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networks. 
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology
and Electrical Engineering, Department of Communications Engineering; Centre for Wireless
Communications; Infotech Oulu
Acta Univ. Oul. C 541, 2015
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

This thesis focuses on the design of coordinated downlink beamforming techniques for wireless
multi-cell multi-user multi-antenna systems. In particular, cellular and cognitive radio networks
are considered. In general, coordinated beamforming schemes aim to improve system
performance, especially at the cell-edge area, by controlling inter-cell interference. In this work,
special emphasis is put on practical coordinated beamforming designs that can be implemented in
a decentralized manner by relying on local channel state information (CSI) and low-rate backhaul
signaling. The network design objective is the sum power minimization (SPMin) of base stations
(BSs) while providing the guaranteed minimum rate for each user.

Decentralized coordinated beamforming techniques are developed for cellular multi-user
multiple-input single-output (MISO) systems. The proposed iterative algorithms are based on
classical primal and dual decomposition methods. The SPMin problem is decomposed into two
optimization levels, i.e., BS-specific subproblems for the beamforming design and a network-wide
master problem for the inter-cell interference coordination. After the acquisition of local CSI, each
BS can independently compute its transmit beamformers by solving the subproblem via standard
convex optimization techniques. Interference coordination is managed by solving the master
problem via a traditional subgradient method that requires scalar information exchange between
the BSs. The algorithms make it possible to satisfy the user-specific rate constraints for any
iteration. Hence, delay and signaling overhead can be reduced by limiting the number of
performed iterations. In this respect, the proposed algorithms are applicable to practical
implementations unlike most of the existing decentralized approaches. The numerical results
demonstrate that the algorithms provide significant performance gains over zero-forcing
beamforming strategies.

Coordinated beamforming is also studied in cellular multi-user multiple-input multiple-output
(MIMO) systems. The corresponding non-convex SPMin problem is divided into transmit and
receive beamforming optimization steps that are alternately solved via successive convex
approximation method and the linear minimum mean square error criterion, respectively, until the
desired level of convergence is attained. In addition to centralized design, two decentralized
primal decomposition-based algorithms are proposed wherein the transmit and receive
beamforming designs are facilitated by a combination of pilot and backhaul signaling. The results
show that the proposed MIMO algorithms notably outperform the MISO ones.

Finally, cellular coordinated beamforming strategies are extended to multi-user MISO
cognitive radio systems, where primary and secondary networks share the same spectrum. Here,
network optimization is performed for the secondary system with additional interference
constraints imposed for the primary users. Decentralized algorithms are proposed based on primal
decomposition and an alternating direction method of multipliers.

Keywords: backhaul information exchange, convex optimization, coordinated beamforming,
decentralized processing, interference coordination, multi-cell multi-user MIMO system, pilot
signaling, sum power minimization, transceiver design
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Tiivistelmä
Tämä väitöskirja keskittyy yhteistoiminnallisten keilanmuodostustekniikoiden suunnitteluun
langattomissa monisolu- ja moniantennijärjestelmissä, erityisesti solukko- ja kognitiiviradiover-
koissa. Yhteistoiminnalliset keilanmuodostustekniikat pyrkivät parantamaan verkkojen suoritus-
kykyä kontrolloimalla monisoluhäiriötä, erityisesti tukiasemasolujen reuna-alueilla. Tässä työs-
sä painotetaan erityisesti käytännöllisten yhteistoiminnallisten keilanmuodostustekniikoiden
suunnittelua, joka voidaan toteuttaa hajautetusti perustuen paikalliseen kanavatietoon ja tukiase-
mien väliseen informaationvaihtoon. Verkon suunnittelutavoite on minimoida tukiasemien koko-
naislähetysteho samalla, kun jokaiselle käyttäjälle taataan tietty vähimmäistiedonsiirtonopeus.

Hajautettuja yhteistoiminnallisia keilanmuodostustekniikoita kehitetään moni-tulo yksi-lähtö
-solukkoverkoille. Oletuksena on, että tukiasemat ovat varustettuja monilla lähetysantenneilla,
kun taas päätelaitteissa on vain yksi vastaanotinantenni. Ehdotetut iteratiiviset algoritmit perus-
tuvat klassisiin primaali- ja duaalihajotelmiin. Lähetystehon minimointiongelma hajotetaan kah-
teen optimointitasoon: tukiasemakohtaisiin aliongelmiin keilanmuodostusta varten ja verkkota-
son pääongelmaan monisoluhäiriön hallintaa varten. Paikallisen kanavatiedon hankkimisen jäl-
keen jokainen tukiasema laskee itsenäisesti lähetyskeilansa ratkaisemalla aliongelmansa käyttä-
en apunaan standardeja konveksioptimointitekniikoita. Monisoluhäiriötä kontrolloidaan ratkaise-
malla pääongelma käyttäen perinteistä aligradienttimenetelmää. Tämä vaatii tukiasemien välistä
informaationvaihtoa. Ehdotetut algoritmit takaavat käyttäjäkohtaiset tiedonsiirtonopeustavoit-
teet jokaisella iterointikierroksella. Tämä mahdollistaa viiveen pienentämisen ja tukiasemien
välisen informaatiovaihdon kontrolloimisen. Tästä syystä ehdotetut algoritmit soveltuvat käytän-
nön toteutuksiin toisin kuin useimmat aiemmin ehdotetut hajautetut algoritmit. Numeeriset
tulokset osoittavat, että väitöskirjassa ehdotetut algoritmit tuovat merkittävää verkon suoritusky-
vyn parannusta verrattaessa aiempiin nollaanpakotus -menetelmiin.

Yhteistoiminnallista keilanmuodostusta tutkitaan myös moni-tulo moni-lähtö -solukkover-
koissa, joissa tukiasemat sekä päätelaitteet ovat varustettuja monilla antenneilla. Tällaisessa ver-
kossa lähetystehon minimointiongelma on ei-konveksi. Optimointiongelma jaetaan lähetys- ja
vastaanottokeilanmuodostukseen, jotka toistetaan vuorotellen, kunnes algoritmi konvergoituu.
Lähetyskeilanmuodostusongelma ratkaistaan peräkkäisillä konvekseilla approksimaatioilla. Vas-
taanottimen keilanmuodostus toteutetaan summaneliövirheen minimoinnin kautta. Keskitetyn
algoritmin lisäksi tässä työssä kehitetään myös kaksi hajautettua algoritmia, jotka perustuvat pri-
maalihajotelmaan. Hajautettua toteutusta helpotetaan pilottisignaloinnilla ja tukiasemien välisel-
lä informaationvaihdolla. Numeeriset tulokset osoittavat, että moni-tulo moni-lähtö -tekniikoilla
on merkittävästi parempi suorituskyky kuin moni-tulo yksi-lähtö -tekniikoilla.

Lopuksi yhteistoiminnallista keilanmuodostusta tarkastellaan kognitiiviradioverkoissa, joissa
primaari- ja sekundaarijärjestelmät jakavat saman taajuuskaistan. Lähetystehon optimointi suori-
tetaan sekundaariverkolle samalla minimoiden primaarikäyttäjille aiheuttamaa häiriötä. Väitös-
kirjassa kehitetään kaksi hajautettua algoritmia, joista toinen perustuu primaalihajotelmaan ja
toinen kerrointen vaihtelevan suunnan menetelmään.

Asiasanat: hajautettu prosessointi, häiriönhallinta, kokonaislähetystehon minimointi, konveksi
optimointi, lähetin- ja vastaanotinkeilojen suunnittelu, monisoluinen monikäyttäjä- ja moni-
antennijärjestelmä, pilottisignalointi, tukiasemien välinen informaationvaihto, yhteistoiminnalli-
nen keilanmuodostus
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Abbreviations

a path gain from a BS to its own cell’s users
ā path gain from a BS to other cells’ users
AR number of receive antennas
AT number of transmit antennas
bk serving BS for user k

B number of base stations
B set of all BSs
ck,l SCA coefficient for stream (k, l)

dk,l SCA coefficient for stream (k, l)

e radius of CSI error region
eb,k,l effective channel vector for stream l of user k as seen by BS b

Eb,k ellipsoid bounding CSI error vector ub,k

Et,s ellipsoid bounding CSI error vector ut,s

Eb,k matrix defining the shape and size of the ellipsoid that bounds
CSI error vector ub,k

Et,s matrix defining the shape and size of the ellipsoid that bounds
CSI error vector ut,s

fD maximum doppler shift
f ′ first-order partial derivative of f
Ft,p ellipsoid bounding CSI error vector vt,p

Ft,p matrix defining the shape and size of the ellipsoid that bounds
CSI error vector vt,p

g⋆b optimal objective value of subproblem b in primal decomposition
method

g⋆t optimal objective value of subproblem t in primal decomposition
method

ḡ⋆b optimal objective value of inner maximization of λb

ḡ⋆t optimal objective value of inner maximization of λt

gt,p MISO channel vector from secondary transmitter t to PU p

ĝt,p estimated MISO channel vector from secondary transmitter t to
PU p
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hb,k MISO channel vector from BS b to user k

ĥb,k estimated MISO channel vector from BS b to user k

ht,s MISO channel vector from secondary transmitter t to SU s

ĥt,s estimated MISO channel vector from secondary transmitter t to
SU s

Hb,k MIMO channel matrix from BS b to user k

K number of users
Kb number of users served by BS b

K set of all users
Kb set of users served by BS b

K̄b set of users served by other BS than b

Lk number of allocated streams for user k

Lk set of allocated streams for user k

m iteration index for fixed-point iteration method
mk transmit beamforming vector for user k

mk,l transmit beamforming vector for stream l of user k

ms transmit beamforming vector for SU s

m̄ all transmit beamforming vectors stacked into a column vector
m̄b transmit beamforming vectors of BS b stacked into a column vector
M all transmit beamforming vectors in the system stacked into a

matrix
Mb transmit beamforming vectors of BS b stacked into a matrix
Mt transmit beamforming vectors of secondary transmitter t stacked

into a matrix
M̄b stacked matrix of transmit beamforming vectors of BS b excluding

the beamformer for stream (k, l)

n iteration index for the subgradient update of dual variable µb,k

nk noise sample for user k

nk noise vector for user k

N0 Gaussian noise variance
ptx square root of P tx

ptxb square root of P tx
b

ptxt square root of P tx
t

P number of PUs
P tx total transmission power of system
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P tx
b Transmission power of BS b

P tx
t Transmission power of secondary transmitter t

P tx
opt optimal total transmission power of the system

P set of all PUs
P+ projection onto the set of nonnegative real numbers
P++ projection onto the set of positive real numbers
q iteration index for the SCA method
Qk transmit covariance matrix of user k

Qk,l transmit covariance matrix for stream l of user k

Qs transmit covariance matrix of SU s

Q̂t transmit beamforming vectors of secondary transmitter t stacked
into a matrix

r iteration index for subgradient method
rk rate of user k

rs rate of SU s

Rk minimum rate target of user k

Rs minimum rate target of SU s

S number of SUs
St number of SUs served by secondary transmitter t

S set of all SUs
St set of SUs served by secondary transmitter t

S̄t set of SUs served by secondary transmitters other than t

tk,l auxiliary variable associated with the SCA method
ts serving secondary transmitter for SU s

T number of secondary transmitters
TF duration of uplink and downlink frames
T set of all secondary transmitters
u iteration index for transmitter-receiver optimization step
ub,k subgradient evaluated at point χb,k

ub,k,l subgradient evaluated at point χb,k,l

ut,s subgradient evaluated at point µt,s

ũt,s subgradient evaluated at point νt,p

ub,k CSI error vector associated with channel ĥb,k

ut,s CSI error vector associated with channel ĥt,s

vt,p CSI error vector associated with channel ĝt,p
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wk,l receive beamforming vector of stream l of user k

ẃk virtual uplink normalized receive beamforming vector of user k

ẁk virtual uplink unnormalized receive beamforming vector of user k
w̃k,l normalized MMSE receive beamforming vector for stream l of user

k

ŵk,l worst case MMSE receive beamforming vector for stream l of user
k

w̄k unnormalized MMSE receive beamforming vector for user k

w̃k,l unnormalized MMSE receive beamforming vector for stream l of
user k

Ŵk worst case MMSE receive covariance matrix of user k

xk information symbol for user k

xk,l information symbol for stream l of user k

xs information symbol for SU s

yk received signal of user k

ys received signal of SU s

yk received signal vector of user k

zs noise sample for SU s

Z0 noise plus interference variance

βb,k slack variable for user k in robust subproblem b

βt,s slack variable for SU s in robust subproblem t

γk minimum SINR target of user k

γs minimum SINR target of SU s

Γk SINR of user k

Γk,l SINR for stream l of user k

Γs SINR of SU s

Γ̃k,l SINR for stream l of user k, assuming that MMSE receiver is used
δb,k dual variable associated with consistency constraint of local inter-

cell interference variables
δb stacked vector of dual variables associated with consistency con-

straint of local inter-cell interference variables in subproblem b

ϵk,l MSE of stream l of user k

ϵ̃k,l MSE of stream l of user k assuming that MMSE receiver is used
η cell separation parameter
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η̄ network separation parameter
λmax(X) maximum eigenvalue of a symmetric matrix X

λb,k dual variable associated with χb,k in SINR constraint of subprob-
lem b

λb,k,l dual variable associated with χb,k,l in MSE constraint of subprob-
lem b

λt,s dual variable associated with χt,s in SINR constraint of subprob-
lem t

λb dual variables associated with SINR constraints of subproblem b

stacked into a column vector
λt dual variables associated with SINR constraints of subproblem t

stacked into a column vector
µb,k dual variable associated with χb,k in inter-cell interference con-

straint of subproblem b

µb,k,l dual variable associated with χb,k,l in inter-cell interference con-
straint of subproblem b

µt,s dual variable associated with χt,s in inter-cell interference con-
straint of subproblem t

µb dual variables associated with inter-cell interference constraints of
subproblem b stacked into a column vector

µt dual variables associated with inter-cell interference constraints of
subproblem t stacked into a column vector

νt,p dual variable associated with ϕt,p of subproblem t

νt dual variables associated with PU-specific inter-cell interference
constraints of subproblem t stacked into a column vector

ρ penalty parameter for the ADMM method
σ(r) step-size at iteration r in subgradient method
υt,p dual variable associated with ϕt,p of subproblem t

ϕt,p inter-cell interference power from secondary transmitter t to PU
p

ϕ̃t,p secondary transmitter t specific auxiliary variable associated with
inter-cell interference from secondary transmitter t to PU p

ϕ stacked vector of all PU-specific inter-cell interference variables
ϕt stacked vector of PU-specific inter-cell interference variables asso-

ciated with secondary transmitter t
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ϕ̄p stacked vector of inter-cell interference experienced by PU p from
all secondary transmitters

ϕ̄t stacked vector of all secondary transmitter t specific local PU-
specific inter-cell interference variables

Φp maximum aggregate interference power constraint from secondary
transmitters to PU p

φt,p slack variable associated with S-procedure method
χb,k inter-cell interference from BS b to user k

χb,k,l inter-cell interference from BS b to stream l of user k

χt,s inter-cell interference from secondary transmitter t to SU s

χ̄b,k square root of χb,k

χ̄b,k,l square root of χb,k,l

χ̄t,s square root of χt,s

χ̄b
b,k BS b specific auxiliary variable associated with inter-cell interfer-

ence from BS b to user k

χ̄t
t,s secondary transmitter t specific auxiliary variable associated with

inter-cell interference from secondary transmitter t to SU s

χ stacked vector of all inter-cell interference variables
χt stacked vector of inter-cell interference variables associated with

secondary transmitter t

χb stacked vector of inter-cell interference variables associated with
BS b

χ̄b stacked vector of all BS b specific local inter-cell interference vari-
ables

χ̄k stacked vector of inter-cell interference experienced by user k from
other BSs

χ̄s stacked vector of inter-cell interference experienced by SU s from
other secondary transmitters

χ̄t stacked vector of all secondary transmitter t specific local inter-cell
interference variables

ωk slack variable for user k associated with S-procedure method
ωs slack variable for SU s associated with S-procedure method

(·)T transpose
(·)H complex conjugate transpose (Hermitian)
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(·)⋆ solution of an optimization problem
|X | cardinality of set X
X−1 inverse of matrix X

CN (0, N0) complex Gaussian distribution with zero mean and variance N0

CN (m,C) complex circularly symmetric Gaussian vector distribution with
mean m and covariance matrix C

Ix identity matrix with dimension x

diag(x) diagonal matrix with elements of vector x on the main diagonal
E(·) statistical expectation
log2(·) logarithm in base 2
loge(·) logarithm in base e
|x| absolute value of scalar x

∥x∥2 Euclidean norm of vector x

tr(X) trace of matrix X

≽ generalized inequality in a proper cone
IR set of real numbers
IR+ set of nonnegative real numbers
IR++ set of positive real numbers
C set of complex numbers
IRn

+ set of nonnegative n-dimensional real vectors
Cm×n set of m× n complex matrices

3G third generation cellular systems
4G fourth generation cellular systems
5G fifth generation cellular systems
ADMM alternating direction method of multipliers
BS base station
CoMP coordinated multi-point
CSI channel state information
D2D device-to-device
DL downlink
DCP difference of convex functions program
DPC dirty-paper coding
FDD frequency division duplex
GP geometric program
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HSPA High-Speed Packet Access
IBC interfering broadcast channel
IC interference channel
IID independent and identically distributed
KKT Karush-Kuhn-Tucker
LMI linear matrix inequality
LTE Long-Term Evolution
LTE-A Long-Term Evolution Advanced
MIMO multiple-input multiple-output
MISO multiple-input single-output
M-MIMO multi-stream MIMO
MMSE minimum mean square error
MSE mean square error
PU primary user
QoS quality of service
SCA successive convex approximation
SDP semidefinite program
SDR semidefinite relaxation
SNR signal-to-interference-plus-noise ratio
SINR signal-to-interference-plus-noise ratio
SISO single-input single-output
S-MIMO single-stream MIMO
SOC second-order cone
SOCP second-order cone program
SPMin sum power minimization
SU secondary user
SVD singular value decomposition
TDD time division duplex
UL uplink
WCRX worst case receiver
ZF zero-forcing
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1 Introduction

Since mobile data traffic is constantly growing, it is of the uttermost importance
to enhance the capacity of mobile networks. Coordinated beamforming is a
promising candidate to improve the performance of wireless communications
systems, e.g., in terms of power or spectral efficiency, especially at the cell-
edge area. This thesis studies practical coordinated beamforming strategies for
cellular and cognitive radio networks.

This introductory chapter offers an overview of the topic by introducing the
related background and reviewing the existing literature. In Section 1.1, the
motivation for the use of coordinated beamforming is presented. Section 1.2
introduces the main steps in the evolution path from single-user multiple-input
multiple-output (MIMO) communications to cooperative/coordinated multi-cell
multi-user MIMO techniques. The concepts of joint processing and coordinated
beamforming are described in Section 1.3. Section 1.4 discusses main network
design objectives for coordinated beamforming. Section 1.5 reviews the previous
and parallel work of coordinated beamforming in cellular and cognitive radio
networks. Section 1.6 describes the goal for the thesis and its outline. Finally,
the author’s contributions to the publications are specified in Section 1.7.

1.1 Motivation

The use of the mobile internet started to boom after the introduction of easy-to-
use touch screen devices, such as smartphones and tablets. It has been predicted
that within the next ten years, mobile data traffic will increase 1000-fold com-
pared to what is being experienced today [1, 2]. To meet this huge growth in
traffic, next generation mobile networks, i.e., fifth generation (5G) [1–9], will
need 1000 times more capacity than what the current third generation (3G),
High-Speed Packet Access, and fourth generation (4G), Long-Term Evolution
(LTE) [10] and LTE-Advanced [11], networks can provide [1, 2]. From a global
perspective, increased research effort is being put on the development of future
5G networks [4, 5]. The main expectations for 5G networks are discussed and
summarized in [5]. In short, there is an expectation of 1000 and 100 times
higher area capacity and edge rates, respectively, compared with the current 4G
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technology. The aim for future peak data rates will be in the range of multiple
tens of Gigabits per second (Gbps). In addition, roundtrip latency will need to
be reduced by an order of magnitude from 4G. Therefore, it is clearly impor-
tant to study and develop new technologies to meet the high requirements of
future mobile networks. The most promising key elements/technologies in the
evolution path toward and beyond 5G are increased bandwidth using higher fre-
quencies (possibly millimeter waves), cell densification through smaller cells and
increased spectral efficiency via advanced MIMO and interference coordination
techniques [5]. The main focus of this thesis is on designing advanced MIMO
and interference coordination techniques for future wireless communication net-
works. Advanced MIMO techniques can increase spectral efficiency significantly,
if properly designed. However, without proper interference coordination between
neighboring cells, inter-cell interference may limit the increase of spectral effi-
ciency or even decrease system-level performance. In this respect, coordinated
multi-point (CoMP) transmission, which combines advanced MIMO and inter-
ference coordination techniques, has been recognized as a powerful approach to
improve the performance of cellular systems, especially at the cell-edge area, by
controlling inter-cell interference [11–13]. CoMP transmission refers to a system
wherein data transmissions are dynamically coordinated between multiple BSs
in order to improve received signal quality and control generated interference for
other users. CoMP can be seen as the latest evolution of MIMO communication,
which started from single-user MIMO and evolved through multi-user MIMO
to coordinated/cooperative multi-cell MIMO concepts [12, 14, 15], as depicted
in Fig. 1. In the following section, the main steps in the evolution path from
MIMO to CoMP are summarized.

1.2 From MIMO to CoMP

Traditionally, the performance of a single-antenna communication link, i.e., a
single-input single-output (SISO) system, is improved by increasing either the
transmission power or the bandwidth. However, it has been shown that the
capacity of a communication link can be substantially increased without extra
power or extra bandwidth by using multiple antennas at the transmitter and the
receiver [16–18]. The achievable rate scales linearly with the minimum number of
transmit and receive antennas in ideal rich scattering channel conditions [17, 18].
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Fig 1. Main evolution steps from MIMO to CoMP.

In general, there are three kinds of gains available in a (single-user) MIMO sys-
tem, i.e., diversity gain, array gain and multiplexing gain. The diversity and
array gains are mostly intended to improve the reliability of a communication
link, whereas the multiplexing gain aims to increase spectral efficiency. Diversity
gain prevents drastic fluctuations of the received signal-to-noise-ratio (SNR) and
is obtained by receiving or transmitting independently faded copies of the same
signal. Array gain, which improves the average received SNR, is achieved by
coherently combining the desired signal over multiple receiving or transmitting
antennas. The most efficient way to increase data rate is to provide multiplex-
ing gain by transmitting multiple spatially separable data streams at the same
time and frequency slot. The available gains in a single-user MIMO system are
summarized in Fig. 2.

The design and performance of a MIMO system is greatly influenced by the
availability of channel state information (CSI) at the transmitter. The knowledge
of CSI at the receiver is presumed by default. Diversity and multiplexing gains
can be achieved without CSI knowledge at the transmitter, as proposed in [17,
19–21]. A study of optimal trade-off between diversity and multiplexing gains has
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Fig 2. Gains in single-user MIMO system.

been provided in [22]. A remarkably simple diversity technique called Alamouti
code was proposed in [19]. It achieves optimal diversity and multiplexing order
in a simple case of two transmit and one receive antennas. Due to its simplicity,
it has been adopted for many wireless systems standards. In the case of having
CSI both at the transmitter and receiver, the MIMO channel can be turned
into parallel independent SISO channels through singular value decomposition
(SVD) of the channel matrix. The capacity achieving communication strategy
is to use the right and left singular vectors of the channel matrix as transmit
precoders and receive filters, respectively, and allocate the total transmission
power to the independent SISO channels using a water-filling principle based on
the eigenvalues of the channel matrix [18].

The linear scaling of capacity in a single-user MIMO system is largely based
on the assumption of a rich scattering environment. Thus, the capacity is lim-
ited by the communication channel. In terms of a cellular system, base stations
(BSs) can be equipped with large antennas arrays, however, the size of a user
terminal is physically more limiting. Hence, the capacity in a single-user MIMO
system is limited by the number of antennas at the user terminal. To overcome
the propagation channel limitation and take advantage of multiple BS antennas,
multi-user MIMO communications can be applied. There are several benefits of
multi-user MIMO over single-user MIMO communications. For example, chal-
lenging per-user channel conditions, such as poor scattering channels, is no longer
a fundamental problem. Moreover, (multi-user) spatial multiplexing gain can be
obtained without the use of multiple antennas at the user terminal. Since users
cannot cooperate in a multi-user MIMO environment, a new type of interference
is introduced, i.e., inter-user interference. This interference is referred to intra-
cell interference in the context of cellular networks. Due to non-cooperating
users, transmitter side processing is emphasized to improve the performance of
a multi-user MIMO system. Thus, the availability of CSI at the transmitter

24



plays a more critical role for the multi-user MIMO communication than for the
single-user MIMO case.

In a multi-user MIMO system (i.e., MIMO broadcast channel), the capacity
is characterized by a capacity region. It is given by a set of achievable rates that
can be simultaneously achieved with an arbitrary small joint probability of error.
The capacity-achieving transmission strategy for a MIMO broadcast channel is
known as dirty paper coding (DPC) [23–25]. This scheme is based on a successive
encoding strategy that completely cancels out interference at the transmitter
side without requiring extra transmit power. The idea behind DPC was first
introduced in [23], and further extended to the multi-user MIMO setting in [24].
Finally, it was shown in [25] that DPC is an optimal transmission scheme for
the MIMO broadcast channel. Due to its high computational complexity, DPC
is very challenging to be implemented in practice, especially when the number
of users is high.

In general, sub-optimal linear transmission and reception strategies allow a
reasonable balance between complexity and performance. A conceptually simple
linear strategy is zero-forcing (ZF) beamforming, which is designed to completely
avoid inter-user interference [26]. This scheme has a practical advantage since
the beamforming design and power allocation are decoupled. A regularized ZF
strategy was also introduced in [26] where limited amount of inter-user interfer-
ence is allowed. An extension of ZF scheme to the case of multiple antenna users
was provided in [27–29]. It was shown in [30] that ZF strategy can asymptoti-
cally approach the performance of DPC if the number of users is large. However,
in practical scenarios with a moderate number of users, ZF strategy suffers from
power penalty making it highly sub-optimal. Moreover, ZF beamforming scheme
is applicable only when the number of transmit antennas is greater or equal than
the aggregate number of receiver antennas in the system.

By allowing a small amount of inter-user interference and jointly optimiz-
ing the linear beamformers and powers, the performance of a multi-cell MIMO
system can be improved. In this respect, linear beamformers can be optimized
according to certain performance criteria while satisfying some practical con-
straints [31–42], e.g., sum rate or minimum rate maximization with transmission
power constraints or transmission power minimization with user-specific rate con-
straints. In general, convex optimization methods have been found as powerful
tools for solving many problems in wireless communications [43, 44], especially

25



linear beamforming design problems [31–42]. To optimize linear beamformers
properly, the CSI of all active users need to be acquired.

In a multi-cell MIMO network where each cell operates independently, the
performance of multi-user MIMO techniques may be degraded due to inter-cell
interference that occurs when the same radio resources are reused in nearby
cells. Inter-cell interference that is experienced by each user constantly varies
since it depends on the transmissions from neighboring cells. Thus, the signal-to-
interference-plus-noise ratio (SINR) of a user can change significantly, depending
on the time and the user’s location in the network. Inter-cell interference lim-
its the performance, especially for cell-edge users, thus leading to performance
discrepancies between different users in the network. In order to mitigate the
effect of inter-cell interference, designing advanced interference coordination tech-
niques is of uttermost importance. In this regard, the key idea is to allow BSs
to collaborate and share information between each other.

It has been shown that CoMP is a promising candidate for efficient inter-
ference coordination [12, 13]. The idea is to control inter-cell interference and
improve network performance by allowing nearby BSs to cooperate/coordinate
when designing their transmission/reception parameters. The use of CoMP is
especially beneficial for cell-edge users, which usually suffer from low data rates.
CoMP can be divided into transmission and reception parts, i.e., downlink and
uplink communications, respectively. Here, the focus is on CoMP transmission
for downlink. CoMP transmission usually employs beamforming (i.e., precod-
ing) to manage interference. The concept of CoMP has been already included in
LTE-A specifications [13]. At a high level, CoMP transmission techniques can
be classified into two main categories, namely joint processing and coordinated
beamforming [12, 13]. Joint processing refers to full cooperation, where user
payload data and CSI are both shared between BSs. In coordinated beamform-
ing, coordination can be interpreted as a reduced level of cooperation, where
only CSI is shared among BSs and user data is communicated only to its serving
BS. Both techniques can be implemented either centralized or decentralized way.
Centralized algorithms require knowledge of the channels between all BSs and
all users in the system, i.e., global CSI. Decentralized approaches rely on the
availability of local CSI, i.e., knowledge of the channels between a BS and all
users in the system. In addition to local CSI, BSs may exchange limited amount
of information between each other. The categorization of CoMP techniques is
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Fig 3. Categorization of CoMP.

shown in Fig. 3. In the following section, the concepts of joint processing and
coordinated beamforming are discussed in detail.

1.3 Joint processing and coordinated beamforming

In joint processing, each data stream can be coherently transmitted over mul-
tiple cooperative BSs, as depicted in Fig. 1. This concept is also known as
network MIMO and has been intensively studied over a decade [12, 45–55]. The
operation of joint processing is based on multiple premises, i.e., the sharing
of user data among all BSs, the availability of global or local CSI, as well as
full synchronization of signals transmitted from different BSs. Joint processing
can be interpreted as a single transmitter with distributed clusters of antennas
serving all the users in the network. Consequently, a multi-cell environment
is turned into a benefit by transmitting useful data from all BSs through the
channels that are considered to be interfering in a non-cooperative system. It is
worth mentioning that there still exists inter-stream and inter-user interferences
in the networks with fully cooperative BSs. However, these interferences can be
managed by proper joint processing beamforming techniques, which may aim to
optimize a practical system design target while guaranteeing certain constraints
set on the BSs and users. Joint processing can be divided into centralized and
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decentralized techniques [12, 53–55]. Centralized algorithms rely on user data
and local CSI sharing among the BSs via backhaul. As a result, each BS has
access to the data of all users and global CSI. Alternatively, the availability of
global CSI can be achieved by each BS sending its local CSI to a central con-
trolling unit via backhaul. Decentralized algorithms aim to reduce backhaul
signalling by exploiting only local CSI without the need to share it with other
BSs. However, a small amount of information exchange can be allowed via back-
haul and/or over-the-air signaling. By using decentralized algorithms, the cost
is a degradation of performance. Note that the amount of user payload data
sharing via backhaul is still the same as in the centralized case. In the literature,
most of the proposed joint processing techniques are centralized. The imple-
mentation of joint processing techniques is challenging due to the requirement
of carrier phase synchronism for the cooperative BSs and the large amount of
required backhaul signaling. From an implementation point of view, coordinated
beamforming approaches are more appealing than joint processing ones. This
work concentrates solely on coordinated beamforming strategies.

In coordinated beamforming, each data stream is linearly precoded in the
spatial domain and transmitted from a single BS, as illustrated in Fig. 1. The
transmissions of other data streams in one’s own cell and other cells are treated
as interference. Thus, inter-stream, intra-cell, and inter-cell interferences exist.
To control these interferences, precoded data transmissions may be jointly de-
signed among the coordinated BSs such that a network design target is achieved
while providing guaranteed Quality of Service (QoS) to users and satisfying prac-
tical power constraints imposed on BSs. In coordinated beamforming, the carrier
phase synchronism between the BSs is not required, and a lower amount of data
needs to be communicated via backhaul compared to the joint processing strate-
gies. For example, user payload data is communicated only for the serving BS.
The performance of coordinated beamforming schemes rests on the availability
of channel knowledge at the BSs. For centralized algorithms, knowledge of global
CSI is usually required. Global CSI can be achieved via the same means as that
described for the joint processing case, i.e., each BS communicating its local CSI
to the central controlling unit or sharing it directly with all BSs.

A common assumption for decentralized algorithms is that, at least, local
CSI is available at each BS, and coordination is performed directly between the
BSs via low-rate backhaul links, possibly along with over-the-air (pilot) signal-
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ing. The methods for acquiring local CSI depend on the employed duplexing
mode. In those systems operating in a time-division duplexing (TDD) mode,
the reciprocity of the uplink and downlink channels can be exploited since the
used frequency bands are the same for both directions. In this case, it is possible
to use antenna-specific uplink pilot signaling, also known as channel sounding
[56]. Each user transmits known training signals that are used at the BS side to
estimate the channels. In those systems based on frequency-division duplexing
(FDD), each user estimates its channel and sends the information, usually in
a quantized form, to the BS via a feedback channel. In general, TDD-based
CSI acquisition is more resource efficient compared to the FDD-based one [57].
Antenna-specific uplink pilots have already been adopted in the LTE-Advanced
standards [11]. In the case of single-antenna users, having local CSI at each
BS usually enables the use of decentralized techniques. However, decentralized
processing becomes more problematic if the users are equipped with multiple
receive antennas. This is due to the fact that even if the channels from the
BS to neighboring cells’ users are known via antenna-specific uplink pilots, the
receivers there users are employing may not be. In other words, using antenna-
specific pilots, there is no information available on the users’ receivers at the
BSs.

A simple strategy to convey implicit knowledge of the user’s receiver to the
BS is to use precoded uplink pilots. More precisely, each user employs its re-
ceiver as a precoder for uplink pilot signaling observed by each BS. Instead of
knowing a given user’s receiver explicitly, implicit information about the receiver,
also known as the effective channel, is available at each BS, i.e., the user chan-
nel multiplied by the user’s receiver. Precoded uplink pilots can carry more
information to the BSs than antenna-specific pilots. The use of precoded pi-
lots can potentially lead to improved system performance since the generated
interference can be coordinated more efficiently by the BSs. In addition to up-
link pilots, downlink pilot signaling can also be used to aid decentralized design.
In this respect, downlink demodulation pilots, which are precoded similarly as
user data, can be used to provide an effective CSI for users to facilitate data
reception. Downlink demodulation pilot strategy has already been specified for
LTE-Advanced [11]. In addition to pilot signaling, decentralized design may
require that a limited amount of information is exchanged between the neigh-
boring BSs via backhaul links. Decentralized schemes are often more practically
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realizable than centralized ones are due to possibly reduced signaling overhead,
simpler network structure (i.e., no central controlling unit needed) and lower
computational requirements per processing unit.

If not designed properly, however, decentralized coordinated beamforming
schemes may cause extra delays and increase signaling overhead in the system.
This thesis designs practical decentralized coordinated beamforming algorithms
where delay and signaling aspects are also taken into account. Unlike most of
the existing decentralized approaches, the proposed algorithms can prevent long
delays and notably reduce signaling overhead while still obtaining performance
close to that of centralized algorithms.

1.4 Network design objectives for coordinated beamforming

Coordinated beamforming has been intensively studied for a variety of practical
network design objectives such as sum power minimization (SPMin) [33, 58–63],
minimum rate maximization [64–66], sum rate maximization [56, 67–71] and
energy efficiency maximization [72–75]. Other widely studied network optimiza-
tion problems are mean square error (MSE)-based design problems [76–80]. In
the following discussion, the main three design objectives are introduced and
discussed in detail.

In the classical SPMin problem [58], the goal is to minimize the sum trans-
mission power of the BSs while guaranteeing the minimum data rate targets
to all active users in the system. This system design objective is of practical
interest for wireless applications, where there are stringent data rate and delay
constraints for active users. Different users may get different rate targets depend-
ing on the application or operator settings. Note that when minimizing total
transmitted power in the network, the overall interference is implicitly reduced
as well. Among the aforementioned network optimization problems, the SPMin
problem is the simplest one to solve in terms of computational complexity, due
to the fact that it can be usually cast as a convex problem in the case of single-
antenna users. The problem can be cast as a convex optimization problem in
a multi-cell multi-user MISO setting [59, 60]. In the case of a convex problem,
an optimal solution can be found via efficient numerical methods [81]. In this
respect, the SPMin problem can also be seen as a good starting point for finding
solutions to other (more complex) network optimization problems. For exam-
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ple, it can be used as a part of the algorithms that solve the minimum rate
maximization and sum rate maximization problems as shown in [82] and [52],
respectively. The SPMin problem is also a special case of the weighted energy
efficiency maximization problem.

In general, the SPMin problem can be infeasible when the total number
of (single antenna) users in the entire coordinated system is greater than the
number of transmit antennas at each BS. In this setting, the network can be
interference limited, meaning that when increasing the transmit power the in-
crease of the generated interference blocks the increase of system performance.
However, if the number of users is equal or less than the number of antennas in
each BS, the system is always feasible, provided that the elements of the user
channels are independent and there is no maximum transmit power constraints
for BSs. In interference limited scenarios, the higher the rate targets or the
number of users, the higher will be the probability that the problem becomes
infeasible. If infeasibility is detected, the problem can be made feasible by letting
admission control relax the rate targets or inactivate the critical users that com-
promise the feasibility [83]. In Section 2.1, further discussion is provided on the
feasibility of the SPMin problem in a multi-cell multi-user MISO system. The
original SPMin problem formulation does not involve practical transmit power
constraints [58]. However, it is straightforward to add power constraints to the
SPMin problems. For example, per-antenna power constraints were involved in
a single-cell multi-user MISO system in [35]. Transmit power constraints are
fairly easy to handle since they can be cast as convex constraints (e.g., SOC con-
straints). Thus, the original problem structure does not radically change from
a mathematical perspective. In addition, per-BS and per-antenna power con-
straints are separable between BSs and hence, they naturally lend themselves to
decentralized implementation if necessary. Nevertheless, the power constraints
do affect the feasibility of the SPMin problem. The lower the maximum power
constraints are, the higher is the probability that the problem is infeasible.

The objective of maximizing the minimum rate of active users with transmit
power constraints at the BSs is fair for users since each user is getting the same
rate at the optimal solution. This problem is also known as rate balancing or
common rate maximization. The rate balancing design seems suitable for traffic
scenarios where many users have similar constraints for data rates and latency.
In a general setting, this problem is feasible. However, it is usually more difficult
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to solve than the SPMin problem. For example, the problem is quasi-convex for
a multi-cell multi-user MISO system. In that setting, a classical way of optimally
solving the problem is to use an iterative bisection method, where the feasibility
of a convex problem (i.e., SPMin problem) is checked at each iteration [82]. In
general, the cost of fairness is highly sub-optimal sum rate performance since
equalizing the data rates among users leads to a beamforming design where
less resources (i.e., transmit power) are given to the users with good channel
and interference conditions, and more resources are given to the users with bad
conditions. However, priority weights can be added to the rates of different users
to improve the sum rate performance at the expense of fairness.

In the standard sum rate maximization problem, the aim is to maximize
the sum of the users’ rates while satisfying the maximum transmission power
constraint at each BS. In principle, this problem is not fair to users since most
of the resources are given to the users with good channel and interference con-
ditions. In contrast, users with bad conditions may get very low data rates.
However, fairness can be included by adding priority weights to different users.
Moreover, fairness can be included in scheduling, e.g., using different types of
proportional fair scheduling algorithms [84]. In general, the weighted sum rate
maximization problem is always feasible if there are no given minimum QoS
targets for users. This network design objective is most suitable for wireless ap-
plications where there are no strict delay or rate constraints for users. In order
to support stringent rate or delay requirements, per-user QoS constraints can be
added. This comes at the cost of a more difficult problem structure and possible
infeasibility. Weighted sum rate maximization is, in general, a non-convex prob-
lem, even in the case of single-antenna users. Thus, it cannot be solved in its
original form. There are many algorithms proposed, where the problem is first
reformulated/approximated and then solved efficiently. In general, the proposed
solutions cannot guarantee global optimality since the original problem is non-
convex. It is worth mentioning that in some iterative sum rate maximization
algorithms, the SPMin problem is solved as an inner optimization step [52, 85].

Due to its importance, the sole focus of this thesis is on coordinated beam-
forming for SPMin with user-specific rate constraints. In this regard, the main
literature is reviewed in the next section.
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1.5 Literature review

This section provides a detailed review of the existing literature associated with
the scope of this thesis. Coordinated beamforming techniques for SPMin in
cellular and cognitive radio networks are surveyed in Sections 1.5.1 and 1.5.2,
respectively.

1.5.1 Coordinated beamforming for SPMin in cellular networks

One of the earliest coordinated beamforming approaches was introduced in [58],
where a downlink beamformer design problem for minimizing the multi-cell sum
power subject to the received SINR constraint per each single antenna user was
solved by using uplink-downlink SINR duality. The optimality of this approach
was proved for a single-cell case in [86, 87]. Alternative optimal approaches
were proposed in [31] and [33]. The solutions were based on convex optimization
methods called semidefinite programming (SDP) and second order cone program-
ming (SOCP), respectively. If an optimization problem could be formulated as a
convex problem, it could be solved via efficient numerical methods with a guar-
antee of global optimality [81]. Standard convex optimization solvers have been
developed to solve various forms of convex problems. One such solver is CVX
[88], which is also used to produce the numerical results in this thesis. Some
of the most common convex formulations include SDP, SOCP and geometric
programming (GP) [81].

The single-cell method in [33] can be readily extended to the centralized
multi-cell setting as shown in [59, 60]. This observation was utilized to show
that uplink-downlink duality can be exploited to produce an optimal solution
for the multi-cell case [59]. The iterative approach proposed in [59] naturally
leads to a decentralized implementation for TDD-based systems. In general, de-
centralized uplink-downlink duality- based approaches usually need to converge
before they can satisfy the user-specific SINR constraints. By employing these
iterative schemes may cause extra delay and increased signaling overhead on
the system. Practical decentralized approaches, which can reduce delay and sig-
naling overhead, have been proposed in the author’s contributions [60, 61, 63],
where feasible beamformers can be obtained at each iteration by relying on
scalar backhaul information exchange between the BSs. In these algorithms, a
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network-wide multiple-input single-output (MISO) transmit beamforming design
was turned into independent BS-level designs via dual and primal decomposition
methods. In all the algorithms, each local beamforming design was iteratively
managed via a scalar backhaul information exchange between the BSs, leading
to a network-wide solution. Inspired by [60, 61] other decentralized algorithms
were proposed in [89, 90], wherein the beamforming designs were based on an
alternating direction method of multipliers (ADMM) method.

The problem of multi-cell coordination evolves further when the users em-
ploy more than one receive antenna. In this case, each user may be allocated
with one (i.e., single-stream MIMO) or multiple data streams (i.e., multi-stream
MIMO). Each of the streams can be distinguished by a dedicated linear receive
beamformer. Having multiple receive antennas per user, the SPMin problem is
not jointly convex in transmit and receive beamformers [91]. Linear transceiver
design algorithms are proposed in [62, 92–95] and [91, 96] for both single-cell
and multi-cell MIMO systems, respectively. All these algorithms are inherently
centralized, requiring a central processing unit for their transmit and receive
beamforming designs. Since the non-convexity of the original problem, global
optimality cannot be guaranteed for the proposed solutions.

In [96], a linear uplink transmit and receive beamforming design was pro-
posed for the SPMin with per-user SINR constraints in a multi-cell single-stream
MIMO system. Receive and transmit beamformer weights with minimized pow-
ers were resolved with the aid of an uplink-downlink duality concept by repeat-
edly solving a four-step optimization process. The same idea is also applicable to
downlink communication [96]. In [91, 92, 94], linear transceiver design algorithms
were proposed for SPMin with per-stream SINR constraints in a multi-stream
MIMO system. In [91], the sum power is guaranteed to converge by consecutively
optimizing the transmit and receive beamformers. The uplink-downlink duality-
based MISO algorithm in [87] was generalized to the multi-stream MIMO case
in [92]. In [94], the same problem as considered in [92] was solved, but with
a weighted objective function. Sum power minimization with per-user and per-
stream MSE constraints was studied for multi-user MIMO systems in [76, 97, 98]
and [76], respectively. However, there is no direct mapping between these MSE
constraints and per-user rate constraints in multi-stream MIMO systems. In [93],
the per-user rate constraints of the SPMin problem were approximated with the
aid of a MSE-based reformulation. Since this approximation is not necessarily
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tight, the constraints are not exactly equivalent to per-user rate constraints, thus
yielding higher achieved rates than necessary and consequently sub-optimal sum
power.

Sum power minimization with per-user rate constraints was considered for
a single-cell MIMO system in [62, 95]. In [95], each iteration of the proposed
algorithm consists of the optimization of uplink powers via GPs, while the op-
timization of uplink and downlink receive beamformers via the minimum MSE
(MMSE) criterion. In [62], a gradient-based algorithm with linear transmit and
receive beamformers was proposed. In this scheme, the main idea is to divide
per-user rate targets into per-stream rate targets and find the optimal per-stream
rates. This optimization procedure is combined with the alternating updates of
transmit and receive beamformers. It is straightforward to extend the aforemen-
tioned single-cell MIMO algorithms to a centralized multi-cell scenario. However,
there remains a lack of decentralized coordinated beamforming algorithms for
the SPMin problem in a multi-cell MIMO system.

The SPMin problem becomes more complicated for a decentralized implemen-
tation since global CSI is not available at each BS. In a decentralized processing
mode, each BS should attempt to control the inter-cell interference seen via
the receive beamformers of the users that are served by the neighboring BSs.
Here, a problem arises that even if the channels from the BS to the neighbor-
ing cells’ users are known, the receivers they are employing may not be known.
Most of the linear transmitter and receiver design algorithms proposed in the
literature do not generally consider practical signaling strategies for distributed
implementation. Instead, the focus is mainly on optimization designs rather
than studying practical implementation strategies with the goal to limit signal-
ing overhead. To facilitate decentralized processing, different pilot and backhaul
signaling strategies were recently proposed in [56] for the weighted sum rate
maximization problem. These strategies are designed for TDD-based systems
where the reciprocity of downlink and uplink channels can be exploited. The
author’s contributions in [99] considered decentralized beamforming algorithms
in multi-cell multi-stream MIMO systems by exploiting a combination of pilot
and backhaul signaling.

Perfect CSI was presumed for the design of the aforementioned algorithms.
In practice, however, only imperfect CSI can be made available at each BS. If
imperfect CSI is not taken into account in the system optimization, per-user
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QoS constraints cannot usually be satisfied. In order to guarantee the QoS con-
straints, the worst case robust optimization methods can be applied where the
CSI errors are assumed to lie in a bounded region. In this setting, the minimum
power beamforming problem is non-convex, even for the multi-cell MISO case.
Many robust designs that approximate the non-convex problem with a convex
one have been proposed, such as [89, 100–104]. In [100–102], convex approxi-
mations are achieved by approximating the non-convex constraints by tighter
convex constraints. Globally optimal solutions cannot be guaranteed due to
the restrictive nature of the approximations. In [89, 103, 104], a semidefinite
relaxation (SDR) method was used to achieve a convex approximation of the
problem. In this case, a non-convex feasible solution set is approximated by a
larger convex set. If the resulting transmit covariance matrices are rank-one,
then the achieved solution is also globally optimal for the original non-convex
problem [103]. Most of the proposed approaches assume a single-cell system,
thus the algorithms are inherently centralized. Recently, decentralized robust
algorithms were proposed for multi-cell MISO systems in [102] and [89]. The
dual decomposition-based approach in [102] is inherently sub-optimal. In [89],
the proposed algorithm is based on ADMM, and it is globally optimal if the
obtained transmit covariance matrices are all rank-one. An alternative decen-
tralized algorithm based on primal decomposition was proposed in the author’s
contribution [105].

1.5.2 Coordinated beamforming for SPMin in cognitive radio networks

Cognitive radio is a promising approach for effectively utilizing the radio spec-
trum by allowing cognitive secondary users (SUs) to access the bandwidth of the
licensed primary users (PUs) [106, 107]. Many of the traditional cognitive radio
approaches are designed to exploit the spectrum holes of the licensed band [108].
However, higher spectrum efficiency is provided in underlay spectrum sharing
cognitive radio networks where the primary network allows the secondary net-
work to access the occupied primary bandwidth, provided that the generated
interference toward PUs is under a tolerable threshold [109, 110]. Within this
interference limitation, a secondary network can optimize its own system per-
formance. In this respect, multiantenna beamforming is seen as a promising
approach to provide efficient spectrum usage while satisfying the PU specific
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interference power constraints since the generated interference can be spatially
controlled [111]. Recent achievements in cellular beamforming, especially in co-
ordinated beamforming (see Section 1.5.1), have evoked an interest in extending
these solutions to spectrum sharing cognitive radio networks.

Extending cellular beamforming approaches to cognitive radio networks re-
quires introducing additional constraints to the maximum allowed interference
levels experienced by the PUs [111]. Recently, cognitive beamforming approaches
have been widely studied with various secondary network optimization objec-
tives, e.g., sum power minimization [65, 112–120], sum rate maximization [121–
124] and minimum rate maximization [125–127]. Cognitive multicast MISO
beamforming strategy was studied in [65, 114]. Convex optimization and uplink-
downlink duality based beamforming solutions were proposed for a cognitive
radio network with a single secondary and primary transmitter in [113, 115]
and [112, 113, 115], respectively. In [116], [115] was extended to the cognitive
MISO interference channel (IC), i.e., a cognitive radio network with multiple
secondary/primary transmitter-receiver pairs. Most of the aforementioned cog-
nitive beamforming approaches are inherently centralized. Hence, they require a
central controlling unit with global CSI for the secondary network coordination
in a general multi-cell multiuser cognitive radio network setting.

In [126], minimum power beamformers were solved as an intermediate re-
sult of the original rate balancing problem in the cognitive MISO IC. It was
shown that the centralized problem could be cast as an SOCP and solved ef-
ficiently. In addition, the problem was solved in a decentralized manner via a
two-level algorithm, where the outer and inner optimizations were solved using a
subgradient method and an uplink-downlink duality based approach, similar to
that in [59], respectively. The outer optimization requires limited backhaul sig-
naling between secondary transmitters, whereas the inner optimization requires
real physical transmissions and receptions along with some over-the-air signaling.
As discussed in Section 1.5.1, employing decentralized uplink-downlink duality
based algorithms may cause extra delay and increased signaling overhead. In
[63, 119], decentralized beamforming algorithms were proposed for the cognitive
interference broadcast channel (IBC), where each transmitter serves multiple si-
multaneous users. In the author’s contribution [63], the proposed algorithm was
based on primal decomposition. An ADMM-based approach was developed in
[119]. In these algorithms, it is possible to provide feasible beamformers at inter-
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mediate iterations. Consequently, long delays and increased signaling overhead
can be avoided at the cost of sub-optimal performance by stopping the algorithms
after a fixed number of iterations. In the case of multiple antenna users, a cen-
tralized single-cell MIMO beamforming strategy was proposed in [120]. This
scheme can be seen as an extension of the cellular algorithm proposed in [91] for
the cognitive radio networks.

The aforementioned algorithms require perfect CSI in order to operate prop-
erly. As discussed in the cellular case in Section 1.5.1, CSI is imperfect in practice,
mainly due to errors in channel estimation and quantization. If the imperfections
in the CSI are not taken into account in the cognitive beamforming design, there
may be significant performance degradation and violation of the QoS constraints
for the secondary network. In the cognitive radio literature, CSI uncertainty is
usually modeled by bounding all the error realizations with a known region (e.g.,
spherical or ellipsoidal) [125] or assuming that the error realizations are drawn
from a known distribution [128, 129]. Various cognitive MISO beamforming op-
timization problems with the former error modeling approach were handled by
worst-case optimization in [117, 118, 123, 125, 129–133]. Single-cell and multi-
cell cognitive radio networks were considered in [117, 118, 123, 125, 128, 129, 131]
and [129, 130, 132, 133], respectively. All these algorithms are centralized except
for the one in [132]. In [132], the sum MSE was minimized in an underlay cogni-
tive radio network with imperfect CSI between secondary transmitters and PUs.
However, perfect CSI was assumed between secondary transmitters and the SUs.
The focus in this thesis is on the SPMin via the worst-case optimization, as
the QoS constraints need to be satisfied for all error realizations. Beamforming
designs wherein this non-convex problem is reformulated as a convex one were
proposed in [117, 118, 125, 133]. In [117], the problem is approximated con-
servatively leading to sub-optimal algorithms. In [118, 125, 133], the proposed
algorithms use the standard SDR method for the convex approximation. Global
optimality is guaranteed for those cases when the solution of the approximated
problem is rank-one. It was shown in [133] that rank-one solutions can always be
guaranteed for the cognitive interference channel, i.e., where multiple secondary
and primary transmitter-receiver pairs co-exist. All the proposed power mini-
mization algorithms in [117, 118, 125, 133] are centralized. In the author’s con-
tribution [134] an ADMM-based robust decentralized algorithm was proposed
for the cognitive multi-cell MISO system. In the case of multi-antenna users,
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a robust MIMO beamforming algorithm was proposed in [120] for a cognitive
single-cell case.

1.6 Aims and outline of the thesis

The aim of this thesis is to develop coordinated beamforming techniques for
multi-antenna cellular and cognitive radio networks. In particular, decentralized
algorithms are proposed since they are often more applicable to practical imple-
mentation than centralized ones. The main focus of this work is on a practical
network design where the objective is to minimize the sum transmission power
of the system while providing a guaranteed data rate for each active user. The
starting point of the work is a multi-cell multi-user MISO system with an assump-
tion of perfect local CSI at the BSs. This scenario is extended by taking into
account some special features of the wireless systems, such as multi-antenna
users, imperfect CSI at the transmitters, and a two-tier cognitive radio net-
work architecture. The performance of the proposed coordinated beamforming
techniques is evaluated in simplified multi-cell environments via Matlab-based
computer simulations. In order to demonstrate possible performance gains, the
proposed algorithms are compared with state-of-the-art techniques.

This thesis is written as a monograph for the sake of clarity and coherence.
Most of the contributions and results have been published in ten original publi-
cations, including four published journal papers [60, 61, 63, 105], one submitted
journal paper [99] and five published conference papers [134–138]. To form a co-
herent piece of work, the presentation of the original contributions was modified
accordingly, and some new numerical results were added.

Chapter 2 is mainly founded on [60, 61, 63, 105, 135, 136]. Novel decentralized
coordinated beamforming algorithms are proposed for the SPMin problem in a
cellular MISO network. First, primal and dual decomposition-based algorithms
are proposed with the assumption that local CSI at each BS is perfect. Then,
the case of imperfect local CSI is considered, and a primal decomposition-based
algorithm is introduced. The sum power performance of the proposed algorithms
is examined via numerical examples in a simplified cellular environment.

The results of Chapter 3 rest on [99, 137, 138]. In addition to a centralized
solution, two decentralized coordinated beamforming algorithms are proposed
for the SPMin problem with per-user rate constraints in a cellular MIMO sys-
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tem. CSI acquisition is assumed to be error-free. To facilitate decentralized
implementation, the proposed algorithms exploit a combination of pilot signal-
ing and scalar backhaul information exchange between the BSs. The algorithms
are numerically evaluated in terms of sum power under different system settings.

Chapter 4, part of which has been presented in [63, 134] considers a MISO
cognitive radio network, where primary and secondary users share the same spec-
trum. Spatial domain processing, i.e., coordinated beamforming, is employed to
keep the generated interference from the secondary network toward PUs below
a predefined threshold while guaranteeing a minimum rate target for each SU.
Specifically, decentralized coordinated beamforming algorithms are proposed for
the sum power minimization of secondary network with additional constraints
imposed on the PUs. Both perfect and imperfect local CSI at the transmitter
cases are considered. Numerical evaluation is conducted to show the effectiveness
of the proposed algorithms.

In Chapter 5, conclusions are drawn and future research directions are dis-
cussed.

The main contributions of this thesis are summarized as follows.

– Chapter 2 [60, 61, 63, 105, 135, 136]: Decentralized coordinated beamforming
algorithms for the SPMin problem in multi-user MISO cellular networks.

– Chapter 3 [99, 137, 138]: Centralized and decentralized coordinated beamform-
ing algorithms for the SPMin problem in multi-user MIMO cellular networks.

– Chapter 4 [63, 134]: Decentralized coordinated beamforming algorithms for
the SPMin problem in multi-user MISO cognitive radio networks.

1.7 Author’s contributions to the publications

The author of this thesis has contributed to twenty-seven papers altogether [60,
61, 63, 84, 99, 105, 134–154]. For consistency, the thesis is mainly based on
ten original papers, including four published journal papers [60, 61, 63, 105], one
submitted journal paper [99] and five published conference papers [134–138]. The
author had the main responsibility for creating the ideas, performing the analysis,
deriving the mathematical algorithms, developing the Matlab-based simulation
software, conducting the numerical evaluation via computer simulations, and
writing the papers [61, 63, 99, 105, 134–138]. The role of the co-authors was
mainly to provide guidance, comments, and support during the research process.
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As the second author in [60], the author of this thesis was actively involved
in the research and writing process, by taking part of the analysis as well as
providing ideas, comments, and criticism. In addition to the papers [60, 61, 63,
99, 105, 134–138], on which the thesis is based, the author has written other
related papers, including a journal paper [152] and five conference papers [140–
142, 150, 151], and also co-authored another nine conference papers [84, 139, 143–
149]. Still further, the author has acted as technical advisor and co-author for
another journal paper [154], currently under revision, and a conference paper
[153].
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2 Coordinated beamforming in MISO cellular
networks

This chapter consider coordinated beamforming in cellular multi-user MISO sys-
tems. The network optimization objective is to minimize the sum transmission
power of the coordinating BSs while also providing a guaranteed minimum rate
for each active user. In particular, decentralized coordinated beamforming tech-
niques are derived and analyzed.

In Section 2.1, the multi-cell multi-user MISO system model is introduced,
and the SPMin problem is mathematically formulated applying perfect and im-
perfect CSI assumptions. Novel decentralized beamforming designs are proposed
for perfect and imperfect CSI cases in Sections 2.2 and 2.3, respectively. In the
proposed algorithms, primal or dual decomposition methods are used to facilitate
decentralized implementation. The optimal transmit beamformers are designed
using standard convex optimization techniques or alternatively by exploiting the
uplink-downlink duality-based method. The performance of the proposed algo-
rithms is evaluated in a simplified multi-cell environment. Finally, the chapter
is summarized and discussed in Section 2.4.

2.1 System model and SPMin problem formulation

The considered system is a multi-cell multi-user MISO network with B BSs and
K users, as depicted in Fig. 4. Each BS is equipped with AT transmit antennas
and each user with a single receive antenna. The sets of B BSs and K users
are denoted by B and K, respectively. BS b serves its own set of Kb users. This
set is denoted by Kb. The set of other cells’ users is given by K̄b = K \ Kb. A
coordinated beamforming system is considered where each user is served by a
single BS. User allocation is assumed to be predefined and fixed. The serving
BS for user k is denoted by bk. The signal received by the kth user is given by

yk = hbk,kmkxk +
∑

i∈K\{k}

hbi,kmixi + nk (1)

where hbk,k ∈C1×AT is the channel vector from BS bk to user k, mk ∈CAT×1 is
the unnormalized transmit beamforming vector for user k, xk is the correspond-
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Fig 4. Multi-cell multi-user MISO system.

ing normalized complex data symbol, and nk ∼ CN (0, N0) is the complex white
Gaussian noise sample with zero mean and variance N0. The sum transmission
power of BSs is expressed as

P tx =
∑
k∈K

Tr
(
mkm

H
k

)
=
∑
k∈K

∥∥mk

∥∥2
2

(2)

By assuming that a Gaussian codebook is used for each data stream, the rate
for user k can be written as

rk = log2 (1 + Γk) (3)

where the SINR of user k is given by

Γk =

∣∣hbk,kmk

∣∣2
N0 +

∑
i∈K\{k}

∣∣hbi,kmi

∣∣2 (4)

The network design problem is to minimize the sum power of the BSs while
guaranteeing a minimum predefined rate for each active user. The resulting
optimization problem is expressed as

min.
{mk}k∈K

∑
k∈K

∥∥mk

∥∥2
2

s. t. log2 (1 + Γk) ≥ Rk, ∀k ∈ K
(5)
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where Rk is the fixed rate target for user k. In this MISO problem setting,
the user-specific rate targets {Rk}k∈K can be changed into user-specific SINR
targets {γk}k∈K since there exists direct mapping between the rate and SINR.
Now the problem can be written as

min.
{mk}k∈K

∑
k∈K

∥∥mk

∥∥2
2

s. t. Γk ≥ γk, ∀k ∈ K
(6)

where γk = 2Rk − 1 is the fixed SINR target. In (6), the SINR constraints are
tight at the optimal solution. Problem (6) can be infeasible in some channel
conditions and network scenarios, e.g., the number of users and/or the SINR
targets are too high. In those cases, it is the duty of admission control to loosen
the system requirements by decreasing the SINR targets and/or limiting the
number of active users [83]. The feasibility of the single-cell version of (6) was
discussed in [33]. As an example, a sufficient condition for (6) to be feasible
is when AT ≥ K, provided that the channel elements are independent of each
other. In the following sections, it is assumed that (6) is strictly feasible, and
an optimal solution exists. Problem (6) can be solved in a centralized manner
by using state-of-the-art algorithms based on uplink-downlink duality [58, 59],
SDP [31] and SOCP [33]. In addition, uplink-downlink duality-based decentral-
ized algorithms were proposed in [58, 59]. Novel decentralized algorithms are
developed in Sections 2.2.1 and 2.2.2.

In (6), it is assumed that all the channels are known perfectly at the corre-
sponding BSs. In practice, however, there is uncertainty in the CSI acquisition.
That issue is addressed in the following by assuming a worst case network design
perspective wherein the CSI errors lie in ellipsoidal regions. Assuming imperfect
CSI, the channel vector from the bth BS to the kth user is expressed as

hb,k = ĥb,k + ub,k, ∀b ∈ B, ∀k ∈ K (7)

where ĥb,k and ub,k are the estimated channel at the BS and the CSI error,
respectively. Ellipsoid that bounds the CSI errors is given by

Eb,k =
{
ub,k : ub,kEb,ku

H
b,k ≤ 1

}
, ∀b ∈ B, ∀k ∈ K (8)

where the positive definite matrix Eb,k is known at the BS, and it determines
the accuracy of the CSI by defining the shape and size of the ellipsoid. Here, the
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network design problem is to minimize the sum power of the BSs while satisfying
the worst case per-user SINR targets. The resulting robust optimization problem
is given by

min.
{mk}k∈K

∑
k∈K

tr
(
mkm

H
k

)
s. t.

(
ĥbk,k + ubk,k

) (
mkm

H
k

) (
ĥbk,k + ubk,k

)H

N0 +
∑

i∈K\{k}

(
ĥbi,k + ubi,k

) (
mimH

i

) (
ĥbi,k + ubi,k

)H ≥ γk,

∀ubk,k ∈ Ebk,k, ∀ k ∈ K

(9)

The problem (9) is non-convex, and thus, it cannot be solved in this form. In
[89], (9) was first approximated and then solved in a decentralized manner by
exploiting the ADMM method. In Section 2.3, (9) is also approximated and
reformulated as a tractable convex form, and an alternative decentralized beam-
forming algorithm is derived.

2.2 Decentralized transmit beamforming design

In this section, decentralized coordinated beamforming algorithms are developed
to solve the SPMin problem in a cellular multi-user MISO system. The proposed
algorithms are based on standard primal and dual decomposition methods. In
general, decomposition methods turn the original one-level optimization prob-
lem into two optimization levels: a higher level master problem that controls
the lower level sub-problems [155]. The resulting problem structure can be ex-
ploited to solve the original problem in a decentralized way. In the following
subsections, a primal decomposition-based algorithm is derived first, after which
a dual decomposition-based algorithm is developed.

2.2.1 Primal decomposition-based algorithm

A primal decomposition-based decentralized algorithm is derived to solve the
SPMin problem (6). The problem is first reformulated such that the primal
decomposition method can be applied to turn the one-level problem into two
optimization levels, i.e., a network-wide master problem for inter-cell interfer-
ence coordination and BS-specific subproblems for independent transmit beam-
forming design. A projected subgradient method is applied to solve the higher
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level master problem by iteratively updating inter-cell interference power lev-
els. The lower level subproblems are solved for the transmit beamformers with
fixed interference levels either by using convex optimization techniques or the
uplink-downlink duality-based method.

Reformulation of SPMin problem

The primal decomposition method is applicable to problems that include cou-
pling variables such that by fixing them the problem decouples [155]. The pri-
mal decomposition method cannot be directly applied to the original SPMin
problem (6) since it is coupled between the BSs by the transmit beamformers.
However, (6) can be reformulated by separating inter-cell interference powers
as auxiliary optimization variables. Consequently, the coupling is transferred
from the beamformers to the inter-cell interference power variables. After the
reformulation, the primal decomposition method can be applied since the result-
ing problem decouples by fixing the interference power variables. The primal
decomposition-based problem structure allows two-level optimization, where the
inter-cell interference is coordinated in a network-level by iteratively solving the
master problem, and the transmit beamformers are designed in a BS-level by
solving the corresponding subproblem with the given interference levels.

Inter-cell interference power from BS b to user k is denoted by

χb,k =
∑
i∈Kb

∣∣hb,kmi

∣∣2. (10)

By using (10), the SINR of user k is rewritten as

Γk =

∣∣hbk,kmk

∣∣2
N0 +

∑
b′∈B\{bk}

χb′,k +
∑

i∈Kb\{k}

∣∣hbi,kmi

∣∣2 . (11)

The SPMin problem (6) can then be reformulated accordingly. The resulting
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problem is expressed as

min.
P tx,{mk}k∈K,χ

P tx

s. t.
∑
k∈K

∥∥mk

∥∥2
2
≤ P tx

∣∣hbk,kmk

∣∣2
N0 +

∑
b′∈B\{bk}

χb′,k +
∑

i∈Kb\{k}

∣∣hbi,kmi

∣∣2 ≥ γk, ∀k ∈ K

∑
i∈Kb

∣∣hb,kmi

∣∣2 ≤ χb,k, ∀b ∈ B, ∀k ∈ K̄b

(12)

For notational convenience, all the inter-cell interference power variables are
gathered into a single vector χ, i.e., the elements of χ are taken from the set
{χb,k}b∈B,k∈K̄b

. Problem (12) is written in epigraph form [81]. The optimal
solution for (6) is equivalent to that for (12) since all the inequality constraints
in (12) hold with equality at the optimal point. For a strict feasibility assumption,
it needs to be that χb,k > 0, ∀b ∈ B,∀k ∈ K̄b, since interference power cannot
be negative.

Following the derivation in [33], (12) can be reformulated as a convex SOCP

min.
ptx,{mk}k∈K,χ

ptx

s. t.
∥∥∥ m̄

∥∥∥
2
≤ ptx∥∥∥∥∥∥∥

MH
bk
hH
bk,k

χ̄k√
N0

∥∥∥∥∥∥∥
2

≤
√
1 + 1

γk
hbk,kmk, ∀k ∈ K

∥∥∥ MH
b h

H
b,k

∥∥∥
2
≤ χ̄b,k, ∀b ∈ B, ∀k ∈ K̄b

(13)

where m̄ = [mT
1 , . . . ,m

T
K ]T, Mb = [mKb(1), . . . ,mKb(Kb)] and χ̄b,k =

√
χ
b,k

.
The elements of χ̄k are taken from the set {χ̄b′,k}b′∈B\{bk}, i.e., the interference
experienced by user k from the other BSs. The optimal sum power is given by
(ptx)2 = P tx. The problem (12) is a standard form SOCP [81] since the objective
function is linear and the constraints are SOC constraints.

In the following proposition, it is shown via strong duality that (12) can be
solved via its Lagrange dual problem. This valuable property is used later in
the algorithm derivation. Strong duality implies that the duality gap between
a primal problem and its Lagrangian dual problem is zero, i.e., both problems
have the same solution [81]. Therefore, the primal problem can be solved via its
dual problem.

48



Proposition 1. Strong duality holds for problem (12).

Proof. See Appendix 1.

Two-level problem structure via primal decomposition

Problem (12) is coupled between the BSs by the inter-cell interference variables,
i.e., the elements of χ. Precisely, each element of χ couples exactly two BSs. The
sum power P tx is inherently separable between the BS, i.e., P tx =

∑
b∈B P tx

b =∑
b∈B

∑
k∈Kb

∥∥mk

∥∥2
2
, where P tx

b is the transmission power of BS b. Consequently,
(12) decouples if χ is fixed. Now, primal decomposition is an adequate method to
decompose (12) into a higher level master problem and B lower level subproblems,
one for each BS. The resulting master problem and subproblems are convex since
the original problem is convex [155]. For notational purposes, BS-specific inter-
cell interference vectors are introduced, i.e., χb, ∀b ∈ B, which consist of all χb,k

that are coupled with BS b. Precisely, the elements of χb are taken from the
sets {χb,k}k∈K̄b

and {χb′,k}b′∈B\{bk},k∈Kb
.

The lower level subproblem at BS b for a fixed χb is written as

min.
P tx

b ,{mk}k∈Kb

P tx
b

s. t.
∑
k∈Kb

∥∥mk

∥∥2
2
≤ P tx

b∣∣hbk,kmk

∣∣2
N0 +

∑
b′∈B\{bk}

χb′,k +
∑

i∈Kb\{k}

∣∣hbi,kmi

∣∣2 ≥ γk, ∀k ∈ Kb

∑
i∈Kb

∣∣hb,kmi

∣∣2 ≤ χb,k,∀k ∈ K̄b

(14)

Proposition 1 holds true for (14) since it is a simplified version of (12), i.e., strong
duality holds true.

The network-level master problem manages the subproblems by updating
{χb}b∈B. The master problem is expressed as

min.
{χb}b∈B

∑
b∈B

g⋆b (χb)

s. t. χb ∈ IRNb
++, ∀b ∈ B

(15)

where g⋆b (χb) denotes the optimal objective value of the subproblem (14) for
a given χb, and IRNb

++ is the set of Nb dimensional positive real vectors. The
following subsections show how to solve (14) and (15).

49



Master problem: network-wide optimization step

The projected subgradient method is applied to solve the network-wide master
problem (15) by iteratively updating the inter-cell interference power variables,
i.e.,

χ
(r+1)
b,k = P++

{
χ
(r)
b,k − σ(r)u

(r)
b,k

}
, ∀b ∈ B, ∀k ∈ K̄b (16)

where P++ is the projection onto the set of positive real numbers. Step-size at
iteration r is denoted by σ(r). The scalar u(r)

b,k is any (network-level) subgradient
of (15) evaluated at point χ(r)

b,k. Finding subgradients for the interference update
process (16) is described in the following proposition.

Proposition 2. A valid subgradient of (15) at point χb,k is given by

u
(r)
b,k = λ

(r)
bk,k

− µ
(r)
b,k, ∀b ∈ B, ∀k ∈ K̄b (17)

where λ
(r)
bk,k

is the optimal dual variable associated with χ
(r)
b,k in the SINR con-

straint of user k at its serving BS bk (i.e., in subproblem bk) and ν
(r)
b,k is the opti-

mal dual variable associated with χ
(r)
b,k in the inter-cell interference constraint of

user k at the interfering BS b (i.e., in subproblem b). This is due to the inter-cell
interference term χb,k being coupled with exactly two BSs, i.e., user k’s serving
BS bk and user k’s interfering BS b.

Proof. See Appendix 2.

In the literature, there are multiple results on the convergence of the (pro-
jected) subgradient method with different step-size rules, see [156, 157]. For
example, the subgradient method converges to the optimal value for a convex
problem when the non-negative step-size σ(r) is nonsummable and diminishing
with r, i.e., limr→∞ σ(r) = 0 and

∑∞
r=1 σ

(r) = ∞. In this respect, a valid step-
size is, for example, σ(r) = φ√

r
, where φ gets a fixed and positive value. For

a fixed step-size, the subgradient method converges within some range of the
optimal value, and the range decreases with the decreasing step-size. As an in-
herent property of the subgradient method, monotonic convergence can not be
guaranteed [155]. Thus, it is important to keep track of the best solution for the
previous iterations.
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Subproblems: BS-specific optimization step

Alternative methods are introduced to solve the BS-specific subproblems for the
transmit beamformers and dual variables. The first method is based on standard
convex optimization techniques by solving (14) and its dual problem as SOCP
and SDP, respectively. The second approach relies on an uplink-downlink duality
method that includes optimization steps for uplink powers, uplink receive beam-
formers, and downlink transmit beamformers. In general, the latter approach
has lower computational complexity compared with the former one since it does
not use convex optimization methods. For notational convenience, the iteration
index r is dropped in the following subsections.

Convex optimization-based solution

Here, the subproblem (14) and its dual problem are reformulated as convex
problems. In this respect, (14) can be cast as an SOCP

min.
ptx
b ,{mk}k∈Kb

ptxb

s. t.
∥∥∥ m̄b

∥∥∥
2
≤ ptxb∥∥∥∥∥∥∥

MH
bk
hH
bk,k

χ̄k√
N0

∥∥∥∥∥∥∥
2

≤
√
1 + 1

γk
hbk,kmk, ∀k ∈ Kb

∥∥∥ MH
b h

H
b,k

∥∥∥
2
≤ χ̄b,k, ∀k ∈ K̄b

(18)

where m̄b = [mT
Kb(1)

, . . . ,mT
Kb(Kb)

]T and the optimal per-BS power is given by
(ptxb )2 = P tx

b . In general, the optimal dual variables are provided as a certificate
for optimality by solving a convex optimization problem via standard convex
optimization software packages, e.g., CVX [88]. However, CVX cannot provide
the dual variables for the primal problems which are formulated as SOCPs. Since
strong duality holds for (14), the optimal dual variables can be found by solving
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the Lagrange dual problem of (14). The dual problem is expressed as

max.
λb,µb

∑
k∈Kb

λb,k

N0 +
∑

b′∈B\{bk}

χb′,k

−
∑
k∈K̄b

µb,kχb,k

s. t. I+
∑

i∈Kb

λb,ih
H
bk,i

hbk,i +
∑

j∈K̄b

µb,jh
H
bk,j

hbk,j −
(
1 + 1

γk

)
λb,kh

H
bk,k

hbk,k

≽ 0,∀k ∈ Kb

λb ≽ 0,µb ≽ 0

(19)
where λb = [λb,1, . . . , λb,Kb

]T and µb = [µb,1, . . . , µb,|K̄b|]
T. Since the objective

function is linear and the inequality constraints are linear matrix inequalities,
(19) can be cast as a standard form SDP by turning the maximization into
minimization and changing the sign of the objective function. Thus, the resulting
problem can be efficiently solved via standard SDP solvers.

Uplink-downlink duality-based solution

The concept of uplink-downlink SINR duality implies that the optimal sum
power is the same for the downlink and uplink transmissions assuming the same
SINR targets for the active users [35]. In general, this concept can be used to
solve downlink beamforming problems via uplink problems, which are usually
easier to solve. In the following, an uplink-downlink duality-based algorithm is
derived to solve the BS-level subproblem (14).

First, the dual problem (19) is split into an outer maximization of µb and
an inner maximization of λb. The vectors µb and λb consist of the dual vari-
ables associated with the inter-cell interference and SINR constraints in (14),
respectively. Since (19) is concave, both the outer and inner problems are also
concave.

The outer maximization can be expressed as

max.
µb

ḡ⋆b (µb)

s. t. µb ∈ IRKb
+

(20)

where ḡ⋆b (µb) is the optimal objective value of the inner maximization of λb for
the given µb, and IRKb

+ is the set of positive real vectors of length Kb. The
projected subgradient method is used to optimally solve the outer maximization
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problem (20) for µb. Projected subgradient updates are given by

µ
(n+1)
b,k = P+

{
µ
(n)
b,k + σ(n)u

(n)
b,k

}
, ∀k ∈ K̄b (21)

where P+ is the projection onto the set of non-negative real numbers. At itera-
tion n, the step-size is denoted by σ(n). Based on Proposition 2, the subgradient
u
(n)
b,k at point µ

(n)
b,k can be expressed as

u
(n)
b,k =

∑
i∈Kb

|hb,kmi|2 − χb,k, ∀k ∈ K̄b (22)

In order to solve (22), the optimal beamformers {mk}k∈Kb
need to be found at

each iteration n. For ease of presentation, the iteration index n with respect to
µb is omitted in the rest of this subsection.

The inner optimization problem for λb is expressed as

max.
λb

∑
k∈Kb

λb,k

N0 +
∑

b′∈B\{bk}

χb′,k


s. t. I+

∑
i∈Kb

λb,ih
H
bk,i

hbk,i +
∑

j∈K̄b

µb,jh
H
bk,j

hbk,j

−
(
1 + 1

γk

)
λb,kh

H
bk,k

hbk,k ≽ 0, ∀ k ∈ Kb

λb ≽ 0.

(23)

The fixed term
∑

k∈K̄b
µb,kχb,k is omitted from the objective since it does not

have any impact on finding the optimal λb. Inspired by [33, 35, 59], next it is
shown how to find the optimal λb and {mk}k∈Kb

with the aid of uplink-downlink
duality.

Theorem 1. Problem (23) is equivalent to the following problem:

min.
λb,{ẃk}k∈Kb

∑
k∈Kb

λb,k

(
N0 +

∑
b′∈B\{bk}

χb′,k

)
s. t. 1

γk
λb,k

∣∣ẃH
k hbk,k

∣∣2 − ∑
i∈Kbk

\{k}
λb,i

∣∣ẃH
k hbi,i

∣∣2
≥
∑

j∈K̄b

µb,j

∣∣ẃH
k hbk,j

∣∣2 + ẃH
k Iẃk, ∀ k ∈ Kb

λb ≽ 0.

(24)

where ẃk ∈CAT×1 is interpreted as a virtual uplink beamformer for user k. Prob-
lem (24) can be interpreted as a virtual dual uplink (weighted) SPMin problem
for a cellular multi-user MISO system where the user-specific SINR constraints
remain the same as in the downlink.
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Proof. See Appendix 3.

A fixed-point iteration method is introduced in the following proposition to
solve (24).

Proposition 3. The problem (24) is solved optimally for λb via the following
fixed point iteration:

λ
(m+1)
b,k =

1(
1 + 1

γk

)
hbk,k

(
Ω

(m)
b

)−1

hH
bk,k

, ∀k ∈ Kb (25)

where

Ω
(m)
b = I+

∑
i∈Kb

λ
(m)
b,i hH

bk,i
hbk,i +

∑
j∈K̄b

µb,jh
H
bk,j

hbk,j . (26)

Proof. See Appendix 4.

For the fixed (optimal) λb, the optimal virtual uplink beamformers {ẃk}k∈Kb

can be computed using the linear MMSE receiver, presented in (154) in Appendix
3. The following proposition shows how the optimal downlink beamformers can
be acquired with the aid of the optimal uplink beamformers.

Proposition 4. The optimal downlink beamformers {mk}k∈Kb
are solved via

the optimal virtual uplink beamformers {ẃk}k∈Kb
by scaling, i.e.,

mk =
√
εkẃk,∀k ∈ Kb. (27)

The scaling factors {εk}k∈Kb
are solved via the matrix equation:

[ε1, . . . , εKb
]T = A−1b (28)

where the (i, j)-th and kth elements of the matrix A and the vector b are given
by

[A]ij =

{
(1/γi)|hbi,iẃi|2, if i = j

−|hbi,iẃj |2, if i ̸= j
, ∀i, j ∈ Kb (29)

and [b]k =
∑

b′∈B\{bk} χb′,k +N0, ∀k ∈ Kb, respectively.

Proof. See Appendix 5.
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Following from the previous findings and Proposition 1, the optimal objective
value of the downlink problem (14) is the same as the optimal objective value
obtained by solving the outer maximization (20) via the projected subgradient
method (21) and the inner minimization via the virtual uplink problem (24).
Consequently, the obtained downlink beamformers and the dual variables are
optimal. These optimization steps can be solved independently at BS b, for
all b ∈ B in parallel. The proposed BS-level optimization is summarized in
Algorithm 1.

Algorithm 1 BS-specific subproblem optimization via uplink-downlink duality

1: Set m = 0 and n = 0. Initialize λ
(0)
b , µ(0)

b .
2: repeat
3: repeat
4: Update virtual uplink powers λ

(m+1)
b via fixed-point iteration (25).

5: Set m = m+ 1.
6: until desired level of convergence
7: Compute virtual uplink receive beamformers {ẃk}k∈Kb

via MMSE crite-
rion (154).

8: Compute downlink transmit beamformers {mk}k∈Kb
via scaling (27).

9: Update dual variables µ
(n+1)
b via projected subgradient method (21).

10: Set n = n+ 1.
11: until desired level of convergence

Decentralized implementation

Decentralized implementation is enabled by having local CSI at each BS (see
Fig. 5), and allowing an exchange of the BS-specific subgradients between the
coupled BSs via low-rate backhaul links. Specifically, the subproblem b in (14)
and the corresponding part of the master problem in (15), i.e., the update of
χb, can be solved independently at BS b for all b ∈ B in parallel. At the sub-
gradient iteration r, the backhaul information exchange is performed by BS b

as follows. BS b signals the dual variables associated with the SINR constraints,
i.e., {λb,k}k∈Kb

, to all the interfering BSs. Whereas the dual variables associated
with the inter-cell interference constraints, i.e., {µb,k}k∈K̄b

, are signaled to the
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Algorithm 2 Decentralized transmit beamforming design based on primal de-
composition for cellular MISO system

1: Set r = 0. Initialize inter-cell interference variables χ
(0)
b .

2: repeat
3: Compute transmit beamformers {mk}k∈Kb

and dual variables {λb,k}k∈Kb

and {µb,k}k∈K̄b
by solving SOCP (18) and SDP (19), respectively, or al-

ternatively by using uplink-downlink duality-based Algorithm 1.
4: Communicate {λb,k}k∈Kb

and {µb,k}k∈K̄b
to the coupled BSs via backhaul.

5: Update inter-cell interference variables χ
(r+1)
b via projected subgradient

method (16).
6: Set r = r + 1.
7: until desired level of convergence

Fig 5. Definition of local CSI in a simple two-cell system.

BS, the user of which is being interfered by BS b. Assuming a fully connected
network and an equal number of users at each BS (i.e., Kb = K/B, ∀b ∈ B),
the total amount of the required backhaul signaling at each network-wide sub-
gradient iteration r is the sum of the real-valued terms exchanged between the
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coupled BS pairs, i.e., 2B(B − 1)Kb. The same assumptions are also applied to
other backhaul signaling overhead studies in the remainder of this thesis. The
primal decomposition-based decentralized coordinated beamforming design is
summarized in Algorithm 2. All the calculations in Algorithm 2 take place at
BS b, for all b ∈ B in parallel. Algorithm 2 converges to the optimal solution if
the step-size is properly chosen and the iterates are feasible.

Practical considerations

To obtain optimal performance, Algorithm 2 must be run until convergence.
However, aiming for the optimal solution is somewhat impractical since the more
iterations are run, the higher the signaling/computational load and the longer the
caused delay. Unlike the existing decentralized algorithms, Algorithm 2 naturally
lends itself to a more practical design where a limited number of iterations can
be used as a stopping criterion. Algorithm 2 is able to directly compute feasible
beamformers, which satisfy the rate constraints, at intermediate subgradient
iterations since each χb,k is fixed and known at the coupled BSs b and bk. At
the cost of sub-optimal performance, Algorithm 2 can be stopped at any feasible
iteration to reduce delay and signaling/computational load.

In Table 1, the backhaul signaling overhead of the centralized scheme and
decentralized Algorithm 2 are compared under different system settings. In the
centralized algorithm, it is assumed that each BS exchanges its local CSI with
all other BSs via backhaul links. Thus, global CSI is made available for each
BS. Assuming equal number of users at each cell, the total backhaul signaling
load in terms of scalar-valued channel coefficients in the centralized system is
given by 2ATK(B− 1)B. Here, one complex channel coefficient is considered as
two real valued coefficients. For Algorithm 2, the total backhaul signaling load
is presented per subgradient iteration. In Table 1, the values inside the brackets
denote the percentage of the signaling load required per decentralized iteration,
compared with the overall signaling load required by the centralized algorithm.
One can see that Algorithm 2 requires a notably less amount of backhaul sig-
naling per iteration compared to the centralized algorithm. The difference is
emphasized, as the network size is increased. For example, with four BSs and
eight users, the per-iteration signaling load of Algorithm 2 is about 3 % of the to-
tal signaling load of the centralized algorithm. In conclusion, backhaul signaling
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overhead can be significantly reduced by limiting the number of iterations.

Table 1. Total backhaul signaling load per iteration.

Centralized Decentralized Algorithm 2
{B,K,AT} = {2, 4, 4} 64 8 (12.5%)
{B,K,AT} = {3, 6, 6} 432 24 (5.6%)
{B,K,AT} = {4, 8, 8} 1536 48 (3.1%)

Algorithm 2 allows some special case designs where the number of optimiza-
tion variables is reduced, leading to a lower computational load and even a
further decreased signaling overhead. These special case designs come at the
cost of somewhat decreased performance. Some of the possible special cases are
presented below:

– Common interference constraint: χb,k = χ,∀b ∈ B, ∀k ∈ K̄b.
– Fixed interference constraints: χb,k = cb,k, ∀b ∈ B, ∀k ∈ K̄b, where cb,k is a

predefined constant. Does not require any backhaul signaling.
– Zero-forcing (ZF) beamforming for inter-cell interference, i.e., χb,k = 0, ∀b ∈
B, ∀k ∈ K̄b, with requirement of K ≤ AT. Does not require any backhaul
signaling.

The last two special designs are applicable for rapidly varying channel conditions
where the backhaul signaling information is highly outdated. In this kind of chan-
nel conditions, performance gains provided by iterative interference coordination
via backhaul signaling may be marginal.

If the BSs do not have any prior information on the inter-cell interference
power levels, it is fair to use equal elements in the initialization of {χb}b∈B in
Algorithm 2, i.e., χ

(0)
b,k = χ(0), ∀b ∈ B, ∀k ∈ K̄b. In practice, there can be

a mechanism that stops after a fixed number of initialization tries if feasible
initialization is not found, and declares the problem infeasible. Then, it is up to
admission control to relax the system requirements, e.g., lower the rate targets
or decrease the number of active users.

2.2.2 Dual decomposition-based algorithm

In this section, a dual decomposition-based decentralized algorithm is developed
to solve the SPMin problem (6). The original problem is first reformulated by

58



introducing auxiliary variables, i.e., the BS-specific inter-cell interference terms,
which can be relaxed using the dual decomposition method. In the resulting two-
level problem structure, the higher level master problem sets the prices for the
interference levels, while the lower level subproblems optimize the interference
levels with the given prices. The master problem is iteratively solved by using a
subgradient method. The subproblems are solved as SOCPs via standard convex
optimization solvers.

Reformulation of SPMin problem

The dual decomposition method can be applied to optimization problems that
have a coupling constraint such that the problem decouples into multiple sub-
problems by relaxing the constraint [155]. In this respect, the SPMin problem (6)
can be reformulated by introducing BS-specific auxiliary variables (i.e., inter-cell
interference levels) and additional equality constraints that enforce network-wide
consistency between the BS-specific variables. For example, (χ̄bk

b,k)
2 is a local

copy of the interference variable χb,k at BS bk. The coupling in the SINR con-
straints is transferred to the coupling in the equality constraints, which can then
be decoupled using the dual decomposition method. As a result, a two-level op-
timization problem is allowed, where there are multiple subproblems with fixed
dual variables (i.e., prices) at the lower level and a master dual problem coor-
dinating the update process of the dual variables at the higher level. In other
words, the network-wide master problem sets the prices for the resources (i.e.,
inter-cell interference levels), while the resources are optimized by solving the
BS-specific subproblems with the given prices.

The reformulated optimization problem is given by

min.
{mk}k∈K,{χ̄b}b∈B

∑
k∈K

∥∥mk

∥∥2
2

s. t.

∣∣hbk,kmk

∣∣2
N0 +

∑
b′∈B\{bk}

(χ̄bk
b′,k)

2 +
∑

i∈Kbk
\{k}

∣∣hbk,kmi

∣∣2 ≥ γk,∀k ∈ K

∑
i∈Kb

∣∣hb,kmi

∣∣2 ≤ (χ̄b
b,k)

2,∀b ∈ B,∀k ∈ K̄b

χ̄b
b,k = χ̄bk

b,k, ∀b ∈ B, ∀k ∈ K̄b

(30)

where the vector χ̄b consists of the BS b specific inter-cell interference power
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variables, i.e., the elements of χ̄b are taken in a specific order from the sets
{χ̄b

b,k}k∈K̄b
and {χ̄b

b′,k}b′∈B\{bk},k∈Kb
. In (30), the objective function and the

inequality constraints can be cast as SOC constraints, and they are decoupled
between the BSs. However, the equality constraints are coupled and need to
be handled by the dual decomposition method, as described in the following
section.

Two-level problem structure via dual decomposition

In order to obtain a decentralized algorithm, a standard dual decomposition
approach [155] is applied where the equality constraints χ̄b

b,k − χ̄bk
b,k = 0, ∀b ∈

B, ∀k ∈ K̄b in (30) are relaxed by forming the partial Lagrangian as

L (M1, . . . ,MB , χ̄1, . . . , χ̄B , δ1, . . . , δB)

=
∑
b∈B

∑
k∈Kb

∥∥mk

∥∥2
2
+
∑
b∈B

∑
k∈Kb

δb,k(χ̄
b
b,k − χ̄bk

b,k)

=
∑
b∈B

∑
k∈Kb

∥∥mk

∥∥2
2
+
∑
b∈B

δT
b χ̄b (31)

where δb,k is the dual variable associated with the equality constraint χ̄b
b,k− χ̄bk

b,k

and δb consists of the dual variables associated with the BS b specific inter-cell
interference terms. Specifically, the elements of δb are taken in a specific order
from the sets {δb,k}k∈K̄b

and {−δb′,k}b′∈B\{bk},k∈Kb
. The dual function can be

written as

g(δ1, . . . , δB) =
∑
b∈B

gb(δb) (32)

where the BS b specific function gb(δb) is the minimum value of the partial
Lagrangian solved for a given δb

gb(δb) = inf
{mk}k∈Kb

,χ̄b

∑
k∈Kb

∥∥mk

∥∥2
2
+ δT

b χ̄b. (33)

The dual function
∑

b∈B gb(δb) is separable between the BSs, and thus, each
gb(δb) can be considered as a BS-specific subproblem. The subproblem gb(δb)
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can be solved independently at BS b as the following minimization problem

min.
{mk}k∈Kb

,χ̄b

∑
k∈Kb

∥∥mk

∥∥2
2
+ δT

b χ̄b

s. t.

∣∣hbk,kmk

∣∣2
N0 +

∑
b′∈B\{bk}

(χ̄bk
b′,k)

2 +
∑

i∈Kbk
\{k}

∣∣hbk,kmi

∣∣2 ≥ γk, ∀k ∈ Kb

∑
i∈Kb

∣∣hb,kmi

∣∣2 ≤ (χ̄b
b,k)

2, ∀k ∈ K̄b

(34)
The master problem, in charge of optimizing the dual variables {δb}b∈B, can be
written as

max.
{δb}b∈B

∑
b∈B

gb(δb)

s. t. δb ∈ IRMb , ∀b ∈ B
(35)

where IR is the set of real numbers and Mb is the length of the vector δb. In the
following subsections, it is shown how to efficiently solve (34) and (35).

Master problem: network-wide optimization step

The master problem (35) can be solved by using a standard subgradient method
[155], which iteratively updates the dual variables {δb}b∈B. The subgradient
updates are given by

δ
(r+1)
b,k = δ

(r)
b,k + σ(r)u

(r)
b,k, ∀b ∈ B, ∀k ∈ K̄b (36)

where r is the iteration index, σ(r) is a positive step-size and u
(r)
b,k is a subgra-

dient of (35) at the point δ
(r)
b,k . Based on Proposition 2, it can be shown that

u
(r)
b,k = χ̄

b,(r)
b,k − χ̄

bk,(r)
b,k , where χ̄

b,(r)
b,k and χ̄

bk,(r)
b,k are the optimized inter-cell in-

terference power variables in subproblems b and bk, respectively. Note that the
intermediate iterates χ̄

(r)
b in the dual decomposition do not necessarily result

in feasible solutions, i.e., Γk ≥ γk, since χ̄
bk,(r)
b,k ̸= χ̄

b,(r)
b,k . In other words, it is

possible to get Γk < γk for some k when using the optimized beamformers from
(39). However, it is possible to obtain a feasible set of beamformers by solving
an additional subproblem per BS, i.e., (14) is solved for fixed average inter-cell
interference power values χb. Since each inter-cell interference power variable
χb,k couples exactly two BSs, i.e., the serving BS bk and the interfering BS b,
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the average interference power can be easily calculated as

χb,k = 1/2

((
χ̄
bk,(r)
b,k

)2
+
(
χ̄
b,(r)
b,k

)2)
(37)

Subproblems: BS-specific optimization step

The subproblem (34) can be cast as an SOCP by using an epigraph form repre-
sentation [81] and reformulating all the inequality constraints as SOC constraints.
The epigraph form of (34) is given by

min.
ab,{mk}k∈Kb

,χ̄b

ab

s. t.
∑
k∈Kb

∥∥mk

∥∥2
2
+ δT

b χ̄b ≤ ab∣∣hbk,kmk

∣∣2
N0 +

∑
b′∈B\{bk}

(χ̄bk
b′,k)

2 +
∑

i∈Kbk
\{k}

∣∣hbk,kmi

∣∣2 ≥ γk, ∀k ∈ Kb

∑
i∈Kb

∣∣hb,kmi

∣∣2 ≤
(
χ̄b
b,k

)2
, ∀k ∈ K̄b

(38)
where ab is introduced as an auxiliary variable to upper bound the relaxed ob-
jective function. The resulting quadratic constraint can be reformulated as an
SOC constraint∑

k∈Kb

∥∥mk

∥∥2
2
+ (1 + δT

b χ̄b − ab)
2/4 ≤ (1− δT

b χ̄b + ab)
2/4

After writing other constraints also as SOC constraints, the resulting SOCP can
be expressed as

min.
ab,{mk}k∈Kb

,χ̄b

ab

s. t.

∥∥∥∥∥ (1 + δT
b χ̄b − ab)/2

vec(Mb)

∥∥∥∥∥
2

≤ (1− δT
b χ̄b + ab)/2∥∥∥∥∥∥∥

MH
bk
hH
bk,k

χ̄b,k√
N0

∥∥∥∥∥∥∥
2

≤
√

1 + 1
γk
hbk,kmk,∀k ∈ Kb

∥∥∥ MH
b h

H
b,k

∥∥∥
2
≤ χ̄b

b,k, ∀k ∈ K̄b

(39)

where the elements of χ̄b,k are taken from the set {χ̄bk
b′,k}b′∈B\{bk}, i.e., the inter-

ference power from other BSs to user k.
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Decentralized implementation

Decentralized implementation is possible if each BS can acquire local CSI, and
exchanging the BS-specific inter-cell interference power values between the cou-
pled BSs via low-rate backhaul links is allowed. Consequently, the subproblem b

and the corresponding part of the master problem can be solved independently
at BS b. The total amount of the required backhaul signaling at each subgra-
dient iteration is given by 2B(B − 1)Kb, which is exactly the same amount as
used in the primal decomposition-based algorithm. Finally, the decentralized
dual decomposition-based approach is summarized in Algorithm 3, which is per-
formed at BS b, for all b ∈ B in parallel. Convergence to the optimal solution is
guaranteed for Algorithm 3 as long as the step-size is properly chosen.

Algorithm 3 Decentralized transmit beamforming design based on dual decom-
position for cellular MISO system

1: Set r = 0. Initialize dual variables δ
(0)
b .

2: repeat
3: Compute transmit beamformers {mk}k∈Kb

and inter-cell interference vari-
ables χ̄b by solving SOCP (39).

4: Communicate the elements of χ̄b to the coupled BSs via backhaul.
5: Update dual variables δ

(r+1)
b via subgradient method (36).

6: Optional: Compute feasible transmit beamformers {mk}k∈Kb
by solving

(14) with fixed average inter-cell interference variables χb taken from (37).
7: Set r = r + 1.
8: until desired level of convergence

Practical considerations and comparison to primal decomposition

Due to the similarities between the primal and dual decomposition methods,
most of the practicalities discussed in Section 2.2.1 apply here. However, there
are also some differences. The main difference is in the problem reformulation
where either the primal problem or the dual problem is decomposed into a two-
level structure. Higher level interference coordination via a master problem is
either performed directly in the primal decomposition or indirectly via prices
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(i.e., dual variables) in the dual decomposition. Thus, the content of exchanged
backhaul information is different. However, the amount of exchanged informa-
tion remains the same.

The formulation of subproblems are also different. In primal decomposition,
an SOCP needs to be solved for the beamformers and an SDP for the dual
variables. In dual decomposition, two SOCPs are solved, one for the feasible
beamformers and the other for the inter-cell interference power levels. Note
that the SOCPs for computing feasible beamformers are the same for both al-
gorithms. Standard complexity analysis as described in [158] and [159] for the
SOCPs and SDPs, respectively, is valid here. In general, the worst-case compu-
tational complexity of a convex optimization problem is known to be dominated
by the number of optimization variables and the number and size of constraints
[101, 125]. Moreover, it is well-known that, in general, SOCPs are less complex
than SDPs [158]. It is worth mentioning as well that the primal decomposi-
tion method also allows for decentralized implementation by using the uplink-
downlink duality method described in Section 2.2.1. This approach combines the
benefits of the algorithms proposed in [61] and [35], i.e., feasible beamformers
are provided at each iteration and there is no need for using convex optimiza-
tion tools. This algorithm is mainly based on fixed-point iterations and MMSE
calculations, which are, in general, computationally less complex compared to
SOCPs and SDPs. Thus, the proposed uplink-downlink duality-based primal
decomposition approach has a lower computational complexity than that of the
convex optimization-based primal and dual decomposition methods.

Both primal and dual decomposition algorithms converge to an optimal so-
lution if the step-sizes are properly selected. Unlike the primal decomposition
method, dual decomposition can find an optimal solution even if some iterates
are not feasible in the primal problem sense. This feature makes the initial-
ization of the algorithm less restricted. However, it is still possible to obtain
feasible beamformers at intermediate iterations by utilizing fixed average inter-
cell interference values as calculated in (37). Thus, the dual decomposition-based
algorithm also holds the practical feature that it can be stopped after a limited
number of iterations. Therefore, backhaul signaling overhead can be notably
reduced compared to the centralized scheme, as shown in Section 2.2.1. The
special case designs described in Section 2.2.1 are also applicable.
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Fig 6. Simplified simulation model using cell separation. Cell separation parameter is de-
fined as a ratio of the path gains, i.e., η = a/ā.

2.2.3 Numerical evaluation

In this section, the performance of the proposed algorithms is evaluated via nu-
merical examples. First, the optimal coordinated beamforming and ZF strategies
are compared under different system settings. Then, the convergence behavior
of the proposed decentralized algorithms is examined. Finally, the sum powers
and achieved user rates are plotted in time-correlated channel conditions. The
used simulation model consists of B = 2 BSs, each of which serves a predefined
set of two users, i.e., K1 = K2 = 2. Each BS is equipped with AT = 4 transmit
antennas and each user has a single receive antenna.

The pathloss between a BS and its own served users is set to 0 dB. As
illustrated in Fig. 6, a cell separation parameter η is defined as the path loss
between BS 1 and the users of BS 2, and vice versa [56, 60]. In other words,
interference towards the other cell’s users is attenuated by the value of η. For
η = 0 dB, the path loss between BS 1 and its own users is the same as the
pathloss between BS 1 and the users of BS 2, and vice versa. This case can be
seen as a scenario where all four users are located at the cell-edge. This is a worst
case scenario at the performance point of view since the inter-cell interference
is the most severe (on average). By increasing the value of η, the cells become
more isolated. Thus, the other extreme is a best case scenario where the cells
do not interfere with each other at all, i.e., η = ∞. Unless otherwise stated,
we assume frequency-flat Rayleigh fading channel conditions with uncorrelated
channel coefficients between antennas, i.e., each element of the channel vector is
an i.i.d. complex Gaussian random variable with zero mean and unit variance.
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(a) η = 3dB
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(b) η = 15dB

Fig 7. Average sum power versus rate target.
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(a) R = 2 bits/s/Hz
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(b) R = 4 bits/s/Hz

Fig 8. Average sum power versus cell separation.
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Per-user rate constraints are set equal for the users, i.e., Rk = R, ∀k ∈ K. Dual
variables and inter-cell interference variables are initialized as follows: δ(0)b,k = δ(0),
χ
(0)
b,k = χ(0), ∀b ∈ B, ∀k ∈ K̄b.

In Figs. 7-8, the average sum power of various algorithms is evaluated in dif-
ferent system settings. The results are achieved by averaging over 1000 channel
realizations. The following algorithms are compared to each other

– ZF beamforming for intra-cell interference
– ZF beamforming for inter-cell interference
– Optimal coordinated beamforming

In the simulations, the optimal results were achieved via centralized processing.
However, optimal performance can also be obtained by allowing the decentralized
dual and primal decomposition-based algorithms to converge. Fig. 7 illustrates
the sum power as a function of the rate target. It can be observed that the coor-
dinated beamforming scheme significantly outperforms the ZF-based algorithms.
The performance gap increases with the increasing cell separation and decreases
as the rate target increases. In Fig. 8, the sum power is plotted against cell
separation. Again, the coordinated beamforming strategy has a superior perfor-
mance when compared with the ZF strategies. The gain increases, as the cells
become more isolated. For the higher rate target, the performance difference is
smaller near the cell-edge.

Next, the convergence behavior of the proposed decentralized algorithms is
examined by plotting the normalized sub-optimality as a function of the number
of subgradient iterations in a single channel realization. The cell separation
parameter is set to η = 3 dB for the rest of the simulations. The normalized
sub-optimality is measured on a linear scale, and it is given by

P tx(r) − P tx
opt

P tx
opt

(40)

where P tx(r) is the feasible sum power of the decentralized algorithm at iteration
r and P tx

opt is the optimal centralized sum power. It is shown in Fig. 9 that the
choice of step-size impacts the speed of convergence. Thus, properly chosen
values can improve the convergence properties. In general, if the step-size is too
small, the convergence speed can be slow but the convergence is more accurate.
On the other hand, if the step-size is too large, the convergence can be fast at
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Fig 9. Convergence behavior of primal and dual decomposition-based decentralized algo-
rithms.

69



0 5 10 15 20 25
0

5

10

15

20

25

30

Channel realization

S
um

 p
ow

er
 [d

B
]

 

 

ZF for inter−cell interference
Dual Decomposition, 5 iterations
Primal Decomposition, 5 iterations
Centralized coordinated beamforming

Fig 10. Sum power performance in quasi-static channel conditions.

the beginning, however, leading to the oscillation of the sum power near the
optimal value. In other words, the accuracy of the convergence may not be as
high as for the smaller step-size case. The speed of convergence is also affected
by the initial values χ and δ, as shown in [61] and [60], respectively. The results
also imply that the rate of convergence gets slower as the value of the rate target
increases. Given the chosen parameters, the primal and dual decomposition-
based algorithms seem to have somewhat similar convergence behavior. It can
be seen that with properly chosen parameters, the convergence can be relatively
fast for both algorithms. In terms of convergence comparison, it is difficult to
provide ambiguous results since the convergence depends on the choice of the
initial values and step-sizes. Thus, the results here act as suggestive examples.

It is worth noting that in general if the used step-size value of the projected
subgradient method in primal decomposition method is too large, that may lead
to a momentary increase of the sum power, especially when the resulting updated
interference values go outside the feasible region (i.e., positive values) and need
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Fig 11. Sum power performance in time-correlated channel conditions.

to be projected back. To smooth and possibly speed up the convergence of the
projected subgradient method, an adaptive step-size can be applied. The value
of the step-size can be reduced such that the updated interference values remain
always positive at any iteration, e.g., by dividing the current step-size (possible
for many times) by two. This procedure can be performed locally without any
extra backhaul signaling since each BS has the required knowledge of the cor-
responding interference values. In general, to guarantee the overall convergence
of the projected subgradient method, we can switch back to a step-size with
guaranteed convergence properties (e.g., non-summable and diminishing [156])
at any iteration. In the remainder of this section, adaptive step-sizes are used
in the simulations for the projected subgradient method.

In Fig. 10, the sum powers of different transmission schemes are examined
for quasi-static channel conditions. 25 independent Rayleigh faded channel real-
izations were generated. The dual and primal decomposition-based algorithms
with different number of iterations are compared to the ZF and centralized beam-
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Fig 12. Achieved rate of user 4 in time-correlated channel conditions.

forming schemes. The rate target is set to R = 2 bits/s/Hz. As observed, both
algorithms obtain near to optimal performance even after a few iterations. More-
over, the performance is superior to the ZF strategy.

Finally, the sum power performance of the decentralized algorithms is evalu-
ated in time-correlated flat fading channel conditions. The corresponding chan-
nel realizations are generated using the Jakes’ Doppler spectrum model. The
channel variation rate is determined via a normalized user velocity parameter
TFfD, where TF is the duration of each uplink and downlink frame and fD is the
maximum Doppler shift. In the simulations, the sum power is measured after
each transmit beamforming update phase, while the achieved user rates are com-
puted after each reception phase. Channel conditions are let to change during
each uplink and downlink frame. Thus, the exchanged backhaul information is
always outdated for the decentralized algorithms.

Fig. 11 presents the sum power performance in 25 time-correlated channel re-
alizations for R = 2 and R = 4 bits/s/Hz rate targets. In addition, the achieved
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instantaneous rate of user 4 is shown in Fig. 12 and the achieved average rates
(over iterations and users) and their ratios to the target rate (in percentages) are
presented in Table 2. The normalized user velocity is set to TFfD = 0.005. This
can be interpreted as 2.7 km/h user velocity, assuming 2 GHz carrier frequency
and 1 ms frame duration. The numerical results show that the dual and primal
decomposition-based algorithms have comparable performance close to the cen-
tralized one. As expected, the instantaneous user rates may not always satisfy
the minimum target rates, even when applying the centralized strategy, due to
outdated channel and signaling information. However, it can also be seen that
the average rates are very close to (or even equal to) the target rates.

Table 2. Average rates in time-correlated channel conditions.

Centralized Primal Dual
TFfD = 0.005, R = 2 1.994 (99.7%) 2.000 (100%) 1.995 (99.7%)

TFfD = 0.005, R = 4 3.973 (99.3%) 3.968 (99.2%) 3.981 (99.5%)

2.3 Decentralized transmit beamforming design with imperfect CSI

In this section, the primal decomposition-based decentralized beamforming de-
sign is developed to solve the SPMin problem in a multi-cell multi-user MISO
system, where CSI is assumed to be imperfect. Since the corresponding worst-
case SPMin problem is not convex, it cannot be solved in its original form. In
this respect, the non-convex problem needs to be approximated and reformulated
as a tractable convex problem. The primal decomposition method can then be
applied to solve the resulting problem in a decentralized manner relying on local
imperfect CSI and low-rate backhaul signaling between the BSs. The primal
decomposition part of the design is similar to that of the SPMin problem with
perfect CSI, as described in Section 2.2. The proposed algorithm provides an op-
timal solution for the original non-convex problem if the convex approximation
is tight.

2.3.1 Primal decomposition-based algorithm

The derivation of the algorithm begins by first reformulating the non-convex ro-
bust SPMin problem in (9) by adding auxiliary inter-cell interference variables
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so as to apply primal decomposition method in a later phase. The resulting
problem is still non-convex, and thus, it is approximated and reformulated as
a tractable convex SDP via the conventional SDR approximation [103] and the
S-Procedure [81] methods. The primal decomposition method is then proposed
to solve the resulting problem in a decentralized manner by decomposing it into
a network-wide master problem and BS-specific subproblems. Since the subprob-
lems are convex SDPs, they can be solved by using any standard SDP solver,
for example CVX [88]. The master problem is handled by using the projected
subgradient method. Decentralized implementation is enabled by having local
imperfect CSI at each BS and exchanging scalar information between the BSs
via low-rate backhaul links.

Problem approximation and reformulation

The robust SPMin problem (9) is reformulated by introducing auxiliary inter-cell
interference power variables {χb,k}b∈B,k∈K̄b

. The resulting optimization problem
is given by

min.
{mk,χ}k∈K

∑
k∈K

tr
(
mkm

H
k

)
s. t.

(
ĥbk,k + ubk,k

)(
1
γk
m

k
mH

k −
∑

i∈Kbk
\{k}

mim
H
i

)(
ĥbk,k + ubk,k

)H

≥ N0 +
∑

b′∈B\{bk}
χb′,k,∀ubk,k ∈ Ebk,k, ∀k ∈ K∑

i∈Kb

(
ĥb,k + ub,k

)
mim

H
i

(
ĥb,k + ub,k

)H
≤ χb,k,

∀ub,k ∈ Eb,k, ∀b ∈ B, ∀k ∈ K̄b

(41)
Problem (41) is equivalent to the original problem (9) since the added inter-cell
interference constraints hold with equality at the optimal solution. In order to
turn (9) into a tractable convex form, the principles presented in [89, 125] are
followed. First, (9) is approximated as a convex SDP by replacing the rank one
matrix mkm

H
k by a semidefinite matrix Qk ≽ 0, of which rank can be higher than

one. However, the constraints are still intractable due to the infinite number of
CSI uncertainty realizations. In this respect, the S-Procedure method [81] can
be used to obtain an equivalent reformulation of the constraints leading to the
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tractable convex SDP problem

min.
χ,{Qk,ωk}k∈K
{βb,k}b∈B,k∈K̄b

∑
k∈K

tr (Qk)

s. t. Qk ≽ 0,∆k ≽ 0, ωk ≥ 0, ∀k ∈ K
Θb,k ≽ 0, βb,k ≥ 0, ∀b ∈ B, ∀k ∈ K̄b.

(42)

where {ωk}k∈K and {βb,k}b∈B,k∈K̄b
are slack variables. The matrixes ∆k and

Θb,k are denoted by

∆k = Ak + ωkEbk,k Akĥ
H
bk,k

ĥbk,kAk ĥbk,kAkĥ
H
bk,k

−
∑

b′∈B\{bk}
χb′,k −N0 − ωk

 (43)

and

Θb,k =

[
−Bb + βb,kEb,k −Bbĥ

H
b,k

−ĥb,kBb −ĥb,kBbĥ
H
b,k + χb,k − βb,k

]
(44)

where

Ak =
1

γk
Qk −

∑
i∈Kbk

\{k}

Qi, Bb =
∑
i∈Kb

Qi. (45)

Due to convexity, (42) can be optimally solved in a centralized manner if
having a central controller with global imperfect CSI. The optimal solution of
(42) is also globally optimal for the non-convex problem (9) only if the optimal
transmit covariance matrices {Qk}k∈K are all rank-one. In general, rank-one
solutions cannot be guaranteed for (42). However, there are some special cases
where rank-one solutions are always guaranteed. It was proved in [160] that rank-
one solutions are always achieved for two special cases in a single-cell multi-user
MISO system, i.e., the BS has at most two transmit antennas and the spheri-
cal/ellipsoidal error region is sufficiently small. In [160], however, the authors
remarked that the proposed rank-one bound for the error region may be too con-
servative since the simulation results demonstrated rank-one solutions also for
much larger error regions. In the multi-cell setting, it was shown in [89] that (42)
yields always rank-one solutions for three special cases, i.e., single-user per each
cell, perfect intra-cell CSI, or a small enough spherical error region. The simu-
lation examples in Section 2.3.2 show that (42) yields rank-one solutions with
high probability even when the ellipsoidal error region is relatively large. Similar
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results were noticed in [125] for a robust cognitive single-cell MISO beamforming
case with spherical error regions.

In case (42) yields a higher-rank solution, a feasible rank-one solution can be
constructed from the higher-rank solution by using an approximation method.
A simple approximation method was proposed for a non-robust cognitive beam-
forming system in [126]. This approximation method can be extended to the
centralized robust multi-cell beamforming problem (42). The idea is to fix beam-
forming directions by using the principal eigenvectors of the higher rank matrixes,
and then optimize the powers to satisfy all the constraints. Specifically, (42) is
modified by replacing Qk with Q̃k and introducing a set of additional constraints
Q̃k = pkm̃km̃

H
k , ∀k ∈ K, where m̃k is the dominant eigenvector of Qk and the

power pk is an optimization variable. If the resulting approximation problem is
infeasible, the robust multi-cell beamforming problem is declared as "infeasible".
Then, it is the responsibility of admission control to relax the system require-
ments, e.g., lower the minimum SINR targets or reduce the number of active
users.

BS-specific and network-wide optimization steps

In order to allow a decentralized implementation, (42) is decomposed via primal
decomposition into a network-wide master problem and BS-specific subproblems.
A similar procedure is followed here as described in Section 2.2.1 where the
primal decomposition method was applied to a non-robust SPMin problem with
the assumption of perfect CSI. The subproblem at BS b for a fixed χb is a convex
SDP:

min.
{Qk,ωk}k∈Kb

,{βb,k}k∈K̄b

∑
k∈Kb

tr (Qk)

s. t. Qk ≽ 0,∆k ≽ 0, ωk ≥ 0, ∀k ∈ Kb

Θb,k ≽ 0, βb,k ≥ 0,∀k ∈ K̄b.

(46)

The master problem is given by

min.
{χb}b∈B

∑
b∈B

g⋆b (χb)

s. t. χb ∈ RNb
++, ∀b ∈ B

(47)

where g⋆b (χb) denotes the optimal objective value of the subproblem (46) for a
given χb. The master problem (47) is in charge of optimizing each χb,k via the
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iterative updates of the following projected subgradient method

χ
(r+1)
b,k = P++

{
χ
(r)
b,k − σ(r)u

(r)
b,k

}
(48)

where P++ projects the possible negative values into positive orthant. At itera-
tion r, σ(r) and u

(r)
b,k are the step-size and the subgradient of (15) evaluated at

point χ
(r)
b,k, respectively.

Due to the convexity of (42), strong duality holds, provided that (42) is
also strictly feasible. In other words, (42) can be optimally solved via its dual
problem. Given this fact, subgradients can be obtained similarly as described
in Section 2.2.1. Consequently, the subgradient at point χ

(r)
b,k can be written

as u
(r)
b,k = λ

(r)
b,k − µ

(r)
b,k, where λ

(r)
b,k and µ

(r)
b,k are the optimal dual variables with

respect to χ
(r)
b,k in the bkth and bth subproblems, respectively. Strong duality

also holds for (46) since it is a simplified version of (42). Thus, the optimal
dual variables can be solved via the primal problem (46) or the Lagrange dual
problem of (46). By solving the primal problem for {Qk}k∈Kb

, the optimal
dual variables {λb,k}k∈Kb

and {µb,k}k∈K̄b
are obtained as side information since

when using standard SDP solvers (e.g., CVX [88]), the dual variables are usually
provided as a certificate for optimality. By solving the dual problem, the optimal
dual variables are achieved explicitly. However, transmit covariance matrixes
{Qk}k∈Kb

still need to be computed via the primal problem. To avoid solving
the dual and primal problems separately, we focus solely on the primal one.

With local imperfect CSI and scalar backhaul information exchange between
the BSs, the subproblem (46) and the corresponding part of the master problem
(47), i.e., the update of χb, can be solved independently at BS b for all b ∈
B in parallel. The same total amount of backhaul signaling is needed as in
the non-robust algorithm in Section 2.2.1, i.e., 2B(B − 1)Kb. The proposed
decentralized beamforming design is summarized in Algorithm 4. Convergence
to the optimal solution of (42) is guaranteed, provided that a proper step-size is
selected. The proposed algorithm provides an optimal solution for the original
non-convex problem (9), if the optimal transmit covariance matrices are all rank-
one. Note that in the case of a higher-rank solution, it may be challenging
to apply the known approximation methods, such as proposed in Section 2.3.1
and [34], for the decentralized design. In this case, the optimization problem
is usually infeasible when only optimizing the powers, while the beamformers
and inter-cell interference variables are fixed. However, to enable decentralized
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implementation, it is possible to use the principal eigenvectors of {Qk}k∈Kb
as

the transmit beamformers and allow some violation of the rate constraints. The
practical features discussed in Section 2.2.1 are also applicable for the proposed
robust algorithm.

Algorithm 4 Decentralized robust transmit beamforming design based on pri-
mal decomposition for cellular MISO system

1: Set r = 0. Initialize inter-cell interference variables χ
(0)
b .

2: repeat
3: Compute transmit covariance matrices {Qk}k∈Kb

and dual variables
{λb,k}k∈Kb

and {µb,k}k∈K̄b
by solving SDP (46).

4: Communicate {λb,k}k∈Kb
and {µb,k}k∈K̄b

to the coupled BSs via backhaul.
5: Update inter-cell interference variable χ

(r+1)
b via projected subgradient

method (48).
6: Set r = r + 1.
7: until desired level of convergence

2.3.2 Numerical evaluation

This section provides a performance evaluation of the robust primal decomposi-
tion -based decentralized algorithm. The focus is on the convergence behavior
and the probabilities of feasible and rank-one solutions. The used simulation
model is the same as that in Section 2.2.3. The main system parameters are
given by {B,K,AT, AR} = {2, 4, 4, 1}. Here, a cell-edge case is modeled by
setting the cell separation parameter to 0 dB. For the simulation results pre-
sented in Tables 3 and 4, the CSI errors are bounded by an ellipsoidal region,
i.e., Eb,k = E =

(
1/e2

)
Ê, ∀b ∈ B, ∀k ∈ K, where Ê = diag(4, 2, 0.5, 0.25).

For the rest of the simulations, a spherical CSI error modeling is used, i.e.,
Eb,k = E =

(
1/e2

)
IT , ∀b ∈ B, ∀k ∈ K. The rate targets are set equal among

the users, i.e., Rk = R, ∀k ∈ K.
In Table 3 and Table 4, the probability of feasible and rank-one solutions

for (42) is presented for 50000 channel realizations with various values of the
error region radius e and the rate target R. The simulation results show that
when e becomes large enough, the problem is infeasible with high probability.
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Table 3. Probability that (42) is feasible ([105] c⃝ 2014 IEEE).

e 0.005 0.01 0.1 0.2 0.4 0.6
R = 1 bits/s/Hz 1 1 1 0.9942 0.6441 0.1114
R = 3.5 bits/s/Hz 1 0.9996 0.5016 0.0263 0 0
R = 6.7 bits/s/Hz 0.9843 0.9221 0 0 0 0

Table 4. Probability that the feasible solution of (42) is rank-one ([105] c⃝ 2014 IEEE).

e 0.005 0.01 0.1 0.2 0.4 0.6
R = 1 bits/s/Hz 1 1 1 0.9998 0.9910 0.9758
R = 3.5 bits/s/Hz 0.9997 0.9991 0.9835 0.9711 - -
R = 6.7 bits/s/Hz 0.9673 0.9630 - - - -

In these cases, the system requirements need to be relaxed to obtain a feasible
problem. For feasible (42), the probability of achieving rank-one solution is high.
Thus, decentralized approaches are mostly applicable. The probability of having
rank-one solutions increases with the decreasing e and R.

Fig. 13 shows the normalized sub-optimality of the primal decomposition-
based algorithm as a function of iteration r. Convergence behavior is studied
for e = 0.1 and e = 0.01 error region radii with the rate target of R = 1

bits/s/Hz. The speed of convergence is shown to be comparable for both cases,
and it is relatively fast in general. It was shown in [105] that the proposed
primal decomposition-based algorithm has a similar performance with slightly
lower computational complexity when compared with that of the ADMM-based
approach in [89].

2.4 Summary and discussions

In this chapter, novel decentralized coordinated beamforming algorithms were
developed to solve the SPMin problem in multi-cell multi-user MISO systems.
The proposed algorithms are based on primal and dual decomposition methods,
which turn the reformulated convex optimization problem into two optimiza-
tion levels by introducing BS-specific subproblems controlled by a network-wide
master problem. The subproblems are solved for fixed coupling variables, while
the master problem iteratively optimizes the coupling variables via subgradient
method that requires some information from the solved subproblems at each it-
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Fig 13. Convergence behavior of primal decomposition-based decentralized algorithm ([105]
c⃝ 2014 IEEE).

eration. Decentralized implementation is enabled by acquiring local CSI at each
BS and allowing scalar information exchange between the coupled BSs via low-
rate backhaul links. In the primal decomposition-based algorithm, the coupling
variables are inter-cell interference powers, while the exchanged information are
the dual variables associated with the fixed inter-cell interference variables. The
subproblems can be solved in one shot by using standard convex optimization
techniques or alternatively by using an iterative uplink-downlink duality-based
method. In the dual decomposition-based algorithm, the coupling variables are
the dual variables associated with the local copies of inter-cell interference powers
and the exchanged information are the local copies of the inter-cell interference
powers. The subproblems are solved by using convex optimization techniques.
A detailed discussion on the similarities and differences of the proposed primal
and dual decomposition methods were provided.

The proposed decentralized algorithms provide an optimal solution if they
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are allowed to converge with properly chosen step-sizes. Since the algorithms
can provide feasible beamformers at each iteration, delay and signaling overhead
can be reduced at the cost of sub-optimal performance by limiting the number
of performed iterations. The simulation results demonstrated that performance
close to a centralized algorithm is achieved only after a few iterations. Since
the signaling load per iteration is relatively small, the signaling overhead can be
greatly reduced while achieving near to centralized performance. Further, the
proposed algorithms obtained near to centralized performance in time-correlated
channel conditions, where the channel and backhaul signaling information is
outdated. Simplified designs are allowed to further reduce the signaling and
computational load while somewhat increasing the sum power. The promising
results provided by the simple two-cell simulator serve as the performance upper
bounds for more realistic system-level implementations.

The effect of an imperfect local CSI was also considered, and a primal
decomposition-based robust beamforming algorithm was proposed. The origi-
nal non-convex problem is first approximated and reformulated as a tractable
convex problem via the standard SDR and S-procedure methods. The resulting
problem is then decomposed via primal decomposition into BS-specific subprob-
lems and a network-wide master problem, which can be solved in a decentralized
manner by relying on low-rate backhaul signaling and local imperfect CSI. The
proposed algorithm gives an optimal solution for the original non-convex prob-
lem, provided that the convex approximation is tight, i.e., the obtained solution
is rank-one. The numerical results demonstrated that the probability of achiev-
ing rank-one solutions is high. Moreover, the speed of convergence is relatively
fast.

Due to its practical nature, the primal decomposition-based decentralized
concept is extended to cellular multi-user MIMO and cognitive multi-user MISO
networks in Chapters 3 and 4, respectively.
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3 Coordinated beamforming in MIMO cellular
networks

In this chapter, coordinated beamforming is considered for cellular multi-user
MIMO systems. The focus is on designing transmit and receive beamformers for
the SPMin problem with per-user rate targets. Both centralized and decentral-
ized beamforming algorithms are proposed.

Section 3.1 presents the multi-cell multi-user MIMO system model and for-
mulates the SPMin problem with perfect CSI assumption. Centralized and de-
centralized MIMO beamforming designs are developed in Sections 3.2 and 3.3,
respectively. Significant performance gains over MISO algorithms and state-of-
the-art schemes are demonstrated via a numerical evaluation in Section 3.3.3.
Summary and discussion is provided in Section 3.4.

3.1 System model and SPMin problem formulation

The considered multi-cell multi-user MIMO system consists of B BSs, each
equipped with AT transmit antennas, and K users with AR receive antennas
each. The sets of all BSs and all users are denoted by B and K, respectively.
The number of users served by BS b is given by Kb, and the corresponding set
of users is denoted by Kb. The set of users associated with other BSs is denoted
by K̄b = K\Kb. User k can receive multiple data streams from its serving BS bk.
The number of spatial data streams allocated to user k is denoted by Lk, and
the corresponding set is given by Lk. The lth stream of the kth user is denoted
by (k, l). User and beam allocation is assumed to be predefined and fixed. The
considered system is illustrated in Fig. 14. The received signal vector of the kth
user is given by

yk = Hbk,kmk,lxk,l +
∑
i∈K

∑
j∈Li,(i,j)̸=(k,l)

Hbi,kmi,jxi,j + nk (49)

where Hbk,k ∈CAR×AT is the MIMO channel matrix from the bkth BS to the kth
user, mk,l ∈ CAT×1 is the unnormalized beamforming vector for the lth stream
of user k and xk,l ∈ C is the corresponding normalized complex data symbol.
The vector nk ∼ CN (0, N0IAR) represents the circularly symmetric complex
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Fig 14. Multi-cell multi-user MIMO system.

white Gaussian noise vector with zero mean and variance N0 per element. The
sum power of the BSs is given by

P tx =
∑
k∈K

∑
l∈Lk

∥∥mk,l

∥∥2
2

(50)

The rate for user k is expressed as

rk =
∑
l∈Lk

log2 (1 + Γk,l) (51)

where Γk,l is the SINR of stream (k, l)

Γk,l =

∣∣wH
k,lHbk,kmk,l

∣∣2
N0∥wk,l∥22 +

∑
i∈K

∑
j∈Li,(i,j)̸=(k,l)

∣∣wH
k,lHbi,kmi,j

∣∣2 (52)

The receive beamformer for the lth stream of user k is wk,l ∈CAR×1.
The network optimization problem is to minimize the sum transmission power

of the coordinated BSs subject to the user-specific minimum rate constraints
{Rk}k∈K. This problem is expressed as

min.
{mk,l,wk,l}k∈K,l∈Lk

∑
k∈K

∑
l∈Lk

∥∥mk,l

∥∥2
2

s. t.
∑
l∈Lk

log2 (1 + Γk,l) ≥ Rk, ∀k ∈ K.
(53)
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Problem (53) cannot be solved in its current form since is not jointly convex in
{mk,l}k∈K,l∈Lk

and {wk,l}k∈K,l∈Lk
. Thus, finding efficient approximated (sub-

optimal) solutions with convergence of the objective function and tractable com-
putational complexity is of practical interest.

Problem (53) can be solved iteratively, such that the sum power converges by
dividing the problem into receive and transmit beamforming optimization steps,
which are then alternatingly solved. More precisely, the receive beamformers
are optimized while keeping the transmit beamformers fixed, and vice versa.
For fixed transmit beamformers, the well-known linear MMSE receiver [161] is
optimal in the sense that it maximizes per-stream SINRs, and equivalently the
per-user rates. The optimality of the MMSE receiver can also be shown via the
Karush-Kuhn-Tucker (KKT) conditions of (53) for the given {mk,l}k∈K,l∈Lk

.
For user k and stream l, the linear MMSE receiver is given by

w̃k,l =

∑
i∈K

∑
j∈Lk

Hbi,kmi,jm
H
i,jH

H
bi,k +N0IAR

−1

Hbk,kmk,l. (54)

Since the MMSE receiver is assumed to be used, the relation between the MSE
and SINR can be exploited to reformulate the original optimization problem
(53). The MSE of stream l of user k is given by

ϵk,l = E
[
|wH

k,lyk − xk,l|2
]
=
∣∣1−wH

k,lHbk,kmk,l

∣∣2 +
N0∥wk,l∥22 +

∑
i∈K

∑
j∈Li,(i,j)̸=(k,l)

∣∣wH
k,lHbi,kmi,j

∣∣2.
(55)

Using (54) in (55) yields a well-known relation between the MSE and SINR [162],
i.e.,

ϵ̃−1
k,l = 1 + Γ̃k,l (56)

where ϵ̃k,l and Γ̃k,l are the MSE and SINR assuming that the MMSE receiver
w̃k,l is used. Using (56) and keeping the MMSE receives fixed, the transmit
beamforming optimization part of (53) can be reformulated as

min.
{mk,l}k∈K,l∈Lk

∑
k∈K

∑
l∈Lk

∥∥mk,l

∥∥2
2

s. t.
∑
l∈Lk

log2

(
ϵ̃−1
k,l

)
≥ Rk,∀k ∈ K.

(57)
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Problem (57) can be reformulated as the difference of convex functions program
(DCP) [163] by introducing an additional upper bounding constraint for each
MSE term. This procedure follows the idea presented in [71]. The resulting
constraint is given by

ϵ̃k,l ≤ α−tk,l (58)

where α is fixed and chosen such that α > 1. The value of α = 2 is used in the
numerical examples in Section 3.3.3. Moreover, tk,l is an auxiliary variable with
an assumption that αtk,l ∈ [1,∞). Thus, the function α−tk,l is convex, and its
domain is in the range of possible MSE values, i.e., (0, 1]. By applying (58), (57)
can be reformulated as

min.
{mk,l,tk,l}k∈K,l∈Lk

∑
k∈K

∑
l∈Lk

∥∥mk,l

∥∥2
2

s. t. ϵ̃k,l ≤ α−tk,l∀k ∈ K, ∀l ∈ Lk∑
l∈Lk

log2
(
αtk,l

)
≥ Rk,∀k ∈ K.

(59)

Constraints in (59) hold with equality at the optimal solution making the relax-
ation tight. Problem (59) is still non-convex. However, it can be solved efficiently
by using an iterative approximation method as described next.

To turn (59) into a computationally tractable form, the non-convex DCP
constraints can be approximated as convex ones. By iteratively solving these
convex problems one after another, the transmit beamforming problem can be
efficiently solved, such that the sum power converges. The procedure, where the
approximated convex problem is repeatedly solved, is known as the successive
convex approximation (SCA) method [163, 164].

Obtaining the convex approximations of the non-convex DCP constraints,
f(tk,l) = α−tk,l can be linearly approximated at a given point t

(q)
k,l by forming

the first-order Taylor series approximation [71, 163], i.e.,

f̄(tk,l, t
(q)
k,l ) = f(t

(q)
k,l ) + (tk,l − t

(q)
k,l )f

′
tk,l

(t
(q)
k,l ) (60)

= −c
(q)
k,l tk,l + d

(q)
k,l (61)

where q is the iteration index, f ′
tk,l

(t
(q)
k,l ) is the first-order partial derivative of f

w.r.t. tk,l, and

c
(q)
k,l = loge(α)α

−t
(q)
k,l , d

(q)
k,l = α−t

(q)
k,l

(
1 + loge(α)t

(q)
k,l

)
. (62)
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The resulting optimization problem at the qth iteration for fixed {t(q)k,l}k∈K,l∈Lk

is expressed as

min.
{mk,l,tk,l}k∈K,l∈Lk

∑
k∈K

∑
l∈Lk

∥∥mk,l

∥∥2
2

s. t. ϵ̃k,l ≤ −c
(q)
k,l tk,l + d

(q)
k,l , ∀k ∈ K, ∀l ∈ Lk∑

l∈Lk

tk,l ≥ R̂k, ∀k ∈ K
(63)

where R̂k = Rk(log2(α))
−1. Note that variable tk,l can be interpreted as a scaled

version of the rate of stream l of user k. If α is chosen to be 2, then the scaling
factor is 1. Problem (63) is convex since the objective and inequality constraints
are all convex. Alternatively, (63) can also be cast as a standard SOCP by
following the derivations in [33, 60].

After solving (63) at iteration q, the next point of approximation t
(q+1)
k,l can

be chosen based on the equality of the MSE constraints, i.e.,

t
(q+1)
k,l = − logα(ϵ̃

(q+1)
k,l ). (64)

An alternative option to update t(q+1)
k,l is to use a line search method as described

in [71], i.e., t
(q+1)
k,l = tk,l. In the SCA method, the objective value converges

monotonically since it is improved at each iteration [71] due to the fact that
the point of approximation is included in the approximated problem. However,
global optimality cannot be guaranteed due to the linear approximations in the
iterative optimization process. More details on the properties of the SCA method
can be found in [71, 163, 164]. The linear MMSE receiver given in (54) minimizes
the per-stream MSE. Thus, (54) is optimal for the approximated problem as well.

Next, a special multi-cell multi-user MIMO problem is considered where the
number of spatial data streams per user is limited to one, i.e., Lk = 1, ∀k ∈ K.
In this case, the original problem (53) can be reduced to a less complex SPMin
problem where the user-specific rate constraints can be directly mapped into
SINR constraints. This optimization problem is written as

min.
{mk,wk}k∈K

∑
k∈K

∥∥mk

∥∥2
2

s. t.

∣∣wH
k Hbk,kmk

∣∣2
N0∥wk∥22 +

∑
i∈K\{k}

∣∣wH
k Hbi,kmi

∣∣2 ≥ γk, ∀k ∈ K (65)

where γk is the given SINR target for user k. Problem (65) is not jointly convex
in {mk}k∈K and {wk}k∈K. The receive and transmit beamforming optimization

87



steps are given by

w̃k =
w̄k

∥w̄k∥2
, ∀k ∈ K, (66)

w̄k =

(∑
i∈K

Hbi,kmim
H
i H

H
bi,k +N0IAR

)−1

Hbk,kmk

and
min.

ptx,{mk}k∈K
ptx

s. t.

∥∥∥∥∥∥∥∥∥∥
w̃H

k Hb1,km1

...
w̃H

k HbK ,kmK√
N0

∥∥∥∥∥∥∥∥∥∥
2

≤
√
1 + 1

γk
w̃H

k Hbk,kmk, ∀k ∈ K

∥∥∥ m̄
∥∥∥
2
≤ ptx.

(67)

In (67), the optimal sum power is P tx = (ptx)
2. Problem (67) is an SOCP, and

it is similar to a well-known MISO problem [61]. For the single-stream MIMO
case, the MMSE receivers (66) are normalized to avoid additional over-the-air
signaling in a decentralized transceiver design as explained in Section 3.3.1.

3.2 Centralized transmit and receive beamforming design

This section considers a centralized transmit and receive beamforming design
for single-stream and multi-stream MIMO systems. For centralized processing,
global CSI needs to be available at a central controlling unit (or at each BS),
which performs the transceiver design by alternating between the transmit and
receive beamforming optimization steps. The resulting optimized transmit beam-
formers are then distributed to the corresponding BSs for data transmission. The
linear MMSE receivers are employed at each user for data reception.

The single-stream MIMO problem (65) can be efficiently solved such that
the objective function converges by alternatingly computing the receive and
transmit beamformers using (66) and (67), respectively. For a convergence proof,
see Proposition 5 introduced later in this Section. This optimization procedure
follows the idea proposed in [91]. Since (67) is equivalent to a well-studied MISO
problem, it can also be solved using any of the existing centralized algorithms,
for example the ones proposed in [31, 33, 58]. Centralized transceiver design is
summarized in Algorithm 5.
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Algorithm 5 Centralized transmit and receive beamforming design for cellular
single-stream MIMO system

1: Initialize transmit beamformers {mk}k∈K.
2: repeat
3: Compute receive beamformers {w̃k}k∈K by using MMSE criterion (66).
4: Compute transmit beamformers {mk}k∈K by solving SOCP (67).
5: until desired level of (objective function) convergence

The multi-stream MIMO problem (53) is solved, such that the sum power
converges, by alternating between the receive and transmit beamforming designs.
The receive beamformers are optimized using the linear MMSE criterion (54).
The iterative transmit beamforming optimization is performed by repeatedly
computing the linear approximation coefficients using (62), then solving (63) for
the transmit beamformers, and updating the auxiliary variables using (64). The
proposed centralized design is summarized in Algorithm 6.

Algorithm 6 Centralized transmit and receive beamforming design for cellular
multi-stream MIMO system
1: Set q = 0. Initialize transmit beamformers and points of approximation

{mk,l, t
(0)
k,l}k∈K,l∈Lk

.
2: repeat
3: Compute receive beamformers {w̃k,l}k∈K,l∈Lk

by using MMSE criterion
(54).

4: repeat
5: Compute SCA coefficients {c(q)k,l , d

(q)
k,l}k∈K,l∈Lk

by using (62).
6: Compute transmit beamformers {mk,l, tk,l}k∈K,l∈Lk

by solving convex
problem (63).

7: Update points of approximation {t(q+1)
k,l }k∈K,l∈Lk

by using (64).
8: Set q = q + 1.
9: until desired level of (objective function) convergence

10: until desired level of (objective function) convergence

Proposition 5. The objective function of the original problem (53) converges
by performing Algorithm 6.
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Proof. The proof is based on the fact that the objective function is guaranteed
to converge if it decreases monotonically at each optimization step, and it is
bounded below [95]. Since the original problem (53) and the approximated
problem (63) have the same objective function and the optimization variables in
(63) satisfy the rate constraints in (53), it is sufficient to show that the sum power
of (63) converges by performing Algorithm 6. Since the sum power is bounded
below (i.e., P tx > 0), it remains to be shown that the sum power is monotonically
decreased at each (sum power-related) optimization step of Algorithm 6. Note
that the sum power remains the same at each receive beamforming update (i.e.,
step 3 in Algorithm 6). However, the receive beamforming update via the MMSE
criterion minimizes the per-stream MSE, and thus, less (or equal) transmission
power will be needed at the next transmit beamforming update to satisfy the
per-stream MSE constraints leading to the decreased sum power. Now, what is
left to be proved is that each SCA iteration at the transmit beamforming update
phase (i.e., step 6 in Algorithm 6) monotonically decreases the sum power. As
explained in Section 3.1, the monotonic objective function convergence of the
SCA method comes from the fact that the point of approximation is included in
the approximated convex problem (63). Consequently, the objective function of
(53) is guaranteed to converge by performing Algorithm 6.

Remark 1. Proposition 5 shows the convergence of the objective function to a
limit point of a monotonically decreasing sequence. Since the original problem is
non-convex, global optimality of the provided solution cannot be guaranteed. Fur-
thermore, Proposition 5 does not guarantee the convergence of the optimization
variables to a KKT-point.

Nevertheless, the simulation results in Section 3.3.3 demonstrate that Algo-
rithm 6 provides significant performance gains when compared with the state-of-
the-art MISO and single-stream MIMO beamforming approaches.

3.3 Decentralized transmit and receive beamforming design

This section proposes decentralized transceiver designs for single-stream and
multi-stream MIMO systems. Solving the SPMin problem using decentralized
processing is problematic in general since even if the channels from the BS to the
neighboring cells’ users are known (i.e., local CSI) via antenna-specific uplink
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Fig 15. Simplified TDD frame structure with pilot and backhaul signaling ([99] c⃝ 2015 IEEE).

pilots, the receivers that these users are employing may not be known. Even
in the case of knowing the receivers implicitly via precoded uplink pilots (i.e.,
local effective CSI), the transmit beamforming design is still coupled between
the BSs. In this respect, the network-wide transmit beamforming design can be
decoupled into independent BS-level designs by using different decomposition
methods. Network-wide optimization via distributed processing is enabled via
scalar backhaul information exchange among the neighboring BSs. A pilot and
backhaul signaling-based framework is assumed to aid decentralized transceiver
processing. The used framework is applicable in TDD-based systems where
the reciprocity of downlink and uplink channels can be utilized. The signaling
framework with a TDD-based frame structure is depicted in Fig. 15. It is
assumed that the uplink pilot signals of each user in the coordinated system
can be observed interference free by each BS, i.e., pilots are allocated to the
orthogonal resources in time or frequency. A similar assumption is made for the
downlink pilots, i.e., each user can observe the pilots of each BS interference free.
In Sections 3.3.1 and 3.3.2, two decentralized transmit and receive beamforming
algorithms are proposed that are specifically designed for the following uplink
pilot strategies.

– Signaling strategy A: Precoded uplink pilots are used. Each BS can acquire
local effective CSI.

– Signaling strategy B : Antenna-specific uplink pilots are used. Each BS can
acquire local CSI.
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3.3.1 Algorithm with signaling strategy A

Decentralized sum power minimization is obtained using an iterative over-the-
air optimization process by repeatedly performing transmit beamforming design
at each BS and receive beamforming design at each user. The transmit beam-
forming design requires local effective CSI acquired from precoded uplink pilots
along with scalar over-the-air and backhaul signaling. The receive beamforming
design is aided by downlink (precoded) demodulation pilots. The sum power
of the system converges by iteratively repeating the aforementioned transmit
and receive beamforming updates. In the following subsections, the receive and
transmit beamforming designs are first derived. Then, the overall transceiver de-
sign is summarized via a step-by-step algorithm. Finally, a simplified algorithm
is considered for a single-stream MIMO system.

Receive beamforming design at the user side

Receive beamforming design is straightforward, i.e., the linear MMSE receiver
(54) is employed data stream-wise by each user. The computation of the MMSE
is aided with the downlink demodulation pilots, which are precoded at the BS
similarly as user data is. After the data reception, each user employs its MMSE
receivers as precoders for the uplink pilots.

Transmit beamforming design at the BS side

The transmit beamforming design problem (63) is coupled between the BSs in its
current form. To enable decentralized implementation, (63) needs to be reformu-
lated such that it decouples at each iteration of the SCA method. Consequently,
each BS can independently design the transmit beamformers for its own users.
The decoupling procedure can be handled via a primal decomposition method
[155], as explained in Section 2.2.1. In order to apply primal decomposition,
(63) needs to be reformulated by adding auxiliary inter-cell interference power
variables. Inter-cell interference power from BS b to stream l of user k is given
by

χb,k,l =
∑
i∈Kb

∑
j∈Li

∣∣eb,k,lmi,j

∣∣2 (68)
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where eb,k,l = w̃H
k,lHb,k is the effective channel of the lth stream of user k as

seen by BS b. Note that the SCA-based auxiliary variables {tk,l}k∈K,l∈Lk
are

naturally decoupled between the BSs. The resulting optimization problem at
iteration q of the SCA method is expressed as

min.
{mk,l,tk,l}k∈K,l∈Lk

,

{χb,k,l}b∈B,k∈K̄b,l∈Lk

∑
k∈K

∑
l∈Lk

∥∥mk,l

∥∥2
2

s. t.
∣∣1− ebk,k,lmk,l

∣∣2 +N0∥w̃k,l∥22
+
∑

i∈Kbk

∑
j∈Li,(i,j) ̸=(k,l)

∣∣ebi,k,lmi,j

∣∣2 + ∑
b′∈B\{bk}

χb′,k,l

≤ −c
(q)
k,l tk,l + d

(q)
k,l , ∀k ∈ K, ∀l ∈ Lk∑

l∈Lk

tk,l ≥ R̂k, ∀k ∈ K∑
i∈Kb

∑
j∈Li

∣∣eb,k,lmi,j

∣∣2 ≤ χb,k,l, ∀b ∈ B, ∀k ∈ K̄b, ∀l ∈ Lk.

(69)
In (69), the inter-cell interference power constraints can be relaxed with inequal-
ity since they hold with equality at the optimal solution. Problem (69) is convex
since the objective and inequality constraints are convex. Alternatively, (69) can
also be cast as an SOCP.

By applying the primal decomposition method, (69) is turned into a coupled
master problem and multiple decoupled subproblems, one for each BS. Since the
original problem is convex, so are the resulting master problem and subproblems
[155]. The idea is that the master problem updates the inter-cell interference
power terms, using certain information (i.e., subgradients) obtained by solving
the subproblems [63]. The resulting subproblem for BS b is given by

min.
{mk,l,tk,l}k∈Kb,l∈Lk

∑
k∈Kb

∑
l∈Lk

∥∥mk,l

∥∥2
2

s. t.
∣∣1− ebk,k,lmk,l

∣∣2 +N0∥w̃k,l∥22
+
∑

i∈Kbk

∑
j∈Li,(i,j) ̸=(k,l)

∣∣ebi,k,lmi,j

∣∣2 + ∑
b′∈B\{bk}

χb′,k,l

≤ −c
(q)
k,l tk,l + d

(q)
k,l∀k ∈ Kb, ∀l ∈ Lk∑

l∈Lk

tk,l ≥ R̂k, ∀k ∈ Kb∑
i∈Kb

∑
j∈Li

∣∣eb,k,lmi,j

∣∣2 ≤ χb,k,l, ∀k ∈ K̄b, ∀l ∈ Lk.

(70)

It is assumed that the effective channels {eb,k,l}k∈Kb,l∈Lk
are known at BS b by
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acquiring them from the MMSE-based precoded uplink pilot signals. In addition,
user k needs to signal Lk real valued scalars, i.e., {∥w̃k,l∥22}l∈Lk

, to its serving
BS bk. The master problem is written as

min.
{χb}b∈B

∑
b∈B

g⋆b (χb)

s. t. χb ∈ IRNb
++, ∀b ∈ B

(71)

where g⋆b (χb) is the optimal objective value of (70) for given χb. The master
problem (71) can be solved by updating each χb,k,l via projected subgradient
method [155], which is given by

χ
(r+1)
b,k,l = P++

{
χ
(r)
b,k,l − σ(r)u

(r)
b,k,l

}
(72)

where P++ is the projection onto the positive real values, r is the iteration index,
σ(r) is the step-size and u

(r)
b,k,l is the subgradient of (71) at point χ

(r)
b,k,l. Due to

the convexity of (69), the subgradients can be obtained similarly as described
in Section 2.2.1, i.e., u

(r)
b,k,l = λ

(r)
bk,k,l

− µ
(r)
b,k,l, where λ

(r)
bk,k,l

and µ
(r)
b,k,l are the

optimal dual variables with respect to χ
(r)
b,k,l in the bkth and bth subproblems,

respectively.
The optimal dual variables can be found by solving the primal subproblem

(70) since they are usually provided as a certificate for optimality using a stan-
dard convex optimization software package, such as CVX [88]. An alternative
way to find the dual variables is to solve the Lagrange dual problem of (70).
In this case, transmit beamformers still need to be computed via the primal
subproblems or KKT conditions. Here, the focus is on solving the primal sub-
problems. In order to solve χb independently at BS b, for all b ∈ B in parallel,
the computed dual variables need to be exchanged between the coupled BSs via
backhaul links. The total number of real scalars to be exchanged in the coor-
dinated system at each subgradient iteration is given by 2KbLk(B − 1)B, if an
equal number of users and streams are assumed at each cell, i.e., Kb = K/B,
Lk = L, ∀b ∈ B, ∀k ∈ K. More precisely, BS b signals {λb,k,l}k∈Kb,l∈Lk

and
{µb,i,j}i∈Kb′ ,j∈Li to BS b′, ∀b′ ∈ B \ {b},∀b ∈ B. The projected subgradient
method converges to an optimal value for a convex problem provided that the
step-size is properly chosen [156]. After solving (69) with the aid of subgradi-
ent method at iteration q of the SCA method, the next point of approximation
t
(q+1)
k,l is updated at the corresponding BS according to (64). The outer SCA and

inner subgradient methods are repeated until a desired level of convergence is
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achieved. The proposed decentralized transmit and receive beamforming design
is summarized in Algorithm 7.

Algorithm 7 Decentralized transmit and receive beamforming design with sig-
naling strategy A for cellular multi-stream MIMO system
1: BS b, ∀b ∈ B: Set q = 0. Initialize inter-cell interference variables χb and

transmit beamformers and points of approximation {mk,l, t
(0)
k,l}k∈Kb,l∈Lk

.
2: repeat
3: BS b, ∀b ∈ B: Use transmit beamformers {mk,l}k∈Kb,l∈Lk

to transmit
data and downlink pilots.

4: User k, ∀k ∈ K: Compute receive beamformers {w̃k,l}l∈Lk
by using MMSE

criterion (54).
5: User k, ∀k ∈ K: Use MMSE receive beamformers {w̃k,l}l∈Lk

as precoders
for uplink pilots. Signal scalar terms {∥w̃k,l∥22}l∈Lk

to BS bk.
6: BS b, ∀b ∈ B: Observe and update effective channels {eb,k,l}k∈K,l∈Lk

.
7: repeat
8: BS b, ∀b ∈ B: Compute SCA coefficients {c(q)k,l , d

(q)
k,l}k∈Kb,l∈Lk

by using
(62).

9: repeat
10: BS b, ∀b ∈ B: Compute transmit beamformers and dual variables

{mk,l, tk,l, λb,k,l}k∈Kb,l∈Lk
, {µb,k,l}k∈K̄b,l∈Lk

by solving convex prob-
lem (70).

11: BS b, ∀b ∈ B: Communicate {λb,k,l}k∈Kb,l∈Lk
and {µb,k,l}k∈K̄b,l∈Lk

to the coupled BSs via backhaul.
12: BS b, ∀b ∈ B: Update inter-cell interference variables χb via projected

subgradient method (72).
13: until desired level of convergence
14: BS b, ∀b ∈ B: Compute transmit beamformers {mk,l, tk,l}k∈Kb,l∈Lk

by
solving convex problem (70).

15: BS b, ∀b ∈ B: Update points of approximation {t(q+1)
k,l }k∈Kb,l∈Lk

by
using (64).

16: Set q = q + 1.
17: until desired level of (objective function) convergence
18: until desired level of (objective function) convergence
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Following the proof of Proposition 5, the sum power of the original problem
(53) is guaranteed to converge by performing Algorithm 7, and assuming that
the outer SCA and inner subgradient methods (i.e., steps 7-16) are iterated
until convergence or until the sum power is improved. At the cost of decreased
performance, the number of iterations in the outer SCA and inner subgradient
methods can be limited to reduce delay and signaling/computational load.

Simplified algorithm for single-stream MIMO

In this subsection, a decentralized transceiver design is proposed for a single-
stream MIMO system. The proposed algorithm has a lower level of complexity
compared to Algorithm 7 since the transmit beamforming problem is convex.
At each user, the linear MMSE receivers from (66) are employed. The transmit
beamforming problem (67) is first reformulated by defining the effective channels
and extracting inter-cell interference power terms as auxiliary variables. Then,
the reformulated problem is equivalently turned into B subproblems and a mas-
ter problem.

Following the derivation in Section 2.2.1, the subproblem for BS b can be
expressed as the following SOCP

min.
ptx
b ,{mk}k∈Kb

ptxb

s. t.

∥∥∥∥∥∥∥
MH

b e
H
b,k

χ̄k√
N0

∥∥∥∥∥∥∥
2

≤
√

1 +
1

γk
eb,kmk,∀k ∈ Kb,

∥∥∥ MH
b e

H
b,k

∥∥∥
2
≤ χ̄b,k, ∀k ∈ K̄b∥∥∥ m̄b

∥∥∥
2
≤ ptxb

(73)

Unlike in Algorithm 7, the over-the-air signaling of {∥w̃k∥22}k∈K is avoided here
since the MMSE receivers in (66) are normalized, i.e., ∥w̃k∥2 = 1.

The projected subgradient method for solving the master problem is given
by

χ
(r+1)
b,k = P++

{
χ
(r)
b,k − σ(r)

(
λ
(r)
bk,k

− µ
(r)
b,k

)}
. (74)

The dual variables are found by solving (73) at each BS. By exchanging the dual
variables between the coupled BS, χb can be updated at BS b, for all b ∈ B in
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parallel. At each iteration, the total amount of backhaul signaling is 2Kb(B−1)B.
The proposed design is summarized in Algorithm 8. The convergence of the sum
power can be shown through similar reasoning as described in Section 3.3.1.

Algorithm 8 Decentralized transmit and receive beamforming design with sig-
naling strategy A for cellular single-stream MIMO system
1: BS b, ∀b ∈ B: Initialize inter-cell interference variables χb and transmit

beamformers {m}k∈Kb
.

2: repeat
3: BS b, ∀b ∈ B: Use transmit beamformers {m}k∈Kb

to transmit data and
downlink pilots.

4: User k, ∀k ∈ K: Compute receive beamformer w̃k by using MMSE crite-
rion (66).

5: User k, ∀k ∈ K: Use MMSE receive beamformer w̃k as a precoder for
uplink pilots.

6: BS b, ∀b ∈ B: Observe and update effective channels {eb,k}k∈K.
7: repeat
8: BS b, ∀b ∈ B: Compute transmit beamformers and dual variables

{mk, λb,k}k∈Kb
, {µb,k}k∈K̄b

by solving SOCP (73).
9: BS b, ∀b ∈ B: Communicate {λb,k}k∈Kb

and {µb,k}k∈K̄b
to the coupled

BSs via backhaul.
10: BS b, ∀b ∈ B: Update inter-cell interference variables χb via projected

subgradient method (74)
11: until desired level of convergence
12: until desired level of (objective function) convergence

Practical considerations

The discussion on the practical features in Section 2.2.1 applies also to Algo-
rithm 7. In practice, it is important to limit the number of iterations to avoid
extra delay and reduce signaling overhead. In this respect, Algorithm 7 has a
valuable property, as it is able to provide feasible beamformers that satisfy the
user-specific rate constraints, at intermediate iterations. Hence, Algorithm 7
can be stopped at any (feasible) iteration leading to reduced delay and signaling
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overhead. However, the cost here is that the sum power is somewhat increased
compared with the centralized algorithm.

Similar to Section 2.2.1, the total backhaul signaling load of Algorithm 7 is
compared with that of the decentralized approach under different system settings
in Table 5. With the same assumptions as described in Section 2.2.1, the total
backhaul signaling load of the centralized system is given by 2ARATK(B −
1)B. The per-iteration signaling overhead of Algorithm 7 is significantly lower
as compared with the centralized algorithm. The difference is increasing with the
increasing system size and is even higher than in the MISO system. For example,
at each iteration, Algorithm 7 requires less than 1 % of the signaling load of the
centralized algorithm. Therefore, by limiting the number of iterations during the
transmit beamforming design, signaling overhead can be significantly reduced.
Algorithm 7 also requires that KL real valued scalars are signaled over-the-air to
the serving BS during the uplink transmission phase, i.e., 8, 18 and 32 scalars in
the given examples. Note that this procedure is not needed in the single-stream
MIMO scheme (i.e., Algorithm 8). Thus, to reduce the signaling overhead and
computational complexity further, the simpler single-stream MIMO algorithm
can be employed.

Table 5. Total backhaul signaling load per iteration ([99] c⃝ 2015 IEEE).

Centr. (Alg. 6) Decentr. A (Alg. 7)
{B,K,AT, AR} = {2, 4, 8, 2} 256 16 (6.3%)
{B,K,AT, AR} = {3, 6, 18, 3} 3888 72 (1.9%)
{B,K,AT, AR} = {4, 8, 32, 4} 24576 192 (0.7%)

3.3.2 Algorithm with signaling strategy B

Decentralized sum power minimization is achieved by iteratively repeating trans-
mit and receive beamforming updates at each BS, such that the sum power of the
system converges. This design requires local CSI acquired from antenna-specific
uplink pilots and scalar backhaul information exchange between the BSs. Since
there is no information available on the users’ receivers at the BS side, a sub-
optimal worst case assumption on the receivers is thus made. The resulting
modified problem is inherently sub-optimal, but feasible, with respect to the
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original problem. Thus, the beamformers are feasible for the original problem,
i.e., they satisfy the user-specific minimum rate targets, and the converged sum
power is sub-optimal. Unlike in strategy A, only one round of over-the-air up-
link pilot signaling is needed for the convergence of the local transceiver design
at each BS. After the optimization of local transceivers, the resulting transmit
beamformers are used for data transmission and downlink pilots. For data re-
ception, each user employs the linear MMSE receiver (54) with the aid of the
downlink pilots. In the following subsections, the decentralized transceiver de-
sign is derived and presented in detail via a step-by-step algorithm. Lastly, a
simplified algorithm is proposed for a single-stream MIMO system.

Transmit and receive beamforming design at the BS side

The derivation of the transmit and receive beamforming design is started by
equivalently rewriting the stream-wise inter-cell interference power from BS b to
user k as

χb,k,l = wH
k,l

∑
i∈Kb

∑
j∈Li

Hb,kmi,jm
H
i,jH

H
b,k

wk,l. (75)

Since the receive beamformers for the kth user are associated with data streams
emanating from another BS and only antenna-specific uplink pilot signaling is
employed, BS b is unable to deduce what are {wk,l}l∈Lk

. In order to remain on
the safe side and guarantee the user-specific rate targets, BS b may attempt to
prepare for the worst case and maximize the cross term (75) with respect to wk,l.
In other words, each BS assumes the (virtual) worst case receivers, which max-
imize the interference for the other cells’ users when designing the transceivers
for its own users. The solution of the maximization is straightforward, and the
resulting interference power is given by

χb,k,l = λmax

∑
i∈Kb

∑
j∈Li

Hb,kmi,jm
H
i,jH

H
b,k

 (76)

where λmax(X) is the maximum eigenvalue of a symmetric matrix X. The re-
ceiver wk,l maximizing the interference from BS b is the eigenvector correspond-
ing to the maximum eigenvalue in (76). For the SPMin problem, (76) can be
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relaxed with inequality and rewritten as a linear matrix inequality (LMI) con-
straint:

∑
i∈Kb

∑
j∈Li

Hb,kmi,jm
H
i,jH

H
b,k ≼ χb,k,lIAR , ∀l ∈ Lk. Note that this

constraint is the same for each stream of user k. Thus, the number of inter-
ference variables (and the corresponding dual variables) can be reduced, i.e.,
χb,k,1 = . . . = χb,k,Lk

= χb,k. The stream-wise formulation is used here for
clarity of presentation. It is worth mentioning also that other types of worst
case interference assumptions are also applicable. For example, each eigen-
value of the received signal’s covariance matrix can be upper bounded by a
separate inter-cell interference power variable. The resulting LMI is given by∑

i∈Kb

∑
j∈Li

Hb,kmi,jm
H
i,jH

H
b,k ≼ diag (χb,k,1, . . . , χb,k,Lk

). In another example,
the interference is upper bounded by the sum of the eigenvalues of the receive
covariance matrix. This interference constraint can be reformulated as an SOC
constraint: ∥Hb,km̄b∥2 ≤ χ̄b,k,l.

In the following, the focus is solely on the maximum eigenvalue-based inter-
ference assumption in (76). Since the assumption is sub-optimal, the sum power
performance is somewhat degraded when compared with that of the transceiver
design with signaling strategy A. However, the positive side is that now each BS
can design its transmit beamformers without the explicit or implicit knowledge
of the (real) receivers of other cells’ users. Thus, there is no need for a similar it-
erative over-the-air pilot signaling process which is required when using strategy
A. Moreover, the overcautious design helps maintain the feasibility of the rate
targets in time-varying channel conditions where signaling information and CSI
are outdated, as demonstrated via numerical examples in Section 3.3.3. Next,
the sum power minimization is divided into transmit and receive beamforming
designs that can be repeatedly solved one after another at the corresponding
BSs, thus leading to convergence of the sum power.

The receive beamforming design of the cell’s own users can be decoupled
between the BSs by using the worst case inter-cell interference covariance matrix
in the MMSE criterion (54). The corresponding worst case MMSE receiver at

100



BS b for stream l of user k can be written as

ŵk,l =

 ∑
i∈Kbk

∑
j∈Lj

Hbi,kmi,jm
H
i,jH

H
bi,k +N0IAR+

∑
b′∈B\{bk}

χb′,k,lIAR

−1

Hbk,kmk,l,∀k ∈ Kb, ∀l ∈ Lk.

(77)

For fixed {ŵk,l}k∈K,l∈Lk
, the transmit beamforming optimization problem

at the qth iteration of the SCA method can be expressed as

min.
{mk,l,tk,l}k∈K,l∈Lk

,

{χb,k,l}b∈B,k∈K̄b,l∈Lk

∑
k∈K

∑
l∈Lk

∥∥mk,l

∥∥2
2

s. t.
∣∣1− ŵH

k,lHb,kmk,l

∣∣2 +N0∥ŵk,l∥22+∑
i∈Kbk

∑
j∈Li,(i,j)̸=(k,l)

∣∣ŵH
k,lHbi,kmi,j

∣∣2+∑
b′∈B\{bk}

χb′,k,l ≤ −c
(q)
k,l tk,l + d

(q)
k,l∀k ∈ K,∀l ∈ Lk∑

l∈Lk

tk,l ≥ R̂k, ∀k ∈ K∑
i∈Kb

∑
j∈Li

Hb,kmi,jm
H
i,jH

H
b,k ≼ χb,k,lIAR

∀b ∈ B,∀k ∈ K̄b, ∀l ∈ Lk.

(78)

Problem (78) is non-convex and coupled between the BSs. However, it can be
first approximated as an SDP by using the SDR method [81]. The derivation
follows the same steps as those described in Section 2.3. The resulting con-
vex transmit beamforming problem can be decoupled between the BSs by using
the primal decomposition method and turning it into a master problem and B

subproblems. From the results in [81], one can conclude that if the optimal
{Qk,l}k∈K,l∈Lk

are rank-one, i.e., Qk,l = mk,lm
H
k,l, ∀k ∈ K, l ∈ Lk, then the so-

lution is also optimal for the original non-approximated problem. In general, it
cannot be guaranteed that solving an SDR problem yields always a rank-one so-
lution. In case the solution is not rank-one, a simple method described in Section
2.3 can be used to find sub-optimal but feasible rank-one beamformers. However,
this simple method is only applicable for centralized systems in practice. Alter-
natively, it is possible to take the principal eigenvectors of {Qk,l}k∈K,l∈Lk

as

101



beamformers and allow some violation of the rate constraints to enable a decen-
tralized implementation. Nevertheless, rank-one solutions were always obtained
in the numerical examples in Section 3.3.3. Recent works on the SDR problems
for different SPMin systems can be found in [89, 125, 160].

After applying primal decomposition, the subproblem at BS b is given by

min.
{mk,l,tk,l,Qk,l}k∈Kb,l∈Lk

∑
k∈Kb

∑
l∈Lk

tr (Qk,l)

s. t.

[
vk,lI fk,l

fHk,l vk,l

]
≽ 0, ∀k ∈ Kb, ∀l ∈ Lk∑

l∈Lk

tk,l ≥ R̂k, ∀k ∈ Kb∑
i∈Kb

∑
j∈Li

Hb,kQi,jH
H
b,k ≼ χb,k,lIAR

∀k ∈ K̄b, ∀l ∈ Lk

Qk,l ≽ 0, ∀k ∈ Kb, ∀l ∈ Lk[
Qk,l mk,l

mH
k,l 1

]
≽ 0, ∀k ∈ Kb, ∀l ∈ Lk

(79)

where vk,l = (1 + c
(q)
k,l tk,l − d

(q)
k,l )/2, and

fk,l =



1− ŵH
k,lHb,kmk,l

M̄H
b H

H
bk,k

ŵk,l

χ̄k,l√
N0ŵk,l(

1− c
(q)
k,l tk,l + d

(q)
k,l

)
/2


. (80)

The matrix M̄b consists of the BS b specific beamformers except the beamformer
intended for stream (k, l). In other words, the columns of M̄b are taken (in a
specific order) from the set {mi,j}i∈Kb,j∈Li,(i,j) ̸=(k,l). The elements of χ̄k,l are
taken (in a specific order) from the set {χ̄b′,k,l}b′∈B\{b}, i.e., χ̄k,l includes the
inter-cell interference experienced by the (k, l)th stream. The master problem is
solved iteratively via the following projected subgradient method

χ
(r+1)
b,k,l = P++

{
χ
(r)
b,k,l − σ(r)

(
λ
(r)
bk,k,l

− tr
(
Λ

(r)
b,k,l

))}
(81)

where λ
(r)
bk,k,l

and tr(Λ
(r)
b,k,l) are the optimal dual variables with respect to χ

(r)
b,k,l

in the bkth and bth subproblems, respectively. The BS-specific dual variables
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are found by solving (79). The vector χb is updated at BS b, for all b ∈ B in
parallel, by exchanging the dual variables between the coupled BSs. The maxi-
mum number of scalar variables to be exchanged at each subgradient iteration is
Kb(1 +Lk)(B − 1)B. This number is less than for Algorithm 7. The outer SCA
and inner subgradient methods are repeated until a desired level of convergence
is reached.

Algorithm 9 Decentralized transmit and receive beamforming design with sig-
naling strategy B for cellular multi-stream MIMO system
1: BS b, ∀b ∈ B: Set q = 0. Initialize inter-cell interference variables χb and

transmit beamformers and points of approximation {mk,l, t
(0)
k,l}k∈Kb,l∈Lk

.
2: repeat
3: BS b, ∀b ∈ B: Compute receive beamformers {ŵk,l}k∈Kb,l∈Lk

by using
MMSE criterion (77).

4: repeat
5: BS b, ∀b ∈ B: Compute SCA coefficients {c(q)k,l , d

(q)
k,l}k∈Kb,l∈Lk

by using
(62).

6: repeat
7: BS b, ∀b ∈ B: Compute transmit beamformers and dual variables

{mk,l, tk,l, λb,k,l}k∈Kb,l∈Lk
, {tr(Λb,k,l)}k∈K̄b,l∈Lk

by solving SDP (79).
8: BS b, ∀b ∈ B: Communicate {λb,k,l}k∈Kb,l∈Lk

and
{tr(Λb,k,l)}k∈K̄b,l∈Lk

to the coupled BSs via backhaul.
9: BS b, ∀b ∈ B: Update inter-cell interference variables χb via projected

subgradient method (81).
10: until desired level of convergence
11: BS b, ∀b ∈ B: Compute transmit beamformers {mk,l, tk,l}k∈Kb,l∈Lk

by
solving SDP (79).

12: BS b, ∀b ∈ B: Update points of approximation {t(q+1)
k,l }k∈Kb,l∈Lk

by
using (64).

13: Set q = q + 1.
14: until desired level of (objective function) convergence
15: until desired level of (objective function) convergence

The overall transceiver design is summarized in Algorithm 9. The sum power
convergence of the original problem via Algorithm 9 is guaranteed, based on
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similar reasoning as given in Section 3.3.1. The practical considerations given
in Section 3.3.1 are also valid for Algorithm 9. It is worth mentioning that
Algorithm 9 requires less backhaul signaling than Algorithm 7. Given the same
system settings as in Table 5, Algorithm 9 requires only 4.7%, 1.2% or 0.5% of
the signaling load of the centralized approach.

Simplified algorithm for single-stream MIMO

Here, a decentralized transceiver design is proposed for a single-stream MIMO
system. The proposed algorithm is a simplified version of Algorithm 9 since there
is no need for the SCA optimization loop in the transmit beamforming problem.
The receive beamforming design is decoupled between the BSs by applying the
worst case inter-cell interference covariance matrix

∑
b′∈B\{bk} χb′,kIAR . The

(normalized) worst case MMSE receivers for the users assigned to BS b can be
written as

ŵk =
w̌k

∥w̌k∥2
,

w̌k =

 ∑
i∈Kbk

\{k}

Hbi,kmim
H
i H

H
bi,k+

N0 +
∑

b′∈B\{bk}

χb′,k

 IAR

−1

Hbk,kmk, ∀k ∈ Kb. (82)

The transmit beamforming problem can be approximated and decoupled via
SDR and primal decomposition, respectively. The resulting subproblem for BS
b is given by

min.
{Qk}k∈Kb

∑
k∈Kb

tr (Qk)

s. t.
1

γk
tr
(
ŴkHb,kQkH

H
b,k

)
−∑

i∈Kbk
\{k}

tr
(
ŴkHb,kQiH

H
b,k

)
≥ N0 +

∑
b′∈B\{bk}

χb′,k,

∀ k ∈ Kb∑
i∈Kb

Hb,kQiH
H
b,k ≼ χb,kIAR , ∀b ∈ B, ∀k ∈ K̄b

Qk ≽ 0, ∀k ∈ Kb

(83)
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where Ŵk = ŵkŵ
H
k . Problem (83) is an SDP. The following projected subgra-

dient method solves the master problem

χ
(r+1)
b,k = P++

{
χ
(r)
b,k − σ(r)

(
λ
(r)
bk,k

− tr
(
Λ

(r)
b,k

))}
. (84)

The vector χb is updated at BS b, for all b ∈ B in parallel, after solving (83)
for the dual variables and then exchanging them between the coupled BSs. The
total amount of backhaul signaling between the BSs per subgradient iteration is
2Kb(B − 1)B. The proposed transceiver design is summarized in Algorithm 10.
The convergence of the sum power is guaranteed based on the same arguments
as those explained in Section 3.3.1.

Algorithm 10 Decentralized transmit and receive beamforming design with
signaling strategy B for cellular single-stream MIMO system
1: BS b, ∀b ∈ B: Initialize inter-cell interference variables χb and transmit

beamformers {m}k∈Kb
.

2: repeat
3: BS b, ∀b ∈ B: Compute receive beamformer {ŵk}k∈Kb

by using MMSE
criterion (82).

4: repeat
5: BS b, ∀b ∈ B: Compute transmit beamformers and dual variables

{mk, λb,k}k∈Kb
and {tr(Λb,k)}k∈K̄b

by solving SDP (83).
6: BS b, ∀b ∈ B: Communicate {λb,k}k∈Kb

and {tr(Λb,k)}k∈K̄b
to the

coupled BSs via backhaul.
7: BS b, ∀b ∈ B: Update inter-cell interference variables χb via projected

subgradient method (84).
8: until desired level of convergence
9: until desired level of (objective function) convergence

3.3.3 Numerical evaluation

In this section, the performance of the proposed centralized and decentralized
algorithms is evaluated via numerical examples. The used simulation model
is mostly the same as in Section 2.2.3, i.e., B = 2 and K1 = K2 = 2. The
difference now is that each user is equipped with multiple antennas. Unless

105



otherwise stated, the used channel model is based on frequency-flat Rayleigh
fading channel conditions with uncorrelated channel coefficients between the
antennas. Per-user rate constraints and the number of data streams per user are
set equal among the users, i.e., Rk = R and Lk = L, ∀k ∈ K. Moreover, some of
the simulation parameters are initialized by setting them equal over the streams
and users, i.e., t

(0)
k,l = t(0) = R/L, ∀k ∈ K, ∀l ∈ Lk and χ

(0)
b,k,l = χ(0) = 0.05,

∀b ∈ B, ∀k ∈ K̄b, ∀l ∈ Lk. Transmit beamformers were initialized using the
singular vectors of the user-specific channels matrices. Adaptive step-sizes with
empirically chosen initial values are used for the projected subgradient methods.

In Figs. 16-17, the average sum power performance of the centralized algo-
rithms is evaluated for various rate targets and cell separation values. The main
system parameters are given by {B,K,AT, AR} = {2, 4, 16, 4}. The results are
achieved by iterating over 20 transmit-receive beamforming steps and averaging
over 50 channel realizations. The following centralized schemes are compared

– Multi-stream MIMO (M-MIMO): Algorithm 6
– Multi-stream MIMO with worst case receiver (WCRX)
– Multi-stream MIMO with per-stream rate constraints
– Single-stream MIMO (S-MIMO): Algorithm 5
– Single-stream MIMO with worst case receiver
– MISO (Chapter 2)

Note that all the centralized results in Figs. 16-17 can be achieved via decen-
tralized processing if the corresponding algorithms are let to converge. Fig. 16
illustrates the sum power as a function of rate target. It can be observed that
multi-stream MIMO design (Algorithm 6) significantly outperforms other algo-
rithms. The performance gain over the single-stream MIMO design (Algorithm 5)
is significant, and it is emphasized with the increasing rate target. The results
also show that having the worst case receiver assumption in the transceiver de-
sign somewhat degrades the performance. This aspect is emphasized near the
cell-edge area and with the increasing rate target. In Fig. 17, the sum power is
plotted against cell separation. Again, multi-stream MIMO design has superior
performance compared with the other algorithms. The performance of all the
algorithms improves, as the cell separation increases. The largest improvements
in the performance is witnessed for the worst case receiver-based algorithms.

Fig. 18 examines the convergence behavior of the decentralized algorithms
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Fig 16. Average sum power versus rate target ([99] c⃝ 2015 IEEE).
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Fig 17. Average sum power versus cell separation ([99] c⃝ 2015 IEEE).

108



0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

Number of innermost iterations

S
um

 p
ow

er
 [d

B
]

 

 

M−MIMO B (Alg. 9): {u
max

,q
max

,r
max

}={8,5,5}

M−MIMO B (Alg. 9): {u
max

,q
max

,r
max

}={200,1,1}

M−MIMO A (Alg. 7): {u
max

,q
max

,r
max

}={8,5,5}

M−MIMO A (Alg. 7): {u
max

,q
max

,r
max

}={200,1,1}

Fig 18. Convergence behavior of decentralized algorithms ([99] c⃝ 2015 IEEE).

with signaling strategies A (Algorithm 7) and B (Algorithm 9). A different num-
ber of inner and outer loop iterations are compared. The sum power is plotted
as a function of the innermost (subgradient) iteration for a single channel real-
ization. The system parameters are given by {B,K,AT, AR} = {2, 4, 8, 2}. The
rate target and cell separation are set to 2 bits/s/Hz and 3 dB, respectively,
for the rest of the simulations. The symbols umax, qmax and rmax denote the
maximum number of iterations in the transmit-receive beamforming, SCA and
subgradient optimization steps, respectively. The results demonstrate that even
though the algorithms converge to different sum power values, the speed of con-
vergence is comparable. Moreover, the convergence rate is the fastest with one
SCA and one subgradient iteration per each transmit beamforming optimization
phase in terms of the innermost iterations.

Finally, the performance of Algorithm 7 and Algorithm 9 is evaluated in time-
correlated flat fading channel conditions with parameters {B,K,AT, AR} =

{2, 4, 8, 2}. The corresponding channel realizations are generated using Jakes’
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Fig 19. Sum power performance in time-correlated channel conditions ([99] c⃝ 2015 IEEE).
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Fig 20. Achieved per-user rates in time-correlated channel conditions ([99] c⃝ 2015 IEEE).
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Doppler spectrum model, as described in Section 2.2.3. The channel variation
rate is determined via a normalized user velocity parameter TFfD, where TF is
the duration of each uplink and downlink frame and fD is the maximum Doppler
shift. In the simulations, the sum power is measured after each transmit beam-
forming update phase and the achieved user rates are computed after each receive
beamforming phase. Channel conditions are let to change during each uplink
and downlink frame. One round of scalar information exchange between the
BSs via backhaul is performed after each transmit beamforming design phase.
This information will be outdated when used in the next transmit beamforming
optimization phase. In Fig. 19, the sum power performance of Algorithm 7 and
Algorithm 9 is examined for 50 time-correlated channel realizations. In addition,
the achieved instantaneous user rates are presented in Fig. 20. Finally, the
average rates (over users and iterations) and their ratios to target rate (in per-
centage) are calculated, and the results are illustrated in Table 6. Performance is
evaluated for TFfD = 0.005 and TFfD = 0.02, which can be considered as 2.7 and
10.8 km/h user velocities if 2 GHz carrier frequency and 1 ms frame duration is
assumed. The numerical results show that Algorithm 7 outperforms Algorithm 9
with respect to the sum power. However, Algorithm 9 has higher achieved rates,
which implies that it is better protected against outdated information. In most
of the numerical examples, the average rates of both algorithms are higher than
the target rates.

Table 6. Average rates in time-correlated channel conditions ([99] c⃝ 2015 IEEE).

M-MIMO A (Alg. 7) M-MIMO B (Alg. 9)
TFfD = 0.005, R = 2 2.075 (103.8%) 2.281 (114.0%)

TFfD = 0.02, R = 2 2.062 (103.1%) 2.274 (113.7%)

TFfD = 0.005, R = 4 4.015 (100.4%) 4.549 (113.7%)

TFfD = 0.02, R = 4 3.980 (99.50%) 4.450 (111.2%)

3.4 Summary and discussions

In this chapter, novel coordinated beamforming algorithms were proposed for the
SPMin problem with user-specific rate targets in a cellular multi-user MIMO sys-
tem. Centralized MIMO design was derived first, after which two decentralized
algorithms were provided. Decentralized processing is enabled by exploiting
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pilot and backhaul signaling. The used signaling framework is applicable in
TDD-based systems since the reciprocity of downlink and uplink channels are
exploited. The non-convex original problem is divided into transmit and re-
ceive beamforming steps, which are alternately solved such that the objective
function (i.e., the sum power) converges. However, global optimality cannot be
guaranteed due to the non-convexity of the original problem. In the centralized
algorithm, the non-convex transmit beamforming optimization problem is refor-
mulated as a DCP, which can then be approximated and iteratively solved as a
series of convex problems, such that the sum power monotonically converges by
using the SCA method. The well-known linear MMSE criterion is employed at
the receive beamforming optimization step.

In the first decentralized algorithm, sum power is minimized via an iterative
over-the-air optimization process where the transmit and receive beamformers
are consecutively updated at each BS and user, respectively. BS side processing
is aided by local effective CSI, which is acquired from the precoded uplink pilots.
In the second decentralized algorithm, the transmit and receive beamformers
are iteratively optimized at each BS, requiring only local CSI achieved from one
round of antenna-specific uplink pilot signaling. In both algorithms, transmit
beamforming design is decoupled among the BSs by applying the primal de-
composition method, which allows decentralized processing via scalar backhaul
information exchange between the BSs. In addition, simplified decentralized al-
gorithms were developed for a special case of multi-cell MIMO system where the
number of data streams per user is limited to one.

The numerical results showed performance gains over the MISO and single-
stream MIMO algorithms. The gains are emphasized with the increasing rate
target and the number of receive antennas. However, the simpler single-stream
MIMO algorithms may be more favorable in the line-of-sight type of channel
conditions since the average number of allocated streams per user is close to
one. The multi-stream MIMO algorithms were also studied for time-correlated
channel conditions where the channel and backhaul information is outdated. In
low mobility cases, the achieved instantaneous rates followed the minimum tar-
get rates closely while the average rates were even higher than the targets. The
MIMO algorithm with effective CSI was superior in terms of sum power perfor-
mance, whereas the other MIMO scheme with only local CSI achieved higher
average rates. This finding implies that the latter algorithm is better protected
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against outdated channel and backhaul signaling information. Even though the
simulation results are promising in a simplified multi-cell environment, further
study is needed to reveal the real performance gains of the proposed algorithms
by using a more realistic system-level simulator.

It is interesting to notice that the proposed decentralized algorithms may
well be applicable to massive MIMO type of systems since the backhaul sig-
naling load does not depend on the number of transmit antennas. Hence, the
reduction of signaling overhead, when compared with the centralized algorithm,
is emphasized in multi-cell systems with large antenna arrays.
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4 Coordinated beamforming in MISO cognitive
radio networks

In this chapter, coordinated beamforming is considered in a cognitive radio sys-
tem where the primary and secondary cells share the same spectrum. The design
objective is to minimize the total transmission power of the secondary network
while guaranteeing the minimum rate for each SU and keeping the generated
interference toward each PU below a predefined threshold. In particular, decen-
tralized coordinated beamforming techniques are developed.

In Section 4.1, the cognitive spectrum sharing multi-user MISO system model
is described and the corresponding SPMin problem is formulated with assump-
tions of perfect and imperfect CSI. Decentralized cognitive beamforming algo-
rithms with perfect and imperfect CSI are developed in Sections 4.2 and 4.3, re-
spectively. The proposed algorithms rely on primal decomposition and ADMM
methods to allow decentralized implementations. The performance of the pro-
posed algorithms is evaluated via numerical examples in Sections 4.2.2 and 4.3.2.
The chapter is summarized in Section 4.4.

4.1 System model and SPMin problem formulation

Consider a spectrum sharing cognitive radio system where a primary network
with P PUs and a secondary network with S SUs coexist. Each PU and SU
is equipped with a single antenna. The secondary network consists of T sec-
ondary transmitters, each equipped with AT antennas. The considered system
is depicted in Fig. 21. For convenience of presentation, the number of primary
transmitters is not explicitly presented. Consequently, the term "transmitter"
refers to the secondary transmitter unless otherwise stated. The sets of all sec-
ondary transmitters, SUs and PUs are denoted by T , S and P, respectively. Each
SU is served by a single secondary transmitter, and each secondary transmitter
serves its own set of multiple SUs simultaneously. SU association is assumed to
be fixed. The serving transmitter for SU s is denoted by ts. The set St includes
all the SUs served by its respective secondary transmitter s, whereas the set of
other secondary cells’ users is defined as S̄t = S \ St. The received signal at SU
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s is expressed as

ys =
∑

s∈S hts,smsxs +
∑

i∈S\{s} hti,imisi + zs (85)

where ms ∈CAT×1 and xs ∈C denote the unnormalized transmit beamforming
vector and the normalized data symbol for SU s. The channel vector from the
tsth secondary transmitter to the sth SU is denoted by hbs,s ∈C1×AT . The term
zs ∈ C with variance Z0 includes the additive noise and interference from the
primary network. The total transmission power of the secondary transmitters is
written as

P tx =
∑
s∈S

tr(msm
H
s ) =

∑
s∈S

∥∥ms

∥∥2
2
. (86)

The data rate of SU s is given by

rs = log2 (1 + Γs) (87)

where the SINR is expressed as

Γs =

∣∣hts,sms

∣∣2
Z0 +

∑
i∈S\{s}

∣∣hti,sms

∣∣2 . (88)

Each PU has a predefined maximum interference power level which the aggregate
interference from the secondary network cannot exceed, i.e.,∑

t∈T

∑
i∈St

∣∣gt,pmi

∣∣2 ≤ Φp, ∀p ∈ P (89)

where gt,p is the channel vector from secondary transmitter s to PU p.
The optimization target is to minimize the sum transmission power of the

secondary transmitters, while satisfying the SU-specific minimum rate targets
{Rs}s∈S and the PU-specific maximum aggregate interference power constraints
{Φp}p∈P . Since there is direct mapping between the rate and SINR, the rate
targets can be turned into corresponding SINR targets, i.e., γs = 2Rs −1 ∀s ∈ S.
The resulting optimization problem is written as

min.
{ms}s∈S

∑
s∈S

∥∥ms

∥∥2
2

s.t. Γs ≥ γs, ∀s ∈ S∑
t∈T

∑
i∈St

∣∣gt,pmi

∣∣2 ≤ Φp, ∀p ∈ P.

(90)
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Fig 21. Cognitive multi-cell multi-user MISO system.

In (90), the SINR constraints are met with equality at the optimal solution.
However, there may be occasions when the PU-specific interference constraints
are inactive, i.e., interference is below a predefined maximum level at the optimal
solution. In that case, removing the constraints would not have any impact
on solving the problem. In the following mathematical analysis, it is assumed
that the aggregate interference constraints are active at the optimal solution.
Moreover, (90) is assumed to be strictly feasible, and an optimal solution exists.
Feasibility conditions were discussed in [126] for a MISO cognitive radio system
with multiple primary and secondary transmitter-receiver pairs. It is worth
mentioning that a sufficient condition for (90) to be feasible is when AT ≥ S+P ,
provided that the elements of the channel vectors are independent and random.

Problem (90) can be cast as an SOCP, and solved optimally using standard
SOCP solvers assuming that there exists a central controlling unit with access
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to global CSI. The resulting SOCP is expressed as

min.
ptx,{ms}k∈S

ptx

s. t.
∥∥∥ m̄

∥∥∥
2
≤ ptx∥∥∥∥∥ MHhH

ts,s√
Z0

∥∥∥∥∥
2

≤
√

1 + 1
γs
hts,sms, ∀s ∈ S∥∥∥ MHgH

t,p

∥∥∥
2
≤
√
Φp, ∀p ∈ P

(91)

where m̄ = [mT
1 , . . . ,m

T
S ]

T and M = [m1, . . . ,mS ]. The optimal sum transmit
power is given by P tx = (ptx)2. In Section 4.2.1, the coordinated beamforming
algorithm is proposed to solve (90) in a decentralized manner.

Next, the assumption of imperfect CSI is considered, and the network design
problem is formulated accordingly. The channel vector from transmitter t to SU
s is expressed as

ht,s = ĥt,s + ut,s, ∀t ∈ T , ∀s ∈ S (92)

where ĥt,s ∈C1×AT and ut,s ∈C1×AT are the estimated channel at the transmit-
ter and the CSI error, respectively. It is assumed that the CSI error is bounded
by an ellipsoid [103]:

Et,s =
{
ut,s : ut,sEt,su

H
t,s ≤ 1

}
, ∀t ∈ T , ∀s ∈ S (93)

where the positive definite matrix Et,s is known at transmitter t, and it deter-
mines the accuracy of the CSI by defining the shape and size of the bounding
ellipsoid. The received SINR of the sth SU is given by

Γk =

(
ĥts,s + uts,s

) (
msm

H
s

) (
ĥts,s + uts,s

)H

Z0 +
∑

i∈S\{s}

(
ĥti,s + uti,s

) (
mimH

i

) (
ĥti,s + uti,s

)H (94)

(95)

The same CSI uncertainty model is also used for the channel vectors from the
secondary transmitters to the PUs. In particular, the channel vector from trans-
mitter s to the PU p is given by

gt,p = ĝt,p + vt,p, ∀t ∈ T , ∀p ∈ P (96)
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where ĝt,p and vt,p are the estimated channel and the CSI error, respectively.
The ellipsoid that bounds CSI uncertainty is given by

Ft,p =
{
vt,p : vt,pFt,pv

H
t,p ≤ 1

}
, ∀t ∈ T , ∀p ∈ P (97)

where Ft,p ≻ 0, and it is known at the transmitter.
The optimization target is to minimize the sum power of secondary transmit-

ters while satisfying the worst case minimum SINR constraints of SUs {γs}s∈S

and the worst case maximum aggregate interference power constraints of PUs
{Φp}p∈P . This robust problem can be written as

min.
{ms}s∈S ,

∑
k∈K

tr
(
mkm

H
k

)
s. t.

(
ĥts,s + uts,s

) (
msm

H
s

) (
ĥts,s + uts,s

)H

Z0 +
∑

i∈S\{s}

(
ĥti,s + uti,s

) (
mimH

i

) (
ĥti,s + uti,s

)H ≥ γs

∀s ∈ S, ∀uts,s ∈ Ets,s∑
i∈S

(ĝt,p + vt,p)mim
H
i (ĝt,p + vt,p)

H ≤ Φp, ∀p ∈ P, ∀vt,p ∈ Ft,p

(98)
Problem (98) is non-convex and has infinitely many constraints due to the CSI
uncertainty. Hence, (98) cannot be solved in its current form. In Section 4.3.1,
(98) is approximated and reformulated as a tractable convex problem, and a
decentralized robust beamforming algorithm is developed to solve it.

4.2 Decentralized transmit beamforming design

In this section, a primal decomposition-based algorithm is proposed to solve the
cognitive SPMin problem (90) in a decentralized manner. The performance of
the secondary network is optimized with the assumption that each secondary
transmitter knows its local channels to each secondary and primary user in the
system, i.e., perfect local CSI is available. The proposed algorithm can be seen
as an extension of the cellular algorithm in Section 2.2.1 with an additional set
of constraints imposed for the PUs. Since the additional interference constraints
are easy to handle, i.e., they can be cast as SOC constraints, the mathematical
analysis in Section 2.2.1 applies herein as well. Thorough derivation of the
algorithm is given in the following subsections.
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4.2.1 Primal decomposition-based algorithm

The primal decomposition method is used to decompose the original problem
into network-wide and BS-specific optimizations. The network-wide optimiza-
tion is solved via the projected subgradient method, whereas the BS-specific op-
timization relies on either convex optimization techniques or the uplink-downlink
duality-based method.

Reformulation of SPMin problem

In order to apply primal decomposition, the original SPMin problem (90) needs
to be reformulated by introducing auxiliary variables such that the coupling is
transferred from the beamformers into these variables, and by fixing them the
problem will decouple. In this respect, two sets of inter-cell interference power
variables are introduced, i.e., the interference from each secondary transmitter
to each SU and PU. Specifically, the inter-cell interference power from secondary
transmitter t to SU s is given by

χt,s =
∑
i∈St

∣∣ht,smi

∣∣2. (99)

Furthermore, the inter-cell interference power from secondary transmitter t to
PU p is expressed as

ϕt,p =
∑
i∈St

∣∣gt,pmi

∣∣2. (100)

The reformulated SINR is given by

Γs =

∣∣hts,sms

∣∣2
Z0 +

∑
t′∈T \{ts}

χt′,s +
∑

i∈St\{s}

∣∣hti,smi

∣∣2 . (101)
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The resulting problem is expressed as

min.
,{ms}s∈S ,χ,ϕ

∑
s∈S

∥∥ms

∥∥2
2

s.t. Γ̃s ≥ γs, ∀s ∈ S∑
i∈St

∣∣ht,smi

∣∣2 ≤ χt,s, ∀t ∈ T , ∀s ∈ S̄t∑
i∈St

∣∣gt,pmi

∣∣2 ≤ ϕt,p, ∀t ∈ T , ∀p ∈ P∑
i∈St

∣∣gt,pmi

∣∣2 + ∑
t′∈T \{t}

ϕt′,p ≤ Φp, ∀t ∈ T , ∀p ∈ P

(102)

For notational convenience, all interference variables are gathered into vectors
χ and ϕ, i.e., the elements of χ and ϕ are taken from the sets {χt,s}t∈T ,s∈S̄t

and {ϕt,p}t∈T ,p∈P , respectively. The optimal solution of (90) is equivalent to
that of (102) since all the inequality constraints in (102) hold with equality at
the optimal point. It is worth mentioning that if a centralized implementation
is assumed, the last set of constraints in (102) can be replaced by

∑
t∈T ϕt,p ≤

Φp, ∀t ∈ T , ∀p ∈ P. However, the use of the redundant term
∑

i∈St

∣∣gt,pmi

∣∣2
facilitates decentralized implementation. More details are given in Section 4.2.1.

Based on the derivation in Section 2.2.1, (102) can be cast as an SOCP

min.
ptx,{ms}s∈S ,χ,ϕ

ptx

s. t.
∥∥∥ m̄

∥∥∥
2
≤ ptx∥∥∥∥∥∥∥

MH
tsh

H
ts,s

χ̄s√
Z0

∥∥∥∥∥∥∥
2

≤
√
1 + 1

γs
hts,sms, ∀s ∈ S

∥∥∥ MH
t h

H
t,s

∥∥∥
2
≤ χ̄t,s, ∀t ∈ T ,∀s ∈ S̄t∥∥∥ MH

t g
H
t,p

∥∥∥
2
≤ ϕ̄t,p, ∀t ∈ T ,∀p ∈ P∥∥∥∥∥ MH

t g
H
t,p

ϕ̄p

∥∥∥∥∥
2

≤
√

Φp, ∀t ∈ T , ∀p ∈ P

(103)

where χ̄t,s =
√
χ
t,s

, ϕ̄t,s =
√
ϕt,s and Mt = [mSt(1), . . . ,mSt(St)]. The elements

of χ̄s and ϕ̄p are taken from the set {χ̄t′,s}t′∈T \{ts} and {ϕ̄t′,p}t′∈T \{ts}, respec-
tively. Proposition 1 also holds true herein, and thus, strong duality applies for
(103).
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Two-level problem structure via primal decomposition

To allow decentralized implementation, primal decomposition is applied to turn
(102) into a hierarchical two-level optimization problem. Problem (102) is cou-
pled between the secondary transmitters by the interference variables χ and
ϕ. Precisely, each element of χ couples two secondary transmitters, whereas
each element of ϕ couples all the secondary transmitters. Furthermore, P tx is
inherently separable between the secondary transmitters, i.e., P tx =

∑
t∈T P tx

t ,
where P tx

t is the transmission power of transmitter t. Hence, (102) will de-
couple between the secondary transmitters if χ and ϕ are fixed. Thus, primal
decomposition is an adequate method to decompose (102) into a network-wide
master problem and transmitter-specific subproblems, one for each secondary
transmitter. For notational purposes, transmitter-specific interference vectors
are introduced, i.e., χt and ϕt, ∀t ∈ T , which consist of all χt,s and ϕt,p that are
coupled with transmitter t. Precisely, the elements of χt are taken from the sets
{χt,s}s∈S̄t

and {χt′,s}t′∈T \{ts},s∈St
. The vector ϕt is defined by ϕt = ϕ since

the transmitter t is coupled with each ϕt,p.
The lower level subproblem at secondary transmitter t for fixed χt and ϕt is

written as

min.
P tx

t ,{ms}s∈St

P tx
t

s.t.
∑
s∈St

∥∥ms

∥∥2
2
≤ P tx

t

Γ̃s ≥ γs, ∀s ∈ St∑
i∈St

∣∣ht,smi

∣∣2 ≤ χt,s,∀k ∈ S̄t∑
i∈St

∣∣gt,pmi

∣∣2 ≤ ϕt,p, ∀p ∈ P∑
i∈St

∣∣gt,pmi

∣∣2 + ∑
t′∈T \{t}

ϕt′,p ≤ Φp, ∀p ∈ P.

(104)

Strong duality holds for (104) since it is a simplified version of (102).
The network-wide master problem controls the transmitter-specific subprob-

lems by updating the interference variables {χt,ϕt}t∈T . The master problem is
expressed as

min.
{χt,ϕt}t∈T

∑
t∈T

g⋆t (χt,ϕt)

subject to χt ∈ IRMt
++, ∀t ∈ T

ϕt ∈ D, ∀t ∈ T

(105)
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where g⋆t (χt,ϕt) denotes the optimal objective value of (104) for the given χt and
ϕt. The set D is denoted by D =

{
ϕt : ϕt,p ∈ IR++,

∑
t∈T ϕt,p = Φp,∀p ∈ P

}
.

The problem (105) is convex since its objective and constraint functions are
convex.

Master problem: network-wide optimization step

In this section, an outer loop optimization algorithm is derived for the inter-cell
interference coordination by iteratively solving the higher level master problem
(15). Problem (15) can be solved via a standard projected subgradient method
using the following updates of interference power variables:

χ
(r+1)
t,s = P++

{
χ
(r)
t,s − σ(r)

(
λ
(r)
ts,s − µ

(r)
t,s

)}
, ∀t ∈ T , ∀s ∈ S̄t (106)

ϕ
(r+1)
t,p = PD

{
ϕ
(r)
t,p − σ(r)

( ∑
t′∈T \{t}

υ
(r)
t′,p − ν

(r)
t,p

)}
,∀t ∈ T , ∀p ∈ P (107)

where P++ and PD are the projections onto the sets of positive real numbers
and D, respectively. Step-size at iteration t is denoted by σ(r). The terms
λ
(r)
ts,s − µ

(r)
t,s and

∑
t′∈T \{t} υ

(r)
t′,p − ν

(r)
t,p are the subgradients of (105) evaluated

at the points χ
(r)
t,s and ϕ

(r)
t,s , respectively. The scalars λ

(r)
ts,s and µ

(r)
t,s are the

optimal dual variables associated with χ
(r)
t,s in subproblem ts and t, respectively.

Similarly, υ(r)
t′,p and ν

(r)
t,p are the optimal dual variables associated with ϕ

(r)
t,s in

t′th and tth subproblems, respectively. The aforementioned subgradients can be
found by following the proof of Proposition 2.

It is worth mentioning that the update process of ϕt,p would be different
in a decentralized case if the inter-tier interference constraint was equivalently
replaced by

∑
t∈T ϕt,p ≤ Φp,∀t ∈ T , ∀p ∈ P. In this case, the constraint∑

t∈T ϕt,p ≤ Φp, ∀p ∈ P vanishes in the corresponding subproblem t leading
to a subgradient of −νt,p at the point ϕt,p. The subgradient −νt,p depends only
on the subproblem t, resulting in an always increasing ϕt,p (before the projection
PD) at each subgradient iteration. By having the term

∑
i∈St

∣∣gt,pmi

∣∣2 in (90),
always increasing ϕt,p can be avoided. Instead, the subgradient in (107) depends
on all the subproblems leading to a proper update process of ϕt,p.

Since each ϕt,p is projected, such that
∑

t∈T ϕt,p = Φp, the last two con-
straints in (90) must be the same, and thus, their dual variables are also the
same, i.e., υt,p = νt,p, ∀t ∈ T ,∀p ∈ P. Hence, the term

∑
t′∈T \{t} υt′,p(t) in
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(107) can be equivalently rewritten as
∑

t′∈T \{t} νt′,p(t). Since the subgradient
update is now obtained by solving only {νt,p}t∈T , the last constraint in (90)
can be removed. Thus, (90) can be reformulated accordingly. In the following
sections, all the related problems are formulated accordingly.

Subproblems: transmitter-specific optimization step

Two alternative methods are introduced to compute the transmit beamformers
and dual variables by solving the subproblem (104) and its dual problem. The
first method is based on standard convex optimization techniques, i.e., SOCP
and SDP. The second approach exploits uplink-downlink duality by optimizing
the downlink transmit beamformers via virtual uplink powers and virtual uplink
receive beamformers. The computational complexity of the latter method is
generally lower than that of the SOCP and SDP. In the following, the iteration
index q is dropped for the sake of clarity.

Convex optimization-based solution

The transmitter-specific subproblem (104) can be cast as an SOCP by following
the derivation in Section 2.2.1. The resulting SOCP problem is given by

min.
ptx
t ,{ms}s∈St

ptxt

s. t.
∥∥∥ m̄t

∥∥∥
2
≤ ptxt∥∥∥∥∥∥∥

MH
tsh

H
ts,s

χ̄s√
Z0

∥∥∥∥∥∥∥
2

≤
√
1 + 1

γs
hts,sms, ∀s ∈ St

∥∥∥ MH
t h

H
t,s

∥∥∥
2
≤ χ̄t,s,∀s ∈ S̄t∥∥∥ MH

t g
H
t,p

∥∥∥
2
≤ ϕ̄t,p,∀p ∈ P

(108)

where m̄t = [mT
St(1)

, . . . ,mT
St(St)

]T and the optimal per-transmitter power is
given by P tx

t = (ptxt )2. As discussed in Section 2.2.1, some standard solvers, such
as CVX [88], cannot provide the dual variables by solving the primal problems
that are formulated as SOCP problems. Since strong duality holds for (14), the
optimal dual variables can be found by solving the Lagrange dual problem of
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(14). The dual problem is given by

max.
λt,µt,νt

∑
s∈St

λt,s

Z0 +
∑

t′∈T \{ts}

χt′,s

−
∑
s∈S̄t

µt,sχt,s −
∑
p∈P

νt,pϕt,p

s. t. I+
∑
i∈St

λt,ih
H
ts,i

hts,i +
∑

j∈S̄b

µt,jh
H
ts,j

hts,j −
(
1 + 1

γs

)
λt,sh

H
ts,shts,s

+
∑
p∈P

νt,pg
H
ts,pgts,p ≽ 0,∀ s ∈ St

λt ≽ 0,µt ≽ 0,νt ≽ 0

(109)
where λt = [λt,1, . . . , λt,St ]

T, µt = [µt,1, . . . , µt,|S̄t|]
T and νt = [νt,1, . . . , νt,P ]

T.
Problem (109) can be optimally solved by using SDP solvers since it can be refor-
mulated as a standard form SDP by turning the maximization into minimization
and changing the sign of the objective function.

Uplink-downlink duality-based solution

Uplink-downlink SINR duality can be exploited to solve the transmitter-specific
subproblem (104) without relying on convex optimization techniques. Instead,
the downlink transmit beamformers can be computed with the aid of the MMSE-
based uplink receive beamformers and the uplink powers, which can be found
by solving a virtual uplink SPMin problem via a simple projected subgradient
and fixed-point iteration methods. A detailed derivation of the uplink-downlink
duality-based approach is given as follows.

First, the dual problem (109) is split into an outer maximization on µt and
νt and an inner maximization on λt. The vectors µt and λt consist of the
dual variables associated with the inter-cell interference and SINR constraints,
respectively. Since (19) is concave, both the outer and inner problems are also
concave.

The outer maximization can be expressed as

max.
µt,νt

ḡ⋆t (µt,νt)

subject to µt ∈ IRSt
+ ,νt ∈ IRP

+

(110)

where ḡ⋆t (µt,νt) is the optimal objective value of the inner maximization on λt

for given µt and νt. The projected subgradient method is used to optimally
solve the outer maximization problem (20) for µt and νt. Projected subgradient
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updates are given by

µ
(n+1)
t,s = P++

{
µ
(n)
t,s + σ(n)u

(n)
t,s

}
, ∀s ∈ S̄t (111)

ν
(n+1)
t,p = P+

{
ν
(n)
t,p + σ(n)ũ

(n)
t,p

}
, ∀p ∈ P (112)

where P+ is the projection onto the real non-negative values. At iteration n, the
step-size is denoted by σ(n). Based on Proposition 2, subgradients u(n)

t,s and ũ
(n)
t,p

at points µ
(n)
t,s and ν

(n)
t,p can be expressed as

u
(n)
t,s =

∑
i∈St

|ht,smi|2 − χt,s, ∀s ∈ S̄t (113)

ũ
(n)
t,p =

∑
i∈St

|gt,pmi|2 − ϕt,p, ∀p ∈ P. (114)

In order to solve (113), the optimal beamformers {ms}s∈St need to be found at
each iteration n. For ease of presentation, the iteration index n is omitted in the
following.

The inner optimization problem on λt is expressed as

max.
λt

∑
s∈St

λt,s

Z0 +
∑

t′∈T \{t}

χt′,s


s. t. I+

∑
i∈St

λt,ih
H
ts,i

hts,i +
∑
j∈S̄t

µt,jh
H
ts,j

hts,j

+
∑
p∈P

νt,pg
H
ts,pgts,p −

(
1 + 1

γs

)
λt,sh

H
ts,shts,s ≽ 0, ∀ s ∈ St

λt ≽ 0.

(115)

Note that the term
∑

s∈S̄t
µt,sχt,s −

∑
p∈P νt,pϕt,p from (109) is now fixed, and

it can be omitted from the objective since it does not have any impact on finding
the optimal λt. Optimal λt and {ms}s∈St can be found with the aid of uplink-
downlink duality by first formulating a virtual uplink problem, and then solving
it using simple methods. Based on the proof of Theorem 1, it can be shown that
(115) is equivalent to the following problem:

min.
λt,{ws}s∈St

∑
s∈St

λt,s

(
Z0 +

∑
t′∈T \{t}

χt′,s

)
s. t. 1

γs
λt,s

∣∣wH
s hts,s

∣∣2 − ∑
i∈Sts\{s}

λt,i

∣∣wH
s hti,i

∣∣2
≥
∑
j∈S̄t

µt,j

∣∣wH
s hts,j

∣∣2 + ∑
p∈P

νt,p
∣∣wH

s gts,p

∣∣2
+wH

s Iws, ∀ s ∈ St

λt ≽ 0.

(116)
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where ws ∈ CAT×1 is a virtual uplink receive beamformer for SU s. Problem
(116) can be interpreted as a virtual dual uplink (weighted) SPMin problem
for a cognitive multi-user MISO system where the SU-specific SINR constraints
remain the same as in the downlink. Precisely, the vectors λt, µt and νt can
be interpreted as the virtual dual uplink powers for the SUs at the serving cell,
SUs at the other cells and PUs, respectively. Moreover, the virtual uplink power
of SU s is scaled in the objective by a constant that is the sum of the noise and
fixed interference powers experienced by SU s in the downlink.

Following the proof of Proposition 3, (116) can be optimally solved for λt

via the following fixed point iteration:

λ
(m+1)
t,s =

1(
1 + 1

γs

)
hts,s

(
Ω

(m)
t

)−1

hH
ts,s

, ∀s ∈ St (117)

where

Ω
(m)
t = I+

∑
i∈St

λ
(m)
t,i hH

ts,i
hts,i

+
∑
j∈S̄t

µt,jh
H
ts,j

hts,j +
∑
p∈P

νt,pg
H
ts,pgts,p.

(118)

For fixed (optimal) λt, the optimal virtual uplink receive beamformers {ẃs}s∈St

can be computed using the following linear MMSE receiver

ẃs =
ẁs

||ẁs||2
, ẁs =

∑
i∈St

λt,ih
H
ts,ihts,i +

∑
j∈S̄t

µt,j

hH
ts,j

hts,j +
∑
p∈P

νt,pg
H
ts,pgts,p + I

)−1

hts,s, ∀s ∈ St.

(119)

Based on the proof of Proposition 4, it can be shown that the optimal down-
link transmit beamformers {ms}s∈St

are found via the optimal virtual uplink
beamformers {ẃs}s∈St by scaling, i.e.,

ms =
√
εsẃs,∀s ∈ St. (120)

The scaling factors {εs}s∈St
are solved via the matrix equation:

[ε1, . . . , εSt ]
T = A−1b (121)
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where the (i, j)-th and sth elements of the matrix A and the vector b are given
by

[A]ij =

{
(1/γi)|hti,iẃi|2, if i = j

−|hti,iẃj |2, if i ̸= j
, ∀i, j ∈ St (122)

and [b]s =
∑

t′∈T \{ts} χt′,s + Z0, ∀s ∈ St, respectively.
In conclusion, the optimal objective value of the downlink problem (104) is

the same as the optimal objective value obtained by solving the outer maxi-
mization (110) via the projected subgradient method (111)-(112) and the inner
minimization via the virtual uplink problem (116). Consequently, the achieved
downlink beamformers and the dual variables are optimal. These optimization
steps can be solved independently at secondary transmitter t, for all t ∈ T in
parallel. The proposed transmitter-level optimization is summarized in Algo-
rithm 11.

Algorithm 11 Transmitter-specific optimization via uplink-downlink duality

1: Set m = 0 and n = 0. Initialize λ
(0)
t , µ(0)

t and ν
(0)
t .

2: repeat
3: repeat
4: Update virtual uplink powers λ

(m+1)
t via fixed-point iteration (117).

5: Set m = m+ 1.
6: until desired level of convergence
7: Compute virtual uplink receive beamformers {ẃs}s∈St via MMSE crite-

rion (119).
8: Compute downlink transmit beamformers {ms}s∈St via scaling (120).
9: Update dual variables µ

(n+1)
t and ν

(n+1)
t via projected subgradient

method (111) and (112), respectively.
10: Set n = n+ 1.
11: until desired level of convergence

Decentralized implementation

Decentralized implementation is enabled by having local CSI at each transmitter
and allowing the exchange of the BS-specific subgradients between the coupled
BSs via low-rate backhaul links. Local CSI can be acquired by each transmit-
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ter via antenna-specific uplink pilots if a TDD-based system is assumed since
the uplink and downlink channels are reciprocal. After having the local CSI,
the subproblem t in (104) and the corresponding part of the master problem in
(105), i.e., the update of χt and ϕt, can be solved independently at transmitter
t, for all t ∈ T in parallel. At subgradient iteration r, the backhaul information
exchange is performed by transmitter t as follows. Transmitter t signals the dual
variables associated with the SINR constraints, i.e., {λt,s}s∈St , to all the inter-
fering transmitters. Whereas the dual variables associated with the inter-cell
interference constraints, i.e., {µt,s}s∈S̄t

, are signaled to the transmitter of which
user is being interfered by transmitter t. In addition, transmitter t signals the
dual variables associated with ϕt, i.e., {νt,p}p∈P , to all other transmitters. The
total amount of the required backhaul signaling at each network-wide subgradi-
ent iteration t is the sum of the real-valued terms exchanged between the coupled
transmitters, i.e., 2T (T −1)St for χ optimization and T (T −1)P for ϕ optimiza-
tion. The primal decomposition-based decentralized coordinated beamforming
design is summarized in Algorithm 12. All the calculations in Algorithm 12 are
performed at transmitter t, for all t ∈ T in parallel. In conclusion, Algorithm 12
converges to the optimal solution if the step-sizes are properly chosen and the
iterates are feasible.

Algorithm 12 Decentralized transmit beamforming design based on primal
decomposition method for cognitive MISO system

1: Set t = 0. Initialize interference variables χ
(0)
t and ϕ

(0)
t .

2: repeat
3: Compute transmit beamformers and dual variables {ms, λt,s}s∈St ,

{µt,s}s∈S̄t
, {νt,p}p∈P by solving SOCP (108) and SDP (109), respectively,

or alternatively by using uplink-downlink duality-based Algorithm 11.
4: Communicate {λt,s}s∈St

, {µt,s}s∈S̄b
and {νt,p}p∈P to the coupled trans-

mitters via backhaul.
5: Update interference variables χ(r+1)

t and ϕ
(r+1)
t via projected subgradient

method (111) and (112), respectively.
6: Set r = r + 1.
7: until desired level of convergence
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Practical considerations and alternative algorithms

At the cost of sub-optimal performance, Algorithm 12 can be stopped after a
limited number of iterations since feasible beamformers can be provided at in-
termediate iterations. This practical property can be used to avoid extra delay
and reduce backhaul signaling overhead. Furthermore, Algorithm 12 allows for
some special design cases where the number of coupled optimization variables is
decreased leading to reduced computational and backhaul signaling loads. Some
lower complexity design cases are given below

– Common SU-specific interference constraints: χt,s = χ,∀t ∈ T ,∀s ∈ S̄t.
– Fixed SU-specific interference constraints: χt,s = ct,s, ∀t ∈ T , ∀s ∈ S̄t, where
ct,s is a predefined constant.

– Fixed PU-specific per-BS interference constraints: ϕt,p =
Φp

T , ∀t ∈ T , ∀p ∈ P.
– ZF beamforming for all interference: χt,s = 0 and ϕt,p = 0, ∀t ∈ T , ∀s ∈
S̄t, ∀p ∈ P.

Problem (105) can also be solved using a hierarchical two-level primal-primal
decomposition approach where one set of coupling variables, e.g. ϕ, is decom-
posed at a higher level and the other set, i.e. χ, at a lower level. Primal-primal
decomposition approach converges if the lower level master problem is solved on
a faster timescale than the higher level master problem. See [155] for more details
on solving problems with variables optimized for different timescales. There are
also other options to reformulate (90) and achieve decentralized beamforming
designs, i.e., using dual decomposition [155] or ADMM [165]. Both approaches
lead to the optimal solution. Note that (90) can also be solved in a decentralized
way via its dual problem and with the aid of the uplink-downlink duality using
a similar idea as presented in [126]. However, intermediate iterates are not nec-
essarily feasible. If the algorithm cannot provide feasible beamformers with a
limited number of iterations, it may cause extra delay and increase the signaling
overhead.

4.2.2 Numerical evaluation

In this section, the performance of the proposed primal decomposition beam-
forming algorithm is examined in a simplified cognitive multi-cell environment.
The simulation model consists of T = 2 secondary transmitters and a single pri-
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mary transmitter. Each secondary transmitter serves its own set of two single
antenna SUs, i.e., S1 = S2 = 2. In addition, P = 2 PUs are served by the
primary transmitter. Each user is equipped with a single antenna, and each
transmitter with AT = 8 antennas.

The pathloss between a secondary transmitter and its served users is 0 dB, i.e.,
the path gain to noise ratio is 1. A network separation parameter is introduced
as the path loss between a secondary transmitter and a PU. In other words, the
interfering signal from the secondary transmitter to the PU is attenuated by the
value of η̄. A cell-edge scenario, where all the SUs and PUs are at the cell-edge,
can be modeled by setting the network separation parameter to 0 dB. In this
case, the path loss is the same between each transmitter and each user, i.e., 0
dB. On the other hand, by increasing the value of η̄, the secondary and primary
networks become more isolated from each other. In the extreme case, i.e., η̄ = ∞,
the secondary and primary networks do not interfere with each other at all.

Simulations are run by using frequency-flat Rayleigh fading channel condi-
tions with uncorrelated channel coefficients between the antennas. It is assumed
that the primary transmitter employs the optimal minimum power beamforming
for serving its PUs without being concerned on the caused interference to the
SUs. Each PU has a rate target of 1 bits/s/Hz. Interference from the primary
transmitter to SU s is denoted by θs, which is assumed to be known at the serv-
ing secondary transmitter ts. Since the primary network interference is explicitly
known, the interference plus noise variance is reduced to include only noise, i.e.,
Z0 = N0 = 1. The rate and interference constraints are set equal among the
users, i.e., Rs = R and Φs = Φ. In addition, the initialization of interference
power levels are given by χ

(0)
t,s = χ(0) and ϕ

(0)
t,p =

Φp

S , ∀t ∈ T , ∀s ∈ S̄t, ∀p ∈ P,
where χ(0) is selected empirically. Adaptive step-sizes are used in the projected
sub-gradient methods, as explained in Section 2.2.3.

In Figs. 22-24, the performance of optimal coordinated beamforming and
ZF beamforming (for all interference) is compared. The results are obtained
by averaging over 100 channel realizations. Optimal coordinated beamforming
results are achieved via centralized processing in the simulation examples. How-
ever, optimal performance can be also obtained via the proposed decentralized
algorithm (i.e.,Algorithm 12) by allowing it to converge.

Fig. 22 shows the average sum power versus rate target for different values
of network separation. One can see that coordinated beamforming significantly
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(a) η̄ = 0dB
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(b) η̄ = 10dB

Fig 22. Average sum power versus rate target.
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(a) R = 2 bits/s/Hz
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(b) R = 4 bits/s/Hz

Fig 23. Average sum power versus network separation.
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Fig 24. Average sum power versus primary network interference.

outperforms the ZF strategy, especially at low and medium rate targets. The
results also imply that the performance gain increases with the increasing value of
network separation and decreases as the rate target increases. In Fig. 23, the sum
power is presented as a function of network separation for different rate targets.
As expected, coordinated beamforming has superior performance compared with
the ZF scheme. The performance gain is increased, as the secondary and primary
networks become more separated and as the rate target increases.

For the rest of the simulation examples, the rate target and network separa-
tion values are set to 2 bits/s/Hz and 0 dB, respectively. Fig. 24 illustrates the
average sum power versus primary network interference θ. The results demon-
strate that in both strategies the sum power starts increasing heavily after the
interference power levels exceeds −5 dB. This result implies that the primary net-
work transmissions have significant impact on the performance of the secondary
network. Fig. 25 shows the average transmit powers of both the secondary and
primary networks as a function of the maximum aggregate interference power
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Fig 25. Average sum powers of secondary and primary networks versus PU-specific aggre-
gate interference constraint.

level Φ. It can be seen that the performance of the primary network starts to
decrease rapidly after the interference constraint Φ goes above −5 dB. The per-
formance of the secondary network remains almost the same when Φ gets values
from −30 to −5 dB, and starts to decrease significantly for larger values of Φ.
The reason for this behavior is that Φ being large, the secondary transmissions
cause severe interference for the PUs, which leads the primary transmitter to
increase its power to satisfy the PUs’ rate targets. This again causes severe
interference to the SUs, and thus, the secondary transmitters have to raise their
powers to satisfy the SINR targets of the SUs. The results imply that the PU
interference constraint should be set to a fairly low value.

The convergence behavior of the primal decomposition-based algorithm (Al-
gorithm 12) is examined next. Fig. 26 presents the normalized sub-optimality of
Algorithm 12 as a function of the subgradient iteration number r. Normalized
sub-optimality is defined in (40). The simulation results demonstrate that the
speed of convergence is somewhat slower for the higher value of Φ.
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Fig 26. Converge behavior of primal decomposition-based decentralized algorithm.

In Fig. 27, the sum power is presented for 25 independent channel realizations.
The performance of Algorithm 12 is compared with that of the ZF and central-
ized coordinated beamforming strategies. As can be observed, Algorithm 12
obtains close to optimal performance after a few iterations. Moreover, the ZF
beamforming scheme is outperformed significantly.

4.3 Decentralized transmit beamforming design with imperfect CSI

In this section, an ADMM-based decentralized beamforming design is proposed
to solve the robust SPMin problem in a cognitive multi-cell multi-user MISO sys-
tem, where CSI is assumed to be imperfect. The original non-convex problem
needs to be approximated and reformulated as a tractable convex problem. The
ADMM method can then be applied to solve the resulting problem in a decentral-
ized manner by relying on local imperfect CSI and low-rate backhaul signaling
between the secondary transmitters. The proposed algorithm provides an opti-
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Fig 27. Sum power performance in quasi-static channel conditions.

mal solution for the original non-convex problem, if the convex approximation
is tight.

4.3.1 ADMM-based algorithm

First, the original problem is equivalently rewritten as a form of combined con-
sensus and sharing problem [165]. This is a key step for achieving a decentralized
algorithm. Then, the resulting problem is approximated as a tractable convex
problem via the SDR [81, 103] and S-procedure [81] methods. Finally, the prob-
lem is solved in a decentralized manner via the ADMM method. A detailed
derivation of the decentralized algorithm is given in the following subsections.

Reformulation and approximation of robust SPMin problem

First, auxiliary interference variables are introduced, i.e., χ̃t′

t,s and ϕ̃t′,p are the
local copies of the SU-specific interference variable χt,s and the PU-specific in-
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terference variable ϕt′,p at the transmitter t′, respectively. Note that each χt,s

couples exactly two transmitters, i.e., the serving transmitter ts and the interfer-
ing transmitter t. Whereas, each ϕt,p couples all the transmitters. Consequently,
the aim of the reformulated problem is to enforce a consensus between each pair
of transmitter-level copies of χ̃t

t,s and χ̃ts
t,s, as well as, optimally share resources

{ϕ̃t,p}t∈T ,p∈P between the transmitters. The resulting problem is expressed as

min.
{ms}s∈S ,

{χt,s}t∈T ,s∈S̄t
,

{ϕt,p,ϕ̃t,p}t∈T ,p∈P ,

{χ̃t′
t,s}t∈T ,s∈S̄t,∀t′∈{ts,t}

∑
t∈T

∑
s∈St

tr
(
msm

H
s

)

s. t.
(
ĥts,s + uts,s

)(
1
γs
m

s
mH

s −
∑

i∈Sts\{s}
mim

H
i

)
(
ĥts,s + uts,s

)H
≥ Z0 +

∑
t∈T \{ts} χ̃

ts
t,s,

∀s ∈ S, ∀uts,s ∈ Ets,s∑
i∈St

(
ĥt,s + ut,s

)
mim

H
i

(
ĥt,s + ut,s

)H
≤ χ̃t

t,s,

∀t ∈ T , ∀s ∈ S̄t, ∀ut,s ∈ Et,s∑
i∈St

(ĝt,p + vt,p)mim
H
i (ĝt,p + vt,p)

H ≤ ϕ̃t,p,

∀t ∈ T , ∀p ∈ P, ∀vt,p ∈ Ft,p∑
t∈T ϕt,p ≤ Φp, ∀p ∈ P

χ̃t′

t,s = χt,s, ∀t ∈ T , ∀s ∈ S̄t, ∀t′ ∈ {ts, t}
ϕ̃t,p = ϕt,p, ∀t ∈ T , ∀p ∈ P.

(123)

The problem (123) can be turned into a tractable convex form by using the
standard SDR and S-procedure methods [89, 103, 133]. Using the SDR [103],
(123) is approximated as an SDP by replacing the rank-one matrix msm

H
s by a

semidefinite matrix Qs without a rank-one constraint. The resulting problem is
still intractable due to the infinite number of constraints. Since the constraints
are quadratic w.r.t. the corresponding CSI error vectors, the S-Procedure [81]
can be applied to equivalently reformulate these constraints as linear matrix
inequalities (LMIs) [133]. Further details on this derivation can be found in
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[133]. The resulting problem is a tractable convex SDP

min.
{Qs,ωs}s∈S ,

{χt,s,βt,s}t∈T ,s∈S̄t
,

{ϕt,p,ϕ̃t,p,φt,p}t∈T ,p∈P ,

{χ̃t′
t,s}t∈T ,s∈S̄t,∀t′∈{ts,t}

∑
t∈T

∑
s∈St

tr (Qs)

s. t. Qs ≽ 0,∆s ≽ 0, ωs ≥ 0, ∀t ∈ T , ∀s ∈ St

Θt,s ≽ 0, βt,s ≥ 0, ∀t ∈ T ,∀s ∈ S̄t

Λt,p ≽ 0, φt,p ≥ 0, ∀t ∈ T ,∀p ∈ P∑
t∈T ϕt,p ≤ Φp,∀p ∈ P

χ̃t′

t,s = χt,s, ∀t ∈ T , ∀s ∈ S̄t, ∀t′ ∈ {ts, t}
ϕ̃t,p = ϕt,p,∀t ∈ T , ∀p ∈ P

(124)

where the matrixes ∆s, Θt,s and Λt,p are denoted by

∆s = As + ωsEts,s Asĥ
H
ts,s

ĥts,sAs ĥts,sAsĥ
H
ts,s −

∑
t′∈T \ts

χ̃ts
t′,s − Z0 − ωs

 (125)

Θt,s =

[
−Bt + βt,sEt,s −Btĥ

H
t,s

−ĥt,sBt −ĥt,sBtĥ
H
t,s + χ̃t

t,s − βt,s

]
(126)

Λt,p =

[
−Bt + φt,pFt,p −Btĝ

H
t,p

−ĝt,pBt −ĝt,pBtĝ
H
t,p + ϕ̃t,p − φt,p

]
(127)

where As = 1
γs
Qs −

∑
i∈Sts\{s}

Qi and Bt =
∑

i∈St
Qi. The sets {ωs}s∈S ,

{βt,s}t∈T ,s∈S̄t
and {φt,p}t∈T ,p∈P consist of slack variables. If global imperfect

CSI is available, (124) can be optimally solved using an SDP solver. If the
optimal {Qs}s∈S are all rank-one (i.e., the SDR is tight), then the solution of
the relaxed problem (124) is also globally optimal for the original non-convex
problem (123). In general, the solution of (124) cannot be guaranteed to be
rank-one. However, it was shown in [133] that rank-one solutions can always be
achieved in a cognitive interference channel, where each of the multiple trans-
mitters serves only a single user. In case the solution of (124) is higher-rank, a
feasible rank-one solution may be achieved via approximation methods [89]. For
example, a simple approximation method in [126] can be extended for (124). In
the rest of the paper, only the local imperfect CSI is assumed to be available.
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Decentralized optimization via ADMM

An ADMM-based decentralized algorithm is proposed next to solve the combined
consensus and sharing problem (124). In general, ADMM can combine the
decomposability of dual decomposition and the convergence properties of the
method of multipliers [165]. In particular, ADMM can converge under more
general conditions than dual decomposition can, e.g., without the requirements
of strict convexity or finiteness of the objective function [165].

For simplicity of notation, (124) is first rewritten in a compact form:

min.
{Q̂t,χ̃t,ϕ̃t,Dt,χt,ϕt}t∈T

∑
t∈T ft

(
Q̂t, χ̃t, ϕ̃t,Dt

)
s. t. χ̃t = χt, ∀t ∈ T

ϕ̃t = ϕt, ∀t ∈ T∑
t∈T ϕt,p ≤ Φp, ∀p ∈ P.

(128)

All the optimization variables are collected into transmitter t specific matrixes
and vectors: Q̂t = [QSt(1), . . . ,QSt(St)], ϕ̃t = [ϕ̃t,P(1), . . . , ϕ̃t,P(P )]

T, ϕt =

[ϕt,P(1), . . . , ϕt,P(P )]
T, Dt = [ωt,βt,φt], ωt = [ωSt(1), . . . , ωSt(St)]

T, βt = [βt,S̄t(1), . . . ,

βt,S̄t(|S̄t|)]
T, φt = [φt,P(1), . . . , φt,P(P )]

T. The elements of the vector χ̃t are taken
from the sets {χ̃t

t′,s}t′∈T \{ts},s∈St
and {χ̃t

t,s}s∈S̄t
in a specific order. Similarly,

the vector χt is composed of the sets {χt′,s}t′∈T \{ts},s∈St
and {χt,s}s∈S̄t

using
the same ordering. The function ft is defined as

ft

(
Q̂t, χ̃t, ϕ̃t,Dt

)
=


∑
s∈St

tr (Qs) ,
(
Q̂t, χ̃t, ϕ̃t,Dt

)
∈ Ct

∞, otherwise.

(129)

The set Ct is defined as

Ct =Q̂t, χ̃t, ϕ̃t,Dt

∣∣∣∣∣∣∣∣∣∣
Qs ≽ 0,∆s ≽ 0, ωs ≥ 0,

∀s ∈ St

Θt,s ≽ 0, βt,s ≥ 0, ∀s ∈ S̄t

Λt,p ≽ 0, φt,p ≥ 0, ∀p ∈ P

 .
(130)

The first step in ADMM is to write the augmented Lagrangian [165]. The
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(partial) augmented Lagrangian for (128) is given by

Pρ

({
Q̂t, χ̃t, ϕ̃t,Dt,χt,ϕt,µt,νt

}
t∈T

)
=
∑

t∈T

(
ft(Q̂t, χ̃t, ϕ̃t,Dt) + µT

t (χ̃t − χt)

+νT
t (ϕ̃t − ϕt) +

ρ

2

∥∥χ̃t − χt

∥∥2
2
+

ρ

2

∥∥ϕ̃t − ϕt

∥∥2
2

) (131)

where µt and νt are the dual variables associated with the interference equality
constraints of (128). The last two terms of (131) are quadratic penalty terms
with a penalty parameter ρ > 0, and they penalize for violation of the equality
constraints of (128). The augmented Lagrangian (131) can be seen as a standard
Lagrangian of (128) where the quadratic penalty terms are added to the objective
function. Due to the added penalty terms, ADMM is able to converge without
the need of strict convexity or the finiteness of the original objective function
of (128). ADMM operates iteratively via the following steps: 1) update of local
primal variables, 2) update of global primal variables and 3) update of local dual
variables. At iteration r + 1, these steps are given by

Q̂
(r+1)
t , χ̃

(r+1)
t , ϕ̃

(r+1)

t ,D
(r+1)
t

= argmin
Q̂t,χ̃t,ϕ̃t,Dt

Pρ

(
Q̂t, χ̃t, ϕ̃t,Dt,χ

(r)
t ,ϕ

(r)
t ,µ

(r)
t ,ν

(r)
t

)
, ∀t ∈ T (132)

{χ(r+1)
t ,ϕ

(r+1)
t }t∈T

= argmin
{χt,ϕt}t∈T

Pρ

((
{Q̂(r+1)

t , χ̃
(r+1)
t , ϕ̃

(r+1)

t ,D
(r+1)
t ,χt,ϕt,µ

(r)
t ,ν

(r)
t

}
t∈T

)
(133)

µ
(r+1)
t = µt + ρ

(
χ̃

(r+1)
t − χ

(r+1)
t

)
, ∀t ∈ T (134)

ν
(r+1)
t = νt + ρ

(
ϕ̃

(r+1)

t − ϕ
(r+1)
t

)
, ∀t ∈ T . (135)

The steps (132), (134) and (135) are separable between transmitters, and thus,
they can be solved independently in parallel at each transmitter. The step (133)
needs network-level coordination, i.e., information exchange between transmit-
ters via backhaul. In particular, transmitter t signals the local copies χ̃(r+1)

t and
ϕ̃

(r+1)

t to the coupled transmitters. Next, how to optimally solve the steps (132)
and (133) is explained.

The local primal variables in (132) are updated by solving the following
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problem

min.
Q̂t,χ̃t,ϕ̃t,Dt

ft(Q̂t, χ̃t, ϕ̃t,Dt) +
ρ

2

∥∥χ̃t − χ
(r)
t + µ̃

(r)
t

∥∥2
2

+
ρ

2

∥∥ϕ̃t − ϕ
(r)
t + ν̃

(r)
t

∥∥2
2
.

(136)

For simplicity of presentation, the scaled ADMM formulation [165] is used in
(136) by combining the linear and quadratic terms of (131):

(µ
(r)
t )T(χ̃t − χ

(r)
t ) +

ρ

2

∥∥χ̃t − χ
(r)
t

∥∥2
2
=

ρ

2

∥∥χ̃t − χ
(r)
t + µ̂

(r)
t

∥∥2
2
− ρ

2

∥∥µ̂(r)
t

∥∥2
2

(137)
and

(ν
(r)
t )T(ϕ̃t − ϕ

(r)
t ) +

ρ

2

∥∥ϕ̃t − ϕ
(r)
t

∥∥2
2
=

ρ

2

∥∥ϕ̃t − ϕ
(r)
t + ν̂

(r)
t

∥∥2
2
− ρ

2

∥∥ν̂(r)
t

∥∥2
2

(138)
where µ̂

(r)
t = 1

ρµ
(r)
t and ν̂

(r)
t = 1

ρν
(r)
t . The last constant terms were dropped

from (136) since they do not impact finding the optimal points. The problem
(136) can be recast as an SDP via the following steps. After writing (136) in
epigraph form [81], the resulting quadratic constraint∑

s∈St

tr (Qs) +
ρ

2

∥∥χ̃t − χ
(r)
t + µ̂

(r)
t

∥∥2
2
+

ρ

2

∥∥ϕ̃t − ϕ
(r)
t + ν̂

(r)
t

∥∥2
2
− at ≤ 0 (139)

can be reformulated as an SOC constraint [60]: ∥yt∥2 ≤ xt, where

yt =

[(1 + (
∑
s∈St

tr (Qs)− at))/2,

√
ρ

2
(χ̃t − χ

(r)
t + µ̂

(r)
t )T,

√
ρ

2
(ϕ̃t − ϕ

(r)
t + ν̂

(r)
t )T]T

and
xt = (1− (

∑
s∈St

tr (Qs)− at))/2 (140)

Now the SOC constraint can be written in the form of LMI [33]. The optimal
points Q̂⋆

t , χ̃
⋆
t and ϕ̃

⋆

t are found by solving the resulting SDP

min.
Q̂t,χ̃t,ϕ̃t,Dt,at

at

s. t.

[
xt yH

t

yt xtI

]
≽ 0, ∀s ∈ St

Qs ≽ 0,∆s ≽ 0, ωs ≥ 0, ∀s ∈ St

Θt,s ≽ 0, βt,s ≥ 0, ∀s ∈ S̄t

Λt,p ≽ 0, φt,p ≥ 0, ∀p ∈ P.

(141)
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Now the local primal variables can be updated: Q̂
(r+1)
t = Q̂⋆

t , χ̃
(r+1)
t = χ̃⋆

t and
ϕ̃

(r+1)

t = ϕ̃
⋆

t .
The global primal variables in (133) are updated with the optimal points of

the following problem

min.
{χt,ϕt}t∈T

∑
t∈T

(
(µ

(r)
t )T(χ̃

(r+1)
t − χt) +

ρ
2

∥∥χ̃(r+1)
t − χt

∥∥2
2

+(ν
(r)
t )T(ϕ̃

(r+1)

t − ϕt) +
ρ

2

∥∥ϕ̃(r+1)

t − ϕt

∥∥2
2

)
s. t.

∑
t∈T S ϕt,p ≤ Φp,∀p ∈ P.

(142)

Since the objective and constraint functions of (142) are separable in χt and
ϕt, these variables can be solved independently. Since the optimization problem
is unconstrained and quadratic in χt, the optimal point χ⋆

t is found by setting
the gradient of (142) w.r.t. χt to zero. The resulting solution is expressed in
component wise as

χ⋆
t,s =

1

2

(
χ̃
t,(r+1)
t,s + χ̃

ts,(r+1)
t,s +

1

ρ
(µ

t,(r)
t,s + µ

ts,(r)
t,s )

)
(143)

and the update is χ
(r+1)
t,s = χ⋆

t,s. Note that µ
t,(r)
t,s + µ

ts,(r)
t,s = 0 by substitut-

ing χ
(r+1)
t,s in (134). Hence, χ(r+1)

t,s -update simplifies to χ
(r+1)
t,s = 1/2(χ̃

t,(r+1)
t,s +

χ̃
ts,(r+1)
t,s ). The optimal point ϕ⋆

t is found by solving the following convex
quadratic optimization problem

min.
{ϕt}t∈T

∑
t∈T

(
(ν

(r)
t )T(ϕ̃

(r+1)

t − ϕt) +
ρ
2

∥∥ϕ̃(r+1)

t − ϕt

∥∥2
2

)
s. t.

∑
t∈T ϕt,p ≤ Φp,∀p ∈ P.

(144)

The update is ϕ
(r+1)
t = ϕ⋆

t . Using the updated primal variables, the local
dual variables can be updated as presented in (134) and (135). Finally, the
proposed decentralized ADMM-based beamforming approach is summarized in
Algorithm 13.

With the standard assumptions for ADMM [165], Algorithm 13 converges
to the optimal solution of (128). Note that Algorithm 13 does not necessarily
provide a feasible beamforming solution for the original primal problem (128) at
intermediate iterations. This is due to an inherent characteristic of the ADMM
that the local copies of the optimization variables, i.e., the interference terms,
are not necessarily required to be equal at intermediate iterations leading to a
violation of the QoS constraints. However, a feasible set of beamformers may
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be achieved at each iteration by enforcing consistency between the local inter-
ference values. This can be done by fixing χ̃t = χt and ϕ̃t = ϕt, and solving
(141) at the transmitter t, ∀t ∈ T . At a cost of sub-optimal performance, Al-
gorithm 13 can be stopped at any (primal) feasible iterate to reduce delay and
signaling/computational load. If the optimal solution of Algorithm 13 is rank-
one, it is also globally optimal for the original non-convex problem (123). The
special case designs described in Section 4.2.1 are also applicable to Algorithm 13.

Algorithm 13 Decentralized robust transmit beamforming design based on
ADMM for cognitive MISO system

1: Set r = 0. Initialize µ
(0)
t , χ(0)

t , ν(0)
t and ϕ

(0)
t .

2: repeat
3: Compute transmitter-specific transmit covariance matrices and interfer-

ence variables Q̂
(r+1)
t , χ̃(r+1)

t and ϕ̃
(r+1)

t by solving SDP (141).
4: Communicate the elements of χ̃(r+1)

t and ϕ̃
(r+1)

t to the coupled transmit-
ters via backhaul.

5: Compute network-wide interference variables χ(r+1)
t and ϕ

(r+1)
t by solving

equation (143) and convex problem (144), respectively.
6: Update transmitter-specific dual variables µ

(r+1)
t and ν

(r+1)
t by solving

equations (134) and (135), respectively.
7: Set r = r + 1.
8: until desired level of convergence

4.3.2 Numerical evaluation

In this section, the convergence behavior of the ADMM-based decentralized
scheme (Algorithm 13) is evaluated via numerical examples. The used simulation
model is the same as used in Section 4.2.2. The main parameters are given by
{T, S, P,AT, AR} = {2, 4, 2, 8, 1}. The CSI errors are bounded by spherical
regions, i.e., Et,s =

(
1/e2

)
IT and Ft,p =

(
1/e2

)
IAT , ∀t ∈ T , ∀s ∈ S, ∀p ∈ P ,

and e = 0.1. The rate and interference constraints are set to Rs = R = 1

bits/s/Hz, ∀s ∈ S and Φp = Φ = −10 dB, ∀p ∈ P. The power of noise plus
primary network interference is set to 1, i.e., Z0 = 1. A cell-edge case is modeled
by setting the network separation parameter to 0 dB.
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Fig 28. Convergence behavior of ADMM-based decentralized algorithm ([134] c⃝ 2014 IEEE).

Fig. 28 illustrates the normalized sub-optimality of Algorithm 13 as a function
of iteration r. The sub-optimality is defined as the normalized difference between
the value of the objective function at iteration r in Algorithm 13 and the optimal
objective value achieved by solving the centralized problem (124). The results
demonstrate that the speed of convergence depends on the choice of penalty
parameter ρ. One can see that with properly chosen ρ the convergence is fast.
In Fig. 28, all the converged optimal solutions are rank-one. Therefore, they are
also optimal for the original problem (123).

4.4 Summary and discussions

In this chapter, coordinated beamforming was considered in a cognitive radio sys-
tem where the primary and secondary networks share the same spectrum. The
aim was to optimize the performance of the secondary network while keeping
the generated interference toward each PU below a predefined level. Specifically,
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the considered system optimization objective was to minimize the total trans-
mission power of the secondary network while guaranteeing the minimum rate
target for each SU and satisfying the maximum aggregate interference constraint
for each PU. This problem can be seen as an extension of the SPMin problem
in a cellular multi-user MISO system in Section 2. A primal decomposition-
based algorithm was proposed where decentralized implementation is achieved
by decomposing the problem into network-level and transmitter-level optimiza-
tion steps. The network-level optimization is solved via a projected subgradient
method relying on scalar backhaul information exchange between the secondary
transmitters. Each secondary transmitter-specific optimization is solved by using
standard convex optimization techniques or the uplink-downlink duality-based
method with the knowledge of local CSI at each transmitter. The proposed
algorithm provides an optimal solution if the step-size is properly chosen, and
the algorithm is allowed to converge. The numerical results showed significant
gains over the ZF beamforming strategy and close to optimal performance even
after a few subgradient iterations. It is also worth mentioning that the results
can be seen as performance upper bounds in cognitive radio systems since the
interference generated by the primary network is assumed to be known at the
secondary transmitters. The proposed algorithm allows for some special case de-
signs where the number of optimization variables is decreased, leading to reduced
computational load and signaling overhead.

In addition, a practical assumption of erroneous CSI was also considered, and
an ADMM-based decentralized algorithm was developed. Similarly as in Section
2, SDR and S-procedure methods were first applied in order to turn the original
non-convex problem into a convex and tractable form. The resulting problem
was then decomposed via ADMM into network-wide and transmitter-specific
optimization steps that can be solved in a decentralized manner by relying on
local imperfect CSI and low-rate backhaul signaling. The proposed algorithm
provides an optimal solution to the original problem if the convex approxima-
tion is tight. The simulation results demonstrated that the algorithm converges
relatively fast if the penalty parameter is properly chosen.
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5 Conclusions and future work

The focus of this thesis was to design coordinated beamforming techniques for
cellular and cognitive radio networks with the system design objective of sum
power minimization subject to user-specific rate constraints. In particular, de-
centralized algorithms were developed. The proposed algorithms are based on
the assumptions that each BS has local CSI and all the BSs can exchange scalar
information between each other via low-rate backhaul links. In TDD-mode,
uplink pilots can be used to aid the acquisition of the local CSI since the reci-
procity of the uplink and downlink channels applies. The thesis aims to bring
optimization-oriented coordinated beamforming designs closer to practical im-
plementation, thus bridging the gap between reality and the theoretical studies
in the literature. Due to the practical nature of the proposed decentralized
concepts, this thesis paves the way for advanced MIMO and interference coordi-
nation strategies for 5G and beyond.

Chapter 1 highlighted the motivation for the research, and introduced the
concept of coordinated beamforming. Chapter 1 also presented a detailed liter-
ature review of coordinated beamforming techniques designed in particular for
cellular and cognitive radio systems.

In Chapter 2, decentralized coordinated beamforming schemes were devel-
oped for cellular multi-user MISO networks. In the proposed algorithms, the
original convex SPMin optimization problem is divided into two optimization
levels, i.e., BS-specific subproblems and a network-wide master problem, using
the primal or dual decomposition method. In the primal decomposition-based
algorithm, each BS optimizes its transmit beamformers for the given limits of
experienced and generated inter-cell interference powers, and the correspond-
ing dual variables by solving the corresponding subproblem using convex opti-
mization techniques or the uplink-downlink duality-based method. The master
problem iteratively optimizes the inter-cell interference power limits by using
the projected subgradient method and given the dual variables provided by the
subproblems. Each BS can solve its part of the master problem by exchanging
the obtained dual variables between the coupled BSs at each iteration of the
subgradient method. In addition, a dual decomposition-based algorithm was
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described where the convex subproblems are solved for the transmit beamform-
ers and the local copies of inter-cell interference levels with fixed prices (i.e.,
the dual variables). The master problem is in charge of iteratively updating
the prices via the subgradient method requiring the exchange of local inter-cell
interference values between the BSs. For both algorithms, decentralized imple-
mentation is enabled if BSs acquire local CSI and exchange scalar information
via low-rate backhaul links. The effect of imperfect CSI was also studied, and a
primal decomposition-based robust beamforming design was proposed.

Optimal beamformers are obtained if the algorithms are allowed to converge.
However, aiming for optimal solution is impractical since the more iterations are
run, the higher the signaling/computational load and the longer the caused de-
lay. Unlike the existing approaches, the proposed algorithms are able to provide
feasible beamformers, which satisfy the minimum rate targets of active users,
at intermediate iterations. Thus, the algorithms can be stopped after a limited
number of iterations to reduce delay and backhaul signaling overhead. This valu-
able property makes the algorithms attractive for practical implementation since
the delay and backhaul signaling overhead can be controlled and minimized on
demand. The simulation results show that the decentralized algorithms provide
performance close to a centralized scheme after a few iterations with significantly
reduced signaling overhead. The capacity requirements of the backhaul links are
also relaxed. To further reduce the signaling load, special designs are allowed.
At the extreme case, there is no need for backhaul signaling at all. Due to its
practical nature, the proposed decentralized concept was extended to cellular
MIMO and cognitive MISO networks in Chapters 3 and 4, respectively.

Chapter 3 considered cellular multi-user MIMO systems. The non-convex
SPMin problem was divided into transmit and receive beamforming optimiza-
tion steps that can be solved in a centralized way by alternating between the
SCA method and the MMSE criterion, respectively, until the desired level of
sum power convergence is achieved. In addition, two decentralized primal de-
composition -based algorithms were developed where the transmit and receive
beamforming designs are aided by a combination of over-the-air pilot signaling
and low-rate backhaul information exchange. In the first algorithm, sum power
is minimized via an iterative over-the-air optimization process where the trans-
mit beamformers are optimized at the BS side by using convex optimization
techniques and the receive beamformers are computed at the user side via the
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MMSE criterion. The BS and user side processing is aided by effective CSI ac-
quired from precoded uplink and downlink pilots, respectively. In the second
algorithm, the transmit and receive beamformers are iteratively optimized at
each BS requiring only local CSI achieved from one round of antenna-specific
uplink pilot signaling. In both algorithms, decentralized transmit beamforming
design is enabled by applying the primal decomposition-based concept with low-
rate backhaul signaling from Chapter 2. In addition, simplified decentralized
algorithms were developed for single-stream MIMO systems. The numerical re-
sults showed that the proposed MIMO algorithms significantly outperform the
simpler single-stream MIMO and MISO schemes. However, the computational
complexity is higher with increased signaling overhead. The performance gains
are emphasized, as the rate targets and number of receive antennas increase. Fur-
thermore, the decentralized algorithms perform relatively well in low mobility
time-correlated channel conditions, where the channel and signaling information
are outdated. The instantaneous rates follow the minimum rate targets closely,
whereas the average rates are higher than the targets.

In Chapter 4, the concept of coordinated beamforming was extended to un-
derlay cognitive radio systems where the primary and secondary networks share
the same spectrum. The aim was to optimize the secondary network performance
with given additional constraints on the maximum allowed interference levels ex-
perienced by the PUs. A primal decomposition-based decentralized algorithm
was derived. The practical properties discussed in Chapter 2 also apply here.
The simulation results demonstrated notable gains over the interference nulling
strategy and near to optimal performance after a few subgradient iterations. The
proposed algorithm allows for some special designs where the computational and
signaling loads are reduced at the cost of sub-optimal performance. In addition,
the effect of imperfect CSI was examined, and an ADMM-based decentralized
algorithm was proposed.

A coherent future work is to extend the cellular MIMO algorithms in Chap-
ter 3 to a cognitive radio network with multi-antenna users. Specifically, the
sum power is minimized for the secondary network with minimum rate targets
for multi-antenna SUs while keeping the generated interference towards multi-
antenna PUs below a predefined level. The effect of imperfect CSI could be also
taken into consideration. Furthermore, the proposed algorithms are well appli-
cable to heterogeneous networks, where the networks are comprised of lower and
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higher level tiers with some level of intra-tier and inter-tier coordination. An
example is a network of small cells underlaying a macro cell network.

Theoretically, all the proposed coordinated beamforming algorithms can be
applied to any size of the network. For large networks, however, the signaling
overhead may become overly high. To avoid this issue, clustering, i.e., forming
small clusters of BSs, can be applied in practice. If the clusters are of a limited
size, the signaling overhead remains reasonable inside each cluster. However,
system performance may be degraded if inter-cluster interference is not taken
into account in the system design. Studying the effect of clustering is thus a
practical topic for future research.

The simplified multi-cell environment used in the numerical evaluation is
useful to demonstrate preliminary performance gains, which can serve as upper
bounds for more realistic performance. In further studies, it would be also
worthwhile to evaluate practical gains by employing a realistic wrap-around
system-level simulation environment with more practical assumptions, such as
multicarrier communication, pilot contamination, scheduling, clustering, delayed
and erroneous channel/signaling information and practical modulation/coding
schemes. For example, realistic system-level performance results were produced
in [84, 151] for joint processing COMP with the block-diagonalization beamform-
ing method. In such a practical environment, it may be challenging to guarantee
instantaneous minimum rate targets for all active users. A straightforward so-
lution is to introduce a protection margin, which sets the minimum target rates
somewhat higher than ideally needed, possibly based on a heuristic metric.

Another interesting future research direction is to consider coordinated beam-
forming in the massive MIMO type of setting, where large antenna arrays are
used at the transmitter side. Recent studies have shown that massive MIMO
can provide high data rates by using low-complexity transmission strategies in
a special setting where the number of transmit antennas is significantly larger
than the number of users [166, 167]. However, better performance is obtained via
coordinated beamforming in a practical multi-cell scenario, where large antenna
arrays are used and the imbalance between the number of antennas and users is
moderate. Due to the large number of antennas, the size of the channel matrices
is large, thus leading to overly high signaling overhead for centralized designs.
By applying the decentralized concept proposed in Chapter 2, backhaul signal-
ing overhead does not increase with the number of transmit antennas, but only
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with the number of users and allocated data streams. Hence, the reduction of
signaling overhead is emphasized as the number of transmit antennas increases.
Therefore, decentralized designs become increasingly valuable for multi-cell sys-
tems with large antenna arrays. A recent study in [168] showed that signaling
overhead can be even further reduced by exploiting large system analysis via
random matrix theory in combination with the primal decomposition concept in
Chapter 2.

Another promising future topic is dynamic TDD, which has been recently
recognized as a potential concept to substantially improve the overall resource
utilization in a multi-cell network. In dynamic TDD systems, each cell is operat-
ing either in uplink or downlink mode based on its instantaneous traffic demand.
As a result, additional types of interference are present, i.e., user-to-user and
BS-to-BS interference. Even a centralized design is difficult to implement due to
the unavailability of the cross-user channels. However, decentralized implemen-
tation could be possible by adapting the MIMO design in Chapter 3 to dynamic
TDD systems with bi-directional over-the-air signaling concept [169]. Moreover,
the resulting decentralized framework would be directly applicable to a network
assisted device-to-device (D2D) communication system, where both uplink and
downlink resources can be used for direct D2D communication.
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Appendix 1 Proof of Proposition 1

In this appendix, it is proved that strong duality holds for (12). It is known that
strong duality holds for convex problems that are strictly feasible, i.e, Slater’s
conditions hold [81]. Hence, strong duality holds for the reformulated convex
SOCP problem (13). Given the fact that equivalent optimization problems, such
as (12) and (13), may have different Lagrange dual problems [81], it needs to be
shown that the Lagrangians of (12) and (13) are the same. Therefore, the dual
problems also must be the same. First, the Lagrangians of (12) and (13) are
formulated as follows

L
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and
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(146)

Next, a similar derivation as in [35] is used to reformulate (146). It can be
written that

ã = ∥m̄∥2, (147)
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, (148)
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b h
H
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2
. (149)

By substituting these terms into (146), the following formulation is obtained
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Due to strict positivity of ã, b̃b,k and c̃b,k, the optimization variables can be
changed in (150), i.e., ω = a/ã, λb,k = bb,k/b̃b,k and µb,k = cb,k/c̃b,k. Thus,
the Lagrangians of the original problem and the SOCP problem, i.e., (145) and
(150), are exactly the same, thus leading to the same dual problem.
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Appendix 2 Proof of Proposition 2

It is shown here that (17) is a valid subgradient of (15) at point χb,k. The proof
is inspired by the result in [35]. First, the objective value of (15) is rewritten
by g⋆(χ), where g⋆(χ) is the optimal objective value of (12) at point χ. Since
strong duality holds for (12), g⋆(χ) can be achieved by solving the Lagrange
dual problem of (12) at point χ. This can be expressed as

max.
λ,µ

∑
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(151)

where the vectors λ and µ consist of the elements of the sets {λb,k}b∈B,k∈Kb
and

{µb,k}b∈B,k∈K̄b
, respectively.

Since the dual problem (151) is concave, a subgradient of g⋆ at the point χ

can be defined as any vector z, which satisfies the following [157]: g⋆(χ̃)−g⋆(χ) ≤
zT(χ̃ − χ), for all χ̃. Next, it is assumed that τ̃ and τ are the optimal dual
variable vectors at the points χ̃ and χ, respectively. Replacing τ̃ with τ in the
dual objective expression of g⋆(χ̃), it can be written that

g⋆(χ̃)− g⋆(χ) ≤ τTχ̃− τTχ = τT(χ̃− χ)

=
∑
b∈B

∑
k∈K̄b

(λbk,k − µb,k)(χ̃b,k − χb,k) (152)

Based on the subgradient definition, one can see that λbk,k − µb,k is the subgra-
dient of g⋆ at the point χb,k.
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Appendix 3 Proof of Theorem 1

The proof is a modification of uplink-downlink duality results proposed in [35].
First, a virtual dual uplink problem is formulated, where the user-specific SINR
constraints are the same as in the downlink problem. This is expressed as

min.
{P̃ tx

k ,wk}k∈Kb

∑
k∈Kb

υkP̃
tx
k

s. t.
P̃ tx
k
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i

∣∣wH
k hbk,i

∣∣2 +wH
k Iwk

≥ γk, ∀k ∈ Kb
(153)

where P̃ tx
k and υk denote the virtual uplink power and its (constant) scaler

for user k , respectively. One can observe that (153) is exactly the same as
(24) if it is denoted that υk = N0 +

∑
b′∈B\{bk} χb′,k, P̃ tx

k = λb,k, P̃ tx
i = µb,i,

∀k ∈ Kb, ∀i ∈ K̄b. The vectors λb and µb can be interpreted as the virtual
dual uplink powers for the users at the serving cell and the users at the other
cells, respectively. Moreover, the virtual uplink power of user k is scaled in the
objective by the constant υk that is a sum of the noise and fixed interference
powers experienced by user k in downlink.

When λb is fixed, an explicit optimal solution to (24) is found by using the
MMSE receiver, which maximizes the SINR. The MMSE receiver is given by

ẃk =
ẁk

||ẁk||2
,
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(154)
By substituting {wk}k∈Kb

into (24) and using Lemma 1 from [35], the SINR
constraints in (24) can be expressed as

I+
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(155)
These constraints are the same as in (23) except that they are reversed. If
the minimization is changed into the maximization and the SINR constraints in
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(24) are reversed, the resulting problem is exactly (23). The reversing does not
change the optimal value of the problem since the SINR constraints are met with
equality in the optimal solution. Thus, (23) and (24) are equivalent problems
with identical solutions.
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Appendix 4 Proof of Proposition 3

In the following, it is proved that λb is optimally solved using (25). This proof is
inspired by the prior work in [33, 59, 170]. First, the gradient of the Lagrangian
of (14) with respect to {mk}k∈Kb

is set to zero. This is expressed as{
I+

∑
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}
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(156)
After rearranging, similar to that in [59], the function (25) is obtained. We can
rewrite (25) as follows: λ

(m+1)
b,k = gb,k(λ

(m)
b ), ∀k ∈ Kb. The function gb,k is a

standard function if it satisfies the properties of 1) positivity, 2) monotonicity
and 3) scalability, i.e.,

1) If λb,k ≥ 0, ∀k ∈ Kb, then gb,k(λb) > 0, ∀k ∈ Kb.
2) If λb,k ≥ λ̃b,k, ∀k ∈ Kb, then gb,k(λb) ≥ gb,k(λ̃b), ∀k ∈ Kb.
3) For φ > 1, φgb,k(λb) > gb,k(φλb), ∀k ∈ Kb.

The proof, which shows that these properties are satisfied by (25), is omitted
since it follows the principles in [33]. Since the standard function always con-
verges to a unique fixed point for any initial value [170], the obtained λb is
optimal.
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Appendix 5 Proof of Proposition 4

In this appendix, it is shown that the optimal downlink transmit beamformers
can be solved via the optimal virtual uplink receive beamformers by scaling. The
proof is a modification of the results presented in [35]. After manipulation of
(156), similar to that in [35], the following expression is achieved for mk:

mk =

∑
i∈Kb

λb,ih
H
bk,i

hbk,i +
∑
j∈K̄b

µb,jh
H
bk,j

hbk,j + I

−1

(
1 + 1

γk

)
λb,kh

H
bk,k

hbk,kmk

(157)

If (157) is compared to the MMSE expression of ẃk in (154), it can be ob-
served that mk is a scaled version of ẃk, i.e., mk =

√
ϵkẃk, where

√
εk =(

1 + 1
γk

)
λb,khbk,kmk. Since εk still depends on mk, an expression needs to be

found where {εk}k∈Kb
are expressed only via {ẃk}k∈Kb

. In this respect, the
SINR constraints are satisfied with equality at the optimal point of (14). By
substituting mk =

√
εkẃk into the SINR constraints, the following equation can

be written
(εk/γk) |hbk,kẃk|2 −

∑
i∈Kbk

\k εi|hbi,kẃi|2 =∑
b′∈B\{bk} χb′,k +N0, ∀k ∈ Kb.

(158)

Now, (158) can be solved for {εk}k∈Kb
via (28).
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