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Abstract

For any graph parameter, the removal of a vertex from a graph can increase
the parameter, decrease the parameter, or leave the parameter unchanged. This
document focuses on the case where the removal of a vertex decreases the parameter
for the cases of independent domination and total domination. A graph is said to be
independent domination vertex-critical, or i-critical, if i(G− v) < i(G) for any vertex
v ∈ V (G), where i(G) is the independent domination number of G. Likewise, a graph
is said to be total domination vertex-critical, or γt-critical, if γt(G − v) < γt(G) for
any vertex v ∈ V (G) such that G−v has no isolated vertices, where γt(G) is the total
domination number of G. Following these notions, a graph is independent domination
bicritical, or i-bicritical, if i(G− {u, v}) < i(G) for any subset {u, v} ⊆ V (G), and a
graph is total domination bicritical, or γt-bicritical, if γt(G− {u, v}) < γt(G) for any
subset {u, v} ⊆ V (G) such that G − {u, v} has no isolated vertices. Additionally,
a graph is called strong independent domination bicritical, or strong i-bicritical, if
i(G− {u, v}) = i(G)− 2 for any two independent vertices {u, v} ⊆ V (G).

Construction results for i-critical graphs, i-bicritical graphs, strong i-bicritical
graphs, γt-critical graphs, and γt-bicritical graphs are studied. Many known con-
structions are extended to provide necessary and sufficient conditions to build criti-
cal and bicritical graphs. New constructions are also presented, with a concentration
on i-critical graphs. One particular construction shows that for any graph G, there
exists an i-critical, i-bicritical, and strong i-bicritical graph H such that G is an in-
duced subgraph of H. Structural properties of i-critical graphs, i-bicritical graphs,
γt-critical graphs, and γt-bicritical graphs are investigated, particularly for the con-
nectedness and edge-connectedness of critical and bicritical graphs. The coalescence
construction which has appeared in earlier literature constructs a graph with a cut-
vertex and this construction is studied in great detail for i-critical graphs, i-bicritical
graphs, γt-critical graphs, and γt-bicritical graphs. It is also shown that strong i-
bicritical graphs are 2-connected and thus the coalescence construction is not useful
for such graphs.
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Domination vertex-critical graphs (those graphs where γ(G − v) < γ(G) for any
vertex v ∈ V (G)) have been studied in previous publications. A well-known result
states that diam(G) ≤ 2(γ(G)−1) for domination vertex-critical graphs. Here similar
techniques are used to provide upper bounds on the diameter for i-critical graphs,
strong i-bicritical graphs, and γt-critical graphs. The upper bound for the diameter of
i-critical graphs trivially gives an upper bound for the diameter of i-bicritical graphs.

For a graph G, the γ-graph of G, denoted G(γ), is the graph where the vertex set
is the collection of minimum dominating sets of G. Adjacency between two minimum
dominating sets in G(γ) occurs if from one minimum dominating set a vertex can be
removed and replaced with another vertex from V (G) to arrive at the other minimum
dominating sets. In the literature, two versions of adjacency have been defined:

• the single vertex replacement adjacency model: where the minimum dominating
set D1 is adjacent to the minimum dominating set D2 if there exists a vertex
u ∈ D1 and a vertex v ∈ D2 such that D2 = (D1 − {u}) ∪ {v}, and

• the slide adjacency model: where the minimum dominating set D1 is adjacent
to the minimum dominating set D2 if there exists a vertex u ∈ D1 and a vertex
v ∈ D2 such that D2 = (D1 − {u}) ∪ {v} and uv ∈ E(G).

In other words, one can think of adjacency between γ-sets D1 and D2 in G(γ) as a
swap of two vertices. In the slide adjacency model, these two vertices must be adjacent
in G, hence the γ-graph obtained from the slide adjacency model is a subgraph of
the γ-graph obtained in the single vertex replacement adjacency model. Results for
both adjacency models are presented concerning the maximum degree, the diameter,
and the order of the γ-graph when G is a tree.
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1

Introduction

1.1 Introduction, Definitions, and Examples

When studying any graph parameter, the concept of criticality is of interest. When

changes are made to a graph, how does the graph parameter in question change (or not

change)? There are of course many types of changes one could consider applying to

a graph: deleting a vertex, deleting an edge, adding an edge, identifying two vertices,

and contracting an edge, to name just a few. In this thesis vertex-criticality (the

deletion of a vertex) with respect to various domination parameters is studied. All

graphs considered will be finite, simple, and undirected. In general, graph theoretic

definitions and notation as defined in [51] and domination definitions and notation

as defined in [25] and [26] are followed.

A set of vertices D ⊆ V (G) is called a dominating set of G if every vertex in

V (G) − D is adjacent to at least one vertex in D. The minimum cardinality of a

dominating set of G is called the domination number and is denoted by γ(G). If D

is a dominating set of minimum cardinality, then D is called a γ-set. For a vertex
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v ∈ V (G) we say that D dominates v if either v is in D or v is adjacent to a vertex

in D. Likewise, for a set of vertices S ⊆ V (G) we say that D dominates S if every

vertex in S is either in D or is adjacent to a vertex in D.

The domination number was first defined in 1958 by Berge [8], though he called it

the “coefficient of external stability”. Oystein Ore was the first to use the terminology

of “dominating set” and “domination number” in his 1962 book Theory of Graphs

[40], and is credited as publishing the first theorems on dominating sets. The notation

of γ(G) for the domination number was introduced by Cockayne and Hedetniemi in

their 1977 survey paper on the state of domination problems at the time [15]. Since

its introduction and popularization domination has been greatly studied with two

published volumes devoted to the survey of various topics in domination ([25] and

[26]). Additionally, many domination variants have been defined and investigated.

Beyond the usual domination, two domination variants are studied in the results

presented here. For a graph G without isolated vertices, a set of vertices D ⊆ V (G)

is called a total dominating set of G if every vertex in V (G) is adjacent to at least

one vertex in D. The minimum cardinality of a total dominating set of G is called

the total domination number and is denoted by γt(G). If D is a total dominating

set of minimum cardinality, then D is called a γt-set. If G contains isolated vertices,

then γt(G) is undefined. Notice that every total dominating set is also a dominating

set, and so γ(G) ≤ γt(G). A set of vertices D ⊆ V (G) is called an independent

dominating set of G if D is a dominating set that is also an independent set; that

is, no two vertices of D are adjacent. The minimum cardinality of an independent

dominating set is called the independent domination number, denoted by i(G), and

an independent dominating set of minimum cardinality is called an i-set. Notice that

every maximal independent set is an independent dominating set. In addition, every

independent dominating set is also a dominating set, and so γ(G) ≤ i(G) ≤ α(G)

(where α(G) is the cardinality of a maximum independent set in G).
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For a vertex v ∈ V (G), the graph G − v denotes the graph created from G by

deleting the vertex v and all edges incident with v. Notice that for the domination

number, the total domination number, and the independent domination number,

the removal of a vertex from a graph has three possible outcomes: the domination

parameter in question may decrease, increase, or not change. A graphG is domination

vertex-critical, or γ-vertex-critical, if γ(G − v) < γ(G) for every v ∈ V (G). When

considering the domination number, we can partition the vertex set of any graph G

into the sets V 0
γ , V −γ , and V +

γ , where

V 0
γ = {v ∈ V (G) : γ(G− v) = γ(G)}

V −γ = {v ∈ V (G) : γ(G− v) < γ(G)}

V +
γ = {v ∈ V (G) : γ(G− v) > γ(G)}.

Thus if G is γ-vertex-critical, then V (G) = V −γ . If G is γ-vertex-critical and γ(G) = k

we say that G is k-γ-vertex-critical. If γ(G − v) < γ(G) we say that the vertex v is

a γ-critical vertex. Notice that the 4-cycle C4 is γ-vertex-critical.

Figure 1.1: A γ-vertex-critical graph.

Likewise G is total domination vertex-critical, or γt-vertex-critical, if γt(G− v) <

γt(G) for every v ∈ V (G) such that the graph G − v contains no isolated vertices.

Likewise, when considering the total domination number, we can partition the vertex
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set of G into the sets V 0
γt , V

−
γt , and V +

γt , where

V 0
γt = {v ∈ V (G) : γt(G− v) = γt(G)}

V −γt = {v ∈ V (G) : γt(G− v) < γt(G)}

V +
γt = {v ∈ V (G) : γt(G− v) > γt(G)}.

If G is γt-vertex-critical, then V (G) = V −γt . If G is γt-vertex-critical and γt(G) = k

we say that G is k-γt-vertex-critical. If γt(G− v) < γt(G) we say that the vertex v is

a γt-critical vertex. Notice that the 5-cycle C5 is γt-vertex-critical.

Figure 1.2: A γt-vertex-critical graph.

A graph G is independent domination vertex-critical, or i-vertex-critical if i(G−

v) < i(G) for every v ∈ V (G). Again, for the independent domination number, we

can partition the vertex set of G into the sets V 0
i , V −i , and V +

i , where

V 0
i = {v ∈ V (G) : i(G− v) = i(G)}

V −i = {v ∈ V (G) : i(G− v) < i(G)}

V +
i = {v ∈ V (G) : i(G− v) > i(G)}.

If G is i-vertex-critical, then V (G) = V −i . If G is i-vertex-critical and i(G) = k we

say that G is k-i-vertex-critical. Likewise, if i(G− v) < i(G) (so v ∈ V −i ) we say that

the vertex v is an i-critical vertex. If i(G − v) = i(G) (so v ∈ V 0
i ) we say that the

vertex v is an i-stable vertex. Notice that the cycle C4 is i-vertex-critical (in addition
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to being γ-vertex-critical), and the cycle C7 is also i-vertex-critical (and in fact is

γ-vertex-critical too).

Figure 1.3: An i-vertex-critical graph.

For a set of vertices S ⊆ V (G), 〈S〉 denotes the subgraph of G induced by the

vertices in S. For a set S ⊆ V (G), G− S is the graph 〈V (G)− S〉 and for a vertex

v ∈ V (G), G− v is 〈V (G)− {v}〉. For graphs G and H with V (G) ∩ V (H) = ∅ the

disjoint union of G and H, written G∪H, is the graph with vertex set V (G∪H) =

V (G)∪V (H) and edge set E(G∪H) = E(G)∪E(H). The graph G1 ∪G2 ∪ · · · ∪Gk

is defined recursively by G1 ∪G2 ∪ · · · ∪Gk = (G1 ∪ · · · ∪Gk−1) ∪Gk.

The number of components in a graph G is denoted by k(G). A cut-vertex is

any vertex whose removal results in a graph with more components than G. That

is, x ∈ V (G) is a cut-vertex of G if k(G − x) > k(G). A vertex-cut of a connected

graph is a set of vertices S ⊆ V (G) such that G− S is disconnected. A k-vertex-cut

is a vertex cut of cardinality k. The connectivity of a graph G 6= Kn is the minimum

cardinality of a vertex-cut of G (the connectivity of Kn is n− 1), and we say that G

is k-connected if the connectivity of G is greater than or equal to k. That is, G is

k-connected if we need to remove k or more vertices from G to create a disconnected

graph. Likewise, G is k-edge-connected if we need to remove k or more edges from G

in order to create a disconnected graph.

For a vertex x ∈ V (G), the open neighbourhood, NG(x), is the set {y | xy ∈

E(G)}, and the closed neighbourhood, NG[x], is the set NG[x] = NG(x) ∪ {x}.



1.2. A Summary of Previous Results and Overview of New Results 6

Analogously, for a set S ⊆ V (G), the open neighbourhood of S, NG(S), is the set

{x | ∃y ∈ S such that xy ∈ E(G)}, and the closed neighbourhood of S, NG[S], is the

set NG[S] = NG(S)∪S. When the graph G is obvious from context, we simply write

N(x), N [x], N(S), and N [S]. For a set of vertices D ⊆ V (G) and a vertex x ∈ D, the

private neighbourhood of x with respect to D, denoted pn(x,D), is the set of vertices

that are in the closed neighbourhood of x, but are not in the closed neighbourhood

of any other vertex in D. That is, pn(x,D) = N [x]−N [D − {x}]. Likewise, for sets

S,D ⊆ V (G), the private neighbourhood of S with respect to D, denoted pn(S,D), is

the set pn(S,D) = N [S]−N [D − S].

1.2 A Summary of Previous Results and Overview of New Results

Criticality for domination parameters was first studied by Sumner and Blitch [45].

They concentrated on γ-edge-critical graphs where γ(G + uv) < γ(G) for every

uv /∈ E(G). In their seminal paper Sumner and Blitch investigated γ-edge-critical

graphs where γ(G) is small; the 2-γ-edge-critical graphs were characterized (G is

2-γ-edge-critical if and only if G is the disjoint union of stars) and properties of 3-

γ-edge-critical graphs were studied. In particular, they showed that every 3-γ-edge-

critical graph contains a 3-cycle. They also showed that 3-γ-edge-critical graphs

with an even order have a 1-factor. This result led to the further study of matchings

in γ-edge-critical graphs and γ-vertex-critical graphs by Michael Plummer, Nawarat

Ananchuen, and others ([2], [3], [4], [5], [6], [29], [48], [49] and elsewhere). For the

3-γ-edge critical graphs, Sumner and Blitch looked at the degree of vertices, and

showed that the number of vertices of degree at most k is bounded above by a linear

function of k. They investigated the diameter of 3-γ-edge-critical graphs and found

that diam(G) ≤ 3. Though they did not study γ-vertex-critical graphs, they did look

at the effects of deleting a vertex in a γ-edge-critical graph. It was found that in a

k-γ-edge-critical graph, γ(G− v) ≤ k for any v ∈ V (G). Also, every k-γ-edge-critical
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graph contains a vertex v ∈ V (G) such that γ(G− v) = k − 1.

Notice that the class of γ-vertex-critical graphs is distinct from the class of γ-edge-

critical graphs. For example, the cycle C7 is γ-vertex-critical but not γ-edge-critical.

Any graph G where G is isomorphic to K1,n1∪K1,n2 , n1, n2 ≥ 1, and n1 and n2 are not

both equal to 1, is γ-edge-critical, but not γ-vertex-critical. (In fact, as mentioned

above, G is 2-γ-edge-critical.) The cycle C4 is a graph that is both γ-vertex-critical

and γ-edge-critical. That being said, it is noted in [26] that every 2-γ-vertex-critical

graph is also a 2-γ-edge-critical graph, but the converse does not hold. In their survey

on domination, Ananchuen, Ananchuen, and Plummer [1] commented that for any

graph property P , a P -vertex-critical graph can be changed into a P -edge-critical

graph by adding all edges uv /∈ E(G) such that P (G+ uv) = P (G). In particular, a

γ-vertex-critical graph can be changed into a γ-edge-critical graph by adding all edges

uv /∈ E(G) such that γ(G+uv) = γ(G). For example, the cycle C7 is γ-vertex-critical

but not γ-edge-critical, but by adding some edges we can arrive at a γ-edge-critical

graph such that C7 is a subgraph. Such a situation is pictured in Figure 1.4.

Figure 1.4: Graphs C7 and a γ-edge-critical graph that contains C7 as a subgraph.

Domination vertex-criticality can been generalized to (γ, k)-criticality. A graph

G is said to be (γ, k)-critical if γ(G − S) < γ(G) for any set of vertices S ⊆ V (G)

with |S| = k, and (l, k)-critical if G is (γ, k)-critical and γ(G) = l. Of course, the

(γ, 1)-critical graphs are the γ-vertex-critical graphs. The (γ, 2)-critical graphs are

commonly referred to as γ-bicritical graphs. These γ-bicritical graphs are further



1.2. A Summary of Previous Results and Overview of New Results 8

discussed in Chapter 3. This idea of generalizing γ-vertex-critical graphs by studying

(γ, k)-critical graphs was introduced in 2010 by Mojdeh, Firoozi, and Hasni [37] and

has been further studied ([36] and [22]).

Brigham, Chinn, and Dutton [9] were the first to focus on γ-vertex-critical graphs.

They noted that the only 1-γ-vertex-critical graph is K1 and the 2-γ-vertex-critical

graphs are those that are isomorphic to K2n with the edges of a 1-factor removed.

They also gave a family of γ-vertex-critical graphsGm,n, where V (Gm,n) = {v1, v1, . . . ,

v(n−1)(m+1)} and E(Gm,n) = {vivj | 1 ≤ (i − j) (mod (n − 1)(m + 1) + 1) ≤ m/2}.

The graph G4,3 is isomorphic to the circulant C11〈1, 2〉 and is 3-γ-vertex-critical.

Proposition 1.1. [9] If G has a non-isolated vertex v such that 〈N(v)〉 is complete,

then G is not γ-vertex-critical.

Let n be the order of a graph, that is n = |V (G)|.

Proposition 1.2. [9] If G has a γ-critical vertex, then n ≤ (∆ + 1)(γ − 1) + 1.

Brigham, Chinn, and Dutton also provided a characterization for γ-vertex-critical

graphs having a minimum number of vertices, that is, when n = γ+∆. Investigating

the order of critical graphs has proved popular. The order of γ-vertex-critical graphs

was further studied by Fulman, Hanson, and MacGillivray [21], where they showed

that the γ-vertex-critical graphs of maximum order are regular.

Theorem 1.3. [21] If G is γ-vertex-critical with |V (G)| = (∆ + 1)(γ − 1) + 1, then

G is regular.

The order of γ-bicritical graphs, i-vertex-critical graphs, i-bicritical graphs, γt-

vertex-critical graphs, and γt-bicritical graphs have all been investigated as well ([10],

[30], [38], [47], and elsewhere).

Proposition 1.4. [9] If G is γ-vertex-critical with e edges, then n ≤ (2e+3γ−∆)/3.
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Brigham, Chinn, and Dutton investigated methods of constructing γ-vertex-

critical graphs. In particular, they discussed the coalescence G ·xy H. Let G and

H be disjoint graphs with x ∈ V (G) and y ∈ V (H). The coalescence of G and H

with respect to x and y is the graph G ·xy H with vertex set V (G ·xy H) = (V (G) −

{x}) ∪ (V (H) − {y}) ∪ {v}, where v /∈ V (G) ∪ V (H), and edge set E(G ·xy H) =

E(G − x) ∪ E(H − y) ∪ {vw : xw ∈ E(G) or yw ∈ E(H)}. We call v the vertex of

identification of G and H, and we consider V (G) and V (H) as subsets of V (G ·xyH)

and regard v as an element of both V (G) and V (H). Informally, G ·xyH is the graph

obtained from G∪H by identifying x and y. If the context is clear, or if the vertices x

and y are not important, we write G ·H instead of G ·xyH. The graph G1 ·G2 · · · · ·Gk

is defined recursively by G1 ·G2 · · · · ·Gk = (G1 ·G2 · · · · ·Gk−1) ·Gk. This construction

is further discussed in Chapters 2, 3, 4, and 5.

Proposition 1.5. [9] Let G and H be nontrivial graphs. Then γ(G) + γ(H) − 1 ≤

γ(G ·xy H) ≤ γ(G) + γ(H). Furthermore, if both G and H are γ-vertex-critical, or if

G ·xy H is γ-vertex-critical, then γ(G ·xy H) = γ(G) + γ(H)− 1.

Proposition 1.6. [9] The graph G ·xyH is γ-vertex-critical if and only if both G and

H are γ-vertex-critical.

The next result follows directly from the previous two propositions.

Theorem 1.7. [9] A graph G is γ-vertex-critical if and only if each block of G is

γ-vertex-critical. Further, if G is γ-vertex-critical with blocks G1, G2, . . . , Gn, then

γ(G) =
∑n

i=1 γ(Gi)− (n− 1).

In addition to the coalescence construction, Brigham, Chinn, and Dutton found

a method to take any graph G and create a γ-vertex-critical graph H such that G is

an induced subgraph of H.

Theorem 1.8. [9] For any graph G there is a γ-vertex-critical graph H such that G

is an induced subgraph of H.
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In particular, this shows that the class of γ-vertex-critical graphs cannot be char-

acterized by a finite list of forbidden subgraphs. This idea is revisited in Chapter

2.

Brigham, Chinn, and Dutton posed some questions about γ-vertex-critical graphs.

1. If G is a γ-vertex-critical graph, is n ≥ (δ+ 1)(γ− 1) + 1? This is trivially true

when n = (∆+1)(γ−1)+1, the maximum possible value, and also holds when

n = γ + ∆, the minimum possible value.

2. If G is a γ-vertex-critical graph with n = (∆ + 1)(γ − 1) + 1, is G regular?

3. Sumner and Blitch [45] conjectured that i(G) = γ(G) for γ-edge-critical graphs.

Does i(G) = γ(G) for γ-vertex-critical graphs? Again, the statement is true

when the number of vertices is at the minimum or maximum value.

4. Let d be the diameter of a γ-vertex-critical graph. Is d ≤ 2(γ(G) − 1)? The

relation holds when n = γ + ∆ or γ ≤ 5.

Fulman, Hanson, and MacGillivray [21] addressed all of these questions. As men-

tioned above, question 2 was answered affirmatively. They provided an example of

the circulant G = C17〈1, 3, 5, 7, 10, 12, 14, 16〉 as a 3-γ-vertex-critical, 8-regular graph

where n = 17 < 19 = (δ+1)(γ−1)+1, thus providing a negative answer for question

1. This example also has i(G) = 5 6= 3 = γ(G), and so also provides a negative

answer to question 3. For question 4, a bound on the maximum diameter of a γ-

vertex-critical graph was provided, which gave an affirmative answer. This bound

and further results on the diameter of critical graphs are discussed in Chapter 5.

With respect to the domination number, many variations on criticality have been

examined. The variation most commonly considered is that of γ-edge-critical graphs,

the graphs studied by Sumner and Blitch in which γ(G + uv) < γ(G) for every

uv /∈ E(G). Other common variations include γ-ER graphs, where γ(G − uv) >
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γ(G) for every uv ∈ E(G) ([24] and elsewhere), and dot critical graphs, in which

γ(G.uv) < γ(G) for every {u, v} ⊆ V (G), where G.uv denotes the graph that results

from identifying vertices u and v and removing any resulting loops and multiple edges

that are created ([11] and elsewhere). Here we concentrate only on vertex-criticality

and hence for brevity we use the terms γ-critical, γt-critical, and i-critical to denote

γ-vertex-critical, γt-vertex-critical, and i-vertex-critical graphs, respectively.

The remainder of this chapter contains basic results on i-critical and i-bicritical

graphs, the main focus of this thesis. These results are those which will be used

repeatedly in further chapters and require very little background to prove.

Chapter 2 discusses construction techniques for i-critical graphs. A survey of

known construction techniques for γ-critical graphs and i-critical graphs is presented.

Results which extend known constructions for i-critical graphs are provided, and new

construction techniques are discussed.

A graph G is said to be i-bicritical if i(G− {u, v}) < i(G) for any set of vertices

{u, v} ⊆ V (G), and strong i-bicritical if i(G − {u, v}) = i(G) − 2 for any set of

vertices {u, v} ⊆ V (G). Chapter 3 focuses on i-bicritical graphs and strong i-bicritical

graphs. A survey of known results on γ-bicritical graphs is presented, and similar

results are discussed for i-bicriticality and strong i-bicriticality. The connectivity of

strong i-bicritical graphs is investigated, and a construction which produces a strong

i-bicritical graph with a 2-vertex-cut is given. Other constructions for i-bicritical

graphs and strong i-bicritical graphs are presented.

Recall that a graph G is said to be γt-critical if γt(G − v) < γt(G) for every

v ∈ V (G) such that the graph G − v contains no isolated vertices. Likewise, a

graph G is said to be γt-bicritical if γt(G− {u, v}) < γt(G) for every {u, v} ⊆ V (G)

such that the graph G− {u, v} contains no isolated vertices. Chapter 4 investigates

properties of γt-critical graphs and γt-bicritical graphs. A survey of known results is

presented, and some results are extended. Constructions for γt-critical graphs and
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γt-bicritical graphs are investigated. Some constructions are similar to those used

for γ-critical graphs, γ-bicritical graphs, i-critical graphs, and i-bicritical graphs, and

some constructions are unique to γt-critical graphs and γt-bicritical graphs.

As mentioned above, Brigham, Chinn, and Dutton [9] posed the question “is

diam(G) ≤ 2(γ(G) − 1) for a γ-critical graph G?”. This lead Fulman, Hanson, and

MacGillivray [21] to provide a tight upper bound for k-γ-critical graphs, giving an

affirmative answer to the question. Chapter 5 concentrates on the maximum diameter

of various critical graphs. In particular, a tight upper bound on the diameter of i-

critical graphs is presented. From this bound, an easy upper bound on the diameter

for i-bicritical graphs is obtained. In addition, an upper bound for γt-critical graphs

is presented and examples which reach equality in this bound are given for the case

of γt(G) ≡ 2 (mod 3). An upper bound on the diameter of strong i-bicritical graphs

is also presented.

Chapter 6 focuses on the γ-graph. The γ-graph of a graph G, G(γ) = (V (γ), E(γ)),

is the graph where the vertex set V (γ) is the collection of γ-sets of G. Adjacency

between two γ-sets in G(γ) can be defined in two different ways:

• Single vertex replacement adjacency model: where γ-set D1 is adjacent to γ-

set D2 if there exists a vertex u ∈ D1 and a vertex v ∈ D2 such that D2 =

(D1 − {u}) ∪ {v}.

• Slide adjacency model: where γ-set D1 is adjacent to γ-set D2 if there exists

a vertex u ∈ D1 and a vertex v ∈ D2 such that D2 = (D1 − {u}) ∪ {v} and

uv ∈ E(G).

Thus we can think of adjacency between γ-sets D1 and D2 in G(γ) as a swap of

two vertices. In the slide adjacency model, these two vertices must be adjacent in

G, hence the γ-graph obtained from the slide adjacency model is a subgraph of the

γ-graph obtained in the single vertex replacement adjacency model. Results for both
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adjacency models are presented concerning the maximum degree, the diameter, and

the order of the γ-graphs of trees. The single vertex replacement adjacency model was

first introduced by Subramanaian and Sridharan [43] in 2008, and the slide adjacency

model was introduced independently by Fricke, Hedetniemi, Hedetniemi, and Hutson

[20] in 2011. The single vertex replacement adjacency model was further studied in

[33] and [42] and the slide adjacency model has been further studied in [16]. In this

chapter upper bounds on ∆(G(γ)), diam(G(γ)), and the order of G(γ) are given for

the case that G is a tree, thus answering three questions posed by Fricke et al. [20].

1.3 Basic Results for i-Critical Graphs and i-Bicritical Graphs

To close the chapter, we present introductory results on i-critical graphs and i-

bicritical graphs. Introductory results for γt-critical graphs and γt-bicritical graphs

are contained in Chapter 4.

In her 1994 Master’s Thesis [7], Suquin Ao was the first to define i-critical graphs.

In this body of work she presented constructions for various families of i-critical

graphs, many of these families also produced γ-critical graphs.

Observation 1.9. If G is i-critical, then for any v ∈ V (G), every minimum inde-

pendent dominating set S of G− v has x /∈ S for all x ∈ NG[v].

Proposition 1.10. [7] If G is i-critical, then for any vertex v there exists an i-set S

such that v ∈ S.

Note that the converse of Proposition 1.10 is not true. For example, every vertex

of C5 is contained in an i-set of C5, but the graph is not i-critical.

Proposition 1.11. For any graph G and vertex v ∈ V (G), i(G− v) ≥ i(G)− 1.

Proof. Consider an i-set D of G − v. If D dominates v in G, then D is also an

independent dominating set of G and so i(G) ≤ i(G− v). If D does not dominate v
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in G, then D ∪ {v} is an independent dominating set of G and i(G) ≤ i(G− v) + 1.

The result follows.

The following result is a direct consequence of Proposition 1.11.

Proposition 1.12. [7] If G is i-critical, then i(G− v) = i(G)− 1.

Proposition 1.12 can be generalized for the deletion of any subset of vertices.

Notice that this naturally leads to the consideration of (γ, k)-critical graphs.

Proposition 1.13. For any graph G and vertices S ⊆ V (G) with |S| = k, i(G−S) ≥

i(G)− k.

Proof. Consider an i-set D of G − S. If D is not an independent dominating set

of G, then it is possible to add a vertex x ∈ S that is not dominated by D to

create a new independent set D′. If D′ is not an independent dominating set of G,

then it is possible to add a vertex x′ ∈ S that is not dominated by D′ to create a

new independent set D′′. Continuing in this fashion, it is possible to arrive at an

independent dominating set of G from D by adding at most the k vertices in S.

Therefore i(G) ≤ i(G− S) + k.

In particular, Proposition 1.13 shows that if G is i-bicritical, then i(G) − 2 ≤

i(G − {x, y}) ≤ i(G) − 1 for any {x, y} ⊆ V (G). The following result determines

i(G− {x, y}) when G is i-bicritical and xy ∈ E(G).

Proposition 1.14. If xy ∈ E(G), then i(G− {x, y}) ≥ i(G)− 1.

Proof. Consider G − {x, y} where xy ∈ E(G) and let D be an i-set of G − {x, y}.

If D is an independent dominating set of G, then i(G − {x, y}) ≥ i(G). Otherwise,

suppose D does not dominate at least one of x and y. Without loss of generality,

suppose D does not dominate x. Then D ∪ {x} is an independent dominating set of

G, and so i(G) ≤ |D ∪ {x}| = i(G− {x, y}) + 1.
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In fact, if i(G − x) = i(G) − 1 we can say that i(G − {x, y}) = i(G) − 1 when

xy ∈ E(G), even if G is not i-bicritical.

Proposition 1.15. If i(G− x) = i(G)− 1 for some x ∈ V (G), then i(G−{x, y}) =

i(G)− 1 for all y ∈ V (G) such that xy ∈ E(G).

Proof. Suppose that i(G − x) = i(G) − 1 for some x ∈ V (G). Then by the proof of

Proposition 1.9, there exists an i-set S of G − x such that S ∩ NG(x) = ∅. Hence

if xy ∈ E(G), then y /∈ S and S dominates (G − x) − y ∼= G − {x, y} and we have

that i(G − {x, y}) ≤ |S| = i(G) − 1. Suppose that i(G − {x, y}) < i(G) − 1, and

consider an i-set of G − {x, y}. Then either S ∩ NG(x) = ∅ or S ∩ NG(y) = ∅ (for

otherwise S dominates G). Without loss of generality, say that S ∩NG(x) = ∅. But

then S ∪ {x} independently dominates G and |S ∪ {x}| = i(G)− 1, a contradiction.

Therefore i(G− {x, y}) = i(G)− 1.

Proposition 1.16. [7] The only 2-i-critical graphs are K2n less a perfect matching.

Proposition 1.17. The only 2-i-bicritical graphs are K2 and K1 ∪K2.

Proof. Let G be a 2-i-bicritical graph. Since i(G) = 2, there exists an independent

dominating set {x, y} ⊆ V (G) such that xy /∈ E(G). Consider G − {x, y}. If

i(G − {x, y}) = 0 then G ∼= K1 ∪ K1. Thus i(G − {x, y}) = 1 and there exists a

vertex w ∈ V (G− {x, y}) that dominates G− {x, y}. In addition, w is not adjacent

to at least one of x and y in G. Say wy /∈ E(G). Then xw ∈ E(G) since {x, y} is

an independent dominating set. Consider G− {w, y}. Since i(G− {w, y}) = 1 there

exists a vertex z ∈ V (G − {w, y}) that dominates G − {w, y}. Since w dominates

G− {x, y}, z ∈ N(w). Then zy /∈ E(G) for otherwise i(G) = 1.

Suppose z 6= x. Consider G − {w, z}. Since i(G − {w, z}) = 1, there exists a

vertex v ∈ V (G−{w, z}) such that v dominates G−{w, z}. Notice that v 6= y since

yw /∈ E(G) and likewise v 6= x. Also, vw ∈ E(G) since w dominates G− {x, y} and
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vz ∈ E(G) since z dominates G−{w, y}. But then we have that v dominates G and

i(G) = 1, a contradiction.

Suppose that z = x and N(w) − {x} 6= ∅. Consider G − {w, x}. Since i(G −

{w, x}) = 1 there exists a vertex v ∈ V (G−{w, x}) that dominates G−{w, x}. Then

vx ∈ E(G) since x = z dominates G − {w, y} and vw ∈ E(G) since w dominates

G − {x, y}. But then we have that v dominates G and i(G) = 1, a contradiction.

Therefore N(w)− {x} = ∅ and G ∼= K1 ∪K2.

For any graph G, recall that the vertex set can be partitioned into sets V 0
i , V −i ,

and V +
i , where

V 0
i = {v ∈ V (G) : i(G− v) = i(G)}

V −i = {v ∈ V (G) : i(G− v) < i(G)}

V +
i = {v ∈ V (G) : i(G− v) > i(G)}.

Thus if G is i-critical, then V (G) = V −i . Using Proposition 1.11, it is easy to show

that V +
i = ∅ if G is i-bicritical.

Proposition 1.18. If G is i-bicritical, then either G is i-critical or G−v is i-critical

for any v ∈ V 0
i .

Proof. Suppose that V +
i 6= ∅ and let v ∈ V +

i . Then i(G−v) > i(G). Let u ∈ V (G)−

{v}. Then by Proposition 1.11 i(G−{u, v}) = i((G− v)− u) ≥ i(G− v)− 1 ≥ i(G),

a contradiction to the fact that G is i-bicritical. Thus V +
i = ∅.

If V (G) = V −i then G is i-critical so suppose that V 0
i 6= ∅ and let v ∈ V 0

i such

that G− v is not i-critical. Then since v ∈ V 0
i , i(G− v) = i(G). Let u ∈ V (G− v) so

that i((G−v)−u) ≥ i(G−v). Then i(G−{u, v}) = i((G−v)−u) ≥ i(G−v) = i(G),

a contradiction to the fact that G is i-bicritical. The result follows.
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Proposition 1.19. [7] If there exist distinct vertices u, v ∈ V (G) such that N [v] ⊆

N [u], then G is not i-critical.

The above proposition immediately yields the following three results.

Proposition 1.20. [7] If G has a vertex v with deg v ≥ 1 such that 〈N [v]〉 is complete,

then G is not i-critical.

Proposition 1.21. [7] If G has a vertex v such that deg(v) = 1, then G is not

i-critical.

Corollary 1.22. No tree is i-critical.

There are restrictions for the degrees of vertices in an i-bicritical graph as well.

Proposition 1.23. If G has a vertex v such that deg(v) = 2, then G is not i-bicritical.

Proof. Suppose G is i-bicritical and let v be a vertex in G with N(v) = {x, y}.

Consider an i-set S of G− {x, y}. Since v is an isolated vertex in G− {x, y}, v ∈ S.

But then S is an independent dominating set of G with cardinality less than i(G), a

contradiction.

Proposition 1.24. If G is i-bicritical, then there does not exist v ∈ V (G) such that

〈N(v)〉 has K2,m as a spanning subgraph.

Proof. Suppose G is i-bicritical and let v ∈ V (G) such that 〈N(v)〉 has K2,m as a

spanning subgraph. Let {v1, v2} be the vertices in the 2-partite set of K2,m and let

D be an i-set of G − {v1, v2}. If any x ∈ N [v] − {v1, v2} is also in D, then x would

dominate both v1 and v2 and D would also be an independent dominating set of G.

Thus D∩N [v] = ∅, but this means that D does not dominate v, a contradiction.
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Recall that Sumner and Blitch [45] conjectured that i(G) = γ(G) for γ-edge-

critical graphs and Brigham, Chinn, and Dutton [9] posed the question “does i(G) =

γ(G) for γ-vertex-critical graphs?”. Also recall that Fulman, Hanson, and

MacGillivray [21] answered this question with a negative response. Ao [7] also an-

swered the question (Question 3) about γ-edge-critical graphs with a negative re-

sponse for γ ≥ 4. For γ(G) = 3 van der Merwe, Mynhardt, and Haynes [46] showed

that there exists a connected 3-γ-critical graph G with i(G) = k for each k ≥ 3. De-

spite this, there are considerations about criticality to be made when γ(G) = i(G).

Proposition 1.25. If γ(G) = i(G), and G is i-critical, then G is γ-critical.

Proof. For any graph G, γ(G) ≤ i(G). Let v ∈ V (G). Thus γ(G− v) ≤ i(G− v) <

i(G) = γ(G) and so G is γ-critical.

Proposition 1.26. If γ(G) = i(G), and G is i-bicritical, then G is γ-bicritical.

Proof. For any graph G, γ(G) ≤ i(G). Let {x, y} ⊆ V (G). Then γ(G − {x, y}) ≤

i(G− {x, y}) < i(G) = γ(G).

Proposition 1.27. If x, y ∈ V (G) have a common neighbour then γ(G − {x, y}) ≥

γ(G)− 1.

Proof. Let x, y, z ∈ V (G) such that xz, yz ∈ E(G). Let D be a γ-set of G − {x, y}.

Then {z} ∪D is a dominating set of G. Thus γ(G) ≤ γ(G− {x, y}) + 1.

The above proposition gives a result which shows how γ(G) and i(G) relate to

each other when G is strong i-bicritical.

Proposition 1.28. If G is strong i-bicritical, then γ(G) < i(G).
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Proof. Suppose G is strong i-bicritical with γ(G) = i(G) and let x, y, z ∈ V (G) such

that xz, yz ∈ E(G) and xy /∈ E(G). Then γ(G−{x, y}) ≤ i(G−{x, y}) = i(G)−2 =

γ(G)− 2, a contradiction to Proposition 1.27. Thus γ(G) < i(G).



20

2

Construction Results

When studying any class of graphs, a major goal is to completely characterize the

graphs in question. For γ-critical graphs Brigham, Chinn, and Dutton [9] presented a

method so that given any graph G, one can construct a γ-critical graph H such that

G is an induced subgraph of H. In other words, there is no finite list of forbidden

induced subgraphs for γ-critical graphs, which indicates that the characterization

problem is quite difficult. A consolation then would be the presentation of many

examples of γ-critical graphs. For this, methods of constructing γ-critical graphs

come in handy.

Brigham, Chinn, and Dutton [9] looked at constructions for γ-critical graphs.

One construction they presented, called the coalescence, is very useful and can be

adapted for constructing other types of critical graphs such as γ-bicritical, i-critical, i-

bicritical, γt-critical, and γt-bicritical graphs. For γ-critical graphs, this construction

combined with the upper bound on the diameter for k-γ-critical graphs [21] can be

used to build k-γ-critical graphs of maximum diameter. (This result is presented in

detail in Chapter 5.) The coalescence construction is introduced in Subsection 2.2.3.
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In her Master’s thesis, Ao [7] provided families of i-critical graphs. Many of

these also produced γ-critical graphs. Brigham, Haynes, Henning, and Rall [10] also

discussed families and constructions. These were used mainly to produce examples

of γ-bicritical graphs, but many of the families presented were also γ-critical graphs,

and many of the constructions relied on the use of γ-critical graphs.

Constructions for γt-critical graphs were investigated by Goddard, Haynes, Hen-

ning, and van der Merwe [23] and constructions for γt-bicritical graphs were investi-

gated by Jafari Rad [30]. These constructions are studied in Chapter 4.

In this chapter, we extend the results for known constructions, showing both

necessary and sufficient conditions for these constructions to produce i-critical graphs.

We also present new constructions, showing sufficient and, in some cases, necessary

conditions for these constructions to produce i-critical graphs. Constructions for i-

bicritical graphs are investigated in Chapter 3, and constructions for γt-critical and

γt-bicritical graphs are investigated in Chapter 4.

2.1 No Forbidden Subgraphs

As mentioned at the start of this chapter, Brigham, Chinn, and Dutton [9] showed

that for any graph G there is a γ-critical graph H such that G is an induced subgraph

of H. In this section we show similar results for i-critical graphs and i-bicritical

graphs.

Let G be any graph with i(G) ≥ 3. Construct H1 as follows:

For each v ∈ V (G), add independent vertices {v1, v2} and add all edges between

V (G− v) and {v1, v2}. Additionally, for all pairs x, y ∈ V (G) add all edges between

{x1, x2} and {y1, y2}. Notice that i(H1) = 3. In her Master’s thesis [7], Ao showed

that H1 is 3-i-critical.

Proposition 2.1. [7] For any graph G with i(G) ≥ 3, there exists a 3-i-critical graph
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H such that G is an induced subgraph of H.

Notice that if i(G) ≤ 2 we can create the graph G′ where V (G′) = V (G)∪{v1} if

i(G) = 2 or V (G′) = V (G)∪ {v1, v2} if i(G) = 1 and E(G′) = E(G). Then i(G′) = 3

and the graph H1 can be constructed from G′. Since G is an induced subgraph of G′,

G is also an induced subgraph of H1. Thus the condition i(G) ≥ 3 can be dropped

from the above result.

Proposition 2.2. For any graph G, there exists a 3-i-critical graph H such that G

is an induced subgraph of H.

We now generalize the construction of H1 to create k-i-critical graphs with k ≥ 3.

Let G be any graph. Construct the graph Hj, j ≥ 1, as follows:

If i(G) ≥ j + 2, then for each vertex v ∈ V (G) add independent vertices {v1, v2,

. . . , vj+1} and add all edges between V (G−v) and {v1, v2, . . . , vj+1}. Additionally, for

all pairs x, y ∈ V (G) add all edges between {x1, x2, . . . , xj+1} and {y1, y2, . . . , yj+1}.

If i(G) < j+2, then let G′ be the graph with V (G′) = V (G)∪{w1, w2, . . . , wj+2−i(G)}

and E(G′) = E(G). Then i(G′) = j + 2 and we can construct Hj for G′. Notice that

i(Hj) = j + 2.

Proposition 2.3. The graph Hj is i-critical for j ≥ 1.

Proof. Consider z ∈ V (Hj). If z ∈ V (G), then {z1, z2, . . . , zj+1} is an independent

dominating set of Hj − z. If z ∈ {v1, v2, . . . , vj} for some v ∈ V (G), then {v} ∪

({v1, v2, . . . , vj+1}−{z}) is an independent dominating set of Hj−z. Thus i(Hj−z) ≤

j + 1 < i(Hj) and so Hj is i-critical.

Notice that for j = 1 we have the graph H1 and i(H1) = 3. If for some v ∈ V (G)

we consider G−{v1, v2} the possible i-sets of G−{v1, v2} are of the form {u, u1, u2}

where u ∈ V (G) − {v}, or S where S ⊆ V (G) − {v}. If i(G) ≥ 4 then |S| ≥ 3 and

i(G− {v1, v2}) ≥ 3, so we are not guaranteed to have that H1 is i-bicritical.
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Proposition 2.4. The graph Hj is i-bicritical for j ≥ 2.

Proof. Consider {x, y} ⊆ V (Hj). If {x, y} ⊆ V (G), then {x1, x2, . . . , xj+1} is an inde-

pendent dominating set of Hj − {x, y}. If x ∈ V (G) and y ∈ {x1, x2, . . . , xj+1}, then

{x1, x2, . . . , xj+1}−{y} is an independent dominating set of Hj−{x, y}. If x ∈ V (G)

and y ∈ {z1, z2, . . . , zj+1} for some z ∈ V (G), then {x1, x2, . . . , xj+1} is an indepen-

dent dominating set of Hj − {x, y}. If x ∈ {u1, u2, . . . , uj+1} for some u ∈ V (G) and

y ∈ {v1, v2, . . . , vj+1} for some v ∈ V (G), then {u} ∪ ({u1, u2, . . . , uj+1} − {x}) is an

independent dominating set of Hj − {x, y}. Finally, if {x, y} ⊆ {v1, v2, . . . , vj+1} for

some v ∈ V (G), then {v}∪ ({v1, v2, . . . , vj+1}−{x, y}) is an independent dominating

set of Hj − {x, y}. Hence in all cases, Hj is i-bicritical.

Corollary 2.5. For any graph G and for all k ≥ 3, there exists a k-i-critical graph

H such that G is an induced subgraph of H.

Corollary 2.6. For any graph G and for all k ≥ 4, there exists a k-i-bicritical graph

H such that G is an induced subgraph of H.

The 2-i-critical graphs are characterized in Proposition 1.16, so for k = 2 we

know exactly what the k-i-critical graphs look like. However, for k ≥ 3 there is no

characterization of k-i-critical graphs through a finite list of forbidden subgraphs.

Likewise, the 2-i-bicritical graphs are characterized in Proposition 1.17 and so we

exactly know the k-i-bicritical graphs for k = 2 but for k ≥ 4 there is no charac-

terization of k-i-bicritical graphs through a finite list of forbidden subgraphs. The

structure of 3-i-bicritical graphs is unknown.

From the proof of Proposition 2.4 we can see thatHj may not be strong i-bicritical.

Thus we provide the following construction.

Let G be any graph and let the maximal independent sets of G be I1, I2, . . ., Ik.

Construct the graph HI
j as follows:
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For each Il, 1 ≤ l ≤ k, add the set of α(G) + 1 − |Il| independent vertices

Vl = {v1, v2, . . . , vα(G)+j−|Il|} and add all edges between Vl and V (G) − Il. For all

pairs Vl1 and Vl2 add all edges between Vl1 and Vl2 .

Proposition 2.7. For any G, i(HI
j ) = α(G) + j, j ≥ 1.

Proof. If x ∈ V (G), then x is only independent to vertices of Vl if x ∈ Il. But

|Vl| + |Il| = α(G) + j for all 1 ≤ l ≤ k. If x ∈ Vl, then x is only independent to

vertices of Vl and vertices of Il. But again |Vl|+ |Il| = α(G) + j for all 1 ≤ l ≤ k. As

these are the only maximal independent sets of HI
j , i(HI

j ) = α(G) + j.

Proposition 2.8. The graph HI
j is i-critical for any G and all j ≥ 1.

Proof. Let v ∈ HI
j . If x ∈ V (G), suppose without loss of generality that x ∈ I1. Then

(I1 − {x}) ∪ V1 dominates HI
j − x since V1 6= ∅ and V1 dominates Vl for 2 ≤ l ≤ k,

V1 dominates NG(x) and I1 − {x} dominates G − N [x]. But |(I1 − {x}) ∪ V1| =

α(G) + j − 1 = i(HI
j ) − 1. Suppose without loss of generality that x ∈ V1. Then

I1 dominates G. If V1 − {x} 6= ∅, then V1 − {x} dominates Vl for 2 ≤ l ≤ k. If

V1−{x} = ∅, then for each Vl, 2 ≤ l ≤ k, there exists a zl ∈ I1 such that zl dominates

Vl (since I1 6= Il for all 2 ≤ l ≤ k). But |I1 ∪ (V1−{x})| = α(G) + j − 1 = i(HI
j )− 1.

Thus HI
j is i-critical.

Proposition 2.9. The graph HI
j is i-bicritical for any G and all j ≥ 2.

Proof. Let {x, y} ⊆ V (HI
j ).

Case 1: {x, y} ⊆ V1

Then I1 dominates G and for for each Vl, 2 ≤ l ≤ k, there exists a zl ∈ I1 such that zl

dominates Vl (since I1 6= Il for all 2 ≤ l ≤ k). Therefore I1 ∪ (V1−{x, y}) dominates

HI
j − {x, y} and |I1 ∪ (V1 − {x, y})| = α(G) + j − 2 = i(HI

j )− 2.
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Case 2: {x, y} ⊆ I1

Then I1 − {x, y} dominates G − (N [x] ∪ N [y]), V1 dominates N(x) ∪ N(y), and V1

dominates Vl for all 2 ≤ l ≤ k. Therefore (I1 − {x, y}) ∪ V1 dominates HI
j − {x, y}

and |(I1 − {x, y}) ∪ V1| = α(G) + j − 2 = i(HI
j )− 2.

Case 3: x ∈ I1 and y ∈ V1

Then I1 − {x} dominates G−N [x], V1 − {y} 6= ∅ and so V1 − {y} dominates NG(x)

and Vl for all 2 ≤ l ≤ k. Therefore (I1 − {x}) ∪ (V1 − {y}) dominates HI
j − {x, y}

and |(I1 − {x}) ∪ (V1 − {y})| = αG+ j − 2 = i(HI
j )− 2.

Case 4: x ∈ I1 and y ∈ I2 but xy ∈ E(G)

Then I1 − {x} dominates G−N [x] (and y /∈ I1), and V1 dominates N(x) and Vl for

all 2 ≤ l ≤ k. Therefore (I1−{x})∪V1 dominates HI
j −{x, y} and |(I1−{x})∪V1| =

α(G) + j − 1 = i(HI
j )− 1.

Case 5: x ∈ V1 and y ∈ I2 but y /∈ I1

Then I2−{y} dominates G−N [y], and V2 dominates NG(y), V1−{x}, and Vl for all

3 ≤ l ≤ k. Therefore (I2 − {y}) ∪ V2 dominates HI
j − {x, y} and |(I2 − {y}) ∪ V2| =

α(G) + j − 1 = i(HI
j )− 1.

Case 6: x ∈ V1 and y ∈ V2

Then I1 dominates G and V1−{x} dominates Vl for all 2 ≤ l ≤ k since V1−{x} 6= ∅.

Therefore I1∪(V1−{x}) dominates HI
j −{x, y} and |I1∪(V1−{x})| = α(G)+j−1 =

i(HI
j )− 1.

Hence in all cases i(HI
j − {x, y}) < i(HI

j ), and thus HI
j is i-bicritical.

Corollary 2.10. The graph HI
j is strong i-bicritical for any G and all j ≥ 2.

Proof. The result follows from the proof of Proposition 2.9 since the only ways that

{x, y} ⊆ V (HI
j ) with xy /∈ E(HI

j ) are Cases 1, 2, and 3.
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Corollary 2.11. For any graph G and for all k ≥ α(G) + 2, there exists a strong

k-i-bicritical graph H such that G is an induced subgraph of H.

The condition k ≥ α(G) + 2 in the above corollary can be removed through

another construction.

Let G be any graph. Construct the graph H ′j, j ≥ 5, as follows:

If i(G) ≥ j, then for each x1x2 /∈ E(G) add independent vertices {v3, v4, . . . , vj}

and add all edges between V (G− {x1, x2}) and {v3, v4, . . . , vj}. Additionally, for all

x1x2 /∈ E(G) and y1y2 /∈ E(G) add all edges between {x3, x4, . . . , xj} and {y3, y4, . . . ,

yj}. If i(G) < j, then let G′ be the graph with vertex set V (G′) = V (G)∪{w1, w2, . . . ,

wj−i(G)} and edge set E(G′) = E(G). Then i(G′) = j and we can construct H ′j for

G′. Notice that i(H ′j) = j.

Proposition 2.12. The graph H ′j is strong i-bicritical for any G and all j ≥ 5.

Proof. Let {x, y} ⊆ V (H ′j) such that xy /∈ E(H ′j).

If {x, y} = {x1, x2} ⊆ V (G) then {x3, x4, . . . , xj} is an independent dominating

set of H ′j − {x, y}. If, without loss of generality, x ∈ V (G) and y /∈ V (G) then

there exists x2 ∈ V (G) such that xx2 /∈ E(G) and y ∈ {x3, x4, . . . , xj}. Then

{x2, x3, x4, . . . , xj}−{y} is an independent dominating set of H ′j−{x, y}. If {x, y} ⊆

V (H − G), then there exists x1, x2 ∈ V (G) with x1x2 /∈ E(G) such that {x, y} ⊆

{x3, x4, . . . , xj}. Then {x1, x2, x3, x4, . . . , xj} − {x, y} is an independent dominating

set of H ′j − {x, y}. Thus H ′j is strong i-bicritical.

Corollary 2.13. For any graph G and for all k ≥ 5 there exists a strong k-i-bicritical

graph H such that G is an induced subgraph of H.
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2.2 Constructions

We now investigate various construction techniques that yield i-critical graphs. Con-

structions for i-bicritical graphs and strong i-bicritical graphs can be found in Chapter

3, and constructions for γt-critical graphs and γt-bicritical graphs can be found in

Chapter 4.

2.2.1 Disjoint Union

Let G and H be graphs with V (G) ∩ V (H) = ∅. The disjoint union of G and H,

written G ∪H, is the graph with vertex set V (G ∪H) = V (G) ∪ V (H) and edge set

E(G ∪H) = E(G) ∪ E(H). The graph G1 ∪ G2 ∪ · · · ∪ Gk is defined recursively by

G1∪G2∪· · ·∪Gk = (G1∪· · ·∪Gk−1)∪Gk. Note that i(G1∪G2∪· · ·∪Gk) =
∑k

j=1 i(Gj).

Proposition 2.14. The graph G1∪G2∪ · · · ∪Gk is i-critical if and only if all of G1,

G2, . . ., Gk are i-critical.

Proof. If G1, G2, . . ., Gk are all i-critical, then for some v ∈ V (Gj), 1 ≤ j ≤ k,

(G1 ∪ · · · ∪ Gk) − v ∼= G1 ∪ · · · ∪ Gj − v ∪ · · · ∪ Gk. Thus i((G1 ∪ · · · ∪ Gk) − v) =

i(G1)+ · · ·+ i(Gj)−1+ · · ·+ i(Gk) < i(G1∪· · ·∪Gk) and so G1∪· · ·∪Gk is i-critical.

Suppose for the converse that some Gj, 1 ≤ j ≤ k, is not i-critical. Let v ∈ V (Gj)

be a vertex such that i(Gj − v) = i(Gj) and consider the graph (G1 ∪ · · · ∪Gk)− v.

Since (G1∪· · ·∪Gk)−v ∼= G1∪· · ·∪Gj−v∪· · ·∪Gk, we have that i((G1∪· · ·∪Gk)−v) =

i(G1)+· · ·+i(Gj−v)+· · ·+i(Gk) = i(G1)+· · ·+i(Gj)+· · ·+i(Gk) = i(G1∪· · ·∪Gk)

and thus G1 ∪ · · · ∪Gk is not i-critical, a contradiction.

2.2.2 Join

The join of G and H, written G+H, is the graph with vertex set V (G+H) = V (G)∪

V (H) and edge set E(G + H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G) and v ∈ V (H)}.
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The graph G1 +G2 + · · ·+Gk is defined recursively by (G1 + · · ·+Gk−1) +Gk. Note

that i(G1 +G2 + · · ·+Gk) = min{i(G1), i(G2), . . . , i(Gk)}. The graph K3,3 +K3,3 is

pictured in Figure 2.1.

Figure 2.1: The graph K3,3 +K3,3.

Ao introduced the join construction for i-critical graphs [7]. Here she showed that

if G1, G2, . . . , Gk are i-critical and i(G1) = i(G2) = · · · = i(Gk), then G1+G2+ · · ·Gk

is i-critical. The converse is shown below.

Proposition 2.15. The graph G = G1 +G2 + · · ·+Gk is i-critical if and only if all

of G1, G2, . . ., Gk are i-critical and i(G1) = i(G2) = · · · = i(Gk).

Proof. Let G = G1 +G2 + · · ·+Gk.

Suppose without loss of generality that G is i-critical but G1 is not i-critical and

let v ∈ V (G1) such that i(G1 − v) ≥ i(G1). Let D be an i-set of G − v. Then

D ∩ V (Gj) 6= ∅ for only one j, 1 ≤ j ≤ k. If D ∩ V (G1) 6= ∅, then i(G − v) =

i(G1− v) ≥ i(G1) ≥ i(G). If D∩V (Gj) 6= ∅ for j 6= 1, then i(G− v) = i(Gj) ≥ i(G).

In either case we have a contradiction. Hence we can conclude that all of G1, G2, . . .,

Gk are i-critical.

For the second part of the statement, suppose without loss of generality that

i(G1) > i(Gj) for all j, 2 ≤ j ≤ k, and let v ∈ V (G1). Let D be an i-set of

G − v. Again, D ∩ V (Gj) 6= ∅ for only one j, 1 ≤ j ≤ k. If D ∩ V (G1) 6= ∅,

then i(G − v) = i(G1 − v) = i(G1) − 1 ≥ i(G). If D ∩ V (Gj) 6= ∅ for j 6= 1, then

i(G− v) = i(Gj) ≥ i(G). In either case we have a contradiction to G being i-critical,

and we can conclude that i(G1) = i(G2) = · · · = i(Gk).
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For the converse, suppose that i(G1) = i(G2) = · · · = i(Gk) and all of G1, G2,

. . ., Gk are i-critical. Consider v ∈ V (G) and without loss of generality suppose

that v ∈ V (G1). Let D be an i-set of G1 − v. Then D dominates G1 − v and by

construction D dominates G2, G3, . . ., Gk. Thus D is an independent dominating set

of G− v and so i(G− v) ≤ |D| = i(G1 − v) = i(G1)− 1 < i(G1) = i(G). Therefore

G is i-critical.

Notice that γ(G1 + G2 + · · · + Gk) = γt(G1 + G2 + · · · + Gk) = 2 and so the

join construction is of no use to construct γ-critical, γ-bicritical, γt-critical, and γt-

bicritical graphs.

2.2.3 Coalescence

Let G and H be disjoint graphs with x ∈ V (G) and y ∈ V (H). The coalescence

of G and H with respect to x and y is the graph G ·xy H with vertex set V (G ·xy

H) = (V (G) − {x}) ∪ (V (H) − {y}) ∪ {v}, where v /∈ V (G) ∪ V (H), and edge set

E(G ·xyH) = E(G−x)∪E(H−y)∪{vw : xw ∈ E(G) or yw ∈ E(H)}. We call v the

vertex of identification of G and H, and we consider V (G) and V (H) as subsets of

V (G ·xy H) and regard v as an element of both V (G) and V (H). Informally, G ·xy H

is the graph obtained from G∪H by identifying x and y. If the context is clear, or if

the vertices x and y are not important, we write G ·H instead of G ·xyH. The graph

G1 ·G2 · · · · ·Gk is defined recursively by G1 ·G2 · · · · ·Gk = (G1 ·G2 · · · · ·Gk−1) ·Gk. This

construction which first appeared in [9] and [21] was found to be useful in building

γ-critical graphs with maximum diameter [21]. The graphs C4 · C4 and an example

of C4 · C4 · C4 · C4 · C4 are pictured in Figure 2.2 and Figure 2.3, respectively. (Note

that there are other possible configurations of C4 · C4 · C4 · C4 · C4.)

Ao looked at the coalescence construction for i-critical graphs in her Master’s

thesis [7].
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Figure 2.2: The graph C4 · C4.

Figure 2.3: The graph C4 · C4 · C4 · C4 · C4.

Proposition 2.16. [7] If G and H are disjoint nontrivial graphs, then for any coa-

lescence G ·H, i(G) + i(H)− 1 ≤ i(G ·H) ≤ min{i(G) +α(H), i(H) +α(G)}, where

α(G) is the independence number of G.

Theorem 2.17. [7] If G and H are i-critical, then i(G ·H) = i(G) + i(H)− 1.

Theorem 2.18. [7] If G ·H is i-critical, then i(G ·H) = i(G) + i(H)− 1.

Theorem 2.19. [7], [18] The graph G · H is i-critical if and only if both G and H

are i-critical. Furthermore, i(G ·H) = i(G) + i(H)− 1 if G ·H is i-critical.

A straightforward proof by induction yields the following result using Theorem

2.19 as the base case.

Proposition 2.20. [7] The graph G is i-critical if and only if every block of G is

i-critical. Furthermore, if the blocks of G are labelled G1, G2, . . . , Gk, then i(G) =(∑k
j=1 i(Gj)

)
− (k − 1).

This construction is revisited in Chapter 3 where it is used to construct i-bicritical

graphs. It is also shown in Proposition 3.49 that this construction cannot be used

to construct strong i-bicritical graphs. Chapter 4 uses this construction to create
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γt-critical graphs and γt-bicritical graphs. In Chapter 5 the coalescence is used to

provide examples of k-i-critical graphs that obtain the maximum diameter.

2.2.4 Generalized Coalescence

Let G1, G2, and H be disjoint graphs such that for j = 1, 2, Gj has a subgraph

Hj
∼= H. The generalized coalescence of G1 and G2 with respect to H1 and H2

is the graph G1(H1) � G2(H2) created by identifying the vertices of H1 with the

corresponding vertices in H2. Notice that G1(H1)�G2(H2) is a generalization of the

coalescence as G1({x})�G2({y}) ∼= G1 ·xy G2.

Little is known about this generalized coalescence for the purpose of constructing

critical and bicritical graphs. Note that G is chordal if and only if G is complete

or G = G1(H1) � G2(H2) where H1
∼= H2

∼= Kn for some n, and Gi, i = 1, 2, is

chordal. Proposition 3.49 shows that G1({x}) � G2({y}) is not a valid construction

to produce strong i-bicritical graphs. Proposition 3.52 shows that G1(H1)�G2(H2)

is not a valid construction to produce strong i-bicritical graphs when H1
∼= H2

∼= K2.

Proposition 3.57 provides an example when G1(H1) � G2(H2) is strong i-bicritical

(and also i-bicritical and i-critical) where H1
∼= H2

∼= K2.

2.2.5 Joined Coalescence

Let G1, G2, and H be disjoint graphs such that for j = 1, 2, Gj has a subgraph Hj
∼=

H. We define the joined coalescence of G1 and G2 with respect to H1 and H2 to be the

graph G1(H1)�̂G2(H2) obtained from G1 and G2 by identifying vertices of H1 with

the corresponding vertices of H2 and adding the set of edges {x1x2 : x1 ∈ V (G1) −

V (H1) and x2 ∈ V (G2) − V (H2)}. Notice that for any i-set S of G1(H1)�̂G2(H2),

S ⊆ V (Gi) for exactly one i. Thus i(G1(H1)�̂G2(H2)) = min{i(G1), i(G2)}. The

joined coalescence was introduced by Ao [7]. She presented sufficient conditions for

G1(H1)�̂G2(H2) to be i-critical. The graph K3,3(K2,2)�̂K3,3(K2,2) is pictured in
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Figure 2.4.

Figure 2.4: The graph K3,3(K2,2)�̂K3,3(K2,2).

Let α(G) denote the independence number of G.

Proposition 2.21. [7] Let G1, G2, and H be disjoint graphs such that for j = 1, 2,

Gj has a subgraph Hj
∼= H. If G1 and G2 are k-i-critical and α(H) ≤ k − 2, then

G1(H1)�̂G2(H2) is also k-i-critical.

This construction can be generalized to combine more than two graphs. Let

H1,2 be a subgraph of G1(H1)�̂G2(H2) and let H3 be a subgraph of G3 where

H1,2
∼= H3. The graph (G1(H1)�̂G2(H2))(H1,2)�̂G3(H3) is obtained by identify-

ing vertices of H1,2 with corresponding vertices of H3 and adding edges {x1,2x3 :

x1,2 ∈ V (G1(H1)�̂G2(H2) − H1,2) and x3 ∈ V (G3 − H3)}. This can be generalized

similarly for more than three graphs as the graph

G�̂ = ((((G1(H1)�̂G2(H2))(H1,2))�̂G4(H4)) · · · �̂Gm−1(Hm−1))(H1,2,...,m−1)�̂Gm(Hm).

Note that this construction is associative.



2.2. Constructions 33

Proposition 2.22. For each H ∈ {H1, H2, . . . , Hm, H1,2, H1,2,3, . . . , H1,2,...,m−1}, sup-

pose α(H) ≤ k − 2. Then

G�̂ = (((G1(H1)�̂G2(H2))(H1,2)�̂G4(H4)) · · · �̂Gm−1(Hm−1))(H1,2,...,m−1)�̂Gm(Hm)

is k-i-critical if and only if k = min{i(G1), i(G2), . . . , i(Gm)} and every vertex x in

G�̂ is in some V (Gj) where i(Gj − x) = k − 1.

Proof. Suppose k = min{i(G1), i(G2), . . . , i(Gm)} and every vertex x in G�̂ is in some

V (Gj) where i(Gj − x) = k − 1. Since k = min{i(G1), i(G2), . . . , i(Gm)}, i(G�̂) = k.

Let D be an i-set of Gj − x, thus |D| = k − 1. Since α(H) ≤ k − 2, there is a vertex

y ∈ V (Gj −Hj) such that y ∈ D. Therefore D independently dominates G− x and

so i(G�̂ − x) = k − 1 < i(G�̂) and G�̂ is k-i-critical.

SupposeG�̂ is k-i-critical. Then by construction, k = min{i(G1), i(G2), . . . , i(Gm)}.

Consider G�̂ − x. Say x ∈ V (Gj), 1 ≤ j ≤ m. Let D be an i-set of G�̂ − x, and so

|D| = k − 1. By construction of G�̂, D ⊆ V (Gl) for some 1 ≤ l ≤ m. If x /∈ V (Gl)

then D dominates G, a contradiction. Thus x ∈ V (Gl) and D dominates Gl−x, and

so i(Gl − x) ≤ k − 1. Therefore i(Gl) = k, and i(Gl − x) = k − 1.

There is a simpler version of this construction where each contributing graph

G1, G2, . . . , Gm has a subgraph Hj, 1 ≤ j ≤ m where Hj
∼= H and the constructed

graph is obtained by identifying corresponding vertices of H1, H2, . . . , Hm with each

other and adding the edges {xjxl : xj ∈ V (Gj − Hj) and xl ∈ V (Gl − Hl), j 6=

l, 1 ≤ j, l,≤ m}. In this case, we denote the constructed graph more simply by

G1(H1)�̂G2(H2)�̂ · · · �̂Gm(Hm).

Corollary 2.23. Let G1, G2, . . . , Gm be graphs such that each Gj has a subgraph

Hj
∼= H, 1 ≤ j ≤ m, and α(H) ≤ k− 2. Then G = G1(H1)�̂G2(H2)�̂ · · · �̂Gm(Hm)

is k-i-critical if and only if k = i(G1) = i(G2) = · · · = i(Gm) and every vertex



2.2. Constructions 34

x ∈ V (Gj −Hj) is i-critical in Gj and every vertex x ∈ H is i-critical in some Gj,

1 ≤ j ≤ m.

2.2.6 Wreath Product

The wreath product of G with H, writtenG[H], is the graph with vertex set V (G[H]) =

{(g, h) : g ∈ V (G), h ∈ V (H)} and edge set E(G[H]) = {(g1, h1)(g2, h2) : g1g2 ∈

E(G) or g1 = g2 and h1h2 ∈ E(H)}. Notice that, in general, G[H] 6∼= H[G]. For

example, K2[C3] ∼= C3 ∪ C3, a disconnected graph, but C3[K2] ∼= K2,2,2, a connected

graph. The graph G[H] can be thought of as the graph obtained by replacing each

vertex of G by a copy of H and adding all edges between two copies of H if and

only if the corresponding vertices in G are adjacent. The graph C5[C4] is pictured in

Figure 2.5.

Figure 2.5: The graph C5[C4].

Proposition 2.24. For any graphs G and H, i(G[H]) = i(G)i(H).

Proof. Let D be an i-set of G[H] and let S1 = {g : (g, h) ∈ D for some h ∈ V (H)}.

Since D is an independent dominating set of G[H], S1 is an independent dominating

set of G. Thus |S1| ≥ i(G). For a fixed g ∈ V (G), let Sg = {h : (g, h) ∈ D}. Since

D is an independent dominating set of G[H], either Sg = ∅ or Sg is an independent
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dominating set of H. Thus |Sg| = 0 or |Sg| ≥ i(H). But this implies that |D| ≥

i(G)i(H).

Let S1 be an i-set of G and let S2 be an i-set of H. Let D = {(g, h) : g ∈

S1 and h ∈ S2}. Then D is an independent dominating set of G[H] and |D| =

i(G)i(H). Therefore i(G[H]) = i(G)i(H).

Proposition 2.25. The graph G[H] is i-critical if and only if every vertex of G is

in an i-set of G and H is i-critical.

Proof. Let v = (g, h) ∈ V (G[H]). Let S1 be an i-set of G containing g, let Sg be

an i-set of H − h, and let S2 be an i-set of H. Then D = {(g, u) : u ∈ Sg} ∪

{(x, y) : x 6= g, x ∈ S1, y ∈ S2} is an independent dominating set of G[H] − v, and

i(G[H]) ≤ |D| = i(H) − 1 + (i(G) − 1)(i(H)) = i(G)i(H) − 1 = i(G[H]) − 1. Thus

G[H] is i-critical.

Suppose G[H] is i-critical and let (g, h) ∈ V (G[H]). Let S be an i-set of G[H]

such that (g, h) ∈ S. Let S ′ = {u ∈ V (G) : ∃v ∈ V (H) with (u, v) ∈ S}. Then S ′ is

an i-set of G with g ∈ S ′. Let Sg = {v ∈ V (H) : (g, v) ∈ S}. Then Sg is an i-set of

H and Sg−{h} is an independent dominating set of H−h with cardinality i(H)−1.

Therefore H is i-critical.

The wreath product can be generalized to say that instead of replacing each

vertex of G by a copy of H, we replace the vertices of G by copies of different

graphs. Formally, let G be a graph with vertex set V (G) = {v1, v2, . . . , vn}, and let

H1, H2, . . ., Hn be graphs which are pairwise vertex disjoint. We define the graph

G[H1, H2, . . . , Hn] as the graph with vertex set V (H1)∪V (H2)∪· · ·∪V (Hn) and edge

set E(H1)∪E(H2)∪· · ·∪E(Hn)∪{hihj : hi ∈ V (Hi), hj ∈ V (Hj), and vivj ∈ E(G)}.

The following result can be obtained through a proof similar to that of Proposition

2.24 and Proposition 2.25.
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Proposition 2.26. Let V (G) = {v1, v2, . . . , vn}. The graph G[H1, H2, . . . , Hn] is i-

critical if and only if every vertex of G is in an i-set of G, each of H1, H2, . . . , Hn

is i-critical, and for any two index sets J,K ⊆ {1, 2, . . . , n} such that the sets S1 =

{vj : j ∈ J} and S2 = {vk : k ∈ K} are i-sets of G we have that
∑

j∈J i(Hj) =∑
k∈K i(Hk). Note that i(G[H1, H2, . . . , Hn]) =

∑
j∈J i(Hj) where J is an index set

J ⊆ {1, 2, . . . , n} such that S = {vj : j ∈ J} is an i-set of G.

The next result investigates the validity of using the wreath product to construct

γ-critical graphs.

Proposition 2.27. For any graphs G and H, γ(G[H]) = γ(G) if γ(H) = 1 and

γ(G[H]) = γt(G) if γ(H) ≥ 2.

Proof. Suppose γ(H) = 1 and let v ∈ V (H) be a dominating vertex in H. Let S

be a γ-set of G. Then D = {(x, v) : x ∈ S} is a dominating set of G[H]. Therefore

γ(G[H]) ≤ |D| = γ(G). Now let D be a γ-set of G[H] and let S = {g ∈ V (G) : ∃h ∈

V (H) with (g, h) ∈ D}. Since D is a dominating set of G[H], S is a dominating set

of G and so γ(G) ≤ γ(G[H]). Thus γ(G[H]) = γ(G) if γ(H) = 1.

Suppose γ(H) ≥ 2. Let S be a γt-set of G and let v ∈ H. Then D = {(x, v) :

x ∈ S} is a dominating set of G[H] and so γ(G[H]) ≤ γt(G). Now let D be a

γ-set of G[H] and let (g, h) ∈ D. If (x, y) /∈ D for every x ∈ NG(g) and every

y ∈ V (H), then |D ∩ {(g, v) : v ∈ V (H)}| ≥ γ(H) ≥ 2. Thus for every vertex

g ∈ V (G), either |D ∩ {(g, v) : v ∈ V (H)}| ≥ 2 or there exists an x ∈ NG(g) and

y ∈ V (H) such that (x, y) ∈ D. Let I be the set of vertices I = {g ∈ V (G) :

(g, h) ∈ D and there does not exist x ∈ NG(g) with (x, y) ∈ D for some y ∈ V (H).

Let h ∈ V (H) and for each x ∈ I let gx be any vertex in NG(x). Then let D1 =

D − {(x, y) : x ∈ I} ∪ {(x, h) : x ∈ I} ∪ {(gx, h) : x ∈ I}. Then D1 is a total

dominating set of G[H]. Let S1 = {u ∈ V (G) : ∃ v ∈ V (H) with (u, v) ∈ D1}. Then

D1 is a total dominating set of G and so γt(G) ≤ |S1| ≤ |D1| ≤ γ(G[H]). Thus

γ(G[H]) = γt(G).
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Proposition 2.28. For any graphs G and H, γt(G[H]) = γt(G).

Proof. If |V (H)| = 1, then G[H] ∼= G and so clearly γt(G[H]) = γt(G). Thus suppose

that |V (H)| ≥ 2.

Consider a γt-set S of G. For a fixed h ∈ V (H), let D = {(g, h) : g ∈ S}. Then

D is a total dominating set of G[H] and so γt(G[H]) ≤ γt(G).

Now consider a γt-set S of G[H] and let (g, h) ∈ S. Either (x, y) /∈ S for every

x ∈ NG(g) and every y ∈ V (H) and so |S ∩ {(g, v) : v ∈ V (H)}| ≥ 2, or there

exists an x ∈ NG(g) and y ∈ V (H) such that (x, y) ∈ S. Let I be the set of vertices

g ∈ V (G) such that (g, h) ∈ S for some h ∈ V (H) and there is no x ∈ NG(g)

with (x, y) ∈ S for some y ∈ V (H). Let h ∈ V (H) and for each x ∈ I let gx be

any vertex in NG(x). Then let S1 = S − {(x, y) : x ∈ I} ∪ {(x, h) : x ∈ I} ∪

{(gx, h) : x ∈ I}. Then S1 is a total dominating set of G[H] and |S1| ≤ |S|. Let

D = {u ∈ V (G) : ∃v ∈ V (H) with (u, v) ∈ S1}. Then D is a total dominating set of

G and so γt(G) ≤ |D| = |S1| ≤ |S| = γt(G[H]). Therefore γt(G) = γt(G[H]).

Proposition 2.29. If γ(H) ≥ 3, then G[H] is not γ-critical.

Proof. Let h ∈ V (H) and g ∈ V (G). Since γ(H) ≥ 3, we have that γ(H − h) ≥

γ(H) − 1 ≥ 2. But then by the proof of Proposition 2.27, we have that γ(G[H] −

(g, h)) = γt(G) = γ(G[H]) and so G[H] is not γ-critical.

Corollary 2.30. If G[H] is γ-critical, then γ(H) = 1 or γ(H) = 2.

Proposition 2.31. If G[H] is γ-critical, then H is γ-critical.

Proof. Suppose H is not γ-critical and let h ∈ V (H) such that γ(H − h) ≥ γ(H).

Consider any g ∈ V (G). If γ(H) ≥ 2, then by the proof of Proposition 2.27, γ(G[H]−

(g, h)) = γt(G[H]) = γ(G[H]). If γ(H) = 1, then γ(G[H]−(g, h)) = γ(G) = γ(G[H]).

In either case, G[H] is not γ-critical.
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Corollary 2.32. If G[H] is γ-critical, then γ(H) = 2 or H ∼= K1.

Proposition 2.33. If γ(H) = 2 and G[H] is γ-critical, then γt(G−N [x]) = γt(G)−2

for every x ∈ V (G).

Proof. Suppose G[H] is γ-critical and γ(H) = 2, and let V (G) = {g1, g2, . . . , gr} and

V (H) = {h1, h2, . . . , hs}. Consider G[H] − (gk, hk) for some gk ∈ V (G) and some

hk ∈ V (H). Let S be a γ-set of G[H] − (gk, hk). Then |S| = γ(G[H] − (gk, hk)) =

γ(G[H]) − 1 = γt(G) − 1. If there is a vertex (x, y) ∈ S with xgk ∈ E(G) then S is

also a dominating set of G[H], a contradiction to the criticality of G[H]. Therefore,

there is a vertex (gk, hl) ∈ S for some l 6= k since γ(H − hk) = 1. Furthermore, hl is

a dominating vertex of H − hk and (gk, hl) is the only vertex of the form (gk, v) in

S, otherwise we can create a dominating set of G[H] − (gk, hk) with fewer vertices.

Now S1 = S − (gk, hl) dominates the subgraph G[H] − {(w, z) : w ∈ NG[gk]} and

|S1| = γt(G)− 2.

Now the set S1 can be used to create a total dominating set of G − NG[gk]. If

(gj, a), (gj, b) ∈ S1 for any vertex vj ∈ V (G) then the set S2 = (S1−{(gj, b)})∪{(c, b)}

where c ∈ NG(gj) is also a dominating set of G[H]− {(w, z) : w ∈ NG[gk]}. Thus we

can create a total dominating set D of G[H]−{(w, z) : w ∈ NG[gk]} with cardinality

at most γt(G)− 2. Finally, the set D1 = {u : ∃(u, u1) ∈ D} is a total dominating set

of G−NG[gk] with cardinality at most γt(G)− 2. Since γt(G−NG[gk]) ≥ γt(G)− 2,

we have that γt(G−NG[gk]) = γt(G)− 2.

The cycle C6 is an example of a graph such that γt(G − N [x]) = γt(G) − 2 for

every vertex x ∈ V (G). Notice that the cycle C4 is 2-γ-critical and the graph C6[C4]

is γ-critical.

Proposition 2.34. If G is a graph such that γt(G − N [x]) = γt(G) − 2 for every

x ∈ V (G) and H is a 2-γ-critical graph, then G[H] is γ-critical.
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Proof. Let g ∈ V (G) and h ∈ V (H) and consider G[H] − (g, h). Let S be a γt-set

of G − N [g] and let h1 be a dominating vertex of H − h. Then S1 = {(x, h1) :

x ∈ S} ∪ {(g, h1)} is a dominating set of G[H] − (g, h) and |S1| = γt(G) − 2 + 1 =

γt(G)− 1 = γ(G[H])− 1. Thus G[H] is γ-critical.

2.2.7 Weighting Construction

The construction presented in this section is a combination of the coalescence and

a generalized version of the wreath product. Given a graph L and a graph R we

construct the weighted graph Gwt as follows:

Let v ∈ V (L) and v ∈ V (R). Replace each vertex u ∈ V (L− v) with {(u, u1),

(u, u2), . . . , (u, ux)}, x ≥ 2. (That is, replace u with a copy of Kx.) For u,w ∈ V (L−

v) add all edges between {(u, u1), (u, u2), . . . , (u, ux)} and {(w,w1), (w,w2), . . . , (w,wx)}

exactly when uw ∈ E(L). Replace each vertex u ∈ V (R− v) with {(u, u1),

(u, u2), . . . , (u, uz)}, z ≥ 2. (That is, replace u with a copy of Kz.) For u,w ∈ V (R−

v) add all edges between {(u, u1), (u, u2), . . . , (u, uz)} and {(w,w1), (w,w2), . . . , (w,wz)}

exactly when uw ∈ E(R). Replace v with {(v, v1), (v, v2), . . . , (v, vy)}, y ≥ 2. (That

is, replace v with a copy of Ky.) Add all edges between {(v, v1), (v, v2), . . . , (v, vy)}

and {(u, u1), (u, u2), . . . , (u, ux)} exactly when vu ∈ E(L) and all edges between

{(v, v1), (v, v2), . . . , (v, vy)} and {(u, u1), (u, u2), . . . , (u, uz)} exactly when vu ∈ E(R).

The weighting construction with L = K3,3, R = P4 and x = y = z = 2 is pictured in

Figure 2.6 and the weighting construction with L = R = K3,3[v] and x = y = 2 and

z = 4 is pictured in Figure 2.7. (The explanation on how to obtain the graph K3,3[v]

is provided in Chapter 3 through the expansion of G via v construction.)

We first provide restrictions on x, y, and z in order for Gwt to be i-critical.

Proposition 2.35. If Gwt is i-critical, i(L − v) < i(L), and i(R − v) < i(R), then

x = y = z.

Proof. If Gwt is i-critical, then for any vertex w ∈ V (Gwt) there exists an independent
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Figure 2.6: The weighting construction with L = K3,3, R = P4, and x = y = z = 2.

Figure 2.7: The weighting construction with L = R = K3,3[v] and x = y = 2 and z = 4.

dominating set D of Gwt with w ∈ D. Recall that this set D can be created by finding

an i-set D′ of Gwt − w and then D = D′ ∪ {w}.
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Thus if w = (v, vj) for some j, 1 ≤ j ≤ y, we have that |D| = (i(L) − 1)x +

(i(R)−1)z+y. If w = (u, uj) for some j, 1 ≤ j ≤ x, where u ∈ V (L) and uv ∈ E(L),

we have that |D| = i(L)x+ (i(R)− 1)z. If w = (u, uj) for some j, 1 ≤ j ≤ z, where

u ∈ V (R) and uv ∈ E(R), we have that |D| = (i(L)− 1)x+ i(R)z.

Therefore (i(L)−1)x+(i(R)−1)z+y = i(L)x+(i(R)−1) = z(i(L)−1)x+i(R)z,

and so x+ z − y = x = z and y = x = z.

Proposition 2.36. The graph Gwt is not i-critical if i(L− v) < i(L) and i(R− v) =

i(R). Likewise, Gwt is not i-critical if i(L− v) = i(L) and i(R− v) < i(R).

Proof. Without loss of generality, suppose that i(L− v) < i(L) and i(R− v) = i(R).

If Gwt is i-critical, then for any vertex w ∈ V (Gwt) there exists an independent

dominating set D of Gwt with w ∈ D. Recall that this set D can be created by

finding an i-set D′ of Gwt − w and then D = D′ ∪ {w}.

Thus if w = (v, vj) for some j, 1 ≤ j ≤ y, we have that |D| = (i(L)−1)x+(i(R)−

1)z + y. If w = (u, uj) for some j, 1 ≤ j ≤ x, where u ∈ V (L) and uv ∈ E(L), we

have that |D| = i(L)x+ i(R)z. If w = (u, uj) for some j, 1 ≤ j ≤ z, where u ∈ V (R)

and uv ∈ E(R), we have that |D| = (i(L)− 1)x+ i(R)z.

Therefore (i(L) − 1)x + (i(R) − 1)z + y = i(L)x + i(R)z = (i(L) − 1)x + i(R)z

and so x = y = 0, a contradiction.

Proposition 2.37. If Gwt is i-critical, i(L − v) = i(L), and i(R − v) = i(R), then

y = x+ z.

Proof. If Gwt is i-critical, then for any vertex w ∈ V (Gwt) there exists an independent

dominating set D of Gwt with w ∈ D. Recall that this set D can be created by finding

an i-set D′ of Gwt − w and then D = D′ ∪ {w}.
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Thus if w = (v, vj) for some j, 1 ≤ j ≤ y, we have that |D| = (i(L)−1)x+(i(R)−

1)z + y. If w = (u, uj) for some j, 1 ≤ j ≤ x, where u ∈ V (L) and uv ∈ E(L), we

have that |D| = i(L)x+ i(R)z. If w = (u, uj) for some j, 1 ≤ j ≤ z, where u ∈ V (R)

and uv ∈ E(R), we have that |D| = i(L)x+ i(R)z.

Therefore (i(L)− 1)x+ (i(R)− 1)z + y = i(L)x+ i(R)z and so y = x+ z.

Proposition 2.38. If every vertex of L is in an i-set of L, every vertex of R is in

an i-set of R, and either

• i(L− v) < i(L), i(R− v) < i(R), and y = x = z or

• i(L− v) = i(L), i(R− v) = i(R), and y = x+ z,

then Gwt is i-critical.

Proof. Suppose that i(L− v) < i(L) and i(R− v) < i(R). Consider w ∈ V (Gwt).

Suppose w = (v, vj) for some j, 1 ≤ j ≤ y. Let DL be an i-set of L such

that v ∈ DL and let DR be an i-set of R such that v ∈ DR. Let D1 = ({(v, vj) :

1 ≤ j ≤ y} − {w}) ∪ {(u, uj) : 1 ≤ j ≤ x, u ∈ DL − {v}} ∪ {(u, uj) : 1 ≤ j ≤

z, u ∈ DR − {v}}. Then D1 is an independent dominating set of Gwt − w and

|D1| = (i(L)− 1)x+ (i(R)− 1)z + y − 1.

Suppose w = (u, uj) for some j, 1 ≤ j ≤ x where u ∈ V (L − v). Let DL

be an i-set of L such that u ∈ L and DR be an i-set of R − v. If v ∈ DL let

D2 = {(v, vj) : 1 ≤ j ≤ y} ∪ ({(u, uj) : 1 ≤ j ≤ x} − {w}) ∪ {(t, tj) : 1 ≤ j ≤

x, t ∈ DL − {u, v}} ∪ {(t, tj) : 1 ≤ j ≤ z, t ∈ DR}. Then D2 is an independent

dominating set of Gwt − w and |D2| = (i(L)− 1)x + (i(R)− 1)z + y − 1. If v /∈ DL

let D3 = ({(u, uj) : 1 ≤ j ≤ x}− {w})∪ {(t, tj) : 1 ≤ j ≤ x, t ∈ DL−{u}} ∪ {(t, tj) :

1 ≤ j ≤ z, t ∈ DR}. Then D3 is an independent dominating set of Gwt − w and

|D3| = (i(L)− 1)x+ (i(R)− 1)z + x− 1.
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Suppose w = (u, uj) for some j, 1 ≤ j ≤ z where u ∈ V (R − v). Let DR be

an i-set of R such that u ∈ DR and let DL be an i-set of L − v. If v ∈ DR let

D4 = {(v, vj) : 1 ≤ j ≤ y} ∪ ({(u, uj) : 1 ≤ j ≤ z} − {w}) ∪ {(t, tj) : 1 ≤ j ≤

z, t ∈ DR − {u, v}} ∪ {(t, tj) : 1 ≤ j ≤ x, t ∈ DL}. Then D4 is an independent

dominating set of Gwt − w and |D4| = (i(L)− 1)x + (i(R)− 1)z + y − 1. If v /∈ DR

let D5 = ({(u, uj) : 1 ≤ j ≤ z} − {w})∪ {(t, tj) : 1 ≤ j ≤ z, t ∈ DR − {u}} ∪ {(t, tj) :

1 ≤ j ≤ x, t ∈ DL}. Then D5 is an independent dominating set of Gwt − w and

|D5| = (i(L)− 1)x+ (i(R)− 1)z + z − 1.

But in this case x = y = z and so |D1| = |D2| = |D3| = |D4| = |D5| =

(i(L)− 1)x+ (i(R)− 1)z + y − 1 = i(Gwt)− 1.

Now suppose that i(L− v) = i(L) and i(R− v) = i(R). Consider w ∈ V (Gwt).

Suppose w = (v, vj) for some j, 1 ≤ j ≤ y. Let DL be an i-set of L such

that v ∈ DL and let DR be an i-set of R such that v ∈ DR. Let D1 = ({(v, vj) :

1 ≤ j ≤ y} − {w}) ∪ {(u, uj) : 1 ≤ j ≤ x, u ∈ DL − {v}} ∪ {(u, uj) : 1 ≤ j ≤

z, u ∈ DR − {v}}. Then D1 is an independent dominating set of Gwt − w and

|D1| = (i(L)− 1)x+ (i(R)− 1)z + y − 1.

Suppose w = (u, uj) for some j, 1 ≤ j ≤ x where u ∈ V (L − v). Let DL be an

i-set of L such that u ∈ L. If v ∈ DL let DR be an i-set of R such that v ∈ DR and

let D2 = {(v, vj) : 1 ≤ j ≤ y} ∪ ({(u, uj) : 1 ≤ j ≤ x} − {w}) ∪ {(t, tj) : 1 ≤ j ≤

x, t ∈ DL − {u, v}} ∪ {(t, tj) : 1 ≤ j ≤ z, t ∈ DR − {v}}. Then D2 is an independent

dominating set of Gwt − w and |D2| = (i(L)− 1)x + (i(R)− 1)z + y − 1. If v /∈ DL

let DR be an i-set of R − v and let D3 = ({(u, uj) : 1 ≤ j ≤ x} − {w}) ∪ {(t, tj) :

1 ≤ j ≤ x, t ∈ DL − {u}} ∪ {(t, tj) : 1 ≤ j ≤ z, t ∈ DR}. Then D3 is an independent

dominating set of Gwt − w and |D3| = (i(L)− 1)x+ (i(R)− 1)z + x+ z − 1.

Suppose w = (u, uj) for some j, 1 ≤ j ≤ z where u ∈ V (R − v). Let DR be an

i-set of R such that u ∈ DR. If v ∈ DR let DL be an i-set of L such that v ∈ L and

let D4 = {(v, vj) : 1 ≤ j ≤ y} ∪ ({(u, uj) : 1 ≤ j ≤ z} − {w}) ∪ {(t, tj) : 1 ≤ j ≤
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z, t ∈ DR − {u, v}} ∪ {(t, tj) : 1 ≤ j ≤ x, t ∈ DL − {v}}. Then D4 is an independent

dominating set of Gwt − w and |D4| = (i(L)− 1)x + (i(R)− 1)z + y − 1. If v /∈ DR

let DL be an i-set of L − v and let D5 = ({(u, uj) : 1 ≤ j ≤ z} − {w}) ∪ {(t, tj) :

1 ≤ j ≤ z, t ∈ DR − {u}} ∪ {(t, tj) : 1 ≤ j ≤ x, t ∈ DL}. Then D5 is an independent

dominating set of Gwt − w and |D5| = (i(L)− 1)x+ (i(R)− 1)z + x+ z − 1.

But in this case y = x + z and so |D1| = |D2| = |D3| = |D4| = |D5| = (i(L) −

1)x+ (i(R)− 1)z + y − 1 = i(Gwt)− 1.

2.2.8 An Expansion-Join Construction

Let G1 and G2 be any graphs with x ∈ V (G1) and y ∈ V (G2). Create the graph

G1(x) +xx′yy′ G2(y) as follows:

Add the vertex x′ to G1 and add all edges {x′v : v ∈ NG1(x)}, add the vertex

y′ to G2 and add all edges {y′v : v ∈ NG2(y)}. Add all edges between {x, x′} and

{y, y′}. The graph C4x +xx′yy′ C4y is pictured in Figure 2.8.

x

y

x′

y′

Figure 2.8: The graph C4x +xx′yy′ C4y.

Proposition 2.39. The graph G = G1(x) +xx′yy′ G2(y) has i(G) ≥ i(G1) + i(G2).

Proof. Let D be an i-set of G and let D1 = D ∩ (V (G1) ∪ {x′}) and D2 = D ∩

(V (G2) ∪ {y′}). If x ∈ D, then D ∩ NG1(x) = ∅ and D ∩ {y, y′} = ∅. Thus x′ ∈ D

and D1 − {x} is an independent dominating set of G1 and D2 is an independent
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dominating set of G2 − y. Therefore |D| ≥ i(G1) + 1 + i(G2) − 1 = i(G1) + i(G2).

Likewise, |D| ≥ i(G1) + i(G2) if x′ ∈ D, or y ∈ D, or y′ ∈ D.

If x /∈ D and D ∩ NG1(x) = ∅, then using the same argument above we have

that x′ /∈ D. Thus |D ∩ {y, y′}| ≥ 1 and so D ∩ {y, y′} = {y, y′}. Then D2 − {y′}

is an independent dominating set of G2 and D1 is an independent dominating set of

G1 − x. Therefore |D| ≥ i(G1)− 1 + i(G2) + 1 = i(G1) + i(G2).

If x /∈ D and D ∩ NG1(x) 6= ∅, then D1 is an independent dominating set of G1

and x′ /∈ D. If y ∈ D or y′ ∈ D, then D ∩ {y, y′} = {y, y′}. Thus D2 − {y′} is an

independent dominating set of G2 and so |D| ≥ i(G1)+ i(G2)+1. If y /∈ D, then y′ /∈

D and so D2 is an independent dominating set of G2. Therefore |D| ≥ i(G1) + i(G2).

Likewise |D| ≥ i(G1) + i(G2) if x′ /∈ D or y /∈ D or y′ /∈ D.

Proposition 2.40. The graph G = G1(x) +xx′yy′ G2(y) is i-critical if G1 and G2 are

i-critical.

Proof. We first show that i(G) = i(G1) + i(G2). Let D1 be an i-set of G1 such that

x ∈ D1 and let D2 be an i-set of G2− y. Then D = D1∪D1∪{x′} is an independent

dominating set of G and so |D| = i(G1) + i(G2).

Let v ∈ V (G) and consider G− v.

If v = x or v = x′, let D1 be an i-set of G1 such that x ∈ D1 and let D2 be an i-set

of G2− y. Then D = (D1−{x})∪ ({x, x′}−{v})∪D2 is an independent dominating

set of G− v and |D| = i(G1) + i(G2)− 1. Likewise we can create an i-set D of G− v

with |D| = i(G1) + i(G2)− 1 if v = y or v = y′.

If v ∈ NG1(x), let D1 be an i-set of G1 − v and let D2 be an i-set of G2 with

y /∈ D2. Then D = D1 ∪ D2 is an independent dominating set of G − v and |D| =

i(G1)−1+i(G2). Likewise we can create an i-setD ofG−v with |D| = i(G1)−1+i(G2)

if v ∈ NG2(y).
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If v ∈ V (G1 − x) and v /∈ NG1(x), let D1 be an i-set of G1 − v. If x ∈ D1, let D2

be an i-set of G2 − y. Then D = D1 ∪ {x′} ∪ D2 is an independent dominating set

of G − v and |D| = i(G1) + i(G2) − 1. If x /∈ D1, then D ∩ NG1(x) 6= ∅. Let D2 be

an i-set of G2 with y /∈ D2. Then D = D1 ∪D2 is an independent dominating set of

G− v and |D| = i(G1) + i(G2)− 1. Likewise we can create an i-set D of G− v with

|D| = i(G1) + i(G2)− 1 if v ∈ V (G2 − y) and v /∈ NG2(y).

Therefore G is i-critical.

2.2.9 The Expansion Construction

Let G1, G2, . . ., Gk be any graphs with xj ∈ V (Gj), 1 ≤ j ≤ k. Construct the graph

Gexp as follows:

For each xj, 1 ≤ j ≤ k, add the set of independent vertices {yj2, yj3, . . . , yjk} and

add all edges between NGj
(xj) and {yj2, yj3, . . . , yjk}. For all 1 ≤ i ≤ j ≤ k add all

edges between {xi, yi2, yi3, . . . , yik} and {xj, yj2, yj3, . . . , yjk}.

Proposition 2.41. For any graphs G1, G2, . . ., Gk, i(Gexp) ≥ i(G1) + i(G2) + . . .+

i(Gk).

Proof. Let D be an i-set of Gexp, and let Dj = D ∩ (V (Gj) ∪ {y12, y13, . . . , y1k}) for

1 ≤ j ≤ k.

Without loss of generality, suppose x1 ∈ D. ThenD∩NG1(x1) = ∅ and soD∩{yjl :

2 ≤ j ≤ k, 2 ≤ l ≤ k} = ∅. Thus {y12, y13, . . . , y1k} ⊆ D and D1−{y12, y13, . . . , y1k} is

an independent dominating set of G1. Also, for all j, 2 ≤ j ≤ k, Dj is an independent

dominating set of Gj − xj. Therefore |D| ≥ i(G1) + k − 1 +
∑k

j=2(i(Gj) − 1) =

i(G1) + i(G2) + . . .+ i(Gk).

Without loss of generality, suppose that x1 /∈ D and D ∩ NG1(x1) = ∅. Then

D ∩ {xj, yj2, yj3, . . . , yjk} = {xj, yj2, yj3, . . . , yjk} for some j, 2 ≤ j ≤ k, and D ∩

{xl, yl2, yl3, . . . , ylk} = ∅ for all l, 1 ≤ l ≤ k with l 6= j. Then Dj − {yj2, yj3, . . . , yjk}
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is an independent dominating set of Gj and Dl is an independent dominating set of

Gl − xl for all 1 ≤ l ≤ k with l 6= j. Therefore |D| ≥
∑k

l=1(i(Gl)− 1) + 1 + k − 1 =

i(G1) + i(G2) + . . .+ i(Gk).

Without loss of generality, suppose that x1 /∈ D and D ∩ NG1(x1) 6= ∅. Then

D1 is an independent dominating set of G1. If xj ∈ D for some j, 2 ≤ j ≤ k, or

yjl ∈ D for some j and l, 2 ≤ j ≤ k and 2 ≤ l ≤ k, then D ∩ {xj, yj2, yj3, . . . , yjk} =

{xj, yj2, yj3, . . . , yjk} and D ∩ {ylm : 1 ≤ l ≤ k, l 6= j, 2 ≤ m ≤ k} = ∅. Then

Dj − {yj2, yj3, . . . , yjk} is an independent dominating set of Gj and Dl, 2 ≤ l ≤ k

with l 6= j, is an independent dominating set of Gl − xl. Therefore |D| ≥ i(G1) +∑k
l=2(i(Gl)− 1) + 1 + k− 1 = i(G1) + i(G2) + . . .+ i(Gk). If xj /∈ D for all 1 ≤ j ≤ k

and yjl /∈ D for all 1 ≤ j ≤ k and 2 ≤ l ≤ k, then Dj is an independent dominating

set of Gj for all 1 ≤ j ≤ k. Therefore |D| ≥ i(G1) + i(G2) + . . .+ i(Gk).

Proposition 2.42. The graph Gexp is i-critical if all of G1, G2, . . ., Gk are i-critical.

Proof. We first show that i(Gexp) = i(G1) + i(G2) + . . . + i(Gk). Let D1 be an i-

set of G1 such that x1 ∈ D1. For 2 ≤ j ≤ k, let Dj be an i-set of Gj − xj. Then

D = D1∪{y12, y13, . . . , y1k}∪D2∪. . .∪Dk and |D| = i(G1)+k−1+
∑k

j=2(i(Gj)−1) =

i(G1) + i(G2) + . . .+ i(Gk).

Let v ∈ V (G) and consider Gexp − v.

Without loss of generality, suppose v ∈ {x1, y12, y13, . . . , y1k} and let D1 be an

i-set of G1 such that x1 ∈ D1. For 2 ≤ j ≤ k, let Dj be an i-set of Gj − xj. Then

D = (D1 − v) ∪ ({x1, y12, y13, . . . , y1k} − {v}) ∪ D2 ∪ . . . ∪ Dk is an independent

dominating set of Gexp − v and |D| = i(G1) − 1 + k − 1 +
∑k

j=2(i(Gj) − 1) =

i(G1) + i(G2) + . . .+ i(Gk)− 1 = i(Gexp)− 1.

Without loss of generality, suppose v ∈ NG1(x1). Let D1 be an i-set of G1 − v.

Thus x1 /∈ D1 and D1 ∩ NG1(x1) 6= ∅. For 2 ≤ j ≤ k, let Dj be an i-set of Gj such
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that xj /∈ Dj. Then D = D1 ∪ D2 ∪ . . . ∪ Dk is an independent dominating set of

Gexp − v and |D| = i(G1) + i(G2) + . . .+ i(Gk)− 1.

Without loss of generality, suppose v ∈ V (Gexp − x1) and v /∈ NG1(x1). Let D1

be an i-set of G1 − v. If x1 ∈ D1, let Dj be an i-set of Gj − xj for 2 ≤ j ≤ k. Then

D = D1∪{y12, y13, . . . , y1k}∪D2∪. . .∪Dk is an independent dominating set of Gexp−v

and |D| = i(G1)−1+k−1+
∑k

j=2(i(Gj)−1) = i(G1)+i(G2)+. . .+i(Gk)−1 = i(G)−1.

If x1 /∈ D1, let Dj be an i-set of Gj such that xj /∈ Dj for 2 ≤ j ≤ k. Then

D = D1∪D2∪ . . .∪Dk is an i-set of Gexp−v and |D| = i(G1)+i(G2)+ . . .+i(Gk)−1.

Hence in all cases Gexp is i-critical.

Necessary conditions for the graph Gexp to be i-critical are unknown.

2.3 Summary and Directions for Future Work

Section 2.1 gave a construction which shows that for any graph G and all k ≥

3 there exists a k-i-critical graph H such that G is an induced subgraph of H,

which extended a known result by Ao [7]. This same construction showed that for

any graph G and all k ≥ 4 there exists a k-i-bicritical graph H such that G is

an induced subgraph of H. A variation on this construction showed that for any

graph G and all k ≥ 5 there exists a strong k-i-bicritical graph H such that G is

an induced subgraph of G. Section 2.2.1 provided necessary and sufficient conditions

for the disjoint union G1 ∪ G2 ∪ · · · ∪ Gk to be i-critical. Sufficient conditions for

the join G1 + G2 + · · · + Gk were known by Ao [7], and the main result of Section

2.2.2 extended this to necessary conditions. The coalescence construction G ·H was

extended to the generalized coalescence construction G1(H1) � G2(H2) and while

not much is known about this construction, it is further studied in Chapter 3 for

strong i-bicritical graphs in the cases of H1
∼= H2

∼= K2 and H1
∼= H2

∼= K2. The

joined coalescence construction G1(H1)�̂G2(H2) was investigated in Section 2.2.5.
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Again, Ao [7] was aware of sufficient conditions for the construction to produce an

i-critical graph and here necessary conditions were provided. The wreath product

G[H] was introduced in Section 2.2.6 and necessary and sufficient conditions were

provided for the construction to produce an i-critical graph. The wreath product

was also investigated as a possible construction for γ-critical graphs and the results

showed that only trivial cases yield γ-critical graphs. The weighting construction

Gwt was introduced as a new construction to create i-critical graphs and necessary

and sufficient conditions to do so were provided. Finally, two new constructions, the

expansion-join and the expansion, were presented and sufficient conditions to produce

i-critical graphs were provided.

We close this chapter with a collection of open questions:

1. Proposition 1.25 of Chapter 1 says that if γ(G) = i(G) and G is i-critical, then

G is γ-critical.

• Characterize the graphs for which i(G) = γ(G) and G is i-critical.

Fulman, Hanson, and MacGillivray [21] found that not all γ-critical graphs have

γ(G) = i(G).

• Are all γ-critical graphs with γ(G) = i(G) also i-critical?

If so, then γ-criticality is closely related to i-criticality when γ(G) = i(G).

Likewise, Proposition 1.26 says that if γ(G) = i(G) and G is i-bicritical, then

G is γ-bicritical.

• Characterize the graphs for which i(G) = γ(G) and G is i-bicritical.

Proposition 1.28 says that an i-bicritical graph with i(G) = γ(G) will not be

strong i-bicritical.



2.3. Summary and Directions for Future Work 50

2. Corollary 2.5 of Chapter 2 shows that for any graph G and for all k ≥ 3, there

exists a k-i-critical graph H such that G is an induced subgraph of H. Notice

that the 2-i-critical graphs are completely characterized. There are gaps in

the knowledge for i-bicritical graphs though. Corollary 2.6 shows that for any

graph G and for all k ≥ 4, there exists a k-i-bicritical graph H such that G

is an induced subgraph of H. On the other hand, the 2-i-bicritical graphs are

completely characterized.

• Characterize the 3-i-bicritical graphs, or show that for any graph G there

exists a 3-i-bicritical graph H such that G is an induced subgraph of H.

The situation is the same for strong i-bicritical graphs. Corollary 2.13 shows

that for any graph G and for all k ≥ 5 there exists a strong k-i-bicritical graph

H such that G is an induced subgraph of H, while the strong 3-i-bicritical

graphs have been completely characterized.

• Characterize the strong 4-i-bicritical graphs, or show that for any graph

G there exists a strong 4-i-bicritical graph H such that G is an induced

subgraph of H.

3. As mentioned earlier in this chapter, little is known about the generalized coales-

cence construction G1(H1)�G2(H2). The case G1({x})�G2({y}) is equivalent

to the basic coalescence G1 ·xy G2 and this has been well-studied for γ-critical,

i-critical, i-bicritical, γt-critical, and γt-bicritical graphs.

• Investigate the generalized coalescence construction for critical graphs

when H1 and H2 are more than single vertices.



51

3

Bicritical Graphs

3.1 A History of Domination Bicritical Graphs and Independent

Domination Bicritical Graphs

Recall that a graph G is domination bicritical, or γ-bicritical, if the removal of any

two vertices decreases the domination number, that is, if γ(G − {u, v}) < γ(G) for

any {u, v} ⊆ V (G). Domination bicriticality was introduced by Brigham, Haynes,

Henning, and Rall in 2005 [10]. Here they provided many examples to show the

existence of γ-bicritical graphs.

Proposition 3.1. [10] The circulant C8〈1, 4〉 is 3-γ-critical and 3-γ-bicritical.

The Cartesian product of G and H, denoted by G�H, is the graph with vertex

set {(g, h) : g ∈ V (G), h ∈ V (H)} and edge set {(g1, h1)(g2, h2) : g1 = g2 and h1h2 ∈

E(H) or h1 = h2 and g1g2 ∈ E(G)}. The graph K3�K3 is pictured in Figure 3.2.

Proposition 3.2. [10] The Cartesian product Kt�Kt for t ≥ 3 is t-γ-critical and

t-γ-bicritical.
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Figure 3.1: The circulant C8〈1, 4〉.

Figure 3.2: The graph K3�K3.

Proposition 3.3. [10] Any graph formed from the complete bipartite graph K2t,2t

where t ≥ 3 by removing the edges of t disjoint 4-cycles is 4-γ-critical and 4-γ-

bicritical.

The graph obtained by removing the edges of three disjoint 4-cycles from K6,6 is

pictured in Figure 3.3.

Despite the pattern hinted at in the previous three examples, there exist graphs

that are γ-bicritical and not γ-critical. A construction that creates such graphs is

discussed in Section 3.1.1.

As we have seen before, for a set S ⊆ V (G), there are lower bounds on γ(G−S).

In the case of γ-bicritical graphs, we have |S| = 2.
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Figure 3.3: The graph K6,6 minus the edges of 3 disjoint 4-cycles.

Observation 3.4. [10] For a γ-bicritical graph G and {x, y} ⊆ V (G), γ(G) − 2 ≤

γ(G− {x, y}) ≤ γ(G)− 1.

Observation 3.5. [10] If G is any graph and {x, y} ⊆ V (G) such that γ(G−{x, y}) =

γ(G)− 2, then dG(x, y) ≥ 3.

In particular, Observation 3.5 says that if vertices u and v are adjacent, then

γ(G− {u, v}) ≥ γ(G)− 1.

Although a γ-bicritical graph G need not be γ-critical, it is not far from being a

γ-critical graph.

Observation 3.6. [10] If G is a γ-bicritical graph, then V (G) = V − ∪ V 0, that is,

V + = ∅. Furthermore, either G is γ-critical, or G− v is γ-critical for all v ∈ V 0.

Section 1.2 discussed results concerning bounds on the order of γ-critical graphs.

Brigham et al. found similar results for γ-bicritical graphs.

Proposition 3.7. [10] If G is a γ-bicritical graph of order n, then n ≤ (∆(G) +

1)(γ(G)− 1) + 2.

Proposition 3.8. [10] If G is a regular γ-bicritical graph of order n, then n ≤

(∆(G) + 1)(γ(G)− 1) + 1.

Proposition 3.9. [10] If G is a connected γ-bicritical graph, then γ(G) ≥ 3.
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Proposition 3.10. [10] If G is a connected γ-bicritical graph, then δ(G) ≥ 3.

The bounds in the previous two propositions are sharp.

A large portion of this chapter focuses on constructions for i-bicritical graphs. For

the γ-bicritical graphs, Brigham et al. [10] gave some constructions. In particular,

they studied the coalescence construction, G ·H, that was seen in Chapter 2. Below

is a modified version of the result stated in their paper. (For an explanation on why

a modified version is presented here, see Proposition 3.32.)

Proposition 3.11. [10] The graph G ·H is γ-bicritical if G and H are both γ-critical

and γ-bicritical.

Using this result, Brigham et al. created k-γ-bicritical graphs of diameter k − 1.

Let G be the graph obtained from K6,6 by removing the edges of three disjoint 4-

cycles (i.e. the graph in Figure 3.3). Let H be the circulant C8〈1, 4〉 (i.e., the graph

in Figure 3.1). From Proposition 3.3 and Proposition 3.1 earlier in this section, both

G and H are γ-critical and γ-bicritical. Thus by Proposition 2.19 and Proposition

3.11, G · H is γ-critical and γ-bicritical. Notice that γ(G · H) = 3 + 4 − 1 = 6 and

diam(G ·H) = 5. In addition, the graph H · H is γ-critical and γ-bicritical with

γ(H · H) = 3 + 3 − 1 = 5 and diam(H ·H) = 4. Using these ideas, by using k

copies of H and considering the graph H · H · · · · · H, we have γ(H · H · · · · · H) =

3k − (k − 1) = 2k + 1 and diam(H ·H · · · · ·H) = 2k. Additionally, by using one

copy of G and k copies of H and considering the graph G ·H ·H · · · · ·H, we have

γ(G ·H ·H · · · · ·H) = 4 + 3k − k = 4 + 2k and diam(G ·H ·H · · · · ·H) = 3 + 2k.

Thus for k ≥ 3 there exists an example of a k-γ-bicritical graph G of diameter k− 1.

This leads to the following conjecture.

Conjecture 3.12. [10] If G is a connected k-γ-bicritical graph, then diam(G) ≤ k−1.

Brigham et al. also investigated the connectivity and edge-connectivity of γ-

bicritical graphs.
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Proposition 3.13. [10] If G is a connected γ-bicritical graph, then G is 2-edge-

connected.

This is also true of γ-critical graphs. That is, if G is γ-critical, then G is 2-edge-

connected.

Proposition 3.14. [10] If G is a connected graph that is 3-γ-bicritical or 4-γ-

bicritical, then G is 3-edge-connected.

Theorem 3.15. [10] Let G be a connected γ-bicritical graph. If G is cubic or claw-

free, then G is 3-edge-connected.

They then focused on 3-γ-bicritical graphs.

Proposition 3.16. [10] If G is a connected 3-γ-bicritical graph, then G is 3-connected.

Observation 3.17. [10] A cubic graph G is 3-γ-bicritical if and only if G is isomor-

phic to the circulant C8〈1, 4〉.

Brigham et al. left several open problems:

• Is it true that every γ-bicritical graph has a minimum dominating set containing

any two specified vertices of the graph?

• If G is a connected γ-bicritical graph, is it true that G is 3-edge-connected? In

particular, if G is a connected 5-γ-bicritical graph, it it true that G is 3-edge-

connected?

• Characterize the 3-γ-bicritical graphs.

• Characterize the connected cubic γ-bicritical graphs.

• Is it true that if G is a connected k-γ-bicritical graph, then diam(G) ≤ k − 1?

• Is it true that if G is a connected γ-bicritical graph, then γ(G) = i(G)?
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For the first question, it is not true that every γ-bicritical graph has a minimum

dominating set containing any two specified vertices of the graph. For example,

consider the circulant C8〈1, 4〉. For any two adjacent vertices on the 8-cycle, there is

no γ-set that contains both these vertices.

Chen, Fujita, Furuya, and Sohn further studied γ-bicritical graphs [13]. Here

they answered the second question posed by Brigham et al [10], namely: If G is a

connected γ-bicritical graph, is it true that G is 3-edge-connected? In particular, if

G is a connected 5-γ-bicritical graph, it it true that G is 3-edge-connected? Chen et

al. give a construction of a 5-γ-bicritical graph with edge-connectivity 2. Through

other constructions they were able to show the following.

Theorem 3.18. [13] Let t be an integer with t ≥ 5. There exist infinitely many

connected t-γ-bicritical graphs G that have edge-connectivity equal to 2.

The remainder of this chapter discusses i-bicritical graphs. A graph G is inde-

pendent domination bicritical, or i-bicritical, if i(G− {u, v}) < i(G) for any {u, v} ⊆

V (G). By Proposition 1.13, we have that for any graph G, i(G− {u, v}) ≥ i(G)− 2,

and so if G is i-bicritical we have that i(G)−2 ≤ i(G−{u, v}) ≤ i(G)−1. Proposition

1.14 shows that if uv ∈ E(G), then i(G−{u, v}) ≥ i(G)− 1, and so in an i-bicritical

graph we have that i(G− {u, v}) = i(G)− 1 for adjacent vertices u and v. Thus we

define a strong independent domination bicritical graph, or strong i-bicritical graph,

to be a graph G for which i(G − {u, v}) = i(G) − 2 for all {u, v} ⊆ V (G) where u

and v are independent.

Recall from Proposition 1.17 that the only 2-i-bicritical graphs areK2 andK1∪K2,

thus for the remainder of this chapter we discuss i-bicritical graphs with i(G) ≥ 3.

Other facts that are of use in this chapter are Proposition 1.18, which states that if G

is i-bicritical then G is i-critical or G− v is i-critical for all v ∈ V 0, and Proposition

1.23, which states that if G is i-bicritical then there is no vertex v ∈ V (G) with

deg(v) = 2.
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In this chapter, we will discuss i-bicritical graphs in Section 3.1.1 and strong

i-bicritical graphs in Section 3.2. Structural properties of these graphs will be inves-

tigated and constructions for i-bicritical graphs and strong i-bicritical graphs will be

seen. Many constructions will be the same as what was seen in Chapter 2, and a

construction will be introduced that creates bicritical graphs but not critical graphs.

Independent domination bicritical graphs were introduced by Xu, Xu, and Zhang

[52]. Here they presented introductory results and examples, some of which we have

already seen, and a construction.

Observation 3.19. [52] The circulant C8〈1, 4〉 is not i-bicritical.

Observation 3.20. The complete bipartite graph Kn,n, n ≥ 3, is i-bicritical.

Observation 3.21. The complete bipartite graph Kn,n+1, n ≥ 3, is i-bicritical.

Notice that Kn,n and Kn,n+1 are not γ-bicritical as γ(Kn,n) = 2 = γ(Kn,n+1).

Thus by the above three observations we know that the class of i-bicritical graphs

differs from the class of γ-bicritical graphs.

Proposition 3.22. [52] The graph Kn�Kn is i-critical and i-bicritical.

The generalized Petersen graph G(n, k) is the graph with vertex set {v1, v2, . . . , vn,

u1, u2, . . . , un} and edge set {vivi+1}∪{uiui+k}∪{viui}, where addition is performed

modulo n. The graph G(5, 1) is the usual Petersen graph. The graph G(7, 2) is

pictured in Figure 3.4.

Proposition 3.23. The graph G(7, 2) is i-bicritical.

Proof. We first determine i(G(7, 2)). Suppose i(G(7, 2)) = 4 and let D be an i-

set of G(7, 2). Then |D ∩ {v1, . . . , v7}| ≥ 2 or |D ∩ {u1, . . . , u7}| ≥ 2. Without

loss of generality, suppose that |D ∩ {v1, . . . , v7}| ≥ 2. If |D ∩ {v1, . . . , v7}| ≥ 3,

then D ∩ {v1, . . . , v7} dominates at most three of {u1, . . . , u7} and it is not possible
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Figure 3.4: The generalized Petersen graph G(7, 2).

to dominate the remaining four vertices of {u1, . . . , u7} with a single vertex. Thus

|D ∩ {v1, . . . , v7}| = 2. But then there is no independent selection of two vertices

from {v1, . . . , v7} and two vertices from {u1, . . . , u7} that dominate G(7, 2). However

{v1, v3, u2, u5, u6} is an independent dominating set of G(7, 2) and thus i(G(7, 2)) = 5.

Let {x, y} ⊆ V (G(7, 2)) and consider G(7, 2)−{x, y}. Up to symmetry, there are

seven cases. If {x, y} = {v1, v2}, then {v4, v6, u2, u3} is an independent dominating set

of G(7, 2)− {x, y}. If {x, y} = {v1, v3}, then {v5, v7, u1, u2} is an independent domi-

nating set of G(7, 2)−{x, y}. If {x, y} = {v1, v4}, then {v6, u2, u3} is an independent

dominating set of G(7, 2)−{x, y}. If {x, y} = {v1, u1}, then {v3, v6, u4, u7} is an inde-

pendent dominating set of G(7, 2) − {x, y}. If {x, y} = {v1, u2}, then {v3, v5, v7, u6}

is an independent dominating set of G(7, 2) − {x, y}. If {x, y} = {v1, u3}, then

{v2, v4, u6, u7} is an independent dominating set of G(7, 2) − {x, y}. If {x, y} =

{v1, u4}, then {v4, v6, u2, u3} is an independent dominating set of G(7, 2) − {x, y}.

Thus in all cases G(7, 2) is i-bicritical.
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3.1.1 Constructions for i-Bicritical Graphs

Corollary 2.6 shows that for any graph G and any k ≥ 4 there is a k-i-bicritical

graph H such that G is an induced subgraph of H. Even for a fixed value i(G) = k

it is challenging to characterize the k-i-bicritical graphs as there is no finite list

of forbidden induced subgraphs. Since the characterization problem is difficult it is

useful to know ways to create i-bicritical graphs. A collection of methods to construct

i-bicritical graphs is presented in this section. Notice that many of the constructions

presented rely on the use of already known i-bicritical graphs to create new i-bicritical

graphs.

Recall that the disjoint union of G and H, denoted G∪H, is the graph with vertex

set V (G ∪H) = V (G) ∪ V (H) and edge set E(G ∪H) = E(G) ∪ E(H). The graph

G1∪G2∪ . . .∪Gk is defined recursively by G1∪G2∪ . . .∪Gk = (G1∪ . . .∪Gk−1)∪Gk.

Note that i(G1 ∪G2 ∪ . . . ∪Gk) =
∑k

j=1 i(Gj).

Proposition 3.24. The graph G1 ∪ G2 ∪ · · · ∪ Gk is i-bicritical if and only if all of

G1, G2, . . ., Gk are i-bicritical or isomorphic to K1 and at most one Gj, 1 ≤ j ≤ k,

is not i-critical.

Proof. Suppose all of G1, G2, . . ., Gk are i-bicritical or isomorphic to K1 and at

most one Gj, 1 ≤ j ≤ k, is not i-critical. Consider (G1 ∪ · · · ∪ Gk) − {u, v} for

some {u, v} ⊆ V (G1 ∪ · · · ∪ Gk). If {u, v} ⊆ V (Gj) for some 1 ≤ j ≤ k, then

i((G1 ∪ · · · ∪ Gk) − {u, v}) = i(G1 ∪ · · · ∪ Gj − {u, v} ∪ · · · ∪ Gk) ≤ i(G1) + · · · +

i(Gj)− 1 + · · ·+ i(Gk) = i(G1 ∪ · · · ∪Gk)− 1.

If u ∈ V (Gj) and v ∈ V (Gl) for some 1 ≤ j < l ≤ k, then i((G1 ∪ · · · ∪ Gk) −

{u, v}) = i(G1 ∪ · · · ∪Gj − u∪ · · · ∪Gl− v ∪ · · · ∪Gk) ≤ i((G1 ∪ · · · ∪Gk)−{u, v})−

(i(Gj) + i(Gl)) + (i(Gj) + i(Gl)− 1) = i(G1 ∪ · · · ∪Gk)− 1 since at most one of Gj

and Gl is not i-critical. Hence in either case, G1 ∪ · · · ∪Gk is i-bicritical.

For the converse, suppose G1∪G2∪· · ·∪Gk is i-bicritical and consider (G1∪G2∪
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· · · ∪Gk)− {u, v} for some {u, v} ⊆ V (G1 ∪G2 ∪ · · · ∪Gk).

If {u, v} ⊆ V (Gj) for some 1 ≤ j ≤ k, then i((G1 ∪ G2 ∪ · · · ∪ Gk) − {u, v}) =

i(G1 ∪ · · · ∪ Gj − {u, v} ∪ · · · ∪ Gk) = i(G1) + · · · + i(Gj − {u, v}) + · · · + i(Gj) ≤

i(G1∪G2∪· · ·∪Gk)−1 since G1∪G2∪· · ·∪Gk is i-bicritical. But then we have that

i(Gj − {u, v}) ≤ i(Gj) − 1 and so Gj is i-bicritical. Therefore every Gt, 1 ≤ t ≤ k,

with at least two vertices is i-bicritical.

Consider the case where u ∈ V (Gj) and v ∈ V (Gl) for some 1 ≤ j < l ≤ k, and

suppose that u is a vertex such that i(Gj − u) = i(Gj) and v is a vertex such that

i(Gl − v) = i(Gl). Then i((G1 ∪ G2 ∪ · · · ∪ Gk) − {u, v}) = i(G1 ∪ · · · ∪ Gj − u ∪

· · · ∪ Gl − v ∪ · · · ∪ Gk) = i(G1) + · · · + i(Gj − u) + · · · + i(Gl − v) + · · · + i(Gk) =

i(G1) + · · ·+ i(Gj) + · · ·+ i(Gl) + · · ·+ i(Gk) = i(G1 ∪G2 ∪ · · · ∪Gk), a contradiction

to G1 ∪ G2 ∪ · · · ∪ Gk being i-bicritical. Therefore at most one of Gj and Gl has

an i-stable vertex, and we can conclude that at most one Gt, 1 ≤ t ≤ k, is not

i-critical.

Recall that the join of G and H, denoted G + H, is the graph with vertex set

V (G + H) = V (G) ∪ V (H) and edge set E(G + H) = E(G) ∪ E(H) ∪ {uv : u ∈

V (G) and v ∈ V (H)}. The graph G1 + G2 + · · · + Gk is defined recursively by

(G1+· · ·+Gk−1)+Gk. Note that i(G1+G2+· · ·+Gk) = min{i(G1), i(G2), . . . , i(Gk)}.

Proposition 3.25. The graph G1 +G2 + · · ·+Gk is i-bicritical if and only if all of

G1, G2, . . ., Gk are i-bicritical and either

(a) i(G1) = i(G2) = · · · = i(Gk) and all but one of G1, G2, . . ., Gk are i-critical or

(b) i(G1) − 1 = i(G2) = · · · = i(Gk) and G1 has no edges and all of G2, G3, . . .,

Gk are i-critical.

Proof. Let G = G1 +G2 + · · ·+Gk.
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Suppose without loss of generality that G1 is not i-bicritical and let {x, y} ⊆

V (G1) such that i(G1 − {x, y}) ≥ i(G1). Let D be an i-set of G − {x, y}. Now

D ∩ V (Gj) 6= ∅ for only one j, 1 ≤ j ≤ k. If D ∩ V (G1) 6= ∅, then i(G − {x, y}) =

i(G1 − {x, y}) ≥ i(G1) ≥ i(G). If D ∩ V (Gj) 6= ∅ for j 6= 1, then i(G − {x, y}) =

i(Gj) ≥ i(G). In either case, we conclude that all of G1, G2, . . ., Gk are i-bicritical.

Suppose without loss of generality that G1 and G2 are not i-critical and let x ∈

V (G1) and y ∈ V (G2) such that i(G1 − x) ≥ i(G1) and i(G2 − y) ≥ i(G2). Let

D be an i-set of G − {x, y}. Again, D ∩ V (Gj) 6= ∅ for only one j, 1 ≤ j ≤ k.

If D ∩ V (G1) 6= ∅, then i(G − {x, y}) = i(G1 − x) ≥ i(G1) ≥ i(G). Likewise if

D∩ V (G2) 6= ∅. If D∩ V (Gj) 6= ∅ for j 6= 1, 2, then i(G−{x, y}) = i(Gj) ≥ i(G). In

any case, we can conclude that at most one of G1, G2, . . ., Gk is not i-critical.

Suppose without loss of generality that i(G1) ≥ i(G2) + 2. Let {x, y} ⊆ V (G1)

and let D be an i-set of G − {x, y}. If D ∩ V (G1) 6= ∅, then i(G − {x, y}) =

i(G1 − {x, y}) ≥ i(G1) − 2 ≥ i(G2) ≥ i(G). If D ∩ V (Gj) 6= ∅ for j 6= 1, then

i(G − {x, y}) = i(Gj) ≥ i(G). In either case, we conclude that the independent

domination numbers of G1, G2, . . ., Gk differ by at most one.

Suppose without loss of generality that i(G1)+1 = i(G2) = i(G3). Let x ∈ V (G2)

and y ∈ V (G3) and let D be an i-set of G − {x, y}. If D ∩ V (G2) 6= ∅, then

i(G−{x, y}) = i(G2− x) ≥ i(G2)− 1 ≥ i(G1) ≥ i(G). Likewise if D ∩ V (G3) 6= ∅. If

D ∩ V (Gj) 6= ∅ for j 6= 2, 3, then i(G−{x, y}) = i(Gj) ≥ i(G). In any case, G is not

i-bicritical and so either i(G1) = i(G2) = · · · = i(Gk) or i(G1) − 1 = i(G2) = · · · =

i(Gk).

Suppose that i(G1) − 1 = i(G2) = · · · = i(Gk) and G1 has at least one edge.

Let xy ∈ E(G1) and let D be an i-set of G − {x, y}. If D ∩ V (G1) 6= ∅, then

i(G − {x, y}) = i(G1 − {x, y}) ≥ i(G1) − 1 = i(G2) = i(G). If D ∩ V (Gj) 6= ∅ for

j 6= 1, then i(G− {x, y}) = i(Gj) = i(G). In either case, G is not i-bicritical and so

G1 has no edges.
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Suppose that i(G1) − 1 = i(G2) = · · · = i(Gk) and without loss of generality

suppose that G2 is not i-critical. Let x ∈ V (G1) and y ∈ V (G2) such that i(G2−y) ≥

i(G2). Let D be an i-set of G − {x, y}. If D ∩ V (G1) 6= ∅, then i(G − {x, y}) =

i(G1 − x) = i(G1) − 1 = i(G2) = i(G). If D ∩ V (G2) 6= ∅, then i(G − {x, y}) =

i(G2 − y) ≥ i(G2) = i(G). If D ∩ V (Gj) 6= ∅ for j 6= 1, 2, then i(G − {x, y}) =

i(Gj) = i(G). In any case, G is not i-bicritical and so all of G2, G3, . . ., Gk are

i-critical if i(G1)− 1 = i(G2) = · · · = i(Gk).

Now suppose that all of G1, G2, . . ., Gk are i-bicritical and either (a) or (b) holds.

Let {x, y} ⊆ V (G).

If, without loss of generality, {x, y} ⊆ V (G1), let D be an i-set of G1 − {x, y}.

If i(G1) − 1 = i(G2) = · · · = i(Gk), then i(G − {x, y}) ≤ |D| = i(G1 − {x, y}) =

i(G1) − 2 < i(G). If i(G1) = i(G2) = · · · = i(Gk), then i(G − {x, y}) ≤ |D| =

i(G1 − {x, y}) ≤ i(G1)− 1 < i(G).

Suppose, without loss of generality, that x ∈ V (G1) and y ∈ V (G2). If i(G1)−1 =

i(G2) = · · · = i(Gk), then all of G2, G3, . . ., Gk are i-critical. Let D be an i-

set of G2 − y. Then i(G − {x, y}) ≤ |D| = i(G2 − y) = i(G2) − 1 < i(G). If

i(G1) = i(G2) = · · · = i(Gk), then at most one of G1, G2, . . ., Gk is not i-critical.

Suppose G1 is i-critical and let D be an i-set of G1 − x. Then i(G− {x, y}) ≤ |D| =

i(G1 − x) = i(G1)− 1 < i(G).

Therefore in any case G = G1 +G2 + · · ·+Gk is i-bicritical.

Recall that the coalescence of G and H respect to x and y is the graph G·xyH with

vertex set V (G ·xyH) = (V (G)−{x})∪ (V (H)−{y})∪{v}, where v /∈ V (G)∪V (H),

and edge set E(G ·xyH) = E(G−x)∪E(H− y)∪{vw : xw ∈ E(G) or yw ∈ E(H)}.

The graph G1 · G2 · · · · · Gk is defined recursively by G1 · G2 · · · · · Gk = (G1 · G2 ·

· · · · Gk−1) · Gk. If the context is clear, or if the vertices x and y are not important,

G ·H is used instead of G ·xy H. In the following results we show that there are two
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cases for i(G ·xy H) when G ·xy H is i-bicritical: i(G ·xy H) = i(G) + i(H) − 1 or

i(G ·xy H) = i(G) + i(H). Note that this differs from the i-critical case where the

only option is i(G ·xy H) = i(G) + i(H)− 1 if G ·xy H is i-critical.

Proposition 3.26. The graph G ·xy H is i-bicritical if G and H are both i-bicritical

and at most one of G and H is not i-critical. In this case, i(G·xyH) = i(G)+i(H)−1.

Proof. Suppose that i(G ·xyH) ≤ i(G)+ i(H)−2. Consider S an i-set of G ·xyH, and

let S1 = S ∩ V (G) and S2 = S ∩ V (H). Recall that v is the vertex of identification

of G and H. If v ∈ S then S1 is an independent dominating set of G and S2 is an

independent dominating set of H. But then |S1| ≥ i(G) and |S2| ≥ i(H) and so

|S| ≥ i(G) + i(H)− 1, a contradiction. If v /∈ S, then S1 or S2 dominates v. Without

loss of generality, say S1 dominates v. Then S1 is an independent dominating set of

G and so |S1| ≥ i(G). If S2 also dominates v, then S2 is an independent dominating

set of H and so |S2| ≥ i(H). But then |S1 ∪ S2| ≥ i(G) + i(H), a contradiction.

If S2 does not dominate v, then S2 is an independent dominating set of H − y and

so |S2| ≥ i(H) − 1. But then |S1 ∪ S2| ≥ i(G) + i(H) − 1, a contradiction. Thus

i(G ·xy H) ≥ i(G) + i(H)− 1.

Suppose that G and H are i-bicritical, G is also i-critical, and there exists an

i-set S of H such that y ∈ S. We first show that i(G ·xy H) = i(G) + i(H) − 1.

Let S1 be an i-set of G − x and let S2 be an i-set of H such that y ∈ S2. Since G

is i-critical, we have that S1 ∪ S2 is an independent dominating set of G ·xy H and

i(G ·xy H) ≤ |S1 ∪ S2| = i(G) + i(H)− 1.

We now show that G ·xy H is i-bicritical. Consider G ·xy H − {u1, u2}.

Case 1: {u1, u2} ⊆ V (G).

Let S1 be an i-set of G−{u1, u2} and let S2 be an i-set of H−y. Since y is critical in

H, we have that NH(y)∩S2 = ∅. Thus S = S1∪S2 is an independent dominating set

of G·xyH and i(G·xyH) ≤ |S| ≤ i(G)−1+i(H)−1 = i(G)+i(H)−2 = i(G·xyH)−1.

Case 2: {u1, u2} ⊆ V (H).
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Let S1 be an i-set of G−x and let S2 be an i-set of H−{u1, u2}. Since G is i-critical,

we have that NG(x)∩S1 = ∅. Thus S = S1 ∪S2 is an independent dominating set of

G ·xyH and i(G ·xyH) ≤ |S| ≤ i(G)−1+ i(H)−1 = i(G)+ i(H)−2 = i(G ·xyH)−1.

Case 3: u1 ∈ V (G)− {x} and u2 ∈ V (H)− {y}.

Let S2 be an i-set of H−{u2, y}. If S2 dominates y, let S1 be an i-set of G1−{u1, x}.

Then S = S1 ∪ S2 is an independent dominating set of G ·xy H − {u1, u2} and so

i(G ·xyH) ≤ |S| ≤ i(G)− 1 + i(H)− 1 = i(G) + i(H)− 2 = i(G ·xyH)− 1. If S2 does

not dominate y, let S1 be an i-set of G−u1. Then S = S1 ∪S2 is an independent set

of G ·xyH−{u1, u2} and so i(G ·xyH) ≤ |S| ≤ i(G)−1+ i(H)−1 = i(G)+ i(H)−2 =

i(G ·xy H)− 1.

Hence in any case, G ·xy H is i-bicritical.

Proposition 3.27. If x is in an i-set of G and y is in an i-set of H, then i(G·xyH) =

i(G) + i(H)− 1.

Proof. Let D1 be an i-set of G such that x ∈ D1 and let D2 be an i-set of H such

that y ∈ D2. Then D = D1 ∪D2 is an independent dominating set of G ·xy H and so

i(G ·xy H) = i(G) + i(H)− 1.

Proposition 3.28. If x is not in any i-set of G and y is not in any i-set of H, then

i(G ·xy H) = i(G) + i(H).

Proof. If x is not in any i-set of G, this implies that x is not i-critical in G. Likewise

y is not i-critical in H. Let D be an i-set of i(G ·xy H). Let D1 = D ∩ V (G) and

D2 = D ∩ V (H). If v ∈ D, then D1 is an independent dominating set of G and

D2 is an independent dominating set of H. But since v ∈ D1 and v ∈ D2 we have

that |D1| > i(G) and |D2| > i(H). But then |D| > i(G) + i(H) − 1. Suppose then

that v /∈ D. If D1 dominates v then D1 is an independent dominating set of G and
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so |D1| ≥ i(G). But then D2 is an independent dominating set of H − y and so

|D2| ≥ i(H) since y is not i-critical. But then |D| ≥ i(G) + i(H). If D1 does not

dominate v, then D2 is an independent dominating set of H and so |D2| ≥ i(H). But

then D1 is an independent dominating set of G−x and so |D1| ≥ i(G) since x is not i-

critical. But then |D| ≥ i(G)+i(H). In all cases we have that i(G·xyH) ≥ i(G)+i(H).

Finally, let D1 be an i-set of G and D2 be an i-set of H. Thus x /∈ D1 and

y /∈ D2 and so D = D1 ∪D2 is an independent dominating set of G ·xy H. Therefore

i(G ·xy H) = i(G) + i(H).

Notice that, without loss of generality, if x is in an i-set of G and y is not in any

i-set of H, it possible to have either i(G ·xy H) = i(G) + i(H) − 1 or i(G ·xy H) =

i(G) + i(H). For example, if we let G = K3,3 and H = K3,4 where x is any vertex

of K3,3 and y is a vertex of degree 3 in K3,4, then G ·xy H has i(G ·xy H) = 5 =

i(G) + i(H) − 1. Let G[v] be the graph with vertex set V (G[v]) = V (G) ∪ {v′} and

edge set E(G[v]) = E(G)∪{uv′ : u ∈ NG[v]}. This construction is called the expansion

of G via v and is studied later in this section. If we let G = K3,3[v] (the expansion

via v of K3,3, where v is any vertex in K3,3) and H = K3,4 where x is v′, the vertex

added to K3,3 in the expansion, and y is a vertex of degree 3 in K3,4, then G ·xy H

has i(G ·xy H) = 6 = i(G) + i(H). These two cases are pictured below in Figure 3.5.

Figure 3.5: The graphs K3,3 ·K3,4 and K3,3[v] ·K3,4.

Proposition 3.29. If x is in an i-set of G, y is not in any i-set of H, and
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• i(G ·xy H) = i(G) + i(H), then x is not i-critical in G

• i(G ·xy H) = i(G) + i(H)− 1, then x is i-critical in G.

Proof. Suppose i(G ·xy H) = i(G) + i(H) and suppose x is i-critical in G. Let D1

be an i-set of G − x and let D2 be an i-set of H. Then D = D1 ∪D2 is an i-set of

G ·xyH. But |D| = i(G) + i(H)− 1, a contradiction. Therefore x is not critical in G.

Suppose i(G ·xy H) = i(G) + i(H) − 1 and let D be an i-set of G ·xy H. Let

D1 = D∩V (G) and D2 = D∩V (H). If v ∈ D then D1 is an independent dominating

set of G and D2 is an independent dominating set of H. But then |D1| ≥ i(G) and

|D2| > i(H) and so |D| ≥ i(G) + i(H) + 1− 1 = i(G) + i(H), a contradiction. Thus

suppose that v /∈ D. If D1 dominates v, then D1 is an independent dominating set

of G and D2 is an independent dominating set of H − y and so |D1| ≥ i(G) and

|D2| ≥ i(H). But then |D| ≥ i(G) + i(H), a contradiction. If D1 does not dominate

x, then D1 is an independent dominating set of G − x and D2 is an independent

dominating set of H. Thus |D1| ≥ i(G)− 1 and |D2| ≥ i(H). But since i(G ·xy H) =

i(G) + i(H)− 1 we have that |D1| = i(G)− 1 and |D2| = i(H), and so x is i-critical

in G.

Proposition 3.30. If G ·xy H is i-bicritical with i(G ·xy H) = i(G) + i(H), then x is

not critical in G and y is not critical in H and either:

• G is i-bicritical or

• there exists {w, z} ⊆ V (G) such that i(G− {w, z}) = i(G) and there exists an

i-set D1 of G− {w, z} such that x ∈ D1 and an i-set D2 of H with y ∈ D2 or

• there exists {w, z} ⊆ V (G) such that i(G−{w, z}) = i(G) and i(G−{w, z, x}) =

i(G)− 1 and there exists an i-set D of H such that y /∈ D

and likewise for H.
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Proof. The fact that x is not i-critical in G and y is not i-critical in H follows from

Proposition 3.28 and Proposition 3.29.

Without loss of generality, let {w, z} ⊆ V (G) such that i(G−{w, z}) ≥ i(G). Let

D be an i-set of G ·xy H − {w, z}. Thus i(G) + i(H) − 1 ≥ |D| ≥ i(G) + i(H) − 2.

Let D1 = D ∩ V (G) and D2 = D ∩ V (H).

Suppose v ∈ {w, z}. Then D1 is an independent dominating set of G − {w, z}

and D2 is an independent dominating set of H − y. Therefore |D| ≥ i(G) + i(H), a

contradiction.

Suppose v /∈ {w, z} and v ∈ D. Then D1 is an independent dominating set

of G − {w, z} and D2 is an independent dominating set of H. Therefore |D| ≥

i(G) + i(H)− 1 and if equality is attained we have |D1| = i(G) and |D2| = i(H).

Suppose v /∈ {w, z} and v /∈ D. If D1 dominates v, then D1 is an independent

dominating set of G − {w, z} and D2 is an independent dominating set of H − y.

But then |D| ≥ i(G) + i(H), a contradiction. If D1 does not dominate v, then D2

is an independent dominating set of H and D1 is an independent dominating set of

G−{w, z, x}. Thus |D2| ≥ i(H) and |D1| ≥ i(G−{w, z, x}) ≥ i((G−{w, z})−x) ≥

i(G − {w, z}) − 1 ≥ i(G) − 1. But then |D| ≥ i(G) + i(H) − 1 and if equality is

attained we have |D1| = i(G)− 1 and |D2| = i(H).

Proposition 3.31. If G ·xyH is i-bicritical with i(G ·xyH) = i(G) + i(H)− 1 then x

is i-critical in G, y is i-critical in H, both G and H are i-bicritical, and at most one

of G and H is not i-critical.

Proof. Let u ∈ NG(x). Then i(G) + i(H)− 2 = i(G ·xyH −{u, v}) = i(G−{u, x}) +

i(H− y) ≥ i(G)−1 + i(H)−1 = i(G) + i(H)−2. Therefore i(G−{u, x}) = i(G)−1

and i(H − y) = i(H)− 1 and so y is i-critical in H. Likewise for u ∈ NH(y) we can

conclude that x is i-critical in G.
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Without loss of generality, suppose {w, z} ⊆ V (G) such that i(G−{w, z}) ≥ i(G).

Let D be an i-set of G ·xy H − {w, z} and let D1 = D ∩ V (G) and D2 = D ∩ V (H).

If v ∈ {w, z} then i(G ·xyH−{w, z}) = i(G−{w, z})+i(H−y) = i(G)+i(H)−1,

a contradiction.

If v /∈ {w, z} and v ∈ D then D1 is an independent dominating set of G− {w, z}

and D2 is an independent dominating set of H. Therefore |D| ≥ i(G) + i(H)− 1, a

contradiction.

Thus suppose that v /∈ {w, z} and v /∈ D. If D1 dominates v, then D1 is an

independent dominating set of G − {w, z} and D2 is an independent dominating

set of H − y. Therefore |D| ≥ i(G) + i(H) − 1, a contradiction. If D1 does not

dominate v, then D2 is an independent dominating set of H and D1 is an independent

dominating set of G − {w, z, x}. Thus |D2| ≥ i(H) and |D1| ≥ i(G − {w, z, x}) =

i((G−{w, z})−x) ≥ i(G−{w, z})− 1 ≥ i(G)− 1. Therefore |D| ≥ i(G) + i(H)− 1,

a contradiction. Therefore both G and H are i-bicritical.

Suppose that G and H are both not i-critical and let w ∈ V (G − x) such that

i(G−w) ≥ i(G) and let z ∈ V (H − y) such that i(H − z) ≥ i(H). Let D be an i-set

of G ·xy H − {w, z} and let D1 = D ∩ V (G) and D2 = D ∩ V (H).

If v ∈ D, then D1 is an independent dominating set of G − w and D2 is an

independent dominating set ofH−z. Therefore |D| ≥ i(G)+i(H)−1, a contradiction.

Suppose v /∈ D. Let D1 dominates v, then D1 is an independent dominating set of

G−w and D2 is an independent dominating set of H −{y, z}. But then |D1| ≥ i(G)

and |D2| ≥ i(H − {y, z}) = i((H − z) − y) ≥ i(H − z) − 1 ≥ i(H) − 1. Therefore

|D| ≥ i(G) + i(H) − 1, a contradiction. If D1 does not dominate v, then D2 is an

independent dominating set of H − z and D1 is an independent dominating set of

G − {w, x}. But then |D2| ≥ i(H) and |D1| ≥ i(G − {w, x}) = i((G − w) − x) ≥

i(G−w)−1 ≥ i(G)−1. Therefore |D| ≥ i(G) + i(H)−1, a contradiction. Therefore

at most one of G and H is not i-critical.
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Using a proof similar to Proposition 3.31, we can show the following.

Proposition 3.32. If G ·xyH is γ-bicritical with γ(G ·xyH) = γ(G) + γ(H)− 1 then

x is γ-critical in G, y is γ-critical in H, both G and H are γ-bicritical, and at most

one of G and H is not γ-critical.

This differs from the statement given by Brigham et al. which says that a graph

is γ-bicritical if and only if each block is γ-bicritical and γ-critical. A γ-bicritical

graph with a block that is not γ-critical is shown in Figure 3.6. This graph is also

i-bicritical and the same block that is not γ-critical is also not i-critical. Note that

this graph has γ(G) = i(G) = 5 and the block that is neither γ-critical nor i-critical

is the block that is isomorphic to K3�K3[v] (the expansion of K3�K3 via v).

Figure 3.6: A γ-bicritical and i-bicritical graph with a block that is neither γ-critical nor
i-critical.

Recall that if G is i-bicritical, then there is no vertex v ∈ V (G) such that deg(v) =

2. It is possible though for G to be i-bicritical and have a vertex of degree one. An

example of such a graph is K2 ·xy Kn,n+1, n ≥ 3, where x is any vertex of K2 and y

is any vertex of Kn,n+1 of degree n. The graph K2 ·xy K3,4 is shown in Figure 3.7.
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Additionally, this example shows that an i-bicritical graph can have a cut-edge and

so the edge connectivity need not be very large.

Figure 3.7: An i-bicritical graph with a vertex of degree 1.

Let G1 be a graph with subgraph H1
∼= H and G2 be a graph with subgraph

H2
∼= H. Recall that the graph G1(H1)�̂G2(H2) is the graph obtained from G1 and

G2 by identifying vertices of H1 with the corresponding vertices of H2 and adding

the set of edges {x1x2 : x1 ∈ V (G1) − V (H1) and x2 ∈ V (G2) − V (H2)}. Let H1,2

be a subgraph of G1(H1)�̂G2(H2) and let H3 be a subgraph of G3 where H1,2
∼= H3.

Recall that the graph (G1(H1)�̂G2(H2))(H1,2)�̂G3(H3) is obtained by identifying

vertices of H1,2 with corresponding vertices of H3 and adding edges {x1,2x3 : x1,2 ∈

V (G1(H1)�̂G2(H2)−H1,2) and x3 ∈ V (G3−H3)}. This can be generalized similarly

for more than three graphs as the graph

G�̂ = (((G1(H1)�̂G2(H2))(H1,2)�̂G4(H4)) · · · �̂Gm−1(Hm−1))(H1,2,...,m−1)�̂Gm(Hm).

Also recall that i(G�̂) = min{i(G1), i(G2), . . . , i(Gm)}.

Proposition 3.33. For each H ∈ {H1, H2, . . . , Hm, H1,2, H1,2,3, . . . , H1,2,...,m−1}, sup-

pose α(H) ≤ k − 3. Then

G�̂ = (((G1(H1)�̂G2(H2))(H1,2)�̂G4(H4)) · · · �̂Gm−1(Hm−1))(H1,2,...,m−1)�̂Gm(Hm)
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is k-i-bicritical if and only if k = min{i(G1), i(G2), . . . , i(Gm)} and every pair of

vertices {x, y} in G�̂ is either

• contained in some V (Gj), 1 ≤ j ≤ m, where i(Gj −{x, y}) ≤ k− 1 < i(Gj) or,

• without loss of generality, x is in some Gj, 1 ≤ j ≤ m, such that i(Gj − x) =

k − 1 and y /∈ V (Gj).

Proof. Suppose G�̂ is k-i-bicritical. Then by construction, k = min{i(G1), i(G2), . . . ,

i(Gm)}. Consider G�̂−{x, y}. Let D be an i-set of G�̂−{x, y}, and so |D| ≤ k−1. By

construction of G�̂, D ⊆ V (Gj) for some 1 ≤ j ≤ m. If {x, y}∩V (Gj) = ∅, then D is

an independent dominating set of G�̂, a contradiction. Say {x, y} ⊆ V (Gj). Then D

is an independent dominating set of Gj−{x, y} and so i(Gj−{x, y}) ≤ |D| ≤ k−1 <

i(Gj). Suppose, without loss of generality, that v ∈ V (Gj) and y /∈ V (Gj). Then D

is an independent dominating set of Gj − x and so i(Gj − x) ≤ |D| ≤ k − 1 < i(Gj).

Suppose that k = min{i(G1), i(G2), . . . , i(Gm)} and for each {x, y} ⊆ V (G�̂)

either {x, y} ⊆ V (Gj) for some 1 ≤ j ≤ m where i(Gj − {x, y}) ≤ k − 1, or,

without loss of generality, x ∈ V (Gj) for some 1 ≤ j ≤ m and y /∈ V (Gj) and

i(Gj − x) = k − 1. By construction i(G�̂) = k. Consider G�̂ − {x, y}. If {x, y} ⊆

V (Gj), then i(Gj − {x, y}) ≤ k − 1. Let D be an i-set of Gj − {x, y}. Otherwise

x ∈ V (Gj) and y /∈ V (Gj), and i(Gj − x) = k − 1. In this case, let D be an i-set

of Gj − x. In both cases, D is an independent dominating set of G�̂ − {x, y} and so

i(G�̂ − {x, y}) ≤ |D| ≤ k − 1 < i(G�̂).

For the simpler construction, G1(H1)�̂G2(H2)�̂ · · · �̂Gm(Hm), we have the fol-

lowing result.

Corollary 3.34. Let G1, G2, . . . , Gm and H be disjoint graphs such that for j =

1, 2, . . . ,m, Gj has a subgraph Hj
∼= H. Suppose α(H) ≤ k − 3. Then the graph
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G = G1(H1)�̂G2(H2)�̂ · · · �̂Gm(Hm) is k-i-bicritical if and only if k = i(G1) =

i(G2) = · · · = i(Gm) and for every {x, y} ⊆ V (G) either

• {x, y} ⊆ V (Gj) for some 1 ≤ j ≤ m where i(Gj − {x, y}) ≤ k − 1 or,

• without loss of generality, x is in some Gj, 1 ≤ j ≤ m, such that i(Gj − x) =

k − 1 and y /∈ V (Gj).

Recall that the wreath product of G with H, written G[H], is the graph with

vertex set V (G[H]) = {(g, h) : g ∈ V (G), h ∈ V (H)} and edge set E(G[H]) =

{(g1, h1)(g2, h2) : g1g2 ∈ E(G) or g1 = g2 and h1h2 ∈ E(H)}. Proposition 2.24 shows

that i(G[H]) = i(G)i(H).

Proposition 3.35. The graph G[H] is i-bicritical if and only if every vertex of G is

in an i-set of G and H is both i-critical and i-bicritical with i(H) ≥ 3.

Proof. Consider v1 = (g1, h1) ∈ V (G[H]) and v2 = (g2, h2) ∈ V (G[H]).

Case 1: g1 = g2 = g.

That is, h1 and h2 are in the same copy of H in G[H]. Let S1 be an i-set of G

containing g, let Sg be an i-set of H − {h1, h2}, and let S2 be an i-set of H. Then

D = {(g, h) : h ∈ Sg} ∪ {(x, y) : x 6= g, x ∈ S1, y ∈ S2} is an independent dominating

set of G[H]−{v1, v2}. But i(G[H]−{v1, v2}) ≤ |D| ≤ i(H)− 1 + (i(G)− 1)(i(H)) =

i(G)i(H)− 1 = i(G[H])− 1.

Case 2: g1 6= g2 and g1g2 ∈ E(G).

Without loss of generality, say that G has an i-set that contains g1. Let S1 be an

i-set of G such that g1 ∈ S1, let Sg1 be an i-set of H − h1, and let S2 be an i-set of

H. Then D = {(g1, h) : h ∈ Sg1} ∪ {(x, y) : x 6= g1, x ∈ S1, y ∈ S2} is an independent

dominating set of G[H]−{v1, v2}. But i(G[H]) ≤ |D| = i(H)−1+(i(G)−1)(i(H)) =

i(G)i(H)− 1 = i(G[H])− 1.

Case 3: g1 6= g2 and g1g2 /∈ E(G).
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Without loss of generality, say that G has an i-set that contains g1. Let S1 be an

i-set of G such that g1 ∈ S1.

If g2 ∈ S1, let Sg1 be an i-set of H − h1, let Sg2 be an i-set of H − h2, and let S2

be an i-set of H. Then D = {(g1, h) : h ∈ Sg1} ∪ {(g2, h) : h ∈ Sg2} ∪ {(x, y) : x 6=

g1, x 6= g2, x ∈ S1, y ∈ S2} is an independent dominating set of G[H]− {v1, v2}. But

i(G[H]−{v1, v2}) ≤ |D| = i(H)− 1 + i(H)− 1 + (i(G)− 1)(i(H)) = i(G)i(H)− 2 =

i(G[H])− 2.

If g2 /∈ S1, let Sg1 be an i-set of H − h1 and let S2 be an i-set of H. Then

D = {(g1, h) : h ∈ Sg}∪{(x, y) : x 6= g1, x ∈ S1, y ∈ S2} is an independent dominating

set of G[H]−{v1, v2}. But i(G[H]−{v1, v2}) ≤ |D| = i(H)− 1 + (i(G)− 1)(i(H)) =

i(G)i(H)− 1 = i(G[H])− 1.

Thus in all cases G[H] is i-bicritical.

Suppose G[H] is i-bicritical with x, y ∈ V (G[H]) where x = (g1, h1) and y =

(g2, h2). Let S be an i-set of G[H] such that |S ∩ {x, y}| ≥ 1. Suppose without loss

of generality that x ∈ S. Let S ′ = {u ∈ V (G) : ∃v ∈ V (H) with (u, v) ∈ S}. Then

S ′ is an i-set of G with g1 ∈ S ′. Therefore for any g1, g2 ∈ V (G[H]) there is an i-set

S ′ of G such that |S ′ ∩ {g1, g2}| ≥ 1.

Suppose thatH is not i-bicritical and let h1, h2 ∈ V (H) such that i(H−{h1, h2}) ≥

i(H). Let x = (g, h1) and y = (g, h2) for some g ∈ V (G). Let S be an i-set

of G[H] − {x, y} and let S ′ = {u ∈ V (G) : ∃v ∈ V (H) with (u, v) ∈ S}. Then

S ′ is an independent dominating set of G if i(H) ≥ 3. For each v ∈ V (G) let

Sv = {h : (v, h) ∈ S}. If Sg = ∅, then S is an independent dominating set of

G with cardinality less than i(G), a contradiction. If Sg 6= ∅ then Sg is an in-

dependent dominating set of H − {h1, h2} and so |Sg| ≥ i(H). But then for all

other Sv 6= ∅, Sv is an independent dominating set of H and so |Sv| ≥ i(H). Then

i(G[H]− {x, y}) ≥ i(G)i(H), a contradiction. Therefore H is i-bicritical.

Suppose that H is not i-critical and let h ∈ V (H) such that i(H − h) ≥ i(H).
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Let g1, g2 ∈ V (G) and let x = (g1, h) and y = (g2, h). Consider S an i-set of

G[H] − {x, y}. Let S ′ = {u ∈ V (G) : ∃v ∈ V (H) with (u, v) ∈ S}. Then S is an

independent dominating set of G if i(H) ≥ 2. For each u ∈ V (G) let Su = {v :

(u, v) ∈ S}. If Sg1 = ∅ and Sg2 = ∅, then S is an independent dominating set of

G, a contradiction. If, without loss of generality, Sg1 6= ∅ and Sg2 = ∅, then Sg1 is

an independent dominating set of H − h and so |Sg1| ≥ i(H − h) ≥ i(H). For all

other Su 6= ∅, |Su| ≥ i(H) and so i(G[H] − {x, y}) ≥ i(G)i(H), a contradiction. If

Sg1 6= ∅ and Sg2 6= ∅ then Sg1 and Sg2 are independent dominating sets of H − h

and so |Sg1| ≥ i(H − h) ≥ i(H) and |Sg2| ≥ i(H − h) ≥ i(H). For all other Su 6= ∅,

|Su| ≥ i(H) and so i(G[H] − {x, y}) ≥ i(G)i(H), a contradiction. Therefore H is

i-critical.

We now revisit a graph that is useful for constructing i-bicritical graphs only.

This construction was introduced by Brigham et al. [10] as a way of producing γ-

bicritical graphs that are not γ-critical. For a graph G and a vertex v ∈ V (G), the

expansion of G via v, denoted G[v], is the graph with vertex set V (G[v]) = V (G)∪{v′}

(where v′ /∈ V (G)) and edge set E(G[v]) = E(G) ∪ {uv′ : u ∈ NG[v]} . Note

that i(G[v]) = i(G). Also, G[v] is not i-critical since G[v] − v′ ∼= G (and likewise

G[v] − v ∼= G). The expansion via v construction was presented in [10], where the

authors use the construction to build γ-bicritical graphs.

Proposition 3.36. [10] If G is γ-bicritical and γ-critical, then G[v] is γ-bicritical.

Proposition 3.37. [52] If G is i-bicritical and i-critical, then G[v] is i-bicritical.

In fact, the conditions in these two propositions can be relaxed. The proofs for

γ-bicritical and i-bicritical are virtually identical, so we only present the proof for

the modified statement about i-bicritical graphs.

Proposition 3.38. If G is γ-bicritical and v ∈ V (G) such that γ(G−v) = γ(G)−1,

then G[v] is γ-bicritical.
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Proposition 3.39. If G is i-bicritical and v ∈ V (G) such that i(G− v) = i(G)− 1,

then G[v] is i-bicritical.

Proof. Let {x, y} ⊆ V (G[v]).

Case 1: {x, y} ∩ {v, v′} = ∅

Let D be an i-set of G− {x, y}. Since D dominates v in G, D dominates v′ in G[v].

Thus D is an independent dominating set of G[v]−{x, y} and i(G[v]−{x, y}) ≤ |D| ≤

i(G)− 1 = i(G[v])− 1.

Case 2: |{x, y} ∩ {v, v′}| = 1

Without loss of generality, say that x = v′. Then G[v]−{x, y} = G[v]−{v′, y} = G−y.

Since G is i-critical we have that i(G[v] − {x, y}) = i(G− y) < i(G) = i(G[v]).

Case 3: {x, y} = {v, v′}

Then G[v] − {x, y} = G − v. Since G is i-critical we have that i(G[v] − {x, y}) =

i(G− v) < i(G) = i(G[v])

Thus in all cases G[v] is i-bicritical.

If, in addition to being i-bicritical, G is an i-critical graph, then the only stable

vertices of G[v] are v and v′. To see this, let x ∈ V (G) such that x 6= v and let D be

an i-set of G−x. Since D dominates v in G−x, D dominates v′ in G[v]−x. Thus D

is an independent dominating set of G[v] − x and i(G[v] − x) ≤ |D| < i(G) = i(G[v]).

Notice that the expansion via v construction is useful in creating i-bicritical graphs

with exactly two i-stable vertices (the vertices v and v′ have i(G− v) = i(G− v′) =

i(G)), that is, graphs with |V 0
i | = 2. Graphs that are both i-critical and i-bicritical

(such asKn,n orKn�Kn) are examples that have no i-stable vertices, that is, |V 0
i | = 0.

For n ≥ 3, the complete bipartite graph Kn,n+1 is an example of an i-bicritical graph

with n + 1 i-stable vertices, that is, a graph with |V 0
i | = n + 1 ≥ 4. It is left as

an open problem to investigate i-bicritical graphs with |V 0
i | = k for a fixed k. In

particular, does there exist an i-bicritical graph G with |V 0
i | = 2?
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The expansion via v construction is also useful to rule out the existence of many

end-vertices in an i-bicritical graph.

Proposition 3.40. If G is an i-bicritical graph then each v ∈ V (G) is adjacent to

at most one end-vertex.

Proof. Recall that for any i-bicritical graph, V +
i = ∅. Suppose G is an i-bicritical

graph and suppose v ∈ V (G) is adjacent to at least two end-vertices. Suppose

i(G − v) = i(G) − 1, and let S be an i-set of G − v. Then the isolated vertices

adjacent to v in G are all contained in S and so S is also an independent dominating

set of G, a contradiction. Therefore v is not an i-critical vertex. Let x ∈ V (G),

x 6= v. Suppose i(G − x) ≥ i(G). By Proposition 1.18, G − x is an i-critical graph,

but then G − x has an end-vertex, a contradiction to Proposition 1.21. Hence the

only stable vertex in G is v. Therefore if G is i-bicritical with a vertex adjacent to

at least two end-vertices, then G has at most one stable vertex.

Now consider the graph G[x]. By Proposition 3.39, G[x] is i-bicritical since x is an

i-critical vertex in G. But then G[x] is a graph where v is adjacent to at least two

end-vertices. Also V 0 = {v, x, x′}, a contradiction to the previous paragraph. Thus if

G is i-bicritical then each vertex v ∈ V (G) is adjacent to at most one end-vertex.

Corollary 3.41. No tree is i-bicritical.

Proof. Suppose T is an i-bicritical tree. Then by Proposition 3.40, each vertex in T

is adjacent to at most one leaf. Let P = v1v2 · · · vt be a longest path in T . Then

deg(v2) = deg(vt−1) = 2, a contradiction to Proposition 1.23.

The above proof corrects an error made by Xu et al. [52], which claimed the

result.
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3.2 Strong i-Bicritical Graphs

A strong i-bicritical graph is a graph G such that i(G − {u, v}) = i(G) − 2 for any

{u, v} ⊆ V (G) such that uv /∈ E(G). Note that by Proposition 1.14, if i(G−{u, v}) =

i(G)− 2 for any two vertices, then G is isomorphic to Kn. In this section we discuss

properties of strong i-bicritical graphs and present methods to construct strong i-

bicritical graphs.

Observation 3.42. The complete bipartite graph Kn,n, n ≥ 3, is strong i-bicritical.

Notice that the complete bipartite graph Kn,n+1 is not strong i-bicritical. Thus

there are i-bicritical graphs that are not strong i-bicritical.

Observation 3.43. If G is strong i-bicritical, then S ∩ (N(x)∪N(y)) = ∅ for every

minimum independent dominating set S of G− {x, y} where xy /∈ E(G).

Proposition 3.44. [52] If G is strong i-bicritical, then for any {x, y} ⊆ V (G) with

xy /∈ E(G) there exists an i-set S such that {u, v} ⊆ S.

Proof. Consider an i-set S of G − {x, y}. Then |S| = i(G) − 2 and by Observation

3.43 S ∩ (NG(x) ∪ NG(y)) = ∅. Therefore S ∪ {x, y} is an independent dominating

set of G of cardinality i(G).

To see that the converse of Proposition 3.44 is not true, consider the graph C3n+1.

For any two independent vertices x and y in C3n+1 there exists an i-set S such that

{x, y} ⊆ S. However, C3n+1 is not strong i-bicritical since for {x, y} ⊂ V (C3n+1)

where d(x, y) = 2, we have that i(C3n+1 − {x, y}) = i(C3n+1).

Corollary 2.13 shows that for any graph G and any k ≥ 5 there is a strong

k-i-bicritical graph H such that G is an induced subgraph of H. This makes char-

acterizing the strong k-i-bicritical graphs, k ≥ 5, difficult as there is no finite list of
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forbidden subgraphs. The strong 3-i-bicritical graphs are easily characterized though

in the next result.

Proposition 3.45. The only strong 3-i-bicritical graphs are K3 and K3,3,...,3.

Proof. Let G be a strong 3-i-bicritical graph. If G has no edges, then G ∼= K3.

Hence assume otherwise. Since i(G) = 3, there exists an independent set {x1, y1, z1}

that dominates G. Suppose there exists a vertex z2 ∈ V (G) (z2 6= x1, y1) such that

z1z2 /∈ E(G). Consider G−{z1, z2}. Then i(G−{z1, z2}) = 1 and there exists a vertex

v ∈ V (G) such that v dominates G−{z1, z2}. Note that {v, z1, z2} is an independent

dominating set of G. In particular, we have that vz2 /∈ E(G). Consider G− {v, z2}.

Then i(G−{v, z2}) = 1 and there exists a vertex w ∈ V (G) (w 6= x1, y1, z1) such that

w dominates G−{v, z2}. Note that wz2 /∈ E(G) and wv /∈ E(G) since {v, w, z2} is an

independent dominating set of G. But v dominates G− {z1, z2} and so wv ∈ E(G),

a contradiction. Therefore there does not exist a vertex z2 (6= x1, y1) such that

z1z2 /∈ E(G).

Likewise there is no vertex x2 such that x1x2 /∈ E(G) nor a vertex y2 such that

y1y2 /∈ E(G). Since {x1, y1, z1} was an arbitrary i-set of G, and every vertex of G is

contained in some i-set by Proposition 1.10, we conclude that G ∼= K3,3,...,3.

Thus for the remainder of this section, we discuss strong i-bicritical graphs with

i(G) ≥ 4.

Proposition 3.46. If G is strong i-bicritical, then G is i-critical.

Proof. Note first that if G is strong i-bicritical, then i(G) 6= 1 so every vertex has

at least one vertex that is nonadjacent. We want to show that i(G − x) = i(G) − 1

for all x ∈ V (G). Consider G − {x, y} for {x, y} ⊆ V (G) with xy /∈ E(G). Since

G is strong i-bicritical we have that i(G − {x, y}) = i(G) − 2. Consider an i-set S

of G − {x, y}. By Observation 3.43, S ∩ (NG(x) ∪ NG(y)) = ∅. Therefore S ∪ {y}

dominates G− x and |S ∪ {y}| = i(G)− 1. Therefore G is i-critical.
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Proposition 3.47. If G is strong i-bicritical, then G is i-bicritical.

Proof. Note first that if G is i-bicritical, then i(G) 6= 1 so every vertex has at least

one vertex that is nonadjacent. We want to show that i(G − {x, y}) ≤ i(G) − 1 for

all {x, y} ⊆ V (G). If xy /∈ E(G), then i(G − {x, y}) = i(G) − 2 since G is strong

i-bicritical. If xy ∈ E(G), then i(G − {x, y}) = i(G) − 1 by Proposition 3.46 and

Proposition 1.14.

Notice that the converse of Propositions 3.46 and 3.47 does not hold. For example,

K3,3 · K3,3 is a graph that is i-critical and i-bicritical, but is not strong i-bicritical.

In fact, Proposition 3.49 will show that since K3,3 · K3,3 has a cut-vertex, it is not

strong i-bicritical.

Proposition 3.48. If G is strong i-bicritical, then δ(G) ≥ 3.

Proof. If there is a vertex of degree one in G, then G is not i-critical by Proposition

1.21. But then G is not strong i-bicritical by Proposition 3.46. If there is a vertex

of degree two in G, then G is not i-bicritical by Proposition 1.23. But then by

Proposition 3.47, G is not strong i-bicritical. Therefore δ(G) ≥ 3.

The next collection of results investigate the connectivity of strong i-bicritical

graphs.

Proposition 3.49. If G is strong i-bicritical, then G has no cut-vertex.

Proof. Let v be a cut-vertex of G, let G1 − v be one component of G − v, and let

G2 − v = (G − v) − G1. Then G1 is the graph induced by V (G1 − v) ∪ {v} and

G2 is the graph induced by V (G2 − v) ∪ {v}. Since G is strong i-bicritical, we have

that G is i-critical and i(G) = i(G1) + i(G2) − 1. Furthermore, G1 is i-critical and

G2 is i-critical. Let x ∈ V (G1) such that xv ∈ E(G) and let y ∈ V (G2) such that

yv ∈ E(G). Then xy /∈ E(G) and i(G − {x, y}) = i(G1) + i(G2) − 3. Let D be an
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i-set of G− {x, y}. Thus v /∈ D. Let D1 = D ∩ V (G1) and D2 = D ∩ V (G2). Then

|D| = |D1| + |D2| and so either |D1| ≤ i(G1) − 2 or |D2| ≤ i(G2) − 2. Without loss

of generality, suppose |D1| ≤ i(G1)− 2. Since D dominates G− {x, y}, either D1 or

D2 (or possibly both D1 and D2) dominate v.

Suppose D1 dominates v. Then D1 dominates G1− x. But then |D1| ≥ i(G)− 1,

a contradiction.

Suppose D2 dominates v. Then D1 dominates G1−{x, v}. But since xv ∈ E(G1),

we have that |D1| ≥ i(G1 − {x, v}) ≥ i(G1)− 1, a contradiction.

Therefore G is not strong i-bicritical.

Corollary 3.50. Let G be a graph with cut-vertex v. Let x ∈ V (G) such that xv ∈

E(G), let y ∈ V (G) such that yv ∈ E(G), and suppose x and y are in different

components of G− v. If G is i-critical, then i(G− {x, y}) ≥ i(G)− 1.

Corollary 3.51. If G is strong i-bicritical, then G is 2-connected.

Notice that Proposition 3.49 shows that the coalescence construction does not

work for strong i-bicritical graphs, and so there is no result analogous to Propositions

2.20 and 3.11 for strong i-bicritical graphs.

Proposition 3.52. If G is strong i-bicritical, then G has no 2-vertex-cut {u, v} such

that uv /∈ E(G).

Proof. Suppose that G is strong i-bicritical with a 2-vertex-cut {u, v} such that uv /∈

E(G). Let G1 be the graph induced by the vertices of one component of V (G−{u, v})

along with {u, v}. Let G2 be the graph induced by V (G−G1) ∪ {u, v}.

Notice that i(G)− 2 = i(G− {u, v}) = i(G1 − {u, v}) + i(G2 − {u, v}) ≥ i(G1)−

2 + i(G2)− 2 = i(G1) + i(G2)− 4 and so i(G) ≥ i(G1) + i(G2)− 2.

Let D be an i-set of G such that {u, v} ⊆ D. Let D1 = D ∩ V (G1) and D2 =

D ∩ V (G2) and let d1 = |D1| and d2 = |D2|. Thus i(G) = d1 + d2 − 2. Let S be
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an i-set of G − {u, v} and let S1 = S ∩ V (G1) and S2 = S ∩ V (G2). Let s1 = |S1|

and s2 = |S2|. Thus i(G − {u, v}) = |S| = s1 + s2 = i(G) − 2 = d1 + d2 − 4.

Notice that S ∩ NG1({u, v}) = ∅ and S ∩ NG2({u, v}) = ∅. Suppose without loss of

generality that s1 < d1 − 2. Then D2 ∪ S1 is an independent dominating set of G

and |D2 ∪ S1| < d1 + d2 − 2, a contradiction. Therefore s1 ≥ d1 − 2 and s2 ≥ d2 − 2

and since d1 + d2 − 4 = s1 + s2, we have that s1 = d1 − 2 and s2 = d2 − 2. Now

let S ′ be an i-set of G1. Then S ′ ∪ S2 is an independent dominating set of G (since

S ∩ NG2({u, v}) = ∅). But |S ′ ∪ S2| = i(G1) + d2 − 2 = i(G) = d1 + d2 − 2 and so

d1 = i(G1). Likewise d2 = i(G2) and so i(G) = i(G1) + i(G2)− 2.

Let x ∈ V (G1 − {u, v}) such that xu ∈ E(G1) and let y ∈ V (G2 − {u, v}) such

that yu ∈ E(G2). Now let D be an i-set of G−{x, y}, and so |D| = i(G1)+ i(G2)−4.

Let D1 = D ∩ V (G1) and D2 = D ∩ V (G2). Notice that v /∈ D.

Suppose that v /∈ D. If |D1| ≥ i(G1) − 1 we have that |D2| ≤ i(G2) − 3, a

contradiction since D2 is an independent dominating set of G2 − y or G2 − {v, y}.

Therefore |D1| ≤ i(G1) − 2. If D1 does not dominate v, then D1 is an independent

dominating set of G1 − {v, x} or G1 − {x, u, v} but i(G1 − {v, x}) ≥ i(G1) − 2 and

i(G1 − {x, u, v}) = i((G1 − {x, u})− v) ≥ i(G1 − {x, u})− 1 ≥ i(G1)− 2. Therefore

|D1| = i(G1) − 2 and D2 dominates v. But then D2 is an independent dominating

set of G2−y or G2−{u, y} and i(G2−y) ≥ i(G2)−1 and i(G2−{u, y}) ≥ i(G2)−1.

But then |D| ≥ i(G1) + i(G2)− 3, a contradiction.

Suppose that v ∈ D. Notice that D ∩NG1(x) = ∅. Since |D| = i(G1) + i(G2)− 4,

we have that |D1| ≤ i(G1)−2 or |D2| ≤ i(G2)−2. Without loss of generality, suppose

that |D1| ≤ i(G1)− 2. Then D = D1 ∪ {x} is an independent dominating set of G1.

But |D| ≤ i(G1)− 1, a contradiction.

Therefore if G is strong i-bicritical there does not exist a 2-vertex-cut {u, v} such

that uv /∈ E(G).
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Let G be a strong i-bicritical graph with a 2-vertex-cut {u, v} such that uv ∈

E(G). Let G1 be the graph induced by the vertices of one component of V (G−{u, v})

along with {u, v}. Let G2 be the graph induced by V (G−G1) ∪ {u, v}.

Proposition 3.53. If G is strong i-bicritical with a 2-vertex-cut {u, v} such that

uv ∈ E(G), then i(G) ≥ i(G1) + i(G2)− 1.

Proof. Let D be an i-set of G−{u, v} and let D1 = D∩V (G1) and D2 = D∩V (G2).

Then i(G−{u, v}) ≥ i(G)−1. Also D1 is an independent dominating set of G1−{u, v}

and D2 is an independent dominating set of G2 − {u, v}. Thus |D1| ≥ i(G1)− 1 and

|D2| ≥ i(G2)− 1. Therefore i(G) ≥ i(G1) + i(G2)− 1.

Proposition 3.54. If u is i-critical in G1 and v is i-critical in G2, then G is not

strong i-bicritical.

Proof. Suppose that u is i-critical in G1 and v is i-critical in G2. Let D1 be an i-set

of G1 − u and D2 be an i-set of G2 − v. Then v /∈ D1 and u /∈ D2 and D = D1 ∪D2

is an independent dominating set of G with |D| = i(G1) + i(G2)− 2, and so G is not

strong i-bicritical.

Proposition 3.55. If u is i-critical in G1 and G2 and v is i-critical in neither G1

nor G2, then G is not strong i-bicritical.

Proof. Suppose that G is strong i-bicritical and u is i-critical in G1 and G2 and

v is i-critical in neither G1 nor G2. Let D1 be an i-set of G1 such that u ∈ D1

and let D2 be an i-set of G2 such that u ∈ D2. Then D1 ∪ D2 is an independent

dominating set of G of size i(G1) + i(G2) − 1. Therefore i(G) = i(G1) + i(G2) − 1.

Consider z ∈ V (G2) such that vz /∈ E(G). Then there exists an i-set D of G−{v, z}

with |D| = i(G) − 2. Notice that u /∈ D. Then S = D ∪ {v} is an independent
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dominating set of G− z with |S| = i(G)− 1 and so i(G− z) = i(G)− 1. Therefore

i(G−z) = i(G1)+i(G2)−2. Notice that S1 = S∩V (G1) is an independent dominating

set of G1 and S2 = S ∩V (G2) is an independent dominating set of G2− z. Therefore

|S1| ≥ i(G1) and |S2| ≥ i(G2) − 1. Suppose that |S1| = i(G1) and |S2| = i(G2) − 1.

Then D ∩ V (G1) is an independent dominating set of G1− y of size i(G1)− 1 and so

y is i-critical in G1, a contradiction. Thus suppose |S1| > i(G1) and |S2| < i(G2)− 1.

But then i(G2 − z) < i(G2)− 1 a contradiction.

There are three cases left to consider for the existence of a 2-vertex-cut {u, v}

with uv ∈ E(G) in strong i-bicritical graphs: without loss of generality that u and

v are both i-critical in G1 and neither u nor v is i-critical in G2, without loss of

generality that u is i-critical in G1 but not G2 and v is i-critical in neither G1 nor

G2, and that neither u nor v are i-critical in G1 and G2.

Proposition 3.56. Let G be a strong i-bicritical graph with a 2-vertex-cut {u, v}

where uv ∈ E(G). If u and v are i-critical in G1 and neither u nor v are i-critical

in G2, then

• i(G) = i(G1) + i(G2)− 1

• i(G1 − {u, v}) = i(G1)− 1

• i(G2 − {u, v}) = i(G2)− 1

• i(G1−{x, y}) = i(G1)−2 for every xy /∈ E(G1) where x /∈ {u, v} and y /∈ {u, v}

• for every xy /∈ E(G2) where x /∈ {u, v} and y /∈ {u, v}, i(G2−{x, y}) = i(G2)−2

or i(G2 − {x, y, u}) = i(G2)− 2 or i(G2 − {x, y, v}) = i(G2)− 2

• i(G1 − x) = i(G1) − 1 for every x ∈ V (G1 − {u, v}) where either xu /∈ E(G1)

or xv /∈ E(G1)
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• i(G2 − x) = i(G2) − 1 for every x ∈ V (G2 − {u, v}) where either xu /∈ E(G2)

or xv /∈ E(G1).

Proof. Let S2 be any i-set of G2. If u ∈ S2 then let S1 be an i-set of G1 that contains

u. (Note that such an i-set exists since u is i-critical in G1.) Likewise, if v ∈ S2 then

let S1 be an i-set of G1 that contains v. If {u, v} ∩ S2 = ∅, then let S1 be an i-set of

G1− u. Since u is i-critical in G1, |S1| = i(G1)− 1 and v /∈ S1. In any of these cases,

S1 ∪S2 is an independent dominating set of G of cardinality i(G1) + i(G2)− 1. Thus

by Proposition 3.53, i(G) = i(G1) + i(G2)− 1.

Now consider G − {u, v} and let S be an i-set of G − {u, v}. Since G is strong

i-bicritical, it is also i-bicritical and so |S| = i(G1) + i(G2)− 2. Now |S ∩ V (G1)| ≥

i(G1)−1 and |S∩V (G2)| ≥ i(G2)−1 and so |S∩V (G1)| = i(G1)−1 and |S∩V (G2)| =

i(G2)−1. Thus we have that i(G1−{u, v}) = i(G1)−1 and i(G2−{u, v}) = i(G2)−1.

Let {x, y} ⊆ V (G1) where xy /∈ E(G1) and u, v /∈ {x, y} and let S be an i-set of

G−{x, y}. Then |S| = i(G1)+i(G2)−3 since G is strong i-bicritical. Suppose u ∈ S.

Then S ∩ V (G1) independently dominates G1−{x, y} and S ∩ V (G2) independently

dominates G2 and so |S ∩ V (G1)| ≥ i(G1) − 2 and |S ∩ V (G2)| ≥ i(G2). Therefore

|S∩V (G1)| = i(G1)−2 and |S∩V (G2)| = i(G2). Likewise, if v ∈ S then |S∩V (G1)| =

i(G1) − 2. Now suppose S ∩ {u, v} = ∅. Suppose both u and v are dominated

by vertices in S ∩ V (G1). Then S ∩ V (G1) is an independent dominating set of

G1 − {x, y} and S ∩ V (G2) is an independent dominating set of G2 − {u, v}, and so

|S∩V (G1)| ≥ i(G1)−2 and |S∩V (G2)| ≥ i(G2)−1. Therefore |S∩V (G1)| = i(G1)−2

and |S ∩ V (G2)| = i(G2) − 1. Suppose both u and v are dominated by vertices in

S ∩ V (G2). Then S ∩ V (G2) is an independent dominating set of G2 and S ∩ V (G1)

is an independent dominating set of G1 − {u, v, x, y}. Thus |S ∩ V (G2)| ≥ i(G2)

and since uv ∈ E(G1) |S ∩ V (G1)| ≥ i(G1) − 3 and so |S ∩ V (G2)| = i(G2) and

|S ∩ V (G1)| = i(G1)− 3. Without loss of generality, say that u is not dominated by

S ∩ V (G1). Then (S ∩ V (G1))∪{u} is an independent dominating set of G1−{x, y}
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and (S ∩ V (G1)) ∪ {u} has cardinality i(G1)− 2. Finally, without loss of generality,

suppose u is dominated by S ∩ V (G1) but not S ∩ V (G2) and v is dominated by

S ∩ V (G2) but not S ∩ V (G1). Then S ∩ V (G1) is an independent dominating set of

G1−{x, y, v} and S∩V (G2) is an independent dominating set of G2−u. Since u is not

i-critical in G2 we have that |S ∩V (G2)| ≥ i(G2) and |S ∩V (G1)| ≥ i(G1)− 3. Then

|S ∩ V (G2)| = i(G2) and |S ∩ V (G1)| = i(G1) − 3. Notice that the only way this is

possible is if x, y, and v are pairwise independent in G1. In this case, (S∩V (G1))∪{v}

is an independent dominating set of G1−{x, y} of cardinality i(G1)− 2. In all cases

then, i(G1 − {x, y}) = i(G1)− 2 when xy /∈ E(G1) and u, v /∈ {x, y}.

Let {x, y} ⊆ V (G2) where xy /∈ E(G2) and u, v /∈ {x, y} and let S be an i-set

of G − {x, y}. Then |S| = i(G1) + i(G2) − 3 since G is strong i-bicritical. Suppose

u ∈ S. Then S ∩ V (G1) is an independent dominating set of G1 and S ∩ V (G2)

is an independent dominating set of G2 − {x, y}. Thus |S ∩ V (G1)| ≥ i(G1) and

|S∩V (G2)| ≥ i(G2)−2 and therefore |S∩V (G1)| = i(G1) and |S∩V (G2)| = i(G2)−2.

Likewise, if v ∈ S, then we have that |S ∩ V (G1)| = i(G1) and |S ∩ V (G2)| =

i(G2) − 2 and S ∩ V (G2) is an independent dominating set of G2 − {x, y}. Now

suppose S ∩ {u, v} = ∅. Suppose both u and v are dominated by S ∩ V (G2). Then

S ∩ V (G2) is an independent dominating set of G2 − {x, y} and S ∩ V (G1) is an

independent dominating set of G1 − {u, v} and so |S ∩ V (G2)| ≥ i(G2) − 2 and

|S∩V (G1)| ≥ i(G1)−1. Therefore |S∩V (G2)| = i(G2)−2 and |S∩V (G1)| = i(G1)−1.

Suppose both u and v are dominated by vertices in S ∩ V (G1). Then S ∩ V (G1) is

an independent dominating set of G1 and S ∩ V (G2) is an independent dominating

set of G2−{u, v, x, y}. Thus |S ∩ V (G1)| ≥ i(G1). Since uv ∈ E(G2), |S ∩ V (G2)| ≥

i(G2)− 3 and so |S ∩ V (G1)| = i(G1) and |S ∩ V (G2)| = i(G2)− 3. Without loss of

generality, say that u is not dominated by S ∩ V (G2). Then (S ∩ V (G2))∪ {u} is an

independent dominating set of G2 − {x, y} of cardinality i(G2)− 2. Finally, without

loss of generality, suppose u is dominated by S ∩ V (G2) but not by S ∩ V (G1)
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and v is dominated by S ∩ V (G1) but not by S ∩ V (G2). Then S ∩ V (G1) is an

independent dominating set of G1 − u and S ∩ V (G2) is an independent dominating

set of G2 − {v, x, y}. Then |S1| = i(G1)− 1 and |S2| = i(G2)− 2.

Let x ∈ V (G1 − {u, v} where xu /∈ E(G), and consider G − {x, u}. Let S be an

i-set of G − {x, u} and so |S| = i(G1) + i(G2) − 3. Therefore N(u) ∩ S = ∅, and

in particular v /∈ S. Let S1 = S ∩ V (G1) and let S2 = S ∩ V (G2). Suppose v is

dominated by a vertex in S2. Then S2 is an independent dominating set of G2−{u}

and S1 is an independent dominating set of G1−{x, u, v}. Thus |S1| ≥ i(G1)−2 and

|S2| ≥ i(G2), a contradiction. Suppose v is dominated by a vertex in S1. Then S1 is

an independent dominating set of G1 − {x, u} and S2 is an independent dominating

set of G2 − {u, v}. Thus |S1| = i(G1)− 2 and |S2| = i(G2)− 1. But then S1 ∪ {u} is

an independent dominating set of G1−x of cardinality i(G1)−1. A similar argument

is used if xv /∈ E(G).

Let x ∈ V (G2−{u, v} where xu /∈ E(G), and consider G−{x, u}. Let S be an i-set

of G−{x, u} and so |S| = i(G1)+i(G2)−3. Therefore N(u)∩S = ∅, and in particular

v /∈ S. Let S1 = S ∩ V (G1) and let S2 = S ∩ V (G2). Suppose v is dominated by a

vertex in S2. Then S2 is an independent dominating set of G2 − {x, u} and S1 is an

independent dominating set of G1−{u, v}. Thus |S2| = i(G2)−2 and |S1| = i(G1)−1.

But then u is i-critical in G2, a contradiction. Suppose v is dominated by a vertex in

S1 and N(v) ∩ S2 = ∅. Then S1 is an independent dominating set of G1 − u and S2

is an independent dominating set of G2−{x, u, v}. Thus S2 ∪ {u} is an independent

dominating set of G2 − x of cardinality i(G2) − 1. A similar argument is used if

xv /∈ E(G).

The following construction creates a strong i-bicritical graph with a 2-vertex-cut.

Proposition 3.57. Let G1 be a strong i-bicritical graph and let G2 = H[v] where H

is a strong i-bicritical graph. Then the graph G = G1(〈{u, u′}〉) � G2(〈{v, v′}〉) is a
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strong i-bicritical graph, where uu′ is any edge in G1 and vv′ is the edge in G2 created

by v and its copy v′.

Proof. Without loss of generality, assume u is identified with v and u′ is identified

with v′. Notice that by construction both u and u′ are i-critical in G1 and neither v

nor v′ is i-critical in G2.

Let S be an i-set of G and let S1 = S ∩ V (G1) and S2 = S ∩ V (G2). Suppose u

and u′ are dominated by S1. Then |S1| ≥ i(G1) and |S2−{v, v′| ≥ i(G2)−1. Suppose

that u is dominated by S1 and u′ is not dominated by S1. Then S2 dominates v′.

Thus by construction, |S1| ≥ i(G1) − 1 and |S2| ≥ i(G2), as if S2 dominates v′

then S2 also dominates v. Likewise if u is not dominated by S1 and u′ is, then

|S1| ≥ i(G1) − 1 and |S2| ≥ i(G2). If neither u nor u′ are dominated by S1, then

v and v′ are dominated by S2. Then |S2| ≥ i(G2) and |S1| ≥ i(G1) − 1. Hence

i(G) ≥ i(G1)+i(G2)−1. Let S1 be an i-set of G1 and let S2 be an i-set of G2−{v, v′}.

Then |S1| = i(G1) and |S2| = i(G2) − 1 as H is strong i-bicritical and thus H is i-

critical. Also S2 ∩ (N(v) ∪N(v′)) = ∅ and so S1 ∪ S2 is an independent dominating

set of G of cardinality i(G1) + i(G2)− 1. Therefore i(G) = i(G1) + i(G2)− 1.

Consider G − {x, y}. If {x, y} ⊆ V (G1) where u /∈ {x, y} and u′ /∈ {x, y} then

let S1 be an i-set of G1 − {x, y} and let S2 be an i-set of G2 − {v, v′}. Since G1 is

strong i-bicritical |S1| = i(G1)− 2 and since H is strong i-bicritical |S2| = i(G2)− 1

and (N(v)∪N(v′))∩ S2 = ∅. Then S = S1 ∪ S2 is an independent dominating set of

G− {x, y} and |S| = i(G1) + i(G2)− 3.

If {x, y} ⊆ V (G2) where v /∈ {x, y} and v′ /∈ {x, y} then let S2 be an i-set of

G2 − {x, y}. If v ∈ S2 then let S1 be an i-set of G1 − u. If v′ ∈ S2 then let S1 be any

i-set of G1 − u′. If S2 ∩ {v, v′} = ∅, then let S1 be any i-set of G1 − {u, u′}. In all

cases, |S1| = i(G1)− 1, |S2| = i(G2)− 2, and S1 ∪ S2 is an independent dominating

set of G− {x, y} of cardinality i(G1) + i(G2)− 3.

Now suppose that x ∈ V (G1 − {u, u′}) and without loss of generality that y = u.
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Let S1 be an i-set of G1 − {x, u} and let S2 be an i-set of G2 − {v, v′}. Then

|S1| = i(G1)− 2 and |S2| = i(G2)− 1 and (N(v) ∪N(v′)) ∩ S2 = ∅. Then S1 ∪ S2 is

an independent dominating set of G− {x, y} of cardinality i(G1) + i(G2)− 3.

Suppose that x ∈ V (G2 − {v, v′}) and without loss of generality that y = v. Let

S2 be an i-set of G2−{x, v, v′}. Since H is a strong i-bicritical graph |S2| = i(G2)−2

and (N(v) ∪N(v′)) ∩ S2 = ∅. Let S1 be an i-set of G1 − u, and so |S1| = i(G1)− 1.

Then S1∪S2 is an independent dominating set of G with cardinality i(G1)+i(G2)−3.

Therefore G is strong i-bicritical.

3.2.1 Constructions for Strong i-Bicritical Graphs

In this section we provide methods to construct strong i-bicritical graphs analogous

to the constructions presented in Chapter 2 and Section 3.1.1. Namely, we consider

the disjoint union, the join, the circle arc construction, and the wreath product.

Proposition 3.58. The graph G1 ∪G2 ∪ · · · ∪Gk is strong i-bicritical if and only if

all of G1, G2, . . ., Gk are strong i-bicritical or isomorphic to K1.

Proof. If all of G1, G2, . . ., Gk are strong i-bicritical, then from Proposition 3.46

all G1, G2, . . ., Gk are i-critical. Consider {u, v} ⊆ V (G1 ∪ G2 ∪ · · · ∪ Gk) with

uv /∈ E(G1 ∪ G2 ∪ · · · ∪ Gk). If {u, v} ⊆ V (Gj) for some 1 ≤ j ≤ k, then uv /∈

E(Gj) and (G1 ∪ G2 ∪ · · · ∪ Gk) − {u, v} ∼= G1 ∪ · · · ∪ Gj − {u, v} ∪ · · · ∪ Gk and

i((G1 ∪G2 ∪ · · · ∪Gk)−{u, v}) = i(G1 ∪ · · · ∪Gj −{u, v}∪ · · · ∪Gk) = i(G1) + · · ·+

i(Gj)− 2 + · · ·+ i(Gk) = i(G1 ∪G2 ∪ · · · ∪Gk)− 2 since Gj is strong i-bicritical.

If u ∈ V (Gj) and v ∈ V (Gl) for some 1 ≤ j < l ≤ k, then (G1 ∪G2 ∪ · · · ∪Gk)−

{u, v} ∼= G1∪· · ·∪Gj−u∪· · ·∪Gl−v∪· · ·∪Gk and i((G1∪G2∪· · ·∪Gk)−{u, v}) =

i(G1∪· · ·∪Gj−u∪· · ·∪Gl−v∪· · ·∪Gk) = i(G1)+ · · ·+ i(Gj)−1+ · · ·+ i(Gj)−1+

· · ·+ i(Gk) = i(G1 ∪G2 ∪ · · · ∪Gk)− 2, since Gj and Gl are both strong i-bicritical

and thus i-critical. Thus in either case G1 ∪G2 ∪ · · · ∪Gk is strong i-bicritical.
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For the converse, suppose that G1∪G2∪· · ·∪Gk is strong i-bicritical and consider

(G1 ∪ G2 ∪ · · · ∪ Gk) − {u, v} where {u, v} ⊆ V (G1 ∪ G2 ∪ · · · ∪ Gl) and uv /∈

E(G1 ∪G2 ∪ · · · ∪Gk).

Consider the case where u ∈ V (Gj) and v ∈ V (Gl) for some 1 ≤ j < l ≤ k.

If u is a vertex such that i(Gj − u) = i(Gj), then i((G1 ∪ · · · ∪ Gk) − {u, v}) =

i(G1) + · · ·+ i(Gj − u) + · · ·+ i(Gj − v) + · · ·+ i(Gk) ≥ i(G1) + · · ·+ i(Gj) + · · ·+

i(Gl) − 1 + · · · + i(Gk) > i(G1 ∪ · · · ∪ Gk) − 2 and so G1 ∪ · · · ∪ Gk is not strong

i-bicritical. Hence both Gj and Gl are critical and we can conclude that every Gt,

1 ≤ t ≤ k, is i-critical.

Now consider the case where {u, v} ⊆ V (Gj) for some 1 ≤ j ≤ k. Then i((G1 ∪

· · · ∪ Gk) − {u, v}) = i(G1) + · · · + i(Gj − {u, v}) + · · · + i(Gk). If i(Gj − {u, v}) >

i(Gj) − 2, then G1 ∪ · · · ∪ Gk is not strong i-bicritical. Therefore i(Gj − {u, v}) =

i(Gj)−2 and Gj is thus strong i-bicritical. Therefore all of G1, G2, . . ., Gk are strong

i-bicritical.

Proposition 3.59. The graph G1 +G2 + · · ·+Gk is strong i-bicritical if and only if

all of G1, G2, . . ., Gk are strong i-bicritical and i(G1) = i(G2) = · · · = i(Gk).

Proof. Suppose without loss of generality that G1 is not strong i-bicritical and let

{x, y} ⊆ V (G1) such that xy /∈ E(G1) and i(G1 − {x, y}) ≥ i(G1)− 1. Let D be an

i-set of G−{x, y}. Notice D∩V (Gj) 6= ∅ for only one j, 1 ≤ j ≤ k. If D∩V (G1) 6= ∅,

then i(G − {x, y}) = i(G1 − {x, y}) ≥ i(G1) − 1 ≥ i(G) − 1. If D ∩ V (Gj) 6= ∅ for

j 6= 1, then i(G− {x, y}) = i(Gj) ≥ i(G). Therefore all of G1, G2, . . ., Gk are strong

i-bicritical.

Suppose without loss of generality that i(G1) − 1 ≥ i(G2). Let {x, y} ⊆ V (G1)

such that xy /∈ E(G1) and let D be an i-set of G − {x, y}. If D ∩ V (G1) 6= ∅, then

i(G−{x, y}) = i(G1−{x, y}) = i(G1)− 2 ≥ i(G2)− 1 ≥ i(G)− 1. If D ∩ V (Gj) 6= ∅
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for j 6= 1, then i(G−{x, y}) = i(Gj) ≥ i(G). In either case G is not strong i-bicritical

and so i(G1) = i(G2) = . . . = i(Gk).

Suppose that G1, G2, . . ., Gk are all strong i-bicritical and that i(G1) = i(G2) =

. . . i(Gk). Notice that the only {x, y} ⊆ V (G) such that xy /∈ E(G) is when {x, y} ⊆

V (Gj) for some j, 1 ≤ j ≤ k. Without loss of generality, suppose that {x, y} ⊆ V (G1)

such that xy /∈ E(G1). Let D be an i-set of G1−{x, y}. Then i(G−{x, y}) ≤ |D| =

i(G1 − {x, y}) = i(G1)− 2 = i(G)− 2 and so G is strong i-bicritical.

Proposition 3.60. For each H ∈ {H1, H2, . . . , Hm, H1,2, H1,2,3, . . . , H1,2,...,m−1}, sup-

pose α(H) ≤ k − 3. Then

G�̂ = (((G1(H1)�̂G2(H2))(H1,2)�̂G4(H4)) · · · �̂Gm−1(Hm−1))(H1,2,...,m−1)�̂Gm(Hm)

is strong k-i-bicritical if and only if k = min{i(G1), i(G2), . . . , i(Gm)} and every pair

of independent vertices {x, y} in G�̂ is contained in some V (Gj), 1 ≤ j ≤ m, where

i(Gj − {x, y}) = k − 2.

Proof. Suppose G�̂ is strong k-i-bicritical. Then by construction, k = min{i(G1),

i(G2), . . . , i(Gm)}. Consider G�̂ − {x, y} where xy /∈ E(G�̂). Let D be an i-set of

G�̂ − {x, y}, and so |D| = k − 2. By construction of G�̂, D ⊆ V (Gj) for some

1 ≤ j ≤ m and {x, y} ⊆ V (Gl) for some 1 ≤ l ≤ m. If {x, y} ∩ V (Gj) = ∅, then D

is an independent dominating set of G�̂, a contradiction. Say {x, y} ⊆ V (Gj). Then

D is an independent dominating set of Gj − {x, y} and so i(Gj − {x, y}) ≤ |D| =

k − 2 = i(Gj)− 2.

Suppose that k = min{i(G1), i(G2), . . . , i(Gm)} and for each {x, y} ⊆ V (G�̂)

where xy /∈ E(G�̂) then {x, y} ⊆ V (Gj) for some 1 ≤ j ≤ m, where i(Gj −{x, y}) =

k − 2. By construction i(G�̂) = k. Consider G�̂ − {x, y} where xy /∈ E(G�̂). By

construction, {x, y} ⊆ V (Gj) for some 1 ≤ j ≤ m. Let D be an i-set of Gj, and
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so |D| = k − 2. Then D is an independent dominating set of G�̂ − {x, y} and so

i(G�̂ − {x, y}) = k − 2 = i(G�̂)− 2.

For the simpler construction G1(H1)�̂G2(H2)�̂ · · ·Gm(Hm) we have a very similar

result.

Corollary 3.61. Let G1, G2, . . . , Gm and H be disjoint graphs such that for j =

1, 2, . . . ,m, Gj has a subgraph Hj
∼= H. Suppose α(H) ≤ k− 3. Then the graph G =

G1(H1)�̂G2(H2)�̂ · · · �̂Gm(Hm) is strong k-i-bicritical if and only if k = i(G1) =

i(G2) = · · · = i(Gm) and for every pair of independent vertices {x, y} ⊆ V (G),

{x, y} is contained in some V (Gj), 1 ≤ j ≤ m, such that i(Gj − {x, y}) = k − 2.

Proposition 3.62. The graph G[H] is strong i-bicritical if and only if for every

independent pair of vertices {u, v} ⊆ V (G) there exists an i-set S of G such that

{u, v} ⊆ S and H is strong i-bicritical with i(H) ≥ 3, then .

Proof. Consider v1 = (g1, h1) ∈ V (G[H]) and v2 = (g2, h2) ∈ V (G[H]) such that

v1v2 /∈ E(G[H]).

Case 1: g1 = g2 = g.

That is, h1 and h2 are in the same copy of H in G[H]. Let S1 be an i-set of G such

that g ∈ S1, let Sg be an i-set of H − {h1, h2}, and let S2 be an i-set of H. Then

D = {(g, h) : h ∈ Sg} ∪ {(x, y) : x ∈ S1 − {g}, y ∈ S2} is an independent dominating

set of G[H]−{v1, v2}. But i(G[H]−{v1, v2}) ≤ |D| = i(H)− 2 + (i(G)− 1)(i(H)) =

i(G)i(H)− 2 = i(G[H])− 2.

Case 2: g1 6= g2 and so g1g2 /∈ E(G).

Let S1 be an i-set of G such that {g1, g2} ⊆ S1, let Sg1 be an i-set of H − h1, let

Sg2 be an i-set of H − h2, and let S2 be an i-set of H. Then D = {(g1, h) : h ∈

Sg1} ∪ {(g2, h) : h ∈ Sg2} ∪ {(x, y) : x ∈ S1 − {g1, g2}, y ∈ S2} is an independent

dominating set of G[H]− {v1, v2}. But then i(G[H]− {v1, v2}) ≤ |D| = i(H)− 1 +

i(H)− 1 + (i(G)− 2)(i(H)) = i(G)i(H)− 2 = i(G[H])− 2.
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Thus in all cases G[H] is strong i-bicritical.

For the converse suppose that G[H] is strong i-bicritical with x, y ∈ V (G[H])

with x = (g1, h1) and y = (g2, h2) and g1g2 /∈ E(G). Then xy /∈ E(G[H]). Let S be

an i-set of G[H] with {x, y} ⊆ S. Let S ′ = {u ∈ V (G) : ∃v ∈ V (G) with (u, v) ∈ S}.

Thus S ′ is an i-set of G and {g1, g2} ⊆ S ′.

Suppose that H is not strong i-bicritical and let h1, h2 ∈ V (H) such that i(H −

{h1, h2}) ≥ i(H) − 1. Let x = (g, h1) and y = (g, h2) for some g ∈ V (G). Let S

be an i-set of G[H] − {x, y} and let S ′ = {u ∈ V (G) : ∃v ∈ V (H) with (u, v) ∈ S}.

Then S ′ is an independent dominating set of G if i(H) ≥ 3. For each u ∈ V (G), let

Su = {v ∈ V (H) : (u, v) ∈ S}. If Sg = ∅, then S is an independent dominating set

of G, a contradiction. If Sg 6= ∅, then |Sg| ≥ i(H − {h1, h2}) ≥ i(H) − 1 and for all

other Su 6= ∅, |Su| ≥ i(H). Thus |S| ≥ (i(G)− 1)i(H) + i(H)− 1 = i(G)i(H)− 1, a

contradiction. Therefore H is strong i-bicritical.

Notice then that if G is strong i-bicritical, i(G) and the vertex-connectivity can

differ by an arbitrary amount. Consider G ∼= Cn[K3,3], where n is such that for every

pair of independent vertices {u, v} ⊆ V (Cn), there exists an i-set S of Cn such that

{u, v} ⊆ S. Then by Proposition 3.62, G is strong i-bicritical. Notice that G is

12-connected and i(G) = 3dn
3
e. Since a strong i-bicritical graph is also an i-bicritical

graph, we have the same observation for i-bicritical graphs: if G is i-bicritical, then

i(G) and the vertex-connectivity can differ by an arbitrary amount.

3.3 Summary and Directions for Future Work

This chapter studied i-bicritical graphs and strong i-bicritical graphs. Examples of i-

bicritical graphs were provided in Section 3.1, including the complete bipartite graphs

Kn,n and Kn,n+1 where n ≥ 3 and the generalized Petersen graph G(7, 2). Construc-

tions seen earlier in Chapter 2 were revisited in the context of creating i-bicritical
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graphs, including the disjoint union, the join, the coalescence, the joined coalescence,

and the wreath product. Necessary and sufficient conditions for producing i-bicritical

graphs were presented for the disjoint union, the join, and the joined coalescence con-

structions, and sufficient conditions for producing i-bicritical graphs were presented

for the coalescence and the wreath product. Additionally, the expansion of G via v

construction was presented as a way to construct graphs that are i-bicritical but not

i-critical. While the expansion via v construction was already known for i-bicritical

graphs the sufficient conditions were extended. The end of Section 3.1 briefly in-

vestigated i-bicritical graphs with end-vertices, and showed that each vertex v in an

i-bicritical graph is adjacent to at most one end-vertex. Using this result, an earlier

proof claiming that there are no i-bicritical trees was corrected.

While Section 3.1 concentrated on i-bicritical graphs, Section 3.2 focused on

strong i-bicritical graphs. Here the strong 3-i-bicritical graphs were characterized

and it was shown that strong i-bicritical graphs are both i-critical and i-bicritical,

but not every i-critical graph is strong i-bicritical and not every i-bicritical graph

is strong i-bicritical. One important structural property of strong i-bicritical graphs

was discovered, that a strong i-bicritical graph does not contain a cut-vertex. In

particular, this showed that the coalescence construction is not a valid way to create

strong i-bicritical graphs. Strong i-bicritical graphs with a 2-vertex-cut were studied

and in particular it was shown that if G is strong i-bicritical with a 2-vertex-cut

{u, v} then uv ∈ E(G). Many of the same constructions from before were investi-

gated, including the disjoint union, the join, the joined coalescence, and the wreath

product. Necessary and sufficient conditions to construct strong i-bicritical graphs

were presented for the disjoint union, the join, the joined coalescence, and the wreath

product.

We close this chapter with a collection of open questions:

1. Does there exist an i-bicritical graph that has a block, which is not an end-block,
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isomorphic to K2?

2. Corollary 1.22 of Chapter 1 states that no tree is i-critical and Corollary 3.41

states that no tree is i-bicritical. Hence the number of edges in an i-critical

graph or an i-bicritical graph is at least as large as |V (G)|. For a fixed k, find

the maximum number of edges for a k-i-critical graph of order n. Likewise, find

the maximum number of edges for a k-i-bicritical graph of order n.



95

4

Total Domination Critical and Bicritical Graphs

4.1 Known Results on γt-Critical Graphs and γt-Bicritical Graphs

Recall that a graph is total domination critical, or γt-critical, if γt(G−v) < γt(G) for

every v ∈ V (G) such that G − v has no isolated vertices. Total domination critical

graphs were first defined and studied by Goddard, Haynes, Henning, and van der

Merwe [23]. The main result of this paper was an upper bound on the diameter

of k-γt-critical graphs. This result, and other results concerning the diameter of

critical graphs, will be discussed in Chapter 5. Before that, we should discuss more

introductory results regarding γt-critical graphs.

Proposition 4.1. [23] A cycle Cn is γt-critical if and only if n ≡ 1, 2 (mod 4).

Observation 4.2. [23] If G is a γt-critical graph, then γt(G − v) = γt(G) − 1 for

every v ∈ V (G) such that G − v has no isolated vertices. Furthermore, a γt-set of

G− v contains no neighbour of v.
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Observation 4.3. [23] If a graph G has nonadjacent vertices u and v where G − v

has no isolated vertices and N(u) ⊆ N(v), then G is not γt-critical.

As we have seen for γ-critical and i-critical graphs, there are lower bounds on

γt(G− v) and γt(G− S) for S ⊆ V (G).

Observation 4.4. [23] For any graph G with v ∈ V (G) such that δ(G − v) ≥ 1,

γt(G− v) ≥ γt(G)− 1.

Proposition 4.5. For any graph connected graph G and vertices S ⊆ V (G) with

|S| = k and such that δ(G− S) ≥ 1, γt(G− S) ≥ γt(G)− k.

Proof. Consider a γt-set D of G − S. If D is not a total dominating set of G, then

it is possible to add a vertex x ∈ N [S] that is adjacent to a vertex not dominated

by D to create a new set D′. If D′ is not a total dominating set of G, then it is

possible to add a vertex x′ ∈ N [S] that is adjacent to a vertex not dominated by

D′ to create a new set D′′. Continuing in this fashion, it is possible to arrive at a

total dominating set of G from D by adding at most k vertices in N [S]. Therefore

γt(G) ≤ γt(G− S) + k.

In particular, Proposition 4.5 shows that if G is γt-bicritical, then γt(G) − 2 ≤

γt(G− {x, y}) ≤ γt(G)− 1. This case was shown directly by Jafari Rad [30]. Jafari

Rad also studied the extremal case where γt(G− {x, y}) = γt(G)− 2.

Proposition 4.6. [30] If γt(G)− 2 = γt(G− {x, y}), then

• if xy /∈ E(G), then d(x, y) ≥ 3, and

• if xy ∈ E(G), then N(x) ∩N(y) = ∅.

In the same publication, Jafari Rad defines a strong total domination bicritical

graph as one where γt(G − {x, y}) = γt(G) − 2 for any two vertices {x, y} ⊆ V (G)
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such that G − {x, y} has no isolated vertex. It was then shown that no graph G

with δ(G) ≥ 2 is strong γt-bicritical. However, according to Proposition 4.6, γt(G−

{x, y}) ≥ γt(G) − 1 when d(x, y) = 2. This implies that in a strong γt-bicritical

graph, all vertices x and y such that d(x, y) = 2 leave isolated vertices when they are

removed.

It is easy to see that when deleting the closed neighbourhood of a vertex x we

have that γ(G−N [x]) ≥ γ(G)− 1 and i(G−N [x]) ≥ i(G)− 1. The bound for total

domination when deleting the closed neighbourhood of a vertex is not quite the same.

Proposition 4.7. For any graph G with x ∈ V (G), γt(G−N [x]) ≥ γt(G)− 2.

Proof. Let D be a γt-set of G − N [x] and let y ∈ N(x). Then D ∪ {x, y} is a total

dominating set of G. Thus γt(G) ≤ γt(G−N [x]) + 2.

The graph C6 is an example of a graph where γt(C6 − N [x]) = 2 = γt(C6) − 2.

It is easy to show that γt(C6 · C6) = 6 = γt(C6) + γt(C6) − 2 and that γt(C6 ·

C6 − v) = 6, where v is the vertex of identification. This gives an example of a

graph that is not γt-critical but has blocks that are γt-critical. It is also possible to

construct a γt-critical graph that contains blocks that are not γt-critical. An infinite

family of such graphs was discovered by Goddard et al. [23], and this family is

used in Chapter 5 in the discussion of k-γt-critical graphs with maximum diameter.

These examples complicate the coalescence construction for γt-critical graphs. The

coalescence construction for γt-critical graphs is studied in detail later in this chapter.

The corona of a graph G, denoted cor(G), is the graph obtained by adding a

pendant edge to each vertex of G. The corona of C4 is pictured in Figure 4.2. Notice

that if each component ofG has order n ≥ 2, then γt(cor(G)) = n (and γt(cor(G)) = 2

if |V (G)| ≤ 2). It is easy to see that if |V (G)| ≥ 3 and δ(G) ≥ 2, then cor(G) is a

γt-critical graph since the only vertices that are allowed to be removed are the newly

added pendant vertices. The converse of this also holds.
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Figure 4.1: The graph C6 · C6.

Figure 4.2: The graph cor(C4).

Theorem 4.8. [23] Let G be a connected graph of order at least three with at least

one end-vertex. Then G is k-γt-critical if and only if G = cor(H) for some connected

graph H of order k with δ(H) ≥ 2.

As a consequence of this theorem, something can be said about the γt-criticality

of trees. Notice the similarity to results seen earlier for γ-criticality and i-criticality.

Corollary 4.9. [23] No tree is γt-critical.

A graphG is said to be vertex diameter k-critical if diam(G) = k and diam(G− v) >

k for all v ∈ V (G). This definition is useful in providing a characterization of 3-γt-

critical graphs.
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Theorem 4.10. [23] A connected graph G is 3-γt-critical if and only if G is vertex

diameter 2-critical or G = cor(K3).

Goddard et al. presented a list of open problems and questions in their paper

[23].

1. Characterize the 3-γt-critical graphs with diameter 3. Does there exist a 4-γt-

critical graph with diameter 2?

2. Consider the connection between γ-critical and γt-critical graphs. For example,

K32K3 is γ-critical but not γt-critical. The cycle C5 is γt-critical but not γ-

critical. So, which graphs are domination vertex-critical and total domination

vertex-critical (or one but not the other)?

3. Determine the maximum diameter of a k-γt-critical graph.

4. IfG is a γt-critical graph of order n, then it can be shown that n ≤ ∆(G)(γt(G)−

1) + 1. Characterize those graphs achieving equality.

5. Cockayne et al. [14] showed that if G is a connected graph of order n ≥ 2, then

γt(G) ≤ max(n − ∆(G), 2). Characterize γt-critical graphs G with γt(G) =

n−∆(G).

In Chapter 5 an answer to question 3 is provided as an upper bound is given for k-

γt-critical graphs. It is also shown that this bound is tight when γt(G) ≡ 2 (mod 3).

Later in this chapter, to give a partial response to question 2, a construction is given

that creates γt-critical graphs that are not γ-critical.

Question 1 posed above was answered by Loizeaux and van der Merwe [34], where

they provided a construction of a 4-γt-critical graph with diameter 2 and of order

3k + 2, k ≥ 3. Mojdeh and Jafari Rad made some progress towards an answer to

question 4 posted above [38].
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Theorem 4.11. [38] Any γt-critical graph G of order n = ∆(G)(γt(G) − 1) + 1 is

regular.

Corollary 4.12. [38] A 2-regular graph G is γt-critical if and only if G = Cn where

n ≡ 1 (mod 4).

Theorem 4.13. [38] If there exists a k-γt-critical r-regular graph G of order r(k −

1) + 1, then k is odd and r is even.

Thus there are no γt-critical graphs of maximum order which have γt(G) even.

For a graph G, a total dominating set D is called an efficient total dominating

set if each vertex in V (G) is totally dominated by exactly one vertex of D, that is, if

|N(x) ∩D| = 1 for each x ∈ V (G).

Lemma 4.14. [38] Let G be a k-γt-critical r-regular graph of order r(k− 1) + 1 with

k odd. Let v ∈ V (G) and S be a γt(G−v)-set, then S is an efficient total dominating

set for G− v.

Lemma 4.15. [38] If a r-regular graph G of order r(k − 1) + 1 contains cor(K4) as

an induced subgraph, then G is not k-γt-critical.

These results on γt-critical graphs of maximum order yield some results on diam-

eter.

Theorem 4.16. [38] The diameter of a 3-γt-critical r-regular graph of order 2r + 1

is 2.

Theorem 4.17. [38] The diameter of a k-γt-critical r-regular graph of order n =

r(k − 1) + 1 is at least (3k − 5)/2.

Of course, a 3-γt-critical 2-regular graph with maximum order would have n = 5

according to the bound. The cycle C5 is such a graph. The next possible candidate

for a 3-γt-critical r-regular graph is for r = 4.
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It was thought by Mojdeh and Jafari Rad that no 3-γt-critical 4-regular graph of

order 9 exists, which led to the following conjecture.

Conjecture 4.18. [38] For r ≥ 6, there is no 3-γt-critical r-regular graph of order

2r + 1.

However a 3-γt-critical 4-regular graph of order 9 was discovered by [32]. This

graph is pictured in Figure 4.3.

Figure 4.3: A 3-γt-critical 4-regular graph of order 9.

Additionally, no γt-critical graphs of maximum order were found by Mojdeh and

Jafari Rad other than the cycles Cn where n ≡ 1 (mod 4). The existence problem

for γt-critical graphs of maximum order was left as an open problem.

Wang, Hu, and Li [47] added to the results of Mojdeh and Jafari Rad by defining

a family of graphs they called Ψ. The family Ψ is defined as follows:

1. K1, K2 ∈ Ψ.

2. Let G be a connected graph with at least 3 vertices. G ∈ Ψ if and only if both

of the following two conditions hold:

(a) G is a regular graph;
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(b) For any v ∈ V (G), there exists an A ⊆ V (G)− v such that N(v)∩A = ∅,

〈A〉 is 1-regular, dA(y) = 1 for each y ∈ V (G)− A− v.

This family Ψ was then used to give a characterization of γt-critical graphs of

maximum order.

Theorem 4.19. [47] Let G be a connected γt-critical graph of order n. Then n =

∆(G)(γt(G)− 1) + 1 if and only if G ∈ Ψ.

This family Ψ includes the only previously known family of γt-critical graphs of

maximum order, the cycles Cn where n ≡ 1 (mod 4). The authors used their family

Ψ to add one more graph to the collection of known γt-critical graphs of maximum

order. A Cayley graph G(H;S) on a group H is defined to be the digraph with

the elements of H as its vertices and edges joining h and hs for all h ∈ H and

s ∈ S. The set S is called the connection set. Wang, Hu, and Li provided the

example of the Cayley graph which uses H as the cyclic group Z33 with connection

set S = {6, 27}, and note that G(H;S) is in Ψ. Since Cayley graphs are vertex

transitive, up to symmetry only one vertex needs to be deleted to verify that G(H;S)

is in Ψ, and Wang, Hu, and Li provided the choice of deleting v = 0 and stated that

〈A〉 = {(2, 8), (11, 12), (21, 22), (25, 31)} shows that G(H;S) is in fact in the family

Ψ.

A Harary graph Hk,n, 2 ≤ k < n, is defined as follows. Place n vertices around a

circle, equally spaced. If k is even, Hk,n is formed by adding an edge between each

vertex and the nearest k/2 vertices to it in each direction around the circle. If k is

odd and n is even, Hk,n is formed by adding an edge between each vertex and the

nearest (k − 1)/2 vertices to it in each direction around the circle and to the vertex

directly across the circle from it. If k is odd and n is odd, then Hk,n is constructed

from Kk−1,n by adding edges between vertex i and i+(n−1)/2 for 0 ≤ i ≤ (n−1)/2.

Henning and Jafari Rad [27] made a contribution towards answering question 2 posed
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above by Goddard et al. by studying the γt-criticality of some of these Harary graphs.

Theorem 4.20. [27] For all integers l ≥ 1 and k ≥ 2, the Harary graph H2k+1,2l(2k1)+2

is a (2k + 1)-connected graph that is (2l + 2)-γt-critical.

For those Harary graphs the case of l = 1 produces a (2k + 1)-connected graph

that is 4-γt-critical and has diameter 2 for every k ≥ 2. It was noted that this family

is different from that which was provided by Loizeaux and van der Merwe [34].

Theorem 4.21. [27] For all integers l ≥ 1 and k ≥ 2, the Harary graph H2k,l(3k+1)+1

is a 2k-connected graph that is (2l + 1)-γt-critical.

In some cases, the above two classes of Harary graphs are not γ-critical, thus

providing a class of γt-critical graphs that are not γ-critical.

A graph G is γt-bicritical if γt(G − {x, y}) < γt(G) for every subset {x, y} such

that G − {x, y} has no isolated vertices. Jafari Rad [30] was the first to define and

study these γt-bicritical graphs. As mentioned earlier, he also defined the notion of

a strong γt-bicritical graph. Only γt-bicritical graphs are discussed in this work.

Proposition 4.22. [30] If G is γt-bicritical, then V + = ∅.

Proposition 4.23. [30] If G is γt-bicritical then G is γt-critical or G−v is γt-critical

for all v ∈ V 0.

Recall that a cycle Cn is γt-critical exactly when n ≡ 1, 2 (mod 4). As it turns

out, there is only one cycle that is γt-bicritical.

Proposition 4.24. [30] Cn is γt-bicritical if and only if n = 5.

Thus the cycles Cn with n ≡ 1, 2 (mod 4), n 6= 5, provide examples of graphs

that are γt-critical but are not γt-bicritical.

The γt-critical graphs with end-vertices were characterized by Goddard et al. [23]

and γt-bicritical graphs with end-vertices were characterized by Jafari Rad [30]. Both
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characterizations are largely based on taking the corona of a graph. The characteri-

zation of γt-critical graphs with end-vertices gives the following result.

Corollary 4.25. [30] No tree is γt-bicritical.

Theorem 4.26. [30] If a connected graph G with minimum degree at least two is

3-γt-bicritical, then either G is vertex diameter 2-critical or G− v is vertex diameter

2-critical, for some vertex v with γt(G− v) = γt(G).

Proposition 4.27. [30] If G is a γt-bicritical graph of order n, then n ≤ (γt(G) −

1)∆(G) + 2.

Proposition 4.28. [30] If G is a regular γt-bicritical graph of order n, then n ≤

(γt(G)− 1)∆(G) + 1.

In addition to the above results, Jafari Rad provided constructions for γt-bicritical

graphs. These constructions are discussed in the next section.

The rest of this chapter is devoted to constructions for γt-critical graphs and γt-

bicritical graphs. In particular, we investigate the coalescence construction for both

types of criticality.

4.2 Constructions for γt-Critical Graphs and γt-Bicritical Graphs

Much like with i-critical and i-bicritical graphs, there are constructions to create

γt-critical and γt-bicritical graphs. We revisit two familiar constructions and present

one construction that is specifically useful for total domination.

Observation 4.29. [23] The graph G1 ∪ G2 ∪ · · · ∪ Gk is γt-critical if and only if

every G1, G2, . . ., Gk is γt-critical.

The following observation corrects an incorrect version stated in [30].
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Observation 4.30. [30] The graph G1 ∪ G2 ∪ · · · ∪ Gk is γt-bicritical if and only

if every G1, G2, . . ., Gk is γt-bicritical and at most one of G1, G2, . . ., Gk is not

γt-critical.

We now focus on the coalescence construction, G ·H.

Proposition 4.31. For any graphs G and H, γt(G) + γt(H) − 2 ≤ γt(G ·xy H) ≤

γt(G) + γt(H).

Proof. Let D1 be a γt-set of G and D2 be a γt-set of H. Then D1 ∪ D2 is a total

dominating set of G ·xy H and so γt(G ·xy H) ≤ γt(G) + γt(H).

Let D be a γt-set of G ·xy H where v is the vertex of identification. Let D1 =

D ∩ V (G) and D2 = D ∩ V (H).

If v /∈ D then either D1 is a total dominating set of G or D2 is a total dominating

set of H. If D1 is a total dominating set of G, then |D1| ≥ γt(G). But then D2 is a

total dominating set of H − y and so |D2| ≥ γt(H) − 1. Thus |D| = |D1| + |D2| ≥

γt(G) + γt(H) − 1. Likewise |D| = |D1| + |D2| ≥ γt(G) + γt(H) − 1 if D2 is a total

dominating set of H.

If v ∈ D then v is dominated by some other vertex in D, call it w. Without

loss of generality, suppose w ∈ V (G). Then D1 is a total dominating set of G

and so |D1| ≥ γt(G). If D2 ∩ NH(y) 6= ∅, then D2 is a total dominating set of

H and so |D2| ≥ γt(H). In this case |D| = |D1| ∪ |D2| ≥ γt(G) + γt(H) − 1.

Thus assume D2 ∩ NH(y) = ∅. If D2 − {y} is a total dominating set of H − y,

then |D2| ≥ γt(H) − 1 + 1. Again |D| ≥ γt(G) + γt(H) − 1. Finally, assume

D2 − {y} is a total dominating set of H − N [y]. Then |D2 − {y}| ≥ γt(H) − 2

and |D| ≥ γt(G) + γt(H)− 2.

Proposition 4.32. If γt(G ·xyH) = γt(G)+γt(H)−2, then G ·xyH is not γt-critical.
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Proof. Let v be the vertex of identification and consider G·xyH−v ∼= (G−x)∪(H−y).

Then γt(G ·xy H − v) = γt(G − x) + γt(H − y) ≥ γt(G) − 1 + γt(H) − 1 = γt(G) +

γt(H)− 2 = γt(G ·xy H) and so G ·xy H is not γt-critical.

Proposition 4.33. The graph G ·xy H has γt(G ·xy H) = γt(G) + γt(H) − 2 if and

only if γt(G − N [x]) = γt(G) − 2 and there exists a γt-set D of H such that y ∈ D,

or γt(H −N [y]) = γt(H)− 2 and there exists a γt-set D of G such that x ∈ D.

Proof. The necessity of this result follows from the proof of Proposition 4.31. Now

suppose without loss of generality that γt(G−N [x]) = γt(G)− 2. Let D1 be a γt-set

of G − N [x] and let D2 be a γt-set of H such that y ∈ H. Then D1 ∪D2 is a total

dominating set of G ·xy H and |D1 ∪D2| = γt(G) + γt(H)− 2.

Sufficient conditions for G ·H to be γt-critical and γt-bicritical have been studied.

Proposition 4.34. [23] If γt(G · H) = γt(G) + γt(H) − 1 and G and H are both

γt-critical with δ(G) ≥ 2 and δ(H) ≥ 2, then G ·H is γt-critical.

Proposition 4.35. [30] If γt(G · H) = γt(G) + γt(H) − 1 and G and H are both

γt-critical and γt-bicritical, then G ·H is γt-critical and γt-bicritical.

In fact, the conditions in the above proposition can be relaxed while maintaining

that G ·H is γt-bicritical.

Proposition 4.36. If γt(G ·xy H) = γt(G) + γt(H) − 1 and both G and H are γt-

bicritical, and at most one of G and H is not γt-critical, and x is γt-critical in G and

y is γt-critical in H, then G ·xy H is γt-bicritical.

Proof. Without loss of generality, suppose H is γt-critical. Consider G ·xyH−{u, v}.

If {u, v} ⊆ V (G), then let D1 be a γt-set of G−{u, v} and D2 be a γt-set of H−y. If

{u, v} ⊆ V (H), then let D1 be a γt-set of G− x and let D2 be a γt-set of H −{u, v}.
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If, without loss of generality, u ∈ V (G−x) and v ∈ V (H−y), then let D1 be a γt-set

of G − {u, x} and let D2 be a γt-set of H − v. Then in all cases D1 ∪D2 is a total

dominating set of G ·xy H − {u, v} of cardinality at most γt(G) + γt(H)− 2, and so

G ·xy H is γt-bicritical.

Necessary and sufficient conditions for G · H to be γt-critical are given in the

following result.

Proposition 4.37. The graph G ·xy H is γt-critical if and only if γt(G ·xy H) =

γt(G) + γt(H)− 1 and either

(a) G and H are both γt-critical or

(b) x is γt-critical in G and y is γt-critical in H, there exists a γt-set D1 of G such

that x ∈ D1, there exists a γt-set D2 of H such that y ∈ D2, and γt(G − z1 −

N [x]) = γt(G)− 2 for any vertex z1 that is not γt-critical in G and γt(H − z2−

N [y]) = γt(H)− 2 for any vertex z2 that is not γt-critical in H.

Proof. Assume G ·xy H is γt-critical.

Suppose that γt(G ·xy H) = γt(G) + γt(H). Then x is not γt-critical in G and y is

not γt-critical in H. But then γt(G·xyH−v) = γt(G−x)+γt(H−y) ≥ γt(G)+γt(H) =

γt(G ·xy H) and so G ·xy H is not γt-critical. Thus γt(G ·xy H) = γt(G) + γt(H)− 1 if

G ·xy H is γt-critical.

Suppose without loss of generality that x is γt-critical in G but y is not γt-critical

in H. Then γt(G ·xyH−v) = γt(G−x)+γt(H−y) ≥ γt(G)−1+γt(H) = γt(G ·xyH).

Thus x is γt-critical in G and y is γt-critical in H if G ·xy H is γt-critical.

If G and H are γt-critical, then we are done. Hence suppose without loss of

generality that G is not γt-critical and let z ∈ V (G−x) such that γt(G− z) ≥ γt(G).

Let D be a γt-set of G ·xy H − z. Then |D| = γt(G ·xy H) − 1 = γt(G) + γt(H) − 2.

Let D1 = D ∩ V (G) and let D2 = D ∩ V (H).
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Suppose v ∈ D. Then either D1 ∩ NG(x) 6= ∅ or D2 ∩ NH(y) 6= ∅. Consider two

cases, depending on D1 ∩NG(x).

Case 1: D1 ∩NG(x) 6= ∅.

Then D1 is a total dominating set of G − z. Thus |D1| ≥ γt(G − z) ≥ γt(G).

If D2 ∩ NH(y) 6= ∅ then D2 is a total dominating set of H and so |D2| ≥ γt(H). If

D2 ∩NH(y) = ∅ then D2 is a total dominating set of H −N [y]. But γt(H −N [y]) ≥

γt(H)− 1 for otherwise γt(G ·xy H) = γt(G) + γt(H)− 2. Thus |D2| ≥ 1 + γt(H)− 1.

In either case |D| = |D1 ∪D2| ≥ γt(G) + γt(H)− 1 and so G ·xy H is not γt-critical,

a contradiction.

Case 2: D1 ∩NG(x) = ∅.

Then D2∩NH(y) 6= ∅ and so D2 is a total dominating set of H. Thus |D2| ≥ γt(H)

and D1 − {x} is a total dominating set of G − z − N [x]. But since |D| = γt(G) +

γt(H)− 2, we have that |D2| = γt(H) and γt(G− z −N [x]) = γt(G)− 2.

Now suppose that v /∈ D. If D1 dominates v, then D1 is a total dominating set

of G− z and so |D1| ≥ γt(G− z) ≥ γt(G), and D2 is a total dominating set of H − y

and so |D2| ≥ γt(H)− 1. But then |D| ≥ γt(G) + γt(H)− 1, a contradiction. Hence

D2 dominates v. Then D2 is a total dominating set of H and so |D2| ≥ γt(H) and

D1 is a total dominating set of G− {x, z}. But γt(G− {x, z}) = γt((G− z)− x) ≥

γt(G− z)− 1 ≥ γt(G)− 1. In this case |D| ≥ γt(G) + γt(H)− 1 and so G ·xyH is not

γt-critical, a contradiction.

Therefore either G is γt-critical, or x is γt-critical in G and γt(G − z1 −N [x]) =

γt(G) − 2 for every vertex z1 that is not γt-critical in G. Likewise, either H is γt-

critical or y is γt-critical in H and γt(G− z2 −N [y]) = γt(G)− 2 for every vertex z2

that is not γt-critical in H.

Conversely, suppose that γt(G ·xy H) = γt(G) + γt(H) − 1 and either (a) or (b)

holds. Consider G ·xy H − z for some z ∈ V (G ·xy H).

If z = v, then let D1 be a γt-set of G−x and D2 be a γt-set of H−y. Then D1∪D2
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is a total dominating set of G ·xy H. Since x is γt-critical in G and y is γt-critical in

H, we have that γt(G ·xy H − z) ≤ |D| = γt(G) + γt(H)− 2 < γt(G ·xy H).

Suppose without loss of generality that z ∈ V (G−x). Suppose that z is γt-critical

in G. Let D1 be a γt-set of G−z and let D2 be a γt-set of H−y. Then D1∪D2 is a total

dominating set ofG·xyH−z and so γt(G·xyH) ≤ |D| = γt(G)+γt(H)−2 < γt(G·xyH).

Suppose that z is not γt-critical in G. Let D1 be a γt-set of G − z − N [x] and let

D2 be a γt-set of H such that y ∈ D2. Then D1 ∪ D2 is a total dominating set of

G ·xy H − z and so γt(G ·xy H − z) ≤ |D| = γt(G) + γt(H)− 2 < γt(G ·xy H). In any

case G ·xy H is γt-critical.

Providing necessary conditions for G · H to be γt-bicritical is left as an open

problem.

Let G be any graph, and let V (G) = {v1, v2, . . . , vn}. The Mycielski construction

creates a graph M(G) with V (M(G)) = {v1, v2, . . . , vn, u, u1, u2, . . . , un} and with

E(M(G)) = E(G)∪{uuk : 1 ≤ k ≤ n}∪{ukx : x ∈ N(vk), 1 ≤ k ≤ n}. For a positive

integer k, the k-th Mycielski graph of G, denoted Mk(G), is defined recursively by

M0(G) = G and Mk+1(G) = M(Mk(G)) for k ≥ 1. The Mycielski construction is

useful for creating γt-critical and γt-bicritical graphs.

Proposition 4.38. [30] For any graph G, γt(M
k(G)) = γt(G) + 1.

Proposition 4.39. [30] Let G be a graph that is both γt-critical and γt-bicritical. For

any positive integer k, Mk(G) is both γt-critical and γt-bicritical.

Proposition 4.40. [30] If G is a γt-critical graph, then for any positive integer k,

Mk(G) is γt-critical.
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4.3 Summary and Directions for Future Work

This chapter studied γt-critical graphs and γt-bicritical graphs. It was shown that

for a γt-critical graph G, γt(G−N [x]) ≥ γt(G)− 2 for any x ∈ V (G). The γt-critical

graphs which contain a vertex x such that γt(G − N [x]) = γt(G) − 2 in particular

complicate the structure of γt-critical graphs when compared to the structure of

i-critical graphs. In particular, this property makes it possible to construct graphs

where each block of the graph is γt-critical but the graph itself is not γt-critical (recall

that C6 ·C6 is such a graph). Some familiar constructions from Chapters 2 and 3 were

revisited for the use of creating γt-graphs. A corrected statement of the necessary

and sufficient conditions for the disjoint union to be γt-critical was provided. The

coalescence construction was investigated for the creation of γt-critical graphs. It was

shown that γt(G) + γt(H)− 2 ≤ γt(G ·xy H) ≤ γt(G) + γt(H) and that graphs which

have γt(G ·xy H) = γt(G) + γt(H)− 2 are not γt-critical. Additionally, the graphs for

which γt(G ·xy H) = γt(G) + γt(H) − 2 were characterized. Necessary and sufficient

conditions for G ·H to be γt-critical were presented. These conditions were extended

from the sufficient conditions already known.

We close with some open questions:

1. Proposition 4.33 gives an example of γt-critical graphs G and H for which G ·H

is not γt-critical. The issue arises when there exists a vertex x ∈ V (G) such

that γt(G − N [x]) = γt(G) − 2 (and likewise there exists a vertex in H with

the same property). Characterize the γt-critical graphs where the removal of

the closed neighbourhood of a vertex decreases the total domination number

by two.

2. Goddard et al. [23] provided a construction for γt-critical graphs with any

desired number of blocks that are not γt-critical. Provide other constructions

which create γt-critical graphs with blocks that are not γt-critical and charac-
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terize such graphs.

3. Proposition 4.36 gives a sufficient condition for G ·H to be γt-bicritical. Find

necessary conditions for G ·H to be γt-bicritical.

4. Chapter 3 investigates strong i-bicritical graphs where i(G−{u, v}) = i(G)− 2

for independent vertices {u, v} ⊆ V (G). Earlier in this chapter a strong γt-

bicritical graph was defined to be a graph G where γt(G− {x, y}) = γt(G)− 2

whenever G−{x, y} has no isolated vertices and either d(x, y) ≥ 3 or xy ∈ E(G)

with N(x)∩N(y) = ∅. Investigate properties of such graphs. An example of a

graph that fits this definition is C6.

5. In Chapter 1 it was mentioned that there are γ-critical graphs where γ(G) =

i(G). Notice that C10 is a graph that is γ-critical with γ(C10) = γt(C10).

Investigate the γ-critical graphs which have γ(G) = γt(G). Are there graphs

which are both γ-critical and γt-critical and have γ(G) = γt(G)?

6. Propositions 4.27 and 4.28 give upper bounds on the order of a γt-bicritical

graph. Characterize the k-γt-bicritical graphs of maximum order.

7. Corollary 2.5 of Chapter 2 shows that for any graph G and for all k ≥ 3, there

exists a k-i-critical graph H such that G is an induced subgraph of H, while

Corollary 2.6 shows that for any graph G and for all k ≥ 4, there exists a k-i-

bicritical graph H such that G is an induced subgraph of H, and Corollary 2.13

shows that for any graph G and for all k ≥ 5 there exists a strong k-i-bicritical

graph H such that G is an induced subgraph of H. Is there a value k0 such

that for any graph G and all k ≥ k0 there exists a γt-critical graph H such that

G is an induced subgraph of H? Likewise, is there such a value for γt-bicritical

graphs?

8. [23] Characterize the 3-γt-critical graphs with diameter 3.
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9. [23] Consider the connection between γ-critical and γt-critical graphs. For ex-

ample, K32K3 is γ-critical but not γt-critical. The cycle C5 is γt-critical but not

γ-critical. So, which graphs are domination vertex-critical and total domination

vertex-critical (or one but not the other)?

10. [23] If G is a γt-critical graph of order n, then it can be shown that n ≤

∆(G)(γt(G)− 1) + 1. Characterize those graphs achieving equality.

11. [23] Cockayne et al. [14] showed that if G is a connected graph of order n ≥ 2,

then γt(G) ≤ max(n−∆(G), 2). Characterize γt-critical graphs G with γt(G) =

n−∆(G).
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5

The Diameter of Vertex-Critical Graphs

An active area in the study of domination criticality concerns results involving di-

ameter. Results on domination vertex-criticality and diameter first appeared in work

by Brigham et al. [9] where the authors conjectured that if G is k-γ-vertex-critical,

then diam(G) ≤ 2(k− 1). Fulman et al. [21] provided a proof for this conjecture and

showed that the bound is sharp.

Theorem 5.1. [21] The diameter of a γ-critical graph G satisfies diam(G) ≤ 2(γ(G)−

1) for γ(G) ≥ 2.

It was noted [21] that the graph created by replacing each of uv on the path Pn

by a 4-cycle u, u′, v, v′, where u′ and v′ are the new vertices, is an n-γ-critical graph

of diameter 2(n− 1).

The problem of characterizing γ-critical graphs which reach equality in the bound

of Theorem 5.1 was investigated [21].

Proposition 5.2. [21] A graph G with diameter four is 3-γ-critical if and only if it

has two blocks, each of which is 2-γ-critical.
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Proposition 5.3. [21] A graph G with diameter six is 4-γ-critical if and only if it

has three blocks, two of which are end-blocks and all of which are 2-γ-critical.

These characterizations were later generalized by Ao in her Master’s thesis.

Lemma 5.4. [7] For n ≥ 3, if G is connected and n-γ-critical with diam(G) =

2(n− 1), then G is not a block.

Let G1, G2, . . ., Gn−1 be 2-γ-critical graphs. Define a coalescence of these graphs,

denoted by G1 ·� G2 ·� · · ·�Gn−1, inductively as follows:

(i) G1 ·� G2 is any coalescence of G1 and G2.

(ii) For k ≥ 2, G1 ·� G2 ·� · · ·�Gk ·� Gk+1 = (G1 ·� G2 ·� · · ·�Gk) ·uv Gk+1, where u is

the unique vertex of Gk which is non-adjacent to the vertex of identification of

(G1 ·� G2 ·� · · ·�Gk−1) and Gk, and v is any vertex of Gk+1.

Theorem 5.5. [7] For n ≥ 3, a graph G is n-γ-critical with diam(G) = 2(n − 1) if

and only if G = G1 ·� G2 ·� · · ·�Gn−1, where Gj is 2-γ-critical for 1 ≤ j ≤ n− 1.

Paired domination vertex-critical graphs were investigated by Henning and Myn-

hardt [28] who provided a construction that shows that for every even k ≥ 4 there

exists a k-γpr-vertex-critical graph with diameter equal to 3(k − 2)/2. Edwards and

Hou [19] used the method of Fulman et al. [21] to verify that if G is k-γpr-vertex-

critical, then diam(G) = 3(k − 2)/2. This same method is used in this chapter to

find upper bounds on the diameter of i-critical graphs, γt-critical graphs, and strong

i-bicritical graphs.

5.1 The Diameter of i-Critical Graphs

Recall that in Chapter 2 it was shown that the graph G ·H is i-critical if and only

if both G and H are i-critical. Furthermore, i(G ·H) = i(G) + i(H) − 1 if G ·H is

i-critical.
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Theorem 5.6. If G is i-critical, then diam(G) ≤ 2(i(G)− 1).

Proof. Let G be an i-critical graph with diameter d, and let x be a vertex of maximum

eccentricity. We define the level sets X0, X1, . . ., Xd by Xj = {y ∈ V (G) : d(x, y) =

j}, 0 ≤ j ≤ d. For 0 ≤ j ≤ d, the set Uj is defined by Uj = X0 ∪X1 ∪ . . . ∪Xj, and

let 〈Uj〉 be the graph induced by Uj.

From Observation 1.16, the only 2-i-critical graphs are K2n less a perfect match-

ing, thus we assume i ≥ 3 for the remainder of the proof. Let D be any i-set of G.

We say that 〈Uj〉 is D-sufficient if j ≤ 2(|D∩Uj|− 1). If G = 〈Ud〉 is D-sufficient for

some i-set D, then d ≤ 2(i(G)−1). Let Dx be an i-set of G−x and let Dx
x = Dx∪{x}.

Notice that Dx
x is an i-set of G and 〈U2〉 is Dx

x-sufficient. Let m be the maximum

value of j such that 〈Uj〉 is D-sufficient. If m = d, we are finished, so suppose m < d.

Then for all j > m, 〈Uj〉 is not D-sufficient. Notice that the value of m may differ

for different choices of D, so consider an i-set D that maximizes the value of m.

Suppose m = 2t+ 1 for some t ∈ Z. Since 〈Um〉 is D-sufficient and 〈Um+1〉 is not

D-sufficient, we have that |D ∩Um| ≥ t+ 2, but |D ∩Um+1| < t+ 2, a contradiction.

Therefore m = 2t for some t ∈ Z.

Since 〈Um〉 is D-sufficient and 〈Um+1〉 is not D-sufficient, we have that |D∩Um| ≥

t+ 1 and |D ∩ Um+1| < (2t+ 1)/2 + 1; thus |D ∩ Um| = t+ 1 and D ∩Xm+1 = ∅.

Suppose that d > m+ 1. If D ∩Xm+2 6= ∅, then |D ∩Um+2| ≥ 1 + (1 + (m/2)) =

1+(m+2)/2, contradicting the maximality of m. Hence, D∩Xm+2 = ∅ and we have

d > m+2 since we need to dominate Xm+2. Furthermore, if |D∩Xm+3| ≥ 2, we have

|D ∩ Um+3| ≥ 2 + [1 + (m/2)] = 1 + (m+ 4)/2 > 1 + (m+ 3)/2, again contradicting

the maximality of m. Thus D ∩Xm+2 = ∅, D ∩Xm+3 = {w}, and D ∩Xm+4 = ∅ (if

Xm+4 exists), and so w dominates Xm+2 and Xm+3.

Now consider Dw, an i-set of G − w and let Dw
w = Dw ∪ {w}. Notice that

Dw ∩ (Xm+2 ∪ Xm+3) = ∅. If |Dw
w ∩ Um+1| > |D ∩ Um+1|, then 〈Um+1〉 is Dw

w-

sufficient, a contradiction of the maximality of m. If |Dw
w ∩Um+1| < |D∩Um+1|, then
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(Dw
w ∩ Um+1) ∪ (D − Um+1) is an independent dominating set of G with cardinality

less than i(G), a contradiction. Thus |Dw
w ∩ Um+1| = |D ∩ Um+1| = t + 1. Since

Dw ∩ (Xm+2 ∪ Xm+3) = ∅, |D ∩ Xm+4| ≥ 1 to dominate the vertices in Xm+3. But

then |Dw
w ∩ Um+4| ≥ t + 1 + 2 = t + 3, which means that 〈Um+4〉 is Dw

w-sufficient, a

contradiction of the maximality of m. Thus it follows that either d ≤ 2(i(G)− 1) or

d = m+ 1 = 2t+ 1. In particular, the theorem is true for all i-critical graphs of even

diameter.

Now suppose d = m + 1 = 2t + 1. Then G ·xx G is i-critical with diameter equal

to 2d and i(G ·xxG) = 2i(G)−1 and so 2d ≤ 2(2i(G)−2). Therefore d ≤ 2(i(G)−1)

as desired.

It is now shown that the bound in Theorem 5.6 is sharp. Notice that the cycle on

four vertices, C4, is 2-i-critical with diameter 2, and that C4 is a graph which reaches

equality for the bound in Theorem 5.6. Now diam(C4 · C4) = 4, i(C4 · C4) = 3

by Theorem 2.19, and so diam(C4 · C4) also reaches equality in the bound. This

construction can be continued by identifying a vertex of maximum eccentricity in

C4 · C4 with any vertex in C4. The resulting graph has diameter 6 and independent

domination number 4, again achieving equality in the bound. Thus by creating a

chain of 4-cycles where the identified vertices are independent, we have an infinite

family of graphs that reach equality in Theorem 5.6. In fact, these graphs are also γ-

critical and they reach equality in the diameter bound for γ-critical graphs as stated

in Theorem 5.1.

5.2 The Diameter of γt-Critical Graphs

In a graph G, an end-vertex is a vertex of degree one. Notice that if G has an isolated

vertex, γt(G) is undefined. Goddard et al. [23] characterized the γt-critical graphs G
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with end-vertices. This characterization yields a result on diameter.

Proposition 5.7. [23] If G is a connected k-γt-critical graph with at least one end-

vertex, then diam(G) ≤ k if k ∈ {3, 4} and diam(G) ≤ k − 1 if k ≥ 5, and these

bounds are sharp.

Thus in what follows, we consider γt-critical graphs without end-vertices.

Observation 5.8. [23] If G is a γt-critical graph without end-vertices, then γt(G −

v) = γt(G) − 1 for every v ∈ V (G). Furthermore, a γt-set of G − v contains no

neighbour of v.

We now consider the maximum diameter of k-γt-critical graphs.

Proposition 5.9. [23] The diameter of a k-γt-critical graph G is at most 2k − 3.

Theorem 5.10. [23] For all k ≡ 2 (mod 3), there exists a k-γt-critical graph of

diameter (5k − 7)/3.

The graphs from Theorem 5.10 are constructed as follows: Let F be the graph

obtained from P4 ∪ P4 by adding all edges between P4 and P4 except for the perfect

matching between corresponding vertices, and then adding a vertex x adjacent to

every vertex of P4 and a vertex y adjacent to every vertex of P4. Thus F is a 3-

γt-critical graph with diameter 3. Let Q be the graph obtained from two copies

of F , call them F1 and F2, by deleting y from F1 and x from F2 and adding all

edges between the the four neighbours of y in F1 and the four neighbours of x in F2.

Notice that γt(Q) = 4, diam(Q) = 5, and that Q is not γt-critical. Let FQnF be

the graph F ·yx Q ·yx Q ·yx · · · ·yx Q ·yx F with n copies of Q. From Theorem 5.10,

γt(FQ
nF ) = 3n+ 5, diam(FQnF ) = 5n+ 6, and FQnF is γt-critical for every n ≥ 1.

The graph F is pictured in Figure 5.1, the graph Q is pictured in Figure 5.2, and the

the graph FQF is pictured in Figure 5.3.
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Figure 5.1: The graph F .

Figure 5.2: The graph Q.

Figure 5.3: The graph FQF .

It is interesting to note that, unlike with γ-critical and i-critical graphs, not every

block of a γt-critical graph G needs to be γt-critical. In addition, if G is a γt-critical

graph, then G · G need not be γt-critical. Consider C6 · C6. Notice that γt(C6) = 4,

γt(C6 · C6) = 6, but C6 · C6 is not γt-critical (the vertex of identification is not a

critical vertex). The exact conditions under which G1 ·xy G2 is γt-critical are stated

in Proposition 4.37. We now improve the bound given in Proposition 5.9.

Theorem 5.11. The diameter of a connected γt-critical graph G without end-vertices

satisfies diam(G) ≤ 5(γt(G)− 1)/3.

Proof. Let G be a γt-critical graph with diam(G) = d, and let x be a vertex of maxi-

mum eccentricity. We define the level sets X0, X1, . . . , Xd and the sets U0, U1, . . . , Ud

as before.
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From Proposition 5.9, we know that if γt(G) = 3, then d ≤ 3 hence we assume

that γt(G) ≥ 4 in what follows. Let D by any γt-set of G. For j ≥ 1, we say

that 〈Uj〉 is D-sufficient if j ≤ (5|D ∩ Uj| − 8)/3. If G = 〈Ud〉 is D-sufficient, then

d ≤ (5γt(G)− 8)/3 ≤ 5(γt(G)− 1)/3.

We first show that there exists a γt-set D such that 〈U2〉 is D-sufficient. Let

y ∈ X1 and consider a γt-set S of G− y. By Observation 5.8, x /∈ S. Since S totally

dominates G − y, we have that |S ∩ U2| ≥ 2. But S ∪ {x} is a total dominating set

of G with cardinality γt(G) and so let D = S ∪ {x}. Therefore |D ∩ U2| ≥ 3, and for

any γt-critical graph G there exists a j and a γt-set D such that 〈Uj〉 is D-sufficient.

Let m be the maximum value of j such that 〈Uj〉 is D-sufficient. If m = d, we are

finished, so suppose that m < d. Then for all j > m, 〈Uj〉 is not D-sufficient. Notice

that the value of m may differ for different choices of D. Consider a γt-set D that

maximizes the value of m.

We first show a restriction on m, modulo 5. We have that |D∩Um| ≥ 3m/5+8/5

while |D ∩ Um+1| < 3m/5 + 11/5. Suppose that m = 5t + 1 for some t ∈ Z. Then

|D∩Um| ≥ 3t+ 3 and |D∩Um+1| < 3t+ 3, a contradiction. Suppose that m = 5t+ 3

for some t ∈ Z. Then |D ∩ Um| ≥ 3t + 4 and |D ∩ Um+1| < 3t + 4, a contradiction.

Therefore we have that m = 5t, m = 5t+ 2, or m = 5t+ 4 for some t ∈ Z. Suppose

that m < d− 1.

If m = 5t, then |D∩Um| ≥ 3t+2 and |D∩Um+1| ≤ 3t+2, and |D∩Um+2| ≤ 3t+2.

This implies that |D ∩Um| = 3t+ 2, D ∩Xm+1 = ∅, and D ∩Xm+2 = ∅. In addition,

|D∩Um+3| ≤ 3t+3, which implies that |D∩Xm+3| ≤ 1. Since D is a total dominating

set, we have that |D∩Xm+3| ≥ 1. Let D∩Xm+3 = {w}. But then |D∩Um+4| ≤ 3t+3

and so D ∩Xm+4 = ∅, a contradiction to D being a total dominating set.

If m = 5t+2, then |D∩Um| ≥ 3t+3, |D∩Um+1| ≤ 3t+3, and |D∩Um+2| ≤ 3t+3,

which implies that |D∩Um| = 3t+3, D∩Xm+1 = ∅, and D∩Xm+2 = ∅. In addition,

|D∩Um+3| ≤ 3t+4 which implies that |D∩Xm+3| ≤ 1. Since D is a total dominating
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set, we have that |D ∩Xm+3| ≥ 1. Let D ∩Xm+3 = {w}.

If m = 5t + 4, then |D ∩ Um| ≥ 3t + 4 and |D ∩ Um+1| ≤ 3t + 4, which implies

that |D ∩ Um| = 3t + 4 and D ∩ Xm+1 = ∅. In addition, |D ∩ Um+2| ≤ 3t + 5 and

|D∩Um+3| ≤ 3t+ 5, which implies that |D∩ (Xm+2 ∪Xm+3)| ≤ 1. Since D is a total

dominating set we can conclude that D ∩Xm+2 = ∅ and D ∩Xm+3 = {w}.

In all cases, we have that D ∩Xm+1 = ∅, D ∩Xm+2 = ∅, D ∩Xm+3 = {w}, and

so w dominates all of Xm+2. Consider Dw, a γt-set of G − w. By Observation 5.8,

Dw ∩Xm+2 = ∅. Let y ∈ Xm+2. Then Dy
w = Dw ∪ {y} is a γt-set of G. In all cases,

if |Dw ∩ Um+1| > |D ∩ Um+1|, then 〈Um+1〉 is Dy
w-sufficient, a contradiction of the

maximality of m. If |Dw ∩Um+1| < |D ∩Um+1|, then |Dw −Um+1| ≥ |D−Um+1| and

so (Dw ∩Um+1)∪ (D−Um+1) is a total dominating set of G with smaller cardinality

than D, a contradiction. Therefore suppose that |Dw ∩ Um+1| = |D ∩ Um+1|. If

m = 5t + 2, then |Dy
w ∩ Um+2| = 3t + 4, a contradiction of the maximality of m. If

m = 5t + 4, then |Dy
w ∩ Um+2| = 3t + 5. Recall that Dw ∩ Xm+2 = ∅ and that Dw

dominates Xm+3 in G − w. Therefore |Dw ∩ (Xm+3 ∪ Xm+4 ∪ Xm+5)| ≥ 2, and so

|Dy
w ∩Um+5| ≥ 3t+ 5 + 2 = 3t+ 7. But then 〈Um+5〉 is Dy

w-sufficient, a contradiction

of the maximality of m. We can thus conclude that m ≥ d− 1.

We now have that either d = m (and so d ≤ (5γt(G) − 8)/3) or that d = m + 1

with m = 5t, m = 5t+ 2, or m = 5t+ 4 (so that d = 5t+ 1, d = 5t+ 3, or d = 5t+ 5).

Furthermore, if d = m + 1, m = 5t or m = 5t + 2 or m = 5t + 4, and 〈Um〉 is

D-sufficient, then D ∩Xm+1 = ∅ and so |D ∩ Um| = γt(G). Hence if d = m + 1, the

above argument gives d = m+1 ≤ (5γt(G)−8)/3+1 = 5(γt(G)−1)/3 as desired.

The following result is an immediate consequence of Proposition 5.7 and Theorem

5.11.

Corollary 5.12. The diameter of a connected γt-critical graph G satisfies diam(G) ≤

5(γt(G)− 1)/3.
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Notice that if γt(G) ≡ 2 (mod 3), then b5(γt(G)−1)/3c = (5γt(G)−7)/3. There-

fore the graph FQnF achieves equality in the bound from Theorem 5.11 for all n ≥ 1.

For γt ≡ 1 (mod 3), it is straightforward to show that G = F ·yx FQnF is γt-critical

with γt(G) = 3(n + 1) + 4 and diam(G) = 5(n + 1) + 4 = b5(γt(G) − 1)/3c − 1.

For γt(G) ≡ 0 (mod 3), it is straightforward to show that G = F ·yx F ·yx FQnF is

γt-critical with γt(G) = 3(n+2)+3 and diam(G) = 5(n+2)+2 = b5(γt(G)−1)/3c−1.

The diameter of γt-bicritical graphs was briefly investigated by Jafari Rad [30].

Theorem 5.13. [30] If G is a k-γt-bicritical graph with at least one end-vertex, then

diam(G) ≤ k if k ∈ {3, 4} and diam(G) ≤ 2k − 2 if k ≥ 5.

Theorem 5.14. [30] Let G be a k-γt-bicritical graph with minimum degree at least

two. Then diam(G) ≤ 2k − 3.

5.3 The Diameter of Strong i-Bicritical Graphs

Theorem 5.15. If G is strong i-bicritical, then diam(G) ≤ 3/2i(G).

Proof. Let G be a strong i-bicritical graph with diameter d, and let x be a vertex of

maximum eccentricity. We define the level sets X0, X1, . . ., Xd and the sets U0, U1,

. . ., Ud as before.

Let D be any i-set of G. We say that 〈Uj〉 is D-sufficient if j ≤ 3/2|D∩Uj|−1. If

〈Ud〉 is D-sufficient for some i-set D, then d ≤ 3/2i(G)− 1 < 3/2i(G). Let Dx1x2 be

an i-set of G−{x1, x2} where {x1} = X0 and x2 ∈ X2. Since G is strong i-bicritical,

Dx1x2 ∪ {x1, x2} is an i-set of G, and 2 = 3/2(2) − 1 ≤ 3/2|D ∩ U2| − 1 and so we

can say that 〈U2〉 is Dx1x2 ∪ {x1, x2}-sufficient. Let m be the maximum value of j

so that 〈Uj〉 is D-sufficient. If m = d, we are finished, so suppose m < d. Notice

that the value of m may differ for different choices of D, so consider an i-set D that

maximizes the value of m.
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First we obtain a restriction on m, modulo 3. Suppose that m = 3t+ 1 for some

t ∈ Z. Then |D ∩ Um| ≥ 2t+ 2 and |D ∩ Um+1| ≤ 2t+ 1, a contradiction. Therefore

we have that m = 3t or m = 3t+ 2 for some t ∈ Z.

If m = 3t, then |D∩Um| ≥ 2t+1 and |D∩Um+1| ≤ 2t+1 and |D∩Um+2| ≤ 2t+1

which implies that |D∩Um| = 2t+1, D∩Xm+1 = ∅, and D∩Xm+2 = ∅. In addition,

|D ∩ Um+3| ≤ 2t+ 2, which implies that |D ∩Xm+3| ≤ 1. Since D is an independent

dominating set, we have that |D ∩Xm+3| ≥ 1. Hence let D ∩Xm+3 = {w}. Notice

that {w} dominates all of Xm+2. Let Dw be an i-set of G − w. Since G is strong

i-bicritical, G is also i-critical and so |Dw| = |D| − 1. Since {w} dominates all of

Xm+2, Dw ∩ Xm+2 = ∅. If |Dw ∩ Um+1| > |D ∩ Um+1|, then 〈Um+1〉 is Dw ∪ {w}-

sufficient, a contradiction of the maximality of m. If |Dw ∩Um+1| < |D∩Um+1|, then

|Dw − Um+1| ≥ |D − Um+1| and so (Dw ∩ Um+1) ∪ (D − Um+1) is an independent

dominating set of G with smaller cardinality than |D|, a contradiction. Therefore

suppose that |Dw ∩ Um+1| = |D ∩ Um+1| = 2t + 1. Since Dw ∩ Xm+2 = ∅, |Dw ∩

(Xm+2 ∪Xm+3)| ≥ 1 in order to dominate Xm+3. If |Dw ∩ (Xm+2 ∪Xm+3)| ≥ 2, then

(Dw ∪{w})∩Xm+4 ≥ 2t+ 1 + 1 + 2 = 2t+ 4 and then 〈Um+4〉 is Dw ∪{w}-sufficient,

a contradiction of the maximality of m. Therefore |Dw ∩ (Xm+2 ∪ Xm+3)| = 1. If

Dw∩Xm+3 6= ∅, then |(Dw∪{w})∩Um+3| = 2t+1+1+1 = 2t+3. But then 〈Um+3〉

is Dw∪{w}-sufficient, a contradiction. Hence Dw∩Xm+3 = ∅, Dw∩Xm+4 = {y} and

y is adjacent to every vertex in Xm+3 − {y} and wy /∈ E(G). Let Dwy be an i-set of

G−{w, y}. Since G is strong i-bicritical, |Dwy| = |D|−2 and Dwy∪{w, y} is an i-set

of G. Notice that Dwy∩Xm+2 = ∅ and Dwy∩Xm+3 = ∅. If |Dwy∩Um+1| > |D∩Um+1|,

then 〈Um+1〉 is Dwy∪{w, y}-sufficient, a contradiction. If |Dwy∩Um+1| < |D∩Um+1|,

then (Dwy∩Um+1)∪(D−Um+1) is an independent dominating set of G with cardinality

less than |D|, a contradiction. Therefore |Dwy ∩ Um+1| = |D ∩ Um+1| = 2t + 1. To

dominate Xm+3, D∩Xm+4 6= ∅. Then |(Dwy∪{w, y})∩Um+4| ≥ 2t+1+2+1 = 2t+4

and so 〈Um+4〉 is Dwy ∪ {w, y}-sufficient, a contradiction. Therefore d < m+ 2.
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If m = 3t+ 2, then |D ∩Um| ≥ 2t+ 2, |D ∩Um+1| ≤ 2t+ 2, |D ∩Um+2| ≤ 2t+ 3,

and |D ∩ Um+3| ≤ 2t+ 3. Thus D ∩Xm+1 = ∅ and |D ∩ (Xm+2 ∪Xm+3)| ≤ 1. Thus

either D∩Xm+2 = ∅ with D∩Xm+3 = {w}, or D∩Xm+2 = {w} with D∩Xm+3 = ∅.

The argument of D ∩Xm+2 = ∅ with D ∩Xm+3 = {w} is similar to the case above

where m = 3t and arrives at a contradiction and so d < m + 2. Thus suppose

D ∩Xm+2 = {w} with D ∩Xm+3 = ∅ and so {w} dominates all of Xm+2. Let Dw be

an i-set of G − w. Notice that Dw ∩Xm+2 = ∅. If |Dw ∩ Um+1| > |D ∩ Um+1|, then

〈Um+1〉 is Dw ∪ {w}-sufficient, a contradiction. If |Dw ∩ Um+1| < |D ∩ Um+1|, then

(Dw ∩ Um+1) ∪ (D − Um+1) is an independent dominating set of G with cardinality

smaller than |D|, a contradiction. Therefore |Dw ∩ Um+1| = |D ∩ Um+1|. Then

Dw ∩ (Xm+3 ∪ Xm+4) 6= ∅ in order to dominate Xm+3. Suppose y ∈ Dw ∩ Xm+3.

Then |(Dw ∪ {w}) ∩ Um+3| ≥ 2t + 2 + 1 + 1 = 2t + 4 and so 〈Um+3〉 is Dw ∪ {w}-

sufficient, a contradiction. Therefore Dw∩Xm+3 = ∅ and so Dw∩Xm+4 6= ∅. Suppose

y ∈ Dw ∩Xm+4. Consider Dwy, an i-set of G− {w, y}. Since G is strong i-bicritical

|Dwy| = |D| − 2. By similar arguments to before, |Dwy ∩ Um+1| = |D ∩ Um+1|. Now

|Dwy ∩ (Xm+2 ∪Xm+3 ∪Xm+4)| ≥ 1 to dominate Xm+3. But then Dwy ∪ {w, y} is an

i-set of G and |(Dwy ∪ {w, y}) ∩ Um+4| ≥ 2t + 2 + 2 + 1 = 2t + 5 and so 〈Um+4〉 is

Dwy ∪ {w, y}-sufficient, a contradiction. Therefore d < m+ 3.

Now, if m = 3t, we have that d = m = 3t or d = m + 1 = 3t + 1. Since

D∩Xm+1 = ∅, we have that i(G) = |D∩Um| = 2t+1. Then either d ≤ 3/2i(G)−3/2

or d ≤ 3/2i(G)−1/2. If m = 3t+1, then d = m = 3t+1 and i(G) = |D∩Um| ≥ 2t+2.

Then d ≤ 3/2i(G) − 2. If m = 3t + 2, then D ∩ Xm+2 = ∅ with D ∩ Xm+3 = {w},

or D ∩ Xm+2 = {w} with D ∩ Xm+3 = ∅. In the case where D ∩ Xm+2 = ∅ with

D∩Xm+3 = {w}, we have d = m = 3t+ 2 or d = m+ 1 = 3t+ 3. Then i(G) = 2t+ 2

and d ≤ 3/2i(G) − 1 or d ≤ 3/2i(G). In the case where D ∩ Xm+2 = {w} with

D∩Xm+3 = ∅, we have d = m = 3t+ 2 or d = m+ 1 = 3t+ 3 or d = m+ 2 = 3t+ 4.

For d = m = 3t + 2 and d = m + 1 = 3t + 3, i(G) = 2t + 2 and so d = 3/2i(G) − 1
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or d = 3/2i(G). For d = m + 2 = 3t + 3, we have i(G) = 2t + 2 + 1 = 2t + 3 and so

3/2i(G) = 3t+ 4 + 1/2 and d = 3/2i(G)− 1/2. Thus, in all cases, d ≤ 3/2i(G).

5.4 Summary and Directions for Future Work

In this chapter, upper bounds for the maximum diameter of connected i-critical

graphs, connected strong i-bicritical graphs, and connected γt-critical graphs were

presented. In particular it was shown that if G is an i-critical graph, then diam(G) ≤

2(i(G)−1). This bound provided a trivial upper bound for the diameter of i-bicritical

graphs, namely that if G is i-bicritical, then diam(G) ≤ 2(i(G)− 1) + 1. Again, the

coalescence construction played an important role in this chapter and here it was

used to create i-critical graphs which reach equality in the diameter bound. Section

5.3 showed that if G is strong i-bicritical, then diam(G) ≤ 3/2i(G). It is not known

whether this is the best possible bound. Section 5.2 concerned the diameter of γt-

critical graphs and there it was shown that if G is a γt-critical graph without end-

vertices, then diam(G) ≤ 5(γt(G) − 1)/3. Previous known results have shown that

for all k ≡ 2 (mod 3), there exists a k-γt-critical graph of diameter (5k − 7)/3, and

this reaches equality in the diameter bound for γt-critical graphs.

We close with a list of open questions:

1. Graphs for which equality is reached in the upper bounds on the diameter

for connected γ-critical graphs, connected i-critical graphs, and connected γt-

critical graphs are known. Find graphs which reach equality in the upper

bounds on the diameter for i-bicritical graphs, and strong i-bicritical graphs,

or provide new upper bounds on the diameter for i-bicritical graphs and strong

i-bicritical graphs.

2. Find an upper bound on the diameter for γt-bicritical graphs.

3. In her Master’s thesis, Ao [7] shows that the graphs which reach equality in the
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diameter bound of Theorem 5.1 are exactly those graphs for which every block

is a 2-γ-critical graph and the blocks are joined so that the underlying block

structure is a path (thus maximizing the diameter). Characterize the i-critical

graphs of maximum diameter. It is suspected that the class of γ-critical graphs

of maximum diameter is equal to the class of i-critical graphs of maximum

diameter.
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6

The Gamma-Graph of a Tree

The γ-graph of a graph G, G(γ) = (V (γ), E(γ)), is the graph where the vertex set

V (γ) is the collection of γ-sets of G. Adjacency between two γ-sets in G(γ) can be

defined in two different ways:

• Single vertex replacement adjacency model: where γ-set D1 is adjacent to γ-

set D2 if there exists a vertex u ∈ D1 and a vertex v ∈ D2 such that D2 =

(D1 − {u}) ∪ {v}

• Slide adjacency model: where γ-set D1 is adjacent to γ-set D2 if there exists

a vertex u ∈ D1 and a vertex v ∈ D2 such that D2 = (D1 − {u}) ∪ {v} and

uv ∈ E(G).

Thus we can think of adjacency between γ-sets D1 and D2 in G(γ) as a swap of

two vertices. In the slide adjacency model, these two vertices must be adjacent

in G, hence the γ-graph obtained from the slide adjacency model is a subgraph of

the γ-graph obtained in the single vertex replacement adjacency model. The single

vertex replacement adjacency model was introduced by Subramanaian and Sridharan
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[43] in 2008, and the slide adjacency model was introduced independently by Fricke,

Hedetniemi, Hedetniemi, and Hutson [20] in 2011. The single vertex replacement

adjacency model was further studied in [33] and [42] and the slide adjacency model

was further studied in [16].

The paper of Fricke et al. [20] introduced a series of open questions on γ-graphs:

1. Is ∆(T (γ)) = O(n) for every tree T of order n?

2. Is diam(T (γ)) = O(n) for every tree T of order n?

3. Is |V (T (γ))| ≤ 2γ(T ) for every tree T?

4. Which graphs are γ-graphs of trees?

5. Which graphs are γ-graphs? Can you construct a graph H that is not a γ-graph

of any graph G?

6. For which graphs G is G(γ) ∼= G?

7. Under what conditions is G(γ) a disconnected graph?

6.1 The Maximum Degree of T (γ)

In the following results we work with rooted trees. A rooted tree is a pair (T, c),

where T is a tree and c ∈ V (T ) is a special vertex called the root. Let (T, c) be a

rooted tree. A vertex x is called an ancestor of a vertex y if x belongs to the unique

path joining y and c. If, in addition, xy ∈ E(T ), then x is a parent of y. The terms

descendant of x and child of x, respectively, are used to describe such a vertex y.

Note that x is both an ancestor and a descendant of itself. We use Tx to describe the

subtree of T induced by the descendants of x, and Tx is rooted at x.

Proposition 6.1. If D is a γ-set of T and there exist a vertex x ∈ D and a vertex

y ∈ V (T ) such that D′ = (D − {x}) ∪ {y} is also a γ-set of T , then d(x, y) ≤ 2.
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Proof. LetD be a γ-set of T . Say x ∈ D and y ∈ V (T ) such that d(x, y) ≥ 3. Suppose

D′ = (D−{x})∪{y} is a γ-set of T . Root T at the vertex y and let z be the parent of

x and let w be the parent of z. (Notice that z and w exist because d(x, y) ≥ 3.) Since

D′ dominates T , D′ ∩ V (Tz) dominates Tx. Notice that |D′ ∩ V (Tz)| < |D ∩ V (Tz)|.

But then D′′ = (D− V (Tz))∪ (D′ ∩ V (Tz)) is a dominating set of T and |D′′| < |D|,

a contradiction. Therefore d(x, y) ≤ 2.

Proposition 6.2. For a γ-set D of a tree T and a vertex z /∈ D, there is at most

one vertex v ∈ D such that (D − {v}) ∪ {z} is also a γ-set of T .

Proof. Let T be a tree and let D be a γ-set of T , and consider a vertex z /∈ D.

Suppose there exists a set {x, y} ⊆ D such that (D− {x}) ∪ {z} is a dominating set

of T and (D − {y}) ∪ {z} is a dominating set of T . By Proposition 6.1, d(x, z) ≤ 2

and d(y, z) ≤ 2.

Suppose d(x, z) = d(y, z) = 1. Then x is at most needed to dominate itself and z

and y is at most needed to dominate itself and z. But then D′ = (D − {x, y}) ∪ {z}

is a dominating set of T , and |D′| < |D|, a contradiction.

Suppose d(x, z) = d(y, z) = 2 and there exists a path xuz and a path yvz, u 6= v.

Then x is at most needed to dominate u and y is at most needed to dominate v. But

then D′ = (D−{x, y})∪{z} is a dominating set of T , and |D′| < |D|, a contradiction.

Suppose d(x, z) = d(y, z) = 2 and there exists a path xvz and a path yvz. Again,

x is at most needed to dominate v and y is at most needed to dominate v. But then

D′ = (D − {x, y}) ∪ {z} is a dominating set of T , and |D′| < |D|, a contradiction.

Suppose, without loss of generality, that d(x, z) = 2 and d(y, z) = 1 and there

exists a path xvz. Then x is at most needed to dominate u and y is at most needed

to dominate itself and z. But then D′ = (D−{x, y})∪ {z} is a dominating set of T ,

and |D′| < |D|, a contradiction.

Suppose, without loss of generality, that d(x, z) = 2 and d(y, z) = 1 and there

exists a path xyz. In this case, since (D − {x}) ∪ {z} is a dominating set and y
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dominates z, we can say that D′ = D−{x} is a dominating set of T , a contradiction

as |D′| < |D|.

Corollary 6.3. If |V (T )| = n, then ∆(T (γ)) ≤ n− γ(T ).

Notice that the adjacency model used in T (γ) to obtain the result of Corollary

6.3 is irrelevant.

t

Figure 6.1: An infinite family of useful trees.

Figure 6.1 shows an infinite family of trees which reach equality in the bound

from Corollary 6.3. Let the central vertex t have deg(t) = a ≥ 2 and suppose that

each neighbour v of t has deg(v) = b+ 1. Then n = a+ 2ab+ 1 and γ(T ) = ab+ 1.

Consider the γ-set D comprised of the central vertex t and all the support vertices

of T . Then D has degree a+ ab = n− γ(T ) in T (γ).

6.2 The Diameter of T (γ)

Let D be a minimum dominating set of the rooted tree (T, c). We define the height of

D to be the quantity htT (D) =
∑

x∈D d(x, c). A γ-set D is called a highest minimum

dominating set if htT (D) ≤ htT (F ) for all γ-sets F of T . We shall show later that

every tree T has a unique highest minimum dominating set.
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Proposition 6.4. Let L be the set of leaves in the tree T and let S be the set of

support vertices in T . If D is a highest minimum dominating set, then S ⊆ D and

L ∩D = ∅.

Proof. Let x ∈ L and y ∈ S with xy ∈ E(T ). If x ∈ D, then y /∈ D. But then

D′ = (D−{x})∪{y} is a γ-set of T and htT (D′) < htT (D) and so D is not a highest

minimum dominating set. Since |D ∩ {x, y}| = 1, this completes the proof.

Proposition 6.5. A γ-set D is a highest minimum dominating set if and only if

every x ∈ D − {c} has a child y ∈ pn(x,D).

Proof. Suppose D is a highest minimum dominating set and suppose there is a vertex

x ∈ D − {c} such that for every child y of x, y /∈ pn(x,D). Let the parent of x be

z. If z ∈ D, then D − {x} is a dominating set of T , a contradiction. If z /∈ D, then

D′ = (D − {x}) ∪ {z} is a dominating set such that htT (D′) < htT (D) and so D is

not a highest minimum dominating set, a contradiction.

We now show that if every x ∈ D − {c} has a child y ∈ pn(x,D), then D is a

highest minimum dominating set. We proceed by induction on n, where n = |V (T )|.

The base cases for 1 ≤ n ≤ 5 are easy to verify.

Thus suppose that n ≥ 6. Let T be rooted at c, and let D be a γ-set of D such

that every x ∈ D − {c} has a child y ∈ pn(x,D). Notice that the theorem holds for

T = K1,n−1 and for any tree T with diam(T ) = 4 where c is the central vertex of

T . Thus suppose that T is neither K1,n−1 nor a tree with diam(T ) = 4 where c is

the central vertex of T . Let y ∈ D, chosen so that d(y, c) is maximized. Thus y is a

support vertex, and the only children of y are leaves. Let x be the parent of y.

Case 1: Suppose that x ∈ pn(y,D). Then x /∈ D. Let z be the parent of x.

(Note that z exists because T is not a graph of diameter 4 with x = c.) Then z /∈ D

since x ∈ pn(y,D).

First we show that N(x) = {y, z}. Suppose x has a child v, v 6= y. Then either v

is a leaf or v has at least one child and all the children of v are leaves. If v is a leaf,
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then x ∈ D. If v has a child, then v ∈ D. In both cases we have that x /∈ pn(y,D),

a contradiction.

Let T1 be the tree T1 = Tx, and let T2 be the tree T2 = T − T1. Then D1 =

D ∩ V (T1) is a γ-set of T1 and D2 = D ∩ V (T2) is a γ-set of T2.

Consider T1 to be rooted at x and T2 to be rooted at c. Then by the induction

hypothesis, D1 is a highest minimum dominating set of T1 and D2 is a highest mini-

mum dominating set of T2. Recall that N(x) = {y, z}. Let S be a highest minimum

dominating set of T . Then y ∈ S and x /∈ S (otherwise x would not have a child

that is a private neighbour) and S2 = S ∩V (T2) is a γ-set of T2. Thus S2 is a highest

minimum dominating set of T2. But this implies that htT2(S2) = htT2(D2). Therefore

htT (S) = htT (D) and so D is a highest minimum dominating set of T .

Case 2: Suppose that x /∈ pn(y,D). Let T1 be the tree T1 = Ty and let T2 be

the tree T2 = T − T1. Then D1 = D ∩ V (T1) is a γ-set of T1 and D2 = D ∩ V (T2) is

a γ-set of T2 (since x is not a private neighbour of y). Consider T1 to be rooted at y

and T2 to be rooted at c. Obviously, D1 = {y} is a highest minimum dominating set

of T1. By induction, D2 is a highest minimum dominating set of T2.

Say x ∈ D. Then x has a child that is a leaf. Let S be a highest minimum

dominating set of T . Then x ∈ S and y ∈ S and S2 = S ∩ V (T2) is a γ-set of

T2. Therefore htT2(S2) = htT2(D2) and so htT (S) = htT (D) and thus D is a highest

minimum dominating set of T .

Say x /∈ D.

Case i: Suppose that x has a child w with w ∈ D. Thus w is a support vertex

of T and the only children of w are leaves. Let S be a highest minimum dominating

set of T . Then y ∈ S and w ∈ S and so S2 = S ∩ V (T2) is a γ-set of T2. Therefore

htT2(S2) = htT2(D2) and so htT (S) = htT (D) and thus D is a highest minimum

dominating set of T .

Case ii: Suppose that x has no child w with w ∈ D. Thus N(x) = {y, z}. Hence



6.2. The Diameter of T (γ) 132

z ∈ D and z has a child v, v 6= x, such that v is a private neighbour of z. We claim

that v has no children. Otherwise v is adjacent to either a leaf or support vertex

u where the only children of u are leaves. If v is adjacent to a leaf, then v ∈ D.

If v is adjacent to a support vertex u, then u ∈ D. In both cases, v /∈ pn(z,D),

a contradiction. Thus N(v) = {z}. Let S be a highest minimum dominating set

of T . Then y ∈ S and z ∈ S and so S2 = S ∩ V (T2) is a γ-set of T2. Therefore

htT2(S2) = htT2(D2) and so htT (S) = htT (D) and thus D is a highest minimum

dominating set of T .

Therefore D is a highest minimum dominating set of T if and only if every vertex

x ∈ D − {c} has a child y ∈ pn(x,D).

Proposition 6.6. Let T be rooted at c. If D is not a highest minimum dominating

set, then in T (γ) the γ-set D is adjacent to a γ-set D′ with htT (D′) < htT (D).

Proof. If D is not a highest minimum dominating set, then by the previous result

there is an x ∈ D, x 6= c, such that x has no child y where y ∈ pn(x,D). If the parent

w of x is in D, then D − {x} is a dominating set of T , a contradiction. If w /∈ D,

then D′ = (D − {x}) ∪ {w} is a dominating set of T and htT (D′) < htT (D).

Corollary 6.7. For any γ-set D of T there is a path in T (γ) from D to a highest

minimum dominating set D′ of T .

Proposition 6.8. Let T be a tree rooted at vertex c. Then T has a unique highest

minimum dominating set.

Proof. We proceed by induction on n = |V (T )|. Again, the base cases of 1 ≤ n 6= 5

are easy to verify. Suppose n ≥ 6 and let D be a highest minimum dominating set

of T .

Suppose c /∈ D. Let the children of c be x1, x2, . . . , xk. Then |D∩{x1, x2, . . . , xk}| ≥

1. Label x1, x2, . . . , xk so that {x1, x2, . . . , xi} ⊆ D and D ∩ {xi+1, xi+2, . . . , xk} = ∅.
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Let Tj be the tree Tj = Txj and let T ′j be the tree T ′j = 〈V (Tj)∪{c}〉, j ∈ {1, 2, . . . , k}.

Let Dj = D ∩ V (Tj).

ThenD1, D2, . . . , Di are γ-sets of T ′1, T
′
2, . . . , T

′
i respectively, andDi+1, Di+2, . . . , Dk

are γ-sets of Ti+1, Ti+2, . . . , Tk respectively. Consider T ′1, T
′
2, . . . , T

′
i all to be rooted at c

and Ti+1, Ti+2, . . . , Tk to be rooted at xi+1, xi+2, . . . , xk respectively. ThenD1, D2, . . . ,

Dk are all highest minimum dominating sets in their respective trees. By induction,

these highest minimum dominating sets are unique. Therefore T has only one highest

minimum dominating set D with c /∈ D.

Suppose c ∈ D. Let Tj and T ′j , j ∈ {1, 2, . . . , k}, be defined as before. Let Dj =

D ∩ V (T ′j), j ∈ {1, 2, . . . , k}. (Notice that c ∈ Dj for every j ∈ {1, 2, . . . , k}.) Then

D1, D2, . . . , Dk are γ-sets of T ′1, T
′
2, . . . , T

′
k respectively. Furthermore D1, D2, . . . , Dk

are all highest minimum dominating sets of T ′1, T
′
2, . . . , T

′
k. By induction, these highest

minimum dominating sets are unique. Therefore T has only one highest minimum

dominating set D with c ∈ D.

Now suppose there are two highest minimum dominating sets where one contains

c and one does not contain c. Call them D and S. (And so either c ∈ D and c /∈ S, or

c /∈ D and c ∈ S.) Let Xi = {x ∈ V (T ) | d(x, c) = i}. Say that the greatest distance

between c and a leaf is l. Let m be the largest value such that D ∩Xm 6= S ∩Xm.

Then D ∩ (Xm+1 ∪ Xm+2 ∪ . . . ∪ Xl) = S ∩ (Xm+1 ∪ Xm+2 ∪ . . . ∪ Xl). Notice that

by Proposition 6.1, m ≤ l − 2. Label D and S so that there is an x ∈ Xm with

x ∈ D and x /∈ S. Since D is a highest minimum dominating set, x has a child y such

that y is a private neighbour of x. Thus y ∈ Xm+1. Let the children of y (if they

exist) be y1, y2, . . . , yr. Since y ∈ pn(x,D) we have that {y, y1, y2, . . . , yr} ∩ D = ∅.

Since D ∩ (Xm+1 ∪Xm+2 ∪ . . . Xl) = S ∩ (Xm+1 ∪Xm+2 ∪ . . . Xl), we also have that

{y, y1, y2, . . . , yr}∩S = ∅. But x /∈ S and so S does not dominate y, a contradiction.

Therefore T has a unique highest minimum dominating set.
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The preceding work gives the following result, which was known by Fricke et al.

[20].

Corollary 6.9. [20] For any tree T , the γ-graph T (γ) is connected.

A 2-packing of a graph G is a collection of vertices P ⊆ V (G) such that for any

two vertices x, y ∈ P , d(x, y) > 2. A 2-packing is said to be maximal if there is no

vertex v ∈ V (G) such that P ∪ {v} is also a 2-packing. The 2-packing number of G

is the cardinality of a maximum 2-packing of G. Meir and Moon [35] showed that

for a tree T the 2-packing number of T is equal to γ(T ). Furthermore, their proof

shows that any maximum 2-packing of T can be transformed into a γ-set of T .

Proposition 6.10. For any tree T , diam(T (γ)) ≤ 2γ(T ) in the single vertex replace-

ment adjacency model, and diam(T (γ)) ≤ 2(2γ(T )− s) in the slide adjacency model,

where s is the number of support vertices in T .

Proof. By Meir and Moon [35] T has a maximum 2-packing P with |P | = γ(T ). For

x, y ∈ P notice that N [x]∩N [y] = ∅. Consider D, a γ-set of T . For any x ∈ P there

exists a vertex v ∈ D such that x ∈ N [v] since x is dominated by D. Thus since

|P | = |D| = γ(T ) we can consider there to be a one-to-one correspondence between

the vertices of P and the vertices of D.

Root T at the vertex c and consider two γ-sets, D and D′, of T . Let H be the

highest minimum dominating set of T . By Corollary 6.9 we know there is a path

from D to H and a path from D′ to H in T (γ). Joining these two paths together

gives an upper bound on dT (γ)(D,D
′).

Consider two γ-sets S and S ′ of T that are adjacent in T (γ). Then S ′ = (S −

{x}) ∪ {y} for some x ∈ S and some y ∈ S ′. Since every vertex v ∈ S is in

N [z] for some z ∈ P and every vertex u ∈ S ′ is in N [z′] for some z′ ∈ P and

|P | = γ(T ), each neighbourhood N [z], z ∈ P , contains exactly one vertex from S

and exactly one vertex from S ′. Therefore if x ∈ N [z] and y ∈ N [z′], z, z′ ∈ P , z 6= z′,
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then z is undominated in S ′, a contradiction. Hence, to move from S to S ′ where

SS ′ ∈ E(T (γ)) we remove a vertex x ∈ S and add a vertex y ∈ S ′ where x, y ∈ N [z]

for some z ∈ P .

We provide an algorithm that constructs a path from any γ-set D to the highest

minimum dominating set H. This provides an upper bound on dT (γ)(D,H) and in

turn gives an upper bound on diam(T (γ)).

The number of vertices in which D and H agree is |D ∩ H|. We show how to

move from D to a γ-set S with |D ∩H| < |S ∩H|.

Find a vertex x ∈ D such that d(x, c) is maximized and x /∈ H. If x is a leaf

then let y be the vertex adjacent to x. Notice that by Proposition 6.4, y ∈ H. Then

S = (D − {x}) ∪ {y} is a γ-set of T and |S ∩H| > |D ∩H|.

Suppose then that x is not a leaf.

Case 1: Suppose x ∈ P . Let y be the vertex adjacent to x with d(y, c) < d(x, c).

Since every vertex z ∈ D such that d(z, c) > d(x, c) is in H and x /∈ H, y ∈ H and

S = (D − {x}) ∪ {y} is a γ-set of T . Notice that |S ∩H| > |D ∩H|.

Thus suppose that x /∈ P and again let y be the vertex adjacent to x with

d(y, c) < d(x, c). Then y ∈ P .

Case 2: Suppose y ∈ H. Since every vertex z ∈ D such that d(z, c) > d(x, c) is

in H and x /∈ H, we can say that S = (D − {x}) ∪ {y} is a γ-set of T . Notice that

|S ∩H| > |D ∩H|.

Suppose that y /∈ H. Let v be the vertex adjacent to y such that d(v, c) < d(y, c).

Then v ∈ H. Since every vertex z ∈ D such that d(z, c) > d(x, c) is in H, S ′ =

(D−{x})∪ {y} is a γ-set of T and S = (D−{x})∪ {z} is a γ-set of T . Notice that

DS ′ ∈ E(T (γ)) and that S ′S ∈ E(T (γ)). Also notice that |S ∩ H| > |D ∩ H| and

that in the single vertex replacement adjacency model DS ∈ E(T (γ)).

The above cases show that we can always move from a γ-set D to a γ-set S with

|S ∩H| > |D ∩H|. In the single vertex replacement adjacency model we can move
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directly from D to S and so there is a path in T (γ) from D to H where each move

in the path is a move from a γ-set to another γ-set that increases the number of

vertices that agrees with H. Thus there are at most γ(T ) moves needed to convert a

γ-set D to the highest minimum dominating set H. In the single vertex replacement

adjacency model then for any two γ-sets D and D′, dT (γ)(D,D
′) ≤ 2γ(T ) and hence

diam(T (γ)) ≤ 2γ(T ).

Thus consider the slide adjacency model. Let s be the number of support vertices

in T . To move from a γ-set D to the highest minimum dominating set H, at most

s leaves would be swapped out of D to include the s support vertices that are in

H. Now for each vertex of D that is not a leaf, there may be two swaps needed

to change D into a γ-set S ′ and then into a γ-set S with DS ′ ∈ E(T (γ)), S ′S ∈

E(T (γ)), and |S ∩H| > |D∩H| as outlined in Case 2 above. Thus there are at most

2(γ(T )− s) + s = 2γ(T )− s moves needed to go between a γ-set D and the highest

minimum dominating set H. In the slide adjacency model then for any two γ-sets D

and D′, dT (γ)(D,D
′) ≤ 2(2γ(T )− s) and hence diam(T (γ)) ≤ 2(2γ(T )− s).

6.3 The Order of T (γ)

Consider a tree T from the infinite family in Figure 6.1. A brief calculation shows

that T has

(a+ 1)

(
a

0

)
(2b − 1)a + 2

(
a

1

)
(2b − 1)a−1 +

(
a

2

)
(2b − 1)a−2 + . . .+

(
a

a

)
(2b − 1)0

which equals

a2b(2b − 1)a−1 + 2ab
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γ-sets. These values can be derived by counting based on which leaves are in the

γ-set, or counting based on which vertex dominates t in the γ-set. Now 2γ(T ) =

2ab+1 = 2ab+ 2ab and so if a2b(2b−1)a−1 > 2ab, a negative answer to question 3 posed

by Fricke et al. [20] can be given. Thus consider the inequality

log2[a2b(2b − 1)a−1] > log2[2
ab].

This can equivalently be expressed as

log2[a] + (a− 1) log2[2
b − 1] + b > ab

which in turn can be written as

log2[a] + (a− 1) log2[2
b − 1] > (a− 1)b.

Dividing by (a− 1) and rearranging gives

log2[a]

a− 1
> b− log2[2

b − 1]

or

log2[a]

a− 1
> log2

[
1 +

1

2b − 1

]
.

Since the value of b can be chosen so that log2

[
1 +

1

2b − 1

]
is arbitrarily close to zero,

for any fixed value of a there exists a value of b for which this inequality holds. Thus

there are infinitely many trees T which have more than 2γ(T ) minimum dominating

sets.

For any tree T (T is not necessarily in this infinite family) a straightforward

proof by induction on γ(T ) shows that T has at most 3γ(T ) γ-sets. This bound can

be improved though, and the proof follows.
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Theorem 6.11. Any forest F has at most ((1 +
√

13)/2)γ(F ) γ-sets.

Proof. For ease of notation, say that b = ((1 +
√

13)/2). Let T1, T2, . . . , Tk be the

components of F . Notice that γ(F ) = γ(T1) + γ(T2) + . . . + γ(Tk). Let T be a

component of F with maximum order. Consider T to be rooted at vertex c and let

l be a leaf at maximum distance from c and let x be the parent of l. Let y be the

parent of x.

Let P be a maximum 2-packing of T . By Meir and Moon [35], we know that

|P | = γ(T ) and that this 2-packing can be transformed into a γ-set of T .

For each vertex v ∈ P , let Bv be the ball of radius one around v. That is, Bv =

N [v]. Notice that x ∈ Bv for some v ∈ P , otherwise this implies that {x, l} ∩ P = ∅.

But then P ∪ {l} would be a 2-packing with greater cardinality, a contradiction. We

proceed by strong induction on γ(F ). It is easy to check that the result holds for

γ(F ) = 1 and γ(F ) = 2.

Suppose x is adjacent to at least two leaves. Then x is in every γ-set of F .

Consider a γ-set D of F . If y ∈ pn(x,D) then D − {x} is a minimum dominating

set of F ′ = F − (Tx ∪ {y}). In this case γ(F ′) = γ(F ) − 1 and so by induction F ′

has at most bγ(F )−1 minimum dominating sets. Thus F has at most bγ(F )−1 γ-sets D

where y ∈ pn(x,D). If y /∈ pn(x,D) then D − {x} is a minimum dominating set of

F ′ = F−Tx. In this case γ(F ′) = γ(F )−1 and so by induction F ′ has at most bγ(F )−1

minimum dominating sets. Thus F has at most bγ(F )−1 γ-sets D where y /∈ pn(x,D).

In total then, F has at most bγ(F )−1 + bγ(F )−1 = 2bγ(F )−1 < bγ(F ) γ-sets.

Thus suppose that x is adjacent to only one leaf, l. That is, suppose that deg(x) =

2.

Consider any γ-set D of F and any maximum 2-packing P of T . Notice that each

ball Bv obtained from P contains exactly one vertex of D. Otherwise, if Bv ∩D = ∅,

v is not dominated. Thus we proceed by considering the following three cases for P :

y ∈ P , x ∈ P , or l ∈ P . Recall that deg(x) = 2.
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Case 1: Suppose that y ∈ P . Then for any γ-set D of F , x is the vertex from

By that is contained in D as l must be dominated. This implies that deg(y) = 2, for

otherwise the children of y are not dominated. Consider the forest F ′ = F−(By∪{l}).

Notice that γ(F ′) = γ(F ) − 1 and so by induction F ′ has at most bγ(F )−1 minimum

dominating sets. Hence F has at most bγ(F )−1 γ-sets.

Case 2: Suppose that x ∈ P . Notice that for any γ-set D of F , either x or l is

in D. Hence y is not adjacent to any leaves, for otherwise these leaves would not be

dominated. (This is since y ∈ Bx and y /∈ D and for any leaf v adjacent to y v /∈ Bu

for any vertex u ∈ V (T ). Hence v is not dominated.) First suppose that l ∈ D.

Consider the forest F ′ = F − Tx. Notice that γ(F ′) = γ(F ) − 1 and that D − {l}

is a minimum dominating set of F ′. By induction, F ′ has at most bγ(F )−1 minimum

dominating sets. Therefore there are at most bγ(F )−1 γ-sets D of F with l ∈ D.

Now suppose that x ∈ D. Consider the forest F ′ = F − Bx. Suppose deg(y) =

t+2. Since y is not adjacent to any leaves, we can say that F ′ is comprised of a forest

F ′′ and t copies of K2. Notice that γ(F ′) = γ(F )−1 and that γ(F ′′) = γ(F )− (t+1)

and that D−{x} is a minimum dominating set of F ′. By induction, F ′′ has at most

bγ(F )−t−1 minimum dominating sets and the t copies of K2 together have 2t minimum

dominating sets. Thus F ′ has at most 2tbγ(F )−t−1 < bγ(F )−1 minimum dominating

sets. Therefore there are at most bγ(F )−1 + bγ(F )−1 = 2bγ(F )−1 < bγ(F ) γ-sets of F .

Case 3: Finally suppose that l ∈ P . Consider D, a γ-set of F . If y is adjacent

to a leaf v, then either y ∈ D or v ∈ D. In either case, D − {x, l} is a minimum

dominating set of F ′ = F − {x, l}. By induction F ′ has at most bγ(F )−1 minimum

dominating sets and so F has at most 2bγ(F )−1 < bγ(F ) γ-sets. Thus suppose that y

is not adjacent to any leaves. Let deg(y) = t+ 1 (t ≥ 1).

There are three possible cases:

(i) y ∈ D,

(ii) y /∈ D and at least one child of y is in D, or
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(iii) y /∈ D and no children of y are in D.

Case (i): Suppose that y ∈ D. Consider the forest F ′ = F − By. Notice that

γ(F ′) = γ(F )−1 and that D−{y} is a minimum dominating set of F ′. By induction

F ′ has at most 2tbγ(F )−t−1 minimum dominating sets. Thus F has at most 2tbγ(F )−t−1

γ-sets D with y ∈ D.

Case (ii): Suppose that y /∈ D and that at least one child of y is in D. Consider

the forest F ′ = F − Ty. Notice that γ(F ′) = γ(F ) − t and that D − (D ∩ V (Ty)) is

a minimum dominating set of F ′ and that D ∩ V (Ty) is a minimum dominating set

of Ty. By induction F ′ has at most bγ(F )−t minimum dominating sets. Now Ty has

2t− 1 minimum dominating sets that do not contain y. In total then, F has at most

(2t− 1)bγ(F )−t minimum dominating sets D with y /∈ D and at least one child of y in

D.

Case (iii): Suppose that y /∈ D and that no children of y are in D. Therefore

there is a vertex w ∈ D that dominates y. Consider the forest F ′ = F − (Bw ∪ Ty).

Notice that γ(F ′) = γ(F )− t−1 and that D−V (Bw ∪Ty) is a minimum dominating

set of F ′. Also notice that D∩V (Bw∪Ty) is a minimum dominating set of 〈Bw∪Ty〉.

By induction F ′ has at most bγ(F )−t−1 minimum dominating sets. Now 〈Bw ∪Ty〉 has

one minimum dominating set that contains w and no children of y. Thus F has at

most bγ(F )−t−1 γ-sets D with y /∈ D, w ∈ D, and no children of y in D.

Considering these three cases together, we see that F has at most 2tbγ(F )−t−1 +

(2t − 1)bγ(F )−t + bγ(F )−t−1 γ-sets. Now 2tbγ(F )−t−1 + (2t − 1)bγ(F )−t + bγ(F )−t−1 =

bγ(F )−t−1[2t + 1 + b(2t− 1)]. Thus if this value is at most bγ(F ), the proof is complete.

From the desired inequality 2t + 1 + b(2t − 1) ≤ bt+1 we obtain the inequality

1

b

(
2

b

)t
+

1

bt+1
+

2t − 1

bt
≤ 1.
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Notice that since b = ((1 +
√

13)/2) > 2, the function

f(t) =
1

b

(
2

b

)t
+

1

bt+1
+

2t − 1

bt

is a decreasing function. That is, f(t) > f(t + 1) for t ≥ 1. Therefore f(t) is

maximized for t = 1. By evaluating 2t + 1 + b(2t − 1) ≤ bt+1 at t = 1, we see that

0 ≤ b2− b− 3 and that b ≥ ((1 +
√

13)/2) satisfies this inequality. Since we are using

b = ((1 +
√

13)/2), we have shown that our desired inequality 2tbγ(F )−t−1 + (2t −

1)bγ(F )−t + bγ(F )−t−1 ≤ bγ(F ) and the proof is complete.

Corollary 6.12. Any tree T has at most ((1 +
√

13)/2)γ(T ) γ-sets.

Corollary 6.13. For any tree T , |V (T (γ))| ≤ ((1 +
√

13)/2)γ(T ).

6.4 Summary and Directions for Future Work

In this final chapter, the gamma graphs of trees were studied. Particularly, three

questions posed by Fricke et al. [20] were answered. It was shown that for a tree

T , if |V (T )| = n, then ∆(T (γ)) ≤ n − γ(T ) and this result holds for both the slide

adjacency model and the single vertex replacement adjacency model. Results on the

maximum diameter of T (γ) were also provided: for any tree T , diam(T (γ)) ≤ 2γ(T )

in the single vertex replacement adjacency model, and diam(T (γ)) ≤ 2(2γ(T ) − s)

in the slide adjacency model, where s is the number of support vertices in T . An

upper bound for the number of γ-sets of a tree was provided by showing that for any

tree T , |V (T (γ))| ≤ ((1 +
√

13)/2)γ(T ). This bound is independent of the choice of

adjacency model. Figure 6.1 gave an example of an infinite set of graphs which reach

equality in the bound for ∆(T (γ)) in both adjacency models.

To conclude, one final list of open problems follows:

1. Upper bounds for ∆(G(γ)), diam(G(γ)), and the order of G(γ) were presented



6.4. Summary and Directions for Future Work 142

in this chapter when G is a tree. Find upper bounds for ∆(G(γ)), diam(G(γ)),

and the order of G(γ) when G is not a tree.

2. Characterize trees which meet equality in the bounds for ∆(T (γ)), diam(T (γ)),

and the order of T (γ).

3. Figure 6.1 gives an example of a tree for which T (γ) has more than 2γ(T )

vertices, thus giving a negative answer to question 3 posed by Fricke et al. [20].

However, this tree does not reach equality in the bound for the order of T (γ)

given in Corollary 6.13. Find trees which reach equality in this bound or find

a better bound for |V (T (γ))|.

4. [20] Which graphs are γ-graphs of trees?

5. [20] Which graphs are γ-graphs? Can you construct a graph H that is not a

γ-graph of any graph G?

6. [20] For which graphs G is G(γ) ∼= G?

7. [20] Under what conditions is G(γ) a disconnected graph?
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