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Sandra Kübler, Ph.D.

Lawrence Moss, Ph.D.

Joel Tetreault, Ph.D.

April 11, 2014

ii



Copyright © 2014

Ross Israel

iii



Acknowledgements

As I begin thinking about who to list here that deserves my gratitude, the very

first thought that occurs to me is that I will inevitably leave out some extremely

important people. So, to all of those who deserve some thanks but do not see your

name in the paragraphs that follow, take solace in the fact that you actually get this

acknowledgement before anyone else: Thank you.

I would like to thank Markus Dickinson, who, aside from being just my aca-

demic advisor, has worn many other hats in my life since we first crossed paths in-

cluding teacher, boss, advisor, basketball teammate (and opponent), research part-

ner, friend, and even wedding officiant. I can safely say that there is no way that

I can envision having gotten this far along in my studies had I not met Markus

when I first arrived at IU in 2007. I would also like to thank my committee: Sandra
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Chapter 1

Introduction

If we knew what it was we were doing, it would not be called

research, would it?’
— ALBERT EINSTEIN

1



This dissertation describes an approach to detecting and correcting particle er-

rors in the writing of learners of Korean. Korean postpositional particles are units

that appear after a nominal to indicate different linguistic functions, including

grammatical functions, e.g., subject and object; semantic roles; and discourse func-

tions. In (1), for instance,가 (ka) marks the subject (function) and agent (semantic

role)1. The goal of this research is to automatically detect and correct particle errors

in written learner language.

(1) 그래서
thus

제가

I-SBJ

한국말을

Korean-OBJ

열심히

hard
배우고

learn
싶어요

want

‘Thus, I really want to learn Korean’

Grammatical error detection is an important, yet under-explored subfield of

Natural Language Processing (NLP) (Leacock et al., 2010). Automatically finding

errors in text is useful in a variety of contexts. Some of the most common applica-

tions include producing an improved final document for writing assistance (e.g.,

Chodorow et al., 2010; Hirst and Budanitsky, 2005; Kukich, 1992), providing feed-

back to language learners (e.g., Meurers, 2013; Heift and Schulze, 2007), providing

features for automatic essay scoring(e.g., Yannakoudakis et al., 2011; Attali and

Burstein, 2006; Burstein et al., 2003; Lonsdale and Strong-Krause, 2003) and post-

editing machine translation output (e.g., Peng and Araki, 2005a; Knight and Chan-

der, 1994). Within this growing field, most of the work has focused on English, but

there has been a small community of researchers working on other languages.

Expanding to other languages and language families obviously presents new

challenges, such as being able to handle word segmentation and greater morpho-

logical complexity (e.g., Basque (de Ilarraza et al., 2008), Hungarian (Dickinson

1Examples come from the learner corpus described in Chapter 4.
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and Ledbetter, 2012), Japanese (Mizumoto et al., 2011)); greater varieties of word

order (Czech (Hana et al., 2010), German (Boyd, 2012)); case ending errors (Czech,

German, Hungarian); differing definitions of function words (Japanese, Basque);

and so forth. An additional challenge for many of these languages is the lack of

resources, thus requiring techniques that work using smaller and/or unannotated

data sets that may be less reliable than some of the widely-available corpora for

better-resourced languages. Performing Korean particle error detection involves

dealing with all of the issues outlined above, making designing a system for parti-

cle error detection a substantial task on many fronts.

Before describing the system, it is important to establish the utility of such an

endeavor. As such, we will begin here by first defining grammatical errors, espe-

cially how they pertain to error detection. We will then define and provide exam-

ples of what error detection and correction actually entail. Next we will provide

some examples of common real-world applications of error detection. Finally in

Section 1.3, we will provide an overview of the research described in this thesis.

1.1 Grammatical Error Detection

1.1.1 Grammatical Errors

Before one can begin to assess the usefulness of a grammatical error detection sys-

tem, it is important to establish a definition of what a grammatical error is. Leacock

et al. (2010) describe written grammatical errors as instances of either grammar, us-

age, or non-mechanical punctuation errors. This definition relies upon the distinc-

tion between usage and grammar in Fraser and Hodson (1978). Their description

characterizes grammar as being the systemic ways that words and sentences are

formed (i.e. morphology and syntax), whereas usage refers to particular ways of
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speaking and writing that acquire some social status and become the norm among

dialect groups. Also relevant here is the canonical distinction between errors and

mistakes, i.e. mistakes are so-called “performance errors” that both native and non-

native speakers can make but are not indicative of corrupted learning of grammar,

whereas errors are only made by language learners, are systematic, and result from

a lack of knowledge about correct usage (Corder, 1967; Ellis, 2008).

While the working definition of grammatical errors laid out above is applicable

to both children learning an L1 and those learning a second language, it is the

language acquisition of the latter group, whom we will refer to as L2 learners, that

is under examination in most cases of grammatical error detection in the field of

NLP 2.

1.1.1.1 Error Detection and Correction

Now that we have established what denotes a grammatical error, at least in the

confines of this dissertation, we can formulate a specific definition of the task under

consideration. Grammatical error detection in general, and this work in particular,

is concerned with automatically finding systematic errors in grammar or usage

made in the writing of non-native speakers that indicate deficient learning, though

mistakes are, by and large, detected at the same time as errors. Correction, then, is

concerned only with rectifying such errors.

1.1.2 Applications for Error Detection

It is important to keep in mind that while “error detection” is commonly given as

a task itself, the ultimate application of the system being described can be crucial

2L2 learners is used as a blanket term here for brevity’s sake, though it could be a learner’s third,

fourth, etc. language that is being scrutinized.
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in determining the optimal settings for a system. There are a variety of contexts in

which error detection systems are applied; we outline some of the major ones next.

Automatic Grading One of the most commonly known applications of automatic

grammatical error detection is for automatic grading systems (Burstein et al., 2003;

Lonsdale and Strong-Krause, 2003; Yannakoudakis et al., 2011; Williamson et al.,

2012). Automatic grading is the process of using a machine to make judgements

about writing quality based on various aspects of grammar and word usage so

that a holistic score can be given to a piece of writing (Chodorow et al., 2012).

One good example of automatic grading comes from Educational Testing Service

(ETS): e-rater® (Attali and Burstein, 2006). E-rater, operational at ETS since 1999, is

the automatic scoring engine underlying a variety of ETS products including the

online essay evaluation service, CriterionSM (Burstein et al., 2003), as well as in high

stakes testing assessments like the Graduate Record Exam (GRE), which includes

essays by both native and non-native writers, and the Test of English as a Foreign

Language (TOEFL), which is a test of English proficiency targeted towards non-

native speakers. E-rater uses a variety of features to assign scores to essays, many

of which are dependent upon detecting usage errors of grammatical elements such

as prepositions, articles, punctuation, and agreement in addition to features that

consider other facets of writing including, word length, vocabulary, organization,

development, and so on. The rate of such errors are considered a strong indicator

of overall writing proficiency.

Improving writing quality There have been a variety of tools developed for non-

native English writers to help them write more fluently. In this context, grammati-

cal error detection can be useful to target specific errors and point them out to the
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writer in hopes of producing better essays or other documents (Chodorow et al.,

2010; Hirst and Budanitsky, 2005; Kukich, 1992). In the short term, the goal of pro-

viding this assistance is to improve the current document by highlighting errors

and suggesting corrections. In the longer term, the goal is to help writers learn

more about the language they are studying so that they can produce higher quality

writing, as described next.

Tutoring Systems Next there is the case of intelligent language tutoring systems

(ILTS), which are applications for assisting learners in their pursuit of second lan-

guage study. ILTS have been proposed and/or developed for a variety of languages

including German (Heift, 2010, E-tutor), Japanese (Nagata, 2009, Robo-Sensei), Por-

tuguese (Amaral and Meurers, 2011, TAGARELA), Russian (Dickinson and Her-

ring, 2008, Boltun), and Spanish (Hagen, 1999, Spanish for Business Professionals).

These types of applications can be extremely useful when they make learners more

aware of characteristics in their writing that indicate useful linguistic distinctions

in their target language (Amaral and Meurers, 2006). In order to develop such sys-

tems, though, there is a need to deal with the inherent problems in analyzing lan-

guage learner data so as to provide intelligent feedback (Meurers, 2013). A major

step in this process is detecting and correcting grammatical errors. By targeting

specific errors, a system can make learners more aware of non-native-like aspects

in their use of language that require more attention. The feedback model can also

take into account what errors are commonly made by the learner and adjust the

feedback it provides accordingly.

Improving Machine Translation Grammatical error detection can also be a use-

ful tool in correcting the output of natural language generation (NLG) systems
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for various applications. Most notably, it can be used to detect errors in machine

translation (MT) output (e.g., Knight and Chander, 1994; Peng and Araki, 2005b).

Error detection can also serve the MT community by being incorporated in quality

metrics to produce translation scores that are as favorable or, in some cases, even

better than popular metrics such as BLEU and METEOR when compared to human

judgements of MT output (Parton et al., 2011). In these contexts, an NLG system is

producing the input to the error detector rather than a writer, but the goal is similar,

namely to produce more error-free language.

1.2 Korean as the Language of Focus

There are a number of reasons that Korean serves as the language of study for this

dissertation. First of all, as mentioned above, the majority of work on grammatical

error detection focuses on the writing of learners of English. Expanding to more

languages will not only improve the language learning and research situations for

the language under consideration, but will also provide insights about error detec-

tion in general that could prove useful to more languages.

Korean exhibits a myriad of features that are not present in Western languages

that make it interesting from a linguistic perspective. First of all, Korean words are

formed via a rich agglutinative morphology, distinguishing it from the more ana-

lytic system of English. Syntactically, Korean is a verb final language, but actually

features relatively free word order, due in part to the use of case marking, i.e. words

are specifically marked as to their function in the sentence. More detailed linguistic

description of Korean is provided in Chapter 3.

Perhaps more important than the linguistic motivation is the fact that Korean

is a Less Commonly Taught Language, which points to a need for better pedagog-
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ical research (Dickinson et al., 2008). Moreover, the US government has identified

Korean as a critical language in need of more proficient speakers (National Virtual

Translation Center, 2007). Developing corpora and computational tools will help

both of these causes, as they will aid in furthering pedagogical research, language

learning, and computational linguistics research.

1.3 The Current Approach

The end goal of this dissertation is to develop an automatic machine learning-based

system for Korean particle error detection. This is a task that has not been given any

serious attention in NLP literature to this point. As such, a number of preliminary

steps have been required to ensure that this novel line of research is based on sound

theory and practices.

One of these steps is to properly outline the scope of particle errors—what types

of errors occur, what types of particles are involved in errors, how other words in-

teract with particles, etc. To that end, we have been part of a Korean learner corpus

particle error annotation project. This annotation process has informed much of

the research that would follow. Korean particle error detection has not been inves-

tigated to this point, thus non-trivial issues such as what types of errors learners

commonly make, what types of errors are most important to correct, how to define

these errors, and how to handle the surrounding contexts can best be investigated

by ensuring that all of these issues can be answered during the annotation process.

Once completed, the annotated corpus serves as a crucial component to the er-

ror detection system described in this dissertation: an evaluation set. We put great

care into ensuring the annotation’s usefulness in an error detection system, while

maintaining annotation methodology that allows the corpus to be used in other lin-
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guistic research settings. Given that other languages, such as Japanese and Arabic,

face some of the same issues (e.g., Hanaoka et al., 2010; Abuhakema et al., 2008),

fleshing them out for error annotation and machine learning is useful beyond this

one situation.

Another requisite foundational measure for this approach also involves obtain-

ing and processing native-like Korean data. Our approach is to procure a large

scale corpus of native-like Korean from the web to serve as training data for clas-

sifiers. As we mentioned above, Korean does not benefit from the same amount of

large-scale, readily available corpora that well-researched languages like English

do. Utilizing the web provides an option that can work to attain large amounts of

data for any language with a decently large presence on the internet. We explore

using web-as-corpus techniques to build a corpus that is appropriate in terms of

learner level, formality, and topic.

We also look into utilizing social network language learning data for error de-

tection tasks. This data is collected from websites that encourage language learners

to write essays in a language they are learning that will then be corrected by a na-

tive speaker of the language. Such data is valuable as it is produced on a large scale

and contains some degree of markup that can be utilized to approximate annota-

tions. With this data, one can build a large scale corpus of errors, attain parallel

data for MT-based approaches, and determine confusion sets, e.g. what types of

particles are often confused for another by learners.

After developing a base of useful corpora for the task, we can focus on estab-

lishing the actual task of particle error detection. Particles have a range of functions,

including case marking and preposition-like functions. Like articles and preposi-

tion, they are a closed class of functional elements, so we can adapt techniques from
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English for other closed class functional items to detect errors in usage. To that end,

we develop machine learning-based approaches for particle error detection. Invest-

ing in methods which apply across languages will make techniques more robust

and applicable for even more languages.

Because of the complex nature of Korean particles, it can be difficult or even

foolish to paint the problem with a wide brush. Our approach is to break the task

into a series of sub-tasks, in order to ask less involved questions of a classifier

for each task. Essentially, we implement a pipeline approach that first determines

whether there is an error involving a particle, and then if an erroneous particle

is detected, a second classifier is employed to select the best particle for a given

context, i.e. to correct the errors found at the previous step (cf. Gamon et al., 2008).

Crucially, the task of error detection is further broken down in the current

methodology to treat different types of errors differently. That is, we employ sepa-

rate classifiers for the tasks of particle omission detection and particle substitution

detection. The main reason for utilizing differing classifiers is that the tasks are

based on different research questions. In the case of particle omission, the question

is whether or not an empty space should actually have a particle. For substitution

detection, the question is whether or not an existing particle is correct. Once errors

have been identified, we can move on to a separate classifier that attempts to pick

the best particle for that context.

The rest of the dissertation is laid out as follows: Chapter 2 looks at relevant

literature in the fields of learner corpus development and grammatical error detec-

tion. An overview of Korean language, especially particles, is given in Chapter 3.

The error annotation scheme and the resultant corpus are described in Chapter 4.

Chapter 5 details the methodology we employed to procure our web-based cor-
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pora, both the well-formed training corpus and the social networking language

learning corpus.

In Chapter 6 we move on to describing the error detection system itself. Chap-

ter 7 details our approach to detecting errors of particle omission. Substitution error

detection is explained in Chapter 8. We then lay out our approach to error cor-

rection for both omissions and substitutions in Chapter 9. Finally, we conclude in

Chapter 10.
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Chapter 2

Review of Relevant Literature

Is there anyone so wise as to learn by the experience of others?

— VOLTAIRE
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As mentioned in Chapter 1, error detection is a growing field. We begin this

chapter by reviewing some of the major works in English error detection, which

makes up a bulk of the research on error detection in general. We then move on

to discuss non-English error detection, especially for Japanese, which is the most

similar language to Korean for which there are various studies available. Finally,

we will review relevant research that discusses learner corpora and annotation, as

collecting and annotating learner data helps define the task and points out some of

the difficulties associated with error detection research.

2.1 Error Detection for English

Much like the field of NLP in general, grammatical error detection has developed

such that a bulk of the work has been done on English. There are a variety of rea-

sons for this bias. First of all, English is commonly accepted as a global language

with around 400 million native speakers, and estimates of as many as 1 billion

non-native speakers (Guo and Beckett, 2007). Thus, there is a deserved amount of

interest in developing linguistically aware tools to assist learners and teachers of

English. Secondly, there are a vast amount of NLP tools available for processing

English data such as part-of-speech (POS) taggers, tokenizers, parsers, etc., espe-

cially in regard to other languages (Leacock et al., 2010). Along with these tools,

there are a number of learner corpora available for researchers to work with, e.g.,

ICLE (Granger, 2003b), CLC (Nicholls, 2003), NICT (Izumi et al., 2005), and NU-

CLE (Dahlmeier et al., 2013). These corpora are extremely valuable resources, as

building and annotating corpora can be time and labor intensive endeavors.

All of these factors contribute to a flourishing community of researchers work-

ing on error detection in English. The field has developed over the last three decades,
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starting with early grammar checking tools such as the Unix Writer’s Workbench

(Macdonald et al., 1982), which was based mainly on string matching, and IBM’s

Epistle (Heidorn et al., 1982), which used parsers and linguistic grammars to ana-

lyze text. Such rule based approaches, while still in use in most publicly available

grammar checking software, have given way, for the most part, to statistical ap-

proaches methods amongst the research community, mirroring the general trend

in NLP.

In the early 1990s, statistical methods for word sense disambiguation began to

take hold, based on the success of the approach of Gale et al. (1992) at AT&T. Soon,

principles of using large scale corpora to inform models of regular language use

were being applied to problems such as diacritic restoration (Yarowsky, 1994) and

homophone spelling error detection (Golding and Roth, 1996). One issue with ap-

proaches to this point is that they train only for the contexts of specific confusion

sets, so scalability comes into question. Knight and Chander (1994) developed a

method for correcting article errors in machine translation output based on a de-

cision tree classifier trained over lexical features to determine the best article for

a given context. It was only a slight leap to go from correcting machine learning

output to correcting language learner texts using similar methodologies.

Interest in grammatical error detection has grown to the point that there was

a shared task focusing on preposition and article error correction for English in

2011 and 2012, featuring different approaches to the same tasks by a variety of

research teams (Dale and Kilgarriff, 2010; Dale et al., 2012). More recently, there was

a CoNLL shared task on grammatical error correction that evaluated performance

on a wider range of errors including prepositions, determiners, noun number, verb

form, and subject-verb agreement (Ng et al., 2013).
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2.1.1 Preposition & Article Error Detection

Two of the more prominently dealt-with error types for English are prepositions

and articles. Examples of preposition errors are given in Figure 2.11. Each example

shows an error and a correction, where the corrections deal only with preposition

errors, leaving all other errors as is.

(2) a. Erroneous: Yes, I wait you.
b. Corrected: Yes, I wait for you.

(3) a. Erroneous: So I go to home.
b. Corrected: So I go home.

(4) a. Erroneous: Adult give money at New Years day.
b. Corrected: Adult give money on New Years day.

Figure 2.1: Examples of Preposition Errors

In (2), there is an omission error, where the sentence is missing the preposition

for. (3) is the opposite situation, where the sentence has an extraneous preposition,

to. Then in (4), there is a substitution error, as at should be on. These error types

can also be similarly characterized for articles (as well as other types of errors).

The examples in Figure 2.1 illustrate some of the properties that make working

with mal-formed data difficult. Namely, even if one targets a specific error, there is

a significant possibility that the surrounding context will contain other errors. For

example, in (4), there is an agreement error between the subject, Adult, and the verb,

give, along with the preposition error. This means that any approach that utilizes

surrounding context of a preposition to help make a decision as to whether or not

an error is present could be affected, if it learns from well-formed data. Parsers and

other NLP tools can also be impacted by such errors. For further dicussion of how

1These examples are taken from Han et al. (2010)
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errors can affect downstream processing, see, e.g. King and Dickinson (2013).

Despite the difficulties present in the tasks, preposition and article error cor-

rection are two of the more approachable problems in the field of error correction,

in part because the error typology is easy to define; the three error types in Fig-

ure 2.1 represent the most common ways that prepositions can be misused, though,

spelling errors are a different issue that can concern prepositions and articles. More

importantly, both prepositions and articles are closed sets of word classes, meaning

that there is a finite set of types of each. Other word choice errors, verbs for exam-

ple, are much more difficult to pin down due to the abundant and in fact growing

set of verbs available. For approaches that use statistical methods, a large training

corpus will have copious amounts of preposition and article contexts, as these func-

tion words play an important role in English grammar; any sentence more than a

few words long is likely to have examples of both.

As prepositions and articles present a problem are among the most frequently

occuring error types in many corpus studies (Leacock et al., 2010), and the tasks

are relatively easier to define than for other errors, there has been a good deal of

work done looking specifically at these error types. Prepositions and articles are

very relevant to Korean particles, as they have a great deal of similarity. Particles

are also a closed set, and perform some of the same grammatical functions (a de-

tailed look at Korean particles is provided in Chapter 3). Given these similarities,

we provide a review of relevant literature on English article and preposition error

detection/correction. We focus especially on machine learning-based approaches,

as that is the method which we will employ for detecting particle errors in this

research (see Section 6). It is important to note here that while we will provide

evaluation metric scores for many of these approaches, the research reported here
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was, by and large, performed on differing data sets, making comparison between

systems on the same task difficult.

Izumi et al. (2004) use a maximum entropy classifier trained on a small set of

error annotated learner data to detect errors in, among other things, prepositions

and articles. The classifier is trained on words and POS information in five word

window with two words on either side of a possible error. They achieve 68% pre-

cision on both articles and prepositions, with 29% recall for articles and 16% recall

for prepositions. The use of a maximum entropy classifier as well as the feature set

would serve as a starting point for many of the research that would come later that

dealt with similar types of errors.

Han et al. (2004, 2006) describe an approach to detecting article errors using

a maximum entropy model trained on well-formed text. The classifier is tasked

with selecting from a/an, the, and null as the best article for a given NP. The system

achieves 83% accuracy when tested on well-formed text, and about 90% precision

and 40% recall on non-native learner essays. The system produced 85% agreement

with human annotators for the binary task of whether or not there should be an

article for the context.

Lee and Seneff (2006) describe a system for article prediction based on parse

ranking, using a statistical parser. Training on over ten thousand transcripts of

flight reservation data, they build a lattice where articles, prepositions, and auxil-

iaries are first removed, then allowed to be inserted between any two words. Test-

ing on a small set of sentences from the same domain, they achieve 86% precision

and 76% recall. It is worth keeping in mind that the system is not tested on actual

learner data, however, the lattice approach did allow for nouns and verbs to be

replaced by any inflectional variant to approximate noise in learner contexts.
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Tetreault and Chodorow (2008, 2009) build upon earlier work in Chodorow

et al. (2007) and adapt the approach from Han et al. (2006) to work specifically with

prepositions, rather than articles. The authors extract 25 features to predict the cor-

rect preposition, including features capturing the lexical and grammatical context

(e.g., the words and POS tags in a two-word window around the preposition) and

features capturing various relevant selectional properties (e.g., the head verb and

noun of the preceding VP and NP). They use a set of 34 prepositions, and have a

large training corpus, around 7 million instances, made up of well-formed English

from news sources. Instances with other errors in the context around the preposi-

tion are skipped, as classifier performance would be poor because the classifier is

trained on well-formed text. The approach involves post-processing filters on top

of the classifier that prevent certain contexts from being flagged as errors. In the

case of errors of commission, they ignore the classifier and use only the heuristic

filters, as these are far less frequent and it is difficult to build a single classifier with

high precision for omissions, substitutions, and commissions. The system achieves

about 84% precision and 19% recall on a test set of learner essays.

De Felice and Pulman (2009) train a maximum entropy model on British Na-

tional Corpus (BNC) data to test on both well-formed text as well as English Lan-

guage Learner (ELL) data from the Cambridge Learner Corpus (CLC) for preposi-

tion error detection on a set of nine common prepositions. Their approach is largely

similar to that of Tetreault and Chodorow (2008), though they add syntactic infor-

mation from CCG parses of the data, as well as named entity recognition. One

of the main contributions of this work is their examination of the effectiveness of

NLP preprocessing (POS tagging and parsing) on learner data and how it relates to

the accuracy of an error detection system based on native-like data. They find that
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misspellings and grammatical malformations in the surrounding context of prepo-

sitions can lead to false positives (i.e. marking well-formed language as erroneous)

by the classifier.

Lee and Knutsson (2008) use memory-based learning, with 10 million sentences

in their training set to attempt to guess the best preposition for a given context,

considering 10 common prepositions in English. Differing from a majority of the

work done on grammatical error detection, the authors utilize a set of syntactic

features obtained from a statistical parser. The testing is done only on altered Wall

Street Journal text, rather than on learner data, so the surrounding contexts are

always well-formed English. As such, the results are not really comparable to error

detection efforts carried out on authentic data.

Gamon et al. (2008) describes an approach to detecting and correcting prepo-

sition and article errors in non-native text utilizing decision trees trained on na-

tive text and a language model (LM) trained on Gigaword, a large-scale corpus of

English containing over four billion words. There are two classifiers for each phe-

nomenon: a presence classifier to determine whether or not a preposition or article

is necessary, and a choice classifier that selects the best one for a given context.

The language model is then used to filter out unnecessary changes by requiring

the output of the classifiers, known as the selection provider, to have a higher LM

probability than the original input. Finally, an example provider queries the web

for the chosen correction to provide learners with good examples of suggested out-

put. Gamon (2010) extends this approach by combining the output of the SP and

the LM as features for a meta-classifier trained on error annotated data. The meta-

classifier improves on the previous results and achieves precision of about 77% and

85% for articles and prepositions, respectively.
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Han et al. (2010) also work on detecting and correcting error in English preposi-

tions in a learner corpus. They train a maximum entropy classifier on a large-scale

error tagged corpus of learner English, distinguishing it from most previous sta-

tistical approaches that trained on well-formed text. They compare the results of

the system training on the annotated learner data vs. using a well-formed corpus

and find that the former achieves precision more than 10% higher than the latter,

while recall is also slightly better for the error-trained version. The authors point

out, though, that the training corpus is made up entirely of 10-16 year old native

Korean speakers, and the test set is an unseen portion of the same data set. Thus,

scalability and the performance of the classifier on learners with different language

backgrounds are lingering issues.

Using article errors as a test platform, Rozovskaya and Roth (2010c) extend

beyond the typical methodology of training on well-formed data by artificially in-

serting errors into otherwise well-formed text. They generate errors in number of

ways, including randomly replacing correct articles with errors and by learning

error patterns from language learner texts and altering random training instances

to match the distributions. The results show favorable error reduction rates for the

altered training data scenarios versus “clean” training scenarios for learners from

various L1s, with the biggest gains coming for Chinese and Russian learners of

English.

In work from the same year, Rozovskaya and Roth (2010a) consider preposi-

tion error detection and examine improving performance by restricting the confu-

sion sets for each preposition. Rather than train a classifier that allows all possible

prepositions under consideration in a study as a correct answer (cf., e.g. Tetreault

and Chodorow, 2008), they enforce L1-dependent confusion sets for each preposi-
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tion. The results show that restricting the confusion sets greatly improves system

precision.

The same authors, Rozovskaya and Roth (2011) experiment on both articles

and preposition errors and compare four linear learning models: Averaged Per-

ceptron (AP), Language Model (LM), Naı̈ve Bayes (NB), and a “counting method”,

SumLM. They test on the same corpus presented in Rozovskaya and Roth (2010b)

and train using WikiNYT, a selection of Wikipedia and New York Times articles

from the Gigaword corpus, and the Google Web1T 5-gram corpus. The results show

that the AP generalizes the best of the four models. They also present an approach

to adapt trained models to a language learner’s L1 based on the probability of the

error by learners of that language. This method allows for models trained on na-

tive data to be adapted for testing on data written by learners of any language for

which error distributions are known.

Dahlmeier and Ng (2011) propose a method for preposition and article error de-

tection and correction based on Alternating Structure Optimization (ASO). The ap-

proach involves combining information from native text with that of error-annotated

data to form a unified model. ASO performs the target task, i.e. error correction,

and an auxiliary task, i.e. article/preposition selection in native text, by minimiz-

ing errors on the two tasks during training. They evaluate on NUCLE, explained in

detail in Section 2.3.1. The results show that ASO produces the best results overall,

beating baseline experiments and two commercial grammar checkers for this task.

2.1.2 Other English Error Detection

While preposition and article error detection have accounted for a great deal of the

research done for English error detection, there has still been a good deal of work
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done on other phenomena. We present here an overview of some of the recent work

on less commonly researched errors.

2.1.2.1 Punctuation

There have been two system described recently designed to deal with specific

punctuation error detection. Israel et al. (2012) describe a comma error detection

system. Beginning with developing an annotation scheme and annotating a corpus

of learner essays, they then used conditional random fields (CRFs) to build mod-

els of correct comma usage and apply that to learner data. The feature set includes

a set of lexical and POS features in a five word window, as well as features that

encode the distance of the target from the beginning and end of the sentence, and

to the previous and following coordinating conjunction. Because comma errors are

relatively uncommon, even in learner writing, with respect to correct usage, the

authors implemented a high confidence filter on the system to mark any comma

as erroneous. They achieved 94% precision and 32% recall on non-native data, and

85% precision and 20% recall on native student data. They also apply the system to

the similar task of comma restoration (i.e. inserting commas into comma-less text)

and achieved 85% precision and 66% recall on section 23 of the Wall Street Journal,

beating established baselines (cf. Shieber and Tao, 2003; Gravano et al., 2009).

Cahill et al. (2013a) focus on hypen omission errors, while noting that hyphens,

while less common than other types of errors, do occur in and affect the quality of

learner essays. The authors used a maximum entropy classifier trained on a vari-

ety of different training corpora: 1) news text, 2) hyphen-error text automatically

retrieved from Wikipedia edit history, and 3) a combination of both. The features

were derived from local context of the position between two words (i.e. where a
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hypen could occur). They also utilized the Collins dictionary to indicate whether

the two surrounding words occur as a hyphenated entry, and added a feature that

encoded the proportion of the occurrences of the word pair as hyphenated or not in

Wikipedia. The system achieves 99% precision and 41% recall for hyphen omission

error detection/correction on a corpus of learner essays.

2.1.2.2 Tense-Aspect

A relatively understudied grammatical phenomenon in the context of automatic

error correction is that of tense and aspect. Tajiri et al. (2012) take the problem on,

working on finding such errors in the writing of Japanese learners of English. An

example of a verb tense error is given in (5)2, where the verb go is in the wrong

tense in the second sentence. Correcting such errors is difficult for computational

approaches because knowing that went is a better correction than will go is depen-

dent upon knowing that the second sentence refers to a past event, which can only

be understood based on the first sentence.

(5) I had a great time this summer. First I *go to Kaiyukan with my friends.

The authors set up a sequence labeling task using conditional random fields to

label each verb phrase with tense/aspect based on the surrounding context. Test-

ing on a corpus with 16,308 verb phrases, of which 1072 contain a tense/aspect er-

ror, the authors report precision-recall curves where precision never reaches above

40%, and recall stays below 20%. However, the CRF-based system does perform

better than support vector machines (SVM) and maximum entropy-based systems

using the same feature set. The system is able to find erroneous sentences with and

F1-measure of about 70%.

2Example taken from the paper; Kaiyukan is an aquarium in Osaka, Japan.
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2.1.2.3 Holistic views of Sentences

A handful of studies have opted to consider entire sentences as the focus for er-

ror detection/correction, rather than specifying some particular phenomena as the

target for a system. Gamon (2011) is one such study that uses high order sequence

models to detect the presence of any error in a sentence. In this approach, sen-

tences are processed with a maximum entropy Markov model (MEMM) similar

to one that would be used for POS tagging or named entity recognition (NER).

The MEMM incorporates a variety of features including language model informa-

tion, string-based features, and linguistic analysis features. The idea underlying the

method is that ungrammatical sentences should produce relatively lower scores

than grammatical ones.

Madnani et al. (2012) takes a different approach to holistically correcting erro-

neous sentences. They apply a “round-trip” machine translation (RTMT) technique

to correcting entire sentences of learner English. RTMT typically involves trans-

lating from the target language to the learner’s native language, then back to the

target language to leverage the error correction built in to MT systems. The au-

thors extend this technique by using multiple pivot languages, based on the idea

that with several options to choose from, there should be a better chance of get-

ting useful translations back. The system combines the RTMT for eight languages

into a lattice and uses a combination of language model scores, weight edge scores,

and other factors to produce a corrected sentence that may contain parts of mul-

tiple translations. The system improves 36% out of 200 sentences presented, and

negatively impacts 31%.
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2.1.2.4 Collocation Errors

Another interesting task in the field of grammatical error detection is that of finding

errors in the use of collocations. Collocations are linguistic constructions made up

of multiple words that function as a single idea. For an explanation of how difficult

it can be to define exactly what constitutes a collocation see Leacock et al. (2010).

For the purposes of this discussion, it is enough to say that collocations are combi-

nations of words that convey a single meaning and that the meaning of the whole is

often not the meaning of the parts. Chang et al. (2008) describe an approach to de-

tecting and correcting errors in the English writings of L1 Chinese speakers. First,

verb+noun collocations are extracted from the text and looked up in a list of over

630,000 collocations collected from the BNC. If a collocation is not found in the

list, it is marked as an error. At this phase, the system produces 98% precision and

91% recall. To correct the collocations, the authors used a combination of bilingual

dictionaries and parallel corpora to generate confusion sets and replace words in

the collocation. The candidate corrections are ranked according to their occurrence

in the collocation list. The correction list most often contains an acceptable correc-

tion in the first or second entry, with an mean reciprical rank value of 0.66. These

results are quite good for this task and certainly when compared to other error de-

tection scenarios. However, as the approach is dependent on building L1 specific

resources, it faces major scalability problems.

2.1.2.5 Spelling

Spelling mistakes often make error detection of other types, e.g. articles and prepo-

sitions, more difficult, as any approach that involves looking at context is subjected

to noise in the form of spelling errors. As such, language learner spell checking has
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developed as a specialized field because a) learners make different kinds of spelling

mistakes than native speakers (Boyd, 2009), and b) spelling errors make other tasks

including POS tagging, parsing, and detecting other grammatical errors more dif-

ficult (Sakaguchi et al., 2012).

Most spell checkers operate on a number of assumptions that are unsound for

dealing with learner data. First of all, most spell checkers are built to aggressively

search for simple mistakes, such that the correction usually is not greater than one

edit (insertion, deletion, substitution, or transposition) away from the erroneous

word, and do not expect to find >1-edit distances mistakes. Words that contain

multiple edits are accordingly penalized in the ranking of suggestions for a mis-

spelled word. This behavior is likely due to the commonly held assumption that

80-95% of mistakes are of the can be corrected by making only one edit, but research

in second language studies has shown that this is often not the case with non-native

writing (Damerau, 1964; Pollock and Zamora, 1984; Rimrott and Heift, 2005). How-

ever, Flor and Futagi (2012) report that their system for non-word spelling errors,

ConSpel, though not designed specifically for L2 spell-checking, performs about

the same on native and non-native text. This is likely due to the fact that the system

was built to look for misspellings with an edit distance of more than one.

One of the major complicating issues for spell checking is dealing with “real-

word” errors, that is, errors where a writer substitutes one real word for another

(Islam and Inkpen, 2009). For non-word errors, detection usually involves checking

a dictionary or corpus for the word, and if it is not there, the correction component

comes in and generates a list of best suggestions, often based on Levenshtein Dis-

tance. For real word errors, detection and correction involve examining the context

around a word, and essentially second guessing the author as to what word they
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meant to use (Hovermale and Mehay, 2009).

2.1.3 Parsing ill-formed input

One area of research that is an important part of the story of English grammatical

error detection is that of parsing ill-formed input. Most parsers are built to han-

dle native-like, grammatical input, so they often fail to produce accurate parses

when presented with language learner input. Proofreading tools often involve us-

ing parsers that have some way of generating parses for sentences with grammat-

ical flaws, such as subject-verb disagreement (Leacock et al., 2010). Along with be-

ing error-tolerant, these tools must also have some mechanism for indicating that

a parse does not match standard grammatical constraints for the language. This

line of research is often undertaken in the interest of providing an error analysis,

rather than correcting a form. That is, it is more useful as a tool for diagnosing

grammatical inaccuracies than rectifying them.

There are a variety of ways that one can go about adding grammatical error

tolerance to computational grammars; we’ll cover some of the most popular here.

Dini and Malnati (1993) describe an approach that involves over-generating parse

trees and ranking them in order of the least amount of grammatical constraints that

must be violated to generate a parse. Heinecke et al. (1998) add rules that rank cer-

tain constraints, including some rules that may not be broken to limit the number

of possible parses. Then there is the idea of adding “mal-rules” to grammars that

allow parsing of specific errors, i.e. enabling a parser to spot specific grammatical

errors such as missing articles (cf. Schneider and McCoy, 1998; Suppes et al., 2012).

Another method is altering the parse unification process so that if two elements

would not unify under normal constraints, unification can be allowed but with a
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penalized score for the parse (cf. Hagen, 1995; Fouvry, 2003). There is also a method

of “parse-fitting” that calls for a top-down parser to run after a bottom-up parser

has failed and attempts to find pieces of the parse to “fit” together (cf. Jensen et al.,

1983).

2.2 Non-English Error Detection

Having discussed approaches to error detection in English, we turn now to non-

English error detection. As stated in the Introduction, research on the task of Ko-

rean particle error detection has not been reported that we know of. However, there

has been some similar work done on other languages. We review the most relevant

of these here.

2.2.1 Japanese Error Detection

Suzuki and Toutanova (2006) predict case markers in Japanese for an MT system,

basing their techniques on semantic role labeling. They predict 18 case particles,

a subset of all Japanese particles. They use a two-stage classifier, first identifying

whether case is needed and then assigning the particular case ending, training the

second classifier only on instances where a case marker was required. This break-

down and parts of their feature sets are similar to the current approach, but: a)

they use (gold standard) parse features and treat the problem as one of predicting

markers for phrases; b) because they can rely on parse features, the ignore poten-

tially useful discourse features (cf. our current feature set in Section 8.3); and c) they

correct machine errors, as opposed to learner errors, whereas we collect, annotate,

and test on two distinct learner corpora (see Chapter 4 and Section 5.7). Working

on learner language, which contains other errors, and without gold standard parses

28



would likely mean a significant degradation in performance.

There has recently been a growing amount of error detection research for Japanese,

which exhibits many similarities with Korean. Oyama (2010) uses a basic SVM

model trained on well-formed Japanese to detect particle errors. The author focuses

on eight different case particles and finds that the particle frequency distribution in

the training corpus affects accuracy, i.e., the well-formed training corpus does not

match the distribution of particles used by learners without some sampling. Run-

ning the system on unseen text from a newspaper corpus also used for training the

system, the results were best for the particles used most frequently in the corpus in

a particle selection task.The main learner corpus evaluation is done on 200 learner

particle instances of a single particle (wo, the object marker).

Mizumoto et al. (2011) use statistical machine translation (SMT) techniques to

detect and correct all errors within Japanese, using a “parallel” corpus of ill-formed

and correctly-formed Japanese, based on correction logs from a social network-

ing language learning website, Lang-83. The translation model for the approach is

built using the parallel corpus of erroneous and corrected sentences extracted from

Lang-8, a monolingual corpus of correct Japanese is used to build the language

model, and the task is to translate erroneous Japanese phrases into grammatical

versions. The results show promise (though, by the authors’ admission, there is

room for improvement in their evaluation practices), however, this system looks to

correct entire phrases, and therefore does not provide the granularity of looking at

a specific phenomenon, e.g. particles. While correcting entire phrases or sentences

may often correct particle errors themselves, without annotation for specific phe-

nomena, one cannot be sure what types of errors the system handles best. This

3http://lang-8.com
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lack of error knowledge in the system also inhibits the system’s ability to provide

meaningful feedback to learners about exactly what grammatical phenomena are

the source of their errors.

Imamura et al. (2012) correct Japanese particle errors using an approach sim-

ilar to SMT ones, correcting erroneous phrases and looking at resultant particle

changes. They test on real learner data made by asking Chinese learners of Japanese

to translate English Linux manuals into Japanese that was then annotated by na-

tive speakers. The approach relies on a corpus of generated psuedo-errors based

on confusion matrices of each particle under consideration inserted into Japanese

Linux manuals. The proposed system is based on domain adaptation where the

psuedo-error corpus is the source domain and the real error corpus is the target

domain; the feature set is optimized by weighting features that appear consistently

between the source and target. The results show that the proposed system performs

better than baseline experiments, but precision is, at best, around 85% and drops to

around 60% when recall reaches 10%.

2.2.2 Basque Error Detection

Turning to Basque, de Ilarraza et al. (2008) detect errors in five complex postposi-

tions, where the postposition itself has a suffix, by developing 30 constraint gram-

mar rules which use morphological, syntactic, and semantic information. They ob-

tain 67% precision and 65% recall on all postpositions in their test data, but there

were only 39 errors to be detected in their 2590 sentences. Despite the promise

shown in the rule-based approaches in Eeg-Olofsson and Knutsson (2003) and

de Ilarraza et al. (2008), the field has shifted towards statistical systems, a trend

which we will follow with the current work.
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2.2.3 Swedish Error Detection

Eeg-Olofsson and Knutsson (2003) report on a preposition error detector for Swedish.

The authors annotate preposition errors in 140 essays written by learners of Swedish.

Rather than the utilizing a data-driven approach like most of the error detection

work that would follow it, the system is rule-based. Based on preposition POS tags

assigned by a statistical trigram tagger, the authors composed 31 rules for specific

preposition errors. For more on the usefulness of heuristic-based approaches for

morphologically complex languages, see Bick (1998) for work on automatic analy-

sis of Portuguese text.

2.2.4 German Error Detection

For German, Boyd (2012) detects errors of selection, agreement, and word order.

The grammar checker described in the work, Fledgling, utilizes constraint-based

dependency parsing and detects errors using contraint relaxation with a general-

purpose conflict detection algorithm. The system is developed and tested on au-

thentic German language learner data that is presented in the same work. Fledgling

correctly judges grammaticality in 80% of sentences and is up to 91% accurate in

diagnosing error types.

2.3 Annotating Learner Corpora

An obvious, yet non-trivial need for any error detection/correction research effort

is an evaluation set. One option is to use well-formed data, but introduce errors

by corrupting the correct text (see, e.g. Izumi et al., 2003; Wagner et al., 2007; Lee

and Seneff, 2008; Rozovskaya and Roth, 2010c). This approach, while perhaps less

costly to implement, is less desirable than using an actual corpus of learner lan-
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guage that contains real examples of errors in their natural context. The issue with

using a learner corpus is that it must be annotated, and though there has been work

done on automatically annotating data (Rosen et al., 2013), for the most part, this

means that human annotators will need to annotate the data by hand. This is by no

means a small task, and great care should be taken on the part of corpus developers

to create annotations that will prove useful to the community at large and present

information in a concise, meaningful way so that the corpus can be used effectively.

Annotation for a learner corpus is often much richer than that of other anno-

tated corpora. A typical corpus of native language might include annotations for

POS and some kind of syntactic scheme. Learner corpora that have been annotated

for errors may feature rich annotation of linguistic phenomena that are often not

noted in native language annotation schemes (Hana et al., 2010). While native an-

notation schemes are typically focused on POS tags and/or syntactic annotation,

learner corpus annotation will usually look at specific phenomena, e.g. preposi-

tions, articles, subject-verb agreement, etc. that can provide valuable linguistic in-

sight into language use. As such, an annotated learner corpus can be an invaluable

resource not only for NLP researchers working on error detection, but for second

language acquisition (SLA) research as well. If an annotated learner corpus is large

enough, it can also be a good resource for training NLP tools to better handle lan-

guage learner data (Meurers, 2009). Learner corpora can be utilized to optimize

language learning classes as well as resources for learners such as dictionaries and

textbooks. They can also bring to light significant differences about learners of dif-

ferent backgrounds that might not be obvious otherwise.

One of the major contributions of this dissertation is the development of an

annotation scheme for a corpus of learners of Korean (see Chapter 4). As such, a
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review of other work regarding annotating learner data is directly relevant here.

2.3.1 Annotated English Learner Corpora

The Cambridge Learner Corpus (CLC) described in Nicholls (2003) is, to our knowl-

edge the largest annotated learner corpus for any language, with over 6 million

essays annotated with a wide range of error types. The corpus handles approxi-

mately 80 error types with five main classifications of errors that can be applied to

nine word types, along with a set of errors that do not relate directly to the main

classifications. The annotation scheme is flat, forcing annotators to make a deci-

sion about the best correction for a given error. Unfortunately, most of the corpus

is unavailable to the public. However, Yannakoudakis et al. (2011) released a small

subset of the data, just over 1200 essays, as part of an effort to promote automatic

assessment of English as second or other language essays.

Rozovskaya and Roth (2010b) annotate portions of two unannotated learner

corpora: the International Corpus of Learner English (ICLE Granger, 2003b) and

the Chinese Learner English Corpus (CLEC Gui and Yang, 2003). Both sets con-

tain essays by learners of English. The resultant annotated corpus contains over

4000 preposition annotations, 8.4% of which are errors. The annotations focus on

preposition confusions among the 10 most frequently used prepositions in English.

Dahlmeier et al. (2013) describes the National University of Singapore Corpus

of Learner English (NUCLE). NUCLE contains over one million words with 27

categories of annotations for learner errors. The corpus is made up of take home

assignments for English classes in undergraduate courses. The error rate is low —

3.82 per 100 words, suggesting that the writers of the essays are relatively high

proficiency level learners. Annotators used an in house tool to highlight erroneous
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sections of the text and provide an error tag and suggested correction. The authors

note that while annotators were given the option to provide multiple annotations

for a single error, i.e. provide multiple tags/corrections, the occurrence of such an-

notations are infrequent. To our knowledge, as of now NUCLE is the largest freely

available learner corpus, making it a valuable resource for English error detection

and corpus studies.

The aforementioned English learner corpora have been the most often utilized

in recent NLP work dealing with English grammatical error detection, at least

among work done on publicly available learner data. For a more exhaustive list

of corpora, see http://www.uclouvain.be/en-cecl-lcworld.html.

2.3.2 Non-English Learner Corpora

Moving away from English means that corpus developers will have a range of

different challenges to deal with. From high-level issues such as complex morphol-

ogy, phonotactics, freer word order, and other linguistic phenomena, to low-level

issues such as character encoding and tokenization, non-English languages often

come with a unique set of hills to climb in order to provide thorough annotation.

A number of corpora have become available that take these challenges head on in

order to provide useful learner data for a variety of languages.

Most directly relevant to the current research is Lee et al. (2009a), who describe

a corpus of learner Korean annotated for particle errors. They use a hand-annotated

corpus made up of college student essays that is divided according to student

level: beginner or intermediate, and student background: heritage or non-heritage.

Heritage learning is explained further in Chapter 4. The authors use six types of

particle errors—omission, addition, replacement, malformation, paraphrasing, and
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spacing. The relavant statistics are provided for each type of error among different

learner levels. This corpus provides a wealth of useful information that is crucial

to this study, such as types and frequency of errors and differences among learner

types. Their work, however, was not targeted specifically towards providing a plat-

form for automatic systems. Accordingly, some modifications to their initial anno-

tation scheme must be effected in order to implement a machine learning-based

system for automatic error detection.

Lüdeling et al. (2005) discuss Falko, or Fehlerannotiertes Lernerkorpus (“error-

annotated learner corpus”), made up of German learner data. Falko utilizes mul-

tiple independent layers of annotation to address two key issues for learner an-

notation: 1) That annotations may contain multiple interpretations for correcting

a single error, and 2) it should be possible to mark sequences of tokens as “error

exponents”, i.e. errors need not be tied to a single token. Falko is annotated using

EXMARaLDA (Schmidt, 2005), which allows for multiple independent layers to be

encoded.

The Error-Annotated German Learner Corpus (EAGLE) corpus is described

inBoyd (2010). The corpus is made up of workbook activities and essays by stu-

dents in introductory college level German courses. The annotation scheme han-

dles word form, selection, agreement, word order, and punctuation errors. The an-

notation scheme follows Lüdeling et al. (2005) in implementing a multi-layered

approach using EXMARaLDA. The layers are: location, which marks which words

are affected; description, which encodes the error type; and target, which provides

the corrected version of the error. The annotations also include error numbering,

which refers to the order in which each error occurs, as there are often multiple

errors in a sentence, and therefore multiple corrections based on which error is
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handled first.

Hana et al. (2010) describe an error-annotated corpus of learner Czech. Czech

is a rich language with a host of features that are often difficult for foreign learn-

ers such as inflection, agreement, derivation, and unique constituent ordering. The

corpus is divided according to learner L1, covers a range of learner levels, and in-

cludes both spoken and written data. The complexity of the annotations necessary

to capture all of the relevant information about errors in a highly inflectional lan-

guage like Czech necessitates a multi-layered approach, similar to that in Lüdeling

et al. (2005).

Dickinson and Ledbetter (2012) annotate a learner corpus of Hungarian. The

corpus is made up of journal entries of college students across a range of learner

levels. The annotation covers a variety of errors in four distinct categories: Character-

level (phonological and spelling errors), Morpheme-level (agreement and deriva-

tion errors), Relation-level, and Sentence-level. Like Korean, Hungarian features a

rich agglutinative morphological system. Thus, a multi-layered approach that fo-

cuses on morphemes, rather than words, is necessary to capture the subtleties that

can arise from learner errors. The annotation scheme allows for the crucial differ-

ence between a learner error, and an adjustment to the final form that must be made

to account for a correction of some other error.

Conclusion

In this chapter, we have provided an overview of the field of automatic error detec-

tion/correction. We also discussed various learner corpora and annotation schemes.

While a great deal of the research in both areas has focused on English, we also

discussed work in other languages such as Basque, Czech, Hungarian, German,
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Japanese, Korean, and Swedish. A lot of this research has served as a source of

inspiration for the work described in the coming chapters. Before getting into the

actual research carried out, though, we will, in Chapter 3, explain some of the in-

tricacies of Korean language that distinguish it from languages like English, and

provide new challenges for annotation and error detection.
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Chapter 3

A Brief Overview of Korean Language and Particles

To handle a language skillfully is to practice a kind of evocative

sorcery.
— CHARLES BAUDELAIRE
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The research described in this dissertation involves analysis of Korean language

data. As such, a working knowledge of Korean is necessary in order to better un-

derstand much of the work that is described in the coming chapters. To this end,

we present here a brief overview of the Korean language, explaining some of the

nuances and subtleties that make working with Korean learner data a challenging

and interesting endeavor and distinguish it from similar work done on English. We

will especially examine the role and functionality of particles, as they are the focus

of the research presented in this dissertation. Much of what follows will be facts

about the language; Lee and Ramsey (2000), Sohn (2001), Nam (2005), and Yeon

and Brown (2011) served as reference materials for this chapter.

3.1 Current Status and Classification

The Korean language is currently spoken by about 78 million native speakers. The

majority of these speakers live in South (48 million) or North Korea (24 million),

with smaller numbers living in China, Japan, the United States, and central Asia.

It is the official language of both North and South Korea. The varieties of Korean

spoken in North and South Korea have diverged somewhat since 1945; note that

the descriptions of the language in this dissertation will assume a Seoul (South

Korea) dialect, which is the variety of Korean commonly found in textbooks and

taught in language classes.

Pinning down the exact origin of Korean, or what language family it belongs

to, has proven to be a troublesome task, with no consensus among language his-

torians. However, there are two main theories that prevail: 1) that Korean is a part

of the Altaic language family, and 2) that it is closely related to Japanese, which

has itself proven difficult to categorize. This difficulty has led some to classify the
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language as a language isolate, i.e. a language with no genetic ties to other known

languages. The theory connecting Korean to Japanese is due in large part to their

shared grammatical qualities, though it is worth noting that the langauges are not

mutually intelligible (Sohn, 2001). In any case, the language has a number of fea-

tures that set it apart from most other world languages, particularly from English

and other Indo-European languages, as we will see in the rest of this chapter.

3.2 Linguistic Description of Korean

In this section, we will give a concise linguistic description of the Korean language,

starting from the smallest units, phonemes, and working all the way up to full

sentences.

3.2.1 Phonology

Modern Korean features a base of 19 consonants, many of which have distinct po-

sitional allophones at initial, medial, and final positions. There are eight “simple”

vowels, and set of 121 diphthongs that consist of simple vowel and a glide, either

/j/ or /w/. There is another vowel that is not a simple vowel, but distinguishes

itself from the other diphthongs in that it consists of a glide from [1] to [i]. There

are a host of various assimilations and simplifications that can affect this base of

phonemes depending on their positions.

Korean allows syllables with a maximal structure of /CGVC/, where C is a

consonant, G is a semi-vowel (glide), and V is a simple vowel. Syllables must con-

sist of one and only one simple vowel, which can then be preceded or followed by

1It is noted in Yeon and Brown (2011) that younger speakers have less distinctions, resulting in 10

or 11 of these diphthongs

40



the other elements. At the morphophonemic level, consonant clusters can appear

word finally, but these are not expressed at the phonetic level. At a word boundary,

or if the following syllable begins with a consonant, one of the consonants in the

cluster must be dropped. If the following morpheme begins with a vowel, the fi-

nal consonant from the cluster is moved to the onset of the next morpheme. These

types of changes are clearly evident in the writing system, which we will discuss

in Section 3.2.6.

3.2.2 Morphology

One of the major differences between Korean and more commonly researched lan-

guages like English lies in the morphological system. While English morphology

tends towards the analytic side of the spectrum, with a fairly low word to mor-

pheme ratio, Korean features a rich agglutinative system of word formation. Ag-

glutinative languages, e.g. Japanese, Basque, Turkish, Korean, form words by string-

ing together long sequences of morphemes, the smallest meaningful unit of lan-

guage (cf. e.g. Comrie, 1989). As such, no meaningful linguistic encoding is done

by altering a root itself; rather, bound morphemes must be appended to the root

if additional information is required. For example, consider (6), where가시었겠습

니 is a single word with five morphemes. The root, 가 (ka)m is the verb meaning

“go”, 시 (-si) is an honorific subject marker, 었 (-ess) is the past tense morpheme,

겠 (-kyess) is the presumptive modal, and finally 습니다 (-supnita) is an honorific

sentence ending morpheme.

(6) 가-시-었-겠-습니다
ka-si-ess-kyess-supnita
go-HON-PAST-PRESUMPTIVE-HON. ENDING
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‘(a respectable person) may have gone’

Clearly, the agglutinative system of Korean allows for far more complex word

units than languages like English. Furthermore, there are a large number of Korean

morphemes that do not have any equivalent words or morphemes in English, such

as the honorific addressee marker -si.

3.2.3 Parts-of-Speech

Korean classifies words differently from languages like English, which can lead to

difficulty for some learners. Traditional Korean grammars often list nine classes of

words: nouns, pronouns, verbs, adjectives, prenouns (cf. determiners), adverbs, in-

terjections, and particles. It is worth noting that lexical category classification may

vary among linguists (for more discussion, see Lee and Ramsey (2000)). Even if

these word classes are accepted, there are some significant differences when com-

paring the definitions to Indo-European languages, particularly in the case of verbs

and adjectives. We will now examine some of the most prominent difficulties asso-

ciated with word classification.

Nouns, pronouns, and numerals, i.e. substantives, are often categorized together

as they exhibit similar patterns and can be modified using similar morphemes.

Significantly, substantives are the point of attachment for particles, the main area

of focus for this work. Particles are discussed in detail in Section 3.2.4. Substantives

generally pattern similarly to English nouns.

So-called prenouns are similar to English determiners for the most part. They

are a small closed set of words that take no inflection and occur before nouns in
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a modifying role. The set includes words with meanings like this, that, and other

that align well with English determiners, as well as a few words that are typically

considered adjectives in most languages such as old, new, ancient, and pure.

One of the most interesting facets of Korean word classes is the similarity of

verbs and adjectives. While the term adjective is used mainly to align Korean gram-

mars with Indo-European grammars, what are referred to as adjectives pattern like

verbs (see e.g., Kim, 2002, for more on the argument that Korean lacks true adjec-

tives). Based on all of their similarities to verbs, Korean adjectives are sometimes

referred to as descriptive verbs, with verbs referred to as action verbs or processive

verbs. These parts-of-speech are often categorized together in Korean, as they may

both act as predicates. Both processive and descriptive verbs must be combined

with inflectional endings; they cannot stand alone.

One important distinction between processive and descriptive verbs is that pro-

cessive verbs (like English verbs) may have a direct object, whereas descriptive

verbs have a simpler argument structure that looks only for a subject or topic.

Also, descriptive verbs can be conjugated and moved to directly modify nouns,

thus functioning more like English adjectives. For example in (7a)2, we see 예쁘

(pretty) at the end of the sentence acting as a verb marked with the indicative mor-

pheme 다 (’ta’). In (7b), on the other hand, 예쁜 (pretty) is directly modifying the

noun woman, andㄴ (’n’) has been appended, marking the word as an adjective.

(7) a. 저
that
여자가

woman-SBJ

예쁘다

pretty-IND

‘That woman is pretty’

2This example borrowed from Kim (2002)
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b. 저
That

예쁜

pretty
여자

woman

‘That pretty woman’

3.2.4 Particles

We turn now to particles, the main item under consideration in this dissertation. As

we will show, these morphemes hold a position of extreme importance in the lan-

gauge. Korean postpositional particles are morphemes that attach to a preceding

nominal to indicate a range of linguistic functions, including grammatical func-

tions, e.g., subject and object; semantic roles; and discourse functions. In (8), for

instance, ka marks the subject (function) and agent (semantic role). 3

(8) Sumi-ka
Sumi-SBJ

John-eykey
John-TO

sunmwul-ul
gift-OBJ

cwu-pnita
give-POLITE ENDING

‘Sumi gives a gift to John.’

Similar to English prepositions, particles can also have modifier functions, adding

meanings of time, location, instrument, possession, and so forth, as in (9). In this

example, ul/lul has multiple uses, marking an object, ku (he) and the time period,

i sikan (two hours. Also, it is important to note here that in some cases there are

multiple allomorphs of a single morpheme that differ phonologically and are se-

lected based on the phonotactics of the surrounding context, e.g. ul/lul, un/nun,

and i/ka are variants that depend on whether the preceding phoneme is a vowel or

a consonant. In Section 4.3.11, we discuss how to categorize particles.

(9) Sumi-ka
Sumi-SBJ

John-uy
John-GEN

cip-eyse
house-LOC

ku-lul
he-OBJ

i
two

sikan-ul
hours-OBJ

kitaly-ess-ta.
wait-PAST-END

‘Sumi waited for John for (the whole) two hours in his house.’

3We use the Yale Romanization scheme for writing Korean here to clearly delineate particle

boundaries.
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There are also particles associated with discourse meanings. For example, in

(10) the topic marker nun is used to indicate old information or a discourse-salient

entity, while the delimiter to implies that there is someone else Sumi likes. In this

research, we focus on syntactic/semantic particle usage for nominals, planning to

extend to other cases in the future, with the expectation that handling discourse

particles will bring new complexities and may require a completely different ap-

proach.

(10) Sumi-nun
Sumi-TOP

John-to
John-ALSO

cohahay.
like

‘Sumi likes John also.’

Due to their complex linguistic properties, particles are one of the most frequent

error types among Korean language learners; Ko et al. (2004) report that particle

errors were the second most frequent error in a study across different levels of

Korean learners, and errors persist across levels (see also Lee et al., 2009a). In (11b),

for instance, a learner might replace a subject particle with an object, based on the

idea that in English, book would be the object of need.

(11) a. Sumi-nun
Sumi-TOP

chayk-i
book-SBJ

philyohay-yo
need-POLITE

‘Sumi needs a book.’

b. *Sumi-nun
Sumi-TOP

chayk-ul
book-OBJ

philyohay-yo
need-POLITE

There are also rarer cases where particles follow adverbs and clausal or senten-

tial units. In addition, some particles can be stacked together, in which case they

follow a fixed order. In (12), for example, the particles ey and nun must be used in

sequence to convey that there is something of interest in the photo, which is the

topic of a sentence. A much more detailed overview of particle errors is provided
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in Chapter 4.

(12) sacin-ey-nun
photo-in-TOP

...

...

‘in this photo’

3.2.5 Syntax

The structure of Korean sentences is typically SOV (subject-object-verb), as op-

posed to English, which is SVO. This means that the subject is usually the first

element in the sentence, followed by the object, and finally the verb. Example (13)4

provides an example of typical Korean SOV ordering, where the the subject,민수

(Minsu) is followed by the object,김치 (apple), and finally the verb.

(13) 민수가
Minsu-SBJ

김치를

apple-OBJ

먹었어요.
eat.

‘Minsu is eating an apple’

Actually, while Korean is most often referred to as SOV, the only real constraint

in most scenarios is that the verb occurs last. Moreover, in informal speech, some

information may occur after the verb under certain conditions. Because particles

mark nouns functions within the sentence, word order is actually somewhat free

up to the verb. As can be seen in (14), the verb arguments may all move around each

other while retaining grammaticality. While (14a) represents the standard SOV or-

dering, in (14b), the subject (Minsu) is presented after the recipient of the present

(Mina); in (14b), the object (present) is presented first, followed by the subject and

the recipient. Examples (14d) and (14e) show cases where the recipient or object

can occur after the verb, in the case of informal, spoken Korean. The order is of-

ten dependent on discourse properties; older information comes first, and newer

4All examples in this subsection taken from Yeon and Brown (2011)

46



information occurs closer to the head. The writer (or speaker) can decide what in-

formation is most important, often dependent upon what is new information, and

move that to the front of the sentence.

(14) a. 민수가
Minsu-SBJ

미나에게

Mina-to
선물을

present-OBJ

주었어요.
give-PAST-POLITE ENDING.

b. 미나에게
Mina-to

민수가

Minsu-SBJ

선물을

present-OBJ

주었어요.
give-PAST-POLITE ENDING.

c. 선물을
present-OBJ

민수가

Minsu-SBJ

미나에게

Mina-to
주었어요.
give-PAST-POLITE ENDING.

d. 민수가
Minsu-SBJ

선물을

present-OBJ

주었어요

give-PAST-POLITE ENDING

미나에게.
Mina-to.

e. 민수가
Minsu-SBJ

미나에게

Mina-to
주었어요

give-PAST-POLITE ENDING

선물을.
present-OBJ.

‘Minsu gave Mina a present’

Further complicating the syntactic ordering issue is the fact that arguments

may often be dropped. For example (15) is an acceptable sentence made up of one

word (eaten), which translates to, I have eaten. Here, the subject would be under-

stood from surrounding context in the dialog. Objects may be similarly dropped in

many cases. Here, the language again differs greatly from most Indo-European lan-

guages, where there might be some specific cases that warrant dropping, such as

English imperatives where you is often dropped, but for the most part, every sen-

tence has a subject, and an added object if the verb is transitive. Even in the case of

pro-drop languages, such as Spanish or Italian, Korean differs in that the dropping

is licensed due to the explicit marking of syntactic function of the non-dropped

nouns in a sentence, rather than by agreement.
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(15) 먹었어요
eaten

‘(I) have eaten’

3.2.6 Writing System

The writing system most frequently used for Korean text is known as한글 (Hangul).

Hangul is categorized as an alphabetic syllabary (Taylor, 1980). It is alphabetic in

that every phoneme in the language is assigned a unique character. The characters

are then systematically put together in syllabic blocks, which are then used to write

words, rather than written in a single horizontal string like in English and other

Romance languages. The syllable한 (han), for example, is three separate characters:

ㅎ (h), ㅏ (a), and ㄴ (n) all put together. Hangul was developed during the reign

of King Sejong, some suggest by the King himself, around 1443 C.E. The writing

system was designed to be phonetically intuitive, with the shapes of characters

referring to the place and/or manner of articulation. For example, ㄴ (n is meant

to suggest the shape of the tongue moving towards the teeth to create an alveolar

nasal, /n/.

In the past, Korean writing often featured a mix of both Hangul and Chinese

characters. In the last few decades, though, the use of Chinese characters in Korea

has waned to the point that a majority of publications contain none at all. Along

with the decline of Chinese characters, there has been an increase in the amount of

Roman characters infused into Korean writing. It is common to find acronyms and

abbreviations, e.g. TV, as well as entire English words that have been borrowed

into the language.

One important facet of the writing system is the use of white space. Unlike

other prominent languages from the same region, Korean does utilize white space
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to delineate words, referred to as ecels. However, this was not always the case, as

Hangul was originally written with no spaces. Even now, the use of spaces can

be controversial, as there is not 100% agreement or consistency across text sources

as to what constitutes a word, i.e. where white space should be inserted, and it is

possible for less white space to be used in publications where total available space

is an issue.

The use of Hangul is a significant issue in the context of this dissertation for

two main reasons. First of all, as it is vastly different from most of the world’s writ-

ing system, it is a potential area of difficulty for learners of Korean. As such, along

with grammatical errors, one could expect to see a great deal of spelling, typo-

graphical, and spacing errors in a Korean learner corpus. Secondly, the indecisive

grammatical conventions associated with spacing, as well as the non-ASCII char-

acter encoding, make dealing with Hangul computationally more difficult. Many

POS taggers and parsers that are designed to be extensible to other languages given

an appropriate training set are, in actuality, poorly equipped to handle the complex

segmentation, word order flexibility, and possibility to omit significant grammat-

ical elements that must be considered to accurately POS tag and parse Korean.

Dedicated Korean NLP tools are scarce as well, due not only to the aforementioned

complex grammatical issues, but also the lack of open source research efforts in

comparison to English, so software options are limited.

Conclusion

This chapter has provided an overview of the Korean language, focusing especially

on particles and the issues of the language that will prove most important for the

research described in the coming chapters. With all of the necessary background
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material having been discussed, we move forward Chapter 4 to a discussion of

KoLLA, a particle error-annotated corpus of leaner Korean.
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Chapter 4

Test Data: Developing a Korean Learner Corpus

Beware of the man who works hard to learn something, learns it, and

finds himself no wiser than before.
— KURT VONNEGUT, JR.
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An obvious, though non-trivial, requirement for error correction is a corpus of

errors on which one can test their system. For English there are a number of readily

available annotated corpora made up of essays written by learners of the language,

e.g. ICLE (Granger, 2004), NICT JLE (Izumi et al., 2005) HOO (Dale and Kilgarriff,

2010). There are even a growing number of annotated learner corpora that can be

utilized for error correction work available for other languages, e.g. German (Boyd,

2010), Czech (Hana et al., 2010), and French (Granger, 2003a). This is unfortunately

not the case for Korean yet. Thus, procuring a corpus and developing annotation

that could be useful for a variety of tasks, especially error detection, has neces-

sarily been a major component of this research. To this end, we have been a part

of a larger effort among a group of researchers to build and annotate the KoLLA

(Korean Learner Language Annotation) corpus1.

4.1 A Previously Available Corpus

To our knowledge, the only previous foray into annotating a Korean learner cor-

pus was described in Lee et al. (2009a). While this corpus provided a good starting

point, and was used in initial experiments described in this research (i.e. the WaC

evaluation experiments in Section 5.5.4), the annotations were not ideal for work-

ing with automatic NLP systems. The main issue is that it does not contain gold

standard segmentation, thus requiring the user of the corpus to semi-automatically

determine the particle boundaries.

In Example (16), taken from Lee et al. (2009a), the corpus marks한그게서 (han-

kukeyse) as erroneous and 게 (key) as the correct particle—in addition to marking

1I was active in developing the annotation scheme, checking the annotation for errors, and as-

sisting with the annotators with various technical support. The actual annotation was carried out by

native Korean speakers.
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this as a replacement error—but it does not indicate exactly where the correct par-

ticle goes to produce the correct form, 한그게 (hankukey) in this case. That is, the

final correct form is not made explicit. Such a lack of transparency can lead to am-

biguity for Korean as there are some particles which are more than one character,

and in some cases, each of the individual characters can be a singleton particle as

well. For example, 이나 (ina), 이 (i), and 나 (na) are all particles, so the segmenta-

tion of any word ending with이나 is crucial. Moreover, there are some cases where

the root form of a noun has a character that matches a particle. For example,먹이

(meki/’food for animals’) could be confused with 먹 (mek/‘calligraphy ink stick’)

that has been marked as a subject with이.

(16) 한그-게서
Korea-FROM

온

come-REL

후에

after
...
...

‘After I came *from Korea ...’

a. Original:게서

b. Corrected:게

Another issue with this corpus that leads to difficulties for automatic error de-

tection is that only nominals with erroneous particles are annotated, i.e. nominals

with correct particle usage (including no particle) are left unmarked. This decision

limits the amount of information available, and in the case of error detection, makes

some evaluations impossible. For example, without knowing the number of nomi-

nals that correctly have no particles, there is no way to calculate false positives and

true negatives for a particle presence prediction task.
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4.2 The KoLLA Corpus

In addressing the requirements of an annotated corpus for error correction testing,

we worked as part of an annotation effort for a new corpus with similar proper-

ties as the one described in Lee et al. (2009a). The corpus consists of 100 essays

from university-level learners from four institutions, including Wellesley College,

Brigham Young University, the Korean Language Institute at Yonsei University,

and the Georgia Institute of Technology. Importantly, the data is divided by level

of learner and by heritage status, resulting in a four way split: 25 heritage beginners

(HB), 25 heritage intermediates (HI), 25 foreign beginners(FB), and 25 foreign inter-

mediates (FI) (cf. Lee et al., 2009a). The essays are the results of writing assignments

from prompts about various topics related to everyday life of college students. The

full listing of topics is given in Table 4.1. All of this data was collected by Sun-Hee

Lee, an assistant professor in the Department of East Asian Languages and Litera-

tures at Wellesley College.

The term heritage learner refers, in this case, to a language learner who has

grown up in a Korean-speaking environment, although they do not necessarily

speak the language. In general, their parents use Korean at home and communi-

cate with their children in Korean. Heritage learners are capable of understanding

Korean, but they may reply either in Korean or in English. Heritage learners in

Korean classrooms typically do not know how to write Korean or have low-level

writing skills. This split is interesting for both pedagogical and NLP applications

of the corpus.

Recently, with the expanding number of 57 million heritage speakers of dif-

ferent languages in the U.S., there has been a remarkable increase in heritage lan-

guage research from various parts of theoretical and applied linguistics (Polinsky

54



Topic HB HI FB FI
Introducing oneself X X
School life X X X
Hobbies X X
Culture X
Shopping X
Korean food X
People I like/Friends X X X
Travel X X X
Learning Korean X X X
Sense of values X
Eliminating stress X
Invasion of privacy X
College entrance exams X
The generation gap X
Dreams X
Happiness X X
Gatherings/parties X
Life in Korea X
Photographs X
Life/Living X
Personality X
Traditional Korean clothing X
National Parks X

Table 4.1: Topics in KoLLA Corpus Essays

and Kagan, 2007; Montrul, 2010). However, there has not been much research that

specifically investigates heritage language learning and especially Korean heritage

language learning. From the NLP perspective, this means that we can expect dif-

ferent usages of particles in both type and frequency along this divide — giving

researchers the choice of trying to build a single, robust system that can handle

all users, or building separate systems that are optimized based on learner type or

level.

Thus, the KoLLA corpus includes a heritage learner group in order to make

comparisons between heritage and non-heritage learners.
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4.3 Defining particle error annotation

The main goal in this section is to properly define particle error annotation in a

way that is directly relevant for automatic systems, taking into account the linguis-

tic properties relevant for performing and evaluating the task. At the same time,

the annotation itself can help define the task of particle error correction; the consid-

erations taken to properly annotate Korean particles ultimately point toward the

types errors that we can hope to correct with the system. The annotation must thus

support the automatic task of predicting the correct particle (or no particle) in a

given context (cf. work on English function words, e.g., Tetreault and Chodorow,

2008). However, as with any annotation effort, care must be taken to ensure that

the corpus can also be used for other research aims, e.g. pedagogical research or

statistical analysis (cf., e.g., Kim and Biber, 1994).

In order to lay a foundation for more robust evaluation of Korean particle error

detection, the development of annotation for a new corpus which contains well-

articulated information is required. The issues laid out in the following sections are

important to deal with, not just to obtain appropriate annotation for Korean particle

error detection, but also as a step in “developing best practices for annotation and

evaluation” of learner data (Tetreault et al., 2010). These matters are especially per-

tinent to the annotation of erroneous functional elements in morphologically-rich

languages, but many of them—e.g., the definition of grammaticality and handling

multiple correct answers (section 4.3.6)—face any learner language annotation.

4.3.1 Defining the tokens

Korean words are generally formed by attaching suffixes to a stem. Regardless of

the theoretical status of particles (see discussion in Chapter 3), they are written
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without spaces, meaning that it is critical to define the token boundaries. The issue

of misspellings is also relevant to this discussion, as spelling mistakes can result in

an obscuring of proper segmentation. In the next three sections, we will describe

three layers of annotation, where the output of one layer is used as the input for

the next.

4.3.2 Spacing errors

Given the differences in word formation and spacing conventions (e.g., noun and

verb compounds are often written without spaces), spacing errors are common

for learners of Korean (Ko et al., 2004; Lee et al., 2009a). Since particles are word-

final entities, correcting spacing errors is necessary to define where a particle can

be predicted. This case is similar to predicting a preposition between two words

when those words have been merged. Consider (17), for instance. In order to see

where the particle를(lul) is to be inserted, as in (17b), the original merged form in

(17a) must be split.2

(17) a. Original:예-들-면
example-take-if

b. Corrected:예-를
example-OBJ

들-면
take-if

‘if (we) take an example’

Words which have incorrectly been split are also corrected.

In (18a), for instance, the particle 한태 (hanthay) is incorrectly used as a sepa-

rate unit. To clearly mark that this particle goes with this word, this spacing error

should be corrected, as in (18). The complex morphological system of Korean can

2We will use O to refer to the original form and C to refer to its correction in examples like this.
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explain the genesis for many of these errors. Analgous cases for more analytic lan-

guages like English where a morpheme is incorrectly split from a root, e.g. John ’s

bicycle, are difficult to conceive and probably not all that common in most learner

corpora.

(18) a. Original:저
I
한태

to
더

more
소중하-ㄴ
precious-REL

것

thing

b. Corrected:저-한태
I-to

더

more
소중하-ㄴ
precious-REL

것

thing

‘the thing that is more precious to me’

Additionally, standard tokenization is handled on this layer, such as splitting

words separated by hyphens or slashes, making the tokens compatible with POS

taggers, as the tagger we use in this study (see Han and Palmer, 2004) does not

handle tokenization itself. Of course, the original input is retained as part of the

standoff annotation scheme.

4.3.3 Other modifications

There are other modifications made in mapping from the raw data to a tokenized

form appropriate for particle error detection.

The first modification has to do with nominals occurring within quotation marks,

as in example (19). In this case, the particle를 (lul) is found outside the quotation

marks, yet following standard tokenization practices, we generally separate quota-

tion marks from words. If we continue that practice here,를 (lul) will have to be a

separate unit, as in (19b). This poses problems for automatic systems, as the parti-

cle is now separated from the nominal, yet particle-guessing is done on nominals.

This problem is unique to languages and writing systems with agglutination; in

languages like English, quotation marks are almost never used in the middle of a
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word.

(19) a. Original: “Jump”-를
“Jump”-OBJ

b. Annotation1 : “
“

Jump
Jump

”
”
를

OBJ

c. Annotation2 : “
“

Jump-를
Jump-OBJ

”
”

The use of quotation marks is often associated with an English word or words,

as in example (19) either to make up for a gap in the student’s lexicon or to talk

about a proper noun or title. However, there are also similar usages of quotation

marks with Korean words, as in example (20), where the student has enclosed a

Korean movie title in quotation marks.

(20) “엽기적인
“sassy

그녀”-를
girl”-OBJ

“‘My Sassy Girl”’

In dealing with cases such as these, annotation developers are left with an un-

fortunate choice: do they retain the original ordering of the text with the under-

standing that the system will have trouble handling it, or do they alter the text so

that the system has the best chance of performing well? In the end, either the to-

kenization, the error correction task, or the raw text must be violated during the

annotation phase, leaving the annotator these three choices:

1. violate standard tokenization convention, by keeping quotation marks at-

tached;

2. violate the particle error correction task, by tokenizing the particle as a sepa-

rate unit;

3. violate the raw text, by transposing the quotation mark and the particle.
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In the KoLLA corpus, the option illustrated in (19c), i.e. transposing the quo-

tation mark and the particle (option 3 above), is employed. This annotation gives

systems a better chance to correctly detect errors in these contexts. No information

is lost, as the original text is retained in the first layer, and the changes could in

principle be done as pre-processing in an actual tutoring system, so this solution

works well for the purposes of error correction as well as learner corpus analysis

research.

The next issue dealt with is parentheticals. In the KoLLA corpus, there are two

main uses of parentheticals. The first is the obvious canonical purpose of paren-

theses, i.e. setting apart material that is non-essential, but relevant enough to the

sentence as to be included. A second use that is more specific to learner corpora

arises when students insert information not about the topic of the essay, but about

their own use of the target language, Korean in this case. For example, if a student

wants to use a word, but is unsure of the spelling, e.g. in the case of loan words,

they might insert a parenthetical to clarify the meaning. A similar situation arises

when a student is unsure of a word and provides a second guess at the word in

parentheses.

Consider example (21), where the student attempts to use the Korean loanword

for Atlanta, then provides the actual English word in parentheses and attaches a

particle to the right parenthesis. It is worth pointing out here that there actually is

a spelling error in the Korean word in (21a).

(21) a. Original:앹랜다(Atlanta)-에서
Atlanta(Atlanta)-from

b. Annotation1 :애틀랜타
Atlanta

(
(

Atlanta
Atlanta

)
)
에서

from
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c. Annotation2 :애틀랜타-에서
Atlanta-from

d. Annotation3 :애틀랜타-에서
Atlanta-from

(
(

Atlanta
Atlanta

)
)

There are multiple ways that one could annotate this phenomenon. I will dis-

cuss the ramifications of three of those here. First, one could follow standard tok-

enization practices as in (21b). This is easy in practice, and imposes no real change

to the data provided by the learner. However, as was the case with the issue with

quotation marks discussed above, this option is a detriment to the task of error cor-

rection, because the particle is not attached to any nominal, and will cause prob-

lems throughout an automatic NLP processing pipeline.

Removing the student’s parenthetical, as in (21c) retains the meaning that they

intended and rejoins the particle to its root. Moreover, one could even argue that re-

moving the parenthetical in these instances actually helps because otherwise there

are consecutive appearances of the word Atlanta, which is likely not the intended

reading. The problem with this approach is that if it is applied in cases of true par-

entheticals, it involves removing a part of the writer’s actual message. In (22), for

example, the parenthetical actually adds information by specifying how long ago

something happened, but the particle for the nominal옛날 (yeysnal) is attached to

the right parenthesis. So, if we make the correction in (22c) to rejoin the particle and

nominal, we lose actual language data from the essay.

(22) a. Original:옛날
old days

(30-40년
(30-40years

전)에
ago)-in

b. Annotation1 :옛날
old days

(
(

30-40년
30-40years

전

ago
)
)
에

in

c. Annotation2 :옛날-에
old days-in

61



d. Annotation3 :옛날-에
old days-in

(
(

30-40년
30-40years

전

ago
)
)

‘In the old days (30-40 years ago)’

It might be tempting to employ the parenthetical deletion fix illustrated in (21c)

to deal with the “editorial” parentheticals, but leaving meaningful ones like in (22)

in the essay and dealing with them differently. However, treating these cases dif-

ferently is not a viable option for a full-scale automatic system, as the decision as

to which parentheticals would be difficult to assess without the intervention of a

human annotator. Automatically identifying what type of parenthetical has been

used by a language learner could certainly be a useful enterprise, but is outside of

the scope of this work and is thus left for future work.

In order to legitimately treat all cases of parentheticals with particle spacing

errors in the KoLLA corpus, the annotation illustrated in (21d) and (22d) is used.

That is, the entire parenthetical is transposed with the following particle. While

this might seem drastic on the surface, it is somewhat comparable to the quotation

mark transposition described earlier, albeit with a longer string. In both cases, the

entirety of the information provided by the student is passed to the system, but the

ordering is changed as to be more favorable for automatic processing of particles.

4.3.4 Spelling errors

For work in English grammatical error detection, researchers often work only with

pieces of data that do not include spacing, punctuation, and spelling errors, with

the idea that a full system will handle such errors (e.g., Tetreault and Chodorow,

2008). To support error detection systems under similar assumptions, the KoLLA

corpus includes fixes for spelling errors, in a second tier of annotation that assumes
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the correct spacing and tokenization established in the previous layer.

As with spacing errors, when spelling errors are not corrected, the correct parti-

cle cannot always be defined. Correct particles rely on correct segmentation, which

misspellings can mask. In (23), for instance, the erroneously inserted character 기

(ki) makes it difficult to determine the boundary between the stem (맛) and suffix

(으로), as it could be a mistake on either of the morphemes. Thus, all spelling errors

that directly affect particle bearing nominals are corrected in KoLLA.

(23) a. Original:갈비
rib

맛기로는

???

b. Corrected:갈비
rib

맛-으로-는
taste-AUX-TOP

‘as for rib taste’

4.3.5 Segmentation

After describing corrections for spacing and spelling errors, we turn to word seg-

mentation. To know whether a particle should be used, the position where it could

occur be must be properly defined, leading to a need for the correct segmentation

of particle-bearing words (i.e., nominals). Again, we see a contrast with similarly

themed English error detection work where words such as particles and articles can

be inserted into any white space, rather than needing to occur within a word. This

annotation layer builds upon the previous two: it is often impossible to determine

segmentation of learner forms, so correctly spelled forms serve as the basis for seg-

mentation (cf. (23)). Also, this layer assumes correct particle forms, so all contextual

spacing and spelling errors are corrected in the segmentation annotations.

Because it uses the corrected forms as input, the segmentation layer is funda-

mentally different from the previously described spacing and spelling layers in that
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no corrections need to be done here. Rather, this layer allows for better research of

the language itself, in that it facilitates comparison to the output of other processes

done on the corpus, e.g. POS-tagging, morphological analysis, parsing, etc. Most

of these types of tools expect unsegmented forms as input, and then use their own

rules and templates to split ecels into morphemes before tagging. Having this layer

means that at the evaluation phase of the error correction task, one can check if the

system had any chance of guessing a particle correctly based on the segmented

form that came from the pipeline.

With segmentation, one can propose evaluating: 1) against the full correct form,

or 2) against the correct particle. In the error correction work described in this dis-

sertation, we will be using the correct particle for comparison. Note also that the

important segmentation is of nominals, as we are only interested in particle error

detection at the moment. Segmentation of other words, while a nice additional fea-

ture, is not required right now, and is left for future work on the corpus.

One item of interest that is dealt with here is the notion of sequential particles.

This refers to a situation when multiple particles, e.g., 만-을 (man-ul), should be

attached to a single noun for grammaticality. These are segmented into their in-

dividual units in this layer of annotation. This segmentation allows for different

treatments of sequential particles; for machine learning, one could combine them

into a single class, for example.

After these three layers of annotation defining the tokens, we turn now to the

annotation of interest: defining what the target particle form should be. What is

needed, then, is clarity on assigning the correct particle, i.e., the target form.

64



4.3.6 Defining the Target Form

A major, non-trivial step in designing particle error annotation for a learner cor-

pus of Korean is deciding what exactly constitutes grammaticality, i.e., the target

form, which sets the standard for the language. For English, a missing preposition

in a context where there could be one almost always denotes a grammatical error,

but for languages such as Korean (and e.g. Japanese) this is not so. This complica-

tion arises because particles can be dropped in spoken and even written Korean.

Because some particles can be dropped, we have to ask whether the annotation

marks obligatory or possible particles, as this may result in a large discrepancy in

the annotation.

The annotation requires particles which are obligatory within a very specific

definition of grammaticality. Namely, they are particles which beginning learners

are taught to use. Future work may want to divide correct particles into obligatory

and optional categories, but this decision captures the minimum needed for parti-

cle prediction systems and is consistent with the fact that particles are usually not

dropped in formal Korean (Lee and Song, 2011).

The annotation guidelines follow the principle of “minimal interaction,” (e.g.,

Hana et al., 2010): the corrected text does not have to be perfect; it is enough to be

grammatical (at least for particles and the particles to which they attach —see Sec-

tion 4.3.10). Within this definition of grammaticality, it is worth noting the particles

that are not annotated. Firstly, in some cases, although a particle is possible, no one

is required to use it. For example, in noun-noun compounds, one could use a geni-

tive case marker between the nominals, but it is not mandatory, even for beginners.

Thus, if such use of a genitive case marker is not used by a learner, it is not added to

the annotation, as the sentence without the genitive is still grammatical according
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to this definition. Likewise, there is an object marker which can be placed between

verbs, but which learners are not taught, and so it is not annotated, either. In both

cases, the key criterion is whether the form is mandatory for learners. Any particles

that do not fit this strict definition are not added to the annotation in KoLLA.

A final issue of grammaticality that must be dealt with is the overlap in dis-

tribution of topic particles, e.g., 은/는 (ul/lul) with structural case markers, most

often the subject marker이/가 (i/ka). There are many situations where either one of

these particles could correctly be used in Korean, and the result would be perfectly

acceptable even for native speakers. For example, consider (24) where the same

sentence is provided with a subject marker in the first case, and a topic marker in

the second. The difference in these situations stems from pragmatics and what the

speaker or writer wants to emphasize. In the KoLLA corpus, though in general,

the annotation ignores pragmatics, if a sentence initial noun is ambiguous as to

whether the subject or topic marker is more appropriate, both are marked as ac-

ceptable. Otherwise, e.g., if the sentence already has a different noun marked as a

subject or topic, only the most appropriate particle is listed in the annotation.

(24) a. Subject:그래서
so

제-가
I-SBJ

한국말-을
Korean-OBJ

열심히

passionately
배우고

learn
싶어요

want
.

b. Topic:그래서
so

제-는
I-TOP

한국말-을
Korean-OBJ

열심히

passionately
배우고

learn
싶어요

want
.

‘So, I passionately want to learn Korean.’

4.3.7 Error Types

Before getting into the annotation of the correct particle, it is important to estab-

lish the conventions for annotating the errors themselves. Obviously, there can be

great benefit for all kinds of research in knowing the frequencies and contexts for

66



different types of errors. We will describe a pipeline approach to error correction in

Chapter 6 that identifies whether or not a nominal should be followed by a particle

at all or if there is a particle, if it is correct, before deciding what the actual particle

should be. In order to evaluate such an approach, it is important to know in what

way the target is erroneous. If there is an error of omission, for example, it can at

least be detected with a binary classifier that guesses the presence of a particle after

a nominal.

Three categories of errors marked up in the corpus described in Lee et al. (2009a)—

omission, replacement, and commission are retained in the KoLLA corpus, along

with one additional category, ordering.

Errors are marked as omissions when a learner neglects to use a required parti-

cle. In (25a), for instance, a learner omitted a subject particle after the word것 (kes).

While dropping a subject particle here might be acceptable in some registers of Ko-

rean, it is not within the definition of grammaticality used in this corpus. The error

has been corrected in (25b). (26a) illustrates an omission error where the learner

has correctly used one particle, but two particles are needed for the sentence to be

grammatical, as in the corrected version in (26b). Specifically, the learner has only

used the topic marker, 은 (un) after 사진 (“photo”) in (26a), but the sequence of

in+topic marker is required, as in (26b). Errors of this type, while extremely rare in

this corpus, do occur and are marked as omissions, as each particle is considered

a distinct unit. However, researchers can also choose to consider these as a single

unit, thus treating the error as a substitution, by simply checking the original and

correct particle annotation layers to see if more than one particle was used/needed.

(25) a. Original:각
each

곳에

place-at
여러

many
좋은

good
것

thing
있어요

exist
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b. Corrected:각
each

곳에

place-at
여러

many
좋은

good
것이

thing-SBJ

있어요

exist

‘There are many good things’

(26) a. Original:이
this
사진은

photo-TOP

버브

Bob
대이란이

Dylan-SBJ

있습니다

exist

b. Corrected:이
this
사진에는

photo-in-TOP

버브

Bob
대이란이

Dylan-SBJ

있습니다

exist

‘Bob Dylan is in this photo’

Substitution errors refer to instances where the student uses a particle, but it is

not the correct particle for a given context. In (27a), the learner has mistakenly used

the subject particle,이 (i), with the first word in the sentence,사신 (sasin), likely on

the assumption that every sentence must have a subject. However, in this case, the

subject is the implied first person, and사신 is actually a direct object of the verb찍

(ccik). The correct formation of the sentence is given in (27b).

(27) a. Original:사진-이
photo-SBJ

찍-고
take-and

책-을
book-OBJ

샀어요.
bought.

b. Corrected:사진-을
photo-OBJ

찍-고
take-and

책-을
book-OBJ

샀어요.
bought.

‘(I) took a photo and bought a book.’

Errors of particle commission are, not surprisingly, the opposite of omission

errors. That is, the learner incorrectly uses a particle, when none should actually be

there. An example is given in (28a), in which the learner has attached the particle

에 (ey), which can be used to denote when something happens (translated as ‘at’

in this example), to the word보통 (pothong). This construction is not grammatical

in Korean, and would thus be marked as an error of commission. The corrected
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sentence is provided in (28b) 3.

(28) a. Original:보통-에
normally-at

쉬-고있-으면
rest-PROG-if

음악-을
music-OBJ

듣습니다.
listen

b. Corrected:보통
normally

쉬-고있-으면
rest-PROG-if

음악-을
music-OBJ

듣습니다.
listen

‘Normally when (I) am resting, ( I) listen to music.’

Commission errors can also show up in cases where the learner uses a sequence

of particles, but only a single particle is needed, as in (29a). Here, the learner has

redundantly inserted 에 (ey) after 집 (cip), along with the necessary particle, 까지

(kkaci). The corrected sentence is given in (29b).

(29) a. Original:웰슬리
Wellesley

대학-에서
College-from

제

my
집-에-까지
house-at-to

삼십

thirty
분-걸려요.
minutes-take

b. Corrected:웰슬리
Wellesley

대학-에서
College-from

제

my
집-까지
house-to

삼십

thirty
분

minutes
걸려요.
take

‘It takes thirty minutes from Wellesley College to my house.’

There are a few instances of the last error type, particle ordering errors. This

error type can only occur in sequential particles (discussed in Section 4.3.5). For

example, in (30a), the learner concatenated 나 (na) and 한테 (hanthey), when they

should have concatenated them in the opposite order, as in (30b).

(30) a. Original:호텔-이나
hotel-or

길-에서
street-in

아무-나-한테
anyone-AUX-to

인사하세요.
greet

b. Corrected:호텔-이나
hotel-or

길-에서
street-in

아무-한테-나
anyone-to-AUX

인사하세요.
greet

‘Please say hi to anyone in a hotel or the street.’

3Note that there is the interesting construction쉬-고있-으면 in this sentence where two separate

tokens convey a single notion (rest-progressive-if ) when translated into English
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The error type could simply be ascertained by examining and comparing the

original and corrected fields. However, the Error Type annotation field, while re-

dundant, does make the task of quickly identifying and/or collecting errors auto-

matically a simpler process. Moreover, it is useful as a safeguard against annotation

errors, as illustrated in Section 4.4.2.

4.3.8 Determining the Correct Particle

Once a particle has been marked as erroneous, the obvious next step is knowing

what the correct particle or particles should be for the given context. The choice

of best particle can be a complicated one, relying on a number of factors. First of

all, there are hundreds of particles in the Korean language (Kang, 2002). With so

many choices, it is not surprising that there can be disagreement, even among na-

tive speakers as to which particle is best for a specific context. The phonotactics of

Korean are another factor in particle choice; whether the preceding nominal ends

in a consonant or vowel can affect the allomorph of the particle. Segmentation also

presents a challenge in choosing the best particle to annotate, as it interacts with the

aforementioned phonotactics issue so that some nominals combine with particles

to form entirely new units.

As with English prepositions and articles, there are situations where more than

one particle could be correct. In these cases, the annotations list all reasonable al-

ternates, allowing for a fair evaluation, where a system can evaluate against a set

of correct particles. A particle which makes the sentence grammatical will end up

in the set. It may seem like there is usually one particle which is the best answer,

but there are no clear criteria for selecting one, and, in fact, there is a low inter-

annotator agreement in a pilot experiment run while constructing this corpus, as
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opposed to the higher agreement for a set of particles (see Section 4.4.1). Thus, an-

notators are not forced to mark a single-best particle in a set.

The next issue is that many particles change based on simple phonological

criteria—e.g.,을 (ul) is used for nouns ending in a consonant and를 (lul) for those

ending with vowels. While this distinction may not make the annotation task more

difficult, it is worth pointing out as it could lead to confusion or disagreement

among researchers. To be precise, the exact particle which is required in a given

context is annotated in the KoLLA corpus. Users of the annotation could easily

map one variant to another if desired.

The final factor we discuss here is that the particle form is sometimes non-trivial

to annotate, as particles contract or merge with the noun, resulting in a surface real-

ization which is not a true particle. In (31a), for example, the genitive의(uy) merges

with the preceding pronoun저 (ce) to become제 (cey). We could thus segment the

target particle as eitherㅣor의.

(31) a. 제
my
미래-에
future-AUX

도움-이
help-SBJ

b. 저+의
my-GEN

미래+에
future-AUX

도움+이
help-SBJ

‘(It will be) a help for my future.’

In these types of cases, the full particle (e.g.,의) is marked as the target particle,

as in (31b), for two reasons. 1) The formㅣ is not a full particle, only a contracted

form, and annotating full particles is preferable, to be consistent across different

examples. 2) This is the segmentation that taggers often provide (e.g., Han and

Palmer, 2004).
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4.3.9 Handling multi-token particles

Example (32) illustrates a case of, not just a single particle, but two units which go

together. Namely, 을 (ul) is best changed to the complex form 에 대해서 (ey tay-

hayse), rather than just에. These cases are fixed forms, with forms like대해서 often

originally deriving from verbs. Theoretical linguists (e.g., Nam, 1993; Ryu, 2007)

disagree on whether these forms are single particles or not; with the whitespace,

it is easy to reconstruct different analyses. In the KoLLA annotation scheme, such

cases are treated like a single unit. That is,대해서 (tayhayse) is not segmented and

treated like a separate word, rather it is included in the same field of annotation as

the original particle,을, in this case. This treatment allows for the simplest annota-

tion of making a single correction to the original text, a treatment similar to that of

sequence particles.

(32) a. Original:으막-을
music-OBJ

생가카다

think

b. Corrected:으막-에대해서
music-ABOUT

생가카다

think

‘think about music’

4.3.10 The influence of surrounding errors

Another issue affecting the annotation of particle errors is how to handle surround-

ing forms. The issue of surounding errors aside from the target error type is rele-

vant for corpus annotation and learner error detection for all languages and adds

a significant amount of difficulty to tasks within the field. While many learner er-

rors do not affect particle errors, some interact with particles, either directly or

indirectly. For example, (33) illustrates a learner error that is actually tied to the

selectional restriction of, the verb, 의지한다 (uycihanta - ‘lean on’), in regards to
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animacy of its object. Here, 의지한다 is the wrong choice because it requires an

animate object and 시험 (sihem - ‘exam’) is inanimate. If we correct the verb to 달

려있다 (tallyeissta - ‘depend’), as in (33b), the correct particle is에 (ey). If we do not

correct the verb, then the learner’s particle,을 (ul), is syntactically appropriate for

the verb, even if the verb’s selectional restrictions are not followed.

(33) a. Original:내
my
인생-이
life-SBJ

이

this
시험-을
exam-OBJ

의지한다

lean-on

b. Corrected:내
my
인생-이
life-SBJ

이

this
시험-에
exam-ON

달려있다

depend

‘My life depends on this exam’

It is important to clearly designate at what point in the process the particle is cor-

rect. The current annotation does not deal with word choice and related semantic

issues, so the emphasis is on the correct particle at the point before any such errors

are corrected. In cases like the one in (33), there is no correction to (33b). Instead, in

these cases the verbs and other lexical errors are left as is and the focus is on anno-

tating the particle based on the current verb. This makes the particle-selection task

for machine learning more attainable and is easily extendible with multi-layered

annotation. If, for example, the annotation required the correct particle, even with

the wrong verb, a machine learner would be tasked with essentially guessing the

wrong particle for a given verbal context. Changing the verb and particle before

passing along the data to the error correction system would be making the some-

what large assumption that some automatic process will have already corrected

verb choice errors.

Note that this is a significant question to address, as correction is a dynamic

process. Because of the interrelated nature of different errors, different researches
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have dealt with context errors in a variety of ways: Rozovskaya and Roth (2010b)

correct a set of related errors, and Gamon (2010) “eliminated sentences containing

nested errors and immediately adjacent errors when they involve pertinent (prepo-

sition/article) errors,” eliminating 30% of the sentences. Hana et al. (2010) annotate

multiple layers of Czech learner language in order to capture the dynamic process

of correction (cf. also Boyd, 2010), and with the multi-layered annotation in the

KoLLA corpus, one could follow suit here, although the relation to system evalua-

tion would be more complex. In the future, there is potential for further exploring

the interrelated errors of verb and particle choice in this corpus.

4.3.11 Particle Categories

The last piece of information that is provided in the annotation is a tag that gives

a description of what the particle’s function is. For example, the particle를 (lul) is

given the O tag, specifying it as an object marker. There are several different types

of particles all of which behave differently and may reflect different error patterns.

Although boundaries can be fuzzy, it can be helpful to distinguish some broad

categories (Nam and Ko, 2005; Lee, 2004): 1) structural case markers; 2) inherent

case markers (cf. prepositions); 3) auxiliary particles, i.e., those which change lex-

ical properties or a word’s semantics, such as topic markers (cf. articles); and 4)

conjunctions. Traditional grammars (e.g., Nam and Ko, 2005) make a 3-way dis-

tinction, not separating structural and inherent case. However, these subtypes pat-

tern differently: structural case markers exhibit more optionality and are less tied

to specific predicates, among other differences (see discussion in Lee, 2004). The

four-way distinction is utilized throughout this research. This categorization helps

because learners can make different kinds of mistakes with different kinds of parti-
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cles, and systems can be developed, evaluated, or optimized with respect to a par-

ticular kind of particle. As a classification of particles is not without controversy,

especially for, e.g., datives (see Lee, 2004), other researchers may prefer a different

meta-categorization—which the annotation of individual functions in this corpus

also supports.

As mentioned earlier, there are hundreds of particles in Korean. Depending

on genre, Kang (2002) reports that 107 particles appeared in academic abstracts

while 245 were found in literature. However, many of these are not used often, and

certainly not by learners—e.g., nine particles cover a set of thesis abstracts and 32

cover 95% in Kang’s study. Taking into account that this corpus is composed of

essays by beginning learners who are writing about everyday topics and are likely

at a lower level than those who are writing theses, one can assume that the vast

majority of particles belongs to an even smaller subset.

A list of the 40 most frequent particles for first and second year learners was

gleaned after consulting two textbooks, Integrated Korean (Beginner and Intermedi-

ate) and Yonsei Korean (1 & 2) (Park et al., 2003). This list is used as a basis to show

the four-way categorization we use in Figure 4.1. Note that the count includes all

unique orthographic forms, so each allomorph as distinct. For example,가 (ka) and

이 i) are both included in the count even though they are allomorphs of a single

morpheme. Also, the 40 particles include some overlapping of categories due to

ambiguity of forms, e.g., 에 (ey) can be a time, locative, or goal adverbial. These

40 particles do not represent every particle in the corpus. Most of the other parti-

cles in the corpus are either used by advanced intermediate learners, or result from

learners using predicates requiring particles they have not been taught or heritage

speakers going beyond their level.
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Structural Case:
SBJ:이/가
SBJ HON:께서
OBJ:을/를
GEN:의

Auxiliary:

TOP:은/는
AUX:도 (‘also’)

만 (‘only)
마다 (‘each’)
바께 (‘only’)
처럼 (‘like’)
만큼 (‘as much as’)
대로 (‘as’)

Conjunction:

CONJ:와/과 (‘and’)
하고 (‘and’)
이나/나 (‘or’)
이든지/든지(‘or’)
이라든지/라든지 (‘or’)
이랑/랑 (‘and’)

Inherent Case:
DAT:에/에게 (‘to’)

한테 (‘to’)
DAT HON:께 (‘to’)
COMP:이/가
TIME:에 (‘in, at’)
LOC:에 (‘to’)

에서 (‘from’)
INST:으로/로 (‘with’)
DIR:으로/로 (‘to, as’)
SRC:에서 (‘from’)

에게(서) (‘from’)
한테(서) (‘from’)
부터(‘from’)

SRC HON:께 (‘from’)
GOAL:에(‘to’)

까지 (‘to’)
WITH:와/과 (‘with’)

하고(‘with’)
이든지/든지 (‘with’)

VOC:아/야
COMPAR:보다

Figure 4.1: 40 Particles Taught to Learners of Korean

It is not surprising that learners have trouble with particles, just based on a

cursory glance at Figure 4.1. There are, for example, no less than seven different

forms of particles that can all translate to the English word to. Conversely, the

particle 에 (ey) can be translated as, at least, to, in, and at. Such instances of hy-

ponymy/hypernymy are likely sources of errors as language learners tend to rely

on their L1 when assigning semantic relationships in their L2 (Ijaz, 1986). Moreover,

these 40 particle forms make up less than 20% of all Korean particles. For further

discussion of particle see Section 3.2.4.

4.4 Annotating KoLLA

The previous discussion outlines the type of annotation needed for evaluating Ko-

rean particle errors made by learners. The annotation was carried out by two na-
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tive speakers of Korean: one of whom is a professor of Korean, with a Ph.D. in

linguistics, the other was a graduate student in linguistics and a Korean Language

teacher’s assistant. To put all of the annotation together, the annotators used the

Partitur Editor of EXMaRALDA 4. This tool is ideal for these annotation conven-

tions as it easily supports the layered approach, clearly linking rows of annotation

with columns of words. An example of full annotation is given in Figure 4.2, for

the sentence in example (34)5.

(34) a. Original:물론
of course

뉴욕-에서
New York-in

태어-났-기
born-PAST-NML

때문-에
reason-for

영어

English
바께

only
할

speak
수

way
있-겠-죠
exist-FUT-END

‘Of course, since (I) was born in New York, I was able to speak only in English. ’

b. Corrected:물론
of course

뉴욕-에서
New York-in

태어-났-기
born-PAST-NML

때문-에
reason-for

영어-만
English-only

할

speak
수

way
있-겠-죠
exist-FUT-END

As can be seen in the figure, positions 12 and 13 are merged in the Spacing layer,

in order to correct the spelling, as the particle바께 (pakkey) was originally written

as a separate token. In this instance, there is no spelling error, so the Spelling layer

is identical to Spacing. The Answer layer changes from the erroneous to the correct

particle for position 12; 바께 is changed to 만 (man. This change is encoded as a

substitution error (represented with the ‘2’ on) the Error Type layer. The Segmen-

tation layer clearly defines the morpheme boundaries for nominals by inserting a

+ between each morpheme in the ecel. The next two layers represent the Original

Particle and Correct Particle, where only the particle is given. Additionally, both the

original and correct particles are encoded as auxiliary particles (‘A’) in the Original

4http://www.exmaralda.org/enindex.html

5NML is a nominalizing morpheme that can cause a verb to act like a noun
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Particle Type and Correct Particle Type layers. In this particular sentence, we also see

two correctly-used particles at positions 9 and 11, encoded as error type ‘0’ (i.e., no

error), with one a locative adverbial (‘BL’).

Figure 4.2: Corpus annotation for (34), using the PartiturEditor of EXMARaLDA
(Schmidt, 2010)

4.4.1 Inter-annotator agreement

To gauge the reliability of the annotation, two experienced annotators annotated

the correct particle and the error type (addition, replacement, omission)6 on the her-

itage intermediate subcorpus. We report the agreement on both tasks here. Given

the high number of times they both gave no particle to a word (in 1774 ecels), these

cases were removed when calculating agreement, so as not to overly inflate the

values. Also, when either annotator used more than one particle for an instance

(occurring 9 times), only full agreement counts.

The agreement rate was 94.0% for the error type (Cohen’s kappa=79.1), and

92.9% (kappa=92.3) for specific particles. These values are extremely high, which

6This experiment was done before adding ordering errors to the annotation guidelines; after re-

vising the annotation, it was also the case that no ordering errors needed to be annotated in the

subcorpus used for this experiment.
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can be explained by the fact that these annotators were highly-trained and were

using a relatively stable set of guidelines which had been under development for

some time (based initially on Lee et al. (2009a)). Kappa for particle agreement is

high because of the fact that there are over 30 particles, with no overwhelming

majority categories, so it is unlikely for annotators to agree by chance. Previous

work (Lee et al. (2009a)), which did not allow multiple particles per position, had

a lower agreement rate (e.g., kappa for particle value = 62%), likely due to less

well-articulated guidelines.

Multiple particles To gauge how difficult it is, in general, to assign more than

one particle, an additional experiment was carried out, examining cases where

more than one particle may be possible. The experiment included 30 verbs that

license more than two particles for a nominal argument. Using these verbs, hand-

constructed sentences with missing particles were presented to two annotators

who were asked to fill in the missing particles in the order of preference. Although

the agreement rate of sets of particles was 87.8%, the agreement of the “best” par-

ticle was only 60%. This supports the decision in section 4.3.8 to annotate sets of

particles.

4.4.2 Annotation Error Checking

As with most annotation efforts, the resultant corpus was not without some human

errors, most of which are simply mistakes and/or inconsistencies introduced by the

annotator while manipulating the data (Dickinson, 2005). Fortunately though, the

robust, layered annotation of the corpus allows for automatic checks of the data

that can flag possible annotation mistakes in a variety of ways. Figure 4.3 lists the

checks that we implemented to ensure that various aspects of the annotation are
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well-formed. There are checks for character-specific encodings of certain layers,

checks that ensure if an error has been marked (or not) in the Error Type layer, that

the other layers show the same type of error, as well as some consistency checks.

Ensure that certain annotations are made with a specific character set:
• Original Particle layer must be in Hangul
• Original Particle Type layer must be in English
• Correct Particle layer must be in Hangul
• Correct Particle Type layer must be in English

Ensure that error types match the annotations:
• If a particle is marked as an omission, there should be no original

particle, but there must be a correct particle
• If a particle is marked as a substitution error, the original particle

and correct particle should differ
• If a particle is marked as a commission, there should be no correct

particle, but there must be an original particle
• If a particle is marked as no error, then the original and correct

particle fields should match
Other miscellaneous checks:

• The particle in the correct segmentation layer should be the same
as the correct particle layer

• The error and particle type fields must have one from a specific,
limited set of possible values

• If any field among original particle, correct particle, original parti-
cle type, or correct particle type indicates a sequence of particles,
then they all must indicate this in some way

Figure 4.3: Annotation Error Checks

Clearly, a test set that is without errors is best, in order for evaluation to be fair.

While these checks may not catch all possible annotation errors, they have served to

flag a variety of errors very quickly. The other option, i.e. human hand-checking of

the entire corpus, would be a time-expensive endeavor that is, like the annotation

effort itself, prone to human fatigue and inconsistency.

4.4.3 Relevant Statistics

Finally, we provide here a breakdown of the statistics that can be gleaned from the

fully annotated corpus. Before moving forward, I would like to stress that while
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we present the numbers for the complete corpus here, it is only in the interest of

providing statistical details about the corpus and each of its subcorpora. When de-

veloping methodology and tuning machine learning optimizations, only the facts

that can be gleaned from the development set were considered.

Table 4.2 provides the numbers for sentences, tokens, average tokens per sen-

tence (TpS), nouns, particles, and the percentage of nouns that should have par-

ticles (N-P%) for both the Raw and Annotated corpora, whenever possible. Here,

Tokens represents the number of Korean ecels, which are roughly equivalent to En-

glish words, i.e. strings of text surrounded by white space, but can be made up

of a root and a number of morphemes. The missing cells in the Raw section of the

table denote that the information is not available. In the case of nouns, the anno-

tation scheme marks them only after spacing has been corrected, thus there is no

way to accurately count nouns in the raw data and obviously no way to calculate

nouns that should have particles. Within both the Raw and Annotated sections of

the corpus, we give the counts of the phenomena for each of the subcorpora where

F denotes foreign, H denotes Heritage, B denotes beginner and I denotes intermediate,

as well as for the completed corpus (Combined).

Sentences Tokens TpS Nouns Particles N-P%

R
aw

FB 360 1965 5.5 - 589 -
FI 371 3700 9.9 - 1128 -
HB 367 2645 7.2 - 833 -
HI 299 2822 9.4 - 910 -
All 1406 11132 7.9 - 3460 -

A
nn

ot
at

ed

FB 361 1997 5.5 714 654 91.6
FI 374 3917 10.5 1412 1206 85.4
HB 376 2715 7.2 961 881 91.7
HI 299 3031 10.1 1134 980 86.4
All 1410 11660 8.3 4221 3721 88.2

Table 4.2: Basic KoLLA Corpus Statistics Before and After Annotation
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There are a number of noteworthy facts about the corpus that can be seen in

Table 4.2. First of all, the FB section is significantly smaller than the other sections

in terms of tokens, despite having a fairly typical number of sentences, with an

average of 5.5 tokens per sentence. The HI corpus, on the other hand, has a lower

number of sentences than the other subcorpora, yet still has more tokens than ei-

ther of the beginners’ subsections, for an average of closer to 10 tokens per sen-

tence. In general, the TpS shows that the beginners’ data contain fewer tokens per

sentence on average than the intermediates. Thus, the beginners’ subcorpora have

shorter, likely simpler sentence structures, while the intermediates’ subcorpora fea-

ture longer, more complex sentences. The implications for automatically processing

the corpus that can be gleaned from these numbers are that the FB corpus might be

more easily correctly POS tagged than some of the other subsections, but the lan-

guage probably does not match what we would expect to find in natively written

documents on the web, i.e. the language used in the training corpus (c.f. Chapter 5).

In Table 4.3, we provide the type/token ratio for each subcorpus of KOLLA,

the entire corpus, and a comparably-sized part of the Wall Street Journal section

of the Penn Treebank. First of all, when comparing the KoLLA corpus to the WSJ,

the type/token ratio is drastically higher for the Korean learners. While this result

matches expectations regarding Korean corpora due to its morphological complex-

ity (Han et al., 2002), it underlines the importance of developing methodology for

Korean that accounts for more extreme data sparsity, rather than relying solely on

error detection practices that work well for English. Comparing each of the subcor-

pora, one can see that heritage learners utilize a more diverse lexicon than foreign

learners, and the same holds true for intermediates with respect to beginners.

Table 4.4 shows the number of each particle category (c.f. Section 4.3.11) af-
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FB FI HB HI All WSJ-PTB
Types 923 2015 1277 1594 5809 3139
Tokens 1997 3917 2715 3031 11660 11670
Ratio .462 .514 .471 .525 .498 .269

Table 4.3: Type/Token Ratio by KoLLA Sub-corpus

ter corrections have been made to the corpus. The first two columns, structural

and inherent case, are the most prevalent types of particles in the corpus, account-

ing for 43.6% and 24.2% of the particles in the corpus, respectively. The structural

category includes subject and object markers, as well as genitive case, so it’s not

surprising that they are so prevalent. Inherent case markers function similar to

English prepositions. Auxiliary particles are broken down into two subcategories

here, topic (Top.) and all others. Topic markers are clearly used more frequently

than other auxiliary particles, making up 13.2% of the total particles, compared to

5.2% for other auxiliaries, meaning that all auxiliaries make up about 18.4%. The

next category in the table is conjunctive (Conj.), which are the least frequent of the

four main particle categories, accounting for only 5.5% of the total particles in the

corpus.

The next column Table 4.4 is Set which refers to instances where a single particle

is needed, but there are multiple options that come from different categories. There

207 (5.6% of total particles) of these, which can then be broken down into two sub-

categories: S/T, which refers to instances where either a subject or topic particle

works equally well, and all other cases. I show the count for S/T because these are

instances that pattern similarly to Structural Case or topic markers, and could thus

be included in counts for those types of particles. Finally, we provide the number

for instances where a sequence (Seq.) of particles, i.e. multiple particles for a single

noun, is necessary for grammaticality. These cases are extremely infrequent in this

83



corpus, accounting for only 2.6% of all particle usage.

Structural Inherent Auxiliary Set
Case Case Top. Other Conj. S/T Other Seq. Total

FB 245 157 133 20 30 29 38 2 654
FI 563 292 126 65 77 30 15 38 1206
HB 352 233 128 39 46 20 33 30 881
HI 461 220 107 69 52 25 17 29 980
All 1621 902 494 193 205 104 103 99 3721

Table 4.4: Particles by Category

Next, we turn to error type distribution among the KoLLA subcorpora in Ta-

ble 4.5. As can be seen in the All row, omissions and substitutions make up the

vast majority of the errors in the corpus, accounting for 53.5% (285/533) and 39.4%

(210/533) of the total errors (nearly 93% together), respectively. These findings re-

main consistent throughout the subcorpora, though there are differences regarding

the prevalence of omissions vs. substitutions, ranging from an equal 1:1 ratio in the

FB (least native-like) subcorpus, to 1:0.59 in the HI (most native-like) subcorpus,

suggesting that as students progress, if they use a particle at all, the chances of it

being correct go up.

Particles
Errors

Total Omission Substitution Commission Ordering
FB 654 134 63 63 8 0
FI 1206 166 86 65 14 1
HB 881 108 60 37 9 2
HI 980 125 76 45 4 0
All 3721 533 285 210 35 3

Table 4.5: Number of Error Types Annotated in the KoLLA Corpus

In Section 4.1, we discussed the annotated corpus of learner Korean described

in Lee et al. (2009a). This corpus was divided using the same four-way split among

learner level and type as the corpus described in section 4.2. An examination of

84



this corpus reveals a similar distribution of error types to that of the KoLLA cor-

pus. Table 4.6 provides the counts for omissions, substitutions, and commissions

(ordering errors were treated as substitutions) found in this corpus. As can be seen

in the table, omission errors make up the biggest proportion of the errors (47.6%),

followed by substitution errors, and finally commission errors (7.8%).

Total Omission Substitution Commission
FB 218 93 108 17
HB 262 122 119 21
FI 270 134 111 25
HI 157 83 67 7
All 907 432 405 70

Table 4.6: Number of Error Types Annotated in the Lee et al. (2009b) Corpus

Conclusion

In this chapter we have thoroughly described an essential component for testing

the particle error correction system that is the focus of the dissertation: the evalua-

tion data. Along with serving as a sound test set for the current work, the KoLLA

corpus provides both the pedagogical and corpus linguistics research fields a valu-

able resource, as there are few, if any, other annotated corpora of learner Korean

available. The corpus features a multi-layered annotation scheme that provides a

step by step look at how the errors are annotated. The annotation scheme adheres

to the principal of minimal interaction and remains as theory neutral as possible

while still providing robust information about each particle in the corpus.

With the evaluation data established, we will turn next to the other set of es-

sential data for the current approach: the training data for machine learning. In

Chapter 5, we will review our methodology for gathering and utilizing appropriate

data from the Web to serve as training data for the machine learning experiments
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described in Chapters 7, 8, and 9.
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Chapter 5

Procuring Korean Data From the Web

To write it, it took three months; to conceive it three minutes; to

collect the data in it all my life.
— F. SCOTT FITZGERALD
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The web is a resource that has grown in popularity among NLP research over

the past decade. It provides a wealth of data that can prove extremely useful, espe-

cially for languages like Korean that lack large-scale procured data resources. With

that in mind, we explore two ways that the web can serve as a useful source of data

for Korean error detection in this chapter. One way is to provide well-formed text

to serve as training for a machine learning system, cf. the approach in Tetreault and

Chodorow (2008). Secondly, we explore using social networking language-learning

data to construct a large scale corpus of annotated Korean particle errors.

Because the error detection system described in this research relies heavily on

machine learning, a reliable training corpus is an obvious requirement. However,

there are a number of factors that make obtaining quality training data a significant

problem for learner language, especially in the case of Korean. First of all there are

far fewer available resources for Korean than for more canonically researched lan-

guages like English. Ideally, we could use the annotated learner corpus described

in Chapter 4, but data driven methods like machine learning require corpora that

are much larger than what we have for Korean so far. Second, Korean features

rich, agglutinative morphology, so any corpus of Korean typically has a very high

type/token ratio, making data sparsity an issue (Han et al., 2002). Another issue

arises from the disparate linguistic patterns that appear in different registers and

genres Korean, i.e. more formal Korean is vastly different from casual Korean (Kim

and Biber, 1994).

5.1 Training Data for Machine Learning

When developing a machine learning system for learner error detection, there are

basically two distinct options for training data: 1) use native-like data to build an
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error free model of what language should look like as a comparison to test data

(c.f., Tetreault and Chodorow, 2008), or 2) construct data that contains instances of

errors along with correct usage (c.f., Rozovskaya and Roth, 2010c; Dahlmeier and

Ng, 2011). It should be noted that these options lead to different machine learning

paradigms; unique methodologies must be employed depending on the type of

training data available.

For approaches that rely on native corpora, researchers can use a prebuilt cor-

pus that is publicly available, or turn to less traditional means of corpus building,

such as utilizing web-scraping methodology. While the option to utilize annotated

learner data is attractive, it is also often unrealistic because, as discussed in Chap-

ter 4, annotated learner corpora are a rare commodity for Korean, and even for

English, finding an annotated learner corpus large enough to serve as training data

for a machine learning-based system on its own is not a viable option at this point.

As such, there are two viable options for procuring a Korean corpus large enough

for corpus driven efforts. One is to utilize unannotated corpora to produce a model

of well-formed Korean; the other is to artificially insert errors into data to approx-

imate learner data. Even when this decision has been made, the issue of procuring

a corpus appropriate for the task at hand reamains. In Section 5.2, we will describe

some native Korean corpora that are currently available and examine their utility

in training a machine learner for detecting errors in learner data.

5.2 Existing Korean Corpora

There are a number of native Korean corpora that have been developed and used

for various research purposes. Here we will discuss the details of some of the more

established projects that have information publicly available.
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There was a large interest in developing annotation guidelines and corpora in

Korea in the late 1990s (cf. Yoon and Choi, 1999a,b; ETRI, 1999). However, these

corpora prove less than ideal for many applications as they are made up of largely

formal text and are difficult to procure. Moreover, most or all of the documentation

for these resources is only available in Korean, making for a significant challenge

for non-Korean researchers.

One of the prominent Korean corpus efforts is the 21st Century Sejong Project

(a.k.a., The Korean National Corpus, Kang and Kim, 2004; Kim, 2005; Kim et al.,

2007). The project has spanned over a decade, beginning in 1996 and continuing

through 2007 in an effort to collect and, in some cases, annotate corpora of dif-

ferent kinds of Korean. The corpora cover a broad overview of Korean language,

including Modern Korean in South Korea, North Korean and Korean abroad, Old

Korean, and Korean-English and Korean-Japanese parallel corpora. The Modern

Korean corpus contains both written and spoken varieties. The written section has

a raw corpus of 62 million words, 15 million morphologically analyzed (cf. POS

tagged) words, a morpheme-sense tagged corpus of 12.5 million words, and a tree-

bank with 800,000 words. Figure 5.1 details the sources used for constructing the

62 million word written corpus of Modern Korean. As can be seen in the figure,

a majority of the data comes from formal registers such as news and nonfiction

writing.

Book — nonfiction 33%
Newspaper 29%
Book — fiction 17%
Magazine 13%
Scripted spoken 5%
Other 3%

Figure 5.1: Data Types in Sejong Corpus of Modern Korean
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Another effort for annotating Korean comes from the Penn Korean Treebank

(PKTB) (Han et al., 2002). The treebank is a smaller corpus with only 54,000 words.

However, it does feature fully bracketed Penn Treebank (PTB) style syntactic an-

notation, along with morphological analysis (POS tagging). The data comes from

Korean military training manuals that contain information about various military

procedures. Version 2.0 of the PKTB contains another 132, 040 words of newswire

text taken from the Korean Newswire Corpus1 (Han and Ryu, 2005). In theory, hav-

ing such a resource of expertly annotated syntactic structure could be useful in an

error detection project, the smaller size of these corpora likely prohibits their utility

in practice in a data-driven approach.

For a variety of reasons, these corpora are not ideal for the current approach.

First, not every language has such resources, and one goal for this research is to

work towards a language-independent platform of data acquisition. Secondly, the

domain of student writing is generally different from news-heavy corpora (Gamon,

2010), so even the resources that are available may not be the best fit for tasks that

examine learner data. News texts are typically written more formally than learner

writing, and exhibit different linguistic tendencies than casual or learner data. In

the case of particle usage in general, this could actually be a useful feature of news

texts, however, Korean has an extremely complex set of rules regarding register

and formality, and other considerations such as sentence length, honorifics, verb

tense, and the use of copular verbs can vary according to genre of writing (Kim

and Biber, 1994).

We are interested in situations where the task is constant—here, detecting gram-

matical errors in particles—but the domain might fluctuate. This is the case when

1http://catalog.ldc.upenn.edu/LDC2000T45
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a learner is asked to write an essay on a prompt (e.g., “What do you hope to do

in life?”), and the prompts may vary by student, by semester, by instructor, etc.

As shown in Chapter 4, Section 4.2, the topics covered in the test corpus are made

explicit, so utilizing a methodology that can exploit that may lead to better results.

5.3 Utilizing the World Wide Web

In the absence of a large-scale publicly available corpus of well formed Korean to

serve as training data, we turn to the World Wide Web as the next best option for

gathering useful data for error detection. Fortunately, there is a fairly large commu-

nity of researchers that focus on developing methodology for producing web-based

corpora. The general idea here is to scrape Korean webpages to build a customized

corpus. These Web as Corpus (WaC) techniques present a viable option to build a

corpus that suits the needs of the current approach. Although the World Wide Web

might not be a useable source for every language, it still provides data for many

languages that, at present, do not have pre-built resources available. Thus it ful-

fills, to some extent, the goal of developing language-independent methodology.

Also, building a corpus this way provides a great deal of control over what type of

content is represented in the data. By isolating a particular domain, we can hope for

greater degrees of accuracy in error detection; see, for example, the high accuracies

for domain-specific grammar correction in Lee and Seneff (2006). We will lay out

the methodology and results of our own endeavor to produce a suitable Korean

web corpus in Section 5.5.

Along with building web corpora, the World Wide Web contains data that can

be helpful in other facets of this research. In particular, there have been recent ef-

forts made to utilize online language learning websites that rely on user submitted
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annotations of language learners, e.g. Lang-82. In Section 5.7, we will discuss how

this type of data is utilized in the current research.

5.4 Web as Corpus Research

Before moving forward, we present here a brief historical overview of the use of

corpora in NLP and more specifically, using the Web as a corpus, as well as a review

of WaC research and methodologies.

Controlled, static corpora have been extremely useful and have a rich history.

The earliest computer-based corpus is generally considered to be the Brown cor-

pus, which is a corpus of about one million words of English compiled in the 1960s

(Francis and Kucera, 1979). The next few decades would see more corpora devel-

oped, e.g. the COBUILD Bank of English (Sinclair, 1987), the British National Cor-

pus (Leech, 1992), though the original intent of most of these corpora were not

associated necessarily with NLP. It was not until the Church and Mercer (1993) in-

troduction to the special issue of Computational Linguistics that corpora started to

be recognized as beneficial to NLP (Kilgariff and Grefenstette, 2003). These types

of corpora have been, and continue to be, a mainstay for many tasks in NLP. But, as

discussed earlier in Section 5.2, we are more interested in more dynamic corpora.

The Web is a resource that offers researchers a way to build maleable corpora that

can be built to address very specific needs.

Though it could be difficult to say exactly when NLP researchers started to use

the Web as a resource, one decent measuring stick is to look at the first use of the

Web at an Association for Computational Linguistics (ACL) meeting. In this case,

Mihalcea and Moldovan (1999) used web counts to rank word sense frequencies.

2http://lang-8.com
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Then in 2000, Jones and Ghani (2000) presented work on building language spe-

cific corpora from the Web, and Fujii and Ishikawa (2000) used the web to extract

definitions of technical terms from the Web. Since then, WaC has caught on to the

point that there is a workshop devoted entirely to the field (SIGWAC3), and a great

deal of research has been done specifically on how to best utilize the Web to build

corpora.

Baroni and Bernardini (2004) introduced BootCaT 4, a suite of perl scripts that

implement an iterative procedure to bootstrap specialized corpora from the web.

The process is iterative in the sense that after an initial pass using a defined set

of seed terms to build queries, the resultant webpages can be analyzed and new

seed terms extracted to make new queries. The authors used the scripts to build

English and Italian corpora that show that the corpora are well-built and useful by

evaluating the informativeness of the webpages returned, extracting n-grams from

the corpora and ensuring their relevance to the intended topic of the corpora, and

comparing the corpora to the original texts from which the initial seed terms were

extracted. I will go over the procedure of BootCaT in detail in Section 5.5.

Baroni and Ueyama (2004) lay out methodology for using BootCaT to construct

a corpus of Japanese. This work is important to the current approach, as Japanese

and Korean share many properties that could be potential stumbling blocks for a

suite of scripts designed to work on European languages. Most significantly, the en-

coding of the webpages differs significantly, and both languages have a fair amount

of loan words that are often written in a foreign character set (for Japanese and

Korean, the Latin alphabet is a foreign character set, for example). Crucially, the

3http://sigwac.org.uk

4http://bootcat.sslmit.unibo.it
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authors explain the methodology for altering the original BootCaT scripts to work

with Japanese. The resultant Japanese corpus is made up of mostly relevant doc-

uments, meaning that with a large enough corpus, one can expect to have a fairly

useful and topic- focused corpus using this methodology.

Ueyama and Baroni (2005) further develop the methodology they established

with their 2004 effort in order to produce large-scale corpora of Japanese. Using 100

seed terms comprised of basic Japanese vocabulary, they constructed 100 random

3-tuples to query Google. They take the top 10 hits for each query and discard du-

plicate urls. The Japanese writing system does not use white space between words,

so they tokenized the text with ChaSen (Matsumoto et al., 1999), resulting in two

corpora of 3.5 and 4.5 million tokens.

Sharoff (2006) builds large-scale BNC-like corpora for Chinese, English, Ger-

man, Romanian, Ukrainian and Russian, and compares the resultant corpora to ex-

isting traditional corpora where possible. Sharoff uses similar methodology to that

laid out in Baroni and Bernardini (2004) to produce web corpora, but on a much

larger scale to generate much bigger corpora. That is, he uses 500 seed terms and

5000-8000 queries. The resultant corpora are over 100 million tokens, demonstrat-

ing that using the web to build corpora is a viable option for producing extremely

large scale corpora.

Combining the threads seen in Ueyama and Baroni (2005) and Sharoff (2006),

Erjavec et al. (2008) use the web to build an extremely large corpus of Japanese

for use with The Sketch Engine5, a large scale corpus query tool. (Kilgarriff et al.,

2004). The authors present JpWaC (Japanese Web as Corpus), which contains data

from nearly 50,000 URLs, resulting in over 400 million tokens. They use Japanese

5http://www.sketchengine.co.uk
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translations of the top 500 most frequent non-function words from the BNC as seed

terms and randomly generate 4-tuples to query Google.

Fantinuoli (2006) provides a different look at building web corpora by utilizing

the BootCaT methodology to extract smaller, focused, topic-specific corpora for En-

glish, German, and Italian. These corpora are much smaller than those in Sharoff

(2006) and Erjavec et al. (2008), ranging from 400,000 tokens (English) to 1.5 million

tokens (Italian), and rather than being built as a general corpus as in those efforts,

these corpora are intended to contain documents about Leukemia. For the task of

term extraction from a corpus, i.e., finding terms that are indicative of a particular

subject, the web corpora produce better or equivalent results to hand-built corpora

in the tests performed and in a fraction of the time.

5.5 Using BootCaT

We chose to work with BootCaT (Baroni and Bernardini, 2004) to build the web-

corpora used in this research. BootCaT is an attractive option because it works well

out of the box, and at the time that we collected data, it allowed for large-scale

queries using Yahoo! as a search engine. It should be noted that Yahoo! has since

changed its policies and that BootCaT now uses Bing and limits the number of

queries per month that a single user can make, which may limit its usefulness in

developing large scale corpora like the ones presented here. However, the method-

ologies for collecting relevant corpora are not tied to a particular search engine

or to BootCaT itself and could, in theory, work just as well in other web-scraping

endeavors.

The BootCaT process is an iterative algorithm to bootstrap corpora, starting

with various seed terms. The procedure is as follows:
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1. Select initial seeds (terms).

2. Combine seeds randomly.

3. Run search engine queries using the output from Step 2.

4. Retrieve the corpus from the urls returned in Step 3.

5. Extract new seeds via corpus comparison.

6. Repeat steps #2-#5.

For our purposes, the final two steps are unnecessary, as they would abstract away

from the specific topics contained in the test corpus, so they are not used.

To use BootCaT with non-ASCII languages, one needs to check the encoding

of webpages in order to convert the text into UTF-8 for output, as has been done

for, e.g., Japanese (Erjavec et al., 2008; Baroni and Ueyama, 2004). Using a UTF-

8 version of BootCaT, we modified the system by using a simple Perl module

(Encode::Guess) to look for the EUC-KR encoding of most Korean webpages

and switch it to UTF-8. The pages already in UTF-8 do not need to be changed.

BootCaT also removes boilerplates and cleans the HTML files with various filters.

In gathering training data from the web for Korean particle error correction,

we face the challenge of obtaining data which is appropriate both for: a) the topic

the learners are writing about, and b) the linguistic construction of interest, i.e.,

containing enough relevant instances. In the ideal case, one could build a corpus

directly for the types of learner data to analyze. Luckily, using the web as a data

source can provide such specialized corpora (see, e.g. Baroni and Bernardini, 2004;

Fantinuoli, 2006), in addition to larger, more general corpora (see, e.g. Sharoff,

2006; Erjavec et al., 2008). A crucial question, though, is how one goes about de-

signing the right web corpus for analyzing learner language (see, e.g., Sharoff, 2006,

for other contexts). Obtaining data is important in the general case, as non-English

languages tend to lack resources.
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As an initial foray into collecting web corpora for the purpose of generating

a well-formed model of Korean for a machine-learning system, we built a variety

of corpora while manipulating different conditions and parameters in BootCaT.

Along with testing various sets of seed terms aimed at gathering general and fo-

cused corpora, we mainly examined three parameters in the initial experiments:

number of seeds, tuple-length, and number of queries.

5.5.1 Seed Selection for Korean Web-based Corpora

A crucial first step in constructing a web corpus is the selection of appropriate

seed terms for constructing the corpus (e.g., Sharoff, 2006; Ueyama, 2006). In our

particular case, this begins the question of how one builds a corpus which models

native Korean and which provides appropriate data for the task of particle error

detection. The data should be genre-appropriate and contain enough instances of

the particles learners know and used in ways they are expected to use them (e.g.,

as temporal modifiers). A large corpus will likely satisfy these criteria, but has the

potential to contain distracting information. In Korean, for example, less formal

writing often omits particles, thereby biasing a machine learner towards under-

guessing particles. Likewise, a topic with different typical arguments than the one

in question may mislead the machine.

Hence there are two basic ways of going about seed selection to build a cor-

pus for our purposes: 1) Use a large set of general terms to build as big of a cor-

pus as possible, ignoring the issue of topic sensitivity, or 2) use a controlled set of

seed terms aimed at building a smaller topic-specific corpus. We compare the ef-

fectiveness of corpora built with different seeds in training a machine learner in

Section 5.5.4.
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5.5.1.1 A general corpus

To construct a general corpus, we used a list of words provided by a native Korean

speaking Linguist and instructor of Korean that are likely to be in a learner’s lexi-

con. The list is 50 nouns for beginning Korean students for seeds; it includes basic

vocabulary entries like the words for mother, father, cat, dog, student, teacher, etc.

5.5.1.2 Focused corpus #1

In many tasks, such as those dealing essays written from a prompt, written answers

to specific questions, etc., researchers often know what domain, i.e. the subject of

a discourse, learner essays are written about. Based on this fact, we experimented

with selecting seeds for a more topic-appropriate corpus, with the understanding

that the system would be less robust when examining writing that does not relate to

the selection of topics represented in the training corpus. Theoretically, with sound

methodology and tools for developing web-based corpora, corpora could be built

with little effort for dealing with new topics. Such task-specific knowledge is fairly

common for many second language writing scenarios, so this approach should be

useful for other corpora and languages. We used a smaller set of 10 seed terms

based on the range of topics covered in the foreign intermediate (FI) corpus from

Lee et al. (2009a) (see Section 4.1 in Chapter 4), shown in Figure 5.2. These terms

are, like the aforementioned general corpus seeds, level-appropriate for learners of

Korean.

한국 (hankwuk ) ‘Korea’ 사람 (salam) ‘person(s)’
한국어 (hankwuke) ‘Korean (lg.)’ 친구( chinkwu) ‘friend’
계절 (kyeycel ) ‘season’ 가족 (kacok ) ‘family’
행복 (hayngpok) ‘happiness’ 운동 (wuntong) ‘exercise’
여행 (yehayng) ‘travel’ 모임 (moim) ‘gathering’

Figure 5.2: Seed terms for the focused corpus

99



In general, even when working with extremely large web corpora, it is impor-

tant to gauge the quality of the collected data from a more qualitative perspective.

After examining a small corpus built with these seeds, a number of problems were

discovered with the corpus collected using these seeds. From initial observations,

the difficulty stems in part from the simplicity of the seed terms in Figure 5.2.

First, there are issues concerning collecting data which is not pure Korean.

Along with useful sites, there is data extracted from Chinese travel sites, where

there is a mixture of non-standard foreign words and unnatural-sounding trans-

lated words in Korean. Ironically, I also found actual Korean learner data, as in

Figure 5.3. The figure shows a screen shot from one of the pages returned using

the seeds in Figure 5.2; the problem here is that the author of the Korean text is

clearly a non-native speaker, thus, the language that he uses is likely not suitable

for building a corpus of well-formed Korean for training a machine learner.

Figure 5.3: Screen Shot of actual webpage in Focused Corpus #1

Secondly, there are topics which, while exhibiting valid forms of Korean, are too

far afield from what one would expect learners to know, including religious sites

with rare expressions; poems, which commonly drop particles; gambling sites; and
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so forth. Finally, there are cases of ungrammatical uses of Korean, which are used

in specific contexts not appropriate for the purposes of this corpus. These include

newspaper titles, lists of personal names and addresses, and incomplete phrases

from advertisements and chats. Particle usage is far less frequent in these types of

webpages.

5.5.1.3 Focused corpus #2

To avoid some of this noise, the next attempt involved a second set of seed terms,

representing relevant words in the same domains, but of a more advanced nature

(as judged by a native speaker), i.e., topic-appropriate words that may be outside

of a typical learner’s lexicon. The hypothesis is that this approach is more likely

to lead to native-like, quality Korean. Two advanced words for each topic were

selected, as provided in figure 5.4.

kyo-sa ‘teacher’ in-kan ‘human’
phyung-ka ‘evaluation’ cik-cang ‘workplace’
pen-yuk ‘translation’ wu-ceng ‘friendship’
mwun-hak ‘literature’ sin-loy ‘trust’
ci-kwu ‘earth’ cwu-min ‘resident’
swun-hwan ‘circulation’ kwan-kye ‘relation’
myeng-sang ‘meditation’ co-cik ‘organization’
phyeng-hwa ‘peace’ sik-i-yo-pep ‘diet’
tham-hem ‘exploration’ yen-mal ‘end of a year’
cwun-pi ‘preparation’ hayng-sa ‘event’

Figure 5.4: Seed terms for the second focused corpus

The seeds in Figure 5.4 lead to a corpus with a greater percentage of well-

formed data, namely data from news articles, encyclopedic texts, and blogs about

more serious topics such as politics, literature, and economics. While some of this

data might be above learners’ heads, it is, for the most part, well-formed native-like

Korean. Also, the inclusion of learner data has been dramatically reduced. How-
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ever, some problems persist, namely the inclusion of poetry, newspaper titles, reli-

gious text, and non-Korean data. We will outline our methodology for alleviating

some of these problems in Section 5.5.6.2.

5.5.2 WaC Parameters

Next, we will discuss each of the parameters that can be set in BootCaT to con-

trol the results of the queries performed to build a web-corpus, namely number of

seeds, tuple-length, and number of queries. Each of these can have a decided affect

on the quality and size of the resultant corpus.

5.5.2.1 Number of seeds

The first way to vary the type and size of corpus obtained is by varying the number

of seed terms. The exact words given to BootCaT affect the domain of the resulting

corpus, and utilizing a larger set of seeds leads to increased potential to create a

larger corpus. Of course, the number of seeds can also drastically affect the size of

the corpus; using more seeds means that more searches can be performed, and thus

more pages returned.

For the general (G) corpus, we used: G1) all 50 seed terms, G2) 5 sets of 10

seeds, the result of splitting the 50 seeds randomly into 5 buckets, and G3) 5 sets

of 20 seeds, which expand the 10-seed sets in G2 by randomly selecting 10 other

terms from the remaining 40 seeds. This breakdown into 11 sets (1 G1 + 5 G2 + 5

G3) allows for the examination of the effect of using different amounts of general

terms and facilitates easy comparison with the first focused corpus, which has only

10 seed terms.

As a first pass, for the first focused (F1 ) corpus, we used: F11) the 10 seed terms,
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and F12) five sets of 20 seeds, obtained by combining F11 with each seed set from

G2. This second group provides an opportunity to examine what happens when

augmenting the focused seeds with more general terms; as such, this is a first step

towards larger corpora which retain some focus. For the second focused corpus

(F2 ), I simply used the set of 20 seeds. Thus, there are seven sets of focused seed

terms ( 1 F1 + 5 F12 + 1 F2 ). Combining the general and focused sets then, there

are 18 different sets of seeds for testing.

5.5.2.2 Tuple length

One can also experiment with tuple length in BootCaT. The shorter the tuple, the

more webpages that can potentially be returned, as short tuples are likely to occur

in several pages (e.g., compare the number of pages that all of person happiness

season occur in vs. person happiness season exercise travel). On the other hand, longer

tuples are more likely truly relevant to the type of data of interest, and thus more

likely to lead to well-formed language. We experimented with tuples of different

lengths, namely 3 and 5. With 2 different tuple lengths and 18 seed sets, there are

36 different conditions for testing, so far.

5.5.2.3 Number of queries

The final parameter that we explore is the number of queries, i.e. how many web

searches one actually runs with the tuples that BootCaT creates. While this param-

eter may seem trivial at first glance, the maximum number of searches that can be

executed is directly connected to the number of seeds and tuples. For 3-word tu-

ples with 10 seed terms, for instance, there are 10 items to choose 3 objects from:(
10
3

)
= 10!

3!(10−3)! = 120 possibilities. Using all combinations is feasible for small seed
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sets, but becomes infeasible for larger seed sets, e.g., with 5-word tuples made up

of 50 seed terms, the number explodes to
(
50
5

)
= 2, 118, 760 possibilities. To keep the

number of queries feasible, we opted for the following: for 3-word tuples, generate

120 queries for all cases and 240 queries for the conditions with 20 and 50 seeds.

Similarly, for 5-word tuples, generate the maximum 252 queries with 10 seeds, and

both 252 and 504 for the other conditions. With the previous 36 sets (12 of which

have 10 seed terms), evenly split between 3 and 5-word tuples, there are 60 total

corpus permutations, as in Table 5.1.

# of seeds
tuple # of General F1 F2

len. queries 10 20 50 10 20 20
3 120 5 5 1 1 5 1

240 n/a 5 1 n/a 5 1
5 252 5 5 1 1 5 1

504 n/a 5 1 n/a 5 1

Table 5.1: Number of corpora based on parameters

5.5.2.4 Other possibilities

There are other ways to increase the size of a web corpus using BootCaT. First,

one can increase the number of returned pages for a particular query. With more

pages returned, obviously there is potential to gather a larger corpus. However, as

Yahoo! returns the most relevant pages first, pages further down on the list may

not contain all of the words in the query, and with longer tuples, one is more likely

to get more duplicate documents, which are removed via filter regardless. Hence,

as with many other decisions in general for web scraping, there is a trade-off be-

tween corpus size and focus. In order to maintain a single methodology for general

and focused corpora, we left the number of returned pages per query fixed at 20.

regardless of all other parameter settings.
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Secondly, one can perform iterations of searching, extracting new seed terms

with every iteration. Again, the concern is that by iterating away from the initial

seeds, a corpus could begin to lose focus. This option, then, would not boost the

quality of a corpus for the purposes of this study.

5.5.3 Quantitative Evaluation

Ecel Particles Nominals
Corp. Seed Len. Qs URLs Total Avg. Total Avg. Total Avg.
Gen. 10 3 120 1096.2 1140394 1044.8 363145 331.5 915025 838.7

5 252 1388.2 2430346 1779.9 839005 618.9 1929266 1415.3
20 3 120 1375.2 1671549 1222.1 540918 394.9 1350976 988.6

3 240 2492.4 2735201 1099.4 889089 357.3 2195703 882.4
5 252 1989.6 4533642 2356 1359137 724.5 3180560 1701.5
5 504 3487 7463776 2193.5 2515235 741.6 5795455 1709.7

50 3 120 1533 1720261 1122.1 584065 380.9 1339308 873.6
3 240 2868 3170043 1105.3 1049975 366.1 2506995 874.1
5 252 2500 4461889 1784.8 1478894 591.6 3630533 1452.2
5 504 4735 8412322 1776.6 2654176 560.5 6227603 1315.2

F1 10 3 120 1315 628819 478.1 172415 131.1 510620 388.3
5 252 1577 1364885 865.4 436985 277.1 1069898 678.4

20 3 120 1462.6 1093772 747.7 331457 226.8 885157 604.9
240 2637.2 1962741 745.2 595570 226.1 1585730 602.1

5 252 2762 2660463 992.3 915913 341.6 2020172 753.5
504 4760.2 4832548 1018.6 1652811 347.5 3587007 754.7

F2 20 3 120 1417 1054925 744.5 358297 252.9 829416 585.3
240 2769 1898383 685.6 655757 236.8 1469623 530.7

5 252 1727 4510742 2611.9 1348240 780.7 2790667 1615.9
504 2680 6916574 2580.8 2077171 775.1 4380571 1634.5

Table 5.2: Basic statistics of different web corpora

To gauge the properties of size, genre, and degree of particle usage in the cor-

pora, independent of application, basic statistics of the different web corpora are

given in Table 5.2, where the average is given over multiple corpora for conditions

with 5 corpora. We provide the number of seeds (Seed), the length of the queries

(Len.), the number of queries (Qs), the average number of URLs returned, the to-

tal number of ecels (cf. words delineated by white space) in a corpus, the average

(Avg.) number of ecels per document, the total number of particles in a corpus, the
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average (Avg.) number of particles per document, the total number of nominals in

a corpus, and the average (Avg.) number of nominals per document. Nominals are

determined using a hybrid (trigram + rule-based) morphological tagger for Korean

(Han and Palmer, 2004), which utilizes the tagset from the Penn Korean Treebank

(Han et al., 2002).

Some significant trends emerge when comparing the corpora in the table. First

of all, longer queries (length 5) returned not only more unique webpages, but also

longer webpages on average than shorter queries (length 3). This effect is most

dramatic for the F2 corpora. The F2 corpora also exhibit a higher ratio of particles

to nominals than the other web corpora, which means there will be more positive

examples in the training data for the machine learner based on the F2 corpora. This

aspect proves to be extremely significant when considering the high rate of particle

usage in the learner corpus described in Chapter 4.

5.5.4 Testing the Utility of Web-based Corpora for Machine Learning

The purpose of the web-corpus for this research is to serve as training data for a ma-

chine learner. As such, along with any quantitative and qualitative assessment of

the language used in the corpora that have been gathered, actually implementing

a machine learning task allows for direct comparison of the corpora in an exper-

imental setting. To this end, we set up an initial machine learning experiment to

measure the utility of the corpora as training data in a particle presence prediction

task. To avoid optimizing initial experiments on the test data utilized in Chapters

7, 8, and 9, we use the same FI corpus described in Lee et al. (2009a) that was used

to develop seed terms for testing.

For particle presence prediction, the machine learner is simply trying to predict
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whether or not there should be a particle in a given context. Note that this is not a

pure error detection task, as we will be looking at all nominals in the test corpora.

The particle presence prediction task serves as a good measuring stick because it

is a simple binary decision, and has broad application over a test corpus. Error

detection, by comparison, would have far fewer test instances because there are far

fewer errors than nominals in a given learner corpus of Korean.

The experimental setup here is similar to that of the error detection experiments

described in Chapter 8, but with a reduced feature set. The text is segmented and

POS tagged using a hybrid (trigram + rule-based) morphological tagger for Korean

(Han and Palmer, 2004). Each ecel is broken down into: a) its stem and b) its com-

bined affixes (excluding particles), and each of these components has its own POS,

possibly a combined tag (e.g., EPF+EFN), with tags from the Penn Korean Treebank

(Han et al., 2002). The feature vector uses a five ecel window that includes the tar-

get and two ecels on either side for context. Each ecel is presented as four separate

features: stem, affixes, stem POS, and affixes POS. These features provide lexical

and grammatical context for the instance. There are also features for the preceding

as well as the following noun and verb, which are a naive attempt at approximating

selectional properties. For the noun/verb features, only the stem is used, as this is

largely a semantically-based property. Additionally, particles were removed from

the context affixes, so as not to rely on surrounding learner particles. The class is

then either Yes or No depending on whether or not there should be a particle for

the given context.

An example of the features for these experiments is given in (35), where the

system is predicting particle presence for the word Yenge (‘English’) in (35a). We

generate the features in (35b). The first five lines refer to the previous two words,
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the target word, and the following two words, each split into stem and suffixes

along with their POS tags, and with particles removed. The sixth line contains the

stems of the preceding and following noun and verb, and finally, there is the class

(YES/NO).

(35) a. Mikwuk-eyse
America-in

sal-myense
live-while

Yenge-man-ul
English-only-OBJ

cip-eyse
home-at

ss-ess-eyo.
use-Past-Decl

‘While living in America, (I/she/he) used only English at home.’

b.

Position ROOT POS AFFIX POS
Word 2 Mikwuk NPR NONE NONE
Word 1 sal VV myense ECS
Target Yenge NPR NONE NONE
Word+1 cip NNC NONE NONE
Word+2 ss VV ess+eyo EPF+EFN
PrevVB PrevNN NextVB NextNN CLASS
sal Mikwuk ss cip YES

5.5.5 Web as Corpus Parameters

The tests were all run with the default settings for TiMBL for the results in table 5.3.

A baseline of always guessing a particle actually produces a high F-score of 81.7%,

but this is driven by the obviously high (100%) recall, at the cost of precision, which

is only 69%. The best experimental results were achieved when training on the 5-

tuple F2 corpora, leading to F-scores of 82.37% and 82.67% for the 252 query and

504 query corpora, respectively. Moreover, the precision when using these corpora

are around 84%, which beats the baseline by 15%. This finding reinforces the hy-

pothesis that more advanced seed terms result in more reliable Korean data, while

staying within the domain of the test corpus. Both longer tuple lengths and greater

amounts of queries have an effect on the reliability of the resulting corpora. Specif-

ically, 5-tuple corpora produce better results than similar 3-tuple corpora, and cor-

pora with double the amount of queries of n-length perform better than smaller
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Seeds Len. Quer. P R F
Gen. 10 3 120 81.54% 76.21% 78.77%

5 252 82.98% 77.77% 80.28%
20 3 120 81.56% 77.26% 79.33%

3 240 82.89% 78.37% 80.55%
5 252 83.79% 78.17% 80.87%
5 504 84.30% 79.44% 81.79%

50 3 120 82.97% 77.97% 80.39%
3 240 83.62% 80.46% 82.00%
5 252 83.62% 77.17% 80.25%
5 504 82.72% 79.66% 81.15%

F1 10 3 120 81.41% 74.67% 77.88%
5 252 83.82% 77.09% 80.30%

20 3 120 82.23% 76.40% 79.20%
240 82.57% 77.19% 79.78%

5 252 84.41% 78.54% 81.36%
504 84.77% 78.42% 81.46%

F2 20 3 120 81.63% 76.44% 78.93%
240 82.57% 78.45% 80.44%

5 252 84.21% 80.62% 82.37%
504 83.87% 81.51% 82.67%

Table 5.3: Step 1 (particle presence) results, with various training corpora on the FI
corpus

comparable corpora. Although larger corpora tend to do better, it is important to

note that there is not an absolute correlation, though larger focused corpora per-

form slightly better than smaller focused corpora. The general 50/5/252 corpus,

for instance, is similarly-sized to the F2 focused 20/5/252 corpus, with over 4 mil-

lion ecels (see table 5.2). The focused corpus—based on fewer yet more relevant

seed terms—has 2% better F-score. Thus, we used the best settings, i.e. 5 tuples,

504 queries, as the basis for all subsequent web-based training corpora.

5.5.6 WaC Improvements Beyond BootCaT

After reviewing all of the results outlined in Table 5.3 it becomes clear that the

methodology that has been utilized up to this point is sound. Furthermore, the

focused corpora are, for the most part, in the desired domains, and produce favor-

able particle prediction results compared with more general corpora (cf. Table 5.3).
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With a clear advantage for focused corpora, we move on now to further improving

the methodology for collecting topic-specific corpora in at least three ways: 1) fur-

ther control the topics/content contained in the returned pages such that they are

more relevant to the learner data; 2) restrict the amount of non-Korean language

returned; and 3) attain a more favorable distribution of particles that more closely

matches the frequency of usage in a learner corpus. Each of these improvements

are done outside of the actual web scraping process of BootCaT.

The first step, collecting more relevant content, is a pre-processing issue; we

present a more robust methodology for seed selection in the following section. The

next two steps are both post-processing. To ensure that the corpora exhibit mainly

Korean data, we use an encoding filter on returned pages once BootCaT is done. Fi-

nally, after collecting the appropriate corpora, we use instance sampling to reduce

the number of negative instances, i.e. nominals that lack particles. Using the best

parameters from the previous approach, i.e. 504 queries of 5-tuples (see table 5.3,

we employ each of the improvements outlined above in building a new web cor-

pus based on the topics present in both the Lee et al. (2009a) FI corpus, as well

as a completely different training corpus for the heritage intermediate (HI) corpus

described in the same paper.

5.5.6.1 Using sub-corpora

The focused corpora do a better job than the general corpora, so there is some ben-

efit to choosing the best seed terms to suit a given test corpus. To that end, we more

thoroughly investigate domain-appropriate seed term selection here. A potential

problem with the seed selections described in Sections 5.5.1.2 and 5.5.1.3 is that be-

cause all of the terms are put into a single set and then randomly combined into
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tuples for web querying, the potential to get unwanted topics remains. For exam-

ple, if the corpus Health Management and The Generation Gap as topics, words such

as pyengwen (‘hospital’) and kaltung (‘conflict’) are possible seed terms. This be-

comes problematic when these words occur together in a query, as pages returned

could be about, e.g. war, a topic which fits neither category, and is not represented

in the learner corpus at all.

Rather than use all of the seed terms to create a single corpus, a better approach

is to divide the seed terms into separate sets, based on the individual topics from

the learner corpus. Then sub-corpora can be combined to create a cohesive cor-

pus covering all the topics. For example, use 10 Travel words to build a subcorpus,

10 Learning Korean words for a different subcorpus, and so forth. This means that

terms appropriate for one topic are not mixed with terms for a different topic, en-

suring more coherent web documents.

In this case, we use the 8 topics in the FI-inspired training corpus, with 10 terms

each, for a total of 80 seeds. Likewise, we use 13 topics, with 10 terms each, for a

total of 130 seeds for the HI-inspired training corpus. The full sets of seed terms for

each training corpus are given in appendices A and B for the FI and HI versions,

respectively. The seed terms can be easily changed for other data.

5.5.6.2 Filtering

One difficulty with the previously built corpora is that some of them have large

amounts of other languages along with Korean. The keywords are in the corpora,

but there is additional text, often in Chinese, English, or Japanese. These types of

pages are unreliable for the purposes of building native-like Korean corpora, as

they may not exhibit natural Korean. While there is an option available in BootCaT
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to specify the particular language of interest, this setting alone, at least for Korean,

does not do a great job of removing non-Korean text. By using a simple encoding

filter, we can check whether a majority of the characters in a webpage are indeed

from the Korean writing system, and remove pages beneath a certain threshold.

The pages are removed, rather that retaining what remains after removing the of-

fending sentences to ensure that the quality of the data remains high; we can not

be certain that these pages were written by native Korean writers.

Setting the threshold is non-trivial. First of all, it is plausible and fairly common

for native speakers of Korean to use other languages, and therefore other character

sets, in their own writing. Indeed, Chinese characters are permissible in Korean.

Secondly, one must consider the size of the corpus. With the filter set too high, the

corpus size dwindles to such a small number that it becomes unusable for training

a machine learner. We experiment with various thresholds in Table 5.4.

For the discussion that follows, all experiments are done using maximum en-

tropy (MaxEnt) learning. The feature set is the same as the one used in Table 5.3.

Table 5.4 shows the results of the MaxEnt system for step 1, using training data

built utilizing the seed selection approach described in Section 5.5.6.1 on the FI

corpus with filter thresholds of 50%, 70%, 90%, and 100%—i.e., requiring that per-

centage of Korean characters—as well as the unfiltered corpus. The best F-score is

with the filter set at 90%, despite the size of the filtered corpus being smaller than

the full corpus. Accordingly, we use the 90% filter on the training corpus for the

experiments described below.
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Threshold 100% 90% 70% 50% Full
Ecel 67k 9.6m 10.3m 11.1m 12.7m
Instances 37k 5.8m 6.3m 7.1m 8.4m
Accuracy 74.75% 81.11% 74.64% 80.29 80.46%
Precision 80.03% 86.14% 79.65% 85.41% 85.56%
Recall 84.50% 86.55% 84.97% 86.15% 86.23%
F-score 82.20% 86.34% 82.22% 85.78% 85.89%

Table 5.4: Step 1 (particle presence) results with filters on the FI corpus

5.5.6.3 Instance Sampling

As mentioned in Section 5.4, It is not always the case that the webpages contain

the same ratio of particles as learners are expected to use. To alleviate the over-

weighting of having no particle attached to a noun, one solution is to downsam-

ple the corpora for the machine learning experiments, by removing a randomly-

selected proportion of (negative) instances. Instance sampling has been effective for

other NLP tasks, e.g., anaphora resolution (Wunsch et al., 2009), when the number

of negative instances is much greater than the positive ones. In the web-based cor-

pora, nouns have a greater than 50% chance of having no particle; we thus down-

sample to varying amounts of negative instances from about 45% to as little as 10%

of the total corpus. For the sake of comparison, about 70% of the nominals in the

Lee et al. (2009a) corpus should have a particle.

One could explore matching the distribution of particular particles to an appro-

priate learner distribution. For the comparable English case, this would involve, for

example, ensuring that the training distribution of for is approximately the same as

in the learner data. We do not explore this, as it is likely that such ratios are not

consistent across learner data.

The results for instance sampling are given in table 5.5. We experiment with

positive to negative sampling ratios of 1.3/1 (≈43% negative instances), 2/1 (≈33%),
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4/1 (≈20%), and 10/1 (≈10%). The 90% filter and 1.3/1 downsampling settings are

applied to the training corpus (Section 5.5.5) for all experiments carried out in the

rest of the dissertation.

P/N ratio 10/1 4/1 2/1 1.3/1 1/1.05
Instances 3.1m 3.5m 4.3m 5m 5.8m
Accuracy 74.75 77.85 80.23 81.59 81.11
Precision 73.38 76.72 80.75 84.26 86.14

Recall 99.53 97.48 93.71 90.17 86.55
F-score 84.47 85.86 86.74 87.12 86.34

Table 5.5: Step 1 (presence) results with instance sampling

One goal has been to improve the web as corpus corpus methodology for train-

ing a machine learning system. The results in tables 5.4 and 5.5 reinforce the earlier

finding that size is not necessarily the most important variable in determining the

usefulness or overall quality of data collected from the web for NLP tasks. Indeed,

the corpus producing best results (90% filter, 1.3:1 downsampling) is more than

three million instances smaller than the unfiltered, unsampled corpus. For more

discussion on smaller, controlled corpora producing optimal results, see Khan et al.

(2013).

5.6 Utilizing Online Language Learning Data

With the rise of social networking service (SNS) sites such as Twitter, Facebook,

MySpace, etc have come some specialized SNS. One area of focus is language learn-

ing. The idea behind these sites is that users will write essays in a language they

are trying to learn hoping that users of the site that speak that language fluently

will edit the document to point out mistakes and make corrections. Essentially, the

hope is that with a large user base, there will be a great deal of overlap of users who

speak language X and want to learn language Y with users who speak language Y
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and want to learn some language, and that users will provide useful feedback for

one another.

Some popular social networking sites for language learning include Livemocha,

smart.fm, and Lang-8, all of which have slightly different designs and features.

Livemocha6 has been looked at in a variety of recent studies of social networking

service for language learning (SNSLL) (cf., Jee and Park, 2009; Liaw, 2011; Har-

rison, 2013). The site currently boasts 16 million users from nearly 200 countries

and supports over 35 languages. There are three key learning areas: lesson content,

the global community, and a motivational system (Jee and Park, 2009). Users can

participate in interactive settings, improving speaking and listening skills, and sub-

mit written essays both of which can be reviewed by peers. The site also features

language lessons, some of which are similar to those found in Rosetta Stone, avail-

able in free and paid subscriptions (Liaw, 2011). Users are also invited to join peer

groups and find partners for speaking and/or writing practice. It is worth noting,

however, that students are not allowed to write about any topic that they wish on

Livemocha (Mizumoto et al., 2011), but rather must choose from a set number of

topics.

Lang-8 is a similar site that currently has over 700,000 users that focuses on al-

lowing users to write freely on any topic in their language of study and then having

native speakers of that language immediately begin giving feedback. Learners are

always encouraged to make corrections to other members’ writings, facilitating a

“language exchange”. This exchange is the sole purpose of Lang-8, i.e. there are no

online language lessons available through the site. Thus, the data that can be found

on Lang-8 is a potentially more natural form of SNS for language learning, as all

6livemocha.com
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the learning is done through interactions, and writers have the freedom to write

about whatever they choose.

For many of these sites, errors in written essays are marked up by annotators

and stored in revision logs. While obtaining the logs themselves might not always

be easy, or even possible, they can be an invaluable resource for the error correc-

tion community. The revision logs provide an option for gathering annotations on

a large scale at very little cost to researchers. However, the data is vulnerable to a

fair amount of noise; corrections may not be correct, using POS tools can introduce

problems, etc. As such, developing methodology for using data from these types

of sources should prove extremely useful for all languages, but especially for lan-

guages like Korean, which have a growing number of learners but a small number

of available learner corpora. To this end, we explore extracting an annotated corpus

of particle errors from the Lang-8 website revision logs.

5.7 Lang-8 as a Source for Learner Data

Mizumoto et al. (2011) describe an approach to Japanese error correction that uti-

lizes error-revision logs from Lang-8 (see also Cahill et al. (2013b) for extracting

English preposition errors from lang-8). Using the HTML from the website, they

develop a simple metric to determine annotations based on corrections to the sen-

tences. The tag <span class="sline"> creates a strikethrough and denotes that

the text between the tags should be removed, for example, strikethrough would be

rendered strikethrough if surrounded by the sline tags. <span class="red">

and <span class="f_blue"> indicate red and blue coloration of a word, re-

spectively. These are used somewhat arbitrarily by annotators on the site, but often

indicate some sort of change or insertion. The Lang-8 website does not require, or
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even suggest, specific uses for each tag, but does encourage editors to “use the cor-

rection tools in a way that is easy for the recipient to understand your meaning.7” It

should be noted that the HTML tags referred to above are the ones that are reported

in Mizumoto et al. (2011). In the version of the Lang-8 data used for the research

described in this dissertation, the tags are [f-sline], [f-red], and [f-blue].

In Mizumoto et al. (2011), the authors are trying to construct corrected sen-

tences, so they remove anything inside the sline tags and then remove all HTML

tags, assuming that everything left is corrected text. The approach described in

the paper involves statistical machine translation to correct entire sentences, rather

than focusing on a specific error type. For this dissertation, on the other hand, we

focus on particles,

The Lang-8 revision logs8 are saved as json files such that each user-submitted

writing (referred to in this work as essays) is given its own entry that consists of: 1)

a unique ID string, 2) the language of study, 3) an array that contains each sentence

from the original text as an item, and 4) an array of arrays where each outer array

corresponds to a sentence from the array in (3) and each inner array is a list of

suggested corrections for that sentence. Note that there can be multiple corrections

suggested for any sentence, as multiple users might have different ideas for what

would be the best correction for a given sentence.

We developed an algorithm to automatically extract corrected sentences from

the Lang-8 revision logs and provide particle annotation similar to that described

in Chapter 4 to create a large-scale particle error annotated corpus of Korean. Fig-

ure 5.5 provides the steps that we take in creating this corpus.

7As of 2/2/2014, as indicated at http://blog.lang-8.com/post/19885729150/

how-can-i-correct-an-entry

8Data kindly provided by Mamoru Komachi.
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1. Remove all text between sline tags, and remove all other tags from all
candidate corrections (c.f., Mizumoto et al. (2011))

2. Compare original text to each of the candidate corrections in order to de-
termine which correction requires the least amount of change from the
original to produce grammatical output

3. Split both original and corrected text into white-space delimited tokens

4. Segment and tag both the original and corrected text

• We use Han and Palmer (2004)’s morphological tagger

5. Find single morpheme differences in tagged output of original and cor-
rected text

6. If a difference occurs in an ecel where the root is tagged as a noun:

• Consider the particle(s) attached to the root noun from the corrected
text as the correct particle(s) (CP)

• If there is no particle, CP is assigned a value of “NONE”
• Find the corresponding noun in the original text and consider the

particle(s) attached to the root as the original particle(s) (OP)

7. If there is no difference for a given noun, assign the particle(s) to both the
CP and OP for that noun.

8. Determine error type (null, omission,substitution, or commission, cf. Sec-
tion 4.3.7) by comparing CP to OP.

Figure 5.5: Algorithm for Gathering Data from Lang-8 Data

In step 1, the methodology described in Mizumoto et al. (2011) for extracting

learner-annotator sentence pairs is applied to each json object. This is all that is

necessary to capture the changes in sentences, i.e. all that is necessary for an SMT

approach. The steps that we describe below involve much more processing of the

Lang-8 data. These steps are necessary for creating an annotated corpus that pro-

vides more detailed information about a grammatical feature, particles in this case.

In step 2, we use the difflib module from Python, specifically the ratio() func-

tion from SequenceMatcher, to get a numeric representation of overall similarity

between each learner-annotator sentence pair. This value is a float between 0 and

1.0, where 1.0 denotes an exact match, and 0 denotes no overlap between the sen-
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tences. We restrict the choice of the sentence to be the one that is closest to 1.0 and

that it must be above 0.5. There are a number of reasons for these restrictions. First

of all, we want to get sentences that require as few edits as possible to get back to

the original sentence. If there are multiple possible corrections for a given sentence,

the hope is that the selected version will reflect the least amount of work necessary

to produce a grammatical version of the learner sentence. Allowing for more edits

opens up the possibility that the annotator has changed the sentence far beyond a

recognizable version of the original. Secondly, there are instances in the error logs

where the annotator will add editorial remarks or clarifications to the original sen-

tence that can be difficult to recognize automatically. Given these cases, the less

similar the sentence (i.e., the closer to 0 according to the ratio() score), the more

likely that the annotator has added information to the sentence that is not neces-

sary for the purposes of this corpus. Any sentences for which no corrections exist

that meet these criteria are discarded, as the data might not be reliable enough for

this task.

Figure 5.6 provides an example of step 2 from Figure 5.5. Here, Annotator A

and Annotator B both make changes to the sentence provided by the learner. An-

notator B’s corrections produce a higher ratio score, meaning that this sentence

is more like the original than the corrections suggested by Annotator A. Thus, the

Annotator B’s version of the sentence is retained as the “correct” version of the

sentence.

Next in steps 3 and 4, the data is prepared and tagged using the Han and Palmer

(2004) morphological tagger. The tagged output is used in making decisions in the

coming steps. Using the tagger here raises a couple of issues worth addressing at

this point. First of all, the tagger preforms the necessary task of identifying mor-

119



Learner: 새로운시스템이설치된후에곧바로다시비밀번호를못설

치한것은너의실수였다∼
Annotator A: 새로운시스템이설치된후에곧바로다시비밀번호를 설정

하지못한것이나의실수였다.
difflib ratio(Learner,AnnotatorA) = 0.58333

Annotator B: 새로운시스템이설치된후에곧바로다시비밀번호를 설치

안했던것이나의실수였다∼
difflib ratio(Learner,AnnotatorB) = 0.66667

Figure 5.6: Example of Lang-8 extraction step 2

pheme boundaries. Finding these boundaries is a non-trivial step in this process

as Korean features a rich agglutinative morphological system, and the particles

that are under examination are bound morphemes that can be difficult to identify

(see Chapter 3). However, the tagger is not always accurate, especially with noisy

learner data, so some inaccuracies are likely added at this step. Figure 5.7 provides

an example of the tagged output produced in these steps for the Learner sentence

as well as the Corrected version.

Learner: 새롭/VJ+은/EAN 시스템/NNC+이/PCA 설치

되/VV+ㄴ/EAN 후/NNC+에/PAD 곧바/NNC+로/PAD
다시/ADV 비밀번호/NNC+를/PCA 못/ADV 설치

하/VV+ㄴ/EAN 것/NNX+은/PAU 너/NPN+의/PCA
실수였다∼/NNC ./SFN

Corrected: 새롭/VJ+은/EAN 시스템/NNC+이/PCA 설치

되/VV+ㄴ/EAN 후/NNC+에/PAD 곧바/NNC+로/PAD
다시/ADV 비밀번호/NNC+를/PCA 설치/NNC 안

하/VV+었/EPF+던/EAN 것/NNX+이/PCA 나/NPN+
의/PCA실수였다 /NNC

Figure 5.7: Example of Lang-8 extraction steps 3 and 4

In step 5, Python’s difflib module is employed again, utilizing the compare()

function from Differ. The function accepts two arrays, the correct tagged sen-

tence and the learner tagged sentence split on white space in this case, and returns

a list that provides each element of the first list with how it relates to the second

in terms of equality, addition (+), or subtraction (−). Substitutions are treated as a
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subtraction and an addition. Using compare() on the arrays of words from each

version of the sentence allows us to isolate the changes made by the annotator. In

Figure 5.8, partial output from the compare() function is given for the same sen-

tences in Figures 5.6 and 5.7. A - or + indicates that the text in question is removed

or added, respectively, from the Learner sentence to create the Corrected sentence. In

the case of a substitution, a - line is immediately followed by a + line, as shown in

the second and third lines in Figure 5.8, where를 (an object marker) has replaced

가 (a subject marker) after the noun자료 (“material”).

모두/ADV
- 자료/NNC+가/PCA

+ 자료/NNC+를/PCA
- 다/ADV
되찾/NNC+을/PCA
수/NNC+가/PCA
없다/NNC
./SFN

Figure 5.8: Example of Lang-8 extraction steps 5

In steps 6 and 7, we check for changes made to words tagged as nouns and

identify what particles, if any, were used by both the learner and annotator. Con-

sidering again the noun자료 in Figure 5.8, we see that the learner used the subject

marker, and the annotator corrected it to an object marker. Finally in step 8, with

the knowledge gained in steps 6 and 7, we assign the corresponding error types to

the nouns in question. In the case of the situation in Figure 5.8, the particle would

be marked as a substitution error. Note that in the cases of changes made to other

words in the sentence, the corrected version is always accepted (this means that the

resultant corpus features corrected forms of words and sentences).

The restrictions put on the extraction process cut a fair amount of data out of

the original Lang-8 dump; the original json object had 21,779 essays, only 16,643 re-
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mained after processing. This means that for 5136 of the essays there were either no

annotations provided, or the annotations were not of the quality that the algorithm

for extraction required for inclusion.

The resultant corpus, referred to henceforth as Lang-8-Ko, is a large, manually

annotated, automatically collected corpus of learner Korean with error markup that

is very similar to the scheme described in Chapter 4. The final corpus has 818,342

tokens in 75,362 sentences. This corpus is considerably larger than the KoLLA cor-

pus, which has 11,660 tokens in 1410 sentences. The tokens per sentence ratio is

10.85, higher than all four of the sub-corpora in KoLLA. Whatever the underlying

reason, this data has some significant differences from the KoLLA corpus.

5.7.1 Generating Confusion Sets from Lang-8 Data

Aside from serving as an annotated learner corpus, there is another useful purpose

that the Lang-8 data can serve. That is, it can be used to refine existing data. While

all of the work described in Section 5.5 results in a web corpus that will serve well

as a starting point for training machine learners for particle error detection, there is

still at least one major hurdle left in optimizing training data for the task. The issue

here is what particles should be allowed to be guessed by the classifier.

There are hundreds of particles in the Korean language, but many of these are

not used often, and certainly not by learners in an academic setting — e.g., 9 parti-

cles cover 70% of particle use in a data set of thesis abstracts and 32 cover 95% in a

study by Kang (2002). Thus, to optimize the system, the training data should only

include particles which can reasonably be expected to appear in a given context.

Hence, the task of determining what particles are licensed and/or likely becomes

relevant, as it could drastically reduce the number of particles from which the clas-
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sifier needs to choose, which can lead to overall system improvement (see, e.g.

Rozovskaya and Roth, 2010a).

Ideally, one could simply generate confusion matrices from a hand-annotated

learner corpus like KoLLA. This approach might be possible for languages like En-

glish that have such resources available. However, as detailed in Chapter 4, Korean

does not have a large community of researchers working on annotating particles.

Unfortunately, the size and scope of the KoLLA corpus is limited, meaning that

confusion sets generated from it alone might have gaps that would lead to poor

performance for classifiers. The Lang-8-Ko corpus, while not an example of care-

fully annotated data, can still serve as a great resource for error detection. In the

case of constructing confusion sets, this data is more ideal than a smaller corpus

like KoLLA simply due to the fact that it is much larger, and thus less affected by

idiosyncrasies and noise.

Drawing on the idea of reduced training sets in Rozovskaya and Roth (2010a),

we built confusion sets from the Lang-8 data described in Section 5.7 that provide

the set of particles that are confused for a given particle, along with their counts.

It should be noted that some particles are allomorphs of a single morpheme,

with the surface form being controlled by regular phonological rules. These are re-

duced to the form that would follow a vowel to lessen the effect of data sparsity, as

it is trivial to produce the correct variant. These reductions are given in Figure 5.9.

i and ka are both mapped to ka, etc.

Notably, some of the members of a confusion matrix built in such a way might

not actually belong there. In the case of using an automatic tagger with Korean

learner data, there is potential for things to be tagged as particles that should not be

tagged as such, and hence, should not be part of a particle confusion set. Moreover,
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이 ⇒ 가

은 ⇒ 는

을 ⇒ 를

으로 ⇒ 로

와 ⇒ 과

Figure 5.9: Allomorph Reduction of Particles

some actual particles that could be used as replacements are probably very low

in frequency and could confuse the system. Such noise should be relatively low

given a large enough data set, but should still be removed when building the final

confusion sets.

After compiling the list of all possible insertion candidates, it is pruned such

that the frequency of any particle in the list must be at least 10% of the most fre-

quent particle. For example, if가 (ka) appears 100 times as the most frequently in-

serted particle, then any particle appearing less than 10 times would be removed.

Figure 5.10 provides the resultant confusion sets for the most common source par-

ticles. Source is the particle used by the writer, and the confusion set is the set of

particles most often used to correct them. We present only the sets for omissions

(null) and five of the most commonly mistakenly substituted particles in Lee et al.

(2009a), as well as the set of particles inserted in the case of missing particles. The

five source particles in the table account for over 80% of the substitution errors in

that corpus. The confusion sets will be utilized in Chapters 7, 8, and 9.

Source particle Confusion Set
null 가,는,를,에,의
가 는,를,에,의,도
는 가,를,에
를 가,는,에,로,도
에 에서,가,는,를,로,의
에서 에,를,로

Figure 5.10: Confusion Sets for Particle Errors
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Conclusion

This chapter has outlined the way that we constructed and optimized training data

for the machine learning components of the error detection and correction systems

that we use in the current approach. Along the way, we also discussed the reason-

ing for utilizing web-based corpora rather than relying on prebuilt Korean corpora

by pointing out shortcomings (as pertaining to the current task) of the corpora

that are currently available. We also outlined a methodology for building a large

scale particle error-annotated corpus of Korean from the language learning web-

site Lang-8. Combined with the learner corpus described in Chapter 4, we have all

of the data necessary to move on to running error detection and correction experi-

ments.
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Chapter 6

An Overview of the Error Detection/Correction System

Everyone has a plan ’till they get punched in the mouth.

— MIKE TYSON
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In Chapters 4 and 5, we laid out the methodology for procuring and, where

possible and/or necessary, annotating Korean data so that a particle error detec-

tion/correction system could be constructed and tested. In this chapter, we will

give a bird’s eye view of the system itself, before going into more detail in Chap-

ters 7, 8, and 9 about how we handle omission error detection, substitution error

detection, and particle selection (i.e. correction), respectively.

6.1 Identifying the Issues for Particle Error Detection

The first step in building a system to detect and correct grammatical errors is to

know exactly what types of errors exist, as well as how the expected prevalence of

each type of error. In Section 4.3.7, we identified and defined four types of particle

errors: omissions (leaving out a necessary particle), substitutions (use of the wrong

particle), commissions (adding an unnecessary particle), and ordering errors (hav-

ing the correct particles attached to a nominal, but in the wrong order). Considering

the numbers of errors presented in Table 4.6, we found that in the Lee et al. (2009a)

corpus, omissions accounted for 48% (432/907) of the total errors and substitutions

accounted for another 45% (405/907), with commission errors accounting for the

remaining 7%. Note that Lee et al. (2009a) did not consider ordering errors as a

separate error type, as they are extremely infrequent and could be considered a

substitution error, depending on how segmentation factors into one’s annotation

scheme (for more on this, see Section 4.3.5). Using all of this information, we can

work on designing a system that will be of the most benefit for users while also

optimizing performance.

Because omission errors and substitution errors make up over 90% of the er-

rors in the corpus presented in Lee et al. (2009a), we decided to focus specifically
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on building error detection for these types of errors. Commission errors are un-

common among error types, and ordering errors are even less common. Moreover,

given the annotation scheme utilized for the KoLLA corpus, commission and or-

dering errors could be recognized by a substitution error classifier.

6.2 Development and Test Data

Three of the major contributions for this work involve data: the annotation learner

corpus described Chapter 4 (KoLLA), the acquisition and optimization of a Korean

web corpus to serve as training data for machine learners, and the use of Lang-8

revision history to develop both a particle-annotated corpus and confusion sets for

learner particle errors (the web corpus and Lang-8 are both described in Chapter 5).

All of these data sets will play important roles in the error detection and correction

experiments that follow.

The KoLLA corpus was developed in large part to serve as a test set for error

detection/correction efforts (though it is also a useful resource for other endeav-

ors), and that is the role that it will fill in this work. However, as it is a relatively

smaller corpus, under 12,000 tokens, significant questions arise in how to best uti-

lize it for testing. Splitting the data into development and testing sets will mean

that the resultant splits may be too small to adequately deal with some phenom-

ena. This issue is dealt with in detail in Section 6.2.1. Another option, then, is to use

the Lang-8-Ko corpus described in Section 5.7 as development data, thus leaving

all of KoLLA to serve as unseen test data. This option brings its own set of potential

difficulties, as explained in Section 6.2.2.

The issue of the size of the development set is strongly tied to the nature of the

errors under consideration. Omission error detection can be defined as a binary
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classification task of guessing whether or not a particle should be present. That is,

the system is only concerned with finding spaces where any particle, as opposed

to some specific type of particle, is necessary; it is a fairly homogenous set of er-

rors. Thus, developing on a subset of the KoLLA corpus should be sufficient. In the

case of substitutions, on the other hand, every particle has a somewhat unique con-

fusion set (cf. Figure 5.10). Also, the task is somewhat more difficult than finding

omission errors, as the distinguishing factors that necessitate one particle rather

than another are often subtle. As such, to generalize from development to testing,

it is likely necessary to have a large base of instances for each confusion set.

6.2.1 Splitting the Corpus for Experimentation

There are a number of ways to go about splitting the KoLLA corpus into develop-

ment and test sets. We will discuss the merits of two methodologies here. The first,

and easiest, way is to select one of the four natural sub-corpora (i.e. Foreign Be-

ginners, Foreign Intermediates, Heritage Beginners, and Heritage Intermediates)

to use as the development set and test on the other three. The other way to handle

the problem is to randomly split the data into development and test sets.

The first method, i.e. using one of the predefined sub-corpora as a development

set, was used in a couple of pilot studies, mainly because the corpus had been a

work in progress, and only one set was completely annotated. However, there are

a number of drawbacks to this method. Chiefly among them is the question of

which corpus to use as the development set. We can expect Foreign Beginners and

Heritage Intermediates to be at opposite ends of the spectrum in terms of how flu-

ent their language will be. Choosing one of these corpora would mean either: A)

optimizing the system to work with the least native-like Korean and hoping it does

129



well on more advanced language, or B) optimizing on more native-like construc-

tions and hoping to also be able to handle less fluent Korean. In other words, all

of the learner groups can be expected to show different linguistic tendencies based

on their level of familiarity and comfort with the language, so a system that works

extremely well for one, may perform much worse on a different level of learners.

Turning now to a more traditional random split of the data into development

and test sets, there are a number of questions with this approach, especially when

dealing with a corpus of this size. First of all, how much data should be put into

each set? With a relatively smaller corpus like KoLLA, this question is non-trivial;

too large a development set and there’s not enough testing data to make strong

judgements about system performance, too small a development set and the chance

that there are instances that are different from what the system has been developed

to handle increases. The next question is, should the split be done according to

the number of essays, sentences, tokens, or errors in the data? Again, because the

resultant sets will not be very large, this decision must be given due attention. If

splitting based on the number of essays, sentences, or tokens it is possible that the

error rates in the development and test sets will be far apart, however, splitting to

attain equivalent error rates could lead to one corpus being much larger based on

total words than the other. Finally, there is the question of taking random sentences

or essays, or taking an equal amount of sentences or essays from each learner-type.

We opted to split the data into random development and test sets. The data is

split according to essays, rather than sentences, as some of the features for machine

learning are discourse dependent, and thus could not be extracted from single sen-

tences. Around 20% of the data was put into the development set, with the remain-

ing 80% in testing. The split was made with an eye towards getting similar error
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rates across both corpora, while maintaining the 20%-80% data split overall.

Still, despite taking care to try and maintain a reasonable amount of both de-

velopment and test data for error detection, the size of the development corpus

is prohibitive. The resultant development set has 48 omission errors, and only 38

substitution errors (plus 14 commission errors and three omission errors that could

be caught by the substitution error detector). We use the development and test sets

for the omission error detection experiments in Chapter 7, as omission errors can

be expected to pattern fairly similarly to one another. On the other hand, consider-

ing that a substitution error can occur for any given particle, this is not likely to be

enough development data to generalize to a larger, or any, test set. Thus, we will

present only optimal results for the entire corpus. In order to provide a fair assess-

ment of how the system performs when optimized and applied to unseen data, we

explore using the Lang-8-Ko corpus (cf. Section 5.7) as a second evaluation corpus.

6.2.2 Lang-8 as Development Data

As outlined in Section 6.2.1, the relatively small size of the KoLLA corpus makes

utilizing one part of it for development and another for testing unreliable for some

tasks. Lang-8-Ko, on the other hand, is certainly a large corpus, but has questions

regarding its overall quality in comparison to KoLLA.

The main issue here is that while KoLLA was hand annotated by Korean lan-

guage experts, Lang-8-Ko was developed by utilizing markups provided by speak-

ers of unknown expertise levels and producing KoLLA-style annotations by means

of an algorithm. Because the Lang-8 contributors do not have a standard rubric to

follow, the annotations may not present a strong view of the definition of gram-

maticality that we used when designing the annotation scheme for KoLLA (cf. Sec-
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tion 4.3.6). Thus, one cannot help but wonder how reliable a single annotation may

be. The hope is that given the size of the corpus, over 818,000 tokens, a somewhat

stable form of grammatical Korean can be gleaned from generalizations made over

the entire corpus.

Another issue that causes concern here is the authors of the Lang-8 essays. In

the case of KoLLA, we know the learner level and heritage status of each learner

who contributed to the corpus. We have no such information about the Lang-8

learners. We do know that the overall tokens-per-sentence ratio is higher in Lang-

8-Ko (10.9) than for any subcorpus in KoLLA (ranging from 5.5 to 10.5). This could

mean that the sentence structures used in the majority of Lang-8-Ko will not com-

pare well to those in KoLLA, especially in the case of the two beginner subcorpora.

Finally, in KoLLA we know every topic that was available for students to write

about, as the essays were conducted in Korean learning classes. Lang-8 has no such

restrictions, thus neither does Lang-8-Ko, obviously. This could prove problematic

as the training data was developed specifically for use with KoLLA, after establish-

ing that a smaller, controlled corpus could serve as ideal training data for machine

learning experiments in Section 5.5.4. One possible solution to this problem would

be to utilize topic modeling techniques to identify the texts in Lang-8-Ko that are

most similar to the topics in KoLLA, however, this could theoretically greatly re-

duce the size of the corpus, lessening its utility for the current research.

Despite these data quality questions, we utilize Lang-8-Ko as development data

for the substitution error detection experiments in Chapter 8. We split the data into

ten random, roughly equally sized splits, so that we can use nine for development

while leaving the tenth as unseen test data.
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Omission Error Detection

• Binary CRF classifier

• Choice of {yes/no} for
particle presence

Substitution Error Detection

• Binary MaxEnt classifier
for each source particle

• Choice of {source/other}
for particle appropriate-
ness

Error Correction (Selection)

• Multi-label classifier for
each source particle

• Labels include mem-
bers of confusion set for
source particle

Figure 6.1: Korean Particle Error Detection/Correction Pipeline

6.3 An Error Correction Pipeline

We view the task of detecting and correcting errors as two separate steps, each with

its own classification (cf. Gamon et al., 2008), rather than using a single selection

classifier to perform both tasks. Further, we develop different systems for omission

and substitution error detection. Figure 6.1 provides the three main components in

the pipeline approach that we use.

As can be seen in Figure 6.1, we set up both the omission and substitution error

detection tasks as binary decisions. For omissions, this is straightforward, as the

classifier examines any nominal with no particle, and simply decides if any particle

should be there, with simply yes or no labels. For substitutions, the binary task is

perhaps a little bit less clear. We examine any nominal with a particle and employ

a classifier that has been trained such that the labels are either the existing particle,
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or other, where the other instances are a made up from all members of a confusion

set made by checking what particles are used to correct the target particle in Lang-

8 (see Section 5.7.1 for discussion on construction of the confusion sets). Note that

the error detection classifiers do not have to be performed in a specific sequence,

as they are focusing on non-overlapping phenomena. Chapters 7 and 8 provide

more details and results for the omission and substitution error detection systems,

respectively.

The correction component of the pipeline is a similar classifier to the one em-

ployed for substitution error detection, except for one critical aspect: the set of la-

bels includes all actual members of the confusion set. That is, rather than being a

binary choice, this classifier is designed to actually select the best candidate. Se-

lection of particles is a very difficult task given the wide range of functions that

particles can perform in Korean (cf. Section 3.2.4). In restricting the difficult, multi-

label classification task to the final step of the pipeline, we need only run selection

when we have established that the learner was incorrect, which is a relatively small

number of times for most learner essays given the large number of particles used in

formal Korean. The selection classifier is detailed along with results in Chapter 9.

6.4 POS Tagging

Another issue that can be addressed in regards to the entire system is that of POS

tagging the data sets (KoLLA and Lang-8-Ko) in order to extract POS features for

the classifiers. We use the same morphological tagger for Korean that is utilized

for the training data (see Section 5.5.3). The tagger is run on the data assuming

correct spacing of nouns and particle in order to give it the best possible chance at

accuracy. However, for a task focusing on particles, accuracy is indeed a concern.
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The numbers for nouns and particles in KoLLA, as according both to the annotation

and the tagger are given in Table 6.1, as well as the number of tokens.

Sub-corpus Tokens
Nouns Particles

Anno. Tagged Anno. Tagged
FB 1997 714 1073 654 705
FI 3917 1412 1989 1206 1274
HB 2715 961 1350 881 956
HI 3031 1134 1537 980 1018
Combined 11660 4221 5949 3721 3953

Table 6.1: KoLLA Corpus Noun and Particle POS Tags

Looking at the entire corpus, the tagger appears to be drastically over-guessing

noun and particle tags. There are 4221 words marked as nouns in the annotated

corpus, but the tagger identifies 5949, over 40% more than are actually in the cor-

pus. The problem is not as bad for particles, with 3721 in the annotations, and 3953

(6% more) in the tagger output. Still, the tagger does not have high accuracy on

this corpus, which could prove to be problematic for classifiers using POS features.

We chose to utilize such features, nonetheless, as the high type-token ratio for Ko-

rean combined with a smaller amount of training data means that features based on

raw text will likely be prone to sparsity issues. While we do not have gold-standard

versions of Lang-8-Ko or the web-scraped training corpus to check the accuracy the

tagger on those data sets, we assume that some amount of tagger error is present

in both.

6.5 Shared Features

The experiments run in Chapters 7, 8, and 9 all rely on a shared base of features

that are mainly composed of words and POS tags in the surrounding context of

each possible insertion point, where tags are derived from a POS tagger (Han and
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Unigrams
W 2 W 1 TARGET W+1 W+2

Root Aff Root Aff Root Aff Root Aff Root Aff
Text 여러 NONE 좋 은 것 NONE 있 어요 . NONE
POS DAN NONE VJ EAN NNX NONE VJ EFN SFN NONE
Combo 여러 DAN 좋 VJ 것 NNX 있 VJ . SFN

Syntactic Approximations
Previous Predicate Previous Noun Next Predicate Next Noun

좋 곳 있 NONE

Trigrams
W 2+W 1+W 0 W 1+W 0+W+1 W 0+W+1+W+2

Text 여러+좋+것 좋+것+있 것+있+.
POS DAN+VJ+NNX VJ+NNX+VJ NNX+VJ+SFN

Bigrams
W 2+W 1 W 1+W 0 W 0+W+1 W+1+W+2

Text 여러+좋 좋+것 것+있 있+.
POS DAN+VJ VJ+NNX NNX+VJ VJ+SFN

Table 6.2: Features and examples for것 in ’각곳에여러좋은것이있어요’

Palmer, 2004). The features are drawn from a five-word sliding window (target±2),

processing each token in a document. Only nominals are possible candidates for

the omission error classifier, only nominals with particles are possible candidates

for substitutions, and only instances where a particle omission or substitution error

have been flagged are candidates for the selection classifier. The five-word window

includes the target word and two words on either side for context; the feature set,

with examples, is given in Table 6.2 for the example in (36a) where 것 (kes) is the

target. Note that the omitted particle이 (i) should be inserted, as in (36b), though

the example would still hold if the learner had used some other particle, e.g.,를 (lul)

erroneously. The base set of 43 features is provided here, though not all features are

used by each classifier; details are provided in the appropriate chapters.
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(36) a. Original:각
each

곳에

place-at
여러

many
좋은

good
것

thing
있어요

exist

b. Corrected:각
each

곳에

place-at
여러

many
좋은

good
것이

thing-SBJ

있어요

exist

‘There are many good things’

All words are broken down into their root and a string of affixes, each with its

own POS tag (or tags, for multiple affixes) to better handle the morphological com-

plexity of Korean and avoid sparsity issues. Particles are removed when extracting

affixes, so as not to include what we are trying to guess. For the text and POS of

the root, we use unigram, bigram, and trigram features, as shown in the table; for

the affixes, we use only unigrams. There is also a (combo) feature for each root that

combines its text and POS into a single string. These features are based largely on

the feature sets in works done on English preposition error detection work, (e.g.

Tetreault and Chodorow, 2008).

In addition to these adjacency-based features, we also encode the previous and

following nouns and predicates, to approximate syntactic parent features. The pred-

icates can be verbs, adjectives that function like verbs in Korean (cf. Section 3.2.3),

and auxiliary verbs. Finally, two features to encode the amount of nouns that have

already occurred in the sentence, as well as how many still remain. The usage of

subject particles, for instance, relies in part on knowing where in the sentence a

noun occurs, with respect to other nouns.

These word and POS based features are all that are used for the omission error

detection experiments described in Chapter 7. For the substitution error detection

and selection experiments, though, more detailed information is given to the clas-

sifier. In both cases, discourse information is extracted from the text, based on the

knowledge that some decisions as to which particle is best for a given context are
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dependent on information that cannot be captured by the features described in this

section. The discourse features are detailed in Section 8.3.

6.5.1 Best Practices for Evaluating Error Detection

One of the goals that has been at the forefront of this dissertation, is to follow

(whenever possible) or establish (whenever necessary) best practices for all facets

of the research. This becomes relevant in the following chapters as we begin to

present the results of error detection/correction experiments. In particular, this

will involve ensuring that evaluation methods are valid and that they provide as

much useful information to the reader as possible. With this in mind, we will ad-

here, as much as possible, to the recommendations laid out in Chodorow et al.

(2012) when presenting error detection results. That paper scrutinizes the evalu-

ation methods that have been used across the field of automatic grammatical er-

ror detection/correction and determines the strengths and weaknesses of different

evaluation schemes.

One important finding is that the nature of error detection in the writing of

non-native learners means that the data will be skewed, that is, the amount of er-

rors in comparison to non-errors is extremely low in most situations. This skew in

the data means that some traditional evaluations will be less informative. Thus the

recommendation is to report raw measurements of true negatives (TN), true posi-

tives (TP), false negatives (FN), and false positives (FP) whenever possible, and to

clearly define what scenarios result in each contingency. Another useful piece of

information from the paper is the establishment of the written-annotated-system

(WAS) evaluation scheme, which arises from the fact that error detection has three

sources of information that must be compared: the written input, the annotated
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input, and the system input. The scheme is laid out in Figure 6.2, X, Y, and Z repre-

sent answers from each input for the same instance. The final row is marked only

with a * because the definition changes depending on whether error detection or

correction is under consideration; for error detection it is a TP, as the system has

recognized that X is not the best choice. All references to TNs, TPs, FNs, and FPs in

the current work will assume these definitions.

Written Annotated System
TN X X X
FP X X Y
FN X Y X
TP X Y Y
∗ X Y Z

Figure 6.2: WAS evaluation scheme

It is important to choose an evaluation metric that provides the most useful

information for the task at hand. Some of the more popular metrics are presented in

Figure 6.3. This research is focused on building a tool to help learners of Korean, but

the system could also be used for other applications (essay scoring, for example).

In building tools for learners, it is important to emphasize precision, even at the

cost of recall. As such, the F1 is not necessarily the most informative metric for

how well the system performs. Because F1 weights R and P equally, it is entirely

possible to have a system that finds 100% of the errors in a learner essay, but will

have extremely low precision and end up with a strong looking F1 . However, it

is also important to consider R to some extent; a system with 100% P but only

2% R is doing very little. In such a context, F0 .5 provides a good option - P is

weighted more heavily than R. Thus, in reporting error detection results, we will

often present P, R, and F0 .5 .
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Accuracy (A) = TP+TN
TP+TN+FP+FN

Precision (P)= TP
TP+FP

Recall (R)= TP
TP+FN

True Negative Rate (TNR) = TN
TN+FP

F-measure (F1 ) = 2 · P ·R
P+R

F0 .5 -measure (F0 .5 ) = 1.5 · P ·R
1.5·P+R

Figure 6.3: Evaluation metrics

Conclusion

This chapter has provided an overview of the entire particle error detection pipeline

that we designed for the experiments in Chapters 7, 8, and 9. Here, we focused on

the overall design of the pipeline approach and the shared aspects among the indi-

vidual components. The chapters that follow will provide greater detail about the

classifiers and feature sets used to perform the task for which they were designed.

We will also provide system results in those chapters.
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Chapter 7

Particle Omission Error Detection

Where can I find a man who has forgotten words so I can have a word

with him?
— ZHUANGZU
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In Chapter 6, we explained that the current approach breaks particle error de-

tection into different tasks — here, we describe in detail the task of detecting errors

of omission. As can be seen in Tables 4.5 and 4.6 in Chapter 4, omission errors con-

stitute the majority of the particle errors (around 54% and 48%, in the respective

tables) in a given learner corpus. Thus developing an error detection system that

can reliably identify omission errors would pinpoint nearly half the particle errors

language learners make. In this chapter, we describe a system designed to do just

that.

7.1 Approach

To detect omission errors in the testing data, we train a CRF classifier (Lafferty

et al., 2001) on just over one and a half million words taken from the training data.

The classifier is essentially a particle presence predictor — particles are removed

from target instances in the training data and the class is a binary representation

of whether or not there should be a particle (YES/NO). At the testing phase, only

instances where the learner did not attach a particle to the target nominal are ex-

amined. If the system returns YES, the instance is considered an error. Here we

consider all nominals, as annotated in the corpus, as possible candidates for parti-

cle insertion.

While such a system could theoretically work to identify commission errors as

well, the extremely low rate of commissions in comparison to instances where some

particle should be used makes the task very difficult. In the KoLLA development

set, there are 849 particles, and only 14 (1.6%) of those are errors of commission.

This definition of the task also nicely separates instances where the writer did not

use particle from instances the writer did use a particle. Under this framework,
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commission errors are actually more similar to substitution errors than omission

errors (see Chapter 8).

Another effect of defining errors for this classifier as only those where no par-

ticle is used by the learner is that some errors that are marked as omissions will

actually not be handled at this step. As mentioned in Chapter 4, there are instances

where a sequence of particles are actually required to be attached to a single noun to

produce grammatical output. In the cases where the learner only used one particle,

but the annotator judged that there should have been two, the instance is marked

as an omission error. This analysis makes perfect sense from a language learning

standpoint, as the learner has simply omitted a particle. From the standpoint of this

machine learning task though, this analysis is incongruous with the definition of

the system. Because the system only considers instances in which no particle at all

was used as possible sites of omission, omissions where one out of a sequence of

particles cannot be handled by this classifier.

Again, these instances are more like substitution errors — in this case, the se-

quence particles are analyzed as a single unit. Such an analysis can be argued from

a linguistic standpoint as well; one could take the view that segmenting the stem

and particles as distinct units would mean that any error in the particles unit is

a substitution error, rather than an omission. The ability for researchers to define

such instances either as omissions or substitutions highlights the usefulness of the

layered, single morpheme annotation approach. If the annotation was flat and only

marked erroneous words without providing the segmentation, the original parti-

cle, the annotated particle, and the error type, it would be more difficult to separate

these types of instances. The segmentation in particular is key to providing rich an-

notation with flexibility to define error types.

143



7.2 CRF Classifier

Conditional Random Fields (CRFs) have been shown to be a good tool for se-

quence labeling tasks. Lafferty et al. (2001) introduce the framework and compare

their usefulness to that of Hidden Markov models (HMMs) and Maximum En-

tropy Markov Models (MEMMs). CRFs utilize the joint probability for an entire

sequence of labels for a sequence, rather than using per-state models at each state

given the following states, as in MEMMs. That is, where an algorithm like MEMMs

normalize locally at each state, CRFs normalize globally, allowing for the best over-

all sequence to be preferred. This difference means that CRFs lack the undesirable

bias of other algorithms towards states with fewer transitions.

CRFs have been utilized in a variety of NLP tasks in the last few years, and

have been used recently for leaner error detection tasks, especially those which

can be seen as sequence labeling tasks (e.g., Israel et al., 2012; Tajiri et al., 2012;

Imamura et al., 2012). We can define particle presence to be a sequence labeling task

by setting up the data so that for every word, we let the classifier decide if a particle

should be present or not. Particles can only attach to nominals, so we simply ignore

decisions for other parts of speech. We use the comma error detection work in

Israel et al. (2012) (see description of this work in Chapter 1) as a basis, and employ

CRF++1 to set up a binary classifier at this step based on 1.5 million instances from

our web corpus. While that might seem like a small amount of training data, it

is important to keep in mind: 1) the task here is guessing simply yes or no about

particle presence, so a wide variety of particle coverage is not required, and 2) the

algorithm underlying CRF classification allows for models to be built with less

training data than other classifiers (Lafferty et al., 2001).

1http://crfpp.googlecode.com/svn/trunk/doc/index.html
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7.3 Features

The features for this step are simply those found in Section 6.5. That is, the full set

of word and POS based features provided in Table 6.2

7.4 Filtering

Because learners are more often correct than erroneous in their usage of particles,

we want to ensure that the output of classifier does not predict errors in too many

instances. To this end, we add a filter after the classifier to ensure that the classi-

fier does not label too many correct instances as errors. For errors of omission, we

check how confident the classifier is in its answer and only posit omission errors if

the classifier’s confidence is above a certain threshold. Tuning on the development

corpus (section 7.5), we tried a variety of thresholds, in a hill-climbing approach,

and found 85% to be the best.

7.5 Results

n TN TP FP FN Precision Recall F0 .5

Dev baseline 48 0 48 98 0 32.88 100.00 37.97
Test baseline 220 0 220 391 0 36.01 100.00 41.29
Dev no filter 48 64 40 34 8 54.05 83.33 58.14

Dev 85% filter 48 90 26 8 22 76.47 54.17 70.65
Test 85% filter 220 373 96 18 124 84.21 43.64 71.01

Table 7.1: Particle omission error detection results

Following the recommendations in Chodorow et al. (2012) (discussed in Chap-

ter 1), I evaluate by comparing the writer, annotator, and system’s answer for each

instance; true positives (TP), for example, are cases where the annotator (gold stan-

dard) and system agree, but the writer (learner) disagrees. In this case, positives
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n TN TP FP FN Precision Recall F0 .5

FB 47 45 18 5 29 78.26 38.30 64.75
HB 51 46 19 4 32 82.61 37.25 66.43
FI 63 153 32 6 31 84.21 50.79 74.42
HI 59 129 27 3 32 90.00 45.76 75.42

Table 7.2: Particle omission error detection results by learner type (test data)

are cases where the system posits a particle while the learner did not. We count

only instances of nominals without particles in the writer’s data, as these are the

only ones which could have omission errors. Along with precision (P), recall (R),

and an F-score (F0 .5 ), we provide the number of errors (n), true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN), for the sake of clarity

and future comparison. As a baseline, we use the majority class, i.e., guessing a

particle for every nominal in the corpus. It is important to keep in mind that the

baseline is evaluated by the same criteria as the full system, i.e. rather than caring

about overall accuracy (which should be quite high, given the amount of nominals

that require a particle), we are interested in its utility in finding omission errors.

Table 7.1 provides the results for particle omission detection on both the devel-

opment and test corpus. Here we present the baseline, the results based only on the

classifier’s decision (no filter), and the results for the best filter. As the 85% thresh-

old results in the best F0 .5 , we use this system on the test data. Table 7.2 provides

the results for particle omission detection broken down by subcorpus.

7.6 Quantitative Analysis

The baseline system, i.e. always inserting a particle, clearly marks all omitted parti-

cle instances as errors, resulting in 100% recall. However, as this is such a simplistic

approach, the precision suffers greatly, and at only 32 - 36% (Dev and Test, respec-
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tively) is not suitable for use in a system designed to assist learners, for automatic

grading, or most other applications of error detection.

Looking next at the result of the classifier on the development set with no filter

(Dev no filter), one can see a significant improvement over the baseline; there is

a 21% improvement of F0 .5 for the development set. With no filter, the classifier

suggests the most likely class, i.e. whichever of the two classes receives over 50%

confidence. As errors are relatively infrequent, however, the system should not flag

learner errors too often. Table 7.3, provides the number of total particles, particle

errors, and omission errors in the development set. As seen in the table, about 11%

(106/955) of nominals are left without a particle by the learner. Of these 106 cases,

only 45.3% (48) are annotated as needing a particle . The CRF with the default >

50% confidence setting (“Dev no filter” in Table 7.1) inserts 74 particles (40 TP +

34 FP), i.e. it inserts particles in 69% of the cases of bare nominals. Consider the

following hypothetical situation in regards to the “Dev no filter” system: If the

classifier posited the same number of errors (74) and found all 48 errors, the recall

would be 100% (48 TPs). However, that would mean that there would still be 26 FPs

in the best case scenario because the system posited 74 errors, so precision would

be about 65% ( 48
26+48 ). As such, there is still room for improvement over the CRF

system.

Using the optimal 85% confidence filter, the system performs much better. The

the system achieves a modest, though potentially useful, 76.5% precision and F0 .5

70.7% on the development set. It actually does even better on the Test set, at 84.2%

precision, and 71% F0 .5 on the test set. The improvement in testing over develop-

ment is likely a function of having such a small development corpus for this task.

Looking at the results in Table 7.2, some interesting patterns emerge. In general,
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the system performs better on essays by heritage learners than on those by for-

eign learners in their peer groups. Likewise, the system performs better on essays

written by intermediate learners than on essays written by beginners, regardless

of heritage status. Both of these trends make sense, as it is to be expected that her-

itage learners and intermediate learners would produce data that is more native-

like, i.e. more similar to the writing represented in the training corpus of web data

than foreign learners and beginning learners, respectively. Combining these facts,

the system performance on the FB and HI sub-corpora, i.e. those which are most

likely to produce the least and most native-like Korean, sits at opposite ends of the

spectrum, with FB producing the worst results and HI the best. These results point

towards building different systems for different learner types that can be tuned for

the types/frequency of errors common to each subset of learners.

Total
Nominals

Total
Particles

Bare
Nominals

Omission
Errors

955 849 106 48 (45.3%)

Table 7.3: Statistics for Omission Errors in the KoLLA Development Set

7.7 Qualitative Analysis

In order to get a sense of what types of cases give a system trouble, looking over

the FPs, i.e., cases where the system predicted a particle not in the gold standard,

provides a lot of insight. Consider first the example given in (37), in which the

system posits a particle after사람들 (salamtul, ‘people’). This is a case of a nominal

being used in a genitive fashion, and so a genitive particle could be used here, but

it is not required. In some sense, the system rightly points to particle usage being

licensed in this setting. However, the corpus annotation only marks particles that are

necessary for grammaticality (Lee et al., 2013). In any case, marking this instance as
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an error is not the right interpretation.

(37) 특히
particularly

외국

foreign
사람들

people
눈에는

eye
더욱

more
그렇습니다.
is-so.

‘In particular, it is thus for the eyes of foreign people.’

A more involved annotation and evaluation scheme might point to a more le-

nient system that could be useful in some applications; pointing out to a learner

that a genitive particle here is not wrong, could certainly be useful to learners of

a certain level. Also, note that a metric like error reduction, in which the writer’s

input is compared to the system’s output in terms of the amount of errors present,

would not be penalized if these annotations were present. Fully teasing apart parti-

cle licensing from particle requirement requires more thorough discussion of when

particle dropping is permitted. Moreover, licensing gets away from the strict defi-

nition of grammaticality used in the annotation scheme described in Chapter 4.

The system also makes mistakes in some cases that do not license particles,

but the nominals still have particle-like functions. In (38), for instance, the nominal

phrase 이 때 (i ttay, ‘this time’) carries a temporal meaning—much like that con-

veyed in the temporal particle에 (ey), but no particle is allowed here, because the

function is more like an adverb (cf. today in English). In this case, it would appear

that the system and human learners are likely having similar problems in differ-

entiating between where a temporal particle is needed and a temporal word may

stand alone.

(38) 이
this
때

time
너무

too
감정에

feeling-at
치우치지

give-way-to
않도록

don’t
주의하어야

pay-attention-to
해.
must.

‘This time, you must pay attention to not giving way to feeling.’
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Regarding false negatives, i.e., cases where we do not posit a particle when

we should, one major problem we observe involves noun-verb and noun-noun

sequences. If a learner views a noun and a following word like a multi-word com-

pound, it conceals the fact that the noun requires a particle. For instance, in (39)

(learner-omitted particles in curly brackets), the word성격 (sengkyek, ‘personality’)

needs a subject particle, but it forms a compound with좋 (choh, ‘good’), obscuring

the noun’s role.

(39) 성격{이}
personality-{SBJ}

좋은

good-REL

아가

kid-SBJ

태어날

born
때

time
환경이

environment-SBJ

나쁘다면

bad-if

‘When a child who has good personality is born, if the environment is bad...’

Another complication is the variability of particle requirements due to minor

changes in the amount of information presented. In (40a) for example, the writer

has omitted a necessary locative particle,에 (ey, ‘ey’), after “October”, and the sys-

tem failed to recognize a missing particle as well. Now consider (40b), which is

identical other than the inclusion of the prepositional phrase,서울-에 (Seoul-ey, ‘in

Seoul’). When this intervening phrase is added, the 에 (ey, ‘ey’) after “October”

becomes optional, as indicated by the parentheses.

(40) a. 저는
I-TOP

2007년
2007year

10월{에}
10month-{in}

가아

go
보았+습니다
try-PAST-END

‘I went (there) in October 2007’

b. 저-는
I-TOP

2007년
2007year

10월(-에)
10month(-in)

서울-에
Seoul-in

가

go
보-았-습니다.
try-PAST-END

‘I went to Seoul in October 2007’

False negatives are, in general, less problematic for an error detection system

than false positives. Still, knowing exactly what types of problems are causing both
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essay writers and the error detection system to miss cases where particles should

be used is useful to know. It is conceivable that with a large enough set of false

positives, rule-based filters could be added to the system to look for specific sce-

narios, e.g. likely multi-word compounds, and relax the confidence filter to allow

the system to posit a particle with less confidence in these instances.

Conclusion

In the case of determining where omission errors are, the system presented per-

forms the task at levels that could be useful to a language tutoring system, as is.

Moreover, there is likely room for improvement; with more data, it is possible that

more learner-type specific training data and system filters could be developed, as

the current system handles some learner types significantly better than others (see,

e.g. the divergence in performance on FB vs. HI data in Table 7.2).

At this point, though, we have only described how to detect errors of omission.

For some applications, e.g. a language tutoring system, providing more feedback

can prove extremely valuable. In the case of errors, providing the user with a cor-

rection to the error is often desirable. In Chapter 9, we will provide explanation of

a classifier designed to select the best particle once an error has been found. Before

that, though, we will remain on the task of error detection, this time focusing on

substitution errors in Chapter 8.
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Chapter 8

Particle Substitution Error Detection

The only man who never makes a mistake is the man who never does

anything.
— THEODORE ROOSEVELT
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In Chapter 7, we described a CRF-classifier based approach to detecting cases

in which learners did not use a particle where one was required. In this chapter,

we will provide the details of another error detection system, this time focusing on

cases where there is an erroneous particle present. In essence, this system is a par-

ticle presence error detector. It is important here to note that by and large, the errors

that will be dealt with by this component are substitution errors, that is, one par-

ticle should be replaced by another. However, this part of the system can also find

errors in which the learner has used one particle, but two particles in a sequence

are needed for grammaticality, errors of commission (using a particle when none is

needed), and errors of particle form (allomorphic or spelling mistakes). Put simply,

this system checks each existing particle and is tasked with determining whether

or not that particle is correct for the given context.

8.1 Approach

Whereas the omission classifier was only applied to nominals that did not feature a

particle, this step involves a classifier that only looks at nominals with a particle. To

do this, we employ maximum entropy classifiers targeting a specific set of particles.

8.1.1 Restricting the Error Search Space

As described above, the task here is relatively straightforward — the question that

needs answering at this step is this: is a particle that has been posited by a writer

correct in this context? Thus, every nominal where a learner has used a particle is a

possible site for error detection. However, it is important to keep in mind the error

rate of learners and restrict the task to ensure that system precision remains high. In

this case, we want to only look at cases where the particle used is often confused for
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another particle. This decision mirrors that of much of the work done on English

preposition error detection that focuses on a subset of the most commonly used

preposition, setting aside the problem of finding errors in prepositions that occur

less often (De Felice and Pulman, 2008; Gamon et al., 2008; Han et al., 2010, see,

e.g.).

In order to get a sense of where errors occur most often in learner essays of

Korean, we examined the substitution errors found in the corpus described in Lee

et al. (2009a). In that corpus, the results were clear:가 (ka),에 (ey),를 (lul),는 (nun),

and 에서 (eyse) accounted for a vast majority of the particles that were used er-

roneously by the writers of the essays; these five particles were the source of 329

(81%) of the 405 substitution errors annotated in the corpus. However, as 는 (nun

is used only as a discourse marker, that is, it marks the topic of a sentence, we do

not include this particle in the set of candidates for substitution. The use of topic

markers rather than subject markers is a problematic issue for learners of Korean,

as the two particles are often, though not always, interchangeable. The difference is

often difficult to describe for language learners and even native speakers (Lee and

Ramsey, 2000; Yeon and Brown, 2011). As such, it would be expecting too much

of an automatic system to capture the subtle distinctions necessary to perform the

task accurately. Still, the four particles that we focus on make up nearly 70% of all

errors.

While the KoLLA corpus contains fewer error annotations than the Lee et al.

(2009a) offering, one can reasonably expect to see similar distributions across these

corpora, as the essays come from writers of similar learner levels and backgrounds.

Thus, we will look only at instances in which the learner used one of these four

source particles as possible error sites: 가 (ka), 에 (ey), 를 (lul), and 에서 (eyse) .
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While this will obviously mean that the coverage will not be perfect, it will mean

that the system not need to be concerned with instances which occur less often in

the data, which should lead to higher precision for the instances it does cover.

8.1.2 Establishing a Binary Distinction

While one way of detecting substitution errors via a classifier would be to train the

classifier on all candidates for insertion and consider any mismatch between the

system and the writer to be an error flag. This methodology has often been used for

error detection/correction tasks in English (see e.g., Tetreault and Chodorow, 2008;

Han et al., 2010). Setting up the task in such a way essentially combines detection

and correction of errors into a single classifier. However, this approach requires

that the system consider each available label as a possibility at each decision point.

As the set of labels grows, even closed sets such as prepositions and particles can

be quite large, the classifier must distribute some probability to each option.

We choose to lighten the load at the error detection phase by making the task

binary. Based on the idea that particle omission errors can be treated by considering

whether or not blank space (i.e. no particle) is the best choice for the nominal in

question, we set up a similar task here. That is, for each nominal that has one of

the four particles outlined above as an affix, the classifier guesses if that particle or

some other one is best. To that end, we reduce the training set for each classifier

such that it is target vs. OTHER. For example, in the가 (ka) training set, all of the

possible target (correct) particles are reduced to OTHER. Then for each instance

where the learner has used가, there is a binary decision whether가 or some other

particle is best for that nominal in that context.
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8.2 Maximum Entropy Classifier

To detect substitution errors, there are a wide variety of particles that must be con-

sidered, meaning that the classifier should have broad coverage, and work well

with larger training corpora. Thus, we use maximum entropy for the task at hand;

specifically, the Maximum Entropy Toolkit1.

Maximum entropy has been in use in NLP since at least the mid 1990s in a vari-

ety of tasks including language modeling, machine translation, sentence boundary

detection, POS tagging, parsing, and many other tasks (see e.g., Rosenfeld, 1994;

Berger et al., 1996; Ratnaparkhi, 1996, 1998; Malouf, 2002). Most directly relevant

to the task at hand, maximum entropy classification has been used in similar error

detection tasks such as preposition error detection (Tetreault and Chodorow, 2008),

and performed well. Based on the fact that the algorithm has proven effective at se-

lecting the best preposition from a controlled set of outcomes, we model the task of

substitution error detection on that work.

8.3 Features

The feature set for particle substitution detection is again mainly composed of

words and POS tags in the surrounding context of each possible insertion point,

as described in Section 6.5. Again using a five-word window (target ±2), and only

nominals with one of the four particles under consideration are examined as possi-

ble substitution errors. Along with the lexical and POS features, we add a handful

of features designed to exploit discourse information in the text, which we describe

next.

1http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html

156



8.3.1 Discourse Features

As the choice for what particle is often dependent on complex information that

goes beyond the scope of lexical items and POS tags, we developed features to

provide the classifier with some discourse information. First of all, there are a series

of binary topic/subject/object tracking features that are positive if the target word

was used as a topic, subject, or object in the previous sentence, or if it was used

at all in the previous sentence. These tracking features inform the classifier if the

target has been important recently in the discourse.

Next, there are features that inform the classifier if a topic, subject, or object par-

ticle has been used in the current sentence yet. These features get at the idea that,

in most sentences, a subject, topic, and/or an object will be necessary. Moreover, it

is often the case that if you have already seen a subject particle, you will not see a

second, likewise with topic markers, although this rule is not ironclad.

Finally, three numeric features have been added: one that provides a percent-

age of how far along in the sentence the current target word is (position/sentence

length), one for the number of nouns the left of the target, and one for the num-

ber of nouns to the right of the target. The idea with the distance feature is that

some particles are more likely towards the beginning of the sentence (e.g., topics

and subjects), and some are more likely later in the sentence. The number of nouns

to the left and right get at the idea that most or all sentences will have at least one

or two particles, so for short sentences, it can be useful to know how many nouns

could possibly still take a particle.
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8.4 Experiments

As described earlier in this work, we have collected three distinct corpora: the

KoLLA learner corpus (see Chapter 4), the web-scraped corpus of well-formed

Korean (referred to as WaC-Ko henceforth), and the Lang-8-Ko corpus of online

language learning essays (for WaC-Ko and Lang-8-Ko, see Chapter 5). We will uti-

lize each of these for the substitution error detection experiments described in this

chapter.

8.4.1 Experimental Setup

As pointed out in previous similar research on English error detection (e.g. Dahlmeier

and Ng, 2011; Han et al., 2010), there are (at least) two scenarios that can be used

for training classifiers for grammatical error detection tasks. One method involves

training on well-formed text and flagging an error if the classifier disagrees with

a learner on the answer for a given context (cf. Tetreault and Chodorow, 2008, for

example). The second method involves training on annotated learner data so that

the classifier is informed of not only the correct label, but the answer provided by

the learner (cf. Dahlmeier and Ng, 2011, for example). That is, the feature set for the

classifier in the second scenario includes the particle originally written by learner,

some of which are errors. We employ both methods here.

In running experiments where we train only on well-formed instances, we can

train on WaC-Ko and test on both Lang-8-Ko and KoLLA. To include learner errors

in the training set, we have to rely only on Lang-8-Ko for training, as we have

no error information in WaC-Ko. Both Lang-8-Ko and KoLLA are annotated for

errors, so we can test using both sets. Moving forward we will refer to data sets that

include learner errors as features with a +, i.e. KoLLA+ and Lang-8-Ko+. Thus, we
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WaC-Ko
Well-formed training data

scraped from the web

Testing

Lang-8-Ko+
Lang-8 as training data

with learner error features

KoLLA
Annotated learner essays

Training

Lang-8-Ko
Lang-8 data; 90% de-

velopment, 10% testing

KoLLA+
Annotated learner essays

with learner error features

Lang-8-Ko+
Lang-8 data; 90% cross-
folds, 10% testing with
learner error features

Figure 8.1: Training and Testing combinations

have five sets of data to work with, Wac-Ko, Lang-8-Ko, KoLLA, Lang-8-Ko+, and

KoLLA+. Figure 8.1 depicts which training sets will be used to build classifiers for

each test set. As can be seen, we run four experiments: WaC-Ko serves as training

for classifiers to handle KoLLA and Lang-8-Ko test data; Lang-8-Ko+ is used to

build classifiers for KoLLA+ and Lang-8-Ko+.

When testing on KoLLA and KoLLA+, rather than develop on a subset of the

corpus and test on the rest, we present optimal performance for each sub-corpus,

i.e. Foreign Beginner (FB), Heritage Beginner (HB), Foreign Intermediate (FI), and

Heritage Intermediate (HI). The main reason behind this decision is that there sim-

ply are not enough instances of errors for each particle to draw useful conclusions

from development. For example, there are only 33 errors involving를 (lul), the ob-

ject marker, and those are spread across the four sub-corpora, with as few as five
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in the FI sub-corpus. Clearly, developing on one — four instances and testing on

whatever is left over will not yield useful results. A more worthwhile and interest-

ing use of KoLLA, then, is to look at each sub-corpus individually and examine the

difference between learner types.

For Lang-8-Ko and Lang-8-Ko+, we split the data into 10 random folds. When

training on Wac-Ko and testing on Lang-8-Ko, we develop on 90% (nine folds) of

the data, and test on the remaining 10%. For the Lang-8-Ko+ experiments, we run

nine-fold cross validation and test on the same unseen 10%.

8.4.2 Allomorph Choice Errors

As mentioned in Section 4.3.8, for some particles there are more than one allomorph

for a single morpheme, the choice of which depends upon the phonotactics of the

word. Essentially, if the preceding morpheme ends in a vowel, the particle must

begin with a consonant, and vice versa. Two such cases are the subject marker

and the object marker. The subject marker can occur as 이 (i or 가 (ka); the object

marker as을 (ul) or를 (lul). As such, before sending instances in which the writer

used either the subject or object marker to the classifier, we can catch any errors of

allomorph choice with a simple string-based check. This check can both detect and

correct these errors.

In both corpora, these allomorphic errors are extremely infrequent. Looking

first at their frequency in KoLLA, subject marker allomorph choice errors occur

only three times, with 49 total subject marker errors, so about 6% of the errors

come from incorrect allomorph use. There are two object marker allomorph choice

errors in KoLLA, with 35 total errors, just under 6% as well. In Lang-8-Ko, there are

121 allomorph choice errors for the subject marker, or about 3% of the 3284 errors.
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Finally, in Lang-8-Ko, there are 188 object allomorph choice errors, meaning they

account for about 7% of the 2720 total errors involving object markers.

8.4.3 Optimizing Training Data

In Chapter 5, we discussed using data from the language learning SNS website,

Lang-8, to build confusion sets for particle substitutions to inform training data

selection. These sets are utilized here (as well as in Chapter 9) to restrict the set

of particles that are considered as possible targets (i.e. corrections) for the source

(erroneous) particles in the learner data. With hundreds of possible Korean parti-

cles, very few of those are likely to be frequently confused for each other, so we

want to focus on the most likely errors. The training corpora, both WaC-Ko and

Lang-8-Ko+, are divided into four sets, one for each of the four target particles.

Each training set contains a source (writer error) particle and the set of particles

that are most often used to correct the errors. One implication here is that the five

training sets are different sizes. More importantly, though, is that each set has a

different ratio of source to target particle instances. Table 8.1 gives the number of

instances for each source, its set of target confusions, the total number of instances,

and the ratio of source to target instances. As can be seen in the table, the amount

of source particles varies greatly across the different particle training sets; 를 (lul)

is fairly common in comparison to the members of its confusion set, with a ratio of

1:2.3, whereas에서 (eyse) is uncommon both in the corpus in general (only 174,962

instances) and in relation to its confusion set, with a ratio of 1:32.3. In order to

control for this, we down sample so that the ratio is 1:2 for each particle set. As

a final step, any lexical n-gram feature values that occur less than five times are

replaced with a dummy value, to reduce the effect of data sparsity.

161



Source Source Count Target-set Count Total Instances Ratio
를 (lul) 1,396,877 3,197,236 4,594,133 1:2.3
가 (ka) 1,086,640 4,046,221 5,132,861 1:3.7
에 (ey) 553,607 4,842,929 5,396,536 1:8.7
에서 (eyse) 174,962 5,640,219 5,815,181 1:32.3

Table 8.1: Training Set Size Statistics for Substitution Error Detection

8.4.4 Filtering

As was the case with omission error detection, the proportion of substitution errors

in comparison to correctly used particles is quite low. Thus, we again require the

system to have higher than the default 50% confidence to ensure that there are not

too many errors posited in the data. As described earlier, there are four distinct

classifiers at this stage (one each for four different source particles). Rather than set

a single threshold for all classifiers, we set a filter for each classifier independently

of the others. That is, we find the best threshold for each particle and each sub-

corpus, using development data in the case of Lang-8-Ko.

8.5 Results

We present the results for each of our four sets of experiments here. The experi-

ments are divided first in terms of training data, then in terms of testing data. Each

table presents a separate source particle in each row, with the confidence filter, the

number of errors (n), the number of true negatives (TN), true positives (TP), false

positives (FP), and false negatives (FN). In terms of evaluation metrics, we provide

precision (P), recall (R), precision weighted F-measure (F0.5), and overall accuracy

for finding errors (Acc). As there is no specific purpose for the system in mind, the

question of what results are “optimal” is debatable. In general, though, as most

applications for error detection involve improving or assessing learner language,
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precision should be given preference. In the following results, we optimize by try-

ing to keep precision above 75% whenever possible. F0.5 serves as another good

indicator for producing optimal output, as it gives some weight to recall while pre-

ferring precision.

Note that we provide only the quantitative results here. Discussion and analysis

of the results follow in Section 8.6.

8.5.1 WaC-Ko Models for KoLLA Test Data

First, we present results for tests in which WaC-Ko served as training data for clas-

sifiers with KoLLA test data. Table 8.2 provides the results for the FB sub-corpus.

The results for the testing on the FI, HB, and HI sub-corpora are given in Tables 8.3,

8.4, and 8.5, respectively.

Source Filter n TN TP FP FN P R F0.5 Acc
ey .83 28 72 9 3 19 75.00 32.14 59.21 78.64

eyse .9 5 37 1 0 4 100.00 20.00 55.56 90.48
lul .97 10 90 2 0 8 100.00 20.00 55.56 92.00
ka .89 15 89 5 0 10 100.00 33.33 71.43 90.38

Total - 58 288 17 3 41 85.00 29.31 61.59 89.61

Table 8.2: Error Detection: WaC-Ko Training — KoLLA FB Test

Source Filter n TN TP FP FN P R F0.5 Acc
ey .89 19 126 3 0 16 100.00 15.79 48.39 88.97

eyse .89 7 55 1 1 6 50.00 14.29 33.33 88.89
lul .97 6 188 2 1 4 66.67 50.00 62.50 97.43
ka .87 8 97 2 0 6 100.00 25.00 62.50 94.29

Total - 40 467 8 2 32 80.00 20.00 50.00 93.32

Table 8.3: Error Detection: WaC-Ko Training — KoLLA HB Test
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Source Filter n TN TP FP FN P R F0.5 Acc
ey .9 12 125 1 2 11 33.33 8.33 20.83 90.65

eyse .94 6 45 1 2 5 33.33 16.67 27.78 86.79
lul .93 10 184 4 0 6 100.00 40.00 76.92 96.91
ka .94 16 248 3 2 13 60.00 18.75 41.67 94.36

Total - 44 602 9 6 35 60.00 20.45 43.27 93.71

Table 8.4: Error Detection: WaC-Ko Training — KoLLA FI Test

Source Filter n TN TP FP FN P R F0.5 Acc
ey .84 11 103 4 0 7 100.00 36.36 74.07 93.86

eyse .8 0 33 0 0 0 - - - 100.00
lul .9 9 187 6 4 3 60.00 66.67 61.22 96.50
ka .95 10 178 2 1 8 66.67 20.00 45.45 95.23

Total - 30 501 12 5 18 70.05 40.00 60.90 95.89

Table 8.5: Error Detection: WaC-Ko Training — KoLLA HI Test

8.5.2 WaC-Ko models for Lang-8-Ko Test Data

Keeping with the WaC-Ko training data, we present the results for testing on the

Lang-8-Ko corpus. Table 8.6 provides the results for the development corpus. We

used the optimal settings for each particle in the development set to produce the

results in Table 8.7 on the unseen Lang-8-Ko fold.

Source Filter n TN TP FP FN P R F0.5 Acc
ey .92 2055 19131 218 150 1837 59.24 10.61 30.90 90.69

eyse .92 659 4919 69 61 590 53.08 10.47 29.26 88.46
lul .995 2442 32606 326 25 2116 92.88 13.35 42.38 93.90
ka .96 2976 28341 243 66 2733 78.64 8.17 28.85 91.08

Total - 8132 84997 856 302 7276 73.93 10.53 33.54 91.89

Table 8.6: Error Detection: WaC-Ko Training — Lang-8-Ko Development

Source Filter n TN TP FP FN P R F0.5 Acc
ey .92 232 2157 28 12 204 70.00 12.07 35.71 91.00

eyse .92 70 542 6 5 64 54.55 8.57 26.32 88.82
lul .995 278 3613 28 4 250 87.50 10.07 34.48 93.48
ka .96 308 3095 28 9 280 75.68 9.09 30.70 91.53

Total - 888 9407 90 30 798 75.00 10.13 32.80 91.98

Table 8.7: Error Detection: WaC-Ko Training — Lang-8-Ko Test
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8.5.3 Lang-8-Ko+ models for KoLLA+ Test Data

Turning now to the classifiers that utilize Lang-8-Ko+ as training data, we first

present the results for testing on KoLLA+. Tables 8.8, 8.9, 8.10, and 8.11 provide the

results on the KoLLA+ FB, HB, FI, and HI sub-corpora, respectively.

Source Filter n TN TP FP FN P R F0.5 Acc
ey .8 28 74 6 1 22 85.71 21.43 53.57 77.67

eyse .75 5 35 3 2 2 60.00 60.00 60.00 90.48
lul .88 10 90 3 0 7 100.00 30.00 68.18 93.00
ka .86 15 90 7 0 8 100.00 46.67 81.40 92.38

Total - 57 288 19 3 37 86.36 32.75 65.06 88.47

Table 8.8: Error Detection: Lang-8-Ko+ Training — KoLLA FB Test

Source Filter n TN TP FP FN P R F0.5 Acc
ey .83 19 126 4 0 15 100.00 21.05 57.14 89.66

eyse .81 7 54 1 2 6 33.33 14.29 26.32 87.30
lul .96 6 188 2 1 4 66.67 33.33 55.56 97.44
ka .96 8 97 2 0 6 100.00 25.00 62.50 94.29

Total - 40 465 9 3 31 75.00 22.50 51.14 93.31

Table 8.9: Error Detection: Lang-8-Ko+ Training — KoLLA HB Test

Source Filter n TN TP FP FN P R F0.5 Acc
ey .85 12 123 2 4 10 33.33 16.67 27.78 89.93

eyse .8 6 43 1 4 5 20.00 16.67 19.23 83.02
lul .9 10 182 3 2 7 60.00 30.00 50.00 95.36
ka .85 16 237 6 13 10 31.58 37.50 32.61 91.35

Total - 44 585 12 23 32 34.29 27.27 32.61 91.56

Table 8.10: Error Detection: Lang-8-Ko+ Training — KoLLA FI Test

Source Filter n TN TP FP FN P R F0.5 Acc
ey .95 11 103 2 0 9 100.00 18.18 52.63 92.11

eyse .9 0 33 0 0 0 - - - 100.00
lul .92 9 191 3 0 6 100.00 33.33 71.43 97.00
ka .68 10 147 5 32 5 13.51 50.00 15.82 80.42

Total - 30 474 10 32 20 23.81 33.33 25.25 90.29

Table 8.11: Error Detection: Lang-8-Ko+ Training — KoLLA HI Test
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8.5.4 Lang-8-Ko+ models for Lang-8-Ko+ Test Data

Finally, we get to the results for training with Lang-8-Ko+ and testing on Lang-

8-Ko+. As previously stated, we employ 9-fold cross validation to learn optimal

settings; these results are in Table 8.12. Table 8.13 provides the results for applying

these settings to the unseen fold of Lang-8-Ko+.

8.6 Analysis

Obviously, with the results in Section 9.3 spread over 12 tables, there are a lot of

possibilities for analysis. We will examine some specific facets of the results here.

KoLLA Learner Level We see a definite trend when comparing the results of the

KoLLA sub-corpora in both training scenarios. That is, the system handles begin-

ners’ data much better than it does that of intermediates’. In terms of precision,

performance on beginners’ data never drops below 70%, and peaks at about 86%

considering all particles combined. For intermediates, the results are significantly

Source Filter n TN TP FP FN P R F0.5 Acc
ey .7 2055 19141 176 140 1879 55.70 8.56 26.51 90.54

eyse .6 659 4913 56 67 603 45.53 8.50 24.33 88.12
lul .97 2442 32610 250 21 2192 92.25 10.24 35.45 93.69
ka .9 2976 28376 181 31 2795 85.38 6.08 23.67 91.00

Total - 8132 85040 663 259 7469 71.91 8.15 28.04 91.73

Table 8.12: Error Detection: Lang-8-Ko+ Training — Lang-8-Ko+ Development

Source Filter n TN TP FP FN P R F0.5 Acc
ey .7 232 2156 20 13 212 60.61 8.62 27.47 90.63

eyse .6 70 538 7 9 63 43.75 10.00 26.12 88.33
lul .7 278 3616 23 1 255 95.83 8.27 30.75 93.43
ka .9 308 3098 17 6 291 73.91 5.52 21.25 91.30

Total - 888 9408 67 29 821 69.79 7.55 32.80 91.77

Table 8.13: Error Detection: Lang-8-Ko+ Training — Lang-8-Ko+ Test
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worse, with a high mark of about 69% for the HI sub-corpus with a WaC-Ko trained

classifier, to a low of about 22% for the same sub-corpus, but with the Lang-8-

Ko+ training. Interestingly, this result is in direct contrast with the results for omis-

sion error detection, where we see better performance among intermediate learn-

ers than beginners (cf. tab:omission-test). Finally, we see that the Lang-8-Ko cor-

pus patterns similarly to the KoLLA beginners’ sub-corpora, especially when using

Lang-8-Ko+ as training.

Source Particle We can group the source particles into two categories here: In-

herent case (ey and eyse) and structural case (lul and ka). Because the amounts of

errors are relatively lower in the KoLLA corpus, the results are erratic with each

particle producing precision of 100% in at least one training scenario for a single

sub-corpus, but also dropping to 50% or lower in other tests for the same parti-

cle. A better source for providing insight here is the Lang-8-Ko corpus. In both the

WaC-Ko and Lang-8-Ko+ tests, we see a clear divide between results for the inher-

ent and structural case particles, where structural case is handled much better by

our classifiers. In particular, the results for lul, the object marker, hover around 90%

precision, whereas ka, the subject marker, stays closer to 80%. For inherent case, on

the other hand, we never see precision above 70% for ey, or above 55% for eyse.

Training Type One of the more intriguing results relates to the difference be-

tween training only on well-formed data, i.e. WaC-Ko, and training on data with

learner errors, i.e. Lang-8-Ko+. While the WaC-Ko training scenario works better

overall, the difference is not that great in most equivalent experiments, in the case

of KoLLA beginning learner sub-corpora and Lang-8-Ko test data. In fact, it even

improves slightly for the KoLLA FB corpus when comparing the results for all
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particles combined. This similarity in performance is surprising and encouraging

when we consider the size of the two training sets. Before dividing the corpora by

confusion set, WaC-Ko contains over six-million instances. Lang-8-Ko+ contains

only 247,270. That is, Lang-8-Ko+ is only about four percent of the size of WaC-

Ko, yet still produces similar results. In the case of KoLLA intermediate learners,

Lang-8-Ko+ proves to be a poor data set for building a model with overall preci-

sion at 34% and 22% for foreign and heritage learners, respectively. This finding,

combined with the fact that Lang-8-Ko data patterns similarly to KoLLA beginners

in most testing scenarios suggests that the Lang-8 data is produced by less experi-

enced learners of Korean.

This finding highlights the potential utility of incorporating erroneous learner

particles as features when training the machine learner. With a greater amount of

annotated learner data, we are hopeful that even better results can be achieved.

Conclusion

This chapter described our approach to Korean particle substitution error detec-

tion. We found that, in general, the system performs fairly well on beginners’ data,

but not as well when essays by more advanced students are under consideration.

We also found that when testing on Lang-8-Ko data, the results were similar to that

of the KoLLA beginners, signaling that perhaps the learners that used the Lang-8

website at the time of the release of this data were, by and large, beginning learners.

There is still more work to be done to produce classifiers that are better equipped

at handling intermediate learner data. We also compared to testing scenarios and

found that the Lang-8-Ko+ corpus, despite being considerably smaller than the

WaC-Ko corpus produces similar precision when applied to the same data. This
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result highlights the utility of annotated training data, as the main difference be-

tween these data sets is the incorporation of learner particles as a feature for ma-

chine learning.

In the next chapter, we lay out the final task for the line of research presented

in this dissertation. That is, now that errors have been detected (correctly or not)

the next logical step is to correct them. We will describe a system that chooses the

best particle for a given context, based on the information from the error detection

classifiers that the writer’s choice is incorrect.
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Chapter 9

Particle Error Correction

See everything, overlook a great deal, correct a little.

— POPE JOHN XXIII
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In Chapters 7 and 8, we described our approach to detecting errors of particle

omission and substitution, respectively. Here we describe the final module in our

pipeline approach (see Section 6.3): the error corrector.

9.1 Approach

The job of the omission and substitution error detection modules is to identify the

errors in a given text. So, at this phase, we are only applying the classifier in the

case of known errors. We will generate corrections for erroneous instances where

the source particle comes from the following set: the subject marker, 가 (ka), the

object marker, 를 (lul), the preposition-like particles 에 (ey) and 에서 (eyse), and

null, i.e. errors of omission. The error detection modules both dealt with binary

distinctions; whether or not there should be some particle for the omission module,

and whether or not an existing particle is appropriate for the substitution module.

For correction, the task is naturally multi-class, as the classifier must consider a

range of options at each error site depending on likely confusion sets.

9.1.1 Classifier and Feature Set

Here we use the same classifier and feature set as in the substitution error detec-

tion experiments described in Chapter 8. That is, we use the Maximum Entropy

Toolkit for classification, the full set of word and POS-based features described in

Section 6.5, and the discourse features described in Section 8.3.1.

9.2 Experiments

In Chapter 8, we established that among the training scenarios we tested, using the

well-formed WaC-Ko corpus produced the best results for testing on both KoLLA
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and Lang-8-Ko (see Section 9.3). As such, we will use the same source (WaC-Ko)

to train the classifiers we employ here for correcting errors. We will present results

for testing on the errors by the error detection modules, which we will refer to as

pipeline, as well as results for all errors (i.e. including false negatives from the error

detection modules), which we will refer to as gold.

9.2.1 Allomorph Choice Errors

As described in Chapter 8, errors of allomorph choice can be easily caught with

a string-based check. Because the allomorphic distinctions are binary, we can not

only detect these errors with 100% precision and recall, we can also correct them

with 100% accuracy. The results presented here include these corrections. To reiter-

ate, there are three subject marker errors and two object marker errors in KoLLA,

and 121 subject marker errors and 188 object marker errors in Lang-8-Ko that can

be resolved with this preprocessing check.

9.2.2 Adding Weight to Classifier Confidence

One issue with the WaC-Ko corpus that must be considered at this point is that of

particle distribution. In Table 8.1, we can see that particles are not equally repre-

sented in the WaC-Ko corpus. For example,를 (lul) occurs about 1.4 million times,

whereas에서 (eyse) occurs about 175,000 times. This discrepancy is to be expected,

as the corpus is built to model typical, native-like Korean, and some particles nat-

urally occur more frequently than others. However, this natural distribution is not

necessarily ideal for an error correction classifier.

The issue stems from the fact that some source particles are more likely to be

confused for certain targets than others. In the case of에 (ey), for example, it can be
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Source Particle Weighted Confusion Set
ey 에서*10,를,가,는
eyse 에*10,를,로
lul 가*1.5,에,는,도
ka 를*2.5,는*2.8,에,의,도

Figure 9.1: Weighted Confusion Sets for Selection Experiments

expected that에서 (eyse) is the best option for correcting the particle because they

perform similar functions and are known to be confused for one another in practice

by learners of Korean, as we can confirm by examining confusion matrices based on

Lang-8-Ko and the Lee et al. (2009a) learner corpus (see Figure 5.10). However, the

confusion matrix for ey should also include the subject marker and object marker,

among other things, even though they are less likely to be the best correction for

a given error. Rather than sample the corpus here, we add weight to the classifier

confidence assigned to each candidate when selecting the best option.

We use the gold experiments on the development section of Lang-8-Ko to set the

weights for the source particles 가 (ka), 에 (ey),를 (lul), and 에서 (eyse) and apply

these weights in all other experiments. For omission errors, we rely on the original

confidence provided by the classifier, as we have not run omission error detec-

tion experiments on Lang-8-Ko. The assigned weights are given in Figure 9.1, if no

weight is assigned to a particle, its weight is simply 1, or the confidence from the

classifier.

For the inherent case particles에 (ey) and에서 (eyse), they are most likely to be

confused with one another, and these particles occur far less frequently than some

of the members of their confusion sets, e.g.를 (lul) and가 (ka). Thus, we multiply

the classifier’s confidence in에서 eyse by ten for instances where에 (ey) is the source

particle, and vice versa. In the case of the object marker,를 (lul), we add weight to
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the subject marker 가 (ka), as learner errors often involve using an object when a

subject is necessary. Finally, for가 (ka), we add weight to the object marker, as well

as the topic marker,는 (nun). The weights applied for lul and ka source errors are

lower, as the most likely substitution candidates are some of the most frequently

used particles.

9.3 Results

We present the results for each of our four experiments here. Each table presents a

distinct source error in each row followed by the number of errors (n), the number

instances that the system gets correct, and system’s accuracy (Acc). For these exper-

iments, accuracy is the most useful metric, as the precision and recall for detection

have already been established and will not be altered at this phase. Discussion and

analysis of the results follow in Section 9.4.

9.3.1 KoLLA Test Data: Pipeline results

First, we present results for pipeline (errors found by the detection modules) experi-

ments on the KoLLA test data. Table 9.1 provides the results for the FB sub-corpus.

Likewise, Tables 9.2, 9.3, and 9.4 provide the best results for testing on the HB, FI,

and HI sub-corpora, respectively. These tables include rows for both Total and All

TPs. For the HB and FI sub-corpora, these are identical, however, there are a greater

number of total errors for the FB and HI sub-corpora in the All TPs row. The dif-

ference here is in what is counted for evaluation; the Total row excludes errors of

commission that were identified by the substitution error detection module, as the

training sets for correction do no include a null option; in essence, this row pro-

vides only the count of errors we have some chance of getting correct. The All TPs

174



Source n # correct Acc
ey 7 2 28.57

eyse 1 1 100
lul 6 4 66.67
ka 4 4 100

null 26 11 42.31
Total 44 22 50.00

All TPs 47 22 46.81

Table 9.1: KoLLA FB — Pipeline

Source n # correct Acc
ey 3 1 33.33

eyse 1 1 100
lul 2 2 100
ka 2 2 100

null 23 13 56.52
Total 31 19 61.29

All TPs 31 19 61.29

Table 9.2: KoLLA HB — Pipeline

Source n # correct Acc
ey 1 1 100

eyse 1 1 100
lul 4 4 100
ka 3 2 66.67

null 44 22 50.00
Total 53 30 56.61

All TPs 53 30 56.61

Table 9.3: KoLLA FI — Pipeline

Source n # correct Acc
ey 4 1 25.00

eyse - - -
lul 5 4 80.00
ka 2 2 100

null 35 16 45.71
Total 46 23 50.00

All TPs 47 23 48.93

Table 9.4: KoLLA HI — Pipeline

row includes all substitution and commission errors, to give a sense of exactly how

many errors we can correct.

9.3.2 KoLLA Test Data: Gold results

Here, we present results for gold (assuming the detection models achieved 100%

precision and recall) experiments on the KoLLA test data. Table 9.5 provides the

results for the FB sub-corpus. Tables 9.6, 9.7, and 9.8 provide the best results for

testing on the HB, FI, and HI sub-corpora. For this set of experiments, we examine

only instances of substitution errors, i.e. no commission errors are included. Be-

cause these experiments assume gold standard substitution detection, we consider

only and all substitution errors, allowing for the possibility that a separate module

could perform commission error detection/correction.
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Source n # correct Acc
ey 25 16 64.00

eyse 5 5 100
lul 10 8 80.00
ka 14 11 78.57

null 63 35 55.56
Total 117 75 64.11

Table 9.5: KoLLA FB - Gold

Source n # correct Acc
ey 16 10 62.50

eyse 7 4 57.14
lul 5 3 60.00
ka 7 5 71.43

null 95 66 69.47
Total 130 88 67.69

Table 9.6: KoLLA HB - Gold

Source n # correct Acc
ey 12 8 66.67

eyse 6 3 50.00
lul 8 7 87.50
ka 15 9 50.00

null 85 65 76.47
Total 126 92 73.02

Table 9.7: KoLLA FI - Gold

Source n # correct Acc
ey 11 5 45.45

eyse - - -
lul 8 6 75.00
ka 10 5 50.00

null 76 56 73.68
Total 105 72 68.57

Table 9.8: KoLLA HI - Gold

9.3.3 Lang-8-Ko Test Data: Pipeline Results

Here, we present the results for testing on the Lang-8-Ko corpus, again in the

pipeline scenario. Table 9.9 provides the results for the development (cross-fold)

section of the corpus. Table 9.10 shows the results on the unseen Lang-8-Ko fold.

Source n # correct Acc
ey 183 90 49.18

eyse 64 51 79.69
lul 326 306 93.87
ka 243 226 93.01

Total 816 673 82.48

Table 9.9: Lang-8-Ko Dev. — Pipeline

Source n # correct Acc
ey 28 11 39.28

eyse 6 6 100
lul 28 27 96.43
ka 28 28 100

Total 90 72 80.00

Table 9.10: Lang-8-Ko Test — Pipeline

9.3.4 Lang-8-Ko Test Data: Gold Results

Here, we present the results for testing on the Lang-8-Ko corpus, again in the gold

scenario. Table 9.11 provides the results for the development (cross-fold) section of

the corpus. Table 9.12 shows the results on the unseen Lang-8-Ko fold.
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Source n # correct Acc
ey 1667 629 37.73

eyse 619 282 45.58
lul 2016 1281 63.54
ka 2541 1868 73.51

Total 6843 4060 59.33

Table 9.11: Lang-8-Ko Dev. — Gold

Source n # correct Acc
ey 186 65 34.95

eyse 67 22 32.83
lul 231 137 59.31
ka 272 211 77.57

Total 756 435 57.54

Table 9.12: Lang-8-Ko Test — Gold

9.4 Analysis

KoLLA Learner Level For substitution error detection, we saw a distinct differ-

ence between the performance of the system on texts written beginner and inter-

mediate level students, where the system appeared to be better equipped to han-

dle beginner data. This trend does not hold here, as performance is similar across

learner levels in the pipeline experiments (Tables 9.1, 9.2, 9.3, and 9.4), and a slight

increase in performance on intermediate data in the gold experiments (Tables 9.5,

9.6, 9.7, and 9.8).

Source Particle There are three distinct categories of source errors that this mod-

ule deals with: Inherent case (ey and eyse), structural case (lul and ka), and omissions

(null). The KoLLA corpus contains relatively few errors of inherent and structural

case particle errors, so Lang-8-Ko is probably a more stable source for examining

the differences. As was the case with substitution error detection, we see that the

system does a better job at selecting the best option to correct a structural case parti-

cle error than for inherent case. In Table 9.9, for example, the accuracy for correcting

lul and ka source errors are both over 90%. The results drop in the Lang-8-Ko gold

scenario overall (cf. Table 9.11), but the increased performance among structural

case particles holds. Looking at (Tables 9.5, 9.6, 9.7, and 9.8), one can see that over a

large proportion of omission errors, the system can reliably select the best particle
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to correct the error about 70% of the time (222/319, for all sub-corpora combined),

regardless of learner level/type.

Pipeline vs. Gold Experiments A contrastive look at the performance of the sys-

tem in the Pipeline and Gold scenarios yields some interesting findings. First of all,

considering the KoLLA pipeline experiments, it is obvious that the number of in-

stances for each particle type is too low to draw useful conclusions about the dif-

ferent source particles. Overall though, there are 174 instances, of which the system

gets 94 correct, or about 54%. We see much higher accuracy in the gold results, with

performance the FB sub-corpus the worst at 64.11% (Total), and up to 73.02% in the

FI sub-corpus.

For the Lang-8-Ko testing experiments, on the other hand, we see the exact op-

posite result; the pipeline scenario results are markedly better than for the gold sce-

nario. However, given the expectation that Lang-8-Ko likely contains a non-trivial

amount of noise in the annotations due to annotator accuracy, POS tagging and

other pre-processing steps, the gold results may be unfair. It could be that the errors

that we did not detect with the substitution module are not errors, or that the sen-

tences are just too far divergent from native-like Korean to allow for the system to

process them accurately. It is also worth noting that these results represent the low

end of how well the system performs on this data, as the annotations only mark

a single particle as acceptable for each instance. The KoLLA annotations allow for

sets of particles in some cases (see Section 4.3.8). Altering the Lang-8 annotation

extraction process could allow for sets of particles in this test data as well, which

would likely lead to better results.
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Conclusion

This chapter described our final system module: the error correction system. This

module is designed to select the best particle to correct an error, and can do so as

accurately as 93% of the time over a large sample of structural case particle source

errors (cf. Table 9.9). The system is less accurate when dealing with inherent case

and omission source errors, but still produces accurate corrections over 50% of the

time in most experiments. While there is still work to be done to optimize over

different source errors and for different leaner levels and types, we feel that this is

a good foundation for how such a module could be built.
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Chapter 10

Conclusion

Often when you think you’re at the end of something, you’re at the

beginning of something else.
— FRED ROGERS
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When we began the research that would eventually become the basis for this

dissertation, the main goal was to develop a reliable, accurate system for detecting

and correcting particle errors in the writing of Korean language learners. Along

the way, several more goals became necessary steps to allow completion of the

error detection system. First of all, we had to procure, annotate, and optimize sev-

eral corpora to serve as training and/or testing data for a machine learning system.

Secondly, given the dearth of automatic grammatical error detection research being

carried out on languages other than English, we wanted to establish methodologies

that could work for other languages as well. Along the same lines, we were inter-

ested to see what methods of English error detection could be adapted to work for

similar problems in other languages.

10.1 Data Development

In Chapters 4 and 5 we presented three distinct corpora: The KoLLA corpus of

expert-annotated learner Korean, the WaC-Ko corpus of web-scraped, well-formed

Korean, and the Lang-8-Ko corpus of peer-annotated learner Korean automatically

extracted from the social networking language learning website, Lang-8. Each of

these corpora, and the process by which they were procured, are valuable contri-

butions to the field of error detection.

10.1.1 KoLLA

The KoLLA corpus features an annotation scheme that was designed specifically

to provide all of the necessary information to serve as a test corpus for an auto-

matic error detection system, while also serving as a valuable resource for research

on language pedagogy and corpus based studies of Korean learner language. The
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annotations provide information about each particle in the corpus, noting whether

or not there is an error, the type of error, a suggested correction, the function of

both the erroneous and the correct particle, as well as segmentation, spelling, and

spacing problems in the surrounding context.

The corpus is divided evenly among heritage leaners and foreign learners, and

among beginner and intermediate learners, allowing for detailed analysis of both

system performance and language learner tendencies among different types of

learners. The corpus itself is freely available1 and should prove useful to any re-

searchers working on problems relating to the role of particles in Korean language

learning. The description of the annotation scheme is useful itself, as great care

was taken in designing informative, yet flexible error annotations. The steps de-

scribed in annotating KoLLA should prove useful to researchers designing anno-

tation schemes for similar issues in other languages.

10.1.2 WaC-Ko

The WaC-Ko corpus is a large-scale corpus of Korean text that was scraped from the

web for the purpose of serving as training data for building machine learning mod-

els for Korean error detection tasks. The process of collecting reliable Korean data

from the web proved to be non-trivial, as encoding issues, the presence of other

languages along with Korean in many webpages, and the question of whether or

not returned web-pages contained native-like Korean were all issues that had to be

dealt with along the way.

We ran a series of experiments to establish methodologies for gathering high

quality Korean data from the web, that should apply to any language that can be

1http://cl.indiana.edu/˜kolla/
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found on the internet, as long as there is a decent representation of the language to

be found. The experiments showed that smaller, topic-focused corpora can produce

better quality training data for machine learning than larger, less focused corpora.

We hope that WaC-Ko and the methodologies defined in building it will prove

useful to other researchers working on Korean, as a major hurdle for many projects

focusing on Korean language is the scarcity of freely available, large-scale corpora;

a problem which surely affects other languages as well. Utilizing the internet to

build them offers one low-cost, practical solution to the problem.

10.1.3 Lang-8-Ko

The only freely available, annotated, large-scale corpus of learner language that

we know of are collections of English learner texts, e.g., NUCLE (Dahlmeier et al.,

2013) and ICLE v2 (Granger et al., 2009). Thus, we set out to find some way to

gather a large-scale corpus of learner Korean. Following methodologies laid out

in Mizumoto et al. (2011) and Cahill et al. (2013a), we utilize data pulled from the

social networking language learning website Lang-8. By processing the revision

logs from essays written by learners and corrected by native speakers, we were

able to produce a corpus of over 800,000 words of learner Korean with particle

annotations similar to those found in KoLLA.

These social networking language learning websites offer a unique approach

to building annotated learner corpora as the annotation is already provided. Such

data sources have only recently become available, and require more investigation

to ascertain how useful they may be to the research community. The methodology

laid out in this dissertation offers one solution to building corpora with annotation

for specific bound morpheme errors. There are still issues to be addressed involved
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in verifying the validity of the annotations and filtering noise from the corpus,

but overall, data collected from these websites could prove to be invaluable to re-

searchers who focus on automatic grammatical error detection for languages other

than English.

10.2 Error Detection and Correction

Having gathered the necessary data for error detection experiments, we moved

on to actually establishing the error detection and correction tasks themselves in

Chapters 7, 8, and 9, dealing with omission errors, substitution errors, and error

correction individually. Omission error detection and substitution error detection

are both binary tasks that send detected errors on to the multi-class error correction

module.

10.2.1 Omission Error Detection

We define the task of omission error detection as a binary sequence labeling task

where a classifier decides whether or not nominals with no particle should actually

have one. The omission error detection module works well right now, with nearly

85% precision and 44% recall. The system is extremely reliable at detecting errors in

advanced learner language, achieving 90% precision and 45% recall for the KoLLA

heritage intermediate sub-corpus, though it is less reliable for the foreign beginner

corpus, with precision of 78%. While there is always room for improvement, the

omission error detection module described here works well as is, and with more

focused training sets, could likely be lead to even better results for different types

of learners. The way the task is defined, i.e. particle insertion, is extendible to a

variety of error types and other languages; any grammatical feature for which some
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percentage of errors can be encoded as a binary distinction of presence or absence,

e.g. prepositions, articles, particles, punctuation, etc., is a good candidate for this

methodology.

10.2.2 Substitution Error Detection

For errors that involve existing particles, we implement a second module built on

a maximum entropy classifier that is tasked with determining whether or not a

particle is appropriate for its context. Again, the task is binary as each particle is

considered independently as appropriate or not. Most of the errors dealt with at

this phase are errors of substitution, although errors of commission and omissions

of particles in a sequence can be caught with this module as well. Here we ran a

variety of experiments training on both WaC-Ko and Lang-8-Ko, and testing on

KoLLA and Lang-8-Ko. We also examined the utility of adding learner particles as

a feature to training the classifier.

Our results show that, while this module is not perfect, there are some scenar-

ios where it functions quite well. For beginning learners, the system has fairly high

precision; 85% for all source particles in the KoLLA foreign beginner sub-corpus.

The module performs particularly well on cases where the source of the error are

subject or object markers with nearly 80% precision for subjects and over 90% for

objects over a large sample of Lang-8-Ko test data. The spread of the results indi-

cates that building specific classifiers for different learner types and source errors

is likely a good idea moving forward.
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10.2.3 Particle Error Correction

The final module in the system handles correcting the errors that have been de-

tected by the previous modules. The task here is multi-label, but restricted to cases

where we are fairly certain an error has occurred. We restrict the search space to

look only at candidates from each source particle’s confusion set in order to ensure

that unlikely candidates do not exacerbate the difficult task of selecting the best

particle for a given context.

The results stay above 50% accuracy when considering all source particles,

though the system is again better equipped at dealing with subject and object mark-

ers, as opposed to inherent case markers (cf. English prepositions), where the selec-

tion of the best particle appears to be more difficult. Still, for subjects and objects,

the system is able to suggest the best particle for correction over 90% of the time

in the Lang-8-Ko corpus, which seems to be composed mostly of beginning level

learners of Korean.

The optimized system features omission error detection precision of about 85%

and recall over 44%. For substitutions, we know that the system can detect object

and subject errors with between 80 and 90% precision. Finally the system correct

subject and object errors 90% of the time and other errors with at least 50% ac-

curacy. Given all of this, we are confident that this error detection and correction

system could prove useful to learners and teachers of Korean. We hope that the

methodologies that have proven useful here will serve as inspiration for other re-

searchers to explore building error detection systems for a wide range of languages

and grammatical features.
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10.3 Future Work

10.3.1 KoLLA Annotation

As mentioned previously, the current size of the KoLLA corpus (less than 1500

sentences) leads to some difficulties in development and calls into question the

scalability of results presented for the corpus. An obvious solution, then, is to add

more data. While the initial annotation of the 100 essays in the corpus was a long

process, the majority of time was actually spent developing and refining the anno-

tation scheme. With the annotation scheme finalized and methodology for utilizing

EXMARaLDA already in place, adding more essays and increasing the size of the

corpus quickly is a realistic expectation. A reasonable goal would be to acquire and

annotate enough data to have 1000 instances of each of the major particle error

types. The 100 essays that we have now include 285 and 210 omission and substi-

tution errors, respectively. Thus, quadrupling the size of the corpus should get us

close to that mark, and take the sentence count closer to 6000.

10.3.2 Optional Particle Annotation

One issue that was touched upon in Section 4.3.6 is the idea of including whether

each particle is optional or obligatory. That is, some particles can often be dropped

(most often in informal Korean, but sometimes in more formal registers) without

compromising grammaticality. For example, in (41), we see a sentence with topic,

subject, and object markers in (41a). Any one or even all of these particles can be

dropped in this case, without loss of grammaticality, resulting in sentence (41b).

This issue has many subtle nuances that must be sussed out before taking on op-

tional/obligatory particles in the context of grammatical error correction. Lee and

Song (2011) make a distinction between particle ellipsis(i.e. dropping a required
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particle) and non-occurence (i.e. not using a non-required particle), and identify

three contructions for non-occurence: genetives in certain syntactic contexts, in

light verb constructions, and with bound nouns, which must be preceeded by a

demonstrattive and only occur in specific situations. Using these guidelines could

be a good start for annotating optionality in KoLLA.

(41) a. Full:오늘은
Today-TOP

학생이

student-SBJ

책을

book-OBJ

읽어요.
read

b. Dropped:오늘
Today

학생

student
책

book
읽어요.
read

‘The student is reading a book today.’

The current version of our annotation scheme requires that all particles must be

present, but one can see the potential benefit of marking some particles as optional

for an error detection system, depending on the use case. An obvious way to obtain

these annotations would be to ask trained annotators to mark each particle in a cor-

pus as optional or obligatory as part of the annotation scheme. But for something

like Lang-8, which has over 800,000 words, this is not realistic. This methodology

also allows for bias from annotators. Crowd-sourcing, i.e. using a service such as

Amazon’s Mechanical Turk where workers are paid to provide feedback, presents

a potential solution for adding optional/obligatory annotations on a large scale

and capturing wide-spread opinion for each example. Workers could be given a

task of saying whether a given particle is necessary, optional, or wrong for a sen-

tence. With such information about each particle, results could be provided for the

corpus, where optional particles are discounted in the case of omission, for exam-

ple. With more robust results, the system then could be tuned for formal or casual

writing scenarios to provide better feedback to learners.
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10.3.3 Improving Lang-8 Annotations

The current annotations that we automatically generate for Lang-8 represent a large

step forward for Korean leaner corpus studies. However, there is still room for

improvement in terms of adding more content to the annotations. One piece of

information that is currently discarded from the annotations is when annotators

disagree as to the best particle for a given context. As it stands, the annotation

generation algorithm only considers one correction from a set of submitted correc-

tions. If all members of that set were analyzed and one nominal was given different

particles amongst the different corrections, we could use that information to build

a set of appropriate particles for the nominal in question, as we have for some

nominals in KoLLA. For example, in many sentences subject and topic markers are

interchangeable in Korean for the same word; adding that knowledge to the corpus

could be beneficial in terms of allowing more robust results for error correction and

for providing a better look at what constitutes grammatical Korean.

Another issue that comes from the current practice of keeping only one annota-

tion is that we cannot be sure that we are keeping the best one. Here again, crowd-

sourcing could be a useful tool. If each sentence where there are multiple correc-

tions was provided to workers, they could select which corrections were most suit-

able for a given sentence. This would help to improve the quality of the corpus by

disregarding bad sentences and also allow us to build better sets of particles, as dis-

cussed in the previous paragraph. Also, on a large enough scale, i.e. with enough

annotations, one could hope to learn patterns that would allow for automatically

selecting the best annotations for a given sentence.
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10.3.4 Procuring More Annotated Data

As the Lang-8-Ko corpus proves to be such a good resource for this work, gather-

ing more similarly constructed data for helping with grammatical error detection

is obviously desirable. Though there has been a rise in the prevalence of SNSLL

websites, many of these, unfortunately, do not freely provide their data for research

purposes. Another option, though, is the use of Wikipedia revision logs. Cahill et al.

(2013b) utilized Wikipedia revisions to generate a corpus of English preposition er-

rors, using an approach similar to the one described in Section 5.7. Wikipedia can

be freely edited by users from across the world, so the situation where an ungram-

matical edit is made by a non-native speaker and subsequently edited for grammar,

but not content, by a native speaker. This approach works well for English, which

has such a large presence on Wikipedia, and which is widely used by non-native

speakers. Whether or not the same would hold true for Korean which has decid-

edly less non-native speakers is not as certain, but is worth investigating moving

forward. It is also worth noting the using Wikipedia logs is actually a good op-

tion for getting more data to build statistics to inform decisions, rather than getting

learner data itself.

10.3.5 Experiments

Because this dissertation represents the first major work, as far as we know, dealing

with Korean particle error detection, there are a number of directions to go with

research and new experiments. We will describe some of these that we hope to

pursue in the future here.
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10.3.5.1 Identifying Particle Categories

One major area for improvement upon the results reported in Chapter 9 is that of

correcting, i.e. selecting the best particle in the case of, omission errors. For Pipeline

experiments, the current system achieves only 48% accuracy on omission errors

across corpora; though for Gold experiments the accuracy is much better at 69%.

In any case, we would like to improve these accuracies. In order to improve these

results, we propose adding an intermediate classifier to identify what category of

particle (e.g. inherent case, structural case, auxiliary, or conjunction) is the best fit

to correct a given context. The motivation here is that the classifier tasked with

selecting the best particle for omissions simply has too many options, and that

accuracy could be improved if we could use a classifier that only included particles

of a specific category. Thus, an accurate intermediate classifier tasked with selecting

the best category is necessary for this approach. The hope is that high accuracy for

such a classifier is attainable given that particle categories are a small, closed set.

For example in (42a) the word 것 (kes, “photo”) should be followed by a subject

marker, 이 (i), as it is in (42a)2. The proposed approach would be to: 1) identify

the omission error, 2) determine that a structural case marker is necessary, and 3)

choose이 from the set of case markers.

(42) a. Original:각
each

곳에

place-at
여러

many
좋은

good
것

thing
있어요

exist

b. Corrected:각
each

곳에

place-at
여러

many
좋은

good
것이

thing-SBJ

있어요

exist

‘There are many good things’

2This example is also used in Section 5.6
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10.3.5.2 Consistency Across Datasets & Algorithms

The research for this dissertation examines three different tasks: omission error de-

tection, substitution error detection, and error correction. All three tasks were con-

sidered separately and the experiments were designed and implemented over a

long period of time. As such, some of the decisions regarding what algorithms to

use and what corpora to utilize lack consistency. Moving forward, we would like

to provide uniformity among these experiments.

Omission Errors in Lang-8-Ko One example of an inconsistency is that we do

not presently have results for omission error detection or correction utilizing Lang-

8-Ko. We had not yet developed the Lang-8-Ko corpus at the time that these ex-

periments were done, and the results for omission error detection were considered

strong and reliable. However, having more data to verify the results is certainly

desirable, especially in the case of correcting the errors.

Algorithm Selection Another example of inconsistency in the current work is the

change from CRF for omission error detection to maximum entropy classifiers for

substitution error detection. The motivation for using CRF was that the presence

or absence of a particle is a simple binary choice much like the presence or absence

of a comma in English, a task for which CRFs are well suited (cf. Israel et al., 2012),

working well with a small training set. We switched to maximum entropy for sub-

stitution errors because deciding if a particle is correct for a given context is more

nuanced than knowing that a particle is missing, and maximum entropy has been

used for similar tasks in English (cf. Tetreault and Chodorow, 2008). While it is a

fair point that utilizing a similar approach for both, or even comparing the two to

show that one is significantly better than the other for either task would be ideal,
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it could also be argued that the difference would likely be negligible. CRFs are

an implementation of maximum entropy, after all, and side by side comparisons of

classifiers on the same task often yield similar enough results that we do not expect

a drastic change performance for either task using the other algorithm(cf. Liu et al.,

2005). In any case, these experiments should be run to confirm our hypotheses.

10.3.5.3 Using Pseudo Errors

Recently one approach that has been gaining traction in the field of grammatical

error correction is that of generating pseudo errors and inserting them in native

training data. As described in Chapter 2, Rozovskaya and Roth (2010c) utilized

this approach and compared it to training on well-formed data and found that the

classifier trained on the corpus with pseudo-errors achieved favorable results. Sim-

ilarly, the ASO model presented in Dahlmeier and Ng (2011) that combines infor-

mation from native text with error annotated data performs better than classifiers

trained on only native data. In Chapter 8, we found that the classifiers trained on

the error annotated Lang-8-Ko corpus performed nearly as well as the classifiers

trained on well-formed Korean, despite the fact that Lang-8-Ko is only about four

percent of the size of the well-formed WaC-Ko corpus.

Given all of the above, a promising approach could be to use the distribution

of particle errors that can be gleaned from Lang-8-Ko to generate pseudo errors in

WaC-Ko to serve as training data for classifiers. We could then test and compare

classifiers trained on well-formed data, error-annotated data, pseudo-error data,

and implement methodology similar to the ASO model.
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10.3.5.4 Errors in Topic Markers

A major issue that requires investigation moving forward is that of errors in topic

markers, i.e. 는/은 (nun/un). In Section 4.3.6, we touched on the fact that topic

markers and subject markers are often interchangeable such that either can be used

in the same context without compromising grammaticality. Then in Section 8.1.1,

we mentioned that the distinction is a tough one even for native speakers to charac-

terize, so we did not include topic markers in the errors we attempt to detect. Some

exploratory tests on the KoLLA corpus using the same methodology we used to

find other substitution errors applied to the topic marker produced highly unfavor-

able results; F-score did not go above 33.3% for any sub-corpus. As topic markers

are a significant source of learner errors, future work should focus on developing

methods for finding these errors. The challenge will be in developing new method-

ology that focuses on pragmatics and discourse features to determine whether or

not a topic marker is appropriate for a given context.

10.3.5.5 Utilizing Previous Decisions

One potential feature for machine-learning based particle error correction that we

looked into briefly but ultimately did not pursue for this work was using previ-

ous decisions by the system to inform the current decision. Especially in the case

of discourse-informed particle choices, such as subject and object particles, know-

ing what the previously used particle in the sentence is can be very useful. For the

experiments presented in this dissertation, we relied on the particles that were pro-

vided by the writer to generate these features, accepting that the writer’s particle

could potentially be incorrect. One could setup a sequential classifier that would

keep track of previous decisions so we could know if a previously used particle in
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a sentence was incorrect, and what the system’s best guess for a particle would be

in that context.
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Appendix A

Non-heritage Intermediate-based Seed Terms

Travel

kihayngmwun ‘essay on travel’

yehayngci ‘travel location’

kwanchalhata ‘to observe’

kyengpi ‘travel expense’

kitayhata ‘to expect’

cito ‘map’

kwankwangkayk ‘tourist’

pangmwunhata ‘to visit’

kilokhata ‘to keep a record’

philo ‘fatigue’

Learning Korean

haksup ‘lesson or learning’

swuep ‘class’

kanguyhata ‘to lecture’

sihem ‘exam’

phyengka ‘evaluation’

kyosa ‘teacher’

thongyek ‘interpretation’

swucwun ‘level’

yuchanghata ‘to be fluent’

mokphyo ‘goal’
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Korea

hanpato ‘Korean Peninsula’

pwungsup ‘traditional customs’

kacita ‘tradition’

wentayhata ‘to change’

kecwuhata ‘to reside’

inkwu ‘population’

inceng ‘generosity’

thongil ‘unification’

kyengcey ‘economy’

pwuntan ‘separation(North/South)’

Happiness

kaceng ‘home’

salang ‘love’

canye ‘children’

whamok ‘harmony’

kachikwan ‘personal value’

salm ‘life’

anceng ‘stability’

cengsincek ‘metal, psychological’

pwungyolopta ‘to be abundant or to

be nourishing’

chwukwuhata ‘to pursue’

Personality

thukcing ‘characteristics’

yenghyang ‘effect or influence’

naysengcek ‘introvert’

oyhyangcek ‘outgoing’

inseng ‘personality’

yoin ‘factor’

paltalhata ‘to develop’

kyelcenghata ‘to decide or deter-

mine’

yucen ‘inheritance’

hyengsenghata ‘to form’

Exercise

kyuchikcek ‘regular’

sinchey ‘human body’

taieth ‘diet’

swumyeng ‘lifespan’

hohup ‘breathing’

cilpyeng ‘disease’

yepanghata ‘to prevent (disease)’

piman ‘obesity’

cheycwung ‘weight’

wumcikita ‘to move’
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Friend

wuceng ‘friendship’

kyocey ‘interaction or dating’

inkankwankyey ‘human relationship’

iseng ‘different sex’

sakwita ‘to hang out or to have

a relationship’

kaltung ‘conflict’

hwahay ‘reconciliation’

paylye ‘consideration’

towum ‘help’

cinsim ‘sincerity’

Gathering

tongchanghwoy ‘reunion’

hwoysik ‘dinner with mem-

bers’

yenmal ‘end of a year’

chamsekhata ‘to attend’

tomohata ‘to promote’

hwoypi ‘membership fee’

tongbanhata ‘to accompany’

chotay ‘invitation’

chinmok ‘friendship’

cwunpihata ‘to prepare’
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Appendix B

Heritage Intermediate-based Seed Terms

Travel

yehayngsa ‘travel agency’

yehayngci ‘travel location’

yeceng ‘itinery’

konghang ‘airport’

kyothongpyen ‘transportation meth-

ods’

kwankwang ‘tour’

swukpak ‘accomodation’

pangmwunhata ‘to visit’

kyenghem ‘experience’

chwuek ‘memory’

Learning Korean

haksup ‘lesson or learning’

swuep ‘class’

kanguyhata ‘to lecture’

sihem ‘exam’

phyengka ‘evaluation’

kyosa ‘teacher’

thongyek ‘interpretation’

swucwun ‘level’

yuchanghata ‘to be fluent’

mokphyo ‘goal’
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This Semester’s Plan

kwamok ‘course’

swuep ‘class’

swukanghata ‘to take (a course)’

kwyosu ‘professor’

mokphyo ‘goal’

sillyek ‘capacity’

paywuta ‘to learn’

alupaith ‘part time work’

hakcem ‘GPA’

kimal ‘sihem final exam’

Sense of value

insayng ‘life’

milay ‘future’

seywuta ‘set up’

hayngpok ‘happiness’

kwakliphata ‘to establish’

kayin ‘individual’

chengsonyen ‘youth’

phantan ‘judgement’

pikyohata ‘to compare’

sachwunki ‘adolescence’

Friend

wuceng ‘friendship’

kyocey ‘interaction or dating’

inkankwankyey ‘human relationship’

iseng ‘different sex’

sakwita ‘to hang out or to have

a relationship’

kaltung ‘conflict’

hwahay ‘reconciliation’

paylye ‘consideration’

towum ‘help’

cinsim ‘sincerity’

Invasion of privacy

kansep ‘interference’

kwansim ‘interest’

hokisim ‘curiosity’

nochwul ‘exposure’

cengpo ‘information’

poho ‘protection’

nonlan ‘controversy’

chimpemhata ‘to intrude’

pwulpep ‘illegality’

kayin ‘individual’
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Stress elimination

philo ‘fatigue’

hwoypokhata ‘to recover’

wuntong ‘exercise’

kwalo ‘overwork’

cengsin ‘spirit’

kenkang ‘health’

ssahita ‘to stack up’

phwulta ‘to get rid of’

yeka ‘leisure activities’

chwimi ‘hobby’

College entrance exam

swunungsihem ‘learning-aptitude

exam’

kwawoy ‘private tutoring’

cwunpihata ‘to prepare for (an

exam)’

chiluta ‘to take (an exam)’

kyocay ‘reference materials’

kyokwase ‘text books’

nanita ‘difficulty rate’

cemswu ‘score’

wense ‘application docu-

ment’

hapkyekca ‘people who passed an

exam.’
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Health management

pyengwen ‘hospital’

kenkang ‘kemcin health

checkup’

kyuchikcek ‘regular’

wuntong ‘exercise’

taieth ‘diet’

saynghwal ‘supkwan living

habits’

piman ‘obesity’

swumyen ‘sleep’

cwuuyhata ‘to be cautious’

siksa ‘meal’

Generation gap

nai ‘aga’

celmum ‘youth’

noin ‘old people’

pwumonim ‘parents’

kukpokhata ‘to get over’

tayliphata ‘to confront’

ihay ‘understanding’

nukkita ‘to feel’

sakopangsik ‘ways of thinking’

kaltung ‘conflict’
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Life dreams

canglay ‘future’

huymang ‘hope’

kacita ‘have’

wentayhata ‘to be big/broad’

silhyenhata ‘to accomlish’

kanungseng ‘possibility’

tocenhata ‘to challenge’

nolyekhata ‘to make an effort’

iluta ‘to accomlish’

phokihata ‘to give up’

Happiness

kaceng ‘home’

salang ‘love’

canye ‘children’

whamok ‘harmony’

kachikwan ‘personal value’

salm ‘life’

anceng ‘stability’

cengsincek ‘metal, psychological’

pwungyolopta ‘to be abundant or to

be nourishing’

chwukwuhata ‘to pursue’

Gathering

tongchanghwoy ‘reunion’

hwoysik ‘dinner with mem-

bers’

yenmal ‘end of a year’

chamsekhata ‘to attend’

tomohata ‘to promote’

hwoypi ‘membership fee’

tongbanhata ‘to accompany’

chotay ‘invitation’

chinmok ‘friendship’

cwunpihata ‘to prepare’
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pervisors Markus Dickinson and Sandra Kübler. Main duties included devel-

oping code for extracting phonetic information from medical dictation, and

developing a pipeline for a machine learning-based approach to automatic

sentence boundary detection and punctuation insertion.

PUBLICATIONS

• Ross Israel, Markus Dickinson, and Sun-Hee Lee (IJCNLP 2013). Detect-

ing and Correcting Learner Korean Particle Omission Errors. Proceed-

ings of the Sixth International Joint Conference on Natural Language Process-

ing. Nagoya, Japan.

• Sun-Hee Lee, Markus Dickinson, and Ross Israel (LCR 2013). Challenges

in annotating Korean particle errors. In Sylviane Granger, Gaëtanelle

Gilquin, Fanny Meunier (eds.) Twenty Years of Learner Corpus Research.

Looking Back, Moving Ahead Proceedings of the First Learner Corpus Re-

search Conference. Louvain-la-Neuve, Belgium: Presses universitaires de

Louvain.

• Martin Chodorow, Markus Dickinson, Ross Israel, and Joel Tetreault

(COLING 2012). Problems in Evaluating Grammatical Error Detection

Systems. Proceedings of the 24th Conference on Computational Linguistics.

Mumbai, India.



• Sun-Hee Lee, Markus Dickinson, and Ross Israel (LAW 2012). Devel-

oping Learner Corpus Annotation for Korean Learner Particle Errors.

Proceedings of the 6th Linguistic Annotation Workshop. Jeju, Republic of

Korea.

• Ross Israel, Joel Tetreault, and Martin Chodorow (NAACL 2012). Cor-

recting Comma Errors in Learner Essays, and Restoring Commas in

Newswire Text. Proceedings of the 2012 Meeting of the North American

Association for Computational Linguistics: Human Language Technologies.

Montreal, Canada.

• Ning Yu, Sandra Kübler, Joshua Herring, Yu-Yin Hsu, Ross Israel, and

Charese Smiley (LASSA 2012). LASSA: Emotion Detection via Informa-

tion Fusion. Biomedical Informatics Insights. Volume 5 (Supplement 1).

• Markus Dickinson, Ross Israel, and Sun-Hee Lee (2011). Developing

Methodology for Korean Particle Error Detection. Proceedings of the Sixth

Workshop on Innovative Use of NLP for Building Educational Applications.

Portland, OR.

• Sandra Kübler, Matthias Scheutz, Eric Baucom, and Ross Israel (TLT

2010). Adding Context Information to Part of Speech Tagging for Di-

alogs. Proceedings of the Ninth International Workshop on Treebanks and

Linguistic Theories. Tartu, Estonia.

• Markus Dickinson, Ross Israel, and Sun-Hee Lee (WAC 2010). Building

a Korean Web Corpus for Analyzing Learner Language. Proceedings of

the 6th Web as Corpus Workshop. Los Angeles, CA.



TEACHING

• Guest Lecturer:

· Linguistics 245, Language and Computers. Language Tutoring Sys-

tems. February 13 & 15, 2012.

· Linguistics 555, Programming for Computational Linguistics. Unix.

September 6 & 8, 2011.

· Linguistics 515, The Computer and Natural Language. Special Topic:

NLP at Educational Testing Service. September 14, 2011.

· Linguistcs 545, Computation and Linguistic Analysis. Error-Driven

Part-of-Speech Tagging. February 15, 2011.

· Linguistics 515, The Computer and Natural Language. Special Topic:

Grammatical Error Detection. October 15, 2010.


