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ABSTRACT

In this dissertation, we examine the nature of embeddings with regard to both

combinatorial and geometric configurations. A combinatorial [r, k]-configuration is a

collection of abstract points and sets (referred to as blocks) such that each point is a

member of r blocks, each block is of size k, and these objects satisfy a linearity criterion:

no two blocks intersect in more than one point. A geometric configuration requires

that the points and blocks be realized as points and lines within the Euclidean plane.

We provide improvements on the current bounds for the asymptotic existence of both

combinatorial and geometric configurations. In addition, we examine the largely new

problem of embedding configurations within larger configurations possessing regularity

properties. Additionally, previously undiscovered geometric [r, k]-configurations are

found as near-coverings of combinatorial configurations.
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Chapter 1

Introduction

Geometric configurations are simple to define — a collection of points and lines on

the plane, where each point meets a fixed number of lines, and each line meets a fixed

number of points. This broad definition makes them appealing objects to study: they

are simple to explain (even to one without a mathematical background), and possess

very few restrictive properties. However, this lack of restriction is also a source of

opacity in their analysis. The study of configurations is still an active area of research

and there remain many unanswered questions regarding their structure.

The oldest known example of a nontrivial configuration is the Pappus configuration,

discovered by Pappus of Alexandria, a Greek mathematician of aniquity [23]. This

configuration is a collection of nine points and nine lines, all drawn on the plane. As

seen in Figure 1.1, the points and lines are arranged so that each point meets three lines

and every line meets three points. Such a configuration is called a ‘3-configuration’,

and the Pappus configuration is the smallest example of a geometric 3-configuration.

Figure 1.1: The Pappus Configuration
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While other instances of geometric configurations made sporadic appearances

afterwards, the formal notion and study of configurations did not appear until 1876,

with the work of Theodor Reye [23]. Not long afterwards, abstract configurations were

introduced. The fundamental property of a line in a geometry is that it is uniquely

defined by two points. Similarly, in an abstract, or combinatorial configuration,

the points are merely abstract elements without a geometry, and the ‘lines’ of the

configuration are subsets of these points, where any pair of points lie in at most one

line (subset). The classical example of such a configuration is the Fano plane. Shortly

after the discovery of the Fano plane, the field of combinatorial geometry blossomed,

along with the development of projective planes and design theory. Finite geometries

and many block designs are more specific examples of combinatorial configurations,

and have received a great deal of attention in the past century.

While projective planes and block designs have remained purely in the abstract

realm, the difference between combinatorial configurations and their concrete geo-

metric breathern was a source of some confusion in the early development of formal

configuration theory. The distinction between the two was not made for quite some

time [23]. In combinatorial configuration theory, research is generally concerned with

determining the existence and enumeration of families of combinatorial configurations

with a given set of desirable properties. The heart of geometric configuration theory

lies within determining if a given combinatorial configuration admits an embedding as

a geometric configuration.

In this dissertation, we seek to examine the nature of embeddings for both combina-

torial and geometric configurations. If we have a partial configuration, does it embed in

a larger configuration? The goal is to embed such a partial configuration as ‘efficiently’

as possible in a larger configuration. It is well-known that not every combinatorial

configuration admits an embedding as a concrete geometric configuration. In fact, it

is very unlikely that such an embedding exists for a given combinatorial configuration.

This dissertation aims to find geometric configurations that carry some of the same

structure as the given combinatorial configuration (while not being a pure embedding).

We also introduce and explore coverings of combinatorial configurations by geometric

configurations, with some positive results.

In Chapter 2, we begin by introducing a large amount of preliminary material. We

will survey the current results in both combinatorial and geometric theory, as well

as some useful results in design theory. In Chapter 3, we provide improved existence

results for combinatorial configurations, and demonstrate constructive methods to
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embed partial configurations in larger regular configurations. In Chapter 4, we

move on to geometric configurations, providing existence results for general regular

configurations, and embedding results in the same style as combinatorial configurations.

Chapter 4 also explores geometric configurations with rotational symmetry and

configurations that exhibit similar structural properties to a given combinatorial

configuration. Finally, we will provide concluding remarks and potential new directions

for research in Chapter 5.

Before we begin, the author would like to thank Peter Dukes for his guidance

throughout the doctoral program.
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Chapter 2

Preliminaries

This chapter discusses the fundamental definitions and theorems in configuration theory.

Section 2.1 is concerned with ‘combinatorial’ configurations, and also introduces some

fundamental design theory terminology. This section also provides an asymptotic

existence result for combinatorial configurations. This result will be improved upon

in Chapter 3. In Section 2.2, we introduce ‘geometric’ configurations, along with

some preliminary results that will prove useful in Chapter 4. The final section of

this chapter establishes a connection between configuration theory and graph theory

through the ‘Levi graphs’ of configurations. These graphs will prove especially useful

in Section 4.4.

2.1 Combinatorial Configurations and Designs

2.1.1 Definitions of Configurations and Designs

Although the study of geometric configurations preceded that of their combinatorial

counterparts by several hundred years, the latter subject is simpler in nature, and

has also seen more significant progress. We begin then with the formal definition of a

combinatorial configuration. Even here, there is a small amount of disagreement on

the proper definition (compare [11] with [23, pg. 15]). We will use the more common

definition, found in [23, pg. 15], among others. In [12], our definition is instead

referred to as a regular configuration.

Definition 2.1.1. Given parameters r, k ∈ N, an [r, k]-combinatorial configuration is

an ordered triple (P ,L, I), where P and L are disjoint, finite sets of elements, known
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respectively as points and lines, and I ⊂ P × L is an incidence relation satisfying the

following properties:

• Each point p ∈ P belongs to exactly r pairs (p, `) ∈ I.

• Each line ` ∈ L belongs to exactly k pairs (p, `) ∈ I.

• For any p, p′ ∈ P and `, `′ ∈ L, if (p, `), (p′, `), (p, `′)and(p′, `′) ∈ I then either

p = p′ or ` = `′. In other words, each pair of points are incident with at most

one line.

If |P| = n and |L| = b, then such a configuration is called an (nr, bk)-combinatorial

configuration. Furthermore, if r = k and n = b we abbreviate these definitions: either

as a k-combinatorial configuration or an (nk)-combinatorial configuration.

Note that if every pair of points are incident with at most one line, then every

pair of lines is incident with at most one point. In design theory, the term ‘line’ is

replaced by the word ‘block’, and the values r and k are frequently referred to as the

replication number and the line or block size, respectively. The third condition in the

definition above is known as the linearity condition, as the condition that two points

are incident with at most one line is a fundamental property of lines in geometry. For

this reason, the elements of L are called lines. It is often convenient to abbreviate

this definition by associating each line with its incidences. We may then reconsider

lines as sets of points. The following definition is clearly equivalent to the original

definition; however, it provides a slightly different perspective which will be useful in

subsequent chapters.

Definition 2.1.2. Let P be a finite set of elements known as points and L ⊂ 2P be a

set whose elements are known as lines. Then the pair (P ,L) is an [r, k]-combinatorial

configuration if L satisfies the following properties:

• Each point appears in exactly r lines.

• Each line contains exactly k points.

• (Linearity) Every pair of points appears in at most one line.

One other, less common definition provides a connection between combinatorial

configurations and hypergraphs. Although the following definition will not be used in

this thesis, it is given to provide some context and connections to graph theory.
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Definition 2.1.3. Consider a hypergraph G with vertex set P and edge set L that

satisfies the following criteria:

• Each point has degree r (the hypergraph is r-regular).

• Each edge contains k points (the hypergraph is k-uniform).

• (Linearity) Every pair of vertices is contained within at most one edge.

Such a graph G is an [r, k]-combinatorial configuration, or alternatively a r-regular,

k-uniform linear hypergraph.

The equivalence of this definition to the previous two definitions is clear. We will

use the second definition almost exclusively throughout this paper. At the heart of

combinatorial configuration theory are existence and enumeration results: do there

exist (nr, bk)-combinatorial configurations for given values of n, r, b and k, and if

so, how many of them exist (up to isomorphism of the points, lines and incidence

structure)?

The linearity condition imposed on combinatorial configurations is preserved by

the removal of either points or lines from the configuration. Thus, the notion of a

subconfiguration is a natural addition to the structure of a combinatorial configuration.

Definition 2.1.4. If C0 = (P0,L0, I0) and C = (P ,L, I) are two configurations, with

P0 ⊂ P and L0 ⊂ L and I0 ⊂ I, then C0 is a subconfiguration of C. If (p, `) ∈ I
implies (p, `) ∈ I0 for all p ∈ P0 and ` ∈ L0, then C0 is an induced subconfiguration of

C.

Throughout our study of configurations, we will make frequent use of ‘partial’

configurations — configurations without a constant line size or replication number.

Definition 2.1.5. The pair (P ,L) is a partial [r, k]-configuration if L only satisfies

the linearity property of configurations, and the pair (P ,L) does not necessarily have

a constant replication number and/or block size. If L does not satisfy the linearity

condition either, then (P ,L) is an incidence structure.

The study of configurations has similar motivations to design theory. As a contrived

example, suppose n individual people enter a tournament for Bridge (a game played

with four players). The tournament consists of r rounds for each player, and no

two players are to play together in the same game more than once. If an (nr, b4)-

configuration exists, then such a tournament is possible, with each block representing
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the players in a single game. If the corresponding configuration is ‘resolvable’ (defined

below), then the number r also correlates to the number of rounds necessary to hold

the tournament. This scenario is more general than the usual ‘round-robin’ style

tournaments, where every pair of players must play a game together (which is not

always possible realistically).

Combinatorial configurations exhibit duality. If C = (P ,L) is a configuration

with incidence relation I ⊂ P × L, then C⊥ = (L,P) is a configuration as well, with

incidence structure I⊥ ⊂ L×P defined by (`, p) ∈ I⊥ if and only if (p, `) ∈ I. If C is

an (nr, bk)-configuration, then C⊥ is a (bk, nr)-configuration. This allows us to assume

the inequality r ≥ k without loss to generality, if desired.

There are numerical constraints on the values of n, r, b and k in order for an

(nr, bk)-configuration to exist.

Proposition 2.1.1. For any (nr, bk)-configuration, nr = bk and n ≥ r(k − 1) + 1.

The first condition nr = bk will be known as the divisibility condition. It follows

from the fact that nr and bk are both the size of I (each of n points appears r times

in the incidences of I, and similarly each of the b blocks appears exactly k times

among the incidences). This also implies that n must be a multiple of k/ gcd(r, k).

The second condition follows since a point p appears with k − 1 other distinct points

in r different blocks. Thus, we must have all these points, including p itself, in our

configuration.

For a given r, k, what is the smallest number of points possible in an [r, k]-

configuration? The above proposition gives a lower bound, but it is not always tight.

In the case where r = k and the bound is tight, the configuration is an example of a

projective plane of order k− 1. It is well-known that projective planes do not exist for

all orders (e.g. no order six projective plane exists).

In ordinary pairwise balanced combinatorial designs, any pair of points is usually

required to lie within exactly one line. This stronger requirement has an intuitive

motivation behind it: given a fixed number of n points, we wish to ‘pack’ blocks of

size k into this set of points in an efficient manner — so that every pair of points

appears in a line. This idea leads us to use various types of designs to construct small

configurations.

Definition 2.1.6. A balanced incomplete block design (BIBD) with parameters (k, r, λ)

is a finite set P of elements (again known as points) along with a family B of k-element

subsets of P (called blocks) such that the number of blocks containing p ∈ P is r over
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Figure 2.1: The Fano plane. There are seven points and seven lines (denoted by the
six geometric lines and the circle). Each pair of points is contained within exactly one
line.

all p, and each pair of points appears in exactly λ blocks. If λ = 1, then the parameter

λ is omitted from the notation, and the design is also a configuration.

A classical example of a balanced incomplete block design is the Fano plane, a (73)-

configuration or BIBD(3, 3) that is also a finite projective plane. This is represented

graphically in Figure 2.1. The divisibility condition still applies to BIBDs; however,

there is an additional restriction, known as the local condition. Given a fixed point p,

note that every point is contained within a block containing p. There are r blocks

containing p, and each block has k − 1 other points. Thus, the total number of points

in the BIBD is

n = r(k − 1) + 1.

In the later sections, we will make use of resolvable transversal designs.

Definition 2.1.7. A transversal design TD(k, n) of order n and block size k is a

triple (P ,G,B) such that:

• P is a set of kn points.

• G is a partition of P into k groups of size n.

• B is a family of k-subsets of X.

• Every pair of points in P belongs to either exactly one group or exactly one

block, but not both.
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0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

5 6 7 8 9 6 7 8 9 5 7 8 9 5 6 8 9 5 6 7 9 5 6 7 8

10 12 14 11 13 11 13 10 12 14 12 14 11 13 10 13 10 12 14 11 14 11 13 10 12

15 18 16 19 17 17 15 18 16 19 19 17 15 18 16 16 19 17 15 18 18 16 19 17 15

20 24 23 22 21 23 22 21 20 24 21 20 24 23 22 24 23 22 21 20 22 21 20 24 23

Table 2.1: An example of a TD(5, 5). The 25 blocks of size five are the columns of
the table. The five groups of cardinality five are the elements contained in each row
(ex: the first group has elements {0, 1, 2, 3, 4}). It is also an RTD(5, 5) — the parallel
classes of blocks are separated by two lines in the table.

The term ‘transversal’ comes from the fact that every block is transverse to the

groups: it contains exactly one point from each group. An example of a TD(5, 5) is

given in Table 2.1.

A subclass of transversal designs are known as resolvable transversal designs or

RTDs. A transversal design is resolvable if its set of blocks B can be partitioned into

parallel classes, where each parallel class is itself a partition of the points P. The

transversal design in Table 2.1 is also an example of an RTD(5, 5). By restricting the

blocks of an RTD(k, n) to any collection of r parallel classes, we obtain an example

of an [r, k]-configuration on kn points for every r satisfying 1 ≤ r ≤ n. Transversal

designs in general are also useful for generating large BIBDs. Suppose a TD(k, n)

is given, and a BIBD with block size k on n points is known. Then each group of

the transversal design contains n points, and no two points appear in a block of the

transversal design. By establishing an isomorphism between the points of a group and

the points on the BIBD, we can add blocks of size k to each group of the transversal

design. What results is a design in which every pair of points is contained within

exactly one block — a BIBD with block size k and kn points. This is the core notion

behind demonstrating the asymptotic existence of families of BIBDs. This constructive

process is Wilson’s Fundamental Construction [31]. Its importance in design theory

cannot be overstated, however, we will not be utilizing this technique in subsequent

chapters.
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2.1.2 Asymptotic Existence Results for Designs and Config-

urations

As mentioned earlier, the trivial bound n ≥ r(k − 1) + 1 on the number of points in

a regular configuration is not always tight. For instance, there is no 7-configuration

on 7(6) + 1 = 43 points (due to the nonexistence of a projective plane of order six).

In fact, even in the case that a k-configuration on n points does exist, there is no

guarantee that a k-configuration on n+ 1 points exists. However, if n is sufficiently

large compared to k, then we can be assured that an (nk)-configuration exists. Such an

existence result is known as the asymptotic existence of k-configurations. Intuitively,

with many points, there is a large degree of flexibility in how the lines may be arranged

in the configuration. This increases the likelihood that a configuration is constructable.

Definition 2.1.8. Given a fixed r, k ≥ 2, let N(r, k) denote the smallest value

for which an [r, k]-configuration exists for all n ≥ N(r, k) satisfying the divisibility

condition. If r = k, this is shortened to N(k).

Determining the value of N(r, k) is still an outstanding problem in configuration

theory, although reasonable bounds on N(r, k) are known. To determine that N(r, k)

exists, we let N (r, k) denote the set

N (r, k) := {n : an (nr, bk)-configuration exists}

Note that if n, n′ ∈ N (r, k) then n + n′ is contained within N (r, k) as well. This is

due to the property that the disjoint union of an (nr, bk)-configuration and an (n′r, b
′
k)-

configuration is an (n+ n′r, b+ b′k)-configuration. The set of [r, k]-configurations are

closed under the disjoint union operation; this means that N (r, k) forms a numerical

semigroup — a subset of N that is closed under addition. We briefly introduce some

asymptotic results regarding numerical semigroups.

Suppose S is a numerical semigroup with gcd(S) = 1. Then the Frobenius number

g(S) of S = {s1, s2, ...} is the largest value b for which the equation

a1s1 + a2s2 + · · ·+ atst = b

has no solution for any finite subset {s1, ..., st} ⊂ S. Such a value is known to exist

precisely when gcd(S) = 1 [19, pg. 400]. If s1 and s2 are relatively prime, then it is
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known that

g({s1, s2}) = (s1 − 1)(s2 − 1)− 1,

so if {s1, s2} ⊂ S, then g(S) ≤ g({s1, s2}).
Returning to our examination of N (r, k), we find that every element of this set

is a multiple of k/ gcd(r, k). Denote this value by d. Then if the set N (r, k)/d has

gcd equal to one, the Frobenius number g(N (r, k)/d) exists, and N(r, k)/d is one

larger than this Frobenius number. Thus, to demonstrate the asymptotic existence of

combinatorial configurations, it sufficies to provide two examples of [r, k]-configurations

on n1, n2 points, such that gcd(n1

d
, n2

d
) = 1. From there, it follows that the Frobenius

number of N (r, k)/d is no more than

(
n1

d
− 1)(

n2

d
− 1)− 1

so

N(r, k) ≤ d
(n1

d
− 1
)(n2

d
− 1
)

=
n1n2

d
− n2 − n1 + d.

Of course, this bound all depends upon the order of the two configurations found.

Even if the two configurations have almost the smallest number of points possible (i.e.

the number of points is of order O(rk) in each), this provides a bound on N(r, k) of

the order O(r2k2/d).

For example, if r = k = 3, then d = 1. The Fano plane, the Möbius-Kantor

(83)-configuration

{1, 2, 3} {2, 5, 7} {3, 4, 6}
{1, 4, 5} {2, 6, 8} {3, 5, 8}
{1, 6, 7} {4, 7, 8},

and the Pappus (93)-configuration provide examples on 7, 8 and 9 points. It is known

that g({7, 8, 9}) = 20, so N(3) ≤ 21. Examples of 3-configurations for all n between 7

and 21 have been provided, demonstrating that N(3) = 7. As we can see, applying

the numerical semigroup argument above does not generally yield optimal results.

In order to demonstrate the finiteness of N(r, k), we can apply a modification on

an RTD to provide two examples of [r, k]-configurations with a difference of only d

points between them. It is known that an RTD(k, ρ) exists for any prime ρ > dr. In

such an RTD, there are ρk points and each group contains ρ points. Let S be any

collection of dr parallel blocks, and g be any group of points. For each block in S,

remove the point that is contained within group g from the block. This results in dr
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points of g each with replication number r − 1. Partition these points into sets of

size k, and add these sets back into the configuration as blocks. What remains is a

configuration with constant replication number and dr parallel blocks of size k − 1.

To complete the modification, add d isolated points to this configuration. Append

each point to r distinct blocks of size k − 1. The result of this modification is an

[r, k]-configuration on ρk + d points. Thus, N(r, k) is finite.

Other, more complex techniques exist to find better known bounds on general

N(r, k). Currently, one of the best general bounds for N(r, k) is provided in the

following theorem:

Theorem 2.1.2. [14] For any fixed r, k > 3, the value N(r, k) is bounded above by

drk
(
(4t2 − 16t)2 gcd(r, k)− 4t2 + 16t

)
where d = k

gcd(r,k)
and t = rk − r − k − 1.

This theorem provides a bound roughly on the order of O(r5k6). In the next

chapter, we provide a better bound on N(r, k), improving this bound significantly.

2.2 Geometric Configurations

2.2.1 Definition of Geometric Configurations

As the nomenclature suggests, geometric configurations are dependent upon the axioms

of a particular geometry. The term ‘lines’ in the combinatorial setting holds no real

significance or value beyond the linearity property, as we were not working within a

geometric setting. For the idea of a configuration to exist within the geometry, the

notions of points and lines must be defined within the geometry. Such geometries

are known as partial linear spaces. A partial linear space is an incidence structure

(P ,L, I), for which the elements of P are called points, the elements of L are called

lines, every line is incident with at least two points, and every pair of distinct points

is incident with at most one line.

Definition 2.2.1. Let P and L be sets of points and lines (respectively) within a

geometry X . If each line ` ∈ L is incident with exactly k points in P , and each point

p is incident with exactly r lines in L, then the pair G = (P ,L) is an [r, k]-geometric

configuration.
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Clearly the natural incidence relation established between points and lines of

a geometric configuration demonstrates that a geometric configuration is also a

combinatorial configuration, although the converse is not true. In fact, a large segment

of geometric configuration theory is concerned with determining which combinatorial

configurations have geometric counterparts. Usually, the geometries of interest are the

Euclidean plane R2 and the real projective plane P2. We will assume our configurations

lie in the Euclidean plane. However, many questions in the study of the existence of

geometric configurations in R2 and P2 are the same.

We carry over the same definitions of the replication number and line size as before.

Geometric configurations exhibit duality as well. A map that sends points to lines and

vice versa is known as a reciprocation, and is illustrated in [16, pg. 132–136], among

others.

In the geometric setting, the smallest 3-configuration is the Pappus configuration,

containing 9 points and lines, and geometric 3-configurations exist for all larger n

as well. The same existence and enumeration questions can be posed for geometric

configuarations; however, one must take more care in determining whether two

geometric configurations can be deemed isomorphic. Here, we state that two geometric

configurations are isomorphic if there exists a collineation — a map preserving linearity

— between them. Rotations, reflections and skew transformations are all examples of

such collineations of the real plane.

2.2.2 Realizations of Combinatorial Configurations in the Plane

Each geometric configuration has an underlying combinatorial configuration; however,

this notion has some subtlety that is worth mentioning in geometric configuration

theory. For example, consider the following partial combinatorial configuration:

{1, 2, 3} {1, 4, 8} {2, 4, 7} {3, 6, 8}
{4, 5, 6} {1, 5} {2, 6, 9} {3, 5, 7}
{7, 8, 9}

To aid in our understanding of the structure of this partial configuration, note that if

the point 9 were added to the line {1, 5}, then the result is the Pappus configuration.

Such a combinatorial partial configuration is not the underlying partial configuration

of any geometric partial configuration. This is because, by the Pappus Hexagon

Theorem (see [16, pg. 67]), any geometric partial configuration with lines dictated
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Figure 2.2: The Pappus configuration.

by the combinatorial partial configuration above must be such that the point 9 lies

upon the line containing 1 and 5. Thus, 1 and 5 cannot be the only points on the line.

What transpires is an undesirable incidence — the point 9 unintentionally belongs to

the line determined by 1 and 5 (see Figure 2.2). In short, the geometric realization

of a combinatorial partial configuration does not imply that a subconfiguration of

the combinatorial partial configuration also admits a realization. These unwanted

incidences become a large obstacle in answering the question of which combinatorial

configurations appear as underlying configurations to some geometric configuration.

Definition 2.2.2. Consider a combinatorial configuration C = (P ,L) and a geometric

configuration G = (P ′,L′). We say that G is a (strong) realization of C if C is the

underlying combinatorial configuration of G.

Many constructions of large geometric configurations are axiomatic — they do

not provide explicit equations for the lines in the configuration. As a result, it is

challenging to determine if such a construction contains unwanted incidences. We can

weaken the notion of a realization to allow for the possibility of unwanted incidences.

Definition 2.2.3. Consider a combinatorial configuration C and a geometric config-

uration G as before. We say that G is a weak realization or a representation of C if

there exists a bijection P → P ′ and L → L′, and every incidence in C is preserved by

these maps in G.

Table 2.2 gives a listing of the currently known enumeration results regarding

combinatorial and geometric 3- and 4-configurations. This table incorporates nearly

all known enumeration results for 3- and 4-configurations. As evidenced by the
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n (n3)-Combinatorial (n3)-Geometric

7 1 0
8 1 0
9 3 3
10 10 9
11 31 31
12 229 229
13 2 036 ?

n (n4)-Combinatorial (n4)-Geometric

13 1 0
14 1 0
15 4 0
16 19 0
17 1 972 0
18 971 191 2
19 269 224 652 0

Table 2.2: Enumeration results for known combinatorial and geometric 3-configurations
and 4-configurations [12].

enumerations of 4-configurations, it is exceptionally rare that a combinatorial configu-

ration admits a realization (although it is not proven that the proportion of realizable

combinatorial configurations tends towards zero as n→∞). The enumeration data

for configurations of k ≥ 5 is virtually nonexistent.

One of the most celebrated results in the study of geometric realizations is stated

below. It was first stated by Steinitz in his Ph.D. Thesis.

Theorem 2.2.1. [30] Given any combinatorial 3-configuration C, choose an arbitrary

line ` and remove an arbitrary point u from this line. This new configuration C−

admits a weak realization.

The version above is not exactly as stated in Steinitz’s thesis. In fact, the original

statement of Steinitz’s configuration theorem above replaced the term ‘weak realization’

with ‘realization’, and is incorrect. This difference will be explained in the proof of

the above theorem. The The proof of this theorem usually relies on the Levi graph of

a configuration, so we outline the proof in the subsequent section.

In addition to the realization question, there are existence questions regarding

geometric configurations. The asymptotic existence of geometric k-configurations

is known, and proved in a similar fashion to that of combinatorial configurations.

However, the bounds in this case are significantly worse, and usually not provided.

We will provide a bound in subsequent chapters. Additionally, there is a great deal of

study done on geometric configurations experiencing symmetry within the plane. Such

configurations have a unique and visually appealing structure, as seen in Figure 2.3.

A configuration with nontrivial rotational symmetry in the plane is known as chiral.

If the configuration also admits reflective symmetry then it is dihedral. Very few

familes of [r, k]-chiral configurations are known to exist for large values of r, k [7].

The rotational symmetry of a chiral configuration acts upon its points and lines,
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Figure 2.3: A (606, 904)-celestial (astral) configuration and a (123)-chiral (also astral)
configuration. The first example is contained within [4, pg. 14]. The latter one
appears in Grünbaum’s book Configurations on Points and Lines, [23, pg. 25].

partitioning them into symmetry classes or orbits. Similar definitions may be applied

to partial configurations as well. The orbits of points in a class trace out the vertices

of a regular m-gon centred about the origin, for some m. The orbits of lines form

the diagonals of some m-gon, centred about the origin. Note that each line in the

configuration can meet at most two points in a particular orbit. This means the

number of orbits of points must be at least dk/2e, and likewise, the number of orbits

of lines must exceed dr/2e. An [r, k]-chiral configuration that meets these bounds is

called astral. Astral configurations have received considerably more attention than

chiral configurations, and their existence has been decided in the case when r, k are

even.

Theorem 2.2.2 ([4]). Astral configurations do not exist when r, k are even and

r, k ≥ 6. Astral configurations also do not exist when either r or k is 4 and the other

parameter is at least 8. All other astral configurations for even r, k are known.

A similar class of configurations that have received some attention are known as

celestial configurations. The first instance of a celestial configuration appears in [24],

and a more in-depth study can be found in [2].

Definition 2.2.4. A dihedral [2r, 2k]-configuration is celestial if, for every line, the

2k points incident with the line belong to k symmetry classes, and for every point, the

2r lines incidnet with the point belong to r symmetry classes. If there are h symmetry

classes of points, then the configuration may be called an h-celestial configuration. A
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dihedral partial configuration is celestial if each line contains an even number of points

which may be partitioned into pairs, and each pair of points belongs to a common

symmetry class, and likewise each point contains an even number of lines which may

be partitioned into pairs, and each pair of points belongs to a common symmetry

class.

If the celestial configuration admits m-fold rotational symmetry, then the definition

above implies that if a line is incident with a point p, then the line is a diagonal of

the m-gon formed by the orbit of points containing p, and meets at a second point

in this symmetry class. Figure 2.3 provides an example of a celestial configuration.

Chapter 4 provides some new results on the existence of celestial configurations.

2.3 Levi Graphs

The incidence structures of combinatorial configurations can also be encoded as graphs.

Definition 2.3.1. Given a configuration C = (P ,L, I) (either geometric or combina-

torial), the Levi graph L(C) is a bipartite graph with bipartition of vertices (P ,L) and

edge set I.

The linearity condition implies that the graph has girth at least six (as a 4-cycle

p`qm directly implies p, q are both incident to ` and m). A bipartite graph with

bipartition (P ,L) is (r, k)-biregular if each vertex of P has degree r and each vertex of

L has degree k. Thus, if C is an [r, k]-configuration, then the Levi graph L(C) is (r, k)-

biregular. This correspondence is bijective — every biregular bipartite graph with girth

at least six can be interpreted as the Levi graph of a combinatorial configuration. A

graph admits a geometric strong or weak realization if its corresponding combinatorial

configuration admits a strong or weak realization, respectively.

When discussing properties of the Levi graph, the terms ‘vertex’ and ‘edge’ will be

used to refer to the vertices and edges of the Levi graph. The terms ‘point’ and ‘line’

will be reserved for configurations (for example, the term ‘vertex’ will not be used to

refer to a point of the configuration). Using this terminology, we restate and prove

the theorem from the previous section.

Theorem 2.3.1 ([30, 27]). Let C be a combinatorial 3-configuration. Let G be the

Levi graph of C, with one edge removed. The graph G admits a weak realization.
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Proof. Let u be a vertex of degree 2 in G, and let S be a spanning tree of G, with

root vertex u. Choose an arbitrary leaf v1 of S. Inductively define vi to be a leaf of

S\{v1, ..., vi−1} until all vertices of G have been listed. This ordering of the vertices

ensures that each vertex vi is adjacent to at most two vertices preceding it in the

ordering (as vi has degree at most three, and its parent in S must be listed after vi).

Let Gi be the induced subgraph of G on the vertex set {v1, ..., vi}. Clearly G1 has a

realization G1 on the plane. We demonstrate inductively that there exists a geometric

configuration that is a weak realization of Gi. Suppose that the graph Gi−1 has a

weak realization Gi−1 on the plane, and consider the vertex vi:

• If vi is not adjacent to any vertices preceding it in the ordering, then place the

point or line arbitrarily down upon the plane. This is a weak realization of Gi,

as Gi is equivalent to Gi−1 with vi as an isolated vertex.

• If vi is adjacent to the vertex u preceding it in the ordering, then place the point

(or line) denoting vi on the line (or point) corresponding to u. This can always

be done, and the result is a geometric configuration Gi that is a weak realization

of Gi.

• If vi is adjacent to the vertices u,w preceding it in the ordering, then place

the point (or line) denoting vi at the intersection of the lines u,w (or as the

line joining point u,w). This can always be done, and the result is a geometric

configuration Gi that is a weak realization of Gi.

Note that while we may place vi at the intersection of any two lines, there is

no guarantee that other lines will not also intersect this point. Thus, the geometric

configuration is not necessarily strong.

By and large, the construction method given above seems to yield a truly strong

realization; however, counterexamples do exist. An example of this is the (163)-

combinatorial configuration

{1, 2, 3} {1, 4, 8} {2, 4, 7} {3, 6, 8} {9, B, C} {B,D, F} {C,D,G}
{4, 5, 6} {1, 5, 9} {2, 6, 9} {3, 5, 7} {A,D,E} {B,E,G} {C,E, F}
{7, 8, A} {A,F,G}.

To aid in our understanding of this configuration, note that if the A and 9 from the

lines {7, 8, A} and {9, B, C} were swapped, the result would be the disjoint union



19

of the Pappus configuration and the Fano plane. If we let C− denote the above

configuration with the point A removed from the line {7, 8, A} then any ordering

of vertices from the proof above yields a configuration isomorphic to that shown in

Figure 2.4. This realization is not strong, as it contains a line meeting points 7, 8, 9, A.

Figure 2.4: A (163)-configuration such that the configuration minus any intersection
admits a weak, but not strong, realization due to Steinitz’ Configuration Theorem.
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Chapter 3

Combinatorial Configurations

In this chapter, the term ‘configurations’ will exclusively refer to combinatorial

configurations. We begin by providing two asymptotic existence results for [r, k]-

configurations. Recall from the previous chapter that N(r, k) is the least value for

which an (nr, bk)-configuration exists for all n ≥ N(r, k) that satisfies the divisibility

condition nr = bk. The first asymptotic result (Theorem 3.1.1) provides an upper

bound on N(r, k) that is an improvement on previously known bounds. The second

asymptotic result (Theorem 3.1.2) further improves this upper bound under the

condition that r is substantially larger than k (this will be made more precise later).

Both of these proofs are constructive in nature — we provide explicit examples of

(nr, bk)-configurations. In Section 3.2, we explore the idea of embedding a partial

configuration within an [r, k]-configuration, providing bounds on the minimum number

of points needed in the [r, k]-configuration. This result is then used to answer an open

question regarding designs.

3.1 Existence Results

Recall from the previous chapter that the existence of an (nr, bk)-configuration depends

upon the divisibility condition nr = bk, and the inequality n ≥ r(k − 1) + 1. The

latter condition imposes a lower bound for N(r, k). We now provide an upper bound

for N(r, k), for any r, k ≥ 2.

Theorem 3.1.1. N(r, k) < k2 ·max{r + 1, r
2

+ k} for all r ≥ k.

This theorem improves previously existing results and is constructive in nature.

Note that this provides a bound roughly on the order of O(k2r+k3), whereas the lower



21

bound r(k − 1) + 1 is of order O(rk). Therefore N(r, k) cannot have an upper bound

of a smaller order than O(rk) (as this is the order of the lower bound on N(r, k)).

If the imbalance between r and k is large, then an upper bound of order O(rk) is

obtained from the following result.

Theorem 3.1.2. Given a fixed k, there exists a value R(k) such that N(r, k) ≤ 2rk+r

for all r ≥ R(k).

In both of these theorems, we will also provide connected combinatorial [r, k]-

configurations on n points for all n > N(r, k) (a configuration is connected if it is

not the disjoint union of two subconfigurations). Both theorems are strengthened by

this connectivity property. The general concept behind both theorems is to create

a configuration resembling a resolvable transversal design with block size k. Several

constructions will be utilized to prove these theorems. To assist in the notation, we

define the following:

[n] := {1, 2, ..., n},

d := k/ gcd(r, k).

The divisibility condition on [r, k]-configurations implies that the number of points

must be a multiple of d.

3.1.1 Construction of the [r, k]-Configurations A(w, λ, r, k)

As mentioned, the proof of our first asymptotic existence result Theorem 3.1.1 is

constructive: we provide explicit examples of (nr, bk)-configurations for each n larger

than k2 ·max r + 1, r
2

+ k. These constructions belong to a family of configurations

which we will denote by A(w, λ, r, k).

Due to the dual nature of configurations, we will assume that r ≥ k. The

configuration A(w, λ, r, k) takes parameters w ∈ N satisfying

w ≥ k ·max
{
r + 1,

r

2
+ k
}

and λ ∈ {0, ..., gcd(r, k)− 1}. Given these parameters, the configuration A(w, λ, r, k)

will be an [r, k]-configuration with wk + λd points.

We begin our construction with the point set Zk × Zw. Define

bmc := {(x, mx+ c) : x ∈ Zk} , for all m ∈ [w], c ∈ Zw
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Figure 3.1: A diagram illustrating the definitions proposed in the construction
A(w, λ, r, k). Here the lower left dot is considered (0, 0). The highlighted line repre-
sents b2,2, having slope 2 and intercept 2. The value of r

gcd(r,k)
is equal to 3, since the

row classes contain three rows, and gcd(r, k) = 2, since each column class contains
two columns. The column classes continue, and partition all the columns (and all the
points within those columns as well). If λ = 2, then the only two row classes are those
illustrated: H0 and H1. Each Gα ∩Hβ contains 2 · 3 = 6 points.

to be the set of lines. We will refer to m as the slope of the line, and c as the intercept.

These lines as a collection do not preserve the linearity condition unless w is a prime

(which we do not require), so the collection of points and lines do not technically

form a configuration, and is merely an incidence structure. However, a suitable subset

of these lines is indeed linear, as we will now show. Partition the lines into parallel

classes with slope m

Bm := {bmc : c ∈ Zw} , m ∈ [w].

The rows of the incidence structure may be thought of as lines of slope zero. Due to

their special role, we denote these blocks by

hc := {(x, c) : x ∈ Zk} , for each c ∈ Zw.

The columns of the array correspond with groups in the sense of transversal designs.
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These will be denoted

gx := {(x, c) : c ∈ Zw} , for each x ∈ Zk.

Finally, we will partition the k groups into d column classes of size gcd(r, k):

Gα :=
{
gα gcd(r,k), gα gcd(r,k)+1, ..., g(α+1) gcd(r,k)−1

}
, for all α ∈ {0, ..., d− 1},

and partition the first λ r
gcd(r,k)

rows into λ row classes of size r
gcd(r,k)

:

Hβ :=
{
hβ( r

gcd(r,k)
), ..., h(β+1)( r

gcd(r,k)
)−1

}
, for all β ∈ {0, ..., λ− 1}.

Figure 3.1 illustrates all of these definitions.

Restrict the set of lines to those only contained within a parallel class of slope

0 < m < w/k. We claim that the set of lines contained within these parallel classes is

linear. Suppose p, q are two points contained within two lines bm1c1 and bm2c2 . Then

we may rewrite p, q as

p := (x, m1x+ c1) = (x, m2x+ c2) (mod w),

q := (y, m1y + c1) = (y, m2y + c2) (mod w),

for some x, y ∈ Zk. These two equalities directly imply that

m1(x− y) = m2(x− y) (mod w),

or

(m1 −m2)(x− y) = 0 (mod w).

If x = y, then p and q belong to the same column (as they have the same first

coordinate), which implies p = q, as no line contains two different points in the

same group. If m1 = m2 then clearly bm1c1 = bm2c2 . Otherwise, |x − y| < k and

0 < |m1 −m2| < w
k

. Therefore, the product |x− y| · |m1 −m2| does not exceed w− 1,

and thus cannot be congruent to 0 modulo w. This implies that either p = q or

bm1c1 = bm2c2 , which in turn implies that the set of lines contained in a parallel class

with slope 0 < m < w/k is indeed linear. If gcd(r, k) = 1, then λ = 0 and restricting

the set of lines in the incidence structure to any collection of r parallel classes each
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with slope < w/k will result in an [r, k]-configuration with wk points, which we will

denote A(w, 0, r, k). We now assume that gcd(r, k) > 1.

For any α ∈ {0, ..., d − 1} and β ∈ {0, ..., λ − 1}, let Gα ∩ Hβ denote the set of

r points contained within a group in Gα and a row in Hβ. There are dλ ≤ k such

intersections of row and column classes. For every pair α, β, associate a unique parallel

class Bm(α,β) with slope m(α, β) satisfying

r

gcd(r, k)
≤ m(α, β) <

r

gcd(r, k)
+ k.

Note that r
gcd(r,k)

+ k ≤ w
k

, since w ≥ k( r
2

+ k). Thus the parallel classes Bm(α,β) all

have slope between 0 and w/k (these classes are part of the collection of w/k parallel

classes we have restricted to). We show that any line in Bm(α,β) meets at most one

point in Gα ∩Hβ. Suppose a line bmc in Bm(α,β) meets group gx ∈ Gα at a point p.

Then we may write p as

p = (x, mx+ c).

Given y ∈ [gcd(r, k)], consider the point q where bmc meets gx+y:

q = (x+ y, mx+ c+my).

These two points have a difference in the second coordinate equal to my. Since

y ∈ [gcd(r, k)] and r
gcd(r,k)

≤ m < r
gcd(r,k)

+ k, we have

r

gcd(r, k)
≤ my,

and

my <

(
r

gcd(r, k)
+ k

)
(gcd(r, k))

≤ 3r

2
+ k gcd(r, k)− r

2

≤ k

(
3r

2k
+ gcd(r, k)

)
− r

gcd(r, k)

≤ k
(r

2
+ k
)
− r

gcd(r, k)

≤ w − r

gcd(r, k)
.
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The third and fourth inequalities follow from the inequality 2 ≤ gcd(r, k) ≤ k. The

row class Hβ contains r
gcd(r,k)

consecutive rows, so the difference in second-coordinate

between any two points in Hβ lies within the interval [− r
gcd(r,k)

+ 1, r
gcd(r,k)

− 1]. Since

my does not lie within this interval (modulo w), we conclude that p and q cannot

both lie within the same row class. Thus q /∈ Hβ. A similar conclusion can be drawn

for any point where bmc meets gx−y. This result holds for all y ∈ [gcd(r, k)]. The

gcd(r, k) groups contained within a column class are consecutive, and Gα consists of

some subset of {gx−gcd(r,k), ..., gx+gcd(r,k)}. Therefore, bmc meets every other point in a

column within Gα in a row that is not contained within Hβ. That is, bmc only meets

Gα∩Hβ at p. It follows that every line in Bm(α,β) meets at most one point in Gα∩Hβ.

Now restrict our collection of w/k parallel classes further to any r-subset of parallel

classes that contains the classes Bm(α,β). This results in an [r, k]-configuration on wk

points. For every pair α, β, remove the points in Gα∩Hβ from the lines within parallel

class Bm(α,β). Only one point has been removed from exactly r different parallel lines.

Add an isolated point to the configuration, and append it to each of these r lines of

size k − 1 within Bm(α,β). This does not destroy the linearity of the configuration,

as these r lines are all parallel. However, it does destroy regularity (each point no

longer has replication number r). After all λd points have been added to the now

partial configuration (one for each pair α, β), the points within any row class Hβ now

have replication number r − 1 (each one has been removed from exactly one line).

All other points have replication number r, and all lines have size k. To complete

the construction, add the rows h0, ..., hλ−1 to the partial configuration as lines. The

result is a configuration with constant replication number r and line size k. This

[r, k]-configuration contains wk + λd points, and we denote such a configuration by

A(w, λ, r, k).

The first asymptotic existence result Theorem 3.1.1 follows quickly from this

construction. Consider any n larger than k2 ·max{r+ 1, r
2

+ k} that is also a multiple

of d. Write n in the form wk + λd, where λ ≤ gcd(r, k). Then w is large enough to

guarantee the existence of the configuration A(w, λ, r, k). Therefore, there exists an

[r, k]-configuration on n points.

As an explicit example of this construction, consider A(21, 2, 6, 3). This construc-

tion yields an (656, 1303)-configuration. Initially, the incidence structure contains 63

points arranged as Z3 × Z21. The value of λ is 2, so we have two row classes, H0

and H1, each containing 2 rows. Note that G0 = {g0, g1, g2} is the only column class.

Thus, α = 0 and 0 ≤ β < 2, so the number of pairs α, β is 2. Define Bm(0,0) and
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x0, y1, z2 x0, y4, z8 x0, y5, z10 x0, y6, z12 ∞00, x2, x4 x0,∞01, z6 x0, y0, z0
x1, y2, z3 x1, y5, z9 x1, y6, z11 x1, y7, z13 ∞00, y3, z5 x1, y4, z7 x1, y1, z1
x2, y3, z4 x2, y6, z10 x2, y7, z12 x2, y8, z14 x2, y4, z6 ∞01, y5, z8 x2, y2, z2
x3, y4, z5 x3, y7, z11 x3, y8, z13 x3, y9, z15 x3, y5, z7 ∞01, y6, z9 x3, y3, z3

...
...

...
...

...
...

x18, y19, z20 x18, y1, z5 x18, y2, z7 x18, y3, z9 x18, y20,∞00 x18, y0,∞01

x19, y20, z0 x19, y2, z6 x19, y3, z8 x19, y4, z10 x19,∞00, z2 x19, y1, z4
x20, y0, z1 x20, y3, z7 x20, y4, z9 x20, y5, z11 x20,∞00, z3 x20,∞01, z5

Table 3.1: The 130 lines of A(21, 2, 6, 3). The columns of lines correspond to the lines
of B1, B4, B5 and B6, followed by the class B2 after the points x0, y0, z0, x1, y1, z1 are
replaced with ∞00 (since these six points lie in the set G0 ∩H0). The sixth column
of lines is the class B3 after the points x2, y2, z2, x3, y3, z3 are replaced with ∞01 (as
these six points lie within G0 ∩H1). Finally, the last column contains the four rows
that are added to the configuration.

Bm(0,1) to be equal to B2 and B3 respectively. Finally, include the additional parallel

classes B1, B4, B5 and B6 (all of these have slope less than w/k and thus are linear).

We list the lines of this configuration in Table 3.1. To ease in notation, we write

the coordinates (0, i), (1, i) and (2, i) as xi, yi and zi respectively. So the coordinate

(1, 17) is denoted y17. The isolated point created for G0 ∩H0 is denoted ∞00 and the

other isolated point is ∞01.

3.1.2 Construction of the [r, k]-Configurations A′(ρ, µ, λ, r, k)

The second asymptotic existence result Theorem 3.1.2 demonstrates that, if r is

sufficiently large relative to k then an (nr, bk)-configuration exists, provided n ≥ 2rk+r.

The proof of this result follows somewhat similarly to Theorem 3.1.1. We provide a

family of constructions A′(ρ, µ, λ, r, k). This family requires a certain level of imbalance

between r, k: in particular, 2r > k2. Furthermore, our parameters have changed. The

value ρ is a prime larger than 2r that takes the role of w in the previous example.

A new parameter µ is also added to the construction, where µ is any integral value

between 0 and ( 1
2k
− 2

r
)ρ. As before, λ is a whole number less than gcd(r, k).

The initialization of the construction A′(ρ, µ, λ, r, k) is similar to the construction

A(ρ, λ, r, k), and we utilize the same definitions as before. Here the collection of all

lines does indeed form a linear set, since ρ is prime. To see this, consider the lines bmc
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over the point set Zk × Zρ. Let p, q be two points in lines bm1c1 and bm2c2 . Then

p = (x, m1x+ c1) = (x, m2x+ c2),

q = (y, m1y + c1) = (y, m2y + c2).

As in the case of A(ρ, λ, r, k), this implies that

(m1 −m2)(x− y) = 0 (mod ρ).

However, Zρ is a field, so this directly implies either x = y or m1 = m2. In the

former case, we come to the conclusion that p = q, and in the latter case we have

bm1c1 = bm2c2 . Thus, the set of all lines is linear. However, we will not yet consider

these lines as belonging to the configuration A′(ρ, µ, λ, r, k).

For each β ∈ [λ], define Iβ to be the set of r
gcd(r,k)

lines in a parallel class Bβ with

intercept c satisfying 0 ≤ c < r
gcd(r,k)

.

Lemma 3.1.3. Assume λ > 0. Then the number of parallel classes Bm containing a

line meeting Gα ∩ Iβ in more than one point is bounded above by 2(r − r
gcd(r,k)

), for

any choice of α ∈ [d] and β ∈ [λ].

Proof. Note that gcd(r, k) 6= 1 (since 0 < λ < gcd(r, k)). We first demonstrate that

if a parallel class Bm contains a line meeting Gα ∩ Iβ in more than one point, then

it also contains a line meeting G0 ∩ Iβ in more than one point. This will allow us to

only consider the case where α = 0.

Consider the transformation:

f : Gα ∩ Iβ → G0 ∩ Iβ, f(x, y) = (x− α · gcd(r, k), y − βα · gcd(r, k))

This bijection is merely a translation that sends the points of Gα ∩ Iβ to G0 ∩ Iβ.

For any block b containing points p1, ..., pgcd(r,k) in Gα ∩ Iβ, let f(b) denote the block

containing points f(p1), ..., f(pgcd(r,k)). Since f is a translation, it follows that b and

f(b) are parallel — the map f merely translates points, so b and f(b) share the same

slope. Thus, if a block bmc meets two points p, q in Gα∩ Iβ, then f(bmc) meets the two

points f(p), f(q), which are each contained within G0 ∩ Iβ. Since f(bmc) is parallel

to bmc, it follows that if the parallel class Bm contains a block meeting two points in

Gα ∩ Iβ, then it also contains a block meeting two points in G0 ∩ Iβ. Therefore, we
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may assume without loss of generality that α = 0. Define the points

0 := (0, 0), Z :=

(
0,

r

gcd(r, k)
− 1

)
in G0 ∩ Iβ. We claim that if a line bmc contains two points p, q ∈ G0 ∩ Iβ, then there

exists a parallel line containing either 0 or Z and another point in G0 ∩ Iβ. Consider

such a line bmc in parallel class Bm that meets two points p, q ∈ G0 ∩ Iβ, with p ∈ bβc1
and q ∈ bβc2 , for some c1, c2 ∈ [0, r

gcd(r,k)
− 1]. Then we may write

p := (x, βx+ c1), q := (y, βy + c2),

q − p = (y − x, β(y − x) + c2 − c1),

where x, y ∈ [0, gcd(r, k)− 1]. Assume without loss to generality that y ≥ x. It then

follows that q − p ∈ G0, since 0 ≤ y − x < gcd(r, k). The second coordinate of q − p
lies within the interval[

β(y − x)−
(

r

gcd(r, k)
− 1

)
, β(y − x) +

(
r

gcd(r, k)
− 1

)]
.

Note that the second-coordinates of points in gy−x ∩ Iβ lie within the interval[
β(y − x), β(y − x) +

(
r

gcd(r, k)
− 1

)]
.

Then the line bm0 meets p− p = 0 and q − p. If q − p has a second coordinate in the

interval [
β(y − x), β(y − x) +

(
r

gcd(r, k)
− 1

)]
,

then it lies within gy−x ∩ Iβ, and thus it lies within G0 ∩ Iβ. Now suppose the second

coordinate of q − p is instead contained within the interval[
β(y − x)−

(
r

gcd(r, k)
− 1

)
, β(y − x)

]
.

In this case, bm,( r
gcd(r,k)

−1) contains Z and q − p + Z. The latter point lies within

gy−x ∩ Iβ. Therefore, if the parallel class Bm contains a line bmc meeting G0 ∩ Iβ in

two distinct points, then either Bm contains a line meeting 0 and another point of

G0 ∩ Iβ or Bm contains a line meeting Z and another point of G0 ∩ Iβ. This completes
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the claim.

This means that in order to count the number of parallel classes Bm containing a

line meeting G0 ∩ Iβ in two points, it suffices to count the number of lines meeting 0

and another point of G0 ∩ Iβ and the number of lines meeting Z and another point of

G0 ∩ Iβ. The number of points in G0 ∩ Iβ that are not in the same column as 0 or Z is

(gcd(r, k)− 1) · r

gcd(r, k)
= r − r

gcd(r, k)
.

Thus, the maximum number of lines meeting 0 or Z as well as another point of G0∩ Iβ
is bounded above by

2

(
r − r

gcd(r, k)

)
.

If 2r > k2 and λ > 0, then the above lemma implies that there are at most

2r − 2r

gcd(r, k)
≤ 2r − k

parallel classes containing a line that meets a point of any Gα ∩ Iβ in more than one

point. Since ρ > 2r, it follows that for each of the dλ ≤ k distinct pairs of α, β, we

may choose a unique parallel class Bm(α,β) that does not contain a line meeting Gα∩Iβ
in two or more points. In the case that λ = 0, there are no pairs α, β to consider.

Add the λd parallel classes Bm(α,β) to the incidence structure. For each pair α, β,

remove the points in Gα ∩ Iβ from the lines in Bm(α,β). Note that this creates exactly

r ‘shortened’ lines of size k − 1. Add an isolated point in the incidence structure and

append it to each of these r lines in Bm(α,β) of size k − 1. Since all of the lines in

Bm(α,β) are parallel, the linearity of the incidence structure is preserved. After this

procedure is completed for all pairs, add the lines in Iβ to the structure. These lines

belong to the parallel class Bβ, and thus adding them to the structure does not destroy

the linearity property. The outcome is a partial configuration with ρk + λd points.

The λd added points have a replication number of r, while the points in the original

point set Zk × Zρ each posses a replication number of λd. The number of (potentially

modified) parallel classes that we utilized in this construction so far is λd+ λ (λ of

the form Bβ and λd of the form Bm(α,β)). This value is less than or equal to 2k.

Next, define

Y :=
⌊ r
k
− 1
⌋
.
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For each y ∈ [Y ], choose a previously unmodified (i.e. not utilized so far in the

construction) parallel class By, and let µy be any integer in the interval [0, ρ
r
]. Choose

µyr lines from By and label this set as Iy. For each x ∈ Zk and y ∈ [Y ], choose k

other unmodified parallel classes Bxy (all distinct). This selection requires a total of

Y k + Y ≤
( r
k
− 1
)
k +

r

k
≤ 2r − 2k

unmodified parallel classes. The last inequality is a consequence of the fact that

2r > k2. Since ρ > 2r, it follows that there are a sufficient number of unmodified

parallel classes to make such a selection feasible. Add the parallel classes Bxy to the

partial configuration. This keeps the replication number of the points in Zk × Zρ
constant, and less than r (since the total number of pairs x, y is less than r − k, and

the points already possess a replication number of λd ≤ k). Remove the µyr points

in gx ∩ Iy from the parallel class Bxy. This creates µyr shortened lines of size k − 1.

For each x, add µy isolated points to the partial configuration, and append each one

to r distinct short lines in Bxy (linearity is preserved since the lines within Bxy are

parallel). Finally, add the lines of Iy to the partial configuration. The consequence of

this is an [r, k]-configuration with
∑
µyk additional points. The values of µy can be

chosen so that
∑
µy = µ, since each µy is an integer between 0 and ρ/r, and

Y · bρ/rc ≥
( r
k
− 2
)(ρ

r
− 1
)
≥
(

1

k
− 2

r

)
ρ− r

k
+ 2 ≥

(
1

k
− 2

r

)
ρ.

The third inequality is just an expansion of the second expression, and the final

inequality is due to the fact that r/k > 2. Furthermore, the replication number of

each of the initial ρk points of Zk ×Zρ is constant. Finally, add a sufficient number of

remaining parallel classes to the partial configuration until the replication number of

all points in Zk ×Zρ is r. The result is an [r, k]-configuration containing ρk+ µk+ λd

points. We will denote this configuration by A′(ρ, µ, λ, r, k). This configuration will

be instrumental in proving the second asymptotic existence result, Theorem 3.1.2. We

now turn to the proof of this theorem.

3.1.3 Proof of a Second Asymptotic Existence Result

The construction A′(ρ, µ, λ, r, k), along with a variation of a number theoretic result

known as Bertrand’s Postulate will yield Theorem 3.1.2.
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Theorem 3.1.4. [25, pg. 494] Bertrand’s Postulate: Given any ε > 0, there exists a

value R′(ε) such that a prime exists in the interval [x, (1 + ε)x] for all x ≥ R′(ε).

We now turn to the proof of Theorem 3.1.2.

Proof. Given a fixed k, let R := R(k) be any integer sufficiently large to guarantee

the existence of a prime in the interval[
x,

(
1 +

1

2k
− 2

R

)
x

]
for every x ≥ R(k). Such an R(k) exists by Bertrand’s Postulate. Let r be any integer

larger than R(k), and let ρ1, ρ2, ... be the sequence of consecutive primes larger than

2r. Then A′(ρi, µ, λ, r, k) can be utilized to generate a configuration containing n

points, for any n satisfying the divisibility condition and contained within the interval

[ρik, ρik + µk + λd].

The constraints on µ and λ imply that this interval contains the subintervals[
ρik,

(
1 +

1

2k
− 2

r

)
ρik

]
⊃
[
ρik,

(
1 +

1

2k
− 2

R

)
ρik

]
⊃ [ρik, ρi+1k]

where the last inclusion is due to Bertrand’s Postulate, since ρi+1 must lie in the

interval between ρi and (1 + 1
2k
− 2

R
)ρi. This sequence of intervals [ρik, ρi+1k] covers

all multiples of d larger than ρ1k. Since ρ1 lies somewhere in the interval[
2r,

(
1 +

1

2k
− 2

2r

)
2r

]
=
[
2r, 2r +

r

k
− 2
]
⊂
[
2r, 2r +

r

k

]
,

we have that

N(r, k) ≤ 2rk + r.

The value of r := R(k) is known to exist, but may be quite large compared to k.

Example 3.1.1. As an example of how the construction A′(ρ, µ, λ, r, k) may be used

in practice, we examine the case when r = 240 000 and k = 30. Here, Theorem 3.1.1

provides an upper bound of roughly 1.08× 108, while the trivial lower bound is set at

6.96× 106. In [29, pg. 354], it is shown that for all x ≥ 2 010 760 there exists a prime
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between x and (1 + 1
16597

)x. Given any ρ, the value of µ must be chosen to lie between

0 and ( 1
2k
− 2

r
)ρ > 1

16597
ρ. Thus, the sequence ρ1, ρ2, ρ3, ... of consecutive primes larger

than 2 010 760 are such that ρi+1 < ρi + 1
16597

ρi, and therefore every n larger than ρ1k

can be written in the form

ρik + µk + λd

for some suitable ρi, µ and λ in the construction A′(ρi, µ, λ, r, k). Since ρ1 = 2 010 881,

it follows that

N(240000, 30) ≤ 2010881 · 30 ≤ 6.04× 107.

This gives a better bound than Theorem 3.1.1 provides, even though R(30) may be

significantly larger than 240 000. In fact, the theorem in [29] can be used as above for

any r, k combination such that

k ∈ [8, 1417]

r ∈
[
k2

2
, 1 005 440

]
to show that N(r, k) ≤ 2010881k.

The proof of Theorem 3.1.2 relies heavily on two critical ideas:

• The size of a prime gap is small relative to the size of the corresponding primes.

• Adding up to µk + λd points to an initial configuration on point set Zk × Zρ.
The addition of these isolated points requires the modification of pre-existing

parallel classes. A large number of parallel classes (dependent on r) relative to

k allows for the addition of more isolated points to the configuration.

Such a proof technique does not fare well for general r, k. First, we cannot utilize

stronger versions of Bertrand’s Postulate. This means that, for a given prime ρ, slightly

larger than r, we must be able to generate configurations with any number of points

within the interval [ρk, 2ρk] (satisfying the divisibility conditions). Thus, we must be

able to add up to ρk points to the [r, k]-configuration A′(ρ, 0, 0, r, k). However, µk is

bounded above by ρ/2 (and this assumes that 2r > k2).

Although this proof technique cannot generalize to any r, k, it can be utilized to a

moderate degree in the case that gcd(r, k) = 1. In this case, λ = 0, and the value of

Y may be increased to br/kc. The restriction that 2r > k2 may also be removed in

this scenario. Thus, µ may potentially be as large as

Y · bρ/rc ≥
( r
k
− 1
)(ρ

r
− 1
)
≥
(ρ
k
− r

k
− ρ

r

)
.
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As a final note on this optimization, we may assume that ρ is less than k(r + k).

From Theorem 3.1.1, [r, k]-configurations on more than k2(r + k) points are already

known to exist, and therefore, we need not consider cases where ρ is larger than

k(r + k). Thus, when gcd(r, k) = 1, the value of µk may be as large as

ρ− r − k2(r + k)

r
.

If r = 4 and k = 3, then Y = 1. If ρ = 11, then µ may be as large 2, and this

generates configurations on 33, 36, and 39 points. If ρ = 13, then µ may be as large as

3, and this generates configurations on 39, 42, 45, and 48 points. We may then invoke

Theorem 3.1.1 to demonstrate the existence of configurations on more than 48 points.

Thus, N(4, 3) ≤ 33. A similar argument can be utilized to show that N(5, 3) ≤ 33,

provided a configuration on 48 points exists.

3.2 Embedding Configurations

Suppose we are given a partial configuration C0 = (P ,L0), with constant line size k,

but not necessarily constant replication number. It is natural to ask if this partial

configuration is in fact a subconfiguration of an [r, k]-configuration on the same number

of points. An affirmative answer yields an [r, k]-configuration C = (P ,L0) with L ⊃ L0.

It is quickly evident that not every configuration yields a completion, even in the cases

where the number of points satisfies the divisibility conditions for an [r, k]-configuration

to exist. If C0 contains n points, and L0 is dense (that is, |L0| is close to nr/k), then

it is certainly possible that the additional lines required cannot be positioned in such

a way as to create an [r, k]-configuration. As a trivial example, the following collection

of seven lines given below cannot be completed as an (83)-configuration:

{1, 2, 3} {2, 4, 6} {3, 4, 7}
{1, 4, 5} {2, 5, 7} {3, 5, 8}
{1, 6, 7}.

A certain level of sparsity is desired in L0 if we hope to complete a configuration.

An alternative to completing a partial configuration is the idea of embedding

C0 = (P0,L0) in an [r, k]-configuration with only a marginal increase in the number of

points. What occurs is a tradeoff: we no longer require sparsity in the size of L0 if we

are allowed to add points to the partial configuration. In order for an embedding to
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exist, there must be certain criteria that both C0, and any configuration C containing

C0 as a subconfiguration must satisfy:

• The necessary existence conditions on C must be met: nr = bk and n ≥
r(k − 1) + 1.

• The replication number of every point in C0 must be less than or equal to r.

If the maximum replication number over all points in C0 is no more than r, while

the line size is constant, then we may refer to C0 as a partial [r, k]-configuration. If a

point pi in a partial [r, k]-configuration has replication number ri, then its deficiency is

r−ri. The total deficiency of a partial [r, k]-configuration is the sum of the deficiencies

over all points.

The following theorem shows that every partial [r, k]-configuration C0 can be

embedded in a larger [r, k]-configuration C, and gives bounds on the maximum number

of points required to add to C0 in order to obtain such an embedding. This type of

embedding is an induced embedding — it contains C0 as an induced subconfiguration.

The theorem below does not completely answer the embedding question (as it requires

some assumptions on the total deficiency that are not necessary for an embedding to

exist). However, it does most of the work in solving some general embedding questions.

Several more general embedding results are proved as corollaries to this theorem.

Theorem 3.2.1. Let C0 be a partial [r, k]-configuration on n points with total deficiency

F . Let d = k/ gcd(r, k). If F is at least d(r2 + kr) and a multiple of k, then C0
is an induced subconfiguration on an [r, k]-configuration C containing fewer than

n+ (2k+1)F
r

+ 3rk2 points.

This can also be considered as a generalization of a similar result in graph theory

proved by Erdős and Kelly in [20]. The graph theoretic result demonstrates that

any graph on n vertices is an induced subgraph of an r-regular graph (r < n) with

no more than 2n points. Our next result will extend this to embeddings as linear

hypergraphs. The degree sequence of a hypergraph on vertices v1, ..., vn is the sequence

(d1, ..., dn) ∈ Nn such that di is the degree of vi. The vertices are labeled so that the

degree sequence is monotonic and increasing. If C is a partial configuration on n points

with constant block size k, then it may be considered as a k-uniform linear hypergraph

(see Section 2.1). Let (r1, ..., rn) be the degree sequence of C as a linear hypergraph,
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so that ri is the replication number of point vi in C. Suppose there exists a k-uniform

linear hypergraph C ′ on n+m vertices (for some m ∈ N) with degree sequence

(r − r1, r − r2, ..., r − rn, r, r, r, ..., r).

Let v′i be the vertex with degree r − ri, for each i ∈ [n]. Then the linear hypergraph

formed by taking the disjoint union of C and C ′ and identifying vertices vi and v′i,

for each i ∈ [n] is a k-uniform, r-regular hypergraph containing C as an induced

hypergraph. In other words, the configuration C may be embedded in an [r, k]-

configuration on n+m points. The problem of determining whether a given sequence

can be realized as the degree sequence of a linear hypergraph has been examined by

Bhave, Bam and Deshpande in [9], but has not been fully answered.

As in the previous section, we will utilize a construction resembling resolvable

transversal designs to aid in our embeddings.

3.2.1 The Configurations E(ρ, r, k) and E ′(ρ, r, k)

Let ρ be any prime larger than r. Then as before, create a partial configuration with

point set Zk×Zρ. Define the lines, parallel classes, rows and groups of the configuration

as in A(ρ, 0, r, k). Since ρ is prime, the set of all lines forms a [ρ, k]-configuration,

and restricting to any set of r parallel classes yields an [r, k]-configuration. We will

restrict to the set of parallel classes with slope in the interval [0, r − 1]. Denote this

configuration as E(ρ, r, k). Note that this means E(ρ, r, k) has point set Zk × Zρ, and

lines

bmc = {(x, y) ∈ Zk × Zρ : y = mx+ c} for all m ∈ 0, 1, ..., r − 1 and c ∈ Zρ.

Let H denote the set of points within the first r rows h0, ..., hr−1. For every i ∈ [k],

remove the points of H ∩ gi−1 from the lines within the parallel class Bi. Add k

isolated points p1, ..., pk to the configuration, and append pi to the r lines in Bi of

size k − 1. Since the lines within Bi are all parallel, linearity of the configuration is

preserved. Adding the rows h0, ..., hr−1 to the configuration as lines will again return

an [r, k]-configuration, this time on ρk + k points. This configuration will be denoted

E ′(ρ, r, k).
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3.2.2 Proof of the Embedding Theorem

We begin the proof with the classical version of Bertrand’s Postulate, as given in [25,

pg. 494].

Theorem 3.2.2. Bertrand’s Postulate: For any x ∈ Z+ there exists a prime within

the interval [x, 2x].

We will also require the following lemma, also found in [17].

Lemma 3.2.3. Provided ρ ≥ r + k, and r, k ≥ 2, there exists an ordering of the lines

within E(ρ, r, k) so that any r consecutive lines are pairwise disjoint.

Proof. Simply list the lines bmc of E(ρ, r, k) in the ‘natural’ order:

b00, b01, ..., b0,ρ−1, b10, b11, ..., b1,ρ−1, ......, br−1,0, br−1,1, ..., br−1,ρ−1

Blocks with the same first index are clearly disjoint (they belong to a common

parallel class). Suppose that there exists a point (x, y) ∈ bmc1 ∩ bm+1,c2 for some

m ∈ {0, 1, ..., r − 2} and c1, c2 ∈ Zρ. Then

y ≡ mx+ c1 ≡ (m+ 1)x+ c2 (mod ρ)

The latter equivalence implies that

c1 ≡ x+ c2 (mod ρ).

Since 0 ≤ x ≤ k − 1, it follows that c2 lies within the interval [c1 − (k − 1), c1]

(with values taken modulo ρ). However, the r parallel classes following bmc1 in the

ordering have second index in the interval [c1 + 1, c1 + r] (taken modulo ρ). The

interval [c1− (k− 1), c1] contains the first k− 1 integers preceding c1, and the interval

[c1 + 1, c1 + r] contains the first r integers following c1 (again, values are taken modulo

ρ). Since ρ ≥ r + k, it follows that these two intervals are disjoint. Therefore, none of

the r parallel classes following bmc1 in the ordering can contain a second index equal to

c2. This implies that any r consecutive lines in the ordering are pairwise disjoint.

We now prove the main theorem regarding embeddings. We restate it first.

Theorem 3.2.1. Let C0 be a partial [r, k]-configuration on n points with total deficiency

F . Let d = k/ gcd(r, k). If F is at least d(r2 + kr) and a multiple of k, then C0
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is an induced subconfiguration on an [r, k]-configuration C containing fewer than

n+ (2k+1)F
r

+ 3rk2 points.

Proof. Let ρ be any prime such that ρ > F/(dr) and ρ < 2F/(dr) (which is guaranteed

to exist by Bertrand’s Postulate). Create d configurations E(ρ, r, k − 1), and label

them E1, ..., Ed. Recall that each one contains r parallel classes. Let Bij denote the

parallel class of slope j within Ei. Order the parallel classes

B11, B21, B31, ..., Bd1, B12, B22, ..., Bd2, ..., B1r, ..., Bdr.

Apply the ‘natural’ ordering to the lines within each parallel class above (i.e. blocks

with a lower intercept are placed earlier in the ordering). If d > 1, then clearly any r

consecutive lines in this ordering are pairwise disjoint (as any two such lines are either

parallel or belong to different copies of E(ρ, r, k − 1)). If, on the other hand, d = 1,

then the ordering of the lines becomes equivalent to the natural ordering presented in

Lemma 3.2.3, and since ρ > F/(dr) ≥ r+k, this lemma ensures that any r consecutive

blocks are pairwise disjoint. This creates a total of d(k − 1)ρ points and drρ lines of

size k − 1.

Append the point p1 to the first f1 lines in this ordering. Since f1 < r, the first

f1 lines are pairwise disjoint, so appending p1 to each of these lines does not destroy

linearity. Then append the point p2 to the next f2 lines in this ordering. Repeat

this procedure until all n points have replication number r. Since there are drρ > F

lines of size k − 1 in E1 ∪ · · · ∪ Ed, it is possible to complete this procedure without

exhausting all the lines of E1 ∪ · · · ∪Ed. The result is a partial configuration where all

points have replication number r, but some lines are of size k − 1. The total number

of lines of size k − 1 is drρ− F . Since drρ is a multiple of k and F is a multiple of k

(by assumption), then the total number of lines of size k − 1 is also a multiple of k.

Define y to be equal to drρ− F . Next, add kby/(kr)c isolated points q1, ..., qkby/(kr)c

to the partial configuration. Proceeding where we left off in the ordering of the lines

above, append q1 to the next r lines of size k − 1 in the ordering, and repeat this

for all qi until the kby/(kr)c points each have replication number r. This operation

requires a total of

rk
⌊ y
kr

⌋
≤ y
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lines of size k − 1. The total number of remaining lines of size k − 1 is

y − rk
⌊ y
rk

⌋
,

which is a multiple of k (since y is a multiple of k). Furthermore, the total number of

remaining lines of size k − 1 is no more than rk, since

y − rk
⌊ y
rk

⌋
≤ y − rk

( y
rk
− 1
)
≤ rk.

For each line of size k − 1, add a distinct isolated point to the configuration, and

append it to the line. Let L denote the set of points added to the partial configuration.

The result is a partial configuration with constant line size k, and all but |L| points

have replication number r (and each point in L has replication number 1). To finish

the construction, partition the points of L into k groups L1, ..., Lk so that each |Li| is

also multiple of k, and |Li| − |Lj| is either 0 or k, for any i, j ∈ [k]. In other words,

|Li| = k

⌊
L

k2

⌋
or k

(⌊
L

k2

⌋
+ 1

)
.

Such a partition can be found by simply grouping the points of L into sets of size k

(which is possible as |L| is a multiple of k), and distributing these sets as evenly as

possible into the Lis. Assume without loss of generality that |L1| ≤ |L2| ≤ · · · ≤ |Lk|.
Add an array of points to the partial configuration with k rows and kσ− |L1| columns,

for some prime σ satisfying r < σ ≤ 2r (which exists, again by Bertrand’s Postulate).

Place each column in a unique line (of size k), and group the rows of the array into

sets G1, ..., Gk.

For every i ∈ [k], the set Gi ∪ Li contains only points of replication number 1, and

|Gi ∪ Li| = kσ or kσ + k. Additionally, no two points within Gi ∪ Li are contained

within a common line. For each i ∈ [k], if |Gi ∪ Li| = kσ, then the configuration

E(σ, r − 1, k), also on kσ points, can be used to arrange the points of Gi ∪ Li into an

[r − 1, k]-configuration. If |Gi ∪ Li| = kσ + k, then the configuration E ′(σ, r − 1, k)

can be used instead. The result is that all points originally of replication number

1 now have replication number 1 + (r − 1) = r, thus yielding an [r, k]-configuration

containing C0 as an induced subconfiguration.

We now take a moment to examine the total number of points in this larger

configuration. The configuration C0 contains n points. Each of the d copies of
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E(ρ, r, k − 1) added to the configuration contains (k − 1)ρ points. There are kb y
kr
c

points of the form qi in the configuration as well. The set L contains no more than rk

points, and finally k configurations either of the form E(σ, r − 1, k) or E ′(σ, r − 1, k)

appear in the configuration. Thus, the total number of points in this configuration C
does not exceed

n+ d(k − 1)ρ+ k
⌊ y
kr

⌋
+ rk + k(σk + k).

Since σ ≤ 2r, y = drρ− F and ρ < 2F/(dr), the total number of points in C does not

exceed

n+ d(k − 1)
2F

dr
+ k

⌊
drρ− F
kr

⌋
+ rk + k(2rk + k),

which is bounded above by the simpler expression,

n+
2kF

r
+ k

⌊
F

kr

⌋
+ 2rk2 + rk + k2.

One final simplification of this expression (using the fact that rk2 > rk + k2, since

rk > r + k), yields

n+
(2k + 1)F

r
+ 3rk2.

A diagram of this construction is given in Figure 3.2.

Theorem 3.2.1 proves that an embedding exists if the total deficiency is larger

than d(r2 + rk) and a multiple of k. The following corollary demonstrates that these

conditions are not necessary for an embedding to exist (although a slightly worse

bound is obtained).

Corollary 3.2.4. Let C0 be a partial [r, k]-configuration on n points with total defi-

ciency F . Then C0 is an induced subconfiguration of an [r, k]-configuration C with

fewer than n+ (2k+1)F
r

+ 6rk2 points.

Proof. Given C0, add some isolated points to the configuration until the total deficiency

of this new partial [r, k]-configuration is at least d(r2+rk) and a multiple of k. The total

number of points needed to satisfy such criteria is no more than d(r+k)+k < d(r+2k).

Call this new configuration with the additional isolated points C1. It contains fewer

than n+ d(r+ 2k) points with total deficiency less than F + rd(r+ 2k). It also has C0
as an induced subconfiguration. From Theorem 3.2.1, it follows that C1 is an induced

subconfiguration of an [r, k]-configuration on

(n+ r + 2k) +
(2k + 1)(F + dr(r + 2k))

r
+ 3rk2
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Figure 3.2: A diagram of the embedding construction. Initial configuration C0 is given
in the lower-left corner. Several copies of E(ρ, r, k − 1) are created, and many of their
lines are joined with the deficient points in C0. Some of the other lines are added to
isolated points (indicated in pink). Each of the remaining lines are then appended to
a distinct isolated point (although not every one of these is shown in the diagram).
These points indicated in purple in the upper-right and are partitioned into sets Li
(denoted by the rows of the points in the diagram). A new array k× σ array of points
is added to the configuration (indicated by the grid in the upper left corner). The
columns of this grid are enclosed in lines, as shown. The rows are denoted by the sets
Gi. Together Gi ∪ Li is a set of points, no two contained within a line. This set of
points is filled with an [r − 1, k]-configuration.
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points. By expanding and simplifying, the value above is equal to

n+
(2k + 1)F

r
+ dr + 2dk + r + 2k + 3rk2.

Using the inequality d < k yields a further simplification of

n+
(2k + 1)F

r
+ kr + 2k2 + r + 2k + 3rk2.

Since 2k ≤ k2, and r ≥ 3 it follows that 2k + 2k2 ≤ rk2. Likewise, kr + r < rk2.

Therefore, a final simplification yields at most

n+
(2k + 1)F

r
+ 5rk2

points.

Since the total deficiency of a partial [r, k]-configuration on n points cannot exceed

nr, we obtain the following additional corollary by replacing F in the previous theorem

by nr.

Corollary 3.2.5. Let C0 be a partial [r, k]-configuration on n points. Then C0 is an

induced subconfiguration on an [r, k]-configuration C with fewer than (2k + 2)n+ 5rk2

points.

The embedding technique in Theorem 3.2.1 gives a configuration C containing C0
as an induced subconfiguration. If an induced subconfiguration is not necessary (and

we merely require that C0 be a subconfiguration of an [r, k]-configuration), then this

bound may be improved. Intuitively, if C0 has a large number of deficient points, then

we may find a set of k points, no two of which belong to a common block. These k

points may be placed in a block together. This reduces the total deficiency of the

configuration, which allows for a smaller embedding.

Corollary 3.2.6. Any partial [r, k]-configuration C0 on n points can be embedded in

an [r, k]-configuration C with fewer than n+ 2rk3 + 6rk2 points.

Proof. Let X denote the points of C0 that have replication number strictly less than r.

We claim that if |X| ≥ rk2, then there exists k points in X such that no two appear

in a common block. To see this, suppose that |X| ≥ rk2. Then choose a point v1 ∈ X,

and let V1 denote the set of all points of X that appear in a block with v1. Since v1 is
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contained within no more than (r − 1) blocks, and each block contains (k − 1) other

points, it follows that |V1| ≤ (r − 1)(k − 1). For each i ∈ {2, ..., k}, inductively define

vi to be a point in

X \
i−1⋃
j=1

Vj,

and Vi to be the set of all points of X that appear in a block with vi. Since |X| ≥ rk2,

and |V1 ∪ · · · ∪ Vi| < i(r − 1)(k − 1), it follows that such a selection of the vis is

possible. No two of the k points v1, ..., vk appear in a common block. Therefore, we

may add the block {v1, ..., vk} to the configuration without destroying linearity. Since

each point belongs in X, this does not increase the replication number of any point

beyond r. We may repeat this process of adding blocks to C0 until the total number

of points with replication number strictly less than r is less than rk2. Call this new

partial [r, k]-configuration with additional blocks C1. It also has n points, but has total

deficiency less than r2k2 (since the number of points with nonzero deficiency is no

more than rk2). Thus, by Corollary 3.2.4, we may embed C1 in an [r, k]-configuration

on at most

n+
(2k + 1)r2k2

r
+ 5rk2

points. This simplifies to at most

n+ 2rk3 + 6rk2

points.

This final corollary extends a previous graph-theoretic result by Akiyama, Era and

Harary [1] on embeddings. The authors of [1] find that every graph n with maximum

degree r can be embedded in an r-regular graph on fewer than n+ r + 2 points. By

considering a graph of maximum degree as a partial [r, 2]-configuration, Corollary 3.2.6

provides an embedding in an r-regular graph on n+ 44r points. As one might expect,

we have lost some efficiency in our embedding in order to provide a more general

result.

3.2.3 Applications to Embeddings into Designs

One can extend the embedding question into the realm of design theory as well. Given

a configuration C0, does it exist as a subconfiguration of some BIBD? This question is of
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a different nature: we may add points to the configuration, but as we add more points,

the required replication number of these points increases as well (because each point

added must be in a block with each point already in the configuration). Relying on

the result Theorem 3.2.1, [18] demonstrates that, when k = 4, every configuration can

be embedded in some BIBD(v, 4). In fact, this embedding is quadratic in the number

of points in the original configuration, positively answering a question appearing in

[28].

Theorem 3.2.7. Let n ≡ 1 (mod 6), with n > 44. Suppose there exists an r-

regular configuration C of line size 4 on 2n points, with r < n/9. Then there exists a

BIBD(v, 4) containing C, where v < 32n2.

Combining the above theorem with Theorem 3.2.1, we can obtain a more general

result.

Corollary 3.2.8. Let C0 be a configuration with line size 4. Then C0 is a subconfigu-

ration of some BIBD(v, 4), where v ≤ 32(5n+ 36r)2 ∼ O(n2).

Proof. Given C0, let r be any multiple of 4 that is larger than the maximum replication

number in C0. Since the maximum replication number in C0 is bounded above by n−1
3

,

we have

r ≤ n− 1

3
+ 3.

Let C ′ be an [r, k]-configuration containing C0 as a subconfiguration, as determined

in Theorem 3.2.1. The number of points N ′ on C ′ can be bounded above by

9n+ 56r.

If N ′ is congruent to 2 modulo 12, then N ′ is even and 1
2
N ′ is congruent to 1 modulo

6. Thus, we may apply Theorem 3.2.7 on this configuration to yield a BIBD(v, 4)

containing C ′ as a subconfiguration. Suppose N ′ is not congruent to 2 modulo 12.

Then let C ′′ be any [r, k]-configuration on N ′′ points such that N ′ +N ′′ is congruent

to 2 modulo 12. Since k/ gcd(r, k) = 1, there exists such a C ′′ on no more than

N(r, k) + 11 ≤ 16 max
{
r + 1,

r

2
+ 4
}

+ 11 ≤ 16r + 27

points. Therefore, the disjoint union configuration C := C ′tC ′′ is an [r, k]-configuration

on no more than

9n+ 72r + 27
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points, and it contains C0 as a subconfiguration. Since N ′ + N ′′ is congruent to 2

modulo 12, it follows that N ′ +N ′′ is even and 1
2
(N ′ +N ′′) is congruent to 1 modulo

6. The application of Theorem 3.2.7 on C yields a BIBD(v, 4) containing C (and C0)
as a subconfiguration, where

v ≤ 32

(
9n+ 72r + 27

2

)2

≤ 32 (5n+ 36r)2 .

3.2.4 Subconfigurations of [r, k]-Configurations

Theorem 3.2.1 answers in the affirmative the question of whether a given partial

configuration can be embedded within some [r, k]-configuration. A question in the

spirit of the converse to this is whether a fixed (nr, bk)-configuration contains some

[r0, k0]-configuration as a subconfiguration. This question has been largely answered,

although not utilizing the terminology used in configuration theory. Given a graph,

G, and a function f : V (G)→ Z+, then a spanning subgraph F of G is an f-factor

if degF (v) = f(v) for each v ∈ V (G). The following two theorems are proven by

Folkman and Fulkerson.

Theorem 3.2.9. ([21]) Let G be a bipartite graph with bipartition (P,B) and let

f : V (G) → Z+ be a function. Then G has an f-factor if and only if
∑

v∈P f(v) =∑
v∈B f(v) and for all S ⊂ P and T ⊂ B, we have∑

v∈T

f(v) +
∑
v∈S

(
degG−T (v)− f(v)

)
≥ 0.

Corollary 3.2.10. If the degree of every vertex in G is divisible by g, then for the

function

f(v) =
deg(v)

g
,

G admits an f -factor.

As there is a bijective correspondence between combinatorial configurations and

bipartite, girth at least six graphs, these statements can be reformulated in terms of

configuration theory. If G = (P ,L) denotes the Levi graph of a configuration (P ,L),

and f(p) = r0 for all p ∈ P, while f(`) = k0 for all ` ∈ L, then an f -factor of G

corresponds to an [r0, k0]-subconfiguration on n points (where n is the order of G).
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Since the degrees of the vertices in G := L(C) for some (nr, bk)-configuration C are

all a multiple of gcd(r, k), Corollary 3.2.10 admits an interpretation into configuration

theory.

Corollary 3.2.11. Let g be a factor of gcd(r, k). Then any (nr, bk)-configuration

contains an [ r
g
, k
g
]-subconfiguration on n points. Otherwise, an [r0, k0]-subconfiguration

on n points exists if and only if, for every subset T ⊂ L and S ⊂ P, we have

k0|T |+ (r − r0)|S| ≥ e(T, S),

where e(T, S) denotes the number of edges in L(C) between T and S.

The first part of this corollary follows directly from Corollary 3.2.10. The inequality

provided in the latter half stems from the following equalities:∑
v∈T

f(v) = k0|T |,
∑
v∈S

f(v) = r0|S|,
∑
v∈S

degG−T (v) = r|S| − e(T, S).
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Chapter 4

Geometric Configurations

We now turn our attention to geometric configurations and their realizations. Because

of the common nomenclature between geometric and combinatorial configurations, it

is vital to distinguish the context when referring to configurations. Such confusion

between combinatorial and geometric configurations exists even in the present day, with

some authors referring extensively to configurations without distinguishing whether

combinatorial or geometric variants are being referenced. Grünbaum resolves some of

these discrepancies in [23, pg. 8–14]. In this section, a configuration is assumed to be

geometric unless otherwise specified. We begin in the same spirit as combinatorial

configurations — providing existence and embedding results. After demonstrating

that any partial configuration can be embedded within an [r, k]-configuration, we go

further and demonstrate that any partial configuration can be embedded within a

chiral [r, k]-configuration, with m-fold symmetry, for any m ≥ 3. In section 4.4, we

discuss which combinatorial configurations (or partial configurations) can be covered

by a geometric configuration (the definition of a covering in terms of configuration

theory is also introduced in this section). Furthermore, this section introduces some

new families of geometric configurations.

4.1 Existence Results

The existence question on geometric configurations does not fair nearly as well as

their combinatorial cousins. In fact, an asymptotic existence result for general [r, k]-

configurations is startlingly absent from the literature on the subject. Grünbaum

demonstrated the asymptotic existence of (nk)-configurations, using a series of tools
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Figure 4.1: The configuration on the right is the Cartesian product of the two
configurations on the left.

collectively known as ‘The Grünbaum Calculus’ [27, pg. 243–251]. These operations on

configurations yield larger configurations. Once a sufficient number of k-configurations

are determined, we can use the fact that the set of geometric k-configurations forms a

semigroup under the disjoint union operation to demonstrate the asymptotic existence

of k-configurations. Our proof of the asymptotic existence of [r, k]-configurations will

differ slightly from Grümbaum’s; however, we will still rely on three fundamental

operations on geometric configurations, each given in Pisanski and Servatius’ book

Configurations from a Graphical Viewpoint [27, pg. 247–248].

• Duality: The existence of an (nr, bk)-configuration implies the existence of an

(bk, nr)-configuration.

• Disjoint Union: Let G and G ′ be [r, k]-configurations on n and n′ points

respectively. Then their disjoint union G t G ′ is an [r, k]-configuration on n+ n′

points.

• Cartesian Product: Let G be an (nr, bk)-configuration and G ′ be an (n′r′ , b
′
k)-

configuration. For each point pi ∈ G, let vi be the vector with tail at the origin

and head at the point pi. Create n identically sized copies of G ′, labelled G ′i,
and translate it by the vector vi. Collinearity is preserved under translations,

so any set of collinear points in G ′ remains collinear in G ′i. If pi1 , pi2 and pi3 are

collinear in G, then the copies qi1 ∈ G ′i1 , qi2 ∈ G
′
i2

and qi3 ∈ G ′i3 of any point

q ∈ G ′ are collinear. For each line {pi1 , ..., pik} in G, create n′ lines, joining

the points qi1 , ..., qik for every q ∈ G ′ and copy qij ∈ G ′ij . The result is an

[r+ r′, k]-configuration on nb′ + n′b points. This configuration is denoted G ×G ′.
Note that this operation is not commutative, and bears strong similarities to
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the lexicographic product of graphs (in fact, the Levi graph of the product is

the lexicographic product of the Levi graphs of the two original configurations).

In addition, we will rely on some examples of highly incident configurations —

configurations in which r, k ≥ 5. Very little is known about such configurations.

Berman’s two papers [3, 7] provide some families of highly incident configurations

that are not obtained via the Grünbaum Calculus applied to smaller configurations.

Theorem 4.1.1. ([7]) Given values of r, k, there exists a [2r, 2k]-configuration on

m ·
(
r − 1 + k

k − 1

)
points, where m is any value larger than r + k.

The family of constructions Berman provides are one of the smallest known for

general r, k. There are many values for r and k for which the combination above

is never congruent to k/ gcd(r, k) modulo k. As such, disjoint unions of these types

of configurations cannot be used to demonstrate the asymptotic existence of [r, k]-

configurations. This can be seen by using Lucas’ Theorem regarding combinations

[26].

Theorem 4.1.2 (Lucas’ Theorem). The value
(
M
N

)
is a multiple of a prime p if

and only if the base p representation of N contains a digit that is greater than the

corresponding digit of the base p representation of M .

This theorem implies, for instance, that the combination in Theorem 4.1.1 is a

multiple of 2 when k = 6 and r is congruent to 6 modulo 8. However, in such cases,

k/gcd(r, k) is either 1 or 3, so the divisibility condition imposed upon configurations

does not preclude configurations on an odd number of points (but Berman’s family

of configurations for such values of k and r will only contain an even number of

points). Therefore, Theorem 4.1.1 does not guarantee the asymptotic existence of

[r, k]-configurations.

Another family of [r, k]-configurations is the family of generalized Gray configura-

tions [27, pg. 254]. This configuration, along with some variants given below, will be

instrumental in proving our existence and embedding theorems.

Definition 4.1.1. Let `1, ..., `r be arbitrary [1, k]-configurations (i.e. a single line

with k points), and no pair of lines `i, `j are parallel (where i 6= j). Define Lrk
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Figure 4.2: The left configuration is an example of an L3
3[p1, p2, p3] configuration, while

the right partial configuration is an example of an L3
3(p1, p2, p3) partial configuration.

to be the Cartesian product
∏
`i. Such a configuration is known as a generalized

Gray configuration. It is an [r, k]-configuration on kr points. Given k collinear points

p1, ..., pk, we may choose `1 to be the [1, k]-configuration consisting of the line containing

points p1, ..., pk. In this case, define Lrk[p1, ..., pk] to be the Cartesian product
∏
`i, and

define Lrk(p1, ..., pk) to be equal to Lrk[p1, ..., pk], with the line joining p1, ..., pk removed

(but the points p1, ..., pk remain in the configuration). The partial configuration

Lrk(p1, ..., pk) is not a configuration, as the k points p1, ..., pk have replication number

r − 1. The lines `1, ..., `r in any configuration from the families above will be referred

to as the fundamental lines of the configuration.

Figure 4.2 depicts two examples of such configurations. Note that Lrk, L
r
k[p1, ..., pk],

and Lrk(p1, ..., pk) all refer to families of configurations. Each configuration in these

families depends upon the choice of the fundamental lines. The term ‘fundamental’ in

the above definition is not used elsewhere in the literature. We create this definition

only to aid in the proofs of the next three theorems.

Theorem 4.1.3. Given any value r ≥ k, there exists an integer N ′(r, k) such that

an [r, k]-configuration on n points exists for all n ≥ N ′(r, k) satisfying the divisibility

condition nr = bk.

Proof. Note that any configuration of the form Lrk contains kr points, and thus it

suffices to demonstrate the existence of an [r, k]-configuration on m points, with m

congruent to d := k/ gcd(r, k) modulo k. To do this, we will first place d isolated

points down on the plane in general position. Draw r lines arbitrarily through each
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point. This creates a total of rd lines, which is a multiple of k. Partition these lines

into groups G1, ..., Gr/ gcd(r,k) of size k. For each group Gi, draw k−1 lines `i1, ..., `i,k−1

on the plane in general position (so that each line does not meet any points in the

partial configuration), but do not include these lines in the partial configuration. Each

line `ij meets the k lines of Gi in distinct coordinates: pij1, ..., pijk. For each pair i, j,

choose a configuration of the form Lrk(pij1, ..., pijk) such that the only points of the

partial configuration that are incident with a line of the chosen configuration from

Lrk(pij1, ..., pijk) are the points pij1, ..., pijk. Such a selection is possible since we may

choose the position of the fundamental lines of the configuration, with the exception

of the fundamental line containing pij1, ..., pijk. The points pij1, ..., pijk now have

replication number r — one incidence is formed by one of the lines in Gi, while the

other r − 1 incidences are generated by the configuration of the form Lrk(pij1, ..., pijk).

The resulting configuration is indeed an [r, k]-configuration. The configuration

depends on the location of our initial d isolated points, and the choice of configurations

Lrk(pij1, ..., pijk). The family of configurations constructed via the manner described

above will be denoted M r
k . The number of points in any configuration belonging to

M r
k will be denoted by m.

There are d isolated points in the initial stage of the construction, and r
gcd(r,k)

(k−1)

lines of the form `ij . Since any configuration in the family Lrk(pij1, ..., pijk) contains kr

points, it follows that

m = d+
r

gcd(r, k)
(k − 1) · kr.

The greatest common divisor of m and kr is d. Therefore, a configuration Lrk and M r
k

can be used as generators (under the disjoint union operation) to find examples of

[r, k]-configurations for all sufficiently large multiples of d.

The bounds on N ′(r, k) are exceptionally large: roughly on the order of (kr)2 (due

to the Frobenius number of m and kr in the above proof, as illustrated in Chapter 2).

This bound can be improved by using M r
k and Berman’s configurations as generators.

Further improvements can be made by arranging the d initial points, dr lines, and

the lines `ij in specific arrangements to allow for the Lrk configurations to have more

than just one line coincident with the `ij. However, these improvements are modest

relative to the exponential bound. Significant new developments in the method of

constructing families of highly incident configurations are required before this bound

can be substantially improved upon.



51

It is known that N ′(3, 3) = 9 and Bokowski proves in [13] that 20 ≤ N ′(4, 4) ≤ 27.

There are no better bounds known for any larger r, k values.

4.2 Embedding Configurations

It is trivial to see that most partial configurations do not admit embeddings into

geometric configurations on the same number of points — any generic set of isolated

points on the plane will fail to have a set of k collinear points, for all k ≥ 3. However,

as in the combinatorial case, every geometric partial configuration may be embedded

in a larger [r, k]-configuration.

Theorem 4.2.1. Every geometric partial configuration G0 with n points and constant

line size k appears as the subconfiguration of some [r, k]-configuration, provided no

replication number of a point in G0 exceeds r.

Proof. Let G0 have point set P0 := {p1, ..., pn}, where ri is the replication number of

pi, and fi := r − ri is its deficiency. For example, Figure 4.3(a) illustrates a partial

configuration on 7 points. If we wish to embed this configuration into a 3-configuration,

then four points have deficiency 1 (and thus have replication number 2), and one point

has deficiency 2 (and thus has a replication number of one).

Suppose first that n is a multiple of d = k/ gcd(r, k). For each pi, draw fi lies

through each point (in general position). Since n is a multiple of d, the total number

of incidences, nr, is a multiple of k. Each line of size k in G0 generates k incidences,

so the total number of deficiencies F is also a multiple of k. Partition the F lines

of size one into groups of size k: G1, ..., GF/k. Figure 4.3(b) contains an example of

this step. Here there are six lines added to the configuration, and they are placed in

groups G1, G2 of size k = 3.

With this partitioning, we proceed as we did in Theorem 4.1.3. Create k − 1 lines

`i,1, ..., `i,k−1 for each group Gi, ensuring that these lines do not meet any point already

existing in the partial configuration. Do not include these lines within our partial

configuration. Each line `ij intersects the k lines of Gi in k places: pij1, ..., pijk. Figure

4.3(c) illustrates this, where k − 1 = 2 lines are created for each group. The lines for

group Gi are labelled `i1, `i2. They are dashed in the diagram to emphasize that these

lines are not to be added to the configuration. Each of the lines `i1 and `i2 meets the

lines of the group Gi in k = 3 distint places, indicated by the points pi11, pi12, pi13 and

pi21, pi22, pi23.
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For each pair i, j, append a partial configuration from Lrk(pij1, ..., pijk) to the

existing partial configuration (see Figure 4.3(d)). As in the previous theorem, an

appropriate choice of the fundamental lines of this choice from Lrk(pij1, ..., pijk) ensures

that no unwanted incidences occur. The result is an [r, k]-configuration with

n+ (k − 1)
F

k
kr

points.

This concludes the case where n is a multiple of d. If n is not a multiple of d,

then we initially add some isolated points to the partial configuration so that the new

partial configuration contains a number of points equal to a multiple of d. Once this

is done, then we perform the embedding procedure outlined above. In this case, F is

bounded above by (n+ d)r. This provides a upper bound of

n+ d+ (k − 1)(n+ d)rkr−1

points for a geometric [r, k]-configuration containing G0.

As a corollary, we can deduce that every partial configuration (even without

constant line size) can be embedded in an [r, k]-configuration. This is done by simply

adding isolated points onto each line of deficient line size < k, and then beginning the

embedding construction above. There are at most b ≤ nr/k lines in the configuration

G0.

Corollary 4.2.2. Every partial configuration G0 on n points and b lines (not neces-

sarily of constant line size) can be embedded in an [r, k]-configuration with no more

than

[(k − 1)b+ n+ d] + (k − 1)[(k − 1)b+ n+ d]rkr−1

points.

Again, marginal improvements can be made to this result by positioning the lines

added to the configuration in a particular fashion; however, these improvements are

insignificant relative to the kr−1 component of the bound.

The converse question investigated in the previous chapter has a more optimistic

result, as it does not rely on the geometry of the configuration:

Proposition 4.2.3. An (nr, bk)-configuration G has an [r0, k0]-subconfiguration if and

only if its underlying combinatorial configuration has an [r0, k0]-subconfiguration.
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Figure 4.3

(a) The partial configuration C0. Sev-
eral points have deficiencies as a 3-
configuration.

(b) The blue lines created are of size one,
but now each point in C0 has replication
number 3. These six blue lines are placed
into two groups G1 and G2, each of size
k = 3.

(c) The lines `1,1, `1,2, `2,1 and `2,2 are created as dashed red lines (they are not a part of the
final configuration).

(d) The configurations of the form L3
3(pij1, pij2, pij3) are added to the configuration, for each

i, j ∈ {1, 2}. The result is a 3-configuration containing C0 as an induced subconfiguration.
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4.3 Chiral Embeddings

A geometric configuration is chiral if it exhibits nontrivial rotational symmetry in

the plane, and does not exhibit mirror symmetry. Usually we add the condition that

the configuration is also connected in this case (it is not a disjoint union of smaller

configurations). This additional structure on configurations allows for a greater depth

of study, and as such there is significantly more known about chiral configurations

than configurations in general. In what follows we demonstrate that every partial

configuration can be embedded in a chiral [r, k]-configuration. This provides numerous

more examples of highly incident, chiral configurations (although admittedly, as before,

these examples are somewhat contrived and have an excessive number of points).

Theorem 4.3.1. Every partial configuration G0 on n points is a subconfiguration of

some [r, k]-configuration with m-fold rotational symmetry, for any r, k ≥ 3 (provided

they both exceed the maximum replication number and line size of G0 respectively) and

any m > 1.

Proof. We assume the case where every line is of constant size k (we may add some

initial points to the partial configuration to ensure this is the case, as was done in

Corollary 4.2.2). Figure 4.4(a) gives an example of such a partial configuration. Next,

for each deficiency at point pi, create fi isolated lines in general position, for a total

of F :=
∑
fi lines of size one. Give each line of size one an arbitrary orientation.

Create km copies of this partial configuration, G1, ...,Gkm where Gi is an isometric copy,

rotated by 2πi/km about the origin. This disjoint union, denoted by G, is a partial

configuration with km-fold symmetry. Figure 4.4(b) provides an example of this

operation. Note that a partial configuration with km-fold symmetry also has m-fold

symmery. Intuitively, we will take the km partial configurations ‘k at a time’ (i.e.

considering k adjacent partial configurations) and fill the deficiencies on these k partial

configurations. To fill these deficiencies we will append copies of the configuration

Lrk(p1, ..., pk) to the configuration, in a manner somewhat similar to Theorem 4.2.1

(although more care will be needed to ensure that rotational symmetry is preserved).

Then, by rotating the resulting structure m times (by an angle of 2π/m each time)

about the origin, an [r, k]-configuration will emerge, with m-fold symmetry. Next,

place an arbitrary m-gon M1 on the plane, centred at the origin (the vertices and

edges of this figure are not part of the configuration). Ensure that M1 is sufficiently

large, so that every line of size one meets an edge of M1. If the m-gon lies in general

position, no two lines of G meet on an edge of M1, and no line of G meets a vertex
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of M1. Choose an arbitrary edge e of M1, and an arbitrary line `α of size one. Let

`α1 , ..., `
α
km be the km copies of this line, rotated around the plane. Exactly k of these

lines intersect e oriented from the interior of M1 to the exterior. Suppose without loss

to generality that these k lines are `α1 , ..., `
α
k . Let peαi denote the location where `αi and

e meet. Append a structure of the form Lrk(p
eα
1 , ..., p

eα
k ) to the partial configuration,

again ensuring that no lines belonging to this structure meet any other points of the

configuration beyond peα1 , ..., p
eα
k . Each point peαi has replication number r, since it is

incident with r − 1 lines belonging to the structure of the form Lrk(p
eα
1 , ..., p

eα
k ), and 1

line from `αi . Then copy and rotate the structure Lrk(p
eα
1 , ..., p

eα
k ) a total of m times

about the origin by 2π/m. The lines `α1 , ..., `km
α now have size two, and all points

have replication number r. Repeat this procedure for any other lines of size one, until

all lines are now of size two. This procedure is performed in Figure 4.4(c), causing

nine lines originally of size one to become lines of size two.

Before M1 was chosen, the partial configuration consisted of km disjoint subcon-

figurations. However, now the partial configuration contains no more than m disjoint

subconfigurations. This is because the lines `α1 , ..., `
α
k belonging to G1, ...,Gk are incident

with peα1 , ..., p
eα
k . These points all belong to the (connected) partial configuration of

the form Lrk(p
eα
1 , ..., p

eα
k ). Thus, G1, ...,Gk are all connected to each other, as are the

rotations of these configurations by 2π/m.

Next, we consider another m-gon M2 placed on the plane; however, we must

position M2 in a slightly more specific manner. Choose an arbitrary line ` of size two.

The km copies of this line can be partitioned into m groups, where each group consists

of k lines that meet a common edge of M1. Let `′ and `′′ be two lines belonging to

different groups, where `′ is a rotation by 2π/m of `′′. Then place M2 on the plane so

that a single edge of M2 meets both `′ and `′′. Two partial configurations Gi and Gj
are connected if their corresponding copies of the line ` belong to the same group. In

what follows, we will repeat the procedure outlined with M1. Thus, either Gi and Gi+1

are connected under the operation performed with M1, or they will be connected under

the operation performed with M2. This implies that the entire partial configuration

will be connected. Figure 4.4(d) illustrates this step. The resulting configuration is

indeed connected. The nine lines of size two in the previous diagram are now of size

three.

Choose an arbitrary edge e of M2, and an arbitrary line `β of size two. Let

`β1 , ..., `
β
km be the km copies of this line, rotated around the plane. Exactly k of these

lines intersect e oriented from the interior of M2 to the exterior. As before, suppose
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Figure 4.4

(a) The partial configuration C0, along with the origin (marked as an ‘x’). Several points
have deficiencies as a 3-configuration. This partial configuration will be embedded in a
3-configuration with 3-fold symmetry.

(b) New lines are created of size one and joined to each deficient point. Then the resulting
partial configuration is rotated km = 9 times about the origin.
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(c) The triangle M1 is shown with red, dashed lines. Three blue lines (each of size one) meet
each side of the triangle. The points where these three lines meet M1 are used to append
a partial configuration of the form L3

3(p1, p2, p3) to the configuration. Then this appended
partial configuration is rotated about the origin in order to maintain 3-fold symmetry. The
blue lines now each have size two.

(d) We repeat the previous step with a new triangle M2. The blue lines in this partial
configuration now have size three. The resulting partial configuration is also connected.
This procedure is then repeated for each of the remaining lines of size one (not shown).
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without loss of generality that these k lines are `β1 , ..., `
β
k . Let peβi denote the location

where `βi and e meet. Append a choice of Lrk(p
eβ
1 , ..., p

eβ
k ) to the partial configuration.

Then copy and rotate the structure Lrk(p
eβ
1 , ..., p

eβ
k ) a total of m times about the origin

by 2π/m. The lines `β1 , ..., `
β
km now have size three, and all points have replication

number r. Repeat this procedure for any other lines of size two, until all lines are now

of size three. The resulting partial configuration is connected.

All that remains is to fill the deficient lines of size 3 until they obtain size k.

This can be done by creating m-gons M3, ...,Mk−1. Since the partial configuration is

already connected, we need not be as particular about the location of these m-gons.

As we have done for M1 and M2, attach copies of a member of Lrk(p1, ..., pk) to sets

of k deficient lines, and rotate these copies m times by 2π/m. The result is a full

[r, k]-configuration with m-fold rotational symmetry.

This embedding technique provides a new method for constructing configurations

which exhibit rotational symmetry. There are many other types of such configurations,

such as astral and celestial configurations (defined in Chapter 2). Another family of

configurations with rotational symmetry are floral configurations, first discovered by

Jürgen Bokowski and then elaborated upon in [6]. However, beyond the property of

rotational symmetry, there is little in common between such configurations and our

chiral embedding process.

4.4 Covering Configurations

As seen from Table 2.2, very few combinatorial configurations admit geometric real-

izations. Even Steinitz’ Theorem [30] for 3-configurations, introduced in Chapter 2,

does not guarantee a strong realization. What follows is an effort to find a geometric

configuration that at least shares some of the properties of a given combinatorial con-

figuration. While a combinatorial configuration may not have a geometric embedding,

it can nearly be covered by a geometric configuration, as we will now show.

First we define the notion of a covering in configuration theory — it is the same

as the notion of a covering on their corresponding Levi graphs.

Definition 4.4.1. Given two graphs G and H with vertex sets V (G) and V (H), we

say that G is a (strong) covering of H if there exists a surjective map φ : V (G)→ V (H)

such that, for any vertex v ∈ V (G), the restriction of φ to the neighbourhood N(v)

of vertices adjacent to v in G is a bijection onto the vertices of the neighbourhood
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(a) The left graph is covered by the graph on the right. Each coloured vertex on the right
maps onto the same coloured vertex on the left. The set of vertices in the neighbourhood
of each vertex on the right is in bijective correspondence to the set of vertices in the
neighbourhood of the vertex it maps to on the left.

(b) The left graph is weakly covered by the graph on the right (note the addition of two
additional edges from the previous figure). The set of vertices in the neighbourhood of each
vertex on the right contains the set of vertices in the neighbourhood of the vertex it maps to
on the left as a subgraph. Note the additional two edges (in grey) in the graph on the right
(compared to the previous subfigure).

Figure 4.5: Coverings and weak coverings illustrated.

of φ(v) in H. We say G is a weak covering (of H) if the restriction of φ to a subset

of the vertices of the neighbourhood N(v) is a bijection onto the vertices of the

neighbourhood of φ(v).

Figure 4.5 illustrates the differences between coverings and weak coverings. A

weak covering has additional ‘unwanted’ edges. This will correspond to the notion

of unwanted incidences in geometric realizations of combinatorial configurations. As

mentioned, this terminology extends to configurations through their Levi graphs.

Configurations with rotational symmetry are potentially coverings of smaller

combinatorial configurations. If the group Zm acts on the geometric configuration G
via rotations of 2π/m, then the graph L(G) is acted upon by Zm in the same manner.

Since the geometric rotation clearly maps points to points (and lines to lines), the graph

L(G)/Zm is still bipartite. This quotient graph is a well-known object, and is found
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in Grünbaum’s book [23, pg.38], among others. If the quotient graph is also simple

and has girth at least six, then G is a covering of the combinatorial configuration

with Levi graph isomorphic to L(G)/Zm. With this idea in mind, configurations

with rotational symmetry will prove to be useful when constructing coverings of

combinatorial configurations.

Since chiral configurations experience rotational symmetry, the points can be

partitioned into orbits under this rotation, and each orbit of points forms the vertices

of a regular m-gon (where m is the order of the rotation group). Similarly, the lines of

a chiral configuration can be partitioned into classes as well, and each class forms the

diagonals of regular m-gons, centred around the origin. In the graph L(G)/Zm, each

vertex corresponds to a full orbit of points or lines. When the notion of point and

line are not relevant (for instance, when referring to properties of graphs in general),

we will refer to both points and lines as objects. Two vertices in this quotient graph

are joined by a single edge if a line in one orbit meets a point in the other orbit. It is

also possible for two vertices in this quotient graph to be joined by two edges, if a line

from the corresponding orbit meets two distinct points in the corresponding orbit of

points. See Figure 4.6 for an example.

Definition 4.4.2. The reduced Levi graph R(G) of a geometric configuration G with

m-fold rotational symmetry is the graph L(G)/Zm. It is bipartite.

This definition does not exactly match the definition that appears in Grünbaum’s

book [23, pg. 38]. Our definition is slightly simpler and carries less information about

the configuration; however, it is similar enough that we will use the same terminology.

For a more detailed discussion of reduced Levi graphs, and the related concept of

voltage graphs, see [10, 22], among others.

In some cases, an orbit of lines will intersect an orbit of points in two places. In

such a situation, we may define the span of the line with respect to the orbit of points.

Definition 4.4.3. Given a regular m-gon with points u0, ..., um−1, a line ` meeting

ui and ui+α has span α with respect to the orbit u of these points. Given a set of m

lines `1, ..., `m−1 that are each rotations of 2π/m about the origin, a point u meeting

`i and `i+α has span α with respect to the orbit ` of lines.

For now, we only consider celestial configurations — if the orbit u is adjacent

to ` (that is, every line of orbit ` meets some point on orbit u), then it meets the

orbit u twice (see Definition 2.2.4). This is also equivalent to stating that if the
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Figure 4.6: An example of a reduced Levi graph. The configuration on the left is
a (253)-chiral configuration, and its reduced Levi graph appears on the right. The
colours of the vertices in the Levi graph correspond to the orbits of objects in the
configuration.

corresponding vertices u, ` are adjacent in R(G), then there is a double-edge joining

them. For celestial configurations, we may encode additional information into the

reduced Levi graph. Given such a celestial configuration G with m-fold rotational

symmetry, consider any edge uv where u corresponds to an orbit of points, and v

corresponds to an orbit of lines. Then we may apply a label to the edge uv that is

equal to the span of v with respect to the orbit u. This is a well-defined labelling,

since if the orbit of lines v is of span α with respect to the orbit of points u, then the

orbit of points u is of span α with respect to the lines v as well.

Definition 4.4.4. Given an m-fold celestial configuration G. Suppose that, for any

two vertices u, ` ∈ R(G) either u is not adjacent to ` (written u � `) or there exists a

double edge joining u and `. Then define R∗(G) to be the reduced Levi graph where

each double edge of R(G) is replaced by a single edge. Label each edge of this graph

with the span between the two incident orbits.

With these tools and definitions in mind, we can begin our analysis of such

configurations.
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Figure 4.7: The graph of R∗(G) for the geometric configuration G determined by the
orbits u, x, y,Θ,Ψ,Γ with spans α = 4, β = 3, δ = 2 and m = 10.

4.4.1 The Point Completion Lemma

The foundation of our work on these types of celestial configurations rests upon the

Point Completion Lemma, formulated by Leah Berman in [3]. We state the lemma as

it appears.

Lemma 4.4.1. Point Completion Lemma (PCL): Given a regular m-gon M with

vertices u0, u1, ..., um−1 and diagonals Θi = ui ∨ ui+α of span α and Ψi = ui ∨ ui+β
of span β. Define xi = Θi ∧ Θδ to lie at the intersection of two lines. The points

x0, ..., xm−1 form an m-gon N . Let Γi be diagonals of N of span β, that is Γi = xi∨xi+β,

and let yi = Γi ∧ Γi−α and y′i = Ψi ∧Ψi+δ. Then yi = y′i.

The six orbits u, x, y,Θ,Ψ,Γ given in the lemma together form a 4-configuration.

An illustration of a configuration formed this way, along with its corresponding

reduced Levi graph appears in Figure 4.7. Notice that while the graph is 2-regular,

the corresponding geometric configuration is a 4-configuration. This is due to the fact

that each edge in R∗(G) actually corresponds to a double-edge in R(G).

Thus, the underlying six-cycle C6 can be given a labelling to make it the reduced

Levi graph for some 3-celestial configuration. In particular, this labelling is such that

the opposite edges of the six-cycle share a label, and the m-gon must be such that

m is larger than twice the maximum label on the cycle. This restriction on m is
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necessary due to the fact that orbits of objects that are span α and span m− α are

coincident. Thus, we want to be sure that two edges with different labels imply a truly

different construction. Some 3-celestial 4-configurations with a reduced Levi graph

equal to C6 have been studied in [10, 23]. In [23], Grünbaum refers to the 3-celestial

4-configurations obtained by the PCL as trivial celestial 4-configurations. Celestial

configurations exist with reduced Levi graph isomorphic to C6, where the opposing

edges do not share a common label; however, the existence of these configurations does

not immediately follow from the PCL. In other words, the PCL gives a labelling on C6

that is sufficient to guarantee the existence of the corresponding celestial configuration,

but the labelling determined by the PCL is not necessary. This idea will be discussed

further at the end of the chapter.

Lemma 4.4.2. PCL reformulated: Given any distinct positive integers α1, α2, α3, and

m such that m ≥ 2 max{αi}. Consider the graph G that is a six-cycle with vertices

u1...u6. Give each edge uiui+1 and ui+3ui+4 a common label αi. The resulting graph is

the reduced Levi graph R∗(G) of a 3-celestial 4-configuration.

Thus we have shown in the above lemma that the underlying graph C6 can be

given a labelling that admits a strong covering by the Levi graph of a 3-celestial

4-configuration. We next make repeated use of the PCL to extend this result to larger

cycles.

Theorem 4.4.3. PCL Extension: Given n ≥ 3 and a 2n-cycle G with vertices labelled

vu1u2...un−1wu−n+1u−n+2...u−1v

Let e±i denote the edge between u±i and u±(i+1), for each i ∈ N less than n− 1. Then

if G has an edge-labelling such that

• ei and e−i share a common label αi

• If n is even, then vu1 and un−1w have a common label β. The edges vu−1 and

wu−n+1 have a common label δ as well.

• If n is odd, then vu1 and wu−n+1 have a common label β. The edges vu−1 and

un−1w have a common label δ as well.

• No two adjacent edges share a common label.
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Figure 4.8: The PCL Extension, outlined in the case where n = 5.

Then this labelled cycle G is the reduced Levi graph R∗(G) for some n-celestial configu-

ration with m-fold symmetry, for all sufficiently large m.

Proof. This proof will be constructive in nature. Assume by duality that v corresponds

to an orbit of points. Begin with an arbitrarily placed m-gon v of points, for any

m > 2 max{αi, β, δ}. Place the orbits u1 and u−1 of lines down on the plane as span β

and δ with respect to v. Continue by placing the orbits u2 and u−2 on the plane, each

of span α1 with respect to u1 and u−1 respectively. Next, add an orbit y2 of points on

the plane of span δ with respect to u2 and an orbit y′2 of points on the plane of span

β with respect to u−2. By the PCL, we have that y′2 = y2 (the orbits vu1u2y2u−2u−1v

forms a 6-cycle satisfying the conditions of the PCL). Next place the orbit of objects

u3 down on the plane with span α2 with respect to u2, and likewise place the orbit of

objects u−3 down with respect to u−2. Similarly to before, let y3 be an orbit of objects

on the plane with span β with respect to u3 and an orbit of objects y′3 of lines on the

plane with span δ with respect to u−3. As before, y3 = y′3 by the PCL, applied to the

6-cycle y2u2u3y3u−3u−2y2. Note that the labels u3y3 and u−3y3 are reversed from their

counterparts u2y2 and u−2y2, satisfying the conclusions of the hypothesis when n = 4.

Continue this process for all i ≤ n− 1. By the conditions placed upon the hypothesis,

yn−1 = y′n−1. By renaming the orbit yn−1 as the orbit w, and removing all of the orbits

yi for each i from 2 to n− 2 inclusive, we obtain an n-celestial 4-configuration with a

reduced Levi graph R∗(G) that possesses the labelling of G.

Any labelled cycle that satisfies the premises of the PCL Extension will be referred

to as a PCL cycle.

For every even cycle of length 6 or more, the graph possesses a strong covering
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which is geometrically realizable. If we are simply given the underlying cycle, we

can apply a labelling using the PCL Extension so that the cycle possesses a strong

covering graph which is realizable on the plane as a geometric configuration. In [2]

and [23], the 4-configurations formed by the PCL Extension are also referred to as

trivial celestial 4-configurations.

Definition 4.4.5. If a given graph H (possibly with labelled edges) admits a covering

by a celestial partial configuration G such that the graphs R∗(G) and H without any

labels are equal, and any labels on R∗(G) and H agree, then G is a celestial covering

of H. The graph R∗(G) is also referred to as a celestial covering. The same notions of

strong and weak coverings apply in this scenario.

The corollary below is a reformulation of a well-known result, found in Grünbaum’s

book [23, pgs. 203–210].

Corollary 4.4.4. Any 2n-cycle can be labelled in such a way that the cycle admits a

celestial covering.

The statement of the above corollary varies from that found in [23]. Grünbaum

refers to such 2n-cycles as the class of trivial celestial 4-configurations. Here, we

focus more on the notion that the 2n-cycle (which is the Levi graph of a connected

[2, 2]-configuration) can be covered by a celestial configuration.

We can also apply this modified PCL repeatedly to achieve other labellings on

cycles that still admit geometric coverings. Given two edges e, e′ in a graph G, their

distance δ(e, e′) is the minimum number of internal vertices over all paths P containing

e and e′ as the first and last edges respectively. If e = e′, then δ(e, e′) = 0.

Theorem 4.4.5. PCL Swapping: Let C be a cycle of length 2n with a labelling that

admits a weak celestial covering. Choose two edges e, e′ that are an even distance apart

with labels β, δ. Then the cycle with labels β and δ swapped admits a weak celestial

covering as well.

Proof. Given such a C, let e1 and ek be two edges an even distance apart with labels β

and δ respectively, and let P = e1, e2, ..., ek be a path of length k (which is odd) with

ends v and w and internal vertices u1, ..., uk−1. Create a new path P ′ = e−1e−2...e−k

joining v and w with internal vertices u−1, ..., u−k+1. Then P ∪ P ′ forms a cycle of

length 2k. Apply the label δ to e−1 and β to e−k, and apply a label to all other e−i

that is the same as ei, and denote this label as αi. With this labelling, P ∪ P ′ is a
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Figure 4.9: PCL Swapping illustrated. The path P = vu1u2w can be deleted and
replaced with the path P ′ = vu−1u−2w.

PCL cycle. Let G be a weak celestial covering of C. Consider the orbit v, and place

objects u−1 at span δ with respect to this orbit. Then construct the orbit of objects

u−2 at span α2 with respect to u−1. Continue in this fashion until orbit u−k+1 is

placed. Create a new orbit w′ of objects at span δ with respect to u−k+1. By the PCL

Extension applied to P ∪ P ′, it follows that w′ = w. Removing the orbits of objects

corresponding to internal vertices along path P results in a weak celestial covering G
with reduced Levi graph equal to (C\P ) ∪ P ′ — a cycle with the same labelling as C,

with the exception that β and δ are swapped.

A swap given by the above theorem will be called a PCL swap. Any cycle with

a labelling that can be obtained from a sequence of PCL swaps applied to a cycle

satisfying the hypotheses of the PCL Extension will also be referred to as a PCL cycle.

By applying repeated PCL swaps to a cycle, we obtain the following two corollaries.

Corollary 4.4.6. If n is odd, then a labelled cycle C of length 2n with antipodal edges

sharing a common label is a PCL cycle. It admits a weak celestial covering.

Corollary 4.4.7. Consider any labelled cycle C of length 2n. If the edges can be

partitioned into pairs (e, e′) such that e, e′ share a common label and are of odd distance

apart, then C is a PCL cycle.

This second corollary will prove to be especially useful as we move beyond the case

where the underlying graph is a cycle. In any given cycle, a partition of the edges in

the manner outlined in Corollary 4.4.7 will be a partition into PCL pairs. There may

be multiple ways to partition the edges into PCL pairs, but an arbitrary partition will

suffice when needed.

We now move from cycles to consider arbitrary simple bipartite graphs.
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Figure 4.10: A 3-regular feasible graph, and a 4,2-biregular feasible graph. Each colour
represents a unique label. The 3-regular feasible graph also appears in [5, pg. 75].

Definition 4.4.6. A labelled bipartite graph G is feasible if every cycle is a PCL

cycle. It is proper if no two adjacent edges share a common label.

We will assume our labellings are proper. To demonstrate that feasible graphs that

are not cycles exist, see Figure 4.10 for two examples. Example 4.4.1. and Example

4.4.2. will provide families of feasible graphs as well. Many of the following results can

be applied even if the labelling is not proper; however, they tend to yield degenerate

cases.

Theorem 4.4.8. Every 2-connected feasible graph G admits a weak celestial m-fold

covering, for all sufficiently large m.

Proof. Let m be any number larger than twice the maximum value of the labels of

the edges of G. We proceed by induction on the number of vertices n of G. If n = 1,

then any orbit of m points placed as vertices of a regular m-gon is a strong celestial

covering. Suppose now that G has n vertices, and let v be any vertex of G, and

suppose by duality that it denotes an orbit of points. Remove v from G, and let G ′

be the weak celestial m-fold covering of G\v (which exists since G\v is also feasible,

as it is simply a subgraph of a feasible graph). Let u1, ..., ud denote the neighbours

of v in G, and ei denote the edge uiv with label αi. Create an orbit of points vi of

span αi with respect to the orbit ui. It remains to show that v1 = ... = vd. Since the

graph G is feasible and 2-connected, the path u1vu2 lies on some PCL-cycle. All of

the orbits of this cycle except v already exist within G ′ by the inductive hypothesis.

By Corollary 4.4.7, it follows that v1 = v2. From this, we have v1 = ... = vd, and these

orbits all coincide as the orbit corresponding to v. The resulting configuration G is a

weak celestial covering of G (weak because we are uncertain if the orbit v admits any

accidental incidences with orbits of lines).
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Corollary 4.4.9. Every feasible graph G admits a weak celestial m-fold covering,

where m is any integer larger than twice the maximum label of G.

Proof. Let G1, ..., Gc be the 2-connected components of G, and G1, ...,Gc their corre-

sponding weak celestial coverings. Let T denote the block tree of G. Starting with any

block of the tree, place the corresponding Gi down on the plane. For any component

Gj adjacent to Gi in T with an edge corresponding to the cut vertex v, place Gj down

on the plane, and scale and/or rotate the orbit associated to v so that it coincides with

the orbit associated to v in Gi. Repeating this procedure until all blocks have their

corresponding geometric (possibly partial) configurations on the plane, the resulting

configuration, denoted G, is a weak celestial covering of G.

Every underlying simple bipartite graph possesses a feasible labelling — simply

apply the same label to every edge. Not every underlying simple graph possesses a

proper feasible labelling. For instance, a six-cycle with a path of length three joining

a pair of antipodal vertices is a simple example of a graph that does not possess a

labelling where all cycles are PCL cycles.

If an [r, k]-combinatorial configuration C with Levi graph L(C) has a feasible

labelling, then L(C) = R∗(G) for some geometric [2r, 2k]-configuration (again, this

doubling is due to the fact that each edge in R∗(G) represents a double-edge in R(G)).

Developing individual examples of feasible graphs may be a challenging endeavour.

We provide two families of biregular feasible graphs. The first example is derived from

[3], while the second family leads to an entirely new, larger class of configurations.

Example 4.4.1. For a given r, k, consider two subsets S, T ⊂ N, with S = {x1, ..., xr−1}
and T = {y1, ..., yk}, where no two xi, yj are equal. Let P be the set of all ordered

pairs (σ′, τ) where σ, σ′ ⊂ S, τ ⊂ T , and |σ′| = |τ | − 1. Let B be the set of all ordered

pairs (σ, τ) with σ ⊂ S and |σ| = |τ |. Let G be the bipartite graph with bipartition

(P,B). An edge joins (σ′, τ ′) ∈ P and (σ, τ) ∈ B if and only if either

• τ = τ ′ and σ = σ′ ∪ {x}, for some x ∈ S\σ or

• σ = σ′ and τ = τ ′\{y}, for some y ∈ τ ′.

In the former case, we give the edge a label of x, while in the latter, we give it a

label of y. Then the graph G = (P,B) is feasible and r, k-biregular (it is the reduced

Levi graph of a celestial configuration). To demonstrate biregularity, consider any

(σ′, τ ′) ∈ P . Then there are |S|−|σ′| elements x to add to σ′ to become (σ′∪x, τ ′) ∈ B.
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Alternatively, there are |τ ′| elements y in τ ′ to remove to find an element (σ′, τ ′\y) ∈ B.

In total, (σ′, τ ′) ∈ P is adjacent to |S| − |σ′| + |τ ′| elements in B. Since σ′ and τ ′

differ in cardinality by one, and |S| has r − 1 elements, it follows that this point is

adjacent to r elements of B. Now, suppose (σ, τ) ∈ B. Then there are |σ| elements x

in σ that may be removed to become an element (σ\x, τ) ∈ P . Likewise, there are

T − |τ | elements y to add to τ in order to become an element (σ, τ ∪ y) ∈ P . This

implies that (σ, τ) is adjacent to T − |τ |+ |σ| = k elements of P . Thus, G is biregular.

Next we show it is feasible. Let C be a cycle in G. Then choose a point (σ1, τ1) ∈ P .

We may write C in the form

(σ1, τ1) , (σ2, τ2) , (σ3, τ3) ..., (σn, τn), (σ1, τ1).

For a given edge (σi, τi) and (σi+1, τi+1) with label z, there are four possibilities:

• σi+1 = σi ∪ z, and τi = τi+1. In this case, z ∈ S and (σi, τi) ∈ P .

• σi+1 = σi\z, and τi = τi+1. In this case, z ∈ S and (σi, τi) ∈ B.

• τi+1 = τi ∪ z, and σi = σi+1. In this case z ∈ T and (σi, τi) ∈ B.

• τi+1 = τi\z and σi = σi+1. In this case z ∈ T and (σi, τi) ∈ P .

For any given edge of C with the label z ∈ S ∪ T between (σi, τi) and (σi+1, τi+1),

there must exist another edge with label z. This is because z appears either in σi ∪ τi
or σi+1 ∪ τi+1, but not both. Assume without loss to generality that i = 0 (modulo n)

and z ∈ S. Thus z ∈ σn, but z /∈ σ1. Then since C is a cycle, there must be some

j such that σj does not contain z, while σj+1 does. Let j be the smallest value for

which z /∈ σj, but z ∈ σj+1. Then it remains to show that these two labels form a

PCL pair — that they are an odd distance apart. Since z /∈ σ1, but it is in σn, it

follows that (σn, τn) ∈ P and (σ1, τ1) ∈ B. Likewise, z /∈ σj, but z ∈ σj+1. Therefore,

(σj, τj) ∈ B, so j is odd. From this it follows that the edge (σn, τn), (σ1, τ1) and the

edge (σj, τj), (σj+1, τj+1) are of odd distance apart. Therefore, C is a PCL cycle, and

G is feasible.

In [3], Berman provides an analysis on the number of vertices in each of the

partitions of G. There are
(
r+k−1
k−1

)
vertices of G corresponding to orbits of points,

and
(
r+k−1
r−1

)
vertices of G corresponding to orbits of lines. Thus, the celestial [2r, 2k]-

configuration contains m ·
(
r+k−1
k−1

)
points.
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Figure 4.11: A picture of the original 15-puzzle. One square of the grid is empty,
allowing any tiles adjacent to the empty space to move to this position (transposing
the empty space with an adjacent tile).

The next example explores a different class of feasible graphs, and therefore yields

previously undiscovered highly incident geometric configurations. This illustrates that

feasible graphs are neither trivial to construct, nor are they completely determined by

the previous example. It is interesting to note that this example relies on puzzle graphs,

a type of graph that was previously considered a purely recreational mathematical

object.

Example 4.4.2. The 15-puzzle, or sliding puzzle, is a common puzzle game patented

by Noyes Chapman in 1880. In this game, we have 15 tiles, arranged in a 4× 4 grid,

with one square of the grid empty. We may transpose a tile with the empty space to

create a new arrangement of tiles. The goal of the puzzle game is to place the tiles in

order from a particular rearrangement. This game can be generalized to Puz-graphs,

first explored by Wilson (who also developed Wilson’s Fundamental Construction in

design theory) [32]. Given a graph G on n vertices, consider the set of vertex-labellings

on G with n− 1 distinct labels from the set [n− 1], and one vertex given the ‘empty’

label (denoted by 0). All possible labellings form the set of vertices in the Puz-graph

Puz(G). Two different labellings u, v are adjacent in Puz(G) if and only if v can be

obtained from u by a transposition of the empty label with a neighbouring label. In

the 15-puzzle scenario, the graph G is the 4× 4 grid, and the Puz-graph vertices are

different arrangements of the tiles within the 15-puzzle. Two vertices are adjacent

if there is a single move in the 15-puzzle that joins the two tilings. There exists a

natural projection map from Puz(G) to G that sends an arrangement of tiles to the

vertex of G that contains the empty tile in the arrangement.

Let G be a bipartite graph. It is known, from [32], that Puz(G) contains two



71

isomorphic components and is bipartite. To avoid confusion between the vertices

of G and Puz(G), we will refer to the vertices of Puz(G) as arrangements of tiles

or tilings and an edge in Puz(G) as a move or transposition. The tiles of Puz(G)

are the labelled vertices of G. Given a move uv in Puz(G), let α be the label of

the tile transposed with the empty tile. Then grant the move uv the label α. We

redefine Puz(G) to include this labelling. For example, consider the 4-cycle C4, and

the Puz-graph Puz(C4). One component of the Puz-graph is shown in Figure 4.12,

along with some of the tilings correponding to the vertices of Puz(C4). There are

4! = 24 total vertices in the Puz-graph, each corresponding to a different arrangement

of the tiles 0, 1, 2, 3 on the vertices of C4. Two tilings are adjacent in the Puz-graph if

and only if the arrangements of the tiles differ by a transposition of the empty tile

0 in C4 with a tile it is adjacent to in C4. For instance, if the tiles 0, 1, 2, 3 appear

cyclically along the vertices of C4, then this tiling is adjacent to the tilings 1, 0, 2, 3

and 3, 1, 2, 0 (the empty tile 0 is swapped with one of the cyclically adjacent tiles 1

or 3). Since the empty tile in C4 is only ever adjacent to two other tiles, it follows

that the corresponding Puz-graph is 2-regular. It is in fact, two disjoint 12-cycles, as

indicated by Figure 4.12.

Proposition 4.4.10. If G is bipartite then the graph Puz(G) is feasible.

Proof. Let be a cycle C of Puz(G), and let W be the projection of C onto G via the

natural projection map described above. The empty label moves between bipartitions

of G as it traverses W . Let (U, V ) be the bipartition of G, and then define C =

u1, v1, u2, v2, ..., uc, vc where ui (resp. vi) is an arrangement of tiles where the empty

tile is contained within U (resp. V ). Given an edge label α in C, note that the tile α

must begin and end in the same bipartition as the empty tile traverses W . Therefore,

the number of moves of C labelled by α is even, and alternates between an edge of

the form uivi and an edge of the form vjuj+1 (as the tile moves from V to U and then

back from U to V ). Thus, any move uivi labelled α may be paired with the next

move vjuj+1 labelled by α. Such a pairing may be considered a PCL pair, as these

two moves are an odd distance apart. Each cycle C can then be partitioned into PCL

pairs and is therefore a PCL cycle. This makes Puz(G) feasible.

However, Puz(G) does not represent a strong geometric realization. To see this, let

G equal the four-cycle C4. Then Puz(C4) consists of two disjoint 12-cycles. If we restrict

to either component, the resulting 12-cycle contains edges labelled 1, 2, 3, 1, 2, 3, ....

Traversing this 12-cycle represents moving the empty tile three times around the
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cycle C4. If x1, x2, x3, x4 are the vertices of C4, then this means we may identify the

labellings of Puz(G) where the labels are permuted under (x1x3)(x2x4). After this

identification is made, the resulting puzzle graph is C6, with edges labelled 1, 2, 3, 1, 2, 3.

See Figure 4.12.

A detailed analysis of more complex realizations of puzzle graphs can be found in

the appendix.

It is helpful to establish some operations that may be performed on feasible graphs

to yield larger graphs that are still feasible. There are some operations that may be

performed on feasible graphs to yield new varieties of feasible graphs. Clearly the

disjoint union operation remains an option. We provide two less trivial examples of

operations below.

Figure 4.12: One component of the puzzle graph Puz(C4), with its corresponding
edge-labelling. Each vertex is labelled with its corresponding arrangement of tiles
on C4 (some of these labellings are shown in the grey circles). Notice that adjacent
labellings in the puzzle graph correspond to labellings where the empty label ‘0’ has
been swapped with an adjacent label α. The edge on the puzzle graph is given the
same label α as the label on the vertex in C4 that is swapped with ‘0’. Antipodal
points on this cycle correspond to coincident orbits of objects, and may be identified.
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4.4.2 k-fold Replication

Given a feasible bipartite graph G = (A,B), let A := {v1, ..., vn}. Create k copies

G1, ..., Gk of G and let vij denote the copy of vi contained within Gj. Create new

isolated vertices u1, ..., un and add edges vijui to the graph with label αj, for any

αj ∈ N. See Figure 4.13 for an example of this operation. The resulting graph G′ is

also feasible. To show this, let C be any cycle in G′. If C is entirely contained within

some Gi, then C is clearly a PCL cycle. Suppose C spans many copies of G. Then we

may write C as

vitj1P1vi1j1ui1vi1j2P2vi2j2ui2vi2j3P3 · · ·Ptvitjtuitvitj1

with t ∈ N, each j1, ..., jt ∈ [k], and i1, ..., it ∈ [n]. Each Pi is a path within some

copy G1, ..., Gk of G. Intuitively, some portion of the cycle C ‘enters’ the copy Gjx by

way of some vertex vixjx , passes through the point uix , and then enters another copy

of G through the vertex vixjx+1 . Note that each path Px is of even length, since the

vertices vij all belong to copies of the same partition A. Thus the edges uix−1vix−1jx

and vixjxuix are of a common label and an odd distance apart, and can be grouped as

PCL pairs. It remains to show that the edges of the paths in each copy of G can be

partitioned into PCL pairs.

Figure 4.13: The k-fold replication operation. Each Gj is a copy of the graph G.
The vertices vij belong to copies of the partition A of G (as indicated at the start
of Section 4.4.2.). Each coloured edge joining a ui with some vij in Gj represents a
separate label αj.
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Consider the paths Px and their natural projections P ′x down onto G. Since the

last vertex of P ′x is equal to the first vertex of P ′x+1, the sequence P ′ := P ′1P
′
2...P

′
t

is a closed walk, possibly with repeated edges (even consecutively repeated edges).

Let a portion Q of P ′ be known as a backtracking walk if it has edges of the form

e1e2...ekekek−1...e1. It is maximal if there is no backtracking walk containing Q as

a subwalk. For each maximal backtracking walk e1e2...ekekek−1....e1, pair identical

edges (i.e. (ei, ei)) of this walk as PCL pairs in C (note that although the pair (ek, ek)

are adjacent in P ′, they will not be in C, as each edge will lift to a different copy of

G). With the edges in all backtracking walks considered, let P ′′ be the closed walk P ′

with all backtracking walks removed. This walk can now be decomposed into cycles

C ′1, ..., C
′
y for some y ∈ N. Each of these cycles in G are PCL cycles. Thus, each

edge e in Px is projected onto P ′x as e′ and belongs to either a backtracking walk or

a unique cycle C ′i. In the latter case, this cycle is PCL, so the projected edge e′ is

part of a PCL pair with another edge f ′ in C ′i. This edge f ′ belongs to some other

path P ′w (where w may equal x), and lifts up to an edge f in Pw. Since (e′, f ′) is a

PCL pair, they are of odd distance and share a common label. The edges e, f also

share a common label. The distance between e and f is also odd, since we are only

inserting paths of the form vixjxuixvixjx+1 , which are of length two, in between the

paths Px. Thus, the parities of δ(e′, f ′) and δ(e, f) are the same. Therefore, all the

edges of C can be placed in PCL pairs, so the cycle C is a PCL cycle. Thus, G′ is a

feasible graph, known as the k-fold replication of G. If G is (r, k)-biregular on n+ b

vertices, then G′ is (r + 1, k)-biregular with k(n+ b) + n vertices.

4.4.3 Bonding Operation

Another slightly more complex operation on feasible graphs will be known as bonding

two feasible graphs. Given feasible bipartite graphs G and H, let U be a subset of

one bipartition of G and V be a subset of a bipartiton of H, with the property that

|U | = |V | = m for some m ∈ N. Let U = {u1, ..., um} and V = {v1, ..., vm}.
Create m copies G1, ..., Gm of G and m copies H1, ..., Hm of H. Let Ui and Vi be

the copies of U and V in Gi and Hi. Denote the copy of uj in Gi by uij, and likewise

for vij . Add the edges uijvji to the configuration. Let E be the set of all edges formed

this way, so |E| = m2. Give all the edges of E the same label α. Each u in some Ui is

joined with exactly one v in some Vj , and this association is invertible. See Figure 4.14

for an example of such a construction. It remains to show that the resulting graph is
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feasible.

Let C be any cycle in the construction. If C is entirely contained within some

copy of G or H, then clearly C is a PCL cycle. Otherwise, C can be written as

uP1e1P2...Pcecu,

where u is a vertex in some Uj, the edges ei are contained within E, and the paths

P2i+1 belong to some copy of G, while the paths P2i belong to some copy of H. The

paths Pi are of even length, since they begining and end with a vertex in the same

bipartition (either in a copy of G or H). The value of c must also be even, since

the path must begin and end in a copy of G (and each path transitions from a copy

of G to H or vice versa). Thus, the edges e1, e2, ..., ec may be partitioned into pairs

(e2i−1, e2i) that share a common label α and are odd distance apart (PCL pairs). It

remains to partition the edges within the paths. For any even x, consider the segment

ex−1Pxex of the cycle C. Then ex−1 = uijvji, and Px is contained entirely within Hj.

Then the last vertex of Px is a vertex vjk, for some k, and thus ex = vjkukj. The initial

vertex uij and final vertex ukj of this segment are copies of the same vertex uj within

Gi and Gk respectively. Consider the sequence of paths P1P3...Pc−1, and their natural

projections P ′1P
′
3...P

′
c−1 down onto G. Then since the final vertex of P x is a copy of

the initial vertex of Px+2, it follows that P ′1P
′
3...P

′
c−1 is a closed walk (potentially with

backtracking segments) within G. As in the case with the k-fold replication operation,

we may pair the edges in C that project down onto a maximal backtracking walk.

The remainder of the closed walk can then be decomposed into PCL cycles C ′1..., C
′
y,

for some y ∈ N. If e is some edge of Px and its projection e′ belongs to a unique PCL

cycle C ′t, then it is paired with some edge f ′ in some C ′w. The lift of f ′ back to some

Pw is unique. Since e′ and f ′ share a common label, so do e and f . Since e′ and f ′ are

of odd distance, and the segments of the form ex−1Pxex are of even length, it follows

that e and f are also of odd distance. Therefore, (e, f) is a PCL pair in the cycle C.

Likewise, the edges of P2P4....Pc may be partitioned into PCL pairs. This partition of

C into PCL pairs demonstrates that C is a PCL cycle, and the construction yields a

feasible graph.

We denote this graph !G,H(U, V ), as the bonding of G and H at U and V . In the

case that G = H, then we simply write !G(U, V ) or !(U, V ) when G is implied. We

may also extend this operation to include the case where |U | 6= |V |. In this scenario,

we add a prestep to the operation: let |U | = m and |V | = m′, and g := gcd(m,m′).
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Figure 4.14: The bonding operation on the feasible graphs G,H shown at left. The
sets U and V of vertices in G and H respectively are also highlighted on the left. Each
colour on the edges denotes a different label. On the right is an illustration of the
graph !G,H(U, V ). Note that each vertex uij is joined with the vertex vji by a new
edge. All of these edges share a common label, and belong to the set E, defined at
the start of Section 4.4.3.

Then let G′ be the disjoint union of m′/g copies of G, and U ′ be the disjoint union

of the copies of U . Likewise, let H ′ be the disjoint union of m/g copies of H. Then

define !G,H(U, V ) as !G′,H′(U
′, V ′). Furthermore, if G,H are configurations (either

combinatorial or geometric), then !G,H(U, V ) will refer to !L(G),L(H)(U, V ).

This operation can be useful in balancing partial configurations that have some

deficient points. Suppose G is an [r − 1, k]-combinatorial configuration with point set

P and H is an [r, k − 1]-combinatorial configuration with L denoting the set of lines.

Then bonding the points of G with the lines of H causes each point in a copy of G to

be joined to exactly one line in a copy of H. Thus, the replication number of each

point in a copy of G is r, and the line size of each line in a copy of H is k. Thus,

!G,H(P,L) is an [r, k]-configuration.

If U, V are subsets of different bipartitions of the graph G, then the bonding

operation G1 := !G(U, V ) comes equipped with a natural projection map φ : V (G1)→
V (G). Note that each vertex u ∈ U lifts to 2|U | vertices in G1 under this projection.

Exactly |U | of these vertices are incident with some edge in E, and are therefore
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incident with some vertex in the lift φ−11 (V ). This is due to the fact that half of the

newly created copies of G have edges in E meeting a copy of G at every vertex in

U , while the other half of the copies of G meet E at every point in V (and not in

U). We define U1 to be the set of |U |2 vertices corresponding to a copy of U that are

‘unmatched’ with a vertex in some copy of V . Dually, we define V1 to be the set of

|V |2 vertices corresponding to a copy of V that are unmatched with a vertex in some

copy of U .

We may think of !G(U, V ) as an attempt to match the vertices in U to the vertices

in V . As stated in the preceding paragraph, this attempt is unsuccessful: only half

of the points in some copy of U are joined to a vertex in some copy of V . We can

recursively apply the bonding operation on G1:

G2 := !G1(U1, V1) := !2
G(U, V ).

This again comes equipped with a natural projection φ1 : V (G2) → V (G1), and

through this map a projection Φ1 : V (G2)→ V (G) where Φ1 := φ ◦ φ1. This recursive

bonding application again attempts to match the unmatched vertices of some copy of

U to some unmatched vertex of a copy of V . Each vertex u ∈ U lifts under φ−1 to

2|U | vertices, where |U | are unmatched. Each of these |U | unmatched vertices lifts

again under φ−11 to 2|U |2 vertices, where |U |2 are unmatched in G2. However, u ∈ U
lifts under Φ1 to a total of 4|U |2 matched or unmatched vertices in G2. Thus, 3

4
of the

vertices in G2 that project down to u are adjacent to some vertex that projects down

into V . This extends to all of U : exactly 3
4

of the vertices in G2 that project down into

U are matched with some vertex in G2 that projects down into V . If we recursively

let Ui denote the set of vertices belonging to a copy of U that are unmatched with

any vertex in a copy of V , and likewise for Vi, then we define

Gi := !Gi−1
(Ui−1, Vi−1) := !i−1

G (U, V ).

Repeated applications of the bonding operation yield the following proposition:

Proposition 4.4.11. Given a feasible graph G where U, V are equal sized subsets of

different bipartitions. Let Gs be defined as the s-fold recursive graph !s
G(U, V ). If

N denotes the number of vertices in Gs that project down to U , then the number of

vertices in Gs that project down to U and are adjacent to some vertex that projects
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down to V is (
1− 1

2s

)
N.

With enough applications of the bonding operation, we can conclude that almost

all vertices in some copy of U are adjacent to some vertex in a copy of V (and vice

versa). This will form the foundation of our theorem regarding covering configurations.

4.4.4 Covering Configurations

Since an arbitrary combinatorial configuration does not often lend itself to a geometric

realization, we next look for geometric configurations with Levi graphs that share

some similar properties to a given combinatorial configuration. In Theorem 4.4.12,

we seek to answer whether every combinatorial configuration can be covered by a

geometric configuration. Although an affirmative result is still unknown, we provide a

‘nearly’ affirmative result, making extensive use of the bonding operation.

Theorem 4.4.12. Given an ε > 0 and a combinatorial (possibly partial) configuration

with Levi graph H. There exists a celestial geometric (possibly partial) configuration G
with an underlying Levi graph G and a map ψ : V (G)→ V (H) such that, if uv are

adjacent in H, then at least (1− ε)|φ−1(u)| of the vertices in φ−1(u) are adjacent to

exactly one vertex in φ−1(v).

Proof. Let q ∈ N be such that 2−q < ε. Suppose H has a bipartition (X, Y ). We

proceed by induction on the number of edges m in H. If m = 0, then the theorem

is trivial, with |X| arbitrary orbits of points and |Y | arbitrary orbits of lines, with

no intersection between them. Assume the theorem is true for some graph H with

m− 1 edges, and consider some combinatorial configuration on m edges. Let uv be an

arbitrary edge in H. By the inductive hypothesis, the theorem holds for H ′ := H\uv.

Let G′ be the underlying feasible reduced Levi graph of the celestial configuration G ′

that satisfies the conclusions of the theorem with H ′, and let Φ′ be the projection

map from G′ to H ′.

Let U ′, V ′ be the lifts of u, v ∈ H respectively in G′. Consider the graph G :=

!q
G′(U

′, V ′), along with the projection φ : V (G)→ V (G′), and the projection Φ = Φ′◦φ.

Then the only edges formed by the bonding operation are between copies of vertices

in U ′ with vertices in a copy of V ′. Since the vertices in U ′ and V ′ all project down

onto u and v (respectively) under Φ′, it follows that the only edges created are the

desired ones — edges joining some lift of u with some lift of v. Additionally, from



79

Proposition 4.4.11, the number of vertices φ−1(U ′) that are incident with exactly

one vertex in φ−1(V ′) is (1 − 2−q)|φ−1(U ′)|, which is greater than (1 − ε)|φ−1(U ′)|.
Therefore, the proportion of vertices in Φ−1(u) that are incident with some vertex in

Φ−1(v) is at least (1− 1
2q

) > (1− ε). This completes the proof.

Of course, the graph G is likely to be exceptionally large under this constructive

process, and in fact the number of orbits of G grows exponentially with both the

number of edges in H and the value of q in the proof. As ε→ 0, the number of vertices

in the construction of G tends towards infinity. In fact, it is a simple matter to find

an infinite feasible graph G that is an infinite cover of any H. The universal covering

graph of H is an infinite tree. Start with a single vertex uv, corresponding to v ∈ H,

and join a leaf to uv corresponding to each neighbour of v in H. For each leaf in the

resulting tree, add a new adjacent vertex for each neighbour of the corresponding

vertex in H. We proceed in this manner ad infinitum. This graph is acyclic, and thus

any arbitrary labelling of the edges will yield a feasible infinite graph. This feasible

graph can produce an infinite celestial configuration that has H as a quotient.

4.4.5 Generating New Families of [2r, 2k]-configurations

Another application of the bonding operation and k-fold replication on feasible graphs is

its ability to construct new highly incident configurations. After applying the bonding

operation !G(P,B) on an [2r, 2k]-configuration G with Levi graph G := (P,B), the

resulting structure is no longer a configuration — some points (resp. lines) in have

replication number 2r (resp. line size 2k) while others have replication number 2r + 2

(resp. line size 2k + 2). However, we may apply a variation of the k-fold replication

operation to ‘fill’ the deficient points and lines. Simply apply a (2k+2)-fold replication

followed by a (2r+2)-fold replication: first only to the vertices corresponding to points

of replication number r in !G(U, V ), and then to all the lines of size k in the resulting

configuration. In the end, a balanced [2r + 2, 2k + 2]-configuraiton is obtained. The

number of orbits of points after applying the bonding operation on G with n orbits of

points and b orbits of lines is
2nb

gcd(n, b)

and two applications of the replication operation yield a [2r + 2, 2k + 2]-configuration

on [
r +

r

k
+ 1
]

(k + 1)

(
2nb

gcd(n, b)

)
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Figure 4.15: An example of a 4-configuration with R∗(G) that is not a PCL-cycle.
The left graph is the reduced Levi graph of the 4-configuration shown. It is a 4-cycle
C ′. The 8-cycle C shown in the diagram is feasible. The path P ′ of C ′ indicated with
red edges is isomorphic to the path P of C, also in red. By identifying C and C ′ along
these paths, we obtain a larger graph G that still admits a realization, although it
is not feasible. The deletion of the red path in G will yield a 4-configuration with
a non-feasible reduced Levi graph. This technique can be used to generate more
examples of non-feasible graphs that are still the reduced Levi graph of a celestial
partial configuration. The (244)-configuration shown on the left is given in [23, pg. 3].

orbits of points. Since the bonding operation and k-fold replication can result in

significantly larger configurations, these operations do not yield chiral configurations

of minimal size; however, they do provide a new, large family of highly incident

configurations that were previously unknown.

If G is an r, k-biregular bipartite feasible graph, then it is the reduced Levi graph

R∗(G) of some [2r, 2k]-configuration. If the labels on the edges of G are all odd, then

by choosing the rotation group Zm to be such that m is even, we can construct a

[r, k]-configuration on half of the number of points and lines. For each orbit u0, ..., um−1

of objects, remove the objects with odd subscripts. Since m is even, this deletion is

well-defined modulo m. The result is an [r, k]-configuration. This is because, if the

edge labels of G are odd, every object u that is span α with respect to v originally

met objects vi and vi+α within that orbit. However, exactly one of these subscripts is

odd, and therefore every object still in u meets exactly one of the objects in orbit v

after the deletion. Thus, we obtain an [r, k]-configuration with half as many points

and lines. This deletion procedure is an extension of the odd deletion procedure for

4-configurations, discussed by Berman and Grünbaum in [8].

It is also worth noting that a labelling need not correspond to a PCL cycle in
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order to be realizable. In Figure 4.15, a 4-configuration G is shown that possesses a

graph R∗(G) that is not a PCL-cycle. However, this set of labels does not work for a

general m, only in this case where m = 12. Known examples of reduced Levi graphs of

celestial configurations that are not feasible can be utilized to create further examples

of celestial configurations with non-feasible reduced Levi graphs. For instance, suppose

C is a feasible cycle on 2n vertices, and C ′ is a cycle that is the reduced Levi graph of

a celestial 4-configuration. If P and P ′ are paths of equal length on C and C ′, and

both P and P ′ share a common labelling (that is, they are isomorphic as labelled

paths), then let G be the graph of C ∪ C ′, with the paths P and P ′ identified. G

is also the reduced Levi graph of a celestial configuration, even if C ′ is not feasible

(see Figure 4.15 for an example). The proof of this is nearly identical to that of the

Swapping PCL (see Theorem 4.4.5), so we omit it here. In addition, the graph G− P
is then a cycle. If C ′ is not feasible, then G− P may not be feasible; however, it is

still the reduced Levi graph of a celestial configuration. As shown in Figure 4.15, we

can use some sporadic examples of 2-celestial 4-configurations to modify other types

of celestial configurations. This type of modification allows us to expand the class

of celestial configurations beyond those with a feasible reduced Levi graph. Many

examples of 3-celestial and 4-celestial 4-configurations are provided by Berardinelli

and Berman in [2], and these examples may be used to modify feasible reduced Levi

graphs to provide new examples of celestial configurations. Such sporadic examples

could be useful in building even more unique variations of celestial configurations

that are highly incident; however, some care must be taken. Replacing a path P1

with a path P2 in a graph G that is not a cycle only yields a feasible graph if every

cycle containing an edge of P1 remains a PCL cycle after the replacement with P2.

Alternatively, it is possible that a ‘nearly’ feasible graph — one in which all but a few

cycles are PCL cycles could still be realizable, if the few remaining non-PCL cycles

are labeled to be sporadic cases of realizable non-PCL cycles.
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Chapter 5

Conclusions and Further Research

The theorems presented in this thesis provide an answer to some of the fundamental

questions regarding both the existence of configurations and the properties of em-

beddings in both the combinatorial and geometric realms. However, there remain

numerous unanswered questions and conjectures.

5.1 Further Questions on Combinatorial

Configurations

Theorem 3.1.1 and Theorem 3.1.2 both concern themselves with providing optimal

bounds on the asymptotic existence of combinatorial configurations. While the bound

in Theorem 3.1.1 is not far from optimal, some improvements on this bound can still

theoretically be made, reducing the bound on N(r, k) from order O(rk2) to O(rk) for

all possible r, k. In Theorem 3.1.2, an optimal bound is obtained; however, the value

of R(k) outlined in this theorem relies on Bertrand’s Postulate, and may be excessive.

Regarding embeddings, there are other types of embedding questions that may

be asked. For instance, can an initial partial configuration C0 be embedded in a

larger, regular [r, k]−configuration C in such a way so that the lines of C may be

partitioned into copies of C0? This question likely requires some further restrictions

on the permissible line sizes and replication numbers of each line and point in C0.
Alternatively, we could apply colours to the lines and/or points of the initial partial

configuration C0, and ask if such a configuration may be embedded in a larger coloured

configuration, where the restriction of points and/or lines of each colour determine a

configuration.
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Due to the extremely flexible nature of configurations, the author conjectures that

there is an affirmative answer to these questions, and many other similar questions

regarding configurations. The aim would then be to find efficient bounds on the size

of these larger configurations.

Another area of potential research for configuration theory is to examine partial

configurations. For instance, if R,K ⊆ 2N, then we define an [R,K]-configuration

to be a configuration where every line size is a member of K, and every replication

number is a member of R. If R = {r} and K = {k} for some r, k ≥ 2, then an [R,K]-

configuration is equivalent to an [r, k]-configuration. A [{3, 4}, {3, 4}]-combinatorial

configuration on 10 points is given below:

{1, 2, 3, 4} {1, 5, 6} {1, 7, 8}
{2, 5, 7, 9} {2, 6, 8} {3, 6, 10}
{3, 8, 9} {4, 6, 7} {4, 9, 10}
{5, 8, 10}

Let N(R,K) be the value for which an [R,K]-configuration exists for all n ≥
N(R,K) satisfying certain divisibility conditions, similar to those for [r, k]-configurations.

Can we find a bound for N(R,K) that is a nontrivial improvement upon N(r, k)?

Clearly such existence bounds are less than N(r, k) for any r ∈ R and k ∈ K.

Perhaps a more interesting question would be to impose stricter criteria on such

[R,K]-configurations, by requiring lines of size k ∈ K to appear with a specified

frequency (or requiring a replication number r to appear with a given frequency).

Formally, for each r ∈ R, let pr be a real number between 0 and 1, such that
∑
pr = 1,

and for each k ∈ K, let qk be a real number between 0 and 1 such that
∑
qk = 1.

Then the author conjectures that, for any ε > 0 and sufficiently large values of n, b,

there exists a connected [R,K]-configuration on n points and b lines satisfying the

following properties:

• for each r ∈ R, the number of points with replication number r is contained

within the interval prn± εn,

• for each k ∈ K, the number of lines with line size k is contained within the

interval qkb± εb,

provided n, b satisfy some trivial conditions. A similar result is known to exist for

some types of pairwise balanced designs [15], but the size of n required to guarantee
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such a design is not provided. It would be interesting to see how such a bound would

fare in configuration theory, relative to N(R,K).

As we see, most problems regarding pairwise balanced designs can be applied to

configurations as well, since configurations contain PBDs (with λ = 1) as a subclass.

Studying the differences between configurations and designs could prove useful in

illuminating the obstructions to current open problems in design theory.

Other directions for research that are not borrowed from design theory include an

analysis of configurations with Levi graphs posessing certain properties. For instance,

providing examples of Levi graphs that are t-connected, or possess girth t, or with

bounded diameter, et cetera.

5.2 Further Questions on Geometric

Configurations

A satisfactory existence result on regular geometric configurations remains elusive.

As we have seen, even finding non-trivial examples of highly incident configurations

is challenging. Our study in embeddings has provided many more examples of

undiscovered geometric configurations — even those exhibiting chiral symmetry.

However, these configurations all include a variation of the Gray configuration Lrk as a

subconfiguration and may be viewed as contrived by some. These embeddings are also

quite large, as they rely on previously existing [r, k]-configurations (which are again not

optimal). With the lack of a suitable result regarding the embedding of combinatorial

configurations as geometric configurations, we instead turned to examining geometric

configurations whose Levi graph is a covering of a given combinatorial configuration.

Even here, a truly positive result was not found. Instead, an asymptotically optimal

answer was found utilizing the graph bonding operation. This operation relied on

celestial configurations. Other similar types of operations may also exist on these

types of geometric configurations, similar in nature to the bonding operation and the

k-fold replication operation.

One significant improvement that may be made is to find other theorems like

the Point Completion Lemma to expand the class of labelled Levi graphs that are

able to be feasibly constructed as geometric configurations. Such a discovery would

potentially allow for significant improvements in the number of known highly incident

configurations.
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Conversely, one could instead focus on obstructions to geometric realizations.

Clearly, the Levi graph of any geometric configuration cannot contain the Levi graph

of the Fano plane as a subgraph. What other subgraphs provide obstructions? While

many combinatorial configurations may possess a few common traits that prohibit

geometric realization, there are likely numerous or even infinite sporadic cases of

unrealizable configurations as well. It may be simpler to provide obstructions to the

existence of a chiral realization. In Chapter 4, we provided a translation of the Point

Completion Lemma from its geometric setting to a graph theoretic formulation. Such

a translation for obstructions as ‘forbidden subgraphs’ would be beneficial to remove

the complications that arise from working within a geometry.

Of course, any question posed for combinatorial configurations above can also

be posed for geometric configurations. It is likely that with a sufficient number

of points, such existence questions also yield affirmative answers. Other directions

involve extending the currently known results into other geometries or dimensions,

such as configurations of points and lines in R3, or points and circles on the sphere

S2. Such configurations have scarcely been examined. However, so little is known

about geometric configurations in the simplest case (as points and lines in R2), and it

is doubtful that more exotic types of configurations would yield new and surprising

results.

While the history of both combinatorial and geometric configurations is long, there

are still many gaps that remain in their study. This dissertation resolves some of

the holes in configuration theory, and aims to provide some understanding on the

structure and substructures of both combinatorial and geometric configurations.
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Appendix A

Puzzle Graph Analysis

We continue our analysis from Example 4.4.2 of geometric realizations of Puz(G) for

a bipartite graph G.

A.1 The Complete Bipartite Graph Kr,k

Let (P,B) denote the bipartition of points, where P contains all degree r vertices of

Kr,k. In the geometric realization of Puz(Kr,k), any tiling A corresponds to an orbit of

objects. However, there are several tilings in Puz(Kr,k) that correspond to an orbit of

objects coincident with A. We can partition the tilings of Puz(Kr,k) into equivalence

classes, where the tilings of a class all correspond to the same orbit of objects. We

begin by analyzing the tilings equivalent to a given tiling.

Proposition A.1.1. Let A be any tiling, with v0 corresponding to the vertex with the

empty tile. Let C be any 4-cycle v0v1v2v3 in Kr,k. If A′ := (v1v3)(v0v2)A denotes the

tiling with the tiles v0, v2 permuted and the tiles v1, v3 permuted, then A′ is equivalent

to A.

Proof. Create the following definitions:

A0 := A A1 := (v0v1)A0 A2 := (v1v2)A1 A3 := (v2v3)A2

A4 := (v3v0)A3 A5 := (v0v1)A4 A6 := (v1v2)A5

Then one can show that A6 = A′. Furthermore, the moves A0A1, A1A2, ..., A5A6

within Puz(Kr,k) contain labels v1, v2, v3, v1, v2, v3 respectively. Therefore, by the PCL,
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it follows that the orbit corresponding to A0 is coincident with the orbit corresponding

to A6. Thus, A is equivalent to A′. An illustration of this proof for K2,2 = C4 is given

in Figure 4.12.

Given an arrangement of tiles A with the empty tile contained within P , let Σ be

a permutation of the tiles of P . Then Σ can be written as a sequence of transpositions

σsσs−1 · · ·σ1 such that each transposition exchanges the empty tile with another tile.

For example, if Σ = (v1v2), then we may write

Σ = (v0v2)(v1v2)(v0v1).

The first transposition swaps the empty tile v0 with v1, while the second transposition

moves it from v1 to v2, and the third transposition moves it from v2 back to v0, leaving

the tiles on v1 and v2 permuted.

Let Π be a permutation of the same parity as Σ, written as a sequence of transpo-

sitions Π = πpπp−1 · · · π1. If p > s, then choose an arbitrary permutation π of the tiles

of B, and append πp−s to Π (note that this does not change the permutation Π, since

p− s is even). If, on the other hand, s > p, then let σ be any transposition containing

the empty tile and append σs−p to Σ. Again, this does not change the permutation

Σ. We may then assume that p = s. By the proposition above, A is equivalent to

σ1π1A, which is equivalent to σ2π2σ1π1A, and so forth. Since the tiles transposed by

Σ and Π are disjoint, it follows that A is equivalent to ΣΠA. A similar argument can

be utilized in the case that A is an tiling where the empty tile is contained within B

instead.

Consider any arrangement of tiles A within a component of Puz(Kr,k). Then there

are r! possible choices of Σ and k!/2 allowable permutations Π for each choice of Σ.

Thus, the size of the equivalence class containing A is at least r!k!/2 (and is some

multiple of this value). Suppose A is an orbit of points, so that the empty tile is

contained within P . There are r · (r+k−1)! total tilings with the empty tile contained

within P , and each of them correspond to an arragement of Puz(Kr,k). Therefore, if

the size of the equivalence class is r!k!/2, then the total number of such equivalence

classes is
r · (r + k − 1)!

r!k!/2
.

Half of these equivalence classes belong to one of the two components of Puz(Kr,k).
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Restricting to a single component of Puz(Kr,k) yields a geometric configuration with

r(r + k − 1)!

r!k!
=

(
r + k − 1

r − 1

)
orbits of points. By a similar argument, there are(

r + k − 1

k − 1

)
orbits of lines. The result is a [2r, 2k]-geometric configuration, provided each equiva-

lence class does indeed have size r!k!/2.

In fact, these configurations are identical to the ones found by L. Berman, illustrated

in Example 4.4.1. To see this, we define S = [r − 1] and T = [k] + r − 1 from

Example 4.4.1. Identify each equivalence class of Puz(Kr,k) with the pair (σ, τ), where

σ ⊂ S is the subset of the tiles [r − 1] within any tiling of the equivalence class that

are also contained within P . Then τ ⊂ T is defined as the subset of tiles [k] + r − 1

within any tiling of the equivalence class that are also contained within B.

A.2 The Dutch Windmill Graph Dt
2m

For bipartite graphs that are not complete, a more nuanced approach is needed, as any

set of four vertices does not necessarily belong to a cycle. The Dutch Windmill Graph

Dt
2m consists of t copies of the cycle C2m, with one vertex in common amongst all such

cycles. This graph is clearly bipartite. Let C1, ..., Ct denote the t cycles of Dt
2m, and

orient each cycle arbitrarily, so that the 0th vertex of each cycle is the central vertex

of the windmill. Define P t
2m to be the component of the Puz-graph of Dt

2m containing

the following tiling: the empty tile v0 is positioned at the centre of the windmill and

the ith vertex of Cj is given the tile vji . As in the case of the complete bipartite graph,

we deem to tilings to be equivalent if they correspond to the same orbit of objects in

the geometric realization. Our goal is to analyze the equivalence classes of P t
2m.

Note that in this Puz-graph component, any move of the empty tile only permutes

the tiles within a particular cycle, and these tiles can never be permuted outside of

the cycle they initially belong. In other words, in every tiling of P t
2m, the tile vji is

contained within the cycle Cj. Most tilings in P t
2m have degree two. In fact, the only

tilings that have a larger degree are those where the empty tile is contained at the

centre of the windmill. We will refer to these tilings as central tilings. Each central
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tiling has degree 2t. Starting at any central tiling and moving the empty tile along a

particular cycle Cj in the positive direction will result in another central tiling after

exactly 2m moves. The difference between these two central tilings is a permutation

of tiles given as

σj = (vj2m−1v
j
2m−2 · · · v

j
2v
j
1).

It follows that the central tilings are in correspondence with the group of permutations:

Σ := 〈σj : σ2m−1
j = 1 and σiσj = σjσi〉.

This group Σ is isomorphic to Zt2m−1, and as such has (2m− 1)t elements. In P t
2m,

two central tilings corresponding to elements σ and σ′ are joined by a path of length

2m if and only if σ = σ′σ±1j , for some j. This path corresponds to the empty tile

moving in either direction along the cycle Cj.

For a given element σ ∈ Σ, and j ∈ [t], let Cj
σ denote the cycle in P t

2m formed by

starting at the central tiling corresponding to σ, and repeatedly moving the empty

tile around Cj until the we return to the tiling corresponding to σ. This requires

moving around Cj a total of 2m− 1 times, implying that Cj
σ is a (2m)(2m− 1)-cycle,

containing 2m− 1 central tilings. Note that the moves along Cj
σ are labelled in order

vj1, v
j
2, ..., v

j
2m−1 a total of 2m times. By the PCL Extension Theorem, it follows that

for every path along this cycle of length 2(2m− 1), the initial and terminating vertices

correspond to coincident orbits of points or lines. Suppose without loss to generality

that the central tiling σ corresponds to an orbit of points. Two arragements of distance

2(2m− 1) along Cj
σ are equivalent. This partitions the tilings corresponding to orbits

of points into 2m− 1 classes. Each class contains a single central tiling. The tilings

corresponding to lines are partitioned into 2m− 1 classes as well.

Identify all these tilings in each cycle Cj
σ. Every tiling in P t

2m corresponding to a

point is identified with a unique central tiling. The resulting identification yields a

feasible, (2t, 2)-biregular, bipartite graph P ′. The number of tilings of P ′ corresponding

to orbits of points is equal to the number of central tilings of P t
2m. Thus, the graph

P ′ is the reduced Levi graph of a [4t, 4]-configuration, with (2m− 1)t orbits of points,

and t(2m− 1)t orbits of lines.

An example of this construction is illustrated in Figure A.1. Here, we consider the

Puz-graph of D2
4. Even one component of this Puz-graph is rather large, so the figure

only depicts one cycle of the Puz-graph, along with its neighbours. Each arrangement

of tiles in this Puz-graph corresponds to a unique labelling of the vertices of D2
4,
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and some of these labellings are provided in the diagram. Notice that the antipodal

points on the 12-cycle shown in the figure correspond to coincident orbits, by the

PCL. After applying the necessary quotient operation on these vertices, the resulting

reduced Levi graph contains 9 vertices corresponding to orbits of points and 18 vertices

corresponding to orbits of lines.

Note that it is not necessary to have all the cycles in the Dutch windmill graph

be the same length, provided they are all even cycles. If we have cycles of length

2m1, ..., 2mt, then the resulting geometric configuration will contain∏
(2mi − 1)

orbits of points. In fact, it is not even necessary that the spokes of the windmills

are cycles, provided they are bipartite. For instance, a similar analysis could be

conducted on the case where t different complete bipartite graphs all share a single

vertex in common. Figure A.2 shows the celestial configuration with 13-fold symmetry

that possesses this reduced Levi graph. Even for the simplest Dutch Windmill graph

(beyond a single cycle when t = 1), the resulting geometric configuration is difficult to

depict.
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Figure A.1: The first diagram demonstrates a portion of the Puz-graph Puz(D2
4). Five

examples of labellings on D2
4 are shown in the gray circles. The label 0 corresponds to

the empty label. The red vertices belong to the Puz-graph (each one corresponds to a
unique tiling), with hollow vertices corresponding to orbits of lines, while the filled
vertices correspond to orbits of points. Diamond-shaped vertices correspond to central
tilings. The five examples of labellings on D2

4 correspond to five different tilings of the
Puz-graph, as shown. The second diagram illustrates the resulting feasible reduced
Levi graph that is obtained once the vertices of the Puz-graph are identified. Each
colour represents a unique label.
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Figure A.2: The realization of the Puz-graph of D2
4 as a celestial (1178, 2344)-

configuration with 13-fold dihedral symmetry.
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