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SUMMARY 

 

This thesis examines the market power, cost efficiency, price dispersion and revenue 

management (dynamic pricing behaviors) in the airline industry. Chapter II develops a 

theoretical framework to enable the estimation of cost efficiency without total cost data. 

Based on the estimates obtained from Chapter II, we continue to examine the price 

dispersion determinants in Chapter III, especially focusing on cost efficiency and market 

power. Chapter IV proceeds to examine the dynamic pricing strategy differences between 

high-efficiency and low-efficiency flights. 

The estimation of cost efficiency without total cost data is impossible from previous 

literatures. Stochastic Frontier Analysis (SFA) obtains the cost efficiency from total cost 

data. Also, traditional market power literatures suffer from same problem that they 

require total cost data to estimate marginal cost and thus estimate market power such as 

Lerner Index in Lerner (1934). One of the advantages of conduct parameter games is 

that they enable estimation of market power without total cost data. In Chapter II, this 

study applies the conduct parameter framework in SFA estimations and develops a 

conduct parameter based model to estimate the firm specific implied marginal cost 

efficiency and conduct parameter without using total cost data. Our study is the first to 

relax the total cost data requirement for estimating cost efficiency, to the best of our 

knowledge. We testify the theoretical framework by estimating the conducts and 

marginal cost efficiencies of U.S. airlines. Also, we find support for QLH (Quiet Life 

Hypothesis) based on the estimated conduct and cost efficiency. 

In Chapter III, we analyze the determinants of price dispersion for airline industry. We 

particularly concentrate on the conduct parameter and marginal cost efficiency. The 

effect of conduct on price dispersion seems to depend on the characteristics of the 



xi 

 

market. For the big city routes, we observe a positive effect; however for the leisure 

routes we find a negative effect. Moreover, we find that marginal cost efficiency has a 

negative effect on price dispersion. Chapter III also sheds light on the potential 

estimation bias in previous studies. 

In Chapter III, we find a large price dispersion in the U.S. airlines for Chicago based 

routes (Gini coefficient is 0.21). We are interested in the dynamics pricing strategies and 

revenue management strategies that would lead to such high price dispersion. In Chapter 

IV, by scripting the daily prices and seats information from priceline.com, we examine 

the revenue efficiencies of the airlines. Based on the revenue efficiencies of the flights, we 

further divide the flights into high-efficiency and low-efficiency flights. Then we compare 

the differences in dynamic pricing patterns between these two groups. Based on the 

findings, we give potential policy applications to the airlines in order to improve their 

revenue efficiencies. 

 



CHAPTER I

INTRODUCTION

Market power and cost effi ciency are two popular topics in Industrial Organization. How-

ever, these two literatures seem to be developed paralleled. There are very few studies

that combine these two areas together. Chapter II in this thesis combines two classical

frameworks in market power and cost effi ciency to overcome the diffi culties faced by both

traditional market power and cost effi ciency literatures.

Stochastic frontier analysis (SFA) literature (Kumbhakar and Lovell (2000)) relaxes

the full effi ciency assumption of neoclassical production theory by allowing firms to act

suboptimally. There are many potential sources for ineffi ciency, one of which is the principle

agent problem. The objectives of share-holders and managers are not fully aligned. For

example, the managers may use extra staff to reduce managers workloads at the expense of

higher costs. In SFA literature, cost effi ciency is defined as the ratio of minimum (optimal)

cost to its actual cost. A conventional stochastic frontier model estimates cost ineffi ciency

from a log-log cost function, which treats the cost ineffi ciency as an unobserved non-negative

error term. The SFA model has a composed error term consisting of a one-sided error term,

which captures cost ineffi ciency, and a conventional two-sided error term. And the cost

ineffi ciency is identified from the asymmetry of the one-sided error term. Hence, SFA also

requires total cost data to obtain the cost effi ciencies. However, the total cost data is most

of the time not available. The firms are not willing to share the total cost data for many

strategic reasons.

Lerner index (1934) is a widely used market power measure, whose calculation requires

the total cost data as well.1 Conduct parameter (or conjectural variations) game (Perloff,

Karp, and Golan (2007) and Bresnahan (1989)) solves this problem using a demand and

supply system, which allows the firm to form a conjecture about the variation in the other

1The calculation of marginal cost requires total cost data.
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firms’strategies (e.g., output) in response to a change in its own strategy. Under conduct

parameter framework, the estimation is based on "perceived marginal revenue" and marginal

cost, which does not require total cost data.

Our motivation for Chapter II is to combine conduct parameter framework and SFA

literature. By doing this, this study allows for the estimations of marginal cost effi ciency

and conduct parameter simultaneously and explicitly. The conduct parameter game enables

us to estimate "implied marginal cost effi ciencies" and conduct parameters jointly without

using the total cost data. Hence, compared with the traditional SFA literature, which

infers the cost effi ciency from a cost function, we estimate the marginal cost effi ciency from

a supply-demand system, which is derived from a conduct parameter game. To the best

of our knowledge, this is the first study that enables estimation of marginal cost effi ciency

that doesn’t require the total cost data.

The relationship between market power and cost effi ciency has been acknowledged by

the economists since a long time ago. The "Quiet Life Hypothesis" (QLH) by Hicks (1935)

and the "Effi cient Structure Hypothesis" (ESH) by Demsetz (1973) are two well-known

hypotheses that explain the potential relationship between market power and cost effi ciency.

QLH claims that higher competition pressure is likely to force managers to work harder,

which in turn increases effi ciencies of firms. ESH states that the firms with superior effi ciency

levels use their competitive advantages to gain larger market shares, which lead to higher

market concentration and thus higher market power. Both hypotheses are supported by

different empirical studies. Berger and Hannan (1998) and Kutlu and Sickles (2012) support

the QLH for the banking and airline industries, respectively. Maudos and Fernandez de

Guevara (2007) show evidence for ESH for the banking industry. Moreover, Delis and

Tsionas (2009) find mixed results for two hypotheses. Hence, the relationship between

market power and effi ciency has long been acknowledged from both theoretical aspects and

empirical aspects.

However, both the market power literatures and SFA literatures largely ignore this re-

lationship. Until recently, some studies attempt to estimate market powers of firms in a

framework where firms are allowed to be ineffi cient, such as Koetter, Kolari and Spierdijk
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(2012), Delis and Tsionas (2009), Koetter and Poghosyan (2009), Kutlu and Sickles (2012)

and Delis and Tsionas (2009). The relationship between market power and cost effi ciency

would lead to inconsistent estimates for both traditional conduct parameter and SFA stud-

ies. The reason behind this is quite intuitive. The traditional conduct parameter studies

ignore the cost effi ciency. For example, in a Cournot market, the best practicing firm may

not really be fully effi cient. Lee and Johnson (2012) show that, in the Cournot environment,

ineffi ciency may in fact be a result of endogenous prices and the effect of output production

on price. Similarly, ignoring ineffi ciencies of firms in a conduct parameter model would lead

to omitted variable bias. In the traditional SFA studies, the studies do not control for the

market power. The differences in market powers would lead to different firm behaviors. If

the firm level conducts affect the performance of the best-practice units, the effi ciency es-

timates would not be accurate without considering market power effect. Our methodology

overcomes these diffi culties by explicitly and simultaneously modeling a conduct parameter

game, and under this framework the firms are allowed to be ineffi cient.

Also, the simultaneous estimation of conduct parameter and marginal cost effi ciency

can provide a more accurate calculation of dead-weight-loss (DWL). How to measure in-

effi ciencies and market powers of firms when the firms face optimization constraints is an

interesting question for the economists in recent years. Puller (2007) develops a conduct pa-

rameter model measuring market powers of firms in the California electricity market under

capacity constraints. Inspired by Puller (2007), Chapter II also presents an extension of our

framework to take capacity constraints into consideration. This extension allows the esti-

mation of conduct parameter and marginal cost effi ciency when facing capacity constraints

and when total cost data is not available.

To testify our theoretical framework, we apply our methodology to estimate the firm-

route-quarter specific conducts and marginal cost effi ciencies of the U.S. airlines for routes

that originate from Chicago. The time period that the data set in Chapter II covers is

1999I-2009IV. The airline data is suitable for our research because the available cost data

set is for the entire U.S. system, but the route level total cost data is not available. Our

results suggest that concentration ratio (measured by CR4) and market share of airlines
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are negatively related to the marginal cost effi ciency, so we find supports for the QLH from

the airline data. In contrast to this, the concentration ratio and market share of airlines are

positively related to the conducts. By doing this, we validate our theoretical framework in

the empirical study in Chapter II.

In Chapter II, we find that there is large price dispersions in the airline industry. It

means that for the Chicago based routes, the Gini coeffi cient has a mean value of 0.21. It

means that for two randomly selected tickets, the absolute price differences as the ratio of

mean price is 42%. The sources of price dispersion attract us and drive us to explore into

this topic. There are many sources of price dispersion, as shown in Borenstein and Rose

(1994). A variety of pricing strategies can lead to price dispersion such as peak-load pricing

and stochastic demand pricing. Moreover, price discrimination is one important source of

price dispersion. It is a popular topic to measure how market power affect price dispersion

both theoretically and empirically. On the one hand, competition can limit the firms’

price discrimination abilities and force them to charge a single price. Following traditional

textbook theory, the extent of price discrimination is positively related to the market power

of firms. On the other hand, different consumers have different elasticities of demand, so

an increase in competition might also induce the airlines to charge higher prices to the

high-end (first class and business class) consumers due to their low elasticities of demand,

leading to higher price dispersion. Under this situation, this relationship is negative. So,

the theoretical direction between market power and price dispersion is ambiguous.

The structure-conduct-performance (SCP) paradigm states that the structure of an in-

dustry, such as market concentration affects the conduct of firms and thus affects the perfor-

mance of the industry. SCP paradigm shows an inverse relationship between competition

and market concentration. The empirical studies mostly concentrate on the relationship

between market concentration and price dispersion. Under SCP paradigm, we interpret

such studies as relationship between market power and price dispersion. However, there

are many reasons that encourage us to believe that market concentration measures such as

Herfindahl-Hirschman Index (HHI) may not be suffi cient to capture market power. HHI

is a market level measurement, which does not include the information about elasticity of
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demand and cost effi ciency information. In order to solve this issue, we include conduct

parameter, instead of HHI as a measure for market power.

In this study the determinants of price dispersion that we consider are: conduct, mar-

ginal cost effi ciency, other cost based factors, population attributes, and product attributes.

In particular, we are interested in how conduct and marginal cost effi ciency affect price

dispersion. In Chapter II, we find evidence for QLH that market power and cost effi ciency

are negatively related. However, previous literatures in price dispersion largely ignore this

relationship and do not control for cost effi ciency when they estimate the competition’s

effect on price dispersion. One of our objectives of Chapter III is to identify whether there

is bias in previous estimation due to ignorance of cost effi ciency. We find a correlation be-

tween one instrumental variable called geometric market share used by Borenstein and Rose

(1994) and Gerardi and Shapiro (2009) and the omitted variable, marginal cost effi ciency.

We suspect that this correlation might lead to bias in their estimations.

How cost effi ciency affects price dispersion is rarely explored by price dispersion litera-

ture. The reason is that firm level cost effi ciency data is not available. In Chapter II, we

develop a theoretical framework that allows simultaneous estimation of firm level conduct

parameter and marginal cost effi ciency. And the empirical part in Chapter II provides us

the estimates of firm-route-quarter level conduct parameter and marginal cost effi ciency.

Based on these estimates, we are able to explore the relationship between marginal cost

effi ciency and price dispersion in Chapter III. An increase in marginal cost effi ciency does

not necessarily lead to same amount of price changes for the high-end travelers and low-end

travelers. For instance, if the market share for high-end consumers for an airline is larger

than that of low-end consumers. This Airline would be reluctant to increase prices for

high-end tickets, afraid of losing long term high profit from high-end consumers. However,

the high-end consumers have low elasticity of demand and thus less sensitive to the price

changes. This Airline would also take the differences in demand elasticities into account

when making pricing decisions. So, the relationship could be positive or negative depending

on the market characteristics.

Using the conduct and cost effi ciency estimates from Chapter II, Chapter III sheds light
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on the determinants of price dispersion. The main findings are as follows. First, we find

that omitted variable of cost effi ciency may lead to overestimation of market power’s effect

on price dispersion. The overestimations are robust to different subsamples. However, the

difference is not significant at 5% significance level. Second, same as in Gerardi and Shapiro

(2009), we find different effects from conduct on price dispersion between big city routes

and leisure routes. Conduct has a positive effect on price discrimination. Third, marginal

cost effi ciency has a negative effect on price dispersion, which means that an increase in

marginal cost effi ciency leads to larger amount of prices changes for the high-end consumers

than low-end consumers. Fourth, we find a negative relationship between conduct and price

dispersion for the whole sample.

Chapter III in this thesis explores the relationship between conduct, marginal cost ef-

ficiency and price dispersion. While working on price dispersion, we are attracted by the

dynamics of the pricing behavior that lead to such high price dispersion. It is common to

have a round trip ticket’s price lower than an one-way ticket’s price for the same city pairs.

The pricing patterns of the flight tickets are always mysteries for the consumers. So, in

Chapter IV, we are trying to examine how the airlines dynamically make the pricing deci-

sions in order to maximize their revenue. In this study, we focus on revenue optimization.

This is because once the flight schedule is determined, the fixed cost is large enough to allow

us to ignore the variable cost.

Revenue management is also called yield management or seat inventory management or

dynamic pricing. In the airline industry, airlines sell identical seats at different prices to

maximize their revenues. Since American Airlines introduced the yield management tech-

nique in early 1980s, yield management becomes more and more popular and sophisticated.

Davis (1994) and Smith et al. (1992) show that American Airlines benefit from Yield man-

agement (YM) and Smith et al. (1992) state that American Airlines made an extra $1.4

billion between 1989 and 1991 because of its advanced yield management techniques. Pin-

der (1995), Sridharan (1998) and Barut and Sridharan (2004) state that the made-to-order

(MTO) manufacturing industry is suitable for revenue management. Yield management is

a general practice for perishable inventory control, such as hotel, rental car, cruises and
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flight tickets. There are two common characteristics of these products or service. First, the

product/service expires at a certain point of time. Second, the capacity is fixed in advanced

and the capacity constraint can only be extended at a very high marginal cost. These two

characteristics make the dynamic pricing strategy highly important for these perishable

goods/service.

There are mainly three sets of yield management theories. One is traditional price

discrimination theory. Under this theory, the airlines utilize different ticket restrictions

to segment the consumers. The consumers make purchase decisions based on their own

preferences and budgets. The second one is capacity-based theories. Based on these theories,

capacity is limited in the airline industry and the cost associated with augmented capacity

is large, that is, airline capacity is costly but perishable. Prescott (1975), Eden (1990)

and Dana (1999b) explain the relationship between fares and seat availability under the

assumption of uncertain demand. Moreover, Dana (1999a) shows that price dispersion

increases demand shifting and thus increases the social welfare by allocating the consumers

into available seats. The third set of theory is time-based theories. Gale and Holmes (1992,

1993) model advance purchase discount in a monopoly market. The monopoly firm uses fare

discounts to divert the consumers from "peak" to "off peak" flights. In their studies, it is

assumed that the consumers can only learn their time preferences right before the departures

and different customers have different opportunity costs of waiting. Dana (1998) states that

in a perfectly competitive market, there might be advance purchase discounts.

However, there is not much empirical research about yield management in the airline

industry. The main reason might be that the load factor data is not easy to get. Only

a limited number of empirical studies try to testify and analyze these theories. Puller

et al. (2009) use a census of ticket transactions from one computer reservation system to

study the relationship between fares, ticket characteristics and flight load factors. They find

mixed support for the scarcity pricing theories. Escobari and Gan (2007) employ a panel

data analysis and find empirical support for the capacity-based theory. By developing an

effective cost of capacity (ECC) model, they show that higher ECC would lead to higher

prices. Also, they find that the effect from ECC on price is higher in competitive markets.

7



Escobari (2012) further shows that the fares decrease until about two weeks before departure

and then increase, holding inventories constant. Chapter IV in this thesis overcomes this

diffi culty by scripting the online data from priceline.com. Using this unique dataset, we are

able to have daily dynamic prices and its corresponding dynamic load factors, which enable

us to analyze both revenue effi ciency and dynamic pricing behaviors. Due to computational

restrictions, we only script the data from top 10 Chicago based metropolitan city routes.

In Chapter IV, we first analyze the revenue effi ciency of the flights using stochastic

frontier analysis method. Then we divide the whole sample into high-effi ciency flights

group and low-effi ciency flights group based on the revenue effi ciency level. Last but not

the least, we compare the high-effi ciency flights’dynamic pricing patterns with the low-

effi ciency flights’patterns. Based on their differences, we give policy applications to the

low-effi ciency flights.

The main findings in Chapter IV are illustrated as follows. First, we find evidence

of differences in revenue effi ciency among different flights. Second, the dynamic pricing

patterns of the high-effi ciency flights are different from those of low-effi ciency flights. Third,

we find weak evidence for capacity-based theories and stronger evidence for time-based

theories.

To sum up, we conduct a comprehensive study of the market power, cost effi ciency

and price dispersion, revenue effi ciency and dynamic pricing strategies. In Chapter II,

we build up a theoretical framework to allow for simultaneous estimations of marginal

cost effi ciency and conduct parameter without total cost data. Based on the estimates of

conduct parameter and marginal cost effi ciency, we analyze the factors that influence price

dispersion in Chapter III. We mainly focus on the determinants of conduct parameter and

marginal cost effi ciency. Chapter II and Chapter III employ the data from DB1B, which is

post sale data. In Chapter IV, we script the dynamic pricing data from priceline.com using

Perl program, which helps us to understand better how the airlines make dynamic pricing

decisions based on available capacity and advanced days purchased (ADP).

8



CHAPTER II

ESTIMATION OF COST EFFICIENCY WITHOUT COST

DATA

2.1 Introduction

A widely used market power measure is the Lerner index (1934), which is the ratio of price-

marginal cost mark-up and price. One potential diffi culty for calculating the Lerner index

is that the total cost data may not be available, which makes estimation of the marginal

cost diffi cult. A potential solution to this problem is estimating a conduct parameter (or

conjectural variations) game1 in which the firm form a conjecture about the variation in

the other firms’strategies (e.g., output) in response to a change in its own strategy. For

given demand and cost conditions, the conjecture corresponding to the observed price-cost

margins can be estimated “as-if”the firms are playing a conduct parameter game. In this

setting the “implied marginal cost”can be estimated via a supply-demand system.

Stochastic frontier analysis (SFA) literature relaxes the full effi ciency assumption of

neoclassical production theory by allowing firms to act suboptimally. Among others, one

potential reason for ineffi ciency is the principle agent problem that the objectives of share-

holders and manager are not fully aligned. For example, the manager may use extra staff

to reduce manager workloads at expense of higher costs. In SFA literature, cost effi ciency

is defined as the ratio of minimum cost to actual cost. A standard stochastic frontier model

estimates cost ineffi ciency from a (log-transformed) cost function, which treats the cost

ineffi ciency as an unobserved non-negative error term. The resulting model would have a

composed error term consisting of a one-sided error term, which captures cost ineffi ciency,

and a conventional two-sided error term. Hence, the SFA literature2 suffers from the same

1See Perloff, Karp, and Golan (2007) and Bresnahan (1989) for more details on conduct parameter
approach.

2See Kumbhakar and Lovell (2000) for a book-length survey on SFA and Sickles (2005) for a simulation
study examining the performances of some estimators in the SFA literature.
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problem that market power literature suffers. That is, it requires the total cost data in

order to estimate the cost effi ciencies of firms. We overcome this issue by introducing

a conduct parameter game, which enables us to estimate “implied cost effi ciencies” and

conduct parameters jointly without using the total cost data. Hence, in contrast to the

SFA literature, which infers the cost effi ciency from a cost function, we estimate the cost

effi ciency from a supply-demand system, which is derived from a conduct parameter game.

To the best of our knowledge, this is the first study that enables estimation of cost effi ciency

that doesn’t require the total cost data.

The Quiet Life Hypothesis”(QLH) by Hicks (1935) and “the Effi cient Structure Hypoth-

esis”(ESH) by Demsetz (1973) are two well-known hypotheses that relate market power to

effi ciency. The former claims that higher competitive pressure is likely to force management

work harder, which in turn increases effi ciencies of firms. The latter states that the firms

with superior effi ciency levels use their competitive advantages to gain larger market shares,

which leads to higher market concentration and thus higher market power. The findings of

Berger and Hannan (1998) and Kutlu and Sickles (2012) support the QLH for the banking

and airline industries, respectively. However, Maudos and Fernández de Guevara (2007)

show evidence for ESH for the banking industry. Moreover, Delis and Tsionas (2009) are in

favor of the QLH on average but they also mention that for the highly effi cient banks the

relationship reverses in favor of the ESH. Hence, the relationship between market power and

effi ciency has long been acknowledged by economists. However, the market power and SFA

literatures largely ignore this relationship.3 This can potentially cause inconsistent parame-

ter estimates for both conduct parameter and SFA models. For example, consider a market

in which the true effi ciency levels of the firms are the same but the researcher does not con-

trol for firm specific market power when estimating effi ciencies of the firms. The differences

in market powers would lead to different firm behavior and this can be confused with the

firm level cost ineffi ciency. Generally, effi ciencies are measured by closeness of production

3Koetter, Kolari, and Spierdijk (2012), Delis and Tsionas (2009), Koetter and Poghosyan (2009), and
Kutlu and Sickles (2012) exemplify some studies that attempt to estimate market powers of firms in a
framework where firms are allowed to be ineffi cient. Except for Delis and Tsionas (2009) the market power
estimates in these studies are conditional on effi ciency estimates.
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units to the best-practice units observed in the market. If the firm level conducts affect the

performance of the best-practice units, then the effi ciency estimates which do not take this

into account would not be accurate. For example, in a market facing a Cournot competi-

tion the best practicing firm may not really be fully effi cient. Lee and Johnson (2012) show

that, in the Cournot environment, ineffi ciency may in fact be a result of endogenous prices

and the effect of output production on price. Similarly, ignoring ineffi ciencies of firms in a

conduct parameter model can lead to an omitted variable bias. Our methodology aims to

overcome these diffi culties by explicitly and simultaneously modeling a conduct parameter

game in an environment where firms are allowed to be ineffi cient.

Another estimation problem is related to calculation of dead-weight-loss (DWL). Ignor-

ing the ineffi ciencies of productive units may invalidate standard DWL calculations since

DWL from collusive behavior depends on ineffi ciency levels.4 If the productive units exhibit

ineffi ciency that is misinterpreted as firm heterogeneity, then the standard calculations of

DWL may not be valid. In such cases, Kutlu and Sickles (2012) recommend using what

they call the effi cient full marginal cost (EFMC) for the markup calculation.5 Hence, the

simultaneous estimation of conduct and effi ciency may provide us more precise estimates

for DWL.

A common problem is that of measuring ineffi ciencies and market powers of firms when

the firms face optimization constraints.6 For example, a firm which is seemingly ineffi cient

may actually be relatively more effi cient if we take the optimization constraints (e.g., capac-

ity constraints) into account. Standard stochastic frontier models do not explicitly model

such optimization constraints which may result in inaccurate effi ciency estimates. In order

to overcome this diffi culty, we present an extension of our model which makes it possible to

get effi ciency and market power estimates jointly in the presence of capacity constraints.

4See Comanor and Leibenstein (1969) and Kutlu and Sickles (2012) for more details about calculation of
DWL when firms are ineffi cient.

5They define EFMC as the sum of a shadow cost and effi cient marginal cost calculated from stochastic
frontier analysis techniques. The shadow cost reflects the constraints that the firms face such as capacity or
incentive compatibility constraints. Effi cient marginal cost is the marginal cost when the firm achieves full
effi ciency.

6See Puller (2007) for a conduct parameter model measuring market powers of firms in the California
electricity market under capacity constraints.
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We apply our methodology to estimate the firm-route-quarter specific conducts and

marginal cost effi ciencies of the U.S. airlines for routes that originate from Chicago. The

time period that our data set covers is 1999I-2009IV. One of the diffi culties that empirical

researchers face is that the available cost data set is for the entire U.S. system. So, route

level total cost data is not available. Kutlu and Sickles (2012) try to overcome this problem

by incorporating a specific number of enplanements for each airline, a specific distance of

each city-pair, and airline fixed effects when estimating the cost function. This enables them

to calculate the route specific marginal costs from the cost function estimation. However,

their effi ciency estimates are still firm-quarter specific.7 Moreover, their conduct estimates

are conditional on effi ciency estimates. That is, they first estimate the effi ciencies using

the standard stochastic frontier models; and use these effi ciency estimates when estimating

the supply relation. In contrast to their study, we jointly estimate the firm-route-quarter

specific conducts and effi ciencies of the U.S. airlines; and when doing so we do not need

route specific total cost data.8 Our results suggest that concentration ratio (measured by

CR4) and market share of airlines are negatively related to the marginal cost effi ciency. In

contrast to this, the concentration ratio and market share of airlines are positively related

to the conduct.

The rest of Chapter II is structured as follows. In Section 2.2, we build up our theoretical

model. In Section 2.3, we describe our data set. In Section 2.4, we present our empirical

model. In Section 2.5, we present and discuss our results. In the Section 2.6, we make our

concluding remarks for this chapter.

2.2 Theoretical Model

In this section we describe our theoretical framework, which enables us to estimate marginal

cost effi ciencies and conducts of firms without total cost data. The stochastic frontier

7Since Kutlu and Sickles (2012) estimate an aggregate model (i.e., route specific market power), they use
market share weighted effi ciency estimates in their estimations. That is why their route specific effi ciency
variables are not the same for different routes.

8Similar to our study, Delis and Tsionas (2009) simultaneously estimate bank conducts and effi ciencies.
However, their model requires total cost data. Hence, as it stands, their methodology is not applicable for
our airline example.
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literature relaxes full effi ciency assumption of neoclassical production theory by allowing

the firms to be ineffi cient. The ineffi ciency is treated as an unobserved component which is

captured by a one-sided error term. The total cost of firm i at time t is given by:

C (qit;Xc,it) = C∗ (qit;Xc,it) exp (uit + vit) (1)

where qit is the quantity of firm i at time t; X ′c,it is a row vector of variables related to cost;

uit ≥ 0 is a term which is capturing the ineffi ciency; vit is the conventional two-sided error

term; and C∗ is the deterministic component of cost when firms achieve full effi ciency. In the

conventional stochastic frontier framework the cost effi ciencies of firms would be estimated

by using the following model:

lnC (qit;Xc,it) = lnC∗ (qit;Xc,it) + uit + vit. (2)

Figure 2.1 shows a 2-input and 1-output example. The inputs in the figure are labeled

as x1 and x2. The points in this figure represent input bundles. The curve labelled y0y0 is

the effi cient frontier of the input requirement set for producing output y0. In this curve any

further equi-proportionate reduction of inputs would make the output y0 infeasible. The

point P represents the actual input and the AB line is its corresponding iso-cost line. The

points below this line are less expensive than input bundle P . The point Q is the cost-

minimizing bundle and the CD line is its corresponding iso-cost line. The cost effi ciency is

defined as |OR| / |OP |.

Figure 2.1. Cost effi ciency

13



A variety of distributions is proposed for uit including the half normal (Aigner, et al.,

1977), exponential (Meeusen and van den Broeck, 1977), truncated normal (Stevenson,

1980), and gamma (Greene, 1980a, 1980b, 2003) distributions. The cost effi ciency of a firm,

EFFit, is estimated by:

EFFit = exp (−ûit) (3)

ûit = E [uit | uit + vit] .

The stochastic frontier approach that we presented above requires a detailed cost data

set which many times is not available. We utilize the conduct parameter approach in order to

overcome this issue. For this purpose, instead of modelling total cost as in the conventional

SFA models, we directly model marginal cost, c, as follows:

ln c (qit;Xc,it) = ln c∗ (qit;Xc,it) + uit + vit. (4)

Here, rather than estimating a cost function, we estimate a supply-demand system, which

enables us to calculate the implied cost effi ciency. We call c∗ effi cient marginal cost (EMC),

which is equal to the marginal cost when firms achieve full effi ciency. Under constant mar-

ginal cost assumption9 Equation (4) can directly be derived from Equation (1). Hence,

in this case the theoretical effi ciency values for these two approaches coincide. When the

marginal cost is not constant, we directly model marginal cost effi ciency through Equation

(4) and remain silent about the way in which the ineffi ciency is modelled in the cost func-

tion. Therefore, the constant marginal cost assumption is not required in our theoretical

model. Nevertheless, from the antitrust point of view, which is concerned with market power

and DWL estimations, the marginal cost effi ciency seems to be a more relevant effi ciency

concept.10

Let Pt = P (Qt;Xd,t) be the inverse demand function, Qt be the total quantity, and

X ′d,t is a row vector of demand related variables at time t. The perceived marginal revenue

9Whenever we refer to constant marginal costs we also asssume that ∂(uit+vit)
∂q

= 0, which would be

consistent with the constant marginal cost assumption.
10The reason may be clearer when we introduce Figure 2.2 later on in this section.
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(PMR) is given by:

PMR (θit) = Pt +
∂Pt
∂Qt

∂Qt
∂qit

qit (5)

= Pt

(
1− sit

Et
θit

)
where sit = qit

Qt
is the market share of firm i at time t; Et = −∂Qt

∂Pt
Pt
Qt
is the (absolute value

of) elasticity of demand; θit = ∂Qt
∂qit

is the conduct parameter. Three benchmark values for

θit =
{

0, 1, 1sit

}
correspond to perfect competition, Cournot competition, and joint profit

maximization, respectively. The supply relation is:11

Pt

(
1− sit

Et
θit

)
= cit ⇔ (6)

lnPt + ln

(
1− sit

Et
θit

)
= ln cit

where cit = c (qit;Xc,it). After including the econometric error terms, the supply relation

becomes:12

lnPit = − ln

(
1− sit

Et
θit

)
+ ln cit + εsit (7)

= g (θit, sit, Et) + ln cit + εsit.

= ln c∗it + git + uit + εsit

where git = − ln
(

1− sit
Et
θit

)
≥ 0 is the market power term and uit ≥ 0 is the ineffi ciency

term.13 The Et term is identified through the demand equation. We assume that the de-

mand function and marginal cost functions are so that the conduct parameter and marginal

cost can be separately identified.14 Intuitively, Equation 5 suggests that if cit and qit are

highly collinear, then the conduct parameter maybe identified through the variation in ∂Pt
∂Qt
.

A common approach to achieve identification is assuming a constant marginal cost.15 Our

11Note that perceived marginal revenue must be positive so that the equilibrium makes sense. Hence, we

assume that 1− sit
Et
θit > 0. So, we have ln

(
1− sit

Et
θit
)
≤ 0.

12The introduction of the error term enables us to deviate from a single market price. Also, the price may
be considered to be a function of firm specific variables, Xd,it.
13Note that git is an increasing function of θit.
14For details about the identification conditions for conduct parameter models, we direct the reader to

Bresnahan (1982), Lau (1982), Perloff, Karp, and Golan (2007), and Perloff and Shen (2012).
15A constant marginal cost function does not depend on quantity but it may still depend on variables

other than the quantity.
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model is different from the standard market power models due to the additional uit term.

This ineffi ciency term is identified by utilizing the asymmetric distribution of the variations

of uit. Intuitively, uit is identified if the signal-to-noise ratio (the variance ratio of the inffi -

ciency component to the composite error) is not small. Hence, the identification of model

parameters requires the standard conduct parameter model and SFA identification assump-

tions. A standard conduct parameter model ignores uit, which would likely be correlated

with git. Hence, any conduct parameter model that is ignoring uit risks getting inaccurate

market power estimates.

Figure 2.2 aims to illustrate the underlying mechanism of our model and consequences

of ignoring ineffi ciency when calculating DWL. This figure includes inverse demand func-

tion, perceived marginal revenue (PMR), marginal revenue (MR) that is corresponding to

monopoly scenario, marginal cost (MC), and effi cient marginal cost (EMC). For illustrative

purposes we consider the same constant marginal costs, conducts, and effi ciencies for each

firm. Pθ and Qθ are the equilibrium price and quantity at conduct level θ. Similarly, PC and

QC are price and quantity for the perfect competition scenario, in which conduct equals 0.

In the figure it is assumed that under perfect competition there would be no ineffi ciency and

thus the effi cient marginal cost and marginal cost coincide for this case. If QLH holds, then

as the market power, measured by θ, increases MC diverges from EMC. In our framework,

the marginal cost effi ciency is defined as EMC/MC. The social welfare loss at conduct level

θ would be equal to the shaded area (sum of dark and light shaded regions). In Figure 2.2,

the effi ciency is roughly 60%, which is relatively low. As a consequence the social welfare

loss due to ineffi ciency is substantial. The conventional DWL value, which is ignoring inef-

ficiency, is given by the dark shaded triangular area; and is much smaller than the overall

social welfare loss. In general, when both conduct and marginal cost effi ciency are low, the

conventional DWL values would be much lower than overall social welfare losses.
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Figure 2.2: Conduct, marginal cost effi ciency, and social welfare

Now, we describe how this conduct parameter game would be estimated. We assume

that the conduct parameter θit is a function of variables, Xg,it, that affect firm specific

market power such as market shares and concentration ratios. Modeling θit through this

function may lead to computational diffi culties. An arguably better way, which we prefer to

follow, would be directly modeling git as a function of Xg,it and solving for θit after getting

the parameter estimates. That is:

θ̂it =
Êt
sit

(1− exp (−ĝit)) (8)

where Êt and ĝit are the estimates for Et and git, respectively. The market power term, git,

is bounded by 0 and Bit = − ln
(

1− 1
Et

)
. Hence, the choice of functional form should be

so that git ∈ [0, Bit]. In this study we use:

git =
Bit exp

(
X ′g,itβg

)
1 + exp

(
X ′g,itβg

) . (9)

One of the drawbacks of the standard stochastic frontier models is that if the regressors

are correlated with vit or uit, then the parameter and effi ciency estimates are inconsistent.

Moreover, in this setting, vit and uit terms are assumed to be independent, which can be

a questionable assumption in a variety of settings. We use a control function approach to

handle the endogeneity issue that occurs when the vit is correlated with the regressors or uit.
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For example, uit can be a function of regressors (e.g., market shares of firms or concentration

ratios) that are correlated with vit term.16 The idea is including a bias correction term in

the model. Consider the following supply relation model with endogenous explanatory

variables:

lnPit = ln c∗it + git + uit + εsit (10)

Xen,it = ζ ′itδ + vit ṽit

εsit

 ≡

 Σ
−1/2
v vit

εsit

 ∼ N

 0

0

 ,
 Im ρσε

ρ′σε σ2ε




uit = hitũit

hit ≥ 0

uit ∼ N+
(
µu, σ

2
u

)
where Pit is the price; Xen,it is an m×1 vector of all endogenous variables used in modelling

c∗it, git, and uit; ζit = Im⊗Zit where Zit is a l× 1 (with l ≥ m) vector of all exogenous vari-

ables. The irregular term εsit is correlated with the regressors but conditionally independent

from the ineffi ciency term uit given Xen,it and Zit.17 Note that εsit and uit may still be cor-

related unconditionally. By applying a Cholesky decomposition of the variance-covariance

matrix of
[
ṽ′it εsit

]′
, we can rewrite the supply equation as follows:

lnPit = ln c∗it + git + σερ
′ṽit + ε̃sit + uit (11)

= ln c∗it + git + η′(Xen,it − ζ ′itδ ) + ε̃sit + uit

where ε̃sit ∼ N(0, (1 − ρ′ρ)σ2ε) and η = σερ
′Σ
−1/2
v . The parameters of this supply relation

can be estimated in one stage using the maximum likelihood estimation method. How-

ever, sometimes it is simpler to get the consistent parameter estimates in two stages by

first estimating the bias correction term η′(Xen,it − ζ ′itδ ); then including the estimate of

bias correction term in the second stage in which we apply traditional SFA methods. For the

16See Kutlu (2010) and Karakaplan and Kutlu (2015) for control function solutions to the endogeneity
problem. Also see Guan et al. (2009) and Tran and Tsionas (2013) for GMM based stochastic frontier
approaches that aim to handle endogeneity.
17We may replace uit = hitũit assumption by uit = hitũi so that ũi is a firm specific term. This would be

in line with the panel data frameworks.
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two-stage approach the standard errors need to be corrected, e.g., by a bootstrap procedure.

In our empirical section we use the limited information maximum likelihood estimator that

we presented in this section, i.e., the one stage method.

The model that we introduced can be extended to a setting in which firms have capacity

constraints. This extension of our model is inspired by the conduct parameter model pro-

posed by Puller (2007). In the presence of capacity constraints the optimization problem

for firm i becomes:

maxPitqit − Cit s.t. qit ≤ Kit (12)

where Kit is the capacity constraint that firm i is facing at time t. Then, the corresponding

supply relation becomes:

lnPit = ln c∗it + git + λit + uit + εsit (13)

where λit ≥ 0 is the shadow cost of capacity which can be estimated by including variables

capturing extent of capacity constraints. For example, Puller (2007) uses a dummy variable

which is equal to one when the constraint is binding.

Finally, a formal treatment of conduct parameter games in which the strategic interac-

tions of the firms are dynamic is beyond the scope of this study. Following Puller (2009),

we recommend including time fixed-effects which may condition out the dynamic effects in

firms’optimization problems.18 Note, however, that even though the estimates of para-

meters (including parameters of the conduct and effi ciency) are consistent in this dynamic

game scenario, we cannot separately identify the effi cient marginal costs, c∗it, and dynamic

correction terms. The reason is that the time dummies not only capture cost related unob-

served factors that change over time but also the dynamic correction terms.19 Nevertheless,

except the portion of time fixed-effects that contribute to c∗it, the other parameters of c
∗
it are

identified. Moreover, many times c∗it is not the main interest. In what follows we assume a

static model.

18See Puller (2009) for further details about his model and restrictions. One particular assumption that
Puller (2009) makes is that the firms play an effi cient super-game equilibrium when they cooperate. That
is, they maximize the joint profit subject to incentive compatibility constraints. Hence, the corresponding
effi cient super-game equilibrium values are benchmark for the full market power case.
19Of course, in the static setting we don’t have this identification issue as the dynamic correction terms

are zero.
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2.3 The Data

In order to testify our theoretical framework, we use the U.S. domestic airline data. One of

the main data sources that we use is the Passenger Origin-Destination Survey of the U.S.

Department of Transportation (DB1B data set). This data set is a 10% random sample

of all tickets that originate in the U.S. on domestic flights. In our data set a market is

defined as a directional city-pair (route). Calculation of prices and quantities are based on

the tickets that have no more than three segments in each direction. About 1% of tickets

are eliminated during the elimination of tickets with more than 3 segments. We only focus

on coach class tickets due to the differences in demand elasticities and other characteristics

between coach class and high-end classes (first class and business class).

Our data set covers the time period from the first quarter of 1999 to fourth quarter of

2009. During this time period, the U.S. airlines face serious financial problems. As pointed

out by Duygun, Kutlu, and Sickles (2014), the financial losses for the domestic passenger

airline operations in this time period is substantially higher than their losses between 1979

and 1999. Increase in taxes and jet fuel prices, relatively low fares, and sharp decrease in

demand are some of the challenging properties of this period for the U.S. airlines. In this

time period, we observe dramatic increases in load factors. Borenstein (2011) argue that

such an increase might be attributed to improved yield management techniques.

Now, we provide the details about data construction process. First, all multi-destination

tickets are dropped as it is diffi cult to identify the ticket’s origin and destination without

knowing the exact purpose of the trip. Second, any itinerary that involves international

flights is eliminated. Third, we adjust the fare class for high-end carrier. That is, for some

airlines, due to marketing strategies, only first class and business class (high-end) tickets are

provided to consumers on all routes. However, the quality should be taken as coach class.

So, we consider all tickets as coach class tickets if there is no coach class tickets from certain

carrier in given quarter. In different time periods, due to changes in the pricing strategy,

sometimes high-end-only carrier switches to a regular carrier which sells both coach class

tickets and high-end tickets. For instance, Sun Country Airlines does not provide coach class

tickets in 2001 but provides coach tickets in 2005 and years after. So, we treat the tickets
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in each quarter separately when considering this adjustment. That is, we treat high-end

tickets from Sun Country Airlines as coach class tickets in 2001, not in year 2005. Fourth,

tickets that have high-end segments and unknown fare classes are dropped.

We followed Borenstein (1989) and Brueckner, Dyer, and Spiller (1992) by using ticketing

carrier as our airline as an observation unit. After further elimination of multi-ticketing-

carrier tickets, firm specific average segment numbers (SEG) and average stage length (SL)

on a given route are calculated as indicators of quality and costs. Moreover, our data set

includes a distance variable which is the shortest directional flight distance (DIST ). A ticket

is online when one-way ticket does not involve change of airplanes. The online variable is

the percentage of online tickets.

For the price variable, we use the average price of all tickets for a given airline on a given

route in given quarter. All tickets with incredible prices are dropped from our data set.

Following Borenstein (1989) and Ito and Lee (2007), we eliminate the open-jaw tickets since

it would be diffi cult to distribute the ticket price into outbound and inbound segment for

open jaw tickets. We drop the tickets that have a price less than 25 dollars or higher than 99

percentile or more than 2.5 times standard deviation from the mean for each airline within

a route. The tickets that have price less than 25 dollars are considered as frequent flyer

program tickets and the tickets that have prices higher than 99 percentile are considered

to be input (key punch) errors for the data set. For the round trip tickets, we divided the

total price by two to get the one-way price.

The cost data set is constructed from the firm level data of DOT’s airline production

data set (based on Form 41 and T100). We control for three types of important costs: labor

price (LP ), energy price (EP ), and capital price (KP ). The salaries and benefits for five

main types of personnel are provided in Form 41/P6. Annual employee number is given in

Form 41, P10. We interpolated the annual employee data to get the quarterly values. For

energy price, we only capture the cost based on aircraft fuel. The energy input is developed

by combining information on aircraft fuel gallons used with expense data per period. Flight

capital is described by the average size (measured in number of seats) of the fleet. The

number of aircraft that a carrier operated from each different model of aircraft in airline’s
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fleet is collected from DOT Form 41. For each quarter, the average number of aircraft in

service is calculated by dividing the total number of aircraft days for all aircraft types by

the number of days in the quarter. This serves as an approximate measure of the size of

fleet.

In order to estimate the demand, we also include the city specific demographic variables:

per capita income (PCI) and population (POP ). We get the city level per capita income

and population data from Bureau of Labor Statistics. We interpolate the annual data to get

the quarterly PCI and population variables for each city. For each origin-destination city-

pair, we use the population weighted PCI as the route-specific PCI measure. Similarly,

city-pair population is the average population of origination and destination cities. In order

to get the real prices, we deflated the nominal prices by Consumer Price Index (CPI) and

use the first quarter of 1999 as the base time period. Since only the metropolitan areas have

the demographic information but some airports are located in small cities, the number of

the city-pairs is further reduced in our final database.

We apply our theoretical method on the routes that originate from Chicago, which is

a popular choice because of its relatively large airport and wide selection of airline firms.

For instance, Brander and Zhang (1990) use 33 Chicago-based routes in their studies. In

our final data set, we further eliminate the small firms and small routes. On a given

route, firms with market shares less than 0.01 are eliminated. For a given quarter, any

route with enplanements less than 1800, i.e., 20 passengers per day, is dropped. Also, we

eliminate routes with less than 30 observations. Table 2.1 presents the summary statistics

for Chicago-based routes.
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Table 2.1. Summary for Chicago Originating Routes
Variables: Name in Estimation Mean S.D. Min Max
Low Cost Carrier Dummy: LCC 0.11225 0.31569 0 1
ln(Population): ln(POP) 15.50922 0.18392 15.33637 16.46417
ln(Per Capita Income): ln(PCI) 10.4226 0.03828 10.33827 10.61397
ln(Stage Length): ln(SL) 6.40837 0.59661 4.69135 8.34378
ln(Distance): ln(DIST) 6.63774 0.65719 4.69135 8.35303
ln(Average Fleet Size): ln(SIZE) 4.97262 0.08467 4.80562 5.33165
ln(Labor Price): ln(LP) 9.23198 0.7346 5.58453 10.00725
ln(Capital Price): ln(KP) 7.27984 0.76111 3.6658 8.1754
ln(Fuel Price): ln(FP) 3.87272 0.58681 2.37945 4.83215
Number of Firms: NF 8.2814 3.14474 1 24
ln(Price Per Ticket): ln(P) 4.96474 0.33975 3.72431 7.1672
ln(Number of Passengers): ln(Q) 9.79688 1.43261 7.49554 13.1454
ln(Number of Passengers for Other Routes): ln(OQOTH) 15.29761 0.10457 14.98133 15.47699
Market Share: s 0.22057 0.22458 0.01001 1
Geometric Market Share: GEOS 0.19418 0.12814 0.00682 1
Geometric Market Share*Number of Firms: GEONF 1.08933 0.66467 0.03784 4.27413
Online Rate: ONLINE 0.66744 0.36844 0 1
Top 4 Concentration Ratio: CR4 0.9195 0.11333 0.07516 1
ln(Average Number of Segments): ln(SEG) 0.3698 0.32171 0 1.09861
Number of Observations 18209

Low cost carrier is a dummy variable that equals 1 if the ticketing carrier is a low cost

carrier, otherwise it is 0. Number of firms represents the total number of firms that operate

on the route. Total number of passengers is the total tickets sold on a given route by all

airlines together in a given quarter. Total number of passengers for other routes (OQOTH)

variable is the total number of tickets that are sold on the other routes that share the

same origination city. We use the geometric market share (GEOS) variable of Gerardi and

Shapiro (2009) as an instrument.20 Another instrumental variable that we use is GEONF .

This variable is the product of GEOS and nf∗ =
√
no ∗ nd, where no denotes to the mean

value of number of firms for all routes that share the same origination as route of interest

while the nd refers to the mean value of number of firms for all routes that share the same

destination city.

The final data set contains 108 routes that originate from Chicago and 14 carriers. The

low cost carriers are Frontier Airlines, JetBlue Airways, Southwest Airlines, and Spirit Air-

lines. The rest of the carriers are: Alaska Airlines, American Airlines, Continental Airlines,

20GEOS is the GENSP variable that is used in Gerardi and Shapiro (2009). GENSP is similar to the
GEOSHARE variable of Borenstein and Rose (1994). The difference is that Borenstein and Rose (1994)
use average daily enplanements while we use average quarterly enplanements.
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Delta Airlines, Northwest Airlines, United Airlines, US Airways, America West Airlines,

ATA Airlines and Trans World Airways.

2.4 Empirical Model

In this section, we want to shed some light on the market powers and effi ciencies of the

U.S. airlines. Moreover, we aim to illustrate our methodology using this empirical exam-

ple. In particular, we estimate time-varying firm-route-specific conducts and marginal cost

effi ciencies of the U.S. airlines. Similar to Brander and Zhang (1990) and Oun, Zhang, and

Zhang (1993), we only consider coach class tickets. Our city-pair markets consist of one-way

or round-trip directional trips in each direction for three-segment (up to three segments in

each direction) data set. We divide the total ticket price by 2 to get the one-way fare

for round-trip tickets. The demand and supply equations are estimated separately. The

demand equation is given by:

lnPitr = β0 + β1 lnQtr + β2 lnPCItr lnQtr + fd (Xd,itr) + εditr (14)

where fd is a function of demand related variables, Qtr is the total quantity at time t for

route r, X ′d,itr is a row vector of demand related variables, and εditr is the conventional

two-sided error term. We assume that lnQtr and lnPCItr lnQtr are endogenous. Along

with the exogenous variables included in the demand model, our instrumental variables are

GEOSitr, GEONFitr, lnOQOTHrt, logarithm of labor price (lnLPit), logarithm of capital

price (lnKPit), and logarithm of energy price (lnEPit).

The supply equation is given by:

lnPitr = ln c∗itr + gitr + uitr + εsitr (15)

where c∗itr is the marginal cost when firms achieve full effi ciency, gitr = − ln
(

1− sitr
Etr

θitr

)
is the market power term, uitr ≥ 0 is the ineffi ciency term, and εsitr is the conventional

two sided error term. The parameters of the Etr term is identified through the demand

equation. We assume that the effi cient marginal cost, c∗itr, is constant, i.e., it is not a

function of quantity but maybe a function of exogenous cost shifters. Hence, as we described

in the theoretical model section, the theoretical values for cost and marginal cost effi ciencies
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coincide in this model. While constant marginal cost is a relatively strong assumption, it

is commonly used in the conduct parameter models. Iwata (1974), Genesove and Mullin

(1998), Corts (1999), and Puller (2007) exemplify some papers that use this assumption in

a variety of conduct parameter settings. We use this simplifying assumption to illustrate

our methodology. Nevertheless, we approximate the effi cient marginal cost function by a

fairly flexible function of input prices and other cost related exogenous variables. These cost

related variables include year, quarter, and firm dummy variables, which capture time-firm-

specific unobserved factors.21 We model gitr as in the theoretical model section and assume

that X ′g,itr = [sitr, CR4,tr, lnDISTr, t, Etr, 1] where CR4,tr is the concentration ratio for

largest four firms on route r at time t. We assume that uitr = hitrũitr and ũitr ∼ N+
(
0, σ2u

)
where σ2u = exp

(
X ′g,itrβu

)
; and εsitr ∼ N

(
0, σ2ε

)
where σ2ε = exp (βε). For the supply side,

sitr and CR4,tr are assumed to be endogenous. Our instrumental variables are GEOSitr,

GEONFitr, lnPOPtr, and lnPCItr. The estimations of the supply relations are done

by using the one-stage version of the control function approach that we described in our

theoretical model section.

2.5 Results

In this section, we present our estimation results. The demand parameter estimates for the

routes originating from Chicago are given in Table 2.2.22 We estimate the (inverse) demand

equation by 2SLS. Our demand model controls for year, quarter, and firm dummies. The

demand elasticities are negative at each observation, i.e., Etr > 0.

21 If the airlines are playing a version of dynamic conduct parameters game that is suggested by Puller
(2009), route-specific time dummy variables would capture dynamic factors that enter the airlines’optimiza-
tion problems as well. In this case, the parameter estimates of the model would still be consistent including
the conduct parameters and effi ciencies. However, the marginal cost estimates may be biased (downwards)
as the prediction of marginal costs include these dynamic factors.
22The estimation includes a constant term.
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Table 2.2. Estimation for Demand Function
Dependent Variable: Price Estimates Std. Err.
ln(Q) 2.91356*** (0.50629)
ln(Q)*ln(PCI) ­0.29270*** (0.04861)
ONLINE 0.01940* (0.00880)
ln(DIST) 7.47912*** (0.95064)
ln(SEG) ­10.03281*** (0.97631)
ln(SIZE) ­15.81152*** (2.31769)
ln(SL) ­8.24091*** (0.97745)
ln(DIST) Square ­0.22445** (0.07828)
ln(SEG) Square 0.53698*** (0.11695)
ln(SIZE) Square 1.50167*** (0.22554)
ln(SL) Square ­0.62278*** (0.08377)
ln(DIST)* SEG ­0.65458** (0.19646)
ln(DIST)* ln(SIZE) ­1.93435*** (0.18417)
ln(DIST)* ln(SL) 0.90929*** (0.15754)
ln(SEG)* ln(SIZE) 2.44755*** (0.19223)
ln(SEG)* ln(SL) 0.24996 (0.19551)
ln(SIZE)* ln(SL) 1.98114*** (0.18886)
ln(POP) 0.30783*** (0.01673)
ln(PCI) 4.19634*** (0.56805)
LCC ­0.21325*** (0.00862)
Quarter Dummies Yes
Year Dummies Yes
Firm Dummies Yes
Centered R Square 0.4976
Number of Observations 18209
Note: + p<0.1, * p<0.05, ** p<0.01, *** p<0.001.
Robust standard errors are given in bracket.

For the supply function, as we described earlier, we use the one-stage control function

approach to deal with endogeneity. We estimate two supply models: the first one allows

ineffi ciency (Benchmark model) and the second one assumes full effi ciency so that uitr = 0

(Full effi ciency model). The full effi ciency model is a standard conduct parameter model,

which helps us to compare our benchmark estimates with the standard models. Table 2.3

shows the estimation results.

The bias correction terms (η) are jointly significant at any conventional significance

level, which is an indication of endogeneity. The median of conduct estimates is 0.63. This

value is lower than the theoretical conduct value for Cournot competition, which equals 1.23

Hence, at the median, the extent of competition lies somewhere between perfect competition

and Cournot competition. The median of conduct estimates from the full-effi ciency model is

23The median of theoretical conduct values for joint profit maximization scenario is 6.77, which is the
median of 1

sitr
.
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somewhat lower and suggests a competitive market. Low cost carriers, due to their special

operating style24, tend to have lower marginal costs compared to other airlines, which helps

them to reduce price. Hence, it is worthwhile to examine the decomposition of conducts

based on LCCs and non-LCCs. We observe that the conduct estimates for LCC and non-

LCC carriers are 0.24 and 0.74, respectively. Therefore, while the conducts of LCCs are

closer to perfectly competitive values, the conducts of non-LCCs are closer to Cournot

competition values. Finally, the median of the conduct estimates from the full effi ciency

model is 0.22, which is somewhat lower than that of the benchmark model.

Table 2.3. Estimation for Supply Function
Supply Function: Inefficiency Allowed Full Efficiency
Price Estimates Std. Err. Estimates Std. Err.
ln(KP) ­0.72825*** (0.13523) ­0.63778*** (0.15070)
ln(FP) 0.02501 (0.11625) 0.07255 (0.12892)
ln(LP) ­0.34062* (0.14423) ­0.23348 (0.16666)
ln(KP) Square 0.02449 (0.02310) 0.01674 (0.02643)
ln(FP) Square 0.01010 (0.01061) 0.01876 (0.01164)
ln(LP) Square 0.02082 (0.01929) 0.01612 (0.02175)
ln(KP)* ln(FP) 0.02793+ (0.01550) 0.02603 (0.01717)
ln(KP)* ln(LP) 0.02922 (0.04268) 0.03147 (0.04818)
ln(FP)* ln(LP) ­0.04628** (0.01768) ­0.05404** (0.01982)
ONLINE ­0.11235*** (0.00769) ­0.13278*** (0.00853)
ln(DIST) 3.25569*** (0.96877) 1.68620 (1.05468)
ln(SEG) ­3.81246*** (0.95276) ­1.65408 (1.01118)
ln(SIZE) ­15.47651*** (3.14511) ­6.51047+ (3.37444)
ln(SL) ­3.46404*** (1.01353) ­1.90943+ (1.10320)
ln(DIST) Square 0.41059*** (0.07352) 0.35812*** (0.07470)
ln(SEG) Square 0.88206*** (0.11481) 0.81164*** (0.11475)
ln(SIZE) Square 1.63611*** (0.31323) 0.75112* (0.33609)
ln(SL) Square 0.19687* (0.08723) 0.11232 (0.09075)
ln(DIST)* ln(SEG) ­2.11495*** (0.18315) ­1.75739*** (0.17727)
ln(DIST)* ln(SIZE) ­0.76913*** (0.19136) ­0.55407** (0.21109)
ln(DIST)* ln(SL) ­0.51857** (0.15756) ­0.37967* (0.16206)
ln(SEG)* ln(SL) 1.93489*** (0.18700) 1.50137*** (0.18227)
ln(SEG)* ln(SIZE) 0.94664*** (0.18911) 0.60553** (0.20198)
ln(SIZE)* ln(SL) 0.64006** (0.20052) 0.40393+ (0.22051)
LCC ­0.76658*** (0.07363) ­0.76248*** (0.08575)
Quarter Dummies Yes Yes
Year Dummies Yes Yes
Firm Dummies Yes Yes

24For example, some of them operate only on certain routes in order to reduce costs.
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Table 2.3. Estimation for Supply Function (continued)
Nonlinear Function: g Inefficiency Allowed Full Efficiency

Estimates Std. Err. Estimates Std. Err.
s 17.62885*** (1.77711) 17.86643*** (1.87244)
CR4 8.82176*** (2.35791) 16.89555*** (3.57813)
ln(DIST) 0.38011 (0.33349) 0.47333+ (0.27124)
t ­0.22842*** (0.02998) ­0.23597*** (0.03529)
Elasticity of Demand ­0.13075 (0.28139) ­0.89407** (0.29823)
Constant ­10.53598* (5.06577) ­13.87330** (4.77015)
σw

Constant ­3.46254*** (0.03206) ­2.70253*** (0.01051)
σu

s 0.41774*** (0.08396)
CR4 3.95924*** (0.28411)
ln(DIST) ­0.94727*** (0.04206)
t ­0.03700*** (0.00233)
Elasticity of Demand ­0.15413*** (0.04344)
Constant 1.94036*** (0.53855)
η (bias correction term)
s ­0.33883*** (0.02233) ­0.33863*** (0.01947)
CR4 0.09003** (0.02838) 0.58208*** (0.02438)
Log­likelihood 30772.7323 30033.13415
Number of Observations 18209 18209
Note: + p<0.1, * p<0.05, ** p<0.01, *** p<0.001.

The conduct parameter estimates show that an airline with higher market share tends

to have higher market power. In markets with high CR4 values, it may be easier for airlines

(those with higher market share) to cooperate. The positive coeffi cient of CR4 in conduct

verifies this. For the time period that we examine, the U.S. airlines seem to be losing

market power over time. For longer flight distances the alternative transportation means

(e.g., bus or car) are likely to become less attractive to the consumers. This reduction in

outside competition suggests a positive relationship between market power and distance.

The positive sign of distance variable for the market power term is in line with this intuition.

In our benchmark estimates, the medians of effi ciency estimates for the whole sample

and non-LCC carriers are 82.6% and 84.4%, respectively. Hence, the effi ciencies of LCCs and

non-LCCs are similar. The parameter estimates for ineffi ciency term show that an airline

with higher market share, tends to have higher ineffi ciency. Similarly, higher CR4 values lead

to higher ineffi ciency. This is in line with the QLH that more market power leads to lower
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effi ciency levels.25 The medians of price-marginal cost markups, price-effi cient marginal cost

markups, and prices are $4.63, $30.30, and $142.70, respectively. Historically, the airlines

are known to complain about not being able to make much money. These markup values

indicate that the airlines may partially be responsible for the financial diffi culties that they

face. Hence, the airlines can achieve reasonable profit levels if they work harder to improve

their effi ciency levels.

In Table 2.4, we decompose the sample into two regions based on market shares of

airlines: 1) Airlines with market shares smaller than s∗ and 2) Airlines with market shares

greater than s∗. We consider three different values for s∗ = {0.05, 0.25, 0.50}. The values in

the table are the medians of conduct and effi ciency estimates from the benchmark model,

which correspond to these subsamples. Based on this decomposition, it seems that the

airlines with market shares greater than 0.05 act similar to Cournot competitors. On

the other hand, the airlines with market shares smaller than 0.05, act more like perfectly

competitive firms. We also observe that the airlines with high market shares are much less

effi cient compared to airlines with smaller market shares. For instance, in the third column

the medians of effi ciencies are 83.92% and 68.46% for small market share and large market

share groups, respectively.

Table 2.4. Conduct and Efficiency by Market Share
Conduct Parameter Efficiency

Market Share 0.05 0.25 0.5 0.05 0.25 0.5
Smaller 0.2 0.2 0.37 85.61 84.71 83.92
Greater 0.98 1.4 1.42 81.18 77.44 68.46

2.6 Summary and Concluding Remarks

In this chapter, we provided a conduct parameter based framework to estimate market

powers and effi ciencies of firms simultaneously. Our methodology enables us to relax the

total cost data requirement for the stochastic frontier models. The total cost data may

not be available for a variety of reasons. For example, firms might not want to reveal such

a strategic information whenever it is possible. Even when some form of total cost data

25Note that since u has a half normal distribution its mean depends on σ2u. In particular, the mean of u
is an increasing function of σ2u.
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is available, the data may not reflect the total cost of the relevant unit that we want to

examine. For instance, for the U.S. airlines only firm specific total cost data is available for

the whole U.S. airline system. Hence, the conventional stochastic frontier models cannot

estimate route specific effi ciencies as this would require route-specific total cost data.

Besides relaxing a vital data requirement, our methodology aims to overcome some

estimation issues. Effi ciencies are generally measured by the distance between the units of

production and the best practice units observed in the market. If the performance of the

best-practice units depends on their market powers, then the effi ciency estimates not taking

this into account would not be accurate. We overcome this diffi culty by explicitly modeling

a conduct parameter game in an environment where firms are allowed to be ineffi cient.

Moreover, we provided a simple extension of our model which allows the firms to have

capacity constraints.

Researchers may be interested in estimating the market powers and effi ciencies of firms

in an environment where firms interact repeatedly so that they play a dynamic game.26

While we did not provide an explicit solution to this problem, it is possible to extend our

model to a dynamic setting in which firms play an effi cient supergame equilibrium as in

Puller (2009). Finally, an extension of our conduct parameter model so that the firms

price discriminate is not complicated. Such an extension would enable us to understand

the connection between price discrimination, market power, and effi ciency better.27 Hence,

our theoretical model serves as a guideline as to how conduct parameter and effi ciency can

be estimated simultaneously without requiring total cost data; and this guideline can be

applied to a variety of conduct parameter settings.

The U.S. airline industry is a good example to apply our methodology due to the un-

availability of route specific total cost data. Hence, we applied our methodology to estimate

the conducts and marginal cost effi ciencies of the U.S. airlines for the time period 1999I-

2009IV. We found that the market concentration and market share of airlines are negatively

26See Corts (1999) for a simulation study examining the performance of the static version of conduct
parameter method in a dynamic environment.
27See Borenstein and Rose (1994), Stavins (2001), Gerardi and Shapiro (2009), and Chakrabarty and

Kutlu (2014) for works examining the relationship between market power and price discrimination.
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related to the marginal cost effi ciency, which is in line with the quiet life hypothesis.
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CHAPTER III

PRICE DISPERSION, COMPETITION AND

EFFICIENCY IN THE U.S. AIRLINE INDUSTRY

3.1 Introduction

Competition can limit the firms’price discrimination abilities and force them to charge a

single price. In line with this idea it appears that the extent of price discrimination may be

positively related to the market powers of firms. Since different consumer segments can have

different demand elasticities, a negative relationship is possible as well. For example, in the

airline context, frequent flyer programs play a central role in keeping the business travelers

loyal to a particular airline or a group of airlines in the affi liated program. As a consequence,

an increase in competition would potentially decrease the price for the discount tickets more

compared with the regular tickets that target the business travelers. Therefore, an increase

in market power may result in a decrease in price discrimination. Hence, the theoretical

direction of relationship between market power and price discrimination is ambiguous.

The empirical studies mostly concentrate on the relationship between market concen-

tration and price dispersion.1 However, again, there is no consensus on the direction of this

relationship. Borenstein and Rose (1994) and Stavins (2001) find a negative relationship

between market concentration and price dispersion while Gerardi and Shapiro (2009) find a

positive relationship.2 The structure-conduct-performance (SCP) paradigm argues that the

structure of an industry (e.g., market concentration) affect the conduct of firm, and thus,

the performance of the industry. In particular, this paradigm argues that there is an inverse

1Note that price discrimination is only one of the reasons for price dispersion. We say that price dis-
crimination exists when the variation of prices cannot be entirely explained by variations in marginal costs.
Price dispersion may happen when the consumers are not fully informed about prices and/or have limited
memories. See, Varian (1980), Chen, Iyer, and Pazgal (2010), and Kutlu (2015a) for models where price
dispersion may be present without price discrimination.

2See also Chakrabarty and Kutlu (2014) for a study that finds a non-monotonic relationship between
market concentration and price dispersion.
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relationship between the market concentration and the extent of competition. Hence, if we

accept the SCP paradigm and consider market concentration as a proxy for market power,

we may interpret the findings of these studies as evidence for relationship between market

power and price dispersion.

There are reasons to believe that market concentration measures such as Herfindahl-

Hirschman Index (HHI) may not be suffi cient to capture market power. For instance,

in an oligopoly setting, the actions of competitors, elasticity of demand, and marginal cost

effi ciency affect the market outcome.3 The HHI does not provide relevant information about

the elasticity of demand and the extent of cost effi ciency. Moreover, HHI is a market-specific

index, which cannot explain price dispersion among firms. It may make more sense to use

a firm-specific market power measure when examining price dispersion. In order to address

these concerns, we model price dispersion by conducts and marginal cost effi ciencies, which

are firm-specific.

In our study cost ineffi ciency refers to the increases in marginal costs due to the firm’s

suboptimal actions regarding production. Among others, one reason for ineffi ciency is the

principle agent problem that the objective of manager is not fully aligned with profit maxi-

mization. Another reason would be potential optimization mistakes such as misallocation of

inputs. If an increase in marginal cost effi ciency leads to the same amount of price changes

for both high-end and low-end segments, then marginal cost effi ciency would be unrelated

with price dispersion, measured by differences between high-end and low-end prices. In

general, the relationship may also be positive or negative. On the one hand, the high-end

customers would have less elastic demand compared with the low-end customers. An in-

crease in marginal cost effi ciency might result in a smaller decrease in the high-end prices

compared with the low-end prices. Therefore, we can have a positive relationship between

price dispersion and effi ciency. On the other hand, even the same firm can implement dif-

ferent pricing strategies for different consumer segments and differences in these strategies

3A more extensive criticism for HHI as a market power index is provided by Borenstein et al. (1996).
They only concentrate on the neoclassical settings where there are no ineffi ciencies. See Koetter, Kolari,
and Spierdijk (2012) and Kutlu and Sickles (2012) for studies that consider the effi ciency when measuring
market power.
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can lead to a negative relationship.4 Moreover, if the share of the high-valuation customers

is relatively large, the brand loyalty of business travelers becomes more important for the

airlines. Hence, the airlines may be more reluctant to risk scaring off their loyal customers

and losing them to other airlines on such routes. In response to a decrease in marginal

cost effi ciency, the airlines may be relatively more protective for the brand loyal customers

considering potential future profits. Therefore, the effect of marginal cost effi ciency on price

discrimination can be ambiguous and depend on the particularities of the segment specific

strategies. Finally, marginal cost effi ciency may be related to the general “ability” of an

airline to handle the operations optimally. Hence, an airline that is good at minimizing its

costs may also be good at practicing price discrimination strategies. One of the purposes in

the present study is identifying the direction of relationship between marginal cost effi ciency

and price dispersion empirically.

This chapter analyzes the determinants of price dispersion for the U.S. domestic airline

market from 1999I to 2009IV. In particular, we focus on routes that originate from Chicago

city. Our main findings are given as follows. First, we observe that omitting the marginal

cost effi ciency from the model may lead to over-estimation of the effect of conduct on price

dispersion. However, we did not find strong evidence for over-estimation. Second, the airline

conduct has opposite effects on big city and leisure routes. In particular, the airline conduct

has a positive effect on price dispersion on big city routes while the effect is negative on

leisure routes. Finally, marginal cost effi ciency has a significantly negative influence on

price dispersion. It turns out that this negative effect is higher on leisure routes. This

is consistent with the lower price dispersion levels that we observe on leisure routes.5 A

10 percentage points increase in marginal cost effi ciency would lead to 0.0193 and 0.0328

decrease in Gini coeffi cient for big city and leisure routes, respectively.6 This implies that

a 10 percentage points increase in marginal cost effi ciency would decrease the expected fare

4Chi, Koo, and Lim (2013) mention that different firms can have distinct pricing strategies. In our
scenario, we suggest the possibility of different pricing strategies for different consumer segments.

5The average effi ciency on leisure and big city routes are 84.2% and 79.7%, respectively. The difference
is statistically significant at any conventional significance level. Hence, the airlines seem to be more careful
about their cost minimizations on leisure routes.

6The Gini coeffi cient is equal to twice the expected absolute difference between two ticket prices that are
drawn randomly from the population.
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difference by 3.9% and 6.6% of the mean fares for two randomly selected tickets.7

The remaining parts of Chapter III are organized as followed. We describe the deter-

minants of price dispersion in Section 3.2. In Section 3.3, we describe our airline data set.

The empirical models and estimation results are presented in Section 3.4. In Section 3.5,

we summarize our findings and make our concluding remarks. In Section 3.6, we present

additional details in the Appendices.

3.2 Sources for Price Dispersion

The extent of price dispersion that the air traveler faces is considerable and it is our interest

to examine the sources of this dispersion. There are a variety of pricing strategies that can

lead to price dispersion such as peak-load pricing or stochastic demand pricing. Peak-load

pricing is affected by the shadow cost of capacity. At the peak times, the shadow cost of

additional seat is higher compared with off peak times. The stochastic demand pricing is

related to the price dispersion due to the demand uncertainty that cannot be estimated by

historical data. Also, price discrimination is one important source of price dispersion. How-

ever, it may be diffi cult to isolate these factors when studying price dispersion. In this study

the determinants of price dispersion that we consider are: conduct, marginal cost effi ciency,

other cost based factors, population attributes, and product attributes. In particular, we

are interested in how conduct and marginal cost effi ciency affect price dispersion.

The studies of Borenstein and Rose (1994) and Gerardi and Shapiro (2009) provide

empirical evidence that market concentration and price dispersion are related to each other.

Even though these two papers hold different opinions about the direction of the relationship

between market concentration and price dispersion, it is clear that market concentration has

an effect on price dispersion. The structure-conduct-performance (SCP) paradigm argues

that the structure of an industry (e.g., market concentration) affect the conduct of firm,

and thus, the performance of the industry. In particular, this paradigm argues that there

is an inverse relationship between the market concentration and the extent of competition.

7While Hazledine (2006), Kutlu (2009), and Kutlu (2012) do not consider marginal cost effciency in their
theoretical Cournot and Stackelberg type price discrimination models, the findings are similar in the sense
that a decrease in the marginal cost would increase price discrimination measured by the differences in prices.
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In the light of SCP paradigm one may argue that, among others, these two papers present

evidence for a relationship between market power and price dispersion. In our empirical

part of this chapter, we aim to provide a closer look in to this relationship.

We consider two types of cost related factors: marginal cost of effi ciency and other cost

related factors. The marginal cost effi ciency has both direct and indirect effects on price

dispersion. The indirect effect follows from the effi cient structure hypothesis (Demsetz,

1973) that more effi cient firms gain more market power, which in turn affects the price

dispersion. The direct effect is related to the cost reduction due to effi ciency increase. In

an oligopoly competition environment, a decrease in the marginal cost effi ciency of the

airline would affect the pricing strategies for high-end and low-end prices in a non-trivial

way. The net effect of an increase in marginal cost effi ciency on the price dispersion is

ambiguous. On the one hand, due to the differences in demand elasticities, an increase in

marginal cost effi ciency may result in a smaller decrease in the high-end prices compared

with the low-end prices. This supports a positive relationship between price dispersion and

effi ciency. On the other hand, the airline can implement different pricing strategies for

different consumer segments. For example, if the share of the high-valuation customers is

relatively large, the brand loyalty of business travelers and long term concerns would be

relatively more important for the airlines. Therefore, the airline may be more reluctant to

risk scaring off these loyal customers, and thus would not increase the high-end prices as a

response to decrease in marginal cost effi ciency. Moreover, as mentioned earlier, marginal

cost effi ciency may be one of the indicators of how successful an airline is in terms of

implementing price discrimination, which is a source of price dispersion.8 Also, we control

for other cost related factors such as labor price, fuel price, and capital price. Finally, we

control for quality-related characteristics that affect the costs. For instance, larger segment

number is a relevant indicator for itinerary quality and costs.

Product attributes not only affect the costs of airlines but also affect the valuations of the

consumers in a potentially heterogenous way. One of the important product characteristics

8The marginal cost effi ciency is not a direct measure of price discrimination abilities. However, it may be
considered as a proxy for the airline’intrinsic succcess in terms of optimizing its actions for a given objective.
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is the number of segments. A higher number of segments implies a higher number of change

of planes and more inconvenience for the traveler. Business travelers are less likely to

sacrifice convenience for lower price compared to the leisure travelers. Stage length is the

average distance of each segment. Longer stage length means more flight time, which is not

convenient for the consumers. However, air travelers can accumulate miles and segments for

future rewards through frequent flyer programs employed by airlines. This might balance

off the direct negative effects of the stage length and number of segments on flight quality.

Both number of segments and stage length are also cost related. Higher number of segments

or a longer stage length increases the cost. Another related variable is the online rate which

gives the percentage of tickets that do not involve change of operating carriers. Besides the

extra costs, a change of carrier decreases the quality of an itinerary as this would cause

some inconvenience to the consumers. The size of plane is both quality and cost related.

On the one hand, larger aircraft are likely to be more stable and comfortable. On the other

hand, on a flight involving a larger aircraft the waiting time for baggage would be longer

and probability of mishandled baggage would potentially be higher. Hence, the overall net

quality from size effect is ambiguous.

Population attributes are also related to price dispersion. A larger population is more

likely to have a more heterogenous customer profile, which gives the airlines more oppor-

tunity to employ price discrimination strategies. Hence, we expect to observe a positive

relationship between population size and price dispersion. Another route specific character-

istic that can influence price dispersion is the per capita income. The income distribution

is another relevant factor for price discrimination. A higher diversity in income would allow

the airlines to benefit more from price discrimination. Also, the per capita income can

control for the differences in pricing levels among different routes. The big city routes tend

to have both leisure travelers, with high demand elasticity, and business travelers, with low

demand elasticity; while leisure routes mostly have leisure travelers.9 Hence, on the big city

routes the airlines can distinguish business travelers from leisure travelers relatively more

easily, and thus implement price discrimination more successfully.

9See Gerardi and Shapiro (2009) for more details about big city and leisure routes.
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3.3 Data

This chapter focuses on domestic coach class airline tickets during the time period from

1999I to 2009IV . In particular, we consider the directional city-pairs (routes) that orig-

inate from Chicago. Our data set contains 108 routes and 14 carriers. The carriers are

Frontier Airlines, JetBlue Airways, Southwest Airlines, and Spirit Airlines, Alaska Airlines,

American Airlines, Continental Airlines, Delta Airlines, Northwest Airlines, United Airlines,

US Airways, America West Airlines, ATA Airlines, and Trans World Airways. During the

time period that we consider the U.S. airlines faced serious financial problems. Borenstein

(2011) and Duygun, Kutlu, and Sickles (2014) point out that the financial losses for the

domestic passenger airline operations in this time period is substantially higher than the

losses between 1979 and 1999. Increases in taxes and jet fuel prices, relatively low fares,

and a sharp decrease in demand are some of the challenges of this period for the U.S. air-

lines. Also, we observe a dramatic increase in load factors. More specifically, the average

load factor increased from 71% to 81% between 2000 and 2009. Borenstein (2011) argues

that such an increase might be attributed to improved yield management techniques. Thus,

we would expect to observe some cost effi ciency changes due to financial loss in this time

period.

The product characteristics, quantity, and price data are collected from Passenger

Origin-Destination Survey of the U.S. Department of Transportation (DB1B data set).

This data set is a 10% random sample of all tickets that originate from the U.S. domestic

cities. In our analysis, market is defined as a directional city-pair. Hence, we consider

each city-pair as a separate market. Calculation of prices and quantities are based on the

tickets that have no more than three segments in each direction. About 1% of tickets are

eliminated during the elimination of tickets with more than 3 segments. Due to the dif-

ferences in demand elasticities and other unobservable characteristics between coach class

and higher-end classes (first class and business class), our study only focus on coach class

tickets.

The product characteristics are captured by the average number of segments (SEG)

for tickets sold by the carrier, average stage length (SL) for each segment, average size of

38



the fleet (SIZE), and online rate (ONLINE). The size is defined as the average capacity

of operating airplanes for each carrier in each quarter. The ONLINE variable is the

percentage of tickets where there is no change of operating carrier.

We use two different approaches to measure the price dispersion. First, we use the

Gini coeffi cient (GINI) as a proxy for price dispersion.10 Second, we generate another

proxy, denoted by PD90,10, using the 90th and 10th percentiles of the price distribution. Let

Px denote the price at xth percentile. Then, we define PD90,10 = (P90 − P10) /P10. The

Gini coeffi cient concentrates more on the middle part of the price distribution. A price

dispersion proxy that concentrates on the top and bottom tails of the price distribution

provides additional information regarding the source of price dispersion. Hence, we use

PD90,10 for the sake of checking the robustness of our results.

The GINI and PD90,10 variables are generated after further elimination of incredible

or outlier tickets. To be more specific, all tickets with incredible prices are dropped from

our data set. Following Borenstein (1989) and Ito and Lee (2007), we dropped the open-jaw

tickets since it would be diffi cult to distribute the ticket price into outbound and inbound

segment for open jaw tickets. Moreover, the tickets that have a price less than 25 dollars

or higher than 99 percentile or more than 2.5 times standard deviation from the mean for

each airline within a route are eliminated from the data. The tickets that have prices less

than 25 dollars are considered as frequent flyer program tickets and the tickets that have

prices higher than 99 percentile or more than 2.5 times standard deviation are considered

to be input (key punch) errors for the data set. For the round trip tickets, we divided the

total price by two to get the one-way price.

Cost related characteristics are collected from BTS’s T100 Domestic Database. As

noted by Borenstein and Rose (1994), price dispersion can be caused by both cost-based

price dispersion and discrimination-based dispersion. The cost data set is constructed from

the firm level data of DOT’s airline production data set (based on Form 41 and T100).

Three types of important cost factors are controlled in our studies: labor cost, energy cost,

and capital cost. This is done by constructing a price index for each of these categories. The

10See the Appendix A for more details.
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salaries and benefits for five main types of personnel are provided in Form 41/P6. Annual

employee number is given in Form 41, P10. We interpolated the annual employee data to

get the quarterly values. Labor price is generated by combining five types of personnel.

For energy price, we only capture the cost based on aircraft fuel. The energy input was

generated by combining information on aircraft fuel gallons used with expense data per

quarter. Flight capital is described by the average size (measured in number of seats) of

the fleet. Also, the number of aircraft that a carrier operated from each different model

of aircraft in airline’s fleet is collected from DOT Form 41. For each quarter, the average

number of aircraft in service is calculated dividing the total number of aircraft days for all

aircraft types by the number of days in the quarter. This serves as a measure of the size of

fleet. Capital price is calculated using these flight capital factors. All these cost factors are

normalized by Tornqvist-Theil index.

Although the market power and effi ciency are related concepts, the literatures on mea-

suring market power and effi ciency are developed independently.11 Only recently there has

been some studies that try to relate these two literatures.12 One of the diffi culties in the

stochastic frontier literature is that estimation of cost effi ciency requires the total cost data

which is not available for the U.S. airlines at the route level. Chapter II in this thesis deals

with this issue by combining the conduct parameter approach with the stochastic frontier

analysis. A complication that they face is that the stochastic frontier models generally

assume exogeneity of the regressors. Therefore, they use a control function approach in line

with Kutlu (2010), Karakaplan and Kutlu (2015), and Kutlu (2015b).13 Following the con-

duct parameter approach introduced by Chapter II, we obtain the marginal cost effi ciencies

(EFF ) and conducts (CON) of airlines. Our conduct measure is firm-route-time specific,

which contrasts with the route-time specific concentration measures of Borenstein and Rose

(1994), Stavins (2001), and Gerardi and Shapiro (2009). Similarly, our effi ciency variable

11See Perloff, Karp, and Golan (2007) and Kumbhakar and Lovell (2000) for book-length surveys on market
power measurement and stochastic frontier analysis, respectively. See also Sickles (2005) for an extensive
Monte Carlo study examining the performances of effi ciency estimators.
12See, for example, Delis and Tsionas (2009), Koetter, Kolari, and Spierdijk (2012), Kutlu and Sickles

(2012), and Kutlu and Wang (2015).
13See also Guan, Kumbhakar, and Myers (2009) and Tran and Tsionas (2013) for GMM based solutions

for endogeneity.
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is firm-route-time specific.

Market conditions can have a significant influence on price dispersion. So, we include the

city-specific demographic variables in our analysis: per capita income and population. We

get the city level per capita income and population data from Bureau of Labor Statistics.

We interpolate the annual data to get the quarterly per capita income and population

variables for each city. For each origin-destination city-pair, we define route-specific per

capita income (PCI) as the population weighted per capita income for end-point cities. In

order to get the real prices, we deflated the nominal prices by consumer price index (CPI)

and use the year 1999I as the base time. We define the route-specific population as the

average population (POP ) of two end-point cities. Because not all airports are located in

cities with demographic information, the number of the routes is reduced further in our final

data set. In our final data set, we further eliminate the small firms and small routes. On

a given route, firms with market shares less than 0.01 are eliminated. For a given quarter,

any route with enplanements less than 1800, i.e., 20 passengers per day, is dropped. We

also eliminate the routes with less than 30 observations.

We consider market concentration and marginal cost effi ciency as potentially endogenous

variables. One of the instrumental variables that we use is the geometric market share

(GEO).14 This is an instrumental variable that is used by Gerardi and Shapiro (2009) in

their analysis of price dispersion. The formula for this variable is provided in Appendix A.

Average marginal cost effi ciency for all other routes that share the same origination city

and other carriers on the same route (EFFIV 1) and average marginal cost effi ciency for all

other carriers on other routes that share the same origination city (EFFIV 2) are two other

instrumental variables that we use in our estimations. We use EFFIV 2 in our benchmark

estimations and EFFIV 1 for robustness check.

Since the demand structures of big city and leisure routes are different in terms of

consumer heterogeneity, we also analyze price dispersion for big city and leisure routes

separately. We classify a route as “big city” route if the destination is located within the

14The GEO variable is the same as GEOSP variable that was used by Gerardi and Shapiro (2009).
GEOSP is similar to the GEOSHARE in Borenstein and Rose (1994). The difference is that Borenstein
and Rose (1994) use average daily enplanements while we use average quarterly enplanements.
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30 largest MAs in the United States.15 The leisure routes are defined by the median value

of ratio of accommodation earnings to total nonfarm earnings through the time period of

2001-2009. Then, we label a route as leisure route if the median value of this ratio for

the destination city belongs to the 85th percentile.16 Gerardi and Shapiro (2009) assume

that the leisure route tickets are mainly purchased by leisure travelers, who have high

demand elasticity and low reservation price. In contrast, big city routes contain a high

proportion of business travelers, who have low demand elasticity and high reservation prices,

along with tourism travelers. Hence, the big city routes are likely to show more consumer

heterogeneity compared with the leisure routes, which makes it easier for airlines to employ

price discrimination. As a consequence, if price discrimination effect dominates, the big city

routes would have larger Gini coeffi cients compared with that of leisure routes. The median

and mean of Gini coeffi cients for the big city routes, leisure routes, and whole sample

are given in Table 3.1. We can see that the big city routes have larger price dispersion

compared with the leisure routes. Based on this fact, it would be interesting to decompose

the impacts of conduct and marginal cost effi ciency on price dispersion by route types. For

the sake of illustration, in Figure 3.1, we show the price distributions of two routes. Here,

Orlando is a leisure city and Philadelphia is a big city. We can clearly see the differences

in price dispersion on these two routes: Chicago-Orlando vs Chicago-Philadelphia. To be

more specific, the distribution of price dispersion for the leisure route looks like a normal

distribution while the distribution of price dispersion for the big city route looks like a

bimodal distribution. This indicates that the airlines were more successful in identifying

the business travelers in the big city routes compared with the leisure routes.

Table 3.1. Gini Coefficient Descriptive Statistics by Subsample

Route Types Big City Routes Leisure Routes All Routes
Mean 0.2249 0.1929 0.2121

Median 0.2143 0.1854 0.2038

15For the destination cities that are both tourism city and big city, we just treat them as big city. The
cities include Miami, Orlando, Phoenix, Portland, San Antonio, San Diego, and Tampa.
16The final lists of big city routes and leisure routes are given in Appendix A.
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Table 3.2. Descriptive Statistics
Variable Name Mean SD Variable Description
Price Dispersion Measures
GINI 0.2121 0.0735 Gini Coefficient
PD9010 1.9703 1.5742 (P90­P10)/P10
Competition Factors
CON 0.2899 0.3772 Conduct Parameter
HHI 0.4106 0.1543 Herfindahl­Hirschman Index
Population Attributes
ln(POP) 15.5092 0.1839 Logarithm of average population of origination and destination cities
ln(PCI) 10.4226 0.0383 Logarithm of population weighted per capita income of origination

and destination cities
Leisure 0.2368 0.4251 Dummy for destination city, 1 if tourism city, 0 if non­tourism city
Big city 0.1857 0.3889 Dummy for destination city, 1 if big city, 0 if non­big city
Product Attributes
ln(SL) 6.4084 0.5966 Logarithm of average stage length for an airline
ln(SEG) 0.3698 0.3217 Logarithm of average segment number for an airline
ONLINE 0.6674 0.3684 Percentage of tickets that do not involve change of operating carriers
ln(SIZE) 4.9726 0.0847 Logarithm of average number of available seats for an airline
Cost Factors
ln(LP) 9.2320 0.7346 Logarithm of labor price by combining five categories of personnel

normalized by Tornqvist­Theil index
ln(FP) 3.8727 0.5868 Logarithm of fuel price using only aircraft fuel parts normalized by

Tornqvist­Theil index
ln(KP) 7.2798 0.7611 Logarithm of capital price normalized by Tornqvist­Theil index
EFF 0.7804 0.1361 Marginal cost efficiency
Instrumental Variables
GEO 0.1942 0.1281 Geometric market share
EFFIV1 0.7804 0.0359 Average marginal cost efficiency for all other carriers or routes that

share the same origination city
EFFIV2 0.7820 0.0359 Average marginal cost efficiency for all other carriers on other routes

that share the same origination city
Observations 18209
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Table 3.2 presents the descriptive statistics for the Chicago (as origin city) based routes

for three segments tickets. We measure the price dispersion using the Gini coeffi cient. The

Gini coeffi cient reflects price inequality across the entire range of different prices paid by

the consumers. As mentioned earlier, it is equal to the half of expected absolute differences

in prices as a proportion of the mean price for two consumers drawn randomly from the

sample. For example, our whole sample has a Gini coeffi cient of 0.2121 which implies that

the expected absolute price difference is 42.42% of the mean fare. The conduct parameter,

CON , has a mean value of 0.2899. This implies that on average the airline routes are neither

competitive nor monopolistic. Finally, the average marginal cost effi ciency in our sample is

0.7804. Hence, there is a room for effi ciency improvement.

3.4 Empirical Specification and Estimation Results

In this section, we present our empirical analysis of price dispersion. As described earlier, we

model the price dispersion by the conduct, marginal cost effi ciency, other cost related vari-

ables, product attributes, and population attributes. The empirical specification estimated

in our analysis is given by:

Yirt = β0 + β1MPirt + β2EFFirt + f (COSTit; δ) (16)

+g (PRODATTirt; γ) + h (POPATTrt; η) + Fi +Rr + Tt + εirt

where Y is the price dispersion measure which is GINI or PD90,10; MP is a variable which

is either conduct (CON) orHHI; EFF is the marginal cost effi ciency; f is a function of cost

related variables, COST ; g is a function of product attributes, PRODATT ; h is a function

of population attributes, POPATT ; and Fi, Rr, and Tt are firm, route, and time dummies;

and εirt is the error term. The indices i, r, and t refer to the firm, route, and time period,

respectively. The variables that are representing product attributes are the average number

of segments (SEG), average stage length (SL), online rate (ONLINE), and average size

of aircraft (SIZE). The cost related variables are labor price (LP ), fuel price (FP ), and

capital price (KP ). Finally, the variables that are representing the population attributes
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are the average population (POP ) and population weighted per capita income (PCI). The

Gini coeffi cient is our benchmark measure for price dispersion. All of CON , HHI, and

EFF variables lie in the unit interval. The conduct parameter values of 0, market share,

and 1 correspond to perfect competition, Cournot competition, and monopoly (joint profit

maximization), respectively.

As argued in the introduction, the HHI is an imperfect indicator of market power.

Hence, it seems that using conduct parameter and marginal cost effi ciency may provide a

better understanding of the relationship between market power and price dispersion. The

earlier studies that are examining the relationship between concentration measures and

price dispersion do not consider the marginal cost effi ciencies in their analysis. Hence, the

effect of the marginal cost effi ciency is embedded in the residual term. The quiet life and

effi cient structure hypotheses suggest that the market power and effi ciency are related to

each other. Hence, the parameter estimates in the earlier studies may be inconsistent if

the instrumental variables are correlated with the effi ciency. For example, Borenstein and

Rose (1994) and Gerardi and Shapiro (2009) use the GEO variable as an instrument which

turns out to be correlated with the effi ciency. In our sample, the correlation of EFF and

GEO is equal to −0.3754. While this correlation does not seem to be very high, it is still

worthwhile to see the effect of ignoring ineffi ciency in the analysis of price dispersion.

In all estimations we assume that CON and HHI are endogenous; and we use GEO

as an instrument. The marginal cost effi ciency can be endogenous if there is a feedback

from price dispersion to marginal cost effi ciency. For example, reaching higher levels of

price dispersion might complicate the manager’s general tasks and negatively affect the

firm performance in terms of reaching optimal level of cost. Based on this argument, it is

reasonable to treat marginal cost effi ciency as an endogenous variable. For each estimation

table, we provide four sets of estimates: the “No Effi ciency”model excludes the effi ciency

from the estimations; the “Exogenous Effi ciency”model assumes that EFF is exogenous;

and “Endogenous Effi ciency I”and “Endogenous Effi ciency II”models assume that EFF is

endogenous but use different instrumental variables for marginal cost effi ciency. To be more

specific, “Endogenous Effi ciency I” and “Endogenous Effi ciency II”models use EFFIV 1
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and EFFIV 2 as instruments (along with GEO), respectively. In what follows, the Endoge-

nous Effi ciency II would be our benchmark setting. Hence, if not specified, we are referring

to estimations from “Endogenous Effi ciency II”models. In Table 3.3-3.5 we assume that

Y = GINI and MP = CON .

Table 3.3. Price Dispersion Estimation using GINI for All Routes

GINI No
Efficiency

Exogenous
Efficiency

Endogenous
Efficiency I

Endogenous
Efficiency II

CON 0.0176** 0.0077 0.0076 0.0101
(0.0071) (0.0071) (0.0071) (0.0071)

EFF ­0.2433*** ­0.2432*** ­0.1837***
(0.0113) (0.0113) (0.0322)

ln(POP) 0.4685*** 0.4434*** 0.4396*** 0.4486***
(0.1696) (0.1393) (0.1394) (0.1442)

ln(PCI) ­0.0182 0.1295 0.1271 0.0935
(0.1622) (0.1635) (0.1635) (0.1609)

ln(SL) ­0.2070*** ­0.2366*** ­0.2367*** ­0.2294***
(0.0538) (0.0514) (0.0514) (0.0516)

ln(SL) Square 0.0148*** 0.0183*** 0.0183*** 0.0175***
(0.0041) (0.0039) (0.0039) (0.0039)

ln(SEG) ­0.0105 0.0169 0.0169 0.0102
(0.0105) (0.0109) (0.0109) (0.0111)

ln(SIZE) ­0.0360 ­0.0225 ­0.0225 ­0.0258
(0.0265) (0.0242) (0.0242) (0.0242)

ONLINE 0.0037 ­0.0048 ­0.0048 ­0.0027
(0.0042) (0.0039) (0.0039) (0.0041)

ln(LP) ­0.0731** ­0.0805*** ­0.0805*** ­0.0787***
(0.0289) (0.0260) (0.0260) (0.0261)

ln(KP) 0.0266 0.0149 0.0149 0.0179
(0.0326) (0.0315) (0.0315) (0.0314)

ln(FP) 0.1276*** 0.1323*** 0.1323*** 0.1311***
(0.0436) (0.0429) (0.0429) (0.0425)

ln(FP)*ln(LP) 0.0052 0.0051 0.0051 0.0051
(0.0061) (0.0057) (0.0057) (0.0057)

ln(KP)*ln(LP) 0.0028 0.0034 0.0034 0.0032
(0.0028) (0.0026) (0.0026) (0.0026)

ln(FP)*ln(KP) ­0.0031 ­0.0009 ­0.0009 ­0.0014
(0.0057) (0.0052) (0.0052) (0.0053)

Time Dummies Yes Yes Yes Yes
Firm Dummies Yes Yes Yes Yes
Route Dummies Yes Yes Yes Yes
Observations 18209 18209 18209 18209
Centered R Square 0.4044 0.4802 0.4802 0.4747
Note: Robust standard errors in parentheses, clustered by each ticketing carrier on each
route. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 3.4. Price Dispersion Estimation using GINI for Big City Routes

GINI No
Efficiency

Exogenous
Efficiency

Endogenous
Efficiency I

Endogenous
Efficiency II

CON 0.0522*** 0.0336*** 0.0335*** 0.0317**
(0.0121) (0.0123) (0.0124) (0.0145)

EFF ­0.1746*** ­0.1760*** ­0.1927**
(0.0261) (0.0264) (0.0867)

ln(POP) 0.7175*** 0.6744*** 0.6736*** 0.6704***
(0.2759) (0.2187) (0.2183) (0.2084)

ln(PCI) ­0.0197 0.1040 0.1046 0.1170
(0.1637) (0.1646) (0.1651) (0.1774)

ln(SL) 0.1018 ­0.0040 ­0.0050 ­0.0149
(0.1848) (0.1749) (0.1750) (0.1825)

ln(SL) Square ­0.0074 0.0027 0.0027 0.0037
(0.0137) (0.0131) (0.0131) (0.0140)

ln(SEG) ­0.0308 0.0009 0.0011 0.0041
(0.0370) (0.0341) (0.0341) (0.0384)

ln(SIZE) 0.0605 0.0778* 0.0780* 0.0797*
(0.0490) (0.0441) (0.0441) (0.0466)

ONLINE ­0.0058 ­0.0054 ­0.0054 ­0.0053
(0.0141) (0.0125) (0.0125) (0.0124)

ln(LP) 0.0224 0.0176 0.0176 0.0171
(0.0615) (0.0524) (0.0524) (0.0519)

ln(KP) ­0.0946 ­0.1453** ­0.1457** ­0.1506**
(0.0691) (0.0639) (0.0638) (0.0738)

ln(FP) 0.2926*** 0.3240*** 0.3243*** 0.3273***
(0.0895) (0.0809) (0.0809) (0.0801)

ln(FP)*ln(LP) ­0.0246** ­0.0283*** ­0.0284*** ­0.0287**
(0.0121) (0.0108) (0.0107) (0.0112)

ln(KP)*ln(LP) 0.0069 0.0103* 0.0104* 0.0107*
(0.0061) (0.0055) (0.0055) (0.0061)

ln(FP)*ln(KP) 0.0213* 0.0245** 0.0245** 0.0248**
(0.0119) (0.0102) (0.0102) (0.0104)

Time Dummies Yes Yes Yes Yes
Firm Dummies Yes Yes Yes Yes
Route Dummies Yes Yes Yes Yes
Observations 3382 3382 3382 3382
Centered R Square 0.5988 0.6388 0.6389 0.6396
Note: Robust standard errors in parentheses, clustered by each ticketing carrier on each
route. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 3.5. Price Dispersion Estimation using GINI for Leisure Routes

GINI No
Efficiency

Exogenous
Efficiency

Endogenous
Efficiency I

Endogenous
Efficiency II

CON ­0.0036 ­0.0171 ­0.0170 ­0.0172
(0.0132) (0.0136) (0.0136) (0.0151)

EFF ­0.3254*** ­0.3227*** ­0.3282***
(0.0305) (0.0309) (0.1159)

ln(POP) 0.0319 ­0.0326 ­0.0285 ­0.0316
(0.2145) (0.1726) (0.1727) (0.1723)

ln(PCI) ­0.5491 ­0.5040* ­0.4977 ­0.5013*
(0.3467) (0.3034) (0.3035) (0.3037)

ln(SL) ­0.1395 ­0.1894** ­0.1890** ­0.1899**
(0.0884) (0.0817) (0.0817) (0.0867)

ln(SL) Square 0.0064 0.0123** 0.0122** 0.0123*
(0.0062) (0.0059) (0.0059) (0.0066)

ln(SEG) ­0.0326* 0.0053 0.0050 0.0057
(0.0183) (0.0176) (0.0176) (0.0219)

ln(SIZE) ­0.0539 ­0.0459 ­0.0460 ­0.0459
(0.0414) (0.0360) (0.0360) (0.0357)

ONLINE 0.0050 ­0.0039 ­0.0038 ­0.0040
(0.0074) (0.0069) (0.0069) (0.0078)

ln(LP) ­0.1064** ­0.1071*** ­0.1072*** ­0.1072***
(0.0478) (0.0400) (0.0401) (0.0400)

ln(KP) 0.0320 0.0180 0.0182 0.0179
(0.0465) (0.0449) (0.0449) (0.0459)

ln(FP) 0.0012 0.0745 0.0736 0.0750
(0.0676) (0.0718) (0.0717) (0.0760)

ln(FP)*ln(LP) 0.0122 0.0102 0.0103 0.0102
(0.0096) (0.0088) (0.0088) (0.0088)

ln(KP)*ln(LP) 0.0054 0.0058* 0.0058* 0.0058*
(0.0039) (0.0035) (0.0035) (0.0035)

ln(FP)*ln(KP) ­0.0110 ­0.0081 ­0.0082 ­0.0081
(0.0092) (0.0084) (0.0084) (0.0085)

Time Dummies Yes Yes Yes Yes
Firm Dummies Yes Yes Yes Yes
Route Dummies Yes Yes Yes Yes
Observations 4311 4311 4311 4311
Centered R Square 0.4475 0.5255 0.5255 0.5255
Note: Robust standard errors in parentheses, clustered by each ticketing carrier on each
route. * p < 0.1, ** p < 0.05, *** p < 0.01.

The EFF variable has a negative sign, for all estimates in Table 3.3-3.5, indicating

that as marginal cost effi ciency increases the price dispersion is tempted to decrease. For

big city routes, a 10 percentage points increase in marginal cost effi ciency would lead to

0.0193 decrease in Gini coeffi cient. Moreover, 10 percentage points increase in marginal cost

effi ciency would lead to 0.0328 decrease in the Gini coeffi cient for the leisure routes. The

implication is that the expected fare difference would fall by 3.9% and 6.6% as the ratio of

48



the mean fares for two randomly selected tickets, respectively. The CON variable is not

significant in Table 3.3 and Table 3.5. However, it is significant and positive in Table 3.4.

Hence, in big city routes the conduct has a positive effect on price dispersion. In particular,

0.1 point increase in conduct17 would lead to 0.0032 increase in the Gini coeffi cient. The

implication is that the expected fare difference would increase by 0.64% as the ratio of

the mean fares for two randomly selected tickets. This is in line with the idea that in the

heterogeneous routes it is easier for the airlines to distinguish the consumers, and thus the

extent of price discrimination in these routes is expected to be higher compared with the

homogenous routes. This can be explained by differences in demand elasticities. Business

travelers have relatively lower demand elasticities for air transportation compared with the

leisure travelers, so airlines can charge a higher price to the business travelers. However, the

extent of price dispersion due to conduct is not high. Hence, the marginal cost effi ciency

is a much more effective determinant of price dispersion than the conduct. This result is

robust in all our estimations. Comparing the conduct estimates from the first and last

columns for Table 3.3-3.5, we see that the conduct parameter is over-estimated when the

marginal cost effi ciency is not included. Although this pattern that omitting effi ciency leads

to higher coeffi cients for the conduct is robust to different subsamples, the differences in

these coeffi cient estimates are not statistically significant. So, there is some evidence for

over-estimation (due to robustness of the over-estimation) but this evidence is weak at best.

Gini coeffi cient puts more weight on median values of prices, and thus it may not be

capturing some of the essential aspects of price dispersion. Therefore, we also use another

measure of price dispersion, PD90,10, which concentrates on the tail distributions of prices.

This measure would also be useful in testing the robustness of our results. In Table 3.6-3.8

we assume that Y = PD90,10 and MP = CON . The EFF variable has a negative sign, for

all estimates in Table 3.6-3.8, which agrees with our earlier estimates. The CON variable

is not significant in Table 3.7. However, it is significant and negative in Table 3.6 and Table

3.8. Hence, based on these estimates, in leisure routes the conduct has a negative effect on

17For comparison, the change in conduct when the number of symmetric Cournot players change from 3
to 4 would roughly be equal to 0.08. More precisely, it is 1

3
− 1

4
= 1

12
.
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price dispersion. This is in line with the idea that in the homogenous routes it is harder

for the airlines to distinguish the consumers. Again, the extent of price dispersion due to

the conduct is not high. In particular, 0.1 point increase in conduct would lead to a 1.07%

decrease in PD90,10 for leisure routes. Omitting the EFF variable from the estimations

lead to a positive bias on the coeffi cient of CON . The direction of this bias is robust to

different model specifications and subsamples that we used.

Table 3.6. Price Dispersion Estimation using PD9010 for All Routes
(P90­P10)/P10 No

Efficiency
Exogenous
Efficiency

Endogenous
Efficiency I

Endogenous
Efficiency II

CON ­0.3112** ­0.5556*** ­0.5590*** ­0.5366***
(0.1441) (0.1431) (0.1433) (0.1456)

EFF ­5.9524*** ­6.0350*** ­5.4902***
(0.2364) (0.2404) (0.6624)

ln(POP) 9.4251*** 8.8194*** 8.7953*** 8.8726***
(3.5219) (2.6106) (2.6028) (2.6583)

ln(PCI) ­0.1188 3.4838 3.5438 3.2135
(2.9949) (2.6057) (2.6090) (2.5763)

ln(SL) ­3.6859*** ­4.4109*** ­4.4206*** ­4.3545***
(1.3456) (1.3228) (1.3236) (1.3264)

ln(SL) Square 0.2946*** 0.3809*** 0.3821*** 0.3742***
(0.0996) (0.0976) (0.0977) (0.0986)

ln(SEG) ­0.0582 0.6130*** 0.6223*** 0.5610**
(0.2101) (0.2125) (0.2132) (0.2278)

ln(SIZE) ­0.8438 ­0.5147 ­0.5100 ­0.5402
(0.5160) (0.4463) (0.4466) (0.4447)

ONLINE ­0.0183 ­0.2245*** ­0.2274*** ­0.2085**
(0.0897) (0.0826) (0.0826) (0.0840)

ln(LP) ­1.1453** ­1.3291*** ­1.3312*** ­1.3148***
(0.5587) (0.4573) (0.4570) (0.4568)

ln(KP) 0.6047 0.3199 0.3161 0.3420
(0.6764) (0.6240) (0.6248) (0.6252)

ln(FP) 1.9086** 2.0206*** 2.0217*** 2.0124***
(0.7637) (0.7051) (0.7060) (0.7006)

ln(FP)*ln(LP) 0.1194 0.1177 0.1176 0.1179
(0.1243) (0.1099) (0.1100) (0.1098)

ln(KP)*ln(LP) 0.0506 0.0650 0.0652 0.0639
(0.0583) (0.0525) (0.0526) (0.0525)

ln(FP)*ln(KP) ­0.0982 ­0.0443 ­0.0435 ­0.0485
(0.1154) (0.0976) (0.0976) (0.0987)

Time Dummies Yes Yes Yes Yes
Firm Dummies Yes Yes Yes Yes
Route Dummies Yes Yes Yes Yes
Observations 18209 18209 18209 18209
Centered R Square 0.2839 0.3760 0.3759 0.3755
Note: Robust standard errors in parentheses, clustered by each ticketing carrier on each route.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 3.7. Price Dispersion Estimation using PD9010 for Big City Routes
(P90­P10)/P10 No

Efficiency
Exogenous
Efficiency

Endogenous
Efficiency I

Endogenous
Efficiency II

CON 0.6027*** 0.0286 0.0062 0.1315
(0.2074) (0.1962) (0.1961) (0.2763)

EFF ­5.3868*** ­5.5967*** ­4.4212**
(0.4753) (0.4786) (1.7466)

ln(POP) 16.5544*** 15.2415*** 15.1840*** 15.4744***
(6.1889) (4.2658) (4.2049) (4.5195)

ln(PCI) 1.6205 5.4444** 5.5908** 4.7579*
(3.2073) (2.6112) (2.6320) (2.7381)

ln(SL) 4.2874 1.0250 0.8977 1.6097
(2.7399) (2.3533) (2.3530) (2.6115)

ln(SL) Square ­0.3253* ­0.0155 ­0.0034 ­0.0710
(0.1942) (0.1684) (0.1684) (0.1989)

ln(SEG) ­0.6830 0.2932 0.3312 0.1182
(0.5977) (0.5076) (0.5067) (0.6100)

ln(SIZE) 0.5995 1.1353 1.1564 1.0393
(1.1044) (0.8854) (0.8833) (0.9498)

ONLINE ­0.1912 ­0.1787 ­0.1782 ­0.1809
(0.3128) (0.2499) (0.2485) (0.2569)

ln(LP) ­0.7585 ­0.9062 ­0.9117 ­0.8798
(1.6528) (1.2441) (1.2341) (1.3039)

ln(KP) ­0.6692 ­2.2327** ­2.2940** ­1.9524
(1.4611) (1.1269) (1.1210) (1.3286)

ln(FP) 4.2823*** 5.2537*** 5.2919*** 5.0795***
(1.6211) (1.3093) (1.3074) (1.3209)

ln(FP)*ln(LP) ­0.1250 ­0.2420 ­0.2467 ­0.2210
(0.3305) (0.2531) (0.2512) (0.2641)

ln(KP)*ln(LP) 0.1568 0.2631*** 0.2673*** 0.2441**
(0.1243) (0.0966) (0.0961) (0.1133)

ln(FP)*ln(KP) 0.0389 0.1368 0.1407 0.1193
(0.3314) (0.2525) (0.2504) (0.2633)

Time Dummies Yes Yes Yes Yes
Firm Dummies Yes Yes Yes Yes
Route Dummies Yes Yes Yes Yes
Observations 3382 3382 3382 3382
Centered R Square 0.3283 0.3854 0.3853 0.3651
Note: Robust standard errors in parentheses, clustered by each ticketing carrier on each
route. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 3.8. Price Dispersion Estimation using PD9010 for Leisure Routes
(P90­P10)/P10 No

Efficiency
Exogenous
Efficiency

Endogenous
Efficiency I

Endogenous
Efficiency II

CON ­0.6597*** ­0.9270*** ­0.9310*** ­1.0676***
(0.2551) (0.2904) (0.2910) (0.3810)

EFF ­6.4590*** ­6.5564*** ­9.8573***
(0.9274) (0.9795) (2.7810)

ln(POP) 3.7111 2.4526 2.4436 1.7676
(4.8276) (4.0482) (4.0390) (4.2265)

ln(PCI) ­2.6760 ­1.7466 ­1.7084 ­1.2822
(7.4863) (6.7686) (6.7684) (6.6986)

ln(SL) ­0.3396 ­1.3322 ­1.3452 ­1.8537
(1.5822) (1.6879) (1.6891) (1.9994)

ln(SL) Square 0.0393 0.1569 0.1585 0.2187
(0.1055) (0.1199) (0.1201) (0.1560)

ln(SEG) 0.1452 0.8976* 0.9091* 1.2934*
(0.4184) (0.5321) (0.5370) (0.7431)

ln(SIZE) ­0.3243 ­0.1679 ­0.1654 ­0.0852
(0.8576) (0.7577) (0.7577) (0.7460)

ONLINE 0.0444 ­0.1322 ­0.1349 ­0.2252
(0.1943) (0.1865) (0.1864) (0.2196)

ln(LP) ­0.8354 ­0.8511 ­0.8516 ­0.8588
(0.7764) (0.6323) (0.6322) (0.6667)

ln(KP) ­1.5694 ­1.8453 ­1.8494 ­1.9912
(1.3345) (1.3147) (1.3160) (1.3662)

ln(FP) ­0.5363 0.9134 0.9348 1.6773
(1.1273) (1.1643) (1.1706) (1.4071)

ln(FP)*ln(LP) ­0.1211 ­0.1596 ­0.1601 ­0.1800
(0.2288) (0.2176) (0.2177) (0.2258)

ln(KP)*ln(LP) 0.2014* 0.2095* 0.2096* 0.2138*
(0.1111) (0.1072) (0.1072) (0.1105)

ln(FP)*ln(KP) 0.1533 0.2101 0.2109 0.2401
(0.1926) (0.1806) (0.1807) (0.1929)

Time Dummies Yes Yes Yes Yes
Firm Dummies Yes Yes Yes Yes
Route Dummies Yes Yes Yes Yes
Observations 4311 4311 4311 4311
Centered R Square 0.5248 0.6095 0.6096 0.6058
Note: Robust standard errors in parentheses, clustered by each ticketing carrier on each
route. * p < 0.1, ** p < 0.05, *** p < 0.01.

Now, we combine our findings from Table 3.3-3.8. We start with Table 3.3 and Table

3.6. The coeffi cient of CON in Table 3.3 is statistically insignificant. Hence, we rely on the

coeffi cient from Table 3.6, which is negative and significant. The sign difference seems to

be incidental due to insignificance of the coeffi cient of CON in Table 3.3. Thus, we argue

that as the conduct increases, the overall price dispersion falls. This finding coincides with

the findings of Borenstein and Rose (1994). Based on Table 3.4 and Table 3.7, we argue

that the conduct has a positive effect on price dispersion on big city routes. Finally, based

on Table 3.5 and Table 3.8, we conclude that the conduct has a negative effect on price
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dispersion. Hence, if the whole sample is used in estimations, the positive and negative

effects in the big city and leisure routes may cancel out each other. This maybe one of the

potential reasons for the mixed results in the literature.

Finally, in Table 3.9, we consider HHI as a determinant of price dispersion and assume

that Y = GINI and MP = HHI. This table helps us see the differences between CON

and HHI when modeling price dispersion. In order to save space, we announce only the

coeffi cient estimates for HHI and EFF . Again, the EFF variable has a negative sign, for

all estimations, which agrees with our earlier results.

When we do not include the cost effi ciency, HHI have a positive effect on price disper-

sion for all routes and big city routes. The effect is not statistically significant for leisure

routes. Hence, the negative sign seems to be incidental. The estimation results are in line

with the findings of Gerardi and Shapiro (2009) that market concentration has a positive

effect on price dispersion. In big city routes, compared with the leisure routes, the market

concentration have a larger effect on price dispersion. As argued by Gerardi and Shapiro

(2009), this may be an evidence of larger price discrimination on big city routes. However,

once we include the marginal cost effi ciency, the statistical significance of these results dis-

appears. As we mentioned earlier, HHI might not be a good proxy for market power since

it does not capture the demand elasticities and marginal cost effi ciencies. Moreover, HHI

is a route specific measure, which may not control for the firm specific variations. Finally,

our CON estimates are jointly estimated with EFF , which makes CON a more compatible

measure to use along with EFF .
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Table 3.9. Price Dispersion Estimation using HHI

GINI A. All Routes B. Big­city Routes C. Leisure Routes
No EFF With EFF No EFF With EFF No EFF With EFF

HHI 0.1969** 0.1186 0.8143** 1.7546 ­0.0595 ­0.3594
(0.0879) (0.0873) (0.3993) (1.1820) (0.2276) (0.3906)

EFF ­0.1708*** ­0.1575 ­0.4253*
(0.0363) (0.1647) (0.2323)

Time Dummies Yes Yes Yes Yes Yes Yes
Firm Dummies Yes Yes Yes Yes Yes Yes
Route Dummies Yes Yes Yes Yes Yes Yes
Observations 18209 18209 3382 3382 4311 4311
Centered R Square 0.3806 0.4617 0.2274 ­0.1280 0.4338 0.3537
Note: Robust standard errors in parentheses, clustered by each ticketing carrier on each route. The columns of “With EFF”   exhibit
the estimation results including marginal cost efficiency using EFFIV2. * p < 0.1, ** p < 0.05, *** p < 0.01.

3.5 Summary and Concluding Remarks

In this study, we examined the determinants of airline price dispersion. We particularly

concentrated on the conduct and marginal cost effi ciency determinants of price dispersion.

Marginal cost effi ciency is an important yet unobservable determinant of price dispersion,

which is ignored by earlier studies. Due to its strong relationship with market power, ignor-

ing the airline effi ciencies can lead to inconsistent parameter estimates. Hence, we compared

the estimation results with and without marginal cost effi ciency to understand the extent

of potential biases in the earlier studies. The estimation results show that the marginal

effect of conduct may be over-estimated when the marginal cost effi ciency is omitted. We

considered the firm-specific conduct, CON , as a determinant of price dispersion in contrast

to the route specific HHI that are used the literature. If we consider CON and HHI as

proxies for market power, the CON variable has the advantage that it may enable us to

capture the relationship between market power and price dispersion more precisely.

We argued that the conduct has opposing effects on big city and leisure routes. In

particular, for the big city routes the relationship is positive and for the leisure routes it

is negative. This contrasting results may be a potential reason for mixed empirical results

in the literature. The marginal cost effi ciency has a negative effect on price dispersion and

this finding was robust in our all specifications. We found that the marginal cost effi ciency
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is a relatively more important component of price dispersion. The marginal cost effi ciency

not only has a direct effect on social welfare loss but also has an indirect effect through its

significant influence on the extent of price dispersion. While it would be diffi cult to measure

this indirect effect on the social welfare, it is revealed that marginal cost effi ciency has a

shrinking role on the effect of price dispersion for social welfare by decreasing the price

dispersion.18 This shrinkage effect dominates the corresponding effect of conduct on social

welfare. Finally, we found that the marginal cost effi ciency is more effective in leisure routes

compared with the big city routes. This may be partially because the price discrimination

would be harder to implement for the airlines (due to lack of consumer heterogeneity).

18See Kumar and Kutlu (2015) for a study that considers the effect of price discrimination on social
welfare.
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CHAPTER IV

REVENUE EFFICIENCY AND DYNAMIC PRICING IN

AIRLINE INDUSTRY

4.1 Introduction

The pricing of the flight tickets is always mystery for the consumers. It is common to have

one roundtrip ticket cheaper than an one-way ticket even for the same city pair. Also, it

is popular to find that the prices for the same flight change as frequently as daily, or even

hourly. Borenstein and Rose (1994) show that the expected difference in fares between two

randomly chosen travelers is 36% as the ratio of mean fare. Gerardi and Shapiro (2009)

and Gaggero and Piga (2011) find even higher values for price dispersion, 44% and 66%,

respectively. In Chapter III, we also find evidences for price dispersion. For Chicago based

routes, the Gini coeffi cient is 0.21. Based on these observations, it would be interesting to

examine how the airlines dynamically make the pricing decisions in order to maximize their

revenues. For the airline industry, once the flight schedule is determined, the fixed cost is

large enough to allow us to ignore the variable cost. Another reason is that in the short run,

the purchases of new aircrafts are not common, which contribute to the highest percentage

of fixed cost in airline industry. So, it is reasonable to concentrate on revenue optimization

when modeling airline behavior.1

Revenue management is also called yield management or seat inventory management or

dynamic pricing. According to Kimes (2002), yield management is defined as a method that

can help a firm sell the right inventory to the right customer at the right time for the right

price. In the airline industry, airlines sell identical seats at different prices to maximize

revenues. Since American Airlines introduced the yield management technique in early

1980s, as a response to People’s Express’s deeply discounted fares, the yield management

1 In this Chapter, the time period covered is from Apr 6th, 2015 to May 10th, 2015, which is a very short
time period.
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has become a more and more important strategy to gain competing advantages. Yield

management is realized through the computerized reservation system, which keeps records

of airline seats booking and fare information. Nowadays, this computerized reservation

system has become available not only for the airlines, but also for the travel agents. By

using this computerized system, it is easier for the airlines to track the demand states and

adjust the prices based on the demand forecast and competition dynamics.

As pointed out by Pinder (1995), Sridharan (1998) and Barut and Sridharan (2004),

the made-to-order (MTO) manufacturing industry is suitable for yield management. Yield

management is a general practice for perishable inventory control, such as hotel, rental

car, cruises and flight tickets. There are two common characteristics of these products or

service. First, the product/service expires at a certain point of time. Second, the capacity is

fixed in advance and the capacity constraint can only be extended at a very high marginal

cost. These two characteristics make the dynamic pricing strategy highly important for

these perishable goods/service. Davis (1994) and Smith et al. (1992) show that American

Airlines benefit from Yield Management (YM) and Smith et al. (1992) state that American

Airlines made an extra $1.4 billion between 1989 and 1991 because of its advanced yield

management techniques.

However, even though the importance of yield management is highly acknowledged,

there is not much research concerning yield management. The main reason might be that

the dynamic pricing data and load factor associated with dynamic price data are not easy

to get. This study overcomes this diffi culty by scripting the online data from priceline.com,

which is a popular website to book flight tickets in the U.S.. This website provides us

the information about ticket price, airline name, flight number, departure time, arrival

time, departure airport, arrival airport and seat map. We can count total number of

available seats, total number of unavailable seats and total capacity from seat maps using

Perl program. By scripting the daily data from top 10 Chicago based metropolitan city

routes and combining this with codeshare and hub information, we create a unique dynamic

pricing database which allows us to make an analysis about revenue effi ciency and dynamic

pricing.
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In this chapter, we first analyze the revenue management effi ciency of the U.S. domestic

airlines for each flight. Then we divide the whole sample into high-effi cient flights and low-

effi ciency flights based on the revenue effi ciency levels. By comparing the high-effi ciency

flights’dynamic pricing pattern with the low-effi ciency flights’pattern, we summarize the

potential points that airline could pay attention to in the future in order to improve revenue.

In this chapter, we mainly focus on the effects from load factor and advanced days purchased

(ADP) on dynamic prices, which are two main drivers for dynamic price changes. By doing

this, we also testify the validity of capacity-based theories and time-based theories in the

airline industry.

The main findings in this chapter are illustrated as follows. First, we find large differ-

ences in revenue effi ciency among different flights, firms and routes. Second, the dynamic

pricing patterns for the high-effi ciency flights are different from those of low-effi ciency flights.

To be more specific, the high-effi ciency flights tend to be less responsive to timing changes

(advanced days purchased, ADP). Especially for the time period between two weeks and

three weeks before departure, the low-effi ciency flights responds more sharply compared

with high-effi ciency flights. So, the implication of this is that airlines could further im-

prove the revenue by adjusting their reservation systems so that the prices do not change

so frequently based on timing, because such frequent changes in prices might worsen the

revenue optimization. Third, we only find weak evidences for capacity-based theories, but

find stronger evidences for time-based theories.

The rest of Chapter IV is structured as follows: Section 4.2 contains a detailed literature

review about revenue management and dynamic pricing strategies. Section 4.3 introduces

the data scripted from priceline.com and data from flightstats.com. Section 4.4 exhibits the

empirical specifications and the relevant results. In Section 4.5 we present our conclusions

and make policy suggestions.
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4.2 Related Literature

This part summarizes the main theoretical and empirical studies about revenue/yield man-

agement. Generally speaking, there are three sets of theories. One is classical price dis-

crimination theory, another is capacity-based theories and the third is time-based theo-

ries. In classical price discrimination models, the airlines try to distinguish and segment

the consumers by using different ticket restrictions, such as Saturday night stay and non-

refundability restrictions. By adding different ticket restrictions to different tickets, the

travelers self select themselves into different groups based on their different budgets and

demand elasticities.

Capacity-based theories argue that capacity is limited in the airline industry and the cost

associated with augmented capacity is large, that is airline capacity is costly but perishable.

Airline market is characterized by perishable goods, costly capacity and uncertain demand.

Prescott (1975), Eden (1990) and Dana (1999b) explain the relationship between fares and

seat availability under the assumption of uncertain demand. Also Dana(1999a) shows that

price dispersion increases demand shifting and thus increases the social welfare by allocating

the consumers into available seats.

Gale and Holmes (1992, 1993) employ a mechanism design approach to model advance

purchase discounts in a monopoly market. The monopoly firm utilizes fare discounts to

divert the consumers from “peak” to “off peak” flights. In their studies, it is assumed

that the consumers can only learn their time preferences right before the departure and

different customers have different opportunity costs of waiting. Based on their studies, the

peak flights should have higher average fare compared with off peak flights and the price

dispersion from off peak flight should be higher, as stated in Puller et al. (2009). Dana

(1998) states that in a perfectly competitive market, there might be advance purchase

discounts. Deneckere and Peck (2012) build a model to allow the current price to depend

on the evolution of the aggregate quantity sold in last time period on the supply side. On

the demand side, they allow inter-temporal substitution so that the consumers can decide

whether or not to delay their purchases based on their knowledge of demand states and their

expectations of future prices. By doing this, they relax the assumption in Dana (1998) that
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the airlines cannot adjust the prices as they learn new information about demand states

and other information.

Kimes (1989) explains the general requirements to implement revenue management.

Also he points out possible implementation approaches based on whether the price is variable

and whether the duration can be predictable. Kimes (1989) shows that different industries

should implement different revenue strategies based on their industry specific characteristics.

He states that, similar with hotel industry, airline industry lies in the Quadrant-2 industries,

so airline firms are trying their best to control for both duration and dynamic pricing,

which makes the revenue management more sophisticated. Brooks and Buttons (1994) use

shipping industry as an example to illustrate the rise of yield management during 1970s and

1980s. Talluri and van Ryzin (2006) talk about the details in yield management in their

textbook.

Due to the diffi culty of the empirical data on the dynamic occupancy ratio corresponding

to dynamic fares, only a limited number of empirical studies try to testify and analyze

these theories. Puller et al. (2009) use a census of ticket transactions from one computer

reservation system to study the relationship between fares, ticket characteristics and flight

load factors. They find mixed supports for the scarcity pricing theories. Escobari and

Gan (2007) employ a panel data analysis and find empirical support for the capacity-based

theories. By developing an effective cost of capacity (ECC) model, they show that higher

ECC would lead to higher prices. Also, they find that the effect from ECC on price is higher

in competitive markets. Also, Piga and Bachis (2007) find empirical support for Deneckere

and Peck (2012) that price does not necessarily increase over time. Escobari (2012) further

confirms that fares decrease until about two weeks before departure and then increase,

holding inventories constant.

4.3 Data Sources and variable constructions

The main data source in this chapter comes from data scripted from priceline.com, which is

among the top five biggest online travel agents. The other four online agents are Expedia,

Kayak, Orbitz and Travelocity. In 2014, 52% of the tickets are booked through online travel
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websites. Priceline offers almost lowest prices by providing lowest price guarantee. Even

though the importance of revenue management is widely acknowledged by the economists,

airlines and consumers, there are not many literatures that work on the dynamic pricing

based on the dynamic inventory in the airline industry. One of the diffi culties is that the

dynamic capacity occupancy at the time of a fare is not easy to get for the researchers.

In this chapter, we write a Perl program to script the daily dynamic inventory change

information associated with daily dynamic pricing data from priceline.com. Stavins (2001)

points out that since there are different booking classes, each with different sets of ticket

restrictions, it is necessary to control for ticket restrictions. By scripting ticket specific

data from priceline.com, we do not need to worry about the different ticket restrictions

because tickets offered by priceline.com have the same ticket restrictions.2 Considering

that high-end (first class and business class) tickets and low-end (coach class) tickets are

not so comparable because they have different market segments with different consumers,

we only focus on coach class tickets. What is more, we only focus on the non-stop flights

for two main reasons. One is that we do not want to introduce more heterogeneity between

non-stop flights and multi-stops flights, making our analysis complicated. The other reason

is that it takes too much time to download the multi-stop flights due to the large volume

of multi-stop flights.3

In this study, we track the dynamic pricing behavior through priceline.com each day

at the same time. The main variables scripted from priceline.com are price, airline name,

flight number, origin city, origin airport, destination city, destination airport, quote date,

departure date, departure time, arrival time and seat map. Our Perl program counts

the total number of seats, total number of available seats and their IDs, total number of

unavailable seats and their IDs from the seat map for each flight. In order to illustrate this

process better, Figure 4.1 is provided here. As shown in Figure 4.1, after entering the city

pairs and departure date, our Perl program will automatically list the full list of available

flights. Then this program automatically open the seat map associated with each ticket.

2There are some refundable full price tickets offered by priceline.com on departure date, but we delete
them from the dataset to make sure all tickets in this study have same ticket restrictions.

3The volume of multi-stop flights is about ten times of the volume of non-stop flights.
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And the seat map provides different colors and symbols for the "open seats" and "taken

seats", so our Perl program automatically remembers each color and symbol and counts

the total number of unavailable seats and total number of available seats, including their

corresponding IDs. Dividing the total number of unavailable seats by total number of seats,

we obtain the daily dynamic load factor for each flight on each scheduled departure date.

Using the changes in total number of unavailable seats, we calculate the quantity sold each

day, from where we obtain the total revenue for each flight. This is one of the important

highlights in the data construction part in this study.

Figure 4.1 Example for data scripting

Due to computation time constraints, the final dataset only contains the flights that orig-

inate from Chicago to top ten metropolitan cities, including Atlanta, New York, Houston,

Dallas, Boston, Los Angles, San Francisco, Miami, Washington, D.C. and Philadelphia.4

Since Chicago is a big city with large airports and heavy passenger traffi c, it is popular

to use Chicago-based routes. We follow Brander and Zhang (1990), using Chicago based

routes. And by doing this, we keep consistent throughout the thesis. We focus on the

flights that have scheduled departure dates between Apr 6th, 2015 and May 10th, 2015 to

4Chicago is one of the top 10 Metropolitan cities, so we extend the city list to top 11 cities.
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avoid the summer period. The summer period is known to have special demand and pricing

patterns compared with non-summer period. So, in this chapter, we only focus on non-

summer period to make things simple. We follow each flight from 60 days before departure

date till the departure date. The scription of the dynamic pricing and inventory data is

conducted each day at the same time. From priceline.com, we obtain the daily price, load

factor, advanced days purchased (ADP), total flight time. However, since the load factor

and quantity (revenue) are calculated from the online seat maps but the low cost carriers

(LCCs) do not have the seat maps posted on priceline.com,5 we lose the information about

low cost carriers for the revenue and dynamic load factor. So, the LCCs are not included

in the revenue effi ciency estimation and dynamic pricing estimations. However, we consider

the competition effects from the LCCs by taking them into consideration when calculating

the available flights on market. Also, we calculate the dynamic available number of flights

for each day, including airline-route-quoted date level, airline-quoted date level and route-

quoted date level. These dynamic number of flights are based on dynamic data of available

flights left on market. Since not all airlines post their tickets online (such as Southwest6),

the calculation of number of available flights might have some negative bias. However, this

might be the best way to capture the dynamic changes in number of available flights based

on our data. The idea is that if there are a wide range of flights available from other carriers,

the price should be lower due to the competition effect. If some flights become unavailable

and exit the market, the prices might increase for flights left on market due to the adjust-

ments in market structure. It may be considered as a dynamic measure of competition

level. If one carrier has a lot of flights available on the same routes, some consumers will

be willing to pay higher price since it would be easier to reschedule the flight if their flights

are delayed or they miss their flights. It is also possible that high delay rate due to high

utilization rate of aircrafts might lead to lower demand for such flights. Daily revenue is

calculated based on changes in the total number of unavailable seats and daily price. Then,

we sum up the total revenue for each flight. Due to the data limitations, we assume that

5Most LCCs donot allow consumers to choose their seats before departure.
6Southwest does not advertise its prices on the travel agents’website to keep its cost low.
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prices stay constant beyond 60 days before departure.

In addition to the data collected from priceline.com, we also collect the codeshare infor-

mation from flightstats.com. From this website, we collect the number of domestic codeshare

carriers and the number of foreign codeshare carriers for each flight. Codeshare agreement

is that two or more carriers share the same flight. So, codeshare means that the carriers

under the agreement are using the same operating carrier. It is a nowadays a popular strat-

egy for the airlines to cooperate with both domestic airlines and foreign airlines. However,

codeshare partners still publish and market the flight under their own airline designators

and flight numbers as part of their published timetable or schedule. The hub information

is collected from each airline’s offi cial website. We create two dummy variables for hub,

Hub_Origin (equal to 1 when the origination city is a hub for the carrier) and Hub_Dest

(equal to 1 when the destination is a hub for the carrier). The number of airports in origin

city and destination city is counted based on the number of airports that have available

flights between the city pairs. For instance, for Chicago-Atlanta route, there are flights from

ORD airport to ATL airport and from MDW airport to ATL airport, so on route Chicago-

Atlanta, we count the number of airports in the origination city, N_Airport_Origin, as 2.

The data used in Chapter IV is summarized in Table 4.1.7

7This summary data is the daily flight level data used in dynamic pricing estimations. However, in
revenue effi ciency estimation, we only keep one record for each flight to avoid duplicate revenue for the same
flight.
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Table 4.1. Descriptive Statistics

Variable Name Mean St.D. Variable Description

ln(Revenue) 10.01 0.64 Logarithm of revenue for each flight

Price 219.33 125.7 Dynamic price for each ticket

ln(Flight Time) 4.92 0.16 Logarithm of total flight time for given flight

Peak 0.57 0.5

Peak dummy, equal to 1 if during peak hour (9am to

6pm)

Domestic_Codeshar

e 0.52 0.61 The number of domestic codeshare partners on flight

level for given carrier

Foreign_Codeshare 1.75 1.82 The number of foreign codeshare partners on flight

level for given carrier

Hub_Origin 0.69 0.46 Hub dummy for origin city for given carrier

Hub_Dest 0.56 0.5 Hub dummy for destination city for given carrier

N_Airport_Origin 1.76 0.43 Number of airports in origination city that have flights

for given route

N_Airport_Dest 1.89 0.31 Number of airports in destination city that have flights

for given route

N_Flight_irt 16.5 7.6 Number of flights actively provided on date t by given

carrier on given departure date on given route

N_Flight_rt 64.44 31.45 Number of flights actively provided on date t on given

departure date on given route

N_Flight_it 68.74 29.64 Number of flights actively provided on date t by given

carrier on given departure date

Load Factor 0.62 0.24 Daily load factor, defined as total number of

unavailable seats divided by total number of seats

ADP 23.92 15.67 Advanced Days Purchased, defined as the difference

between quoted date and departure date

Observations 196753

Longer total flight time corresponds to longer distance, higher supply cost, higher supply

price and thus higher revenue. Also, longer distance means that there are fewer substitutes

such as automobiles and buses. This leads to higher demand and thus higher revenue.

So, we expect total flight time to have positive influence on revenue and price. Codeshare

agreement is a more and more popular strategy among the airline firms. By sharing the

same flight, the airlines tend to improve their capacity utilization rates and reduce their
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operating costs. However, since codeshare partners could also be competitors, the effect

from the codeshare agreement could be ambiguous. Flights from the same airline could serve

as substitutes before consumers make purchase decisions and serve as complementary after

they make purchase decisions and miss the purchased flight. So, the final effect is ambiguous

here, depending on the tradeoff between these two conflicting effects. Flights from other

carriers serve as substitutes, especially the flight during nearby hours. By examining the

effect from total available flights on the same route, we can have some insight about how

competition affects the revenue and dynamic pricing behavior.

Number of airports serves similarly as number of flights. However, if the number of

airports increase, it would highly reduce the passenger traffi c and the waiting cost for the

consumers and airlines. Based on this argument, it improves the service quality. Hub is a

very important determinant for the airlines. Airline hubs are airports that an airline uses

as a transfer point to get passengers to their intended destinations. It is part of a hub

and spoke model. The hub can highly reduce the cost, however, the effect from hub on

the revenue is unclear. If an airline has a hub in an airport, it is supposed to have a large

volume of traffi c and thus cause some delays in the baggage waiting. However, the hub may

also be good because travelers can easily transfer to other cities through hub airport. The

overall effect from hub on revenue is not so clear.

In addition to above variables, load factor and ADP are two very important variables

when we model dynamic pricing behaviors. By including dynamic load factor and ADP into

the model, we would testify the validity of the two important theories, capacity-based yield

management theories and time-based yield management theories. Load factor is calculated

as the ratio of number of total unavailable seats to number of total seats, which is occupation

ratio. Since this variable could be endogenous in the dynamic pricing estimation, we include

the lag of load factor as the instrument to control for the endogeneity. ADP is another

determinant when making pricing decisions. In Figure 4.2, we show the price changes for

two flights that departed on May 10th, 2015, Flight 1648 and Flight 2207. As shown in

Figure 4.2, the fares stay constant for a while and then increase sharply after 2 weeks before

departure date. However, there is a price decrease around 20 days before departure date.
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This finding coincides with Piga and Bachis (2007) and Deneckere and Peck (2012).
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Figure 4.2 Dynamic Prices

4.4 Empirical Specifications and Results

In order to distinguish the high-effi ciency firms from the low-effi ciency firms, we first esti-

mate the revenue effi ciency on flight level. The observation unit in this this section is flight,

that is, for each departure date, we calculate the total revenue for each flight f . Rather than

airline level study, flight level data could exhibit the detailed dynamic pricing strategy for

each flight. Some airlines might be more successful in dynamically making prices for peak

flights, compared with off peak flights. It is possible for an airline to be better at pricing

weekday departures than weekend departures. Moreover, there are many other factors that

would lead to heterogeneity among the flights, leading to differences in revenue effi ciencies

even for the same airline, such as different operation styles in different city-pairs. Taking

these concerns into consideration, we treat each flight on each departure date separately.

Also, we treat same flight on different departure dates as different flights. Additionally, we

treat one same flight marketed by different airlines as separate flights.8 After aggregating

8Same flight marketed by different airlines are treated as different flights, because even for the same
flights, different prices are offered by different airlines.
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the total revenue for each flight, the empirical specification for revenue effi ciency is given

by

R (Xf ) = R∗ (Xf ) exp (−uf + vf )⇔ (17)

lnR (Xf ) = lnR∗ (Xf )− uf + vf

The deterministic component of best practicing firm’s revenue is given by

lnR∗ (Xf ) = β0 + β1 ln(Flight T imef ) + β2Peakf +N_Airportβ3 (18)

+Codeshareβ4 +N_Flightsβ5 +Hubβ6 +DOWfβ7

Here f refers to flight; R (Xf ) is the total revenue for flight f ; R∗ (Xf ) denotes the best

practice airline’s revenue, which serves as benchmark revenue. The benchmark revenue is a

function of revenue related factors, Xd
f , including total flight time (Flight T imef ), a vec-

tor of number of codeshare carriers, Codeshare (number of domestic codeshare carriers,

Domestic_Codeshare and number of foreign codeshare carriers, Foreign_Codeshare),

a vector of number of airports (number of airports in origin city, N_Airport_Origin

and number of airports in destination city, N_Airport_Dest), a vector of number of

flights (number of flights from the same airline on same route on the same departure date,

N_Flight_ir = maxt(N_Flight_irt), number of flights on the same route on given de-

parture day, N_Flight_r = maxt(N_Flight_rt) and maximum number of flights from

the same carrier on given departure day N_Flight_i = maxt(N_Flight_it)), a vector

of day of the week dummies for the departure date, DOW (six dummies from Monday

to Saturday), peak hour dummy (Peak, 9am to 6pm departure time) and a vector of hub

dummies, Hub (one for origination city and the other for destination city, denoted by

Hub_Origin and Hub_Dest respectively). uf is a one-sided error term, which captures

the ineffi ciency part of the revenue management. Here we assume that that uf = hf ũf and

ũf ∼ N+
(
0, σ2u

)
. Here σ2u = exp (Xuβu) and Xu are the factors that would affect the het-

erogeneity in revenue effi ciency, including Flight T imef in this study. And vf ∼ N
(
0, σ2v

)
where σ2v = exp (βε). In Stochastic Frontier Analysis, the ineffi ciency can be identified from
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the asymmetry of uf term. vf term is the conventional two sided error term, which follows

normal distribution in this study. When measuring revenue effi ciency, it is reasonable to

suspect that the number of flights and hub dummies could be endogeneous variables. Higher

revenue attracts entries of new airlines, which induces the endogeneity of number of flights.

Moreover, it is reasonable to believe that higher revenue encourages the airlines to build

a hub in the city, indicating the endogeneity of hub dummies. However since our sample

only covers a very short time period (from Apr 6th to May 10th), during which the airlines

could not adjust these factors, we consider these variables to be exogenous in this short

time period estimation.

Based on the estimations of revenue effi ciency, we show the estimation results in Table

4.2 and summarize the revenue effi ciency in Table 4.3. As shown in Table 4.3, the mean

value of revenue effi ciency is 0.7463 and the median value is 0.7560. So, there is still

large room for the airlines to improve their revenue effi ciencies. As shown in Table 4.2,

longer flight time is correlated with higher revenue. Longer flight time for the non-stop

flights corresponds to longer distance, which indicates lower possibility to be substituted

by automobile transportation or bus. This leads to higher revenue for the airlines.9 Peak

dummy, as expected, has a positive effect on revenue due to lower demand for offpeak flights.

The number of domestic codeshare carriers has a negative effect on revenue. On the one

hand, if one carrier has more domestic codeshare carriers, the possibility of colluding with

other carriers is higher, leading to higher revenue. On the other hand, domestic codeshare

partners could be potential competitors. For the same flight, sometimes different ticketing

carriers post different prices to compete with each other. What is more, different consumers

belong to different loyalty programs, even for the same prices, different consumers might

purchase from different airlines in order to accumulate the mileage for their future flights.

These two conflicting effects cancel out with each other, leading to ambiguous results. Based

on our estimations, the latter effect dominate the former effect, leading to negative effect

from number of domestic codeshare carriers on revenue. Most of the time, foreign codeshare

9Of course, longer distance means higher operating cost. Since we only focus on the revenue part, not
profit, we decide to ignore this effect.
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partners cooperate with the domestic carriers on the domestic segment, not involving the

domestic segment’s market. So, the competition effect from the foreign codeshare partners

is pretty low in the domestic market. Additionally, the foreign codeshare partners help

to reduce the demand uncertainty for the domestic carriers. We find positive effect from

number of foreign codeshare partners in this study.

Hub in origin city and destination city both improve the revenue. Hub could potentially

improve operation effi ciency, leading to higher revenue. Higher number of airports, both in

origination city and in destination city, contributes to reduce the volume of traveler traffi c

and thus reduce the flight-level revenue. Number of flights from the same carrier on the

same route on the same departure date as analyzed above might have ambiguous effect from

two conflicting effect. Based on Table 4.2, we find positive effect and we argue that people

prefer the carriers with higher flexibility. Number of flights on the same route measures the

competition among different flights. Higher competition level leads to shrink of the revenue,

coinciding with traditional textbook theory. If one carrier has more flights on the same day,

it is more likely that there is higher possibility of delays since delays from earlier flights

most likely affect the timing of later flights. Since we have ln(σ2u) = Xuβ, negative sign

from flight time indicates that routes with longer distance have higher revenue effi ciency. In

Table 4.3, we also find large diversity in revenue effi ciencies, which encourage us to explore

the dynamic pricing patterns that lead to such big differences in revenue effi ciency.
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Table 4.2. Estimations of Revenue Efficiency

ln(Revenue) Estimates

ln(Flight Time) 0.8532***
(0.0311)

Peak 0.0449***
(0.0088)

Domestic_Codeshare ­0.1200***
(0.0084)

Foreign_Codeshare 0.0169***
(0.0030)

Hub_Origin 0.2188***
(0.0212)

Hub_Dest 0.0726***
(0.0123)

N_Airport_Origin ­0.5663***
(0.0156)

N_Airport_Dest ­0.0775***
(0.0158)

N_Flight_ir 0.0292***
(0.0011)

N_Flight_r ­0.0005**
(0.0002)

N_Flight_i ­0.0043***
(0.0003)

Day of Week Dummies Yes

ln(sigma_u^2)

ln(Flight Time) ­0.6802***
(0.1630)

Constant 1.3764*
(0.8109)

ln(sigma_v^2)

Constant ­1.3875***
(0.0294)

Observations 16207
Log Likelihood ­13100.914

Note: Standard errors in parentheses, clustered by each flight

on each departure date. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 4.3. Summary of Revenue Efficiency

Mean Median Min Max
Revenue Inefficiency 0.7463 0.7560 0.2753 0.9175

In revenue effi ciency estimations, we only keep one record for each flight in order to

avoid duplicate revenues for the same flight. In the dynamic pricing estimations, we keep

the full records for the flights that are examined in revenue effi ciency part, and analyze

the dynamics of pricing behavior. We categorize one flight as high-effi ciency flight if its

effi ciency is above the median value (0.7560) and categorize it as low-effi ciency flight if its

effi ciency is below the median value. We obtain dynamic pricing estimations separately for

these two groups. The empirical specification of dynamic pricing is given by

Pft = β0 + β1ADPft + β2LoadFactorft + β3Peakf +N_Airportftβ4 (19)

+Codeshareβ5 +N_Flightftβ6 +Hubβ7 +DOWfβ8 + Ffβf +RrβR + εft

The dependent variable here is the price for flight f on quoted date t (ADP = t), Pft.

So, for each flight, we have a series of prices. In this estimation, we control for ADP ,

which captures the importance of timing in dynamic pricing, corresponding to the time-

based theories. Also, load factor (LoadFactor) is another important factor that affects

the changes in prices. We would expect that higher load factor means the scarcity of the

seats, leading to a higher price, indicated by capacity-based theories. Peak time flights

are widely known to have much higher prices than off peak flights. So, we also control

for peak dummy, Peak, in our estimations. Weekend flights tend to have higher price

due to higher demand during weekend, so we include the weekday dummies from Mon-

day to Saturday, DOW. A vector of hub dummies, Hub (Hub_origin and Hub_dest) is

also included in the estimations. A vector of number of codeshare partners are controlled

here (Codeshare), including number of domestic codeshare and foreign codeshare partners

(Domestic_codeshare & Foreign_codeshare). A vector of number of flights, N_Flight,

is also controlled in this estimation, including N_flight_irt, N_flight_it, N_flight_rt.
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These number of flights capture the dynamic number of available flights.10 A vector of

number of airports, N_Airport (N_Airport_Origin and N_Airport_Dest) is also in-

cluded in the estimations. Firm dummies (Ff ) and route dummies (Rr) are controlled in

this estimation.

The estimation results are given in Table 4.4, which has four columns. The first col-

umn is the high-effi ciency flights’estimations with the assumption of exogenous load factor,

the second column is the high-effi ciency flights’estimation with the assumption of endoge-

nous load factor. The third column and fourth column correspond to the estimations for

low-effi ciency group when the load factor is assumed to be exogenous and endogenous, re-

spectively. Since the endogeneity tests indicate that there is endogeneity problem, we mainly

focus on the estimations that treat load factor as endogenous variable. As mentioned above,

the lag value of load factor is the instrumental variable for load factor. The exogenous ver-

sion estimates are provided here as robustness check. From Table 4.4, we find a positive

relationship between load factor and price for both low-effi ciency flights and high-effi ciency

flights. However, the coeffi cient is not significant at 10% significance level except for the

low-effi ciency group with exogenous load factor. Based on this, we conclude that we only

find weak evidence of capacity-based theories. An airline with higher load factor tends to

price higher due to the scarcity of the remaining seats for the low-effi ciency flights. For the

low-effi ciency flights, in column three, we find that 10 percent increase in load factor would

lead to about $4 price change for one ticket. This is the average effect since 60 days before

departure. We would suspect that this effect could be larger when departure date nears.11

Compared with the high-effi ciency flights, it looks like that the low-effi ciency flights might

be too responsive to the capacity change, leading to smaller market share, compared with

high-effi ciency flights. It is possible that the low-effi ciency flights want to optimize their

revenues by frequently change their prices. However, this could lead to suboptimization

of the revenue. We only find weak evidences of capacity-based theory from Table 4.4.12

10These three variables are different from what we used in revenue effi ciency.
11We leave this topic to future studies.
12Table 4.5 also shows similar results.
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As departure date nears, the price level goes up for both high-effi ciency flights and low-

effi ciency flights. We do not find statistically significant differences between high-effi ciency

flights and low-effi ciency flights on time-based pricing patterns since the difference between

the estimates for ADP is not significant at 10% significance level. Most of the travelers do

not learn their exact preferences about flight time until a couple of days before departure.

The business travelers do not want to sacrifice their time flexibility for the price differences.

So, the airlines charge much higher to the last minute buyers, who have lower demand

elasticities and higher budgets. Flights during peak hours tend to have much higher price.

Generally speaking, the price different between peak flights and off peak flights is around

$9. As mentioned above, the domestic codeshare partners mostly act as competitors while

foreign codeshare partners help to reduce the demand uncertainty. Hub in origination city

plays little role in price, but the hub in destination city has negative effect on price. One

the one hand, hub provides high convenience for the consumers to transfer to other cities.

On the other hand, hub means heavy traffi c and longer waiting time for the baggage if the

hub is in destination city. From Table 4.4, we find that the consumers would like to pay less

if they expect to wait longer for their luggage. The three types of number of flights affect

dynamic pricing in the same way as they affect revenue effi ciency.

74



Table 4.4. Comparison of Dynamic Pricing between High­efficiency with Low­efficiency Flights
Price High Efficiency

(1)
High Efficiency

(2)
Low Efficiency

(1)
Low Efficiency

(2)
Load Factor 17.8474 14.8241 39.8553** 11.2583

(18.5738) (17.1821) (15.9798) (16.1958)
ADP ­2.4563*** ­2.4541*** ­2.4515*** ­2.6186***

(0.4982) (0.5394) (0.2124) (0.2322)
Peak 8.3341*** 8.3171*** 8.7528*** 9.8216***

(2.4754) (2.6074) (1.5450) (1.4435)
Domestic_Codeshare ­13.0996** ­12.8836** ­14.1333* ­11.4425*

(6.1415) (5.6328) (7.7737) (6.5159)
Foreign_Codeshare 2.5927** 2.5952** 0.7564 0.6900

(1.0583) (1.0320) (1.8116) (1.6110)
Hub_Origin 0.0000 39.4922 0.0000 ­25.3397

(0.0000) (36.7955) (0.0000) (22.1735)
Hub_Dest ­28.7831*** ­28.2012*** ­24.4487** ­22.1744**

(6.0983) (6.5010) (11.8082) (11.3060)
N_Flight_irt 2.0894*** 2.1586*** 0.8131 1.1549

(0.7038) (0.6715) (0.9591) (0.9031)
N_Flight_rt ­1.3238*** ­1.3885*** ­0.3592* ­0.4348**

(0.2642) (0.2776) (0.2068) (0.2074)
N_Flight_it ­0.8639* ­0.8638* ­0.1183 ­0.1252

(0.4530) (0.4512) (0.1811) (0.1815)
Day of Week
Dummies

Yes Yes Yes Yes

Firm Dummies Yes Yes Yes Yes
Route Dummies Yes Yes Yes Yes
Observations 98411 92800 98342 93838
R Square 0.5128 0.5352 0.3476 0.4677
Note: Standard errors in parentheses, clustered by each flight on each departure date. * p < 0.1, ** p <
0.05, *** p < 0.01.

Since timing plays a very important role in dynamic pricing as shown in Table 4.4, we

further categorize the ADP into 0-6 day, 7-13 days, 14-21 days and 22 days plus to explore

the detailed dynamic pricing patterns based on timing. In Table 4.5, we put these dummy

variables into the regression. We find that there are large price differences if one purchase

the ticket at different time. To be specific, the travelers who buy tickets in the last week

would pay $140 more if they buy from high-effi ciency flights, compared with buying the

same ticket three weeks before the departure. This price difference further increases to

$159 for the low-effi ciency flights. Again, we did not find statistically significant differences

for the periods of ADP0-6 and ADP7-13. However, we find some differences in time period of
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ADP14-21, that is, the low-effi ciency flights seem to be more sensitive to timing during this

time period compared with the high-effi ciency flights. The estimates for ADP14-21 is not

significant for high-effi ciency estimations at 10% significance level. The higher sensitivity to

timing for the low-effi ciency flights would make the travelers switch to other flights. Also,

the estimation results from Table 4.5 validate the robustness of estimations in Table 4.4.

Again, same as Table 4.4, we only find weak evidences for capacity-based theories from

low-effi ciency flights. Generally speaking, by comparing the high-effi cient flights with low-

effi ciency ones, we provide some insights for the low-effi ciency flights about how to change

their pricing strategies so as to improve their revenue effi ciencies and thus total profits. It

is possible that the low effi ciency might come from the excessive response to the changes in

available seats and timing, leading to loss in market share. The low-effi ciency flights might

also underestimate the elasticity of demand of the travelers, or they underestimate the

substitute possibilities from other flights. Another explanation is that low-effi ciency flights

try to change their prices more frequently in order to fix ineffi ciency problem. However, the

frequent changes make the low-effi ciency flights hard to fully optimize their changes. For

instance, it gets harder to segment customers for the right prices when there are frequent

price changes. According to Customer Satisfaction Report for online travel agency in 2014,

66% of the consumers put prices as the primary reason that customers reserve tickets from

an online travel agency. So, too responsive changes in price would scare off the customers,

leading to loss in market share and thus revenue. So, based on this finding, it would be

beneficial for the low-effi ciency flights/airlines to adjust their computer reservation systems

so that the prices do not react so sharply to the available capacity changes and timing

changes. Also, the low-effi ciency flights should think about how the frequent changes of the

price damage the revenue effi ciencies.
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Table 4.5. Comparison of Dynamic Pricing between High­efficiency with Low­efficiency Flights V2
Price High Efficiency

(1)
High Efficiency

(2)
Low Efficiency

(1)
Low Efficiency

(2)
Load Factor 21.4311 16.2360 40.0366** 21.0103

(17.6512) (16.0385) (15.8822) (15.9211)
ADP0­6 140.2287*** 143.5072*** 158.9166*** 163.2612***

(24.5199) (26.2268) (11.1958) (11.6413)
ADP7­13 43.8342*** 45.0737*** 46.2882*** 50.0924***

(13.1233) (14.5414) (6.5316) (6.9091)
ADP14­21 11.2864 11.8438 6.7886** 9.1178**

(7.7311) (8.5181) (3.3044) (3.6538)
Peak 8.0297*** 8.1272*** 8.5657*** 9.3403***

(2.5416) (2.6589) (1.4163) (1.3549)
Domestic_Codeshare ­13.7461** ­13.5266** ­15.2643** ­13.6047**

(6.6176) (6.0657) (7.1470) (6.2039)
Foreign_Codeshare 2.7719** 2.7600** 0.6908 0.6315

(1.1375) (1.1068) (1.6946) (1.5468)
Hub_Origin 0.0000 59.8544** 0.0000 ­22.7134

(0.0000) (27.6042) (0.0000) (22.0840)
Hub_Dest ­29.7924*** ­29.0121*** ­25.1978** ­23.8226**

(6.1721) (6.4733) (11.1660) (10.8333)
N_Flight_irt 2.0589*** 2.1610*** 0.8051 1.0161

(0.6855) (0.6722) (0.9468) (0.8937)
N_Flight_rt ­1.2591*** ­1.3195*** ­0.3674* ­0.4067**

(0.2616) (0.2714) (0.2121) (0.2057)
N_Flight_it ­0.9280** ­0.9234** ­0.1567 ­0.1738

(0.4202) (0.4144) (0.1384) (0.1339)
Day of Week
Dummies

Yes Yes Yes Yes

Firm Dummies Yes Yes Yes Yes
Route Dummies Yes Yes Yes Yes
Observations 98411 92800 98342 93838
Centered R Square 0.5493 0.4739 0.5352 0.4677
Note: Standard errors in parentheses, clustered by each flight on each departure date. * p < 0.1, ** p <
0.05, *** p < 0.01.

4.5 Summary and Concluding Remarks

Using a unique self-collected data from priceline.com, this chapter examines the revenue

effi ciency on the flight level. Employing the stochastic frontier analysis estimations, we ob-

tain the revenue effi ciencies of the flights. The revenue effi ciencies between different flights

are shown to be highly diverse. By comparing the dynamic pricing patterns between high-

effi ciency flights with the low-effi ciency flights, we find that low-effi ciency flights response

more sensitively to the available capacity changes and timing change. To be specific, the
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prices of low-effi ciency flights respond more sensitively than high-effi ciency flights from 3

weeks to 2 weeks before departure. The frequently changes in price would lead to subop-

timization of the revenue for these flights. Our suggestions for the low-effi ciency flights is

that they might try to adjust their computer reservation systems so that the prices are less

responsive to the load factor changes and timing changes. Or, they should not provide so

frequent changes in prices, which might cause loss in suboptimization of prices.

Also, in this chapter, we find evidences for both capacity-based theories and time-based

theories. To be specific, higher load factors relates to higher price levels. And prices increase

as departure nears, especially for the last minute buyers. However, we do not find strong

evidences for capacity-based theory for the high-effi ciency flights. We find some evidences

for capacity-based theory from low-effi ciency flights. The evidences for time-based theory

are robust to both high-effi ciency flights and low-effi ciency flights.
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CHAPTER V

CONCLUSIONS

This thesis studies market power, cost effi ciency and pricing strategies in the airline industry.

In Chapter II, this thesis builds up a theoretical framework that enables the estimation of

marginal cost effi ciency without total cost data. Chapter III analyzes the factors that affect

the price dispersion based on the estimates obtained from Chapter II. Chapter IV provides

an analysis of the revenue effi ciency and dynamic pricing patterns for the U.S. domestic

airlines. So, this thesis provides a comprehensive study of the market competition, cost

effi ciency and pricing strategies in the airline industry.

Chapter II develops a theoretical framework that allows simultaneous estimation of

marginal cost effi ciency and conduct parameter without total cost data. This is the first

study that enables estimation of marginal cost effi ciency without total cost data, to our best

knowledge. Traditional SFA obtains the cost effi ciency from the cost function, which requires

total cost data. Lerner Index also has the same problem. Conduct parameter framework

derives the “perceived marginal revenue”from the demand and supply system. In Chapter

II, this thesis combines the conduct parameter framework with SFA literature and develops

a conduct parameter based model to estimate marginal cost effi ciency. By doing this, this

thesis provides a theoretical framework that enables us to estimate marginal cost effi ciency

and conduct parameter simultaneously. The airline data is employed in this study to testify

the theoretical framework in Chapter II. The airline data is collected from DB1B, Form 41

and T100. And the time period covered by Chapter II is 1999I-2009IV and we only focus

on coach class tickets on Chicago based routes. Using control function approach to deal

with the endogeneity problem, this thesis validates the theoretical framework provided in

Chapter II. In Chapter II, we find the cost effi ciency differences among the firm-route pairs.

Moreover, Chapter II explores the relationship between conduct parameter and marginal

cost effi ciency and finds evidence for QLH from the airline data.
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Chapter III studies the determinants of price dispersion. In particular, we are interested

in how market power and marginal cost effi ciency affect the price dispersion. Based on the

estimates of conduct parameter and marginal cost effi ciency from Chapter II, Chapter III

examines the direction of conduct and marginal cost effi ciency’s effect on price dispersion.

The finding of Chapter III supports Borenstein and Rose (1994) that generally the market

power, proxied by conduct, has a negative effect on price dispersion for all routes sample.

Moreover, we find that for big city routes, market power has a positive effect on price

dispersion while the effect is negative for leisure routes. Additionally, we find that the effect

of marginal cost effi ciency is negative. We find negative relationship between conduct and

marginal cost effi ciency in Chapter II. The instrumental variable used in previous studies,

geometric market share, is correlated with marginal cost effi ciency (the omitted variable)

in previous studies. Chapter III also examines whether this correlation leads to bias in

previous studies. We only find weak evidences for overestimation. In Chapter III, we also

compare conduct with HHI (widely used in previous studies) and we find that conduct is

preferred to HHI since HHI does not contain information about elasticity of demand and

marginal cost effi ciency information.

Chapter IV analyzes the dynamic pricing patterns for the airlines. The daily dynamic

pricing data and its associated load factor information are scripted from priceline.com using

Perl program. This unique dataset allows us to explore how the airlines make dynamic

pricing decisions, especially based on available seats left and advanced days purchased.

Chapter II and Chapter III employ the post sale data from DB1B, while Chapter IV utilizes

the data scripted from priceline.com. In Chapter IV, this study first analyzes the revenue

effi ciencies of the flights. From here, we find large differences in the revenue effi ciency among

different flights. The mean value of revenue effi ciency is 0.75, which means that the airlines

still have a very large room for improvement. By dividing the flights into high-effi ciency

and low-effi ciency flights, we compare the different dynamic pricing patterns for these two

groups, focusing on load factor and ADP. Also, we find weak evidences for capacity-based

theories and stronger evidence for time-based theories.
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APPENDIX A

DATA AND VARIABLES

A.1 Details in data construction

In this Appendix we provide the details in the data construction process. First, all multi-

destination tickets are dropped as it is diffi cult to identify the ticket’s origin and destination

without knowing the exact purpose of the trip. Second, any itinerary involving international

flights is eliminated. Third, we adjust the fare class for high-end carrier. That is, for some

airlines, due to marketing strategies, only high-end (first class and business class) tickets are

provided to consumers on all routes, especially some small airlines. However, the quality

should be taken as coach class. Therefore, we consider all such tickets as coach class tickets.

In different time periods, due to changes in the pricing strategy, sometimes high-end-only

carrier switches to a regular carrier which sells both coach class tickets and high-end tickets.

For instance, Sun Country Airlines does not provide coach class tickets in 2001 but provides

coach tickets in 2005 and years after. Hence, we treat the tickets in each quarter separately

when considering the adjustment. That is, we treat high-end tickets from Sun Country

Airlines as coach class tickets in 2001, not in year 2005. Fourth, tickets that have high-

end segments and unknown fare classes are dropped. We followed Borenstein (1989) and

Brueckner, Dyer, and Spiller (1992) by using ticketing carrier as our airline as an observation

unit. Also, firm specific average segment numbers, average stage length on a given route are

calculated after further elimination of multi-ticketing-carrier tickets. Moreover, our data set

includes a distance variable which is the shortest directional flight distance.
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A.2 Calculation of Gini Coeffi cient

The GINI variable is calculated as:

GINI = 1− 2(
∑
i=1,N

((farei ∗
PAXi

REV ENUE
)

∗(1

2

PAXi

PAX
+ (1−

∑
j=1,i

PAXj

PAX
)))

where N is the number of different fare level tickets by a certain carrier on certain route

in certain quarter, farei is the reported fare for the ith ticket, PAXi is the number of

passengers purchased at farei, REV ENUE is the total revenue by certain carrier on certain

route in certain quarter and PAX is the total passenger number that traveled by a certain

carrier on certain route in certain quarter.

A.3 Calculation of Geometric Market Share

The GEO variable is defined as:

GEO =

√
ENPxoENPxd∑

y

√
ENPyoENPyd

where x is the observed airline, y indexes all airlines and ENPxo and ENPxd are the

quarterly enplanement at origin city and destination city by airline x.
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