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Abstract

This thesis consists of results obtained studying Scatter Search, Variable
Neighbourhood Search (VNS), and Matheuristics in both theoretical and
practical context. Regarding theoretical results, one of the main contribution
of this thesis is a convergent scatter search with directional rounding algorithm
for 0-1 Mixed Integer Programs (MIP) with the proof of its finite convergence.
Besides this, a convergent scatter search algorithm is accompanied by two
variants of its implementation. Additionally, several scatter search based
heuristics, stemming from a convergent scatter search algorithm have been
proposed and tested on some instances of 0-1 MIP. The versions of the methods
tested are first stage implementations to establish the power of the methods
in a simplified form. Our findings demonstrate the efficacy of these first stage
methods, which makes them attractive for use in situations where very high
quality solutions are sought with an efficient investment of computational
effort.
This thesis also includes new variants of Variable Neighborhood Search
metaheuristic such as a two-level variable neighborhood search, a nested
variable neighborhood search, a cyclic variable neighborhood descent and a
variable neighborhood diving. Additionally, several efficient implementation of
those variable neighborhood search algorithms have been successfully applied
for solving NP-Hard problems appearing in transportation, logistics, power
generation, scheduling and clustering. On all tested problems, the proposed
VNS heuristics turned out to be a new state-of-the art heuristics.
The last contribution of this thesis consists of proposing several matheuristics
for solving Fixed-Charge Multicommodity Network Design (MCND) problem.
The performances of these matheuristics have been disclosed on benchmark
instances for MCND. The obtained results demonstrate the competitiveness
of the proposed matheuristics with other existing approaches in the literature.
Keywords:Optimization – Scatter Search – Variable Neighborhood Search –
Heuristic – Metaheuristic – Matheuristic – Directional rounding – Convergence
– 0-1 MIP – Routing – TSP – VRP – Location – Clustering – Scheduling –
Maintenance – Unit commitment – Network Design.



Résumé

Cette thèse comporte des résultats théoriques et pratiques sur deux métaheu-
ristiques, la Recherche Dispersée et la Recherche Voisinage variable (RVV),
ainsi que sur des Matheuristiques. Au niveau théorique, la contribution
principale de cette thèse est la proposition dun algorithme de recherche
dispersée avec larrondi directionnel convergent pour les programmes en nom-
bres entiers mixtes (0-1 MIP), avec une preuve de cette convergence en un
nombre fini ditérations. En se basant sur cet algorithme convergeant, deux
implémentations et plusieurs heuristiques sont proposées et testées sur des
instances de 0-1 MIP. Les versions testées reposent sur des implémentations
non optimisées pour mettre en évidence la puissance des approches dans une
forme simplifiée. Nos résultats démontrent lefficacité de ces approches initiales,
ce qui les rend attractives lorsque des solutions de très haute qualité sont
recherchées avec un investissement approprié en termes deffort de calcul. Cette
thèse inclut également quelques nouvelles variantes de la métaheuristique
Recherche Voisinage Variable telles quune recherche voisinage variable deux
niveaux, une recherche voisinage variable imbriquée, une descente voisinage
variable cyclique et une heuristique de plongée voisinage variable. En outre,
plusieurs implémentations efficaces de ces algorithmes basés sur la recherche
voisinage variable ont été appliquées avec succès des problèmes NP-Difficiles
apparaissant en transport, logistique, production dénergie, ordonnancement,
et segmentation. Les heuristiques proposées se sont avérées tre les nouvelles
heuristiques de référence sur tous les problèmes considérés. La dernière con-
tribution de cette thèse repose sur la proposition de plusieurs matheuristiques
pour résoudre le problème de Conception de Réseau Multi-flots avec Cot fixe
(CRMC). Les performances de ces matheuristiques ont été évaluées sur un
ensemble dinstances de référence du CRMC. Les résultats obtenus démontrent
la compétitivité des approches proposées par rapport aux approches existantes
de la littérature.
Mots Clés: Optimisation - Recherche Dispersée - Recherche Voisinage Vari-
able - Heuristique - Métaheuristique - Matheuristique - Arrondi Directionnel
- Convergence - 0-1 MIP - Routage - Voyageur de Commerce - Elaboration
de tournées - Localisation - Clustering - Ordonnancement - Maintenance -
Affectation des Unités de production dénergie - Conception de réseau.
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Introduction

The 0-1 mixed integer programming (MIP) problem is used for modeling

many combinatorial problems, ranging from logical design to scheduling and

routing as well as encompassing graph theory models for resource allocation

and financial planning. Many 0-1 MIP problems are NP hard, so exact

methods (e.g., Branch and Bound, Branch and Cut, Branch and price and so

on) are not suitable for solving large scale instances. Namely, the obtention

of optimal solutions for majority of NP hard optimization problems is not

possible in a realistic or justifiable amount of resources consumption (time,

memory and so on). More precisely, often exact methods succeed to find

near-optimal solution quickly but need a lot of time to reach the optimal one.

Additionally, even if they succeed to reach an optimal solution quickly they

sometimes consume a significant portion of the total solution time to prove its

optimality. For these reasons, in many practical settings, exact methods are

used as heuristics, stopping them before getting a proof of optimality (e.g.,

imposing CPU time limit, maximum number of iterations to be performed,

node limit). These drawbacks of exact methods have attracted researchers to

develop many heuristic methods to tackle NP hard optimization problems.

The advantage of heuristics is not only their ability to produce high-quality

solutions in short time, but also the fact that they can be easily combined with

exact methods to speed them up. The early incumbent solutions produced

by a heuristic can help a Branch and Bound algorithm to reduce the amount

of memory needed to store the Branch-and-Bound tree and accelerate the

exploration of the Branch-and-Bound tree.

In this thesis, scatter search, variable neighborhood search and matheuristics

for solving 0-1 Mixed Integer Programs are studied in both theoretical and

practical context. Scatter search, variable neighborhood search and matheuris-

tics represent a flexible frameworks for building heuristics for approximately

solving combinatorial and non-linear continuous optimization problems. Scat-

ter Search (SS) is an evolutionary metaheuristic introduced by Fred Glover

(1977) as a heuristic for integer programming. It combines decision rules and

problem constraints, and it has its origins in surrogate constraint strategies.

x



CHAPTER 0. INTRODUCTION xi

Scatter Search, unlike Genetic Algorithms, operates on a small set of solutions

and makes only limited use of randomization as a proxy for diversification

when searching for a globally optimal solution. Variable neighborhood search

metaheuristic was proposed by Nenad Mladenovic and Pierre Hansen in 1997.

It is based on systematic changing of neighborhood structures during the

search for an optimal (or near-optimal) solution. Additionally, matheuristics

that combines exact and heuristic approaches are proposed for 0-1 MIP and

the Fixed-Charge Multicommodity Network Design. This thesis is structured

in four main chapters.

Chapter 1 contains the review of heuristics for 0-1 MIP problems. The survey

is focused on general heuristics for 0-1 MIP problems, not those that exploit

the structure of the considered problem (i.e., Lagrangian based heuristics,

heuristics proposed for various special combinatorial structures, like scheduling

and location problems, the traveling salesman problem, knapsack problems,

etc.). Additionally, we do not provide the review of general heuristics for

solving classes of problems that include 0-1 MIP problems as a special case

such as heuristics for general MIP, convex integer programming and so on.

More precisely, we are strictly focused on the stand-alone heuristics for 0-1

MIP as well as those heuristics that use linear programming techniques or

solve series of linear programming models or reduced problems, deduced from

the initial one, in order to produce a high quality solution of the considered

problem. The emphasis is on how mathematical programming techniques

can be used for approximate problem solving, rather than on a comparing

performances of heuristics. For most of considered heuristics we not only

describe their main ideas and their work but also provide their pseudo-codes

written in the same framework. Most of these heuristics are already embedded

in many commercial solvers such as CPLEX, Gurobi, GAMS, XPRESS etc.,

but there is still a need for new heuristics that will additionally accelerate

exact methods.

The contributions on Variable Neighborhood Search (VNS) metaheuristic are

presented in Chapter 2. The chapter starts by describing the framework of

a VNS and existing and newly proposed VNS variants such as a two-level

VNS, a nested VNS, and a cyclic variable neighborhood descent. The rest

of this chapter is dedicated to efficient implementation of VNS heuristics
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that we developed for solving optimization problems such as the traveling

salesman problem with draft Limits, the traveling salesman problem with

times windows, the attractive traveling salesman problem, the swap-body

vehicle routing problem, the unit commitment problem, the periodic main-

tenance problem and the minimum sum of squares clustering on networks.

On all tested problems, the proposed VNS heuristics turned out to be new

state-of-the art heuristics.

Chapter 3 describes several matheurstic approaches. First, two new diving

heuristics are proposed for finding a feasible solution for a MIP problem, called

Variable neighborhood (VN) diving and Single neighborhood (SN) diving,

respectively. They perform systematic hard variable fixing (i.e., diving) by

exploiting the information obtained from a series of LP relaxations in order to

generate a sequence of subproblems. Pseudo cuts are added during the search

process to avoid revisiting the same search space areas. VN diving is based

on the variable neighborhood decomposition search framework. Conversely,

SN diving explores only a single neighborhood in each iteration: if a feasible

solution is not found, then the next reference solution is chosen using the

feasibility pump principle and the search history. Moreover, we prove that

the two proposed algorithms converge in a finite number of iterations. We

show that our proposed algorithms significantly outperform the CPLEX 12.4

MIP solver and the recent variants of feasibility pump regarding the solution

quality. On the other hand, we propose several iterative linear programming-

based heuristics for solving Fixed-Charge Multicommodity Network Design

(MCND) problem. We propose how to adapt well-known Slope Scaling heuris-

tic for MCND in order to tackle reduced problems of MCND obtained by

fixing some binary variables. Moreover, we show that ideas of a convergent

algorithm based on the LP-relaxation and pseudo-cuts may be used to guide

Slope Scaling heuristic during the search for an optimal (or near-optimal)

solution and vice-versa. The results obtained testing proposed approaches

on the benchmark instances disclose their effectiveness and efficiency when

compared with existing approaches in the literature.

Finally, in Chapter 4, we propose several algorithms of Scatter Search with

directional rounding for 0-1 MIP. First, we address directional rounding both

independently and together with other algorithmic components, studying
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its properties as a mapping from continuous to discrete (binary) space. We

establish several useful properties of directional rounding and show that it

provides an extension of classical rounding and complementing operators.

Moreover, we observe that directional rounding of a line, as embodied in a

Star Path, contains a finite number of distinct 0–1 points. This property,

together with those of the solution space of 0-1 MIP, enables us to organize

the search for an optimal solution of 0–1 MIP problems using Scatter Search

in association with both cutting plane and extreme point solution approaches.

This chapter provides a convergent scatter search algorithm for 0-1 MIP

with the proof of its finite convergence, accompanied by two variants of its

implementation and examples that illustrate the running of the approach.

Additionally, we present several heuristic approaches for finding good solution

based on scatter search with directional rounding. Additionally, we conduct

an empirical study in order to find out the best way for choosing ingredients

of a heuristic that combines Scatter search and directional rounding. Finally,

we disclose the merit of our approaches by computational testing on a test

bed of 0-1 MIP problems. The versions of the methods tested are first stage

implementations to establish the power of the methods in a simplified form.

Our findings demonstrate the efficacy of these first stage methods, which

makes them attractive for use in situations where very high quality solutions

are sought with an efficient investment of computational effort.

Most of the contributions of this thesis have been published or submitted for

possible publishing in international journals [36, 152, 169, 170, 209, 210, 211,

212, 213].

The thesis is written so that each chapter can be read independently, and

therefore there is some slight overlapping among chapters. In addition, some of

the contributions are presented briefly in order to have a thesis with reasonable

number of pages. This is especially true for the contributions presented in

Chapter 2. Note that all contributions of the thesis, presented in the form of

papers, may be founded on the webpage http://www.univ-valenciennes.

fr/LAMIH/membres/todosijevic_raca.

http://www.univ-valenciennes.fr/LAMIH/membres/todosijevic_raca
http://www.univ-valenciennes.fr/LAMIH/membres/todosijevic_raca


Chapter 1

Survey

1.1 Introduction

The zero–one mixed integer programming problem is used for modeling many

combinatorial problems, ranging from logical design to scheduling and routing

as well as encompassing graph theory models for resource allocation and

financial planning. A 0–1 mixed integer program (MIP) may be written in

the following form:

(MIP )





maximize v = cx

s.t. Ax ≤ b

0 ≤ xj ≤ Uj, j ∈ N = {1, . . . , n}

xj ∈ {0, 1}, j ∈ I ⊆ N

(1.1)

where A is a m× n constant matrix, b is a constant vector, the set N denotes

the index set of variables, while the set I contains indices of binary variables.

Each variable xj has an upper bound denoted by Uj (which equals 1 if xj

is binary variable, while otherwise may be infinite). It is assumed that all

continuous variables can be represented (either directly or by transformation)

as slack variables, i.e., the associated columns of the (possibly transformed)

matrix A constitute an identity matrix. Hence, if the values of binary variables

are known, the continuous variables receive their values automatically. The

set of all slack variables will be denoted by S. The integer problem defined

in this manner will be denoted simply by MIP while the relaxation of MIP

obtained by excluding integrality constraints will be denoted by LP . A

feasible solution of MIP (LP ) will be called MIP (LP ) feasible. An optimal

solution of the LP problem will be denoted by x. The set of all MIP feasible

solutions will be denoted by X, i.e., X = {x ∈ R
n : Ax ≤ b; 0 ≤ xj ≤

1
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Uj , j ∈ N = {1, . . . , n}; xj ∈ {0, 1}, j ∈ I ⊆ N}. An optimal solution or the

best found solution obtained in an attempt to solve the MIP problem will be

denoted by x∗, while its objective value will be denoted by v∗.

Since 0-1 MIP problems are NP-hard, exact methods (e.g., Branch-and-

Bound, Branch-and-Cut, Branch-and-price and so on) are not suitable for

solving large scale problems. Namely, obtaining exact solutions for majority

of 0-1 MIP problems is not possible in a realistic or justifiable amount of

time. More precisely, very often exact methods succeed in finding near-

optimal solution quickly but need a lot of time to reach an optimal one.

Additionally, even if they succeed in reaching an optimal solution quickly they

sometimes consume a significant portion of the total solution time to prove

its optimality. For these reasons, in many practical settings, exact methods

are used as heuristics, stopping them before getting proof of optimality (e.g.,

imposing CPU time limit, maximum number of iterations to be performed,

node limit etc.).

These drawbacks of exact methods have attracted researchers to develop

many heuristic methods to tackle hard 0-1 MIP problems. The advantage

of heuristics is not only their ability to produce high-quality solutions in

short time, but also the fact that they can be easily combined with exact

methods to speed them up (see Chapter 3). The early incumbent solutions

produced by a heuristic can help a Branch-and-Bound algorithm to reduce

the amount of memory needed to store the branch-and-bound tree as well as

to accelerate the exploration of the branch-and-bound tree. So, this survey

focuses on general heuristics for 0-1 MIP problems, not those that exploit the

problem structure (i.e., lagrangian based heuristics (see e.g., [16, 130, 134, 136,

214]), or heuristics proposed for various special combinatorial structures, like

scheduling and location problems, the traveling salesman problem etc. (see

e.g., [71, 172, 188, 220])). Additionally, we do not review general heuristics

for solving classes of problems that include 0-1 MIP problems as a special

case such as heuristics for general MIP, convex integer programming, mixed

integer non-linear programming and so on (for surveys of such heuristics we

refer reader to [21, 26, 153] and references therein). More precisely, we strictly

focus on the stand-alone heuristics for 0-1 MIP as well as those heuristics

that use linear programming techniques or solve series of linear programming
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models or reduced problems, deduced from the initial one, in order to produce

a high quality solution. Our emphasis is on how mathematical programming

techniques can be used for approximate problem solving, rather than on

comparing performances of heuristics.

The rest of the chapter is organized as follows. In the next section we

specify notation that will be used throughout the chapter and present standard

LP basic solution representation. In section 1.3, we review heuristics that

use pivot moves within the search for an optimal solution of the MIP in

order to move from one extreme point to another. Section 1.4 contains the

description of heuristics that use pseudo-cuts in order to cut-off portions of

a solution space already examined in the previous solution process. Section

1.5 is devoted to so-called pump heuristics which purpose is to create a first

feasible solution of the considered MIP. Section 1.6 provides overview of

so-called proximity heuristics that seek a MIP feasible solution of a better

quality in the proximity of the current incumbent solution. The next section

entitled Advanced heuristics” is devoted to heuristics that may be considered

as frameworks for building new heuristics for 0-1 MIP. Finally, the section

1.8 concludes the chapter and indicates possible directions for future work.

1.2 Notation and standard LP basic solution

representation

Let α be a real number from the interval [0, 1] and let near(α) refer to the

nearest integer value of a real value α ∈ [0, 1] i.e., near(α) = ⌊α+ 0.5⌋, where

⌊α+ 0.5⌋ represents the integer part of the number α+ 0.5. Further, let x be

a vector such that xj ∈ [0, 1], j ∈ I. Then, near(x) will represent the nearest

integer (binary) vector relative to the vector x, whose each component is

defined as near(x)j = near(xj) = ⌊xj + 0.5⌋.

We first define a measure ur(α) of integer infeasibility for assigning a value

alpha to a variable by the following rule:

ur(α) = |α− near(α)|
r,
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where exponent r is non negative number (e.g., between 0.5 to 2). Note that

|α − near(α)| = min{α − ⌊α⌋ , ⌈α⌉ − α}. Obviously, such defined function

takes value 0 if α is integer feasible, while otherwise it is strictly positive.

Starting from the previous definition, we may define a partial integer

feasibility of a vector x relative to the subset J ⊂ I as:

ur(x, J) =
∑

j∈J

ur(xj).

The complement of the vector x, such that xj ∈ {0, 1}, j ∈ I, relative to

the subset J ⊂ I is the vector

x′ = x(J)

whose components are given as x′j = 1− xj for j ∈ J and x′j = xj for j /∈ J .

Hamming distance between two solutions x and x′ such that xj, x
′
j ∈

{0, 1}, j ∈ I is defined by

δ(x, x′) =
∑

j∈I

|xj − x
′
j| =

∑

j∈I

xj(1− x
′
j) + x′j(1− xj).

The partial Hamming distance between x′ and x′, relative to the subset J ⊂ I,

is defined as δ(J, x, y) =
∑

j∈J | xj − x
′
j | (obviously, δ(I, x, x

′) = δ(x, x′)).

We denote by e the vector of all ones with appropriate dimension and

by ej the binary vector whose component j equals to 1, while all the other

components are set to 0.

The MIP relaxation of the 0-1 MIP problem relative to a subset J ⊂ I is

expressed as:

(MIP (J))





maximize v = cx

s.t. Ax ≤ b

0 ≤ xj ≤ Uj, j ∈ N = {1, . . . , n}

xj ∈ {0, 1}, j ∈ J ⊂ I ⊆ N

(1.2)
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Given a MIP problem, P max{cx | x ∈ X} and an arbitrary LP feasible

solution x0. The problem reduced from the original problem P and associated

with x0 and a subset J ⊆ I is defined as:

P (x0, J) max{cx | x ∈ X, xj = x0j for j ∈ J such that x0j ∈ {0, 1}} (1.3)

Note that in the case that J = I, the reduced problem will be denoted by

P (x0).

Similarly, given a MIP problem P and a solution x̃ such that x̃j ∈

{0, 1}, j ∈ I. Then,MIP (P, x̃) will denote a minimization problem, obtained

from MIP problem P by replacing the original objective function with δ(x, x̃):

MIP (P, x̃) min{δ(x̃, x) | x ∈ X}. (1.4)

The LP relaxation of such defined MIP problem MIP (P, x̃) will be denoted

by LP (P, x̃).

If C is a set of constraints, we will denote with (P | C) the problem

obtained by adding all constraints in C to the problem P .

It is well known that an optimal solution for the 0-1 MIP problem may

be found at an extreme point of the LP feasible set, and special approaches

integrating both cutting plane and search processes have been proposed to

exploit this fact (Cabot and Hurter, 1968 [28]; Glover, 1968 [88]).

Property 1.2.1 An optimal solution for the 0-1 MIP problem may be found

at an extreme point of the LP feasible set.

Proof. Since all continuous variables are slack variables in the MIP problem

considered here, the MIP feasible set can be viewed as X = {x ∈ R
|I||Ax ≤

b; 0 ≤ xj ≤ 1}. In other words, set X is intersection of a convex set

{x ∈ R
|I||Ax ≤ b} and a cube {x ∈ R

|I||0 ≤ xj ≤ 1}. Therefore, since all 0-1

solutions are located at the extreme points of the unit cube, the all feasible

0-1 solutions are also located at at the extreme points of X.�

The bounded simplex method proposed by Dantzig [57, 58] is an efficient

method to solve the LP- relaxation of the MIP problem by systematically

exploring extreme points of solution space. The search for an optimal extreme
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point is performed by pivot operations, each of which moves from one extreme

point to an adjacent extreme point by removing one variable from the current

basis and bringing another variable (which is not in the current basis) into

the basis. For our purposes, the procedure can be depicted in the following

way. Suppose that the method is currently at some extreme point x0 with

corresponding basis B. The set of indices of all other variables (nonbasic

variables) will be designated with B = N − B. The extreme points adjacent

to x0 have the form

xj = x0 − θjDj for j ∈ B (1.5)

where Dj is a vector associated with the nonbasic variable xj, and θj is the

change in the value of xj that moves the current solution from x0 to xj along

their connecting edge. The LP basis representation identifies the components

Dkj of Dj, as follows

Dkj =





((AB)−1A)kj if k ∈ B

ξ if k = j

0 if k ∈ B − {j}

(1.6)

where AB represents matrix obtained from matrix A by selecting columns

that correspond to the basic variables and ξ ∈ {−1, 1}. We choose the sign

convention for entries of Dj that yields a coefficient for xj of Djj = 1 if xj

is currently at its lower bound at the vertex x0, and of Djj = −1 if xj is

currently at its upper bound at x0.

Note that if we consider an extreme point x0 and its adjacent extreme

points xj for j ∈ B, we can conclude that the points xj for j ∈ B are linearly

independent and that point x0 does not belong to the plane spanned by these

points. Furthermore, this observation holds even when these θj values are

replaced by any positive value. In what follows, the set of extreme points

adjacent to an extreme point x0 will be denoted by

N0(x
0) = {x′ = Pivot(x0, p, q) : p ∈ B, q ∈ B}.
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1.3 Pivot moves based heuristics

1.3.1 Pivot and Complement Heuristic

In 1980, Balas and Martin [8] proposed a Pivot and Complement (P&C)

heuristic for a pure 0-1 MIP (i.e., I = N), which relies on the fact that any 0–1

program may be considered as a linear program with the additional stipulation

that all slack variables other than those in the upper bounding constraints

must be basic. The P&C heuristic starts by solving the LP relaxation of

the initial problem and then performs a sequence of pivots trying to put

all slack variables into the basis while minimizing the objective function.

Once a feasible solution is found, a local search is launched to improve it by

complementing certain sets of 0–1 variables.

If solving LP relaxation of the initial problem does not yield feasible 0-1

solution, in order to find first MIP feasible solution, P&C heuristic performs

pivoting, complementing as well as rounding and truncating in the way

presented in Algorithm 1. More precisely, the P&C heuristic uses four types

of neighborhood structures. Three neighborhood structures are based on

pivot moves and one is based on complement moves:

❼ Neighborhood N1 is based on pivot moves that maintain primal fea-

sibility of the LP relaxation while exchanging a nonbasic slack for

a basic binary variable. The pivot occurs on nonbasic slack column

q ∈ (B ∩ S) \ I and a row p ∈ B ∩ I for a basic binary variable such

that

N1(x) = {x
′ = Pivot(x, p, q) : q ∈ (B ∩ S) \ I, p ∈ B∩I}.

❼ Neighborhood N2 is based on pivot moves that also maintain primal

feasibility of the LP relaxation, but the number of basic binary variables

remains unchanged:

N2(x) = {x
′ = Pivot(x, p, q) : (p, q) ∈ B × B, p, q ∈ S or p, q ∈ I

such that ur(x
′, I) < ur(x, I)}.
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More precisely, the pivots of this type exchange slack for a slack or

a binary variable for a binary variable while reducing the sum of the

integer infeasibilities.

❼ Neighborhood N3 is based on pivot moves that exchange a nonbasic

slack for a basic binary variable violating primal feasibility. It is required

that the slack variable must enter the basis with a positive value:

N3(x) = {x
′ = Pivot(x, p, q) : (p, q) ∈ B × (B ∩ S)}.

❼ Neighborhood N k
4 is based on complement moves. Complementing of

binary variables used in the first phase consists of flipping one or two

variables at once. Complementing is preformed in order to reduce the

infeasibility measured for a solution x as

µ(x) =
∑

i∈B∩I

max{0,−xi}+
∑

i∈B∩I

max{0, xi − 1}.

A set J of nonbasic variables of size k is candidate for complementing

if it minimize the infeasibility

N k
4 (x) = {x(J) : J ⊂ B ∩ I, |J | = k,Ax(J) ≤ b, µ(x)− µ(x(J)) > 0}.

The procedure for finding the first feasible solution is executed iteratively.

In each iteration firstly the search for a feasible solution is performed in the

union of neighborhood structures N1 and N2. If the union is nonempty, the

current incumbent solution is replaced by one from the union and the search

is resumed starting from the new incumbent solution. The solution from the

union that replaces incumbent solution is chosen according to the following

rule. If neighborhood N1 of the incumbent solution is non-empty the best

one, regarding the objective function value, is chosen from it, otherwise if

neighborhood N2 of the incumbent solution is non-empty any solution from it

is chosen. The search in the union N1 ∪N2 of the current incumbent solution

is terminated either if the union is empty or the current incumbent solution

is MIP feasible. If the obtained solution is MIP feasible or its rounding or
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truncating yields the feasible MIP solution the overall procedure is stopped.

Otherwise, the procedure selects a solution from the neighborhood N3 of the

current incumbent solution that deteriorates primal feasibility as little as

possible. After that the search is continued in the union of neighborhoods N 1
4

and N 2
4 in order to possible restore primal feasibility. If procedure succeeds

to repair primal feasibility, the obtained solution is used as the input for the

next iteration or the overall procedure is stopped. Stopping occurs if the

obtained solution or any of solutions obtained by its rounding and truncating

is MIP feasible. On the other hand, if procedure does not succeed to repair



CHAPTER 1. SURVEY 10

primal feasibility, the failure of the procedure occurs.

Algorithm 1: Finding a feasible solution FS()

Function FS();

1 Solve LP relaxation to obtain an optimal LP basic solution x;

2 if x ∈ {0, 1}n then

Stop = True; // it is optimal;

else

3 Set x = x;Stop = False;

end

4 while Stop = False do

5 while N1(x) ∪N2(x) 6= ∅ and x /∈ {0, 1}n do

6 if N1(x) 6= ∅ then

select x′ = argmax{cx : x ∈ N1(x)};

else

7 if N2(x) 6= ∅ then

select x′ ∈ N2(x);

end

end

8 set x = x′;

end

9 if {x, near(x), ⌊x⌋} ∩X 6= ∅ then

Stop = True; Break;

end

10 select x′ = argmin{µ(y) : y ∈ N3(x)}; set x = x′;

11 while N 1
4 (x) ∪N

2
4 (x) 6= ∅ and x infeasible do

12 if N 1
4 (x) 6= ∅ then
select x′ = argmin{µ(y) : y ∈ N 1

4 (x)}

else

if N 2
4 (x) 6= ∅ then
select x′ ∈ N 2

4 (x)

end

end

13 set x = x′;

end

14 if x infeasible then

Stop = Fail;

else

15 if {x, near(x), ⌊x⌋} ∩X 6= ∅ then

Stop = True;

end

end

end
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If Pivot and Complement heuristic succeeds to find a MIP feasible solution,

an improvement phase is launched to possible improve the obtained solution.

The improvement phase Algorithm 2 used inside Pivot and Complement

heuristic is based on the variable fixing and complementing. Note that the

improvement phase may be seen as a variable neighborhood descent approach

which will be described in Chapter 2. The Improvement Phase firstly attempts

to fix as many binary variables at their optimal values as possible. The choice

of variables to be fixed is made according to the following rule. If the reduced

cost of a nonbasic binary variable equals or exceeds the gap between the

current lower and upper bounds on the objective function value, then its

current value is the optimal and thus the variable is fixed. Complementing

used in the improvement phase consists of complementing one, two or three

variables at once. The set of variables to be flipped is determined in order to

improve the current objective function value as follows. Let x be a current

solution, then a set J ⊂ I of variables, is a candidate for complementing if

∑

j∈J

(1− 2xj)cj ≥ 1 (1.7)

and ∑

j∈J

(1− 2xj)aij ≤ bi −
∑

j /∈J

xjaij, ∀i ∈ {1, . . .m}. (1.8)

In other words, in the improvement phase, the neighborhood structures

N ′k
4(x) = {x(J) : J ⊂ I, |J | = k,Ax(J) ≤ b and J satisfy (1.7) and (1.8)}.
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are explored.

Algorithm 2: Improving a feasible solution x

Function LS(x);

1 Stop = False;

2 while Stop = False do

3 Fix all 0-1 values in x that can be fixed;

4 if N ′1
4(x) 6= ∅ then

select x′ = argmax{cx : x ∈ N ′1
4(x)};

set x = x′;

continue;

end

5 if N ′2
4(x) 6= ∅ then

select x′ ∈ N ′2
4(x);

set x = x′;

continue;

end

6 if N ′3
4(x) 6= ∅ then

select x′ ∈ N ′3
4(x);

set x = x′;

continue;

end

Stop = True;

end

In 1989, Aboudi et al. [1] proposed an enhancement of Pivot and Com-

plement heuristic by adding a objective function value constraint. In that

way they obtained a new heuristic able to provide better solutions in shorter

time than a basic Pivot and Complement heuristic.

In 2004, Balas et al. [12] proposed an extension of the Pivot and Com-

plement heuristic called Pivot and Shift for mixed integer programs. The

Pivot and Shift heuristic consists of two phases: a search phase that aims

to find an integer feasible solution and an improvement phase that attempts

to improve the solution returned by the search phase. In the search phase
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a feasible solution is possible constructed by examining three neighborhood

structures based on the pivot moves and one inspired by the local branching.

If no replacement occurs searching one of the neighborhoods the search for a

feasible solution is resumed exploring the small neighborhood of the current

solution. The small neighborhood is created around the partial solution

defined by those variables whose values are close to an integer. Specifically,

let x be the current LP feasible solution, the search is done using MIP solver

in the neighborhood defined as follows:

N5(x) = {x
′ ∈ X : |

∑

j∈J

(x′j − near(xj))| ≤ 1}

where J = {j ∈ B ∩ I : u1(xj) ≤ β} with β chosen to be a small positive

value, e.g., 0.1.

If the search phase returns a MIP feasible solution, this solution is improved

further in the improvement phase. The procedure tries to improve the current

solution value by shifting some of the nonbasic integer-constrained variables up

or down. Note that shifting the binary nonbasic variables, actually represents

their complementing. Besides shifting one nonbasic variable, the procedure

examines simultaneous shifting of two or three nonbasic variables. The

variable or the set of variables to be shifted is determined as one that improve

the objective function value while keeping the solution feasible. As soon as

an improving shift is detected it is executed and the search is continued. The

whole process is repeated as long as there is an improving shift. In other

words, at each stage of shifting phase a neighborhood structure defined as:

N k
6 (x) = {x

′ ∈ X : J ⊆ B ∩ I, |J | = k; δ(x, x′) = δ(J, x, x′) = k; cx′ > cx}

is explored. As soon as shifting of variables is finished obtaining some solution

x, that solution is further improved executing a large neighborhood search.

A large neighborhood search consists of the exploration of neighborhood

structure defined as

N7(x) = {x
′ ∈ X : |

∑

j∈I

(x′j − xj)| ≤ k},
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where k is a parameter, using the MIP solver. After, exhaustive testing the

authors detected that the most suitable value for the parameter k is five.

1.3.2 Pivot and Tabu Heuristic

Tabu search (TS) [92] is a metaheuristic for solving optimization problems. It

has its origins in heuristics based on surrogate constraint methods and cutting

plane approaches that systematically violate feasibility conditions (Glover,

1977) [90] and a steepest ascent / mildest descent formulation developed by

Pierre Hansen (1986) [115].

Since an optimal solution for the 0-1 MIP problem may be found at

an extreme point of the LP feasible set (see Proposition 1.2.1), Glover and

Lokketangen [154] proposed a Tabu Search based heuristic (Algorithm 3) for

solving 0–1 MIP that exploits this fact. The procedure iteratively moves from

one extreme point to an adjacent extreme point by executing a pivot move.

Each pivot move is assigned a tabu status and a merit figure expressed as

a function of the integer infeasibility and the objective function value. The

move to be executed is then chosen as one that has the highest evaluation

from those in the candidate set. During the search for a pivot move to be

preformed the current best integer solution x∗ is updated as soon as some
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better solution is encountered.

Algorithm 3: Tabu search for 0-1 MIP

Function TS();

1 Solve the LP relaxation to obtain an optimal LP basic solution x;

2 if x MIP feasible then

return x;

end

3 Set x = x;

4 v∗ = −∞;

while Stopping criterion is not satisfied do

5 Consider the neighborhood of x that contains feasible pivot moves

that lead to adjacent basic LP feasible solutions;

6 If a candidate move would lead to an 0-1 MIP feasible solution x′

such that cx′ > v∗, record x as the new x∗ and set v∗ = cx′ ;

7 Select the pivot move with the highest move evaluation, applying

tabu restrictions and aspiration criteria;

8 Execute the selected pivot, updating the associated tabu search

memory and guidance structures;

end

Note that the method may not necessarily visit the best MIP feasible

neighbor of the current solution, since the move evaluation of Step 2 depends

on other factors in addition to the objective function value (see below).

Obviously, three elements are required to implement Tabu Search proce-

dure for solving 0–1 MIP:

1. neighborhood structure (the candidate list of moves) to examine;

2. the function for evaluating the moves;

3. the determination of rules (and associated memory structures) that

define tabu status.

❼ Neighborhood structure: Let x0 denote the current extreme point

with the set of basic variables B. The neighborhood structure explored
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by Tabu search which contains extreme points adjacent to the given

extreme point x0, is defined as:

N0(x
0) = {x′ = Pivot(x0, p, q) : q ∈ B, p ∈ B} =

{xh = x0 −Dhθh forh ∈ B}

where Dh is a vector associated with the nonbasic variable xh, and θh

is the change in the value of xh that moves the current solution from

x0 to xh along their connecting edge (see Section 1.2). We thus start

the search from an integer infeasible point, and may also spend large

parts of the search visiting integer infeasible solution states. However,

for large problem examination of entire neighborhood is not possible

in a reasonable amount of time. Therefore, the strategies described in

Glover et al. (1993) [104] and in Glover (1995) [94] are used in order to

reduce neighborhood size.

❼ Move evaluation: The move evaluation function is composite, based

on two independent measures. The first measure is the change in

objective function value when going from x0 to xh ∈ N0(x
0), and

the second measure is the change in integer infeasibility. Restricting

consideration to h ∈ B̄, we define

∆v(h) = cxh − cx0

∆u(h) = ur(x
0, I)− ur(x

h, I).

Note that it is not necessary to execute a pivot to identify xh or the

values of ur(x
h, I) and cxh, since only the vector Dh, the scalar θh, and

the current solution x0 are required to make this determination.

Overall procedure for determining the best solution works in the fol-

lowing way. Firstly, all solutions are classified in four groups according

to the sign of the change in the objective value ∆v(h) and the change

in the integer infeasibility ∆u(h) that would occur replacing current

solution by one neighboring. After that the best solution is determined
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using some of the following tests:

– Weighted sum: To each solution xh, the value ∆(h) = ∆v(h) +

∆u(h) is assigned. After that the first non tabu solution with the

highest value of ∆(h) is accepted.

– Ratio test: For each solution type, of 4 aforementioned, ratio of

∆v(h) and ∆u(h) is calculated, firstly. After that the best solution

of each type is determined, and finally the best one among them,

using the specific rules (see Glover et al.[154]), is accepted.

– Weighted sum solution evaluation, sorted by solution type:

The solutions are evaluated as a weighted sum (i.e., ∆(h) =

α∆v(h) + β∆u(h)), but first sorted according to solution type,

and then according to the solution evaluation within each solution

type group. To determine the best solution to accept the same

rule as for the ratio test is used.

– Ratio test favoring integer feasibility: This test is intended

to drive the search more strongly to achieve integer feasibility than

the basic ratio test. Therefore it gives priority to solutions that

reduce the integer infeasibility.

❼ Tabu status: The tabu status is created according to two tabu records,

Recency(j) and Frequency(j) for each variable xj, j ∈ N . Recency(j)

is used to record recency information, while Frequency(j) to measure

the number of iterations that xj has been basic. At the beginning

Recency(j) is set to a large negative number and then, whenever xj

becomes nonbasic, the value of Recency(j) is set to the number of

iteration at which that change occurs. If at some iteration Tabu(j)

value is changed the status of variable xj is set to Tabu for a predefined

number of iterations. Similarly, a nonbasic variable xj is penalized in

order not to be chosen to become basic according to the value either of

Frequency(j) or Frequency(j)/Current Iteration.
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1.3.3 Pivot Cut and Dive Heuristic

In 2007, Eckstein and Nediak [65] presented a four layered heuristic called

Pivot Cut and Dive (Algorithm 4) for pure 0–1 MIP programming problems.

In the first layer gradient-based pivoting is applied, built around a concave

merit function that is zero at integer-feasible points and positive elsewhere

in the unit cube (noting xj ∈ {0, 1} is equivalent to xj(1 − xj) = 0). The

general form of such merit function is given in the following way. Consider a

collection of continuously differentiable concave functions φi : R→ R, i ∈ I,

such that φi(0) = φi(1) = 0 and φi(x) > 0 for all x ∈]0, 1[. Then a concave

merit function has a form ψ(x) =
∑

i∈I φi(xi).

Let the reduced costs for any cost vector t be denoted by z(t). Then for

previously defined merit function the following statements holds:

Property 1.3.1 For a given LP basic solution x0 and feasible direction

Dj, j ∈ B̄ from x0 holds z(∇ψ(x0)) = ∇ψ(x0)Dj. Additionally, from the

concavity of ψ(·) and its differentiability at x0, we have ψ(xh) ≤ ψ(x0) +

θhzh(∇ψ(x
0)), h ∈ B. Moreover, for linear ψ, the last relation holds with

equality and therefore for a fixed vector f ∈ R
n with fDj 6= 0,we have

ψ(xj)− ψ(x0)

fxj − fx0
≤
zj(∇ψ(x

0))

zj(f)
.

Based on this proposition, the procedure attempts to round a fractional

solution (LP solution) via primal simplex pivots deteriorating its objective

function value as less as possible. In order to achieve that three types of

pivots are applied in a sequence after exhausting pivots of the previous type:

❼ Pivot 1. Pivots that decrease the merit function but do not decrease the

objective function value. These pivots define the following neighborhood

structure:

N ′′
1(x) = {x

′ = Pivot(x, p, q) : q ∈ B, p ∈ B, ψ(x′) < ψ(x), cx′ ≥ cx}

❼ Pivot 2. Pivots that locally improves the merit function, at the least

possible cost in terms of the objective function. Using these pivots the
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following neighborhood structure is explored:

N ′′
2(x) = {x

′ = Pivot(x, p, q) : q ∈ B, p ∈ B, zq(∇ψ(x
0)) < 0}

❼ Pivot 3. (probing layer) In probing phase possible pivots are explic-

itly tested until a satisfactory improving pivot is found or the list of

possible entering variables is exhausted. In order not to spend a lot of

time, inspecting is performed according to the list that gives priority to

the candidate entering variables xj that has low values of zj(∇ψ(x
0))

and zj(c). Before accepting some pivot move, the new iterate x that

would result is computed and the checking whether is ψ(x) < ψ(x0) or

not is performed. If ψ(x) ≥ ψ(x0) we abandon the pivot and proceed

to the next in the list. On the other hand, if the pivot passes this test,

the objective sacrifice rate is calculated as :

cx− cx0

ψ(x0)− ψ(x)
.

If this sacrifice rate is acceptable in relation to the prior history then

x is accepted as the next iterate and no further pivots are probed.

Otherwise, probing continues. If none of pivots was accepted, the

rounding process fails. Note that if pivot 3 is executed the resulting

solution will belong to the neighborhood

N ′′
3(x) = {x

′ = Pivot(x, p, q) : q ∈ B, p ∈ B, ψ(x′) < ψ(x)}.

In the case of the failure of the probing layer a convexity cut violated

by the current vertex and all adjacent vertices is generated (third layer). If

the problem obtained adding previous cut is feasible, the rounding procedure

is repeated. However, if the probing fails, and the resulting convexity cut

appears excessively shallow the final layer of the heuristic: a recursive, depth-

first diving is applied in order to possible recover feasibility. If the feasibility

is successfully repaired the rounding procedure is repeated, while otherwise,
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the procedure fails (no feasible solution of (sub)problem is found).

Algorithm 4: Pivot, cut and dive heuristic for 0-1 MIP

Function Pivot&cut&dive(P );

1 Solve the LP relaxation of P to obtain an optimal LP basic solution x;

2 Stop = False;

3 Integer = False;

4 Set x = x;

5 while Stop=False and Integer = False do

6 if x MIP feasible then
Integer = True;

end

7 if N ′′

1(x) 6= ∅ then

8 select best x′ ∈ N ′′

1(x) according to imposed rule;

9 set x = x′;

10 continue;

end

11 if N ′′

2(x) 6= ∅ then

12 select best x′ ∈ N ′′

2(x) according to imposed rule;

13 set x = x′;

14 continue;

end

15 if N ′′

3(x) 6= ∅ then

16 select first x′ ∈ N ′′

3(x) according to imposed rule;

17 set x = x′;

18 continue;

end

19 Stop = True;

end

20 if Integer=False then

21 Q = (P | convexity cut);

22 if Q is feasible then

23 Pivot&cut&dive(Q);

else

24 Try to repair feasibility of Q ;

25 if Feasibility repaired then

26 Pivot&cut&dive(Q);

else

27 Report failure;

end

end

end
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1.4 Pseudo-cut based heuristics

1.4.1 Local branching heuristics

In 2003, Fischetti and Lodi [74] proposed a Local Branching (LB) heuristic

for 0–1 MIP based on the soft variable fixing and the observation that the

neighborhood of a feasible MIP–solution often contains solutions of possibly

better qualities. They introduced a so-called branching constraint in order to

define a neighborhood of a given feasible solution and a branching criterion

within an enumerative scheme. Although the Local Branching heuristic had

been conceived as an improvement heuristic for 0–1 MIP, the same authors

showed in [75] that it could be used as a heuristic for building a first feasible

solution.

So-called variable fixing or diving consists of eliminating integer variables

by fixing them to some promising values and resolving the new LP problem,

in order to determine the next fixing candidates. This procedure is iterated,

and thereby the subproblems get smaller and smaller. Unfortunately, diving

heuristics often end in an infeasible subproblem. This is because of the

fact that it is difficult in advance to estimate which value to assign to

some variable. So, a better option is to perform so-called soft fixing in

which it is required that a certain number of variables, take the same values

as in the incumbent solution, without fixing any of those variables. The

Local Branching heuristic performs soft variable fixing adding a single linear

constraint to the original problem. The added constraint δ(x, x̃) ≤ k defines

so-called k − opt neighborhood of the incumbent solution x̃ that is stated as:

N k(x̃) = {x ∈ X : δ(x, x̃) ≤ k}.

Additionally, this constraint may be used as a branching strategy. In

that case the branching rule would be δ(x, x̃) ≤ k or δ(x, x̃) > k. With this

branching rule solution space will be divided into two parts. The part defined

δ(x, x̃) ≤ k may be relatively small with appropriately chosen k.

The LB algorithm (Algorithm 5) starts with the original formulation, and

CPLEX is used to get a feasible solution, i.e., an initial solution x̃. Then the

k-opt neighborhood of that solution is explored using CPLEX respecting the
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predefined time limit. If a better solution x̃′ is found, branching is performed.

New problem is generated reversing the constraint that defines the k-opt

neighborhood of x̃ (i.e., explored part of solution space is excluded) and adding

new branching constraint centered around the new incumbent x̃′ that defines

its k-opt neighborhood. This branching procedure is iterated until there is no

improvement in the objective function value. Additionally, the LB heuristic

includes an intensification and a diversification phase. In the intensification

phase if the solution is not improved by CPLEX within the imposed time

limit, the size of neighborhood is reduced (for example, halved) and CPLEX is

called again. On the other hand, in the diversification phase a new solution is

generated for the next branching step. This solution is obtained as a feasible

solution of the program obtained increasing the right-hand side value of the

last added branching constraint (for example for k/2), adding new constraint

δ(x, x̃) ≥ 1 and deleting all other branching constraints. This step is invoked

either if CPLEX proves infeasibility or it does not find any feasible solution.

Algorithm 5: Local Branching for 0-1 MIP

Function LB(k0);

1 Find an initial solution x̃ by CPLEX;

2 Set k = k0;

3 Set Y = X ;

4 repeat

5 if CPLEX finds x̃′ ∈ Y ∩N k(x̃) better than x̃ then

6 Y = Y −N k(x̃);

7 set x̃ = x̃′;

else

8 if Y ∩N k(x̃) 6= ∅ then

9 k = ⌊k/2⌋;

else

10 Set k = k + ⌊k/2⌋;

11 Y = {x ∈ X : δ(x, x̃) ≥ 1};

end

end

until Stopping criterion is satisfied ;

return x̃;

In 2006, Hansen et al. [124] proposed variable neighborhood search (VNS)
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heuristic combined with LB, called Variable Neighborhood Branching, for

solving mixed-integer programs which may be seen as a generalization of

Local Branching. The main advantage of the proposed VNS comparing to

the LB heuristic is the fact that it performs more systematic neighborhood

exploration than Local Branching.

1.4.2 Iterative heuristics based on relaxations and pseudo-

cuts

In 2011, Hanafi and Wilbaut [112, 221], proposed several convergent heuristics

for 0–1 MIP problems, consisting of generating two sequences of upper

and lower bounds by solving LP or MIP relaxations and sub-problems (see

Algorithm 6). The process continues until the established bounds guarantee

that no better solution solution could be found. Unfortunately, in practice all

of these heuristics turned out to be very slow and therefore the authors used

them as heuristics with a maximum number of iterations.

Algorithm 6: Framework for convergent heuristics for 0–1 MIP problems

Function Convergent heuristic(P );

1 Set Q = P ;

2 Choose a relaxation R of Q;

3 repeat

4 Solve the relaxation R of Q to obtain an optimal solution x̄; //Lower bound

5 Generate a solution x0, solving the reduced problem of Q associated with the

solution x̄; //Upper bound

6 if x0 better than x∗ then

7 Set x∗ = x0;

end

8 Add pseudo cut(s) to Q in order to exclude already generated solution x0;

until optimality is proven or Stopping criterion is satisfied ;

return x∗;

Hanafi and Wilbaut proposed several variants of a convergent heuristic

[112, 221]:

❼ Linear programming-based algorithm (LPA). At each iteration,

the LPA algorithm solves the LP-relaxation of the current problem Q

to generate an optimal solution x̄. After that the reduced problem P (x̄)
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is generated from the initial problem P by setting the 0-1 variables

to their value in the solution x̄ if these variables are integers. Then

the associated reduced problem P (x̄) is solved exactly to generate a

feasible solution x0 for the original problem P . If the current best

feasible solution x∗ is not optimal, the current problem Q is enriched by

a pseudo-cut to avoid generating the optimal basis of the LP-relaxation

more than once. The process stops if the difference between the upper

and the lower bounds is less than 1, i.e., if the condition cx̄− cx∗ < 1 is

satisfied.

❼ Mixed integer programming-based algorithm (MIPA). This

algorithm is derived from LPA algorithm solving MIP relaxation of the

current problem Q, instead of solving its LP relaxation. In the first

iteration of the algorithm, the mixed integer programming relaxation

is defined from an optimal solution of the LP-relaxation forcing the

fractional variables of the solution of the LP relaxation to be integers in

the next iteration. Then the fractional variables in an optimal solution

of the current MIP-relaxation are constrained to be integers in the next

iteration.

❼ Iterative relaxation-based heuristic (IRH). At each iteration IRH

heuristic solves LP relaxations of the current problem Q and obtains

an optimal solution x̄. After that it finds an optimal solution, x̃ of

MIP relaxation based on the solution x̄. In the next step, two reduced

problem P (x̄) and P (x̃) are solved and therefore two pseudo-cuts are

added to the problem Q. Whole process is repeated predefined number

of iterations or until proving the optimality of the current best feasible

solution.

❼ Iterative Independent relaxation-based heuristic (IIRH). IIRH

requires an initial phase in order to define the first MIP-relaxation as in

the MIPA. After this initial phase, the LPA and the MIPA are applied

simultaneously. The best lower and upper bounds generated during the

process are then memorized.
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1.4.3 Hybrid Variable Neighborhood decomposition

search heuristics

In 2010, Lazic et al. [151] proposed a hybrid heuristic for solving 0-1 mixed

integer programs which combines variable neighborhood decomposition search

(VNDS) with the CPLEX MIP solver (see Algorithm 8). The algorithm

starts solving the LP-relaxation of the original problem obtaining an optimal

solution x̄. If the optimal solution x̄ is integer feasible the procedure returns

x̄ as an optimal solution of the initial problem. Otherwise, an initial feasible

solution x is generated. At each iteration of the VNDS procedure, the

distances δj = |xj − x̄j| between the current incumbent solution values and

corresponding LP-relaxation solution values are computed. Those distance

values serve as criteria of choosing variables that will be fixed. Namely,

at each iteration k variables which indices correspond to the indices of k

smallest δj values, are fixed to values at their values in the current incumbent

solution x. After that the resulting problem is solved using the CPLEX MIP

solver. If an improvement of the current solution is achieved, a Variable

Neighborhood Descent branching is launched as the local search in the whole

solution space and the process is repeated. If not, the number of fixed

variables in the current subproblem is decreased. The pseudo-code is given in

Algorithm 8. The input parameters for the VNDS algorithm are: the MIP

problem P ; the parameter d, which controls the change of neighbourhood

size during the search process; parameters tmax, tsub, tvnd, tmip, rmax which

represent the maximum running time allowed for VNDS, time allowed for

solving subproblems, time allowed for call to the VND-MIP procedure, time

allowed for call to the MIP solver within the VND-MIP procedure, respectively.

Finally, the parameter rmax represents maximum size of neighbourhood to be

explored within the VND-MIP procedure. In the pseudo-code the statement of

the form y = FindFirstFeasible(P ) denotes a call to a generic MIP solver,

an attempt to find a first feasible solution of an input problem P . Further,

the statement of the form y = MIPsolve(P, t, x∗) denotes a call to a generic

MIP solver to solve input problem P within a given time limit t starting from
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the the best solution found x∗.

Algorithm 7: Variable Neighborhood Descent branching

Function VNDS(P, tvnd, tmip, rmax, x
′);

1 Set r = 1, tstart = CpuTime(), t = 0;

2 Set Q = P ;

3 while t < tvnd and r ≤ rmax do

4 set time limit = min{tmip, tvnd − t};

5 Q = (Q|{δ(x′, x) ≤ r});

6 x′′ = MIPsolve(Q, time limit, x′);

7 switch solution status do

8 case OptSolFound:

9 Reverse last pseudo-cut into δ(x′, x) > r + 1;

10 x′ = x′′, r = 1;

11 case feasibleSolFound:

12 Replace last pseudo-cut with δ(x′, x) ≥ 1;

13 x′ = x′′, r = 1;

14 case ProvenInfeasible:

15 Reverse last pseudo-cut into δ(x′, x) > r + 1;

16 r = r + 1;

17 case nofeasiblesolfound:

18 return x′′;

endsw

19 set tend = CpuTime(), t = tend − tbegin;

end

20 return x′′;
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Algorithm 8: Variable neighborhood decomposition search heuristic

for 0-1 MIP
Function VNDS(P, d, tmax, tsub, tvnd, tmip, rmax);

1 Solve the LP relaxation of P to obtain an optimal LP basic solution x;

2 if x MIP feasible then return x;

3 x∗ = FindFirstFeasible(P );

4 set tstart = CpuTime(); t = 0;

5 while t < tmax do

6 δj =| xj − xj |; index xj so that δj ≤ δj+1, j = 1, . . . , |I| − 1;

7 set q =| {j ∈ I | δj 6= 0} |;

8 set kstep = near(q/d), k = p− kstep;

9 while t < tmax and k > 0 do

10 x′ = MIPsolve(P (x̃, {1, . . . , k}), tsub, x
∗) ;

11 if cx′ > cx∗ then

12 x = VND-MIP(P, tvnd, tmip, rmax, x
′);

13 break;

else

14 if k − kstep > p− q then kstep = max{near(k/2), 1};

15 set k = k − kstep;

16 set tend = CpuTime(), t = tend − tbegin;

end

end

end

17 return x∗;

In 2010, Hanafi et al. [114] proposed a hybrid Variable Neighborhood

decomposition search heuristic that constitutes an improved version of Vari-

able Neighborhood decomposition search heuristic proposed in [151]. The

enhancement is achieved by restricting the search space by adding pseudo

cuts, in order to avoid multiple explorations of the same areas. A sequence

of lower and upper bounds on the problem objective is produced by adding

pseudo-cuts, thereby reducing the integrality gap.
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1.5 Pump heuristics

1.5.1 Feasibility Pump

The Feasibility Pump (FP) heuristic (Algorithm 9) was proposed by Fischetti

et al. in [77]. The proposed heuristic turned out to be very efficient in

finding a feasible solution to 0-1 MIP. The work of the FP heuristic may be

outlined as follows. Starting from an optimal solution of the LP-relaxation,

the FP heuristic generates two sequences of solutions x and x̃, which satisfy

LP-feasibility and integrality feasibility, respectively. These sequences are

built iteratively. At each iteration, a new binary solution x̃ is obtained from

the fractional x by simply rounding its integer-constrained components to the

nearest integer, i.e., x̃ = near(x), while a new fractional solution x is defined

as an optimal solution of the LP (MIP, x̃) problem, i.e.,:

min{δ(x, x̃)|Ax ≤ b, 0 ≤ xj ≤ Uj, j ∈ N}. (1.9)

Thus, a new fractional solution x is generated as the closest feasible LP

solution with respect to the solution x̃. However, after a certain number

of iterations the FP procedure may start to cycle, i.e., a same sequence of

points x and x̃ is visited again and again. That issue is resolved applying

a random perturbation move of the current solution x̃ as soon as cycle is

detected. In the original implementation, that is performed flipping a random

number t ∈ [T/2, 3T/2] entries x̃j, j ∈ I with the highest value |xj − x̃j|,

where T is predefined parameter. The procedure finishes its work as soon

as a feasible solution is detected, or some of stopping criteria are fulfilled.

The stopping criteria usually contain a running time limit and/or the total
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number of iterations.

Algorithm 9: Feasibility Pump for 0-1 MIP

Function FP(P, T );

1 Solve the LP relaxation of P to obtain an optimal LP basic solution x;

2 repeat

3 x̃ = near(x);

4 Solve the LP (P, x̃) problem to obtain an optimal solution x;

5 if cycle detected then

6 choose a random number t ∈ [T/2, 3T/2];

7 flip values of t variables with the highest values |xj − x̃j | ;

end

until x is MIP feasible or stopping criterion is satisfied ;

return x;

This basic Feasibility Pump was extended to the general feasibility pump,

a heuristic for general mixed-integer problems [18]. The general feasibility

pump employs the distance function in which the general integer variables

also contribute to the distance. On the other hand, in order to enhance FP

so that it returns a good-quality initial solution, so called Objective feasibility

pump was proposed in [2]. The idea of the objective FP is to include the

original objective function as a part of the objective function of the problem

considered at a certain pumping cycle of FP. At each pumping cycle, the

actual objective function is computed as a linear combination of the feasibility

measure and the original objective function. Results reported in [2] indicate

that this approach usually yields considerably higher-quality solutions than

the basic FP. However, it generally requires much longer computational time.

1.5.2 Variable Neighborhood Pump

In 2010, Hanafi et al. [113] proposed a new method for finding an initial

feasible solution for Mixed integer programs called Variable Neighborhood

Pump (VNP) (Algorithm 10), that combines Variable neighborhood branching

(VNB) [124] and Feasibility pump heuristics [77]. The VNP works in the

following way. Firstly, an optimal solution x of the LP-relaxation of the initial

0-1 MIP problem is determined. After that, the obtained solution is rounded
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and on it is applied one iteration of the FP pumping cycle in order to obtain

a near-feasible vector x̃. Then on the solution x̃, variable neighbourhood

branching, adapted for 0-1 MIP feasibility [113], is applied, in an attempt to

locate a feasible solution of the original problem. If VNB does not return a

feasible solution a pseudo-cut is added to the current subproblem in order

to change the linear relaxation solution, and the process is iterated. VNB

returns either a feasible solution or reports failure and returns the last integer

(infeasible) solution.

Algorithm 10: Variable Neighborhood Pump for 0-1 MIP

Function VNP(P );

1 Set proceed1 = true;

2 while proceed1 do

3 Solve the LP relaxation of P to obtain an optimal LP basic solution x;

4 Set x̃ = near(x);

5 Set proceed2 = true;

6 while proceed2 do

7 if x is integer then return x;

8 Solve the LP (P, x̃) problem to obtain an optimal solution x;

9 if x̃ 6= near(x) then

x̃ = near(x);

else

10 Set proceed2 = false;

end

end

11 kmin = ⌊δ(x̃, x)⌋; kmax = ⌊(|I| − kmin)/2⌋; kstep = (kmax − kmin)/5;

12 x′ = VNB(P, x̃, kmin, kstep, kmax);

13 if x′ = x̃ then

14 P = (P | δ(x, x) ≥ kmin); Update proceed1;

else

15 return x′;

end

end

16 Output message: ”No feasible solution found”; return x̃;
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1.5.3 Diving heuristics

In 2014, Lazic et al. [152] proposed two diving heuristics for obtaining a first

MIP feasible solution. Diving heuristics are based on the systematic hard

variable fixing (diving) process, according to the information obtained from

the linear relaxation solution of the problem. They rely on the observation

that a general-purpose MIP solver can be used not only for finding (near)

optimal solutions of a given input problem, but also for finding the initial

feasible solution.

The variable neighbourhood (VN) diving algorithm begins by obtaining

the LP-relaxation solution x of the original problem P and generating an

initial integer (not necessarily feasible) solution x̃ = near(x) by rounding

the LP-solution x. If the optimal solution x is integer feasible for P , VN

diving stops and returns x. At each iteration of the VN diving procedure,

the distances δj =| x̃j − xj | from the current integer solution values (x̃j)j∈I

to the corresponding LP-relaxation solution values (xj)j∈I are computed and

the variables x̃j, j ∈ I are indexed so that δ1 ≤ δ2 ≤ . . . ≤ δ|I|. Then, VN

diving successively solve the subproblems P (x̃, {1, . . . , k}) obtained from the

original problem P , where the first k variables are fixed to their values in

the current incumbent solution x̃. If a feasible solution is found by solving

P (x̃, {1, . . . , k}), it is returned as a feasible solution of the original problem

P . Otherwise, a pseudo-cut δ({1, . . . , k}, x̃, x) ≥ 1 is added in order to avoid

exploring the search space of P (x̃, {1, . . . , k}) again, and the next subproblem

is examined. If no feasible solution is detected after solving all subproblems

P (x̃, {1, . . . , k}), kmin ≤ k ≤ kmax, kmin = kstep, kmax = |I| − kstep, the linear

relaxation of the current problem P , which includes all the pseudo-cuts added

during the search process, is solved and the process is iterated. If no feasible

solution has been found due to the fulfillment of the stopping criteria, the

algorithm reports failure and returns the last (infeasible) integer solution.

The pseudo-code of the VN diving heuristic is given in the Algorithm

11. The input parameters for the VN diving algorithm are the input MIP

problem P and the parameter d, which controls the change of neighbourhood

size during the search process. In the pseudo-code the statement of the form

y = FindFirstFeasible(P, t) denotes a call to a generic MIP solver, an
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attempt to find a first feasible solution of an input problem P within a given

time limit t. If a feasible solution is found, it is assigned to the variable y,

otherwise y retains its previous value.

Algorithm 11: Variable neighbourhood diving for 0-1 MIP feasibility.

Function VNdiving(P, d);

1 Set proceed1 = true, proceed2 = true; Set timeLimit for subproblems;

2 while proceed1 do

3 Solve the LP relaxation of P to obtain an optimal LP basic solution x;

4 x̃ = near(x);

5 if x = x̃ then return x̃;

6 δj =| x̃j − xj |; index xj so that δj ≤ δj+1, j = 1, . . . , |I| − 1;

7 Set nd =| {j ∈ I | δj 6= 0} |, kstep = near(nd/d), k = |I| − kstep;

8 while proceed2 and k ≥ 0 do

9 Jk = {1, . . . , k}; x′ = FindFirstFeasible(P (x̃, Jk), timeLimit);

10 if P (x̃, Jk) is proven infeasible then P = (P | δ(Jk, x̃, x) ≥ 1);

11 if x′ is feasible then return x′;

12 if k − kstep > |I| − nd then kstep = max{near(k/2), 1};

13 Set k = k − kstep;

14 Update proceed2;

end

15 Update proceed1;

end

16 Output message: ”No feasible solution found”; return x̃;

In the case of variable neighbourhood diving, a set of subproblems P (x̃, Jk),

for different values of k, is examined in each iteration until a feasible solution

is found. In the single neighbourhood diving procedure, we only examine one

subproblem P (x̃, Jk) in each iteration (a single neighbourhood, see Algorithm

12). However, because only a single neighbourhood is examined, additional

diversification mechanisms are required. This diversification is provided

through keeping the list of constraints which ensures that the same reference

integer solution x̃ cannot occur more than once (i.e., in more than one

iteration) in the solution process. An additional MIP problem Q is introduced

to store these constraints. In the beginning of the algorithm, Q is initialized

as an empty problem (see line 4 in Algorithm 12). Then, in each iteration, if

the current reference solution x̃ is not feasible (see line 8 in Algorithm 12),

constraint δ(x̃, x) ≥ ⌈δ(x̃, x)⌉ is added to Q (line 9). This guarantees that
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future reference solutions can not be the same as the current one, since the

next reference solution is obtained by solving the problem MIP(Q, near(x))

(see line 17), which contains all constraints from Q, (see definition (3.9)).

The variables to be fixed in the current subproblem are chosen among those

which have the same value as in the linear relaxation solution of the modified

problem LP(x̃), where x̃ is the current reference integer solution (see lines 7

and 11). The number of variables to be fixed is controlled by the parameter

α (line 11). After initialization (line 5), the value of α is updated in each

iteration, depending on the solution status returned from the MIP solver. If

the current subproblem is proven infeasible, the value of α is increased in order

to reduce the number of fixed variables in the next iteration (see line 16), and

thus provide better diversification. Otherwise, if the time limit allowed for

subproblem is exceeded without reaching a feasible solution or proving the

subproblem infeasibility, the value of α is decreased. Decreasing the value of

α, increases the number of fixed variables in the next iteration (see line 17),

and thus reduces the size of the next subproblem. In the feasibility pump,

the next reference integer solution is obtained by simply rounding the linear

relaxation solution x of the modified problem LP(x̃). However, if near(x)

is equal to some of the previous reference solutions, the solution process is

caught in a cycle. In order to avoid this type of cycling, we determine the

next reference solution as the one which is at the minimum distance from

near(x) (with respect to binary variables) and satisfies all constraints from

the current subproblem Q (see line 18). In this way the convergence of the
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variable neighbourhood diving algorithm is guaranteed (see [152]).

Algorithm 12: Single neighborhood diving for 0-1 MIP feasibility.

Function SNDiving(P );

1 Solve the LP relaxation of P to obtain an optimal LP basic solution x;

2 Set i = 0; Set x̃0 = [x];

3 if (x = x̃0) then return x̃0;

4 Set Q0 = ∅;

5 Set proceed = true; Set timeLimit for subproblems; Set value of α;

6 while proceed do

7 Solve the LP (P, x̃i) problem to obtain an optimal solution x;

8 if (⌈δ(x̃i, x)⌉ = 0) then return x̃i;

9 Qi+1 = (Qi | δ(x̃
i, x) ≥ ⌈δ(x̃i, x)⌉);

10 δj =| x̃j − xj |; index xj so that δj ≤ δj+1, j = 1, . . . , |B| − 1;

11 k = [| {j ∈ B : x̃i
j = xj} | /α]; Jk = {1, . . . , k};

12 x′ = FindFirstFeasible(P (x̃i, Jk), timeLimit);

13 if feasible solution found then return x′;

14 if P (x̃i, Jk) is proven infeasible then

15 Qi+1 = (Qi+1 | δ(Jk, x̃
i, x) ≥ 1); P = (P | δ(Jk, x̃

i, x) ≥ 1);

16 α = 3α/2;

else

17 if time limit for subproblem exceeded then α = max{1, α/2};

end

18 x̃i+1 = FindFirstFeasible(MIP(Qi+1, [x]), timeLimit);

19 if MIP(Qi+1, [x]) is proven infeasible then Output message: “Problem P is

proven infeasible”; return;

20 i = i+ 1;

end

1.6 Proximity heuristics

1.6.1 Ceiling heuristic

Saltzman et al. [199] in 1992, proposed a heuristic for general integer linear

programming that was successfully applied for solving 0-1 MIP problems as

well. The proposed heuristic is based on examination of so-called ”1-ceiling

points”, i.e., MIP feasible solutions located near to the boundary of the

feasible region. More precisely, 1-ceiling point is a MIP feasible vector x such
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that for each j at least one of vectors x + ej or x − ej is infeasible. The

heuristic works in three phases:

❼ Phase I. In the first phase, the algorithm finds an optimal solution x̄

of the LP relaxation of the problem, determines the set of constraints

binding at that solution and the set of normalized extreme directions

defining the cone originating at x̄.

❼ Phase II. In the second phase, the algorithm chooses a hyperplane

that is explored in a certain direction. As soon as some solution with

an integer component value is encountered during the search, it is

rounded to an integer solution that is not necessarily 1-ceiling point.

The hyperplane to be explored is chosen as one along which the objective

value changes as little as possible. More precisely, in a maximization

problem, the objective function decreases as we move away from x̄ along

every extreme direction. So, let the rate of change of the objective

function value per unit step taken away from x̄ along direction dk be ρk

and Ei, be the set extreme directions emanating from x̄ which lie on the

i-th constraint hyperplane, i.e.,
∑

j∈N aijxj ≤ bi. Then the hyperplane

i∗ to be explored is chosen as i∗ = arg mini

∑
k∈Ei

ρk. This hyperplane is

explored in the direction d =
∑

k∈Ei∗
dk. Going in this direction through

the chosen hyperplane as soon as a non-integer solution x with at least

one integer component is met, it is rounded to the integer solution x̃ so

that i∗-th constraint is satisfied. More precisely, let ai∗j , j ∈ N be the

coefficients of i∗-th constraint, then components of solution x̃ are given

as:

x̃j =





⌊xj⌋, if ai∗j > 0

⌊xj + 0.5⌋, if ai∗j = 0

⌈xj⌉, if ai∗j < 0

(1.10)

❼ Phase III (Improvement phase). On a feasible integer solution

found in the Phase II, Phase III procedures are launched in order to

improve it, if possible, by altering either one or two of its components.
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Each of these procedures, described hereafter, are capable to return a

l-ceiling point (if any). These two procedures work in the following way:

– The first procedure, called STAYFEAS, attempts to improve a

given feasible solution x̃ by altering just one of its components.

In other words, STAYFEAS examines all integer solutions of the

form x̃′ = x̃± ej, for all j ∈ N . The procedure returns the best

feasible solution x̃′ (if any).

– The second procedure tries to improve a given feasible solution x̃

by simultaneously altering two of its components. That procedure

consists of two steps. In the first step, just one component, e.g.,

x̃j is modified by either +1 or - 1 . If the obtained solution is

feasible, the STAYFEAS procedure is applied on that solution, in

an attempt to improve it further. On the other hand, if the obtained

solution is not feasible, a second procedure named GAINFEAS is

launched in order to get a feasible solution possibly better than x̃

by changing another component k 6= j of the infeasible solution.

1.6.2 Relaxation Enforced Neighbourhood Search

The Relaxation Enforced Neighborhood Search heuristic (RENS) was proposed

by Berthold in [20] as a new start heuristic for general MIPs working in the

spirit of a large neighborhood search. RENS starts solving LP relaxation of

the problem. After that all integer variables that received integer values in

the solution of LP relaxation are fixed while on remaining variables, a large

neighborhood search (LNS) is performed. The LNS is implemented solving

resulting sub-MIP in which not only variables are fixed, but also all general

integer variables with a fractional LP-value are rebounded to the nearest

integers. If the sub-MIP is solved to optimality then the obtained solution

is the best rounding of the fractional LP solution that any pure rounding

heuristic can generate. Additionally, if the created sub-MIP is infeasible, then

no rounding heuristic exists which is able to generate a feasible solution out

of the fractional LP optimum.
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1.6.3 Relaxation Induced Neighbourhood Search

The Relaxation Induced Neighborhood Search (RINS), is an improving heuristic

proposed by Danna et al. [56]. The idea of RINS stems from the fact

that often the incumbent solution of a MIP and the optimum of the LP-

relaxation have many variables set to the same values. So, a partial solution,

obtained by fixing these variables, may be likely extended to a complete

integer solution with a good objective value. Therefore, RINS is focused on

those variables whose values are different in the LP-relaxation and in the

incumbent solution. In order to find appropriate values to such variables

RINS explores the neighborhood structure defined by the incumbent solution

x̃ and LP-relaxation solution x̄ as:

RIN (x̃, x̄) = {x|xj = x̃j for j ∈ I such that x̄j = x̃j; xMIP feasible} (1.11)

This neighborhood is called the relaxation induced neighborhood of x̃.

In order, to efficiently explore this neighborhood, RINS solves the sub-MIP

deduced from the original MIP, fixing the variables that have the same values

in the incumbent and in the LP relaxation and adding the objective cut-off

cx ≥ (1 + θ)cx̃, since we are interested in solutions that are better than

the current incumbent solution. However, solving this sub-MIP might be so

time consuming and thus it is preferable to solve sub-MIP approximatively,

imposing the node limit or to call RINS only if a high enough percentage of

variables can be fixed.

Since the continuous relaxation changes from one node in the branch-and-

cut tree to the next, RINS may be invoked at every node or at some nodes in

the tree in order to find high quality solutions of the initial MIP within the

imposed time limit.

1.6.4 Proximity search heuristics

In 2013, Fischeti et al. [76] proposed a Proximity search heuristic (Algorithm

13) for 0-1 Convex Mixed Integer Programs. The purpose of the procedure is

to refine a given feasible solution x∗ of a problem. The basic procedure works

iteratively, solving at each iteration a MIP derived from the original problem
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by replacing the original objective function, by a ”proximity objective” δ(x, x∗)

(or δ(x, x∗) + ηcx in order to favor high quality solutions) defined relative to

the current iterate x∗ and the objective function constraint cx ≥ (1 + θ)cx∗.

The solution x̃ obtained by solving such defined MIP, is further improved by

solving the initial problem fixing values of all binary variables to these in x̃.

The procedure finishes its work when some of predefined stooping conditions

is satisfied (e.g., max number of iterations, max CPU time allowed etc.). The

steps of a Proximity search heuristic are given at Algorithm 13.

Algorithm 13: Proximity search heuristic for 0-1 MIP

Function PSH(x∗);

1 repeat

2 add the objective function constraint cx ≥ (1 + θ)cx∗ to the MIP ;

3 replace objective function by ”proximity objective” δ(x, x∗) (or δ(x, x∗) + ηcx);

4 apply MIP solver in order to solve the new problem;

5 if MIP solver returns a solution x̃, refine it solving initial problem fixing values

of all binary variables to these in x̃;

6 Let obtained solution be x;

7 recenter search by setting x∗ = x and/ or update value of θ;

until Stopping criterion is satisfied ;

return x∗;

1.7 Advanced heuristics

1.7.1 Parametric tabu search

The parametric tabu search (PTS), proposed by Glover [97], is a general

framework for building heuristics for solving general MIP problems. The

main idea of PTS is solving series of linear programming problems deduced

from the original MIP, incorporating branching inequalities as weighted terms

in the objective function. This approach may be seen as an extension of a

parametric branch-and-bound algorithm [91], that is accomplished replacing

the branch-and-bound tree search memory by the adaptive memory framework

of a tabu search. In that way more flexible strategies are introduced than

those of Branch-and-Bound.

Following ideas described in [97], Sacchi et al. [198] in 2011, implemented
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and tested the core parametric tabu search for solving 0-1 MIP problems. At

each iteration, the core parametric tabu search solves LP problem deduced in

the following way from the original MIP. Let x′ be a so-called trial solution

that is LP feasible. Relative to this solution, we may define sets:

N1(x′) = {j ∈ I|x′j = 1}

N0(x′) = {j ∈ I|x′j = 0}

that enable us to define so-called goal conditions :

(UP ) xj ≥ 1, j ∈ N1(x′)

(DN) xj ≤ 0, j ∈ N0(x′)

Unlike Branch-and-Bound procedure, these conditions are not imposed im-

plicitly, but indirectly incorporating them in the objective function. In that

way the following LP problem is defined:

(LP (x′, v∗))





maximize cx+
∑

j∈N1(x′) c
′
j(1− xj) +

∑
j∈N0(x′) c

′
jxj

s.t. Ax ≤ b

0 ≤ xj ≤ Uj, j ∈ N

cx ≥ (1 + θ)v∗

(1.12)

where c′j are positive parameters, v∗ represents the best known solution value

so far (initially v∗ = −∞) and θ is a small positive value.

After solving, the problem LP (x′, v∗) and obtaining its optimal solution

x′′, the next trial solution x′, and therefore sets N+(x′) and N−(x′) are

determined as the response to either the goal or integer infeasibility of the

solution x′′.

An optimal solution is called goal infeasible if there is some goal infeasible

variable x′′j , i.e., variable:

{
x′′j < 1 for j ∈ N1(x′) or

x′′j > 0 for j ∈ N0(x′).
(1.13)
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The primary response for such an infeasibility consists of defining new goals

in the opposite directions for a selected subset of goal infeasible variables

Gp ⊂ G = {j ∈ N1(x′) ∪ N0(x′)|xj goal infeasible}. More precisely, the

primary response for j ∈ Gp is defined as:

❼ if x′′j < 1 and j ∈ N1(x′) then transfer j from N1(x′) to N0(x′) and set

x′j = 0,

❼ if x′′j > 0 and j ∈ N0(x′) then transfer j from N0(x′) to N1(x′) and set

x′j = 1.

On the other hand, the secondary response, consists of freeing goal infea-

sible variables that belong to the set Gs ⊂ G. The elements of previously

mentioned sets Gp and Gs are determined as gp variables from the set G and

gs variables from the set G−Gp with highest amounts of violation of imposed

goal conditions.

An optimal solution x′′ is called integer infeasible if there is some j ∈

N∗ = I −N1(x′)−N0(x′) such that x′′j /∈ {0, 1}. In order to respond to such

an infeasibility, the subset N ′ of n′ elements from the set N∗ is chosen and

each element from that set is added either to the set N1(x′) or to the set

N0(x′), i.e., goal conditions are imposed for a certain number of variables.

The choice of elements from the set N∗ is based on the preference measure

CPj, that is calculated, relative to the up penalty f+
j = ⌈x′′j ⌉ − x

′′
j and the

down penalty f−
j = x′′j − ⌊x

′′
j ⌋, as

CPj = (f+
j + f−

j )/(f
+
j − f

−
j + ω)

where ω represents a small positive value. Once, n′ elements from the set N∗

are chosen as those with highest CPj values, each of them is added either

to set N1(x′) or N0(x′) depending on the values of f+
j and f−

j . Namely, if

f+
j < f−

j then j is added to N1(x′), while otherwise it is added to N0(x′).

More precisely, the response for j ∈ N ′ is defined as:

❼ if f+
j < f−

j then add j to N1(x′) and set x′j = 1

❼ if f+
j ≥ f−

j then add j to N0(x′) and set x′j = 0
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The steps of the core tabu search are presented at Algorithm 15. Initially,

sets N1(x′) and N0(x′) are set to be empty and v∗ is set to −∞. After that at

each iteration corresponding LP (x′, v∗) problem is treated. If it does not have

a feasible solution, the core tabu search finishes its work, and the best found

MIP solution (if any), regarding previous iterations is reported as the optimal

one. Otherwise, the LP (x′, v∗) problem is solved. If its optimal solution

x′′ is MIP feasible, the best found solution value is updated and process is

resumed solving new LP (x′, v∗) problem. Otherwise, the optimal solution

x′′ is either the goal infeasible or the integer infeasible. If the solution x′′ is

the goal infeasible, sets Gp and Gs are created choosing their elements taking

into account tabu statuses of candidate elements. After that sets N1(x′) and

N0(x′) are updated according to the responses associated with elements in

Gp and Gs. Additionally, tabu tenures and aspiration values for the selected

elements are updated as well. On the other hand, if the solution x′′ is the

integer infeasible, the set N ′ is created and sets N1(x′) and N0(x′) are updated

according to the responses associated with elements in N ′. Regardless of the

encountered infeasibility, as soon as sets N1(x′) and N0(x′) are updated, the

next iteration is invoked. The whole process is repeated until reaching the

imposed stopping criterion (e.g., maximum number of iterations, maximum

allowed CPU time etc.).
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Algorithm 14: Core Tabu Search for 0-1 MIP

Function CTS();

1 Choose x′ ∈]0, 1[n;

2 v∗ = −∞;

3 repeat

4 if LP (x′, v∗) infeasible then break;

5 x′′ ← optimal solution of LP (x′, v∗);

6 if x′′ MIP feasible then

7 v∗ ← cx′′;

8 x∗ ← x′′;

9 continue;

end

10 if x′′ goal infeasible then

11 Create sets Gp and Gs;

12 Update sets N1(x′) and N0(x′);

13 Update tabu tenures and aspiration;

14 continue;

end

15 if x′′ integer infeasible then

16 Create set N ′ ;

17 Update sets N1(x′) and N0(x′);

18 continue;

end

until Stopping criterion is satisfied ;

return x∗;

This core tabu search procedure may be extended to a more advanced

procedure that includes intensification and diversification steps. For more

details regarding the ideas for creating such one procedure as well as for

description of the additional supporting strategies that may be used within

it, we refer the reader to [97].

1.7.2 Metaheuristic Search with Inequalities and Tar-

get Objectives

Many adaptive memory and evolutionary metaheuristics for mixed integer

programming include proposals for introducing inequalities and target objec-
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tives to guide the search toward an optimal (or near-optimal) solution. These

guidance approaches consist of fixing subsets of variables at particular values

and using linear programming to generate trial solutions whose variables are

induced to receive integer values. Such one approaches may be used in both

intensification and diversification phases of a solution process. In 2010, Glover

and Hanafi [99, 100] enhanced these approaches by introducing new inequali-

ties that dominate those previously proposed and new target objectives that

underlie the creation of both inequalities and trial solutions. More precisely,

they proposed use of partial vectors and more general target objectives within

inequalities in target solution strategies. Actually, they proposed procedures

for generating target objectives and solutions by exploiting the proximity in

the original space or the projected space. Additionally, they introduced more

advanced approaches for generating the target objective based on exploiting

the mutually reinforcing notions of reaction and resistance.

The proximity procedure (Algorithm 16) for solving pure 0-1 MIP problems

(I = N), proposed in [99, 100], at each iteration solves the linear program

defined as:

(LP (x′, c′, v∗))





minimize δ(c′, x′, x) =
∑n

j=1 c
′
j(xj(1− x

′
j) + x′j(1− xj))

s.t. Ax ≤ b

0 ≤ xj ≤ Uj, j ∈ N

cx ≥ (1 + θ)v∗

(1.14)

where δ(c′, x′, x) is the target objective and c′ is an integer vector.

Initially, the vector c is used as the vector c′, while the target solution x′

is obtained setting its components to 0 (i.e., in the first iteration the initial

LP problem is solved). After that, for each next iteration, a vector c′ and a

new target solution x′ are deduced from the optimal solution x′′ of the last

solved LP (x′, c′, v∗) problem. The new target solution x′ is derived from x′′

simply by setting x′j = near(x′′j ), j ∈ N . The resulting vector x′ of the nearest

integer neighbors is unlikely to be 0-1 MIP feasible. If the solution x′ is 0-1

MIP feasible, it is stored as a new best solution x∗, the objective function

constraint cx ≥ (1 + θ)v∗ is updated, and target objective δ(c′, x′, x) is set to

the initial objective cx (i.e., in the next iteration the original LP with the
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updated objective function constraint will be solved). On the other hand, if

the solution x′ is 0-1 MIP infeasible, the vector c′ is generated, so that the

solution x′′ of the next generated problem LP (x′, c′, v∗) will become closer to

satisfying integer feasibility. The generation is accomplished by the following

procedure (see [99] for more details):

Algorithm 15: Procedure for generating vector c′

Function Generate vector(BaseCost, x′, x′′);

1 Choose λ0 ∈ [0.1, 0.4];

2 for j ∈ N do

3 if x′′

j /∈]λ0, 1− λ0] then

4 c′j = 1 +BaseCost(1− 2x′

j)(0.5− x′′

j )/(0.5λ0) ;

else

5 c′j = 1 +BaseCost(x′

j − x′′

j )/λ0 ;

end

end

return c′;

The rationale for using such procedure is that targeting of xj = x′j for

variables whose values x′′j already equal or almost equal x′j does not have great

impact on the solution of the new (updated) LP (x′, c′, v∗), in the sense that

such a targeting does not yield the solution that differ substantially from the

solution to the previous LP (x′, c′, v∗) problem. Therefore, it is more beneficial

if targeting occurs by emphasizing the variables xj whose x′′j values differ

from their integer neighbours x′j by a greater amount. Note that according to

[99] the suggested value for parameter BaseCost, of procedure for generating

vector c′, is 20.

As a stopping criterion the proximity procedure may use the total number

of iterations allowed or the number of iterations since finding the last feasible
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integer solution etc.

Algorithm 16: Proximity procedure for 0-1 MIP

Function PS(BaseCost);

1 c′ = c;

2 x′ = 0;

3 v∗ = −∞;

4 repeat

5 if LP (x′, c′, v∗) infeasible then break;

6 x′′ ← optimal solution of LP (x′, c′, v∗);

7 if x′′ integer feasible then

8 x∗ ← x′′; //update the best solution

9 v∗ = cx′′; //update the objective function constraint

10 x′ = 0, c′ = c;

else

11 x′

j = near(x′′

j ), for j ∈ N ; //Construct the target solution x′ derived from

x′′

12 c′ ← Generate vector (BaseCost, x′, x′′);

end

until Stopping criterion is satisfied ;

return x∗;

The described proximity procedure, may be easily enhanced by ”updating

the problem inequalities” (adding and dropping constraints) in the way

described in [99]. Further, in order to avoid big difference between the

components of two vectors c′, used in two consecutive iterations, it is preferred

not to change all the components of c′ each time a new target objective is

produced, but to change only a subset consisting of k of these components.

For example, a reasonable default value for k is given by k = 5. Alternatively,

the procedure may begin with k = n and gradually reduce k to its default

value or to allow it to oscillate around a preferred value. The k components

of c′ that will be changed may be chosen as those k having the k largest c′j
values in the new target objective.

The merit of a used target objective δ(c′, x′, x) may be expressed in terms

of ”reaction” and ”resistance”. The term reaction refers to the change in

the value of a variable as a result of creating a target objective δ(c′, x′, x)

and solving the resulting problem LP (x′, c′, v∗). The term resistance refers to
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the degree to which a variable fails to react to a non-zero c′j coefficient by

receiving a fractional value rather than being driven to 0 or 1. Hence, the

proximity procedure may be enhanced introducing advanced approaches for

generating the target objective based on exploiting the mutually reinforcing

notions of reaction and resistance as proposed in [100].

1.7.3 OCTANE heuristic

In 2001, Balas et al. [11] proposed the OCTAhedral Neighbourhood Enu-

meration (OCTANE) heuristic for pure 0-1 programs. The fundamentals

of OCTANE rely on the one-to-one correspondence between 0-1 points in

n–dimensional space and the facets of the n–dimensional octahedron. More

precisely, let a cube be given as K = {x ∈ R
n : −1/2 ≤ x ≤ 1/2}

and a regular octagon K∗ circumscribing this n-dimensional cube given

by K∗ = {x ∈ R
n : σx ≤ n/2, σ ∈ {±1}n}. Hence, it follows that every

facet σ of the octahedron K∗ contains exactly one vertex τ of the hypercube

K, namely the one with τj = 1/2 if σj = 1 and τj = −1/2 if σj = −1, i.e.

τj = σj/2.

Since both sets have the same cardinality, every vertex of the hypercube

is as well contained in exactly one facet of the octahedron. Note that this

correspondence is kept even if we translate K and K∗ for the same vector.

The basic idea of OCTANE is that finding facets that are near an LP feasible

point, x0 is equivalent to finding integer feasible points that are near x0 and

therefore potentially LP-feasible themselves. Furthermore, if we choose an

optimal solution of the LP-relaxation as an initial point x, the integer feasible

solutions potentially will be of high quality in terms of the objective function.

So, OCTANE starts by solving the LP-relaxation of the 0-1 program, then

from x, a fractional solution of the LP-relaxation of the 0-1 program, it

computes the first k facets of an octahedron that are intersected by the half

line originating at x and having a selected direction d. In this way OCTANE

yields k potential 0-1 points of the original 0–1 programming problem. The
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steps of OCTANE are given at Algorithm 17.

Algorithm 17: OCTANE for pure 0-1 MIP

Function OCTANE (P );

1 Solve the LP relaxation of P to obtain an optimal LP basic solution x;

2 Choose a direction vector d and consider the half-line L = x+λd, λ ≥ 0;

3 Compute the first k facets of an octahedron that are intersected by the

half line L;

4 Transform k reached facets to 0-1 points;

5 Check the integer feasible points;

6 Report the best found feasible solution (if any);

A Ray Shooting Algorithm. In order to find the first k facets of an

octahedron that are intersected by the half line originating at x and having a

selected direction d a ray shooting algorithm is applied. Before starting to

describe the Ray Shooting Algorithm terms reachable facet and first reachable

facet will be defined.

Definition. A facet σ ∈ {±1}n is called reachable, with respect to the

given ray r(λ) = x+λd if there exists a λ > 0 for which σr(λ) = n/2. A facet

is called first-reachable, if the parameter λ is minimal among all of reachable

facets.

The ray shooting algorithm may be described in the following way. Firstly,

some facet is generated, which is definitely reachable. After that a first-

reachable facet is determined by changing components of this facet. Finally,

one performs a reverse search in order to find k − 1 further facets. The first

step, namely finding any reachable facet, is trivial. (After some transformation

the reachable facet may be determined as σ = e see [19]). After that the first

reachable facet is deduced according to the following theorem:

Theorem 1.7.1 If a facet σ is reachable, but not first-reachable, there exists

an i ∈ N for which the facet σ ⋄ i defined by: (σ ⋄ i)j := −σj if j = i and σj

otherwise; is a facet which is hit before σ. Then i is called a decreasing flip.

Then starting with σ = e and iteratively flipping its components, if they yield

a decreasing flip, is an algorithm which has a first-reachable facet, i.e. σ∗ as

output and can be implemented with a running time of O(nlog(n)).

Thanks to this theorem, we know how to get a facet which is first-reachable.
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However there could be more than one first-reachable facet. In practice this

is rather the rule, if one chooses ray directions not randomly, but following

some certain geometric structure.

Reverse search. Reverse search is used to determine the k first reachable

facets. The idea of reverse search is to build up an arborescence rooted at

σ∗ which vertices are all reachable facets and after that to determine the k

first reachable facets. Therefore, in order to form the arborescence we need

to determine a unique predecessor pred(σ) for each reachable facet σ, except

for one first-reachable facet which will be the root-node of the arborescence.

Definition. An index i ∈ N is called a

❼ decreasing + to - flip for σ, if σi = +1 and σ ⋄ i is a facet hit before σ

❼ nonincreasing - to + flip for σ, if σi = −1 and σ ⋄ i is a facet hit by r

but not after σ

If there exists at least one decreasing + to - flip for σ, then, pred(σ) := σ⋄i

where i corresponds to minimal index of all decreasing flips. On the other

hand, if there is no decreasing + to - flip for σ, but at least one nonincreasing

- to + flip, then, pred(σ) := σ ⋄ i where i corresponds to maximal index of all

nonincreasing flips. Otherwise, pred(σ) stays undefined. One can prove that

there is exactly one facet σ∗ for which pred(σ) is undefined and obviously

this is a first-reachable facet.

Then, as it shown in Balas et al. [11], the arcs of the arborescence are

defined as (pred(σ), σ) with associated weight that equals to distance between

points σ and pred(σ). Additionally, Balas et al. [11] proved the following

statement.

Theorem 1.7.2 There is an O(knlog(k)) algorithm which finds k vertices

of the arborescence with minimum distance to σ∗. Moreover, these k vertices

correspond to the k facets of K∗ first hit by r(λ).

Selection of the Ray Direction. The ray direction may be chosen in

some of the following ways:

❼ The objective ray: it is created choosing the direction opposite to the

direction of objective function, i.e., d = −c. Clearly such ray leads into
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the inner of the polyhedron and therefore promises to produce feasible

solutions.

❼ The difference ray: The difference between the optimum of the

LP-relaxation at the root-node of the branch-and-bound tree and the

current LP–optimum in some node of the branch–and–bound tree shows

a part of the development of each variable from the value in an optimal

LP-solution to the one in an integer feasible solution. Therefore, this

difference vector seems to be a ray direction with a promising geometric

interpretation.

❼ The average ray: The optimal basis for the LP-relaxation at the

current node defines a cone C which extreme rays are defined by edges

of the current LP-polyhedron. Obviously, the average of the normalized

extreme rays of C points into the inner of the LP polyhedron and

therefore, hopefully into the direction of some feasible solutions.

❼ The average weighted slack ray: This ray is obtained from the

average ray by additionally assigning weights to the extreme rays. Every

extreme ray corresponding to a non-basic slack variable with positive

reduced costs gets the inverse of the reduced costs as weights, while all

others weights are assigned to 0.

❼ The average normal ray [19]: The LP-optimum is a vertex of the

LP polyhedron and therefore, at least n of the linear and bounding

constraints are fulfilled with equality. Therefore the normalized (inner)

normal of a hyperplanes corresponding to some linear constraint gives

a direction where all points are feasible for this constraint. So, the

average of all these normals, probably, represent a direction of finding

feasible points.

1.7.4 Star Path with directional rounding

The introduction of Star Paths with directional rounding for 0–1 Mixed Integer

Program as a supporting strategy for Scatter Search in [93] established basic

properties of directional rounding and provided efficient methods for exploiting
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them. The most important of these properties is the existence of a plane

(which can be required to be a valid cutting plane for MIP ) which contains a

point that can be directionally rounded to yield an optimal solution and which,

in addition, contains a convex subregion all of whose points directionally

round to give this optimal solution. Several alternatives are given for creating

such a plane as well as a procedure to explore it using principles of Scatter

Search. That work also shows that the set of all 0–1 solutions obtained by

directionally rounding points of a given line (the so–called star path) contains

a finite number of different 0–1 solutions and provides a method to generate

these solutions efficiently. Glover and Laguna [101] elaborated these ideas

and extended them to General Mixed Integer Programs by means of a more

general definition of directional rounding. In Chapter 4 of this thesis, we

provide thorough description of Star Paths with directional rounding for 0–1

MIP and propose Convergent algorithms of Scatter Search and Star Paths

with Directional Rounding for 0-1 MIP along with the proof of their finite

convergence.

Building on above ideas, Glover et al. [106] proposed a procedure that

combines Scatter Search and the Star Path generation method as a basis for

finding a diverse set of feasible solutions for 0–1 Mixed Integer Problems,

proposing a 3–phase algorithm which works as follows. The first step generates

a diverse set of 0–1 solutions using a dichotomy generator. After that each

solution generated in a previous phase is used to produce two center points

on an LP polyhedron which are further combined to produce sub-centers. All

centers and sub–centers are combined in the last phase to produce Star–Paths.

As output the algorithm gives the set of all 0–1 feasible solutions encountered

during its execution, and constitutes the required diverse set. The computa-

tional efficiency of the approach was demonstrated by tests carried out on

some instances from MIPLIB.

1.8 Concluding remarks

This chapter provides a survey of heuristics based on mathematical program-

ming for 0-1 mixed integer programs. For most of considered heuristics we
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not only describe their main ideas and their work but also provide their

pseudo-codes written in the same fashion. Most of these heuristics are already

embedded in many commercial solvers such as CPLEX, GUROBI, GAMS,

XPRESS etc., but there is still a need for new heuristics that will additionally

accelerate exact methods. Therefore the potential future research directions

may be developing new advanced heuristics combining the ideas of existing

not only exact but also heuristic approaches. Some steps in that direction

are already done. For example, variable neighborhood search decomposition

heuristic is combined with iterative linear programming heuristic. Further,

some of the described heuristics may be seen as frameworks for creating

heuristics, but they are not exploited (or seldom ever) in that way. Thus, the

future research direction may also include implementing and testing new 0-1

MIP heuristics that stems from these frameworks with and without exploiting

ideas of the existing heuristics. Some steps in this direction have been already

done, and the results will be presented in Chapters 3 and 4.



Chapter 2

Variable Neighborhood Search

An optimization problem may be stated in a general form as:

min{f(x)|x ∈ X ⊆ S} (2.1)

where S, X, x and f respectively denote the solution space and the feasible

set, a feasible solution and a real-valued objective function. Depending on

the set S we distinguish combinatorial optimization problem (set S is finite

but extremely large) and continuous optimization problems (S = R
n). Let

N (x) denote a neighborhood structure of a given solution x defined relatively

to a given metric (or quasi-metric) function δ introduced in the solution space

S as:

N (x) = {y ∈ X|δ(x, y) ≤ α}

where α is given positive number. Then, a solution x∗ ∈ N (x) is a local

minimum, relatively to neighborhood N (x∗), for problem (2.1) if f(x∗) ≤

f(x), ∀x ∈ N (x∗). On the other hand, a solution x∗ ∈ X is an optimal

solution (global optimum) for problem (2.1) if f(x∗) ≤ f(x), ∀x ∈ X.

Many practical instances of problems of form (2.1), cannot be solved

exactly (i.e., providing an optimal solution along with the proof of its op-

timality) in reasonable time. It is well-known that many problems of form

(2.1) are NP-hard, i.e., no algorithm with a number of steps polynomial in

the size of the instances is known for solving any of them and that if one were

found it would be a solution for all. Therefore, there is a need for heuristics

able to quickly produce an approximate solution of high quality, or sometimes

an optimal solution but without proof of its optimality.

Variable neighborhood search (VNS) is a metaheuristic proposed by Mlade-

nović and Hansen in 1997 [167]. It represents a flexible framework for building

heuristics for approximately solving combinatorial and non-linear continuous

52
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optimization problems. VNS changes systematically neighborhood structures

during the search for an optimal (or near-optimal) solution. The changing of

neighborhood structures is based on the following observations: (i) A local

optimum relatively to one neighborhood structure is not necessarily a local

optimal for another neighborhood structure; (ii) A global optimum is a local

optimum with respect to all neighborhood structures; (iii) Empirical evidence

shows that for many problems all local optima are relatively close to each

other. The first property is exploited by increasingly using complex moves in

order to find local optima with respect to all neighborhood structures used.

The second property suggests using several neighborhoods, if local optima

found are of poor quality. Finally, the third property suggests exploitation of

the vicinity of the current incumbent solution.

A variable neighborhood search heuristic (Algorithm 28) includes an

improvement phase used to possible improve a given solution and one so-called

shaking phase used to hopefully resolve local minima traps. The improvement

phase and the shaking procedure, together with neighborhood change step

are executed alternately until fulfilling a predefined stopping criterion. As

stopping criterion, most often, is used maximum CPU time allowed to be

consumed by VNS heuristic. VNS heuristics have been successfully applied

for solving many optimization problems (see e.g., [126]).

Algorithm 18: Basic steps of Variable Neighborhood Search.

Function VNS()
repeat

1 Shaking procedure;
2 Improvement procedure;
3 Neighborhood change;

until stopping criterion is fulfilled ;

The rest of the chapter is organized as follows. In Section 2.1 we present

the most common improvement procedures used within a VNS heuristic such

as local search and variable neighborhood descent variants, while in Section

2.2 we describe the simple shaking procedure that is usually used within

a VNS heuristic. Section 2.3 is dedicated to VNS variants, while Section

2.4 contains the brief description of VNS heuristics developed by the author
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for solving several optimization problems along with their comparison with

the state-of-the-art heuristics for the considered problems. The optimization

problems for which VNS based heuristics have been developed are: Traveling

salesman problem with time windows, Attractive traveling salesman problem,

Traveling salesman problem with draft limits, Swap-body vehicle routing

problem, Uncapacitated r-allocation p-hub median problem, Minimum sum-

of-squares clustering on networks, Periodic maintenance problem and Unit

commitment problem. Note that the exhaustive description of the proposed

VNS methods as well as the detailed computational results for each considered

problem may be found in the journal articles [36, 169, 170, 210, 213] as well

as in the reports [209, 211, 212]. Finally, in Section 2.5, we draw some

conclusions and present possible future research lines.

2.1 Improvement procedures used within VNS

2.1.1 Local search

A local search heuristic is based on the exploration of a neighborhood structure

N (x) of a current incumbent solution x at each iteration. Starting from an

initial solution x, at each iteration it selects a better solution than x′ (if any)

from the predefined neighborhood structure N (x) and sets it to be the new

incumbent solution x. A local search heuristic finishes its work reaching an

incumbent solution x such that it is already the local optimum with respect

to its neighborhood structure N (x). The most common search strategies used

within a local search heuristic are the first improvement search strategy (as

soon as an improving solution in a neighborhood structure N (x) is detected

it is set to be the new incumbent solution) and the best improvement search

strategy (the best among all improving solutions in N (x) (if any) is set to

be the new incumbent solution). The steps of a local search heuristic using

the first improvement strategy and a local search heuristic using the best

improvement strategy are given in algorithms 19 and 20, respectively.
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Algorithm 19: Local search using the first improvement search strategy.

Function LS FI(x, N )
repeat

Let N (x) = {x1, . . . , xp};
i← 0;
x′ ← x;
repeat

i← i+ 1;
if f(xi) < f(x) then

x← xi

break;

end

until i = p;

until f(x′) ≤ f(x);
return x′;

Algorithm 20: Local search using the best improvement search strategy.

Function LS BI(x, N )
repeat

x′ ← x;
x← argminy∈N (x′)f(y);

until f(x′) ≤ f(x);
return x′;

2.1.2 Variable neighborhood descent procedures

The Variable Neighborhood Descent (VND) procedures exploit the fact that

the solution which is a local optimum with respect to several neighborhood

structures is more likely to be a global optimum than the solution generated as

a local optimum for just one neighborhood structure. More precisely a VND

procedure explores several neighborhood structures either in a sequential or

nested fashion in order to possible improve a given solution. As a search

strategy they may use either the first improvement strategy or the best

improvement search strategy.
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Sequential variable neighborhood descent procedures

The standard sequential VND (seqVND) procedure works in the following

way. Several neighborhood structures are firstly ordered in a list and after

that examined one after another respecting the established order. Let N =

{N1, . . . ,Nkmax
} be set of operators such that each operator Nk, 1 ≤ k ≤ kmax

maps a given solution x to a predefined neighborhood structure Nk(x),

(i.e., Nk : X → P(X), where P(X) denotes the power set of the set X).

Note that the order of operators in the set N also will define the order of

examining neighborhood structures of a given solution x. Starting from a

given solution x, the standard sequential VND procedure iteratively explores

its neighborhood structures defined, by the set N , one after another according

to the established order. As soon as an improvement of the incumbent

solution in some neighborhood structure occurs, the standard sequential VND

procedure resumes search in the next neighborhood structure (according to the

defined order) of the new incumbent solution. The whole process is stopped

if the current incumbent solution can not be improved with respect to any of

kmax neighborhood structures. The steps of the sequential VND using the

best improvement search strategy are given in Algorithm 22. Besides of this

standard sequential VND procedure, the two sequential VND procedures have

been proposed using the different rules for selecting the next neighborhood

structure to be explored if an improvement of current incumbent solution

occurs:

❼ pipe VND : if an improvement of the current solution occurs in

some neighborhood, the exploration is continued in that neighborhood.

The steps of pipe VND using the best improvement search strategy

may be deduced from the Algorithm 22, replacing the neighborhood

change procedure Neighborhood change sequential(x, x′, k) given

in Algorithm 21 by the procedure Neighborhood change pipe(x, x′,

k) given in Algorithm 23. Note that the pipe VND sometimes is referred

as the token ring search (see e.g., [59, 158]).

❼ cyclic VND : regardless there is an improvement with the respect

to some neighborhood or not, the search is continued in the next
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neighborhood structure in the list. Therefore, the steps of cyclic

VND using the best improvement search strategy may be deduced

from the Algorithm 22, replacing the neighborhood change procedure

Neighborhood change sequential given in Algorithm 21 by the proce-

dure Neighborhood change cyclic(x, x′, k) given in Algorithm 24.

The approach presented in [103] could be considered as a cyclic VND

except that it has cycles within cycles and uses additional evaluation

criteria along the way.

Note that each of these VND algorithms may also use the first improvement

search strategy to explore neighborhood structures. If the first improvement

strategy is used, the steps of each VND variant are the same as the steps

of corresponding VND variant that uses best improvement strategy but

with additional assumption that call argminy∈Nk(x)f(y) returns the first

encountered solution y in the neighborhood Nk(x) such thatf(y) < f(x).

Algorithm 21: Neighborhood change step for sequential VND.

Procedure Neighborhood change sequential(x, x′, k)
if f(x′) < f(x) then

x← x′;
k ← 1;

else
k ← k + 1;

end

Nested variable neighborhood descent

A nested variable neighborhood descent procedure [133] explores a large

neighborhood structure obtained as a composition of several neighborhoods.

More precisely, let N = {N1, . . .Nkmax
} again be set of operators such that

each operator Nk, 1 ≤ k ≤ kmax maps a given solution x to a predefined

neighborhood structure Nk(x). Then, the neighborhood explored within a

nested variable neighborhood procedure is defined by operator N ∗ = N1 ◦

N2 ◦ · · ·◦Nkmax
. Obviously, the cardinality of a neighborhood structure N ∗(x)

of some solution x equals to product of cardinalities of nested (composed)
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Algorithm 22: Steps of sequential VND using the best improvement
search strategy.

Function SeqVND(x, kmax, N )
repeat

stop← false;
k ← 1;
x′ ← x;
repeat

x′′ ← argminy∈Nk(x)f(y);
Neighboorhood change sequential(x, x′′, k);

until k = kmax;
if f(x′) ≤ f(x) then

stop← true;
end

until stop = true;
retourner x′;

Algorithm 23: Neighborhood change step for pipe VND.

Procedure Neighborhood change pipe(x, x′, k)
if f(x′) < f(x) then

x← x′;
else

k ← k + 1;
end

Algorithm 24: Neighborhood change step for cyclic VND.

Procedure Neighborhood change cyclic(x, x′, k)
k ← k + 1;
if f(x′) < f(x) then

x← x′;
end

neighborhoods, i.e.,

|N ∗(x)| =
kmax∏

k=1

|Nk(x)|

Such cardinality obviously increases chances to find an improvement in that

nested neighborhood. The steps of nested VND using the best improvement
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search strategy are given in Algorithm 25. The neighborhood N ∗(x) may be

also explored using the first improvement search strategy, following steps of

local search procedure using the first improvement strategy given in Algorithm

19.

Algorithm 25: Steps of nested VND using the best improvement search
strategy.

Function Nested VND(x, kmax, N )
N ∗ = N1 ◦ N2 ◦ · · · ◦ Nkmax

repeat
x′ ← x;
x← argminy∈N ∗(x′)f(y);

until f(x′) ≤ f(x);
return x′;

Mixed variable neighborhood descent

Mixed variable neighborhood descent [133] combines ideas of sequential and

nested variable neighborhood descent. Namely, it uses a set of operators

N = {N1, . . .Nkmax
} to define a nested neighborhood and after that on each

element in this nested neighborhood applies sequential variable neighborhood

descent variant defined by a set of operatorsN ′ = {N ′
1, . . .N

′
ℓmax
}, N ′∩N = ∅.

The cardinality of the set explored in one iteration of mixed VND is bounded

by
∑ℓmax

ℓ=1 |N
′
ℓ(x)| ×

∏kmax

k=1 |Nk(x)|, x ∈ X. Note that ideas similar to those

of mixed VND have been exploited in the filter&fan and the ejection chains

methods, see [143, 187] and the references therein. In Algorithm 26 we

give steps of mixed VND which uses the best improvement search strategy

within the nested neighborhood and standard sequential VND presented in

Algorithm 22 which also uses the best improvement search strategy. Note

that mixed VND may be implemented using the first improvement search

strategy either within nested neighborhood or sequential VND as well as

using pipe or cyclic VND to explore the nested neighborhood.
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Algorithm 26: Steps of mixed VND using the best improvement search
strategy.

Function Mixed VND(x, kmax,ℓmax, N , N ′ )
N ∗ = N1 ◦ N2 ◦ · · · ◦ Nkmax

x′ ← x;
repeat

stop = true;
x← x′;
for each y ∈ N ∗(x) do

x′′ ← SeqVND(y, ℓmax, N
′) ;

if f(x′′) < f(x′) then
stop = false
x′ ← x′′;

end

end

until stop = true;
return x′;

2.2 Shaking procedure

The aim of a shaking procedure used within a VNS heuristic is to hopefully

resolve local minima traps. The simple shaking procedure consists of selecting

a random solution from the kth neighborhood structure. For some problem

instances, a completely random jump in the kth neighborhood is too diversified.

Hence, sometimes is preferable to do so-called intensified shaking checking

taking into account how sensitive is the objective function to small change

(shaking) of the solution. However, for the sake of simplicity we will assume

that each VNS variant presented hereafter uses a simple shaking procedure

based on selecting a random solution from the kth neighborhood structure

(see Algorithm 27).

Algorithm 27: Shaking procedure

Function Shake(x, k,N);
choose x′ ∈ Nk(x) at random;
return x′
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2.3 Variable neighborhood search variants

The basic VNS variant executes alternately a simple local search procedure

(one of two presented in Algorithms 19 and 20) and a shaking procedure

presented in Algorithm 27 together with neighborhood change step (presented

in Algorithm 21) until fulfilling a predefined stopping criterion. As a stopping

criterion, most often, is used maximum CPU time allowed to be consumed

by Basic VNS. Its steps are given in Algorithm 28.

Algorithm 28: Basic Variable Neighborhood Search.

Function Basic VNS(x, kmax, N ,N ′ )
repeat

k ← 1;
while k ≤ kmax do

x′ ← Shake(x, k,N );
x′′ ← Local search(x′, N ′);
Neighborhood change sequential(x, x′′, k);

end

until stopping condition is fulfilled;
return x;

From this basic VNS scheme several other VNS approaches have been

derived. The simplest one is so-called Reduced VNS, which employees a

shaking procedure and a neighborhood change step procedure while the im-

provement phase is discarded. The steps of Reduced VNS that uses sequential

neighborhood change function are given in Algorithm 29.

Another variant is so-called General VNS which as an improvement

procedure uses some of VND procedure presented above unlike to Basic

VNS which uses just a simple local search. Note that it is not obligatory

that neighborhood structures used within the shaking procedure and a VND

procedure are the same although it is more desirable. The steps of a General

VNS are given in Algorithm 30. In the algorithm the statement of the form

VND(x′, ℓmax, N
′) means that a certain VND variant presented above is

executed.

Skewed VNS variants are those that in the neighborhood change step

accept as new incumbent solutions not only improving solutions but also those
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Algorithm 29: Reduced Variable Neighborhood Search.

Function Reduced VNS(x, kmax, N )
repeat

k ← 1;
while k ≤ kmax do

x′ ← Shake(x, k,N );
Neighborhood change sequential(x, x′, k);

end

until stopping condition is fulfilled;
return x;

Algorithm 30: General Variable Neighborhood Search.

Function General VNS(x, kmax, ℓmax, N ,N ′ )
repeat

k ← 1;
while k ≤ kmax do

x′ ← Shake(x, k,N );
x′′ ← VND(x′, ℓmax, N

′);
Neighborhood change sequential(x, x′′, k);

end

until stopping condition is fulfilled;
return x;

worse than the current incumbent solution. The purpose of such neighborhood

change step is to allow exploration of valleys far from the incumbent solution.

Therefore, in the so-called skewed neighborhood change step, a trial solution

is evaluated taking into account not only the objective values of the trial and

the incumbent solution but also the distance between them. The evaluation

function used in the skewed neighborhood change step may be stated as:

g(x, y) = f(x)− f(y)− αd(x, y)

where α represents positive parameter while d(x, y) represents the distance

between solutions x and y. The skewed neighborhood change step using this

function is given in Algorithm 31.

One generalization of VNS is nested VNS. It may be also seen as a
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Algorithm 31: Neighborhood change step for skewed VNS.

Procedure Skewed Neighborhood change(x, x′, k, α)
if f(x′)− f(x) < αd(x′, x) then

x← x′;
k ← 1;

else
k ← k + 1;

end

generalization of mixed VND that consists of applying a VNS variant on

each point of a predefined neighborhood structure instead of applying a

VND variant. In algorithm 32 we give steps of nested VNS which uses best

improvement search strategy to explore the given neighborhood structure

(although the first improvement search strategy may be used as well). For

performance of nested VNS it is crucial that the VNS applied at each point

of the predefined neighborhood is very fast. For that reason it is desirable to

use small CPU time limit as a stooping criterion for this VNS.

Algorithm 32: Steps of nested VNS using the best improvement search
strategy.

Function Nested VNS(x, kmax,ℓmax, ℓ
′
max N , N ′, N ′′ )

N ∗ = N1 ◦ N2 ◦ · · · ◦ Nkmax
;

x′ ← x;
repeat

stop = true;
x← x′;
for each y ∈ N ∗(x) do

x′′ ← VNS(y, ℓmax, ℓ
′
max, N

′, N ′′) ;
if f(x′′) < f(x′) then

stop = false;
x′ ← x′′;

end

end

until stop = true;
return x′;

The previously described nested VNS may be used as the improvement
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procedure of a VNS heuristic. In that case the resulting VNS is called two-level

VNS.

The variable neighborhood decomposition search (VNDS) [122] is based

on decomposition of the problem. Namely, unlike other VNS variants VNDS

does not launch an improvement phase in the whole solution space of a

considered problem, but within a reduced solution space that corresponds to

a reduced problem derived from the original one. The steps of VNDS are

given in Algorithm 33. In this algorithm, the solution y corresponds to the

solution obtained by decomposing the problem. Usually, it is generated so

that it has k different attributes than the current incumbent solution x. On

such generated, solution, an improvement phase is applied in the reduced

solution space. Then, the solution returned by the improvement procedure

is used to create the solution of the original problem. Namely, the solution

returned by the improvement procedure together with the partial solution

x′ \ y constitutes a solution of the original problem. As an improvement

procedure within VNDS may be used some local search procedure, VND

variant or some VNS variant.

Algorithm 33: Variable Neighborhood Decomposition Search

Function VNDS(x, kmax, N )
repeat

k ← 1;
repeat

x′ ← Shake(x, k,N );
y ← x′ \ x;
y′ ← Improvement procedure(y);
x′′ = (x′ \ y) ∪ y′;
Neighborhood change sequential(x, x′′, k);

until k = kmax;

until stopping condition is fulfilled;
return x;

The primal-dual VNS [125] is a variant of VNS that provides the estimation

of quality of the obtained solution unlike the other VNS variants. Namely, the

primal-dual VNS in the first phase uses a VNS heuristic to obtain a primal

feasible solution. After that this solution is used to deduce a dual (infeasible)
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solution. On a such obtained dual solution, a VNS heuristic is applied in order

to reduce dual infeasibility followed by an exact method to solve relaxed dual

problem and generate a lower bound. Finally, a standard branch-and-bound

algorithm is launched to find an optimal solution of the original problem using

tight upper and lower bounds, obtained from the heuristic primal solution

and the exact dual solution, respectively.

It is well known that many optimization problems have more than one

formulation. In the case that a problem has several formulations very often it

appears that local optima with respect to one formulation is not necessarily a

local optima with respect to another formulation. This fact has been exploited

by Variable neighborhood formulation space search [168]. Its main idea is

to use several formulations of a considered problem, and to switch from

one to another formulation, depending on the current state of the solution

process. When the change from one formulation to another occurs, the

solution resulting from the former formulation is used as an initial solution for

the latter formulation. In algorithm 34, one formulation change procedure is

given. In this procedure, notation f(φ, x) corresponds to the objective value

of the solution x in the formulation φ, while assignment φ← φ′ represents

the change of a formulation.

Algorithm 34: Formulation change procedure

Procedure Formulation change(x, x′, φ, φ′,k)
if f(φ′, x′) < f(φ, x) then

x← x′; φ← φ′; k ← 1;
else

k ← k + 1;
end

2.4 Variable neighborhood search applications

2.4.1 Traveling salesman problem with time windows

The Traveling Salesman Problem with Time Windows (TSPTW) is stated

in the following way. Suppose that is given a depot and a set of customers
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(each customer has its service time (i.e., the time that must be spent at the

customer) and a time window defining its ready time and due date). The

TSPTW problem consists in finding a minimum cost tour starting and ending

on a given depot, visiting each customer exactly once before its due date.

The traveling salesman is allowed to arrive at some customer before its ready

time, but in that case the traveling salesman has to wait.

Since TSPTW is NP-hard problem, there is a need for a heuristic which

will be able to solve efficiently realistic instances in the reasonable amount of

time. In that direction, some steps have been already made. For example,

Carlton and Barnes [33] had developed a tabu search heuristic with a static

penalty function, that considers infeasible solutions. Gendreau et al. [82] had

proposed a insertion heuristic based on GENIUS [82] that gradually builds

the route and improves it in a post-optimization phase based on successive

removal and reinsertion of nodes. Calvo [29] had suggested a heuristic which

firstly solves an assignment problem with an ad hoc objective function and

buildes a feasible tour merging all found sub-tours into a main tour, followed

by a 3-opt local search procedure [138] to improve the initial feasible solution.

Ohlmann and Thomas [173] developed a variant of simulated annealing,

called compressed annealing, that relaxes the time windows constraints by

integrating a variable penalty method within a stochastic search procedure.

Two new heuristics were proposed in 2010. One heuristic was proposed by

Blum et al. [155], while the other was proposed by Da Silva et al. [54]. These

two heuristics are, currently, the state-of-the-art heuristics.

We propose new two stage VNS based heuristic for solving the TSPTW

problem. At the first stage we use VNS to obtain a feasible initial solution,

while at the second stage, we use GVNS to improve the initial solution

obtained at the previous stage. Building an initial feasible solution is also

a NP-hard problem. So, we decide to start with the solution obtained as in

the procedure proposed in [54]. It is a VNS based procedure that relocates

customers of a random solution (minimizing its infeasibility) until a feasible

solution is obtained. We also tried out different usual initialization strategies,

but they did not show better performances than one from [54].

Most common moves performed on a TSP solution are 2-opt moves and

OR-opt moves [138]. The 2-opt move breaks down two edges of a current
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solution, and inserts two new edges by inverting the part of a solution in such

a way that the resulting solution is still a tour. One variant of the 2-opt move

is the so-called 1-opt move which is applicable on four consecutive nodes. On

the other hand, an OR-opt move relocates a chain of consecutive customers

without inverting any part of a solution. If a chain contains k nodes, we

call such move OR-opt-k move. If a chain of k consecutive nodes is moved

backward, that move will be called backward OR-opt-k. Similarly, if a chain

is moved forward, the move will be called forward OR-opt-k. Each of these

moves defines one neighborhood structure of the given TSP solution as a set

of all solutions obtained by performing that move on the given TSP solution.

The GVNS used in the second stage applies the cyclic VND to improve

the initial solution. The neighborhood structures used within the cyclic

VND are based on TSP moves such as: 1-opt, backward OR-opt-2, forward

OR-opt-2, backward OR-opt-1, forward OR-opt-1, 2-opt (explored in the

given order). Each of these neighborhood structures is explored by using the

best improvement search strategy.

During a neighborhood exploration, it is important to check whether a

move yields a feasible or an infeasible solution. For that purposes, we build

an array g where gi denotes maximal value for which arrival time at a node

i, i.e., βi, can be increased so that the feasibility on the final part of a tour,

which starts at the node i, is kept. Elements of the array g are evaluated

starting from the depot and moving backward through a tour. If we suppose

that the node j precedes the node i, then gj is calculated in the following

way:

gj = min{gi +max{0, aj − βj}, bj − βj} (2.2)

where g0 = b0 − β0. Using the above array, if we want to check the feasibility

of a move that involves all nodes between the node i and the node j (including

them) from a tour, it suffices to calculate the new arrival time at each of

those nodes as well as the new arrival time at the node k (the successor of the

node j) that would occur if a move is executed. If all these new arrival times

do not violate time window constraints and the arrival time at the node k, is

increased for the value less or equal to the value of gk, then a move is feasible

otherwise it is infeasible.
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The shaking procedure within GVNS performs k random feasible OR-opt-1

moves on a given solution.

Computational results

The proposed GVNS is run on a 2.53GHz processor (similar to one used

in [54](2.4GHz processor)). The method is tested on the benchmark test

instances from the literature. All test instances are grouped in test cases

consisted of five test instances. The number of customers as well as the

maximum range of time windows in each test instance can be deduced from

the name of the test case to which that instance belongs. For example, each

test instance in the test case n400w500 has 400 customers and maximum

range of time window equal to 500. Since, the proposed method is stochastic

one, we decide to run it 30 times on each test instance as Da Silva et al.

[54] did. For each test case we calculate the average value of the objective

function, the average time and the standard deviation σ. The obtained results

are compared to those obtained GVNS proposed by Da Silva et al. [54] which

is the state-of-the-art heuristic for considered instances.

Test instances proposed by Da Silva et al. [54]: The proposed GVNS

with time limit set to 30 seconds has been tested on test cases proposed

by Da Silva et al. According to obtained results (Table 2.1), the proposed

GVNS offers 14 new best known solutions reducing the average computational

time, in comparison to the GVNS proposed in [54], for about 50% in mean.

Also, it should be noted that the proposed GVNS heuristic has not found the

best known solution just for instance n300w200. However, the average value,

12142.71, obtained by the proposed GVNS on all test cases, is better than

the average value, 12149.66, obtained by the GVNS proposed in [54].

Test instances proposed by Gendreau [82]: On all test instances

proposed by Gendreau, we have run the GVNS with the time limit set

to 10 seconds. Computational results obtained by the GVNS is presented

in Table 2.2. According to those results, the proposed GVNS offers one

new best known solution (test case n100w100), while on all other instances

offers the same solution values as GVNS presented in [54]. Similarly as on
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Test Case GVNS Time GVNS GVNS [54] Time GVNS [54]
min.value av.value σ av.sec. σ min.value av.value σ av.sec. σ

n200w100 10019.60 10020.43 0.37 0.00 0.00 10019.6 10019.6 0.1 4.8 0.3
n200w200 9252.00 9254.23 4.99 0.13 0.06 9252.0 9254.1 7.2 5.8 0.2
n200w300 8022.80 8023.13 0.15 10.02 8.47 8026.4 8034.3 4.5 7.2 0.2
n200w400 7062.40 7072.36 9.21 11.84 8.50 7067.2 7079.3 4.4 8.7 0.4
n200w500 6466.20 6472.74 4.89 13.83 9.61 6466.4 6474.0 5.1 10.0 0.3
n250w100 12633.00 12633.00 0.00 0.01 0.01 12633.0 12633.0 0.0 9.9 0.2
n250w200 11310.40 11314.04 2.20 0.32 0.24 11310.4 11310.7 0.7 11.9 0.4
n250w300 10230.40 10231.06 1.49 3.70 4.33 10230.4 10235.1 2.8 14.9 0.6
n250w400 8896.20 8897.94 2.28 37.71 17.40 8899.2 8908.5 4.1 18.9 0.7
n250w500 8069.80 8083.47 5.33 42.23 17.65 8082.4 8082.4(!) 6.7 20.7 0.9
n300w100 15041.20 15041.20 0.00 0.01 0.01 15041.2 15041.2 0.0 21.2 0.7
n300w200 13851.40 13857.56 6.59 0.61 0.34 13846.8 13853.1 2.3 23.7 0.6
n300w300 11477.20 11478.84 1.17 10.97 6.92 11477.6 11488.5 5.2 37.0 3.8
n300w400 10402.80 10419.63 12.57 30.01 13.94 10413.0 10437.4 12.9 31.7 1.2
n300w500 9842.20 9849.23 3.54 49.48 15.72 9861.8 9876.7 8.9 35.4 1.1
n350w100 17494.00 17494.00 0.00 0.02 0.01 17494.0 17494.0 0.0 41.0 2.5
n350w200 15672.00 15672.00 0.00 1.66 2.23 15672.0 15672.2 0.6 47.3 2.1
n350w300 13648.80 13660.80 7.98 13.25 8.51 13650.2 13654.1 1.7 54.9 2.2
n350w400 12083.20 12090.56 4.60 46.83 13.54 12099.0 12119.6 8.9 60.2 2.8
n350w500 11347.80 11360.58 8.54 59.00 13.51 11365.8 11388.2 12.0 57.8 1.2
n400w100 19454.80 19454.80 0.00 0.01 0.00 19454.8 19454.8 0.0 57.1 0.6
n400w200 18439.80 18442.56 2.25 1.78 0.92 18439.8 18439.9 0.6 66.9 1.9
n400w300 15871.80 15875.83 3.95 28.78 11.20 15873.4 15879.1 3.0 93.6 7.9
n400w400 14079.40 14112.02 9.89 54.92 14.92 14115.4 14145.5 12.9 96.2 3.9
n400w500 12716.60 12755.80 14.25 77.46 16.40 12747.6 12766.2 9.7 109.3 4.4
Average 12135.43 12142.71 4.25 19.78 7.38 12141.58 12149.66 4.57 37.84 1.64

Table 2.1: Results on the test instances proposed by Da Silva et al.

previous test cases, the proposed GVNS is significantly faster than GVNS

from [54] regarding mean time needed to solve one instance. According to

Test Case GVNS Time GVNS GVNS [54] Time GVNS [54]
min.value av.value σ av.sec. σ min.value av.value σ av.sec. σ

n20w120 265.6 265.60 0.00 0.00 0.00 265.6 265.6 0.0 0.3 0.0
n20w140 232.8 232.80 0.00 0.01 0.00 232.8 232.8 0.0 0.3 0.0
n20w160 218.2 218.20 0.00 0.00 0.00 218.2 218.2 0.0 0.3 0.0
n20w180 236.6 236.60 0.00 0.00 0.00 236.6 236.6 0.0 0.4 0.0
n20w200 241.0 241.00 0.00 0.01 0.00 241.0 241.0 0.0 0.4 0.0
n40w120 377.8 377.80 0.00 0.02 0.01 377.8 377.8 0.0 0.8 0.0
n40w140 364.4 364.40 0.00 0.02 0.01 364.4 364.4 0.0 0.8 0.0
n40w160 326.8 326.80 0.00 0.02 0.01 326.8 326.8 0.0 0.9 0.0
n40w180 330.4 330.51 0.40 2.22 2.55 330.4 331.3 0.8 1.0 0.0
n40w200 313.8 313.83 0.14 3.60 2.70 313.8 314.3 0.4 1.0 0.1
n60w120 451.0 451.00 0.00 0.28 0.36 451.0 451.0 0.1 1.5 0.1
n60w140 452.0 452.00 0.00 0.09 0.09 452.0 452.1 0.2 1.7 0.1
n60w160 464.0 464.58 0.11 0.04 0.02 464.0 464.5 0.2 1.7 0.0
n60w180 421.2 421.20 0.00 0.45 0.38 421.2 421.2 0.1 2.2 0.1
n60w200 427.4 427.40 0.00 0.32 0.30 427.4 427.4 0.0 2.4 0.1
n80w100 578.6 578.60 0.00 0.73 0.84 578.6 578.7 0.2 2.3 0.1
n80w120 541.4 541.41 0.04 1.30 1.95 541.4 541.4 0.0 2.7 0.1
n80w140 506.0 506.28 0.26 1.37 1.04 506.0 506.3 0.2 3.2 0.3
n80w160 504.8 505.07 0.54 1.46 2.37 504.8 505.5 0.7 3.3 0.1
n80w180 500.6 500.91 0.99 3.33 2.48 500.6 501.2 0.9 3.7 0.1
n80w200 481.8 481.80 0.00 0.40 0.41 481.4 481.8 0.1 4.2 0.2
n100w100 640.6 641.02 0.64 2.79 2.40 642.0 642.1 0.1 3.7 0.1
n100w120 597.2 597.47 0.23 5.65 3.33 597.2 597.5 0.3 4.1 0.2
n100w140 548.4 548.40 0.00 0.23 0.07 548.4 548.4 0.0 4.4 0.2
n100w160 555.0 555.00 0.00 1.11 0.62 555.0 555.0 0.1 5.1 0.2
n100w180 561.6 561.60 0.00 1.22 1.78 561.6 561.6 0.0 6.3 0.3
n100w200 550.2 550.57 1.74 3.97 2.29 550.2 551.0 1.2 6.8 0.3
n100w80 666.4 666.40 0.00 0.46 0.38 666.4 666.6 0.2 3.1 0.2
Average 441.27 441.37 0.18 1.11 0.94 441.31 441.50 0.2 2.45 0.10

Table 2.2: Results on the test instances proposed by Gendreau

the computational results, the proposed GVNS is more efficient than the
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previously proposed GVNS [54] regarding the quality of obtained solutions

and consumed computational time. The efficiency of our implementation, in

comparison to previously proposed GVNS([54]), relies on the larger number

of neighborhood structures which have been examined as well as on the new

efficient feasibility checking procedure. The larger number of neighborhood

structures allows us to explore bigger part of the set of all feasible solutions

of TSPTW problem and therefore to find good quality solutions. Naturally,

exploring larger number of neighborhood structures is time wasting. However,

reducing the size of neighborhood structures and using new feasibility checking

procedure, we have been able to finish exploration quickly. In other words,

using larger number of neighborhood structures, reducing neighborhood

structures and introducing new way to check feasibility of some move, we

have made compromise between solution quality and computational time to

obtain that solution.

2.4.2 Attractive traveling salesman problem

Attractive traveling salesman problem (AtTSP) [67] is a variant of TSP. It is

defined on an undirected graph G = (V ∪W,E), where V ∪W is a vertex set

and E = {(vi, vj) : vi, vj ∈ V ∪W, i < j} is an edge set. Each edge (vi, vj)

from the set E has the associated distance dij as well as the travel time tij.

The set V is a set of facility vertices, while the set W is a set of customer

vertices. A subset of compulsory vertices of V is denoted by T . The set T

contains at least the depot vertex, denoted by v0. Each visited facility vertex,

apart from the depot, generates a profit derived from customer vertices, which

is measured in the way described later. The goal of AtTSP is to design a tour

of maximal profit that contains all compulsory vertices and some vertices

from V \ T . However, the length of a tour is limited by predefined upper

bound L. The length of a tour includes travel times as well as dwell times

associated with visited facility vertices.

The profit of a tour x is a sum of all profits achieved at each facility vertex

that belongs to the tour apart from the depot. If we suppose that the facility

vertex vi is visited, than the profit generated by the customer vertex wk at
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vi, i.e., Pki is calculated in the following way:

Pki = pk

ai
d2
ki

bk +
∑

vj∈V \{v0}
aj

d2
kj

yj

, ∀wk ∈ W, ∀vi ∈ V (2.3)

where ai is attractiveness of facility vertex vi, bk is self-attractiveness of

customer vertex wk, pk is profit associated with customer vertex wk, and yj is

equal to 1 if facility vertex vj is visited, otherwise yj is equal to 0. Therefore,

the total profit of the tour x is equal to:

P (x) =
∑

wk∈W

∑

vi∈V \{v0}

Pkiyi (2.4)

Application of the AtTSP arises in planning the tour of a mobile entertain-

ment facility, such as the circus or the theater company, in routing military

reconnaissance vehicles, in designing a route for a mobile health care facility

operating in an underdeveloped region (see [67, 129, 176]). Since the AtTSP

is a NP-hard problem [67], there is a need for heuristics able to provide good

quality solutions very quickly. Some steps in that direction have already been

made. Erdogan et al. [67] propose a tabu search for AtTSP, and GENIUS

[81] for checking feasibility by solving TSP. Also, they propose a Branch and

Cut (B&C) based exact algorithm.

We propose 2-level GVNS (2-GVNS) heuristic for solving AtTSP. Our 2-

GVNS is actually a GVNS that uses another GVNS (the second level GVNS)

to recognize feasible solutions.

Since the value of the objective function (2.4) does not depend on order

of visited facility vertices the solution space examined within the first level

GVNS is defined as S = {x|x = T ∪ U , ∀U ⊂ V \ T , such that vertices from

x can constitute a tour whose length is less than or equal to L}.

Since each feasible solution of AtTSP has to contain compulsory vertices,

the initial solution for the first level is chosen as a set T , i.e., the set of

compulsory vertices.

In the first level, the following neighborhoods of a given feasible solution

x are explored:
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❼ Add(x) = {x′|x′ is feasible, x ⊂ x′, |x′| = |x|+ 1};

❼ Drop(x) = {x′|x′ is feasible, x′ ⊂ x, |x′| = |x| − 1};

❼ Interchange(x) = {x′|x′ is feasible, |x△ x′| = 2, |x′| = |x|}.

It is interesting to note that the above Drop neighborhood structure cannot

improve the current objective function value. This result is given in the next

proposition.

Proposition 2.4.1 The value of the objective function (2.4) at each solution

x′ from neighborhood Drop(x) is not greater than the value of the objective

function at solution x.

SeqVND in the first level systematically explores neighborhood structures

Add and Interchange in that order. Due to Proposition 2.4.1, we do not per-

form Drop local search, as done in [67]. We implement the first improvement

strategy in both neighborhood structures.

To diversify the search, we use unusual ’double’ Shaking procedure. It

firstly interchanges k random pairs of facilities and then, removes k facilities

from the current solution x, also at random.

Since the neighborhood structures are defined as the sets of feasible

solutions, we need a tool to recognize feasible solutions very quickly. The only

way to recognize vertices of a given solution as those that can form the tour,

whose length does not exceed a predefined limit L, is to solve the associated

TSP, which is NP-hard. For that purposes, we develop GVNS heuristic in the

second level. Neighborhood structures examined within SeqVND of the second

level GVNS are 2.5 opt [138] and so-called 1 opt neighborhood structures.

The shaking function in the second level preforms k random 2.5 opt moves

on a given tour x.

Computational results

Our 2-GVNS is run on a computer with 2.53 GHz CPU and 3GB of RAM, and

has been tested on random test instances and extended TSP-Lib instances

from [67]. All test instances from [67] are available at http://neumann.hec.

ca/chairelogistique/data/AtTSP/.

http://neumann.hec.ca/chairelogistique/data/AtTSP/
http://neumann.hec.ca/chairelogistique/data/AtTSP/
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TSP-Lib Instances [67]. First, we compare 2-GVNS with B&C algorithm

[67], implemented by using CPLEX 10.0.1, to check the precision of our

heuristic. Maximum time allowed for B&C algorithm was set to 1 hour (3600

seconds), while for 2-GVNS was set to 300 seconds.

In Table 2.3, results on the same instances as in [67] are presented. They

contain 6 different files from TSP-Lib: kroA, kroB, kroC, kroD, kroE and

ali535. These 6 files are used to create 48 test instances choosing different

values for |V |, |W | and |T |. The column headings are defined as follows:

❼ |V |, |T |, |W | - cardinalities of sets V , T and W , respectively;

❼ B&C - the value obtained by B&C algorithm;

❼ GVNS - the value of the solution found by 2-GVNS;

❼ % dev - percentage deviation of 2-GVNS from the corresponding B&C

value calculated as

% dev =
fB&C − fGVNS

fB&C

× 100.

❼ time- time when the 2-GVNS (B&C) solution is reached.

❼ size- the number of nodes in the 2-GVNS solution.

Note that on some instances, objective function values reported by B&C

and 2-GVNS are slightly different although the solutions are the same. This

phenomenon can be explained by the fact that all variables in the objective

function have type double.

It appears:

❼ Our 2-GVNS reported the same objective function values as B&Con

all 48 instances, but in much less computing time. This means that

the exact solutions of all 47 instances were reported (note that B&C

algorithm was able to find optimal solutions for all TSP-Lib instances,

except for the instance ali535, with |V | = 50, |T | = 1, |W | = 150);
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Test Objective func. (%) Time (sec)
Instance |V | |T | |W | B&C GVNS dev B&C GVNS Size
kroA100 25 1 75 3208.87 3208.82 0.00 34.06 10.56 11
kroA100 25 6 75 3415.33 3415.31 0.00 8.16 0.72 15
kroA100 25 12 75 3491.10 3491.08 0.00 1.72 0.11 19
kroA100 25 18 75 3562.48 3562.47 0.00 0.06 0.01 24
kroA150 37 1 113 4781.18 4781.12 0.00 381.00 2.62 12
kroA150 37 9 113 5083.13 5083.07 0.00 106.79 1.22 17
kroA150 37 18 113 5319.77 5319.73 0.00 25.27 1.52 24
kroA150 37 27 113 5417.65 5417.59 0.00 1.42 0.02 31
kroA200 50 1 150 5571.03 5570.95 0.00 2047.76 5.51 13
kroA200 50 12 150 5777.59 5777.52 0.00 83.27 1.05 18
kroA200 50 25 150 6334.22 6334.16 0.00 11.13 0.74 28
kroA200 50 37 150 6584.07 6583.97 0.00 3.75 0.03 38
kroB100 25 1 75 3074.84 3074.80 0.00 1.35 2.03 12
kroB100 25 6 75 3046.43 3046.40 0.00 5.08 2.17 14
kroB100 25 12 75 3149.02 3148.97 0.00 0.32 0.18 19
kroB100 25 18 75 3194.25 3194.22 0.00 1.15 0.20 23
kroB150 37 1 113 4278.50 4278.45 0.00 513.81 4.56 12
kroB150 37 9 113 4553.95 4553.90 0.00 42.83 0.81 17
kroB150 37 18 113 4775.70 4775.66 0.00 2.12 0.46 23
kroB150 37 27 113 4907.78 4907.72 0.00 0.99 0.10 30
kroB200 50 1 150 5158.18 5158.12 0.00 147.86 8.03 13
kroB200 50 12 150 5122.27 5122.22 0.00 627.50 1.25 19
kroB200 50 25 150 5725.12 5725.04 0.00 10.31 1.03 30
kroB200 50 37 150 6001.81 6001.77 0.00 2.25 0.06 39
kroC100 25 1 75 2910.12 2910.08 0.00 10.48 0.54 11
kroC100 25 6 75 3055.04 3055.00 0.00 2.86 0.81 15
kroC100 25 12 75 3119.39 3119.35 0.00 2.84 0.24 17
kroC100 25 18 75 3237.36 3237.34 0.00 0.32 0.03 22
kroD100 25 1 75 3002.30 3002.27 0.00 8.15 0.58 13
kroD100 25 6 75 3094.04 3094.01 0.00 0.89 0.28 16
kroD100 25 12 75 3146.34 3146.32 0.00 0.14 0.09 19
kroD100 25 18 75 3170.25 3170.24 0.00 0.04 0.02 23
kroE100 25 1 75 3311.27 3311.23 0.00 3.77 2.78 12
kroE100 25 6 75 3313.15 3313.13 0.00 0.91 1.13 14
kroE100 25 12 75 3393.93 3393.90 0.00 2.18 0.14 19
kroE100 25 18 75 3474.43 3474.42 0.00 0.11 0.01 24
ali535 25 1 75 2697.01 2696.97 0.00 0.29 1.28 18
ali535 25 6 75 2721.78 2721.76 0.00 0.08 0.22 22
ali535 25 12 75 2725.05 2725.05 0.00 0.04 0.06 24
ali535 25 18 75 2729.37 2729.36 0.00 0.13 0.00 25
ali535 37 1 111 3170.43 3170.37 0.00 55.19 4.76 19
ali535 37 9 111 3370.52 3370.48 0.00 4.15 2.74 25
ali535 37 18 111 3427.33 3427.28 0.00 1.20 0.63 29
ali535 37 27 111 3515.70 3515.63 0.00 0.49 0.09 34
ali535 50 1 150 3660.21 3660.15 0.00 3600.30 12.88 19
ali535 50 12 150 3682.20 3682.13 0.00 39.29 4.08 24
ali535 50 25 150 4127.52 4127.46 0.00 38.72 1.49 35
ali535 50 37 150 4413.44 4413.36 0.00 1.95 0.16 43

Average 3958.38 3958.34 0.00 163.22 1.67 21.31

Table 2.3: Computational results on TSPLIB instances

❼ On the other hand, as reported in [67], Tabu Search algorithm failed

to find optimal solutions for the following instances: kroA100 |V | =

25, |T | = 1, |W | = 75, kroA150 |V | = 37, |T | = 9, |W | = 113, kroB150

|V | = 37, |W | = 113, |T | = 1 and 9, kroB200 |V | = 50, |W | = 150, |T | =

12 and 25, ali535 |V | = 37, |W | = 111, |T | = 1, 9, and 18, |V | =

50, |T | = 1, |W | = 150. Thus, we may conclude that 2-GVNS is the

best method for solving this type of instances.



CHAPTER 2. VARIABLE NEIGHBORHOOD SEARCH 75

Test instances for extended AtTSP [67]. Extension of AtTSP considers

more than one service option for visiting a facility vertex. These options may

differ in the service time length and the attractiveness values. The instances

of extended AtTSP are transformed to AtTSP instances, in the way described

in [67]. For this purpose, the kroA, kroB, kroC, kroD and kroE instances

were used, producing 36 instances in total. The comparison of 2-GVNS with

B&C and Tabu Search (TS) methods is given in Table 2.4. The new column

headings are defined as follows:

❼ TS - objective value of the solution found by TS,

❼ % dev TS - deviation of GVNS from the corresponding TS value calculated

as fTS−fGV NS

fTS
× 100.

In our early experiments, we were not able to reach results reported

in [67] for some instances. We asked authors to provide us with optimal

solutions of those instances. They have kindly sent us new results, which are

reported in column 5 of Table 2.4. This time, their maximum time spent

in solving one instance has increased to 2 hours (see column 12 of Table

2.4). Note that, in the original paper, maximum time allowed was 1 hour.

Note also that the new solutions, as well as our solutions, can be found at

http://www.mi.sanu.ac.rs/~nenad/attsp/.

The presented results show that the 2-GVNS improves the best known

solutions for 2 instances (out of 36): kroB150 |V | = 37, |T | = 1, |W | = 113 and

kroA200 |V | = 50, |T | = 1, |W | = 150, while on all other instances 2-GVNS

is able to find same solutions as B&C algorithm. However, 2-GVNS needs

significantly less computational time. When compared with TS algorithm,

the proposed 2-GVNS provides significantly better solutions on almost all

test instances. Moreover, there is no test instance on which TS performs

better than 2-GVNS. This can be explained by the fact that TS and 2-GVNS

examine different neighborhood structures. The TS heuristic explores Drop

and Add, while 2-GVNS examines Add and Interchange neighborhoods.

More precisely, since Drop neighborhood does not contain improvement of

a solution, 2-GVNS explores larger part of the solution space and therefore

has more chances to find a better solution than TS. Consequently, 2-GVNS

http://www.mi.sanu.ac.rs/~nenad/attsp/
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(%) dev
Test Objective function value GVNS vs. Size Time (sec)
Instance |V | |T | |W | B&C TS GVNS TS B&C B&C GVNS B&C GVNS
kroA100 25 1 75 2356.96 2321.32 2356.92 -1.53 0.00 9 9 1622.75 83.09
kroA100 25 6 75 2588.61 2576.96 2588.57 -0.45 0.00 10 10 137.82 82.80
kroA100 25 12 75 2725.51 2723.86 2725.48 -0.06 0.00 16 16 42.80 8.72
kroA100 25 18 75 2879.15 2877.97 2879.10 -0.04 0.00 20 20 135.96 1.73
kroA150 37 1 113 3516.82 3490.45 3516.94 -0.76 0.00 8 8 3867.79 241.33
kroA150 37 9 113 3882.45 3853.74 3882.40 -0.74 0.00 14 14 75.73 34.36
kroA150 37 18 113 4166.33 4166.33 4166.28 0.00 0.00 20 20 8.05 6.60
kroA150 37 27 113 4268.36 4268.37 4268.31 0.00 0.00 30 30 16.58 3.67
kroA200 50 1 150 3775.93 3636.83 3781.07 -3.97 -0.14 9 10 7200.73 68.17
kroA200 50 12 150 3938.36 3910.39 3938.29 -0.71 0.00 17 17 868.07 20.44
kroA200 50 25 150 4545.32 4545.33 4545.28 0.00 0.00 28 28 321.16 5.71
kroA200 50 37 150 4914.69 4849.82 4914.63 -1.34 0.00 38 38 1.67 0.90
kroB100 25 1 75 2444.09 2442.18 2444.05 -0.08 0.00 8 8 48.29 46.97
kroB100 25 6 75 2392.91 2392.91 2392.88 0.00 0.00 11 11 8.70 42.56
kroB100 25 12 75 2507.47 2507.46 2507.43 0.00 0.00 15 15 2.32 37.22
kroB100 25 18 75 2599.72 2599.71 2599.68 0.00 0.00 20 20 18.85 34.42
kroB150 37 1 113 3005.74 2948.05 3013.83 -2.23 -0.27 8 9 7235.95 25.87
kroB150 37 9 113 3282.67 3272.50 3282.61 -0.31 0.00 15 15 41.91 19.46
kroB150 37 18 113 3525.58 3525.57 3525.53 0.00 0.00 22 22 18.24 10.97
kroB150 37 27 113 3700.56 3700.55 3700.50 0.00 0.00 29 29 3.45 2.60
kroB200 50 1 150 3561.77 3515.09 3561.76 -1.33 0.00 10 10 3877.27 40.86
kroB200 50 12 150 3537.64 3528.10 3537.58 -0.27 0.00 20 20 252.72 68.24
kroB200 50 25 150 4209.81 4209.40 4209.76 -0.01 0.00 30 30 163.37 17.72
kroB200 50 37 150 4597.73 4597.72 4597.69 0.00 0.00 38 38 10.33 3.40
kroC100 25 1 75 2114.74 2039.45 2114.70 -3.69 0.00 8 8 166.30 45.98
kroC100 25 6 75 2287.62 2234.55 2287.60 -2.37 0.00 10 10 53.78 25.73
kroC100 25 12 75 2303.61 2303.60 2303.57 0.00 0.00 15 15 7.81 6.78
kroC100 25 18 75 2524.54 2491.42 2524.49 -1.33 0.00 18 18 0.26 2.60
kroD100 25 1 75 2335.90 2306.69 2335.86 -1.26 0.00 8 8 158.82 76.47
kroD100 25 6 75 2435.53 2422.13 2435.51 -0.55 0.00 12 12 40.72 123.76
kroD100 25 12 75 2522.18 2494.43 2522.16 -1.11 0.00 15 15 0.47 8.88
kroD100 25 18 75 2642.83 2642.82 2642.78 0.00 0.00 19 19 1.13 3.86
kroE100 25 1 75 2618.70 2526.25 2618.66 -3.66 0.00 7 7 10.73 26.55
kroE100 25 6 75 2561.25 2492.11 2561.22 -2.77 0.00 10 10 1.74 11.49
kroE100 25 12 75 2659.51 2651.28 2659.50 -0.31 0.00 16 16 1.08 9.84
kroE100 25 18 75 2766.33 2766.34 2766.30 0.00 0.00 22 22 10.00 10.22

Average 3130.47 3106.44 3130.80 -0.86 -0.01 16.81 16.86 734.26 35.00

Table 2.4: Computational results on extended AtTSP instances

succeeded to cope with test instances that were very difficult for TS. In

addition, the feasibility checking phase of GVNS, applied at the second level,

appears to be very efficient.

2.4.3 Traveling salesman problem with draft limits

Recently, new variant of Traveling salesman Problem (TSP) in the context

of maritime transportation, called Traveling Salesman problem with Draft

Limits (TSPDL) has been proposed [186]. TSPDL consists of visiting and

delivering goods for a set of ports using a ship located initially at a depot.

Since each port has a delivery demand known in advance the ship starts the
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tour with a load equal to the total demand, visits each port exactly once and

comes back to the depot performing the lowest cost tour. However, to each

port it is assigned a draft limit, which represents the maximal allowed load

on the ship upon entering some port.

Formally, the problem may be stated as follows [186]. Given an undirected

graph G = (V,E) where V = {0, 1, ..., n} represents the set of ports including

the starting port, i.e., the depot denoted by 0, while E = {(i, j)|i, j ∈ V, i 6= j}

represents the edge set where each edge (i, j) from the set E has the associated

cost cij. For each port i, apart from the depot, a draft limit, li, and a

demand, di, are given. Therefore the goal of TSPDL is to design minimal

cost Hamiltonian tour, visiting each port exactly once and respecting draft

limit constraints of all ports. Additionally, let us denote by Li the load on

the ship upon entering the port i, calculated relatively to a given tour T . The

tour T will be called a feasible tour if Li ≤ li for all i ∈ V , otherwise it will

be called an infeasible tour.

TSPDL is a NP-hard problem. Rakke et al. [186] proposed two for-

mulations of TSPDL and a Branch and cut algorithm for solving both of

them. Additionally, they introduced some valid inequalities and strengthened

bounds that significantly reduce both the number of branch-and-bound nodes

and the solution time. However, with these approaches they did not succeed

to solve all instances to optimality. Recently, Battarra et al. [14] proposed

three new formulations of TSPDL which enabled them to solve instances to

optimality using exact algorithms. Up to now, just exact methods have been

considered for solving this problem. However, it turns out that these methods

consume a lot of CPU time to solve benchmark instances either to optimality

or near optimality. Therefore, there is a need for metaheuristics or heuristic

able to find near-optimal solutions quickly and also able to solve instances

of larger size. We propose two heuristics based on GVNS for the TSPDL,

which differ in a strategy of choosing the next neighborhood, from a given

list, in the deterministic part of GVNS. One of them, named GVNS-1, uses

sequential VND in the improvement phase, while another, named GVNS-2,

uses cyclic VND.

It is obvious that not every solution of TSP, i.e., permutation of ports,

is feasible for TSPDL and therefore some permutations might be infeasible.
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However, the following proposition, proved in [186], provides a necessary and

sufficient condition for feasibility.

Proposition 2.4.2 Let suppose, without loss of generality, that all ports

are sorted in descending order regarding draft limits such that li ≤ li+1,

∀i ∈ {1, . . . n− 1}. Then a TSPDL instance is feasible if and only if Li ≤ li

for all i ∈ V. If the solution (0, . . . , n) is infeasible than no other solution is

feasible.

This proposition provides a way how to generate a first feasible solu-

tion if any exists. More precisely, to do this we have to sort the ports in

descending order relatively to draft limits, and take this permutation as

an initial solution if it is feasible. Any neighborhood structure applicable

for TSP can be also adapted for TSPDL problem taking into account the

draft limit constraints. This adaption may be performed in a simple way,

by excluding all permutations which are infeasible for TSPDL. In order to

quickly recognize infeasible solutions for each used neighborhood structures,

we implement the feasibility checking function. In what follows, we describe

the used neighborhood structures and the feasibility checking procedures used

within them.

In order to recognize whether some move is feasible or infeasible, without

performing it, we just have to keep array L updated and check whether the

feasibility will be kept on some part of a tour if we execute that move.

Two variants of Variable Neighborhood Descent (VND), which systemati-

cally explore different neighborhood structures using the first improvement

strategy, are proposed. The first VND is SeqVND which examines respectively

1-opt, 2-opt, backward OR-opt-3, forward OR-opt-3, backward OR-opt-2,

forward OR-opt-2, backward OR-opt-1 and forward OR-opt-1 neighborhood

structures. The second one is cyclic VND which examines respectively 1-

opt, backward OR-opt-2, forward OR-opt-2, backward OR-opt-1, forward

OR-opt-1 and 2-opt neighborhood structures in that order. Apart of using

different neighborhood structures, these two variants of VND use different

rules for choosing how to continue search after finishing search in some neigh-

borhood structure. While SeqVND continues search in the first neighborhood

structure or in the next neighborhood structure depending on whether some
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improvement has been found or not, cyclic VND always continues search in

the next neighborhood structure. Therefore these two variants have different

stopping conditions. SeqVND stops when there is no improvement in the last

neighborhood structure, i.e., forward OR-opt-1 neighborhood structure, while

cyclic VND stops when there is no improvement between two consecutive

iterations.

Since we have developed two VND procedures, we implemented two GVNS

methods as well. The only difference between the GVNS methods is a different

VND used as a local search. Depending on which VND is employed as a

local search we denote these two GVNS methods as GVNS-1 (local search -

SeqVND) and GVNS-2 (local search - cyclic VND). In order to escape from

the current local optima both GVNS methods use the same shaking function

which returns a solution obtained by preforming k times a random OR-opt-1

move on a given tour. More precisely the shaking function at each iteration

chooses at random one port from the tour and moves it, either forward or

backward, after another port, also chosen at random.

Computational results

For testing the proposed two approaches, we used the set of benchmark

instances proposed in [186]. It consists of 240 instances derived from 8

classical TSP instances [189]. Each instances is characterized by a matrix of

edge costs, a number of ports, demands and draft limits. They can be found

at : http://jgr.no/tspdl. Furthermore, we generate 60 new large-size data

sets for the TSPDL. The new ones are generated from three existing TSP

instances [189] with n ∈ {100, 200, 442}. The new instances are available at :

http://turing.mi.sanu.ac.rs/˜nenad/TSPDL/ The time limit for both GVNS

heuristics has been set to 100 seconds.

In Table 2.5, a summary results that compare our heuristics with the

exact one based on branch and cut and price (B&C&P) provided in [186]

are presented. Note that the B&C&P algorithm succeeded to solve all 240

instances to optimality within a time limit set to 7200 seconds. Table 2.5

reports in the first column the instance name while in the second column it

reports the average of 10 optimal solutions found by the B&C&P algorithm.
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The average times for all three methods are also given in Table 2.5. It appears:

i) GVNS-2 heuristic reaches all 240 optimal solutions with 1.06 seconds on

average. Note that the B&C&P used 4112.04 seconds. ii) GVNS-1, is slightly

faster than GVNS-2 (it spends 0.82 seconds on average), but it did not get

optimal solution in only 2 (out of 240) instances.

Inst B&C&P GVNS-1 GVNS-2
Optimal Time Value Time Value Time

Burma 14 10 3386.70 0.52 3386.70 0.00 3386.70 0.00
Burma 14 25 3596.80 0.37 3596.80 0.00 3596.80 0.00
Burma 14 50 3862.30 0.35 3862.30 0.00 3862.30 0.00
Ulysse 16 10 6868.20 50.34 6868.20 0.00 6868.20 0.00
Ulysse 16 25 7165.40 18.58 7165.40 0.00 7165.40 0.00
Ulysse 16 50 7590.30 4.60 7590.30 0.00 7590.30 0.00
Ulysse 22 10 7087.60 32.02 7087.60 0.04 7087.60 0.00
Ulysse 22 25 7508.70 24.61 7508.70 0.01 7508.70 0.00
Ulysse 22 50 8425.60 26.55 8425.60 0.04 8425.60 0.03
fri26 25 963.80 12.37 963.80 0.02 963.80 0.00
fri26 50 1104.70 16.43 1104.70 0.06 1104.70 0.05
fri26 10 1178.70 16.26 1178.70 0.01 1178.70 0.01
bayg29 10 1713.60 11.99 1713.60 0.00 1713.60 0.02
bayg29 25 1792.60 11.05 1792.60 0.14 1792.60 0.02
bayg29 50 2091.00 13.38 2091.00 0.01 2091.00 0.05
gr17 10 2150.30 25.12 2150.30 0.00 2150.30 0.00
gr17 25 2237.70 11.11 2237.70 0.00 2237.70 0.00
gr17 50 2710.30 5.54 2710.30 0.00 2710.30 0.00
gr21 10 2833.60 11.63 2833.60 0.00 2833.60 0.01
gr21 25 2962.60 11.44 2962.60 0.00 2962.60 0.00
gr21 50 3738.10 10.32 3738.10 0.01 3738.10 0.00
gr48 10 5284.40 1352.72 5284.40 0.20 5284.40 3.39
gr48 25 5800.30 861.47 5802.60 13.25 5800.30 13.65
gr48 10 6635.70 211.35 6635.70 5.97 6635.70 8.31
Average 4112.04 114.17 4112.14 0.82 4112.04 1.06

Table 2.5: Summary of the Comparison between the existing method and the
proposed two GVNS approaches on small instances

In Table 2.6, a comparison between the two proposed GVNS methods

on new instances is presented. For each method, we calculate percentage

deviation between average value of its solutions and the Lower Bound (LB),

i.e., the optimal solution for TSP. Thus, we calculate the percentage deviation

∆ as follows : ∆ = ((f −LB)/LB)×100, where f is the value of the objective

function.
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Inst LB GVNS-1 GVNS-2 ∆GVNS−1 ∆GVNS−2

Value Time Value Time
KroA100 50 21282 21325.60 16.92 21294.00 27.86 0.20 0.06
KroA100 75 21282 21359.40 29.41 21303.40 32.67 0.36 0.10
KroA200 50 29368 30869.30 66.00 30665.20 77.51 5.11 4.42
KroA200 75 29368 32041.50 79.37 30896.10 77.05 9.10 5.20
pcb442 50 50778 61170.30 77.51 59858.30 72.74 20.47 17.88
pcb442 75 50778 63889.70 72.32 61010.10 83.36 25.82 20.15
Average 33809.33 38442.63 56.92 37504.52 61.87 10.18 7.97

Table 2.6: Comparison between the proposed two GVNS approaches on new
large instances

From Table 2.6, we conclude that GVNS-2 outperforms GVNS-1 regarding

average values of provided solution, although it consumes slightly greater

amount of CPU-time. Note that the average percentage deviation increases as

number of vertices increases. It should be emphasized that on some instances

with 100 vertices GVNS variants succeeded to reach solutions equals to lower

bound value. In other words, some instances with 100 vertices have been

solved to optimality.

2.4.4 Swap-body vehicle routing problem

Swap-Body Vehicle Routing Problem (SBVRP) [218] is stated as follows.

Given a homogeneous unlimited fleet located at the depot. The fleet contains

trucks, trailers and swap-bodies. In the fleet, only swap bodies may be loaded

but their maximum capacity Q must not be exceeded. From the available

fleet, two vehicle combinations are allowed to be made: truck carrying one

swap-body (SB) or truck and semi-trailer (called train) carrying two swap-

bodies. Using available vehicle combinations one has to service a given set

of customers visiting each of them exactly once while performing route that

starts and ends at the depot. Each customer i has a demand qi that must

be delivered, servicing time si needed to serve it as well as the accessibility

constraint. Namely, some customers (called truck customers) can be visited

only by a truck while the others (called train customers) may be visited

either by a truck or by a train. However, even if the truck departs from the

depot as a train carrying on two swap-bodies it can visit truck customers
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after detaching the semi-trailer at specified locations called swap-locations. If

the semi-trailer is detached at some swap-location from the truck, it must be

reattached by the same truck before returning to the depot. Note that no

exchange of swap-bodies between trucks is allowed on route, i.e., a truck/train

has to return to the depot with exactly the same swap-bodies it departed

with. At the swap locations, it is allowed to perform the following actions:

❼ Park action - a truck parks the semi-trailer and continues the route

with just one swap-body.

❼ Pick Up action - the truck picks up the semi-trailer with the swap-body

it has parked there at an earlier stage of the route.

❼ Swap action - a truck parks the swap-body it is currently carrying

and picks up the other swap-body from the semi-trailer it has parked

there at an earlier stage of the route.

❼ Exchange action - a truck parks the semi-trailer, exchanges the swap-

bodies between truck and semi-trailer and continues the route.

Note that it is not allowed to exchange load between swap-bodies neither

at swap locations nor at the customers sites even if they belong to the same

train. However, if a customer is visited by a train, its demand may be loaded

on two swap-bodies.

Each performed route r has three attributes: the total distance, DT
r , traveled

by truck in kilometers (km), the total distance DS
r traveled by semi-trailer in

km, and total duration, τr, in hours. The route duration includes not only

time needed to travel from one location to another in the route, but also the

time spent serving customers on the route as well as time spent performing

actions (if any) at swap locations. However, the duration of each route must

not exceed the predefined time limit τmax. Three aforementioned attributes

together with the fixed cost for using a truck, CT
F , and the fixed cost for using

a semitrailer, CS
F , induces the total cost of a route. More precisely, let CT

D

and CS
D be cost per km traversed by a truck and a semi-trailer, respectively

and let CT be cost for one hour spent on a route. Then, the cost of a route r
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performed by train is given as:

Cr = CT
D ×D

T
r + CS

D ×D
S
r + CT × τr + CT

F + CS
F (2.5)

Similarly, the cost of a route r performed by truck is calculated as:

Cr = CT
D ×D

T
r + CT × τr + CT

F (2.6)

So, the objective of SBVRP is to find a set of routes of minimum total

cost such that in each route customer requirements, the allocated vehicle

constraints, and maximal route duration constraint are respected.

We represent a solution of SBVRP as a set of routes. Each route is

composed of a main tour and a set of sub-tours (if any). A main tour starts

and ends at the depot while a sub-tour starts and ends at some swap-location

visited in a main tour (see Figure 2.1). If a set of sub-tours is non-empty,

then each sub-tour is rooted at some swap-location. Further in that case, each

sub-tour contains either truck or train customers, while main-tour contains

only train customers (if any) and swap-locations. Existence of a sub-tour in a

route means that the train visits a swap-location, performs some swap-action

(park or exchange), serves a set of customers (truck or train customers),

returns to the last visited swap-locations and again performs some swap-

action (pick-up or swap). In the case, that pick-up action occurs, the train

continues traversing the main-tour, while otherwise, the truck makes one

more sub-tour rooted at the same swap-location. On the other hand, in the

case that the set of sub-tours is empty, we distinguish two types of main

tour: a train main tour and a truck main tour. A train main tour is achieved

visiting train customers using a train vehicle. On the other hand, a truck

main tour arises when a truck is used to serve only truck customers, or only

train customers, or both truck and train customers.

In order to construct an initial solution we used a cluster-first, route-second

approach. In the first step, truck customers are clustered with respect to the

depot and the swap locations which are considered as centers of clusters. The

proximity of each truck customer i to a center j, δji is estimated as a cost

that will occur if the truck customer i is serviced via the center j. In the case

that, the depot is considered as a center, the cost is estimated as a cost of
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Figure 2.1: Solution representation

the tour performed by a truck going from the depot to a truck customer i

and returning to the depot, i.e.,

δ0i = CT
F + CT

D × (d0i + di0) + CT × (t0i + ti0 + si). (2.7)

On the other hand, if a truck customer is served via a swap-location, the

cost is calculated as the cost of the route traversed by a train vehicle going

from the depot to a swap-location j (parking semi-trailer), visiting a truck

customer i, coming back to the swap-location (picking up semi-trailer) and

finally coming back to the depot, i.e.,

δji = CT
F+C

S
F+C

T
D×(d0j+dji+dij+dj0)+C

S
D×(d0j+dj0)+CT×(t0j+tji+tij+tj0+si+ρP+ρU).

(2.8)

After clustering truck customers, the routing is performed in each cluster

in order to create sub-tours as well as to create truck main tours. In order

to accomplish that, in each obtained cluster we solve VRP using Clarke and

Wright heuristic [42] assuming that we use only truck vehicles which capacity

equal to Q, and setting the cluster center to serve as a depot in the considered

VRP. Each route constructed in a cluster whose center is a swap-location

represents a sub-tour (in our representation), while each route constructed in

the cluster whose center is the depot represents a truck main tour.

In the last step, main tours are constructed. Main tours are obtained as

solutions of VRP in which train customers and swap-locations are taken into

account. To each swap-location is assigned demand equal to the total demand

on the sub-tour (constructed in previous step) originating at it. Note that in

the case that there is more than one sub-tour rooted at some swap-location,

we create copies of the swap-location and set the demand of each copy to

be equal to the total demand of one sub-tour rooted at the swap-location.
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The resulting VRP is again solved by Clarke and Wright heuristic taking

into account that we have the fleet of vehicles located at the depot which

capacity is equal to 2Q. In addition, we imposed the constraint that the total

demand of swap-location nodes included in one route must not be greater

than Q. Under such constraint the total demand of customers in the sub-tours

will be loaded in a swap-body carried on a truck. The main purpose of this

constraint is to ensure that the total demand of customers in the sub-tours

will be satisfied.

For a solution of SBVRP, we define neighborhood structures adapting

ones most commonly used in VRP related problems. The moves that are

used to constitute these neighborhoods may be divided into two groups: Intra

route moves (that involve one main tour or sub-tour) and inter-route moves

(that involve two tours (either main tours or sub-tours)). The intra route

moves that we used are actually standard traveling salesman problem (TSP)

moves [138] and they are: 2-opt move, 1-opt move and OR-opt-1 move.

Inter - route neighborhood moves are classified into two groups according

to whether they include the relocation of a part of one tour to another (Figure

2.2) or the exchange of two parts of two different tours (Figure 2.3). These

moves are further classified with respect to the tours involved in a move.

Therefore we distinguish the following eight moves: relocate a part from

one main tour to another (Relocate main to main); relocate a part from a

main tour to a sub-tour (Relocate main to subtour); relocate a part from

a sub-tour to a main tour (Relocate subtour to main); relocate a part

from one sub-tour to another (Relocate subtour to subtour); exchange

parts of two main tour (Exchange main main); exchange parts of a main tour

and a sub-tour (Exchange main subtour); exchange parts of two sub-tours

(Exchange subtour subtour).

Figure 2.2: Relocate move Figure 2.3: Exchange move
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Note that in these moves some restrictions are imposed in order to preserve

feasibility. Namely, we do not allow relocation of a part of a main tour which

contains swap locations into a sub-tour. Similarly, a part of sub-tour that con-

tains truck customers can not be relocated in a main tour if the resulting route

would be served by a train. The similar restrictions are included in moves that

include exchange of tour parts as well. It should be emphasized that relocate

moves (Relocate subtour to main and Relocate subtour to subtour) also

allow a movement of whole sub-tours and therefore sub-tour elimination.

Similarly, Exchange subtour subtour move enable us to exchange two sub-

tours within same route or between two different routes. In order to avoid

additional computation needed for the feasibility checking, we treat as feasible

moves only those which execution lead to routes such that the total demand

on their sub-tours is not greater than Q. In other words, our solution space

contains only solutions such that if a route in a solution contains a swap

location, at this swap location only park and pick up actions are executed.

The previously described neighborhood structures have been exploited

within VNS scheme. More precisely, the neighborhoods based on the similar

move structures are embedded within the same VND scheme. In that way we

create three seqVNDs:

❼ VND TSP - explores neighborhoods of a given solution S that are based

on standard TSP moves.

❼ VND relocate - uses the neighborhoods of a given solution S that

involves relocation of a part of one tour to another.

❼ VND exchange - explores neighborhoods of a given solution S obtained

exchanging the parts of tours.

Each of these VNDs uses the first improvement search strategy, i.e., as soon

as a VND detects solution better than the current one, it resumes search

starting from that solution. The presented VNDs are used as ingredients of a

local search procedure used within the proposed GVNS. The proposed local

search applies VND TSP, VND exchange and VND relocate in that order one

after another. The used shaking procedure has two parameters: solution S

and the number of iterations, k, to be performed within it. In each iteration
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the procedure firstly choose a tour (main or sub-tour) at random and then

choose its part of random length such that a swap-locations is not included in

the chosen part. After that each customer from the selected part is moved in

another tour, keeping the feasibility and deteriorating the current objective

value as least as possible. The such obtained solution is set to be the new

incumbent solution S and whole process is repeated until reaching maximum

number of iterations allowed (i.e., k).

Besides, the sequential GVNS we implemented a parallel GVNS. The

parallel GVNS executes four tasks simultaneously. Each task, executed on

one core, consists of applying the shaking procedure and the local search

procedure one after another. Note that since shaking procedure generates a

solution at random, the four shaking procedures, executed simultaneously,

return four different solutions and therefore solutions returned by the local

search procedure applied on each of these solutions are not necessarily the

same. The best solution obtained after executing these four tasks is examined

to be set to the new incumbent solution. If the change of incumbent solution

occurs, the search process is resumed starting from the new incumbent

solution. Whole process is repeated until reaching CPU time limit.

Computational results

The performances of the proposed approaches, GVNS algorithm (Sequential

GVNS) and parallel GVNS algorithm (Parallel GVNS), have been disclosed

on the benchmark instances provided by organizers of VeRolog 2014 solver

challenge [218]. According to the size instances are classified as:

❼ small instances - about 50 customers and 15-20 swap locations;

❼ medium instances - about 200 customers and about 50 swap locations;

❼ large instances - about 500 customers and about 100 swap locations.

In addition for each instance size three types of instances may be distinguished:

❼ normal - there are customers that can be visited by train as well as

those that must be visited only by truck;

❼ all without trailer - all customers must be serviced only by truck;
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❼ all with trailer - all customers can be visited either by truck or train.

All tests have been carried out on a computer with Intel i7-4900MQ CPU

2.80 GHz and 16GB RAM. The CPU time limit has been set to 600 seconds

as suggested by organizers of VeRolog 2014 solver challenge.

The computational results have been presented in the Table 2.7. For each

GVNS version we provide the value of best solution found (Column Value)

as well as time in seconds spent to reach that solution (Column Time). In

column dev we report the percentage deviation of value found by sequential

GVNS from corresponding value provided by parallel GVNS (which used four

available cores).

Parallel GVNS Sequential GVNS dev
Test instance Value Time(s) Value Time(s) (%)
small all without trailer 5249.18 1.96 5249.18 146.08 0.00
small all with trailer 4731.02 6.08 4731.02 119.85 0.00
small normal 4847.63 66.19 4847.63 187.28 0.00
medium all without trailer 8382.80 464.59 8398.80 594.20 0.19
medium all with trailer 7765.75 357.50 7754.39 594.58 -0.15
medium normal 7834.78 497.37 7878.74 49.09 0.56
large all without trailer 22310.60 430.16 22477.60 599.22 0.75
large all with trailer 20066.40 465.37 20263.10 527.26 0.98
large normal 20496.40 599.60 20570.2 591.81 0.36
preselection large all without trailer 26515.90 573.17 26631.70 550.12 0.44
preselection large all with trailer 24965.10 599.09 25272.30 580.85 1.23
preselection large normal 25443.20 583.27 25647.00 596.15 0.80
Average 14884.06 387.03 14976.81 428.04 0.43

Table 2.7: Computational results on benchmark instances

From the results presented in Table 2.7 we may infer that parallel GVNS is

better option for solving SBVRP than sequential GVNS. Although sequential

GVNS offered slightly better solution than parallel GVNS on medium all with trailer

instance on all the other instances parallel GVNS provided better solutions.

Further, regarding average CPU time consumed by each of GVNS variant it

follows that parallel GVNS is about 40 second faster than sequential GVNS,

on the average. The success of parallel GVNS may be explained by the fact

that it explores larger part of solution space than sequential GVNS within

the same time limit. Namely, parallel GVNS at each iteration generates four

solutions on which local searches are applied unlike sequential GVNS which

performs local search on only one solution at each iteration.
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2.4.5 Uncapacitated r-allocation p-hub median problem

The p-hub median problem consists of choosing p hub locations from a set

of nodes with pairwise traffic demands in order to route the traffic between

the origin-destination pairs at minimum cost [174]. Recently, Yaman [227]

introduced a generalization of this problem in which each node can be con-

nected to at most r of the p hubs, called the Uncapacitated r-Allocation p-Hub

Median Problem (r-p hub median problem). It is also a generalization of the

multiple allocation p-hub median problem where each node can send and

receive traffic through any of the p hubs [30, 31]. The motivation for this

variant comes from the fact that the single allocation version is too restrictive,

and the multiple allocation variant results in high fixed costs and complicated

networks.

Specifically, the r-p hub median problem may be stated as follows. Given

set N of n nodes and the distance matrix D, whose each entry dij represents

the distance between nodes i and j. For every pair of nodes i and j, there is an

amount of flow tij ≥ 0 that needs to be transferred from i to j. It is generally

assumed that transportation between non-hub nodes i,j is possible only via

hub nodes hi, hj, to which nodes i,j are assigned, respectively. Transferring

tij units of flow through path i → hi → hj → j induces a cost cij(hi, hj),

which is computed as

cij(hi, hj) = tij(γdihi
+ αdhihj

+ δdhjj).

Parameters γ, α and δ are unit rates for collection (origin-hub), transfer

(hub-hub), and distribution (hub-destination), respectively. Note that the

hub nodes hi and hj may be equal.

While the single and multiple allocation p-hub median problems have

been widely studied in the literature [32, 68, 69, 70, 73, 133, 145, 146, 163],

there are only two methods proposed for solving the r-p hub median problem.

Besides, the exact method proposed in [227], Peiro et al. [180] proposed

heuristic based on GRASP metaheuristic that employs three local search

procedures and uses a mechanism to eliminate low-quality solutions during

the greedy phase. Therefore, they selectively apply local searches to promising

solutions.
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For solving the r-p hub median problem, we propose a heuristic based

on Variable Neighborhood Search (VNS) [167] that uses Nested Variable

Neighborhood Descent (Nested VND) [133] as a local search. We continue the

research direction established in [133] and [180]. In [180], three neighborhood

structures are proposed, but explored within GRASP methodology. Addi-

tionally, neighborhoods were not explored in the nested manner. In [133], a

nested VND variant was suggested in its general form, but it was not applied

for solving the uncapacitated single allocation p-hub median problem with

three neighborhood structures since it would be time consuming. Therefore,

the authors proposed and tested two Mixed-nested VND procedures. (Note

that [119] is the first paper where mixed-nested VND is suggested, i.e., in

each point of the j-means neighborhood, h-means and k-means are applied

sequentially.) We show that full nested VND, obtained by nesting two neigh-

borhoods, is powerful enough, to enable us to efficiently and effectively solve

r-p hub median problem (slightly different problem than the one considered

in [133]). The merit of the proposed approach is disclosed on benchmark

instances from the literature. It appears that the results obtained outperform

those of the state-of-the-art heuristic based on GRASP. Moreover, the full

Nested VND is used for the first time as a local search within VNS.

We represent a solution of the r-p hub median problem by a set H

containing p hubs and a matrix A, where each row i contains r hubs assigned

to node i (i.e., i-th row coincides with the set Hi). Thus, our solution is

represented as S = (H,A). The initial solution is constructed using the greedy

heuristic [180]. Two neighborhood structures of a given solution S = (H,A)

are constructed. The first neighborhood structure, denoted by NH , is obtained

by replacing one hub node from H by another non-hub node from N \H.

More formally,

NH(S) = {S
′ | S ′ = (H ′, A′), |H ∩H ′| = p− 1}.

The second neighborhood, denoted by NA, is obtained by replacing one hub

assigned to some node with another hub, while the set H remains unchanged:

NA(S) = {S
′|S ′ = (H,A′), |A\A′| = 1}.
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Unfortunately, evaluating the value of each neighborhood solution from

NH requires solving allocation problem which is NP-hard [156]. So, solving

exactly the associated allocation problem will be quite time consuming.

Therefore, we find a near-optimal allocation A′ of some solution S ′′ ∈ NH as

follows. For each node, we firstly determine the node-to-hub allocation using

the greedy procedure (see Algorithm 35).

Algorithm 35: Greedy allocation

Function GreedyAllocation(H, A);

1 for i ∈ N do

2 for j = 1 to p do value(j) = dih
∑

j∈N tij +
∑

j∈N tijdhj;

3 Sort array value in nondecreasing order i.e.,

value(π(1)) ≤ value(π(2)) ≤ · · · ≤ value(π(p));

4 for j = 1 to r do A[i][j] = hπ(j)

end

The solution S ′′ = (H ′′, A′′) obtained in this way is then improved by

exploring the second neighborhood NA(S
′′). In that way, the so-called nested

variable neighborhood descent (Nested VND) is defined. The reason why

we use the nested strategy for exploring both NH and NA neighborhood

structures is the higher cardinality of the nested neighborhood Nest(S):

|Nest(S)| = |NH(S)| · |NA(S)|.

Such cardinality obviously increases chances to find an improvement in that

nested neighborhood.

Computational results

All experiments have been carried out on a computer with Intel i7 2.8 GHz

CPU and 16GB of RAM. The testing has been performed on two groups of

instances available on the following address: http://www.optsicom.es:

❼ The AP (Australian Post) data set [68]. This set contains 231 instances

with n ∈ {60, 65, 70, 75, 80, 85, 90, 95, 100, 150 and 200}, p ranges from

3 to 8, while r takes values from 2 to p− 1, and γ = 3, α = 0.75, δ = 2.

http://www.optsicom.es
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These instances do not have a symmetric flows and flows from a node

to itself can be positive.

❼ The USA423 data set [180]. From the original data with n = 423, 30

instances have been extracted, setting p equal to 3,4,5,6,7 and r to

2, 3, . . . p − 1. For each combination of parameters p and r, the two

different sets of the cost parameter values γ, α and δ are used: 0.1, 0.07,

0.09, and 0.09, 0.075, 0.08.

We tested GVNS which uses full nested VND as a local search, as well as

its modification named GVNS Reduced on both data sets. Namely, instead

of performing complete exploration of the NH(S), GVNS Reduced exam-

ines just m · p of its elements. These elements were generated randomly,

replacing each hub node with one of m randomly chosen non-hub nodes.

The reason why we decided to perform such reduction relies on the fact that

a neighborhood NH(S) for instances in the second data set is much larger

than the neighborhood NH(S) for instances in the first data set. Therefore,

exploring entirely neighborhood NH(S) within GVNS applied on instances

from the second data set might be time consuming. Note that m represents a

parameter of GVNS reduced algorithm, which defines the size of the reduced

neighborhood. In order to possibly resolve local minima traps, both GVNSs

use the shaking procedure that consists of replacing random k hubs of a given

solution with random k non-hub nodes.

Comparisons with the state-of-the-art heuristic. We present com-

parisons of GVNS based heuristics with the GRASP heuristic. On AP data

set GVNS and GVNS Reduced are tested adjusting their parameters in the

following way. The running time tmax is set to 60 seconds and 300 seconds for

instances with n < 80 and with n ≥ 80, respectively. On the second data set,

for both GVNS variants time limit is set to 1h (3600 seconds). The parameter

m of GVNS Reduced is set to 10. The results obtained on both data sets are

compared with those provided by the GRASP heuristic [180]. The GRASP

heuristic were executed on a computer with characteristics similar to those of

our computer (Intel i7 2.7GHz CPU and 4GB of RAM).

In Table 2.8, we provide comparison of solutions found by GVNS and
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GVNS Reduced with best solutions found by GRASP on instances from AP

data set. The average value of best found solutions and average CPU times

needed for finding these solutions over all instances with the same number

of nodes are reported. The column headings are defined as follows. In the

first column of Table 2.8, we report the number of nodes in the considered

instances, whereas in the columns GRASP, GVNS and GVNS Reduced, we

provide the average of best solution values found by GRASP, GVNS and

GVNS Reduced, respectively. In columns Time, the average time needed

to reach best found solutions for instances with n nodes are given, while

in Column Impr.(%), we report the percentage improvement obtained by

GVNS and GVNS Reduced compared with the current best known values.

From the reported results, it follows that within each set of instances with

the same number of nodes, there is at least one instance where the best

known solution is improved by GVNS and GVNS Reduced. Moreover, the

average improvement on AP data set achieved by GVNS variants is around

0.25%. It should be emphasized that just on one instance, the solution

obtained by GRASP was better than the one reported by GVNS variants.

Comparing average CPU times needed to solve instances, we conclude that

GVNS Reduced outperforms both GVNS and GRASP.

GRASP GVNS GVNS Reduced
aver. aver. aver. aver. % aver. average %

n value time value time impr. value time impr.
60 122348.90 4.59 121829.27 3.73 0.42 121829.27 3.46 0.42
65 123001.53 6.66 122689.74 5.87 0.25 122689.74 8.27 0.25
70 123931.76 10.51 123604.38 5.75 0.26 123604.38 8.64 0.26
75 124776.42 11.11 124650.73 5.93 0.10 124650.73 7.52 0.10
80 125148.22 14.40 124844.76 9.36 0.24 124844.76 10.23 0.24
85 125566.58 19.48 125378.23 13.10 0.15 125378.23 15.79 0.15
90 124934.99 22.95 124734.55 12.32 0.16 124744.00 11.52 0.15
95 125121.18 24.27 124926.55 25.45 0.16 124931.36 19.35 0.15
100 125805.04 4.81 125588.19 10.39 0.17 125588.19 9.73 0.17
150 126728.85 21.42 126307.10 24.70 0.33 126310.54 29.08 0.33
200 129144.44 58.86 128788.66 98.67 0.28 128913.20 41.83 0.18
Avg. 125137.08 18.10 124849.29 19.57 0.23 124862.22 15.04 0.22

Table 2.8: Comparison of GRASP and GVNS on AP instances

In Table 2.9, we report summarized results on USA423 data set. On
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these instances, GVNS and GVNS Reduced have been tested setting their

parameters in the previously described way. The obtained results are compared

with the results obtained by GRASP [180]. For each choice of parameters

γ, α, δ, and for each method, we report the average of best found solution

values (columns ‘av.value’), and average CPU times (columns ‘av.time’)

consumed to reach best found solutions for all instances with the same

parameter values. In columns ‘ impr.(%)’, we report the average percentage

improvement of solution values achieved by GVNS variants relatively to

GRASP. From the reported results, we conclude that both GVNS variants

outperform GRASP heuristic regarding both solution quality and CPU time.

Also, it is noted that GVNS Reduced is significantly faster than GVNS.

That could be explained by the fact that nested VND employed within

GVNS Reduced has smaller complexity than the one used inside GVNS.

Further, regarding average solution improvement, GVNS Reduced performs

better than GVNS on the instances whose parameters γ, α, δ are set to

0.1, 0.07, 0.09 respectively. On the other hand, GVNS achieves greater

average improvement on the instances whose parameters γ, α, δ take values

0.09, 0.075 and 0.08, respectively. Moreover, for each tested instance, either

GVNS or GVNS Reduced provided new best known solution. Note that

the average results obtained by GVNS Reduced outperform GVNS on the

instances where parameters γ, α, δ are set to 0.1, 0.07, and 0.09 respectively,

despite the fact that GVNS Reduced does not perform complete exploration

of the NH(S), which GVNS does. This can be explained by the fact that

the stopping condition is represented by maximum CPU time allowed for the

search. Therefore, sometimes it is more beneficial to explore the subset of

the neighborhood than the whole neighborhood, reducing the CPU time for

the intensification but increasing the time for diversification (see e.g., [121]).

parameters GRASP GVNS GVNS Reduced
aver. aver. aver. aver. % aver. aver. %

γ α δ value time value time impr. av.value time impr.
0.1 0.07 0.09 28673188808 2880 28541499618 1115 0.46 28474980301 682 0.70
0.09 0.075 0.08 25767289897 2880 25552243305 1288 0.84 25610842214 690 0.61

Table 2.9: Comparison of GRASP and GVNS variants on USA423 instances
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Finally, we use two well-known nonparametric tests for pairwise com-

parisons: Wilcoxon test and the Sign test to compare the proposed GVNS

variants against the GRASP heuristic, taking into account all considered

test instances. Wilcoxon test enables us to get the answer on the question

whether two samples represent two different populations or not, while the

Sign test computes the number of instances on which an algorithm improves

upon the other algorithm. p-values of 0.000, returned by both tests, when

used to compare GVNS with the GRASP, and GVNS Reduced with GRASP,

confirm the superiority of GVNS variants over the GRASP heuristic.

2.4.6 Minimum sum-of-squares clustering on networks

The aim of Cluster Analysis is to partition a set of entities into clusters,

so that entities within the same cluster are similar and entities in different

clusters are different [116]. The most well-known model is Minimum Sum-of-

Squares Clustering (MSSC). In its basic form, MSSC assumes the entities to

be points in R
n; p points (called prototypes) are sought by minimizing the

sum of the squares of the Euclidean distances separating the entities from

their closest prototypes. MSSC, recently shown to be NP-hard in [3], can be

solved exactly for data sets of moderate sizes (over 2,300 entities) by column

generation [4]. For larger data sets, heuristics are used, see [119, 123] and the

references therein.

We assume that the set V of entities to be clustered is the set of nodes of a

connected and undirected network G = (V,E), where E is a collection of pairs

of nodes, and each e ∈ E has positive length le. The set V of nodes is to be

split into p disjoint subsets (clusters, communities), and p prototypes (one per

cluster) are to be chosen so that all entities in a given cluster are close to their

associated prototype. We propose to use a sum-of-squared-distance criterion,

which leads us to address two versions of the problem, called V-MSSC and

E-MSSC. The V-MSSC (vertex -MSSC) consists of selecting a subset V ∗ of p

entities (prototypes) within the set of vertices of the network, so that the sum

of squares of the distances from each entity v ∈ V to its closest prototype

is minimized. Closeness between any pair of entities u, v ∈ V is measured

by the length d(u, v) of the shortest path connecting u and v. The E-MSSC
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(edge-MSSC), [34], has the same objective, but the prototypes are sought

not only at vertices, but also at points along the edges of the network. This

way, one may obtain with the E-MSSC clusters configurations which are

impossible if only vertices are allowed to be prototypes. In other words, the

clusters class which can be obtained by solving E-MSSC is richer than the one

obtained by solving V-MSSC problems, and this may lead to more accurate

clusters. It is interesting to note that the difference between vertex minimum

sum-of-distances and edge minimum sum-of-distances (not squared distances)

does not exist, since the optimal solutions of both are equivalent [108].

Structural properties: We present now some properties of the E-MSSC,

extending the results given in [34]. These will be helpful in the design of the

Basic VNS heuristic algorithm described hereafter. Whereas prototypes are

allowed to be located at the interior of edges, they cannot be concentrated

on a given edge, since each edge can contain at most one optimal prototype

in its interior, as stated in the following.

Proposition 2.4.3 Let (x∗1, . . . , x
∗
p) be an optimal solution to E-MSSC and

let e = (u, v) ∈ E. The interior of e contains at most one optimal prototype.

If it contains one optimal prototype x∗j , then both endpoints u and v have x∗j
as the closest prototype.

By Proposition 2.4.3, given a node v, if an edge e adjacent to v contains

in its interior some optimal prototype x∗j , then both endpoints of e, including

v, must have x∗j as their closest prototype, and thus v cannot be an optimal

prototype. This implies the following

Proposition 2.4.4 If an optimal prototype is located at a node v ∈ V , then

the interior of all edges adjacent to v contains no optimal prototypes.

E-MSSC is a nonlinear optimization problem defined on a network. How-

ever, the optimal solution of E-MSSC in the case p = 1 may be easily

determined. Namely, for p = 1, it is easy to construct a finite dominating

set [131], i.e., a set known to contain an optimal solution. To construct such

finite dominating set, it is important to recall that, given v ∈ V, the distance
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from v to a point x in a given edge e ∈ E with endpoints u1 and u2 is given

by

d(v, x) = min {d(v, u1) + d(u1, x), d(v, u2) + d(u2, x)} (2.9)

= min {d(v, u1) + d(u1, x), d(v, u2) + le − d(u1, x)} .

Whether the minimum above is attained at the first or the second term

depends on the relative position of point x with respect to the so-called

bottleneck point, [147], z(v), defined as

z(v) =
1

2
(le − d(v, u1) + d(v, u2)) . (2.10)

Formula (2.10) allows us to compute the distance from node v to any

point in the edge e :

❼ If z(v) ≤ 0, then the shortest path from v to any point x ∈ e passes

through u2.

❼ If z(v) ≥ le, then the shortest path from v to any point x ∈ e passes

through u1.

❼ If 0 < z(v) < le, then the shortest path from v to x ∈ e passes through

u1 if x belongs to the sub-edge with endpoints u1 and z(v), and it passes

through u2 if x belongs to the sub-edge with endpoints z(v) and u2.

In the latter case, such z(v) will be called a bottleneck point. By definition,

for such v, the distance from v to z(v) via u1 is equal to the distance from v

to z(v) via u2, and then two shortest-paths exist from v to z(v).

Given an edge e ∈ E, and v ∈ V the distance to v is an affine function

two subintervals (possibly degenerate) in which the bottleneck z(v) splits

e. Hence, within each such subinterval, the squared distance is a quadratic

polynomial in the variable x. This process can be done on any given edge e for

all nodes v, calculating all bottleneck points z(v), and splitting e into O(|V |)

subintervals, such that, within each subinterval, each squared distance is a

quadratic polynomial function, and thus the sum of the squared distances is

also a quadratic polynomial function. In other words, the objective function of
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E-MSSC is a second-degree polynomial function in one variable on each such

interval. Thus, the derivative of its minimum point should be equal to zero,

if it belongs to the considered interval; otherwise its minimum is achieved at

one of endpoints of the considered interval. Therefore, at each edge e, the

objective function can have at most |V |−1 local minima, obtained analytically.

By doing this process for all edges, we obtain a finite dominating set D for

E-MSSC. Since the optimal point has to belong to the finite dominating set

D, it can easily be obtained by its inspection.

Variable Neighborhood Search for solving E-MSSC: In the case

p > 1, finding a globally optimal solution may be done by inspecting, for

all possible partitions C1, . . . , Cp of V, the objective value at (x∗1, . . . , x
∗
p),

where each x∗j is the optimal solution to E-MSSC for p = 1. However,

this approach is only applicable for networks of very small size. Hence, for

large data sets, we propose Basic VNS. Before, providing more details about

Basic VNS we describe the solution space of E-MSSC and neighborhood

structures of a solution. Feasible solutions of E-MSSC are identified with

sets x = {xj : xj ∈ e with e ∈ E} of cardinality p. A (symmetric) distance

function ρ can be defined on the set of solutions as

ρ(x, x′) = |x \ x′| = |x′ \ x| ∀x, x′.

So, the distance between two solutions x, x′ is equal to k if and only if the

sets x and x′ differ exactly in k locations. The neighborhood structure Nk(x),

k ≤ p, of a solution x, induced by the metric ρ, is defined as the set of all

solutions x′ deduced from x by replacing k locations from x with k locations

that are not in x.

The proposed Basic VNS, denoted by Net-VNS, as an initial solution takes

either a random solution or a more sophisticated solution described hereafter.

The random solution is created by randomly selecting points which do not

violate the aforementioned structural properties. Given a k-uple (k < p) of

prototypes already selected, we say that a point of the network is feasible if,

together with those prototypes previously chosen, satisfies Propositions 2.4.3

and 2.4.4. We say an edge is feasible if it contains feasible points. In our
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randomized procedure, at each step one feasible edge is chosen at random,

and then one feasible point in such edge is chosen at random. The process is

repeated until p points are obtained.

As a local search Net-VNS uses a location-allocation heuristic, Algorithm

36, in which we exploit the fact that, in the location step, the p independent

subproblems to be solved are easy, since, as discussed above, they can be

solved by inspection of the low-cardinality set of candidate points (i.e., the

subproblem is actually E-MSSC with p = 1).

Algorithm 36: K-Net-Means algorithm (Net-KM) for the NMSSC
problem

Function NetKM (n, p, x);
1 Cj = ∅, j = 1, . . . , p;
2 repeat
3 for v ∈ V do
4 mv ← argminxj∈x d2(v, xj); //mv ∈ {1, . . . , p}
5 Cmv

= Cmv
∪ {v};

end
6 RemoveDeg(n, p, C) ;
7 for j := 1, . . . , p do
8 calculate prototype xj;

end

until stopping criterion is satisfied ;

Starting from a set of p initial prototypes (e.g., taken at random), users

are assigned to their closest prototype (steps 3-5). Each user v is assigned

to the cluster Cmv
, where mv is the index of a prototype closest to v. In the

case of ties, i.e., if there are more than one prototype with the same distance

to v, the one with the smallest index is chosen. Steps 7 and 8 are location

steps, where prototypes xj, j = 1, . . . , p are found for a given clusters Cj.

More precisely, for each cluster a 1-prototype problem is solved. Allocation

step of NetKM is repeated with the new locations of the prototypes. These

steps are repeated until no more changes in assignments occur.

When using this local-search procedure, we may face degeneracy problems

[23, 35]: when customers are allocated to prototypes, some prototypes may
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remain with no customers assigned. Obviously, if we move one of such

prototypes to any node, we will strictly improve the objective value. So, if a

degenerate configuration is obtained during this local-search procedure, all

prototypes without nodes allocated can be moved randomly to remaining

nodes that are not used already as a prototype, improving the objective value.

Thus, the statement RemoveDeg(n, p, C) in the algorithm NetKM refers to

resolving the degeneracy issue (if it is detected) in the previously described

way.

The shaking procedure used within Net-VNS at the input requires a solution

x and the parameter k, while at the output it returns a random solution from

the neighborhood Nk(x).

Computational results

The aim of this section is to explore whether the new model, E-MSSC, is

essentially different from the V-MSSC, by checking if the clusters obtained

are the same or not to those given when only entities (nodes) are allowed to

be prototypes. For solving V-MSSC we use VNS based heuristics described

in [118], which we denote with VNS-0. For solving E-MSSC we apply three

different VNS based heuristic, VNS-1, VNS-2 and VNS-3. VNS-0 heuristic

follows rules of Basic VNS. It explores neighborhood structures induced by

metric ρ using Interchange (or vertex substitution) heuristic as a local search.

As an initial solution, p nodes are selected at random. The initial solution of

VNS-1 is obtained by VNS-0. Then, the local-search described in Algorithm

36 is performed. Algorithm VNS-2 uses as a starting solution one obtained by

VNS-1, and then our Net-VNS is run. Finally, VNS-3 starts with the random

initial solution, followed by our Net-VNS.

All algorithms, described in the previous paragraph, have been tested on

40 p-median instances taken from the OR-Lib [15]. Each algorithm has been

run on each instance 10 times, for the different choice of a seed, with the

time limit of 10 seconds. The results, obtained with a personal computer

with a 2.53 GHz CPU and 3 GB of RAM, are reported in Table 2.10. The

column headings are defined as follows. The first column, Instance, gives

the name of the OR-Lib instances. Instances parameters, namely, the number
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n of entities, and the number p of prototypes sought, are given in columns

2 and 3 respectively. Columns 4 and 5 report the results of two different

heuristics: in column V-MS we have chosen as prototypes those p entities

minimizing the sum of distances from the entities to the closest prototype,

i.e., the optimal solution to the p-median problem, while in column V-MSS we

report the value of the best solution of V-MSSC obtained during ten runs. In

both cases, the problem is not solved exactly, but using the version of the VNS

for solving p-median described in [118], i.e., VNS-0. The best objective values

fV−MS and fV−MSS of the prototypes obtained when solving both problems are

compared: column dev. reports the % deviation between these two values

(i.e., dev(V-MS,V-MSS)). The next column reports the best solution value

(column E-MSSC) obtained by one of three different variants of VNS applied

to the E-MSSC problem (VNS-1, VNS-2, VNS-3) in ten runs. The deviation

of this value from the value reported in column V-MSS is reported in column

8. It should be emphasized that almost all values reported in column E-MSSC

were found by VNS-2. The only exception is instance pmed2, on which VNS-3

found the best value. Finally, the last two columns analyze whether E-MSSC

yields solutions which are not obtained when only entities are considered as

prototypes. Column Node indicates whether the set of optimal prototypes,

which corresponds to the value reported in column E-MSSC only contains nodes

(and coincides with the optimal prototypes for the V-MSSC problem). Even

of the set of optimal prototypes of E-MSSC and V-MSSC do not coincide, it

may be the case that they yield identical clusters. This is reported in the last

column, Same.

From Table 2.10 the following observations may be derived.

1. Comparing values reported in columns V-MSS and E-MSS, one can observe

that the difference between these values mostly depend on the value of

p. For almost all instances with p = 5 or 10, especially those with large

n, the best obtained values for V-MSSC and E-MSSC are the same, as

well as yielded clusters. On the other hand, larger values of p implies

the significant lower value for E-MSSC and the different clusters than

those obtained by V-MSSC.

2. In 12 out of 40 instances, the prototypes of E-MSSC and V-MSSC
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Instance n p V-MS V-MSS dev. E-MSS dev. Node Same
(%) (%)

pmed1 100 5 450233 450233 0.00 450043.94 0.04 no no
pmed2 100 10 271829 256874 5.50 253067.60 1.48 no no
pmed3 100 10 295752 263385 10.94 259643.17 1.42 no no
pmed4 100 20 159678 153963 3.58 147685.50 4.08 no no
pmed5 100 33 45055 42671 5.29 40066.36 6.10 no no
pmed6 200 5 410360 406195 1.01 386642.24 4.81 no no
pmed7 200 10 222901 221631 0.57 221602.83 0.01 no yes
pmed8 200 20 157807 151558 3.96 151094.71 0.31 no no
pmed9 200 40 68886 66525 3.43 63126.34 5.11 no no
pmed10 200 67 16199 15938 1.61 14917.01 6.41 no no
pmed11 300 5 256532 256532 0.00 256512.74 0.01 no no
pmed12 300 10 197970 197814 0.08 197814.00 0.00 yes yes
pmed13 300 30 100398 99210 1.18 98471.40 0.74 no yes
pmed14 300 60 53604 49977 6.77 49152.57 1.65 no no
pmed15 300 100 20593 20213 1.85 18653.68 7.71 no yes
pmed16 400 5 210452 209886 0.27 209886.00 0.00 yes yes
pmed17 400 10 160401 160401 0.00 160401.00 0.00 yes yes
pmed18 400 40 92325 88234 4.43 87499.01 0.83 no no
pmed19 400 80 35678 33782 5.31 32292.46 4.41 no no
pmed20 400 133 16769 16032 4.40 14930.55 6.87 no no
pmed21 500 5 203552 203552 0.00 203552.00 0.00 yes yes
pmed22 500 10 189091 188857 0.12 188857.00 0.00 yes yes
pmed23 500 50 67359 66257 1.64 65834.72 0.64 no no
pmed24 500 100 30715 29478 4.03 28533.80 3.20 no no
pmed25 500 167 13736 13377 2.61 12502.12 6.54 no no
pmed26 600 5 199503 199503 0.00 199503.00 0.00 yes yes
pmed27 600 10 147401 147096 0.21 147096.00 0.00 yes yes
pmed28 600 60 52546 51239 2.49 51030.45 0.41 no yes
pmed29 600 120 27143 25848 4.77 25335.36 1.98 no no
pmed30 600 200 12755 12533 1.74 11671.78 6.87 no no
pmed31 700 5 172938 171963 0.56 171963.00 0.00 yes yes
pmed32 700 10 157283 157177 0.07 157177.00 0.00 yes yes
pmed33 700 70 49432 47255 4.40 47188.77 0.14 no yes
pmed34 700 140 22807 21981 3.62 21461.21 2.36 no yes
pmed35 800 5 160564 160564 0.00 160541.91 0.01 no no
pmed36 800 10 153164 152914 0.16 152914.00 0.00 yes yes
pmed37 800 80 50665 48246 4.77 48195.16 0.11 no yes
pmed38 900 5 161102 161102 0.00 161102.00 0.00 yes yes
pmed39 900 10 126553 125175 1.09 125175.00 0.00 yes yes
pmed40 900 90 44596 43035 3.50 42877.82 0.37 no no

Table 2.10: Computational results

coincide (see column Node). On the other hand, in 19 instances out of

40 (47.5%, see column Same), the clusters obtained by the two methods

are the same. This ratio is much lower than the one reported by the

authors in [34], whose preliminary results on clustering on the line



CHAPTER 2. VARIABLE NEIGHBORHOOD SEARCH 103

showed that 80% of the cases considered gave the same partitions.

3. The classical p-median problem usually yields very good solutions for

V-MSSC, as seen when comparing columns V-MS and V-MSS, so they

could be used almost indifferently to build the starting solution of

VNS-2.

2.4.7 Periodic maintenance problem

The periodic maintenance problem (PMP) [107] is stated in the following

way. There is a set of machines M = {1, 2, . . . ,m}, and there is a set of

periods U = {1, 2, . . . , T} with T ≥ m. The PMP consists of finding an

optimal cyclic maintenance schedule of length T that is indefinitely repeated.

At most one machine is serviced at each period and all the machines must

be serviced at least once for any cycle. When machine i ∈M is serviced, a

given non-negative servicing cost of bi is incurred, regardless of the period. At

period t ∈ U , a machine i ∈M that is not serviced during some period is in

operation and incurs an operation cost of ni(t)×ai where ai is a given positive

integer number, and where ni(t) is the number of periods elapsed since last

servicing of machine i. The main objective of this problem is to determine a

feasible maintenance schedule with a minimum cost, i.e., to decide for each

period t ≤ T which machine to service (if any), so that the total servicing

costs and operating costs are minimized. Note that if cycle length T is a

decision variable then the problem is called the Free periodic maintenance

problem. However, here we consider T as an input parameter.

Based on the problem definition (including T ≥ m), the features of test in-

stances (described hereafter) and problem characteristics, it may be concluded

that the solution space of PMP consists of all vectors π = (π1, π2, . . . , πT ),

with πt ∈ M for t ∈ U such that M ⊂ π. In such representation, πt corre-

sponds to the index of a machine serviced in the tth time period. In what

follows the solution space of PMP will be denoted by P .

In order to explore the solution space we propose new variant of VNS that

we call Nested GVNS (NGVNS). It may be seen as an extension of the nested

variable neighborhood descent (Nested VND) already proposed in [126, 133].

It applies general variable neighborhood search (GVNS) on each element of
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the preselected neighborhood structure, unlike Nested VND that applies a

sequential Variable neighborhood descent instead.

The proposed NGVNS applies GVNS starting from each element of the

neighborhood structure Replace of the current solution π. The neighborhood

Replace(π) contains all sets π′ ∈ P that may be derived from the set π by

replacing one element of π (say πj) with one from the set M , e.g., πk ∈

M, πk 6= πj.

If an improvement is detected, it is accepted as a new incumbent solution

π and whole process is repeated starting from that solution. NGVNS finishes

its work if there is no improvement. An initial solution for the proposed

NGVNS is built as follows. In the first m periods all m machines are chosen

to be serviced. In the remaining T − m periods, machines to be serviced

are chosen at random. In that way the feasibility of the initial solution is

achieved. The reason why we decide to use NGVNS instead of Nested VND

is that solution obtained by GVNS can not be worse than one obtained by

VND, used within GVNS. Therefore the solution quality found by NGVNS is

at least as good as one found by Nested VND.

The GVNS used within NGVNS includes a shaking phase used in or-

der to escape from the local minima traps and an intensification phase in

which sequential VND (seqVND) is applied. Within seqVND the following

neighborhood structures of a solution π are explored:

❼ Reverse two consecutive(π) (1-opt) - the neighborhood structure con-

sists of all solutions obtained from the solution π swapping two consec-

utive elements of π.

❼ Shift backward(π) (Or-opt) - the neighborhood structure consists of

all solutions obtained from the solution π moving some element πt

backward immediately after some element πs for all s < t.

❼ Shift forward(π) (Or-opt)- the neighborhood structure consists of

all solutions obtained from the solution π moving some element πt

immediately after some element πs for all s > t.

❼ Reverse part(π) (2-opt) - the neighborhood structure consists of all

solutions obtained from the solution π reversing a sub-sequence of
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π. Each solution in this neighborhood structure is deduced from the

solution π reversing the part starting at πt and ending at πs (t < s).

The Shaking phase of GVNS takes as the input the solution π and the

parameter k. At the output it returns the solution obtained after performing

k-times random shift move on π. Each random shift consists of inserting an

element in π at random either backward or forward (Shift backward and

Shift forward).

Computational results

We compare five methods for solving the PMP. Four among them are exact

and differ in mathematical programming formulation: our new formulation

[209] and another three taken from [107]. The last method included in com-

parison is NGVNS based heuristic. The numerical experiments were carried

on a personal computer with 2.53GHz CPU and 3GB RAM memory. All

mathematical models, except set-partitioning (SP) model, were solved using

the MIP solver IBM ILOG CPLEX 12.4. The time limit for MIP solver were

set to 300 seconds.

For testing purposes we consider the same test instances proposed in

Grigoriev et al. [107]. Comparative results are reported in tables 2.11-2.15.

All results reported in tables 2.11-2.15 are obtained on the same computer

except those obtained by SP based model. We simply copied them from [107].

In the tables the following abbreviations are used:

❼ OPT - optimal solution value.

❼ MIP value- value of solution obtained solving MIP formulation proposed

in Grigoriev et al. [107].

❼ MIP time- CPU time, in seconds, consumed by MIP solver to solve

MIP formulation proposed in Grigoriev et al. [107].

❼ SP - consumed CPU time, in seconds, for solving an instance using

set-partitioning (SP) formulation.



CHAPTER 2. VARIABLE NEIGHBORHOOD SEARCH 106

❼ FF - CPU time, in seconds, needed to solve an instance using flow

formulation (FF) formulation.

❼ new-MIP - CPU time, in seconds, spent by MIP solver to solve new MIP

formulation proposed by us [209].

❼ NGVNS - CPU time (in seconds) consumed by NGVNS based heuristic

to solve an instance of PMP.

T a OPT MIP SP new-MIP FF NGVNS
(s) (s) (s) (s) (s)

3 1 1 1 3 0.11 1 0.01 0.06 0.00
3 2 1 1 4 0.02 1 0.02 0.03 0.00
3 2 2 1 5 0.02 1 0.02 0.03 0.00
4 5 1 1 5.5 0.05 1 0.03 0.06 0.00
4 5 2 1 7 0.03 1 0.02 0.03 0.00
5 5 5 1 10 0.04 1 0.19 0.02 0.00
4 10 1 1 8 0.02 1 0.02 0.02 0.00
4 10 2 1 9.5 0.03 1 0.02 0.00 0.00
6 10 5 1 13.3333 0.04 1 0.05 0.05 0.01
16 10 10 1 17.25 3.04 114 0.16 0.61 0.00
8 30 1 1 14.5 0.10 1 0.08 0.03 0.00
17 30 2 1 17.2941 3.32 89 0.55 0.69 0.10
8 30 5 1 22.25 0.07 1 0.11 0.03 0.02
9 30 10 1 28.4444 0.05 1 0.09 0.11 0.02
13 30 30 1 42.9231 0.16 9 0.11 0.03 0.09
10 50 1 1 19 0.09 1 0.08 0.03 0.02
21 50 2 1 22.6667 11.74 604 1.64 0.98 0.12
10 50 5 1 29.5 0.15 2 0.08 0.05 0.03
10 50 10 1 36.5 0.14 1 0.09 0.03 0.03
15 50 30 1 55 0.37 27 0.17 0.73 0.10
17 50 50 1 66.8235 0.57 114 0.16 0.62 0.05

Average time 0.960 46.333 0.176 0.202 0.028

Table 2.11: Instances with three machines (m = 3, bi = 0, i ∈M)

Note that Table 2.14 does not provide results obtained by SP model since

not all solution values had been provided in [107].

The Table 2.16 provides the average CPU times consumed by each solution

approach on a considered data set.

From Tables 2.11-2.16 the following conclusions may be drawn:
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T a OPT MIP MIP SP new-MIP FF NGVNS
value time(s) (s) (s) (s) (s)

4 1 1 1 1 6 6 0.04 1 0.05 0.00 0.00
9 2 1 1 1 7.3333 7.3333 0.35 1 0.16 0.05 0.02
10 2 2 1 1 8.8 8.8 0.68 1 0.14 0.05 0.05
15 2 2 2 1 10.4 10.4 8.84 1 0.34 0.72 0.04
6 5 1 1 1 10 10 0.06 1 0.11 0.02 0.00
16 5 2 1 1 11.75 11.75 17.84 1 0.33 0.78 0.05
22 5 2 2 1 13.7273 13.7273 300.01 3 1.12 2.32 0.21
6 5 5 1 1 15 15 0.07 1 0.09 0.03 0.00
6 5 5 2 1 17.5 17.5 0.06 1 0.09 0.02 0.00
24 5 5 5 1 22.25 22.25 300.16 3 2.45 2.25 0.02
6 10 1 1 1 12.5 12.5 0.08 1 0.05 0.01 0.00
6 10 2 1 1 15 15 0.07 1 0.09 0.01 0.00
6 10 2 2 1 17.5 17.5 0.09 1 0.09 0.02 0.00
8 10 5 1 1 19.5 19.5 0.27 1 0.12 0.09 0.01
6 10 5 2 1 22.5 22.5 0.08 1 0.06 0.03 0.00
8 10 5 5 1 27.875 27.875 0.16 1 0.16 0.22 0.00
8 10 10 1 1 24.5 24.5 0.13 1 0.12 0.02 0.01
6 10 10 2 1 27.5 27.5 0.10 1 0.11 0.01 0.00
9 10 10 5 1 34 34 0.26 1 0.14 0.08 0.00
33 10 10 10 1 40.4545 41.0606 300.02 17 5.04 3.62 0.89
8 30 1 1 1 21.75 21.75 0.18 1 0.11 0.03 0.00
8 30 5 1 1 29.5 29.5 0.15 1 0.09 0.06 0.01
10 30 5 5 1 40.5 40.5 0.42 1 0.11 0.10 0.02
8 30 10 1 1 37 37 0.13 1 0.08 0.05 0.03
12 30 10 5 1 49.6667 49.6667 2.09 1 0.17 0.18 0.04
30 30 10 10 1 58.3333 58.3333 300.18 19 6.75 4.52 0.66
26 30 30 1 1 55.8462 55.8462 300.01 3 13.81 2.36 0.42
24 30 30 5 1 70.5 70.5 300.01 4 3.18 3.20 0.35
14 30 30 10 1 81.5 81.5 3.02 1 0.36 1.25 0.05
19 30 30 30 1 108.4737 108.4737 21.09 1 0.69 1.17 0.22

Average time 61.890 2.433 1.207 0.776 0.103

Table 2.12: Instances with three machines (m = 3, bi = 0, i ∈M)

i) Overall NGVNS approach appears to be most reliable. It solved all test

instances to the optimality in the shortest CPU time (i.e., 0.831 seconds

on average for all test instances).

ii) NGVNS needed in most of instances less than a second to get an optimal

solution, except on instances in Table 2.15 which appear to be the

hardest.

Regarding exact solution methods, several interesting observations may be
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T OPT MIP MIP SP new-MIP FF NGVNS
value time(s) (s) (s) (s) (s)

50 3.04 3.04 300.02 51 3.81 4.52 0.75
51 3 3 25.96 21 0.47 3.54 1.84
52 3.0385 3.0385 300.01 154 4.77 5.40 0.38
53 3.0377 3.0377 107.24 247 3.20 4.98 0.38
54 3 3 219.56 32 0.76 4.76 1.66
55 3.0364 3.0364 53.13 117 4.26 5.63 0.68
56 3.0357 3.0357 300.12 590 4.73 5.13 0.46
57 3 3 16.37 46 0.42 3.95 1.43
58 3.0345 3.0345 300.01 366 5.63 4.99 2.42
59 3.0339 3.0339 164.97 407 5.12 4.68 1.41
60 3 3.0667 300.06 170 1.78 6.50 1.51
61 3.0328 3.0328 300.01 715 5.97 6.27 2.47
62 3.0323 3.0882 300.08 1437 4.79 7.67 1.47
63 3 3 233.27 195 1.04 6.04 2.93
64 3.0313 3.0571 300.08 1431 7.77 6.85 3.28
65 3.0308 3.05 207.69 1098 6.15 7.93 1.70
66 3 3.0444 46.11 470 2.62 5.57 2.81
67 3.0299 3.16 10.51 546 8.52 6.26 1.18
68 3.0294 3.0882 300.09 783 5.76 7.69 3.34
69 3 3 229.87 601 3.46 7.91 0.88
70 3.0286 3.0571 300.06 5150 6.52 7.53 1.87
80 3.025 3.025 300.17 1167 10.84 16.07 13.76
90 3 3.0444 300.06 1093 3.87 17.82 7.16
100 3.02 3.02 300.11 2618 16.30 24.85 16.11

Average time 217.315 812.708 4.940 7.606 2.994

Table 2.13: Instances with three machines (m = 3, ai = 1, bi = 0, i ∈M)

derived:

i) The best performance on average is exhibited by FF and our new MIP

formulation. Further, the optimality of found solutions for 4 test

instances (Table 2.15) were not proven solving new MIP formulation,

while solving FF formulation the optimality were not proven for 6 test

instances (3 instances in Table 2.14 and 3 instances in Table 2.15). For

all these instances reported times are boldfaced.

ii) The advantage of FF over new MIP formulation comes from the fourth

test instances in Table 2.15. There, the optimal solution was reached

by new MIP formulation but not proven in 300 seconds.

iii) The behavior of SP formulation is interesting. It is the worst exact
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a b OPT MIP MIP new-MIP FF NGVNS
value time(s) (s) (s) (s)

5 1 1 1 1 0 0 0 0 0 15 15 300.01 2.48 2.08 0.22
5 1 1 1 1 5 1 1 1 1 17.3333 17.3333 300.01 3.00 2.26 0.36
5 1 1 1 1 30 10 5 2 1 27.0417 27.125 300.00 6.49 8.94 0.58
5 5 1 1 1 0 0 0 0 0 21.9583 21.9583 300.01 31.84 2.51 0.32
5 5 1 1 1 5 5 1 1 1 25.4167 25.4167 300.00 57.49 25.96 0.04
5 5 1 1 1 30 10 5 2 1 33.8333 34.125 300.00 9.42 28.28 0.61
5 5 5 1 1 0 0 0 0 0 29.5 29.5 300.15 5.21 2.78 0.13
5 5 5 1 1 5 5 5 1 1 33.5 33.9167 300.01 4.63 5.46 0.06
5 5 5 1 1 30 10 5 2 1 41.125 41.125 300.00 6.94 39.61 0.33
5 5 5 5 1 0 0 0 0 0 40.375 40.375 300.14 229.15 8.72 0.66
5 5 5 5 1 5 5 5 5 1 44.875 44.875 300.02 111.71 6.16 0.04
5 5 5 5 1 30 10 5 2 1 50.375 50.375 300.17 86.30 300.00 0.33
10 5 1 1 1 0 0 0 0 0 26.75 26.75 300.07 9.89 2.95 0.48
10 5 1 1 1 10 5 1 1 1 32.125 32.25 300.12 6.71 59.33 0.35
10 5 1 1 1 30 10 5 2 1 41 41 300.17 27.88 38.39 0.3
10 10 5 1 1 0 0 0 0 0 43.5 43.9167 300.03 48.75 4.65 0.6
10 10 5 1 1 10 10 5 1 1 50.9583 50.9583 300.01 49.17 6.86 0.3
10 10 5 1 1 30 10 5 2 1 56.125 56.625 300.10 21.19 300.00 0.87
30 10 5 1 1 0 0 0 0 0 61.4167 61.4167 300.11 30.5 4.18 0.28
30 10 5 1 1 30 10 5 1 1 77.4167 77.4167 300.10 38.14 13.53 0.62
30 10 5 1 1 30 10 5 2 1 77.5 77.7083 300.10 43.34 208.28 0.52
30 30 1 1 1 0 0 0 0 0 69 69 300.09 55.72 3.26 0.46
30 30 1 1 1 30 30 1 1 1 91.75 91.75 300.06 26.40 3.49 0.22
30 30 1 1 1 30 10 5 2 1 84.6667 84.6667 300.08 79.14 261.57 0.55
30 30 30 1 1 0 0 0 0 0 129.5 129.5 300.01 202.88 4.26 0.51
30 30 30 1 1 30 30 30 1 1 155.875 155.875 300.01 79.80 9.53 0.59
30 30 30 1 1 30 10 5 2 1 142.7917 142.7917 300.13 103.88 300.00 0.41
30 30 30 30 1 0 0 0 0 0 207.75 207.75 300.02 47.25 3.09 0.16
30 30 30 30 1 30 30 30 30 1 236.5417 236.5417 300.03 37.03 3.76 0.35
30 30 30 30 1 30 10 5 2 1 218.2917 218.2917 300.16 37.99 74.46 0.21

Average time 300.064 50.011 57.812 0.382

Table 2.14: Instances with positive maintenance costs (m = 5, T = 24)

a OPT MIP MIP SP new-MIP FF NGVNS
value time(s) (s) (s) (s)

1 1 1 1 1 1 1 1 1 1 49 49 300.12 1 300.00 300.00 0.32
10 9 8 7 6 5 4 3 2 1 232 232.3333 300.12 29 300.00 300.00 0.38
10 10 10 10 10 10 10 10 10 1 413.5 413.5 300.25 2 300.00 300.00 0.22
100 1 1 1 1 1 1 1 1 1 126.5 126.5 300.08 1 300.00 11.71 0.03
1000 1 1 1 1 1 1 1 1 1 576.5 576.5 279.32 7 150.05 0.76 0.05

Average time 295.798 8.000 270.010 182.494 0.199

Table 2.15: Instances with many machines (m = 10, T = 18, bi = 0, i ∈M)
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Instances MIP SP new-MIP FF NGVNS
from (s) (s) (s) (s) (s)

Table 2.11 0.960 46.333 0.176 0.202 0.028
Table 2.12 61.890 2.433 1.207 0.776 0.103
Table 2.13 217.315 812.708 4.940 7.606 2.994
Table 2.15 295.798 8.000 270.010 182.494 0.199

Average time 143.991 217.369 69.083 47.770 0.831

Table 2.16: Average CPU times

method for small instances in Table 2.11 but the best one for the largest

instances presented in Table 2.15.

iv) The old MIP model is least reliable. For example in Table 2.14 and

Table 2.15, for only one instance (out of 35) the optimal solution has

been proven within 300 seconds. However, the optimal solution has not

been reached on eight instances (boldfaced values in those tables).

2.4.8 Unit commitment problem

Unit commitment problem (UCP) consists of determining an optimal pro-

duction plan for a given set of power plants over a given time horizon so

the total production cost is minimized, while satisfying various constraints.

Every power plant individually needs to satisfy: minimum up time (minimal

number of consecutive time periods during which the unit must be turned on),

minimum down time (minimal number of consecutive time periods during

which unit must be turned off) and production limit constraints (lower and

upper production bounds). The total production of all active plants must

satisfy the required demand minding that the maximal possible production

cannot be less than the sum of required demand and required spinning reserves

[225].

Unit commitment problem can be formulated as a mixed integer nonlinear

problem. Binary variables represent the ON/OFF state of every unit for

each time period, while continuous variables quantify the unit production

expressed in megawatts for each time period. It is easy to conclude that the

number of all possible solutions grows exponentially by increasing the number

of plants. The UCP is NP-hard, which means that it can not be exactly

solved in reasonable amount of time. This holds even for moderate number
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of units, therefore, many heuristics have been proposed in the literature to

solve UCP approximatively.

The exact method based on dynamic programming [117, 120, 157, 177]

for solving the UCP was able to tackle only problems with small number of

units. Many heuristic and metaheuristic methods have been proposed up

to now for the UCP such as: priority list method [27], genetic algorithms

[55, 142, 202, 207], tabu search algorithms [185], particle swarm optimization

algorithms [196, 229], ant colony algorithms [193], fuzzy logic [66], artifi-

cial neural networks [63, 200], evolutionary programming [139], simulated

annealing [194, 195, 197]. We propose a hybrid approaches that combine

VNS with mathematical programming (i.e., in order to solve economic dis-

patch subproblem in each time period Lambda iteration method is launched)

[208, 211].

A solution of UCP is represented by the matrix U , whose each entry

Uij represents the state of the unit i in the time period j. Relatively to a

solution U we define the set N
′

k(U) of all solutions which can be obtained

by changing values exactly k elements of the matrix U . Obviously, such

set contains not only feasible solutions, but also solutions that violate some

constraints. However, the infeasible solutions may be converted to the feasible

ones using procedure proposed in [60]. Hence, let us denote with M the set

of all solutions which can be obtained by repairing infeasible solutions from

N
′

k(U). Now, we define the k-th neighborhood of solution U (denoted by

Nk(U)) as the union of N
′′

k (U) and M , where N
′′

k (U) represents the set of all

feasible solutions from N
′

k(U).

We develop two variants of pipeVND for solving UCP that differ in order of

the local searches during the optimization process. However, both pipeVNDs

consist of the same set of two neighborhoods sequentially explored one after

another. Additionally, each of them are iterated until there is no improvement

in the objective function value. The used local searches attempt to decommit

units, preserving feasibility. They are based on the priority list, i.e., the

search for units which will be decommited is organized according to the

descending merit order. The difference between these two local searches is

in the number of consecutive time periods (hours) attempted to decommit a

unit. The first local search (LS1) attempts to decommit unit i for a period of
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T down
i hours (where T down

i equals to minimum down time of the unit i); the

second one (LS2) attempts to decommit each unit in one hour. Both local

searches explore the solution space using the first improvement strategy. The

pipeVND1 applies LS1 and then LS2, while pipeVND2 employs LS2 and then

LS1.

We developed two variants of GVNS that uses the same shaking procedure

for diversification. The shaking procedure returns a random solution from

the k-th neighborhood of a given solution U . However, two proposed variants

differ in the way of performing intensification. The first one called GVNS, uses

the pipeVND1 as a local search while the second one, called Adaptive GVNS,

decides whether the pipeVND1 or the pipeVND2 will be applied in some

iteration of GVNS, depending on their success in previous solution process. In

the first step Adaptive GVNS uses pipeVND1, while in all other iterations the

decision which pipe VND will be applied is made as follows. Initially, both

pipeVND1 and pipeVND2 have the same merit value w = 0.5 assigned to them.

After that at each iteration their merits are updated dynamically. Namely,

the merit value of the used pipeVND variant is increased or decreased for

some value α (e.g., α = 0.1) depending on whether the currently best found

solution is improved or not in that iteration. The currently used pipeVND

will be replaced by another in the next iteration if its merit becomes negative.

If replacement of a pipeVND occurs, its merit is reset to the initial value w.

Both GVNS and Adaptive GVNS, are tested by constructing initial solu-

tions in two different ways. If the initial solution is obtained by greedy

procedure [60], the corresponding GVNS and Adaptive GVNS variants are

denoted by GVNS-G and Adaptive GVNS-G, respectively. Similarly, if GVNS

(Adaptive GVNS) uses greedy randomized initial solution [72], that variants

are named as GVNS-R (Adaptive GVNS-R). The greedy randomized initial

solutions for both GVNSs are built iteratively, starting from the solution

created by the greedy procedure. Each iteration consists of choosing a random

solution from the first neighborhood of the current solution and setting the

chosen solution to be a new current solution. The whole process is repeated

N · T times (where N and T are the number of units and the number of time

periods, respectively).
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Computational results

To perform empirical analysis we use the following two data sets from the

literature:

Case study 1 [142]. This case study contains test instances with up to 100

units. The instances with more than 10 units are derived duplicating the

data of the basic instance with 10 units. The load demands for those derived

instances are adjusted in proportion to the number of units. The spinning

reserve requirement, for all instances, is set to 10% of total load demand.

Case study 2 [132]. The second case study consists of 38 generating units

from the practical Taiwan Power (Taipower). The spinning reserve require-

ment is set to 11% of the total load demand.

Comparison with other heuristics on Case study 1: The fuel costs

obtained by our methods are compared with fuel costs obtained by the fol-

lowing 23 heuristics from the literature: Lagrangian relaxation (LR) [142];

genetic algorithm (GA) [142]; enhanced adaptive Lagrangian relaxation (ELR)

[142]; Dynamic Programming with ELR (DPLR) [142]; Lagrangian relaxation

and genetic algorithm (LRGA) [38]; genetic algorithm based on charac-

teristic classification (GACC) [202]; evolutionary programming (EP) [139];

priority-list-based evolutionary algorithm (PLEA) [205]; extended priority

list (EPL) [205]; integer coded genetic algorithm (ICGA) [55]; a Lagrangian

multiplier based sensitive index to determine the unit commitment of ther-

mal units (LMBSI) [203]; improved pre-prepared power demand and Muller

method (IPPDTM) [37]; quantum inspired binary particle swarm optimiza-

tion (QBPSO) [137]; quantum-inspired evolutionary algorithms (QEA-UC)

[150] and (IQEA-UC) [41]; shuffled frog leaping algorithm (SFLA) [64]; im-

perialistic competition algorithm (ICA) [171]; gravitational search algorithm

(GSA) [192]; semi-definite programming (SDP) [135, 162]; tighter relaxation

method (RM) [184]. Comparative results are given in Table 2.17. It should

be emphasized that for test instance with 20 units, LRGA, SFLA and GSA

heuristics report solution values better than the optimal solution value (which

equals to 1123297 see [219]). Therefore, we boldfaced that value in Table

2.17, but values better than optimal present in italic font. For instance with
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40 units the optimal solution is not known. Hence, it is questionable if the

value of 2242178 obtained by LRGA is really reliable (since it reported better

value than optimal for N = 20).

No. of Units 10 TU’s 20 TU’s 40 TU’s 60 TU’s 80 TU’s 100 TU’s
Method Operating Cost(✩) Average
LR [142] 565825 1130660 2258503 3394066 4526022 5657277 2922058.83
ELR [175] 563977 1123297 2244237 3363491 4485633 5605678 2897718.83
LRGA [38] 564800 1122622 2242178 3371079 4501844 5613127 2902608.33
DPLR [175] 564049 1128098 2256195 3384293 4512391 5640488 2914252.33
GA [142] 565825 1126243 2251911 3376625 4504933 5627437 2908829.00
GACC [202] 563977 1125516 2249715 3375065 4505614 5626514 2907733.50
EP [139] 564551 1125494 2249093 3371611 4498479 5623885 2905518.83
ICGA [55] 566404 1127244 2254123 3378108 4498943 5630838 2909276.67
PLEA [205] 563977 1124295 2243913 3363892 4487354 5607904 2898555.83
EPL [205] 563977 1124369 2246508 3366210 4489322 5608440 2899804.33
LMBSI [203] 563977 1123990 2243708 3362918 4483593 5602844 2896838.33
IPPDTM [37] 563977 - 2247162 3366874 4490208 5609782 -
QBPSO [137] 563977 1123297 2242957 3361980 4482085 5602486 2896130.33
QEA-UC [150] 563938 1123607 2245557 3366676 4488470 5609550 2899633.00
IQEA-UC[41] 563938 1123297 2242980 3362010 4482826 5602387 2896239.67
SFLA[64] 564769 1123261 2246005 3368257 4503928 5624526 2905124.33
ICA [171] 563938 1124274 2247078 3371722 4497919 5617913 2903807.33
GSA[192] 563938 1123216 2242741 3362447 4483864 5600883 2896181.50
SDP[135] 563938 1124357 2243328 3363031 4484365 5602538 2896926.17
SDP[162] 563977 1124410 2243144 3360512 4480652 5598727 2895237.00
RM [184] 563977 1123990 2243676 3361589 4481833 5599761 2895804.33
GVNS-R 563938 1123297 2242882 3360316 4480515 5597962 2894818.33
GVNS-G 563938 1123297 2242882 3360699 4480617 5600133 2895261.00
Adaptive GVNS-R 563938 1123297 2242596 3360181 4480328 5597964 2894717.33
Adaptive GVNS-G 563938 1123297 2242882 3361119 4480617 5598876 2895121.50

Table 2.17: Comparison on Case Study 1 [142]

From results presented in Table 2.17 the following conclusion may be

drawn:

❼ All proposed GVNS variants succeed in finding optimal solutions for

instances with up to 20 units

❼ For instances with 60 and 80 units, Adaptive GVNS-R provides solutions

of better quality than all proposed heuristics up to now in the literature.

On the other hand, GVNS-R offers the best solution for instance with

100 units .
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❼ Regarding the average solution cost achieved by each of compared heuris-

tics, we conclude that Adaptive GVNS-R outperforms all the others.

The second best heuristic, turns to be GVNS-R, while Adaptive GVNS-G

takes the third place in the overall ranking. GVNS-G is ranked as the

fifth best immediately behind SDP heuristic [162].

The execution times of GVNS-R, GVNS-G, Adaptive GVNS-R and Adaptive GVNS-G

as well as execution times of all other methods, are presented in Table 2.18.

Note that the computer configurations for the methods of LMBSI [203],

IPPDTM [37], QBPSO [137], QEA-UC [150], IQEA-UC [41], GSA [192], ICA

[171], SDP [135], RM [184] are 2 GHz CPU, Pentium IV 2.8 GHz, Pentium

IV 2.0 GHz, Intel Core 2.39 GHz, Intel core 2 Duo CPU 2.66 GHz, Intel

Pentium IV 2-GHz CPU, Intel Core 2 Quad 2.4 GHz, core 2 duo processor 2

GHz, Intel Core 2 Duo Processor T5300 1.73 GHz and AMD Dual-Core 4800

+ 2.5 GHz, respectively. All proposed GVNSs have been run on a computer

with Intel i7 2.8 GHz CPU. All in all computer platforms have the similar

characteristics. Note that our code is run on a single processor while some

other use more parallel CPUs.

No. of Units 10 TU’s 20 TU’s 40 TU’s 60 TU’s 80 TU’s 100 TU’s
Method CPU time(s) Average
LMBSI [203] 10.00 18.00 27.00 40.00 54.00 73.00 37.00
IPPDTM [37] 0.52 - 6.49 17.39 31.23 46.55 20.44
QBPSO [137] 18.00 50.00 158.00 328.00 554.00 833.00 323.50
QEA-UC [150] 19.00 28.00 43.00 54.00 66.00 80.00 48.33
IQEA-UC [41] 34.00 98.00 146.00 191.00 235.00 293.00 166.17
ICA [171] 48.00 63.00 151.00 366.00 994.00 1376.00 499.67
GSA [192] 2.89 13.72 74.66 103.41 146.45 204.93 91.01
SDP [135] 25.41 63.94 157.73 260.76 353.84 392.56 209.04
RM [184] 1.15 2.14 4.83 8.79 13.02 17.10 7.84
GVNS-R 0.23 2.46 63.19 126.82 22.56 374.49 98.29
GVNS-G 0.05 2.5 6.64 436.35 98.76 351.56 149.31
Adaptive GVNS-R 0.08 1.95 109.85 212.75 64.86 283.84 112.22
Adaptive GVNS-G 0.04 1.23 2.14 109.53 287.49 552.49 158.82

Table 2.18: CPU time: Case Study 1 [142]

Comparison with other heuristics on Case study 2: In order to per-

form the comparison of our methods with other heuristic approaches on this
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data set, the start up cost in the first hour is neglected as in [37]. The results

obtained by the heuristics from the literature are compared with our meth-

ods in Table 2.19: dynamic programming (DP) [132], Lagrangian relaxation

(LR) [132], simulated annealing (SA) [132], constrained logic programming

(CLP) [132], fuzzy optimization (FO) [66], matrix real coded genetic algo-

rithm (MRCGA) [206], memory bounded ant colony optimization (MACO)

[193], fuzzy adaptive particle swarm optimization(FAPSO) [196], absolutely

stochastic simulated annealing (ASSA) [194], twofold simulated annealing

(TFSA) [197], heuristic and ASA (HASSA) [195], enhanced merit order and

augmented Lagrange Hopfield network (EMO-ALHN) [61], improved pre-

prepared power demand and Muller method (IPPDTM) [37] and Augmented

Lagrange hopfield network based Lagrangian relaxation (ALHN-LR) [62].

DP [132], LR [132], SA [132], and CLP [132] were executed on 486-66

PC, MRCGA [206] on Intel Celeron 1.2 GHz, ASSA [194] on Intel Pentium

4 1.4 GHz CPU, TFSA [197] and HASSA [195] on Intel(R) Celeron(TM)

CPU, EMO-ALHN [61] on Intel Cleron 1.1 GHz, IPPDTM [37] on Pentium

IV 2.8 GHz, ALHN-LR [62] on Intel Celeron 1.5 GHz. There is no report of

computer used for the FO, MACO and FAPSO methods. GVNS approaches

have been run on a computer with Intel i7 2.8 GHz CPU.

Among heuristics mentioned above, some have been tested on the same

38-units system, but with increased operating time. Namely, the total time of

24 hours has been extended to 72 and 168 hours. The increased load demands

are adapted naturally. Such cases are compared in columns 3 and 4 of Table

2.19, i.e., only the costs of HASSA, EMO-ALHN, ALHN-LR and GVNS

methods are given. In order to perform a fair comparison with previous

approaches, maximum CPU time allowed to be consumed by our GVNS

methods were set to 10 seconds for time horizon of 24 hours, 20 seconds

for time horizon of 72 hours and 40 seconds for time horizon of 168 hours.

However, in Table 2.20 we present results obtained by our GVNS methods

extending the time limits to 600 seconds for each time horizon.

Computational results show that our methods, for any time horizon,

provide better quality solutions than those obtained by previously proposed

methods. It should be noted that for any time horizon solutions offered by

Adaptive GVNS-G are better than those found by other GVNS based methods.
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This result could be explained by the fact that the solution space is enormous,

therefore it is important to start the exploration from a reasonably good initial

solution (i.e., greedy solution) in order to get high quality solution within the

imposed time limit. Additionally, the adaptive mechanism embedded within

GVNS turns out to be powerful enough to help GVNS to provide high-quality

solutions in a reasonable amount of time.

Time horizon 24h 72h 168h 24h 72h 168h
Method Operating Cost(M✩) CPU time(s)
DP [132] 210.5 - - 24.00 - -
LR [132] 209 - - 7.00 - -
SA [132] 207.8 - - 1690.00 - -
CLP [132] 208.1 - - 10.00 - -
FO [66] 207.8 - - - - -
MRCGA [206] 204.6 - - - - -
MACO [193] 200.46 - - 111.90 - -
FAPSO [196] 196.73 - - 6.07 - -
ASSA [194] 196.7 - - 3.96 - -
TFSA [197] 197.98 - - 3.43 - -
IPPDTM [37] 196.06 - - 1.36 - -
HASSA [195] 196.96 601.4 1410.47 5.01 9.04 37.64
EMO-ALHN [61] 197.5 590.66 1376.55 0.21 0.66 1.91
ALHN-LR [62] 195.87 585.27 1366.18 8.64 13.58 16.21
GVNS-R 194.44 583.62 1365.48 7.18 19.55 39.54
GVNS-G 194.05 583.71 1363.74 9.94 9.62 39.10
Adaptive GVNS-R 194.16 583.76 1364.92 9.92 11.98 39.85
Adaptive GVNS-G 193.94 583.32 1362.41 9.67 19.52 39.59

Table 2.19: Computational Results: Case Study 2 [132]

Time horizon 24h 72h 168h 24h 72h 168h
Method Operating Cost(M✩) CPU time(s)
GVNS-R 193.75 581.58 1360.35 416.36 597.36 598.35
GVNS-G 193.75 582.26 1360.45 538.17 491.58 589.48
Adaptive GVNS-R 193.75 581.57 1358.66 541.39 450.51 592.62
Adaptive GVNS-G 193.75 581.57 1358.65 359.63 390.17 539.59

Table 2.20: Computational Results with time limit set to 600s: Case Study 2
[132];
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2.5 Concluding remarks

This chapter has been focused on pure Variable Neighborhood Search (VNS)

based heuristics, i.e, those that are not obtained combining VNS with other

metaherutistics or mathematical programming approaches. However, the

hybrid approaches that combine VNS and mathematical programming technics

will be presented in Chapter 3. More precisely, in this chapter we described

main ingredients of a VNS heuristic as well as several its variants. Some of

these variants had been proposed before, while the other were proposed by

the author for the first time. The newly proposed VNS variant such as a

two-level VNS, a nested VNS, and a cyclic variable neighborhood descent were

successfully applied for solving several NP-hard problems. Besides that, in

this chapter we provide a review of successful applications of VNS heuristics,

developed by the author, for solving variety optimization problems arising in

transportation, logistic, scheduling, power generation and clustering such as:

Traveling salesman problem with time windows [169], Attractive traveling

salesman problem [170], Traveling salesman problem with draft limits [210],

Swap-body vehicle routing problem [212], Uncapacitated r-allocation p-hub

median problem [213], Minimum sum-of-squares clustering on networks [36],

Periodic maintenance problem [209] and Unit commitment problem [211]. The

computational results obtained solving the considered problems, demonstrate

the superiority of the proposed VNS heuristics over the previously proposed

heuristics. In other words, the proposed VNS heuristics turn out to be the new

state-of-the-art heuristics. Such performances of VNS heuristics indicate that

developing VNS heuristics for solving other NP-hard optimization problems

is promising research avenue.



Chapter 3

Matheuristics for 0–1 Mixed

Integer Program

3.1 Introduction

The approaches used to tackle the optimization problems may be divided on

exact and heuristic. The exact methods (e.g., branch-and-bound, branch-and-

cut, dynamic programming etc.) are topic of mathematical programming area

and such methods can generate provably optimal solutions to optimization

problems. On the other hand, heuristic approaches are able to generate

”good” solutions to optimization problems but not necessarily provably op-

timal. Since many optimization problems cannot be solved to optimality

within acceptable time/resource consumption, while heuristics can not provide

optimality of a generated solution, researches started to develop so-called

matheuristics in order to possibly overcome these issues. Matheuristics are

heuristic algorithms made by the combining metaheuristics and mathematic

programming techniques. An essential feature of a matheuristic is the ex-

ploitation of features derived from the mathematical model of the considered

problem in certain stages of the solution process. For surveys on matheuristics

we refer to Ball (2011) [13] and Maniezzo et al. (2010) [160].

Due to the recent advances in exact methods for mixed integer linear

programming (MIP) problems many researchers designed matheuristics that

incorporate phases where MIP are solved solved exactly. Following this

research line we propose two new diving heuristics for finding a feasible

solution for a MIP problem, called Variable Neighborhood (VN) diving and

Single Neighborhood (SN) diving, respectively. They perform systematic

hard variable fixing (i.e., diving) by exploiting the information obtained from

a series of LP relaxations in order to generate a sequence of subproblems.

119
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Pseudo cuts are added during the search process to avoid revisiting the

same search space areas. VN diving is based on the variable neighborhood

decomposition search framework [122]. Conversely, SN diving explores only

a single neighborhood in each iteration: if a feasible solution is not found,

then the next reference solution is chosen using the feasibility pump principle

[77] and the search history [92]. Moreover, we prove that the two proposed

algorithms converge in a finite number of iterations. Additionally, we propose

several iterative linear programming-based heuristics for solving Fixed-Charge

Multicommodity Network Design (MCND) problem [159]. We propose how

to adapt well-known Slope Scaling heuristic [51] for MCND in order to

tackle reduced problems of MCND obtained by fixing some binary variables.

Moreover, we show that ideas of a convergent algorithm based on the LP-

relaxation and pseudo-cuts may be used to guide a Slope Scaling heuristic

during the search for an optimal (or near-optimal) solution and vice-versa.

The rest of the chapter is organized as follows. Section 3.2 is devoted to

describing Variable Neighborhood diving and Single Neighborhood diving

heuristics, while in Section 3.2 we describe iterative linear programming-based

heuristics for solving Fixed-Charge Multicommodity Network Design prob-

lem. More precisely, Section 3.2 starts by giving brief introduction to MIP

problems and methods for generating first feasible solution. After that, in

Subsection 3.2.1 the notation used throughout the section is presented. A

detailed description of the two new diving heuristics for MIP feasibility is

provided in Subsection 3.2.2. In Subsection 3.2.3, we analyze the performance

of the proposed methods as compared to the commercial IBM ILOG CPLEX

12.4 MIP solver and the basic and objective variant of the FP heuristic

[2, 77]. On the other hand, Section 3.3 starts by describing Fixed-Charge

Multicommodity Network Design problem, followed by the description of

Slope Scaling heuristics in Subsection 3.3.1. In Subsection 3.3.2 Convergent

algorithm based on linear programming relaxation and pseudo cuts is pre-

sented. Subsection 3.3.3 contains an adaptation of Slope scaling heuristic for

solving reduced problems of MCND and the description of several iterative

linear programming-based heuristics for solving MCND. In Subsection 3.3.3

we compare proposed approaches with previously proposed ones in order to

asses their quality. Finally, in Section 3.4 we draw some conclusions. For the
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sake of readability of the chapter, the notation used will be presented always

when needed although that may cause overlapping with the notation used in

the previous chapters.

3.2 Variable and Single Neighborhood Diving

for MIP Feasibility

The mixed integer programming (MIP) problem can be formulated as follows:

(P ) min{cx | x ∈ X}, (3.1)

where X = {x ∈ R
n | Ax ≤ b, xj ∈ {0, 1} for j ∈ B, xj ∈ Z

+ for j ∈

G, lj ≤ xj ≤ uj for j ∈ C ∪ G} (B,G, C respectively constitute the index sets

for the binary (0-1), integer (non-binary) and continuous variables) is the

feasible set, cx is the objective function, and x ∈ X are the feasible solutions.

In the special case when G = ∅, the resulting MIP problem is called the 0-1

MIP problem (0-1 MIP). The LP-relaxation of problem P , denoted as LP(P ),

is obtained from the original formulation by relaxing the integer requirements

on x:

LP(P ) min{cx | x ∈ X}, (3.2)

where X = {x ∈ R
n | Ax ≤ b, lj ≤ xj ≤ uj for j ∈ G∪C, xj ∈ [0, 1] for j ∈ B}.

Many real-world problems can be modeled as MIP problems [25, 43].

However, a number of special cases of MIP problem are proven to be NP-hard

[80] and cannot be solved to optimality within acceptable time/space with

existing exact methods. This is why various heuristic methods have been

designed in attempt to find good near-optimal solutions of hard MIP problems.

Most of them start from a given feasible solution and try to improve it. Still,

finding a feasible solution of 0-1 MIP is proven to be NP-complete [224] and

for a number of instances finding a feasible solution remains hard in practice.

This calls for the development of efficient constructive heuristics which can

attain feasible solutions in short time. Over the last decade, a number of

heuristics that address the problem of MIP feasibility have been proposed

such as the feasibility Pump (FP) for the special case of pure 0-1 MIP problem
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in [77]; FP for the case of general MIP problems [18]; the objective FP [2],

the local branching [75] and so on. For detailed description of these heuristics

see Chapter 1.

The concept of variable fixing in order to find solutions to MIP problems

was conceived in the late 1970s and early 1980s, when the first methods of

this type were proposed [9, 204]. Subproblems are iteratively generated by

fixing a certain number of variables in the original problem according to the

solution of the linear programming relaxation of the original problem. This

approach is also referred to as a core approach, since the subproblems so

obtained are sometimes called core problems [9, 183]. The used terms hard

variable fixing or diving are also present in the literature (see, for example,

[56]). The critical issue in this type of methods is the way in which the

variables to be fixed are chosen. Depending on the selection strategy and

the way of manipulating the obtained subproblems, different MIP solution

methods are obtained. The basic strategy was initially proposed in [9], for

solving the multidimensional knapsack problem. A number of its successful

extensions were proposed over the years. For example, a greedy strategy

for determining the core is developed in [181], whereas in [183] the core is

defined according to a chosen efficiency function. Another iterative scheme,

again for the 0-1 multidimensional knapsack problem, was developed in [223].

This scheme, which is based on a dynamic fixation of the variables, uses

the search history to build up feasible solutions and to select variables for a

permanent/temporary fixation. Variable neighborhood search was combined

with a very large scale neighborhood search approach to select variables for

fixing (binding sets) for the general assignment problem [164, 166]. This

approach was further extended for 0-1 mixed integer programming in general

[165].

With the expansion of general-purpose MIP solvers over the last decade,

different hybridizations of MIP heuristics with commercial solvers are becom-

ing increasingly popular. A number of efficient heuristics that perform some

kind of variable fixing at each node of the Branch and Bound tree in the

CPLEX MIP solver have been developed such as, e.g., Relaxation induced

neighborhood search (RINS) [56], Relaxation enforced neighborhood search

[20] and variable neighborhood decomposition search [122] heuristic proposed
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in [151]. For extensive description of aforementioned heuristics see Chapter 1

of this thesis.

We propose two new diving heuristics for MIP feasibility, which exploit the

information obtained from a series of LP relaxations. Since the variables to

be fixed depend on the LP relaxation solution values, this approach may also

be called relaxation guided diving. Relaxation guided variable neighborhood

search was proposed in [182], but for defining the order of neighborhoods

within VNS (where neighborhoods are defined by soft variable fixing) rather

than selecting the variables to be hard-fixed.

The first heuristic, called variable neighborhood diving is based on the vari-

able neighborhood decomposition search principle [122]. A similar approach

was proposed in [151] for optimizing 0-1 MIP problems starting from a given

initial MIP feasible solution. We propose a modification of the algorithm

from [151] for constructing feasible solutions of 0-1 MIP problems. We exploit

the fact that the CPLEX MIP solver can be used not only for finding near-

optimal solutions but also as a black-box for finding a first feasible solution

for a given 0-1 MIP problem. We also extend this approach for general MIP

problems, so that fixation is performed on general integer variables as well.

The second heuristic, called single neighborhood diving explores only a single

neighborhood in each iteration. However, the size of the neighborhood is

updated dynamically according to the solution status of the subproblem in a

previous iteration. The incumbent solution is updated in a feasibility pump

manner, whereas revisiting the same point in the search process is prohibited

by keeping the list of all visited reference solutions. This list is implemented

as a set of constraints in a new (dummy) MIP problem. We show that our

proposed algorithms significantly outperform the CPLEX 12.4 MIP solver

and the recent variants of the feasibility pump heuristic, both regarding the

solution quality and the computational time.

3.2.1 Notation

Given an arbitrary integer solution x′ of problem (3.1) and an arbitrary subset

J ⊆ B ∪G of integer variables, the problem reduced from the original problem
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P and associated with x′ and J can be defined as:

P (x′, J) min{cx | x ∈ X, xj = x′j for j ∈ J} (3.3)

If C is a set of constraints, we will denote with (P | C) the problem obtained

by adding all constraints in C to the problem P . Let x and y be two arbitrary

integer solutions of the problem P . The distance between x and y is then

defined as

∆(x, y) =
∑

j∈B∪G

|xj − yj| (3.4)

If J ⊆ B ∪ G, the partial distance between x and y, relative to J , is defined

as ∆(J, x, y) =
∑

j∈J | xj − yj | (obviously, ∆(B ∪ G, x, y) = ∆(x, y)). The

linearization of the distance function ∆(x, y), as defined in (3.4), requires the

introduction of additional variables. More precisely, for any integer feasible

vector y, function ∆(x, y) can be linearized as follows [74]:

∆(x, y) =
∑

j∈B∪G:yj=lj

(xj − lj) +
∑

j∈B∪G:yj=uj

(uj − xj) +
∑

j∈G:lj<yj<uj

dj, (3.5)

where lj = 0 and uj = 1 for j ∈ B and new variables dj = |xj − yj| need to

satisfy the following constraints :

dj ≥ xj − yj and dj ≥ yj − xj for all j ∈ {i ∈ G | li < yi < ui}. (3.6)

In the special case of 0-1 MIP problems, the distance function between

any two binary vectors x and y can be expressed as:

δ(x, y) =
∑

j∈B

xj(1− yj) + yj(1− xj). (3.7)

Furthermore, if x is a given binary vector, then formula (3.7) can be used to

compute the distance from x to any vector x ∈ R
n:

δ(x, x) =
∑

j∈B

xj(1− xj) + xj(1− xj).

As in the case of general MIP problems, the partial distance between x and
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x, relative to J ⊆ B, is defined as δ(J, x, x) =
∑

j∈J xj(1− xj) + xj(1− xj).

Note that the distance function δ, as defined in (3.7), can also be used for

general MIP problems, by taking into account that δ(x, y) = ∆(B, x, y) for

any two solution vectors x and y of a general MIP problem (3.1).

The LP-relaxation of the modified problem, obtained from a MIP problem

P , as defined in (3.1), by replacing the original objective function cx with

δ(x̃, x), for a given integer vector x̃ ∈ {0, 1}|B| × Z
|G|
+ × R

|C|
+ , can be expressed

as:

LP(P, x̃) min{δ(x̃, x) | x ∈ X} (3.8)

Similarly, the notation MIP(P, x̃) will be used to denote a modified problem,

obtained from P by replacing the original objective function with δ(x, x̃):

MIP(P, x̃) min{δ(x̃, x) | x ∈ X}. (3.9)

We will also define the rounding [x] of any vector x, as vector [x] = ([x]j),

with:

[x]j =

{
⌊xj + 0.5⌋, j ∈ B ∪ G

xj, j ∈ C.
(3.10)

The neighborhood structures {Nk | 1 ≤ kmin ≤ k ≤ kmax ≤ |B|+ |G|} can

be defined knowing the distance δ(x, y) between any two solutions x, y ∈ X.

The set of all solutions in the kth neighborhood of x ∈ X is defined as

Nk(x) = {y ∈ X | δ(x, y) = k}. (3.11)

3.2.2 New Diving Heuristics for MIP Feasibility

The new diving heuristics presented in this section are based on the systematic

hard variable fixing (diving) process, according to the information obtained

from the LP relaxation solution of the problem. They rely on the observation

that a general-purpose MIP solver can be used not only for finding (near)

optimal solutions of a given input problem, but also for finding the initial fea-

sible solution. For the sake of simplicity, we will first present both algorithms

for the special case of 0-1 MIP problems. After that we will explain how the

presented algorithms can be adapted for solving general MIP problems.
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Variable Neighborhood Diving

The variable neighborhood (VN) diving algorithm begins by obtaining the LP-

relaxation solution x of the original problem P and generating an initial integer

(not necessarily feasible) solution x̃ = [x] by rounding the LP-solution x. If

the optimal solution x is integer feasible for P , we stop and return x. At each

iteration of the VN diving procedure, we compute the distances δj =| x̃j−xj |

from the current integer solution values (x̃j)j∈B to the corresponding LP-

relaxation solution values (xj)j∈B and index the variables x̃j , j ∈ B so that δ1 ≤

δ2 ≤ . . . ≤ δ|B|. Then, we successively solve the subproblems P (x̃, {1, . . . , k})

obtained from the original problem P , where the first k variables are fixed

to their values in the current incumbent solution x̃. If a feasible solution

is found by solving P (x̃, {1, . . . , k}), it is returned as a feasible solution of

the original problem P . Otherwise, a pseudo-cut δ({1, . . . , k}, x̃, x) ≥ 1 is

added in order to avoid exploring the search space of P (x̃, {1, . . . , k}) again,

and the next subproblem is examined. If no feasible solution is detected

after solving all subproblems P (x̃, {1, . . . , k}), kmin ≤ k ≤ kmax, kmin = kstep,

kmax = |B| − kstep, the linear relaxation of the current problem P , which

includes all the pseudo-cuts added during the search process, is solved and

the process is iterated. If no feasible solution has been found due to the

fulfillment of the stopping criteria, the algorithm reports failure and returns

the last (infeasible) integer solution.

The pseudo-code of the proposed VN diving heuristic is given in Algo-

rithm 37. The input parameters for the VN diving algorithm are the input

MIP problem P and the parameter d, which controls the change of neigh-

borhood size during the search process. In all pseudo-codes, a statement of

the form y = FindFirstFeasible(P, time) denotes a call to a generic MIP

solver, an attempt to find a first feasible solution of an input problem P

within a given time limit time. If a feasible solution is found, it is assigned

to the variable y, otherwise y retains its previous value.

Since the VN diving procedure examines only a finite number of subprob-

lems, it is easy to prove the following proposition.

Proposition 3.2.1 If the timeLimit parameter is set to infinity, the variable

neighborhood diving algorithm finishes in a finite number of iterations and
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Algorithm 37: Variable neighborhood diving for 0-1 MIP feasibility.

Function VNdiving(P, d);
1 Set proceed1 = true, proceed2 = true; Set timeLimit for subproblems;
2 while proceed1 do
3 Solve the LP relaxation of P to obtain an optimal LP basic solution

x;
4 x̃ = [x];
5 if x = x̃ then return x̃;
6 δj =| x̃j − xj |; index xj so that δj ≤ δj+1, j = 1, . . . , |B| − 1;
7 Set nd =| {j ∈ B | δj 6= 0} |, kstep = [nd/d], k = |B| − kstep;
8 while proceed2 and k ≥ 0 do
9 Jk = {1, . . . , k}; x

′ = FindFirstFeasible(P (x̃, Jk), timeLimit);
10 if P (x̃, Jk) is proven infeasible then P = (P | δ(Jk, x̃, x) ≥ 1);
11 if x′ is feasible then return x′;
12 if k − kstep > |B| − nd then kstep = max{[k/2], 1};
13 Set k = k − kstep;
14 Update proceed2;

end
15 Update proceed1;

end
16 Output message: ”No feasible solution found”; return x̃;

either returns a feasible solution of the input problem, or proves the infeasibility

of the input problem.

Note however that, in the worst case, the last subproblem examined by VN

diving is the original input problem. Therefore, the result of Proposition 3.2.1

does not have any theoretical significance.

Single Neighborhood Diving

In the case of variable neighborhood diving, a set of subproblems P (x̃, Jk),

for different values of k, is examined in each iteration until a feasible solution

is found. In the single neighborhood diving procedure, we only examine

one subproblem P (x̃, Jk) in each iteration (a single neighborhood, see Al-

gorithm 38). However, because only a single neighborhood is examined,

additional diversification mechanisms are required. This diversification is
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provided through keeping the list of constraints which ensures that the same

reference integer solution x̃ cannot occur more than once (i.e., in more than

one iteration) in the solution process. An additional MIP problem Q is

introduced to store these constraints. In the beginning of the algorithm, Q

is initialized as an empty problem (see line 4 in Algorithm 38). Then, in

each iteration, if the current reference solution x̃ is not feasible (see line 8

in Algorithm 38), constraint δ(x̃, x) ≥ ⌈δ(x̃, x)⌉ is added to Q (line 9). This

guarantees that future reference solutions can not be the same as the current

one, since the next reference solution is obtained by solving the problem

MIP(Q, [x]) (see line 17), which contains all constraints from Q, (see defini-

tion (3.9)). The variables to be fixed in the current subproblem are chosen

among those which have the same value as in the linear relaxation solution

of the modified problem LP(P, x̃), where x̃ is the current reference integer

solution (see lines 7 and 11). The number of variables to be fixed is controlled

by the parameter α (line 11). After initialization (line 5), the value of α is

updated in each iteration, depending on the solution status returned from

the MIP solver. If the current subproblem is proven infeasible, the value of

α is increased in order to reduce the number of fixed variables in the next

iteration (see line 16), and thus provide better diversification. Otherwise, if

the time limit allowed for subproblem is exceeded without reaching a feasible

solution or proving the subproblem infeasibility, the value of α is decreased.

Decreasing the value of α, increases the number of fixed variables in the next

iteration (see line 17), and thus reduces the size of the next subproblem.

In the feasibility pump, the next reference integer solution is obtained by

simply rounding the linear relaxation solution x of the modified problem

LP(P, x̃). However, if [x] is equal to some of the previous reference solutions,

the solution process is caught in a cycle. In order to avoid this type of cycling,

we determine the next reference solution as the one which is at the minimum

distance from [x] (with respect to binary variables) and satisfies all constraints

from the current subproblem Q (see line 18). This way we guarantee the

convergence of the variable neighborhood diving algorithm, as stated in the



CHAPTER 3. MATHEURISTICS FOR 0–1 MIP 129

following proposition.

Algorithm 38: Single neighborhood diving for 0-1 MIP feasibility.

Function SNDiving(P );

1 Solve the LP relaxation of P to obtain an optimal LP basic solution x;

2 Set i = 0; Set x̃0 = [x];

3 if (x = x̃0) then return x̃0;

4 Set Q0 = ∅;

5 Set proceed = true; Set timeLimit for subproblems; Set value of α;

6 while proceed do

7 Solve the LP (P, x̃i) problem to obtain an optimal solution x;

8 if (⌈δ(x̃i, x)⌉ = 0) then return x̃i;

9 Qi+1 = (Qi | δ(x̃
i, x) ≥ ⌈δ(x̃i, x)⌉);

10 δj =| x̃j − xj |; index xj so that δj ≤ δj+1, j = 1, . . . , |B| − 1;

11 k = [| {j ∈ B : x̃i
j = xj} | /α]; Jk = {1, . . . , k};

12 x′ = FindFirstFeasible(P (x̃i, Jk), timeLimit);

13 if feasible solution found then return x′;

14 if P (x̃i, Jk) is proven infeasible then

15 Qi+1 = (Qi+1 | δ(Jk, x̃
i, x) ≥ 1); P = (P | δ(Jk, x̃

i, x) ≥ 1);

16 α = 3α/2;

else

17 if time limit for subproblem exceeded then α = max{1, α/2};

end

18 x̃i+1 = FindFirstFeasible(MIP(Qi+1, [x]), timeLimit);

19 if MIP(Qi+1, [x]) is proven infeasible then Output message: “Problem P is

proven infeasible”; return;

20 i = i+ 1;

end

Proposition 3.2.2 If the timeLimit parameter is set to infinity, the single

neighborhood diving algorithm finishes in a finite number of iterations and

either returns a feasible solution of the input problem, or proves the infeasibility

of the input problem.

Proof. Let x̃i be the reference solution at the beginning of the ith iteration,

obtained by solving the MIP problem MIP(Qi, [x]) and let j ≥ i + 1. The

problem Qj contains all constraints from Qi+1. If the algorithm has reached

the jth iteration, it means that in the ith iteration feasible solution was

not found and cut δ(x̃i, x) ≥ ⌈δ(x̃i, x)⌉ (line 9 in Algorithm 38) was added
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to Qi+1. Hence, the problem MIP(Qj, [x]) contains δ(x̃i, x) ≥ ⌈δ(x̃i, x)⌉.

Furthermore, because ⌈δ(x̃i, x)⌉ > 0 (otherwise, x̃i would be feasible and the

algorithm would stop in the ith iteration), this implies that x̃i(B) 6= x̃j(B).

Since this reasoning holds for any two iterations j > i ≥ 0, the total number

of iterations of the single neighborhood diving algorithm is limited by the

number of possible sub vectors x̃i(B), which is 2|B|. Therefore, the single

neighborhood diving algorithm finishes in a finite number of iterations.

The single neighborhood diving algorithm can only return a solution vector

as a result if either ⌈δ(x̃i, x)⌉ = 0, therefore x̃i being feasible for P , or if a

feasible solution of the reduced problem P (x̃i, Jk) is found. Since a feasible

solution of P (x̃i, Jk) is also feasible for P , this means that any solution vector

returned by single neighborhood diving algorithm must be feasible for P .

Finally, we will prove that any feasible solution of P has to be feasible for

Qi, for any iteration i ≥ 0. Moreover, we will prove that any feasible solution

of P has to satisfy all constraints in Qi, for any iteration i ≥ 0. Since Q0 does

not contain any constraints, this statement is obviously true for i = 0. Let

us assume that the statement is true for some i ≥ 0, i.e. that for some i ≥ 0

every feasible solution of P satisfies all constraints in Qi. The problem Qi+1 is

obtained from Qi by adding constraints δ(x̃i, x) ≥ ⌈δ(x̃i, x)⌉ and δ(Jk, x̃
i, x) ≥

1. According to the definition of ⌈δ(x̃i, x)⌉, there cannot be any feasible

solution of P satisfying the constraint δ(x̃i, x) < ⌈δ(x̃i, x)⌉. In other words,

all feasible solutions of P must satisfy the constraint δ(x̃i, x) ≥ ⌈δ(x̃i, x)⌉.

Furthermore, if the constraint δ(Jk, x̃
i, x) ≥ 1) is added to Qi+1, this means

that the problem P (x̃i, Jk) = (P | δ(Jk, x̃
i, x) = 0) is proven infeasible, and

therefore no feasible solution of P can satisfy the constraint δ(Jk, x̃
i, x) = 0.

Therefore, any feasible solution of P satisfies the constraints added to Qi

in order to obtain Qi+1 and hence any feasible solution of P satisfies all

constraints in Qi+1. This proves that any feasible solution of P satisfies all

constraints in Qi, for any i ≥ 0. In other words, any feasible solution of P

is feasible for Qi, for any i ≥ 0. Since MIP(Qi+1, [x]) has the same set of

constraints as Qi, this means that any feasible solution of P is feasible for

MIP(Qi, [x]). As a consequence, if MIP(Qi, [x]) is proven infeasible for some

i ≥ 0, this implies that the original problem P is infeasible. �
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Extension to a General MIP Case

Obviously, fixing a certain number of variables can be performed for general

MIP problems, as well as for 0-1 MIP problems. We here explain how the

previously presented algorithms can be adapted and employed for solving

the general MIP problems. In the case of VN diving, we compute the

distances ∆j =| x̃j − xj |, j ∈ B ∪ G, for all integer variables (not just the

binaries). Then, we successively solve subproblems P (x̃, Jk), Jk = {1, . . . , k},

k =| {j ∈ B ∪ G : x̃j = xj} |, where x̃ is the current reference integer solution

and x is the solution of the LP relaxation of the original problem LP(P ). If a

feasible solution is found by solving P (x̃, Jk), for some k, 0 ≤ k ≤ |B ∪ G|, it

is returned as a feasible solution of the original problem P . In the VN diving

variant for 0-1 MIP problems, a pseudo-cut is added to P if a subproblem

P (x̃, Jk) is proven infeasible. In the case of general MIP problems however,

generating an appropriate pseudo-cut would require operating with extended

problems, which contain significantly more variables and constraints than the

original problem P . More precisely, the input problem would have to contain

additional variables dj , j ∈ G, and additional constraints (see definition (3.5)):

uj − dj ≤ xj ≤ dj + lj for all j ∈ {i ∈ G | li < yi < ui}.

Consequently, all subproblems derived from the so extended input problem

would have to contain these additional variables and constraints. In order to

save the memory consumption and computational time for solving subprob-

lems, we therefore decide not to add any pseudo-cuts in the VN diving variant

for general MIP problems, although that implies possible repetitions in the

search space exploration. This means that we only perform decomposition

with respect to the LP relaxation solution of the initial problem. In this

aspect, VN diving for general MIP problems is similar to the Variable Neigh-

borhood Decomposition Search (VNDS) algorithm for 0-1 MIP problems from

[151].

In order to avoid memory and time consumption when dealing with large

problems, the implementation of the SN diving algorithm for general MIP

problems is the same as for 0-1 MIP problems. In other words, all distance

values are computed with respect to the distance function δ (which takes into
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account only binary variables), and general integer variables are handled by

the generic MIP solver itself.

3.2.3 Computational Results

In this section we present the computational results for single and variable

neighborhood diving algorithms. We compare our proposed methods with

the following existing methods CPLEX MIP solver without feasibility pump

(CPLEX for short), the standard feasibility pump heuristic (standard FP),

the objective feasibility pump (Objective FP) and the variable neighbor-

hood pump (VNP) [113]. Since the feasibility pump is already included as a

primal heuristic in the employed version of the CPLEX MIP solver, we use

the appropriate parameter settings to control the use of FP and to chose

the version of FP. All results reported are obtained on a computer with a

4.5GHz Intel Core i7-2700K Quad-Core processor and 32GB RAM, using the

general purpose MIP solver IBM ILOG CPLEX 12.4. Both algorithms were

implemented in C++ and compiled within Microsoft Visual Studio 2010. For

comparison purposes, we consider 83 0-1 MIP instances [77] previously used

for testing the performance of the basic FP (see Table 3.1) and 34 general

MIP instances previously used in [18] (see Table 3.2). In Tables 3.1 and

3.2, columns denoted by n represent the total number of variables, whereas

columns denoted by |B| and m show the number of binary variables and the

number of constraints, respectively. Additionally, the column denoted by

|G| in Table 3.2 provides the number of general integer variables for a given

instance.

In both proposed diving heuristics, the CPLEX MIP solver is used as a

black-box for solving subproblems to feasibility. For this special purpose, the

parameter CPX PARAM MIP EMPHASIS is set to FEASIBILITY, the parameter

CPX PARAM INTSOLLIM is set to 1 and the parameter CPX PARAM FPHEUR was

set to -1. All other parameters are set to their default values, unless otherwise

specified. Results for the CPLEX MIP solver without FP were obtained

by setting the parameter CPX PARAM FPHEUR to -1. The feasibility pump

heuristics are tested through the calls to the CPLEX MIP solver with the

settings CPX PARAM FPHEUR=1 for standard FP and CPX PARAM FPHEUR=2 for
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objective FP. All tested methods (CPLEX MIP without FP, standard FP,

objective FP and both proposed diving heuristics) were allowed 100 seconds of

total running time on 0-1 MIP test instances, while on General MIP instances

maximum running time, for all methods, was set to 150 seconds. In addition,

the time limit for solving subproblems within variable neighborhood diving

and single neighborhood diving was set to 10 seconds for all instances.

The value of the neighborhood change control parameter d in the VN

diving algorithm (see Algorithm 37) is set to 10, meaning that, in each

iteration of VN diving, 10 + ⌊1 + log2(|xj ∈ {0, 1} : j ∈ B|)⌋ subproblems

(i.e. neighborhoods) are explored, where x is the LP relaxation solution of

the current problem. The neighborhood size control parameter α in the SN

diving algorithm (see Algorithm 38) is set to 2.5, meaning that 1
2.5
× 100 = 40

percent of the variables with integer values in x are initially fixed to those

values to obtain the first subproblem. Those values of d and α are based on

brief experimental analysis.
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No. Instance n |B| m No. Instance n |B| m

name name

1 10teams 2025 1800 230 43 bg512142 792 240 1307
2 aflow30a 842 421 479 44 dg012142 2080 640 6310
3 aflow40b 2728 1364 1442 45 blp-ar98 16021 15806 1128
4 air04 8904 8904 823 46 blp-ic97 9845 9753 923
5 air05 7195 7195 426 47 blp-ic98 13640 13550 717
6 cap6000 6000 6000 2176 48 blp-ir98 6097 6031 486
7 dano3mip 13873 552 3202 49 CMS750 4 11697 7196 16381
8 danoint 521 56 664 50 berlin 5 8 0 1083 794 1532
9 ds 67732 67732 656 51 railway 8 1 0 1796 1177 2527

10 fast0507 63009 63009 507 52 glass4 322 302 396
11 fiber 1298 1254 363 53 net12 14115 1603 14021
12 fixnet6 878 378 478 54 nsrand ipx 6621 6620 735
13 harp2 2993 2993 112 55 tr12-30 1080 360 750
14 liu 1156 1089 2178 56 van 12481 192 27331
15 markshare1 62 50 6 57 biella1 7328 6110 1203
16 markshare2 74 60 7 58 NSR8K 38356 32040 6284
17 mas74 151 150 13 59 rail507 63019 63009 509
18 mas76 151 150 12 60 rail2536c 15293 15284 2539
19 misc07 260 259 212 61 rail2586c 13226 13215 2589
20 mkc 5325 5323 3411 62 rail4284c 21714 21705 4284
21 mod011 10958 96 4480 63 rail4872c 24656 24645 4875
22 modglob 422 98 291 64 A1C1S1 3648 192 3312
23 momentum1 5174 2349 42680 65 A2C1S1 3648 192 3312
24 nw04 87482 87482 36 66 B1C1S1 3872 288 3904
25 opt1217 769 768 64 67 B2C1S1 3872 288 3904
26 p2756 2756 2756 755 68 sp97ar 14101 14101 1761
27 pk1 86 55 45 69 sp97ic 12497 12497 1033
28 pp08a 240 64 136 70 sp98ar 15085 15085 1435
29 pp08aCUTS 240 64 246 71 sp98ic 10894 10894 825
30 protfold 1835 1835 2112 72 usAbbrv.8.25 70 2312 1681 3291
31 qiu 840 48 1192 73 manpower1 10565 10564 25199
32 rd-rplusc-21 622 457 125899 74 manpower2 10009 10008 23881
33 set1ch 712 240 492 75 manpower3 10009 10008 23915
34 seymour 1372 1372 4944 76 manpower3a 10009 10008 23865
35 swath 6805 6724 884 77 manpower4 10009 10008 23914
36 t1717 73885 73885 551 78 manpower4a 10009 10008 23866
37 vpm2 378 168 234 79 ljb2 771 681 1482
38 dc1c 10039 8380 1649 80 ljb7 4163 3920 8133
39 dc1l 37297 35638 1653 81 ljb9 4721 4460 9231
40 dolom1 11612 9720 1803 82 ljb10 5496 5196 10742
41 siena1 13741 11775 2220 83 ljb12 4913 4633 9596
42 trento1 7687 6415 1265 .

Table 3.1: Benchmark instances for 0-1 MIP.
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No. Instance n |B| |G| m
name

1 arki001 1388 415 123 1048
2 atlanta-ip 48738 46667 106 21732
3 gesa2 1224 240 168 1392
4 gesa2-o 1224 384 336 1248
5 ic97 potential 728 450 73 1046
6 ic97 tension 703 176 4 319
7 icir97 potential 2112 1235 422 3314
8 icir97 tension 2494 262 573 1203
9 manna81 3321 18 3303 6480
10 momentum2 3732 1808 1 24237
11 momentum3 13532 6598 1 56822
12 msc98-ip 21143 20237 53 15850
13 mzzv11 10240 9989 251 9499
14 mzzv42z 11717 11482 235 10460
15 neos7 1556 434 20 1994
16 neos8 23228 23224 4 46324
17 neos10 23489 23484 5 46793
18 neos16 377 336 41 1018
19 noswot 128 75 25 182
20 rococoB10-011000 4456 4320 136 1667
21 rococoB10-011001 4456 4320 136 1677
22 rococoB11-010000 12376 12210 166 3792
23 rococoB11-110001 12431 12265 166 8148
24 rococoB12-111111 9109 8910 199 8978
25 rococoC10-001000 3117 2993 124 1293
26 rococoC10-100001 5864 5740 124 7596
27 rococoC11-010100 12321 12155 166 4010
28 rococoC11-011100 6491 6325 166 2367
29 rococoC12-100000 17299 17112 187 21550
30 rococoC12-111100 8619 8432 187 10842
31 rout 556 300 15 291
32 timtab1 397 64 107 171
33 timtab2 675 113 181 294
34 roll3000 1166 246 492 2295

Table 3.2: Benchmark instances for general MIP.
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CPLEX Standard FP Objective FP VNP VN Diving SN Diving
Solution quality
Instances solved 83 83 83 82 83 83

Avg. gap from LP relaxation obj. w.r.t. all instances (%) 49665.28 49666.96 49649.94 - 6620.55 17890.24
Avg. gap from LP relaxation obj. w.r.t. 82 instances solved by VNP (%) 48002.46 48029.48 48003.82 4683.57 4542.36 16086.52

Number of wins 18 15 17 32 44 17
Computational time

Average w.r.t. all instances(sec) 4.05 3.85 4.29 7.14 5.09 6.63
Average w.r.t. 82 instances solved by VNP 3.74 3.45 3.79 6.01 4.83 6.65

Number of wins 42 50 48 2 8 19

Table 3.5: Summarized results for 0-1 MIP instances.

The results obtained by all 6 solvers, for the first 83 benchmark 0-1 MIP

instances, which were first used in [77], are presented in Tables 3.3 and

3.4. Table 3.3 provides the objective values obtained by all 6 methods and

Table 3.4 provides the corresponding execution time. The summarized results

for this benchmark, including the variable neighborhood pump heuristic [113],

are presented in Table 3.5. In the solution quality block of Table 3.5, we

provide the number of instances solved by each of the 6 methods, the average

percentage gap from the LP relaxation objective value regarding all 83

instances, the average percentage gap from the LP relaxation objective value

regarding the instances solved by VNP, and the number of times that each of

the methods managed to obtain the best objective value among the others

(including ties). For each method, a percentage gap for a particular instance

was computed according to the formula f−fLP

|fLP |
× 100, where f is the objective

function value for the observed instance obtained by that method, and fLP is

the objective function value of the LP relaxation of the observed instance.

The exceptions are instances markshare1, markshare2 and mod011, for which

the gap value was computed as (f − fLP ) × 100, since the LP relaxation

objective value is equal to 0 for all three instances. In the computational time

block of the Table 3.5, we provide the average computational time over all

instances in the benchmark for each of the 6 methods compared, the average

computational time over all instances solved by VNP, as well as the number

of times that each of the methods managed to obtain a solution in shortest

time.
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From Tables 3.3 and 3.5, we can see that all methods except VNP are able

to solve all 83 instances. VNP does not manage to solve just one test instance.

Therefore, the comparison of performances of CPLEX MIP solver, standard

FP, objective FP, VN diving and SN diving has been done regarding all 83

instances, while the performances of VNP has been evaluated relatively to

the performances of the previous five methods regarding 82 instances solved

by VNP. It appears that VN diving clearly outperforms all other methods

regarding the solution quality. Indeed, it manages to solve all 83 instances

from the benchmark and has the smallest average gap (6620.55%) from the

LP relaxation objective. In addition, VN diving provides the best objective

values among all 6 methods in 44 out of 83 instances. That is much more

than number of times that VNP (32 times), CPLEX MIP solver(18 times),

objective FP (17 times) or standard FP(17 time) succeeds to reach best

objective value. The second best among methods able to solve all 83 instances

is SN diving with an average gap from the LP relaxation of 17890.24%. It is

followed by objective FP (49649.94%), standard FP (49666.96 %) and CPLEX

MIP solver (49665.28 %). On the other hand, regarding 82 instances solved

by VNP, VNP has much smaller average gap from LP relaxation objective

(4683.57%) in comparison with SN diving (16086.52%), CPLEX MIP solver

(48002.46%), objective FP (48003.82 %) and standard FP (48029.48 %).

However with respect to the average gap from LP relaxation objective, VNP

is the second best method. Its average gap is slightly greater than the average

gap of VN diving whose gap is 4542.36%.

From Tables 3.4 and 3.5, we can observe that the shortest average compu-

tational time of 3.85s is reported by standard FP, whereas objective FP and

CPLEX MIP solver are only slightly slower with the average computational

time of 4.29s and 4.05s, respectively. They are followed by VN diving, whose

average computational time is 5.09s, whereas SN diving and VNP are the

slowest, with 6.63s and 7.14s average computational time, respectively. Note,

that in computation of average computational time of VNP, we include the

time of its failed run. Also, note that on one instance (i.e., ds), we allowed to

SN diving more than 100s of computational time and counted that run as

successful. However, if we consider the average computational time of all six

methods over all instances solved successfully by each of them (82 instances
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CPLEX Standard FP Objective FP VNP VN Diving SN Diving
Solution quality
Instances solved 34 34 34 31 34 34

Avg. gap from LP relaxation obj. w.r.t all instances(%) 403.44 454.18 407.46 - 383.28 381.08
Avg. gap from LP relaxation obj. w.r.t instances solved by VNP(%) 437.31 492.95 441.72 431.42 413.00 406.69

Number of wins 5 3 4 9 17 7
Computational time

Average w.r.t all instances(sec) 9.58 9.25 9.02 19.14 9.98 2.92
Average w.r.t instances solved by VNP(sec) 2.72 2.29 1.99 6.47 4.62 2.09

Number of wins 5 7 10 1 9 14

Table 3.7: Summarized results for general MIP instances.

solved by VNP), the ranking of methods is almost unchanged besides that

VNP is now faster than SN diving. Regarding the number of wins, the

objective FP, the standard FP, and the CPLEX MIP manage to obtain a

solution in the shortest time most often, in 50, 48 and 42 cases, respectively.

The SN diving and VN diving follow, obtaining a solution in the shortest

time in 19, and 8 cases, respectively. The VNP has the worst performance in

this respect, since it finds a solution before other methods in just two cases.

The objective function values and the corresponding execution time for the

second benchmark of 34 general MIP instances [18] are presented in Table 3.6.

Summarized results for this benchmark are presented in Table 3.7. For each

method, a percentage gap for a particular instance was computed according

to the formula
f − fLP
|fLP |

× 100,

where f is the objective function value for the observed instance obtained by

that method, and fLP is the objective function value of the LP relaxation of

the observed instance. Note that for this benchmark set, there is no exception

to this rule since there is no instance whose LP objectives is equal to 0.

From Tables 3.6 and 3.7, we can see that again only the VNP is not able to

solve all 34 instances. Therefore, the comparison of performances of CPLEX

without FP, standard FP, objective FP, VN diving, and SN diving has been

done in the same way as for the previous benchmark set. From Tables 3.6

and 3.7, we conclude that VN diving and SN diving have best performances

regarding the solution quality. The SN diving heuristic achieves the smallest

average gap from the LP objective (381.08%) and obtains the best objective

among all 6 methods in 7 cases. The VN diving has a slightly worse average

gap of 383.28%, but obtains the best objective among all methods in 17
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cases. If we take into account the average computational time of these two

methods, we may conclude that SN diving is the best method for the general

MIP problem. The third best method appears to be the CPLEX MIP solver

without FP, with 403.44% average LP relaxation gap and 5 wins, followed

by objective FP with 407.46% average gap and 4 wins. The standard FP

heuristic has a significantly higher gap from the LP relaxation (454.18 %)

and only 3 objective wins, indicating that FP is the worst choice quality-wise

for the general MIP benchmark. Moreover, the ranking of CPLEX without

FP, standard FP, objective FP, VN diving, and SN diving regarding solution

quality on instances solved by VNP is the same. However, on these instances,

VNP manifests much better behavior than CPLEX without FP, standard

FP, objective FP regarding the average gap from the LP value. Additionally,

VNP has 9 objective wins, indicating that VNP is the second best method,

after VN diving, regarding the number of wins.

From Tables 3.6 and 3.7, we can see that SN diving achieves the impressive

average execution time of 2.92s. The next method, according to the average

execution time, is the objective FP heuristic which is more than three times

slower, with average computational time of 9.02s. It is followed by standard FP

with 9.25s average time, the CPLEXMIP solver without FP with 9.58s average

time, VN diving (9.98s), and finally the VNP heuristic, which is the slowest

method with 19.14s average computational time. Moreover, the ranking of

methods remains the same even in case that the average computational times

are computed regarding instances solved by VNP. Regarding number of wins,

the SN diving manages to obtain a solution in the shortest time in 14 cases.

The objective FP, VN diving, standard FP, and CPLEX MIP solver follow by

obtaining a solution in the shortest time in 10, 9, 7, 5 cases, respectively. The

VNP has the worst performance, since it manages to find a solution before

other methods in just one case.

According to the above experimental analysis, our two proposed diving

heuristics generally provide solutions of a better quality than the CPLEX MIP

solver and the two FP heuristics, within a similar or shorter computational

time. Although the VNP heuristic proves to be highly competitive for the

0-1 MIP benchmark, it shows a rather poor performance for the general MIP

benchmark. We may therefore claim that, in overall, VN diving heuristic and
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SN diving outperform all four state-of-the-art solvers which were used for

comparison purposes regarding solution quality. Additionally, we may claim

that SN diving significantly outperforms all tested methods regarding average

computational time needed to provide a feasible solution for the instances

from General MIP benchmark.

3.2.4 Influence of the time limit on the performances

of all six methods

In this section we check the imposed time limit influence on the number of

solved instances by each method. The results are given in Table 3.8 and

Figure 3.1 for 0-1 MIP instances, and Table 3.2 and Figure 3.2 for General

MIP benchmark instances.

Time limit CPLEX Standard FP Objective FP VNP VN Diving SN Diving
(s)
1 67 67 67 40 43 54
5 74 74 73 58 58 70
10 76 77 76 66 67 77
20 78 79 78 78 78 80
30 80 79 78 79 81 82
40 80 80 79 80 82 82
50 81 81 81 81 82 82
60 82 81 82 81 82 82
70 82 82 82 81 82 82
80 82 82 82 81 83 82
90 82 82 82 81 83 82
100 83 83 83 82 83 82

Table 3.8: Number of solved instances by 6 methods as a function of time
limit - 0-1 MIP

It appears that CPLEX MIP solver, standard FP, and objective FP

perform better if the time limit is less than 10s. However, increasing the time

limit, the number of solved instances by the other methods grows dramatically.

Consequently, when the time limit is set to 20 seconds, SN diving becomes

the method with the most solved instances, keeping the first place until time

limit is extended to 80 seconds, when VN diving becomes the best method

able to solve all instances.
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Figure 3.1: Number of solved instances by 6 methods as a function of time
limit - 0-1 MIP

Time limit CPLEX Standard FP Objective FP VNP VN Diving SN Diving
(s)
1 24 23 24 12 17 23
5 29 28 29 22 22 30
10 29 29 29 25 23 31
20 30 30 30 27 31 33
30 30 30 30 29 31 34
40 31 32 32 30 32 34
50 31 32 32 30 33 34
60 32 32 32 31 33 34
70 32 32 32 31 33 34
80 32 32 32 31 33 34
90 33 33 33 31 33 34
100 33 33 33 31 33 34
110 33 33 33 31 33 34
120 33 33 33 31 33 34
130 34 34 34 31 33 34
140 34 34 34 31 34 34
150 34 34 34 31 34 34

Table 3.9: Number of solved instances by 6 methods as a function of time
limit - General MIP

From Table 3.9 and Figure 3.2, we conclude that CPLEX MIP solver,

standard FP, objective FP, and SN diving are able to find a feasible solution

within 1 second. The CPLEX MIP solver and objective FP manage to solve

24 instances out of 34 within 1 second, while standard FP and SN diving

succeed to get 23 out of 34 instances in less than 1 second. Furthermore, it

appears that SN diving outperforms all other methods if the time limits is

greater than 1s. Moreover, SN diving solves all instances when the time limit

is adjusted to 30 seconds; that is the smallest time limit that one method
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Figure 3.2: Number of solved instances by 6 methods as a function of time
limit - General MIP

needs to solve all instances. Taking into account our previous observations,

one can conclude that SN diving is the best heuristic for finding initial feasible

solution for general MIP instances.

3.3 Efficient Matheuristics for Multicommod-

ity Fixed-Charge Network Design

The multicommodity capacitated fixed-charge network design problem (MCND),

is an NP-hard discrete optimization problem [159]. It is defined on a directed

graph G = (N,A), where N is the set of nodes and A is the set of arcs.

Each commodity k ∈ K has a demand dk > 0 to be routed from an origin

Ok to a destination Dk. Each arc (i, j) has the capacity uij > 0 on the flow

of all commodities circulating on the arc, the fixed design cost fij ≥ 0, and

the transportation cost ckij ≥ 0 for commodity k. The problem consists of

minimizing the total cost while satisfying the demands and respecting the

capacity constraints. The total cost includes the total transportation cost for

transferring commodities from the origins to the destinations and the total

fixed cost for using arcs.

Let bkij be equal to min{dk, uij}. Then, the MCND problem may be

modeled as a mixed-integer program using continuous flow variables xkij that

represent the amount of flow on each arc (i, j) for each commodity k, and 0-1

design variables yij that indicate if the arc (i, j) is used or not:
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min v = f(x, y) =
∑

k∈K

∑

(i,j)∈A

ckijx
k
ij +

∑

(i,j)∈A

fijyij (3.12)

∑

j∈N+
i

xkij −
∑

j∈N−
i

xkji =





dk, if i = Ok

0, if i 6= Ok, Dk, ∀k ∈ K
−dk, if i = Dk

(3.13)

∑

k∈K

xkij ≤ uijyij, ∀(i, j) ∈ A (3.14)

xkij ≤ bkijyij, ∀(i, j) ∈ A, k ∈ K (3.15)

xkij ≥ 0, ∀(i, j) ∈ A, k ∈ K (3.16)

yij ∈ {0, 1}, ∀(i, j) ∈ A (3.17)

where N+
i = {j ∈ N |(i, j) ∈ A} is the set of successors of node i and

N−
i = {j ∈ N |(j, i) ∈ A} is the set of predecessors of node i . Equations (3.13)

are the flow conservation constraints for each node and each commodity. The

capacity constraints (3.14) ensure that the capacity of each arc is respected.

Additionally, they forbids any flow to circulate through an arc that is not

chosen as part of the design. The so-called strong inequalities, (3.15), ensure

the same, therefore, they are redundant. However, they significantly improve

the linear programming (LP) relaxation bounds (Crainic et al. 1999 [48]).

Note that model (3.12)-(3.17) represents the strong formulation of the MCND,

while the weak formulation being obtained by removing constraints (3.15).

Hence, their corresponding LP relaxations are, respectively, the strong and

the weak relaxations.

For solving this NP-hard problem a plenty of exact and heuristic ap-

proaches have been proposed in the literature up to now. Regarding exact

approaches a lot of work has been dedicated for developing Benders decompo-

sition methods [44, 45], Lagrangian based procedures [48, 50, 78, 83, 130, 144,

201], branch-and-price and cutting plane methods [40, 84, 128]. On the other

hand, regarding heuristic approaches able to produce high quality solutions

there are: A slope scaling/Lagrangean perturbation heuristic [51], a simplex

based tabu search proposed by Crainic et al. [49], heuristics that exploit

cycle-based neighborhood [85, 86, 178, 179], a scatter search based heuristic

[47], heuristics that use parallel cooperative strategies [46, 52], a capacity
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scaling heuristic proposed by Katayama et al. [141]; a hybrid approach that

combines simulated annealing and column generation techniques [226], lo-

cal branching based heuristic [191], a hybrid approach that combines large

neighborhood search and IP solver [127], a matheuristic combining an exact

MIP method and a Tabu search metaheuristic [39], Capacity Scaling & Local

Branching [140].

We propose several matheuristics for solving the multicommodity capaci-

tated fixed-charge network design problem. The proposed matheuristics are

based on adding pseudo-cuts in order to exclude a portion of solution space

already examined, solving reduced problems deduced from the initial one and

using heuristic to guide the search toward a near-optimal solution.

3.3.1 Slope scaling heuristic

The Slope Scaling (SS) [51] heuristic for the MCND is an iterative procedure

that at each iteration solves a linear approximation of the original formulation.

Note that similar ideas are used in Metaheuristic Search with Inequalities and

Target Objectives [99, 100](see Chapter 1 of this thesis for more details). The

objective coefficients in each linear approximation are adjusted so that the

exact costs (both linear and fixed) incurred by the solution at the previous

iteration are reflected. More precisely, the Slope scaling heuristic is based on

solving a succession of linear multi-commodity minimum cost network flow

problems, each defined by a vector of linearization factors ρ(t) and denoted

MMCF (ρ(t)):

min
∑

k∈K

∑

(i,j)∈A

(ckij + ρkij(t))x
k
ij (3.18)

∑

j∈N+
i

xkij −
∑

j∈N−
i

xkji =





dk, if i = Ok

0, if i 6= Ok, Dk, ∀k ∈ K
−dk, if i = Dk

(3.19)
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∑

k∈K

xkij ≤ uij, ∀(i, j) ∈ A (3.20)

xkij ≥ 0, ∀(i, j) ∈ A, k ∈ K (3.21)

When feasible or optimal solution x′ of MMCF (ρ(t)) is known, a feasible

solution of MCND may be derived by setting the design variables to

y′ij =

{
1, if

∑
k∈K x

′k
ij > 0

0, otherwise
(3.22)

In that way one upper bound v(t) = f(x′, y′) of a problem will be obtained.

The values of ρ(t+ 1) in the next iteration, i.e., t+ 1 , is determined so as to

reflect the exact costs in the iteration t. For example:

ρkij(t+ 1) =

{
fij/

∑
k∈K x

′k
ij, if

∑
k∈K x

′k
ij > 0

ρkij(t), otherwise
(3.23)

The basic Slope Scaling heuristic works in the way presented at Algorithm

39. The Slope Scaling heuristic finishes its work as soon as the predefined

stopping condition is met. The most common stopping criteria for a Slope

Scaling heuristic are the following: The flows are repeated from the previous

iteration; there is no progress on the best upper bound for β consecutive

iterations; or a predefined number of iterations have been performed.

Algorithm 39: Slope Scaling heuristic

Function SS();

1 v∗ =∞, t = 0, ρkij(t) = fij/uij ;

2 while stopping criterion is not satisfied do

3 Solve MMCF (ρ(t)) to obtain x′;

4 Compute upper bound v(t) = f(x′, y′) using equation (3.22);

5 Update best value v∗ ← min{v∗, v(t)};

6 Calculate ρ(t+ 1) using rule (3.23);

7 t← t+ 1;

end
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3.3.2 Convergent algorithm based on the LP-relaxation

and pseudo-cuts

We develop several algorithms based on the LP-relaxation and pseudo-cuts

for solving MCND problem. Those algorithms are based on ideas of solving

(optimally or near optimally) a series of small sub-problems obtained from

a series of linear programming relaxations within the search for an optimal

solution of a given problem. The first algorithm of such type had been

proposed in 1978 by Soyster et al. [204]. About twenty years later, Hanafi

and Wilbaut revisited ideas of Soyster et al. and proposed several algorithms

for solving the multidimensional knapsack problem [112, 221]. All these

papers contain descriptions of exact algorithms along with proofs of their

convergence toward to optimal solutions.

Formally, work of such an algorithm may be described in the following

way. At each iteration, the LP-relaxation of the current MIP problem P is

solved to generate one constraint. Then, a reduced problem induced from an

optimal solution of the LP-relaxation is solved to obtain a feasible solution

for the initial problem. If the stopping criterion is satisfied, then the best

lower bound and the best upper bound are returned. Otherwise, a pseudo

cut is added to P and the process is repeated.

More precisely let P denotes the 0-1 MIP problem we want to solve:

(P ) min{cx+ fy : Ax+By ≤ b, yj ∈ {0, 1}, j ∈ N ; xk ∈ R, k ∈M} (3.24)

where |N | = n and |M | = m. Then its reduced problem with respect to a

binary solution y′ ∈ {0, 1}n and a subset J ⊆ N is defined as:

P (y′, J)min{cx+ fy : Ax+By ≤ b, y ∈ {0, 1}n, yj = y′j, j ∈ J, x ∈ R
m}.

(3.25)

Note that throughout the rest of the section, we assume that when y values are

known, the values of x variables will be easily obtained solving LP problem.

In other words, we assume that for a given y values, the values of x variables

are uniquely determined.

Additionally, let P be an optimization problem and Q be a set of con-

straints. The notation (P |Q) corresponds to the optimization problem ob-
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tained from P by adding the set of constraints Q. The optimal value of the

optimization problem P will be denoted by v(P ).

The partial Hamming distance between two binary solutions y and y′ in

{0, 1}n relative to a subset J ⊂ N is defined as:

δ(y, y′, J) =
∑

j∈J

|yj − y
′
j|.

This distance δ(y, y′, J) can be rewritten as follows:

δ(y, y′, J) =
∑

j∈J

yj(1− y
′
j) + y′j(1− yj). (3.26)

Note that the Hamming distance is equal to δ(y, y′, N).

The main idea of the exact algorithm is adding a pseudo− cut at each

iteration in order to eliminate reduced problems already examined in the

previous solution process. A pseudo-cut consists of linear inequality that

excludes certain solutions from being feasible as solutions of the considered

problem and it may not be valid in the sense of guaranteeing that at least

one globally optimal solution will be retained in the feasible set.

The pseudo-code of a convergent algorithm based on the LP-relaxation

and pseudo-cuts (CALPPC) is given in Algorithm 40. At each iteration, the

LP-relaxation of the current problem Q is solved to obtain a lower bound v

and its corresponding optimal solution ȳ. After that the reduced problem

P (ȳ, J), defined by chosen subset J ⊂ N , is solved to obtain an upper bound

and the best upper bound is updated. Next, the current problem Q is updated

by adding the pseudo-cut δ(y, ȳ, J) ≥ 1 in order to cut off the region explored

by solving the reduced problem. The algorithm stops if the required tolerance
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between the upper and the lower bounds is reached.

Algorithm 40: CALPPC

Function CALPPC(P);

1 Q = P , v∗ = +∞;

2 repeat

3 if Q infeasible then break;

4 Solve the LP-relaxation of Q to obtain an optimal solution ȳ

and its objective value v ;

5 Choose subset J ⊆ N ;

6 Solve the reduced problem P (ȳ, J);

7 Update the best known-value: v∗ = min{v∗, v(P (ȳ, J))} ;

8 Update the current problem Q by adding the pseudo-cut:

Q = (Q|{δ(y, ȳ, J) ≥ 1});

until v∗ − v < ǫ;

Obviously, the work of such one algorithm relies on the fact how the set J

is chosen since it determines the size of reduced problems to solve, as well as

the size of region to be cut-off. Here, we propose two ways for choosing this

set relatively to the optimal solution ȳ of LP-relaxation Q:

❼ J = J0(ȳ) = {j ∈ N : ȳj = 0},

❼ J = J0(ȳ) ∪ J1(ȳ) where J1(ȳ) = {j ∈ N : ȳj = 1},

Note that, if the set J is chosen in the first way, the resulting reduced

problem is harder to solve than the one obtained choosing the set J in the

second way. On the other hand, the part of the solution space, cut-off in the

first case is larger than the part cut-off in the second case.

In what follows, we will show the convergence of Algorithm 40 in the case

J = J0(ȳ) ∪ J1(ȳ). The convergence of Algorithm 40 in the case J = J0(ȳ)

will not be presented here since it may be proven analogously to the case

J = J0(ȳ) ∪ J1(ȳ).

Proposition 3.3.1 Let y′ be a vector in [0, 1]n, the following inequality

∑

j∈J0(y′)

yj +
∑

j∈J1(y′)

(1− yj) ≥ 1 (3.27)
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cuts off any solution y′′ dominated by the solution y′, i.e., solution y′′ such

that (J0(y′) ∪ J1(y′)) ⊆ (J0(y′′) ∪ J1(y′′)).

Proof. The proof is trivial from the definition (3.26) of the partial Hamming

distance, since for any solution y not dominated by y′ we have δ(y, y′, J0(y′)∪

J1(y′)) = 0. �

Note that when the solution y′ is a binary vector, the inequality (3.27)

cuts off solution y′ without cutting off any other solution in {0, 1}n. This

pseudo cut is called canonical cut [6] on the unit hypercube K = {x ∈ R
n :

0 ≤ xj ≤ 1, j = 1, . . . , n}.

Proposition 3.3.2 Given a 0-1 MIP problem P . Let y′ be an optimal solu-

tion of the LP-relaxation of P and y′′ be an optimal solution for the reduced

problem P (y′, J0(y′) ∪ J1(y′)). Then, an optimal solution for P is either the

feasible solution y′′ or an optimal solution for the problem

(P |{δ(y, y′, J0(y′) ∪ J1(y′)) ≥ 1}). (3.28)

Proof. Let Y be the set of feasible solutions of the problem P . Then this set

can be partitioned as Y = (Y ∩δ(y, y′, J0(y′)∪J1(y′)) = 0)∪(Y ∩δ(y, y′, J0(y′)∪

J1(y′)) ≥ 1). On the other hand, the set of feasible solutions of the reduced

problem P (y′, J0(y′) ∪ J1(y′)) is defined as Y ∩ δ(y, y′, J0(y′) ∪ J1(y′)) = 0,

since the fixation constraints yj = y′j for all j ∈ J
0(y′) ∪ J1(y′) are equivalent

to the constraint δ(y, y′, J0(y′) ∪ J1(y′)) = 0. So, an optimal solution for P is

either the optimal solution y′′ of the reduced problem P (y′, J0(y′) ∪ J1(y′))

or an optimal solution of the problem P |{δ(y, y′, J0(y′) ∪ J1(y′)) ≥ 1}. �

The following theorem states that, when the CALPPC algorithm termi-

nates, the best solution found is an optimal solution for the initial problem.

Proposition 3.3.3 Given a 0-1 MIP problem P , the algorithm CALPPC(P)

returns an optimal solution for the problem P or indicates that the problem is

infeasible in a finite number of iterations bounded by 3n.

Proof. Let Y be the feasible set of the LP-relaxation of the problem P

associated to Y , the set of feasible solutions of the problem P . It is obvious

that at each iteration, CALPPC(P) excludes the current optimal solution
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of the LP-relaxation by adding the pseudo cut. Moreover, if the excluded

part contains binary solutions, all these solutions had been already examined

by solving the reduced problem. Since at each iteration we cut off a non

empty part of Y , and keep the best fond solution for initial problem, the

CALPPC(P) will return an optimal solution or prove infeasibility of the

problem.

On the other hand, for each solution y′ ∈ [0, 1]n, we may associate a

partial solution y′′ ∈ {0, 1, ∗}n such that

y′′j =

{
y′j, if y′j ∈ {0, 1}
∗, if y′j ∈]0, 1[

(3.29)

Hence, at each iteration, CALPPC(P) solves a reduced problem P (y′′, J0(y′′)∪

J1(y′′)) induced by a partial solution y′′ associated to the fractional solution

y′ (i.e., an optimal solution of the current LP-relaxation). In that way, at each

iteration exploration of the space defined by Y ∩ δ(y, y′, J0(y′) ∪ J1(y′)) = 0

is performed. However, according to the Proposition 3.3.2, by adding the

pseudo-cut δ(y, y′, J0(y′) ∪ J1(y′)) ≥ 1 we avoid generation of the partial

solution y′′ in the further iterations of CALPPC. So, at each iteration we

solve a reduced problem associated to a different partial solution. Hence, the

number of iterations is limited by the number of different partial solutions,

i.e., 3n = |{0, 1, ∗}n|. �

Firstly, we test CALPPC algorithm in which a pseudo cut and a reduced

problem are defined setting J = J0(ȳ) ∪ J1(ȳ) on the test instance c33

(|N | = 20, |A| = 230, |K| = 40) in order to evaluate its convergence (see

Section 3.3.4 for a description of the computer’s characteristics and the

description of instances). The reduced problems within CALPPC algorithm

are solved using CPLEX 12.6 MIP solver. Since CALPPC algorithm required

152 iterations to converge, in Table 3.10, we report for some iterations the

value of the LP relaxation (Column Lower Bound); the value of the feasible

solution generated solving a reduced problem (Column Upper Bound) and

the number of fractional variables in the solution of the LP relaxation which

corresponds to the size of the reduced problem (Column Size). We observe

that optimal solution of the problem is found in the third iteration, but
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no. iteration Lower bound Upper bound Size
1 422853.26 424385 14
2 422874.19 424385 18
3 422881.57 423848 16
4 422917.23 423848 20
. . . . . . . . . . . .
149 423835.47 423848 51
150 423840.90 423848 49
151 423843.80 423848 50
152 423847.26 425378 20

Table 3.10: Example

CALPPC algorithm needed 152 iterations to prove its optimality. So, we may

observe that the convergence is not easily reachable in practice. Additionally,

the total running time of the algorithm was about 36 seconds while an optimal

solution was found for 0.67 seconds. On the other hand CPLEX 12.6 MIP

solver required only 0.60 seconds to solve this problem to optimality. This

example seems to indicate that the CALPPC algorithm can not be used

easily as an exact method. We may also conclude that the size of the reduced

problem does not necessarily increase between two iterations as well as that

the CALPPC algorithm could generate the same feasible solution several

times. However, it seems that a CALPPC algorithm is able to produce good

lower bounds in a small number of iterations.

The same conclusions are drawn when the CALPPC algorithm, where a

pseudo cut and a reduced problem are defined setting J = J0(ȳ), is run on

the instance c33. CPLEX 12.6 MIP solver is again used for solving reduced

problems within the CALPPC algorithm. Now, the CALPPC algorithm

needed 0.59 seconds to reach an optimal solution, but 27.49 seconds to prove

its optimality (or in total 126 iterations). All in all, the convergence of both

algorithms is not easily reachable in practice.

3.3.3 Iterative linear programming-based heuristic

Due to the slow convergence of a CALPPC algorithm it cannot be used

as an exact algorithm for large instances in practice. In that case, it is

preferable to use it as a heuristic approach, imposing some other stopping

criterion instead of requiring proof of optimality. The motivation for proposing

heuristics based on the CALPPC algorithm stem from the fact that for many
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instances CALPPC algorithm finds an optimal solution quickly but it needs

a lot of CPU time to prove its optimality, as it was shown in the example

3.10. Additionally, sometimes solving reduced problems optimally is time

consuming process itself and therefore it is better to use a heuristic approach

for that purposes. All heuristic approaches derived from CALPPC framework

we will refer as Iterative Linear Programming-based Heuristic (ILPH).

For example, a naive ILPH approach can be obtained by just stopping

the CALPPC algorithm after certain number of iterations or after reaching

the predefined CPU time limit. Moreover, the difficulty of resulting reduced

problem required to solve in each iteration has big impact on the overall

solution process. Hence, sometimes it is more beneficial to impose a CPU

time limit for solving a reduced problem instead of solving it to optimality

or to additionally reduce size of the reduced problem. The later is especially

true in the case when the set J0(ȳ) serves as set J , since the cardinality of

the set J0(ȳ) may be too small.

In this section, we propose how to use a slope scaling heuristic in order to

speed up the process of solving a reduced problem as well as how to use it to

detect additional variables that may be fixed in a reduced problem. Before

we give more details how a slope scaling heuristic is used for these purposes,

we show how we adapt a slope scaling heuristic to tackle reduced problems.

The adaptation is accomplished changing the way of choosing initial

ρ values as well as changing the way of their updating during the solution

process. More precisely, let ȳ be the partial 0−1 solution where some variables

are fixed to 0 or 1 and other variables are free, i.e., ∀(i, j) ∈ A, ȳij ∈ {0, 1, ∗}.

Assume further that we want to solve reduced problem obtained fixing all

variables in J0(ȳ) and J1(ȳ). In order to forbid arcs (i, j) with ȳij = 0, but

use (favor) arcs (i, j) with ȳij = 1 we determine ρkij(t) as:

ρkij(t) =

{
∞, if ȳij = 0
0, if ȳij = 1

(3.30)

On the other hand, for all arcs (i, j) ∈ A such that ȳij ∈]0, 1[ we use the

standard way for choosing initial ρ values as well as the standard updating
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formulas. Namely, for each ȳij ∈]0, 1[ we set:

ρkij(0) = fij/uij, (3.31)

ρkij(t+ 1) =

{
fij/

∑
k∈K x

′k
ij, if

∑
k∈K x

′k
ij > 0

ρkij(t), otherwise
(3.32)

The steps of the modified slope scaling heuristic are depicted at Algorithm

41.

Algorithm 41: Slope Scaling heuristic for solving reduced problem of

MCND defined as P (ȳ, J0(ȳ) ∪ J1(ȳ))

Function SS RP 1();

1 v∗ =∞, t = 0;

2 Determine ρ(0) using formulas (3.30) and (3.31);

3 while stopping criterion is not satisfied do

4 Solve MMCF (ρ(t)) to obtain x′;

5 Compute upper bound v(t) = f(x′, y′) using equation (3.22);

6 Update best value v∗ = min{v∗, v(t)};

7 Calculate ρ(t+ 1) using equations (3.30) and (3.32);

8 t← t+ 1;

end

In the case that we want to solve a reduced problem obtained fixing

variables in J0(ȳ), we can use the previous heuristic, treating the set J1(ȳ)

as the empty set. Namely, it suffices to use the previously described way of

forbidding arcs (i, j) with ȳij = 0, while for all the other arcs use the standard

way of determining their ρ values in each iteration.

The steps of a generic ILPH heuristic are given at Algorithm 42. The

parameters tred and tmax in Algorithm 42 represent the time limit for solving

a reduced problem by the CPLEX 12.6 MIP solver and the time limit for

overall procedure, respectively. In the pseudo-code the statement of the form

CPLEX MIP(P(ȳ, J′), z, tred) refers to a call to a generic MIP solver, to solve

the reduced problem P (ȳ, J ′) within tred seconds, using a binary solution z

as the starting one (Note that sometimes we will set z = ∅ meaning that

no solution is provided to CPLEX 12.6 MIP.) Additionally, the statement

SS RP (J ′′, ȳ) means that the modified Slope Scaling heuristic (explained

above) is used to solve the reduced problem P (ȳ, J ′′) . From this scheme
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seven heuristics described hereafter are deduced.

Algorithm 42: Steps of ILPH heuristic

Function ILPH(P, tred, tmax);

1 Q = P ;

2 repeat

3 if Q infeasible then break;

4 Solve the LP-relaxation of Q to obtain an optimal solution ȳ ;

5 y′ ← SS RP (J ′′, ȳ); //Optional step

6 y′′ ← CPLEX MIP (P (ȳ, J ′), z, tred);

7 if y′′ better than y∗ then y∗ = y′′ // Update the best known-solution ;

8 Update the current problem Q by adding the pseudo-cut:

Q = (Q|{δ(y, ȳ, J(ȳ)) ≥ 1});

9 t← CpuTime();

until t > tmax;

We propose three ILPH heuristics for MCND that use the set J0(ȳ)∪J1(ȳ)

to define a pseudo-cut and a reduced problem (i.e., in Algorithm 42, J =

J ′ = J ′′ = J0(ȳ) ∪ J1(ȳ)). The main difference among them is the way in

which a reduced 0-1 MIP problem is tackled. The first ILPH heuristic named

ILPH CPLEX uses the CPLEX 12.6 MIP solver (i.e., in Algorithm 42, Step

5 is discarded and z = ∅), the second one called ILPH SS uses just the Slope

Scaling heuristic to solve a reduced problem (i.e., in Algorithm 42, Step 6

is discarded), while the third one called ILPH SSimp combines the Slope

Scaling heuristic and CPLEX 12.6 MIP solver to solve a reduced problem

(i.e., in Algorithm 42, z = y′). Namely, in order to solve a reduced problem

ILPH SSimp firstly applies the Slope Scaling heuristic to provide a good

quality solution and after that applies CPLEX 12.6 MIP solver to improve

further the obtained solution.

Additionally, we propose four ILPH heuristics that use the set J0(ȳ) to

define a pseudo-cut (i.e., in Algorithm 42, J = J0(ȳ)):

❼ ILPH 0 0 - In each iteration, the reduced problem defined as P (ȳ, J0(ȳ))

and in order to solve it CPLEX 12.6 MIP is used (i.e., in Algorithm 42,

J ′ = J0(ȳ), Step 5 is discarded and z = ∅).

❼ ILPH 0 01 - In each iteration uses CPLEX 12.6 MIP to solve the

reduced problem defined as P (ȳ, J0(ȳ) ∪ J1(ȳ)) (i.e., in Algorithm 42,
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J ′ = J0(ȳ) ∪ J1(ȳ), Step 5 is discarded and z = ∅).

❼ ILPH SS 0 0 - In each iteration, the reduced problem defined as P (ȳ, J0(ȳ)).

In order to solve the reduced problem, we firstly apply the modified

Slope Scaling heuristic. The solution, returned by it is improved further

putting back real cost to all open arcs. The values of variables in such

obtained solution y′ is compared with values of variables in LP solution

ȳ. Each binary variable, that takes same, integer value, in solutions

y′ and ȳ is fixed to that value in the reduced problem. After that the

resulting reduced problem is solved employing CPLEX 12.6 MIP solver.

The steps of this heuristic may be derived from Algorithm 42 setting

J ′′ = J0(ȳ), J ′ = {j ∈ N : ȳj = y′j, ȳj ∈ {0, 1}} and z = ∅.

❼ ILPH SS 0 0 imp. - The only difference between this heuristic and

ILPH SS zeros zeros is that the improved solution returned by the slope

scaling heuristic is provided as the starting solution for CPLEX 12.6

MIP solver when applied to solve a reduced problem. In other words,

the only difference between them is that ILPH SS 0 0 imp passes a

solution y′ of the modified Slope Scaling heuristic to CPLEX 12.6 MIP

solver (i.e., in Algorithm 42 z = y′) unlike ILPH SS 0 0 which invokes

CPLEX 12.6 MIP solver in Algorithm 42 by z = ∅.

3.3.4 Computational results

All testing described in this section have been performed on a computer with

Intel i7-4900MQ CPU 2.80 GHz and 16GB RAM. For testing purposes C and

C+ benchmark instances described in Crainic et al.[50] have been used. These

instances consist of general transshipment networks with one commodity per

origin-destination and no parallel arcs. Each test instance is characterized

by the number of nodes n = |N |, the number of commodities p = |K|, the

number of arcs m = |A|, the degree of capacity tightness, with regard to the

total demand, and importance of the fixed design cost, with respect to the

transportation cost. The number of nodes n in an instance takes value of 25,

30 or 100; the number of commodities p vary from 10 to 400 commodities

while the number of edges m vary from 100 to 700 arcs. All these instances
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have been widely used in the literature and they are publicly available at

http://www.di.unipi.it/~frangio.

When CPLEX 12.6 MIP solver is invoked within an ILPH heuristic, it is

allowed to consume maximally 300 seconds (i.e., tred is set to 300 seconds).

On the other hand, when a Slope Scaling heuristic is used, it is terminated

as soon as the objective function values do not change into two consecutive

iterations. As stopping criterion for each of tested ILPH heuristic we set the

time limit of 3600 seconds (i.e., tmax is set to 3600 seconds).

Testing of different Slope Scaling variants

In this section we present results obtained testing the following heuristic

based on Slope Scaling:

❼ Basic Slope Scaling (Basic SS) heuristic presented in Section 3.3.1.

❼ Slope Scaling heuristic that include intensification phase (SS intens).

This heuristic is obtained, running Basic Slope Scaling and keeping L

best encountered solutions during its execution. After that each of these

L solutions is tried to be further improved, solving MMCF problem

obtained putting high (infinity) cost for all arcs closed in the considered

solution, and original cost for all the other arcs.

❼ Iterated Slope Scaling (iterated SS). This heuristic is actually enhance-

ment of SS intens obtained iterating it, until there is no improvement

yielded by the intensification step.

Basic Slope Scaling heuristic, either run as a stand-alone procedure or

within another Slop Scaling based heuristic, finishes its work when total

of m iterations is performed, while the size of the list containing the best

encountered solutions, i.e. L is set to n.

The results of Slope Scaling variants are presented in Table 3.11. For each

variant we report the value of the best found solution and total running time

on a certain instance. Additionally, in columns ’SS intens (%) imp ’ and

’iterated SS (%)imp’ we report the percentage improvements, regarding

solution value, attained by SS intens over Basic SS and iterated SS over

SS intens, respectively.
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Basic SS SS intens iterated SS
Problem value time value time (%)imp value time (%)imp
100/400/010/F/L 28942.0 4.50 28905.0 5.77 0.13 28079.0 15.07 2.94
100/400/010/F/T 80372.0 5.04 78262.0 7.53 2.70 78118.0 20.55 0.18
100/400/010/V/L 28495.0 3.85 28487.0 3.98 0.03 28423.0 7.72 0.23
100/400/030/F/L 64395.0 8.48 59415.0 11.33 8.38 59308.0 30.41 0.18
100/400/030/F/T 155519.0 10.99 154311.8 28.26 0.78 153665.0 60.77 0.42
100/400/030/V/T 385161.0 7.70 385083.0 8.16 0.02 385083.0 14.06 0.00
20/230/040/V/L 426020.0 3.02 426020.0 3.25 0.00 426020.0 2.97 0.00
20/230/040/V/T 373657.0 3.11 372225.0 3.33 0.38 371642.0 10.03 0.16
20/230/040/F/T 655596.0 3.03 653849.0 3.38 0.27 653755.0 10.13 0.01
20/230/200/V/L 110001.0 17.72 104110.0 20.23 5.66 103206.0 47.24 0.88
20/230/200/F/L 154458.3 17.93 148431.0 20.39 4.06 147904.0 45.81 0.36
20/230/200/V/T 114524.0 14.46 109226.0 16.82 4.85 104729.0 55.37 4.29
20/230/200/F/T 154912.0 24.48 149150.2 30.08 3.86 146118.4 101.34 2.07
20/300/040/V/L 430373.0 4.58 430373.0 4.69 0.00 430373.0 4.48 0.00
20/300/040/F/L 606401.0 4.64 599301.0 5.06 1.18 596516.0 15.05 0.47
20/300/040/V/T 465647.0 4.69 464550.0 5.04 0.24 464550.0 9.75 0.00
20/300/040/F/T 618297.0 4.72 615468.0 4.96 0.46 614032.0 17.68 0.23
20/300/200/V/L 84955.0 26.12 83045.0 31.14 2.30 82279.0 73.58 0.93
20/300/200/F/L 138668.3 33.23 130832.0 39.64 5.99 128799.3 119.30 1.58
20/300/200/V/T 83390.0 23.67 81551.0 27.82 2.26 81275.0 74.66 0.34
20/300/200/F/T 119642.0 38.63 116859.8 46.48 2.38 116347.0 104.85 0.44
30/520/100/V/L 59222.0 25.30 57311.0 27.46 3.33 56816.0 105.70 0.87
30/520/100/F/L 113709.0 29.91 108475.0 32.65 4.83 106134.0 144.13 2.21
30/520/100/V/T 54043.0 25.91 53421.0 28.39 1.16 53254.0 114.28 0.31
30/520/100/F/T 107627.0 26.40 106399.0 30.37 1.15 104924.0 131.91 1.41
30/520/400/V/L 122475.0 185.77 118679.0 308.55 3.20 118371.2 730.14 0.26
30/520/400/F/L 168977.4 214.24 161824.0 467.05 4.42 161824.0 688.54 0.00
30/520/400/V/T 122816.4 134.09 119899.3 250.19 2.43 119089.2 1096.68 0.68
30/520/400/F/T 171619.0 243.78 165764.2 430.37 3.53 162607.0 1358.70 1.94
30/700/100/V/L 51063.0 46.85 49699.0 50.08 2.74 49699.0 94.12 0.00
30/700/100/F/L 71063.0 46.40 67298.0 50.08 5.59 66209.0 141.47 1.64
30/700/100/V/T 48984.0 49.89 48588.0 53.53 0.82 48463.0 193.20 0.26
30/700/100/F/T 61363.0 50.74 59767.0 54.30 2.67 59500.0 146.79 0.45
30/700/400/V/L 106077.4 303.69 104270.1 356.41 1.73 103822.3 1046.73 0.43
30/700/400/F/L 160762.6 396.81 153455.0 547.94 4.76 152981.0 1170.45 0.31
30/700/400/V/T 101656.8 225.40 99032.5 446.16 2.65 99032.5 828.30 0.00
30/700/400/F/T 150867.0 290.47 145892.0 524.08 3.41 142883.2 1648.04 2.11
Average 187885.17 69.20 184844.02 107.70 2.55 183941.38 283.24 0.77

Table 3.11: Comparison of Slope Scaling variants
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The presented results reveal expected behavior od Slope Scaling heuristics.

Namely, regarding solution quality, as expected SS intens is better than

Basic SS as well as iterated SS is better than SS intens. Additionally,

the average improvement achieved by SS intens over Basic SS is 2.55%,

although SS intens consumed about 40 seconds more, on the average, than

Basic SS. On the other hand, iterated SS improves SS intens just 0.77%

on the average, but the average CPU time consumed by it is about 3 times

greater than the average CPU time consumed by SS intens.

Comparison with state-of-the-art heuristics

In this section we perform comparison of ILPH variants described above,

with most recent heuristic approaches from the literature. The comparison

is presented in Tables 3.12 and 3.13, using the following abbreviations for

considered heuristics:

❼ LB: the Local Branching based heuristic of Rodriguez et al. (2010) [191],

❼ IPS: the IP search of Hewit et al. (2010) [127],

❼ MIP-TS: the MIP-tabu search of Chouman et al. (2010) [39],

❼ CS: the Capacity Scaling heuristic of Katayama et al. (2009) [141],

❼ CS&LB: the heuristic of Katayama et al. [140] that combines Capacity

Scaling and Local Branching heuristics. We report results obtained by

CS&LB for various parameter settings. So, the numbers that follow the

abbreviation CS&LB designate the used parameter settings. In total we

report results for 6 heuristics that combine Capacity Scaling and Local

Branching heuristics.

❼ CEA: the Cycle-Based Evolutionary Algorithm (CEA) proposed by

Paraskevopoulos et al. [179] and tested with the time limit of 20000

seconds,

❼ CEA-old: the Cycle-Based Evolutionary Algorithm (CEA) proposed

by Paraskevopoulos et al. [178] and tested with the time limit of 3600

seconds,
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❼ SACG: the heuristic of Yaghini et al. [226] that combines simulated

annealing and column generation tested with the time limit of 600

seconds (SACG600) and 1800 seconds (SACG18000).

Additionally, in columns BK and Best ILPH, we report the best solution values

found by heuristics from the literature and ILPH heuristics proposed here,

respectively. Finally, in the column CPLEX, we report solution values offered

by CPLEX 12.6 mip solver which were executed with the time limit of 3600

seconds on each test instance.
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From the reported results the following conclusions may be drawn:

❼ The proposed ILPH based heuristics are highly competitive with the

existing heuristic approaches from the literature, although some of them

have been executed with time limit greater than 3600 seconds (e.g.,

CS&LB, CEA, SACG18000). Additionally, it should be emphasized that

SACG18000 on the test instance 30/520/400/F/T reported the upper

bound value that is less than the corresponding lower bound. Thus, the

validity of all other values reported by SACG is also questionable.

❼ The proposed ILPH variants succeed to improve the previous upper

bounds for the following test instances: 100/400/010/F/T, 20/300/200/F/T,

30/520/100/F/T, 30/700/100/V/T. Two of four new best known upper

bounds are due to ILPH SS 0 0 (instances 30/520/100/F/T, 30/700/100/V/T),

while ILPH 0 0 and ILPH CPLEX improved upper bounds for instances

100/400/010/F/T and 20/300/200/F/T, respectively.

❼ Regarding the number of reached optimal solutions for instances solved

to optimality, we infer that ILPH heuristics, all together, are able

to reproduce the same number of optimal solutions as all existing

heuristics are able to do together (i.e., 18 out of 20 optimal solutions).

Furthermore, each ILPH based heuristic, except ILPH SS, as well as

each CS&LB heuristic, except CS&LB 5-300, is able to reproduce at least

15 optimal solutions, i.e., significantly more than any other heuristic.

❼ Regarding the average solution value offered by tested ILPH based

heuristics we conclude that ILPH CPLEX and ILPH SS 0 0 are two best

approaches, while ILPH SS is the worst one. Such ranking of ILPH SS

was expected since it uses simple Slope Scaling heuristic to solve reduced

problem arising in an iteration of ILPH unlike any other ILPH heuristic

that uses more sophisticated tool for that purposes.

3.4 Concluding remarks

In this chapter we propose two new heuristics for finding initial feasible

solutions of mixed integer programs (MIPs). The proposed heuristics, called
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variable neighborhood diving (VN diving) and single neighborhood diving (SN

diving), perform systematic hard variable fixing (i.e., diving) in order to

generate smaller subproblems whose feasible solution (if one exists) is also

feasible for the original problem. In VN diving, this fixation is performed

according to the rules of variable neighborhood decomposition search (VNDS).

This means that a number of subproblems (neighborhoods) generated in a

VNDS manner are explored in each iteration. Also, pseudo-cuts are added

during the search process in order to prevent exploration of already visited

search space areas. However, a feasible solution is usually obtained in the

first iteration. In SN diving, only one neighborhood is explored in each

iteration. However, we introduce a new mechanism to avoid the already

visited solutions. It consists of memorizing a set of constraints in a new MIP

problem, which is then solved instead of the original problem in order to

obtain the new reference solution. Our experiments show that this mechanism

generally provides much better diversification than the addition of pseudo-cuts

alone. Moreover, we have proved that the SN diving algorithm converges to a

feasible solution, if one exists, or proves the infeasibility in a finite number of

iterations. Both methods use the generic CPLEX MIP solver as a black-box

for tackling the subproblems generated during the search.

The proposed heuristics are tested on two established sets of benchmark

instances, proven to be difficult: the first set contains 83 0-1 MIP instances,

and the second contains 34 general MIP instances. We compare our heuris-

tics with the IBM ILOG CPLEX 12.4 MIP solver, the two variants of the

feasibility pump (FP) heuristic (standard FP and objective FP), and the

variable neighborhood pump (VNP) heuristic. According to an extensive

experimental analysis, both VN and SN diving clearly outperform the CPLEX

MIP solver and the two FP heuristics regarding the solution quality, within a

similar or shorter computational time. Additionally, on the instances from

General MIP benchmark, SN diving performs better than any other tested

method, regarding not only solution quality but also the time needed to

find a feasible solution. The reported results reported are also competitive

with those obtained by the recent variable neighborhood pump heuristic.

Besides improving the basic variable neighborhood pump, our future work

may consist of designing a multi-objective VNS heuristic, which would tackle
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both infeasibility and original objective quality during the search process.

Additionally, in this chapter we studied Multicommodity Fixed-Charge

Network Design (MCND) problem. We propose several Iterative linear

programming-based heuristics for solving this NP-hard problem. Additionally,

we propose how to adapt well-known Slope Scaling heuristic for MCND in

order to tackle reduced problems of MCND obtained by fixing some binary

variables. Moreover, we show that ideas of a convergent algorithm based

on the LP-relaxation and pseudo-cuts may be combined by those of a Slope

Scaling heuristic during the search for an optimal (or near-optimal) solution.

Also, it is worth mentioning that this is the first time that some convergent

algorithm based on the LP-relaxation and pseudo-cuts algorithm has been

considered as a tool for solving some general 0-1 MIP problem.

The proposed heuristics have been tested on the benchmark instances

from the literature. The quality of solutions obtained by each of them has

been disclosed comparing them with the current state-of-the-art heuristics.

The computational results show that the proposed approaches are competitive

with current state-of-the-art heuristics. In particular, proposed approaches

are able to reproduce 18 optimum solutions for 20 instances previously solved

by exact algorithms. In addition, the proposed algorithms offered four new

best known heuristic solutions.



Chapter 4

Scatter Search and Star Paths

with Directional Rounding for

0–1 Mixed Integer Programs

4.1 Introduction

A 0–1 mixed integer program (MIP) may be written in the following form:

minimize z = cx
s.t. Ax = b

0 ≤ xj ≤ Uj, j ∈ N = {1, . . . , n}
xj ∈ {0, 1}, j ∈ I ⊆ N

(4.1)

where A is a constant matrix, b is a constant vector, the set N denotes the

index set of variables, while the set I contains indices of binary variables. Each

variable xj has an upper bound denoted by Uj (which equals 1 if xj is binary,

and otherwise may be infinite). It is assumed that all continuous variables

can be represented (either directly or by transformation) as slack variables,

i.e., the associated columns of the (possibly transformed) matrix A constitute

an identity matrix. Hence, if the values of binary variables are known, the

continuous variables receive their values automatically. The relaxation of

MIP obtained by excluding integrality constraints will be denoted by LP . A

feasible solution of MIP (LP ) will be called MIP (LP ) feasible.

The Scatter Search evolutionary metaheuristic combines decision rules and

problem constraints, and it has its origins in surrogate constraint strategies.

Scatter Search, unlike Genetic Algorithms, operates on a small set of solutions

and makes only limited use of randomization as a proxy for diversification

when searching for a globally optimal solution. Since its introduction by Fred

168
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Glover in 1965 [87, 90] as a heuristic for integer programming, Scatter Search

has been successfully applied to a wide range of combinatorial optimization

problems. The basic Scatter Search design, which can be implemented in

varying degrees of sophistication, can be expressed in terms of a five method

template ([53, 95, 96, 102, 105, 148, 149, 161, 190]):

i) A Diversification Generation Method to generate a collection

of diverse trial solutions within the search space.

ii) An Improvement Method to transform a trial solution into

one or more enhanced trial solutions.

iii) A Reference Set Update Method to build and maintain a

reference set consisting of the β best solutions found, where

the value of β is typically small, e.g., no more than 20.

Solutions gain membership to the reference set according to

their quality or their diversity.

iv) A Subset Generation Method to operate on the reference

set, to produce several subsets of its solutions as a basis for

creating combined solutions.

v) A Solution Combination Method to transform a given subset

of solutions produced by the Subset Generation Method into

one or more combined solution vectors.

Scatter search and its Path Relinking generalization have been been suc-

cessfully applied in a wide range of discrete and nonlinear optimization settings

including neural networks, routing problems, graph drawing, scheduling, lin-

ear ordering, assignment, p–Median, knapsack, coloring problems, clustering

/ selection and software testing (see for example [190]).

The introduction of Star Paths with directional rounding for 0–1 Mixed

Integer Program as a supporting strategy for Scatter Search in [93] established

basic properties of directional rounding and provided efficient methods for

exploiting them. The most important of these properties is the existence

of a plane (which can be required to be a valid cutting plane for MIP )

which contains a point that can be directionally rounded to yield an optimal
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solution and which, in addition, contains a convex subregion all of whose

points directionally round to give this optimal solution. Several alternatives

are given for creating such a plane as well as a procedure to explore it

using principles of Scatter Search. This work also shows that the set of

all 0–1 solutions obtained by directionally rounding points of a given line

(the so–called Star Path) contains a finite number of different 0–1 solutions

and provides a method to generate these solutions efficiently. Glover and

Laguna [101] elaborate these ideas and extend them to General Mixed Integer

Programs by means of a more general definition of directional rounding.

Building on these ideas, Glover et al. [106] propose a procedure that

combines Scatter Search and the Star Path generation method as a basis for

finding a diverse set of feasible solutions for 0–1 MIP, proposing a 3–phase

algorithm which works as follows. The first step generates a diverse set of 0–1

solutions using a dichotomy generator. After that each solution generated

in a previous phase is used to produce two center points on an LP polyhe-

dron which are further combined to produce sub-centers. All centers and

sub–centers are combined in the last phase to produce Star Paths. As output

the algorithm gives the set of all 0–1 feasible solutions encountered during

its execution, and constitutes the required diverse set. The computational

efficiency of the approach was demonstrated by tests carried out on some

instances from MIPLIB.

In this chapter, we prove all theorems stated in [93] and also we give

some corrections and extensions of that work. We extend these previous

contributions to provide new results that expand the fundamental properties

established for Star Paths and introduce new MIP methods that exploit these

results. Additionally, we describe connection between continuous and discrete

solution space and how we can project from continuous to discrete space (i.e.,

directional rounding of a cone).

The main contribution of our work is proposing Convergent algorithms of

Scatter Search and Star Paths with Directional Rounding for 0-1 MIP and

proving their finite convergence. Note that this is the first time that the finite

convergence of a Scatter Search algorithm is proven. Moreover, we propose

several implementations of the Convergent Scatter Search algorithm and
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illustrate their running on small examples. Additionally, we propose several

One-Pass (non-iterated) heuristics based on Scatter Search and directional

rounding. The versions of the methods tested are ”first stage” implementations

to establish the power of the methods in a simplified form. The aim of this

part is to demonstrate the efficacy of these first stage methods, which makes

them attractive for use in situations where very high quality solutions are

sought with an efficient investment of computational effort.

The rest of the chapter is organized as follows. Section 4.2 begins by

proving key properties of directional rounding and provides an efficient method

for directional rounding of a line, hence for generating Star Paths. In Section

4.3 we state and prove several theorems which enable us to organize search for

an optimal solution of 0–1 MIP problems using Scatter Search. In Section 4.4,

we propose Convergent Scatter Search Algorithms and we provide the proof

of their finite convergence. Additionally, we give examples to illustrate the

execution of those Convergent Scatter Search Algorithms based on directional

rounding. In Section 4.5, we propose a framework for One-Pass Scatter Search

heuristics and perform an empirical study in order to find the best ingredients

for a One-Pass heuristic. Section 4.6 describes a heuristic derived from

Convergent Scatter Search. Finally, in Section 4.7 we present comparisons of

solutions obtained by our heuristics with the best known solutions for the

problems tested, and present our conclusions in Section 4.8.

4.2 Generating Star Paths with directional

rounding

4.2.1 Basic Notation

For two arbitrary points x′ and x′′, we identify:

the ray from x′ through x′′ by

Ray(x′, x′′) = {x′ + λ(x′′ − x′) : λ ≥ 0};
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the line joining x′ and x′′ by

Line(x′, x′′) = {x′ + λ(x′′ − x′) : λ ∈ R};

and the segment with extremities x′ and x′′ by

[x′, x′′] = {x′ + λ(x′′ − x′) : 0 ≤ λ ≤ 1}.

Let X(R) denote a chosen set of reference points, indexed by the set R i.e.,

X(R) = {x(r) : r ∈ R}. Since, the points of X(R) are linearly independent

in the usual case to be considered, we define the hyperplane consisting of all

normalized linear combinations of these points by:

Plane(X(R)) = {
∑

r∈R

λrx(r) :
∑

r∈R

λr = 1}. (4.2)

Furthermore, we identify the associated half space as:

Half space(X(R)) = {
∑

r∈R

λrx(r) :
∑

r∈R

λr ≥ 1}. (4.3)

If we choose a point x∗ which does not belong to the P lane(X(R)) and which

therefore constitutes a set of affinely independent points together with points

from X(R), we will be able to define the polyhedral (half) cone spanned by

the rays from x∗ through the points of X(R):

Cone(x∗, X(R)) = {x∗ +
∑

r∈R

λr(x(r)− x
∗) : λr ≥ 0, r ∈ R}. (4.4)

Finally, the intersection of Cone(x∗, X(R)) with Half space(X(R)), i.e., the

face of the truncated cone that excludes the point x∗ is defined as:

Face(X(R)) = {
∑

r∈R

λrx(r) :
∑

r∈R

λr = 1, λr ≥ 0, r ∈ R}. (4.5)

The Hamming distance between two solutions, x′ ∈ {0, 1}n and x ∈ [0, 1]n
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can be represented as:

d(x′, x) =
∑n

j=1 |x
′
j − xj| = x(e− x′) + x′(e− x), (4.6)

where e = (1, 1, . . . , 1) is the vector of all 1’s with appropriate dimension.

Rounding and complementing operators are useful in mathematical pro-

gramming with 0–1 variables. We will show that the directional rounding

introduced by Glover (1993) provides an extension of the rounding and

complementing operators.

4.2.2 Definition and properties of directional rounding

Directional rounding is a mapping δ from the continuous space [0, 1]n× [0, 1]n

to the discrete space {0, 1}n by the following rules. The directional rounding

δ(x∗, x′), from a base point x∗ ∈ [0, 1]n to an arbitrary focal point x′, is the

point in {0, 1}n given by

δ(x∗, x′) = (δ(x∗j , x
′
j) : j ∈ N)

where δ(x∗j , x
′
j) is defined as

δ(x∗j , x
′
j) =





0 if x′j < x∗j

1 if x′j > x∗j

x∗j if x′j = x∗j ∈ {0, 1}

0 or 1 if x′j = x∗j /∈ {0, 1}

(4.7)

It may be noted that directional rounding includes nearest neighbor

rounding as a special instance, i.e., near(x′j) = δ(0.5, x′j). The directional

rounding in the last case x′j = x∗j /∈ {0, 1} can be performed in several ways.

Some of them are:

❼ use simple rounding, i.e., δ(x∗j , x
∗
j) = near(x∗j) breaking the tie arbitrar-

ily for x∗j = 0.5,

❼ choose randomly 0 or 1,
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Figure 4.1: Example of directional rounding in two-dimensional case

❼ make the choice according to values of x∗j and x′j in the following way.

If x′j ≤ 1/3 or 2/3 ≤ x′j ≤ 1 perform simple rounding, otherwise choose

randomly 0 or 1,

❼ choose a segment [y′, y′′] which contains x∗ and after that set δ(x∗j , x
∗
j) =

1 if y′j < y′′j while otherwise set δ(x∗j , x
∗
j) = 0.

Figure 4.1 illustrates directional rounding for different focal points labeled

A,B,C, and D.

We define the directional rounding δ(x∗, X) from the point x∗ to the set

X to be the set of points in {0, 1}n given by

δ(x∗, X) = {δ(x∗, x′) : x′ ∈ X}.

The motivation for directional rounding comes from the fact that if x∗ is an

extreme point of the feasible set of LP-relaxation, then every feasible 0-1

solution can be obtained by directional rounding relative to focal points that
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lie within the LP cone defined by non-negative values for the current nonbasic

variables (as proved in section 4.3).

As stated in the next two lemmas, for any vertex of the unit hypercube

x′ ∈ {0, 1}n, we have δ(x∗, x′) = x′, while directional rounding of any point x′

relatively to the base point x∗ ∈ {0, 1}n yields a point deduced from x∗ by

complementing only those coordinates that have different values in x∗ and x′.

Lemma 4.2.1 For any base point x∗ ∈ [0, 1]n and focal point x′ ∈ {0, 1}n

δ(x∗, x′) = x′.

Proof. From the definition of directional rounding we have δ(x∗j , 1) = 1 and

δ(x∗j , 0) = 0, hence δ(x∗j , x
′
j) = x′j for x

′
j ∈ {0, 1}. So, δ(x

∗, x′) = x′ for each

point x′ ∈ {0, 1}n. �

Lemma 4.2.2 For any base point x∗ ∈ {0, 1}n and focal point x′ ∈ [0, 1]n

δ(x∗j , x
′
j) =




1− x∗j if x

′
j 6= x∗j

x∗j otherwise
(4.8)

Proof. If x′j < x∗j then x∗j must equal 1, so δ(x∗j , x
′
j) = 0, which is equal to

1− x∗j . Similarly, if x′j > x∗j then x∗j must equal 0 and therefore δ(x∗j , x
′
j) =

1− x∗j . Finally, in the case x′j = x∗j the definition of directional rounding for

the case x′j = x∗j ∈ {0, 1}
n gives δ(x∗j , x

′
j) = x∗j . �

Corollary 4.2.3 For any base point x∗ ∈ {0, 1}n and focal point x′ ∈]0, 1[n

δ(x∗, x′) = e− x∗.

The next lemma says that every point on the ray from x∗ through x′

(excluding the point x∗ itself) gives the same directional rounding as δ(x∗, x′).

Lemma 4.2.4 For any base point x∗ ∈ [0, 1]n and a focal point x′ 6= x∗

δ(x∗, x′) = δ(x∗, x′′)



CHAPTER 4. SCATTER SEARCH FOR 0–1 MIP 176

for all x′′ ∈ Ray(x∗, x′) such that x′′ 6= x∗.

Proof. Since x′′ ∈ Ray(x∗, x′) there exists λ ≥ 0 such that x′′ = λx′+(1−λ)x∗.

Therefore for each component x′′j , j ∈ N , we have the three cases:





i)x′j < x∗j ⇒ x′′j < x∗j ,

ii)x′j > x∗j ⇒ x′′j > x∗j ,

iii)x′j = x∗j ⇒ x′′j = x∗j ,

(4.9)

These observations lead to the conclusion that δ(x∗j , x
′
j) = δ(x∗j , x

′′
j ) for each

j ∈ N which further implies δ(x∗, x′) = δ(x∗, x′′). �

4.2.3 Efficient procedure for generating a Star Path

A Star Path L(x∗, x′, x′′) is defined as a set of 0-1 vectors obtained by

directional rounding using points which belong to the line connecting x′ and

x′′ as focal points and x∗ as a base point. More precisely,

L(x∗, x′, x′′) = δ(x∗, Line(x′, x′′)).

In this section, we provide several properties which lead to an efficient

procedure to compute δ(x∗, S) where S is a subset of Line(x′, x′′).

Lemma 4.2.5 Given x′ and x′′, as focal points and x∗ as a base point, define

λ∗
j =

x∗
j−x′

j

x′′
j −x′

j
for j ∈ N 6= = {j ∈ N : x′′j 6= x′j}. For every real value of λ, the

elements of the vector δ(x∗, x′ + λ(x′′ − x′)) in L(x∗, x′, x′′) are given by

δ(x∗j , x
′
j + λ(x′′j − x

′
j)) =





δ(x∗j , x
′
j) if x′′j = x′j

1 if (λ < λ∗j and x
′′
j < x′j) or (λ > λ∗j and x

′′
j > x′j)

0 if (λ < λ∗j and x
′′
j > x′j) or (λ > λ∗j and x

′′
j < x′j)

δ(x∗j , x
∗
j) if (x′′j 6= x′j) and (λ = λ∗j)

(4.10)
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Proof. Let xj = x′j + λ(x′′j − x
′
j). The case where x′j = x′′j is obvious. For

the case where x′′j > x′j, the condition λ∗j < λ implies

λ∗j =
x∗j − x

′
j

x′′j − x
′
j

< λ =
xj − x

′
j

x′′j − x
′
j

.

Hence x∗j < xj which means that δ(x∗j , xj) = 1, and the condition λ∗
j > λ

implies x∗j > xj which means that δ(x∗j , xj) = 0. Similarly, in the case x′′j < x′j ,

we have δ(x∗j , xj) = 1 if λ∗
j > λ and δ(x∗j , xj) = 0 if λ∗

j < λ. In the last case

where λ = λ∗j we have xj = x∗j . �

The definition of the element δ(x∗j , x
′
j + λ(x′′j − x

′
j)) needs a specific ”tie

breaking” rule to handle the case λ = λ∗
j (which corresponds to δ(x∗j , x

′
j +

λ(x′′j − x
′
j) = δ(x∗j , x

∗
j)), where the original definition of directional rounding

requires such a rule to choose between a value of 0 or 1, in our implementation,

we use simple rounding. The proof of the preceding Lemma 4.2.5 does not

depend on the restriction on λ.

Let (π(1), π(2), . . . , π(t)) be a permutation of the indexes of N 6= = {j ∈

N : x′′j 6= x′j} so that λ∗
π(1) ≤ λ∗

π(2) ≤ · · · ≤ λ∗
π(t), where t = |N

6=|. We will

assume that the λ∗
π(h) values are all distinct so that λ∗

π(h) < λ∗
π(h+1) for all

h < t.

Theorem 4.2.1 Given x′ and x′′, as focal points and x∗ as a base point, let

λ∗j =
x∗
j−x′

j

x′′
j −x′

j
for j ∈ N 6= and define l(λ) = δ(x∗, x′ +λ(x′′− x′)). Then for each

h = 1, 2, . . . , |N 6=| − 1 and for every λ and λ′ such that λ, λ′ ∈]λ∗π(h), λ
∗
π(h+1)[,

we have

l(λ) = l(λ′).

Moreover, d(l(λ∗
π(h+1)), l(λ

∗
π(h))) ≤ 2, (d(·, ·) represents Hamming distance

operator), and more precisely

lj(λ
∗
π(h+1)) = lj(λ

∗
π(h)) for j ∈ N − {π(h), π(h+ 1)},
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lπ(h)(λ
∗
π(h+1)) =




0 if x′′π(h) < x′π(h)

1 if x′′π(h) > x′π(h)

and lπ(h+1)(λ
∗
π(h+1)) = δ(x∗π(h+1), x

∗
π(h+1)).

(4.11)

Proof. According to Lemma 4.2.5, the value lj(λ) for j ∈ N
= = {j ∈ N :

x′′j = x′j} does not depend on λ and is the same for all points from the line

connecting points x′ and x′′. Hence lj(λ) = lj(λ
′) for j ∈ N=. From the

assumption that λ∗π(h) < λ∗π(h+1) for all h < |N
6=|, we can partition the set N 6=

into two sets N ′ = {j ∈ N 6= : λ∗j ≤ λ∗π(h)} and N
′′ = {j ∈ N 6= : λ∗j ≥ λ∗π(h+1)}.

For j ∈ N ′ implies λ∗j < λ, and λ∗j < λ′ hence by Lemma 4.2.5, lj(λ) = lj(λ
′).

Similarly, j ∈ N ′′ implies λ∗
j ≥ λ∗

π(h+1) > λ > λ∗
π(h), and λ′ > λ∗

π(h) and

hence holds lj(λ) = lj(λ
′). So, lj(λ) = lj(λ

′) for each j ∈ N 6=. Similarly for

j ∈ N 6= − {π(h), π(h+ 1)} it follows that

lj(λ
∗
π(h+1)) = lj(λ

∗
π(h)).

Indeed, for each j such that λ∗
j < λ∗

π(h) < λ∗
π(h+1) we have lj(λ

∗
π(h+1)) =

lj(λ
∗
π(h)) = 1 if x′′j > x′j and lj(λ

∗
π(h+1)) = lj(λ

∗
π(h)) = 0 otherwise. Likewise

for each j such that λ∗
j > λ∗

π(h+1) > λ∗
π(h) we obtain lj(λ

∗
π(h+1)) = lj(λ

∗
π(h)).

Finally, the values of lj(λ
∗
π(h+1)) for j ∈ {π(h), π(h+ 1)}, are deduced from

the definition of δ. �

We show in the following example that the distance d(l(λ∗π(h+1)), l(λ
∗
π(h)))

can be equal to 2.

Example 1 Consider the following simple example in two-dimension where

the base point x∗ = (0, 1), the focal points are given by x′ = (0.1, 0.8) and

x′′ = ( 2
30
, 0.6), with the corresponding values λ∗1 = 3 and λ∗2 = −1. It is easy to

see that l(λ∗1) = (0, 0) and l(λ∗2) = (1, 1). So, the Hamming distance between

the two vectors l(λ∗1) and l(λ
∗
2) is equal to 2.

Example 2 In contrast to the preceding example, suppose the base point

is x∗ = (0.3, 0.4) and the focal points are given by x′ = (0.2, 0.3) and

x′′ = (0.4, 0.7). Then, the values of λ∗
1 and λ∗

2 are λ∗
1 = 0.5, λ∗

2 = 0.25.
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Hence, it follows that l(λ∗
1) = (0, 1) and l(λ∗

2) = (1, 1). So, in this case the

Hamming distance between the two vectors l(λ∗1) and l(λ
∗
2) is equal to 1.

Lemma 4.2.6 The assumption 0 < λ∗
j < 1, is equivalent to the condition

that the element x∗j is on the open segment between the elements x′j and x′′j ,

i.e., min{x′j, x
′′
j} < x∗j < max{x′j, x

′′
j}.

Proof. Since λ∗
j is defined only if x′j 6= x′′j , we consider the following two

cases.

Case 1: (x′′j > x′j)⇔ (x′′j − x
′
j) > 0.

Using the definition of λ∗j and assumption 0 < λ∗j < 1 we obtain the following

set of equivalences,

λ∗j < 1⇔
x∗j − x

′
j

x′′j − x
′
j

< 1⇔ (x∗j − x
′
j) < (x′′j − x

′
j)⇔ x∗j < x′′j

λ∗j > 0⇔
x∗j − x

′
j

x′′j − x
′
j

> 0⇔ (x∗j − x
′
j) > 0⇔ x∗j > x′j

which lead into conclusion that

(x′′j > x′j) and (0 < λ∗j < 1)⇔ x′j < x∗j < x′′j .

Case 2: (x′′j < x′j)⇔ (x′′j − x
′
j) < 0.

Using the same facts as in the previous case, we obtain the following relations

λ∗j < 1⇔
x∗j − x

′
j

x′′j − x
′
j

< 1⇔ (x∗j − x
′
j) > (x′′j − x

′
j)⇔ x∗j > x′′j

λ∗j > 0⇔
x∗j − x

′
j

x′′j − x
′
j

> 0⇔ (x∗j − x
′
j) < 0⇔ x∗j < x′j

which imply

(x′′j < x′j) and (0 < λ∗j < 1)⇔ x′′j < x∗j < x′j
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Finally, the conclusions derived in these two cases imply that the condition

0 < λ∗j < 1 is equivalent to the condition that x∗j is on the segment between

the elements x′j and x
′′
j . �

The next corollary shows that under stronger assumptions the distance

between two consecutive points l(λ∗π(h)) and l(λ
∗
π(h+1)) is equal to 1.

Corollary 4.2.7 Given x′ and x′′ as focal points and x∗ as base point, let

λ∗
j =

x∗
j−x′

j

x′′
j −x′

j
for j ∈ N 6=. Assume 0 < λ∗

π(1) < λ∗
π(2), . . . , < λ∗

π(t) < 1 with

t = |N 6=|, and suppose further that ties in directional rounding δ(x∗j , x
∗
j) which

arises in the case 0 < x∗j < 1 are broken in the following way

δ(x∗j , x
∗
j) =




0 if x′′j < x′j

1 if x′′j > x′j
(4.12)

Then the distance between vectors l(λ∗π(h)) and l(λ
∗
π(h+1)) satisfies

d(l(λ∗π(h)), l(λ
∗
π(h+1))) = 1.

More precisely,

lj(λ
∗
π(h+1)) = lj(λ

∗
π(h)) for j ∈ N − {π(h+ 1)}

lπ(h+1)(λ
∗
π(h+1)) = 1− lπ(h+1)(λ

∗
π(h)).

Proof. The condition 0 < λ∗
π(1) < λ∗

π(2), . . . , < λ∗
π(t) < 1 implies 0 < x∗π(i) <

1, i = 1, . . . t, because as previously shown (Lemma 4.2.6) the condition

0 < λ∗j < 1 compels x∗j to belong to the segment between x′′j and x′j. Hence,

lj(λ) may be rewritten using its definition in Theorem 4.2.5 and the tie

breaking rule as:

lj(λ) =





δ(x∗j , x
′
j) if x′j = x′′j

0 if (λ ≥ λ∗j and x
′′
j < x′j) or (λ < λ∗j and x

′′
j > x′j)

1 if (λ ≥ λ∗j and x
′′
j > x′j) or (λ < λ∗j and x

′′
j < x′j)

(4.13)
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So, lπ(h)(λ
∗
π(h)) equals 0 if x′′π(h) < x′π(h), and equals 1 if x′′π(h) > x′π(h). On

the other hand, lπ(h)(λ
∗
π(h+1)) equals 0 if x′′π(h) < x′π(h), and otherwise, equals

1. Therefore, lπ(h)(λ
∗
π(h)) = lπ(h)(λ

∗
π(h+1)). Further, lπ(h+1)(λ

∗
π(h)) equals 0 if

x′′π(h+1) > x′π(h+1), and otherwise it equals 1, while lπ(h+1)(λ
∗
π(h+1)) equals 1 if

x′′π(h+1) > x′π(h+1) and otherwise, it equals 0. Hence,

lπ(h+1)(λ
∗
π(h+1)) = 1− lπ(h+1)(λ

∗
π(h)).

These conclusions together with Theorem 4.2.1 demonstrate that

lj(λ
∗
π(h+1)) = lj(λ

∗
π(h)) for j ∈ N − {π(h+ 1)}.

�

We show that the condition λ∗π(1) = min{λ∗j : j ∈ N
6=} > 0 is necessary in

the previous corollary. Consider the following example.

Example 3 Let x∗ = (1, 0.3), x′ = (1, 0.1) and x′′ = (0.8, 0.9) giving the cor-

responding values λ∗1 = 0 and λ∗2 = 0.25. So, we have l(λ∗1) = δ(x∗, (1, 0.1)) =

(1, 0) and l(λ∗2) = δ(x∗, (0.95, 0.3)) = (0, 1) and hence d(l(λ∗1), l(λ
∗
2)) = 2.

Corollary 4.2.8 Corollary 4.2.7 remains valid in the case

λ∗π(t) = max{λ∗j : j ∈ N
6=} = 1.

Proof. It suffices to prove that the chosen tie breaking rule may be extended

to the case x∗π(t) ∈ [0, 1]. Since the equation λ∗π(t) = 1 implies that x∗π(t) = x′′π(t)
then δ(x∗π(t), x

∗
π(t)) may be defined as

δ(x∗π(t), x
∗
π(t)) =





x′′π(t) if x′′π(t) ∈ {0, 1}

1 if x′′π(t) > x′π(t)

0 if x′′π(t) < x′π(t)

(4.14)
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However, the case x′′π(t) ∈ {0, 1} is already contained in the other two cases

(which represent the imposed tie breaking rule). Indeed, if x′′π(t) is equal to 1,

then x′′π(t) > x′π(t) (since x
′′
π(t) 6= x′π(t)), which corresponds to the second case,

while if x′′π(t) is equal to 0, then x′′π(t) < x′π(t), which corresponds to the last

case. So, the definition of lj(λ) given in equation (4.13) is valid in the case

λ∗π(t) = 1 as well as in the case given by Corollary 4.2.7. �

Another way to see the necessity of the condition λ∗
π(1) = min{λ∗

j : j ∈

N 6=} > 0 is to note that is not possible to extend the imposed tie breaking

rule to the case x∗π(1) ∈ [0, 1]. Indeed, since λ∗
π(1) = 0 compels x∗π(1) = x′π(1)

then δ(x∗π(1), x
∗
π(1)) may be defined as

δ(x∗π(1), x
∗
π(1)) =





x′π(1) if x′′π(1) ∈ {0, 1}

1 if x′′π(1) > x′π(1)

0 if x′′π(1) < x′π(1)

(4.15)

Now, it is easy to check that the first case in equation (4.15) can not be

omitted while the definition of δ(x∗π(1), x
∗
π(1)) remains in force, i.e., the first

case in equation (4.15) is not contained in the remaining two cases.

However, if we change the imposed tie breaking rule such that

δ(x∗j , x
∗
j) =




1 if x′′j < x′j

0 if x′′j > x′j
(4.16)

then it is easily demonstrated that Corollary 4.2.7 will be true if λ∗
π(1) =

min{λ∗j : j ∈ N
6=} = 0, but will not be true if λ∗π(t) = max{λ∗j : j ∈ N

6=} = 1.

In other words, informally speaking, complementing the tie breaking rule

corresponds to complementing the necessary conditions.

It should be emphasized that if we change the definition of directional rounding
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(equation (4.17)) so that δ(x∗j , x
′
j) is defined as

δ(x∗j , x
′
j) =





0 if x′j < x∗j

1 if x′j > x∗j

0 or 1 otherwise

(4.17)

and if we suppose that we use the tie breaking rule from Corollary 4.2.7 for

the last case, then Corollary 4.2.7 will hold when λ∗
π(1) = 0 or λ∗

π(t) = 1 and

even when λ∗π(1) < 0 or λ∗π(t) > 1. The justification for this claim is based on

the fact that in this case the components lj(λ
∗
π(h)) of any vector l(λ∗π(h)) will

be given by equation (4.13).

Lemma 4.2.9 Let x′ and x′′ be focal points and let x∗ be the base point,

where λ∗
j =

x∗
j−x′

j

x′′
j −x′

j
for j ∈ N 6=. If λ∗

π(1) < λ∗
π(2) < · · · < λ∗

π(h−1) < λ∗
π(h) =

λ∗π(h+1) = · · · = λ∗π(h+k) < · · · < λ∗π(t), k ≥ 1 then

lj(λ
∗
π(h−1)) = lj(λ

∗
π(h)) = · · · = lj(λ

∗
π(h+k)) for j ∈ N−{π(h−1), π(h), . . . , π(h+k)}.

Moreover, if λ∗π(1) > 0 and λ∗π(t) < 1 and ties in directional rounding δ(x∗j , x
∗
j)

which arise in the case 0 < x∗j < 1 are broken by setting

δ(x∗j , x
∗
j) =




1 if x′′j > x′j

0 if x′′j < x′j
(4.18)

then

lπ(h+p)(λ
∗
π(h)) = 1− lπ(h+p)(λ

∗
π(h−1)) for p = 0, 1, . . . , k

Proof. First, note that the vectors l(λ∗π(h)), l(λ
∗
π(h+1)), . . . , l(λ

∗
π(h+k)) are the

same since λ∗
π(h) = λ∗

π(h+1) = · · · = λ∗
π(h+k). If x′j = x′′j and j ∈ N −

{π(h − 1), π(h), . . . , π(h + k)} the conclusion of the lemma is immediate.

On the other hand if x′j 6= x′′j and λ∗
π(j) < λ∗

π(h−1) < · · · < λ∗
π(h+k) or

λ∗
π(j) > λ∗

π(h+k) > · · · > λ∗
π(h) then the definition of the vectors l(λ) implies

that lj(λ
∗
π(h−1)) = lj(λ

∗
π(h)) = · · · = lj(λ

∗
π(h+1)) = lj(λ

∗
π(h+k)). However, by

Corollary 4.2.7 which establishes that lπ(j+1)(λ
∗
π(j+1)) = 1 − lπ(j)(λ

∗
π(j)) for
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each pair (π(h+ p), π(h− 1)), for p = 0, 1, . . . , k we obtain

lπ(h+p)(λ
∗
π(h+p)) = 1− lπ(h+p)(λ

∗
π(h−1)) for p = 0, 1, . . . , k.

which is equivalent to

lπ(h+p)(λ
∗
π(h)) = 1− lπ(h+p)(λ

∗
π(h−1)) for p = 0, 1, . . . , k.

�

In the same way as in Corollary 4.2.7 it can be shown that if 0 < λ∗π(1) <

λ∗
π(2), . . . , λ

∗
π(h−1) < λ∗

π(h) = λ∗
π(h+1) = · · · = λ∗

π(h+k) < . . . , < λ∗
π(t) ≤ 1 and if

ties are broken as proposed in Corollary 4.2.7 (and Lemma 4.2.9) then

lj(λ
∗
π(h+k+1)) = lj(λ

∗
π(h)) for j ∈ N − {π(h+ k + 1)}

lπ(h+k+1)(λ
∗
π(h+k+1)) = 1− lπ(h+k+1)(λ

∗
π(h)).

In order to produce a larger number of solutions and therefore to increase the

chance to reach an optimal solution we can treat λ∗π(h+p) for p = 0, 1, . . . , k as

distinct values and associate to each of them the vectors defined as

lj(λ
∗
π(h+p)) =




lj(λ

∗
π(h+p−1)) if j 6= π(h+ p)

1− lj(λ
∗
π(h+p−1)) if j = π(h+ p)

(4.19)

The vector l(λ∗
π(h+k)) then corresponds to the vector l(λ∗

π(h)) defined in the

previous lemma.

4.2.4 Exploiting the results to generate Star Paths

To generate a Star Path L(x∗, x′, x′′) where Line(x′, x′′) is restricted to the

segment [x′, x′′] we propose the following Algorithm 43 which exploits the

previously proven statements. Since we consider just the segment [x′, x′′],

we want to produce a set of vectors obtained by directional rounding using

points which belong to the segment as focal points and x∗ as base point, i.e.,

L(x∗, x′, x′′) = {l(λ) = δ(x∗, x) : x = x′ + λ(x′′ − x′), 0 ≤ λ ≤ 1}. According

to Theorem 4.2.5 the Star Path L(x∗, x′, x′′) can be constructed by rounding
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directionally only a finite number of points from the segment [x′, x′′], i.e.,

L(x∗, x′, x′′) = {l(λ) : λ ∈ {0, 1} or λ = λ∗
j , with 0 ≤ λ∗

j ≤ 1, j ∈ N 6=}.

Further as shown in the remaining statements there are benefits caused by

sorting λ∗j , so we assume that all λ∗j with values between 0 and 1 are sorted

in non-decreasing order, i.e., 0 ≤ λ∗π(1) ≤ λ∗π(2) ≤ · · · ≤ λ∗π(p) ≤ 1. In the case

that λ∗
π(1) > 0, we can add an artificial λ∗

π(0) with value 0 in order to cover

case λ = 0 (note in this case π(0) does not correspond to any index). On the

other hand if λ∗π(p) < 1 there is no need to extend the array of λ∗j values since

according to Lemma 4.2.5 l(1) = l(λ∗
π(p)). Hence, without loss of generality

we may suppose that λ∗π(0) = 0. Based on these observations, the generation

of the Star Path L(x∗, x′, x′′) may be constructed in the following way. The

first vector to be generated is the vector l(λ∗π(0)) which is obtained using the

definition given in Lemma 4.2.5 together with the tie breaking rule. From

then on, each vector is derived from the immediately preceding vector using

Corollary 4.2.7, Corollary 4.2.8 and Lemma 4.2.9 in the following manner.

Let N ′ = {j ∈ N 6= : 0 ≤ λ∗j ≤ 1}, n′ = |N ′| and let N0 = {j ∈ N 6= : λ∗j = 0},

n0 = |N0|. Then the vector l(λ∗
π(n0+1)) may be obtained from the vector

l(λ∗π(0)) by adjusting values at the positions π(1), . . . , π(n0) according to the

rules for generating vector l(λ∗
π(n0+1)). In order to avoid (possible) large

distances between vectors l(λ∗π(0)) and l(λ
∗
π(n0+1)) we may generate additional

vectors l(λ∗π(i)), i = 1, . . . , n′ obtained from the previous vector by adjusting

entries at the position π(i) according to the rules for generating vector

l(λ∗π(n0+1)). Then each element l(λ∗π(h)), h > n0 can be derived directly from

the vector l(λ∗
π(h−1)), by just complementing the value at the position π(h)

(Corollary 4.2.7, Corollary 4.2.8 and Lemma 4.2.9). Note that all λ∗
π(h),

h > n0, are treated as distinct in order to increase the number of generated
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vectors as explained above.

Algorithm 43: Generating Star Path L(x∗, x′, x′′)

Function Star Path(x∗, x′, x′′)

1 Compute λ∗j =
x∗
j−x′

j

x′′
j −x′

j
for each j ∈ N 6= = {j ∈ N : x′j 6= x′′j};

2 Let N ′ = {j ∈ N 6= : 0 ≤ λ∗j ≤ 1}, and let N0 = {j ∈ N 6= : λ∗j = 0}, set

n′ = |N ′| and n0 = |N0|;

3 Sort all λ∗j for j ∈ N ′ in nondecreasing order, i.e., so that

λ∗π(1) ≤ λ∗π(2) ≤ · · · ≤ λ∗π(n′);

4 Set λ∗π(0) = 0;

5 Determine x = l(λ∗π(0)) = δ(x∗, x′) using Lemma 4.2.5;

6 Set L = {x};

for j = 1 to n0 do

7 xπ(j) = lπ(j)(λ
∗
π(n0+1));

8 L = L ∪ {x};

end

for j = n0 + 1 to n′ do

9 xπ(j) = 1− xπ(j);

10 L = L ∪ {x};

end

11 return L;

Theorem 4.2.2 Given x′ and x′′ as focal points and x∗ as base point,

δ(x∗, [x′, x′′]) = δ(x∗, [y, x′′]) where y ∈ Ray(x∗, x′) − {x∗}. Furthermore,

δ(x∗, [x′, x′′]) = δ(x∗, [x′, z]) where z ∈ Ray(x∗, x′′)− {x∗}.

Proof. Let y be any point on the ray from x∗ through x′ different from x∗.

Hence the vector y will be represented as y = x∗ + α(x′ − x∗) with α > 0.

According to Lemma 4.2.4, we have δ(x∗, x′) = δ(x∗, y). So to show that

δ(x∗, [x′, x′′]) = δ(x∗, [y, x′′]) it suffices to show that the value of λ∗
j =

x∗
j−x′

j

x′′
j −x′

j

values sorted in nondecreasing order retains this order by replacing x′j with

yj. Indeed, from Algorithm 43 it follows that each Star Path is uniquely

determined by the starting point of line segment and the order of λ∗j values. So,
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let λ′∗ =
x∗
j−yj

x′′
j −yj

and suppose we have the order 0 ≤ λ∗
1 ≤ λ∗

2 ≤ · · · ≤ λ∗
n′ ≤ 1.

Then, for each j, λ′∗
j may be written as λ′∗

j =
α(x∗

j−x′
j)

x′′
j −x∗

j+α(x∗
j−x′

j)
or equivalently

as λ′∗j =
α(x∗

j−x′
j)

x′′
j −x′

j+(α−1)(x∗
j−x′

j)
. Now, from the definition of the λ∗j values and the

last expression of λ′∗
j we have λ′∗

j =
αλ∗

j

1−λ∗
j+αλ∗

j
. Next, it is easy to check that

λ′∗j ≤ λ′∗k ⇔ λ∗j ≤ λ∗k. So,

0 ≤ λ∗1 ≤ λ∗2 ≤ · · · ≤ λ∗n′ ≤ 1⇔ 0 ≤ λ′∗1 ≤ λ′∗2 ≤ · · · ≤ λ′∗n′ ≤ 1

and therefore δ(x∗, [x′, x′′]) = δ(x∗, [y, x′′]).

In a similar way, if we choose any point z 6= x∗ on the ray from x∗ through x′,

i.e., z = x∗+α(x′′−x∗) with α > 0, it holds δ(x∗, x′′) = δ(x∗, z) (according to

Lemma 4.2.4). Further if λ′′∗ =
x∗
j−zj

x′′
j −zj

, we obtain, analogously to the previous

case, λ′′∗
j =

λj

λj+α
for each j. Then it follows that λ′′∗

j ≤ λ′′∗
k ⇔ λ∗

j ≤ λ∗
k and

therefore δ(x∗, [x′, x′′]) = δ(x∗, [x′, z]). �

As a consequence of Theorem 4.2.2, we have the following result.

Corollary 4.2.10 Given x′ and x′′ as focal points and x∗ as a base point,

δ(x∗, [x′, x′′]) = δ(x∗, [y, z]) where y ∈ Ray(x∗, x′)−{x∗} and z ∈ Ray(x∗, x′′)−

{x∗}.

�

This corollary effectively says that δ(x∗, [x′, x′′]) = δ(x∗, Cone(x∗, {x′, x′′})−

{x∗}).

Theorem 4.2.3 Given x∗ as base point and X as a set of focal points, if

δ(x∗, X) = x′ then δ(x∗, conv(X)) = x′.

Proof. If y ∈ conv(X) then there exists a set of points x1, . . . , xp such that

y =
∑p

i=1 αix
i and

∑p
i=1 αi = 1 with αi ≥ 0 and xi ∈ X for i = 1, . . . , p.

It is easy to see that we have yj ≥ x∗j if xij ≥ x∗j for all i = 1, . . . , p and

yj ≤ x∗j if xij ≤ x∗j for all i = 1, . . . , p. So from the definition of directional

rounding δ, if we assume that ”tie breaking” rule is the same for all solutions

xi (i = 1, . . . , p) when xij = x∗j with 0 < x∗j < 1 for all j = 1, . . . , n, we have

δ(x∗j , yj) = δ(x∗j , x
i
j).
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�

4.3 Fundamental Analysis of Star Paths with

Directional Rounding

4.3.1 Standard LP basic solution representation

The bounded simplex method proposed by Dantzig [57, 58] is an efficient

method to solve the LP- relaxation of the MIP problem by systematically

exploring extreme points of a solution space. The search for an optimal

extreme point is performed by pivot operations, each of which moves from one

extreme point to an adjacent extreme point by removing one variable from

the current basis and bringing another variable (which is not in the current

basis) into the basis. For our purposes, the procedure can be depicted in the

following way. Suppose that the method is currently at some extreme point

x(0) with corresponding basis B. The set of indices of all other variables

(nonbasic variables) will be designated with B = N −B. The extreme points

adjacent to x(0) have the form

x(j) = x(0)− θjDj for j ∈ B (4.20)

where Dj is a vector associated with the nonbasic variable xj, and θj is

the change in the value of xj that moves the current solution from x(0) to

x(j) along their connecting edge. The LP basis representation identifies the

components Dkj of Dj, as follows

Dkj =





((AB)−1A)kj if k ∈ B

ξ if k = j

0 if k ∈ B − {j}

(4.21)

where AB represents matrix obtained from matrix A by selecting columns

that correspond to the basic variables and ξ ∈ {−1, 1}. We choose the sign

convention for entries of Dj that yields a coefficient for xj of Djj = 1 if xj

is currently at its lower bound at the vertex x(0), and of Djj = −1 if xj is
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currently at its upper bound at x(0). We assume throughout the following

that x(0) is feasible for the LP problem, though this assumption can be

relaxed. In general, we require that x(0) is a basic solution (feasible or not) –

i.e., x(0) is a feasible extreme point for a region that results by discarding

some of the constraints that define the original LP feasible region.

Note that if we consider an extreme point x(0) and its adjacent extreme

points x(j) for j ∈ B, we can conclude that the points x(j) for j ∈ B are

linearly independent and that the point x(0) does not belong to the plane

spanned by these points. Furthermore, this observation holds even when

these θj values are replaced by any positive value.

4.3.2 Justification of Star Paths with Directional Round-

ing

Lemma 4.3.1 Let x(0) be a basic extreme point associated with a basis B,

and define x(j) for j ∈ B by (4.20) for any given positive value θ∗j for θj, i.e.,

x(j) = x(0)− θ∗jDj, j ∈ B (4.22)

Then, we obtain:

Cone(x(0), X(B)) = {x(0)−
∑

j∈B

λjDj : λj ≥ 0, j ∈ B}. (4.23)

Proof. The proof follows directly from the definition of the cone. �

Lemma 4.3.2 Let x(0) be a basic extreme point with its associated basis

denoted by B. Then all feasible solutions of the LP problem belong to the

Cone(x(0), X(B)).

Proof. Without loss of generality we can assume that B = {1, 2, . . .m},

where m represents the number of rows in the matrix A and let B = (AB)−1.

Therefore, each solution x may be represented as x = [xB, xB]
T . Further-

more, each LP–feasible solution x can be expressed as xB = Bb− BABxB.

This last equality may be rewritten as xB = Bb − [BAm+1, . . .BAn]xB.
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Defining a new set of variables θB = x(0)B − xB the last equation be-

comes xB = Bb− [BAm+1, . . .BAn]x(0)B +[BAm+1, . . .BAn]θB or equivalently

xB = x(0)B + [BAm+1, . . .BAn]θB. Using the last equation we obtain the

following representation of the solution x:

x = x(0)−




BAm+1 BAm+2 . . . BAn

ξ 0 . . . 0
0 ξ . . . 0
...

...
. . .

...
0 0 . . . ξ



θB (4.24)

However adjusting entries of matrix in (4.24) according to replacing θB with

|θB| yields a matrix whose columns are directional vectors Dj, j ∈ B, and

therefore x = x(0)−
∑

j∈BDj|θj|, i.e., x ∈ Cone(x(0), X(B)). Since x is an

arbitrarily chosen feasible point we conclude that all feasible points belong to

the Cone(x(0), X(B)). �

Corollary 4.3.3 All MIP feasible solutions belong to the Cone(x(0), X(B)).

Lemma 4.3.4 Let x(0) be an LP feasible extreme point with associated ba-

sis B, then x(0) does not belong to Half Space(X(B)), but belongs to the

complementary half space.

Proof. By definition, we have P lane(X(B)) = {x(0)−
∑

j∈B λjDj :
∑

j∈B λj =

1}. So, its corresponding half space is Half Space(X(B)) = {x(0) −∑
j∈B λjDj :

∑
j∈B λj ≥ 1}. Keeping in mind the linear independence

of vectors Dj , it follows that Half Space(X(B)) does not contain point x(0).

So, x(0) belongs to the complementary half space. �

Lemma 4.3.5 Let x(0) be an LP feasible extreme point with the associ-

ated basis B. Then all optimal MIP solutions, excluding x(0), belong to

Half Space(X(B)).

Proof. The lemma follows directly from the fact that Half Space(X(B))

may be considered as a valid cutting plane that excludes x(0) as feasible. �

Corollary 4.3.6 The previous two lemmas remain true if the set X(B) is

replaced by the set {x(0)− θ∗jDj : j ∈ B, 0 < θ∗j < θj}.
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Theorem 4.3.1 Let x(0) be an LP feasible extreme solution with associated

basis B, and let X(B) = {x(0) − θ∗jDj : j ∈ B} where θ∗j is any given

positive value. Then for any MIP feasible solution x′ there is a convex region

X ⊂ Face(X(B)) such that δ(x(0), x) = x′ for all x ∈ X. Moreover, if X is

not polyhedral, there is a polyhedral subset of X for which this conclusion is

true.

Proof. Given that all MIP feasible solutions are in the Cone(x(0), X(B)) =

{x(0)−
∑

j∈B λjDj : λj ≥ 0}, it follows that for each MIP feasible solution

x′ the Ray(x(0), x′) which belongs to that cone intersects the Face(X(B)).

Denote this intersection point by y, hence y = Ray(x(0), x′)∩Face(X(B)). Ac-

cording to the previous lemmas the point y satisfies δ(x(0), y) = δ(x(0), x′) =

x′. The last condition means that for any MIP feasible solution x′, there is

at least one solution which belongs to the Face(X(B)) and which produces

the solution x′ by directional rounding relative to the base solution x(0).

However, if there exists more than one solution which may be directionally

rounded to the yield x′, then according to Theorem 4.2.3 the directional

rounding of any solution in the convex hull X of these points, produces the

same solution x′. Further, if X is not polyhedral, its polyhedral subset can

be identified as a set of all convex combinations of a finite number of points

from X. �

Corollary 4.3.7 The previous theorem is also valid when the word ”feasible”

is replaced by ”optimal”.

The next result has been proven in Chapter 1, but we repeat it to facilitate

the proof of Theorem 4.3.2 bellow.

Lemma 4.3.8 An optimal solution for the 0–1 MIP problem may be found

at an extreme point of the LP feasible set.

Theorem 4.3.2 Let x(0) be an LP optimal extreme point and let C be a

valid cutting plane for the problem MIP, that excludes x(0) and is satisfied by

all MIP feasible solutions. Then, if the problem MIP has an optimal solution

there exists a polyhedral region P ⊂ C such that each MIP feasible solution

can be obtained by directional rounding of some point in P . Moreover, at
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least one optimal MIP solution is obtained by directional rounding of some

extreme point of P .

Proof. Since cutting plane C separates x(0) from all MIP feasible solu-

tions, each ray starting at x(0) through some MIP feasible solution, say x, in-

tersects the plane C at some point, say x′, i.e., x′ = Ray(x(0), x)∩C. However,

Lemma 4.2.4 demonstrates that directional rounding of x′ gives the point x.

Therefore each MIP feasible solution can be obtained by rounding some point

from the region P = conv({Ray(x(0), x) ∩ C : x MIP feasible solution}).

This set P is a polyhedral region since it is a convex hull of a finite number of

MIP feasible solutions. Hence, P may be rewritten by reference to the convex

hull of its extreme points x′1, x′2, . . . , x′p as P = conv({x′i : i = 1, . . . , p}). If

X is the MIP feasible set, then X ⊆ δ(x(0), P ).

Assume that no one of the solutions xi = δ(x(0), x′i) for i = 1, . . . , p, is

MIP optimal. Therefore, using Lemma 4.3.8, we can prove that x(0) and an

optimal solution for xopt MIP are on different sides of plane H = {
∑p

i=1 λix
i :∑p

i=1 λi = 1} (see Figure 4.2). (If we suppose x(0) and xopt are on the same

side then xopt is inside the truncated cone, defined by rays from x(0) through

points x′i and H, contradicting the fact that xopt is an extreme point.) So,

there is a point y ∈ H such that y = x(0)+λ(xopt−x(0)), 0 < λ < 1. Using the

linearity of the objective function and the optimality of the LP-solution x(0)

we conclude that cx(0) ≤ cy ≤ cxopt. On the other hand, since y belongs to H

it can be represented as
∑p

i=1 λix
i,
∑p

i=1 λi = 1, so cy =
∑p

i=1 λicx
i > cxopt

because none of the points xi is MIP optimal. This contradicts our starting

assumption that none of the points xi is MIP optimal. Hence, at least one

solution among solutions xi = δ(x(0), x′i) for i = 1, . . . , p is an optimal MIP

solution and consequently can be obtained by directional rounding of some

extreme point of P . �

Corollary 4.3.9 The previous lemmas and theorems hold when x(0) is any

basic solution (feasible or not) with associated basis B.



CHAPTER 4. SCATTER SEARCH FOR 0–1 MIP 193

 

Figure 4.2: Cone C(x(0), X(B̄)) and valid cutting plane C.

4.4 Convergent Scatter Search with direc-

tional rounding

We now build on the fact that Scatter Search consists of a systematic explo-

ration of a solution space relative to a set of reference points. As pointed out,

these points typically consist of good solutions obtained by prior problem

solving effort, where the term ”good solution” refers not only to solutions

with good objective function values, but also to solutions which increase the

diversity of the set of reference points.

4.4.1 Variant of Convergent Scatter Search

In this section we propose a version of scatter search with directional rounding

that converges in a finite number of iterations to an optimal solution for

the 0–1 MIP problem. The resulting Convergent Scatter Search algorithm

is justified by the preceding theorems. Let x(0) be an optimal solution of
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the LP-relaxation with the associated basis B and let πx ≤ π0 be a valid

cutting plane for problem MIP that excludes x(0) without excluding any MIP

feasible solutions. Valid cutting planes are very well studied in the literature.

There are several procedures to generate deep cuts including convexity cuts or

intersection cuts (see for example, [5, 8, 10, 89, 215, 228]). Recently, Balas and

Margot [7] introduced a generalization of the intersection cuts that dominate

the original ones. We define the polyhedral region P as the intersection of

the hyperplane πx = π0 with the set of feasible solutions of the LP-relaxation

denoted by X, i.e., P = {x : πx = π0}∩X. By the preceding results we know

that an optimal MIP solution belongs to the set δ(x(0), P ). The Convergent

Scatter Search algorithm works as follows. At each iteration, we choose an

extreme point of the current polyhedron (polyhedral cone) P , say x′ and

select a cone C(x′) originating at x′ such that is easy to compute the finite set

δ(x(0), C(x′)). The process is repeated on the new polyhedron P = P −C(x′)

until the volume of the current polyhedron P is null. Thus, the algorithm

successively nibbles away portions C(x′) starting from the corner x′ each time

until nothing is left (see Algorithm 44).

Algorithm 44: Framework of the convergent star path algorithm CSP ()

Function CSP();

1 Let x(0) be an optimal solution of LP-relaxation;

2 Set P = {x : πx = π0} ∩X, where πx ≤ π0 is a cutting plane;

3 while V olume(P ) > 0 do

4 Choose any extreme point of P , i.e., x′;

5 Construct the cone C(x′) originating at x′;

6 Compute S = δ(x(0), C(x′));

7 Update the best solution x∗ = argmin
x∈S∪x∗

cx;

8 Reduce the current polyhedral P = P − C(x′);

end

9 Return x∗;

Now, we explain how we construct at each iteration the cone C(x′)

originating at an extreme point x′ of the current polyhedron P . Let B denote
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the basis associated with the extreme point x′ relative to the polyhedron P .

For each adjacent point of x′, x′(h), h ∈ B, we determine y′(h) belonging

to the Ray(x′, x′(h)) such that directional rounding of all points from open

sub-edge ]x′, y′(h)[ yields the same 0–1 solution. These points y′(h) can

be computed using Theorem 4.2.1 or the first iteration of Algorithm 43.

More precisely, y′(h) = x′ + λ∗(x′(h) − x′) with λ∗ = min{λ∗
j : 0 < λ∗

j =

x(0)j−x′
j

x′(h)j−x′
j
≤ 1}. The constructed cone originating at the extreme point x′

is defined as C(x′) = Cone(x′, Y ) ∩ H− where Y = {y′(h) : h ∈ B} and

H− = {
∑

h∈B λhy
′(h) :

∑
h∈B λh < 1}.

A Convergent Scatter Search algorithm may be implemented in two differ-

ent ways according to whether or not we reduce the size of the LP polyhedron

at the same time that we reduce the size of P lane(X(B)). These two different

algorithmic approaches are depicted as Algorithm 45 and Algorithm 46 re-

spectively. Both start by solving the LP relaxation and creating P lane(X(B))

as a convex hull of all extreme points adjacent to an optimal solution of the

LP relaxation. Then both methods choose the best extreme point x′ (the

point that minimizes the objective function of the initial problem) which

belongs to the set X(B) and determine the cone C(x′) to be directionally

rounded. Then the truncated cone C(x′) is directionally rounded using The-

orem 4.4.2. The first algorithm then continues to repeat overall process on

P lane(X(B))−C(x′), while the second algorithm repeats the overall process

on the new MIP problem derived from the initial problem by imposing the

valid cut which excludes the optimal solution of LP relaxation and the pseudo

cut which eliminates extreme point x′. The pseudo cut is determined as a

hyperplane passing through points from the set Y and the optimal solution

of the LP relaxation (which are linearly independent). The first procedure

stops when the difference between the objective function values at x′ and

the best encountered integer solution is less than ǫ while the second stops

when the difference between the value of the LP relaxation of the new created

problem and the value of best integer solution found is less than ǫ. (If all

the data are integer the value of ǫ can be set to 1.) The coefficients of the

hyperplane containing Plane(X(B)), or the coefficients of the hyperplane

passing through points from the set Y and x(0), may be easily determined
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as a feasible non-zero solution of a linear program with a trivial objective

function subject to πx = π0 for x ∈ X(B) or x ∈ Y ∪ {x(0)}.

Algorithm 45: Convergent Star Path algorithm -version 1 CSP1()

Function CSP1()

1 Let x(0) be an optimal solution of LP-relaxation;

2 Set P = {x : πx = π0} ∩X, where πx ≤ π0 is a cutting plane;
repeat

3 Let x′ be an optimal solution of min{cx : x ∈ P};
4 Construct the cone C(x′) originating at x′;
5 Compute S = δ(x(0), C(x′));
6 Update the best solution x∗ ← argmin

x∈S∪x∗

cx;

7 Reduce the current polyhedral P = P − C(x′);

until cx∗ − cx′ ≥ ǫ;
8 return x∗;

Algorithm 46: Convergent Star Path algorithm -version 2 CSP2()

Function CSP2()

repeat
1 Let x(0) be an optimal solution of LP-relaxation, i.e.,

cx(0) = min{cx : x ∈ X};

2 Set P = {x : πx = π0} ∩X, where πx ≤ π0 is a cutting plane;
3 Let x′ be an optimal solution of min{cx : x ∈ P};
4 Construct the cone C(x′) originating at x′;
5 Compute S = δ(x(0), C(x′));
6 Update the best solution x∗ ← argmin

x∈S∪x∗

cx;

7 Compute hyperplane H = {x : hx = h0} as one passing through
points from the set Y and x(0);

8 Define H+ as a half space bounded with H that does not contain x′;

9 Reduce the current LP polyhedral X = X ∩ P ∩H+;

until cx∗ − cx(0) ≥ ǫ;
10 return x∗;

Implementation of the Convergent Scatter Search procedure requires a

tool for enumerating all adjacent extreme points of a given extreme point
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of a polyhedron. In some cases, if there is no degeneracy, enumeration of

adjacent extreme points can be performed easily using the formulas of (4.20).

Unfortunately, even if there is no degeneracy at the starting polyhedron of

the LP relaxation degeneracy will appear during execution of the Convergent

Scatter Search procedure since at each iteration we add some cutting plane

to the starting LP problem. In consequence, we are unable to enumerate

all extreme points using just formulas (4.20). Additionally, the Convergent

Scatter Search procedure requires a lot of memory for rounding cone C(x′),

making it unsuitable for large scale problems. In section 4.6, we propose

heuristics based on the Convergent Scatter Search procedure.

4.4.2 Convergence proof of scatter search

To the best of our knowledge, up to now convergence results have been

obtained for only a few metaheuristics [24, 98, 109]. In this subsection, we

provide background and the convergence proof of the Scatter Search and

Star Paths with Directional Rounding algorithms described in the previous

subsection. More precisely, we provide theorems that demonstrate how to

construct the truncated cone C(x′) originating at x′ and how to directionally

round it.

Theorem 4.4.1 Let H be any hyperplane such that H ∩ C(x′) 6= ∅ and

H ∩ conv(Y ) = ∅. Then δ(x(0), C(x′)) = δ(x(0), H ∩ C(x′)).

Proof. By the definition of directional rounding, the fact that the directional

rounding of multiple points relative to the base point x(0) can yield the

same 0–1 solution implies that those points belong to the same sub-space

bounded by the hyperplanes xj = x(0)j. For example, in two dimensions

if the directional rounding of some point A is equal to point (1,1) (i.e.,

δ(x(0), A) = (1, 1)), then A belongs to the sub-space x1 ≥ x(0)1, x2 ≥

x(0)2. In turn, this observation implies that in the case of directionally

rounding a line (rather than a single point), the points that lie on two

consecutive intersections of the line and a hyperplane xj = x(0)j will be

rounded directionally to the same 0-1 point. It is easy to check that the

set {H ∩ C(x′) : H a hyperplane, H ∩ C(x′) 6= ∅, H ∩ conv(Y ) = ∅} equals
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Figure 4.3: Cone C(x’) and points z(h)
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Figure 4.4: Cone C(x’) and points
from set T’

to C(x′). Hence, to prove the theorem it is enough to show that each set

H ∩ C(x′) is intersected by the same hyperplanes xj = x(0)j. However, no

line segment ]x′, y′(h)[ is cut by a hyperplane xj = x(0)j (otherwise, there will

be at least two points on some segment ]x′, y′(h)[ which yield two different

0-1 solutions by directional rounding). If some set H ∩ C(x′) is intersected

by some hyperplane xl = x(0)l then this hyperplane passes through point

x′ and therefore hyperplane xl = x(0)l must intersect all sets H ∩ C(x′)

such that H is a hyperplane, H ∩ C(x′) 6= ∅, H ∩ conv(Y ) = ∅. So, for each

hyperplane H such that H ∩ C(x′) 6= ∅ and H ∩ conv(Y ) = ∅, it follows that

δ(x(0), C(x′)) = δ(x(0), H ∩ C(x′)). �

As consequence of the preceding theorem, we conclude that to directionally

round the truncated cone C(x′) it suffices to round the set of points defined

by the intersection of the cone C(x′) and any hyperplane H disjoint with

conv(Y ). In other words it is possible to reduce the dimension of the set

which is directionally rounded, i.e., instead of rounding C(x′) it suffices to

round the lower dimensional set H ∩ C(x′). Furthermore, the set H ∩ C(x′)

may be directionally rounded very efficiently as we show in the next theorem.
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Theorem 4.4.2 Let H be any hyperplane such that H ∩ C(x′) 6= ∅ and

H ∩ conv(Y ) = ∅. Then the set H ∩C(x′) can be rounded by rounding a finite

number of line segments lying inside the hyperplane H.

Proof. For two points x′ and x′′, we define ∆(x′, x′′) = {x(λ∗j) : x(λ
∗
j) =

x′ + λ∗j(x
′′ − x′), 0 ≤ λ∗j =

x(0)j−x′
j

x′′
j −x′

j
≤ 1}. Let z(h) denotes the point obtained

by the intersection of the hyperplane H with the edge [x′, y′(h)], i.e., z(h) =

[x′, y′(h)] ∩ H. Further, let us denote by Z the set of all z(h) points, i.e.,

Z = {z(h) : h = 1, . . . , |B|} (see Figure 4.3), and define the set of points

T = Z ∪ {∆(z(h), z(h′)) : z(h) and z(h′) are adjacent points}. Let us index

points in the set T yielding T = {t(1), . . . , t(p)} where p = |T |. Then, we

determine new points to be added to the set T , by randomly choosing points

on each extreme edge according to the following rule. Let [z(h), z(h′)] be

an edge and t′(1), . . . , t′(m) points on that edge determined by computing

∆(z(h), z(h′)) such that any open sub-edge ]t′(k), t′(k + 1)[, k = 1, . . . m− 1,

does not contain any other t′(j) point. Then the points from each edge to be

added are chosen as random points wk ∈]t′(k), t′(k+1)[ for k = 0, . . . , m where

t′(0) = z(h) and t′(m+ 1) = z(h′). Adding these points to set T the new set

denoted T ′ is constituted (see Figure 4.4), i.e., T ′ = T∪{wk : k = 0, . . . , m+1}

where {wk : k = 0, . . . , m+1} represents set of all wk points with respect to all

edges. Therefore, we obtain δ(x(0), H ∩ C(x′)) = δ(x(0), {[x, y] : x, y ∈ T ′}).

Indeed, if [a, b] is any line segment from H ∩ C(x′) then there are points

x, y ∈ T ′ such that line segments [a, b] and [x, y] are intersected by the same

hyperplane and therefore δ(x(0), [x, y]) = δ(x(0), [a, b]). More precisely, for

each hyperplane xj = x(0)j , j = 1, . . . , n, which intersects H ∩ C(x′), the set

{wk : k = 0, . . . ,m+ 1} includes points which are from different sides. For

a given line segment we can easily determine another, with endpoints from

{wk : k = 0, . . . , m+1} such that both are intersected by the same hyperplane.

If one or both endpoints of [a, b] are in some hyperplane xj = x(0)j, then

whether or not we consider these points as an intersection of [a, b] and

hyperplane xj = x(0)j, we will be still able to find points x, y such that line

segments [a, b] and [x, y] are intersected by the same hyperplane. �

The previous theorems enable us to organize directional rounding of

P lane(X(B)) in the following way. Choose any extreme point x′ of P lane(X(B))
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Figure 4.5: Polyhedron of LP relaxation

and identify plane conv(Y ), where Y = {y′(h) : h ∈ B} denotes the set of

points y′(h) such that directional rounding of all points from open sub–edge

]x′, y′(h)[ yield the same 0–1 point. Then perform directional rounding of the

truncated cone C(x′) using theorem 4.4.2 and repeat the overall procedure

on Plane(X(B))−C(x′). At each iteration this procedure reduces the size

of a set to be examined in the next iteration, in a fashion that assures the

procedure is convergent.

4.4.3 Illustration of convergence of Scatter Search

In this subsection, we give two examples to illustrate the execution of the

scatter search based on directional rounding. The first example with n = 3

is provided in order to illustrate graphically the process of the Convergent

Scatter Search. The next example with n = 6 used to describe the execution

of the scatter search algorithm step by step.
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Figure 4.6: Plane X(B) before
starting CSS- dotted line represent

cones that will be cut

Figure 4.7: Plane X(B) after cutting
4 cones

Example 4 Consider the following 0–1 mixed integer problem

max z = 1200x1 + 2400x2 + 500x3
s.t. 2x2 + 2x3 ≤ 3

2x1 + 2x2 ≤ 3
−2x1 + 2x2 ≤ 1
2x2 − 2x3 ≤ 1
x1, x2, x3 ∈ {0, 1}.

(4.25)

The LP relaxation polyhedron of this problem is shown in Figure 4.5. The op-

timal solution of the LP relaxation is the point x(0) = (0.5, 1, 0.5) while its ad-

jacent extreme points are x(1) = (0, 0.5, 0), x(2) = (1, 0.5, 0), x(3) = (0, 0.5, 1)

and x(4) = (1, 0.5, 1). The remaining extreme points are (0, 0, 0), (1, 0, 0),

(1, 1, 0) and (0, 0, 1). The region Plane(X(B)) determined by the points

x(1), x(2), x(3) and x(4) is colored blue in Figure 4.5. Now, our procedure

works as follows. First we choose any extreme point x′ of Plane(X(B)),

say x′ = x(1). After that on each of edges [x(1), x(2)] and [x(1), x(4)] we

identify points y(1) and y(2) closest to the x(1) such that y(1)j = x(0)j and

y(2)k = x(0)k for some j and k. In the particular case the point y(1) is

obtained as the intersection of edge [x(1), x(2)] and hyperplane x1 = 0.5,

while the point y2 is the intersection point of edge [x(1), x(3)] and hyperplane

x3 = 0.5 (see Figure 4.6). The cone C(x′) to be directionally rounded is the
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triangle with vertices x′, y(1), y(2). Its directional rounding produces just one

0-1 point (0, 0, 0). In a similar way, we determine and directionally round

cones originating at x(2), x(3), x(4) to obtain points (1, 0, 0), (0, 0, 1), (1, 0, 1).

After eliminating all cones that we directionally rounded, i.e., all parts

of Plane(X(B)) that we have explored, we obtain the plane presented in

Figure 4.7 with extreme points x(1) = (0, 0.5, 0.5), x(2) = (0.5, 0.5, 0),

x(3) = (1, 0.5, 0.5) and x(4) = (0.5, 0.5, 1). Now we choose the point x(1) as

point x′. Its corresponding points y coincide with points x(2) and x(4) and

therefore cone C(x′) is the triangle generated by the vertices x(1), x(2) and

x(4). The directional rounding of the cone C(x′) yields two points (0, 0, 0) and

(0, 0, 1). Similarly, the directional rounding of the non-examined cone C(x(3))

produces two points (1, 0, 0) and (1, 0, 1). This completes our exploration.

The procedure reports solution (1, 0, 1) as optimal. Because of the simplicity

of this problem we did not indicate how we actually performed the directional

rounding of a cone step by step.

In the next example we show how the second variant of Convergent Scatter

Search works.

Example 5

max z = 100x1 + 600x2 + 1200x3 + 2400x4 + 500x5 + 2000x6
s.t.

8x1 + 12x2 + 13x3 + 64x4 + 22x5 + 41x6 ≤ 80
8x1 + 12x2 + 13x3 + 75x4 + 22x5 + 41x6 ≤ 96
3x1 + 6x2 + 4x3 + 18x4 + 6x5 + 4x6 ≤ 20
5x1 + 10x2 + 8x3 + 32x4 + 6x5 + 12x6 ≤ 36
5x1 + 13x2 + 8x3 + 42x4 + 6x5 + 20x6 ≤ 44
5x1 + 13x2 + 8x3 + 48x4 + 6x5 + 20x6 ≤ 48
8x5 ≤ 10
3x1 + 4x3 + 8x5 ≤ 18
3x1 + 2x2 + 4x3 + 8x5 + 4x6 ≤ 22
3x1 + 2x2 + 4x3 + 8x4 + 8x5 + 4x6 ≤ 24
x1, x2, x3, x4, x5, x6 ∈ {0, 1}

(4.26)

The optimal solution of the LP relaxation is the point x(0) = (0, 0, 1, 0.36, 0.12, 1)

with objective function value 4134.74. The extreme points adjacent to x(0)
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are the following 6 points:

x(1) = (1, 0, 1, 0.25, 0.10, 1)

x(2) = (0, 0.92, 1, 0, 0.68, 1)

x(3) = (0, 0, 0, 0.54, 0.19, 1)

x(4) = (0, 0, 1, 0.59, 0.65, 0.36)

x(5) = (0, 0, 1, 0.38, 0, 1)

x(6) = (0, 0, 1, 0.06, 1, 1).

These points are contained in the hyperplane P given by the equation

0.1x1 + 0.18x2 + 0.22x3 + x4 + 0.32x5 + 0.65x6 = 1.26. The optimal vertex

in P w.r.t to the objective function is the point x(5) while remaining ex-

treme points are adjacent to it. The y(h) points on each edge [x(5), x(h)] for

h ∈ {1, 2, 3, 4, 6} are the following 5 points:

y(1) = (0.13, 0, 1, 0.36, 0.01, 1)

y(2) = (0, 0.04, 1, 0.36, 0.03, 1)

y(3) = (0, 0, 0.33, 0.49, 0.12, 1)

y(4) = (0, 0, 1, 0.42, 0.12, 0.88)

y(5) = (0, 0, 1, 0.36, 0.06, 1)

while the best solution obtained by directionally rounding the cone origi-

nating at x(5) and bounded by the face which contains points y(h) is the

point (0, 0, 0, 1, 0, 0) with objective function value of 2400. The hyperplane H

containing points y(h) and x(0) is defined as 0.19x3 + x4 + 0.480x6 = 1.03.

In the second iteration we repeat the overall procedure on the new problem

derived from the staring problem by imposing two cuts, one defined by

hyperplane P which excludes the point x(0) and another defined by hyperplane

H which excludes the point x(5). The optimal solution of the new problem is

the point x(0) = (0, 0.04, 1, 0.36, 0.03, 1) with objective function value 4113.17

and its adjacent extreme points are:

x(1) = (0.14, 0, 1, 0.36, 0.01, 1)

x(2) = (0, 0, 0.33, 0.49, 0.13, 1)

x(3) = (0, 0, 1, 0.42, 0.13, 0.88)

x(4) = (0, 0, 1, 0.36, 0.06, 1)

x(5) = (0, 0.06, 1, 0.36, 0, 1)

x(6) = (0, 0.91, 1, 0, 0.68, 1)

while the hyperplane P that contains them is defined as 0.077x1 + 0.23x2 +
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0.21x3 + x4 + 0.24x5 + 0.61x6 = 1.20. The optimal vertex in P w.r.t to the

objective function is the point x(5) while the remaining extreme points are

adjacent to it. The y(h) points on each edge [x(5), x(h)] for h ∈ {1, 2, 3, 4, 6}

are:

y(1) = (0, 0.04, 0.83, 0.39, 0.03, 1)

y(2) = (0, 0.04, 1, 0.38, 0.03, 0.97)

y(3) = (0, 0.04, 1, 0.36, 0.01, 1)

y(4) = (0, 0.10, 1, 0.35, 0.03, 1)

y(5) = (0.03, 0.04, 1, 0.36, 0.00, 1).

The best solution obtained by directionally rounding the cone C(x(5)) is the

point (0, 1, 1, 0, 0, 1) with objective function value of 3800 which corresponds

to the optimal solution of the original problem. The hyperplane H which

contains the y(h) points is given as 0.31x2 + 0.19x3 + x4 + 0.48x6 = 1.04.

The overall procedure is then repeated on the new problem adding two cuts

as in the previous iteration. However, it should be emphasized that this

small example discloses our convergence method can consume a long time

to establish optimality in spite of finding an optimal solution on the second

iteration. Therefore, we do not illustrate all iterations required to prove

optimality.

4.5 One pass scatter search with directional

rounding

According to the theorems of preceding sections, the search for an optimal

MIP solution xopt may be converted into finding a convex setX ⊂ Face(X(B))

such that xopt ∈ δ(x(0), X) where x(0) is the extreme LP solution associated

with the basis B. Because of the convexity of X it is natural to use the

Scatter Search approach of combining two or more solutions in order to

enhance the quality of current solutions. In our case, we restrict such solution

combinations to convex combinations.

One method for solving MIP that results by combining Scatter search and
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directional rounding may be outlined as follows:

Algorithm 47: Basic Scatter Search with Directional Rounding

BSSDR()

Function BSSDR()

1 Step 1. Choose an LP basis solution x(0);

2 Step 2. Determine an hyperplane H that excludes x(0);

3 Step 3. Select a reference set X ⊆ H ∩X. Then perform directional

rounding by reference to the base point x(0), creating points of the set

X∗ = δ(x(0), X);

4 Step 4. Return x∗ = argmin{cx : x ∈ X∗, x MIP feasible} as a best

solution to MIP.

Before implementing Basic (One-Pass) Scatter Search with directional

rounding, several questions have to be answered, referring to the best way of

choosing the extreme point x(0), the valid cutting plane H and the subset X

of points to be directionally rounded. In the following sections we undertake

to answer these questions through an empirical study.

4.5.1 How to choose LP basis solution x(0)

In order to test the influence of the way in which the LP basis solution

x(0) is chosen we have conducted the following experiment. Firstly, we

generate eleven instances of x(0), consisting of an optimal solution of the

LP–relaxation plus 10 additional LP basic solutions. Let MaxIter equals

the number of iterations performed by the Simplex algorithm of CPLEX to

solve the LP–relaxation to optimality. Then we set the maximum number of

simplex iterations to be performed to MaxLimitk where k ∈ {1, . . . , 10} and

MaxLimitk chosen randomly between 1 and MaxIter − 1. In that way, the

CPLEX LP solver returns 10 different points x(0).

Next we generate the set X as a set of lines connecting the extreme points

adjacent to x(0). Finally, we round directionally each of these lines using

the procedure described in Section 4.2.4 and report the best integer solution

found. The experiment is performed on the first instance which belongs to

the group of instances for multidimensional knapsack problem (MDKP) with

n = 500 and m = 5, taken from OR-Library (see section 4.7). The results are
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presented in Table 4.1. For each of LP basis solution we report the value of

LP solution x(0)k returned by CPLEX (where x(0)0 is the optimal solution of

the LP–relaxation) and value of the best integer solution x∗ found. Further,

in column Dev., we report the percentage deviation of the solution value of

x∗ from the best known value for the tested instance. It appears that better

LP solutions yield better integer solutions. Therefore, we consider our best

choice for x(0) to be an optimal solution of the LP relaxation.

x(0)k MaxLimitk cx(0)k cx∗ Dev
x(0)0 446 120234.92 119920 0.19
x(0)1 41 34041.00 36177 69.89
x(0)2 71 58185.00 60321 49.79
x(0)3 149 106295.27 106377 11.46
x(0)4 153 106656.75 106683 11.21
x(0)5 166 108022.07 107998 10.11
x(0)6 230 113361.49 113185 5.80
x(0)7 252 114835.64 114724 4.51
x(0)8 377 119498.12 119192 0.80
x(0)9 387 119677.19 119403 0.62
x(0)10 428 120160.07 119861 0.24

Table 4.1: Influence of chosen LP extreme point for MKP–5–500–1

4.5.2 How to choose the hyperplane H

Let B be the basis associated with x(0). Then a valid cutting plane H may

be defined as one spanned by points belonging to X(B) = {x(j) = x(0)−

θ∗jDj, j ∈ B}. Clearly, different values of θ
∗
j generate different hyperplanes.

Therefore, we provide several options for setting the values of θ∗j and then

test the influence of the chosen θ∗j values on the solution process.

Hyperplane H1 [93]. The first (basic) option which naturally arises from

the previous discussion is to choose θ∗j values to yield extreme points adjacent

to x(0). However, in the case of degeneracy some of these values may equal 0,

and therefore extreme points corresponding to such θ∗j values will be the same

as x(0) itself. In order to avoid duplication of the extreme point x(0) and to

generate a larger set of reference points we set such θj to a positive value,
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which we have chosen to equal the smallest of the values of those for which

θ∗j that are positive. More precisely, if θ∗j = 0 set θ∗j = min{θ∗k : θ∗k > 0, k ∈ B}.

Hyperplane H2 [93]. Let z′, z∗ and z(0) respectively denote the optimum

LP value, the value of the best known solution and the objective value of the

extreme point x(0). Further, let rj denote the reduced cost associated with the

non basic variable indexed by j ∈ B. Now, for each point x(j) = x(0)− θ∗jDj

we can calculate the value z(j) of the objective function at x(j) as:

z(j) = z(0)− θ∗jDjjrj, j ∈ B, (4.27)

where Djj represents the value of j
th entry in the vector Dj , which corresponds

to the nonbasic variable xj and which is 1 or −1 depending on whether the

non-basic variable is at its upper or lower bound. The value of θ∗j is deduced

from (4.27) by setting z(j) equal to one of the predefined values z+ or z−

depending on whether Djjrj < 0 or not. The values of z+ and z− are defined

according to whether z∗ ≥ z(0), as follows:

❼ if z∗ ≥ z(0): z+ = z∗ + β(z′ − z(0)) and z− = z(0)− β(z′ − z(0))

❼ if z∗ < z(0): z+ = z(0) + β(z′ − z(0)) and z− = z∗ − β(z′ − z(0))

where β is a scalar parameter in the interval ]0, 1[. In our implementation we

set β = 0.3.

Hyperplane H3 [93]. The hyperplane H3 is obtained from the option

to generate the hyperplane H2 by repairing the feasibility of each infeasible

point produced. The feasibility of each infeasible point x(j) is repaired by

setting θj to the greatest value such that the lower and upper bounds of all

variables are satisfied. In other words, feasibility is repaired by moving each

infeasible point to the closet extreme point that belongs to the line segment

[x(0), x(j)].

In order to test the performances of these three options we implemented

three variants of One Pass Scatter Search with Directional Rounding. Each of

these variants has been developed according to the steps presented in section

4.5, using different ways of determining θ∗j values (and therefore determining
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different X(B̄) sets). According to the option which is used for determining

θ∗j values, these three variants are named SP H1, SP H2 and SP H3. Each

algorithm SP Hk starts by solving the LP relaxation problem to obtain x(0)

and then determines the set X(B̄) relative to the optimal solution of the

LP relaxation and the chosen option for determining θ∗j . Then directional

rounding is performed on each point belonging to the line segment [x, y],

x, y ∈ X(B̄) as well as on each point from the line segment [x, z] where

x ∈ X(B̄) and z is the center of gravity of the remaining points in X(B̄)

(different from x). In order to do better, in the case where one of options 1 or

3 is used for determining θ∗j values, each line segment [x, z] is extended to the

boundary of the feasible region, i.e., [x, z] ⊂ [x, t], t–boundary point, and after

that each point from the line segment [x, t] is directionally rounded. In the

case when option 2 is used for determining θ∗j values, such an extension is not

performed because it might happen that both points, x and z, are infeasible

and therefore Line(x, z) will not intersect the feasible region. The reason

why we include line segments which passes through the point z is provided in

Corollary 4.2.10. This theorem states that the directional rounding of two

line segments, whose endpoints belong to the same rays starting at x(0),

yields the same set of 0–1 solutions.

The numerical experiments have been carried out on 30 instances for

multidimensional knapsack problem with n = 500 and m = 5 (see section

4.7). The obtained results are presented in Table 4.2. For each variant, we

report the value of the best solution found (Column cx∗), the average value

of all feasible solutions met during its execution (Column Avg) and the CPU

time in seconds which corresponds to the total execution CPU time of the

procedure (Column Time). Regarding the overall average value of all solutions

encountered it appears that the procedure SP H3 is best. However, SP H2 is

the fastest method in terms of the average CPU time consumed. Our results

show that all variants offer the same solution as the best and hence it follows

that directional rounding of some boundary point of each hyperplane yields

that solution.
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StarPath
instance cx∗ SP H1 SP H2 SP H3

Avg. Time Avg. Time Avg. Time
1 119920 118913.8 32.2 118928.0 28.1 118913.4 32.5
2 117652 115977.3 34.1 115975.4 30.1 115977.3 34.4
3 120958 118815.2 34.8 118958.1 31.0 118811.0 35.2
4 120695 119268.8 32.8 119246.1 29.0 119269.6 33.1
5 122061 120658.1 32.8 120655.9 28.9 120657.7 33.1
6 121776 120401.2 33.2 120400.8 29.1 120401.2 33.4
7 118997 117884.5 32.2 117884.5 28.3 117884.5 32.6
8 120335 119128.4 32.4 119119.8 28.3 119128.4 32.6
9 121287 119854.8 33.1 119855.9 29.2 119854.8 33.3
10 120509 119012.9 32.9 119029.3 28.8 119012.5 33.1
11 218252 176805.0 34.5 202104.4 30.0 176795.2 34.7
12 221027 187821.0 35.6 218816.2 30.8 187828.8 35.9
13 217304 170189.7 34.2 161414.3 29.9 170184.2 34.8
14 223343 192930.8 33.7 213995.7 29.3 192960.6 34.0
15 218806 179357.0 33.9 208388.1 28.9 179426.5 34.0
16 220324 170050.0 34.3 164525.2 28.4 170008.7 33.3
17 219914 179786.8 34.2 174866.0 29.9 179756.2 34.5
18 218041 187873.7 34.1 178300.4 29.9 187859.4 34.3
19 216790 185429.3 33.8 173864.7 29.4 185416.0 34.1
20 219652 197396.0 34.4 197543.2 30.1 197406.9 34.5
21 295745 180607.4 33.8 160295.9 29.1 180703.2 34.2
22 307962 198753.6 33.7 163204.8 28.8 198695.5 34.7
23 299694 192086.7 34.6 166511.5 29.7 191988.0 34.9
24 306335 188726.3 34.0 166301.6 29.0 188705.2 34.3
25 300265 192278.0 35.2 159237.1 30.5 192425.1 35.5
26 302433 183770.0 33.4 160240.5 28.1 183720.1 33.6
27 301193 184915.8 35.6 157318.4 30.4 184890.4 35.8
28 306286 186903.8 34.4 163453.9 29.5 186989.7 34.7
29 302696 184193.2 33.7 154059.9 28.6 184143.6 33.8
30 299859 191705.7 33.9 159687.4 28.8 191975.8 34.0

Avg. 214003.70 163383.16 33.84 156472.76 29.33 163392.99 34.10

Table 4.2: Computational results on 30 instances of MKP with n = 500 and
m = 5

4.5.3 How to choose the reference set X

Similarly, just as there are several ways to determine the set X(B) there are

also several ways to choose the reference set X, which is to be directionally

rounded. As already shown, we have an efficient procedure for rounding lines

and consequently we will only consider the reference set X as a set of lines

belonging to Face(X(B)) that will be directionally rounded. Therefore, we

characterize set X as X = {[x′, x′′] : x′, x′′ ∈ X̃} where set X̃ represents a

set of points from Face(X(B)). Now, it is obvious that the set X is directly

correlated with set X̃. Thus since X̃ may be determined in several different

ways, we also have several different sets X of lines to be directionally rounded.
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Reference set X1 [93]. The first and natural choice is given by X̃ = X̃1 as

the set of extreme points of Face(X(B)). In that case, if Face(X(B)) has

n extreme points, the set denoted by X1 will contain O(n2) lines and the

endpoints of these lines will be the extreme points of Face(X(B)).

Reference set X2. The reference set X̃1 can be extended by adding points

that belong to the extreme rays of Face(X(B)) and which have at least

on coordinate equal to the corresponding coordinate of x(0). More pre-

cisely, for each pair x′, x′′ ∈ X̃1 the points to be added from each segment

[x′, x′′] are determined as points x(λ) = x′ + λ(x′′ − x′) such that xj = x∗j
for some j ∈ N . From Lemma 4.2.5 follows that the λ values that corre-

spond to points to be added are actually λ∗
j values given as λ∗

j =
x∗
j−x′

j

x′′
j −x′

j
for

j ∈ N 6=(x′, x′′) = {j ∈ N : x′′j 6= x′j} which belongs to the interval ]0, 1[. Hence,

the extended set X̃2 = X̃1 ∪ {x′ + λ∗
j(x

′′ − x′) : x′, x′′ ∈ X̃1, j ∈ N 6=(x′, x′′)}

and the set X will be denoted by X2 = {[x, y] : x, y ∈ X̃2}. The motivation

for extending set X̃1 relies not only on the fact that a larger set X̃1 affords a

higher probability of achieving good solutions but also on the fact that if the

set X̃1 is extended as previously described, the interior of Face(X(B)) will

be explored more effectively. For example, if Face(X(B)) is a simplex then

without extending set X̃1 we will explore just the boundary of Face(X(B)).

Also, the decision to extend set X̃1 in this way is motivated by the fact that

the added points represent switching points on each boundary edge, as was

shown in Theorem 4.2.1. Further, it should be emphasized that if the set

X is determined relative to the set X̃2, the one pass heuristic resembles the

procedure used for rounding a cone within the Convergent Scatter Search

algorithm.

Reference set X3. Rounding all lines with endpoints from X̃2 may be

highly time consuming since the number of lines to be rounded is O(n6) in

the worst case. However, the number of lines to be rounded may be reduced

drastically if we omit rounding the lines for which at least one endpoint is

not extreme point of Face(X(B)). The resulting set of lines is denoted by

X3, and the total number of lines to be rounded becomes O(n4).

As, suggested in Glover [93] both sets X̃k could be augmented by adding to

them the point that corresponds to the center of gravity of points from the

set X̃k as well as all centers of gravity of subsets consisting of |X̃k| − 1 points
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from set X̃k.

In order to test these three possibilities for generating set X we imple-

mented three One Pass Scatter Search with Directional Rounding heuristics

following steps of Algorithm 47. The ways of choosing a point x(0) and a hy-

perplane H are the same for all of them. The LP basis solution x(0) is chosen

as an optimal solution of LP relaxation, while hyperplane H corresponds to

the hyperplane spanned by the extreme points adjacent to x(0). The only

difference among them is the set X which is directionally rounded. According

to the set which is used as X, those three variants are referred as: SP X1,

SP X2 and SP X3. The numerical experiments have been, again, performed

on 30 instances for multidimensional knapsack problems with n = 500 and

m = 5 (see section 4.7). Because of the CPU time consumed by one pass

heuristic when X is equal to either X2 or X3, we have imposed the time limit

of 100 seconds in the case X = X2 and 60 seconds in the case X = X3. How-

ever, in order to achieve better integer solutions within an imposed time limit

we sort the extreme points adjacent to x(0) in descending order according to

their objective values. Therefore, during the directionally rounding process

we give priority to lines whose endpoints have greater objective values. The

results obtained during these experiments are presented in Table 4.3. For

each tested variant we report the best integer solution value found (Column

cx∗), the time when it is found (Column time) as well as the total consumed

time (Column total time). As expected, heuristics SP X2 and SP X3 are

slower then the heuristic SP X1. However, on average, heuristic SP X2 offers

slightly worse solutions than the other two variants. The reason is that the

variants that use X2 and X3 directionally round a greater number of lines

than the variant using X1 and thus consume a greater amount of CPU time.

On the other hand, the greater number of lines that are rounded, the greater

the probability of finding a good solution. This fact explains why the variant

which uses X2 is capable of finding better solutions than the others.
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ins. SP X1 SP X2 SP X3

no cx∗ time total time cx∗ time total time cx∗ time total time
1 119920 12.2 13.1 119968 91.5 100.4 119936 59.6 60.0
2 117652 0.1 23.3 117746 10.4 100.7 117725 3.5 60.0
3 120958 0.1 24.5 120998 43.1 100.4 120962 25.0 60.0
4 120695 14.3 17.8 120695 26.2 100.4 120695 0.1 60.0
5 122061 11.2 16.4 122181 61.6 100.3 122163 36.3 60.0
6 121776 2.5 18.1 121910 17.6 100.4 121869 0.0 60.0
7 118997 3.1 13.4 119021 90.4 100.4 119021 50.3 60.0
8 120335 11.6 14.1 120465 2.2 100.4 120467 30.5 60.0
9 121287 16.7 18.9 121364 11.0 100.5 121371 57.3 60.0
10 120509 13.1 16.5 120579 73.0 100.4 120621 57.1 60.0
11 218252 20.0 22.1 218292 71.8 100.3 218271 57.7 60.0
12 221027 19.7 23.9 221085 24.9 100.6 221038 33.5 60.0
13 217304 0.0 19.3 217436 43.2 100.4 217364 59.4 60.0
14 223343 0.1 18.2 223450 90.8 100.6 223450 29.4 60.0
15 218806 0.1 15.9 218901 41.6 100.2 218862 49.7 60.0
16 220324 6.4 13.4 220421 5.6 100.4 220376 0.2 60.0
17 219914 21.3 21.6 219914 9.7 100.4 219918 18.3 60.0
18 218041 16.1 18.4 218132 10.8 100.3 218100 30.8 60.0
19 216790 8.9 17.7 216907 5.9 100.5 216836 30.5 60.0
20 219652 13.9 18.3 219667 58.3 100.3 219590 0.0 60.0
21 295745 9.6 13.4 295745 1.8 100.2 295745 12.6 60.0
22 307962 7.5 14.7 307974 85.3 100.2 307962 2.7 60.0
23 299694 0.2 19.2 299740 17.3 100.5 299694 2.5 60.0
24 306335 5.5 16.6 306377 24.8 100.4 306335 1.5 60.0
25 300265 9.7 21.0 300268 62.5 100.5 300226 5.7 60.0
26 302433 0.0 13.2 302517 31.6 100.2 302439 28.4 60.0
27 301193 0.1 21.1 301262 54.6 100.7 301233 58.4 60.0
28 306286 7.2 15.6 306349 87.2 100.3 306336 18.7 60.0
29 302696 9.7 12.6 302736 71.7 100.2 302696 3.9 60.0
30 299859 0.0 12.7 299859 1.6 100.4 299859 0.0 60.0

Avg. 214003.70 8.03 17.49 214065.30 40.93 100.40 214038.67 25.46 60.00

Table 4.3: Testing different options for choosing set X

4.6 Convergent scatter search with directional

rounding as a heuristic

In this section we provide one way in which the Convergent Scatter search

with directional rounding presented in Section 4.4 may be used as a heuristic.

Instead of repetitively exploiting the entire hyperplane, one can stop execution

of the algorithm after a predefined number of iterations. In that way, the

optimality of the obtained solution can not be guaranteed but we are motivated

to investigate whether such a solution may nevertheless be of high quality.

The heuristic we propose is quite simple. It starts choosing an extreme point

of a LP polyhedron, determines a hyperplane spanned by the extreme points

adjacent to the previously chosen extreme point and directionally rounds
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each corner of the hyperplane thus determined. The best solution found is

reported as a solution of the input problem. However, depending on problem

complexity, sometimes even directional rounding of one corner may be so time

expensive and therefore some time limit on directional rounding of a corner

must be imposed. Also, directional rounding of all corners sometimes is time

wasting, and in this case it can be better to round just some small number

of corners, selecting the k best corners to be directionally rounded as those

originating at the k best extreme points of a given hyperplane. Note that

such an approach can be easily parallelized, rounding several corners at once.

We have tested the performance of this approach on small as well as

large scale multidimensional knapsack problems. For small problems each

corner is rounded without any time limit, while for large scale problems 100

corners are rounded with the time limit for rounding a corner set to 1 second.

The description of small problems is presented in Table 4.4. For each small

problem values of n and m are provided as well as the optimum value. These

problems have been taken from the OR-library. The large scale problems are

same as those used in previous tests and consist of 30 instances for MDKP

with n = 500 and m = 5. The results obtained are compared against those

obtained on same problems by three different options, previously described,

for choosing set X in the hyperplane spanned by extreme points adjacent to

an optimal solution of the LP relaxation. For each heuristic we report the

best solution value found (Column cx∗) as well as the time taken to find that

solution (Column time).

The results obtained on small instances (Table 4.4) give the following

ranking of the heuristics according to the number of optimal solutions found.

Heuristic SP X2 is the best since it succeeds in solving 6 out of 7 instances

to optimality. The second place heuristic derives from convergent scatter

search (HCSS) and the SP X3 heuristic, both of which succeeded in solving

4 instances to optimality. Finally, the last place heuristic turned to be SP X1

heuristic which succeeded in solving just 3 instances to optimality.

Comparing the average results obtained on larger instances (Table 4.5)

yields the following ranking. The best performing heuristic again is SP X2,

the second best is the heuristic derived from convergent scatter search, while

the third best is the SP X3 heuristic. Finally, the last place again is taken
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by SP X1. Regarding average computational time the SP X1 heuristic

significantly outperforms all the others. The second fastest option is the

SP X3 heuristic, while heuristics SP X2 and HCSS are the slowest.

no n m optimal SP X1 SP X2 SP X3 HCSS
1 6 10 3800 3800 3800 3800 3700
2 10 10 8706.1 8650.1 8706.1 8687.5 8706.1
3 15 10 4015 4015 4015 4015 4015
4 20 10 6120 6120 6120 6120 6110
5 28 10 12400 12380 12400 12380 12400
6 39 5 10618 10587 10618 10618 10618
7 50 5 16537 16440 16504 16499 16499

Table 4.4: Comparison on small problems

no SP X1 SP X2 SP X3 HCSS
instance cx∗ time cx∗ time cx∗ time cx∗ time

1 119920 12.2 119968 91.5 119936 59.6 119968 37.3
2 117652 0.1 117746 10.4 117725 3.5 117746 3.5
3 120958 0.1 120998 43.1 120962 25.0 120998 9.6
4 120695 14.3 120695 26.2 120695 0.1 120591 79.8
5 122061 11.2 122181 61.6 122163 36.3 122157 9.8
6 121776 2.5 121910 17.6 121869 0.0 121918 65.1
7 118997 3.1 119021 90.4 119021 50.3 119021 38.1
8 120335 11.6 120465 2.2 120467 30.5 120457 96.6
9 121287 16.7 121364 11.0 121371 57.3 121507 63.3
10 120509 13.1 120579 73.0 120621 57.1 120555 91.8
11 218252 20.0 218292 71.8 218271 57.7 218261 76.4
12 221027 19.7 221085 24.9 221038 33.5 221085 7.8
13 217304 0.0 217436 43.2 217364 59.4 217429 90.5
14 223343 0.1 223450 90.8 223450 29.4 223450 28.6
15 218806 0.1 218901 41.6 218862 49.7 218884 21.5
16 220324 6.4 220421 5.6 220376 0.2 220394 10.0
17 219914 21.3 219914 9.7 219918 18.3 219786 37.9
18 218041 16.1 218132 10.8 218100 30.8 218094 76.4
19 216790 8.9 216907 5.9 216836 30.5 216839 1.4
20 219652 13.9 219667 58.3 219590 0.0 219624 1.1
21 295745 9.6 295745 1.8 295745 12.6 295696 19.6
22 307962 7.5 307974 85.3 307962 2.7 308019 23.6
23 299694 0.2 299740 17.3 299694 2.5 299714 6.8
24 306335 5.5 306377 24.8 306335 1.5 306369 17.3
25 300265 9.7 300268 62.5 300226 5.7 300262 74.5
26 302433 0.0 302517 31.6 302439 28.4 302467 22.5
27 301193 0.1 301262 54.6 301233 58.4 301246 64.1
28 306286 7.2 306349 87.2 306336 18.7 306349 100.5
29 302696 9.7 302736 71.7 302696 3.9 302736 79.5
30 299859 0.0 299859 1.6 299859 0.0 299859 23.4

Avg. 214003.70 8.03 214065.30 40.93 214038.67 25.46 214049.37 42.61

Table 4.5: Comparison on large scale problems



CHAPTER 4. SCATTER SEARCH FOR 0–1 MIP 215

4.7 Comparison of solutions returned by heuris-

tics and best known solutions

The multidimensional knapsack problem (MKP) is a special case of a 0–1

mixed integer program and is known to be NP–hard. This problem has

been widely studied in the literature, and efficient exact and approximate

methods have been developed for obtaining optimal or near–optimal solutions,

including very effective methods by Hanafi and Fréville (1998) [110], Vasquez

and Hao (2001) [216], Vasquez and Vimont (2005) [217], Hanafi and Wilbaut

(2008) [111], Boussier et al. (2010) [22], Khemakhem et al. (2012) [143].

Most of the best-known solutions for the set of MDKP instances available in

the OR-Library [17] were obtained by Vasquez and Hao (2001), Vasquez and

Vimont (2005) and Hanafi and Wilbaut (2008). A comprehensive annotated

bibliography of exact and approximate algorithms for (MKP) appears in

Fréville and Hanafi (2005) [79] and Wilbaut et al. (2008) [222].

In Table 4.6, we compare the quality of solutions obtained by three

variants of One Pass scatter search heuristic with the directional rounding

heuristics SP X1, SP X2, SP X3 and HCSS. For testing purposes, we

used 30 instances of the multidimensional knapsack problem with n = 500

and m = 5. The solution quality returned by each heuristic is measured as

the percentage deviation from the corresponding best-known solution values

and these results are presented in Columns Dev. The results show that all

heuristics succeed in finding high quality solutions. The average gap between

the solution value returned by several heuristics and best known solution

value is not greater than 0.10%. Moreover, every heuristic attains this level

of performance for at least 20 instances. Regarding the deviations achieved

over solving all instance, heuristic SP X1 has a maximum deviation of 0.24%,

SP X2 has a maximum deviation of 0.17%, while heuristics SP X3 and

HCSS have maximum deviations of 0.18%.
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no best SP X1 SP X2 SP X3 HCSS
instance known cx∗ dev(%) cx∗ dev(%) cx∗ dev(%) cx∗ dev(%)

1 120148 119920 0.19 119968 0.15 119936 0.18 119968 0.15
2 117879 117652 0.19 117746 0.11 117725 0.13 117746 0.11
3 121131 120958 0.14 120998 0.11 120962 0.14 120998 0.11
4 120804 120695 0.09 120695 0.09 120695 0.09 120591 0.18
5 122319 122061 0.21 122181 0.11 122163 0.13 122157 0.13
6 122024 121776 0.20 121910 0.09 121869 0.13 121918 0.09
7 119127 118997 0.11 119021 0.09 119021 0.09 119021 0.09
8 120568 120335 0.19 120465 0.09 120467 0.08 120457 0.09
9 121575 121287 0.24 121364 0.17 121371 0.17 121507 0.06
10 120717 120509 0.17 120579 0.11 120621 0.08 120555 0.13
11 218428 218252 0.08 218292 0.06 218271 0.07 218261 0.08
12 221202 221027 0.08 221085 0.05 221038 0.07 221085 0.05
13 217542 217304 0.11 217436 0.05 217364 0.08 217429 0.05
14 223560 223343 0.10 223450 0.05 223450 0.05 223450 0.05
15 218966 218806 0.07 218901 0.03 218862 0.05 218884 0.04
16 220530 220324 0.09 220421 0.05 220376 0.07 220394 0.06
17 219989 219914 0.03 219914 0.03 219918 0.03 219786 0.09
18 218215 218041 0.08 218132 0.04 218100 0.05 218094 0.06
19 216976 216790 0.09 216907 0.03 216836 0.06 216839 0.06
20 219719 219652 0.03 219667 0.02 219590 0.06 219624 0.04
21 295828 295745 0.03 295745 0.03 295745 0.03 295696 0.04
22 308086 307962 0.04 307974 0.04 307962 0.04 308019 0.02
23 299796 299694 0.03 299740 0.02 299694 0.03 299714 0.03
24 306480 306335 0.05 306377 0.03 306335 0.05 306369 0.04
25 300342 300265 0.03 300268 0.02 300226 0.04 300262 0.03
26 302571 302433 0.05 302517 0.02 302439 0.04 302467 0.03
27 301339 301193 0.05 301262 0.03 301233 0.04 301246 0.03
28 306454 306286 0.05 306349 0.03 306336 0.04 306349 0.03
29 302828 302696 0.04 302736 0.03 302696 0.04 302736 0.03
30 299910 299859 0.02 299859 0.02 299859 0.02 299859 0.02

Avg. 214168.4 214003.7 0.10 214065.3 0.06 214038.7 0.07 214049.4 0.07

Table 4.6: Comparison with best known solutions

4.8 Concluding remarks

In this chapter, the Convergent Scatter Search with directional rounding

for solving 0–1 MIP problems is introduced for the first time. The idea for

using Scatter search as a method for exploring points on the imposed cutting

plane is justified by proving theorems which show that the cutting plane

contains a polyhedral region which produces all feasible 0–1 solutions by

directional rounding. To carry out directional rounding relative to a line

segment, an efficient method is used. The work of Convergent Scatter Search

has been demonstrated on small examples. Additionally, two variants of the

implementation of Convergent Scatter Search have been described.

Additionally, we propose several heuristics for solving 0–1 MIP which
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combine Scatter search and directional rounding. Accompanying this, an

exhaustive empirical study is performed in order to find the best choice rules

for producing a One-Pass directional rounding heuristic. In addition, we

propose a heuristic derived from the Convergent Scatter search procedure and

compare it with the other heuristics. Our findings demonstrate the efficacy of

these first stage methods, which makes them attractive for use in situations

where very high quality solutions are sought with an efficient investment of

computational effort.

All of proposed methods can be easily parallelized to execute several tasks

simultaneously. For example, in heuristics derived from Convergent Scatter

Search with directional rounding, multiple cones originating at different

extreme points can be directionally rounded at once. Similarly, in One-Pass

Scatter Search with directional rounding several lines can be directionally

rounded in parallel. Future work will include the parallelization of the

proposed methods, their testing on other 0–1 MIP problems, as well as their

extension to heuristics for general MIP problems. More advanced forms of

the Scatter Search with directional rounding methods, which place increased

emphasis on the ability to find globally best solutions by investing more

extensive effort, will be the topic of a sequel.



Chapter 5

Concluding remarks

In this thesis we presented several practical and theoretical contributions

to Variable Neighborhood Search (VNS) and Scatter Search metahuerstics

as well as matheuristics (approaches that combine ideas of mathematical

programming and metaheuristics). The contributions regarding Variable

neighborhood search, as presented in Chapter 2, include new VNS variants

as well as several efficient VNS based heuristics for solving eight NP-hard

problems arising in transportation, logistic, scheduling, power generation and

clustering. Moreover, for each of considered problems the proposed VNS

heuristics turned out to be the new state-of-the-art heuristic approaches. Such

performances of VNS heuristics as well as a wide range of tackled problems

undoubtedly indicate that VNS is very powerful tool for solving optimization

problems.

The contributions on matheuristic approaches have been presented in

Chapter 3. Namely, we present two efficient approaches for creating an

initial solution for a MIP problem as well as several hybrid approaches for

solving Multicommodity Fixed-Charge Network Design (MCND) problem. In

particular, for finding initial feasible solutions of mixed integer programs we

proposed two heuristics named variable neighborhood diving (VN diving) and

single neighborhood diving (SN diving). The proposed heuristics are based

on systematic hard variable fixing (i.e., diving) in order to generate smaller

subproblems whose feasible solution (if one exists) is also feasible for the

original problem. VN diving, follows the principles of variable neighborhood

decomposition search and uses pseudo-cuts which. are added during the

search process in order to prevent exploration of already visited search space

areas. On the other hand, SN diving explores only one neighborhood in each

iteration. However, it uses a sophisticated mechanism to avoid the already

visited solutions.

218
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For solving Multicommodity Fixed-Charge Network Design (MCND) problem

we proposed several heuristics that combine ideas of solving (optimally or

near optimally) a series of small sub-problems obtained from a series of linear

programming relaxations and ideas of Slope Scaling heuristics within the

search for an optimal solution of a given problem. In particular we show that

ideas of a convergent algorithm based on the LP-relaxation and pseudo-cuts

may be successfully used to guide Slope Scaling heuristic during the search

for an optimal (or near-optimal) solution and vice-versa. The computational

results, obtained on the benchmark instances from the literature demonstrate

the efficiency of the proposed matheuristics for MCND.

Chapter 4 is devoted to the contributions on Scatter Search metaheuristic.

Building on properties of directional rounding as a mapping from continuous

to discrete (binary) space and those of the solution space of 0-1 MIP in

Chapter 4 we propose Convergent Scatter Search with directional rounding

for solving 0–1 MIP problems. The key properties that are exploited within

Convergent Scatter Search with directional rounding algorithm are the fact

that directional rounding of a line, as embodied in a Star Path, contains a

finite number of distinct 0–1 points and existence of the cutting plane that

contains a polyhedral region which produces all feasible 0–1 solutions by

directional rounding. More precisely, these properties enable us to organize

the search for an optimal solution of 0–1 MIP problems using Scatter Search

in association with both cutting plane and extreme point solution approaches.

The proposed convergent algorithm is accompanied by the proof of its finite

convergence as well as by two variants of its implementation and examples

that illustrate the running of the approach. Starting from this exact approach

and taking into account established properties of the solution space of 0-1

MIP we propose several heuristics for solving 0–1 MIP which combine Scatter

search and directional rounding. The proposed heuristics are actually first

stage implementations which aim is to establish the power of the methods in

a simplified form. Thus, an exhaustive empirical study, in order to find the

best ingredients of a such one method, as well as a computational testing on

a test bed of 0-1 MIP problems, in order to disclose the merit of the proposed

approaches, have been performed. Our findings demonstrate the efficacy of

these first stage methods, which makes them attractive for use in situations
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where very high quality solutions are sought with an efficient investment of

computational effort.

The work presented in this thesis give us several future work directions.

For example, efficiency of VNS heuristics presented in Chapter 2 represents

good starting point for developing new VNS based methods for problems

similar to ones presented in that chapter. Also, some problems presented in

that chapter may be easily extended in the natural way taking into account

practical considerations. For example, traveling salesman problem with draft

limits and attractive traveling salesman problem may be extended to the ones

with time windows (adding time windows constraints to the nodes), minimum

sum-of-squares clustering on networks may be extended to the constrained

minimum sum-of-squares clustering on networks (taking in to account must-

link and cannot-link constraints on the elements, or a hierarchy which must

be preserved in the clusters obtained), periodic maintenance problem may

be generalized for example allowing service of more than one machine in

each time period etc. Further, the work presented in Chapter 4 shows how

generic heuristics for mathematical programming can be turned into complete

solution methods. Since, such results are relatively rare in the literature, the

interesting research direction may be developing novel heuristic techniques

based on adaptations of such algorithms. Additionally, parallelization of

the methods (exact and heuristic) in Chapter 4, their extension to methods

for general MIP problems, and development of their more advanced forms

seem as promising research directions. The quality of results obtained by

the matherutistics developed in Chapter 3 indicates that the development

of matheuristics based on hard variable fixing for mixed integer non-linear

programming may be promising research area. Further, the matheuristic

proposed in Chapter 3 for solving MCND seems as a good starting point for

developing new Iterative linear programming-based heuristics that include

some ideas of existing exact and heuristic approaches either for MCND or

the problems related to it.
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[110] S. Hanafi and A. Fréville. An Efficient Tabu Search Approach for the 0-1
Multidimensional Knapsack Problem. European Journal of Operational
Research, 106:659–675, 1998.

[111] S. Hanafi and C. Wilbaut. Scatter search for the 0-1 multidimensional
knapsack problem. Journal of Mathematical Modelling and Algorithms,
7:143–159, 2008.

[112] S. Hanafi and C. Wilbaut. Improved convergent heuristics for the 0-1
multidimensional knapsack problem. Annals OR, 183:125–142, 2011.
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Global k-Means, an Incremental Heuristic for Minimum Sum-of-Squares
Clustering. Journal of Classification, 22:287–310, 2005.
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Adaptive general variable neighborhood search heuristics for solving
unit commitment problem. Interanational Journal of Electrical Power
and Energy Systems, submitted, 2014.
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