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ABSTRACT

The empirical likelihood method introduced by Owen (1988, 1990) is a powerful

nonparametric method for statistical inference. It has been one of the most researched

methods in statistics in the last twenty-five years and remains to be a very active

area of research today. There is now a large body of literature on empirical likelihood

method which covers its applications in many areas of statistics (Owen, 2001).

One important problem affecting the empirical likelihood method is its poor ac-

curacy, especially for small sample and/or high-dimension applications. The poor

accuracy can be alleviated by using high-order empirical likelihood methods such as

the Bartlett corrected empirical likelihood but it cannot be completely resolved by

high-order asymptotic methods alone. Since the work of Tsao (2004), the impact of

the convex hull constraint in the formulation of the empirical likelihood on the finite-

sample accuracy has been better understood, and methods have been developed to

break this constraint in order to improve the accuracy. Three important methods

along this direction are [1] the penalized empirical likelihood of Bartolucci (2007)

and Lahiri and Mukhopadhyay (2012), [2] the adjusted empirical likelihood by Chen,

Variyath and Abraham (2008), Emerson and Owen (2009), Liu and Chen (2010) and

Chen and Huang (2012), and [3] the extended empirical likelihood of Tsao (2013) and

Tsao and Wu (2013). The latter is particularly attractive in that it retains not only
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the asymptotic properties of the original empirical likelihood, but also its important

geometric characteristics. In this thesis, we generalize the extended empirical likeli-

hood of Tsao and Wu (2013) to handle inferences in two large classes of one-sample

and two-sample problems.

In Chapter 2, we generalize the extended empirical likelihood to handle inference

for the large class of parameters defined by one-sample estimating equations, which

includes the mean as a special case. In Chapters 3 and 4, we generalize the extended

empirical likelihood to handle two-sample problems; in Chapter 3, we study the ex-

tended empirical likelihood for the difference between two p-dimensional means; in

Chapter 4, we consider the extended empirical likelihood for the difference between

two p-dimensional parameters defined by estimating equations. In all cases, we give

both the first- and second-order extended empirical likelihood methods and compare

these methods with existing methods. Technically, the two-sample mean problem

in Chapter 3 is a special case of the general two-sample problem in Chapter 4. We

single out the mean case to form Chapter 3 not only because it is a standalone pub-

lished work, but also because it naturally leads up to the more difficult two-sample

estimating equations problem in Chapter 4.

We note that Chapter 2 is the published paper Tsao and Wu (2014); Chapter 3 is

the published paper Wu and Tsao (2014). To comply with the University of Victoria

policy regarding the use of published work for thesis and in accordance with copyright

agreements between authors and journal publishers, details of these published work

are acknowledged at the beginning of these chapters. Chapter 4 is another joint paper

Tsao and Wu (2015) which has been submitted for publication.
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Chapter 1

Introduction

The empirical likelihood method, first introduced by Owen (1988, 1990), is a powerful

nonparametric method for statistical inference. Like the bootstrap and jackknife

methods, it does not require strong distributional assumptions. It produces confidence

regions which reflect the shape of the data without the need for a pivotal quantity,

and it yields efficient non-parametric maximum likelihood estimates that make use of

side information. In the last twenty-five years, the empirical likelihood method has

found applications in virtually every area of statistical research (Owen, 2001). Today,

it remains to be one of the most active areas of statistical research.

Since the early development of the empirical likelihood method, it has been widely

observed that the empirical likelihood confidence regions tend to have poor coverage

accuracy. In particular, there is an undercoverage problem in that the coverage prob-

ability of an empirical likelihood ratio confidence region tends to be lower than the

nominal level; see, e.g., Hall and La Scala (1990), Qin and Lawless (1994), Corcoran,

Davison and Spady (1995), Owen (2001) and Liu and Chen (2010). The objective of

this thesis is to improve the accuracy of the empirical likelihood inference for a large

class of parameters defined by estimating equations where the poor accuracy problem

is particularly serious and well-known. We tackle this problem in one-sample and
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two-sample sittings by generalizing the extended empirical likelihood of Tsao (2013)

and Tsao and Wu (2013). Our main results are a first-order and a second-order

extended empirical likelihood methods for such parameters. We show through sim-

ulation studies these new methods are substantially more accurate than the original

empirical likelihood method.

The first important work addressing the accuracy issue of the empirical likelihood

method is DiCiccio, Hall and Romano (1991) which showed that the empirical like-

lihood is Bartlett correctable. The Bartlett corrected empirical likelihood has the

second-order accuracy, and the empirical likelihood is the only non-parametric like-

lihood that has been found to be Bartlett correctable. This surprising result added

considerable theoretical appeal to the method of empirical likelihood. Although the

Bartlett correction is an asymptotic technique, it leads to considerably more accu-

rate empirical likelihood inference in finite-sample applications. Nevertheless, the

undercoverage problem remains unresolved; the Bartlett corrected empirical likeli-

hood also suffers from the undercoverage problem, albeit to a lesser degree. Further,

the Bartlett correction is not always easy to compute.

Tsao (2004) approached the undercoverage issue from a finite-sample standpoint.

He studied the finite-sample least-upper bound on the coverage probability of the

empirical likelihood ratio confidence region which are the consequence of the convex

hull constraint embedded in the formulation of the empirical likelihood. He derived

the bounds for the large class of problems where the parameters of interest are de-

fined by one-sample estimating equations. For small sample and/or high dimension

situations, the bounds can be much lower than one. This suggests that the convex

hull constraint is a main contributor to the undercoverage problem.

Since the work of Tsao (2004), various methods aimed at solving the undercover-

age problem by breaking the convex hull constraint have been developed. Bartolucci
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(2007) introduced a penalized empirical likelihood for the mean which removes the

constraint from the formulation of the original empirical likelihood of Owen (1990,

2001) and replaces it with a penalizing term based on the Mahalanobis distance.

Chen, Variyath and Abraham (2008) introduced an adjusted empirical likelihood

which retains the formulation of original empirical likelihood but adds a pseudo-

observation to the sample. The adjusted empirical likelihood is just the original

empirical likelihood defined on the augmented sample, but due to the clever con-

struction of the pseudo-observation the convex hull constraint will never be violated

here. Emerson and Owen (2009) showed that the adjusted empirical likelihood statis-

tic has a boundedness problem which may lead to trivial 100% confidence regions.

They proposed an extension of the adjusted empirical likelihood involving adding two

pseudo-observations to the sample to address the boundedness problem. Chen and

Huang (2012) also addressed the boundedness problem by modifying the adjustment

factor in the pseudo-observation. Liu and Chen (2010) proved a surprising result

that under a certain level of adjustment, the adjusted empirical likelihood confidence

region achieves the second order accuracy of the Bartlett correction. Recently, Lahiri

and Mukhopadhyay (2012) showed that under certain dependence structures, a mod-

ified penalized empirical likelihood for the mean works in the extremely difficult case

of large dimension and small sample size.

Nevertheless, the penalized empirical likelihood is only available for the mean and

it may be difficult to implement. The adjusted empirical likelihood is available for

the large class of parameters defined by estimating equations, but the aforementioned

boundedness problem requires more attention. More importantly, for both methods,

the shape of their confidence regions no longer follow that of the original empirical

likelihood region. Hence, they lose a celebrated advantage of the empirical likelihood

method, that is, the shape of its confidence region reflects the shape of the data.
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To deal with the undercoverage problem caused by the convex hull constraint while

still keeping the shape of the empirical likelihood confidence regions, Tsao (2013) in-

troduced a geometric approach to break the convex hull constraint by geometrically

expanding the domain of the original empirical likelihood ratio. The empirical likeli-

hood defined on this larger expanded domain is referred to as the extended empirical

likelihood. With a large domain, the extended empirical likelihood produces larger

confidence regions and hence more accurate coverage probabilities. Tsao and Wu

(2013) made a significant step forward with this domain expansion idea where they

derived an extended empirical likelihood ratio for the mean defined on the entire

parameter space. The key technique that they developed to construct such an ex-

tended empirical likelihood is a composite similarity transformation which consists of

a continuous sequence of simple similarity mappings of the original empirical likeli-

hood ratio contours. This extended empirical likelihood for the mean is theoretically

simple and appealing, and numerically substantially more accurate than the original

empirical likelihood.

In this thesis, we generalize the extended empirical likelihood of Tsao (2013) and

Tsao and Wu (2013) to improve the accuracy of the empirical likelihood inference

in two directions. In Chapter 2, we generalize the extended empirical likelihood to

handle inference for the large class of parameters defined by one-sample estimating

equations, which includes the mean as a special case. In Chapters 3 and 4, we general-

ize the extended empirical likelihood to handle two-sample problems; in Chapter 3, we

study the extended empirical likelihood for the difference between two p-dimensional

means; in Chapter 4, we consider the extended empirical likelihood for the difference

between two p-dimensional parameters defined by estimating equations. In all cases,

we give both the first- and second-order extended empirical likelihood methods and

compare these methods with existing methods.
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It should be noted that Chapter 2 is the published paper Tsao and Wu (2014) and

Chapter 3 is the published paper Wu and Tsao (2014); a detailed acknowledgement

to this effect may be found at the beginning of these two chapters. Chapter 4 is also

a joint paper Tsao and Wu (2015) which has been submitted for publication. At the

request of the Thesis Supervisory Committee, we hereby acknowledge that Fan Wu is

the principal author (defined as the co-author who is responsible for 60% or more of

a joint paper’s contents) for Wu and Tsao (2014), Min Tsao is the principal author

for Tsao and Wu (2014), and both authors contributed roughly equally to Tsao and

Wu (2015).
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Chapter 2

Extended empirical likelihood for es-

timating equations

Acknowledgement: in accordance with copyright agreements between authors and jour-

nal publishers, we acknowledge that this chapter is the published paper under the same

title by Tsao and Wu (2014), Biometrika, volume 101, issue 3, pages 703-710, with

a 12-page Supplement Material available at Biometrika online.

2.1 Introduction

One important application of the empirical likelihood (Owen, 2001) is for inference

on parameters defined by estimating equations that satisfy E{g(X, θ0)} = 0, where

g(x, θ) ∈ R
q is an estimating function for the parameter vector θ0 ∈ R

p of a random

vector X ∈ R
d (Qin and Lawless, 1994). The estimating equations are said to be just-

determined if q = p and over-determined if q > p. The latter case arises when extra

information about the parameter is available and results in an estimating function

of dimension q > p. In principle, extra information should increase the precision of

the inference. However, Qin and Lawless (1994) observed that empirical likelihood

confidence regions for over-determined cases can have substantial undercoverage.
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The poor accuracy of empirical likelihood confidence regions has also been noted

by others, e.g., Hall and La Scala (1990), Owen (2001), Tsao (2004) and Chen, Variy-

ath and Abraham (2008). In particular, as shown in a 1995 Nuffield College, Oxford,

working paper by S. A. Corcoran, A. C. Davison and R. H. Spady, the second-order

empirical likelihood method also has poor accuracy. This suggests that the principal

cause of the poor accuracy is not the asymptotic orders of the methods. The main

culprit turns out to be the mismatch between the domain of the empirical likelihood

and the parameter space (Tsao, 2013; Tsao and Wu, 2013); whereas the parame-

ter space is in general the whole of Rp, the domain is usually a bounded subset of

R
p. This mismatch is a consequence of a convex hull constraint embedded in the

formulation of the empirical likelihood; values of θ ∈ R
p that violate this constraint

are excluded from the domain, leading to the mismatch. Three variants of the orig-

inal empirical likelihood of Owen (1988, 1990) tackle the convex hull constraint in

different ways: the penalized empirical likelihood of Bartolucci (2007) and Lahiri

and Mukhopadhyay (2012); the adjusted empirical likelihood by Chen, Variyath and

Abraham (2008), Emerson and Owen (2009), Liu and Chen (2010) and Chen and

Huang (2012); and the extended empirical likelihood of Tsao (2013) and Tsao and

Wu (2013). The first replaces the convex hull constraint in the original empirical

likelihood with a penalizing term based on the Mahalanobis distance. The second

adds one or two pseudo-observations to the sample to ensure that the convex hull

constraint is not violated. The third expands the domain of the original empirical

likelihood geometrically to overcome the constraint. The adjusted empirical likeli-

hood is available for parameters defined by estimating equations. The penalized and

extended empirical likelihoods on R
p are available only for the mean. All three vari-

ants have the same asymptotic distribution as the original empirical likelihood, but

the extended empirical likelihood is a more natural generalization because its con-
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tours have the same shape. The data-driven shape of the original empirical likelihood

contours is a celebrated advantage, which is retained by the extended version.

In this paper, we generalize the results of Tsao and Wu (2013) for the mean to

an extended empirical likelihood on R
p for the large collection of parameters defined

by estimating equations. Under certain conditions, this new likelihood has the same

asymptotic properties and identically shaped contours as the original one, and can

attain the second-order accuracy of the Bartlett corrected likelihood ratio statistic

of DiCiccio, Hall and Romano (1991) and Chen and Cui (2007). We highlight the

first-order version of this extended empirical likelihood, which is not only easy-to-use

but also much more accurate than the original version and available second-order

methods. Because of its simplicity and accuracy, we recommend it to practitioners.

A secondary objective of this paper is to provide details of techniques for deriving the

extended empirical likelihood on R
p that may be applied to parameters beyond the

standard estimating equations framework. Throughout this paper, we use l(θ) and

l∗(θ) to denote the original and extended empirical log-likelihood ratios.

2.2 Extended empirical likelihood for estimating

equations

2.2.1 Preliminaries

Let X ∈ R
d be a random vector with a parameter θ0 ∈ R

p, let g(X, θ) be a q-

dimensional estimating function for θ0 and let X1, . . . , Xn be independent copies of

X, where the sample size n > q. We will need the following conditions on g(X, θ):

Condition 1. E{g(X, θ0)} = 0 and var{g(X, θ0)} ∈ R
q×q is positive definite;
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Condition 2. ∂g(X, θ)/∂θ and ∂g2(X, θ)/∂θ∂θT are continuous in θ, and for θ in

a neighbourhood of θ0 they are each bounded in norm by an integrable function of

X;

Condition 3. lim sup‖t‖→∞ |E[exp{itTg(X, θ0)}]| < 1 and E{‖g(X, θ0)‖15} < +∞.

These conditions ensure that the original empirical likelihood for estimating equations

is Bartlett correctable (Chen and Cui, 2007). The empirical likelihood ratio for θ ∈ R
p

is

R(θ) = sup

{

n
∏

i=1

nwi :
n
∑

i=1

wig(Xi, θ) = 0, wi ≥ 0,
n
∑

i=1

wi = 1

}

,

where 0 denotes the origin in R
q (Owen, 2001). The original empirical log-likelihood

ratio is l(θ) = −2 logR(θ). An alternative to l(θ) is the statistic defined as WE(θ) =

l(θ) − l(θ̃) in equation (3.9) of Qin and Lawless (1994), where θ̃ is the maximum

empirical likelihood estimator of θ0. We will consider an extended empirical likelihood

based onWE(θ) in the Supplementary Material. Let w̄ = (w1, . . . , wn) denote a weight

vector, with wi > 0 and
∑n

i=1 wi = 1. Define the common domain Θn of R(θ) and

l(θ) as

Θn = {θ : θ ∈ R
p and there exists a w̄ such that

∑n
i=1 wig(Xi, θ) = 0}. (2.1)

Then, Θn is the collection of all θ values satisfying l(θ) < +∞. Throughout this

paper, we assume without loss of generality that Θn is a non-empty open set in R
p.

See the Appendix. For θ ∈ Θn, using the method of Lagrange multipliers we can

show that

l(θ) = 2
n
∑

i=1

log{1 + λT g(Xi, θ)}, (2.2)
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where the multiplier λ = λ(θ) ∈ R
q satisfies

n
∑

i=1

g(Xi, θ)

1 + λT g(Xi, θ)
= 0.

Under Condition 1, Qin and Lawless (1994) showed that l(θ0) converges in distribution

to a χ2
q random variable as n goes to infinity. Thus, the 100(1−α)% original empirical

likelihood confidence region for θ0 is

C1−α = {θ : θ ∈ Θn, l(θ) ≤ c}, (2.3)

where c is the (1−α)th quantile of the χ2
q distribution. The coverage error of C1−α is

pr(θ0 ∈ C1−α) = pr{l(θ0) ≤ c} = pr(χ2
q ≤ c) +O(n−1). (2.4)

We now briefly review the Bartlett correction of DiCiccio, Hall and Romano (1991)

and Chen and Cui (2007) for l(θ). Under Conditions 1, 2 and 3,

l(θ0) = nRTR +Op(n
−3/2), (2.5)

where R is a q-dimensional vector which is a smooth function of general means.

Through an Edgeworth expansion for the density function of n1/2R, we can show

that

pr[nRTR{1− bn−1 +Op(n
−3/2)} ≤ c] = pr(χ2

q ≤ c) +O(n−2), (2.6)

where b depends on the moments of g(X, θ0) and (1− bn−1) is the Bartlett correction

factor. It follows from (2.5) and (2.6) that

pr[l(θ0){1− bn−1 +Op(n
−3/2)} ≤ c] = pr(χ2

q ≤ c) +O(n−2). (2.7)
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Let lB(θ) = (1 − bn−1)l(θ) be the Bartlett corrected empirical log-likelihood ratio,

and denote by C ′
1−α the Bartlett corrected empirical likelihood confidence region for

θ0. Then,

C ′
1−α = {θ : θ ∈ Θn, lB(θ) ≤ c}. (2.8)

Equation (2.7) implies that the coverage error of C ′
1−α is O(n−2), that is,

pr(θ0 ∈ C ′
1−α) = pr{lB(θ0) ≤ c} = pr(χ2

q ≤ c) +O(n−2).

2.2.2 Composite similarity mapping

The mismatch between the original empirical likelihood domain Θn and the parameter

space R
p is a main cause of the poor accuracy of the original empirical likelihood

confidence region (Tsao, 2013). To solve the mismatch problem, we expand Θn to

R
p through a composite similarity mapping hC

n : Θn → R
p (Tsao and Wu, 2013). In

order to define hC
n , we assume that there exists a

√
n-consistent maximum empirical

likelihood estimator θ̃ for θ0. See the Appendix for more discussion of this assumption.

Using l(θ) and θ̃, we define

hC
n (θ) = θ̃ + γ{n, l(θ)}(θ − θ̃), θ ∈ Θn, (2.9)

where function γ{n, l(θ)} is the expansion factor given by

γ{n, l(θ)} = 1 +
l(θ)

2n
. (2.10)

To see how hC
n maps Θn onto R

p, define the level-τ original empirical likelihood

contour as

c(τ) = {θ : θ ∈ Θn, l(θ) = τ}, (2.11)
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where τ ≥ τ̃ = l(θ̃) ≥ 0. For the just-determined case, R(θ̃) = 1 and τ̃ = l(θ̃) = 0.

The contours form a partition of the domain Θn; that is, c(τ1) ∩ c(τ2) = ∅ for any

τ1 6= τ2 and

Θn =
⋃

τ∈[τ̃ ,+∞)

c(τ). (2.12)

In addition to Conditions 1, 2 and 3 above, we now introduce a new condition.

Condition 4. Each contour c(τ) is the boundary of a connected region and the

contours are nested in that if τ1 < τ2, then c(τ1) is contained in the interior of the

region defined by c(τ2).

Under Condition 4, (2.12) implies that c(τ̃) = {θ̃} is the centre of Θn. It follows

that the value of τ measures the outwardness of a c(τ) with respect to the centre;

the larger the τ value, the more outward c(τ) is. Theorem 2.1 below gives three key

properties of hC
n .

Theorem 2.1. Under Conditions 1 and 2, the mapping hC
n defined by (2.9) and

(2.10)

(i) has a unique fixed point at θ̃,

(ii) is a similarity transformation for each individual contour c(τ), and

(iii) is a surjection from Θn to R
p.

Because of (ii), we call hC
n the composite similarity mapping, as it may be viewed

as a continuous sequence of similarity mappings from R
p to R

p that are indexed by

τ ∈ [τ̃ ,+∞). The τ -th mapping has expansion factor γ{n, l(θ)} = γ(n, τ) and is used

exclusively to map the level-τ contour c(τ). Since γ(n, τ) is an increasing function

of τ , contours farther away from the centre are expanded more so that images of

the contours fill up R
p. Regardless of the amount expanded, c(τ) and its image

are identical in shape; Figure 1 illustrates this with the original empirical likelihood

contours for parameters of a regression model and their expanded images.
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The proof of Theorem 2.1 is given in the Supplementary Material. A remark

following the proof shows that if we are to add Condition 4 to Theorem 2.1, then (iii)

can be strengthened to (iii’) hC
n is a bijection from Θn to R

p. It is not clear how we

may verify Condition 4 through g(X, θ), so we have kept it separate from the three

conditions identified in the preliminaries. Nevertheless, we have not encountered any

example where Condition 4 is violated.

2.2.3 Extended empirical likelihood on the full parameter

space

Since hC
n : Θn → R

d is surjective, for any θ ∈ R
p, s(θ) = {θ′ : θ′ ∈ Θn, h

C
n (θ

′) = θ} is

non-empty. When hC
n is not injective, s(θ) may contain more than one point and hC

n

does not have an inverse. Hence, we define a generalized inverse h−C
n : Rp → Θn as

h−C
n (θ) = argmin

θ′∈s(θ)

{‖θ′ − θ‖}, θ ∈ R
p. (2.13)

The extended empirical log-likelihood ratio statistic l∗(θ) under h−C
n is then

l∗(θ) = l{h−C
n (θ)}, θ ∈ R

p, (2.14)

which is well-defined throughout R
p. We now give the properties of the point θ′0

satisfying

h−C
n (θ0) = θ′0, (2.15)

and the asymptotic distribution of l∗(θ0) = l{h−C
n (θ0)} = l(θ′0). For convenience, we

use [θ̃, θ0] to denote the line segment in R
p that connects θ̃ and θ0. We have

Lemma 2.1. Under Conditions 1 and 2, the point θ′0 defined by equation (2.15)

satisfies
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(i) θ′0 ∈ [θ̃, θ0], (ii) θ′0 − θ0 = Op(n
−3/2).

Theorem 2.2. Under Conditions 1 and 2, the extended empirical log-likelihood ratio

statistic (2.14) satisfies l∗(θ0)−→χ2
q in distribution as n → +∞.

Proofs of Lemma 2.1 and Theorem 2.2 are sketched in the Appendix. Detailed

proofs are given in the Supplementary Material. A key element in the proof for

Theorem 2.2 is the following simple relationship between l(θ) and l∗(θ):

l∗(θ0) = l{h−C
n (θ0)} = l(θ′0) = l{θ0 + (θ′0 − θ0)}. (2.16)

This and the fact that ‖θ′0 − θ0‖ is asymptotically very small imply that l∗(θ0) =

l(θ0) + op(1), which leads to Theorem 2.2. The relationship in (2.16) is also the key

in the derivation of a second-order extended empirical likelihood in the next section.

2.2.4 Second-order extended empirical likelihood

The Bartlett corrected empirical likelihood of DiCiccio, Hall and Romano (1991) and

Chen and Cui (2007) has second-order accuracy. Theorem 2.3 shows that for the

just-determined case the extended empirical likelihood can also attain second-order

accuracy.

Theorem 2.3. Assume Conditions 1, 2 and 3 hold. For the just-determined case

where p = q, let l∗2(θ) be the extended empirical log-likelihood ratio under the composite

similarity mapping (2.9) with expansion factor

γ2{n, l(θ)} = 1 +
b

2n
{l(θ)}δ(n), (2.17)

where δ(n) = O(n−1/2) and b is the Bartlett correction constant in (2.6) and (2.7).
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Then

l∗2(θ0) = l(θ0){1− bn−1 +Op(n
−3/2)}. (2.18)

The proof of Theorem 2.3 is given in the Supplementary Material. By (2.18) and

(2.7), confidence regions based on l∗2(θ) have second-order accuracy. Hence, we call

l∗2(θ) the second-order extended empirical log-likelihood ratio. Correspondingly, we

call l∗(θ) under an hC
n defined by (2.9) and (2.10) the first-order extended empirical

log-likelihood ratio. The utility of the δ(n) in γ2{n, l(θ)} is to control the speed

of domain expansion to ensure that l∗2(θ) behaves asymptotically like lB(θ). For

convenience, we use δ(n) = n−1/2 in our numerical examples.

We noted after Theorem 2.2 that l∗(θ0) = l(θ0) + op(1). An even stronger con-

nection between l∗(θ0) and l(θ0) is given by Corollary 2.1 below. This result helps to

explain the remarkable numerical accuracy of confidence regions based on l∗(θ) which

we will discuss in Section 3.

Corollary 2.1. Under Conditions 1, 2 and 3, the first-order extended empirical log-

likelihood ratio l∗(θ) for the just-determined case satisfies

l∗(θ0) = l(θ0){1− l(θ0)n
−1 +Op(n

−3/2)}.

2.3 Numerical examples

We compare the first-order extended empirical likelihood with the original and the

Bartlett corrected empirical likelihoods through two regression examples. More ex-

amples are given in the Supplementary Material. Consider inference for β of a linear

model y = xTβ + ε, where ε ∼ N(0, 1). We consider two models: Model 1, with

x = (1, x1)
T and β = (1, 2)T , and Model 2, with x = (1, x1, x2)

T and β = (1, 2, 3)T .

Variables x1 and x2 are assumed to be uniform random variables on [0, 30] and [20, 50],
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respectively. The original empirical likelihood for β may be found on page 81 of Owen

(2001). The extended empirical log-likelihood ratio l∗(β) is defined by the composite

similarity mapping (2.9) and (2.10) with θ̃ = β̂, the least-squares estimate of β. The

original and Bartlett corrected empirical likelihood confidence regions are given by

(2.3) and (2.8), respectively. The extended empirical likelihood confidence region for

β is C∗
1−α = {β : β ∈ R

p, l∗(β) ≤ c} where c is the (1 − α)th quantile of the χ2
q

distribution. Table 2.1 compares the simulated coverage probabilities of these three

confidence regions.

While none of the methods work well for small sample sizes, the extended empirical

likelihood is more accurate than the original empirical likelihood for all combinations

of sample size and confidence level. In particular, for n ≤ 30 it is substantially more

accurate than the original empirical likelihood. The extended empirical likelihood is

also more accurate than the second-order Bartlett corrected empirical likelihood for

n ≤ 30. Remarkably, it remains more accurate than the Bartlett corrected empirical

likelihood even for n > 30. This surprising observation may be partially explained

by Corollary 2.1, where the extended empirical likelihood is seen as having a Bartlett

correction type of expansion. See the Supplementary Material for more examples and

further discussion.

The parameter vector of Model 2 has dimension p = 3 whereas that of Model 1

has p = 2. This allows us to assess the impact of an increase in dimension p. When p

increases from 2 to 3, the coverage probability of the extended empirical likelihood is

the least affected. For small to moderate sample sizes, that of the original empirical

likelihood and Bartlett corrected empirical likelihood deteriorates a lot. This is due

to the mismatch problem, whose negative impact on coverage accuracy becomes more

serious when p increases. The extended empirical likelihood is not affected by the

mismatch, so its accuracy holds up much better when p increases.
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Table 2.1: Coverage probabilities (%) of confidence regions based on the original
empirical likelihood (OEL), the first-order extended empirical likelihood (EEL) and
the Bartlett corrected empirical likelihood (BEL)

90% level 95% level 99% level

n OEL EEL BEL OEL EEL BEL OEL EEL BEL

Model 1 10 66.9 80.0 76.3 73.4 88.5 80.9 81.5 98.4 87.5
20 79.7 85.6 85.1 86.5 92.5 90.8 94.3 98.5 96.6
30 84.3 87.8 87.2 90.1 93.9 92.6 96.5 98.6 97.5
50 86.7 88.8 88.5 92.6 94.3 93.7 97.7 98.9 98.2
100 88.8 89.8 89.6 94.0 94.8 94.5 98.4 99.0 98.6

Model 2 10 47.3 75.1 58.6 54.1 87.2 64.8 65.1 97.7 74.2
20 69.9 81.2 77.6 77.3 89.7 84.2 88.0 97.8 92.3
30 76.8 84.3 83.0 84.4 91.1 88.8 92.9 98.1 95.5
50 83.5 87.2 86.8 89.8 93.1 92.0 96.3 98.5 97.6
100 87.4 89.1 88.8 93.0 94.4 94.0 98.4 99.0 98.6

Each entry in the table is a simulated coverage probability for β based on 10,000
random samples of size n indicated in column 2 from the linear model indicated in
column 1.

We conclude by briefly commenting on the computation of l∗(θ). Suppose hC
n

is also injective. Since l∗(θ) = l(θ′), we compute l∗(θ) by finding the θ′ satisfying

hC
n (θ

′) = θ first and then compute l(θ′). We may find this θ′ by computing the root

for the multivariate function d(θ′) = hC
n (θ

′)− θ, but it is more efficient to reformulate

this function as a univariate function by using the fact that θ′ ∈ [θ̃, θ]. See the proof

of Theorem 2.1 in the Supplementary Material. When hC
n is not injective, we find one

θ′ satisfying hC
n (θ

′) = θ first, call it θ′1. Then, look for another satisfying hC
n (θ

′) = θ

in the interval (θ′1, θ], and iterate this process until no new solutions can be found.

The last of these, θ′l, is the solution closest to θ and hence l∗(θ) = l(θ′l).



18

beta 1

bet
a 2

 0.5 

 0.8 

 0.95 

 0.99 

 0.999 

−0.5 0.5 1.5 2.5

1.6
1.8

2.0
2.2

(a)

beta 1

bet
a 2

 0.5 

 0.8 

 0.95 

 0.99 

 0.999 

 0.999 

−0.5 0.5 1.5 2.5

1.6
1.8

2.0
2.2

(b)

Figure 2.1: Contours of empirical likelihoods for β in Model 1. (a) original empiri-
cal likelihood; (b) extended empirical likelihood. Both plots are based on the same
sample of 30 observations from Model 1. The star in the middle of each plot shows
the least-squares estimate β̃ = (β̃1, β̃2) = (1.03, 1.93)T based on this sample. Ex-
tended empirical likelihood contours are larger than but similar to original empirical
likelihood contours with the same centre and identical shape.

2.4 Discussion

The impressive accuracy of the first-order extended empirical likelihood can also be

seen through the examples in the Supplementary Material. We recommend it for

practical applications due to its simplicity and superior accuracy. Although the focus

of this paper is on extended empirical likelihood for parameters defined by estimating

equations, the techniques employed in the proofs may be applied to handle parameters

in other settings. In general, an extended empirical likelihood for a parameter θ0 may

be derived so long as a
√
n-consistent maximum empirical likelihood estimator θ̃ is

available. If the original empirical likelihood contours are nested, then the extended

empirical likelihood retains not only all asymptotic properties of the original but also

the geometric characteristics of its contours. Finally, we have only considered the

case where the full parameter space Θ is Rp. The case where Θ is a known subset of

R
p may be handled by finding the extended empirical likelihood on R

p first and then
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redefining it as +∞ for θ /∈ Θ. See the Supplementary Material.

Appendix

We identify two assumptions used implicitly throughout this paper. We also sketch

the proofs of Lemma 2.1 and Theorem 2.2. Detailed proofs of all results are in the

Supplementary Material.

The two assumptions are (a) the original empirical likelihood domain Θn defined in

(2.1) is an open set in R
p containing θ0 and (b) there exists a

√
n-consistent maximum

empirical likelihood estimator θ̃ for θ0. Assumption (a) ensures, among other things,

that the domain Θn is non-degenerate. This is needed for domain expansion from Θn

to R
p. Assumption (b) is required as we need θ̃ to construct the composite similarity

mapping in (2.9) and (2.10). Under Conditions 1 and 2, we may assume without loss

of generality that (a) holds. To see this, by Condition 1 and Lemma 11.1 in Owen

(2001), with probability tending to 1 that the convex hull of the g(Xi, θ0) contains

0 in its interior. Hence, we may assume for sufficiently large n that Θn contains θ0

and it follows that Θn is non-empty. To see that Θn is open, suppose θ ∈ Θn. Then,

the convex hull of the g(Xi, θ) contains 0 in its interior. That 0 is in the interior, not

on the boundary, of this convex hull is a consequence of the restriction that the wi

in (2.1) are strictly positive. By Condition 2, g(Xi, θ) is continuous in θ, so a small

change in θ will result in only a small change in the convex hull of the g(Xi, θ). Thus,

there exists a small neighbourhood of θ such that for any θ′ in that neighbourhood

the convex hull of the g(Xi, θ
′) also contains 0. Hence, this neighbourhood is inside

Θn, which implies that Θn is open. To see that we may assume (b) also holds under

Conditions 1 and 2, we refer to Lemma 1 and Theorem 1 in Qin and Lawless (1994)

which give, respectively, the existence and
√
n-consistency of the maximum empirical
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likelihood estimator.

Proof of Lemma 2.1. Differentiating both sides of equation (2.2) with respect to θ,

we obtain J(θ0) = ∂l(θ)/∂θ|θ=θ0 = Op(n
1/2). For θ in a small neighbourhood of θ0,

{θ : ‖θ − θ0‖ ≤ κn−1/2}, where κ is a positive constant, Taylor expansion gives

l(θ) = l{θ0 + (θ − θ0)} = l(θ0) + J(θ0)(θ − θ0) +Op(1). (2.19)

Since J(θ0) = Op(n
1/2) and l(θ0) = Op(1), (2.19) implies that l(θ) = Op(1). Also,

γ{n, l(θ)} ≥ 1 and

θ0 − θ̃ = γ{n, l(θ′0)}(θ′0 − θ̃), (2.20)

so θ′0 is on the ray originating from θ̃ through θ0 and ‖θ0 − θ̃‖ ≥ ‖θ′0 − θ̃‖. Hence,

θ′0 ∈ [θ̃, θ0]. This and the
√
n-consistency of θ̃ imply that θ′0 − θ0 = Op(n

−1/2). It

follows that l(θ′0) = Op(1) and

γ{n, l(θ′0)} = 1 +
l(θ′0)

2n
= 1 +Op(n

−1).

This and (2.20) then yield θ′0 − θ0 = Op(n
−3/2).

Proof of Theorem 2.2. By (ii) of Lemma 2.1, θ′0 − θ0 = Op(n
−3/2). Taylor expansion

of l∗(θ0) gives

l∗(θ0) = l(θ′0) = l{θ0 + (θ′0 − θ0)} = l(θ0) + J(θ0)(θ
′
0 − θ0) +Op(n

−1). (2.21)

Since J(θ0) = Op(n
1/2), (2.21) implies that l∗(θ0) = l(θ0) + Op(n

−1). Hence, l∗(θ0)

has the same limiting χ2
q distribution as the original empirical log-likelihood ratio

l(θ0).
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2.5 Supplement Material

Acknowledgement: we acknowledge that this section contains the supplement material

to the published paper Tsao and Wu (2014), Biometrika, volume 101, issue 3, pages

703-710, and is available at Biometrika online.

This following section contains detailed proofs of lemmas and theorems in the

paper and three more numerical examples. The first two examples provide a more

comprehensive comparison between the extended empirical likelihood method and the

existing empirical likelihood methods. The third example illustrates the construction

of the extended empirical likelihood for the case where the parameter space Θ is not

the full Rp but a known proper subset of Rp.

Part I: Proofs of Lemmas and Theorems

Proofs in Tsao and Wu (2013) made use of the simple geometric structure of the

original empirical likelihood contours for the mean and the simple expression of the

original empirical log-likelihood ratio l(θ) for this special case. However, for parame-

ters defined by estimating equations in general, the geometry of the original empirical

likelihood contours is not well understood and difficult to characterize. The expres-

sion for l(θ) in (2.2) depends on the unspecified estimating function g(X, θ) and is

thus also more complicated. In the following, we provide detailed proofs for lemmas

and theorems in the paper which do not depend on any specific geometric structure

and estimating function. The key components of the proofs are sufficiently general

and as such they may also be useful for deriving the extended empirical likelihood on

R
p for parameters beyond the standard estimating equations framework.

Proof of Theorem 2.1. Part (i) of Theorem 2.1 is a simple consequence of the obser-
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vation that γ{n, l(θ)} ≥ 1. To show (ii), let n and τ be fixed, and consider the level-τ

original empirical likelihood contour c(τ) defined by (11). For θ ∈ c(τ), l(θ) = τ .

Thus the composite similarity mapping hC
n simplifies to hC

n (θ) = θ̃ + γn(θ − θ̃) for

θ ∈ c(τ) where γn = γ(n, τ) is a constant. This is a similarity mapping from R
p to

R
p, and thus a similarity mapping for c(τ).

Under assumption (a) from the Appendix, the original empirical likelihood domain

Θn is open. To show (iii), for any given θ′ ∈ R
p we need to find a θ′′ ∈ Θn such

that hC
n (θ

′′) = θ′. Consider the ray originating from θ̃ and through θ′. Introduce a

univariate parametrization of this ray,

θ = θ(ζ) = θ̃ + ζ~θ,

where ~θ is the unit vector (θ′ − θ̃)/‖θ′ − θ̃‖ in the direction of the ray and ζ ∈ [0,∞)

is the distance between θ, a point on the ray, and θ̃. Define

ζb = inf{ζ : ζ ∈ [0,+∞), θ(ζ) /∈ Θn}.

Then, θ(ζ) ∈ Θn for all ζ ∈ [0, ζb). But θ(ζb) /∈ Θn because Θn is open. It follows

that ζb > 0 as it represents the distance between θ̃, an interior point of the open Θn,

and θ(ζb) which is a boundary point of Θn. Now, consider the following univariate

function defined on [0, ζb),

f(ζ) = γ[n, l{θ(ζ)}]ζ.

We have f(0) = γ{n, l(θ̃)} × 0 = γ(n, τ̃)× 0 = 0. Also,

lim
ζ→ζb

f(ζ) = lim
ζ→ζb

γ[n, l{θ(ζ)}]ζ = ζb lim
ζ→ζb

γ[n, l{θ(ζ)}] = +∞.

Hence, by the continuity of f(ζ), for ζ ′ = ‖θ′− θ̃‖ ∈ [0,+∞), there exists a ζ ′′ ∈ [0, ζb)
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such that f(ζ ′′) = ζ ′. Let θ′′ = θ(ζ ′′). Then, θ′′ ∈ Θn because ζ ′′ ∈ [0, ζb), and

hC
n (θ

′′) = θ̃ + γ{n, l(θ′′)}(θ′′ − θ̃)

= θ̃ + γ{n, l(θ′′)}ζ ′′~θ

= θ̃ + f(ζ ′′)~θ

= θ̃ + ζ ′~θ

= θ′.

Hence, θ′′ is the desired point in Θn satisfying hC
n (θ

′′) = θ′. This completes the proof

for Theorem 2.1.

Remark. If we add Condition 4 that the original empirical likelihood contours are

nested to Theorem 2.1, then the composite similarity mapping hC
n is also injective.

To see this, first note that for a given c(τ), the mapping hC
n : c(τ) → c∗(τ) is injective

because by (ii) of Theorem 2.1, it is a similarity mapping of c(τ) and is thus bijective.

By the partition of the original empirical likelihood domain Θn in (12), two different

points θ1, θ2 from Θn are either [a] on the same contour c(τ) where τ = l(θ1) = l(θ2)

or [b] on two separate contours c(τ1) and c(τ2), respectively, where τ1 = l(θ1) 6=

l(θ2) = τ2. Under [a], hC
n (θ1) 6= hC

n (θ2) because hC
n : c(τ) → c∗(τ) is injective.

Under [b], hC
n (θ1) 6= hC

n (θ2) also holds because c∗(τ1) ∩ c∗(τ2) = ∅. To see that

c∗(τ1) ∩ c∗(τ2) = ∅, since γ{n, l(θ)} is a strictly increasing function of τ = l(θ), hC
n

expands outer contours more than inner ones. Under Condition 4, suppose c(τ1) is

the inner one relative to c(τ2), then c∗(τ1) is the inner one related to c∗(τ2). As such,

they cannot intersect.

Proof of Lemma 2.1. Differentiating l(θ) in (2.2) and evaluating the derivative at θ0,
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we find

J(θ0) =
∂l(θ)

∂θ
|θ=θ0 = 2λT (θ0)

n
∑

i=1

g′(Xi, θ0)

1 + λT (θ0)g(Xi, θ0)
, (2.22)

where g′(Xi, θ0) = ∂g(Xi, θ)/∂θ|θ=θ0 . Under the conditions of the lemma, we can

show that λ(θ0) = Op(n
−1/2) and J(θ0) = Op(n

1/2). Also, applying Taylor expansion

to l(θ) in a small neighbourhood of θ0, {θ : ‖θ − θ0‖ ≤ κn−1/2}, where κ is some

positive constant, we obtain

l(θ) = l{θ0 + (θ − θ0)} = l(θ0) + J(θ0)(θ − θ0) +Op(1). (2.23)

By Owen (2001), l(θ0) = Op(1). This and (2.23) imply that for a θ in the neighbour-

hood,

l(θ) = Op(1). (2.24)

To show part (i), since hC
n (θ

′
0) = θ0, we have

θ0 − θ̃ = γ{n, l(θ′0)}(θ′0 − θ̃). (2.25)

Noting that γ{n, l(θ)} ≥ 1, (2.25) implies that θ′0 is on the ray originating from θ̃

through θ0 and

‖θ0 − θ̃‖ ≥ ‖θ′0 − θ̃‖.

Hence, θ′0 ∈ [θ̃, θ0] and part (i) of the lemma is proven.

To show part (ii), since θ̃ is
√
n-consistent and θ′0 ∈ [θ̃, θ0], we have θ′0 − θ0 =

Op(n
−1/2). It follows from (2.24) that l(θ′0) = Op(1). This implies

γ{n, l(θ′0)} = 1 +
l(θ′0)

2n
= 1 +Op(n

−1). (2.26)
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Adding and subtracting a θ0 on the right-hand side of (2.25) gives

θ0 − θ̃ = γ{n, l(θ′0)}(θ′0 − θ0 + θ0 − θ̃).

This implies that

[1− γ{n, l(θ′0)}](θ0 − θ̃) = γ{n, l(θ′0)}(θ′0 − θ0). (2.27)

It follows from (2.26), (2.27) and θ̃ − θ0 = Op(n
−1/2) that

θ′0 − θ0 = Op(n
−3/2).

This proves part (ii) of the lemma.

Remark. When the composite similarity mapping hC
n is not injective, we may

have more than one θ′0 values satisfying hC
n (θ

′
0) = θ0. The proof of Lemma 2.1 shows

that all such θ′0 values are in the interval [θ̃, θ0] and within Op(n
−3/2) distance from

θ0. Because of this, we may use any such θ′0 value to define the extended empirical

likelihood l∗(θ0) = l(θ′0) and obtain the same asymptotic distribution for l∗(θ0). But

to ensure that l∗(θ0) is well-defined, we have chosen through (13) the θ′0 value that is

the closest to θ0.

Proof of Theorem 2.2. By (ii) of Lemma 2.1, θ′0 − θ0 = Op(n
−3/2). Taylor expansion

of l∗(θ0) gives

l∗(θ0) = l(θ′0) = l{θ0 + (θ′0 − θ0)} = l(θ0) + J(θ0)(θ
′
0 − θ0) + op(n

−3/2). (2.28)

Since J(θ0) = Op(n
1/2), (2.28) implies that l∗(θ0) = l(θ0) + Op(n

−1). Thus, the

extended empirical log-likelihood ratio l∗(θ0) has the same limiting χ2
q distribution as
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the original empirical log-likelihood ratio l(θ0).

To prove Theorem 2.3 and Corollary 2.1, we first give a more detailed review of

Bartlett correction for the original empirical likelihood by DiCiccio, Hall and Romano

(1991), Chen and Cui (2007) and Liu and Chen (2010). The latter two papers are

concerned specifically with Bartlett correction for empirical likelihood for estimating

equations, including the over-determined case, whereas the first paper is concerned

with that for smooth functions of a mean. For simplicity of presentation, we assume

that var{g(X, θ0)} = Iq×q. There is no loss of generality here since if var{g(X, θ0)} 6=

Iq×q, we can replace g(X, θ) with [var{g(X, θ0)}]−1/2g(X, θ). For completeness, we

begin by repeating the latter part of Section 2.1. Under Conditions 1, 2 and 3, we

can show that l(θ0) has the following expansion

l(θ0) = nRTR +Op(n
−3/2), (2.29)

where R is a q-dimensional vector which is a smooth function of general means.

Through an Edgeworth expansion for the density function of n1/2R, we can show

pr[nRTR{1− bn−1 +Op(n
−3/2)} ≤ c] = pr(χ2

q ≤ c) +O(n−2), (2.30)

where b is the Bartlett correction constant which depends the moments of g(X, θ0).

It follows from (2.29) and (2.30) that

pr[l(θ0){1− bn−1 +Op(n
−3/2)} ≤ c] = pr(χ2

q ≤ c) +O(n−2). (2.31)

Let lB(θ) = (1 − bn−1)l(θ) be the Bartlett corrected empirical log-likelihood ratio,

and denote by C ′
1−α the Bartlett corrected empirical likelihood confidence region for
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θ0. Then,

C ′
1−α = {θ : θ ∈ Θn, lB(θ) ≤ c}.

Equation (2.31) implies that

pr(θ0 ∈ C ′
1−α) = pr{lB(θ0) ≤ c} = pr(χ2

q ≤ c) +O(n−2). (2.32)

Comparing (2.32) with (2.4), we see that the Bartlett corrected empirical likelihood

confidence region has a smaller asymptotic error than the original empirical likelihood

region. In practice, the exact/theoretical value of b is unknown as θ0 and the moments

of g(X, θ0) are unknown. By (2.31), (2.32) still holds if b is replaced with a
√
n-

consistent estimate b̂.

Variable R in (2.29) can be written as

R = R1 +R2 +R3.

This leads to another expression for l(θ0),

l(θ0) = n(R1 +R2 +R3)
T (R1 +R2 +R3) +Op(n

−3/2), (2.33)

where each Ri is a function of

αj1j2...jk = E

{

k
∏

i=1

gji(Xi; θ0)

}

and Aj1j2...jk = n−1

n
∑

i=1

{

k
∏

i=1

gji(Xi; θ0)

}

− αj1j2...jk .

Expressions for Ri in terms of αj1j2...jk and Aj1j2...jk may be found in Chen and Cui

(2007) and Liu and Chen (2010). For our proofs, we need only the following obser-
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vations based on these expressions:

(i) Ri = Op(n
−j/2) for j = 1, 2, 3. (2.34)

(ii) R1 = (A1, A2, . . . , Aq)T =
1

n

n
∑

i=1

g(Xi, θ0). (2.35)

(iii) λ(θ0) = R1 +Op(n
−1). (2.36)

See Liu and Chen (2010) and Chen and Cui (2007) for detailed discussions on Bartlett

correction for the original empirical likelihood for parameters defined by estimating

equations. The proof of Theorem 2.3 needs the following lemma.

Lemma 2.2. Assume Conditions 1, 2 and 3 hold. Under the composite similarity

mapping (2.9) with expansion factor γ{n, l(θ)} = γ2{n, l(θ)} in (2.17), we have

θ′0 − θ0 =
b

2n
(θ̃ − θ0) +Op(n

−2). (2.37)

Proof of Lemma 2.2 . It may be verified that under the three conditions and with the

composite similarity mapping hC
n defined by (2.9) and (2.17), Theorem 2.1, Lemma

2.1 and Theorem 2.2 all hold. In particular, θ′0 − θ0 = Op(n
−3/2) and the extended

empirical log-likelihood ratio l∗2(θ0) converges in distribution to a χ2
q random variable.

Since δ(n) = O(n−1/2) and l(θ′0) = l∗2(θ0) which is asymptotically a χ2
q variable,

we have

{l(θ′0)}δ(n) = 1 +Op(n
−1/2). (2.38)

By hC
n (θ

′
0) = θ0, we have θ0 − θ̃ = γ2{n, l(θ′0)}(θ′0 − θ̃). Thus,

θ′0 − θ0 =
b{l(θ′0)}δ(n)

2n
(θ̃ − θ′0) =

b{l(θ′0)}δ(n)
2n

(θ̃ − θ0) +
b{l(θ′0)}δ(n)

2n
(θ0 − θ′0). (2.39)
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It follows from (2.38), (2.39) and θ′0 − θ0 = Op(n
−3/2) that

θ′0 − θ0 =
b{l(θ′0)}δ(n)

2n
(θ̃ − θ0) +Op(n

−5/2)

=
b

2n
(θ̃ − θ0) +Op(n

−2),

which proves the lemma.

Proof of Theorem 2.3. By (2.37) from Lemma 2.2 and Taylor expansion (2.28), we

have

l∗(θ0) = l(θ0) + J(θ0)(θ
′
0 − θ0) + op(n

−3/2)

= l(θ0) +
b

2n
J(θ0)(θ̃ − θ0) +Op(n

−3/2), (2.40)

where J(θ0) is given by (2.22). Under Condition 2, Taylor expansion of g(Xi, θ̃) at θ0

gives

g(Xi, θ̃) = g(Xi, θ0) + g′(Xi, θ0)(θ̃ − θ0) +Op(‖θ0 − θ̃‖2).

This and θ̃ − θ0 = Op(n
−1/2) imply that for each i ∈ {1, 2, . . . , n},

g′(Xi, θ0)(θ0 − θ̃) = g(Xi, θ0)− g(Xi, θ̃) +Op(n
−1).

Averaging the above equation over i gives

1

n

n
∑

i=1

g′(Xi, θ0)(θ0 − θ̃) =
1

n

n
∑

i=1

g(Xi, θ0)−
1

n

n
∑

i=1

g(Xi, θ̃) +Op(n
−1). (2.41)

Since the estimating equations are just-determined, n−1
∑n

i=1 g(Xi, θ̃) = 0. This and
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(2.41) imply

1

n

n
∑

i=1

g′(Xi, θ0)(θ0 − θ̃) =
1

n

n
∑

i=1

g(Xi, θ0) +Op(n
−1). (2.42)

Noting that λ(θ0) = Op(n
−1/2) and θ0 − θ̃ = Op(n

−1/2), we can show

1

n

n
∑

i=1

g′(Xi, θ0)(θ0 − θ̃)

1 + λT (θ0)g(Xi, θ0)
=

1

n

n
∑

i=1

g′(Xi, θ0)(θ0 − θ̃) +Op(n
−1). (2.43)

It follows from (2.42) and (2.43) that

1

n

n
∑

i=1

g′(Xi, θ0)(θ0 − θ̃)

1 + λT (θ0)g(Xi, θ0)
=

1

n

n
∑

i=1

g(Xi, θ0) +Op(n
−1). (2.44)

By (2.40), (2.22) and (2.44), we have

l∗(θ0) = l(θ0) +
b

2n
J(θ0)(θ̃ − θ0) +Op(n

−3/2)

= l(θ0)−
b

2n
2λT (θ0)

n
∑

i=1

g′(Xi, θ0)(θ0 − θ̃)

1 + λT (θ0)g(Xi, θ0)
+Op(n

−3/2)

= l(θ0)−
b

n
nλT (θ0)n

−1

n
∑

i=1

g′(Xi, θ0)(θ0 − θ̃)

1 + λT (θ0)g(Xi, θ0)
+Op(n

−3/2)

= l(θ0)−
b

n
nλT (θ0)

{

n−1

n
∑

i=1

g(Xi, θ0) +Op(n
−1)

}

+Op(n
−3/2)

= l(θ0)−
b

n
nλT (θ0)

{

n−1

n
∑

i=1

g(Xi, θ0)

}

+Op(n
−3/2). (2.45)
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Finally, by (2.45), (2.34), (2.35), (2.36) and (2.33), we have

l∗(θ0) = l(θ0)−
b

n
nRT

1R1 +Op(n
−3/2)

= l(θ0)−
b

n
n(R1 +R2 +R3)

T (R1 +R2 +R3) +Op(n
−3/2)

= l(θ0)−
b

n
l(θ0) +Op(n

−3/2)

= l(θ0)

{

1− b

n
+Op(n

−3/2)

}

,

which proves Theorem 2.3.

Remark. The second-order result of Theorem 2.3 holds only for the just-determined

case as the proof above used the condition that n−1
∑n

i=1 g(Xi, θ̃) = 0 to go from (2.41)

to (2.42). For the over-determined case, a weaker condition n−1
∑n

i=1 g(Xi, θ̃) =

Op(n
−1) would also allow us to go from (2.41) to (2.42). However, we have yet to

identify the type of estimating function g(X, θ) under which this weaker condition

would hold for the over-determined case. When it does hold, the extended empirical

log-likelihood ratio l∗2(θ) defined in Theorem 2.3 has the second-order accuracy for

the over-determined case as well. When it does not hold, l∗2(θ) reduces to a first-order

extended empirical log-likelihood ratio as Theorem 2.2 is still valid for l∗2(θ).

Proof of Corollary 2.1. We first show that under the composite similarity mapping

hC
n defined by expansion factor (2.10), θ′0 = h−C

n (θ0) satisfies

θ′0 − θ0 =
l(θ0)

2n
(θ̃ − θ0) +Op(n

−5/2). (2.46)

In the proof of Theorem 2.2 above, we noted that

l∗(θ0) = l(θ0) +Op(n
−1).
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Since l(θ′0) = l∗(θ0), this implies

l(θ′0) = l(θ0) +Op(n
−1). (2.47)

The expansion factor in (10) may be viewed as a special case of that in (17) where

δ(n) = 1 and b = 1. Setting δ(n) = 1 and b = 1 in the proof Lemma 2.2 and replacing

equation (2.38) with (2.47), we obtain (2.46) by following the rest of the steps in that

proof. Finally, using (2.46) instead of equation (2.37) from Lemma 2.2 in (2.40) and

following exactly the same steps in the proof of Theorem 2.3 after (2.40), we obtain

Corollary 2.1.

Part II: Additional Numerical Examples

We now present the following numerical examples to compare the extended empirical

likelihood method with the existing empirical likelihood methods: [1] a simple linear

model with three different error distributions, [2] an over-determined example from

Qin and Lawless (1994) and Chen and Cui (2007) and [3] an example on simultaneous

inference for the mean and variance of a univariate random variable. The third

example involves two parameters for which the parameter space is the first quadrant

instead of the entire R
2.

For convenience, we first compare the first-order extended empirical likelihood

with the original empirical likelihood and the Bartlett corrected empirical likelihood.

The latter two methods serve as the benchmarks for evaluating the accuracy of the

extended empirical likelihood. Then, we compare three second-order methods: the

Bartlett corrected empirical likelihood (Chen and Cui, 2007), the second-order ad-

justed empirical likelihood (Liu and Chen, 2010) and the second-order extended em-
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pirical likelihood. The Bartlett correction constant used in all second-order methods

is the biased corrected estimate b̃ given by Liu and Chen (2010).

Example 1: a simple linear model under three different error

distributions

Table 2.2 contains simulated coverage probabilities of confidence regions based on

the original empirical likelihood, the first-order extended empirical likelihood and the

Bartlett corrected empirical likelihood for parameter vector β of the linear model

y = xTβ + ε,

where x = (1, x1)
T and β = (1, 2)T . The error distributions considered are [i]

ε ∼ N(0, 1), [ii] ε ∼ EXP (1)− 1 and [iii] ε ∼ χ2
1− 1. For the simulation, values of x1

are randomly generated from a uniform distribution on [0, 30]. For symmetric error

distribution [i], the extended empirical likelihood and Bartlett corrected empirical

likelihood are more accurate than the original empirical likelihood and substantially

so when the sample size is not large. The extended empirical likelihood is also compet-

itive in accuracy to the Bartlett corrected empirical likelihood even when the sample

size is large. This is surprising in that the Bartlett corrected empirical likelihood is a

second-order method whereas the extended empirical likelihood in this table is only

a first-order method. For skewed error distributions [ii] and [iii], the extended empir-

ical likelihood and Bartlett corrected empirical likelihood are also substantially more

accurate than the original empirical likelihood. The extended empirical likelihood

is still more accurate than the Bartlett corrected empirical likelihood for small and

moderate sample sizes but the Bartlett corrected empirical likelihood is slightly more

accurate for large sample sizes.
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Table 2.2: Example 1: Coverage probabilities (%) of confidence regions based on
the original empirical likelihood (OEL), the first-order extended empirical likelihood
(EEL) and the Bartlett corrected empirical likelihood (BEL)

90% level 95% level 99% level

Error Distribution n OEL EEL BEL OEL EEL BEL OEL EEL BEL

N(0, 1) 10 66.0 77.6 75.5 72.8 84.9 80.7 81.5 93.4 87.2
20 79.5 85.2 84.8 86.1 91.6 90.0 93.9 97.5 95.8
30 84.1 87.4 87.0 90.0 93.5 92.3 96.3 98.5 97.4
50 87.0 89.0 88.7 92.6 94.1 93.6 97.8 98.7 98.2
100 89.1 90.2 90.0 94.4 95.2 94.9 98.6 98.9 98.8

EXP (1)− 1 10 62.9 73.7 70.5 70.1 81.5 76.3 80.0 90.6 84.0
20 75.0 80.7 81.1 81.8 87.7 86.4 90.5 95.2 93.1
30 79.2 83.0 83.5 85.8 89.7 89.3 93.7 96.6 95.5
50 83.8 86.1 87.0 90.0 92.0 92.0 96.2 97.9 97.2
100 87.6 88.7 89.1 93.3 94.4 94.5 98.1 98.8 98.5

χ2
1 − 1 10 59.9 70.0 65.6 66.6 77.3 70.9 76.1 86.7 77.7

20 70.3 76.9 76.8 78.0 83.8 82.2 86.8 92.2 89.2
30 76.3 80.2 81.3 83.2 87.0 86.5 91.2 94.4 92.4
50 81.6 84.2 85.6 88.4 90.7 91.0 95.3 97.0 96.4
100 86.5 87.5 88.4 92.3 93.4 93.6 97.7 98.2 98.1

Each entry in the table is a simulated coverage probability for β based on 10,000
random samples of size n indicated in column 2 from the linear model with error
distribution indicated in column 1.
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Table 2.3 compares the coverage accuracies of the three second-order methods. For

small sample sizes, the second-order adjusted empirical likelihood coverage probability

is seen to be the highest. For n = 10, it even exceeds the nominal levels. But

this is due to the boundedness problem (Emerson and Owen, 2009) of the adjusted

empirical likelihood statistic which artificially boosted the coverage probability of

the adjusted empirical likelihood. The problem arises when the adjusted empirical

likelihood statistic is bounded from the above by the Chi-square critical value for

all θ values in the parameters space, resulting in trivial 100% confidence regions

which coincide with the entire parameter space. When this occurs, the adjusted

empirical likelihood confidence region trivially contains the true parameter value and

this inflates the coverage probability of the adjusted empirical likelihood. Detecting

and removing such cases when simulating the coverage probability is possible but

time consuming, especially for multivariate problems. There are also variations of the

adjusted empirical likelihood which do not have the boundedness problem. A more

comprehensive comparison involving these will be reported elsewhere. Our experience

suggests that if we remove the cases where the adjusted empirical likelihood statistic

is bounded from our calculation, the coverage probability of the adjusted empirical

likelihood is comparable to that of the Bartlett corrected empirical likelihood.

Putting aside the coverage probabilities of the adjusted empirical likelihood, Table

2.3 shows that the second-order extended empirical likelihood is consistently more

accurate than the Bartlett corrected empirical likelihood for all sample sizes and

error distributions. Interestingly, comparing Tables 2.2 and 2.3, we see that the first-

order extended empirical likelihood is very competitive to the second-order extended

empirical likelihood in all cases. While we do not have a full explanation for this,

Corollary 2.1 shows the first-order extended empirical likelihood has an expansion

similar to that of the Bartlett corrected empirical likelihood in (2.31) with the Bartlett
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Table 2.3: Example 1: Coverage probabilities (%) of confidence regions based on the
Bartlett corrected empirical likelihood (BEL), the second-order adjusted empirical
likelihood (AEL) and the second-order extended empirical likelihood (EEL2)

90% level 95% level 99% level

Error Distribution n BEL AEL EEL2 BEL AEL EEL2 BEL AEL EEL2

N(0, 1) 10 75.5 92.9 78.7 80.7 97.5 84.1 87.2 99.8 90.8
20 84.8 87.8 85.7 90.0 93.5 91.1 95.8 98.7 96.4
30 87.0 87.6 87.4 92.3 93.1 92.8 97.4 98.0 97.7
50 88.7 89.0 89.0 93.6 93.8 93.9 98.2 98.3 98.3
100 90.0 90.0 90.2 94.9 94.9 94.9 98.8 98.8 98.8

EXP (1)− 1 10 70.5 85.3 73.4 76.3 92.9 79.5 84.0 98.8 87.3
20 81.1 84.6 82.0 86.4 90.9 87.7 93.1 97.3 94.2
30 83.5 85.3 84.1 89.3 90.9 89.8 95.5 96.9 95.9
50 87.0 87.5 87.2 92.0 92.5 92.3 97.2 97.6 97.5
100 89.1 89.2 89.3 94.5 94.5 94.6 98.5 98.5 98.6

χ2
1 − 1 10 65.6 84.2 70.5 70.9 91.5 76.5 77.7 98.4 83.5

20 76.8 83.5 79.0 82.2 89.3 84.3 89.2 96.4 91.3
30 81.3 85.0 82.5 86.5 90.2 88.1 92.4 96.2 94.1
50 85.6 86.6 86.0 91.0 92.0 91.4 96.4 97.3 96.9
100 88.4 88.4 88.7 93.6 93.7 93.8 98.1 98.2 98.2

Each entry in the table is a simulated coverage probability for β based on 10,000
random samples of size n indicated in column 2 from the linear model with error
distribution indicated in column 1.

correction constant b replaced by l(θ0). This resemblance may be the reason that

the first-order extended empirical likelihood behaves like the second-order Bartlett

corrected empirical likelihood for large sample sizes. But the good accuracy of the

first-order extended empirical likelihood for small sample sizes cannot be accounted

for by any allusion to its asymptotic order; it is the benefit of being free from the

mismatch problem between the domain and the parameter space which affects the

original and Bartlett corrected empirical likelihoods.
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Example 2: over-determined estimating equations

One over-determined estimating equations example used in both Qin and Lawless

(1994) and Chen and Cui (2007) is the following: for a univariate random variable

X, suppose E(X) = θ and E(X2) = 2θ2 + 1. Then, θ is one-dimensional but there

are two estimating equations. In this case, empirical likelihood inference may be

conducted by using the original empirical likelihood defined by (2.2), or alternatively

by using the WE(θ) statistic given by (3.9) in Qin and Lawless (1994). The WE(θ)

statistic reduces to the original empirical likelihood statistic for just-determined cases

but may be more efficient than the latter for over-determined cases. The Bartlett

corrected empirical likelihood is also available for WE(θ) (Chen and Cui, 2007) and

an extended version of WE(θ) can be easily defined by replacing the original empirical

log-likelihood ratio l(θ) with WE(θ) throughout Sections 2.2 to 2.4. We will use both

the original empirical likelihood (2.2) and the WE statistic. As in Qin and Lawless

(1994) and Chen and Cui (2007), we assume that X ∼ N(θ, θ2 +1) and consider two

cases (i) θ = 0 and (ii) θ = 1.

Table 2.4 compares the original empirical likelihood, the first-order extended em-

pirical likelihood and the Bartlett corrected empirical likelihood. The extended em-

pirical likelihood is again the most accurate among the three methods. It is worth

mentioning here that when we do not use the extra information about the second

moment by removing the second estimating equation g(x, θ) = x2 − 2θ2 − 1 from the

empirical likelihood, we obtain higher coverage probabilities for all three methods.

This suggests that the extra second moment information, when incorporated into the

empirical likelihood through the second estimating equation, has a negative impact

on the accuracy. This may seem to be counter-intuitive but is in fact another exam-

ple of the serious negative impact of a higher dimension on the empirical likelihood;

the benefit of the extra information represented by the second estimating equation is



38

Table 2.4: Example 2: Coverage probabilities (%) of confidence regions based on
the original empirical likelihood (OEL), the first-order extended empirical likelihood
(EEL) and the Bartlett corrected empirical likelihood (BEL)

90% level 95% level 99% level

Parameter value n OEL EEL BEL OEL EEL BEL OEL EEL BEL

θ = 0 10 64.2 72.9 71.4 70.1 78.4 75.2 76.4 85.9 80.1
30 82.2 85.9 85.6 88.5 91.9 90.9 95.1 97.0 96.1
60 86.3 88.0 87.8 92.1 93.6 93.2 97.6 98.4 98.0

θ = 1 10 64.1 72.7 70.7 69.9 78.4 74.8 76.5 85.7 80.1
30 82.5 85.9 85.5 88.3 91.5 90.6 94.8 96.9 95.8
60 85.9 87.6 87.6 91.8 93.4 93.0 97.4 98.3 97.9

The original empirical likelihood here is given by (2.2), and the extended empiri-
cal likelihood and Bartlett corrected empirical likelihood in this table are based on
this original empirical likelihood. Each entry in the table is a simulated coverage
probability for θ based on 10,000 random samples of size n from N(θ, θ2 + 1).

out-weighted by the negative impact of an increase in dimension, and the net effect

of incorporating the extra information is a deterioration in coverage accuracy.

Table 2.5 compares the WE(θ) statistic with the first-order extended empirical

likelihood and the Bartlett corrected empirical likelihood based on the WE(θ). The

extended empirical likelihood is the most accurate. It is interesting that all three

methods are more accurate when θ = 0 and less so when θ = 1. This is not the

case in Table 2.4 where the original empirical likelihood (2.2) is compared to the

extended and Bartlett corrected empirical likelihoods based on the original empirical

likelihood. This suggests the performance of the WE(θ) statistic and its associated

extended and Bartlett corrected empirical likelihoods depend on the value of the

unknown parameter. See also results in Qin and Lawless (1994) and Chen and Cui

(2007).

Table 2.6 compares the three second-order methods: the Bartlett corrected empir-

ical likelihood, the second-order adjusted empirical likelihood and the second-order

extended empirical likelihood based on the original empirical likelihood (2.2). Table
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Table 2.5: Example 2: Coverage probabilities (%) of confidence regions based on the
WE statistic of Qin and Lawless (1994), the first-order extended empirical likelihood
(EEL) and the Bartlett corrected empirical likelihood (BEL)

90% level 95% level 99% level

Parameter value n WE EEL BEL WE EEL BEL WE EEL BEL

θ = 0 10 75.5 88.0 81.9 81.9 94.2 86.8 88.7 98.4 91.2
30 86.5 89.3 88.9 92.6 95.2 94.5 98.3 99.4 98.9
60 88.3 89.4 89.5 93.9 95.0 94.7 98.7 99.3 99.0

θ = 1 10 67.7 76.0 73.2 73.4 82.2 77.7 80.4 89.5 83.3
30 84.0 86.6 86.5 89.9 92.3 91.9 96.1 97.6 96.9
60 87.4 88.5 88.6 92.7 93.7 93.5 98.0 98.6 98.3

The WE statistics is defined by (3.9) in Qin and Lawless (1994). The EEL and
BEL in this table are based on WE. Each entry in the table is a simulated coverage
probability for θ based on 10,000 random samples of size n from N(θ, θ2 + 1).

Table 2.6: Example 2: Coverage probabilities (%) of confidence regions based on the
Bartlett corrected empirical likelihood (BEL), the second-order adjusted empirical
likelihood (AEL) and the second-order extended empirical likelihood (EEL2)

90% level 95% level 99% level

Parameter value n BEL AEL EEL2 BEL AEL EEL2 BEL AEL EEL2

θ=0 10 71.4 82.9 74.6 75.2 88.2 78.6 80.1 95.6 83.9
30 85.6 86.9 86.5 90.9 91.8 91.4 96.1 96.8 96.4
60 87.8 88.1 88.2 93.2 93.4 93.4 98.0 98.0 98.0

θ=1 10 70.7 82.8 74.4 74.8 87.8 78.4 80.1 94.7 83.9
30 85.5 86.7 86.4 90.6 91.5 91.2 95.8 96.5 96.1
60 87.6 87.9 87.9 93.0 93.2 93.2 97.9 98.0 98.0

The BEL, AEL and EEL2 here are based on the original empirical likelihood given
by (2.2). Each entry in the table is a simulated coverage probability for θ based on
10,000 random samples of size n from N(θ, θ2 + 1).
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Table 2.7: Example 2: Coverage probabilities (%) of confidence regions based on the
Bartlett corrected empirical likelihood (BEL), the second-order adjusted empirical
likelihood (AEL) and the second-order extended empirical likelihood (EEL2)

90% level 95% level 99% level

Parameter value n BEL AEL EEL2 BEL AEL EEL2 BEL AEL EEL2

θ=0 10 81.9 93.3 93.8 86.8 96.7 95.8 91.2 99.4 97.5
30 88.9 90.2 91.2 94.5 95.6 96.0 98.9 99.4 99.3
60 89.5 89.7 90.1 94.7 94.9 95.2 99.0 99.1 99.2

θ=1 10 73.2 86.5 82.0 77.7 91.1 85.2 83.3 96.1 89.2
30 86.5 87.8 88.2 91.9 92.8 92.9 96.9 97.5 97.4
60 88.6 88.8 89.3 93.5 93.7 94.0 98.3 98.5 98.5

The BEL, AEL and EEL2 here are based on the WE statistics defined by (3.9) in
Qin and Lawless (1994). Each entry in the table is a simulated coverage probability
for θ based on 10,000 random samples of size n from N(θ, θ2 + 1).
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Figure 2.2: Contours of empirical likelihoods for (µ, σ2). (a) original empirical likeli-
hood; (b) extended empirical likelihood. Both plots are based the same sample of 10
observations from N(2, 3). The star in the middle of the plot is the maximum empir-
ical likelihood estimate (µ̃, σ̃2) = (2.25, 2.44). Extended empirical likelihood contours
are larger than but similar to the original empirical likelihood contours with the same
centre and identical shape, and by definition in Example 3 they are truncated at the
boundaries of the first quadrant.
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2.7 compares corresponding second-order methods based on the WE statistic. In both

tables, the adjusted empirical likelihood seems to have higher coverage probabilities

for smaller sample sizes but these again are inflated by the boundedness problem of

the adjusted empirical likelihood statistic. For the large sample size of n = 60 where

the boundedness problem is not likely to occur, we see that the adjusted empirical

likelihood is comparable to the Bartlett corrected empirical likelihood. Putting aside

the inflated adjusted empirical likelihood coverage probabilities, we see again that

the second-order extended empirical likelihood is more accurate than the Bartlett

corrected empirical likelihood.

Finally, when computing the estimated Bartlett correction factor b̃ for the over-

determined cases in Table 2.6 and Table 2.7, we have noted very high variations of

the b̃ values for the same sample size and θ value. This is likely due to the high

order sample moments used in the estimator which is highly variable. This unstable

behaviour of b̃ for over-determined cases was also observed in Chen and Cui (2007)

and Liu and Chen (2010), and led the latter to caution against the use of Bartlett

correction for such cases.

Example 3: when the parameter space is not R
p

The extended empirical likelihood l∗(θ) on the full Rp may violate known constraints

on the parameter space Θ. Suppose we wish to make simultaneous inference about the

mean µ and variance σ2 of same univariate random variable with µ known to be non-

negative. Then, the parameter space Θ is the first quadrant instead of the entire R2.

As such, l∗(θ) is only meaningful for θ in the first quadrant. In this case, we redefine

l∗(θ) for θ /∈ Θ as l∗(θ) = +∞ to ensure the extended empirical likelihood does

not violate the known constraints. Consequently, the extended empirical likelihood

contours stop at the boundaries of the parameter space Θ. Figure 2.2 shows an
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example of this based on a sample of size 10 from N(µ = 2, σ2 = 3).
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Chapter 3

Two-sample extended empirical like-

lihood for the mean

Acknowledgement: in accordance with copyright agreements between authors and

journal publishers, we acknowledge that this chapter is the published paper under the

same title by Wu and Tsao (2014), Statistics and Probability Letters, 2014, volume

84, issue C, pages 81-87, with a 11-page Supplement Material available at Statistics

and Probability Letters online.

3.1 Introduction

The empirical likelihood introduced by Owen (1988, 1990) is a versatile non-parametric

method of inference with many applications (Owen, 2001). One problem which the

empirical likelihood method has been successfully applied to is the two-sample prob-

lem (Jing, 1995; Liu, Zou and Zhang 2008; Liu and Yu 2010; Wu and Yan, 2012)

where the parameter of interest θ is the difference between the means of two popula-

tions. The well-known Behrens-Fisher problem is a special two-sample problem where

the two populations are known to be normally distributed. Following DiCiccio, Hall

and Romano (1991) who showed the surprising result that the (one-sample) empiri-
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cal likelihood for a smooth function of the mean is Bartlett correctable, Jing (1995)

and Liu, Zou and Zhang (2008) proved that the two-sample empirical likelihood for

θ is also Bartlett correctable. The coverage error of a confidence region based on

the original empirical likelihood is O(n−1), but that based on the Bartlett corrected

empirical likelihood is only O(n−2).

For a one-sample empirical likelihood, there is a mismatch between its domain

and the parameter space in that it is defined on only a part of the parameter space.

This mismatch is a main cause of the undercoverage problem associated with empir-

ical likelihood confidence regions (Tsao, 2013). The two-sample empirical likelihood

for θ also has the mismatch problem as it is defined on a bounded region but the

parameter space is R
d. In this paper, we derive an extended version of the original

two-sample empirical likelihood (OEL) by expanding its domain into R
d through the

composite similarity mapping of Tsao and Wu (2013). The resulting two-sample ex-

tended empirical likelihood (EEL) for θ is defined on the entire Rd and hence free from

the mismatch problem. Under mild conditions, this EEL has the same asymptotic

properties as the OEL. It can also attain the second order accuracy of the two-sample

Bartlett corrected empirical likelihood (BEL) of Jing (1995) and Liu, Zou and Zhang

(2008). The first order version of this EEL is substantially more accurate than the

OEL, especially for small sample sizes. It is also easy to compute and competitive in

accuracy to the second order methods. We recommend it for two-sample empirical

likelihood inference.

3.2 Two-sample empirical likelihood

Let {X1, . . . , Xm} and {Y1, . . . , Yn} be independent copies of random vectors X ∈ R
d

and Y ∈ R
d, respectively. Denote by µx and Σx the mean and covariance matrix
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of X, and by µy and Σy the mean and covariance matrix of Y , respectively. The

unknown parameter of interest is the difference in means θ0 = µy − µx ∈ R
d and the

parameter space is the entire Rd. We will need the following three conditions later in

the paper:

C1. Σx and Σy are finite covariance matrix with full rank d;

C2. lim sup‖t‖→∞ |E[exp{itTX}]| < 1 and lim sup‖t‖→∞ |E[exp{itTY }]| < 1;

C3. E‖X‖15 < +∞ and E‖Y ‖15 < +∞.

Condition C1 is needed to establish the first order result for the EEL and conditions

C2 and C3 are needed for the second order result. Denote by p = (p1, ..., pm) and

q = (q1, ..., qn) two probability vectors satisfying pi ≥ 0, qj ≥ 0,
∑m

i=1 pi = 1 and
∑n

i=1 qj = 1. Let µx(p) =
∑m

i=1 piXi and µy(q) =
∑n

j=1 qjYj, and denote by θ(p, q)

their difference, that is,

θ(p, q) = µy(q)− µx(p).

The original two-sample empirical likelihood for a θ ∈ R
d, L(θ), is defined as

L(θ) = max
(p,q):θ(p,q)=θ

(

m
∏

i=1

pi

)(

n
∏

j=1

qj

)

. (3.1)

The corresponding two-sample empirical log-likelihood ratio for θ is thus

l(θ) = −2 max
(p,q):θ(p,q)=θ

(

m
∑

i=1

log(mpi) +
n
∑

j=1

log(nqj)

)

. (3.2)

In order to develop our extended empirical likelihood, it is important to first in-

vestigate the domains of the original empirical likelihood ratio L(θ) and log-likelihood

ratio l(θ). The domain of L(θ) is given by

Dθ = {θ ∈ R
d : there exist p and q such that µx(p) =

∑m
i=1 piXi,
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µy(q) =
∑n

j=1 qjYj and θ = θ(p, q) = µy(q)− µx(p)}.

Since the “range” of µx(p) and µy(q) are the convex hulls of the Xi and Yi, respec-

tively, Dθ is a bounded, closed and connected region in R
d without voids. Detailed

discussions about these and other geometric properties of Dθ may be found in the

proof of Lemma 3.1. One of these properties is that θ is an interior point of Dθ if

and only if it can be expressed as θ = θ(p, q) = µy(q)− µx(p) for some p and q with

straightly positive elements. Correspondingly, a boundary point of Dθ can only be

expressed as θ(p, q) = µy(q)− µx(p) where one or more elements of p and q are zero.

This implies that L(θ) = 0 if θ is a boundary point of Dθ and L(θ) > 0 if θ is an

interior point of Dθ. We define the domain of the empirical log-likelihood ratio l(θ)

as

Θn = {θ : θ ∈ Dθ and l(θ) < +∞},

which excludes the boundary points of Dθ. To differentiate between the l(θ) in (3.2)

and the extended version of l(θ) in the next section, we will refer to the l(θ) in (3.2)

as the original two-sample empirical log-likelihood ratio or simply “OEL l(θ)”. The

extended version will be referred to as the “EEL l∗(θ)”.

Let N = m + n, fm = N/m and fn = N/n. Without loss of generality, assume

that m ≥ n > d. By the method of Lagrangian multipliers, we have

l(θ0) = 2

[

m
∑

i=1

log{1− fmλ
T (Xi − µx)}+

n
∑

j=1

log{1 + fnλ
T (Yj − µy)}

]

(3.3)

where the multiplier λ = λ(θ0) satisfies

m
∑

i=1

Xi − µx

1− fmλT (Xi − µx)
= 0 and

n
∑

j=1

Yj − µy

1 + fnλT (Yj − µy)
= 0, (3.4)
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and
n
∑

j=1

Yj

1 + fnλT (Yj − µy)
−

m
∑

i=1

Xi

1− fmλT (Xi − µx)
= θ0. (3.5)

Under the assumption (C1), Jing (1995) and Liu, Zou and Zhang (2008) showed that

l(θ0)
D−→ χ2

d as n → +∞. (3.6)

Hence, the 100(1− α)% OEL confidence interval for θ0 is

C1−α = {θ : θ ∈ R
d and l(θ) ≤ cα} (3.7)

where cα is (1 − α)th quantile of the χ2
d distribution. The coverage error of C1−α is

O(n−1), that is

P (θ0 ∈ C1−α) = P (l(θ0) ≤ cα) = 1− α +O(n−1). (3.8)

Under assumptions (C1), (C2) and (C3), Jing (1995) and Liu, Zou and Zhang (2008)

also showed that the OEL l(θ) is Bartlett correctable, that is

P (θ0 ∈ C ′
1−α) = P (l(θ0) ≤ cα(1 + ηN−1)) = α +O(n−2) (3.9)

where C ′
1−α = {θ : l(θ) ≤ cα(1 + ηN−1)} is the Bartlett corrected empirical likelihood

(BEL) confidence interval and η is the Bartlett correction constant in Theorem 2 of

Liu, Zou and Zhang (2008). For the one-dimensional case, a formula for this constant

was first given in Theorem 2 in Jing (1995) but the formula is incomplete (Liu, Zou

and Zhang 2008). See also Wu and Yan (2012) and Qin (1994) for discussions about

two-sample empirical likelihood methods.
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3.3 Two-sample extended empirical likelihood

Like the one-sample empirical likelihood for the mean, the two-sample OEL l(θ) also

suffers from the mismatch problem between its domain and the parameter space since

the parameter space is Rd but Θn ⊂ R
d. This is a main cause of the undercoverage

problem of empirical likelihood confidence regions (Tsao, 2013; Tsao and Wu, 2013).

To overcome the mismatch, we now extend the OEL l(θ) by expanding its domain to

the entire R
d.

For simplicity, in addition to m ≥ n we further assume that m/n = O(1) so that

O(n−1), O(m−1) and O(N−1), for example, are all interchangeable. A point estimator

for θ0 is θ̂ = Ȳ − X̄ where X̄ = m−1
∑

Xi and Ȳ = n−1
∑

Yj are the sample means.

It is easy to verify that θ̂ is the maximum empirical likelihood estimator (MELE)

for θ0. Following Tsao and Wu (2013), we define the composite similarity mapping

hC
N : Θn → R

d centred on θ̂ as

hC
N(θ) = θ̂ + γ(N, l(θ))(θ − θ̂) (3.10)

where function γ(n, l(θ)) is the expansion factor given by

γ(N, l(θ)) = 1 +
l(θ)

2N
. (3.11)

To investigate the properties of the composite similarity mapping hC
N , we need

Lemma 3.1 below which gives two properties of the two-sample OEL l(θ). For con-

venience, we denote by [θ̂, θ] the line segment that connects θ̂ and θ and by θb a

boundary point of Θn. We have

Lemma 3.1. The two-sample OEL l(θ) satisfies: (i) if θ ∈ Θn and θ′ ∈ [θ̂, θ], then

l(θ′) ≤ l(θ) and (ii) for θ ∈ Θn, limθ→θb l(θ) = +∞.
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Lemma 3.1 shows the two-sample OEL l(θ) for the difference of two means behaves

exactly like its one-sample counterpart for the mean in terms monotonicity and bound-

ary behaviour: it is “monotone increasing” along each ray originating from the MELE

and it goes to infinity as θ approaches a boundary point from within Θn. Neverthe-

less, the two-sample and one-sample cases are not entirely the same; the contours

of the two-sample OEL may not be convex but that of the one-sample OEL always

are. Theorem 3.1 below gives three key properties of composite similarity mapping

hC
N : Θn → R

d.

Theorem 3.1. Under the assumption (C1), hC
N : Θn → R

d defined by (3.10) and

(3.11) satisfies (i) it has a unique fixed point at θ̂, (ii) it is a similarity mapping for

each individual contour of the OEL l(θ) and (iii) it is a bijective mapping from Θn to

R
d.

Since hC
N : Θn → R

d is bijective, it has an inverse function which we denote by

h−C
N (θ) : Rd → Θn. For any θ ∈ R

d, let θ′ = h−C
N (θ) ∈ Θn. The two-sample extended

empirical log-likelihood ratio EEL l∗(θ) is given by

l∗(θ) = l(h−C
N (θ)) = l(θ′), (3.12)

which is defined for θ values throughout R
d. Hence the EEL l∗(θ) is free from the

mismatch problem of the OEL l(θ). Denote by θ′0 the image of θ0 under the inverse

transformation h−C
N (θ) : Rd → Θn, that is

h−C
N (θ0) = θ′0. (3.13)
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Then, the EEL l∗(θ) evaluated at θ0 is given by

l∗(θ0) = l(h−C
N (θ0)) = l(θ′0) = l(θ0 + θ′0 − θ0). (3.14)

If |θ′0− θ0| is asymptotically very small, then l∗(θ0) will have the same asymptotic

distribution as l(θ0). Lemma 3.2 below shows that θ′0 ∈ [θ̂, θ0] and that |θ′0 − θ0| is

indeed asymptotically very small.

Lemma 3.2. Under assumption (C1), point θ′0 defined by equation (3.13) satisfies

(i) θ′0 ∈ [θ̂, θ0] and (ii) θ′0 − θ0 = Op(n
−3/2).

Theorem 3.2 below shows that EEL l∗(θ0) has the same asymptotic chi-square

distribution as the OEL l(θ0).

Theorem 3.2. Under assumption (C1), the EEL l∗(θ0) defined by (3.14) satisfies

l∗(θ0)
D−→ χ2

d as n → +∞. (3.15)

By Theorem 3.2, the 100(1− α)% EEL confidence region for θ0 is

C∗
1−α = {θ : θ ∈ R

d and l∗(θ) ≤ cα}, (3.16)

which has a coverage error of O(n−1). The expansion factor in (3.11) is a convenient

choice which also gives good numerical results. There are many other choices available

under which Theorems 3.1 and 3.2 also hold. This provides an opportunity to optimize

the choice of expansion factor to obtain the second order accuracy. Theorem 3.3 below

gives such an optimal choice.
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Theorem 3.3. Under assumptions (C1), (C2) and (C3), and let l∗2(θ) be the EEL

defined by the composite similarity mapping (3.10) with the following expansion factor

γ2(N, l(θ)) = 1 +
η

2N
[l(θ)]δ(n) (3.17)

where δ(n) = O(n−1/2) and η is the Bartlett correction factor for the two-sample

empirical likelihood in (3.9). Then, we have

l∗2(θ0) = l(θ0)
[

1− η/N +Op(n
−3/2)

]

, (3.18)

and

P (l∗2(θ0) ≤ c) = P (χ2
d ≤ c) +O(n−2). (3.19)

Replacing EEL l∗(θ) in (3.16) with l∗2(θ) gives an EEL confidence interval which,

by (3.19), has a coverage error of O(n−2). Because of this, we call l∗2(θ) the second

order EEL or EEL2. Correspondingly, we call the EEL l∗(θ) defined by expansion

factor (3.11) the first order EEL or EEL1.

3.4 Numerical examples

We now compare the coverage accuracy of 95% confidence regions based on the OEL,

BEL and EEL through numerical examples. A referee brought to our attention the

adjusted two-sample empirical likelihood (AEL) by Liu and Yu (2010). The AEL

is defined on the R
d and it can also attain the second order accuracy of the BEL.

In our numerical comparison, we also include the second order AEL. Comparisons

based on 90% and 99% confidence intervals give similar conclusions and are thus

not included. They can also be found in Wu and Tsao (2013). In the following,

N(0, 1) and BV N(0, I) represent the standard normal and standard bivariate normal
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distribution, and X ∼ (χ2
1, χ

2
1)

T , for example, represents a bivariate random vector

X whose two elements are independent χ2
1 random variables.

Example 1: X ∼ N(0, 1) and Y ∼ N(0, 1).

Example 2: X ∼ (χ2
1, χ

2
1)

T and Y ∼ BV N(0, I).

Example 3: X ∼ (χ2
3, χ

2
3)

T and Y ∼ (Exp(1), Exp(1))T .

To see the effect of the composite similarity mapping, Figure 1 compares contours for

the OEL l(θ) and the corresponding contours for the EEL1 l(θ) based on the same

pair of X and Y samples from Example 2. We see that the contours in the two plots

are identical in shape and the contours in both plots are centred on the MELE θ̂ as

indicated in Theorem 3.1. Further, at any fixed level, the contour of the EEL l∗(θ) is

larger in scale.

Simulated coverage probabilities for the three examples are given in Tables 1, 2

and 3, respectively. Each simulated probability in the tables is based on 10,000 pairs

of random samples whose sizes are indicated by the row and column headings, re-

spectively. The BEL, AEL and EEL2 were computed by using the estimated Bartlett

correction factor from page 1705 in Liu and Yu (2010). We summarize the tables

with the following observations: (1) EEL1 is consistently more accurate than the

OEL. Surprisingly, in most cases it is also more accurate than the second order BEL

and AEL. (2) EEL2 is more accurate than OEL, BEL and AEL for small and mod-

erate sample sizes. It is comparable to BEL and AEL when one or both sample sizes

are large. (3) EEL1 is slightly more accurate than EEL2 overall.

Example 4: A real-data example. Interlining fabrics are used to support outer fab-

rics in order to create and maintain the shape and drape of different clothes. Fan,

Leeuwner, and Hunter (1997) gave a method for selecting compatible fusible interlin-

ings for different outer fabrics based on several variables. One of these variables is
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Figure 3.1: (a) Two-sample OEL contours; (b) Two-sample EEL contours. Both plots
are based the same pair of X and Y samples from Example 2 with sample size n = 20
and m = 20. The star in the middle of the plot is the MELE θ̂. EEL1 contours are
larger than but similar to OEL contours with the same centre and identical shape.

Table 3.1: : Coverage probabilities of 95% OEL, EEL1, BEL, AEL & EEL2 confidence
intervals for Example 1: X ∼ N(0, 1) and Y ∼ N(0, 1)

n=10 n=20 n=30 n=40
m=10 OEL 92.5 92.7 92.5 92.4

EEL1 94.5 94.3 93.6 93.3
BEL 93.6 93.8 93.5 93.4
AEL 94.0 94.4 94.0 93.9
EEL2 94.3 94.4 94.0 93.7

m=20 OEL 92.7 93.7 94.1 94.0
EEL1 94.3 94.9 95.0 94.7
BEL 93.8 94.5 94.7 94.6
AEL 94.2 94.6 94.8 94.6
EEL2 94.4 94.7 94.9 94.8

m=30 OEL 92.2 94.2 94.0 94.8
EEL1 93.4 95.2 94.7 95.3
BEL 93.3 94.8 94.4 95.2
AEL 93.8 94.8 94.5 95.2
EEL2 93.8 95.0 94.5 95.2

m=40 OEL 92.0 94.0 94.2 94.5
EEL1 92.9 94.8 94.9 95.0
BEL 93.0 94.6 94.7 94.9
AEL 93.6 94.7 94.8 94.9
EEL2 93.6 94.8 94.8 95.0
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Table 3.2: : Coverage probabilities of 95% OEL, EEL1, BEL, AEL & EEL2 confidence
regions for Example 2: X ∼ (χ2

1, χ
2
1) and Y ∼ BV N(0, I)

n=10 n=20 n=30 n=40
m=10 OEL 84.2 89.0 89.7 88.7

EEL1 90.2 92.7 92.6 91.0
BEL 86.9 90.9 91.8 90.7
AEL 89.2 92.2 92.9 92.1
EEL2 89.1 92.5 93.0 92.2

m=20 OEL 82.8 89.6 91.6 92.8
EEL1 87.7 92.5 93.8 94.2
BEL 85.7 91.2 93.1 93.8
AEL 88.8 91.7 93.2 93.9
EEL2 87.7 92.1 93.6 94.2

m=30 OEL 80.3 89.2 91.9 92.5
EEL1 83.8 91.4 93.7 93.9
BEL 83.0 90.6 93.1 93.4
AEL 86.6 91.1 93.3 93.5
EEL2 84.8 91.3 93.5 93.7

m=40 OEL 78.8 88.5 90.9 92.3
EEL1 81.7 90.4 92.8 93.6
BEL 81.3 89.9 92.2 93.1
AEL 85.5 90.7 92.5 93.2
EEL2 83.2 90.7 92.7 93.4
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Table 3.3: : Coverage probabilities of 95% OEL, EEL1, BEL, AEL & EEL2 confidence
regions for Example 3: X ∼ (χ2

3
, χ2

3
) Y ∼ (Exp(1), Exp(1))

n=10 n=20 n=30 n=40
m=10 OEL 81.5 89.4 91.3 91.1

EEL1 89.2 93.0 93.9 93.6
BEL 84.6 91.2 92.8 92.7
AEL 87.5 91.8 93.1 93.5
EEL2 88.3 92.7 93.9 93.9

m=20 OEL 81.1 89.7 92.3 92.7
EEL1 86.0 92.6 94.3 94.5
BEL 83.7 91.4 93.6 93.7
AEL 86.8 91.8 93.7 93.9
EEL2 86.5 92.2 94.1 94.3

m=30 OEL 78.1 89.1 91.9 92.9
EEL1 84.2 91.4 93.5 94.3
BEL 80.4 90.5 93.0 93.7
AEL 83.9 91.1 93.1 93.8
EEL2 85.4 91.4 93.3 94.1

m=40 OEL 79.9 89.4 91.6 93.1
EEL1 82.9 91.5 93.4 94.3
BEL 82.2 90.8 92.8 93.9
AEL 85.1 91.3 93.0 94.0
EEL2 84.9 91.7 93.2 94.2
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the extensibility of interlining fabrics. A dataset on page 139 of this paper contains

percentage extensibility for 24 high and 23 medium quality fabrics. We used empir-

ical likelihood methods to construct confidence intervals for the difference between

the mean extensibility of these two grades of fabrics. The 95% OEL, EEL1, BEL,

AEL and EEL2 confidence intervals are, respectively, [−0.203, 0.274], [−0.213, 0.338],

[−0.211, 0.281], [−0.211, 0.281] and [−0.212, 0.287]. These results are consistent with

the findings from the simulation results above; for example, EEL1 interval is the

widest which is consistent with the finding that EEL1 has in general a higher cover-

age probability than other methods.

To conclude, EEL1 is easy-to-compute and is the most accurate overall. Hence,

we recommend EEL1 for two-sample problems.

3.5 Supplement Material

Acknowledgement: we acknowledge that this section contains the supplement material

to the published paper Tsao and Wu (2014) , Statistics and Probability Letters, 2014,

vol. 84, issue C, pages 81-87 and is available at Statistics and Probability Letters

online.

The following section includes the detailed proofs for the two lemmas and three

theorems in the paper. It also includes simulated coverage probabilities for 90% and

99% confidence intervals for Examples 1 and 2 in Section 4.

3.5.1 Proofs of lemmas and theorems

Proof of Lemma 3.1. To prove (i), it is more convenient to work with the

empirical likelihood ratio L(θ) instead of the log-likelihood ratio l(θ). Let Lx(µ1) and

Ly(µ2) be the one-sample empirical likelihood ratios for the mean based the X and



57

Y samples, respectively. Then, for any θ ∈ Θn, the two-sample empirical likelihood

ratio L(θ) in (3.1) can be expressed as

L(θ) = max
(µ1,µ2)

{Lx(µ1)Ly(µ2) : µ2 − µ1 = θ}. (3.20)

In terms of L(θ), (i) is equivalent to L(θ′) ≥ L(θ) for θ′ ∈ [θ̂, θ]. In order to show

this, it suffices to show that for any pair (µ1, µ2) such that µ2 − µ1 = θ there exists a

pair (µ′
1, µ

′
2) such that µ′

2 − µ′
1 = θ′ and

Lx(µ
′
1)Ly(µ

′
2) ≥ Lx(µ1)Ly(µ2). (3.21)

To show (3.21), since θ ∈ Θn, there exist µ1 = µx(p) and µ2 = µy(q) such that

θ = θ(p, q) = µy(q) − µx(p). Without loss of generality, suppose θ 6= θ̂ and consider

only θ′ ∈ (θ̂, θ). By θ′ ∈ (θ̂, θ), there exists a β ∈ (0, 1) such that θ′ = βθ+(1−β)θ̂ =

β(µy(q)− µx(p)) + (1− β)(Ȳ − X̄), that is,

θ′ = β

(

n
∑

j=1

qjYj −
m
∑

i=1

piXi

)

+ (1− β)

(

n−1

n
∑

j=1

Yj −m−1

m
∑

i=1

Xi

)

=
n
∑

j=1

[βqj + (1− β)n−1]Yj −
m
∑

i=1

[βpi + (1− β)m−1]Xi

=
n
∑

j=1

q′jYj −
m
∑

i=1

p′iXi,

where p′i = βpi + (1 − β)m−1 for i = 1, 2, . . . ,m and q′j = βqj + (1 − β)n−1 for

j = 1, 2, . . . , n. Since 0 ≤ pi ≤ 1, 0 < β < 1 and
∑

pi = 1, we have 0 < p′i < 1 and
∑

p′i = 1. Similarly, 0 < q′j < 1 and
∑

q′j = 1. Thus the point θ′ = θ(p′, q′) where

p′ = (p′1, p
′
2, . . . , p

′
m) and q′ = (q′1, q

′
2, . . . , q

′
n) satisfies θ′ ∈ Θn. Letting µ′

1 = µx(p
′)

and µ′
2 = µy(q

′), we have µ′
2 − µ′

1 = θ′, µ′
1 ∈ (X̄, µ1) and µ′

2 ∈ (Ȳ , µ2). It follows

from Lemma 3.1 in Tsao and Wu (2013) that Lx(µ
′
1) ≥ Lx(µ1) and Ly(µ

′
2) ≥ Ly(µ2).
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These imply (3.21) and prove (i).

The above proof also shows that (a) for any θ ∈ Θn, [θ̂, θ] ⊂ Θn and (b) along

the ray originating from θ̂ and through θ, each point θ′ in the interior point of Θn

can be expressed as θ′ = θ(p′, q′) for some p′ and q′ satisfying 0 < p′i < 1,
∑

p′i = 1,

0 < q′j < 1 and
∑

q′j = 1. Hence (b) implies L(θ′) > 0 for all such interior points.

That Θn has a boundary point on the ray is clear from the boundedness of Θn which

is due to the boundedness of both µx(p) and µy(q). Denoting by θb the boundary

point on this ray, (a) implies this boundary point is unique. Further, for any pair

(pb, qb) such that θb = θ(pb, qb), one or more elements of pb and qb must be zero. To see

this, if all of their elements pbi (i = 1, 2, . . . ,m) and qbj (j = 1, 2, . . . , n) are straightly

positive, we can find a β sufficiently close but not equal to 1 such that 0 < p∗i =

β−1pbi − β−1(1− β)m−1 < 1 and 0 < q∗j = β−1qbj − β−1(1− β)n−1 < 1 uniformly for

i = 1, 2, . . . ,m and j = 1, 2, . . . , n. It is easy to verify that
∑

p∗i =
∑

q∗j = 1. Hence,

θ∗ = θ(p∗, q∗) ∈ Θn. Noting that pbi = βp∗i + (1 − β)m−1 for i = 1, 2, . . . ,m and

qbj = βq∗j +(1−β)n−1 for j = 1, 2, . . . , n, we have θb = θ(pb, qb) ∈ (θ̂, θ∗) which shows

θb is a not the boundary point on the ray from θ̂ and through θb, contradicting the

assumption that θb is the boundary point. Hence, a boundary point of Θn can only

be expressed as θb = θ(pb, qb) where one or more elements of pb and qb are zero. This

implies Lx(µ(pb)) = 0 and/or Ly(µ(qb)) = 0. It follows that L(θb) = 0, l(θb) = +∞

and θb ∈ Dθ but θb /∈ Θn.

To summarize, the domain Θn of the OEL l(θ) is connected without voids since

every θ ∈ Θn is connected to θ̂ through a line segment [θ̂, θ] ⊂ Θn. Also, Θn is open

since the boundary points of this connected region do not belong to the region. It is

bounded due to the boundedness of µx(p) and µy(q). Along any ray originating from

the MELE θ̂, there is a unique boundary point θb at which L(θb) = 0 and l(θb) = +∞.

The domain of L(θ), Dθ, is the closure of Θn. By the continuity of L(θ) over Dθ, we
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have (ii). 2

Proof of Theorem 3.1. Proofs of parts (i) and (ii) of Theorem 3.1 follow easily

from that for parts (i) and (ii) of Theorem 3.1 in Tsao and Wu (2013). Noting that

part (i) of Lemma 3.1 implies the contours of the two-sample OEL l(θ) are nested

around the MELE θ̂, the proof of part (iii) of Theorem 3.1 also follows from that for

part (iii) of Theorem 3.1 in Tsao and Fan (2013). 2

Proof of Lemma 3.2. Differentiating EEL l(θ) and evaluating the derivative at

θ0, we find

J(θ0) =

[

∂l(θ)

∂θ

]

θ=θ0

= −2NλT (θ0). (3.22)

Under the conditions of the lemma, we can show that λ(θ0) = Op(n
−1/2) and J(θ0) =

Op(n
1/2). Also, applying Taylor expansion to l(θ) in a small neighbourhood of θ0,

N (θ0) = {θ : |θ − θ0| ≤ κn−1/2}, where κ is some positive constant, we obtain

l(θ) = l(θ0 + (θ − θ0)) = l(θ0) + J(θ0)(θ − θ0) +Op(1). (3.23)

By Theorem 1 in Liu, Zou and Zhang (2008), l(θ0) = Op(1). This and (3.23) imply

that

l(θ) = Op(1) (3.24)

uniformly for θ ∈ N (θ0). Since hC
N(θ

′
0) = θ0, by (3.10) we have

θ0 − θ̂ = γ(N, l(θ′0))(θ
′
0 − θ̂). (3.25)

This and the fact that γ(N, l(θ)) ≥ 1 imply θ′0 ∈ [θ̂, θ0] which proves part (i) of Lemma

3.2. To show part (ii), by θ̂−θ0 = Op(n
−1/2) and part (i), we have θ′0−θ0 = Op(n

−1/2).
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This and (3.24) imply

γ(N, l(θ′0)) = 1 +
l(θ′0)

2N
= 1 +Op(n

−1). (3.26)

Adding and subtracting a θ0 on the right-hand side of (3.25) and simplifying, we find

that

[1− γ(N, l(θ′0))] (θ0 − θ̂) = γ(N, l(θ′0))(θ
′
0 − θ0). (3.27)

By (3.26), (3.27) and θ̂ − θ0 = Op(n
−1/2), we have

θ′0 − θ0 = Op(n
−3/2) (3.28)

which proves part (ii) of Lemma 3.2. 2

Proof of Theorem 3.2. By part (ii) of Lemma 3.2, θ′0− θ0 = Op(n
−3/2). Applying

Taylor expansion to l∗(θ0) = l(θ0 + (θ′0 − θ0)), we obtain

l∗(θ0) = l(θ0) + J(θ0)(θ
′ − θ0) + op(n

−3/2)

= l(θ0) +Op(n
−1). (3.29)

This and l(θ0) → χ2
d in distribution imply Theorem 3.2. 2

Proof of Theorem 3.3. Under assumptions (C1), (C2) and (C3), based on the

equation (2.4) on page 550 in Liu, Zou and Zhang (2008), we expand l(θ0) as

l(θ0) = N(R1 +R2 +R3)
T (R1 +R2 +R3) +N∆+Op(n

−3/2) (3.30)
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where Ri and ∆ are functions of Gt1t2...tl and Gt1t2...tl
1 with

Rr
1 = Gr, Rr

2 = −1

2
GrsGs +

1

3
grstGsGt, (3.31)

Rr
3 =

3

8
GrsGstGt − 5

12
grstGtuGsGu − 5

12
gstuGrsGtGu

+
4

9
grstgtuvGsGuGv +

1

3
GrstGsGt − 1

4
grstuGsGtGu, (3.32)

∆ = (Grs −Grs
1 )GrGs+ +

2

3
(Gruv

1 −Gruv)GrGuGv, (3.33)

where for a vector P, P r means its rth component. Expressions for gt1t2...tl , Gt1t2...tl

and Gt1t2...tl
1 may be found in Liu, Zou and Zhang (2008). Let V = fmCov(X) +

fnCov(Y ). Based on the expressions for λ∗
1 and λ∗

2 on page 553 in Liu, Zou and

Zhang (2008), we have

λ(θ0) = V −1D1 +Op(n
−1), (3.34)

where D1 = n−1
∑n

j=1(yj−µy)−m−1
∑m

i=1(xi−µx). Noting that Gt1t2...tl = Op(n
−1/2)

and Gt1t2...tl
1 = Op(n

−1/2), by (3.31) to (3.34), we have

(i) Rj = Op(n
−j/2) for j = 1, 2, 3, (3.35)

(ii) D1 = θ̂ − θ0 = Op(n
−1/2), (3.36)

(iii) RT
1R1 = DT

1 V
−1D1, (3.37)

(iv) ∆ = Op(n
−3/2). (3.38)

It may be verified that Lemma 3.2, Theorem 3.1 and Theorem 3.2 all hold under

γ2(N, l(θ)). Hence, the limiting distribution of l∗2(θ0) is also χ
2
d. This and the condition

that δ(n) = O(n−1/2) imply

[l(θ′0)]
δ(n)

= 1 +Op(n
−1/2). (3.39)
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Since hC
n (θ

′
0) = θ0, by (3.10) and (3.17), we have

θ′0 − θ0 =
η[l(θ′0)]

δ(n)

2N
(θ̂ − θ′0)

=
η[l(θ′0)]

δ(n)

2N
(θ̂ − θ0) +

η[l(θ′0)]
δ(n)

2N
(θ0 − θ′0). (3.40)

By the part (ii) of Lemma 3.2, (3.39) and (3.40), we find that

θ′0 − θ0 =
η[l(θ′0)]

δ(n)

2N
(θ̂ − θ0) +Op(n

−5/2)

=
η

2N
(θ̂ − θ0) +Op(n

−2). (3.41)

It follows from (3.22), (3.29) and (3.41) that

l∗2(θ0) = l(θ0) + J(θ0)(θ
′ − θ0) + op(n

−3/2)

= l(θ0) +
η

2N
J(θ0)(θ̂ − θ0) + op(n

−3/2)

= l(θ0)−
η

2N

[

2NλT (θ0)
]

(θ̂ − θ0) + op(n
−3/2)

= l(θ0)−
η

N

[

NλT (θ0)(θ̂ − θ0)
]

+ op(n
−3/2). (3.42)

Finally, by (3.30), and (3.35) to (3.38), we obtain

l∗2(θ0) = l(θ0)−
η

N

[

N(V −1D1 +Op(n
−1))TD1

]

+ op(n
−3/2)

= l(θ0)−
η

N

[

NDT
1 V

−1D1

]

+Op(n
−3/2)

= l(θ0)−
η

N

[

NRT
1R1

]

+Op(n
−3/2)

= l(θ0)−
η

N

[

N(R1 +R2 +R3)
T (R1 +R2 +R3) +N∆

]

+Op(n
−3/2)

= l(θ0)−
η

N
l(θ0) +Op(n

−3/2)

= l(θ0){1−
η

N
+Op(n

−3/2)}, (3.43)
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which proves (3.18) in Theorem 3.3. Equation (3.19) in the theorem follows from

equation (3.18) and Theorem 2 in Liu, Zou and Zhang (2008). 2

3.5.2 90% and 99% confidence intervals for Examples 1 and

2

The following tables compare simulated coverage probabilities of 90% and 99% confi-

dence intervals based on the OEL, EEL1, BEL and EEL2. Observations from Section

4 based on 95% confidence intervals remain valid: (1) EEL1 is consistently more ac-

curate than the OEL. It is also more accurate than the second order BEL and EEL2

for small and moderate sample sizes (n,m ≤ 20) and competitive in accuracy when

sample sizes are larger. (2) EEL2 is more accurate than OEL and BEL for small and

moderate sample size. It is comparable to BEL when one or both sample sizes are

large.
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Table 3.4: : Coverage probabilities of 90% OEL, EEL1, BEL, AEL & EEL2 confidence
intervals: X ∼ N(0, 1) and Y ∼ N(0, 1)

n=10 n=20 n=30 n=40
m=10 OEL 86.8 87.6 87.1 86.8

EEL1 89.1 89.0 88.2 87.7
BEL 88.6 88.9 88.5 88.2
AEL 89.1 89.6 89.0 88.9
EEL2 89.2 89.5 89.1 88.7

m=20 OEL 86.8 88.2 89.0 88.8
EEL1 88.5 89.4 89.8 89.7
BEL 88.5 89.3 89.8 89.8
AEL 89.1 89.3 89.8 89.8
EEL2 89.1 89.5 90.0 90.0

m=30 OEL 86.5 89.2 88.8 89.6
EEL1 88.0 90.2 89.5 90.3
BEL 88.3 90.2 89.4 90.2
AEL 88.9 90.3 89.5 90.2
EEL2 88.8 90.4 89.6 90.3

m=40 OEL 86.6 88.5 89.2 89.2
EEL1 87.7 89.3 89.8 89.7
BEL 88.2 89.4 89.8 89.7
AEL 88.7 89.5 89.9 89.7
EEL2 88.6 89.5 89.9 89.8
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Table 3.5: : Coverage probabilities of 99% OEL, EEL1, BEL, AEL & EEL2 confidence
intervals: X ∼ N(0, 1) and Y ∼ N(0, 1)

n=10 n=20 n=30 n=40
m=10 OEL 97.5 97.8 97.5 97.7

EEL1 98.9 98.8 98.4 98.3
BEL 98.1 98.2 98.0 98.1
AEL 98.3 98.5 98.3 98.5
EEL2 98.4 98.5 98.3 98.4

m=20 OEL 97.7 98.6 98.6 98.5
EEL1 98.7 99.2 99.1 99.0
BEL 98.1 98.8 98.8 98.7
AEL 98.4 98.9 98.8 98.8
EEL2 98.5 99.0 98.9 98.8

m=30 OEL 97.4 98.6 98.7 98.8
EEL1 98.3 99.1 99.1 99.1
BEL 97.9 98.8 98.9 98.9
AEL 98.2 98.8 98.9 98.9
EEL2 98.2 98.9 99.0 98.9

m=40 OEL 97.5 98.5 98.6 98.8
EEL1 98.1 98.8 99.0 99.2
BEL 97.9 98.7 98.8 98.9
AEL 98.3 98.7 98.8 98.9
EEL2 98.2 98.7 98.8 99.0
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Table 3.6: : Coverage probabilities of 90% OEL, EEL1, BEL, AEL & EEL2 confidence
intervals: X ∼ (χ2

1, χ
2
1) and Y ∼ BV N(0, I)

n=10 n=20 n=30 n=40
m=10 OEL 77.3 82.4 83.7 82.6

EEL1 83.4 86.5 86.4 85.0
BEL 80.6 85.2 85.9 85.3
AEL 83.1 86.4 87.1 86.4
EEL2 83.2 87.0 87.5 86.5

m=20 OEL 75.9 83.6 85.9 86.5
EEL1 80.0 86.3 88.1 88.2
BEL 78.8 85.5 87.6 88.0
AEL 81.7 86.2 87.8 88.2
EEL2 80.9 86.5 88.3 88.6

m=30 OEL 73.2 83.1 85.9 86.5
EEL1 76.4 85.2 87.7 88.2
BEL 76.2 85.0 87.4 87.9
AEL 79.7 85.6 87.7 88.0
EEL2 78.2 85.7 88.0 88.5

m=40 OEL 71.6 82.1 84.8 86.6
EEL1 74.4 84.1 86.5 88.0
BEL 74.9 84.1 86.4 87.9
AEL 78.9 85.0 86.5 87.9
EEL2 76.9 85.0 86.8 88.1
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Table 3.7: : Coverage probabilities of 99% OEL, EEL1, BEL, AEL & EEL2 confidence
intervals: X ∼ (χ2

1, χ
2
1) and Y ∼ BV N(0, I)

n=10 n=20 n=30 n=40
m=10 OEL 92.2 95.8 96.0 96.0

EEL1 96.9 98.1 97.8 97.6
BEL 93.7 96.8 96.9 97.0
AEL 95.4 97.2 97.6 97.6
EEL2 95.4 97.6 97.6 97.7

m=20 OEL 92.2 96.4 97.4 98.0
EEL1 95.4 98.3 98.7 98.9
BEL 93.4 97.2 98.0 98.4
AEL 95.7 97.4 98.1 98.5
EEL2 94.7 97.6 98.3 98.6

m=30 OEL 89.9 96.2 97.6 98.0
EEL1 93.1 97.8 98.6 98.7
BEL 91.5 97.0 98.1 98.3
AEL 95.0 97.4 98.2 98.4
EEL2 92.8 97.4 98.3 98.5

m=40 OEL 88.0 95.5 97.4 97.8
EEL1 90.9 97.0 98.2 98.6
BEL 89.8 96.2 97.9 98.2
AEL 93.9 96.7 98.0 98.3
EEL2 91.3 96.7 98.0 98.3
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Table 3.8: : Coverage probabilities of 90% OEL, EEL1, BEL, AEL & EEL2 confidence
intervals: X ∼ (χ2

3, χ
2
3) and Y ∼ (Exp(1), Exp(1))

n=10 n=20 n=30 n=40
m=10 OEL 75.2 83.3 85.4 85.0

EEL1 82.0 87.3 88.2 87.1
BEL 78.6 86.0 87.4 86.8
AEL 80.7 86.7 88.2 87.9
EEL2 81.6 87.4 88.8 88.0

m=20 OEL 74.2 84.3 86.7 87.0
EEL1 79.2 86.8 88.7 88.8
BEL 77.7 86.2 88.2 88.5
AEL 80.3 86.6 88.4 88.6
EEL2 80.5 87.0 88.8 88.9

m=30 OEL 72.3 83.2 85.8 87.2
EEL1 77.7 85.5 87.9 88.8
BEL 75.1 85.2 87.6 88.5
AEL 78.3 85.8 87.7 88.6
EEL2 79.5 86.1 88.0 89.0

m=40 OEL 73.8 83.6 86.2 87.6
EEL1 76.5 85.5 87.7 88.9
BEL 76.8 85.5 87.6 88.8
AEL 79.2 85.9 87.8 88.8
EEL2 79.1 86.5 88.0 89.1
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Table 3.9: : Coverage probabilities of 99% OEL, EEL1, BEL, AEL & EEL2 confidence
intervals: X ∼ (χ2

3, χ
2
3) and Y ∼ (Exp(1), Exp(1))

n=10 n=20 n=30 n=40
m=10 OEL 89.5 95.7 97.0 97.1

EEL1 96.2 98.2 98.8 98.6
BEL 91.0 96.5 97.8 97.8
AEL 94.4 97.1 98.1 98.2
EEL2 94.6 97.8 98.5 98.5

m=20 OEL 89.3 96.0 97.7 98.1
EEL1 93.9 97.9 98.8 98.8
BEL 90.9 96.7 98.2 98.4
AEL 94.5 97.0 98.2 98.5
EEL2 93.1 97.3 98.5 98.6

m=30 OEL 85.0 95.5 97.4 98.2
EEL1 91.9 97.3 98.4 98.8
BEL 86.4 96.3 97.9 98.5
AEL 91.4 96.8 97.9 98.5
EEL2 92.0 97.0 98.0 98.5

m=40 OEL 87.8 95.7 97.5 97.9
EEL1 91.0 97.1 98.4 98.5
BEL 89.4 96.3 98.0 98.2
AEL 93.3 96.6 98.1 98.3
EEL2 91.7 97.0 98.2 98.3
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Chapter 4

Two-sample empirical likelihood for

estimating equations

4.1 Introduction

A two-sample problem is concerned with making inference for the difference between

the corresponding parameters of two populations/models with two independent sam-

ples. The difference between two population means is a special case that has been

extensively studied; when the sample sizes are not large and underlying distributions

are normal, methods for the Behren-Fisher problem or a two-sample t method can

be used; when the sample sizes are large, non-parametric z based procedures can be

used. Recently, the empirical likelihood method (Owen, 2001) has been successfully

applied to this special case. See Jing (1995), Liu, Zou and Zhang (2008), Liu and

Yu (2010), Wu and Yan (2012) and Wu and Tsao (2013). These empirical likelihood

methods complement existing methods as they do not require strong conditions and

are more accurate than normal approximation based methods when the underlying

distributions are skewed. In particular, the extended two-sample empirical likelihood

for the difference between two p-dimensional means (Wu and Tsao, 2013) is defined
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on the whole of Rp and is more accurate than other empirical likelihood methods.

In this paper, we study empirical likelihood methods for the general two-sample

problem concerning the difference between two p-dimensional parameters defined by

general estimating equations. The main contribution of this paper is a new extended

empirical likelihood for such a difference, which generalizes results of Tsao (2013) and

Tsao and Wu (2013) to this two-sample problem. The empirical likelihood method

was introduced by Owen (1988, 1990). It has since been applied to many problems

in statistics; see Owen (2001) and references therein. In particular, Qin and Lawless

(1994) showed that the empirical likelihood is effective for inference on parameters

defined by estimating equations. DiCiccio, Hall and Romano (1991) and Chen and

Cui (2007) proved that the empirical likelihood for estimating equations is Bartlett

correctable; the Bartlett corrected empirical likelihood enjoys the second-order ac-

curacy. Although there have been relatively few publications that apply empirical

likelihood to the general two-sample problem, it is well-suited for this problem as

the formulation of the one-sample empirical likelihood for estimating equations can

be readily extended to handle the two-sample case; see, e.g., Jing (1995), Qin and

Zhao (2000), Liu, Zou and Zhang (2008), Liu and Yu (2010), Wu and Yan (2012)

and Zi, Zou and Liu (2012). In particular, Qin and Zhao (2000) studied the standard

two-sample empirical likelihood for the univariate version (p = 1) of the problem,

and Zi, Zou and Liu (2012) considered the special case where the parameters are the

coefficient-vectors of two linear models.

In Section 2, we study the standard two-sample empirical likelihood for estimating

equations in the general multi-dimensional sitting where p ≥ 1. Like its one-sample

counterpart, this two-sample empirical likelihood also has an asymptotic chi-square

distribution and is Bartlett correctable. Adopting the terminology in Tsao and Wu

(2013), we refer to this standard two-sample empirical likelihood as the two-sample
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original empirical likelihood (OEL) for estimating equations. The OEL suffers from

a mismatch problem (Tsao and Wu, 2013) in that it is only defined on a part of

the parameter space. This problem affects the coverage accuracy of the OEL based

confidence regions. To overcome this, in Section 3 we introduce a two-sample extended

empirical likelihood (EEL) that is defined on the whole parameter space. The EEL is

obtained by expanding the domain of the OEL to the full parameter space through a

composite similarity mapping. We show that the EEL has the same asymptotic chi-

square distribution as the OEL and that it can also achieve the second-order accuracy

of the Bartlett correction. In Section 4, we discuss two applications of the two-sample

OEL and EEL. The first application is concerned with the inference for the difference

between two Gini indices, and the second application is concerned with that between

coefficient vectors of two regression models. We also make use of these applications

to compare the numerical accuracy of the OEL and EEL confidence regions and to

illustrate the superior accuracy of the EEL.

Proofs of theoretical results on two-sample OEL and EEL are all relegated to the

Appendix. Note that some of these results can be proved by slightly modifying the

proofs of similar results for other empirical likelihoods in the literature. For brevity,

we will not include detailed proofs for such results in the Appendix but will give

relevant references containing similar proofs.

4.2 Two-sample original empirical likelihood (OEL)

for estimating equations

We first describe the general two-sample problem for estimating equations as follows.

Let X ∈ R
d and Y ∈ R

d be two random vectors with unknown parameters θx0
∈ R

p

and θy0 ∈ R
p, respectively. Let g(X, θx) and g(Y, θy) be two q-dimensional estimating
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functions for θx0
and θy0 satisfying E{g(X, θx0

)} = 0 and E{g(Y, θy0)} = 0, respec-

tively. The unknown parameter of interest is the difference π0 = θy0 − θx0
∈ R

p and

the parameter space is the entire R
p. A more general version of this problem allows

the estimating function for θx0
to be different from that for θy0 . For simplicity, we

consider only the common case where the two estimating functions are the same. We

assume that {X1, . . . , Xm} are independent copies of X, {Y1, . . . , Yn} are independent

copies of Y , and Xi and Yj are independent.

We now generalize the one-sample OEL for estimating equations (Qin and Lawless,

1994) to obtain a two-sample OEL for π0 and study its asymptotic properties. We

will need the following four conditions on g(X, θx) and g(Y, θy).

Condition 1. E{g(X, θx0
)} = 0 and E{g(Y, θy0)} = 0, and var{g(X, θx0

)} ∈ R
q×q

and var{g(Y, θy0)} ∈ R
q×q are both positive definite.

Condition 2. ∂g(X, θx)/∂θx and ∂g2(X, θx)/∂θx∂θ
T
x are continuous in θx, and for

θx in a neighbourhood of θx0
they are each bounded in norm by an integrable function

of X.

Condition 3. ∂g(Y, θy)/∂θy and ∂g2(Y, θy)/∂θy∂θ
T
y are continuous in θy, and for θy

in a neighbourhood of θy0 they are each bounded in norm by an integrable function

of Y .

Condition 4. lim sup‖t‖→∞ |E[exp{itTg(X, θx)}]| < 1 and E‖g(X, θx)‖15 < +∞;

lim sup‖t‖→∞ |E[exp{itT g(Y, θy)}]| < 1 and E‖g(Y, θy)‖15 < +∞.

Denote by p̄ = (p1, ..., pm) and q̄ = (q1, ..., qn) two probability vectors satisfying

pi ≥ 0, qj ≥ 0,
∑m

i=1 pi = 1 and
∑n

i=1 qj = 1. Let θy and θx be points in R
p and

denote by θy(q̄) and θx(p̄) values that satisfy

m
∑

i=1

pig(Xi, θx(p̄)) = 0,
n
∑

j=1

pjg(Yj, θy(q̄)) = 0.
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Let π = θy − θx ∈ R
p and let π(p̄, q̄) = θy(q̄)− θx(p̄). Then, the two-sample OEL

for a possible value of the difference π, L(π), is defined as

L(π) = sup
(p̄,q̄):π(p̄,q̄)=π

(

m
∏

i=1

pi

)(

n
∏

j=1

qj

)

, (4.1)

which is the maximum of the product of the one-sample OEL for θy and the one-

sample OEL for θx taken over all pairs (θx, θy) that satisfies π = θy − θx. The

corresponding two-sample empirical log-likelihood ratio for π is thus

l(π) = −2 sup
(p̄,q̄):π(p̄,q̄)=π

{

m
∑

i=1

log(mpi) +
n
∑

j=1

log(nqj)

}

. (4.2)

For convenience, we will also use OEL for the original empirical log-likelihood ratio.

We will write “OEL L(π)” and “OEL l(π)” for the original empirical likelihood ratio

(4.1) and log-likelihood ratio (4.2), respectively.

Define the domain of L(π), Dn, as

Dn = {π ∈ R
p : there exist θy(q̄) and θx(p̄) such that π = θy(q̄)− θx(p̄).},

and define the domain of l(π), Πn, as

Πn = {π : π ∈ Dn and l(π) < +∞}.

Let N = m + n, fm = N/m and fn = N/n. Without loss of generality, we

assume that m ≥ n > q. We also assume that m/n = O(1) so that O(n−1), O(m−1)

and O(N−1), for example, are all interchangeable. By the method of Lagrangian

multipliers, we have

l(π0) = 2

[

n
∑

j=1

log{1 + fn(λ
∗)Tg(Yj, θ

∗
y)}+

m
∑

i=1

log{1− fm(λ
∗)T g(Xi, θ

∗
x)}
]

(4.3)
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where (λ∗, θ∗y, θ
∗
x) is the solution of the following non-linear system

n
∑

j=1

g(Yj, θy)

1 + fnλT g(Yj, θy)
= 0, (4.4)

m
∑

i=1

g(Xi, θx)

1− fmλT g(Xi, θx)
= 0,

π0 = θy − θx.

Hence, we may write l(π0) = l(λ∗, θ∗y, θ
∗
x). The following theorem gives the asymptotic

distribution of l(π0).

Theorem 4.1. Under Conditions 1, 2, 3 and 4, the two-sample OEL l(π0) defined

by (4.3) satisfies

l(π0)
D−→ χ2

q as n → +∞. (4.5)

By Theorem 4.1, the 100(1− α)% two-sample OEL confidence region for π0 is

C1−α = {π : π ∈ R
p and l(π) ≤ cα} (4.6)

where cα is (1 − α)th quantile of the χ2
q distribution. The coverage error of C1−α is

O(n−1), that is

P (π0 ∈ C1−α) = P{l(π0) ≤ cα} = 1− α +O(n−1). (4.7)

Theorem 4.1 is the standard first-order result for an OEL. The error rate of O(n−1)

in (4.7) follows from an argument in DiCiccio, Hall and Romano (1991) for that of

the one-sample empirical likelihood. See also Hall and La Scala (1990).

DiCiccio, Hall and Romano (1991) and Chen and Cui (2007) showed that the one-

sample OEL for estimating equations is Bartlett correctable; the Bartlett correction
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reduces the coverage error of the empirical likelihood confidence region to O(n−2).

Theorem 3.2 shows that the two-sample OEL for estimating equations (4.3) is also

Bartlett correctable. The key result for proving Theorem 3.2 is Lemma 4.1 below. In

order to present Lemma 4.1, we need to first introduce some new notations.

Denote by θky , θ
k
x and ζk approximations of θ∗y, θ

∗
x and λ∗, respectively. For brevity,

the analytic expressions of θky , θ
k
x and ζk will be given later in the Appendix. For

these three notations, we note that the k in say θky is a superscript (not to the power

of k) which indicates the order of the approximation is O(n−(k+1)/2), i.e., θky = θy +

O(n−(k+1)/2). Let V1 = fnvar{g(Y, θy)}, V2 = fmvar{g(X, θx)}, V = V1 + V2 and

W = V1V
−1V2. Further, define

zj0 = V −1/2g(yj, θ
0
y), zi0 = V −1/2g(xi, θ

0
x) zj1 = V −1/2g(yj, θ

1
y), (4.8)

zi1 = V −1/2g(xi, θ
1
x), st1t2...tl = f l−1

n E(zt1j0z
t2
j0 . . . z

tl
j0) + (−1)lf l−1

m E(zt1i0z
t2
i0 . . . z

tl
i0),

St1t2...tl =
f l−1
n

n

n
∑

j=1

(zt1j0z
t2
j0 . . . z

tl
j0) +

(−1)lf l−1
m

m

m
∑

i=1

(zt1i0z
t2
i0 . . . z

tl
i0)− st1t2...tl ,

St1t2...tl
1 =

f l−1
n

n

n
∑

j=1

(zt1j1z
t2
j1 . . . z

tl
j1) +

(−1)lf l−1
m

m

m
∑

i=1

(zt1i1z
t2
i1 . . . z

tl
i1)− st1t2...tl ,

and

∆1 = SτSτ − SτυSτSυ +
2

3
sταβSτSαSβ + SτυSυωSτSω +

2

3
SταβSτSαSβ,

−2sτυωSταSυSαSυ + sτυωsταβSυSωSαSβ − 1

2
sτυωαSτSυSωSα,

∆2 = (Sτυ − Sτυ
1 )SτSυ +

2

3
(Sταβ

1 − Sταβ)SτSαSβ.

where we have used the common summation convention that if an index appears more

than once in an expression, summation over the index is understood.
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Lemma 4.1. With above notations and under condition 1, 2, 3, and 4, we have

l(π0)

N
= ∆1 +∆2 +Op(n

−5/2). (4.9)

To see the connection between expansion (4.9) and that of other high-order expan-

sions of empirical log-likelihood ratios, we note that the ∆1 term in (4.9) is similar to

the expansion of the one-sample empirical log-likelihood ratio at the true parameter

value given by DiCiccio, Hall and Romano (1991) and Chen and Cui (2007). In the

present case, the expansion at the true difference π0 depends on the true parameter

values θx0 and θy0, both of which need to be estimated. The use of the estimated

values of these parameters resulted in the extra term ∆2 in expansion (4.9). See also

a similar ∆2 term in the expansion of the two-sample empirical log-likelihood ratio

for the mean in Liu, Zou and Zhang (2008).

We now use Lemma 4.1 to derive the two-sample Bartlett corrected empirical

likelihood confidence region for the difference between two parameters defined by

estimating equations. Let η be the Bartlett correction factor where

η = − 1

3d
sτυωsταβ +

1

2d
sτταα +

fmfn
d

tr(V −1/2WV −1/2). (4.10)

The derivation of (4.10) is similar to that for the Bartlett correction factor for the

difference between two means in Liu, Zou and Zhang (2008), which involves taking

expectations of ∆1 and ∆2 and omitting terms of order O(n−1). With η, the two-

sample Bartlett corrected empirical log-likelihood ratio (BEL) is given by

lB(π) = l(π)(1− ηN−1).
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It follows that the two-sample BEL confidence region C ′
1−α for π0 is

C ′
1−α = {π : π ∈ R

p and lB(π) ≤ c}. (4.11)

Theorem 3.2 below shows the coverage error of C ′
1−α is O(n−2).

Theorem 4.2. Under Conditions 1, 2, 3 and 4, for any c > 0 the Bartlett corrected

two-sample empirical likelihood confidence region satisfies

P (π0 ∈ C ′
1−α) = P [l(π0){1− ηN−1} ≤ c] = P (χ2

d ≤ c) +O(n−2). (4.12)

A stronger result due to DiCiccio, Hall and Romano (1991) is that

P [l(π0){1− ηN−1 +Op(n
−3/2)} ≤ c] = P (χ2

d ≤ c) +O(n−2). (4.13)

The Bartlett correction factor η in (4.11) and (4.12) depends on the moments of

g(X; θx0) and g(Y ; θy0) which are not available in empirical likelihood applications.

Fortunately, by (4.13) we can use a
√
n-consistent estimator η̂ in place of the η in

(4.12) without affecting the O(n−2) error term in (4.12). In real applications of the

Bartlett correction, the
√
n-consistent estimator η̂ is usually used instead of the exact

η; see for example, Chen and Cui (2007) and Liu and Chen (2010). For two-sample

BEL for the difference between two means, Liu, Zou and Zhang (2008) gave a moment

estimator η̂ for η. Liu and Yu (2010) reported that η̂ tends to underestimate η and

proposed a less biased estimator η̃ for η. This less biased η̃ is also applicable to our

two-sample BEL for π0, and we will use this η̃ for our simulation studies.
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4.3 Two-sample extended empirical likelihood (EEL)

for estimating equations

4.3.1 Composite similarity mapping

Like the one-sample OEL for estimating equations, the two-sample OEL l(π) also

suffers from the mismatch problem between its domain Πn and the parameter space

since the parameter space is R
p but Πn ⊂ R

p. The mismatch problem is a main

contributor to the undercoverage problem of the OEL confidence regions. To solve this

problem, we now expand Πn to match the parameter space R
p through a composite

similarity mapping (Tsao and Wu, 2013). This leads to an EEL defined on R
p and

hence is free from the mismatch problem.

Denote by θ̃x and θ̃y the
√
n-consistent maximum empirical likelihood estimators

(MELEs) for θx0 and θy0, respectively. Then, it is not difficult to show that the MELE

of π0 is π̃ = θ̃y − θ̃x which is
√
n-consistent for π0. We define the composite similarity

mapping hC
N : Πn → R

p as

hC
N(π) = π̃ + γ{N, l(π)}(π − π̃) for π ∈ Πn, (4.14)

where function γ{N, l(π)} is the expansion factor given by the following expression

which depends continuously on π

γ{N, l(π)} = 1 +
l(π)

2N
. (4.15)

To see how hC
N maps Πn onto R

p, define the level-τ OEL contour as

c(τ) = {π : π ∈ Πn and l(π) = τ}, (4.16)
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where τ ≥ τ̃ = l(π̃) ≥ 0. For the just-determined case, the one-sample OEL’s satisfy

l(θ̃x) = 1 and l(θ̃y) = 1. Thus, L(π̃) = 1 and τ̃ = l(π̃) = 0. The contours form a

partition of the domain Πn; that is, c(τ1) ∩ c(τ2) = ∅ for any τ1 6= τ2 and

Πn =
⋃

τ∈[τ̃ ,+∞)

c(τ). (4.17)

In addition to conditions 1 to 4 above, we now introduce a new condition.

Condition 5. Each contour c(τ) is the boundary of a connected region in R
p, and

the contours are nested in that if τ1 < τ2, then c(τ1) is contained in the interior of

the region defined by c(τ2).

Under Condition 5 and in view of (4.17), the MELE c(τ̃) = {π̃} may be regarded

as the centre of domain Πn. It follows that the value of τ measures the outwardness

of a c(τ) with respect to the centre; the larger the τ value, the more outward c(τ) is.

The following theorem gives three key properties of hC
N .

Theorem 4.3. Under conditions 1, 2 and 3, mapping hC
N defined by (4.14) and (4.15)

satisfies (i) it has a unique fixed point at π̃, (ii) it is a similarity transformation for

each individual contour c(τ) and (iii) it is a surjection from Πn to R
p.

As a result of (ii), hC
N may be viewed as a continuous sequence of similarity

mappings from R
p to R

p that are indexed by τ ∈ [τ̃ ,+∞). The τ -th mapping has

expansion factor γ{N, l(π)} = γ(N, τ) and it maps only points on the level-τ contour

c(τ). Regardless of the amount expanded, c(τ) and its image are identical in shape.

By (4.15), the expansion factor γ(N, τ) is an increasing function of τ which approaches

infinity when τ does. Hence, contours farther away from the centre are expanded more

and images of the contours fill up the entire R
p.

If we are to add Condition 5 to Theorem 4.3, then (iii) can be strengthened to
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(iii’) hC
N is a bijection from Πn to R

p. See, for example, the proof of Theorem 1 in

Tsao and Wu (2013). It is not clear how we may verify condition 5 through g(X, θx)

and g(Y, θy). This is why we have not added it to Theorem 4.3. Nevertheless, we

have not encountered any example where Condition 5 is violated.

4.3.2 Extended empirical likelihood on the full parameter

space

By Theorem 4.3, hC
N : Πn → R

p is surjective. Thus, for any π ∈ R
p, s(π) = {π′ :

π′ ∈ Πn and hC
N(π

′) = π} is non-empty. When hC
N is not injective, s(π) may contain

multiple points and hC
N does not have an inverse. Hence, we define a generalized

inverse h−C
N : Rp → Πn as follows

h−C
N (π) = argminπ′∈s(π){‖π′ − π‖} for π ∈ R

p. (4.18)

If s(π) contains exactly one point π′, then h−C
N (π) = π′. If s(π) has multiple points,

then h−C
N (π) equals the point π′ ∈ s(π) that is the closest to π.

We now define the EEL l∗(π) under h−C
N as follows

l∗(π) = l{h−C
N (π)} for π ∈ R

p. (4.19)

It is clear that l∗(π) is well-defined throughout Rp since h−C
N (π) ∈ Πn for any π ∈ R

p

and thus the right-hand side of (4.19) is always well-defined. Let π′
0 be the image of

π0 under the inverse mapping h−C
N (π), that is,

h−C
N (π0) = π′

0. (4.20)

Then, l∗(π0) = l{h−C
N (π0)} = l(π′

0). Denote by [π̃, π0] the line segment in R
p that
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connects the two points π̃ and π0. Lemma 4.2 below shows that π′
0 is on [π̃, π0] and

that it is asymptotically very close to π0.

Lemma 4.2. Under conditions 1, 2 and 3, the point π′
0 defined by equation (4.20)

satisfies

(i) π′
0 ∈ [π̃, π0] and (ii) π′

0 − π0 = Op(n
−3/2).

Theorem 4.4 below gives the asymptotic distribution of l∗(π0).

Theorem 4.4. Under conditions 1, 2, 3 and 4, the two-sample EEL l∗(π) defined by

(4.19) satisfies

l∗(π0)−→χ2
q

in distribution as n → +∞.

The proof of Theorem 4.4 makes use of the observation that

l∗(π0) = l{h−C
N (π0)} = l(π′

0) = l{π0 + (π′
0 − π0)}. (4.21)

Since by Lemma 4.2 ‖π′
0−π0‖ is asymptotically very small, (4.21) implies that l∗(π0) =

l(π0) + op(1). This and the fact that l(π0) has an asymptotic χ2
q distribution lead to

Theorem 4.4. The relationship in (4.21) is also the key in the derivation of a second-

order two-sample EEL in the next section.

4.3.3 Second-order extended empirical likelihood

We have seen in Theorem 4.2 that the two-sample OEL admits a Bartlett correction

which reduces the coverage error of the empirical likelihood confidence region to

O(n−2). The following theorem shows that for the just-determined case, the two-

sample EEL can also attain the second-order accuracy.
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Theorem 4.5. Assume conditions 1, 2, 3 and 4 hold. For the just-determined case

where p = q, let l∗2(π) be the EEL defined by the composite similarity mapping (4.14)

with expansion factor γ{N, l(π)} = γ2{N, l(π)} given by

γ2{N, l(π)} = 1 +
η

2N
{l(π)}δ(n), (4.22)

where δ(n) = O(n−1/2) and η is the Bartlett correction constant in (4.10). Then,

l∗2(π0) = l(π0){1− ηN−1 +Op(n
−3/2)}, (4.23)

and for any fixed c > 0,

P (l∗2(π0) ≤ c) = P (χ2
d ≤ c) +O(n−2). (4.24)

Equation (4.24) follows from (4.23) and (4.13). It shows that confidence regions

based on l∗2(π) have a coverage error of O(n−2). Hence, we call l∗2(π) the second-order

EEL or EEL2. Correspondingly, we call l∗(π) in (4.19), which is defined with the

expansion factor γ{N, l(π)} in (4.15), the first-order EEL or EEL1. The δ(n) function

in γ2{N, l(π)} is used to control the speed of domain expansion to achieve the second-

order accuracy. For convenience, we will use δ(n) = n−1/2 when we compute EEL2 in

our numerical examples.

4.4 Applications and numerical comparison

The need for comparing two populations/models in terms of some numerical aspect

of interest arises frequently in applied research. Whenever the numerical aspect of

interest can be represented by a parameter defined by estimating equations, the two-
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sample OEL, BEL and EEL discussed here may be applied to make the comparison. In

this section, we consider two such applications. The first is concerned with comparing

two populations in terms of the inequality of income distribution. The second is

concerned with comparing two linear regression models. Through these two examples,

we also compare the numerical accuracy of the three two-sample empirical likelihood

methods.

4.4.1 Application 1: Comparing two Gini indices

The Gini index was introduced by Corrado Gini, an Italian statistician of the early

20th century, as a measure of inequality of income or wealth distribution in a country.

The value of the Gini index is bounded between 0 and 1, with 0 representing com-

plete equality where all individuals have equal income and 1 representing complete

inequality where one individual has all the income and others have none. Gini index

has been widely used in social and economic studies of income distributions [e.g.,

Gini (1936), Chen (2009), Domeij Domeij and Flodén (2010), and Bee (2012)]. There

are also a lot of work on the estimation and inference of the Gini index in both the

statistical and econometric literature.

Qin, Rao and Wu (2010) and Peng (2011) applied the method of empirical likeli-

hood to make inference about the Gini index. In particular, Peng (2011) derived an

interesting estimating equation for the Gini index with which the existing theory of

Qin and Lawless (1994) was readily applied to make empirical likelihood inference for

the index. Peng (2011) also derived empirical likelihoods for the difference between

two Gini indexs with paired data and two independent samples. We now apply the

two-sample methods to make inference about the difference between two Gini indices

using the estimating equation of Peng (2011). For this application, the two-sample

OEL coincides with that given by Peng (2011).
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Let X1, ..., Xn be i.i.d. observations from an income distribution F (x) supported

on [0,+∞). Define Ti = {Xi + X[n/2]+i}/2 and Zi = min{Xi, X[n/2]+i} for i =

1, ..., [n/2] where [n/2] is the integer part of n/2. Then, Peng (2011) showed that the

Gini index, θ0, of distribution F (x) satisfies,

E(Ti − Zi − Tiθ0) = 0. (4.25)

Let FA(x) be the income distribution of Country A with Gini index θx0 and FB(y)

be that of Country B with Gini index θy0. Suppose we have two random samples of

sizes m and n, respectively, from FA(x) and FB(y). Then, we can compute confidence

intervals for the difference π0 = θy0 − θx0 by using the two-sample OEL, BEL, EEL1

and EEL2. To illustrate their use and to compare the coverage accuracy of confidence

intervals based these methods, we consider the following two examples:

Example 1: FA is log-normal with log(X) ∼ N(0, 1) and FB is χ2
1.

Example 2: FA is Pareto(5) and FB is Exp(1).

The true value of the Gini index for Exp(1) is 0.5 and the true values of Gini index

for log(X) ∼ N(0, 1), χ2
1 and Pareto(5) are approximately 0.5205, 0.6366 and 0.1111,

respectively, obtained through Monte Carlo simulations. Before presenting numerical

results, note that the two-sample OEL confidence interval for π0 is C1−α given by

(4.6). The BEL confidence interval is C ′
1−α given in (4.11). The EEL1 l∗(π) and

EEL2 l∗2(π) are both defined through the OEL l(π) and the inverse of the composite

similarity mapping h−C
N (π) in (4.19); the expansion factor in h−C

N (π) corresponding to

l∗(π) is given by (4.15) and that corresponding to l∗2(π) is given by (4.22). The EEL1

confidence interval is C∗
1−α = {π : π ∈ R

p and l∗(π) ≤ c} and the EEL2 confidence

interval is C ′∗
1−α = {π : π ∈ R

p and l∗2(π) ≤ c}. The Bartlett correction factor η needs

to be estimated when computing the BEL and EEL2 confidence intervals, and in both
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cases we have used the less biased estimator η̃ given by Liu and Yu (2010).

Table 4.1 contains simulated coverage probabilities of the four confidence intervals

for the difference between the two Gini indexes of FA and FB in Example 1. Table 4.2

contains that for Example 2. Each entry in these tables is based on 10,000 pairs of

random samples whose sizes are given in the first two columns; it is the proportion of

confidence intervals containing the true difference among the 10,000 confidence inter-

vals computed using the 10,000 pairs of samples. We make the following observations

based on Tables 4.1 and 4.2.

1. All four confidence intervals give coverage probabilities lower than the nominal

level. The OEL interval, in particular, gives the lowest coverage probabilities

that may be as much as 10% lower than the nominal level.

2. The BEL, EEL1 and EEL2 intervals are consistently more accurate than the

OEL intervals. The two EEL intervals are more accurate than the BEL interval

for all combinations of sample sizes and confidence level. Surprisingly, the first-

order EEL1 is overall the best, more accurate than the second-order BEL and

EEL2 intervals. Hence, we recommend EEL1 for this application.

3. In column 1 of Table 4.2, we see that the OEL coverage probability for (m,n) =

(20, 40) is lower than that for (20, 30); in this case the larger sample sizes did not

give higher coverage probability. This surprising phenomenon occurs sometimes

for other other two-sample methods as well. See also Table 2 in Liu and Yu

(2010) for similar results. Noting that m−n is smaller in (20, 30), it seems that

for two-sample inference a large difference in sample sizes can negatively affect

the accuracy of the EL based confidence intervals.
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4.4.2 Application 2: Comparing two linear regression models

Consider two simple linear regression models having the same predictor variable but

possibly different slopes and intercepts. To compare the parameters of the two models

with two independent random samples (one from each model), a commonly used

method is to introduce a dummy/indicator variable and the comparison is then done

through a multiple linear regression model with two covariates; the predictor variable

and the dummy variable, and an interaction may also be included. This method,

however, requires the assumption that error distributions of the two models are the

same. Without making this assumption, we now use two-sample empirical likelihood

methods to compare the model parameters. Specifically, we compare models

(a) y = xTβa + εa and (b) y = xTβb + εb,

where βa = (βa0, βa1)
T , βb = (βb0, βb1)

T , εa and εb are random errors with possibly

different distributions, but x = (1, x1)
T is the same in both models. The parameter

vector of interest is the difference π = βa − βb.

For our simulation study, x1 is assumed to be a uniform random variable on [0, 30].

We consider the following two examples:

Example 3: Model (a) with εa ∼ N(0, 1) and βa = (2, 1)T and Model (b) with

εb ∼ N(0, 1) and βb = (2, 2)T .

Example 4: Model (a) with εa ∼ Exp(1) − 1 and βa = (2, 1)T and Model (b)

with εb ∼ N(0, 1) and βb = (2, 2)T .

The simulated coverage probabilities for π given by the four empirical likelihood

methods are shown in Table 4.3. Although Examples 3 and 4 are multi-dimensional

examples (p = 2), the three observations made above also apply to Table 4.3. In par-

ticular, overall EEL1 has better accuracy than OEL, BEL, and EEL2. We recommend
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Table 4.1: Coverage probabilities (%) of confidence regions based on OEL, EEL1,
BEL and EEL2 for Example 1

90% level 95% level 99% level
m n OEL EEL1 BEL EEL2 OEL EEL1 BEL EEL2 OEL EEL1 BEL EEL2

20 20 80.0 81.9 81.4 82.4 86.5 88.7 87.7 88.4 94.0 95.8 94.5 95.2
30 81.1 83.3 82.4 83.9 87.6 89.8 88.8 89.8 95.2 96.8 95.7 96.3
40 82.0 84.1 83.2 84.9 88.5 90.9 89.6 91.0 95.3 96.9 95.7 96.3
60 82.1 84.2 83.1 85.7 88.1 90.7 89.2 91.3 95.9 97.2 96.4 97.0

30 20 79.7 81.7 80.9 82.2 86.6 88.4 87.5 88.5 94.0 95.8 94.6 95.2
30 82.6 84.0 83.7 84.5 89.1 90.3 89.9 90.3 95.7 96.6 96.0 96.3
40 83.2 84.5 84.2 85.1 89.5 90.9 90.3 91.0 96.0 97.1 96.4 96.9
60 84.2 85.5 84.9 86.3 90.3 91.7 91.1 92.0 97.0 97.8 97.3 97.7

40 20 80.4 82.2 81.5 82.9 87.0 88.5 87.8 88.6 94.2 95.7 94.7 95.2
30 82.9 84.2 83.8 84.8 89.6 90.9 90.4 90.9 96.2 97.2 96.6 96.9
40 84.4 85.5 85.2 86.0 90.6 91.6 91.3 91.7 96.8 97.6 97.1 97.4
60 85.6 86.6 86.5 87.2 91.4 92.5 92.1 92.8 97.2 97.8 97.5 97.7

60 20 79.7 81.5 80.8 82.7 86.7 88.6 87.5 88.8 94.6 95.8 95.0 95.6
30 83.5 84.7 84.2 85.3 89.6 90.6 90.2 91.0 96.0 97.0 96.3 96.8
40 85.1 86.0 85.9 86.7 91.3 92.1 91.9 92.3 97.2 97.8 97.4 97.6
60 85.8 86.4 86.5 86.9 91.6 92.4 92.2 92.5 97.4 97.8 97.5 97.7

Each entry in the table is a simulated coverage probability for π based on 10,000 random samples of size m and n
indicated in column 1 and 2 from the distribution log-normal (i.e. log N(0, 1)) and χ2

1
, respectively.

EEL1 due to its simplicity and accuracy.

4.5 Appendix

We now present proofs of theorems and lemmas in the order as they appeared in

the paper. For brevity, for results that are minor variations of existing results in the

literature, we give only references to the existing results instead of detailed proofs

which may be found in the references.

Theorem 4.1 is the standard first-order result for an OEL. It is implied by Theorem

4.2 which gives the second-order result. Hence, its proof is omitted. We now prove

Lemma 4.1 by following that for equation (3) in Liu, Zou and Zhang (2008).

Proof of Lemma 4.1

First note that, under conditions of Lemma 4.1, λ∗ = Op(n
−1/2); see the proof of

Theorem 1 in Owen (1990). For clarity of presentation, we break the proof of Lemma

4.1 into the following three steps.
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Table 4.2: Coverage probabilities (%) of confidence regions based on OEL, EEL1,
BEL and EEL2 for Example 2

90% level 95% level 99% level
m n OEL EEL1 BEL EEL2 OEL EEL1 BEL EEL2 OEL EEL1 BEL EEL2

20 20 80.8 83.4 81.8 83.4 86.8 89.7 87.6 89.3 93.6 96.5 94.1 95.8
30 82.0 84.5 83.1 84.8 88.1 90.1 88.7 89.9 94.3 96.2 94.7 95.7
40 80.1 84.4 81.0 84.7 85.6 90.4 86.4 90.2 91.7 96.2 92.2 95.9
60 82.1 83.8 83.0 84.7 88.0 89.8 88.8 90.1 95.0 96.4 95.3 96.1

30 20 84.1 86.0 85.1 86.2 90.1 92.0 90.7 91.7 95.8 97.7 96.2 97.2
30 84.2 86.1 85.0 86.3 89.9 91.9 90.4 91.7 95.8 97.5 96.1 97.2
40 84.2 86.2 85.0 86.4 89.9 92.2 90.6 92.1 95.2 97.5 95.5 97.1
60 84.1 85.4 84.9 86.0 90.2 91.6 90.8 91.7 96.2 97.2 96.5 97.0

40 20 85.3 87.3 86.2 87.5 91.1 93.0 91.6 92.9 96.6 98.3 96.8 97.9
30 85.1 87.2 85.8 87.5 90.8 92.9 91.2 92.8 96.4 98.3 96.7 98.0
40 86.0 87.1 86.7 87.3 91.3 92.5 91.8 92.5 97.0 98.0 97.1 97.7
60 85.4 86.4 86.1 86.7 91.2 92.1 91.7 92.2 96.8 97.6 97.1 97.4

60 20 86.2 88.0 86.8 88.7 91.8 93.9 92.3 93.8 97.6 99.0 97.7 98.7
30 86.4 88.6 87.0 89.0 91.8 94.1 92.2 94.1 96.9 98.6 97.1 98.4
40 87.2 88.4 87.8 88.7 92.8 93.9 93.3 93.9 98.0 98.6 98.1 98.4
60 86.9 88.0 87.5 88.2 92.5 93.3 92.7 93.3 97.4 98.4 97.6 98.2

Each entry in the table is a simulated coverage probability for π based on 10,000 random samples of size m and n
indicated in column 1 and 2 from the distribution Pareto(5) and Exp(1), respectively.

Table 4.3: Coverage probabilities (%) of confidence regions based on OEL, EEL1,
BEL and EEL2 for Example 3 (Ex-3) and Example 4 (Ex-4)

90% level 95% level 99% level
(m,n) OEL EEL1 BEL EEL2 OEL EEL1 BEL EEL2 OEL EEL1 BEL EEL2

Ex-3 (20, 20) 80.9 85.8 83.0 85.2 86.9 91.6 88.6 90.5 93.2 96.9 94.1 95.8
(20, 40) 81.2 85.2 83.0 84.7 86.8 90.7 88.1 89.8 93.2 96.6 93.8 95.5
(30, 30) 84.2 87.5 85.8 87.3 90.2 93.2 91.5 92.9 95.4 97.7 95.7 97.1
(40, 30) 83.1 87.0 84.2 86.5 88.4 92.6 89.5 91.7 93.9 97.2 94.3 96.4
(40, 40) 87.2 88.6 88.5 88.6 92.9 94.2 93.8 94.0 98.1 98.9 98.6 98.7
(50, 30) 80.7 86.3 81.9 85.5 86.1 91.5 87.0 90.7 91.3 96.0 91.6 95.1
(50, 50) 87.7 88.6 88.5 88.7 93.6 94.5 94.2 94.3 98.5 99.0 98.8 98.8

Ex-4 (20, 20) 78.0 83.3 80.6 83.0 84.4 89.5 86.4 88.7 91.5 95.6 92.6 94.6
(20, 40) 79.4 84.0 81.4 83.5 85.3 89.4 86.5 88.6 91.6 95.2 92.2 94.3
(30, 30) 82.7 86.4 84.6 86.3 88.7 92.1 90.0 91.7 94.4 97.2 95.0 96.5
(40, 30) 80.3 85.1 81.8 84.8 86.4 91.2 87.6 90.5 91.8 95.9 92.3 95.1
(40, 40) 86.1 87.7 87.6 88.0 92.4 93.6 93.4 93.6 97/7 98.5 98.2 98.3
(50, 30) 78.7 85.0 80.0 84.1 84.2 90.3 85.3 89.3 89.7 95.0 90.1 94.1
(50, 50) 86.7 87.8 87.8 88.2 92.2 93.4 93.2 93.4 97.7 98.5 98.2 98.3

Each entry in the table is a simulated coverage probability for π based on 10,000 pairs of random samples with sizes
(m,n) indicated in column 2 from the linear models indicated in column 1.
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Step 1: Let C11 = 1
n

∑

g(yj, θ
0
y) and C12 = 1

m

∑

g(xi, θ
0
x). Taylor expansion of the

first equation of (4.4) gives

1

n

∑

g(yj, θ
∗
y)−

{

fn
n

∑

g(yj, θ
∗
y)g

T (yj, θ
∗
y)− V1

}

λ∗ − V1λ
∗ +Op(n

−1) = 0. (4.26)

It follows that

λ∗ = V −1
1

{

1

n

∑

g(yj, θ
0
y)

}

+Op(n
−1) = V −1

1 C11 +Op(n
−1). (4.27)

Similarly, expansion of the second equation of (4.4) gives,

λ∗ = −V −1
2

{

1

m

∑

g(xi, θ
0
x)

}

+Op(n
−1) = −V −1

2 C12 +Op(n
−1). (4.28)

Based on (4.27) and (4.28),

V1λ
∗ = C11 +Op(n

−1),

−V −1
2 λ∗ = C12 +Op(n

−1),

thus, we have

ζ0 = V −1(C11 − C12) = V −1D1.

Step 2. Further expanding the left-hand side of (4.26), we have

1

n

∑

g(yj, θ
∗
y)−

{

fn
n

∑

g(yj, θ
0
y)g

T (yj, θ
0
y)− V1

}

ζ0 (4.29)

−V1λ
∗ +

f 2
n

n

∑

{

(ζ0)T g(yj, θ
0
y)
}2

g(yj, θ
0
y) +Op(n

−3/2) = 0.
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Let

C21 = −
{

fn
n

∑

g(yj, θ
0
y)g

T (yj, θ
0
y)− V1

}

ζ0, (4.30)

C31 =
f 2
n

n

∑

{

(ζ0)T g(yj, θ
0
y)
}2

g(yj, θ
0
y),

C22 =

{

fm
m

∑

g(xi, θ
0
x)g

T (xi, θ
0
x)− V2

}

ζ0,

C32 = −f 2
m

m

∑

{

(ζ0)Tg(xi, θ
0
x)
}2

g(xi, θ
0
x).

It follows that

λ∗ = V −1
1 (C11 + C21 + C31) +Op(n

−3/2),

λ∗ = −V −1
2 (C12 + C22 + C32) +Op(n

−3/2),

and we obtain

ζ1 = V −1 {(C11 − C12) + (C21 − C22) + (C31 − C32)} = V −1(D1 +D2 +D3).

Step 3. Further expanding (4.29) gives

1

n

∑

g(yj, θ
∗
y)−

{

fn
n

∑

g(yj, θ
1
y)g

T (yj, θ
1
y)− V1

}

ζ1 − V1λ
∗ +

f 2
n

n

∑

{

(ζ1)Tg(yj, θ
1
y)
}2

g(yj, θ
1
y) +

f 3
n

n

∑

{

(ζ0)T g(yj, θ
0
y)
}3

g(yj, θ
0
y) +Op(n

−2) = 0.
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Let

C∗
21 = −

{

fn
n

∑

g(yj, θ
1
y)g

T (yj, θ
1
y)− V1

}

ζ1,

C∗
31 =

f 2
n

n

∑

{

(ζ1)T g(yj, θ
1
y)
}2

g(yj, θ
1
y),

C41 = −f 3
n

n

∑

{

(ζ0)Tg(yj, θ
0
y)
}3

g(yj, θ
0
y),

C∗
22 =

{

fm
m

∑

g(xi, θ
1
x)g

T (xi, θ
1
x)− V2

}

ζ1,

C∗
32 = −f 2

m

m

∑

{

(ζ1)Tg(xi, θ
1
x)
}2

g(xi, θ
1
x),

C42 =
f 3
m

m

∑

{

(ζ0)T g(xi, θ
0
x)
}3

g(xi, θ
0
x).

We have the following higher order expansions of λ∗,

λ∗ = V −1
1 (C11 + C∗

21 + C∗
31 + C41) +Op(n

−2), (4.31)

λ∗ = −V −1
2 (C12 + C∗

22 + C∗
32 + C42) +Op(n

−2).

Thus

ζ2 = V −1 {(C11 − C12) + (C∗
21 − C∗

22) + (C∗
31 − C∗

32) + (C41 − C42)} (4.32)

= V −1(D1 +D∗
2 +D∗

3 +D4).



93

Then, the Taylor expansion for l(π)/N can be expressed as

l(π)

N
=

2

n

∑

(ζ2)T g(yj, θ
0
y)−

2

m

∑

(ζ2)Tg(xi, θ
0
x) (4.33)

−fn
n

∑

(ζ2)T g(yj, θ
1
y)g(yj, θ

1
y)

T ζ2 −
fm
m

∑

(ζ2)T g(xi, θ
1
x)g(xi, θ

1
x)

T ζ2

+
2f 2

n

3n

∑

{

(ζ1)T g(yj, θ
1
y)
}3 − 2f 2

m

3m

∑

{

(ζ1)T g(xi, θ
1
x)
}3

+
f 3
n

2n

∑

{

(ζ0)T g(yj, θ
0
y)
}4 − f 3

m

2m

∑

{

(ζ0)T g(xi, θ
0
x)
}4

+Op(n
−5/2)

= 2I1 − I2 +
2

3
I3 −

1

2
I4 +Op(n

−5/2),

where

I1 = ζ2(C11 − C12) = DT
1 V

−1(D1 +D∗
2 +D∗

3 +D4), (4.34)

I2 = ζ2(C11 − C12 + C∗
31 − C∗

32 + C41 − C42) = (D1 +D∗
3 +D4)V

−1(D1 +D∗
2 +D∗

3 +D4),

I3 = ζ1(C∗
31 − C∗

32) = (D∗
3)V

−1(D1 +D2 +D3),

I4 = −ζ0(C41 − C42) = −D1V
−1(D4).

Noting that

D1 = Op(n
−1/2), D2 = Op(n

−1), D∗
2 = Op(n

−1), D2 −D∗
2 = Op(n

−3/2),

D3 = Op(n
−1), D∗

3 = Op(n
−1), D3 −D∗

3 = Op(n
−3/2), D4 = Op(n

−3/2),
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thus, we have

l(π)

N
= 2DT

1 V
−1(D1 +D∗

2 +D∗
3 +D4)− (D1 +D∗

3 +D4)V
−1(D1 +D∗

2 +D∗
3 +D4)

+
2

3
(D∗

3)V
−1(D1 +D2 +D3) +

1

2
D1V

−1D4 +Op(n
−5/2)

= DT
1 V

−1(D1 +D∗
2 +D∗

3 +D4)− (D∗
3 +D4)V

−1(D1 +D∗
2 +D∗

3 +D4)

+
2

3
(D∗

3)V
−1(D1 +D2 +D3) +

1

2
D1V

−1D4 +Op(n
−5/2)

=
{

DT
1 V

−1D1 +DT
1 V

−1D∗
2 +DT

1 V
−1D∗

3 +DT
1 V

−1D4

}

−
{

D∗T
3 V −1D1 +D∗T

3 V −1D∗
2 +D∗T

3 V −1D∗
3 +DT

4 V
−1D1 +Op(n

−5/2)
}

+
2

3

{

D∗T
3 V −1D1 +D∗T

3 V −1D2 +D∗T
3 V −1D3

}

+
1

2
DT

1 V
−1D4 +Op(n

−5/2)

= DT
1 V

−1D1 +DT
1 V

−1D∗
2 +

2

3
DT

1 V
−1D∗

3 −
1

3
DT

2 V
−1D3

−1

3
DT

3 V
−1D3 +

1

2
DT

1 V
−1D4 +Op(n

−5/2).

Hence,

l(π)

N
= SτSτ − SτυSτSυ +

2

3
sταβSτSαSβ + SτυSυωSτSω +

2

3
SταβSτSαSβ,

−2sτυωSταSυSαSυ + sτυωsταβSυSωSαSβ − 1

2
sτυωαSτSυSωSα

+(Sτυ − Sτυ
1 )SτSυ +

2

3
(Sταβ

1 − Sταβ)SτSαSβ +Op(n
−5/2),

where

DT
1 V

−1D1 = SτSτ ,

DT
1 V

−1D∗
2 = −Sτυ

1 SτSυ + SτυSυωSτSω − sωαβSτυSυωSαSβ +Op(n
−5/2),

DT
1 V

−1D∗
3 = (Sταβ

1 − Sταβ)SτSαSβ, DT
2 V

−1D3 = −sτυωSταSυSαSυ,

DT
3 V

−1D3 = sτυωsταβSυSωSαSβ, DT
1 V

−1D4 = sτυωαSτSυSωSα,
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which proves Lemma 4.1. 2

With Lemma 4.1, the proof of Theorem 4.2 follows from that for the second order

result in DiCiccio, Hall and Romano (1991). See DiCiccio, Hall and Romano (1988)

for details.

Proof of Lemma 4.2

Differentiating l(π) in (4.3) and evaluating the derivative at π0, we find J(π0) =

∂l(π)
∂π

|π=π0
as follows

J(π0) = λT (π0)

{

∑ fng
′(yj, θy0)

∂θy
∂π

|π=π0

1 + fnλT (π0)g(yj, θy0)
−
∑ fmg

′(xi, θx0
)∂θx
∂π

|π=π0

1− fmλT (π0)g(xi, θx0
)

}

, (4.35)

where

g′(yj, θy0)
∂θy
∂π

|π=π0
=

∂g(yj, θy)

∂π
|π=π0

and

g′(xi, θx0
)
∂θx
∂π

|π=π0
=

∂g(xi, θx)

∂π
|π=π0

.

Under the conditions of the lemma, we can show that λ(π0) = Op(n
−1/2) and J(π0) =

Op(n
1/2). Also, applying Taylor expansion to l(π) in a small neighbourhood of π0,

{π : ‖π − π0‖ ≤ κn−1/2}, where κ is some positive constant, we obtain

l(π) = l{π0 + (π − π0)} = l(π0) + J(π0)(π − π0) +Op(1). (4.36)

By Theorem 4.1, l(π0) = Op(1). This and (4.36) imply that for a π in that small

neighbourhood,

l(π) = Op(1). (4.37)
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To show part (i), since hC
N(π

′
0) = π0, we have

π0 − π̃ = γ{n, l(π′
0)}(π′

0 − π̃). (4.38)

Noting that γ{N, l(π)} ≥ 1, (4.38) implies that π′
0 is on the ray originating from π̃

through π0 and

‖π0 − π̃‖ ≥ ‖π′
0 − π̃‖.

Hence, π′
0 ∈ [π̃, π0] and part (i) of the lemma 4.2 is proven.

To show part (ii), since π̃ is
√
n-consistent and π′

0 ∈ [π̃, π0], we have π′
0 − π0 =

Op(n
−1/2). It follows from (4.37) that l(π′

0) = Op(1). This implies

γ{N, l(π′
0)} = 1 +

l(π′
0)

2N
= 1 +Op(n

−1). (4.39)

Adding and subtracting a π0 on the right-hand side of (4.38) gives

π0 − π̃ = γ{N, l(π′
0)}(π′

0 − π0 + π0 − π̃).

This implies that

[1− γ{N, l(π′
0)}] (π0 − π̃) = γ{N, l(π′

0)}(π′
0 − π0). (4.40)

It follows from (4.39), (4.40) and π̃ − π0 = Op(n
−1/2) that

π′
0 − π0 = Op(n

−3/2).

This proves part (ii) of the lemma 4.1. 2

Proof for Theorem 4.3 follows easily from that for Theorem 1 in Tsao and Wu
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(2014).

Proof of Theorem 4.4

By (ii) of Lemma 4.2, π′
0 − π0 = Op(n

−3/2). Taylor expansion of l∗(π0) gives

l∗(π0) = l(π′
0) = l{π0 + (π′

0 − π0)} = l(π0) + J(π0)(π
′
0 − π0) + op(n

−3/2). (4.41)

Since J(π0) = Op(n
1/2), (4.41) implies that l∗(π0) = l(π0) + Op(n

−1). Thus, the

extended empirical log-likelihood ratio l∗(π0) has the same limiting χ2
q distribution as

the original empirical log-likelihood ratio l(π0). 2

We need the following lemma for the proof of Theorem 4.5.

Lemma 4.3. Assume conditions 1, 2, 3 and 4 hold. Under the composite similarity

mapping (4.14) with expansion factor γ{N, l(π)} = γ2{N, l(π)} in (4.22), we have

π′
0 − π0 =

η

2n
(π̃ − π0) +Op(n

−2). (4.42)

Proof of Lemma 4.3

It may be verified that under the three conditions and with the composite similarity

mapping hC
N defined by (4.14) and (4.22), Theorem 4.1, Lemma 4.2 and Theorem 4.2

all hold. In particular, π′
0−π0 = Op(n

−3/2) and the extended empirical log-likelihood

ratio l∗2(π0) converges in distribution to a χ2
q random variable.

Since δ(n) = O(n−1/2) and l(π′
0) = l∗2(π0) which is asymptotically a χ2

q variable,

we have

{l(π′
0)}δ(n) = 1 +Op(n

−1/2). (4.43)
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By hC
N(π

′
0) = π0, we have π0 − π̃ = γ2{N, l(π′

0)}(π′
0 − π̃). Thus,

π′
0−π0 =

η{l(π′
0)}δ(n)

2N
(π̃−π′

0) =
η{l(π′

0)}δ(n)
2N

(π̃−π0)+
η{l(π′

0)}δ(n)
2N

(π0−π′
0). (4.44)

It follows from (4.43), (4.44) and π′
0 − π0 = Op(n

−3/2) that

π′
0 − π0 =

η{l(π′
0)}δ(n)

2N
(π̃ − π0) +Op(n

−5/2)

=
η

2N
(π̃ − π0) +Op(n

−2),

which proves the lemma. 2

Proof of Theorem 4.5

Under conditions 1, 2, 3 and 4, based on the (4.9) we can show that l(π0) has the

following expansion

l(π0) = N(R1 +R2 +R3)
T (R1 +R2 +R3) +N∆+Op(n

−3/2), (4.45)

where Ri and ∆ are functions of St1t2...tl and St1t2...tl
1 with

Rτ
1 = Sτ , Rτ

2 = −1

2
SτυSυ +

1

3
sτυωSυSω, (4.46)

Rτ
3 =

3

8
SτυSυωSω − 5

12
sτυωSωαSυSα − 5

12
sυωαSτυSωSα

+
4

9
sτυωsωαβSυSαSβ +

1

3
SτυωSυSω − 1

4
sτυωαSυSωSα, (4.47)

∆ = (Sτυ − Sτυ
1 )SτSυ +

2

3
(Sταβ

1 − Sταβ)SτSαSβ, (4.48)

where for a vector P, P r means its rth component. Based on the proofs of (4.9), we
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have

(i) Rj = Op(n
−j/2) for j = 1, 2, 3, (4.49)

(ii) D1 =
1

n

∑

g(yj, θ
0
y)−

1

m

∑

g(xi, θ
0
x) = Op(n

−1/2), (4.50)

(iii) λ(π0) = V −1D1 +Op(n
−1), (4.51)

(iv) RT
1R1 = DT

1 V
−1D1, (4.52)

(v) ∆ = Op(n
−3/2). (4.53)

It may be verified that Lemma 4.2, Theorem 4.1 and Theorem 4.2 all hold under

γ2(N, l(π)). Hence, the limiting distribution of l∗2(π0) is also χ2
q. This and the condi-

tion that δ(n) = O(n−1/2) imply

[l(π′
0)]

δ(n)
= 1 +Op(n

−1/2). (4.54)

Since hC
N(π

′
0) = π0, by (4.14) and (4.22), we have

π′
0 − π0 =

η {l(π′
0)}δ(n)

2N
(π̃ − π′

0)

=
η {l(π′

0)}δ(n)
2N

(π̃ − π0) +
η[l(π′

0)]
δ(n)

2N
(π0 − π′

0). (4.55)

By the part (ii) of Lemma 4.2, (4.54) and (4.55), we find that

π′
0 − π0 =

η {l(π′
0)}δ(n)

2N
(π̃ − π0) +Op(n

−5/2)

=
η

2N
(π̃ − π0) +Op(n

−2). (4.56)
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By (4.42) from Lemma 4.3 and Taylor expansion (4.41), we have

l∗2(π0) = l(π0) + J(π0)(π
′
0 − π0) + op(n

−3/2)

= l(π0) +
η

2n
J(π0)(π̃ − π0) +Op(n

−3/2), (4.57)

where J(π0) is given by (4.35). Define

G(π) =
1

n

∑

g(yj, θy)−
1

m

∑

g(xi, θx). (4.58)

Under condition 2, Taylor expansion of G(π̃) at π0 gives

G(π̃) = G(π0) +G′(π0)(π̃ − π0) +Op(‖π0 − π̃‖2)

=

{

1

n

∑

g(yj, θy0)−
1

m

∑

g(xi, θx0
)

}

+

{

1

n

∑

g′(yj, θy0)
∂θy
∂π

|π0
− 1

m

∑

g′(xi, θx0
)
∂θx
∂π

|π0

}

(π̃ − π0) +Op(n
−1).

Under the condition that the estimating equations are just-determined, G(π̃) = 0.

Hence, the above expansion implies

{

1

n

∑

g′(yj, θy0)
∂θy
∂π

|π0
− 1

m

∑

g′(xi, θx0
)
∂θx
∂π

|π0

}

(π0 − π̃)

=

{

1

n

∑

g(yj, θy0)−
1

m

∑

g(xi, θx0
)

}

+Op(n
−1). (4.59)

Noting that λ(π0) = Op(n
−1/2) and π0 − π̃ = Op(n

−1/2), we can show

{

1

n

∑ g′(yj , θy0
)
∂θy
∂π |π=π0

1 + fnλT (π0)g(yj , θy0
)
− 1

m

∑ g′(xi, θx0
)∂θx∂π |π=π0

1− fmλT (π0)g(xi, θx0
)

}

(π0 − π̃)

=

{

1

n

∑

g′(yj , θy0
)
∂θy

∂π
|π0

− 1

m

∑

g′(xi, θx0
)
∂θx

∂π
|π0

}

(π0 − π̃) +Op(n
−1). (4.60)
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It follows from (4.59) and (4.60) that

{

1

n

∑ g′(yj, θy0)
∂θy
∂π

|π=π0

1 + fnλT (π0)g(yj, θy0)
− 1

m

∑ g′(xi, θx0
)∂θx
∂π

|π=π0

1− fmλT (π0)g(xi, θx0
)

}

(π0 − π̃)

=

{

1

n

∑

g(yj, θy0)−
1

m

∑

g(xi, θx0
)

}

+Op(n
−1). (4.61)

By (4.57), (4.35) and (4.61), we have

l∗
2
(π0) = l(π0) +

η

2N
J(π0)(π̃ − π0) +Op(n

−3/2)

= l(π0)−
η

2N
2NλT (π0)

1

N
{

∑ fng
′(yj , θy0

)
∂θy
∂π |π=π0

1 + fnλT (π0)g(yj , θy0
)
−
∑ fmg′(xi, θx0

)∂θx∂π |π=π0

1− fmλT (π0)g(xi, θx0
)

}

(π̃ − π0) +Op(n
−3/2)

= l(π0)−
η

N
NλT (π0)

{

1

n

∑

g(yj , θy0
)− 1

m

∑

g(xi, θx0
)

}

+Op(n
−3/2). (4.62)

Finally, by(4.45), (4.62), and from (4.49) to (4.53), we have

l∗2(π0) = l(π0)−
η

N

{

N(V −1D1 +Op(n
−1))T (D1 +Op(n

−1))
}

+Op(n
−3/2)

= l(π0)−
η

N
NRT

1R1 +Op(n
−3/2)

= l(π0)−
η

N
{N(R1 +R2 +R3)

T (R1 +R2 +R3) +N∆}+Op(n
−3/2)

= l(π0)−
η

N
l(π0) +Op(n

−3/2)

= l(π0)
{

1− η

N
+Op(n

−3/2)
}

,

which proves Theorem 4.5. 2

Remark. The second-order result of Theorem 4.5 holds only for the just-determined

case as the proof above used the condition that G(π̃) = 0 to obtain (4.59). For

over-determined cases, a weaker condition G(π̃) = Op(n
−1) would also allow us to

get (4.59). However, it is not clear that outside of the just-determined cases when

this weaker condition would hold. When this weaker condition does not hold, the
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extended empirical log-likelihood ratio l∗2(π) defined in Theorem 4.5 reduces to a

first-order extended empirical log-likelihood ratio as Theorem 4.4 is still valid for

l∗2(π).
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Chapter 5

Concluding Remarks

The literature on the empirical likelihood method has been growing at a remarkable

speed over the last twenty-five years. There is no sign that this growth is slowing

down as more and more applications of this method are appearing in many areas of

statistical research.

The common theme of the three papers in this thesis is to overcome a funda-

mental problem of the empirical likelihood, namely, the mismatch of its domain to

the parameter space. Through the extended empirical likelihood, these papers have

successfully resolved the mismatch issue for two large families of empirical likelihoods

covering that for parameters defined by one-sample and two-sample estimating equa-

tions. These results add to the theoretical foundation of this powerful method. They

also bring about substantially improved accuracy to the empirical likelihood infer-

ence, especially for small sample and high dimension situations. They will be very

useful to practitioners of the empirical likelihood method.

Due to space constraints for journal papers, we have not included much details

about computation of the extended empirical likelihood in the preceding chapters.

We conclude this thesis with the following discussion on the computation. Let l(θ)

be the original empirical log-likelihood ratio of a value θ ∈ R
d and let l∗(θ) be the
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extended empirical log-likelihood ratio. Use the usual notation hC
n (θ) : Θn → R

d for

the composite similarity mapping where Θn is the domain of the original empirical

log-likelihood ratio. Then,

l∗(θ) = l(θ′)

where θ′ satisfies

hC
n (θ

′) = θ. (5.1)

The main computational effort for evaluating the extended empirical likelihood l∗(θ)

at a given θ value is in computing the corresponding θ′, that is, in finding the solution

θ′ to equation (5.1).

To see why this can be potentially time consuming, as the analytic expression of

l(θ) and hence that of hC
n (θ) (which involves l(θ) through the expansion factor γ) are

not available, equation (5.1) has to be solved numerically through Newton’s method

for finding roots. This iterative method involves evaluating l(θ) repeatedly, which

can be time consuming, especially for multi-dimensional parameters where d ≥ 2.

Further, if the initial value of Newton’s iteration is not properly chosen, then its

convergence is not assured.

The key to develop an efficient and reliable algorithm to compute the extended

empirical likelihood is to take advantage of the theoretical result that shows the

location of θ′0 and its distance to true parameter value θ0; in Chapter 2 this is Lemma

2.1, in Chapter 3 this is Lemma 3.2, and in Chapter 4 this is Lemma 4.2. Specifically,

these lemmas show that

(i) θ′0 ∈ [θ̃, θ0] and (ii) θ′0 − θ0 = Op(n
−3/2)

where θ̃ is the maximum empirical likelihood estimator of θ0. A careful reading of

the proofs of these lemmas reveals that (i) actually holds for any θ value; that is,

for any θ ∈ R
d we have θ′ ∈ [θ̃, θ]. Since θ̃ is available, for a given θ this means the
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corresponding θ′ is in the known interval [θ̃, θ]. Consequently, θ′ can be expressed as

θ′ = wθ + (1− w)θ̃

for some w ∈ [0, 1]. Hence, the problem of finding solution θ′ to (5.1) is equivalent to

finding the w value in [0, 1] that satisfies

hC
n (wθ + (1− w)θ̃) = θ, (5.2)

which is a much easier univariate root finding problem over the short interval [0, 1].

Further, part (ii) of the lemmas also suggests that θ would be a good initial value

for Newton’s iteration, which is equivalent to using w = 1 as the initial value. To see

this, the width of the interval [θ̃, θ0] is typically Op(n
−1/2). So part (ii) of the lemmas

suggests that θ′0 is a point in the interval that is closer to the end-point θ0 than to the

other end-point θ̃. Hence, we also expect θ′ to be closer to θ than to θ̃. Alternatively,

one could simply use the mid-point, (θ + θ̃)/2 or w = 0.5 as the initial value.

We have used the above observations to reformulate the computational problem for

the extended empirical likelihood and to select initial values for Newton’s iterations.

We developed an efficient and reliable R code based on these. We hope to develop

an R package for computing the extended empirical likelihood and make it available

through the R software library.
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