows LOG buffer ’ configuration

to the data cache of our baseline processor.

Performance overhead

We have compared the performance impact with respect to approaches that sequester

a cache way or a group of adjacent sets with an equivalent storage capacity (4KB).

Furthermore, these two approaches are modeled in such a way that they do not com-

pete for the data cache port availability. Results in Figure 8.11 show that in the worst

case, a slowdown of 2.71% is introduced when using our hybrid hardware-sofware log-

ging approach. When using an approach that reduces a way (1 out of 8), the worst

performance slowdown is 4.23%. Reducing the cache an equivalent number of sets

(8 out of 64) introduces less performance overhead (worst case is 1.52%), assuming

set re-mapping [65] is enabled . However, way-reduction and set-reduction pose a

problem: as the required log size increases, the performance overhead introduced

would rapidly surpass the performance overhead introduced by our hybrid approach.

This is due to the fact that cache lines devoted to store logging information cannot

be evicted from the data cache for way-reduction and set-reduction approaches, and

therefore less effective cache lines can be used by the application. On the other hand,

our approach allows any log size and cache lines can be evicted from the data cache to

188 · Chapter 8. Automated Fault Localization and Diagnosis

Table 8.2: Area, peak dynamic power and cycle time overhead for different ‘LOGGING systems ’

Configuration Area Peak dynamic power Cycle time
6wr,12rows 2.74% 5.82% 17.60%
6wr,10rows 1.64% 5.47% 15.36%
6wr,8rows 1.54% 5.10% 14.99%
5wr,12rows 1.65% 5.47% 15.36%
5wr,10rows 1.56% 5.17% 15.06%
5wr,8rows 1.46% 4.86% 14.75%
4wr,12rows 1.54% 5.10% 14.99%
4wr,10rows 1.46% 4.86% 14.75%
4wr,8rows 1.39% 4.61% 14.50%

upper level caches. On average, the set-reduction, way-reduction and our approach

suffer a slowdown of 0.12%, 0.39% and 0.20%, respectively. As it can be seen, the

average performance slowdown introduced by the logging component is very close to

a set reduction approach that does not compete for data cache ports.

Area, Power and Delay overheads

We have quantified the area, peak dynamic power and the cycle time overhead for the

‘LOGGING system’, extending our power and area models as described in Chapter 4.

Table 8.2 shows the relative overheads with respect to the data cache for several

configurations. The results clearly show that there is not an impact in the processor

cycle time. Also, area and power costs are small. The area, peak dynamic power and

cycle time ratio with respect to the data cache are 1.65%, 5.47% and 15.36%. When

comparing the area against the whole core, our selected configuration (5wr,12rows)

requires an area overhead of 0.24%. It is worth mentioning that if our diagnosis system

is used exclusively during post-silicon validation, the power and slowdown penalties

are only paid during these phases. Once the processor has been verified, the logging

system would be deactivated. However, the low power and performance overheads

of our technique makes it extremely amenable for ’runtime validation’, providing

continuous error detection, localization and diagnosis against faults or undiscovered

bugs.

8.7 Related Work

To our knowledge, few works have attempted to increase the efficiency of diagnosis in

microprocessors. Table 8.3 summarizes the features and pros/cons of each of them.

Bower et. al [26] proposed a pure hardware mechanism to locate and repair hard

faults for some selected processor structures. To do so, it relies on a global error

8.7. Related Work · 189

detection mechanism (DIVA [10]) and small saturating error counters associated to

every deconfigurable unit present in the processor. Also, the scheme requires tracking

the instruction occupancies across different pipeline stages. Upon the detection of an

error, the counters associated to each resource affected by the mismatching instruc-

tion is incremented, and they only include functional units and buffers (no control

logic). Furthermore, the technique is just meant to pinpoint the fault location and

is unable to provide validation information such as the reason that caused the er-

ror manifestation. Hence, it is a method more suited for run-time availavility and

repairability, rather than for validation.

Trace Based Fault Diagnosis (TBFD) [97] uses a software-based fault localization

mechanism, but does not perform diagnosis. The scheme relies on a cheap software-

anomaly error detection mechanisms [98] to flag errors. Those errors that do not

manifest as anomalies at the system level cannot be detected nor diagnosed, hence

offering limited coverage. Furthermore, TBFD requires a state checkpointing mecha-

nism to roll back the faulty core to a clean state upon an error detection. A detailed

log (trace) is generated in the faulty core to record the execution trace that activated

the fault. The trace tracks the usage of microarchitectural-level resources. Then,

a golden trace is also generated on a fault-free core. Both traces are compared by

software to achieve fault localization. Despite this feature allows paying the overhead

only in the infrequent case when a fault is detected, faults that elude their manifes-

tation during the re-execution (non repeatable errors) cannot be diagnosed. Design

bugs are not diagnosable, and hence TBFD has limited usefulness during post-silicon

validation: it would just help in identifying the location of just hard faults. A critical

drawback of TBFD is the big latency of the underlying error detection mechanisms.

The big error detection latency negatively impacts the required storage area required

to store the fault-free and faulty traces, and the diagnosis complexity. An on-chip

buffer is used to dump the trace into memory, but no specific details are given re-

garding the implementation.

IFRA (Instruction Footprint Recording and Analysis [145]) is a scheme similar to

our approach. It overcomes the limitation of the previous diagnosis works by extend-

ing support to post-silicon bug localization and diagnosis. IFRA does not perform

activity logging into the memory hierarchy. Instead, special distributed hardware cir-

cular buffers concurrently record microarchitectural information, in parallel to normal

execution. As the recorders run in parallel with the normal execution, IFRA can di-

agnose non-reproducible bugs. Upon the detection of an error, this information is

scanned out and analyzed off-line for bug localization. Like in our proposal, the self-

consistency checks implemented in the diagnosis algorithm eliminate the need for full

system-level simulation and re-execution However, the diagnosis coverage is limited

by the size of the recorders and by the big latencies of the error detection mechanism.

1
9
0
·

C
h
a
p
ter

8
.

A
u
to
m
a
ted

F
a
u
lt
L
o
ca
liza

tio
n
a
n
d
D
ia
g
n
o
sis

Table 8.3: Comparative table for fault localization, logging and diagnosis techniques

Reliability Sources Of Non-Reproducible
Log Based?

Observability
Concurrent?

ISA Area Performance

Aspects Failures Faults? Benefits? Changes? Costs Costs

Distributed

counters [26]
Localization

Hard errors

+ bugs
No No No Yes No Minimal No

TBFD [97] Localization Hard errors No Yes Yes No No Low
No

(checkpoint)

IFRA [145]
Localization,

Cause

Soft + hard

errors, bugs
Yes Yes Yes Yes No High No

BulletProof [176] Localization Hard errors No No No No No High Minimal

SW

scan-chains [44]
Localization Hard errors No No Yes No Yes Very High

Very High

(Post-Si)

DACOTA [50]
Localization,

Cause

Soft + hard

errors, bugs
Yes Yes Yes Yes No Minimal

Very High

(Post-Si)

Our approach
Localization,

Cause

Soft + hard

errors, bugs
Yes Yes Yes Yes No Very Low Minimal

8.8. Conclusions · 191

As a consequence, a big area overhead must be paid (authors report a requirement

of 50KB of storage: a 2% overhead with respect to the core).

In Bulletproof [176] the components of a simple VLIW processor are periodi-

cally checked by BIST circuits in order to perform fault localization. A checkpoint-

ing mechanism creates speculative computation epochs during which the distributed

BIST circuits analyze the processor components integrity during the idle component

cycles. If no problem is found, the computation epoch is flagged as correct and a

new fault-free checkpoint is created. Otherwise, the faulty component is deconfig-

ured and execution is reverted back to a prior fault-free checkpoint. As opposed to

other techniques, Bulletproof does not require logs, hardware recorders or software

to pinpoint the fault location. However, protection is just limited to stuck-at hard

faults for simple blocks. Localization coverage is in the range of 80% to 90%, whereas

area overhead is significant: around 6% with respect to the whole core.

Constantinides’ et al. [44] technique is aimed at the detection and localization

of hard faults. It leverages the existing scan-chain DFT infrastructure to minimize

costs and relies on a checkpointing mechanism for recovery. The ISA is extended in

such a way that the scan-chains are visible and controllable at the software-level. A

firmware periodically interrupts processor execution and uses the new instructions to

inject test patterns, obtain the component outcomes and compare them against the

expected ones (stored in memory). The achieved localization coverage is very high,

but comes at a cost in performance (5% for a simple stuck-at fault model). The area

overhead is significant, around 6%, because the scan-chains are re-organized into a

tree structure. Furthermore, extending the ISA comes at a high cost and imposes

compatibility requirements.

DACOTA [50] is a post-silicon technique aimed at validating the memory coher-

ence and consistency of multi-core designs. DACOTA reconfigures a portion of the

cache to log memory accesses. The cache is statically partitioned introducing perfor-

mance overheads and it does not rely on a timely error detection mechanism. Instead,

DACOTA performs periodic execution-diagnosis phases (enabled by a checkpointing

mechanism), that introduce big performance overheads during post-silicon validation.

DACOTA is able to detect errors by finding cycles among memory accesses. This

work targets does not target uniprocessor correctness.

8.8 Conclusions

We have presented a novel hybrid hardware-software solution to diagnose failures

during post-silicon validation and runtime operation. To show the potential of our

approach, we have particularly focused on how to apply it to validate a specific func-

192 · Chapter 8. Automated Fault Localization and Diagnosis

tionality of an advanced out-of-order processor: the memory dataflow implemented

by the Load-Store Queue.

It incorporates three components: a lightweight error detection mechanism, a

simple low-cost logging mechanism that that observes selected system activity during

normal program execution, and a diagnosis algorithm that determines the location

and the nature of the fault.

First, we have added extra value to the proposed error detection mechanisms,

by extending their applicability to the post-silicon and runtime validation phases.

Our error detection mechanism allows eliminating the costly simulations required

to obtain the golden output to compare against, and reduces to some degree the

monetary costs of the big simulation farms. In addition, the timely nature of the

mechanism enables pristine logs where just relevant internal activity is captured.

The log is temporally stored in a small buffer and is progressively dumped to

the data cache whenever it is idle. Architecturally, the log is stored in one or more

pages of the memory space of the application being run. Hence, our logging mech-

anism alleviates the problem of existing state acquisition techniques, by (i) increas-

ing the observability through lightweight expandable activity logs, and (ii) without

relying on expensive validation equipment or big die overheads. Given that our log-

ging mechanism continuously sniffs the internal activity, diagnosis coverage includes

non-reproducible bugs (as opposed to most of state-of-art solutions that rely on re-

execution or periodic testing). By opportunistically exploiting available hardware

during idle periods, minimal system interference is introduced: no interrupts to scan

out the internal data are needed and performance is minimally affected.

Upon error detection, the log is dumped from the memory hierarchy for later

analysis. The diagnosis algorithm automatically analyzes the traced log and auto-

matically diagnoses the failure. Not only the fault location is determined (as most of

state-of-art solutions do), but also the wrong behavior and the failure-free expected

one. Our results show that very high diagnosis coverage can be obtained at very

low costs. On average, we can achieve a high-precision diagnosis coverage of 87.79%

with just a 0.24% area overhead with respect to the core. Moreover, the performance

slowdown introduced (due to logging purposes) is just around 0.20%, on average.

With the proposed solution, we embrace a paradigm where resilient microarchitec-

tures assume online testing and validation functionalities to combat the diminishing

effectiveness of testing and validation. The net result is a simplification of the cur-

rent debugging practices, that are extremely costly, manual, time consuming and

cumbersome.

CHAPTER 9

CONCLUSIONS

The increasing design complexity and the inevitable transistor vulnerability intro-

duced with technology scaling is making fault-tolerance and post-silicon validation

a concern for all processor market segments. The high overheads and the limited

effectiveness of traditional solutions call for advancements to sustain the growth of

the cost-sensitive microprocessor industry.

In this thesis we have embraced a paradigm where resilient microarchitectures

assume online error detection and debugging functionalities to deal with these prob-

lems.

We have decomposed the basic functionalities of processors into high-level tasks

and have proposed novel runtime verification solutions that when combined together

can ensure the correct behavior of the processor. The proposed error detection solu-

tions represent a departure from existing approaches by showing that re-execution is

not the only way to provide fault tolerance: by exploiting high-level end-to-end mi-

croarchitectural invariants that are reusable across designs we can comprehensively

protect against multiple sources of failures (including bugs) during processors’ life-

time. We have made the case that light-weight error detection solutions can satisfy

the requirements of minimal performance, power and area costs while at the same time

offering very high reliability guarantees that can be modulated to suit design needs.

Altogether, the proposed error detection solutions can potentially target 88.41% of

the SDC SER FIT of a processor, and cover 77.02% of the processor area against

other sources of errors (excluding protected structures).

Then, this thesis has also addressed the challenges of current post-silicon valida-

tion methodologies. As a working example, we have focused in the debugging of the

194 · Chapter 9. Conclusions

memory dataflow logic. We have shown the helpfulness of our error detection mech-

anisms during the post-silicon validation phases. Since our error detection methods

can also catch design bugs, we minimize the need for slow system-level RTL simula-

tion to perform bug discovery / golden output generation. Errors can therefore be

detected without needing to perform architectural state comparisons or unexpected

behavior sighting.

We have also advocated that new transparent continuous logging techniques com-

bined with flexible on-chip buffer capacities allow debugging non-reproducible errors,

amplifying the internal observability and reducing the dependence on costly external

tools. By exploiting hardware-software synergies, our hybrid logging approach incurs

in negligible area costs and causes little intrusiveness or interference to the processor

regular activity. Finally, we have dealt with the problems of current debugging prac-

tices by introducing a post-failure analysis software tool that analyzes the captured

traces in order to reason about the location, the temporal manifestation and the root

causes behind errors.

9.1 Publications

The following is a list of all publications (subject to peer review) that are part of this

thesis.

Register Dataflow Validation

• ”End-to-End Register Data-Flow Continuous Self-Test”, Javier Carretero,

Pedro Chaparro, Xavier Vera, Jaume Abella, Antonio González. Proceedings of

the International Symposium on Computer Architecture (ISCA’09), 2009

• ”Implementing End-to-End Register Data-Flow Continuous Self-Test”, Javier

Carretero, Pedro Chaparro, Xavier Vera, Jaume Abella, Antonio González.

IEEE Transactions on Computers Vol. 60 Issue 8, 2011

Memory Flow Validation

• ”On-line Failure Detection in Memory Order Buffers”, Javier Carretero,

Xavier Vera, Pedro Chaparro, Jaume Abella. Proceedings of the International

Test Conference (ITC’08), 2008

• ”Microarchitectural Online Testing for Failure Detection in Memory Order

Buffers”, Javier Carretero, Xavier Vera, Pedro Chaparro, Jaume Abella.

IEEE Transactions on Computers Vol. 59 Issue 5, 2010

9.2. Open Research Directions · 195

Control Flow Recovery Validation

• ”Control-Flow Recovery Validation Using Microarchitectural Invariants”, Javier

Carretero, Jaume Abella, Xavier Vera, Pedro Chaparro. International Sym-

posium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems

(DFT’11), 2011

Automated Fault Localization and Diagnosis

• ”Hardware/Software -Based Diagnosis of Load-Store Queues Using Expand-

able Activity Logs”, Javier Carretero, Xavier Vera, Jaume Abella, Tanausú

Ramı́rez, Matteo Monchiero, Antonio González. International Symposium on

High-Performance Computer Architecture (HPCA’11), 2011

9.2 Open Research Directions

The results presented in this thesis open a number of interesting new research paths

which we detail now:

• Even though we have deeply studied how to detect faults in the register dataflow

logic, our solutions could be further enhanced or extended. It would be inter-

esting to study methods that adaptively switch between signature generation

policies based on the dynamic usage of the microarchitecture from the appli-

cation being run. Given that certain signature generation policies can better

handle certain failure scenarios, micro-architectural awareness of the applica-

tion being run could be exploited to increase fault detection rates. In another

axis, further enhancements to increase signature sizes by means of using idle

hardware sub-blocks (such as data-paths with narrow values) or by means of

using wider signatures in some selected blocks (such as the bypasses and not in

the register file) seem very appealing.

• We believe that control flow errors in the fetch and decode logic could be de-

tected by extending our register dataflow checking approach, rather than relying

on the specific ad-hoc techniques described in Section 4.2. With the advent of

hardware-software co-designed processors (like Transmeta’s or NVIDIA’s), ours

solution could be integrated into a software control flow checker (Section 3.4)

to provide register dataflow and control flow validation in an unified way. De-

fect tolerance could be seen as a software feature rather than a pure hardware

responsibility. The software layer would be aware to some degree about the

196 · Chapter 9. Conclusions

expected encoding and sequencing of fetched instructions, and therefore could

compute the expected source signatures based on the encoding of producing

instructions.

• Regarding memory dataflow validation, the next natural step would be to ad-

dress memory checking for multicore and multiprocessor systems, where inter-

connects, cache controllers, buffers, etc. are prone to faults and bugs.

• Regarding architectures for debug, future work will need to investigate methods

to improve logging systems by using less-stressed and bigger caches (such as L2

or last-level caches) to reduce performance overheads and to reduce the number

of non-logged events due to structural hazards. Furthermore, it is necessary to

improve the scalability of these mechanisms to support the simultaneous log-

ging of events belonging to different structures. A processor design enabling

validators to choose what to trace into the logging system would significantly

improve the post-silicon phases. Finally, it is also worth exploring methods to

automatically derive diagnosis algorithms based on micro-architectural specifi-

cations, non-synthesizable behavioral RTL constructs (such as assertions) and

RTL descriptions.

APPENDIX A

BASELINE PROCESSOR

MICROARCHITECTURE

This Appendix describes the microarchitecture of the processor model that has been

used in our evaluations. The objective is two-fold: first, provide details that will

allow better understanding how our techniques are integrated, and second, show

the complexity required to implement the different functionalities (register, control,

memory flows) in an efficient out-of-order processor.

In the next two sections, we give a a high-level description of the different mi-

croarchitectural blocks and functionalities that constitute our baseline simulated core.

Block descriptions are grouped depending on the part of the processor where they

reside: the frontend or backend.

A.1 Processor Frontend

The processor frontend is implemented as follows:

Instruction Cache

The Instruction Cache (I$) holds macro-instructions. The cache is indexed with vir-

tual addresses, and the address translation is performed by an Instruction Translation

Look-aside Buffer (I-TLB) that is accessed in parallel to the cache access. The in-

198 · Appendix A. Baseline Processor Microarchitecture

struction tags are generated from the physical address and are checked against the

I-TLB translation.

Multiple instructions or fragments of instructions are fetched per cycled by con-

secutively reading 16B from the cache that are part of the same cache line. A single

read-write port is used for this purpose. Our processor does not implement a Uop-

cache.

The fetched block of data is then placed into a fetch buffer to wait for decoding.

Branch Predictors, Branch Target Buffer and Return Address Stack

A branch direction (taken / not taken) is predicted with an associated confidence

for conditional branches, by means of a 2-bit bimodal prediction. The processor

implements a correlating GShare [112] predictor, and a global branch history that

tracks the direction of the last 16 branches. This history is combined with the program

counter of the branch through a XOR function to generate an index to a Pattern

History Table (PHT) that contains 2-bit saturating counters. The entry is then used

to make the prediction on the branch direction.

Another table, the Branch Target Buffer (BTB) is accessed in parallel to obtain

the predicted target address (for taken branches). The prediction is just the target

address of the previous time the branch was executed. The target is correct for direct

jumps as long as the prediction is correct. Indirect branches also access this structure

and the prediction accuracy depends on the regularity of the target addresses.

Special care is taken for return-from-subroutine instructions by means of a Return

Address Stack (RAS).

Macro Instruction Decoders

Data from the fetch buffer is moved to the pre-decoding and decoding stages. The

pre-decoder marks the instruction boundaries, decodes any prefixes and checks for

certain properties (e.g. branches). Those instructions that lie at the end of a chunk

and need further data to complete its decoding, trigger new fetch requests to the

instruction cache. When pre-decoded, marked macro-instructions are moved to the

real decoders.

Pre-decoded macro-instructions are emitted to the macro instruction decoders.

The decoders read in the x86 instructions and emit regular, fixed length micro-ops

which are natively processed by the underlying hardware. Up to 4 micro-ops are

generated per cycle. Even though Intel x86 ISA is a register memory architecture,

A.2. Processor Backend · 199

macro-instructions are decoded into a set of micro-instructions that are meant for a

load/store microarchitecture (memory is only accessed by load or store operations).

Once decoding is finished, micro-ops are sent to the back-end for renaming, allocation,

out-of-order execution and commit.

A.2 Processor Backend

The processor backend is implemented as follows:

Rename Tables and Free Lists

A group of decoded micro-ops are then renamed atomically and in parallel in a sin-

gle cycle. The group of instructions is referred to as a rename bundle. The Free

Lists, Rename Tables (RAT) and logic take care of removing all false register depen-

dencies (write-after-read and write-after-write) while preserving true dependencies

(read-after-write). This will enforce the register dataflow specified by the program-

mer/compiler even though instructions may be executed not following original pro-

gram order.

Every logical destination of each instruction in the rename bundle is given an

exclusive physical register at the first half of the rename cycle, that is identified

(marked) through a physical tag or pdst. We refer to an allocated physical register

as the current pdst. These pdsts are obtained in FIFO-order from centralized pools

of available registers, called the free lists. There is one free list for integer (INT)

registers and another one for floating-point (FP) and SIMD registers.

A rename table, also known as RAT or Register Alias Table, is a SRAM structure

that keeps the latest translation (latest allocated physical register pdst) for every

logical register. During the first half of the rename cycle, a thread’s rename table is

atomically accessed to retrieve the latest renamed pdst for each logical source operand

in the rename bundle. Furthermore, the rename table is also accessed at this stage

to obtain the previous physical registers mapped to the logical destinations (these

previous pdsts will eventually be released back to their free list). At the end of the

rename cycle (second half), the RAT table is updated to reflect the latest mappings

assigned to the logical register destinations.

However, true and false register dependencies can appear internally in the rename

bundle. Two types of intra-bundle dependence checks are performed. The first one

identifies those logical source operands whose producing instruction is within the

rename bundle. For each of those source operands, the physical register mapping

200 · Appendix A. Baseline Processor Microarchitecture

obtained from the RAT is overridden by the physical register pdst allocated to the

closest but preceding instruction in the rename bundle producing the same logical

register. The second checking identifies instructions whose logical destinations are

also logical destinations of younger instructions. The first check allows enforcing

correct true register dependencies. The second check allows: (i) correctly updating

the rename table atomically for each logical destination with the latest pdst and

(ii) determining for every instruction the pdst that from that point will have no

consumers and therefore has to be eventually released to the free list. This logic is

implemented as multiple set of comparators, priority encoders, and multiplexors, as

described in [20].

While the thread’s RAT table is updated with the new pdsts, the renamed instruc-

tions are moved to the next stage together with their logical destinations, current

pdsts, previous pdsts and the sources’ pdsts.

In another axis, to assist mispeculations, faults, exceptions and interrupts the

renaming stages include a set of checkpoint RATs. A thread’s rename table is backed-

up into an available checkpoint RAT at regular instruction intervals. In the Reorder

Buffer subsection, the use of these rename tables will be described.

Allocator

Renamed instructions are buffered in an allocation buffer where they wait for allo-

cation. The allocation stage reserves the resources that micro-instructions will use

during execution. This includes entries in the issue queue, the reorder buffer and the

load-store queue. Micro-instructions are allocated in order, and if any of the required

resources is not available, the allocation is stalled for all instructions.

Entries in the ROB and the load-store queue are allocated in a FIFO manner,

and the identification of available entries is done by regular head and tail pointers.

Since entries in the issue queue can be released in an out-of-order way, allocation to

arbitrary entries in the issue queue is supported.

Even though we focus on single threaded configurations, it is worth noting that

some resources are statically partitioned by thread when several thread contexts are

active. This is the case of the load-store queue, the reorder buffer and the TLBs.

Caches are competitively shared between threads, and the issue queue is dynamically

shared between threads, based on demand. Instruction fetch, decoding, renaming

and commit are time-multiplexed across the different thread contexts.

A.2. Processor Backend · 201

Issue Queue

Micro-ops are allocated in the Issue Queue (IQ), also known as scheduler. Our sim-

ulator models an issue queue based around a physical register file, where speculative

and architectural registers coexist. No data-capture is performed: register values are

always read upon execution.

The issue queue has a fully-associative CAM array (holding the source physi-

cal mappings) and a payload SRAM array holding other information 1. The CAM

search operation serves as the wake-up logic. An instruction is ready whenever it

is notified that all its source operands have been produced or will be available once

the instruction starts executing. Ready instructions send a request signal to the se-

lect logic. The select logic selects among multiple ready instructions. It follows a

pseudo older-first [28] policy, and it implements a select binding approach to reduce

the selection complexity. This means that, during allocation time, an instruction is

assigned (in a balanced manner) an execution port where it will execute. Based on

this pre-assignment, a group of decentralized select blocks operate independently by

managing exclusively each of them a group of execution ports [109]. As a conse-

quence, the complexity of a full N-of-M select scheme [55, 140] is reduced to some

degree. However, a centralized select block manages that no hazard exists in the

write-back (and wake-up tag broadcast) buses.

Result availability notification is implemented by means of two mechanisms. Upon

instruction allocation, source operands read their readiness information from a reg-

ister scoreboard, implemented as a regular bit-vector SRAM structure. In addition,

upon allocation instructions clear the availability of their current pdsts. Instructions

selected for execution notify dependents that the dependency has been resolved by

means of their current pdst. This dependency resolution notification is implemented

through delayed tag broadcast by means of a group of shift registers that support

multi-cycle operations. As many shift registers as the issue width are available 2, and

each shift register is as wide as the maximum execution latency 3. A position in a

shift register holds the pdst of a producing instruction. Upon instruction issue, its

current pdst is written into the shift register associated to the execution port-stack

1Information such as the opcode, thread id, execution ports, destination physical mapping, im-

mediate, LSQ position, ROB position, latency, predictions, masks, etc.
2Actually, as many shift registers as the total number of stacks across all execution ports (see

Functional Units subsection).
3Variable latency instructions, as well as uncommon and slow operations, are handled by means

of a direct tag notification signal from the execution units. This allows reducing the cost of the shift

registers.

202 · Appendix A. Baseline Processor Microarchitecture

where it has been scheduled, and the pdst occupies the position corresponding to

the instruction latency. Each cycle, all shift registers are shifted one position and

the pdsts at the head of the shift registers are propagated through the tag wake-up

broadcast buses to the issue queue CAM memory, and marked as ready in the register

scoreboard.

The select-wakeup critical loop operates in a single cycle to support back-to-

back execution for all instruction latencies. When ready and selected, instructions

are issued from the issue queue and their CAM and payload RAM entries are read

during the next cycle. These issued instructions are sent towards their execution

ports and functional units for execution.

An entry is deallocated once it has been issued and the load replay mechanism

guarantees that no replay event will be necessary. The processor implements a selec-

tive and parallel load replay scheme: the wavefront of issued instructions that depend

on a missing load is stopped in a single cycle (in parallel) so that no other dependent

instructions are allowed to be issued. Independent instructions are unaffected [89].

However, instructions in the wavefront are nullified as they reach the execution stages.

Functional Units

During the execution stages, Functional Units (FUs) operate on the sources of the

instructions and produce the results of these computations. The pool of functional

units is organized into execution ports, to avoid a big clutter of data and opcode

buses going to/from every individual functional unit. Each execution port contains

several functional units, supporting different types of operation. Specifically, integer

arithmetic-logical units (ALUs), integer multiplication units, integer division units,

address generation units (AGUs), branch-jump execution units (JEUs), floating-point

units (FPUs) and SIMD units (SIMDs) are scattered across the execution ports. The

rationale behind is to increase the chances that the select logic will maximize the

number of execution ports busy on those situations where few instruction types are

available for execution. Each execution port includes a subset of these functional

unit types, and functional units of the same data type (and width) are organized as

parallel stacks inside an execution port. A stack is a set of execution units of the

same type, and only one of the functional units within a stack can be selected for

execution each clock cycle (a stack has as many input multiplexors as the number of

source operands a single instruction has).

Execution ports interface with the issue queue as follows. An issue queue read port

output is connected to a specific execution port and hence, there is no need for a full

cross-bar to route instructions (selected issue queue CAM and payload RAM entries)

A.2. Processor Backend · 203

to specific execution ports. Each select block owns one or several specific read ports

inputs (as many as the number of execution ports it manages). As a consequence,

simple routing hardware is needed to drive the instructions when issued.

All functional units of the same stack and execution port share an output multi-

plexor that will forward the generated value to the stack write-back bus and bypass

datapath. Therefore, the select logic in the issue queue must guarantee that no

structural hazards (write-back conflict) exists in the output multiplexor: only one

non-bogus value will be arriving to the multiplexors inputs.

Bypass Network

Since several stages are needed to transfer the data to the register file and to update

its memory cells, our processor has a bypass network with as many levels as the drive

and write-back latencies. This is needed in order to avoid delaying the issuing of

consumers. Our baseline processor does not implement a complete bypass network,

though, to reduce the impact on cycle time, area and power. Back-to-back bypassing

is allowed across (and within) execution ports as long as the consumer and producer

belong to the same stack type (integer, floating-point or SIMD). One cycle of delay

penalty is introduced for bypasses across stack types.

The wide and complex bypass network complicates the issue queue design. Let’s

retake the issue queue design description to provide details on how bypasses are

handled. Control signals must be generated for the layers of multiplexors feeding

the execution ports and functional units, so that the expected datapath is selected

before an instruction starts executing. Furthermore, the issue queue must manage

any structural hazard in the bypass network: an instruction cannot be issued if a

source operand is being written-back and there is not a bypass path to obtain it.

Each scoreboard entry is replaced with a a small shift register, with as many

bits as the number of bypass levels plus one. A shift register encodes a one-hot

value, where the 1 indicates the bypass level or register file where the instruction

could obtain it if it was selected and issued. Similarly, each CAM entry in the issue

queue also holds this shift register. Upon a CAM match, the register is enabled and

can start shifting. These shift registers within a CAM memory entry are initialized

from the value read from the scoreboard, at allocate time. Non-existent bypass

paths are deduced by the select logic blocks from the sources and destination types.

The scoreboard is extended to track for each physical register the execution port

where it was scheduled for production. No CAM-based bypass control is used, in

order to avoid power consumption and to avoid propagating the pdsts across the

bypass network, even though they need to be routed to the register file for write-

204 · Appendix A. Baseline Processor Microarchitecture

back purposes. Furthermore, this implementation allows avoiding unnecessary reads

from the physical register file for those operands whose values are alive in the bypass

network, and hence, it enables a read port reduction enhancement in the register file.

Register Files

Two register files (RF) are supported: one for integer values, and another for floating-

point and SIMD registers. The latter register file is organized as a set of slices to

support varying operand width. The physical register files holds both speculative and

architectural data, and is termed as merged physical register file.

Each execution stack that produces a result owns a register file write port, with

a width of 64 bits for integer and 128 bits for the rest. SIMD operations of 256-bits

merge the output write-back ports of the FP and 128-bit SIMD stack 4.

The number of read ports for each register file is not sized as in the worst-case

scenario of full issue utilization. The register files are designed to exploit the fact that

many operands [31] are obtained through a bypass, and the issue queue select logic

implements a read port reduction enhancement. The select logic knows the number

of read ports that will be used by each selected instruction; if the number of required

read ports by an instruction exceeds the available ones, the cascaded arbiters will

not grant it a select response. Therefore, some of the register file read ports are not

connected to a single specific execution port, but actually are routed to several of

them. This fact complicates the issue queue design: the centralized component of the

select logic is in charge of feeding the read port inputs the correct physical register

ids and to swizzle the read port outputs to the correct execution port and source

position.

The registers are read upon instruction issue, and hence, the schedule-to-execution

latency is bigger compared to a data-capture scheme.

Load-Store Queue (Memory Order Buffer)

The Load-Store Queue (LSQ) is also commonly known as the Memory Order Buffer

(MOB). Our load-store queue implements a speculative memory disambiguation pol-

icy to boost performance. Specifically, loads and stores can be executed out of order

and a memory operation can be executed even if previous memory operations have

4FP and 128-bit SIMD stacks from the same execution port operate in a parallel and lockstep

manner.

A.2. Processor Backend · 205

not resolved their addresses (i.e. dependencies are potentially unknown) or have not

produced their data.

Two separate structures constitute the LSQ: one circular queue to keep track of

all in-flight load instructions and another to track in-flight store instructions, both in

program order. The LSQ supports associative searches to honor memory dependen-

cies.

The issue queue holds the memory instructions until their operands are ready.

These are: addresses for loads, and data and addresses for stores 5. When a load

instruction is ready in the issue queue and is issued, it proceeds to generate its

address in an address generation unit. Right after, the address is used to access

in parallel the data cache and to perform an associative search in the store queue

to find a potential older in-flight producing store. Meanwhile, the load address is

written into its associated load queue entry. Upon a store match, the producing store

data (if available) is provided to the load, overriding the stale data obtained from

the cache. This situation is called store-to-load forwarding. The obtained value is

written-back to the register file (but not into the LSQ) and is forwarded through the

bypass network. The issue queue always assume that the load latency is the data

cache access latency, even if data is obtained through store-to-load forwarding.

A store data and a store address simply update their store queue position with the

data and address, respectively. When retired, they update the memory in program

order. Upon a store address generation, the load queue is associatively scanned to

detect previously issued younger loads for potential ordering violations. Recovery

from ordering violations is achieved by means of flushing all instructions starting

from the mispeculated load, and refetching again 6.

Our processor implements a memory dependence predictor to reduce ordering

violations. Specifically, a Collision History Table (CHT) predictor is used [52]. A

static load instruction that suffered from ordering violations in the past is forced to

’wait’ until all previous store addresses have been resolved. The load is marked as

such in its load queue and issue queue entries. The LSQ is aware for each load if

all previous stores have resolved their addresses. When the waiting is over, the LSQ

notifies the issue queue.

5Actually, a store macro-instruction is frequently decoded into two micro-instructions : a store

address instruction, and a store data instruction. The reason is that disambiguation can be per-

formed as soon as the addresses are known and therefore, the store operation does not have to wait

for the producer of the data to complete in order to compute its address.
6A recovery scheme that forwards the value to the offending loads is extremely complicated: it

requires identifying and re-allocating dependent instructions in the issue queue for re-execution.

206 · Appendix A. Baseline Processor Microarchitecture

The CAM logic to support associative searches and to support load waiting is far

more complex than the one in the issue queue because it requires age information.

Being circular queues, age information cannot be efficiently deduced from a queue

position because head and tail pointers advance and wrap-around. To solve this, each

load and store queue entry holds a sequence number and the CAM logic operates with

address, size and age information 7.

Data Cache and Second-Level Cache

The Data Cache (D$) serves requests to the load-store queue. The data cache has

two read/write ports of 32B each, and can sustain up to two 256-bit loads or can

operate in a lock-step way to provide 64B writes, bringing the aggregate bandwidth

of 64B/cycle.

The cache is indexed with virtual addresses, and the address translation is per-

formed by a Data Translation Look-aside Buffer (D-TLB) that is accessed in parallel

to the cache access. The instruction tags are generated from the physical address and

are checked against the D-TLB translation.

The data cache includes several miss status handling registers (MSHR) [91]. Miss-

ing read/write requests allocate an entry in the miss buffer (if it does not have them)

and wait until the memory hierarchy obtains its data. Meanwhile, the cache allows

servicing other requests and hence, does not block and exploits memory-level par-

allelism. Fill buffers are used to gather all consecutive data that maps to the same

cache line. After all bytes arrive, the fill buffer assembles them into a cache line and

then writes it into the cache. The data cache tracks cache misses using 10 line fill

buffers.

In addition, the data cache controller incorporates a combining writeback buffer

(WBB) for retiring stores in the load-store queue (to avoid stalls if they miss), and a

writeback buffer to store evicted dirty lines. These buffers are part of the architected

state, and loads must check them (in addition to the store queue and data cache).

The Second-Level Cache (L2$) can provide a full 64B line to the data or instruction

cache every cycle, while allowing 16 outstanding misses. The data cache incorporates

a stride prefetcher and a streaming prefetcher. Similarly, the L2$ has a streamer

prefetcher.

7Other information such as address, size, ROB and issue queue position, program counter, and

the ’wait’ bit is kept in a load queue position. A store queue position holds information such as its

address, size, data, ROB and issue queue position, and program counter.

A.2. Processor Backend · 207

Reorder Buffer

The Reorder Buffer (ROB) is a circular SRAM queue that holds all in-flight in-

structions. It irrevocably commits finished and speculative correct instructions in

bundles, updating the architectural state (memory hierarchy, program counter and

visible registers) following the program sequential execution semantics.

Our processor does not implement an architectural rename table. A group of RAT

checkpoints and a ROB walking logic are used to perform mispeculation recovery,

including branch mispredictions [164].

A thread’s frontend RAT is checkpointed at regular distance intervals. In need

of reconstructing the register mappings for a mispeculated instruction, the closest

checkpoint RAT is deduced from the instruction ROB position, and is flash-copied

into the thread’s frontend RAT. Then, the ROB walk logic traverses the ROB entries

and updates the frontend RAT to either undo or apply register mappings. Walk

begins at the RAT checkpoint creation point and finishes at the desired instruction

point. This is possible because each ROB entry holds register mapping information

such as the logical destination, previous pdst and current pdst 8. The thread’s load

queue and store queue tail positions are moved to ignore memory instructions past

the recovery point. In parallel, the frontend is redirected to a given program counter

value and renaming is stalled until the frontend RAT is reconstructed. Faults and

exceptions treatment is delayed until their instructions become the head of the ROB,

in order to filter the wrongly speculated ones. LSQ ordering violations are also

recovered when they reach the head of the ROB, due to their relatively low occurrence.

On the other hand, branch mispredictions trigger a recovery action right after they

are detected.

Ready instructions at the head of the ROB also release microarchitectural re-

sources in program order. Previous physical register tags are returned to their proper

free lists for those instructions that have not been squashed 9. Otherwise, for squashed

instructions, the current physical register tag is returned to the free list [179]. Current

physical registers are not freed by the ROB walk logic upon mispredictions, because

otherwise the latency to to traverse the whole ROB would be paid in the worst case

and would unnecessarily stall the renaming of the instructions from the corrected

path. Checkpoint RATs are recycled when its associated instruction commits.

Our baseline processor supports multiple in-flight corrected control-flow paths

8A ROB entry holds other information such as the program counter, a ready bit, a squashed bit,

a fault/exception mask, a fault/exception bit-vector, LSQ position, etc.
9Our processor reclaims a physical register allocated by instruction A when another instruction

B that writes the same logical register and is younger than A commits.

208 · Appendix A. Baseline Processor Microarchitecture

and out-of-order branch resolution, rather than performing control path redirection

at commit time. Mispeculated instructions in the shadow of a mispredicted branch are

identified and squashed by means of an instruction squashing mechanism. Specifically,

our processor implements this through branch coloring [9, 100, 109, 113] bitvectors

(also called branch tagging). Branch colors ids are assigned during allocation time for

conditional and indirect branches. All subsequent instructions inherit the colors of all

previous branches. Upon jump verification, if the prediction was correct the branch

color is released and broadcasted, so that all younger instructions reset the branch

color position in their bitvector. If the prediction was incorrect, the branch color is

broadcasted to identify all control-flow dependent instructions in the issue queue and

ROB. Instructions in the shadow of a mispredicted jump release their entry in the

issue queue (are nullified) and are forced to mark their ’squashed’ bit (also known as

’bogus’ bit) in their ROB position.

In any case, once an instruction is committed, its ROB entry is also released and

the thread’s ROB head pointer advances. Memory instructions deallocate their LSQ

entries, and the ROB advances their load or store queue head pointer. Furthermore,

for stores, the ROB notifies the LSQ to move its data into an available write-back

combining buffer line.

Bibliography

[1] Miron Abramovici, Paul Bradley, Kumar Dwarakanath, Peter Levin, Gerard

Memmi, and Dave Miller. A reconfigurable design-for-debug infrastructure for

SoCs. In Proceedings of the 43rd Annual Design Automation Conference (DAC),

DAC ’06, pages 7–12, New York, NY, USA, 2006. ACM.

[2] Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedman. Digital Systems

Testing and Testable Design. Wiley-IEEE Press, 1994.

[3] Actel. Understanding soft and firm errors in semiconductor device.

http://www.actel.com/documents/SER FAQ.pdf, December 2002.

[4] Allon Adir, Eli Almog, Laurent Fournier, Eitan Marcus, Michal Rimon, Michael

Vinov, and Avi Ziv. Genesys-pro: Innovations in test program generation

for functional processor verification. IEEE Design and Test of Computers,

21(2):84–93, 2004.

[5] Haitham Akkary, Ravi Rajwar, and Srikanth T. Srinivasan. Checkpoint pro-

cessing and recovery: Towards scalable large instruction window processors.

In Proceedings of the 36th International Symposium on Microarchitecture (MI-

CRO’03), pages 423–434, Dec. 2003.

[6] Muhammad A. Alam. A critical examination of the mechanics of dynamic

NBTI for PMOSFETs. In IEEE International Electron Devices Meeting 2003,

pages 14.4.1–14.4.4, 2003.

[7] AMD. Revision Guide for AMD OpteronTMProcessors.

[8] Hisashige Ando, Yuuji Yoshida, Aiichiro Inoue, Itsumi Sugiyama, Takeo

Asakawa, Kuniki Morita, Toshiyuki Muta, Tsuyoshi Motokurumada, Seishi

Okada, Hideo Yamashita, Yoshihiko Satsukawa, Akihiko Konmoto, Ryouichi

Yamashita, and Hiroyuki Sugiyama. A 1.3ghz fifth generation SPARC64 mi-

croprocessor. In Proceedings of the 40th Annual Design Automation Conference,

DAC ’03, pages 702–705, New York, NY, USA, 2003. ACM.

210 · Bibliography

[9] Creigton Asato. Circuit and method for tagging and invalidating speculatively

executed instructions, September 11 2001. US Patent 6,289,442.

[10] Todd M. Austin. DIVA: A reliable substrate for deep submicron microarchi-

tecture design. In Proceedings of the 32nd Annual ACM/IEEE International

Symposium on Microarchitecture, MICRO 32, pages 196–207, Washington, DC,

USA, 1999. IEEE Computer Society.

[11] Algirdas Avizienis. Arithmetic error codes: Cost and effectiveness studies

for application in digital system design. IEEE Transactions on Computers,

20(11):1322–1331, November 1971.

[12] Algirdas Avizienis. Arithmetic algorithms for error-coded operands. IEEE

Transactions on Computers, 22(6):567–572, June 1973.

[13] Algirdas Avizienis. Arithmetic algorithms for error-coded operands. IEEE

Transactions on Computers, 22(6):567–572, June 1973.

[14] Robert. Baumann. Soft errors in commercial semiconductor technology:

Overview and scaling trends. In IEEE Reliability Physics Tutorial Notes, 2002.

[15] Robert Baumann. The impact of single event effects on ad-

vanced digital technologies - ieee eds distinguished lecturer series.

http://ewh.ieee.org/r5/central texas/eds/files/UTIBMBaumann2006.pdf,

December 2006.

[16] Bob Bentley. Validating the Intel Pentium 4 microprocessor. In Proceedings of

the 38th Annual Design Automation Conference, DAC ’01, pages 244–248, New

York, NY, USA, 2001. ACM.

[17] J.M. Berger. A note on error detection codes for asymmetric channels. Infor-

mation and Control, 4(1):68–73, 1961.

[18] Keith H. Bierman, David R. Emberson, and Chen Liang T. Method and appa-

ratus for accelerated post-silicon testing and random number generation. Patent

US7133818 B2, 2003. Asignee: Sun Microsystems.

[19] Ronald H. Birchall. Apparatus for performing and checking logical operations,

1971, Patent Number 3,624,373.

[20] Benjamin Bishop, Thomas P. Kelliher, and Mary Jane Irwin. The design of a

register renaming unit. In Proceedings of the Ninth Great Lakes Symposium on

VLSI (GLS’99), GLS ’99, pages 34–, 1999.

Bibliography · 211

[21] Maarten Boersma and Juergen Haas. Residue-based error detection for a pro-

cessor execution unit that supports vector operations, 2014, Patent Number US

20140164462 A1.

[22] Darrell D. Boggs, Shlomit Weiss, and Alan Kyker. Branch ordering buffer.

Patent US 67992681 B1, 2004. Asignee: Intel Corporation.

[23] Shekhar Borkar. Designing reliable systems from unreliable components: The

challenges of transistor variability and degradation. IEEE Micro, 25(6):10–16,

2005.

[24] Raj Chandra Bose and Dwijendra Kumar Ray Chaudhuri. On a class of error

correcting binary group codes. Information and Control, 3(1):68–79, 1960.

[25] Douglas C. Bossen. b-adjacent error correction. IBM Journal Research and

Development, 14(4):402–408, July 1970.

[26] Fred A. Bower, Daniel J. Sorin, and Sule Ozev. A mechanism for online di-

agnosis of hard faults in microprocessors. In Proceedings of the 38th annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 38, pages

197–208, Washington, DC, USA, 2005. IEEE Computer Society.

[27] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework

for architectural-level power analysis and optimizations. In Proceedings of the

27th Annual International Symposium on Computer Architecture (ISCA’00),

ISCA ’00, pages 83–94, New York, NY, USA, 2000. ACM.

[28] Alper Buyuktosunoglu, Ali El-Moursy, and David H. Albonesi. An oldest-first

selection logic implementation for non-compacting issue queues. In Proceedings

of the International ASIC/SOC Conference, 2002.

[29] Harold W. Cain and Mikko H. Lipasti. Memory ordering: A value based ap-

proach. In Proceedings of the 31st International Symposium on Computer Ar-

chitecture (ISCA’04), 2004.

[30] Theodor Calin, Michael Nicolaidis, and R. Velazco. Upset hardened memory de-

sign for submicron CMOS technology. IEEE Transactions on Nuclear Science,

43(6):2874 –2878, dec 1996.

[31] Ramon Canal, Joan-Manuel Parcerisa, and Antonio Gonzlez. Dynamic cluster

assignment mechanisms. In Proceedings of the High Performance Computer

Architecture (HPCA’00), pages 133–142, 2000.

212 · Bibliography

[32] Javier Carretero, Isaac Hernández, Xavier Vera, Toni Juan, Enric Herrero,

Tanausú Ramı́rez, Matteo Monchiero, Antonio González, Nicholas Axelos, and

Daniel Sánchez. Memory controller-level extensions for GDDR5 single device

data correct support. Intel Technology Journal, 17:102–116, 2013.

[33] Javier Carretero, Xavier Vera, Jaume Abella, Pedro Chaparro, and Antonio

González. A low-overhead technique to protect the issue control logic against

soft errors. In Proceedings of the 5th IEEE Workshop on Silicon Errors in

Logic - System Effects, SELSE’09, Stanford (California), 2009. IEEE Computer

Society.

[34] Jonathan Chang, George A. Reis, and David I. August. Automatic instruction-

level software-only recovery. In Proceedings of the International Conference on

Dependable Systems and Networks, DSN ’06, pages 83–92, Washington, DC,

USA, 2006. IEEE Computer Society.

[35] Kai-Hui Chang, Igor L. Markov, and Valeria Bertacco. Functional Design Er-

rors in Digital Circuits - Diagnosis, Correction and Repair, volume 32 of Lecture

Notes in Electrical Engineering. Springer, 2009.

[36] Pedro Chaparro, Jaume Abella, Javier Carretero, and Xavier Vera. Issue system

protection mechanisms. In Proceedings of the IEEE International Conference

on Computer Design (ICCD’08), pages 599–604, Oct. 2008.

[37] Pedro Chaparro, Jaume Abella, Xavier Vera, and Javier Carretero Casado.

On-line testing for decode logic, November 2011.

[38] Saugata Chatterjee, Chris Weaver, and Todd Austin. Efficient checker processor

design. In Proceedings of the 33rd Annual ACM/IEEE International Symposium

on Microarchitecture, MICRO 33, pages 87–97, New York, NY, USA, 2000.

ACM.

[39] Chin-Long Chen. Symbol error correcting codes for memory applications. In

Proceedings of the 26th Annual International Symposium on Fault-Tolerant

Computing, FTCS ’96, pages 200–, Washington, DC, USA, 1996. IEEE Com-

puter Society.

[40] Chin-Long Chen and M. Y. (Ben) Hsiao. Error-correcting codes for semicon-

ductor memory applications: a state-of-the-art review. IBM Journal Research

and Development, 28(2):124–134, March 1984.

[41] T.-F. Chen and J.-L. Baer. A performance study of software and hardware data

prefetching schemes. In Proceedings of the 21st Annual International Sympo-

Bibliography · 213

sium on Computer Architecture, ISCA ’94, pages 223–232, Los Alamitos, CA,

USA, 1994. IEEE Computer Society Press.

[42] Cristian Constantinescu. Trends and challenges in VLSI circuit reliability. IEEE

Micro, 23(4):14–19, 2003.

[43] Kypros Constantinides, Onur Mutlu, and Todd Austin. Online design bug de-

tection: RTL analysis, flexible mechanisms, and evaluation. In Proceedings

of the 41st annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 41, pages 282–293, Washington, DC, USA, 2008. IEEE Computer So-

ciety.

[44] Kypros Constantinides, Onur Mutlu, Todd Austin, and Valeria Bertacco.

Software-based online detection of hardware defects mechanisms, architectural

support, and evaluation. In Proceedings of the 40th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, MICRO 40, pages 97–108, Washing-

ton, DC, USA, 2007. IEEE Computer Society.

[45] Intel R©Corporation. Intel R© 64 and IA-32 architectures software developer’s

manual (volume 3a). pages 623–674, 2010.

[46] Son T. Dao, Juergen G. Haess, Michael K. Kroener, Silvia M. Mueller, and

Jochen Preiss. Distributed residue-checking of a floating point unit, 2013,

Patent Number US US8566383 B2.

[47] Shidhartha Das, Carlos Tokunaga, Sanjay Pant, Wei-Hsiang Ma, Sudherssen

Kalaiselvan, Kevin Lai, David M. Bull, and David. Blaauw. RazorII: In situ

error detection and correction for PVT and SER tolerance. IEEE Journal of

Solid-State Circuits, 44(1):32–48, 2009.

[48] Timothy J. Dell. A white paper on the benefits of chipkill-correct ECC for PC

server main memory. IBM Microelectronics Division, 1997.

[49] Andrew DeOrio, Adam Bauserman, and Valeria Bertacco. Chico: An on-chip

hardware checker for pipeline control logic. In Proceedings of the 8th Inter-

national Workshop on Microprocessor Test and Verification, MTV ’07, pages

91–97, Washington, DC, USA, 2007. IEEE Computer Society.

[50] Andrew DeOrio, Ilya Wagner, and Valeria Bertacco. DACOTA: Post-silicon

validation of the memory subsystem in multi-core designs. In Proceedings of the

IEEE International Conference on High-Performance Computing Architecture

(HPCA’09), pages 405–416. IEEE Computer Society, 2009.

214 · Bibliography

[51] Anand Dixit and Alan Wood. The impact of new technology on soft error

rates. In IEEE International Reliability Physics Symposium (IRPS), 2011,

pages 5B.4.1–5B.4.7, 2011.

[52] Jack Doweck. Inside Intel Core Microarchitecture and Smart Memory Access:

An in-depth look at intel innovations for accelerating execution of memory-

related instructions. Intel - White Papers, Webcasts and Case Studies, 2006.

[53] Mike Ebbers, Pilar G. Adrados, Frank Byrne, Rodney Martin, and Jon Veilleux.

Introduction to the New Mainframe: Large-Scale Commercial Computing. IBM

Form Number SG24-7175-00. IBM Redbooks, January 2007.

[54] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan

Pham, Conrad Ziesler, David Blaauw, Todd Austin, Krisztian Flautner, and

Trevor Mudge. Razor: A low-power pipeline based on circuit-level timing specu-

lation. In Proceedings of the 36th Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO 36, pages 7–, Washington, DC, USA, 2003. IEEE

Computer Society.

[55] James A. Farrell and Gieseke Bruce A. Arbiter system for central processing

unit having dual dominoed encoders for four instruction issue per machine cycle,

June 2001.

[56] Manoj Franklin and Gurindar Sohi. ARB: A hardware mechanism for dy-

namic reordering of memory references. IEEE Transactions on Computers

(TC), 45(5), 1996.

[57] Daniel D. Gajski. Modular modulo 3 module, 1980, Patent Number 4,190,893.

[58] Oscar N. Garcia and Thammavarapu R. N. Rao. On the methods of check-

ing logical operations. In Proceedings of the Second Princeton Conference on

Information Sciences and Systems, 1968.

[59] Bradley Geden. Understand and avoid electromigration (EM) and IR-drop in

custom IP blocks. Synopsis White Paper, November 2011.

[60] Balkaran Gill, Michael Nicolaidis, Francis Wolff, Chris Papachristou, and

Steven Garverick. An efficient BICS design for SEUs detection and correc-

tion in semiconductor memories. In Proceedings of the Conference on Design,

Automation and Test in Europe, DATE ’05, pages 592–597, Washington, DC,

USA, 2005. IEEE Computer Society.

Bibliography · 215

[61] Balkaran S. Gill, Chris Papachristou, Francis G. Wolff, and Norbert Seifert.

Node sensitivity analysis for soft errors in CMOS logic. In Proceedings of the

IEEE International Test Conference, ITC’05, pages 9 pp. –972, nov. 2005.

[62] Bart Goeman, Hans Vandierendonck, and Koen de Bosschere. Differential

FCM: Increasing value prediction accuracy by improving table usage efficiency.

In Proceedings of the 7th International Symposium on High-Performance Ar-

chitecture (HPCA’01), volume 00, page 0207, Los Alamitos, CA, USA, 2001.

IEEE Computer Society.

[63] Mohamed Gomaa, Chad Scarbrough, T. N. Vijaykumar, and Irith Pomeranz.

Transient-fault recovery for chip multiprocessors. In Proceedings of the 30th

Annual International Symposium on Computer Architecture, ISCA ’03, pages

98–109, New York, NY, USA, 2003. ACM.

[64] Mohamed Gomaa and T. N. Vijaykumar. Opportunistic transient-fault detec-

tion. In Proceedings of the 32nd Annual International Symposium on Computer

Architecture, ISCA ’05, pages 172–183, Washington, DC, USA, 2005. IEEE

Computer Society.

[65] Antonio González, Mateo Valero, Nigel Topham, and Joan Manel Parcerisa.

Eliminating cache conflict misses through XOR-based placement functions. In

Proceedings of the International Conference on Supercomputing (ICS’97), 1997.

[66] José González and Antonio González. Speculative execution via address predic-

tion and data prefetching. In Proceedings of the 11th International Conference

on Supercomputing (ICS’97), ICS ’97, pages 196–203, New York, NY, USA,

1997. ACM.

[67] Gary D. Hachtel and Fabio Somenzi. Logic Synthesis and Verification Algo-

rithms. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[68] Juergen Haess, Michael K. Kroener, Silvia M. Mueller, and Kerstin Schelm.

Exponent flow checking, 2014, Patent Number US 20140164463 A1.

[69] Mark D. Hammig. The design and construction of a mechanical radiation

detector. In Proceedings of IEEE Nuclear Science Symposium, pages 803–805,

1998.

[70] Richard W. Hamming. Error detecting and error correcting codes. The Bell

System Technical Journal, 26(2):147–160, 1950.

216 · Bibliography

[71] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Allan Kyker, and

Patrice Roussel. The microarchitecture of the Pentium R©4 processor. Intel

Technology Journal, 1, 2001.

[72] Alexis Hocquenghem. Codes correcteurs d’erreurs. Chiffres Journal, 2:147–156,

1959.

[73] M. Y. (Ben) Hsiao. A class of optimal minimum odd-weight-column SEC-DED

codes. IBM Journal Research and Development, 14(4):395–401, July 1970.

[74] Sorin Iacobovici. Residue-based error detection for a shift operation, 2007,

Patent Number US 2007/0043796 A1.

[75] Sorin Iacobovici. End-to-end residue based protection of an execution pipeline,

2009, Patent Number US 7,555,692 B1.

[76] Sorin Iacobovici. End-to-end residue-based protection of an execution pipeline

that supports floating point operations, 2010, Patent Number US 7,769,795 B1.

[77] Sorin Iacobovici. Residue based error detection for integer and floating point

execution units, 2014,Patent Number US 20140188965 A1.

[78] Intel. Using the Intel R©ICH Family Watchdog Timer (WDT).

[79] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual,

September 2014.

[80] International Technology Roadmap for Semiconductors ITRS. Critical relia-

bility challenges for the international technology roadmap for semiconductors

(ITRS). Technical report, ITRS, 2003.

[81] International Technology Roadmap for Semiconductors ITRS. International

technology roadmap for semiconductors executive summary. Technical report,

ITRS, 2007.

[82] International Technology Roadmap for Semiconductors ITRS. International

technology roadmap for semiconductors 2012 update overview. Technical re-

port, ITRS, 2012.

[83] Bruce Jacob, Spencer Ng, and David Wang. Memory Systems: Cache, DRAM,

Disk. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[84] Doug Josephson. The good, the bad, and the ugly of silicon debug. In Pro-

ceedings of the 43rd Annual Design Automation Conference (DAC), DAC ’06,

pages 3–6, New York, NY, USA, 2006. ACM.

Bibliography · 217

[85] David Kanter. Intels Sandy Bridge Microarchitecture.

http://www.realworldtech.com/sandy-bridge/, September 2010.

[86] Tanay Karnik, Sriram Vangal, Venkat Veeramachaneni, Peter Hazucha, Vasan-

tha Erraguntla, and Shekhar Borkar. Selective node engineering for chip-level

soft error rate improvement. In Digest of Technical Papers of the Symposium

on VLSI Circuits, pages 204 – 205, 2002.

[87] Jagannath Keshava, Nagib Hakim, and Chinna Prudvi. Post-silicon validation

challenges: How EDA and academia can help. In Proceedings of the 47th Design

Automation Conference (DAC’10), DAC ’10, pages 3–7, New York, NY, USA,

2010. ACM.

[88] Jagannath Keshava, Nagib Hakim, and Chinna Prudvi. Post-silicon validation

challenges: How EDA and academia can help. In Proceedings of the 47th Design

Automation Conference (DAC’10), DAC ’10, pages 3–7, New York, NY, USA,

2010. ACM.

[89] Ilhyun Kim and Mikko H. Lipasti. Understanding scheduling replay schemes. In

Proceedings of the 10th International Symposium on High Performance Com-

puter Architecture (HPCA’04), HPCA ’04, pages 198–, Washington, DC, USA,

2004. IEEE Computer Society.

[90] Philip Koopman and Tridib Chakravarty. Cyclic redundancy code (CRC) poly-

nomial selection for embedded networks. In Proceedings of the International

Conference on Dependable Systems and Networks, DSN ’04, pages 145–, Wash-

ington, DC, USA, 2004. IEEE Computer Society.

[91] David Kroft. Lockup-free instruction fetch/prefetch cache organization. In Pro-

ceedings of the 8th International Symposium on Computer Architecture (ISCA),

ISCA ’81, pages 81–87, 1981.

[92] Simeon J. Krumbein. Metallic electromigration phenomena. IEEE Transactions

on Components, Hybrids, and Manufacturing Technology, 11(1):5–15, 1988.

[93] Sumeet Kumar and Aneesh Aggarwal. Speculative instruction validation for

performance-reliability trade-off. In In Proceedings of the IEEE 14th Inter-

national Symposium on High Performance Computer Architecture, HPCA’08,

pages 405–414, 2008.

[94] Ravishankar Kuppuswamy, Peter DesRosier, Derek Feltham, Rehan Sheikh,

and Paul Thadikaran. Full Hold-Scan Systems in Microprocessors: Cost/Benefit

Analysis. Intel Technical Journal, 8(1):63–72, February 2004.

218 · Bibliography

[95] Anand Lal Shimpi. The source of intel’s cougar point sata bug.

http://www.anandtech.com/show/4143/, January 2011.

[96] Glen G. Langdon and C. K. Tang. Concurrent error detection for group look-

ahead binary adders. IBM Journal Research and Development, 14(5):563–573,

September 1970.

[97] Man-Lap Li, Pradeep Ramachandran, Swarup K. Sahoo, Sarita V. Adve,

Vikram S. Adve, and Yuanyuan Zhou. Trace-based microarchitecture-level di-

agnosis of permanent hardware faults. In Proceedings of the IEEE International

Conference on Dependable Systems and Networks With FTCS and DCC, pages

22–31, 2008.

[98] Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V. Adve,

Vikram S. Adve, and Yuanyuan Zhou. Understanding the propagation of hard

errors to software and implications for resilient system design. In Proceedings

of the 13th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS XIII, pages 265–276, New York,

NY, USA, 2008. ACM.

[99] Sheng Li, Jung Ho Ahn, Jay B. Brockman, and Norman P. Jouppi. McPAT

1.0: An integrated power, area, and timing modeling framework for multicore

architectures. Technical report, HP Labs, 2009.

[100] Mikko H. Lipasti. ECE/CS 752 Advanced Computer Architecture I Course.

Slides, University of Wisconsin-Madison, 2015.

[101] Mikko Herman Lipasti. Value Locality and Speculative Execution. PhD thesis,

Pittsburgh, PA, USA, 1998. UMI Order No. GAX98-06874.

[102] D. Lipetz and E. Schwarz. Self checking in current floating-point units. In

IEEE Symposium on Computer Arithmetic (ARITH), pages 73–76, July 2011.

[103] T. Litt. Support for debugging in the alpha 21364 microprocessor. In Proceed-

ings of the International Test Conference (ITC), 2002, pages 584–589, 2002.

[104] Jien-Chung Lo. Reliable floating-point arithmetic algorithms for Berger en-

coded operands. In Proceedings of the IEEE International Conference on Com-

puter Design on VLSI in Computer & Processors, ICCD ’92, pages 110–113,

Washington, DC, USA, 1992. IEEE Computer Society.

[105] Jien-Chung Lo. Reliable floating-point arithmetic algorithms for error-coded

operands. IEEE Transaction on Computers, 43(4):400–412, April 1994.

Bibliography · 219

[106] Jien-Chung Lo, Suchai Thanawastien, and Thammavarapu R. N. Rao. Berger

check prediction for array multipliers and array dividers. IEEE Transactions

on Computers, 42(7):892–896, 1993.

[107] Jien-Chung Lo, Suchai Thanawastien, Thammavarapu R. N. Rao, and Michael

Nicolaidis. An SFS Berger check prediction ALU and its application to self-

checking processor designs. IEEE Transactions on CAD of Integrated Circuits

and Systems, 11(4):525–540, 1992.

[108] Jien-Chung. Lo, Suchai Thanawastien, and Thammavarapu R.N. Rao. Concur-

rent error detection in arithmetic and logical operations using Berger codes. In

Proceedings of 9th Symposium on Computer Arithmetic, pages 233 –240, sep

1989.

[109] Gabriel Loh. CS8803: Advanced Microarchitecture Course. Slides, Georgia

Institute of Technology, 2005.

[110] Aamer Mahmood and Edward J. McCluskey. Concurrent error detection using

watchdog processors-a survey. IEEE Transactions on Computers, 37(2):160–

174, February 1988.

[111] Ritesh Mastipuram and Edwin C. Wee. Soft error’s impact on system reliability.

Electronics Design, Strategy, News (EDN), pages 69–74, September 2004.

[112] Scott McFarling. Combining branch predictors. Technical Report WRL TN-36,

Western Research Laboratory, June 1993.

[113] Michael S. McIlvaine, James N. Dieffenderfer, and Thomas A. Sartorius.

Method and apparatus for managing instruction flushing in a microprocessor’s

instruction pipeline, June 2011.

[114] Albert Meixner, Michael E. Bauer, and Daniel Sorin. Argus: Low-cost, com-

prehensive error detection in simple cores. In Proceedings of the 40th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 40, pages

210–222, Washington, DC, USA, 2007. IEEE Computer Society.

[115] Albert Meixner and Daniel J. Sorin. Error detection using dynamic dataflow

verification. In Proceedings of the 16th International Conference on Parallel Ar-

chitecture and Compilation Techniques, PACT ’07, pages 104–118, Washington,

DC, USA, 2007. IEEE Computer Society.

[116] Albert Meixner and Daniel J. Sorin. Detouring: Translating software to circum-

vent hard faults in simple cores. In Proceedings of the Conference on Dependable

220 · Bibliography

Systems and Networks (DSN’08), pages 80–89. Proceedings of the Conference

on Dependable Systems and Networks (DSN’08), IEEE Computer Society, 2008.

[117] Sarah E. Michalak, Kevin W. Harris, Nicolas W. Hengartner, Bruce E. Takala,

and Stephen A. Wender. Predicting the number of fatal soft errors in los alamos

national laboratory’s ASC Q supercomputer. IEEE Transactions on Device and

Materials Reliability, 5(3):329–335, 2005.

[118] Sun Microsystems. OpenSPARC T2 system-on-chip (SoC) microarchitecture

specification. 2008.

[119] Subhasish Mitra and Edward J. McCluskey. Which concurrent error detection

scheme to choose? In Proceedings of the IEEE International Test Conference,

ITC ’00, pages 985–, Washington, DC, USA, 2000. IEEE Computer Society.

[120] Subhasish Mitra, Norbert Seifert, Ming Zhang, Quan Shi, and Kee Sup Kim.

Robust system design with built-in soft-error resilience. IEEE Computers,

38(2):43–52, February 2005.

[121] Subhasish Mitra, Sanjit A. Seshia, and Nicola Nicolici. Post-silicon validation

opportunities, challenges and recent advances. In Proceedings of the 47th Design

Automation Conference (DAC’10), DAC ’10, pages 12–17, New York, NY, USA,

2010. ACM.

[122] Kartik Mohanram and Nur A. Touba. Cost-effective approach for reducing soft

error failure rate in logic circuits. In Proceedings of the IEEE International Test

Conference, volume 1 of ITC’03, pages 893 – 901, 30-oct. 2, 2003.

[123] Mark Moir, Kevin Moore, and Dan Nussbaum. The adaptive transactional

memory test platform: A tool for experimenting with transactional code for

Rock (poster). In Proceedings of the Twentieth Annual Symposium on Paral-

lelism in Algorithms and Architectures, SPAA ’08, pages 362–362, New York,

NY, USA, 2008. Proceedings of the Symposium on Parallelism in Algorithms

and Architectures (SPAA’08), ACM.

[124] Robert Carl Moncsko. Method and apparatus for modulus error checking, 1998,

Patent Number 5,742,533.

[125] P. Monteiro and Thammavarapu R. N. Rao. A residue checker for arithmetic

and logical operations. In Proceedings of 2nd Fault Tolerant Computing Sym-

posium, 1972.

[126] Shubhendu S. Mukherjee, Joel Emer, and Steven K. Reinhardt. The soft error

problem: An architectural perspective. In Proceedings of the 11th International

Bibliography · 221

Symposium on High-Performance Computer Architecture (HPCA), HPCA ’05,

pages 243–247, Washington, DC, USA, 2005. IEEE Computer Society.

[127] Shubhendu S. Mukherjee, Michael Kontz, and Steven K. Reinhardt. Detailed

design and evaluation of redundant multithreading alternatives. In Proceedings

of the 29th Annual International Symposium on Computer Architecture, ISCA

’02, pages 99–110, Washington, DC, USA, 2002. IEEE Computer Society.

[128] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K. Rein-

hardt, and Todd Austin. A systematic methodology to compute the architec-

tural vulnerability factors for a high-performance microprocessor. In Proceed-

ings of the 36th Annual IEEE/ACM International Symposium on Microarchi-

tecture, MICRO 36, pages 29–, Washington, DC, USA, 2003. IEEE Computer

Society.

[129] Shubu Mukherjee. Architecture Design for Soft Errors. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2008.

[130] Matthew Murray. Sandy Bridge: Intels Next-Generation Microarchitecture Re-

vealed. http://www.extremetech.com/computing/83848-sandy-bridge-intels-

nextgeneration-microarchitecture-revealed, September 2010.

[131] Masood Namjoo. Techniques for concurrent testing of VLSI processor opera-

tion. In Proceedings of the International Testing Conference, pages 461–468.

IEEE Computer Society, 1982.

[132] Egas Henes Neto, Ivandro Ribeiro, Michele Vieira, Gilson Wirth, and Fer-

nanda Lima Kastensmidt. Using bulk built-in current sensors to detect soft

errors. IEEE Micro, 26(5):10–18, September 2006.

[133] Hang Nguyen. Resiliency challenges in future communications infrastructure.

In Proceedings of the IEEE Comunications and Reliability Workshop (CQR’14),

CQR’14. IEEE Computer Society, 2014.

[134] Michael Nicolaidis. Carry checking/parity prediction adders and alus. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 11(1):121–128,

February 2003.

[135] Michael Nicolaidis and Ricardo O. Duarte. Design of fault-secure parity-

prediction Booth multipliers. In Proceedings of the Conference on Design, Au-

tomation and Test in Europe, DATE ’98, pages 7–14, Washington, DC, USA,

1998. IEEE Computer Society.

222 · Bibliography

[136] Michael Nicolaidis, Ricardo O. Duarte, Salvador Manich, and Joan Figueras.

Fault-secure parity prediction arithmetic operators. IEEE Design and Test,

14(2):60–71, April 1997.

[137] Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Control-flow check-

ing by software signatures. IEEE Transactions on Reliability, 51:111–122, 2002.

[138] Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Error detection

by duplicated instructions in superscalar processors. IEEE Transactions on

Reliability, 51(1):63–75, 2002.

[139] Subbarao Palacharla, Norman P. Jouppi, and James E. Smith. Quantifying the

complexity of superscalar processors. Technical Report Tech. Report 96-1308,

Dept. of CS, Univ. of Wisconsin,, 1996.

[140] Subbarao Palacharla, Norman P. Jouppi, and James E. Smith. Complexity-

effective superscalar processors. In Proceedings of the 24th International Sym-

posium on Computer Architecture (ISCA’97), ISCA ’97, pages 206–218, New

York, NY, USA, 1997.

[141] Abhisek Pan, James W. Tschanz, and Sandip Kundu. A low cost scheme for

reducing silent data corruption in large arithmetic circuits. In Proceedings of the

IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems,

DFT ’08, pages 343–351, Washington, DC, USA, 2008. IEEE Computer Society.

[142] D.B. Papworth, A.F. Glew, M.A. Fetterman, G.J. Hinton, R.P. Colwell, S.J.

Griffith, S.R. Gupta, and N. Hedge. Entry allocation in a circular buffer. Patent

US 5584037, 1996. Asignee: Intel Corporation.

[143] Angshuman Parashar, Anand Sivasubramaniam, and Sudhanva Gurumurthi.

SlicK: slice-based locality exploitation for efficient redundant multithreading.

In Proceedings of the 12th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS-XII, pages 95–105,

New York, NY, USA, 2006. ACM.

[144] Il Park, Chong Liang Ooi, and T.N. Vijaykumar. Reducing design complexity

of the load/store queue. In Proceedings of the International Symposium on

Microarchitecture (MICRO-36), 2003.

[145] Sung-Boem Park and Subhasish Mitra. IFRA: Instruction footprint recording

and analysis for post-silicon bug localization in processors. In Proceedings of

the 45th Annual Design Automation Conference, DAC ’08, pages 373–378, New

York, NY, USA, 2008. ACM.

Bibliography · 223

[146] Praveen Parvathala, Kaila Maneparambil, and William Lindsay. FRITS : A

microprocessor functional bist method. In Proceedings of the 2002 IEEE Inter-

national Test Conference, ITC ’02, pages 590–, Washington, DC, USA, 2002.

IEEE Computer Society.

[147] Harish Patil, Robert Cohn, Mark Charney, Rajiv Kapoor, Andrew Sun, and

Anand Karunanidhi. Pinpointing representative portions of large intel itanium

programs with dynamic instrumentation. In Proceedings of the 37th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO’04), MI-

CRO 37, pages 81–92, Washington, DC, USA, 2004. IEEE Computer Society.

[148] Priyadarsan Patra. On the cusp of a validation wall. IEEE Design & Test of

Computers, 24(2):193–196, 2007.

[149] Michael D. Powell, Arijit Biswas, Shantanu Gupta, and Shubhendu S. Mukher-

jee. Architectural core salvaging in a multi-core processor for hard-error toler-

ance. In Proceedings of the 36th Annual International Symposium on Computer

Architecture (ISCA’09), ISCA ’09, pages 93–104, New York, NY, USA, 2009.

ACM.

[150] Vaughan Pratt. Anatomy of the pentium bug. In Theory and Practice of

Software Development (TAPSOFT), volume 915 of Lecture Notes in Computer

Science, pages 97–107. Springer Berlin Heidelberg, 1995.

[151] Milos Prvulovic, Zheng Zhang, and Josep Torrellas. ReVive: Cost-effective ar-

chitectural support for rollback recovery in shared-memory multiprocessors. In

Proceedings. 29th Annual International Symposium on Computer Architecture

(ISCA), pages 111–122, 2002.

[152] Thammavarapu R. N. Rao. Error Coding for Arithmetic Processors. Academic

Press, Inc., Orlando, FL, USA, 1974.

[153] Thammavarapu R. N. Rao and Eiji Fujiwara. Error-Control Coding for Com-

puter Systems. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.

[154] Vimal K. Reddy, Eric Rotenberg, and Ahmed S. Al-Zawawi. Assertion-based

microarchitecture design for improved reliability. In Proceedings of the 24th

International Conference on Computer Design, ICCD’06. IEEE Computer So-

ciety, 2006.

[155] Vimal Kodandarama Reddy. Exploiting Microarchitecture Insights for Efficient

Fault Tolerance. PhD thesis, 2007.

224 · Bibliography

[156] Kevin Reick, Pia N. Sanda, Scott B. Swaney, Jeffrey W Kellington, Michael J.

Mack, Michael S. Floyd, and Daniel Henderson. Fault-tolerant design of the

IBM Power6 microprocessor. In Symposium on Hot Chips, 2007.

[157] Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient fault detection via

simultaneous multithreading. In Proceedings of the 27th Annual International

Symposium on Computer Architecture, ISCA ’00, pages 25–36, New York, NY,

USA, 2000. ACM.

[158] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and

David I. August. SWIFT: Software implemented fault tolerance. In Proceedings

of the International Symposium on Code Generation and Optimization, CGO

’05, pages 243–254, Washington, DC, USA, 2005. IEEE Computer Society.

[159] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, David I.

August, and Shubhendu S. Mukherjee. Design and evaluation of hybrid fault-

detection systems. In Proceedings of the 32nd Annual International Symposium

on Computer Architecture, ISCA ’05, pages 148–159, Washington, DC, USA,

2005. IEEE Computer Society.

[160] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, David I.

August, and Shubhendu S. Mukherjee. Software-controlled fault tolerance.

ACM Transactions on Architecture and Code Optimization (TACO), 2(4):366–

396, December 2005.

[161] Leonard R. Rockett Jr. An SEU-hardened CMOS data latch design. IEEE

Transactions on Nuclear Science, 35(6):1682 –1687, dec 1988.

[162] Eric Rotenberg. AR-SMT: A microarchitectural approach to fault tolerance in

microprocessors. In Proceedings of the 29th Annual International Symposium

on Fault-Tolerant Computing, FTCS ’99, pages 84–, Washington, DC, USA,

1999. IEEE Computer Society.

[163] Hemant Rotithor. Post-silicon validation methodology for microprocessors.

IEEE Desing and Test, 17(4):77–88, October 2000.

[164] Elham Safi, Patrick Akl, Andreas Moshovos, Andreas Veneris, and Aggeliki

Arapoyianni. On the latency, energy and area of checkpointed, superscalar

register alias tables. In Proceedings of the 2007 International Symposium on

Low Power Electronics and Design (ISPLED’07), ISLPED ’07, pages 379–382,

New York, NY, USA, 2007. ACM.

Bibliography · 225

[165] Giacinto P. Saggese, Nicholas J. Wang, Zbigniew T. Kalbarczyk, Sanjay J.

Patel, and Ravishankar K. Iyer. An experimental study of soft errors in micro-

processors. IEEE Micro, 25(6):30–39, 2005.

[166] Peter G. Sassone, Jeff Rupley, II, Edward Brekelbaum, Gabriel H. Loh, and

Bryan Black. Matrix scheduler reloaded. In Proceedings of the 34th Annual In-

ternational Symposium on Computer Architecture (HPCA’07), ISCA ’07, pages

335–346, New York, NY, USA, 2007. ACM.

[167] Yiannakis Sazeides and James E. Smith. Implementations of context based

value predictors. Technical Report ECE-TR-97-8, University of Wisconsin-

Madison, 1997.

[168] Yiannakis Sazeides and James E. Smith. The predictability of data values.

In Proceedings of the 30th Annual ACM/IEEE International Symposium on

Microarchitecture, MICRO 30, pages 248–258, Washington, DC, USA, 1997.

IEEE Computer Society.

[169] Mark M. Schaffer. Residue checking apparatus for detecting errors in add,

substract, multiply, divide and square root operations, 1990, Patent Number

4,926,374.

[170] Ute Schiffel. Hardware Error Detection Using AN-Codes. PhD thesis, Technis-

che Universität Dresden, Dresden, 01062 Dresden, Germany, 2011.

[171] Michael A. Schuette and John Paul Shen. Processor control flow monitor-

ing using signatured instruction streams. IEEE Transactions on Computers,

36(3):264–276, March 1987.

[172] Simha Sethumadhavan, Rajagopalan Desikan, Doug Burger, Charles R. Moore,

and Stephen W. Keckler. Scalable hardware memory disambiguation for high

ILP processors. In Proceedings of the International Symposium on Microarchi-

tecture (MICRO-36), 2003.

[173] Anand Lal Shimpi. Intel’s Sandy Bridge Architecture Exposed.

http://www.anandtech.com/show/3922/intels-sandy-bridge-architecture-

exposed, September 2010.

[174] Premkishore Shivakumar and Mich Kistler. Modeling the impact of device and

pipeline scaling on the soft error rate of processor elements. Technical report,

The University of Texas at Austin and IBM Austin Research Laboratory, 2002.

[175] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler, Doug Burger,

and Lorenzo Alvisi. Modeling the effect of technology trends on the soft error

226 · Bibliography

rate of combinational logic. In Proceedings of the International Conference on

Dependable Systems and Networks (DSN), pages 389–398, 2002.

[176] Smitha Shyam, Kypros Constantinides, Sujay Phadke, Valeria Bertacco, and

Todd Austin. Ultra low-cost defect protection for microprocessor pipelines. In

Proceedings of the 12th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS XII, pages 73–82,

New York, NY, USA, 2006. ACM.

[177] K.Y. Sih. Checking logical operations by residues, 1972, Patent Number IP-

COM000078397D.

[178] Isic Silas, Igor Frumkin, Eilon Hazan, Ehud Mor, and Genadiy Zobin. System-

level validation of the Intel Pentium M processor. Intel Technology Journal,

7(2):37–43, May 2003.

[179] Dezsö Sima. The design space of register renaming techniques. IEEE Micro,

20(5):70–83, September 2000.

[180] Graham Singer. The rise and fall of amd.

http://www.techspot.com/article/599-amd-rise-and-fall/page2.html, Novem-

ber 2012.

[181] Timothy J. Slegel, Robert M. Averill III, Mark A. Check, Bruce C. Giamei,

Barry W. Krumm, Christopher A. Krygowski, Wen H. Li, John S. Liptay,

John D. MacDougall, Thomas J. McPherson, Jennifer A. Navarro, Eric M.

Schwarz, Kevin Shum, and Charles F. Webb. IBM’s S/390 G5 microprocessor

design. IEEE Micro, 19(2):12–23, March 1999.

[182] Jared C. Smolens, Brian T. Gold, Jangwoo Kim, Babak Falsafi, James C. Hoe,

and Andreas G. Nowatzyk. Fingerprinting: Bounding soft-error detection la-

tency and bandwidth. In Proceedings of the 11th International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS-XI, pages 224–234, New York, NY, USA, 2004. ACM.

[183] Jared C. Smolens, Jangwoo Kim, James C. Hoe, and Babak Falsafi. Efficient

resource sharing in concurrent error detecting superscalar microarchitectures.

In Proceedings of the 37th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO 37, pages 257–268, Washington, DC, USA, 2004.

IEEE Computer Society.

[184] Avinash Sodani and Gurindar S. Sohi. Dynamic instruction reuse. In Proceed-

ings of the 24th Annual International Symposium on Computer Architecture,

ISCA ’97, pages 194–205, New York, NY, USA, 1997. ACM.

Bibliography · 227

[185] Vision Solutions. Assessing the financial impact of downtime.

http://www.strategiccompanies.com/pdfs/Assessing2008.

[186] Daniel J. Sorin. Fault Tolerant Computer Architecture. Synthesis Lectures on

Computer Architecture. Morgan & Claypool Publishers, 2009.

[187] Daniel J. Sorin, Milo M.K. Martin, Mark D. Hill, and David A. Wood. Safe-

tyNet: Improving the availability of shared memory multiprocessors with global

checkpoint/recovery. In Proceedings. 29th Annual International Symposium on

Computer Architecture (ISCA), pages 123–134, 2002.

[188] Lisa Spainhower and Thomas A. Gregg. IBM S/390 parallel enterprise server

G5 fault tolerance: A historical perspective. IBM Journal of Research and

Development, 43(5):863–873, 1999.

[189] Uwe Sparmann and Sudhakar M. Reddy. On the effectiveness of residue code

checking for parallel two’s complement multipliers. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 4(2):227–239, June 1996.

[190] http://www.spec.org/cpu2000/ SPEC CPU 2000, 2000.

[191] Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, and Jude A. Rivers. The case

for lifetime reliability-aware microprocessors. In Proceedings of the 31st Annual

International Symposium on Computer Architecture (ISCA), ISCA ’04, pages

276–, Washington, DC, USA, 2004. IEEE Computer Society.

[192] Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, and Jude A. Rivers. The

impact of technology scaling on lifetime reliability. In Proceedings of the 2004

International Conference on Dependable Systems and Networks (DSN), DSN

’04, pages 177–, Washington, DC, USA, 2004. IEEE Computer Society.

[193] Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, and Jude A. Rivers. Lifetime

reliability: Toward an architectural solution. IEEE Micro, 25(3):70–80, May-

June 2005.

[194] James H. Stathis. Physical and predictive models of ultrathin oxide reliability

in CMOS devices and circuits. IEEE Transactions on Device and Materials

Reliability, 1(1):43–59, 2001.

[195] Dmitri Strukov. The area and latency tradeoffs of binary bit-parallel BCH de-

coders for prospective nanoelectronic memories. In Proceedings of 40th Asilomar

Conference on Signals, Systems and Computers Signals, Systems and Comput-

ers, ACSSC ’06, pages 1183 –1187, 29 2006-nov. 1 2006.

228 · Bibliography

[196] Sangeetha Sudhakrishnan, Rigo Dicochea, and Jose Renau. Releasing efficient

beta cores to market early. In Proceedings of the 38th Annual International

Symposium on Computer Architecture, ISCA ’11, pages 213–222, New York,

NY, USA, 2011. ACM.

[197] Karthik Sundaramoorthy, Zach Purser, and Eric Rotenburg. Slipstream pro-

cessors: Improving both performance and fault tolerance. In Proceedings of the

9th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS-IX, pages 257–268, New York, NY,

USA, 2000. ACM.

[198] Stratus Technologies. ftServer architecture http://www.stratus.com/ products/

ftserversystems/ uptimetechnology/ ftserverarchitecture.aspx.

[199] Joel M. Tendler, J. Steve Dodson, J. S. Fields, Hung Le, and Balaram Sinharoy.

POWER4 system microarchitecture. IBM Journal Research and Development,

46(1):5–25, January 2002.

[200] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and Norman P.

Jouppi. CACTI 5.1. HP Technical Report HPL-2008-20, 2008.

[201] Keshavan Tiruvallur. Beyond design... post-silicon validation challenges and op-

portunities. http://cache-www.intel.com/cd/00/00/51/61/516195 516195.pdf,

2011.

[202] Gaurang Upsani, Xavier Vera, and Antonio Gonzàlez. Setting an error detection

infrastructure with low cost acoustic wave detectors. In Proceedings of the 39th

International Symposium on Computer Architecture, ISCA’12, 2012.

[203] Fabian L. Vargas and Michael Nicolaidis. SEU-tolerant SRAM design based

on current monitoring. In Proceedings of the 24th International Symposium on

Fault Tolerant Computing, FTCS 94, pages 106–115, 1994.

[204] Arman Vassighi and Manoj Sachdev. Thermal runaway in integrated circuits.

IEEE Transactions Device and Materials Reliability, 6(2):300–305, 2006.

[205] Xavier Vera, Jaume Abella, Javier Carretero, and Antonio González. Selective

replication: A lightweight technique for soft errors. ACM Transactions on

Computers Systems, 27(4):8:1–8:30, January 2010.

[206] Bart Vermeulen and Sandeep K. Goel. Design for debug: Catching design errors

in digital chips. IEEE Desing and Test, 19(3):37–45, 2002.

Bibliography · 229

[207] T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng. Transient-fault recovery

using simultaneous multithreading. In Proceedings of the 29th Annual Interna-

tional Symposium on Computer Architecture, ISCA ’02, pages 87–98, Washing-

ton, DC, USA, 2002. IEEE Computer Society.

[208] Ilya Wagner and Valeria Bertacco. Post-Silicon and Runtime Verification for

Modern Processors, volume XVII. Springer, 2011.

[209] John F. Wakerly. Principles of self-checking processor design and an example.

Technical report, Stanford, CA, USA, 1975.

[210] John F. Wakerly. Error Detecting Codes, Self-Checking Circuits and Applica-

tions. Computer design and architecture series. North-Holland, 1978.

[211] Cheng Wang, Ho-seop Kim, Youfeng Wu, and Victor Ying. Compiler-managed

software-based redundant multi-threading for transient fault detection. In Pro-

ceedings of the International Symposium on Code Generation and Optimization,

CGO ’07, pages 244–258, Washington, DC, USA, 2007. IEEE Computer Soci-

ety.

[212] Nicholas J. Wang, Justin Quek, Todd M. Rafacz, and Sanjay J. Patel. Charac-

terizing the effects of transient faults on a high-performance processor pipeline.

In Proceedings of the 2004 International Conference on Dependable Systems

and Networks (DSN’04), DSN ’04, pages 61–, Washington, DC, USA, 2004.

IEEE Computer Society.

[213] Tse Lin Wang. Error detection system, 1974, Patent Number 3,814,923.

[214] Yi-Min Wang, P. Y. Chung, Y. Huang, and E. N. Elnozahy. Integrating check-

pointing with transaction processing. In Proceedings of the 27th International

Symposium on Fault-Tolerant Computing (FTCS ’97), FTCS ’97, pages 304–,

Washington, DC, USA, 1997. Proceedings of the International Symposium on

Fault-Tolerant Computing (FTCS ’97), IEEE Computer Society.

[215] Chris Weaver and Todd M. Austin. A fault tolerant approach to microproces-

sor designs. In Proceedings of the 2001 International Conference on Dependable

Systems and Networks (formerly: FTCS), DSN ’01, pages 411–420, Washing-

ton, DC, USA, 2001. IEEE Computer Society.

[216] Charles Webb. z6 - the next generation mainframe microprocessor. Hot Chips,

2007.

[217] Wikipedia. Application checkpointing. http://en.wikipedia.org/wiki/Application

checkpointing.

230 · Bibliography

[218] Wikipedia. Cyrix coma bug. http://en.wikipedia.org/wiki/Cyrix coma bug.

[219] Kent D. Wilken and John Paul Shen. Continuous signature monitoring: Low-

cost concurrent detection of processor control errors. IEEE Transactions on

CAD of Integrated Circuits and Systems, 9(6):629–641, 1990.

[220] Marcelo Yuffe, Ernest Knoll, Moty Mehalel, Joseph Shor, and Tsvika Kurts. A

fully integrated multi-CPU, GPU and memory controller 32nm processor. In

Solid-State Circuits IEEE International Conference, ISSCC’11, pages 264–266,

2011.

[221] Peng Zhou, Soner Önder, and Steve Carr. Fast branch misprediction recov-

ery in out-of-order superscalar processors. In Proceedings of the 19th Annual

International Conference on Supercomputing (ICS ’05), New York, NY, USA,

2005.

[222] James F. Ziegler and William A. Lanford. The effect of sea level cosmic rays

on electronic devices. In IEEE International Solid-State Circuits Conference,

volume XXIII, pages 70–71, 1980.

