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ABSTRACT

The fifth generation (5G) wireless communications technology will be a paradigm

shift which does not only provide an explosive increment on the achievable data rate

per cell, but also ideally decreases the costs and energy consumption per data link.

The engineering requirements of 5G standard can be intuitively interpreted as highly

enhanced spectral efficiency and energy efficiency. This thesis focuses on the prac-

tical implementation issues of the massive multiple-input multiple-output (MIMO)

and energy harvesting systems. To begin with, massive MIMO, as one of the key

technologies of 5G systems, can provide enormous enhancement in spectral efficiency.

For a practical massive MIMO system, hybrid processing (precoding/combining), by

restricting the number of RF chains to far less than the number of antenna elements,

can significantly reduce the implementation cost compared to the full-complexity

radio frequency (RF) chain configuration. This thesis designs the hybrid RF and

baseband precoders/combiners for multi-stream transmission in the point-to-point

(P2P) massive MIMO systems, by directly decomposing the pre-designed digital pre-

coder/combiner of a large dimension. The performance of the matrix decomposition

based hybrid processing (MD-HP) scheme is near-optimal compared to the singular

value decomposition (SVD) based full-complexity processing.

In addition, the downlink communication of a massive multiuser MIMO (MU-

MIMO) system is also investigated, and a low-complexity hybrid block diagonalization

(Hy-BD) scheme is developed to approach the performance of the traditional BD

method. We aim to harvest the large array gain through the phase-only RF precoding

and combining and then BD processing is performed on the equivalent baseband
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channel in the massive MU-MIMO scenario. The MD-HP and Hy-BD schemes are

examined in both the large Rayleigh fading channels and millimeter wave channels.

On the other hand, energy harvesting is an increasingly attractive and renew-

able source of power for wireless communications devices, which contributes to the

enhancement of the system energy efficiency. This thesis also designs the energy co-

operation assisted energy harvesting communication between a practical transmitter

and receiver, whose hardware circuits consume non-zero power when active. The

energy cooperation save-then-transmit (EC-ST) scheme aims to obtain the optimal

active time ratio and energy cooperation power for the maximum throughput under

additive white Gaussian channels and the minimum outage probability under block

Rayleigh fading channels.
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Chapter 1

Introduction

As the long term evolution-advanced (LTE-A) wireless communication system, em-

bodying 4G, is reaching maturity on the academic research and practical deploy-

ment, the blossoming discussions on the new possible 5G standard has captured the

attention of the researchers and engineers all over the world [1]. The 5G wireless

communications technology will be a paradigm shift which does not only provide an

explosive increment on the achievable data rate per cell, but also ideally decreases

the costs and energy consumption per data link. Specifically, the network throughput

(bps/area) required by the 5G standard is expected to increase by around 1000 times

over the current 4G. To achieve such an objective, the multiple-input multiple-output

(MIMO) technique, especially at a large scale, is one of the key enabling components

to be adopted. As for reducing the energy consumption of data transmission, en-

ergy harvesting is an increasingly attractive solution to rely on renewable sources for

powering the wireless communications devices.

In the point-to-point communication scenario with multiple antennas employed at

both the transmitter and the single user receiver, the signals radiated from the anten-

nas of the transmitter go through multiple propagation paths and finally arrive at the

receiver antennas with different delays. In a typical MIMO communication scenario,

diversity and multiplexing are the keys to achieve high spectral efficiency for the data

links. To begin with, we choose a simple case where a single-antenna transmitter

sends one data stream to the multiple-antenna receiver that exploits maximum ra-

tio combining (MRC) to retrieve the transmitted signal. The receive signal-to-noise

ratio (SNR) will obtain extra power gain and diversity gain which linearly increase

with the receive antenna number and the average channel gains compared to the

transmit SNR [27]. The diversity rendered by the multiple antennas, hence, essen-
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tially offers a higher spectral efficiency through increasing the receive SNR. Other

than the receive diversity, the transmit diversity based on the space-time codes, e.g.,

the so called Alamouti scheme, also provides a diversity gain by repeatedly send-

ing the transmit symbols through different transmit antennas over different symbol

times. Furthermore, multiple data streams transmission is supported by the MIMO

technique when both the transmitter and receiver have multiple antennas, namely,

spatial multiplexing. Generally, there often exists a mismatch between the number

of data streams and the number of transmit/receive antennas, which requires the

precoding and combining at the transmitter and receiver respectively. As long as

the full channel state information (CSI) is available, by selecting some corresponding

right and left singular vectors to construct the precoder and combiner based on the

singular value decomposition (SVD), the transmitted streams can be considered to

equivalently pass through some parallel channels so that reliable communication with

spatial multiplexing is supported by the MIMO technique.

When it comes to the practical communications in the cellular network, a base

station (BS) with a number of antennas needs to communicate with multiple users/-

mobile stations (MSs), which is so called multiple user MIMO (MU-MIMO) system.

Different from the traditional time or frequency division multiple access cellular sys-

tems, the MSs in the MU-MIMO system are able to share the same time and frequency

resources through spatial division multiple access (SDMA), whose main principle is

consistent with the spatial multiplexing of data streams in the point-to-point (P2P)

MIMO scenario. However, for a general non-cooperative MU-MIMO system, the MSs

cannot share their CSI with others or proceed signal combining together. This es-

sential feature of the MU-MIMO system leads to a disadvantageous result that the

signals for others will cause interference to the intended MS. Therefore, the parameter

that plays a role on the spectral efficiency should be the signal-to-interference-plus-

noise ratios (SINRs) of the MSs. In the downlink communication of the MU-MIMO

systems, some linear precoding/combining schemes are commonly utilized, such as

minimum mean squared error (MMSE), zero-forcing (ZF) and block diagonalization

(BD) schemes [5]-[6] [28]. Note that ZF precoding can only be employed in the MU-

MIMO system with single-antenna MSs, which is realized by projecting the data

stream of each MS to the null space of others’ channels. The BD scheme is a gen-

eralization of the ZF which supports the multiple-antenna MSs. Besides, a number

of signal processing schemes have been investigated for pursuing the higher spectral

efficiency up to the channel capacity recently.
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On the other hand, energy harvesting for communication devices has emerged as a

prominent research area due to its benefit of powering the devices through alternative

energies instead of battery or hardwire power [29], [30]. By employing the piezoelec-

tric, electromagnetic, photo-voltaic or other energy harvesting technologies, external

sources, such as kinetic, solar energy and ambient radio waves, can be harvested to

power the devices. Thus, energy harvesting becomes an attractive and effective solu-

tion for powering the energy-constrained devices and prolonging their lifetime, which

essentially enhance the energy efficiency of the wireless communication systems. In

addition, energy cooperation allows the devices to intentionally transfer some energy

to others to assist communications, which actually extends the feasible region of a

performance optimization problem, so that the performance of the energy harvesting

wireless communications can substantially be improved by energy cooperation.

This thesis proposes the hybrid precoding schemes in the P2P MIMO and MU-

MIMO scenarios when a large scale of antennas are implemented in the system. The

hybrid processing schemes take effect based on the limited radio frequency (RF)

chain configuration which aims to reduce the hardware implementation costs under

the massive MIMO setting. For energy harvesting based communications research,

optimization of an energy cooperation assisted energy harvesting wireless communi-

cation is studied in this thesis. The rest of this chapter elaborates the motivation for

this thesis as well as an overview of the main contributions.

1.1 Motivation

To realize the tremendous capacity target of the 5G wireless communication system,

one promising option is to scale up to massive MIMO systems to reap the highly

increased spectral efficiency [1]-[2]. In the limit of an infinite number of antennas,

the massive MIMO propagation channel becomes quasi-static where the effects of

uncorrelated noise and fast fading vanish, and such favorable characteristics enable

arbitrary small energy per transmitted bit [2], and the large array gain is rendered by

a massive number of antennas at the order of a hundred or more [3]. Moreover, in the

massive MU-MIMO systems, some simple linear pre/post-processing (transmit pre-

coding/receive combining) schemes, such ZF and linear MMSE, are able to approach

the optimal capacity performance achieved by the dirty paper coding (DPC) as the

number of antennas goes to infinity [5]. Conventional pre-processing is performed

through modifying the amplitudes and phases of the complex transmit symbols at the
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baseband and then upconverted to the passband after passing through RF chains (in-

cluding the digital-to-analog conversion, signal mixing and power amplifying), which

requires that the number of the RF chains is in the range of hundreds, equal to the

number of the antenna elements. Post-processing similarly involves a large number of

analog receive RF chains and digital baseband operations. This leads to unacceptably

high implementation cost and energy consumption.

Recently, enabled by the cost-effective variable phase shifters, a limited number

of RF chains have been applied in the MIMO systems [10]-[17]. The analog RF pro-

cessing provides the high-dimensional phase-only control while the digital baseband

processing can be performed in a very low dimension, termed as hybrid processing.

Under the limited RF chain constraint, lots of research efforts have been made to de-

sign the high-performance and feasible hybrid processing schemes. For instance, [8]

implement the hybrid processing to the downlink of the massive MU-MIMO systems

with single-antenna users, and the near-optimal capacity performance, compared to

the full-complexity systems, is achieved through the ZF baseband precoding com-

bined with the equal gain transmission (EGT) processing in the RF domain. In

addition, references [10] and [9] investigate the hybrid processing schemes in the P2P

MIMO systems, focusing on the single-stream and multiple-stream communication

respectively.

However, it is in general much more difficult to design the hybrid processing based

schemes since the number of required precoders/combiners is doubled compared to

the conventionally full-complexity processing. It is not clear how to systematically

design these processing units. The analog RF precoder/combiner are constrained by

the nature of the phase shifters, namely, the amplitudes of all entries of the RF pre-

coder/combiner matrices are constant, which further increases the design difficulty.

To efficiently and effectively proceed the hybrid processing scheme design, it is fea-

sible to start from the existing full-complexity processing schemes. As is known to

us, the P2P MIMO channel capacity can be achieved by the SVD based processing

(the water-filling power allocation is included). Therefore, directly decomposing the

pre-designed optimal precoder/combiner of a large dimension could be one option

to realize the hybrid processing. [14] presents a hybrid processing by decomposing

the optimal precoding/combining matrix via orthogonal matching pursuit with the

transmit/receive array response vectors as the basis vectors for the RF precoder/com-

biner, which requires the information of all propagation paths of the MIMO channel.

This thesis is the first to give a general matrix decomposition based hybrid process-
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ing design that maximizes the system spectral efficiency, with only the non-convex

constant-amplitude constraint for the RF precoder/combiner but no other restric-

tions. As for the massive MU-MIMO system, we would like to develop the hybrid

processing scheme from another perspective that the computational complexity of the

scheme should be reduced for the practical implementation where the MSs usually

have quite low computation ability. Inspired by the design pattern of [8], this thesis

also proposes to perform the RF processing first and then apply the traditional BD

scheme to the baseband processing, which avoids multifarious iterative calculations

compared to the matrix decomposition based hybrid processing.

Other than the improvement of spectral efficiency, energy harvesting wireless com-

munications have emerged as a promising solution for enhancing the energy efficiency

by powering the devices through renewable energies instead of battery or hardwire

power and prolong their lifetime [29], [30]. A certain amount of work has been pro-

duced to optimize the energy harvesting system performance when different assump-

tions on energy arrival rate, channel conditions, communication setups, etc. are

made [32]-[40]. When the energy cooperation is introduced, [45]-[51] aim to further

improve the performance limit by allowing the energy to intentionally transfer among

the communication nodes. Nevertheless, the power consumption of the hardware cir-

cuits (non-ideal circuits) is usually ignored by the previous work, which leads the

impractical energy harvesting designs not suitable for real implementation. In this

thesis, we consider the energy harvesting transmitter and receiver with non-ideal cir-

cuits. Both the practical transmitter and receiver harvest energy from the external

sources, and then employ the harvested energy to support communications as well

as running the power consuming circuits. Based on the save-then-transmit scheme

in [53], the energy cooperation between the transmitter and receiver is also enabled

to improve the communications performance by adjusting the transmission power

and communication time. Such a communication setting, we believe, can guide the

research of the energy harvesting in the practice systems in the future.

1.2 Overview of Thesis

This thesis focuses on the practical implementation issues of the massive MIMO and

energy harvesting systems, aiming to obtain high spectral efficiency and energy effi-

ciency performance respectively in the future 5G wireless communications systems.

For the massive MIMO systems, the hybrid processing schemes based on the limited
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RF chains configuration are designed, namely, the near-optimal matrix decomposi-

tion based hybrid processing (MD-HP) scheme for the P2P scenario in Chapter 2

and the hybrid block diagonalization (Hy-BD) scheme for the multiple user scenario

in Chapter 3. For the energy harvesting wireless communications, energy coopera-

tion save-then-transmit scheme (EC-ST) is developed to improve the communication

performance between the practical transmitter and receiver in Chapter 4.

In Chapter 2, we investigate the processing (precoding/combining) scheme for

the P2P communication between the MIMO transmitter and receiver when a large

number of antenna elements are employed. In the hybrid processing, the transmitted

data stream is first processed by a very low-dimensional digital baseband precoder

and then up-converted to the RF domain through s small quantity of RF chains,

followed by the analog RF precoder which is enable by the phase shifters. The

receiver has a symmetric hybrid processing structure that consists of an RF analog

combiner followed by a baseband digital combiner to demodulate the received data

streams. We perform the hybrid processing by directly decomposing the pre-designed

digital precoder/combiner of a large dimension. Based on the alternating optimization

technique, the non-convex matrix decomposition problem can be decomposed into

a series of convex sub-problems and effectively performed by restricting the phase

increments of the RF precoder/combiner within a small range at each iteration. The

spectral efficiency performance of the MD-HP scheme is near-optimal compared to

the SVD based full-complexity processing under the large Rayleigh fading channels

and millimeter wave channels.

Chapter 3 continues to implement the hybrid processing structure to the massive

MU-MIMO systems. Besides the MD-HP scheme in Chapter 2, we develop a low-

complexity Hy-BD scheme to approach the capacity performance of the traditional BD

processing method. We aim to harvest the large array gain through the phase-only RF

precoding and combining and then the BD processing is performed on the equivalent

baseband channel. More specifically, the RF combiners of all the mobile stations

are obtained by selecting some of the discrete Fourier transform (DFT) bases that

somehow catch the strongest gains in the channel matrices, while the RF precoder

of the BS is designed by extracting the phases of the conjugate transpose of the

aggregate intermediate channel which incorporates the MSs’ RF combiners and the

original downlink channels. With the designed RF precoder and combiners, a low-

dimensional BD processing can then be performed at the baseband to cancel the

inter-user interference. The proposed Hy-BD schemes is also examined in both the
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large Rayleigh fading channels and millimeter wave channels.

In Chapter 4, the P2P energy harvesting wireless communication between the

practical transmitter and receiver is studied for the purpose of the energy efficiency

enhancement in the future 5G systems. The transmitter and receiver are powered

solely by the energy harvested from external sources and their hardware circuits

consume non-zero power when active. An EC-ST scheme is proposed to obtain the

optimal active time ratio and energy cooperation power for the maximum throughput

under additive white Gaussian channels and the minimum outage probability under

block Rayleigh fading channels. It is shown that one effective method for improv-

ing the communications performance between energy harvesting devices is to allow

the energy flow between the devices, and then find an optimal tradeoff between the

transmission power and the active time ratio.

The last chapter summarizes key points in the thesis and gives concluding remarks.
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Chapter 2

Near-Optimal Hybrid Processing

for Massive MIMO Systems via

Matrix Decomposition

Massive multiple-input multiple-output (MIMO) is potentially one of the key tech-

nologies to achieve high capacity performance in the next generation of mobile cellular

systems [1]-[4]. In the limit of an infinite number of antennas, the massive MIMO

propagation channel becomes quasi-static where the effects of uncorrelated noise and

fast fading vanish, and such favorable characteristics enables arbitrarily small en-

ergy per transmitted bit [2]. Prominently, in massive multiuser MIMO systems,

some simple linear processing schemes, such as zero-forcing (ZF) and linear minimum

mean-square error (MMSE), are able to approach the optimal capacity performance

achieved by the dirty paper coding (DPC) in the downlink communication [5]. The

spectral efficiency performance of the massive MIMO systems with some linear pro-

cessing schemes, including ZF, MMSE and maximum-ratio combining (MRC), are

analyzed with the perfect and imperfect channel state information (CSI) in [6].

For the practical implementation of the massive MIMO systems, the number of

antennas required for the large antenna array gains, generally considered to be with

an order of a hundred or more, is determined by examining the convergence proper-

ties over the antenna number in [7]. However, to exploit such a large antenna array

in the massive MIMO systems, the amplitudes and phases of the complex transmit

symbols are traditionally modified at the baseband and then upconverted to the pass-

band around the carrier frequency after passing through radio frequency (RF) chains
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(performing the analog radiowave/digital baseband conversion, signal mixing, power

amplifying). All outputs of the RF chains are connected to the antenna elements,

which means the number of the RF chains should exactly be equal to the antenna

elements. The fabrication cost and energy consumption of such a massive MIMO

system will be unacceptable due to the tremendous number of RF chains [8].

To deal with this problem, smaller number of RF chains are used in the large scale

MIMO systems, where cost-effective variable phase shifters can be employed to handle

the mismatch between the number of RF chains and of antennas [9]-[12]. The high-

dimensional analog RF (phase only) processing is enabled by the phase shifters while

the digital baseband processing can be performed in a very low dimension. Both di-

versity and multiplexing transmissions of MIMO communications are addressed with

a limited number of RF chains in [9]. Besides, the analog RF precoding is presented to

achieve full diversity order and near-optimal beamforming performance in [10], [11].

Reference [12] applies the phase-only RF precoding in the massive MIMO systems

to maximize the data rate of users based on a bi-convex approximation approach.

Especially, the small wavelengths of millimeter wave (mmWave) make it possible to

build a large antenna array in a compact region, and the above hybrid baseband and

RF processing (transmit precoding/receive combining) scheme is particularly suit-

able for mmWave MIMO communications by cutting down the excessive cost of RF

chains [13]-[16]. Herein, hybrid processing is designed to capture the “dominant”

paths in point-to-point (P2P) mmWave channels by choosing the RF control phases

from the array response vectors [13], [14]. On the other hand, hybrid processing in the

multiuser mmWave systems is studied in [8], [15]-[16], where analog RF processing

aims to obtain the large antenna gains, while baseband processing performs on the

low-dimensional equivalent channels.

Moreover, CSI is the prerequisite to perform any processing at the transmitter and

the receiver, whether it is the unconstrained high-dimensional baseband processing

for the traditional design that one antenna element is coupled with one dedicated RF

chain or the hybrid processing. The training sequences and closed-loop sounding vec-

tors are designed in [18] to estimate a massive multiple-input single-output (MISO)

channel by making aligning the transmit beamformer with the true channel direction.

Reference [19] formulates a compressive sensing (CS) based low-rank approximation

problem, solved via quadratic semidefinite programming (SDP), to estimate the mas-

sive MIMO channel matrix. Considering the massive MIMO channels with limited

scattering feature (especially involving the mmWave channels), the valued parameters



10

of paths, such as the angles of departure (AoDs), angles of arrival (AoAs) and the

corresponding path loss are estimated through designing the beamforming codebook

to obtain the pathloss of all paths whose AoDs/AoAs are spatially quantized among

the whole angular domain [20], [21], while [21] performs the beamforming with the

hybrid processing structure.

In this chapter, we propose to design the hybrid RF and baseband precoder-

s/combiners for multi-stream transmission in the P2P massive MIMO systems, by

directly decomposing the pre-designed unconstrained digital precoder/combiner of a

large dimension. This is an approach that has not been attempted in the litera-

ture. The analog RF precoder/combiner are constrained by the nature of the phase

shifters, namely, the amplitudes of all entries of the RF precoder/combiner matrices

are constant. We begin with the optimal unconstrained precoder, which comes from

the first several right singular vectors of the channel matrix. The hybrid precoders

are designed by minimizing the Frobenius norm of the difference (error) between the

unconstrained precoding matrix and the products of the hybird RF and baseband

precoding matrices, with constraint on the RF precoder obviously non-convex. Such

a matrix decomposition problem can be solved by the alternating optimization tech-

nique, however with the sub-problems that aim to updating the phases of the RF

precoder still non-convex. By restricting the phase increments of all entries of the

RF precoder within a small order at each iteration step, the RF precoder constraint

of the non-convex problem is approximately convex and alternating optimization can

be effectively performed. Once a suitable initial point that is sufficiently close to

the global solution of the non-convex matrix decomposition problem is chosen, the

near-optimal solution can be found with an extremely high probability.

As for the hybrid combiners design, we select the linear MMSE combiner as the

unconstrained reference matrix for the matrix decomposition, and the hybrid RF

and baseband combiners can be obtained in the same fashion as the hybrid precoder

design. Notably, the matrix decomposition based hybrid processing design scheme,

termed as MD-HP, is suitable to the hybrid processing design over any general massive

MIMO channel. The only input of our proposed MD-HP scheme is the channel matrix,

which is assumed to be known to the transmitter and receiver. The convergence of

alternating optimization for the MD-HP scheme is examined in the simulation. The

performance of the MD-HP scheme is further demonstrated to be near-optimal by

comparing it to the optimal unconstrained baseband processing based on the singular

value decomposition (SVD) technique.
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2.1 System Model

In this section, we introduce the hybrid processing structure for the P2P massive

MIMO systems and the channel models considered in this chapter.

2.1.1 System Model

We consider the communication from a transmitter with Nt antennas and Mt RF

chains to a receiver equipped with Nr antennas and Mr RF chains, where Ns data

streams are supported. The system model of the transceiver is shown in Fig. 2.1. To

guarantee the effectiveness of the communication driven by the limited number of RF

chains, the number of the communication streams is constrained by Ns ≤ Mt ≤ Nt

for the transmitter and Ns ≤Mr ≤ Nr for the receiver.

...
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Streams
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.
.
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Processing
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/
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Figure 2.1: System model of the transceiver with the hybrid processing structure

At the transmitter side, the transmitted symbols are assumed to be processed by a

baseband precoder FB of dimensionMt×Ns and then up-converted to the RF domain

through theMt RF chains before being precoded by an RF precoder FR of dimension

Nt × Mt. Notably, the baseband precoder FB enables both amplitude and phase

modification, while only phase changes can be realized by FR since it is implemented

by using analog phase shifters. We normalize each entry of FR to satisfy |F(i,j)
R | = 1

Nt
,

where |(·)(i,j)| denotes the amplitude of the (i, j)-th element of (·). Furthermore, to

meet the total transmit power constraint, FB is normalized to satisfy ||FRFB||2F = Ns,

where || · ||F denotes the Frobenius norm.

We assume a narrowband flat fading channel model and the received signal is

given by

y = HFRFBs+ n, (2.1)

where y ∈ CNr×1 is the received signal vector, s ∈ CNs×1 is the signal vector such that

E[ssH ] = P
Ns

INs, where (·)H denotes conjugate transpose, E[·] denotes expectation,
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INs is the Ns×Ns identity matrix and P is the average transmit power. H ∈ CNr×Nt

is the channel matrix, normalized as E[||H2
F ||] = NtNr, and n is the vector of i.i.d.

CN (0, σ2) addictive complex Gaussian noise. Moreover, to perform the precoding

and combining, we assume the perfect channel knowledge is available at both the

transmitter and the receiver. Then the processed received signal at the receiver after

combining is given by

ỹ = WH
BW

H
RHFRFBs+WH

BW
H
F n, (2.2)

where WF is the Nr ×Mr RF combining matrix and WB is the Mr × Ns baseband

combining matrix. Since WF is also implemented by the analog phase shifters, all

elements of WF should have the constant amplitude such that |W(i,j)
B | = 1

Nr
. If

Gaussian inputs are employed at the transmitter, the long-term average spectral

efficiency achieved will be

R(FR,FB,WR,WB) = log2

(∣
∣
∣
∣
INs +

P

Ns
R−1
n H̃H̃H

∣
∣
∣
∣

)

, (2.3)

whereRn = σ2WH
BW

H
FWFWB is the covariance matrix of noise and H̃ = WH

BW
H
F HFRFB.

2.1.2 Channel Model

In this chapter, we aim to seek the optimal hybrid precoders (FR, FB) and the

hybrid combiners (WR, WB) based on a general channel matrix H. To measure

the performance of our proposed MD-HP scheme, we consider two kinds of channel

models in our simulations of Section 2.3:

1) Large Rayleigh fading channel Hrl with all i.i.d. CN (0, 1) entries;

2) Limited scattering mmWave channel Hmmw.

Note that a certain number of hybrid processing schemes have been studied under

the mmWave communications scenarios where a large antenna array is implemented to

combat the high free-space pathloss and reflection loss [13]-[16]. Thus the mmWave

channel model Hmmw is a proper instance for comparing the performance of our

proposed scheme with others. Due to the limited (sparse) scattering characteristic of

a mmWave channel, we would like to introduce the clustered mmWave channel model

to characterize its key features [22]. The mmWave channel Hmmw is assumed to be
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the sum of all propagation paths that are scattered in Nc clusters and each cluster

contributes Np paths.. Therefore, the normalized channel matrix can be expressed as

Hmmw =

√

NtNr

NcNp

Nc∑

i=1

Np∑

l=1

αilar(θil)at(φil)
H , (2.4)

where αil is the complex gain of the i-th path in the l-th cluster, which follows

CN (0, 1)1. For the (i, l)-th path, θil and φil are the azimuth angles of arrival/departure

(AoA/AoD), while ar(θil) and at(φil) are the receive and transmit array response

vectors at the azimuth angles of θil and φil respectively, and the elevation dimension

is ignored2. Within the i-th cluster, θil and φil have the uniformly-distributed mean

values of θi and φi respectively, while the lower and upper bounds of the uniform

distribution for θi and φi can be defined as [θmin, θmax] and [φmin, φmax]. The angular

spreads (standard deviations) of θil and φil among all clusters are assumed to be

constant, denoted as σθ and σφ. According to [14], we use the truncated Laplacian

distribution to generate all the θil’s and φil’s base on the above parameters.

As for the array response vectors ar(θil) and at(φil), we choose the uniform linear

arrays (ULAs) in our simulations, while the precoding scheme in Section 2.2 can

directly be applied to arbitrary antenna arrays. For an N -element ULA, the array

response vector can be given by

aULA(θ) =
1√
N

[

1, ej
2π
λ
d sin(θ), · · · , ej(N−1) 2π

λ
d sin(θ)

]T

, (2.5)

where λ is the wavelength of the carrier, and d is the distance between any two

adjacent antenna elements. The array response vectors at both the transmitter and

the receiver can be written in the form of (2.5).

2.2 Hybrid Precoding/Combining Design for A Gen-

eral Massive MIMO Channel

For the design of the hybrid precoders (FR, FB) and combiners (WR, WB) based on

a general massive MIMO channel H, we can directly formulate a joint transmitter-

1The power gain of the channel matrix is normalized such that E[||Hmmw
2
F ||] = NtNr

2Only 2D beamforming is considered in this mmWave channel model.
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receiver optimization problem to maximize the spectral efficiency, which is given by

max R(FR,FB,WR,WB)

s.t. ||FRFB||2F = Ns,

FR ∈ FR, WR ∈ WR,

(2.6)

where FR(WR) is the set of matrices with all constant amplitude entries, which is
1√
Nt
( 1√

Nr
). However, this joint optimization problem with the similar constraints is

often intractable [23], due to the non-convex constraints FR ∈ FR andWR ∈ WR that

obstruct the regular progress of searching an globally optimal solution. Before gaining

an insight into the solution of this joint optimization problem (2.6), we would like

to introduce the optimal unconstrained precoder F⋆ and combiner W⋆ for achieving

the maximum capacity of a general MIMO channel, based on which the near-optimal

hybrid precoders/combiners are further designed. Assume that the channel matrix H

is well-conditioned to transmit Ns data streams. Namely, rank(H) ≥ Ns. To obtain

the optimal F⋆ and W⋆, we perform the SVD of the channel matrix H = UΣVH ,

where U is an Nr ×Nr unitary matrix, V is an Nt ×Nt unitary matrix and Σ is an

Nr×Nt diagonal matrix with all singular values along the diagonal in the descendant

order. Respectively divide V and U into two partitions as

V = [V1 V2], U = [U1 U2], (2.7)

where V1 is the first Ns columns of V, and U1 is the first Ns column of U. Without

incorporating the waterfilling power allocation, the optimal unconstrained precoder

and combiner are given by F⋆ = V1 and W⋆ = U1. And the corresponding spectral

efficiency by using such unconstrained F⋆ and W⋆ is given by

R̃ = log2

(∣
∣
∣
∣
INs +

γ

Ns
Σ2

1

∣
∣
∣
∣

)

, (2.8)

where Σ1 represents the first partition of dimension Ns ×Ns of Σ by defining that

Σ =

[

Σ1 0

0 Σ2

]

, (2.9)

where γ = P
σ2

is the signal-to-noise ratio (SNR).

Actually, R̃ sets an upper bound to the spectral efficiency R(FR,FB,WR,WB)
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in problem (2.6) where the ranges of the matrix products FRFB and WRWB are re-

spectively the subsets of feasible regions of the unconstrained precoder and combiner,

namely, CNt×Ns and CNr×Ns. Considering the non-convex feature of the problem (2.6),

it is impossible to guarantee a global solution to it. Therefore, one potential method

is to seek the hybrid precoders and combiners such that the optimal unconstrained

precoder F⋆ and combiner W⋆ can be sufficiently approached by FRFB and WRWB

respectively.

2.2.1 Hybrid Precoders Design via Matrix Decomposition

With the hybrid precoding structure and the constraint on the RF precoder FR,

there is no guarantee that we are able to find a pair of (FR,FB) that perfectly makes

F⋆ = FRFB. However, by relaxing the strict equality, the matrix decomposition

can be realized with best-effort through reformulating the original problem as the

following

min
FR,FB

||F⋆ − FRFB ||F

s.t. ||FRFB||2F = Ns,

FR ∈ FR.

(2.10)

Before solving the matrix decomposition problem (2.10) and examining the spec-

tral efficiency achieved by the obtained hybrid precoders (FR,FB), we still cannot

validate the effectiveness of this method. In other words, it is likely that the spectral

efficiency R(FR,FB,WR,WB) is quite sensitive to the error between ||F⋆−FRFB||F ,
and a small difference between F⋆ and FRFB could lead to a great loss of the spectral

efficiency performance. For this concern, it is necessary to explain that the migration

from problem (2.6) to (2.10) is reasonable.

Note that our objective is to find an estimated version of F⋆ by using the product

of the hybrid precoding matrix FRFB, and the error introduced by this approximation

will divert the optimal unconstrained combiner away from W⋆. Based on this fact,

we first focus on the design of hybrid precoders by assuming that the Nr–dimensional

minimum distance decoding can be performed at the receiver, which indicate that

the achieved spectral efficiency could be equivalent to the mutual information over

the MIMO channel when Gaussian inputs are used, given by

I(FR,FB) = log2

(∣
∣
∣
∣
INs +

γ

Ns
HFRFBF

H
BF

H
RH

H

∣
∣
∣
∣

)

. (2.11)
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Then we can obtain the hybrid precoders by maximizing the mutual information.

This mutual information maximizing problem has already been investigated in [14],

where the approximation of the mutual information is performed as

I(FR,FB)

≈ log2

(∣
∣
∣
∣
INs +

γ

Ns
Σ2

1

∣
∣
∣
∣

)

−Ns + ||VH
1 FRFB||2F .

(2.12)

And max I(FR,FB) ≈ max ||VH
1 FRFB||2F is approximately equivalent to minimiz-

ing ||F⋆ − FRFB||F . Therefore, it is safe to seek (FR,FB) in order to maximize the

mutual information over the massive MIMO channel by solving the matrix decom-

position problem (2.10). Once the hybrid precoders (FR,FB) are obtained, we can

then proceed the design of the hybrid combiners (WR,WB) to maximally increase

the system spectral efficiency.

The second constraint in (2.10) requiring that all the entries of FR have the con-

stant amplitude 1√
Nt

is evidently non-convex, which excludes the common convex

optimization techniques for solving such a problem and makes it impossible to guar-

antee a globally optimal solution. Hence, it is acceptable to search a near-optimal

solution even though it is likely a locally optimal solution for min ||F⋆−FRFB||F . The
requirement for such a near-optimal solution is that the spectral efficiency achieved

by the obtained hybrid precoders (also the hybrid combiners) should sufficiently ap-

proach the upper bound R̃. Note that the problem (2.10) has a very similar form with

the rank factorization problem, which can be solved by the alternating optimization

technique [24]. Our problem may potentially be proceeded by some iterative proce-

dures: 1) solve the non-convex problem over FR given FB and 2) solve the convex

problem over FB given FR. If (FR,FB) can converge after consistently alternating

these two steps, one local solution is then found.

To perform the iteration steps of the alternating optimization, we temporarily

relax the normalization constraint ||FRFB||2F = Ns and the problem (2.10) can be

simplified to

min
FR,FB

||F⋆ − FRFB||F

s.t. FR ∈ FR.
(2.13)

To begin with, we denote the obtained hybrid precoders at the k-th iteration step

as (F
(k)
R ,F

(k)
B ), and assume the initial F

(0)
R is given. Then the update of F

(k)
B can be

proceeded by solving an unconstrained convex problem minFB
||F⋆−F

(k)
R FB||F whose



17

closed-form solution is given by

F
(k)
B = (F

(k)
R

H
F

(k)
R )−1F

(k)
R

H
F⋆, k = 0, 1, 2, · · · . (2.14)

In turn, we need to update the RF precoder F
(k+1)
R by solving the non-convex problem

(2.15) while F
(k)
B is given as a constant matrix, which is

min
F

(k+1)
R

||F⋆ − F
(k+1)
R F

(k)
B ||F

s.t. F
(k+1)
R ∈ FR.

(2.15)

Furthermore, we keep updating the hybrid precoders (F
(k)
R ,F

(k)
B ) until they converge.

Here, we define an error indicator as ǫk =
||F⋆−F

(k)
R F

(k)
B ||F

||F⋆||F to measure the relative

distance between F⋆ and F
(k)
R F

(k)
B . Once ǫk hardly changes such that |ǫk − ǫk−1| ≤ ǭ,

where ǭ is a given threshold for detecting whether the change of the error indicator is

small enough, the (F
(k)
R ,F

(k)
B ) can be considered to converge to one local minimizer for

the problem (2.13), which is also the stop criterion for the alternating optimization.

Finally, we revisit the constraint ||FRFB||2F = Ns of the original matrix decomposition

problem (2.10), and perform the normalization through multiplying FB by
√
Ns

||FRFB ||F .

This normalization step guarantees that the transmission power keeps consistent after

precoding. The above procedures of the alternating optimization are summarized in

Algorithm–1.

Algorithm 1 The Hybrid Precoders Design via Matrix Decomposition based on
Alternating Optimization

Require: F⋆, F
(0)
R

1: F
(0)
B = (F

(0)
R

H
F

(0)
R )−1F

(0)
R

H
F⋆

2: ǫ0 =
||F⋆−F

(0)
R F

(0)
B ||F

||F⋆||F , ǫ−1 = ∞
3: k = 0
4: while |ǫk − ǫk−1| ≤ ǭ do
5: k = k + 1
6: obtain F

(k)
R by solving (2.15)

7: F
(k)
B = (F

(k)
R

H
F

(k)
R )−1F

(k)
R

H
F⋆

8: ǫk =
||F⋆−F

(k)
R F

(k)
B ||F

||F⋆||F
9: end while
10: FB =

√
NsFB

||FRFB||F
11: return FR, FB
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In order to operate the Algorithm–1, we still need to find out how to update

the RF precoder F
(k+1)
R by solving the problem (2.15) when F

(k)
R and F

(k)
B are given.

Due to the non-convex constraint F
(k+1)
R ∈ FR, we try to update F

(k+1)
R based on

F
(k)
R , instead of searching an optimal F

(k+1)
R in the whole feasible region FR. Denote

the phase of the (m,n)-th entry of F
(k)
R as φ

(k)
m,n, and F

(k)
R can be represented as

1√
Nt
{ejφ(k)m,n}, m = 1, · · · , Nt, n = 1, · · · ,Mt. To characterize the relation between

F
(k+1)
R and F

(k)
R , we rewrite F

(k+1)
R as

F
(k+1)
R =

1√
Nt

{ejφ(k+1)
m,n } =

1√
Nt

{ej(φ(k)m,n+δ
(k)
m,n)}, (2.16)

where δ
(k)
m,n is the phase increment of the (m,n)-th entry of F

(k)
R at the k-th iteration

step. Note that we can perform an approximation that ejδ
(k)
m,n ≈ 1+ jδ

(k)
m,n when |δ(k)m,n|

is sufficiently small, e.g. |δ(k)m,n| ≤ 0.1, based on Taylor series expansion. Therefore,

we have

F
(k+1)
R ≈ 1√

Nt

{(1 + jδ(k)m,n)e
jφ

(k)
m,n}

= F
(k)
R +

j√
Nt

{δ(k)m,n · ejφ
(k)
m,n}

= F
(k)
R + {δ(k)m,n} ◦

j√
Nt

{ejφ(k)m,n},

(2.17)

where {δ(k)m,n} is the matrix whose (m,n)-th entry is δ
(k)
m,n and “◦” indicates the

Hadamard product (entrywise product) calculation, which is exactly linear. There-

fore, the problem (2.15) for seeking F
(k+1)
R can be reformulated as an optimization

problem over {δ(k)m,n}

min
{δ(k)m,n}

∣
∣
∣
∣

∣
∣
∣
∣
F⋆ −

(

F
(k)
R + {δ(k)m,n} ◦

j√
Nt

{ejφ(k)m,n}
)

F
(k)
B

∣
∣
∣
∣

∣
∣
∣
∣
F

⇔ min
{δ(k)m,n}

∣
∣
∣
∣

∣
∣
∣
∣
Q(k) −

(

{δ(k)m,n} ◦
j√
Nt

{ejφ(k)m,n}
)

F
(k)
B

∣
∣
∣
∣

∣
∣
∣
∣

2

F

,

(2.18)

where Q(k) = F⋆ − F
(k)
R F

(k)
B . Besides, the constant amplitude constraint F

(k+1)
R ∈

FR has already been considered in (2.18), since we express F
(k+1)
R in the form of

1√
Nt
{ej(φ(k+1)

m,n )}. Note that all operations inside the Frobenius norm of the objective

function are linear, the problem (2.18) is consequently convex. However, the above

formulation is based on the approximation ejδ
(k)
m,n ≈ 1+jδ

(k)
m,n which requires that |δ(k)m,n|

is sufficiently small. It is necessary to enable the effectiveness of this approximation
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before we use (2.18) to update the RF precoder F
(k+1)
R . To do this, we supplement

the small |δ(k)m,n| constraint to the problem (2.18)

min
{δ(k)m,n}

∣
∣
∣
∣

∣
∣
∣
∣
Q(k) −

(

{δ(k)m,n} ◦
j√
Nt

{ejφ(k)m,n}
)

F
(k)
B

∣
∣
∣
∣

∣
∣
∣
∣

2

F

s.t. |δ(k)m,n| ≤ δ̄(k), ∀m,n,
(2.19)

where δ̄(k) is a small positive real number that guarantees ejδ
(k)
m,n ≈ 1 + jδ

(k)
m,n. Fortu-

nately, the feasible region of {δ(k)m,n} constrained |δ(k)m,n| ≤ δ̄(k), ∀m,n is also convex,

which means the problem (2.19) is a convex optimization problem. The global so-

lution of such a convex problem can be easily obtained by some common convex

optimization techniques. Once we obtain the solution {δ(k)m,n}, the F
(k+1)
R can be up-

dated through (2.16).

Remark 1. The small phase increment constraints of the problem (2.19) determine

that the updated F
(k+1)
R is within a small neighborhood of F

(k)
R . This fact indicates that

the convergence rate of the alternating optimization (Algorithm–1) could be somewhat

slow. Nevertheless, it is favorable that the effective range of each entry’s phase in the

RF precoder matrix is [0, 2π). Thus finding a locally optimal solution in an acceptable

time span is still promising. Moreover, we can dynamically adjust the phase increment

threshold δ̄(k) to accelerate the convergence of the iterations while guaranteeing the

precision of the solution3.

Considering that the Hadamard product calculation in (2.19) is not intuitive in

terms of convex optimization, we further decouple (2.19) into Nt sub-problems where

only linear combination is performed in the Frobenius norm. Denote the p-th row of

Q(k) as q
(k)
p , and the objective function of problem (2.19) is equivalent to

Nt∑

p=1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
q(k)
p −

[

jδ
(k)
p,1√
Nt

ejφ
(k)
p,1, · · · ,

jδ
(k)
p,Nt√
Nt

ejφ
(k)
p,Nt

]

F
(k)
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∣
∣
∣
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∣
∣
∣
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=

Nt∑

p=1

∣
∣
∣
∣q(k)
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∣
∣
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2
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(2.20)

where ∆
(k)
p = [δ

(k)
p,1 , δ

(k)
p,2 , · · · , δ(k)p,Nt

] and G
(k)
p = j√

Nt
diag

(

ejφ
(k)
p,1 , · · · , ejφ

(k)
p,Nt

)

F
(k)
B . Note

3The dynamic δ̄(k) will be explained in Section 2.2.1.
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that

min
{δ(k)m,n}
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∣
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∣q(k)
p −∆(k)

p G(k)
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∣
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∣
2

2
,

(2.21)

and there is no cross-term of ∆
(k)
p , p = 1, · · · , Nt among all the constraints of (2.19).

Hence, we can obtain the solution of the problem (2.19) by equivalently solving Nt

sub-problems corresponding to p = 1, 2, · · · , Nt

min
∆

(k)
p

∣
∣
∣
∣q(k)
p −∆(k)

p G(k)
p

∣
∣
∣
∣
2

2

s.t. |δ(k)p,n| ≤ δ̄(k), ∀n,
(2.22)

which is exactly a general quadratic programming problem with linear constraints,

and can be directly solved, e.g., by interior point method [25]. Finally, all ∆
(k)
p ’s

obtained through (2.22) can be grouped into the phase increment matrix {δm,n} for

updating the RF precoder according to (2.16).

Choosing the Initial Point

Until now, we have converted a non-convex problem into an approximated convex

one, which can be solved by the alternating iterations in Algorithm–1. On the other

hand, the original optimizatin problem (2.10) may have multiple local minimizers so

that one arbitrary initial point may lead to a local minimizer (one of the closest local

minimizers to the initial point) with unacceptable performance. Hence, we need to

select one initial point which is potentially close to the global solution (the minimizer

that makes the ||F⋆−FRFB||F smallest), by which the global solution will be located

with relatively high probability.

When the constant amplitude constraint of FR is not considered, the perfect

decomposition of F⋆ can be performed through SVD decomposition F⋆ = UFΣFV
H
F .

We want to generate the initial point of the matrix decomposition based on the SVD

of F∗. As the optimal unconstrained RF precoder F⋆ comes from the first Mt right

singular vectors of the channel matrix H, F⋆ has the full column rank, which means

all Ns entries along the diagonal of ΣF are non-zero. Note that UFΣF is an Nt×Ns

matrix with full column rank, VH
F is an Ns × Ns matrix and FR consists of NRF

t

columns. To deal with the dimension issue of the matrix decomposition problem, we
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generate an Nt × (Mt − NS) matrix F̂R where the amplitude of each entry is equal

to 1√
Nt

and the phase of each entry follows a uniform distribution over [0, 2π). Then

one decomposition of F⋆ can be presented as

F⋆ = [UFΣF F̂R]

[

VH
F

0

]

. (2.23)

Therefore, (FR = [UFΣF F̂R], FB = [VF 0]H) is exactly one global solution

for min ||F⋆ − FRFB|| without any constraint. It should be pointed out that FR =

[UFΣF F̂R] is infeasible when the constant amplitude constraint of FR is reconsid-

ered. Nevertheless, we can select one feasible initial point F
(0)
R that is close to the

above [UFΣF F̂R] by applying some modifications on the first partition UFΣF as

follows,

1) keeping the phases of all entries in UFΣF ;

2) enforcing the amplitudes of all the entries in UFΣF into 1√
Nt

to make F
(0)
R

feasible.

Since the modified UFΣF still incorporates the information of the phases in the

perfect decomposition (2.23), we believe that the generated F
(0)
R is probably near the

global solution for the constrained decomposition problem (2.13) and choose it as the

initial point for Algorithm–1.

Dynamic Threshold for the Phase Increment

As we mentioned, the phase increment δ
(k)
m,n for each entry in F

(k)
R , upper bounded

by the threshold δ̄(k), should be sufficiently small so that the approximation ejδ
(k)
m,n ≈

1 + jδ
(k)
m,n holds. However, this requirement will make Algorithm–1 converge very

slowly since it only allows slight change in F
(k)
R . To accelerate the convergence rate,

we dynamically change the upper bound of the phase increment δ̄(k) so that the

iterations can converge quickly while the precision of the solution is guaranteed. The

dynamic δ̄(k) can be realized through

1) setting a δ̄(k+1) slightly larger than δ̄(k) when the error indicator ǫk is still far

greater than ǭ, and ǫk < ǫk−1 holds;

2) setting a smaller δ̄(k+1) than δ̄(k) when the error indicator ǫk is close to ǭ, or

ǫk ≥ ǫk−1 holds.
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The above 1) allows the larger phase increment while Algorithm–1 converges in the

right direction (ǫk is deceasing), and 2) diminishes the δ̄(k) to a smaller δ̄(k+1) when ǫk

increases due to that the previous large phase increment destroys the approximation

ejδ
(k)
m,n ≈ 1 + jδ

(k)
m,n, or when ǫk is close to the required ǭ which means higher precision

is required. The specific adjustment on δ̄(k) will be shown in Section 2.3.

2.2.2 Hybrid Combiners Design

The hybrid precoders are designed by assuming that the Nr–dimensional minimum

distance decoding can be performed at the receiver. However, such a decoding scheme

is hard to be implemented in the practical system due to its high complexity. In this

chapter, we employ the linear combining at the receiver side. As we know, if the hy-

brid precoders can be equivalent to the unconstrained optimal precoder F⋆ = V1, the

optimal unconstrained combiner W⋆ should be U1, to which the hybrid combiners

(WR,WB) aim to approach. Note that the error ||F⋆ − FRFB||F could not be ab-

solutely zero, and U1, hence, may deviate from the optimal unconstrained combiner

W⋆ corresponding to the obtained hybrid precoders (FR,FB). In this situation, the

linear MMSE combiner WMMSE will achieve the maximum spectral efficiency when

only linear combination is performed before detection and only 1-dimensional detec-

tion is allowed for each data stream. The unconstrained linear MMSE combiner is

given in [26] as

W⋆ = WMMSE

= argmin
W

E [||s−Wy||2]

=

√
P

Ns

(
P

Ns

HFRFBF
H
BF

H
RH

H + σ2INr

)−1

HFRFB.

(2.24)

Once W⋆ is obtained, the alternating optimization method presented in Section 2.2.1

can be directly applied in its decomposition, which is characterized as the problem

min
WR,WB

||W⋆ −WRWB||F

s.t. WR ∈ WR.
(2.25)

By far, given any massive MIMO channel H, the design of hybrid precoders and

combiners (FR,FB,WR,WB) can be fulfilled through the above matrix decompo-

sition based on the alternating optimization method. We will further evaluate the
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performance of our proposed hybrid precoding scheme through simulation in Section

2.3.

2.2.3 Approach To Waterfilling Spectral Efficiency

For an capacity-achieving processing scheme, the waterfilling power allocation should

also be applied to the precoder. In this case, the optimal unconstrained precoder

and combiner in Section 2.2 can be updated to F⋆ = V1Γ and W⋆ = U1, where Γ

is a diagonal matrix that performs the waterfilling power allocation. Then, such a

precoder can directly be decomposed through Algorithm-1. However, there may be

cases where no power is allocated to some data streams corresponding to the lowest

singular values of H, especially when the SNR is small. In other words, F∗ = [F′, 0],

where F′ is the non-zero columns of F⋆ = V1Γ after waterfilling power allocation.

In this case, we can applied the MD-HP scheme to the F′ part first, F′ = FRF
′
B.

And then the whole decomposition for F∗ is given by F∗ = [F′, 0] = [FRF
′
B, 0] =

FR[F
′
B, 0] = FRFB, which means the zero-power allocation part is realized through

the baseband precoding rather than the phase shift in the RF domain.

2.2.4 Quantized RF Phase Control

Consider that the phase of each entry in the RF precoder FR or combiner WR is

difficult to be set to be an arbitrary value due to the limited precision in the practical

implementation. Therefore, we also introduce the quantized phase implementation

of FR and WR. Assume the phase of each entry in FR and WR can be quantized

up to L bits of precision through choosing the closet neighbor based on the shortest

Euclidean distance, given by

φ =
2πn̄

2L
, (2.26)

where n̄ = argminn∈{0,··· ,2L−1}
∣
∣φ− 2πn

2L

∣
∣.

2.3 Simulation Results

In this section, we evaluate the convergence of our matrix decomposition method

based on alternating optmization as well as the performance of the proposed MD-HP

scheme through simulation.
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2.3.1 Convergence Properties of Algorithm–1

Before we apply Algorithm–1 to design the hybrid precoders and combiners, it is

necessary to examine whether it can converge to a level where the error ǫk is acceptably

small, since the original optimization problem (2.10) to be solved is non-convex and

there is no guarantee that Algorithm–1 will certainly result in a well-performed matrix

decomposition.

We take a 256 × 64 MIMO system as example,, and set Ns = 4, Mt = 6. An

i.i.d Rayleigh fading channel matrix Hrl where each entry follows CN (0, 1) is ran-

domly generated. According to Section 2.2.1, the optimal unconstrained precoder F⋆

is obtained by selecting the first Ns right singular vectors based on the SVD decom-

position on Hrl. And the choice of initial RF precoder F
(0)
R is given in Section 2.2.1.

Furthermore, the error detecting threshold ǭ = 10−5 and the first phase increment

threshold δ̄(1) = 0.1. We examine two kinds of options for δ̄(k) in the simulation:

1) δ̄(k) = 0.1, ∀k;

2) δ̄(k) =

{

1.25 · δ̄(k−1), when |ǫk−1 − ǫk−2| > 100 · ǭ
0.8 · δ̄(k−1), when |ǫk−1 − ǫk−2| ≤ 100 · ǭ

.

For option 2) with the dynamic phase increment threshold, the adjustment of δ̄(k)

depends on how close the previous two error indicators are. When the difference

of the previous error indicators is smaller than 100 · ǭ, which means Algorithm–1 is

going to converge, δ̄(k) should be reduced to enhance the precision of the solution by

guaranteeing the effectiveness of the approximation ejδ
(k)
m,n ≈ 1 + jδ

(k)
m,n. Otherwise,

δ̄(k) can be augmented to accelerate the algorithm by enlarging the feasible region

of (2.19). Moreover, we need to decrease δ̄(k) whenever ǫk−1 > ǫk−2 which means

the previous δ̄(k−1) is too large to guarantee ejδ
(k)
m,n ≈ 1 + jδ

(k)
m,n. Finally, we restrict

δ̄(k) ∈ [0.1, 0.5] by clamping δ̄(k) to 0.1 (0.5) when it is smaller (larger) than 0.1 (0.5)

in case that the feasible region for (2.19) is too small or too large4.

To examine the effectiveness of the approximation ejφ
(k+1)
m,n = ej(φ

(k)
m,n+δ

(k)
m,n) ≈ (1 +

jδ
(k)
m,n)ejφ

(k)
m,n , we compare two traces of ej(φ

(k)
m,n+δ

(k)
m,n) and (1 + jδ

(k)
m,n)ejφ

(k)
m,n within 100

iterations in Fig. 2.2, where the red dash line indicates the unit circle on the complex

plane. It is shown that the points of the two traces (m = 1, n = 5) update simultane-

ously and the corresponding two points are close enough, which means the iteration

ejφ
(k+1)
m,n = ej(φ

(k)
m,n+δ

(k)
m,n) can be safely considered as a linear operation over δ

(k)
m,n. By

4All parameters given in this section can be revised for other specific cases
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applying the dynamic δ̄(k), ejφ
(k)
m,n updates by relatively large step size at the begin-

ning when it is far from the solution e−j1.0026 ≈ 0.5381 − j0.8429, and then slowly

converges to it. In Fig. 2.3, we show how the error indicator ǫk converges to about

0.2 as the number of iterations increases when the dynamic and static δ̄(k) are applied

respectively. It can be observed that the dynamic threshold δ̄(k) helps the algorithm

converge more quickly since the solution for (2.19) is searched in a larger feasible

region when the error ǫk is relative small. The above parameters for Algorithm–1 will

continue to be used in the following simulations.
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Trace of (1 + jδk)e
jφk

Figure 2.2: The traces of ej(φ
(k)
m,n+δ

(k)
m,n) and (1 + jδ

(k)
m,n)ejφ

(k)
m,n on the complex plane.

2.3.2 Spectral Efficiency Evaluation

In the simulations of this section, we illustrate the spectral efficiency performance

of our proposed MD-HP scheme by comparing it with others under the large i.i.d.

Rayleigh channel and mmWave channel settings respectively. The SNR γ = P
σ2

range

is set to be from -40 dB to 0 dB in all simulations.

Large i.i.d Rayleigh Fading Channels

The MD-HP scheme is compared in Fig. 2.4 against the optimal unconstrained SVD

based processing scheme when Ns = 8 data streams are transmitted in the 256× 64

massive MIMO system. For the MD-HP scheme, the situations of using 8 and 12
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Figure 2.3: The convergence performance of Algorithm–1 when applying the dynamic
and static δ̄(k) respectively

RF chains (along with their quantized versions) are examined. When 12 RF chains

are implemented at both the transmitter and receiver, the performance of the MD-

HP scheme is near-optimal compared with the optimal unconstrained SVD based

scheme. Even though we reduce the number of the RF chains to the number of the

data streams, namely, 8 RF chains are employed, the spectral efficiency achieved

by the MD-HP scheme slightly decreases by around 3 bps/Hz. As for the heavily

quantized versions (L = 2 bits with the phase candidates {0,±π
2
, π}) corresponding

to the 8 and 12 RF chains settting, the spectral efficiency only suffers less than 1

dB loss, which is basically acceptable in the practical implementation. Fig. 2.5

further demonstrates the spectral efficiency performance by also setting the number

of transmit data streams to 4 while 8 RF chains are used. Compared with the case

of 4 transmit data streams, the performance of the 8 data stream case is evidently

improved thanks to the multiplexing gain. Notably, there is a small gap between

the MD-HP scheme and the SVD based scheme which can be eliminated by properly

increasing the number of RF chains, e.g. double the number of the data streams in

the case of Ns = 4. In addition, the quantized versions (L = 2) also results in less

than 1 dB loss in the performance.
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Figure 2.4: Spectral efficiency achieved by different processing schemes of a 256× 64
massive MIMO system in i.i.d. Rayleigh fading channels where Ns = 8 data streams
are transmitted through 8 and 12 RF chains respectively.
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Figure 2.5: Spectral efficiency achieved by different processing schemes of a 256× 64
massive MIMO system in i.i.d. Rayleigh fading channels where Ns = 4 and 8 data
streams are transmitted through 8 RF chains respectively.

Large mmWave Channels

Our proposed MD-HP scheme can also be applied to the large mmWave channels

where a certain number of hybrid processing schemes have been studied in the lit-
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erature. In the simulation, the clustered mmWave channel model (2.4) is adopted

to characterize its limited scattering feature. Apart from the unconstrained SVD

based processing and our MD-HP schemes, we introduce the spatially sparse process-

ing which designed the hybrid precoders/combiners by capturing the characteristics

of the dominant paths. The propagation model mainly follows the settings in [14]:

1) the mmWave channel incorporates Nc = 8 clusters, each of which has Np = 10

paths; 2) the transmitter angle sector is assumed to be 60◦-wide in the azimuth while

the receiver with a smaller omni-directional antenna array; 3) the angle spreads of

the transmitter and receiver σθ and σφ are all set to be 7.5◦; 4) the antenna spac-

ing d is equal to half-wavelength. In Fig. 2.6, the spectral efficiency performance is

demonstrated in the 256 × 64 mmWave MIMO system, where Ns = 8 data streams

are transmitted through 8 or 12 RF chains. Our proposed MD-HP scheme appar-

ently outperforms the spatially sparse processing scheme when the same number of

RF chains are implemented. Moreover, the MD-HP scheme can even achieve higher

spectral efficiency with only 8 RF chains than the spatially sparse processing scheme

with 12 RF chains. Particularly, the SVD based processing is sufficiently approached

by the MD-HP scheme given 12 RF chains. It is shown that our proposed MD-

HP scheme can better capture the characteristics of the mmWave channel than the

spatially sparse processing scheme.

2.4 Summary

In this chapter, we design the hybrid RF and baseband precoders/combiners for

multi-stream transmission in P2P massive MIMO systems via solving a non-convex

matrix decomposition problem. Based on the alternating optimization technique, we

transfer the non-convex matrix decomposition into a series of convex sub-problems

and effectively solve by restricting the phase increments of the RF precoder within

a small range at each iteration. The near-optimal hybrid precoders/combiners are

located by choosing an appropriate initial point using SVD technique. The MD-

HP scheme can be applied in any general massive MIMO channels. By providing

enough number of RF chains (double the number of the transmit data streams), the

pre-designed unconstrained digital precoder/combiner of a large dimension can be

sufficiently approached and thus the near-optimal performance is achieved. We aim

to incorporate channel estimation issue and reduce the time complexity of the MD-HP

scheme in the future.
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Chapter 3

Hybrid Block Diagonalization for

Massive Multiuser MIMO Systems

To realize the tremendous capacity target of the next generation mobile cellular sys-

tems, one promising option is scaling up to massive multiple-input multiple-output

(MIMO) systems [1]-[2]. Chapter 2 has developed the near-optimal hybrid processing

scheme in massive P2P MIMO systems, and we further investigated the processing

scheme in the massive multiuser MIMO (MU-MIMO) scenario in this chapter. As

the previous chapter mentioned, in the massive MU-MIMO systems, some simple

linear pre/post-processing (transmit precoding/receive combining) schemes, such as

zero-forcing (ZF) and linear minimum mean-square error (MMSE), are able to ap-

proach the optimal capacity performance achieved by the dirty paper coding (DPC)

as the number of antennas goes to infinity [5]. Moreover, the ZF processing that

cancels the inter-user interference through channel inversion can be generalized as

block diagonalization (BD) when the base stations (BSs) and mobile stations (MSs)

are both equipped with multiple antennas [28]. For the downlink spatial multiplexing

in MU-MIMO systems, the BD method achieves sub-optimal capacity performance;

however, it reduces the complexity of the transmitter and receiver structures by pro-

viding closed-form precoder and combiner solutions.

In massive MIMO systems, the large array gain is rendered by a massive number

of antennas at the order of a hundred or more [3]. Conventionally pre-processing

is performed through modifying the amplitudes and phases of the complex transmit

symbols at the baseband and then upconverted to the passband after passing through

radio frequency (RF) chains (including the digital-to-analog conversion, signal mixing
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and power amplifying), which requires that the number of the RF chains is in the range

of hundreds, equal to the number of the antenna elements. Post-processing is similar

involving a large number of analog receive RF chains and digital baseband operations.

This leads to unacceptably high implementation cost and energy consumption.

Here, we re-enter the literature review on the massive MIMO system designs with

a limited number of RF chains that are enabled by the cost-effective variable phase

shifters [10]-[17]. The analog RF processing provides the high-dimensional phase-

only control while the digital baseband processing can be performed in a very low

dimension, termed as hybrid processing. Under the limited RF chains constraint,

references [9] and [10] investigate the hybrid processing schemes in the point-to-point

(P2P) MIMO systems. A single-stream communication under the Rayleigh fading

MIMO channels achieves the full diversity order through the equal gain transmis-

sion/combining (EGT/EGC) in [10], while the multiple-stream transmission under

MIMO channels is proposed in [9]. In addition, [8] and [12] implement the hybrid

processing to the downlink of the massive MU-MIMO systems with single-antenna

users. In [8], the near-optimal capacity performance, compared to the full-complexity

systems, is achieved through the ZF baseband precoding combined with the ECT pro-

cessing in the RF domain. Note that this technique also works for the millimeter wave

(mmWave) channel. In [12], the phase-only RF precoding are employed to maximize

the minimum average data rate of users via a bi-convex approximation approach.

In mmWave communications systems, it is likely to build a large antenna array in

a compact region and apply hybrid processing technique [13]-[17]. The “dominant”

paths in P2P mmWave channels are captured through the hybrid processing in [13]

and [14], where the former considers the single-stream transmission while the latter

enables the multiple-stream communication. [14] presents a hybrid processing by de-

composing the optimal precoding/combining matrix via orthogonal matching pursuit

with the transmit/receive array response vectors as the basis vectors. Reference [13]

can be regarded as a special one-RF-chain case of reference [14]. On the other hand,

in the mmWave MU-MIMO systems, reference [16] considers the single-antenna users

and designs the analog RF precoding based on the transmit beam directions, while

the digital processing (matched filter, zero-forcing or Wiener filter) performs on the

baseband equivalent channels. With the multiple-antenna users, some baseband pro-

cessing schemes such MMSE and BD are examined in [17], which, however, neglects

the design of the analog RF processing.

In this chapter, we consider the downlink communication of a massive MU-MIMO
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system where the BS and all MSs have multiple antennas. With a limited number of

RF chains, the hybrid processing is applied to both BS and MSs as an alternative to

the traditional high-cost full dimensional RF and baseband processing. We propose

to utilize the RF precoding and combining to harvest the large array gain provided by

the large number of antennas in the massive MU-MIMO channels, which shares the

similar objective with the above references that study the hybrid processing in the

MU-MIMO systems. However, the analog RF processing design for the MU-MIMO

systems with multiple-antenna MSs accommodating multiple data streams per MS

is not available in the literature and the novel BS RF precoder design is based on a

newly defined “aggregate intermediate channel”. More specifically, the RF combiners

of all the MSs are obtained by selecting some of the discrete Fourier transform (DFT)

bases, while the RF precoder of the BS is designed by extracting the phases of the

conjugate transpose of the aggregate intermediate channel which incorporates the MS

RF combiners and the original downlink channels. With the designed RF precoder

and combiners, a low-dimensional BD processing can be performed at the baseband

to cancel the inter-user interference, and the whole operation is named the hybrid BD

(Hy-BD) scheme. Simulation results demonstrate that the proposed Hy-BD scheme

achieves a capacity performance that is quite close to, sometimes even higher than,

that of the full-complexity BD scheme in [28] with a lower implementation and com-

putational cost. The Hy-BD scheme is also examined in the mmWave MU-MIMO

communication channels and compared to the spatially sparse precoding/combining

method [14] initially proposed for SU-MIMO but extended to MU-MIMO in this

chapter.

3.1 System Model

3.1.1 System Model

We consider the downlink communication of a massive multiuser MIMO system shown

in Fig. 3.1, where a base station with NBS antennas and MBS RF chains is assumed

to schedule K mobile stations. Each MS is equipped with NMS antennas and MMS

RF chains to support NS data streams, which means total KNS data streams are

handled by the BS. To guarantee the effectiveness of the communication carried by

the limited number of RF chains, the number of the transmitted steams is constrained

by KNS ≤MBS ≤ NBS for the BS and NS ≤MMS ≤ NMS for each MS.
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Figure 3.1: System diagram of a massive MU-MIMO system with hyrbid processing
structure.

At the BS, the transmitted symbols are assumed to be processed by a baseband

precoder B of dimension MBS ×KNS and then by an RF precoder F of dimension

NBS ×MBS . Notably, the baseband precoder B enables both amplitude and phase

modification, while only phase changes (phase-only control) can be realized by F since

it is implemented by using analog phase shifters. Each entry of F is normalized to

satisfy |F(i,j)| = 1√
NBS

, where |F(i,j)| denotes the amplitude of the (i, j)-th element

of F. Furthermore, to meet the total transmit power constraint, B is normalized to

satisfy ||FB||2F = KNS, where || · ||F the Frobenius norm.

We assume a narrowband flat fading channel model and obtain the received signal

of the k-th MS

yk = HkFBs + nk, k = 1, 2, · · · , K, (3.1)

where s ∈ C
KNS×1 is the signal vector for a total of K MSs, each of which processes a

NS × 1 signal vector sk. Namely, s = [sT1 , s
T
2 , · · · , sTK ]T , where (·)T denotes transpose.

And the signal vector satisfies E[ssH ] = P
KNS

IKNS
, where (·)H denotes conjugate

transpose, E[·] denotes expectation, P is the average transmit power and IKNS
is the

KNS × KNS identity matrix. Hk ∈ CNMS×NBS is the channel matrix for the k-th

MS with E[||Hk||2F ] = NBSNMS, and nk is the NMS × 1 vector of i.i.d. CN (0, σ2)

additive complex Gaussian noise. And the processed received signal at the k-th MS

after combining is given by

ỹk = MH
k W

H
k HkFBs +MH

k W
H
k nk, k = 1, 2, · · · , K, (3.2)

where Wk is the NMS × MMS RF combining matrix and Mk is the MMS × NS

baseband combining matrix for the k-th MS. Since Wk is also implemented by the
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analog phase shifters, all elements of Wk should have the constant amplitude such

that |W(i,j)
k | = 1√

NMS
. We define an equivalent baseband channel for each MS as

H̃k = WH
k HkF, k = 1, 2, · · · , K, (3.3)

and the entire equivalent multiuser baseband channel can be denoted as

Heq =









H̃1

H̃2

...

H̃K









=









WH
1 0 · · · 0

0 WH
2 · · · 0

...
...

. . .
...

0 0 · · · WH
K

















H1

H2

...

HK









F. (3.4)

Then the processed received signal at the k-th MS can also be represented as

ỹk = MH
k H̃kBksk +

K∑

i=1,i 6=k
MH

k H̃kBisi

︸ ︷︷ ︸

interference

+MH
k W

H
k nk

︸ ︷︷ ︸

noise

, k = 1, 2, · · · , K,
(3.5)

where Bk is the ((k − 1)NS + 1)-th to the (kNS)-th columns of B, corresponding to

the baseband precoding for sk. When the Gaussian symbols are used by the BS, the

long-term average spectral efficiency achieved will be

R =
K∑

k=1

log2

(∣
∣
∣
∣
INS

+
P

KNS

R−1
i MH

k H̃kBkB
H
k H̃

H
k Mk

∣
∣
∣
∣

)

, (3.6)

where Ri =
P

KNS

∑K
i=1,i 6=kM

H
k H̃kBiB

H
i H̃

H
k Mk + σ2MH

k W
H
k WkMk is the covariance

matrix of both interference and noise.

3.1.2 Channel Model

In this chapter, based on a general channel matrix set H = [HT
1 ,H

T
2 , · · · ,HT

K ]
T , we

aim to seek the BS hybrid precoders (F, B) and the hybrid combiners (Wk, Mk)’s

for all K MSs through the Hy-BD scheme, which achieves a sub-optimal spectral

efficiency for massive MU-MIMO systems by perfectly canceling the inter-user inter-

ference. Two kinds of channel models are considered in this chapter:
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1) large i.i.d. Rayleigh fading channel Hrl;

2) limited scattering mmWave channel Hmmw.

In the large Rayleigh fading channel, which is commonly considered in massive

MU-MIMO systems, all entries of the channel matrix Hk for the k-th MS follow

i.i.d. CN (0, 1). On the other hand, a large antenna array is often implemented in

mmWave communications to combat the high free-space pathloss [13]-[16]. We adopt

the clustered mmWave channel model to characterize the limited scattering feature

of the mmWave channel. The mmWave downlink channel for the k-th MS Hk is

assumed to be the sum of all propagation paths that are scattered in Nc clusters and

each cluster contributes Np paths, which can be expressed as

Hk =

√

NBSNMS

NcNp

Nc∑

i=1

Np∑

l=1

αkila
k
MS(θ

k
il)a

k
BS(φ

k
il)
H , (3.7)

where αkil is the complex gain of the i-th path in the l-th cluster, which follows

CN (0, 1). To reflect the sparsity of the mmWave channel, both of Nc and Np should

not be too large. For the (i, l)-th path, θkil and φ
k
il are the azimuth angles of arrival/de-

parture (AoA/AoD), while akMS(θ
k
il) and akBS(φ

k
il) are the receive and transmit array

response vectors at the azimuth angles of θkil and φ
k
il respectively, and the elevation

dimension is ignored. Within the cluster i, θkil and φ
k
il have the uniformly-distributed

mean values of θki and φki respectively, while the lower and upper bounds of the uni-

form distribution for θki and φki can be defined as [θkmin, θ
k
max] and [φkmin, φ

k
max]. The

angle spreads (standard deviations) of θkil and φ
k
il among all clusters are assumed to

be constant, denoted as σkθ and σkφ. Finally, the truncated Laplacian distribution

is employed to generate all the AoDs/AoAs for this mmWave propagation channel

matrix, base on the above parameters.

The uniform linear array (ULA) is employed by the BS and MSs in our study,

while the Hy-BD scheme in Section-3.2 can directly be applied to arbitrary antenna

arrays. For an N-element ULA, the array response vector can be given by

aULA(θ) =
1√
N

[

1, ej
2π
λ
d sin(θ), · · · , ej(N−1) 2π

λ
d sin(θ)

]T

, (3.8)

where λ is the wavelength of the carrier, and d is the distance between neighboring

antenna elements. The array response vectors of the BS and MSs can be written in

the form of (3.8).
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3.2 Hybrid Block Diagonalization

In the MU-MIMO systems, the generalized zero-forcing method (i.e., the traditional

BD scheme) is infeasible to be practically implemented due to the high cost brought

by the large number of RF chains as many as the antennas. By reducing the number

of RF chains MBS(MMS) to far less than the antenna elements NBS(NMS) at both

the BS and MSs, we propose to utilize the RF precoding matrix F at the BS and the

RF combining matrix Wk at each MS to harvest the large array gain provided by the

large number of antennas in the massive MU-MIMO channel. With the found F and

all Wk’s, the entire multiuser equivalent baseband channel Heq can be determined

based on (3.4), which consists of all the equivalent channels for the MSs, namely

H̃k, k = 1, 2, · · · , K. Finally, a low-dimensional BD processing, involving the design

of B and all Mk’s, can be performed at the baseband.

3.2.1 Array Gain Harvesting

Owing to the large number of antennas in the massive MU-MIMO systems, the chan-

nel gains of the equivalent channel Heq can be scaled up through the appropriate

phase-only control at the RF domain, which is called the large array gain. To be

noted, each element in Heq represents the equivalent channel gain from one RF chain

at the BS to one RF chain at one MS. To achieve the high capacity with such a

hybrid processing structure, the equivalent channel matrix Heq are desired to have

the following properties:

1) Rank sufficiency: Heq should be well-conditioned to support the multi-stream

transmission, which means the rank of Heq should be at least KNS ;

2) Large array gain: Heq should sufficiently harvest the array gain so that it can

provide as large gain for each stream transmission as possible. We propose to

pursue the large array gain by enlarging the sum of the squares of the diagonal

entries in Heq.

By definition, Heq consists of the equivalent channels of all the MSs, namely H̃k =

WH
k HkF, k = 1, 2, · · · , K. We design the RF domain processing matrices Wk’s and

F and construct the equivalent channel Heq by approximately satisfying the above

two requirements, which will lead to a suboptimal performance under the hybrid

precoding structure, but with significantly low complexity.
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Assume that all the RF combiners Wk’s are given (the actual design of Wk’s will

be presented shortly). Define an aggregate intermediate channel given by

Hint =







WH
1 H1

...

WH
KHK







KMMS×NBS

, (3.9)

and then the baseband equivalent channel is Heq = HintF. To harvest the array

gain with the RF precoder F, similar to the equal gain transmission (EGT) method

proposed in [8], we perform the phase-only RF precoding by setting

F(i,j) =
1√
NBS

ejψi,j , (3.10)

where ψi,j is the phase of the (i, j)-th element of the conjugate transpose of Hint.

This EGT precoding method requires MBS = KMMS RF chains at the BS, which

means F is an NBS ×KMMS matrix and Heq should be a square matrix. The entries

along the diagonal of the baseband equivalent channel Heq denote the equivalent

channel gains in terms of the RF chains, while the remaining entries indicate the

inter-chain interference. We focus on the large array gain design through the RF

precoding/combining and leave the interference canceling to the baseband processing

in the Hy-BD scheme.

Now let us return to the design of the RF combiners Wk’s. Denote the m-th col-

umn of Wk as w
(m)
k . As the result of the EGT precoding method, the ((k−1)MMS+

m)-th diagonal entry of Heq is then given by ||(w(m)
k )HHk||1, where || · ||1 denotes the

1-norm of a vector, corresponding to the m-th RF chain of the k-th MS. we aim to

maximize the sum of the squares of diagonal entries of the baseband equivalent chan-

nel Heq, given by
∑K

k=1

∑MMS

m=1 ||(w(m)
k )HHk||21, to pursue the large array gain. Due

the independence of Wk’s for all the MSs, maximizing
∑K

k=1

∑MMS

m=1 ||(w(m)
k )HHk||21

is equivalent to maximizing
∑MMS

m=1 ||(w(m)
k )HHk||21 for all k = 1, · · · , K respectively.

Hence, the design of the RF combiners can be obtained by solving

max
Wk

MMS∑

m=1

||(w(m)
k )HHk||21

s.t. |W(i,j)
k | = 1√

NMS

, ∀i, j.
(3.11)
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In this chapter, instead of solving the non-convex problem (3.11) directly, we modify

the constraints to choose from a set of DFT basis, as explained in details next. Note

that ||(w(m)
k )HHk||21 = (

∑NBS

n=1 |(w(m)
k )Hh

(n)
k |)2, where h(n)

k denotes the n-th column of

Hk. Moreover, the geometric MIMO channel models, including the Rayleigh fading1

and mmWave channels, can be represented in the form of (3.7), which means h
(n)
k is

the linear combination of all the array response vectors of the AoAs. This fact implies

that ||(w(m)
k )HHk||1 is the sum of the projections of those array response vectors on

w
(m)
k . From this perspective, we first propose to set w

(m)
k in the form of array response

vector (3.8) to extract the gain from these projections, namely,

d(ω) =
1√
NMS

[
1, ejω, ej2ω, · · · , ej(NMS−1)ω

]T
, (3.12)

where ω = 2π
λ
d sin θ denotes the corresponding spatial frequency [20].

Furthermore, to meet the rank sufficiency requirement of Heq, it is desirable that

the rank of Hk is not reduced after it being multiplied by Wk. For this purpose, we

require the columns of Wk to be pairwise orthogonal so that the rank of WH
k Hk is

lower bounded by MMS > NS (the rank of the high-dimensional Hk is assumed to

be larger than MMS), which means the equivalent channel Heq is potentially capable

of supporting the transmission of KMMS > KNS streams. Considering the form of

w
(m)
k , we discretize the ω into NMS levels over [0, 2π) and construct NMS bases, given

by D = {d(0),d( 2π
NMS

), · · · ,d(2π(NMS−1)
NMS

)} as the candidates from which the w
(m)
k is

choosen. As we can see, these bases in D exactly form an NMS-dimensional DFT

basis set, which simultaneously conforms to the rank sufficiency and large arrary gain

requirements of Heq. Therefore, we finally design the RF combiners by solving

max
Wk

MMS∑

m=1

||(w(m)
k )HHk||21

s.t. w
(m)
k ∈ D, m = 1, · · · ,MMS.

(3.13)

To solve the problem (3.13), we just need to sort all NMS ||d(ω)HHk||1’s in the

descendant order and then choose the first MMS d(ω)’s as the columns of Wk.

Remark 2. Omitting the cross-terms of ||(w(m)
k )HHk||21, we construct another crite-

1In the Rayleigh fading channel, all AoDs/AoAs of the paths (non-LOS) are uniformly distributed
among [0, 2π) and the number of paths approaches to infinity.
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rion to achieve the large array gain, given by

||(w(m)
k )HHk||21 = (

NBS∑

n=1

|(w(m)
k )Hh

(n)
k |)2

⇒
NBS∑

n=1

(|(w(m)
k )Hh

(n)
k |)2 = ||(w(m)

k )HHk||2F .
(3.14)

The large array gain can also be attained by solving

max
Wk

||WH
k Hk||2F =

MMS∑

m=1

||(w(m)
k )HHk||2F

s.t. w
(m)
k ∈ D, m = 1, · · · ,MMS.

(3.15)

The solution to this maximizing problem (3.15) can be obtained through the sorting

operation similar to that of (3.13). Notably, the simulation results in Section 3.3

demonstrate that such a Frobenius norm based problem achieves a similar spectral

efficiency performance in the massive MU-MIMO systems with the 1-norm based so-

lution.

3.2.2 Baseband Block Diagonalization

In this section, based on the obtained baseband equivalent channel Heq, given the

found RF processing matrices Wk and F, we perform the low-dimensional BD pro-

cessing with the baseband precoder B and combiners Mk’s to cancel the inter-user

interference, which forces the interference terms H̃kBi = 0 for i 6= k in (3.5). The

spectral efficiency of the MU-MIMO system can be further simplified to

R =

K∑

k=1

log2

(∣
∣
∣
∣
INS

+
P

σ2KNS
(MH

k W
H
k WkMk)

−1

MH
k H̃kBkB

H
k H̃

H
k Mk

∣
∣
∣

)

.

(3.16)

To obtain the baseband precoder B = [B1,B2, · · · ,BK], where Bk incorporates

the precoding vectors for the data streams of the k-th MS, we first define Hk as

Hk = [H̃T
1 , · · · , H̃T

k−1, H̃
T
k+1, · · · , H̃T

K ]
T . (3.17)
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The Bk is supposed to lie in the null space of Hk. Denote the rank of Hk as rk ≤
(K − 1)MMS. Then the singular value decomposition (SVD) of Hk is given by

Hk = UkΣk[V
((K−1)MMS)

k V
(MMS)

k ]H , (3.18)

where V
((K−1)MMS)

k consists of the first (K−1)MMS right singular vectors of Hk, and

V
(MMS)

k holds the rest MMS ones which are exactly the orthogonal bases of the null

space of Hk. Then we know

H̃iV
(MMS)

k =

{

0, i 6= k

H̃kV
(MMS)

k , i = k
(3.19)

Given the above results, block diagonalization of the baseband equivalent channel

matrix to remove inter-user interference is written as

HBD = Heq[V
(MMS)

1 , · · · ,V(MMS)

K ]

=







H̃1V
(MMS)

1 · · · 0
...

. . .
...

0 · · · H̃KV
(MMS)

K






.

(3.20)

Until now, all the MSs can perform interuser-interference-free multi-stream trans-

mission through their own sub-channels (the non-zero block in HBD). Further pre-

coding/combining will be performed to achieve each MS’s optimal spectral efficiency

based on SVD, given by

H̃kV
(MMS)

k = UkΣkV
H
k . (3.21)

With the above rank sufficiency requirement, H̃kV
(MMS)

k is a MMS-by-MMS full-rank

sub-channel matrix which enables MMS ≥ NS data streams transmission for the

k-th MS. Therefore, the optimal precoder and combiner on the k-th effective sub-

channel H̃kV
(MMS)

k should be V
(NS)
k and U

(NS)
k , where V

(NS)
k and U

(NS)
k are the first

NS columns of the Vk and Uk respectively. Finally, the overall baseband precoder is

given by

B = [V
(MMS)

1 , · · · ,V(MMS)

K ]







V
(NS)
1 · · · 0
...

. . .
...

0 · · · V
(NS)
K







= [V
(MMS)

1 V
(NS)
1 , · · · ,V(MMS)

K V
(NS)
K ]KMMS×KNS

.

(3.22)



41

And the baseband combiner for the k-th MS is given byMk = U
(NS)
k , k = 1, 2, · · · , K.

The spectral efficiency achieved by the Hy-BD scheme finally becomes

R =
K∑

k=1

log2

(∣
∣
∣
∣
∣
INS

+
PΛ(MH

k W
H
k WkMk)

−1(Σ
(NS)
k )2

σ2KNS

∣
∣
∣
∣
∣

)

, (3.23)

where Λ is a diagonal matrix that performs water-filling power allocation, and Σ
(NS)
k

represents the first NS ×NS block partition of Σk.

3.3 Simulation Results

In this section, we evaluate the spectral efficiency achieved by the Hy-BD scheme in

the massive MU-MIMO systems by comparing it with the traditional high-dimensional

baseband BD scheme in large i.i.d Rayleigh fading and mmWave multiuser channels

and also with the previously proposed spatially sparse precoding/combining scheme

[14] in mmWave channels. The range of the signal-to-noise ratio SNR = P
σ2

is from

-40 dB to 0 dB in all processing solutions.

Fig. 3.2 illustrates the sum spectral efficiency achieved by the traditional BD

scheme and our proposed Hy-BD scheme (through solving the 1-norm and Frobenius

norm based optimization problems in Section 3.2.1) in the large i.i.d. Rayleigh fading

channel. The BS with MBS = 16 RF chains is employed to schedule K = 8 MSs,

each of which processes NS = 2 data streams with MMS = 2 RF chains. Further-

more, the BS and MSs are equipped with 256 (16) and 64 (4) antennas respectively.

In both 256 × 16 and 64 × 4 antenna settings, the sum spectral efficiency of the

Hy-BD scheme consistently approaches the performance achieved by the traditional

BD scheme, however, with lower implementation and computational complexity. In

addition, the Hy-BD designs based on solving the 1-norm problem (3.13) and the

Frobenius norm problem (3.15) respectively lead to the nearly identical sum spec-

tral efficiency, supporting the statement in Remark 2. Notably, the results of the

64 × 4 antenna setting indicate that the Hy-BD scheme is still effective in a small

scale antenna system.

Furthermore, the maximally supported number of data streams of a massive MU-

MIMO system is examined in the large i.i.d. Rayleigh fading channel in Figs. 3.3

and 3.4. The BS is set to have NBS = 64 antennas, theoretically supporting up to 64

data streams transmission, while the MSs are assumed to only have 1 or 2 antennas
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Figure 3.2: Sum spectral efficiency achieved by different processing schemes in an
8-user MU-MIMO system in i.i.d. Rayleigh fading channels where NS = 2,MMS =
2,MBS = 16.

(scheduling 1 or 2 data streams respectively). In this scenario, the SNR is chosen

as 5 dB. In Fig. 3.3, the spectral efficiency performance gap between the traditional

BD and the Hy-BD scheme remains acceptably small when the number of MSs K

increases to 24. As for Fig. 3.4, the suitable number of MSs K should be less than

about 12 (corresponding to 24 data streams) to obtain acceptable performance. The

above results indicate that the Hy-BD scheme is able to catch up with the traditional

BD scheme when the number of total scheduled data streams K ∗NS does not exceed
NBS

4
(a quarter of the number of BS antennas).

On the other hand, the spectral efficiency performance of the Hy-BD scheme under

imperfect channel state information (CSI), compared to that of the traditional BD

scheme, is also shown in Fig. 3.5. We use 64-antenna BS and single-antenna MSs in

this scenario. Assume that the estimated channel for the k-th MS is Ĥk = Hk + Ek,

where Ek is the channel estimation error. All entries in Ek follow the identical complex

Gaussian distribution with zero means. We define the normalized channel estimation

error power as
∑K

k=1 ||Ek||2F∑K
k=1 ||Hk||2F

. In Fig. 3.5, the channel estimation error power is set from

-40 dB to -6 dB and the SNR for transmit signal is 10 dB. The solid lines represent the

performance with no channel estimation while the dash lines indicate the performance

for the two scheme with the given channel estimation error. As Fig. 3.5 shows, the
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Figure 3.3: Sum spectral efficiency by different processing schemes in an MU-MIMO
system in i.i.d. Rayleigh fading channels where Nt = 64, Nr = 1.
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Figure 3.4: Sum spectral efficiency by different processing schemes in an MU-MIMO
system in i.i.d. Rayleigh fading channels where Nt = 64, Nr = 2.

thresholds for the channel estimation error power for both the schemes are about -10

dB. Once the channel estimation error power reaches this value, the performance will

drop drastically.

In the mmWave MU-MIMO channels, the traditional full-complexity BD and Hy-
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Figure 3.5: Sum spectral efficiency by different processing schemes in an MU-MIMO
system in i.i.d. Rayleigh fading channels with channel estimation error.

BD schemes perform in a similar fashion as in the Rayleigh fading channels. Based

on the limited number of paths scattered in the mmWave channels, the spatially

sparse precoding/combining scheme in [14] can be extended to the hybrid process-

ing in MU-MIMO systems through decomposing the solution to the traditional BD

scheme (the precoder MS and the MMSE combiners in [28]) via orthogonal matching

pursuit where the BS and MSs choose the array response vectors of the corresponding

AoDs and AoAs as the basis vectors respectively. Fig. 3.6 shows the sum spectral

efficiency of the above processing schemes. We set the mmWave propagation channel

with Nc = 8 and Np = 10. The range of the mean azimuth angles of AoDs at the

BS |θkmax − θkmin| is 120◦ while the MSs are assumed to be omni-directional due to the

relatively smaller antenna array elements. The angle spreads σkθ ’s and σkφ’s are all

equal to 7.5◦. Moreover, the BS is set to have NBS = 256 antennas and MBS = 16

RF chains, while K = 8 MSs, with NMS = 16 antennas and MMS = 2 RF chains, all

dealing with NS = 2 data streams. In this scenario, the proposed Hy-BD scheme even

achieves slightly higher spectral efficiency than the traditional BD scheme. Note that

the traditional BD scheme is a sub-optimal solution for the processing of MU-MIMO

systems, and it is possible that the Hy-BD outperforms the traditional BD in some

situations. As for the spatially sparse precoding/combining scheme, it lags behind the
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traditional BD and Hy-BD schemes because the columns of the traditional BD pre-

coding and combining matrices do not directly come from the linear combination of

the array response vectors of AoDs/AoAs, although the spatially sparse precoding/-

combining scheme does effectively decompose the SVD based precoder and combiner

in P2P scenario, whose columns can be written as the linear combinations of the

array response vectors of AoDs/AoAs respectively, according to the observation 3) in

[14]. Even though the number of RF chains is enlarged to MMS = 4 and MBS = 32,

the performance of the spatially sparse precoding/combining scheme is still inferior

to the full-complexity BD and Hy-BD schemes.
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Figure 3.6: Sum spectral efficiency achieved by different processing schemes in an
256 × 16 8-user MU-MIMO system in mmWave channels where NS = 2,MMS =
2(4),MBS = 16(32).

3.4 Summary

In this chapter, a low-complexity hybrid block diagonalization processing scheme

has been proposed for the downlink communication of a massive multiuser MIMO

system with the limited number of RF chains. We harvest the large array gain

through the phase-only RF precoding and combining and then the BD technique is

performed at the equivalent baseband channel. It has been demonstrated that the Hy-

BD scheme, with a lower implementation and computational complexity, achieves a
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capacity performance approaching that of the traditional high-dimensional baseband

BD processing. Such a low-complexity, low cost Hy-BD scheme can be a promising

option for the practical implementation of a massive MU-MIMO system.
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Chapter 4

Energy Harvesting Wireless

Communications with Energy

Cooperation

Energy harvesting for communication devices has emerged as a prominent research

area due to its benefit of powering the devices through alternative energies instead

of battery or hardwire power [29], [30]. By employing the piezoelectric, electromag-

netic, photo-voltaic or other energy harvesting technologies, external sources, such as

kinetic, solar energy and ambient radio waves, can be harvested to power the devices.

Thus, energy harvesting becomes an attractive and effective solution for powering

the energy-constrained devices and prolonging their lifetime, which makes it possible

that the energy efficiency can be improved by utilizing the renewable energy sources

in 5G wireless communications.

In an energy harvesting wireless communications system, the cumulatively con-

sumed energy by the system is not allowed to exceed the cumulatively harvested

energy at any time instant [31], based on which a significant amount of works have

investigated energy harvesting communications. Beginning with an energy harvest-

ing transmitter design, [31] analyzes the communication channel capacity with ran-

dom energy arrival from the information-theoretic view. An offline power allocation

algorithm is put forward to minimize the outage probability over a finite horizon

considering an infinite battery storage [32]. Considering time-varying channels and

energy sources, as well as finite battery storage, [33] uses dynamic programming to

maximize the system throughput over a finite horizon. For the energy harvesting
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receiver, Varshney introduced the concept of scavenging information and energy si-

multaneously [34]. This idea leads to the simultaneous wireless information and power

transfer (SWIPT) proposed in [35] and [36], where the transmitter sends one signal

and the receiver divides the received signal into two parts by either power splitting or

time switching: one for information decoding and one for energy harvesting. [37] and

[38] extend the works of [34]-[36] to MIMO and cognitive radio scenarios. Moreover,

[39] applies the power splitting and time switching schemes at an energy harvesting

relay in wireless cooperative networks, termed as cooperative SWIPT. Reference [40]

investigates different power allocation strategies in a wireless network with multiple

source-destination pairs communicating through an energy harvesting relay where

the cooperative SWIPT technique is applied. So far, some prototypes of wirelessly-

powered platforms can work solely by absorbing the ambient RF energy from the air

[41]–[43].

Rather than purely harvesting energy from the unintentional sources, energy co-

operation allows the devices to intentionally transfer some energy to others to assist

communications, which is inspired by the work of Brown on power transfer by ra-

dio waves [44]. Note that both SWIPT and energy cooperation involve the wireless

information transmission and energy transfer. However, compared to the SWIPT

technology that embeds the transferred energy into the information signal, an inde-

pendent energy transfer channel is used in this chapter for energy cooperation. Such

approach provides more freedom to optimize the energy transfer design for higher

efficiency and the direction of energy transfer can be different from that of the infor-

mation flow at any time instant. Reference [45] proposes a one-way energy coopera-

tion scheme under two-way and multiple-access communications system respectively,

using a bidirectional water-filling algorithm to control the energy flows. The papers

[46] and [47] investigate the uni-directional energy cooperation between the source

node and relay node, while in [48] the downlink wirelss energy transfer is employed

to assist the uplink information transmissions in a wireless powered communication

network. The analysis of the bi-directional energy cooperation is given in [49], where

two communications nodes are assumed to wirelessly exchange their energy. In addi-

tion, the energy cooperation between base stations in wireless cellular systems have

been considered in [50] and [51].

The above-mentioned work all assume the power consumption of the hardware

circuits can be ignored (ideal circuits). In fact, the power consumption of the hard-

ware circuits (non-ideal circuits) is a significant factor that influences the system’s
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behaviors, like sleeping or keeping active. The papers [52] and [53] investigate the

designs of such practical transmitters with non-ideal circuits: the former proposes

both offline and online energy/power allocation algorithms for optimizing average

throughput under a deterministic energy arrival profile, while the latter introduces

a save-then-transmit (ST) protocol that the energy harvesting transmitter sleeps for

a period of time to save energy and then wakes up to communicate. The optimal

save-ratio of the ST protocol is derived in [54].

In this chapter, we consider both the energy harvesting transmitter and receiver

with non-ideal circuits, based upon [52]-[54] which did not consider the design of

the energy harvesting receiver. We assume that both the practical transmitter and

receiver harvest energy from the external sources, and then employ the harvested

energy to support communications as well as running the non-ideal circuits. We

choose the ST scheme to handle the harvested energy and enable energy cooperation

between the transmitter and receiver, which is termed energy cooperation ST (EC-

ST) scheme. The EC-ST scheme allows the active transmitter and receiver to transfer

some of their stored energy to each other to improve the communications performance

by adjusting the transmission power and communication time, while the common ST

scheme is merely applied to a transmitter without energy cooperation.

It is noted that the transmitter and receiver employ two pairs of antennas to

realize information transmission and energy transfer. The energy and information

channels are assumed to be orthogonal to each other [46], by using two different

frequency bands that are respectively accessed by two pairs of narrow-band anten-

nas. The energy channel may be assigned to a relatively lower frequency band in

order to obtain a higher energy transfer efficiency by avoiding the large path loss

resulting from a higher frequency. Fig. 4.1 shows the circuit model for a practical

energy harvesting device (applied to both the transmitter and receiver). The energy

harvester contains several energy harvesting units for different energy sources, like

photo-voltaic and electromagnetic energy harvesting units. The rate (joules/second)

of energy harvesting is called energy arrival rate. Functional circuits manage com-

munications and energy cooperation through the control unit. Two antennas, Ac,

Ae, are integrated into two RF modules respectively, where Ac is used to communi-

cate while Ae transfers energy between the transmitter and receiver to realize energy

cooperation. Moreover, Ae needs to feed the received energy transferred by another

device to the electromagnetic energy harvesting unit for harvesting and storage.

For modeling convenience, we divide the time horizon into infinite identical-length
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Figure 4.1: Practical Circuit Model for Energy Harvesting Device

time blocks, each of which has the length of T seconds. This study concentrates on

the optimal performance of the P2P wireless communications within T seconds. To

begin with, we apply the EC-ST scheme to additive white Gaussian noise (AWGN)

one-way channels with two-way energy transfer under a deterministic energy arrival

rate. In this case, the active ratios of the transmitter and the receiver and the en-

ergy cooperation strategies between the transmitter and the receiver are derived to

maximize the communication throughput. The second part of the study considers a

more general situation where the harvested energy arrives with a stochastic rate and

the communication channel is modeled as Rayleigh block fading. In this case, the ac-

tive ratios and the energy cooperation strategies are designed to minimize the outage

probability, which characterizes the occurrence of events where there is not sufficient

energy to maintain the transmitter or the receiver active or the communication data

rate falls below a certain threshold.

The rest of this chapter is organized as follows. Section 4.1 introduces the system

model and related assumptions. Section 4.2 applies the EC-ST scheme to the AWGN

channel with a deterministic energy arrival rate and derives a closed-form solution

of the scheme parameters for maximizing the throughput. Section 4.3 analyzes the

outage probability minimization problem in the Rayleigh block fading channel with a

stochastic energy arrival rate. Section 4.4 presents the numerical results of optimized

throughput and the simulation results of outage probability. Finally, Section 4.5

concludes this chapter.
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4.1 System Model

This section describes the definitions and assumptions of the energy source, and

explains how the system deals with communications as well as energy cooperation.

The system model is illustrated in Fig. 4.2. The energy source can be the sun, a

TV signal tower, or a vibration source, etc.. We assume that the distance between

the transmitter and receiver is far less than the distance between the system and the

energy source. This means the energy arrival rates of the transmitter and receiver are

identical at any time instant, since the amount of harvested energy in a period mainly

depends on the distance from the source. Note that the charging rate of the energy

storage is usually less than the energy arrival rate, because of the limited energy

conversion efficiency of the circuits. Denote the charging rate and energy arrival rate

as X and X̂ respectively. We have X = ηX̂ ≥ 0, where 0 < η ≤ 1 is the imperfect

conversion efficiency. In the rest of the chapter, the energy arrival rate refers to the

effective energy arrival rate that is assimilated by the system, i.e., the charging rate

of the storage X . Due to the fact that the output power of an energy harvester is

usually at a relatively low level, we also assume that the energy storage capacity of

the transmitter and receiver are finite but large enough to store all the harvested

energy within one time block (i.e., the overflow of the energy can be ignored). We set

the time block length T much smaller than the time constant of the arrival energy

rate, and hence, X should remain constant over a time block [53, 54]. The harvested

energy is used by the transmitter and the receiver for communications and for bi-

directional wireless energy transfer between them to support maximum information

rate.

X

X

h
tr
P

rt
P

Figure 4.2: System model of energy harvesting transmitter and receiver

We apply the EC-ST scheme: both the transmitter and receiver sleep during the

first proportion of T (sleep mode), and then communicate with each other during the
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rest of the time in T (active mode) [52, 53]. In the active mode, the transmitter is

modulating and transmitting signal or the receiver is receiving and demodulating data

through the antenna pair Ac (See Fig. 4.1). In the sleep mode all the circuits in the

transmitter or receiver turn off except the energy harvester which consistently charges

the energy storage of the transmitter and receiver with rate of X . The ratio of time

during which the device is active to the whole time block length T is denoted as the

active-ratio ρt and ρr for both the transmitter and receiver respectively. Additionally,

we assume the energy storage of the transmitter and receiver have multiple cells thus

can be charged and discharged simultaneously, which makes the charging operation at

any time instant in T feasible. The amount of the harvested energy of the transmitter

and receiver is therefore XT .

t
T(1 )

t
T

r
T(1 )

r
T

Transmitter

Receiver

Active 

Operations when active: 
1) sending information 

to the receiver

2) wirelessly transferring 

energy to the receiver

Active 

1) receiving information

from the transmitter

2) wirelessly transferring 

energy to the transmitter

Figure 4.3: Sleep/Active mode of the transmitter and receiver

For the transmitter using the EC-ST scheme, it turns into the sleep mode in the

time interval [0, (1− ρt)T ), while it is active in the interval [(1− ρt)T, T ], where the

active-ratio of the transmitter 0 ≤ ρt ≤ 1 is shown in Fig. 4.3. When the transmitter

is active, the power consumption of the hardware circuits, such as the control units

and the baseband processing units, excluding the RF modules, is Ptc > 0; and the

power consumption of the RF modules is equal to the signal transmission power

Ps, assuming the perfect efficiency of the RF chain. Furthermore, the transmitter

simultaneously transfers energy with a constant power1 of Ptr and efficiency of α

(0 < α ≤ 1) to the receiver in [(1 − ρt)T, T ], through the antenna pair Ae (See

Fig. 4.1). That means the receiver can be charged with additional power of αPtr.

1Since the active radio ρt is unknown, maybe nearly zero, it is more reasonable to assume the
transmitter or receiver do energy transfer with a finite power instead of directly characterizing the
amount of transferred energy, due to the limitation on the antenna radiated power.
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Therefore, the total power consumption of the transmitter is given by

Pt =

{

Ptc + Ps + Ptr, active mode,

0, sleep mode,
(4.1)

where Ptr ≥ 0, Ps ≥ 0. Similarly, the receiver is in the sleep mode during [0, (1−ρr)T )
and in the active mode during [(1 − ρr)T, T ], where the active-ratio of the receiver

ρr ∈ (0, 1]. When the receiver is active, the power consumption of the circuits is

Prc > 0. It is reasonable to assume that Prc > Ptc, because the receiver usually needs

more power to do the baseband detection than the transmitter which usually has

relatively simple baseband processing [55]. In addition, the receiver transfers energy

to the transmitter with power Prt and efficiency α in [(1−ρr)T, T ] (symmetric energy

transfer channel). The total power consumption of the receiver is

Pr =

{

Prc + Prt, active mode,

0, sleep mode,
(4.2)

where Prc ≥ 0.

In this chapter, we consider two kinds of channel models: AWGN channels and

Rayleigh block fading channels. The baseband equivalent channel output is given by

y = h · x+ n, (4.3)

where y is the received signal, x is the transmitted signal, h is the channel gain, and n

is the additive Gaussian noise with zero mean and variance σ2. We define the channel

power gain factor as H = |h|2
σ2

. In AWGN channels, H is a positive constant, while

in Rayleigh block fading channels, the length of T is chosen to be far less than the

coherence time of the information transmission channel so that H remains constant in

one time block but randomly changes over different time blocks (following exponential

distribution with mean of λH). The energy transfer efficiency α is dependent on the

channel power gain of the energy transfer channel. For the AWGN channel scenario,

α is also assumed to be constant similar to H . On the other hand, in the Rayleigh

block fading channel scenario, the coherence time of the energy transfer channel is

also larger than the time block length T . Therefore, we assume the energy transfer

efficiency α remains constant within one time block but may change over different

time blocks.
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4.2 ThroughputMaximization under AWGN Chan-

nels

4.2.1 Normalized Throughput Maximization Problem

In a certain number of applications, especially in WSNs, where most devices in the

network stay in fixed locations and their surrounding environment is stationary, the

AWGN channel is a suitable model to evaluate the P2P wireless communications

performance. Furthermore, due to the static locations of the transmitter and receiver,

the energy arrival rate X should be consistent during a considerable time period, far

longer than T . Consequently, both transmitter and receiver are capable to estimate

X . In other words, X is assumed to be deterministic, and known by the transmitter

and receiver.

In AWGN channels, the normalized throughput in one time block is given by

RA = log2(1 + HPs). However, the communications link can only be established if

both the transmitter and receiver are active, and hence the normalized throughput

should be multiplied by min{ρr, ρt}:

RA(ρt, ρr, Ptr, Prt) = min{ρr, ρt} · log2(1 +HPs). (4.4)

In each time block, the transmitter and receiver use up all available energy by signal

transmission and energy cooperation over time T , which is made possible given that

X is deterministic and known2. To obtain an expression for the transmission power

Ps in (4.4), we formulate the total power of the transmitter and receiver in the active

mode as

Pt = Ptc + Ps + Ptr =
XT + αPrt · ρrT

ρtT
=
X + αPrt · ρr

ρt
,

Pr = Prc + Prt =
XT + αPtr · ρtT

ρrT
=
X + αPtr · ρt

ρr
.

(4.5)

Here, (XT +αPrt ·ρrT ) is all the available energy for the transmitter in a time block,

where XT comes from energy harvesting and (αPrt · ρrT ) is the amount of energy

transferred from the receiver. Moreover, ρtT is the active time of the transmitter,

during which the transmitter operates with power Pt. The total power of the receiver

is given by the second formula in (4.5). The transmission power Ps in (4.4) can then

2Instead of using up all energy in one time block, coordinating and managing energy usage over
multiple blocks has the potential to improve performance, but is out of the scope of this thesis and
a topic for future studies.
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be expressed as Ps = (X + αPrt · ρr)/ρt − Ptc − Ptr. In the rest of this section, we

aim to find an optimal energy cooperation scheme (ρ∗t , ρ
∗
r, P

∗
tr, P

∗
rt) to maximize the

normalized throughput (4.4) subject to the following three practical constraints:

1) Active-ratio length: 0 ≤ ρt ≤ 1, 0 ≤ ρr ≤ 1,

2) Energy causality: the energy for cooperation can not exceed the amount of the

harvested energy at the transmitter (receiver): 0 ≤ ρtPtr ≤ X , 0 ≤ ρrPrt ≤ X ,

3) Effective Transmission: the signal transmission power must be non-negative,

Ps = (X + αPrt · ρr)/ρt − Ptc − Ptr ≥ 0.

That is, the throughput optimization problem is given by

max
ρt,ρr,Ptr,Prt

RA(ρt, ρr, Ptr, Prt)

s.t. 0 ≤ ρt ≤ 1, 0 ≤ ρr ≤ 1,

0 ≤ ρtPtr ≤ X, 0 ≤ ρrPrt ≤ X,

Ps = (X + αPrt · ρr)/ρt − Ptc − Ptr ≥ 0.

(4.6)

Next, we present in Lemma 1 that the independent active ratios ρr = ρt is

necessary for maximizing RA(ρt, ρr, Ptr, Prt). This reduces the optimization variables

by one dimension and coincides with the intuition that the transmitter and receiver

should operate at the same time to guarantee the effective communications.

Lemma 1. For an optimal solution that maximizes RA in (4.6), the transmitter and

receiver must keep active in the identical time interval: ρr = ρt, due to the invalidity

of single-sided communication.

Proof. In a time block, the energy arrival rate X and normalized channel power

gain H keep constant. When ρr 6= ρt, we can enhance RA by adjusting the energy

cooperation power Ptr and Prt until ρr = ρt. Here, we have two situations to discuss:

• If ρr > ρt, RA = min{ρr, ρt} · log2(1 +HPs) = ρt log2(1 +HPs). For any fixed

ρt and Ptr, the RA will only depend on ρr and Prt. According to the second

formula in (4.5), if we increase Prt, ρr = (X + αPtrρt)/(Prt + Prc) will reduce.

Similarly, according to the first formula in (4.5), the value of Ps, which uniquely

depends on the value of Prtρr = (X + αPtrρt) · Prt

Prt+Prc
, will be enhanced with

the increasing Prt. Finally, as long as ρr ≥ ρt, RA will consistently grow by

increasing the energy cooperation power Prt until ρr = ρt.
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• If ρr < ρt, RA = min{ρr, ρt} · log2(1 + HPs) = ρr log2(1 + HPs). Beginning

with the fixed ρr and Prt, we can find that Ptrρt is also a constant, according

the second formula of (4.5). Then we can increase Ptr, which makes ρt reduced.

Eventually, Ps = (X + αPrtρr − Ptrρt)/ρt − Ptc will increase since the value of

(X + αPrtρr − Ptrρt) keeps fixed. Obviously, as long as ρr ≤ ρt, increasing Ptr

leads to higher RA until ρr = ρt.

Therefore, the maximum normalized throughput is achieved when ρr = ρt.

Define ρ = ρt = ρr and RA(ρ, Ptr, Prt) = RA(ρ, ρ, Ptr, Prt). By substituting ρ =

ρr = ρt into ρr = (X + αPtrρt)/(Prt + Prc), we obtain

ρ =
X

Prt + Prc − αPtr
. (4.7)

Then the normalized throughput is reformulated as

RA(Ptr, Prt) = RA(ρ, Ptr, Prt)|ρ= X
Prt+Prc−αPtr

=
X log2 [1 +H((α+ 1)(Prt − Ptr) + ∆Pc)]

Prt − αPtr + Prc
,

(4.8)

where ∆Pc = Prc − Ptc > 0. Until now, we have transformed the 4-variable maxi-

mization problem (4.6) into a 2-variable one:

max
Ptr ,Prt≥0

RA(Ptr, Prt)

s.t. 0 ≤ ρ ≤ 1, ρ = X/(Prt + Prc − αPtr),

0 ≤ ρPtr ≤ X, 0 ≤ ρPrt ≤ X,

Ps = (α + 1)(Prt − Ptr) + (Prc − Ptc) ≥ 0.

(4.9)

Before directly tackling (4.9), we introduce Lemma 2 that effectively gives a

constraint to shrink the feasible region without changing the optimal solution.

Lemma 2. (Necessary condition of optimal energy cooperation) Due to the imperfect

efficiency of energy transfer, 0 ≤ α ≤ 1, only one-way energy transfer is active for

maximizing RA(Ptr, Prt) over a time block T , which means Prt · Ptr = 0.

Proof. Suppose there is always a solution (P∆
rt , P

∆
tr ) for max{Prt,Ptr}RA. If P

∆
rt−αP∆

tr ≥
0, we can get another pair (P ∗

rt = P∆
rt−αP∆

tr , P
∗
tr = 0), and RA(P

∗
rt, P

∗
tr) ≥ RA(P

∆
rt , P

∆
tr )

with the same ρ and a larger Ps due to 0 ≤ α ≤ 1. On the other hand, if P∆
rt −αP∆

tr <
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0, we can also obtain another pair (P ∗
rt = 0, P ∗

tr = P∆
tr − P∆

rt

α
), which leads to a larger

RA(P
∗
rt, P

∗
tr). Therefore, P ∗

rt · P ∗
tr = 0, which means only one way energy transfer is

needed to maximize the throughput RA over a time block.

Based on Lemma 2, the maximum throughput of (4.9) can be found in two sub-

regions: {Ptr = 0, Prt ≥ 0} and {Ptr ≥ 0, Prt = 0}. By substituting the constraints of

these two sub-regions into (4.9), we finally decompose (4.9) into two corresponding

sub-problems

Ptr = 0, Prt ≥ 0 :

max
Prt

X

Prt + Prc
log2 [1 +H((α+ 1)Prt + (Prc − Ptc))]

s.t. Prt ≥ max{X − Prc, 0}.
(4.10)

Ptr ≥ 0, Prt = 0 :

max
Ptr

X

Prc − αPtr
log2 [1 +H(−(α + 1)Ptr + (Prc − Ptc))]

s.t. 0 ≤ Ptr ≤ min{Prc −X

α
,
Prc − Ptc
α + 1

}.
(4.11)

The final solution (P ∗
tr, P

∗
rt) is obtained by comparing the solved RA values of the two

sub-problems (4.10) and (4.11), and choosing the solution that leads to a larger RA.

4.2.2 Energy Cooperation for Maximizing Throughput

Observing the constraints of (4.10) and (4.11), we can easily find that X = Prc is a

threshold of the maximization problem. Here, we solve (4.9) through discussing the

value of X .

X ≥ Prc :

When X ≥ Prc, the feasible region of the sub-problem (4.11) becomes the empty

set or just {Ptr = 0}, because min{Prc−X
α

, Prc−Ptc

α+1
} = Prc−X

α
≤ 0. We set P ∗

tr = 0 in

this case. This result agrees with the intuition that if the harvested energy at the

receiver overflows (can not be used up by circuits), it should at least transfer the extra

energy to transmitter to assist communications, thus getting better performance. In

this case, the optimal solution for (4.9) is identical to that of (4.10). Moreover, the

constraint of (4.10) becomes Prt ≥ X − Prc:
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max
Prt

RA(Prt) =
X log2 [1 +H((α+ 1)Prt + (Prc − Ptc))]

Prt + Prc

s.t. Prt ≥ X − Prc.

(4.12)

Lemma 3. The optimal solution to (4.12) is given by

P ∗
rt =

{

1

H(α+ 1)

[

−A
W0(

−A
e
)
− [1 +H(Prc − Ptc)]

]}+

, (4.13)

where A = 1 − H(Ptc + αPrc), {·}+ = max{·, X − Prc} and W0(·) is the principle

branch of LambertW function [56].

Proof. The derivative of RA(Prt) is given by

dRA(Prt)

dPrt
=

X ·Drt(Prt)

(Prt + Prc)2(1 +HPs) ln(2)
, (4.14)

where Drt(Prt) = H(α + 1)(Prt + Prc) − (1 + HPs) ln(1 + HPs), Ps = (α + 1)Prt +

(Prc − Ptc) ≥ 0. Hence, the sign of derivative of RA(Prt) depends on Drt(Prt).

We continue to take the derivative of Drt(Prt)

dDrt(Prt)

dPrt
= −H(α + 1) ln(1 +HPs) ≤ 0. (4.15)

Moreover, we have Drt(−Prc−Ptc

α+1
) = H(αPrt + Prc) > 0, and limPrt→+∞Drt(Prt) < 0

3, which means Drt(Prt) only has a unique zero point (global maximizer of RA(Prt))

in (−Prc−Ptc

α+1
,+∞) due to Ps ≥ 0. When Prt is less than this zero point, Drt(Prt) ≥ 0;

otherwise, Drt(Prt) ≤ 0. Denoting 1 − H(Ptc + αPrc) as A, and (1 + HPs) as t, we

obtain from Drt(Prt) = 0 that −A
t
exp(−A

t
) = −A

e
. With −A

e
> −1

e
, the zero point of

t is given by t = −A
W0(

−A
e

)
[56]. Finally, the global maximizer of RA(Prt) is given by

P ep
rt =

1

H(α+ 1)

[

−A
W0(

−A
e
)
− [1 +H(Prc − Ptc)]

]

. (4.16)

Owing to the non-negativity of Prt, RA(Prt) will decrease monotonically for Prt ≥ 0

if P ep
rt ≤ 0, and the optimal P ∗

rt = 0. Thus, P ∗
rt = {P ep

rt }+ = max{0, P ep
rt }.

3It is easy to prove by applying L’Hopital’s rule to the ratio of the derivatives of two subtracting
parts.
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0 ≤ X ≤ Prc :

We first examine the subproblem (4.11), where Prt = 0. Defining P̄tr = −Ptr, (4.11)
is reformulated as

max
Ptr

X

Prc + αP̄tr
log2

[
1 +H((α + 1)P̄tr + (Prc − Ptc))

]

s.t. −min{Prc −X

α
,
Prc − Ptc
α + 1

} ≤ P̄rt ≤ 0.

(4.17)

Based on the similarities of (4.17) and (4.10), we summarize a general form of the

objective function:

fβ(x) =
X

Prc + βx
log2[1 +HPs(x)], (4.18)

where Ps(x) = (α+1)x+(Prc−Ptc) ≥ 0, and β = α or 1. Then the original problem

(4.9) is equivalent to

max
x

g(x) =







fα(x), −mβ < x < 0, (x = −Ptr, Prt = 0),

fα(x) = f1(x), x = 0, (Ptr = Prt = 0),

f1(x), x > 0, (x = Prt, Ptr = 0),

(4.19)

where mβ = min{Prc−X
α

, Prc−Ptc

α+1
}. We first investigate the maximizer of fβ(x), and

then applied it to (4.19) to obtain the optimal solution (P ∗
tr, P

∗
rt) for the original

maximization problem (4.9).

The derivative of fβ(x) is given by

dfβ(x)

dx
=

X ·Dβ(x)

(Prc + βx)2(1 +HPs) ln(2)
, (4.20)

where Dβ(x) = H(α+1)(Prc+βx)−β[1+HPs(x)] ln[1+HPs(x)], which determines

the sign of
dfβ(x)

dx
. Similar to (4.15), we have

dDβ(x)

dx
= −Hβ(α+ 1) ln[1 +HPs(x)] ≤ 0. (4.21)

According to the proof of Lemma 3, we still have Dβ(−Prc−Ptc

α+1
) = H [(1 − β)Prc +

Ptc] > 0 and limx→+∞Dβ(x) < 0. Thus there exists a global maximizer x∗β ∈
(−Prc−Ptc

α+1
,+∞) for a fixed β. When x < x∗β, fβ(x) is monotonically increasing, and

then decreasing once x exceeds x∗β. The global maximizers x∗β of fβ(x) with β = α or
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1 are denoted as x∗1, x
∗
α. By transforming fβ(x), where β = α or 1, into the form of

−Ac

t
exp(−Ac

t
) = −A

e
(Ac is a constant), these two maximizers are given by

• x∗α = − 1
H(α+1)

[
−Aα

W0(
−Aα

e
)
− [1 +H(Prc − Ptc)]

]

,

• x∗1 =
1

H(α+1)

[

−A1

W0(
−A1

e
)
− [1 +H(Prc − Ptc)]

]

,

where Aα = 1 − H(Ptc + Prc/α), A1 = 1 − H(Ptc + αPrc). The next question is

whether the global maximizers x∗α for fα(x) and x∗1 for f1(x) fall in the functions’

corresponding feasible regions. The first to examine is whether they are greater or

smaller than 0, the answer to which highly depends on H . Lemma 4 describes the

relationship of the locations of x∗α and x∗1 and the values of H .

Lemma 4. There exist two special points for H: Hα and H1, which are the positive

solutions of Dβ(0) = 0 with respect to H when β = α or 1. The two points must

satisfy Hα ≥ H1. And it holds that:

• H < H1: 0 < x∗1, x
∗
α;

• H1 ≤ H ≤ Hα: x
∗
1 ≤ 0 ≤ x∗α;

• Hα < H: x∗1, x
∗
α < 0.

Proof. In this proof, we show the relationship of the values of H and the signs of x∗α

and x∗1. It is known in Section 4.2.2 that fβ(x), β = α or 1, has a global maximizer

x∗β ∈ (−Prc−Ptc

α+1
,+∞), and

dfβ(x)

dx
= M · Dβ(x), where M ≥ 0. When x < x∗β ,

Dβ(x) ≥ 0 and fβ(x) is monotonically increasing; when x > x∗β , Dβ(x) ≤ 0 and fβ(x)

is monotonically decreasing. It is obvious that x∗β ·Dβ(0) ≥ 0. Therefore, to determine

the sign of x∗β, we can first examine the sign of Dβ(0), which depends on the value of

H . Denote Dβ(0) as Zβ(H) with respect to H :

Zβ(H) = H(α+ 1)Prc − β[1 +H∆Pc] ln[1 +H∆Pc], (4.22)

where ∆Pc = Prc − Ptc > 0. Taking the derivatives of Zβ(H) with respect to H , we

obtain
dZβ(H)

dH
= [(α + 1− β)Prc + βPtc]− β∆Pc ln[1 +H∆Pc],

d2Zβ(H)

dH2
= − β∆P 2

c

1 +H∆Pc
≤ 0

(4.23)
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which indicates that (4.22) is a concave function with respect to H ∈ [0,+∞) and

the global maximizer of Zβ(H) is located in H ∈ (0,+∞) due to
dZβ(H)

dH
|H=0 > 0. It

is easy to see that Zβ(0) = 0, limH→+∞ Zβ(H) < 0. Therefore, there must be a zero

point Hβ > 0 that makes Zβ(Hβ) = 0. In sum, we have Dβ(0) = Zβ(H) > 0 for any

0 < H < Hβ, and Dβ(0) = Zβ(H) < 0 for any H > Hβ. Some common root search

algorithms such as bisection, Newton methods, etc., can be used to find Hβ.

As for the cases of β = α and 1, it always holds that Zα(H)−Z1(H) = (1−α)[1+
H∆Pc] ln[1 +H∆Pc] ≥ 0, which implies that Hα ≥ H1. Due to the fact that Dβ(0)

has the same sign as x∗β , we conclude that:

• H < H1: 0 < x∗1, x
∗
α;

• H1 ≤ H ≤ Hα: x
∗
1 ≤ 0 ≤ x∗α;

• Hα < H : x∗1, x
∗
α < 0.

Lemma 4 is thus proved.

Finally, we can summarize the optimal solution for (4.9):

• H < H1 (0 < x∗1, x
∗
α): it holds that maxx≤0{g(x)} = maxx≤0{fα(x)} = g(0) =

f1(0) ≤ maxx≥0{g(x)} = maxx≥0{f1(x)} = f1(x
∗
1). The solution is (P ∗

tr =

0, P ∗
rt = x∗1);

• H1 ≤ H ≤ Hα (x∗1 ≤ 0 ≤ x∗α): maxx≤0{g(x)} = maxx≥0{g(x)} = g(0). The

solution is (P ∗
tr = P ∗

rt = 0);

• Hα < H (x∗1, x
∗
α < 0): we have maxx≤0{g(x)} = maxx≤0{fα(x)} = fα(x

∗
α) ≥

maxx≥0{g(x)} = maxx≥0{f1(x)} = g(0). The solution is (P ∗
tr = −x∗α, P ∗

rt = 0).

However, Ptr has an upper bound of min{Prc−X
α

, Prc−Ptc

α+1
}, and hence the optimal

solution should be revised as P ∗
tr = min{Prc−X

α
, Prc−Ptc

α+1
,−x∗α}.

Furthermore, the optimal ρ∗t = ρ∗r = ρ∗ is given by (4.7).

In summary, the optimal energy cooperation scheme (P ∗
tr, P

∗
rt) under the EC-ST

scheme for maximizing the normalized throughput of P2P wireless communications

can be intuitively explained. When the energy arrival rate X overflows at the receiver

(X > Prc), only one-way energy transfer from the receiver to the transmitter is

necessary to improve the throughput by making use of extra energy. When the

receiver harvests insufficient energy for running circuits (X ≤ Prc), the direction of
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energy transfer depends on the channel condition H . Energy is transferred from the

receiver to transmitter to support the transmission by reducing the active-ratio ρ∗ if

the channel power gain is too low (H < H1), or from the transmitter to receiver to

extend the active-ratio if the channel condition is good (H > Hα). Otherwise, no

energy cooperation is allowed.

4.3 Outage Probability Minimization under Fad-

ing Channels

In this section, we consider a more general and practical scenario, where the commu-

nications environment is changing, with a mobile transmitter and receiver, and thus,

the channel condition varies randomly. Assume a Rayleigh block fading channel. The

normalized channel power gain H = |h|2
σ2

follows exponential distribution with mean

of λH . We further assume the energy arrival rate X follows the Gamma distribution

Γ(k, θ) with a shape parameter k ≥ 1 and a scale parameter θ > 0 [53]-[54]. The

mean value of X is given by λX = kθ. Thus, the probability density functions (PDF)

of H and X are respectively given by

pH(H) =
1

λH
exp(− H

λH
), pX(X) =

Xk−1 exp(−X
θ
)

θkΓ(k)
, (4.24)

where Γ(k) is the gamma function evaluated at k. In addition, the Gamma distribu-

tion is reduced to the exponential distribution when k = 1.

In block fading channels, H remains constant during the time within one block

but varies randomly from block to block [27]. In such scenarios, it is more essential

to investigate the system outage performance than the ergodic throughput. Suppose

the transmitter encodes and transmits data at a required rate R̄ and the channel

capacity gives a maximum rate RS of reliable communications supported by this

channel. A channel outage event happens when RS < R̄. Furthermore, we also

introduce the circuit outage event due to the insufficient power to sustain circuit

operations similar to [53]. However, [53] only considers the circuit power consumption

in the transmitter and assumes an ideal receiver that has a constant power supply.

The circuit outage event thus only happens at the transmitter side. In our model, a

practical receiver needs to harvest energy from the external environment for running

circuits, and the EC-ST scheme allows the transmitter and receiver to share their
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energy in one time block. Under such assumptions, the circuit outage event can

occur at both the transmitter and receiver after energy cooperation.

4.3.1 Outage Probability Minimization Problem

The EC-ST scheme is applied at the transmitter and receiver, and they share the

identical active-ratio ρ. In the following analysis, we only focus on the parameter op-

timization of the energy cooperation scheme: (ρ, Ptr and Ptr). During the active time,

the total power of transmitter and receiver with energy transfer can be formulated as

Pt =
X

ρ
+ αPrt − Ptr, Pr =

X

ρ
+ αPtr − Prt, (4.25)

where Pt and Pr are the total available power of the transmitter and receiver respec-

tively, resulting from energy harvesting and cooperation. In order to make the system

work, Pt and Pr must, at least, be larger than the power consumption on hardware

circuits Ptc and Prc respectively: Pt ≥ Ptc, Pr ≥ Prc, so that the rest of the energy

could be used for communications after energy cooperation. In terms of X , we rewrite

these two conditions into one:

X ≥ Θ(ρ, Ptr, Prt) = max{Θ1(ρ, Ptr, Prt),Θ2(ρ, Ptr, Prt)}, (4.26)

where Θ1(ρ, Ptr, Prt) = ρ(Ptc + Ptr − αPrt), Θ2(ρ, Ptr, Prt) = ρ(Prc + Prt − αPtr).

The circuit outage event happens at either the transmitter or receiver when X <

Θ(ρ, Ptr, Prt).

Once both the transmitter and receiver work normally, they need to communicate

with the required rate R̄ bps/Hz over a time block. The available transmission power

is given by Ps = Pt − Ptc, and the achievable rate, when Ps ≥ 0, is

RS = ρ log2(1 +HPs) = ρ log2[1 +H(Pt − Ptc)]. (4.27)

The channel outage event happens due to insufficient data rate RS < R̄. Finally, the

combination of the circuit outage and the channel outage (mutually exclusive) is the

ultimate outage event for such a system [53], and given by

P circuit
out = Pr{X < Θ(ρ, Ptr, Prt)}

=

∫ Θ(·)

0

pX(X)dX. (4.28)
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P channel
out = Pr{RS < R̄,X ≥ Θ(ρ, Ptr, Prt)}

= Pr{H <
2(R̄/ρ) − 1

Pt − Ptc
, X ≥ Θ(ρ, Ptr, Prt)}

=

∫ ∞

Θ(·)
FH

(

2(R̄/ρ) − 1

Pt − Ptc

)

pX(X)dX, (4.29)

where Θ(·) means Θ(ρ, Ptr, Prt), and FH(a) =
∫ a

0
pH(H)dH , which is the cumulative

distribution function of random variable H .

The outage probability of the communications system is finally

Pout =

∫ Θ(·)

0

pX(X)dX +

∫ ∞

Θ(·)
FH

(

2
R̄
ρ − 1

Pt − Ptc

)

pX(X)dX

=

∫ Θ(·)

0

pX(X)dX +

∫ ∞

Θ(·)

[

1− exp

(

− T (ρ, R̄)

λH [X −Θ1(·)]

)]

pX(X)dX

= 1−
∫ ∞

Θ(·)
exp

(

− T (ρ, R̄)

λH [X −Θ1(·)]

)

pX(X)dX,

(4.30)

where T (ρ, R̄) = ρ(2
R̄
ρ − 1).

By observing (4.30), one can find that Pout depends on both the channel and

energy harvesting condition. Under the EC-ST scheme, we can adjust the energy

cooperation power Ptr, Prt or active-ratio ρ to obtain better communications per-

formance. Since we extend the feasible region from {ρ ∈ (0, 1], Ptr = Prt = 0} (no

energy cooperation) to {ρ ∈ (0, 1], Ptr, Prt ≥ 0}, we may obtain smaller outage prob-

ability by applying the EC-ST scheme than without energy cooperation. The outage

probability minimization problem can finally be expressed as

min
ρ,Ptr,Prt

{

1−
∫ ∞

Θ(·)
exp

(

− T (ρ, R̄)

λH [X −Θ1(·)]

)

pX(X)dX

}

s.t. ρ ∈ (0, 1], Ptr, Prt ≥ 0.

(4.31)

4.3.2 Energy Cooperation for Minimizing Outage Probabil-

ity

Remark 3. To solve the problem (4.31), first we discretize the continuous ρ into

a finite number of discrete values, like {1%, 2%, ..., 100%}, and then optimize the

parameters Ptr, Prt for a given ρ value, and finally choose an optimal ρ among all
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the discrete values that minimizes the outage probability. In most applications, the

required resolution of duty cycle (active-ratio in this chapter) of a device is relatively

low (integer percent is enough), and therefore, it is reasonable to find optimal ρ by

discretization.

For a given ρ, the outage probability minimization problem (4.31) is reformulated

as

max
Ptr,Prt≥0

I(Ptr, Prt) =

∫ ∞

Θ(·)
exp

(

− T (ρ, R̄)

λH [X −Θ1(·)]

)

pX(X)dX, (4.32)

where ρ is a constant in (0, 1].

To solve (4.32), we first expand the integral:

I(Ptr, Prt) =

∫ ∞

Θ(·)
exp

(

− T (ρ, R̄)

λH [X −Θ1(·)]

)

·
[

Xk−1 exp(−X
θ
)

θkΓ(k)

]

dX

=
exp

(

−Θ1(·)
θ

)

θkΓ(k)

∫ ∞

Θ(·)−Θ1(·)
E(X)dX,

(4.33)

where E(X) = exp
(

−T (ρ,R̄)
λHX

− X
θ

)

[X + Θ1(·)](k−1). Due to I(Ptr, Prt) ∈ [0, 1] and

exp
(

−Θ1(·)
θ

)

/[θkΓ(k)] ≥ 0, it always holds that
∫∞
Θ(·)−Θ1(·)E(X)dX ≥ 0.

Although the integral in (4.33) does not have a closed form, note that the energy

cooperation related variables (Ptr, Prt) only appear in the lower limit of the inte-

gral and in the exponential function outside the integral. Considering that Θ(·) =

max{Θ1(·),Θ2(·)}, we divide the feasible region constrained by {(Ptr, Prt) : Ptr ≥
0, Prt ≥ 0} into two sub-region: R1 = {(Ptr, Prt) : Ptr ≥ 0, Prt ≥ 0,Θ1(·) ≥ Θ2(·)}
and R2 = {(Ptr, Prt) : Ptr ≥ 0, Prt ≥ 0,Θ1(·) < Θ2(·)}. Once we find the optimal

solutions in both sub-regions and choose a better one, the optimization of (4.33) is

completed.

Θ1(·) ≥ Θ2(·) :

In this case, Θ1(·) ≥ Θ2(·) is equivalent to Prt − Ptr ≤ −Prc−Ptc

α+1
. Moreover, due to

Θ(·) = Θ1(·), the integral in (4.33) becomes a constant since the lower limit of the

integral becomes zero. The only part that still contains (Ptr, Prt) is exp
(

−Θ1(·)
θ

)

, and
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hence the outage probability minimization problem in R1 is reduced into

max
(Ptr,Prt)∈R1

exp

(

−Θ1(·)
θ

)

⇒ min
(Ptr,Prt)∈R1

Θ1(·)
ρ

= (Ptc + Ptr − αPrt).

(4.34)

It is easy to get the optimal solution (P ∗
tr, P

∗
rt) in the sub-region R1 by using linear

programming, which is

P ∗
tr =

Prc − Ptc
α + 1

, P ∗
rt = 0. (4.35)

The corresponding outage probability is given by

Pout = 1− 1

θkΓ(k)
exp

[

−ρ(Prc + αPtc)

θ(α + 1)

] ∫ +∞

0

E(X)dX. (4.36)

Θ1(·) < Θ2(·) :

We still express Θ1(·) < Θ2(·) as Prt−Ptr > −Prc−Ptc

α+1
. In this case Θ(·) = Θ2(·), and

(4.33) can be represented as

I(Ptr, Prt) =
exp

(

−Θ1(·)
θ

)

θkΓ(k)

∫ ∞

Θ2(·)−Θ1(·)
E(X)dX. (4.37)

Furthermore, sub-region R2 is composed of all half-lines defined as {(Ptr, Prt) :

Ptr ≥ 0, Prt ≥ 0,Θ2(·) − Θ1(·) = C}, where C is a positive constant. In addition,

Θ2(·) − Θ1(·) = C is equivalent to Prt − Ptr = Cp, where the constant Cp = C
ρ
−

Prc−Ptc

α+1
> −Prc−Ptc

α+1
. It is feasible to find the optimal point on each half-line as C

increases from zero to positive infinity, and then combine all found optimal points to

search the optimal solution in R2. For a fixed C, the integral part of (4.37) remains

constant, and we just need to minimize Θ1(·)/ρ = Ptc+Ptr−αPrt (ρ is given). Then we

have min{Ptc+Ptr−αPrt} = min{Ptc+(1−α)Ptr+αCp} = min{(1−α)Ptr}. Therefore,
the optimal point in a half-line with parameter C and Cp is (Ptr = −Cp, Prt = 0)

if Cp < 0, or (Ptr = 0, Prt = Cp) if Cp ≥ 0. In summary, the optimal point for

minimizing the outage probability in R2 must satisfy P ∗
tr · P ∗

rt = 0. It is exactly

identical to the necessary condition for optimal energy cooperation in the AWGN

channel scenario in Lemma 2. This confirms the intuition that the performance will

degrade once we transfer energy forward and backward simultaneously, because some
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energy can be wasted due to the imperfect transfer efficiency α.

Finally, synthesizing the analysis about R1 and R2, the feasible region for the

whole outage probability minimization can be reduced to

R = {(Ptr, Prt) :
Prc − Ptc
α + 1

≥ Ptr ≥ 0, Prt ≥ 0, PtrPrt = 0}. (4.38)

Here, we define a variable Pd = Prt−Ptr ≥ −Prc−Ptc

α+1
. For all the feasible points in R,

it holds

Pd =

{

Prt, Pd ≥ 0, Ptr = 0

− Ptr, Pd ≤ 0, Prt = 0.
(4.39)

And (4.37) can be rewritten in terms of Pd as

Iβ(Pd) =
exp (L1(Pd))

θkΓ(k)

∫ ∞

L2(Pd)

E(X)dX, (4.40)

where L1(Pd) = −ρ
θ
(Ptc − βPd), L2(Pd) = ρ[(Prc − Ptc) + (α + 1)Pd], β = α when

Pd ≥ 0, and β = 1 when Pd ≤ 0. And I(Ptr, Prt) which is feasible in R is reformulated

as

I(Ptr, Prt) =

{

I1(Pd), Pd = −Ptr ≤ 0, Prt = 0,

Iα(Pd), Pd = Prt ≥ 0, Ptr = 0,
(4.41)

which is continuous in [−Prc−Ptc

α+1
,+∞).

Lemma 5. For any β ∈ {α, 1}, Iβ(Pd) is a quasi-concave function in [−Prc−Ptc

α+1
,+∞)

(Pout is thus quasi-convex with respect to Pd). There is a global maximizer −Prc−Ptc

α+1
<

P ∗
d < +∞. When Pd < P ∗

d , Iβ(Pd) is non-decreasing; when Pd ≥ P ∗
d , Iβ(Pd) is non-

increasing. Besides, using P ∗
α, P

∗
1 to present P ∗

d when β = α, 1 respectively, we have

P ∗
α ≤ P ∗

1 .

Proof. To prove that Iβ(Pd) is quasi-concave, we first see the properties of its deriva-

tive. It is known that E(X) = exp
(

−T (ρ,R̄)
λHX

− X
θ

)

[X +Θ1(·)](k−1) and we have

dIβ(Pd)

dPd
=
ρ(α + 1)

θkΓ(k)
exp [L1(Pd)] · Vβ(Pd), (4.42)

where Vβ(Pd) =
β

θ(α+1)

∫∞
L2(Pd)

E(X)dX−E[L2(Pd)] with β ∈ {α, 1}, L1(Pd) = −ρ
θ
(Ptc−

βPd), and L2(Pd) = ρ[(Prc−Ptc)+(α+1)Pd]. Here, we use the numerical integration

method to approach the value of Vβ(Pd). It is obvious that ρ(α+1)
θkΓ(k)

exp [L1(Pd)] ≥ 0,
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so the sign of (4.42) only depends on Vβ(Pd). Taking the derivative of Vβ(Pd) yields

dVβ(Pd)

dPd
= ρ(α + 1)E[L2(Pd)]

{
α+ 1− β

θ(α + 1)
− T (ρ, R̄)

λHL2(Pd)2
− (k − 1)(α + 1− β)

ρ(α + 1)[Prc + (α + 1− β)Pd]

}

.

(4.43)

Here, we first check the sign of ρ(α + 1)E[L2(Pd)]. It is obvious that

ρ(α + 1) exp
(

− T (ρ,R̄)
λHL2(Pd)

− L2(Pd)
θ

)

≥ 0. As for [L2(Pd) + Θ1(·)](k−1), we have

L2(Pd) + Θ1(·) = ρ[Prc − Ptc + (α + 1)Pd] + ρ(Ptc − βPd)

= ρ[Prc + (α + 1− β)Pd]

≥ ρ[Prc − (α+ 1− β)
Prc − Ptc
α + 1

]

= ρ

[
β

α + 1
Prc +

α + 1− β

α + 1
Ptc

]

≥ 0.

(4.44)

Therefore, the first part of (4.43) ρ(α + 1)E[L2(Pd)] ≥ 0. Furthermore, Taking the

derivative of the second part S(Pd) =
[
α+1−β
θ(α+1)

− T (ρ,R̄)
λHL2(Pd)2

− (k−1)(α+1−β)
ρ(α+1)[Prc+(α+1−β)Pd]

]

with

respect to Pd, we see that the derivative 2ρ(α+1)T (ρ,R̄)
λHL2(Pd)3

+ (k−1)(α+1−β)2
ρ(α+1)[Prc+(α+1−β)Pd]2

≥ 0.

Therefore, Vβ(Pd) is quasi-convex [25] when Pd ∈ [−Prc−Ptc

α+1
,+∞), and the minimizer

of Vβ(Pd), denoted as P ep
d , should make the monotonically increasing function S(Pd) =

0. Note that (k−1)(α+1−β)
ρ(α+1)[Prc+(α+1−β)Pd]

≥ 0 according to (4.44). P eq
d should not be less than

the zero point of
[
α+1−β
θ(α+1)

− T (ρ,R̄)
λHL2(Pd)2

]

, which means

P ep
d ≥ −Prc − Ptc

α + 1
+

√

(α + 1)θT (ρ, R̄)

ρ2(α + 1− β)λH
> −Prc − Ptc

α + 1
, (4.45)

and
dVβ(Pd)

dPd
|Pd=P

ep
d

= 0. For Pd ≤ P ep
d ,

dVβ(Pd)

dPd
≤ 0 and Vβ(Pd) is non-increasing,

while for Pd ≥ P ep
d ,

dVβ(Pd)

dPd
≥ 0 and Vβ(Pd) is non-decreasing. Furthermore, due to

E(0) = [Θ1(·)](k−1) exp(−∞) = 0, E(+∞) = limX→+∞ exp(−X
θ
)[X + Θ1(·)](k−1) = 0

and
∫∞
Θ2(·)−Θ1(·)E(X)dX ≥ 0 for all feasible Pd, it holds that

Vβ(−
Prc − Ptc
α + 1

) =
β

θ(α + 1)

∫ ∞

0

E(X)dX > 0,

lim
Pd→+∞

Vβ(Pd) =
β

θ(α + 1)

∫ +∞

+∞
E(X)−E(+∞) = 0.

(4.46)

According to the quasi-convexity of Vβ(Pd) and (4.46), Vβ(Pd) has a unique zero
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point P ∗
d ∈ (−Prc−Ptc

α+1
, P ep

d ): Vβ(Pd) ≥ 0 for all Pd ≤ P ∗
d , and Vβ(Pd) ≤ Vβ(+∞) = 0

for all Pd ≥ P ∗
d . Finally, we return to the monotonicity of Iβ(Pd) predicated on the

sign of Vβ(Pd):

• Iβ(Pd) is non-decreasing for Pd ∈ [−Prc−Ptc

α+1
, P ∗

d );

• Iβ(Pd) is non-increasing for Pd ∈ [P ∗
d ,+∞).

With such properties, Iβ(Pd) is quasi-concave with a global maximizer Pd = P ∗
d

for Pd ∈ [−Prc−Ptc

α+1
,+∞) [25]. Moreover, we use P ∗

α, P
∗
1 to present P ∗

d when β = α, 1

respectively. Since Vβ(P
∗
d ) = 0, and L2(Pd) is irrelevant to β, we have

Vα(P
∗
α) = 0; V1(P

∗
1 ) = 0;

V1(P
∗
α) =

1− α + α

θ(α + 1)

∫ ∞

L2(P ∗

α)

E(X)dX − E[L2(P
∗
α)]

= Vα(P
∗
α) +

1− α

θ(α + 1)

∫ ∞

L2(P ∗

α)

E(X)dX ≥ 0.

(4.47)

Considering the monotonicity of Vβ(Pd), no matter β = α or 1, the inequality P ∗
α ≤ P ∗

1

is tenable. The proof of Lemma 5 is completed.

Since (4.41) includes all the cases of I(Ptr, Prt): I1(Pd) with Prt = 0 and Iα(Pd)

with Ptr = 0, the larger one of max−Prc−Ptc
α+1

≤Pd≤0
{I1(Pd)} and maxPd≥0{Iα(Pd)} will

be the maximum of I(Ptr, Prt), corresponding to the minimum outage probability.

Here is the summary of steps to find the optimal (P ∗
tr, P

∗
rt):

1) Apply bisection search to find the unique zero point of Vβ(Pd) (defined in the

proof of Lemma 5): P ∗
α, P

∗
1 for β = α and 1;

2) Check the value of P ∗
α and P ∗

1 :

a) P ∗
1 < 0: max{I(Ptr, Prt)} = maxPd≤0{I1(Pd)} = I1(P

∗
1 ) ≥ Iα(0) = maxPd≥0{Iα(Pd)},

and the optimal solution is P ∗
d = P ∗

1 ;

b) P ∗
α ≤ 0 ≤ P ∗

1 : we have max{I(Ptr, Prt)} = maxPd≤0{I1(Pd)} = maxPd≥0{Iα(Pd)} =

I1(0) = Iα(0), and the optimal solution is P ∗
d = 0;

c) P ∗
α > 0: max{I(Ptr, Prt)} = maxPd≥0{Iα(Pd)} = Iα(P

∗
α) ≥ I1(0) =

maxPd≤0{I1(Pd)}, and the optimal solution is P ∗
d = P ∗

α.

3) Use the relation between Pd and (Ptr, Prt) to obtain the final energy cooperation

scheme (P ∗
tr, P

∗
rt).
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This result parallels that of the AWGN channel in Section 4.2.2, depending on the

energy arrival rate from the external source and channel condition.

4.4 Numerical & Simulation Results

The optimization results of the EC-ST scheme are obtained by numerical computation

of the theoretical analysis. The throughput performance in AWGN is calculated

by numerical methods, and the outage probability results in Rayleigh channels are

obtained by simulation. The simulation setups are based on the communications

between the energy harvesting transmitter and receiver with practical circuits that

consume non-zero power when they are active. We introduce two other schemes

based on ST for comparison: the practical transmitter (Tx) ST scheme and idealistic

transmitter (Tx) ST scheme:

• The practical Tx ST scheme makes the best use of the harvested energy at the

transmitter side where a certain part of the harvested energy is consumed by

active circuits, to reach an optimal tradeoff between the transmission power and

active ratio for the transmitter [52], [53]. However, it treats the receiver as an

ideal one that can work continuously without any energy constraints.

• Idealistic Tx ST scheme performs like the practical Tx ST scheme, but assumes

that the power consumption of active transmitter’s circuits is also zero.

None of the practical and idealistic Tx ST schemes allow energy cooperation between

the transmitter and receiver. For all examples, we assume that the power consumption

of active circuits on transmitter and receiver are Ptc = 50 mW and Prc = 200 mW

respectively.

4.4.1 Numerical Examples for the AWGN Channel Case

In the AWGN channel scenario, numerical results using the closed form optimization

solutions that were derived in Section 4.2 are presented. Fig. 4.4 shows the direction

of energy transfer to realize optimal energy cooperation under different energy transfer

efficiency α’s and normalized channel power gainH ’s, illustrated by Lemma 4. When

the energy arrival rate X < Prc (X = 100 mW), the energy can be transferred from

the transmitter to receiver or in the inverse direction. The whole plane of (α,H) is

divided into three regions:
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• WhenH < H1, energy should be transferred from the receiver to the transmitter

to fight the poor channel condition;

• When H1 ≤ H ≤ Hα, no energy cooperation is needed;

• WhenH > Hα, energy should be transferred from the transmitter to the receiver

to extend the active ratio, with the well-conditioned channel.

The values of H1 and Hα are determined by α. When α gets closer to 0, the differ-

ence of Hα and H1 will become larger and finally approach infinity, which means no

energy cooperation is allowed. Intuitively and theoretically, α determines how much

energy will disappear after energy transfer. Under a low α, energy cooperation may

be prohibited to prevent wasting energy, while energy cooperation can improve the

communications performance with a high α. To give an idea of the energy cooperation

power, we sample 4 points in Fig. 4.4 when α = 0.75 and show the corresponding en-

ergy cooperation power in TABLE 4.1. It is shown that when H = 16 or 21 dB which

correspond to the points close to the borders of the no energy cooperation region, the

energy cooperation power can be negligible (Prt = 2.9 mW or Ptr = 1.1 mW). On

the other hand, when H = 10 or 30 dB, corresponding to the points located far away

from the no energy cooperation region, the energy cooperation power is Prt = 62.3

mW or Ptr = 34.8 mW, comparable to the energy harvesting rate X = 100 mW,

which means the energy cooperation is necessary under these conditions.

Table 4.1:
H 10 dB 16 dB 21 dB 30 dB

Ptr 0 0 1.1 mW 34.8 mW

Prt 62.3 mW 2.9 mW 0 0

Fig. 4.5 compares the throughput performances under the EC-ST, practical Tx

ST, and idealistic Tx ST schemes with α = 0.75, H = 60 dB, by increasing the en-

ergy arrival rate X . Note that the energy transfer efficiency α = 0.75 can be possibly

achieved by the magnetic resonant coupling technique [57]. Obviously, the EC-ST

scheme outperforms the others. Failing to consider the power consumption of cir-

cuits, the performance of the idealistic Tx ST scheme is slightly degraded compared

to the practical Tx ST scheme when 100 < X < 150 mW because the former cannot

arrive at the proper transmission power Ps when ignoring the power consumption of

circuits. When X ≥ 150 mW, the idealistic Tx ST scheme falls significantly behind
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Figure 4.4: The regions with/without energy cooperation in AWGN channels (Trans-
mitter: Tx, Receiver: Rx).

the practical Tx ST scheme because its ρt starts to be less than ρr, which means the

receiver keeps active for a period of (ρr−ρt)T but cannot receive any information from

the non-active transmitter, wasting the harvested energy. The EC-ST scheme out-

performs the practical Tx ST scheme because the latter does not perform any energy

cooperation. When X < 200 mW, the transmitter in the EC-ST scheme transfers

energy to the receiver to extend the active ratio ρ, through appropriately reducing

transmission power for communications, and finally improves the throughput. When

X = 200 mW, no energy cooperation is necessary and hence the EC-ST scheme is

equivalent to the practical Tx ST at this point. When X > 200 mW, the energy that

overflows at the receiver will be transferred to the transmitter in the EC-ST scheme

and thus enhance transmission power. In this case, the performance is still improved

slightly.

In Fig. 4.6, X is fixed to 100 mW with α = 0.75, and we compare the throughput

performances under these three schemes. The EC-ST scheme still achieves the optimal

performance. It is noted that the performance of the EC-ST scheme coincides with

that of the practical Tx ST scheme from H = 15 dB to H = 25 dB which is inside the

no energy cooperation region of the EC-ST scheme, as shown in Fig. 4.4. Outside this

region, the EC-ST scheme outperforms by applying energy cooperation. Furthermore,

the idealistic Tx ST scheme is consistently the worst performer.
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Figure 4.6: Normalized throughput in AWGN channels as a function of the normalized
channel power gain H , with α = 0.75 and X = 100 mW.

4.4.2 Simulation Results for the Rayleigh Channel Case

In Rayleigh block fading channel condition, the target communications rate for this

system R̄ is set to 1 bps/Hz, and energy transfer efficiency α = 0.75. The optimal
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energy cooperation power Prt and Ptr are derived based on the different statistical

characteristics of the random variables X and H according to the method in Section

4.4.2 (we use shape parameter k = 1 for the Gamma-distributed X in the simulation).

Then the simulation are conducted by generating a large number of samples of X and

H , and then examining the outage of the system.

Fig. 4.7 depicts how outage probability varies with ρ under the EC-ST, practical

Tx ST, and idealistic Tx ST schemes. The means of the Gamma-distributed random

variable X and the exponentially distributed H are λX = 100 mW, λH = 30 dB

respectively. The optimal active-ratio ρ∗ for these three schemes are approximately

located from 20% to 30%. The idealistic Tx ST scheme leads to the larger outage

probability than the others. When ρ exceeds 50%, the outage probabilities of the

practical Tx ST and idealistic Tx ST schemes become extremely close, because the

outage events for these two schemes are essentially the circuit outage at the receiver

in this case, which depends on the same Prc and λX . In addition, the EC-ST scheme

achieves a lower optimal Pout than the other two schemes at ρ∗ ≈ 22%. When

ρ > 50%, the EC-ST scheme can also reduce the outage probability by transferring

energy from the transmitter to the receiver and prevent outage event at the receiver.
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Figure 4.7: Outage probability in Rayleigh channels as a function of ρ.

Figs. 4.8 and 4.9 illustrate the outage performances with varying λX and λH

respectively, under the EC-ST, practical Tx ST, and idealistic Tx ST schemes. In
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Fig. 4.8, λH is fixed to 60 dB, we can further verify the performance improvement of

the EC-ST scheme over the other two schemes. For the idealistic Tx ST scheme in

this case, the outage probability begins to reduce more slowly at λX = 150 mW, with

respect to the increasing λX . This transition point results from the more frequent

circuit outage event at the transmitter due to the insufficiency of energy. In Fig. 4.9,

the relative performance of the three schemes follows the same order as in previous

figures. The overlapping part of the EC-ST scheme and the practical Tx ST scheme

for 10 < λH < 20 dB indicates that energy cooperation is ineffective (Ptr = Prt = 0)

under this condition. Similar to the result of Fig. 4.4, it is implied that the range

of 10 < λH < 20 dB is located in the no energy cooperation region in the Rayleigh

block fading channel scenario.
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Figure 4.8: Outage probability in Rayleigh channels as a function of λX .

4.5 Summary

In this chapter, an energy cooperation save and transmit scheme has been designed

to optimize the point-to-point wireless communication between a practical energy

harvesting transmitter and receiver. The optimal normalized throughput and outage

probability are analyzed respectively in additive white Gaussian noise and Rayleigh

block fading channels. From the numerical and simulation results, we can see that,

with a limited amount of energy, the communications performance does not only
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depend on the transmission power, but also the active communications intervals of

the transmitter and receiver. One effective method for improving the communications

performance between practical energy harvesting devices is to allow the energy flow

between the devices, and then find an optimal tradeoff between the transmission

power and the active communications intervals.
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Chapter 5

Conclusions & Future Work

5.1 Conclusions

This thesis focuses on the practical implementation issues of the massive MIMO

and energy harvesting systems, aiming to obtain high spectral efficiency and energy

efficiency performance. To reduce the implementation cost of the massive MIMO

systems, the hybrid processing structure has been utilized in both single-user and

multiple-user scenarios. In the single-user scenario, the hybrid RF and baseband pre-

coder/combiner are designed by directly decomposing the pre-designed digital pre-

coder/combiner of a large dimension which is enabled by the the alternating opti-

mization technique. The performance of the MD-HP scheme has been shown to be

near-optimal compared to the SVD based full-complexity processing.

In the multiple-user scenario, a low-complexity Hy-BD scheme has been devel-

oped for the downlink communication of a massive MU-MIMO system. We aim to

harvest the large array gain through the phase-only RF precoding and combining and

then BD processing is performed on the equivalent baseband channel. It has been

demonstrated that the Hy-BD scheme, with a lower implementation and computa-

tional complexity, achieves a capacity performance approaching that of the traditional

high-dimensional baseband BD processing.

To achieve the goal of improving energy efficiency, we propose the energy coopera-

tion assisted energy harvesting communication between the practical transmitter and

receiver, whose hardware circuits consume non-zero power when active. The EC-ST

scheme optimizes the active time ratio and energy cooperation power for the maxi-

mum throughput under additive white Gaussian channels and the minimum outage
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probability under block Rayleigh fading channels. It has been shown that one effective

method for improving the communications performance between energy harvesting

devices is to allow the energy flow between the devices, and then find an optimal

tradeoff between the transmission power and the active time ratio.

5.2 Future Work

We believe the hybrid processing structure will lead the main trend of the massive

MIMO communications in the future 5G wireless communication system due to its

satisfying performance as well as the relatively low hardware complexity. In this the-

sis, the hybrid processing schemes are based on the perfect CSI assumption while CSI

can only be acquired by channel estimation. In the massive MIMO scenario, the com-

putation complexity of estimating the channel matrix is very high since the dimension

of the channel matrix is going to be large. The future work on hybrid processing will

focus on the massive MIMO channel estimation with the hybrid processing structure

implemented on all ends, and design a training and an estimation method with low

overhead and low computation complexity for practical implementation.

Besides, the energy cooperation based energy harvesting wireless communication

between the practical transmitter and receiver is now only considered in the P2P

scenario. As an extension to the current P2P setting, the harvested energy may be

allowed to flow among many devices in a network to increase the overall network

throughput by adjusting the active-ratio and transmit power of each device. This

can also be the future work of this thesis.
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