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ABSTRACT  

ATOMISTIC MODELING AND SIMULATION OF 
NANOPOLYCRYSTALLINE SOLIDS 

 

In the past decades, nanostructured materials have opened new and fascinating avenues for 

research. Nanopolycrystalline solids, which consist of nano-sized crystalline grains and 

significant volume fractions of amorphous grain boundaries, are believed to have 

substantially different response to the thermal-mechanical-electric-magnetic loads, as 

compared to the response of single-crystalline materials. Nanopolycrystalline materials are 

expected to play a key role in the next generation of smart materials. 

This research presents a framework (1) to generate full atomistic models, (2) to perform 

non-equilibrium molecular dynamics simulations, and (3) to study multi-physics 

phenomena of nanopolycrystalline solids. This work starts the physical model and 

mathematical representation with the framework of molecular dynamics. In addition to the 

latest theories and techniques of molecular dynamics simulations, this work implemented 

principle of objectivity and incorporates multi-physics features. Further, a database of 

empirical interatomic potentials is established and the combination scheme for potentials is 

revisited, which enables investigation of a broad spectrum of chemical elements (as in 

periodic table) and compounds (such as rocksalt, perovskite, wurtzite, diamond, etc.). The 

configurational model of nanopolycrystalline solids consists of two spatial components: (1) 

crystalline grains, which can be obtained through crystal structure optimization, and (2) 



vii 

amorphous grain boundaries, which can be obtained through amorphization process. 

Therefore, multi-grain multi-phase nanopolycrystalline material system can be constructed 

by partitioning the space for grains, followed by filling the inter-grain space with 

amorphous grain boundaries. 

Computational simulations are performed on several representative crystalline materials 

and their mixture, such as rocksalt, perovskite and diamond. Problems of relaxation, 

mechanical loading, thermal stability, heat conduction, electrical field response, magnetic 

field response are studied. The simulation results of the mechanical, thermal, electrical and 

magnetic properties are expected to facilitate the rational design and application of 

nanostructured materials. 
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CHAPTER 1:  INTRODUCTION 

1.1 Introduction to Nanopolycrystalline Solids 

Nanopolycrystalline materials in general are single- or multi-phase polycrystalline solids 

with a grain size of a few nanometers (1 nm = 10−9 m = 10 Å), typically less than 100 nm 

[1]. Since the grain sizes are so small, a significant volume of the microstructure in 

nanopolycrystalline materials is composed of interfaces, mainly grain boundaries, i.e., a 

large volume fraction of the atoms resides in grain boundaries. Consequently, 

nanopolycrystalline materials exhibit properties that are significantly different from, and 

often improved over, their conventional coarse-grained polycrystalline counterparts. 

Materials with microstructural features of nanometric dimensions are referred to in the 

literature as nanocrystalline materials (a very generic term), nanocrystals, nanostructured 

materials, nanophase materials, nanometer-sized crystalline solids, or solids with 

nanometer-sized microstructural features [2]. This research is dealing with solids of 

nanometric dimensions, with grains made up of crystals and grain boundaries made up of 

amorphous phase atoms, thus the term “nanopolycrystalline solids” is adopted to best 

describe the features of these materials. 



2 

1.1.1 Crystallites 

Polycrystals, as commonly seen in most metals, ceramics, ice, rocks, etc., are made of a 

large number of single crystals – crystallites. Figure 1-1 illustrates the polycrystalline 

materials in engineering applications. In a crystallite, constituent atoms, molecules, or ions 

are arranged in an ordered pattern extending in all three spatial dimensions. A crystal 

structure (an arrangement of atoms in a crystal) is characterized by its unit cell, a small 

imaginary box containing one or more atoms in a specific spatial arrangement. The unit 

cells are repeated at lattice points so as to stack up in three-dimensional space to form the 

crystal. Comparing to a single crystal, which has atoms in a near-perfect periodic 

arrangement, a polycrystal is composed of many microscopic crystals (called "crystallites" 

or "grains"), while an amorphous solid (such as glass) has no periodic arrangement even 

microscopically. Figure 1-2 illustrates the microstructure of crystalline, polycrystalline and 

amorphous.  

The size of a crystal can vary from a few nanometers to several millimeters. Macroscopic 

solid objects that are large enough to see and handle are rarely composed of a single 

crystal, except for a few cases (gems, silicon single crystals for the electronics industry, 

etc.). In polycrystals, crystallites are usually referred to as grains, or grain cells. If the 

individual grains are oriented randomly, a large enough volume of polycrystalline material 

will be approximately isotropic. This property helps the simplifying assumptions of 

continuum mechanics to apply to real-world solids. 
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Figure 1-1: Polycrystalline structures composed of crystallites. 

Clockwise from top left a) malleable iron b) electrical steel without 

coating c) Solar cells made of polycrystalline silicon d) galvanized 

surface of zinc e) Micrograph of acid etched metal highlighting grain 

boundaries  

 

Figure 1-2: Illustration of the microstructure of crystalline, 

polycrystalline and amorphous 
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1.1.2 Polymorphism 

The same group of atoms can often solidify in many different ways. Polymorphism refers 

to the ability of a solid to exist in more than one crystalline form or structure [3-5]. The 

different polymorphs are usually called different phases. According to Gibbs' rules of phase 

equilibria [6], these unique crystalline phases will be dependent on intensive variables such 

as pressure and temperature. Polymorphism can potentially be found in many crystalline 

materials including polymers, minerals, and metals, and is related to allotropy, which refers 

to different structural modification of an element.  

One example of polymorphism is the quartz form of silicon dioxide, or SiO2. In the vast 

majority of silicates, the Si atom shows tetrahedral coordination by 4 oxygens. All but one 

of the crystalline forms involves tetrahedral SiO4 units linked together by shared vertices in 

different arrangements. In different minerals the tetrahedra show different degrees of 

networking and polymerization. For example, they occur singly, joined together in pairs, in 

larger finite clusters including rings, in chains, double chains, sheets, and three-dimensional 

frameworks. The minerals are classified into groups based on these structures. In each of its 

7 thermodynamically stable crystalline forms or polymorphs of crystalline quartz, only 2 

out of 4 of each the edges of the SiO4 tetrahedra are shared with others, yielding the net 

chemical formula for silica: SiO2.  

Figure 1-3 shows only a few polymorphs of SiO2. 
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Form Crystal symmetry Structure 

α-quartz rhombohedral 

 

β-quartz hexagonal 

 

keatite  tetragonal  

  

 

Figure 1-3: SiO2 exists in many crystalline forms (called polymorphs). 

(Red balls indicate oxygen atoms, gray balls indicate silicon atoms.) 
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Polymorphs have different stabilities and may spontaneously convert from a metastable 

form (or thermodynamically unstable form) to the stable form at a particular temperature. 

They also exhibit different melting points, solubilities, and X-ray diffraction patterns [4].  

Polymorphism is one of the most fascinating phenomena of solid state chemistry and 

indeed is a “difficult” phenomenon, studied for many decades mainly, and separately, in 

the fields of organic and inorganic chemistry. In spite of the huge efforts of many 

researchers our knowledge of the phenomenon is still embryonic, and the relationship 

between growth of a crystalline phase and nucleation of the first crystallites is often 

mysterious [5]. 

 

1.1.3 Grain Boundaries 

Grain boundaries are interfaces between grains, or crystallites, in polycrystalline materials. 

The term "crystallite boundary" is sometimes, though rarely, used. Grain boundary areas 

contain those atoms that have been perturbed from their original lattice sites, dislocations, 

and impurities that have migrated to the lower energy grain boundary. In a polycrystal, 

each of the small grain is a true crystal with a periodic arrangement of atoms, but the whole 

polycrystal does not have a periodic arrangement of atoms, because the periodic pattern is 

broken at the grain boundaries. 
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Grain boundaries in general can be only a few nanometers wide. In common materials, 

crystallites are large enough that grain boundaries account for a small fraction of the 

material. However, very small grain sizes are achievable. In nanopolycrystalline solids, 

grain boundaries become a significant volume fraction of the material, with profound 

effects on such properties as diffusion and plasticity. In the limit of small crystallites, as the 

volume fraction of grain boundaries approaches 100%, the material ceases to have any 

crystalline character, and thus becomes an amorphous solid. 

 

1.2 Previous Research 

Nanopolycrystalline solids are of technological interest, mainly because their strength and 

hardness often are far above what is seen in coarse-grained polycrystalline materials and 

single-crystalline materials. The researchers are interested from a technological point of 

view, but also from a theoretical and computational point of view. Nanopolycrystalline 

solids have been an attractive group of materials to model for many years.  

 

1.2.1 Experimental Work 

Early in the 20th century, when “microstructures” were revealed primarily with the optical 

microscope, it was recognized that refined microstructures, for example, small grain sizes, 
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often provided attractive properties such as increased strength and toughness in structural 

materials. A classic example of property enhancement due to a refined microstructure – 

with features too small to resolve with the optical microscope – was age hardening of 

aluminum alloys. The phenomenon, discovered by Alfred Wilm in 1906 [7], was 

essentially explained by Merica, Waltenberg, and Scott in 1919 [8], and the microstructural 

features responsible first inferred by the X-ray studies of Guinier and Preston in 1938 

[9,10]. With the advent of transmission electron microscopy [11] and sophisticated X-ray 

diffraction methods [12] it is now known that the fine precipitates responsible for age 

hardening. In later years also there are a number of other examples of nanoscale 

microstructures providing optimized properties. Gleiter and coworkers synthesized 

ultrafine-grained materials (with a grain size of a few nanometers) by the in situ 

consolidation of nanoscale atomic clusters and showed that these materials have properties 

significantly different from those of conventional grain sized (>1 μm) polycrystalline or 

amorphous materials of the same chemical composition [13].  

These technological findings and results stimulated research activities on different aspects 

of nanopolycrystalline materials. The subject of nanopolycrystalline materials has attracted 

the attention of materials scientists, physicists, chemists, mechanical engineers, electrical 

engineers, and chemical engineers [2].  

However, in many cases, the nanocrystalline structures and deformation mechanisms 

operating in them cannot be unambiguously identified with the help of contemporary 

experimental methods, because of high precision demands on experiments at the atomic 
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and nanoscale levels. In these circumstances, analytical theoretical models and computer 

simulations of the structure, plastic deformation and fracture processes are very important 

for understanding the fundamental nature of the outstanding properties of 

nanopolycrystalline materials. Besides, the approach involving theoretical models and 

computer simulations can serve as a basis for development of high technologies exploiting 

the unique characteristics of nanopolycrystalline materials.  

 

1.2.2 Numerical Modeling and Simulation 

Beginning in the 1980s, there have been made many attempts to model the grain 

microstructure and especially the microstructural evolution under realistic conditions with 

the help of computer simulations. 

In recent years, impressive results in atomistic simulations of nanopolycrystalline materials 

have been obtained. The most effective approach to atomistic simulations of 

nanocrystalline structures is recognized to be molecular dynamics [14-16]. With this 

approach, the real-time behaviors of diverse nanocrystalline structures under mechanical 

loads have been simulated.  

The molecular dynamics operates with Newton's equations for systems consisting of 

millions of atoms whose interactions are calculated using prescribed interatomic interaction 
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potential functions. This approach accounts for crystal lattice anharmonicity and highly 

inhomogeneous internal stresses in deformed atomic structures [17,16].  

Van Swygenhoven and her colleagues have pioneered the simulation of nanocrystalline 

metals. One of their earliest studies [18,19,14,20,21] and Yamakov et al [22,23,15] focused 

on nickel, with a mean grain size ranging from 3.4 to 12 nm with high angle grain 

boundaries, as shown in Figure 1-4. In an investigation of the role of the grain-boundary 

structure [19,18], simulations of nickel and copper with mean grain sizes ranging from 5 to 

12 nm and high angle grain boundaries were performed.  

 

Figure 1-4: A cross-section of a deformed 12 nm grain size Ni sample 

containing 15 grains. Light grey atoms indicate the grains, black the 

grain boundary regions, and dark grey the hexagonal close-packed 

atoms [21] 
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An excellent summary of general results of molecular dynamics studies is presented in 

Derlet et al. [21]. They also remark that the grain boundaries are generally not equilibrium 

grain boundaries and are sensitive to how the grains are numerically synthesized. In their 

Voronoi-generated models, the grains are usually in compression and the grain boundaries 

in tension. However, there are regions of compression and tension in the grain boundaries 

depending on the misfit areas. Their summary [24] of the mechanical behavior of 

molecular dynamics simulations indicates that the plasticity is dominated by inter-grain 

deformation mechanisms below ~ 10 nm. They conclude that the only meaningful 

information that can be extracted from MD simulations is the classification of the atomic 

processes occurring during the deformation.  

While most of the simulations of nanocrystalline materials involve uniaxial deformations, 

other dynamic phenomena have been studied. For example, Samaras et al. [25] explored 

the formation of stacking fault tetrahedra due to irradiation. Nanoindentation is investigated 

by defining a moving repulsive potential [26]. Froseth et al. depict the emission of 

individual partial dislocations from the grain boundary [27], as shown in Figure 1-5. 



12 

 

Figure 1-5: The twinned nc-Al sample with an average grain diameter 

of 12 nm [27]  

Besides these attractive achievements, there are fundamental limitations of molecular 

dynamics approach. One limitation comes from the extremely short time window inherent 

to molecular dynamics simulations of real-time behavior and validity of prescribed 

interatomic interaction potentials. For instance, typical values of deformation time scale 

and strain rate handled by molecular dynamics are around 10 ns (10-8 s) and 107 s-1, 

respectively. These values are unrealistic for most experiments on plastic deformation of 

nanopolycrystalline materials with typical strain rates ranging from 10-5 s-1 to 103 s-1. As a 

corollary, results of computer simulations of deformation processes in nanocrystalline 

structures are discussive. Also, unrealistically high strain-rate deformation simulated by 

molecular dynamics hardly involves thermally activated processes that often play a very 

important role in deformation and fracture of diverse materials especially at intermediate 

and high temperatures.  
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As to interatomic interactions, they are described by interaction potential functions of 

empirical or semi-empirical origin. Most atomistic simulations handle monatomic 

nanostructured solids. Their application to analysis of evolution of polyatomic and 

composite nanostructures is limited to difficulties in a correct description of interatomic 

interaction potentials in the case of two or more kinds of atoms.  

Nevertheless, molecular-dynamics-based atomistic simulations of plastic deformation of 

nanocrystalline materials provide important information on possible structural 

transformations occurring in mechanically loaded nanopolycrystalline materials. This 

approach is considered to be one of effective methods of nanomaterials science and 

expected to grow rapidly in the future in parallel with progress in hardware and software of 

computer simulations. 

 

1.3 Challenges 

The physical properties of a nanopolycrystalline material are influenced by many factors, 

including (1) its chemical constituents, for example MgO or PbTiO3, (2) its crystallite 

phases, for example wurtzite ZnO or Zincblende ZnO,  and (3) its microstructure, for 

example grain-boundaries, dislocations and point defects. Accordingly, to generate 

atomistic models, which are sufficiently realistic in that they can be used to calculate 

properties or simulate processes with sufficient accuracy to be of benefit to experiment, the 

following challenges need to be overcome: 
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1) the first challenge is to find/establish a capable, credible and accurate physical model 

and mathematical representation that is suitable to solve a supposed atomistic material 

system (as a matter of theory), 

2) the theory needs to incorporate multiple physics phenomena, such as thermal mechanical 

electrical magnetic effects (as a matter of theory), 

3) the supposed material system may contain multiple kinds of chemical compounds, i.e. 

various elements as many as possible in periodic table (as a matter of parameters), 

4) the supposed material system may contain multiple kinds of crystallites, each of which 

may have different chemical constituents and different crystalline phases (as a matter of 

modeling and structural optimization), 

5) the supposed material system may contain both crystalline grains and amorphous grain 

boundaries (as a matter of geometric modeling),  

6) the grains in the supposed material system may be randomly arranged with arbitrary 

geometric variables, such as distribution, size, shape, orientation (as a matter of 

geometric modeling), 

7) the last challenge is to demonstrate that the devised method is applicable to solve many 

proposed problems for the supposed material system (as a matter of verification and 

demonstration) 
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1.4 Goal and Objective 

The goal of this research is to explore, formulate, implement, verify and improve 

techniques in modeling and simulation of nanopolycrystalline material from atomistic 

basis. As a result, a systematic approach is to be established such that it can provide better 

insights into material behavior and structural responses under various conditions and 

loading scenarios. 

The objectives of this research are: 

1) to construct a multi-physics non-equilibrium molecular dynamics theory for atomistic 

material systems (to be addressed in Chapter 2), 

2) to establish a database of interatomic potentials and potential parameters, and to validate 

the combination scheme for these interatomic potentials and potential parameters (to be 

addressed in Chapter 3), 

3) to model the heterogeneous multi-grain multi-phase structure of nanopolycrystalline 

solids (to be addressed in Chapter 4), and 

4) to demonstrate the capability, stability and accuracy of the proposed methodology in 

modeling and analysis of nanopolycrystalline solids (to be addressed in Chapter 5). 
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CHAPTER 2:  MOLECULAR DYNAMICS SIMULATION 

The computing power nowadays available enables simulations of large systems. The 

molecular dynamics (MD) simulation is a technique for computing the equilibrium and 

transport properties of a classical many-body system [28-31]. In MD, the trajectories of 

atoms are determined by numerically solving the Newton's equations of motion for a 

system of interacting atoms, where forces between the atoms and potential energy are 

defined by molecular mechanics force fields.  

MD simulations can be very similar to real experiments in many aspects. When a real 

experiment is performed, the sample is connected to a measuring instrument, andthe 

property of interest is measured during a certain time interval. If the measurements are 

subject to statistical noise, then the longer time they are averaged, the more accurate these 

measurement become. In fact, some of the most common mistakes that can be made when 

performing a computer experiment are very similar to the mistakes that can be made in real 

experiments (e.g. the sample is not prepared correctly, the measurement is too short, the 

system undergoes an irreversible change during the experiment, what are measured are not 

what are supposed to be measured). To measure an observable quantity in an MD 

simulation, first of all it must be able to show that this observable can be expressed as a 

function of the position or the momenta of the particles in the system. Secondly, it needs to 
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be confirmed that these expressions can be properly linked to macroscopic physical 

quantities. 

In this chapter, the existing theories and techniques of classical molecular dynamics and 

non-equilibrium molecular dynamics (NEMD) are introduced and reviewed. Then, in 

addition to the existing method, several new features are proposed in this research to extend 

the credibility and capability in simulating nanopolycrystalline materials. 

 

2.1 Classical Molecular Dynamics Simulations 

In a classical MD simulation, for a model system consisting of n  particles, Newton’s 

equations of motion are solved until the properties of the system no longer change with 

time. The actual measurements are performed after equilibration. 

The governing equation in classical molecular dynamics is 

 1,2,3,...,i i i im i n  fr φ   (2.1) 

where n  is the total number of atoms in the system; im , ir , and ir  are the mass, position 

vector and acceleration vector of atom i , respectively; if  and iφ  are the interatomic force 

and body force acting on atom i , respectively. Here it is emphasized that if  is the 

interatomic force acting on atom i  due to the interaction between atom i  and all the other 
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atoms in the system. Similar to stress tensor, which is the derivative of a scalar-valued 

function, named potential energy per unit volume or strain energy density function, with 

respect to strain tensor, in MD the interatomic force vector if  can also be expressed as the 

derivative of potential energy V  with respect to the position vector ir  as 

 1 2 3( , , ,..., ) ( )nV V V r r r r r   (2.2) 

 i
i

V
 


f

r
  (2.3) 

The total energy T  of the system is equal to the sum of kinetic energy K  and potential 

energy V : 
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The work done by the body force can be calculated as an integral  
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·) )( ( ( )
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i

iW t d  


 φ r   (2.5) 

It is seen that the integrand is the inner product of the body force on atom i  and velocity of 

atom i , which is equal to the rate of work done on atom i . One may readily show that 
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Finally it gives 

 
1

( ) 0
n

i i i i i

i

dT dW
m

dt dt 

      r f φ r    (2.8) 

If the body force is zero, i.e., the system is isolated from its environment, then Eq.(2.8) says 

that the total energy is a constant. Eq.(2.8) is actually the law of conservation of energy in 

MD. Therefore, in a way, Eq.(2.1) and Eq.(2.3) define classical molecular dynamics. 

 

2.2 Non-Equilibrium Molecular Dynamics Simulations 

The MD method discussed aforementioned is a scheme for studying the natural time 

evolution of a classical system of N  particles in volume V . In such simulations, the total 
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energy E  is a constant. If it is assumed that time average are equivalent to ensemble 

average, then the time average obtained in a conventional MD simulation are equivalent to 

ensemble averages in the microcanonical (constant-NVE) ensemble. Unlike equilibrium 

molecular dynamics, non-equilibrium molecular dynamics (NEMD) provides a consistent 

microscopic basis for the irreversible macroscopic Second Law of Thermodynamics. The 

key idea to the development of NEMD was the replacement of external thermodynamics 

environment by internal control variables. The new variables can control temperature, or 

pressure, etc. These thermostat and barostat variables can control and maintain non-

equilibrium states of the atomistic material system. Attribute to its capability and 

popularity, NEMD is a powerful simulation tool in modern nanoscience and 

nanotechnology. 

 

2.2.1 Temperature in Molecular Dynamics 

In molecular dynamics, temperature for a group of N atoms is calculated as 
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where iu is the time-interval averaged velocity of atom i  defined as 
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Bk is the Boltzmann constant; im is the mass of atom i . It is seen that the temperature 

T according to this definition, Eq.(2.9), is the space-time average of the velocities of N  

atoms for a time period between  and t t t  . It is worthwhile to note that the definition of 

temperature can be reduced to two special cases: 

Space Averaged Temperature  
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Time Averaged Temperature [32,33]  
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It is seen that, in MD, temperature is not an independent variable; instead it is derivable 

from the velocities of atoms. One may specify temperature as boundary conditions or 

consider the temperature of the whole system as a given function of time. For this purpose, 

a temperature control algorithm is needed. 
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2.2.2 Thermostat Algorithms 

A modification of the Newtonian MD scheme with the purpose of generating a thermo 

dynamical ensemble at constant temperature is called a thermostat algorithm. The use of a 

thermostat can be motivated by one (or a number) of the following reasons:  

(i) to match experimental conditions;  

(ii) to study temperature-dependent process (e.g., determination of thermal coefficients, 

investigation of temperature-dependent conformation or phase transitions); 

(iii) to evacuate the heat in dissipative non-equilibrium MD simulations (e.g., 

computation of transport coefficient y viscous-flow or heat-flow simulations);  

(iv) to enhance the efficiency of a conformation search (e.g. high-temperature dynamics, 

simulated annealing);  

(v) to avoid steady energy drifts caused by the accumulation of numerical errors during 

MD simulations.  

Popular techniques to control temperature include velocity rescaling [34-40], Anderson 

thermostat [41-49], Nosé-Hoover thermostat [50-58], Nosé-Hoover chains [59], stochastic 
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dynamics thermostat[60,61], Gaussian constraints [62,48], and the Berendsen thermostat 

[63-67]. 

In the following, several existing methods to implement MD simulation with given 

constraints due to the consideration of temperature are reviewed. 

 

2.2.2.1 Velocity rescaling 

Suppose, in the numerical procedure, at the -thn time step ( t n t  ) for a group of 

N atoms, it is found that 
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It is understood that this group of N atoms may or may not be the whole specimen. This 

enables the freedom to specify different kinds of boundary conditions.  If the desired 

(specified) temperature is *T T , then the velocities of the N atoms are simply modified 

as 

 
** ( )i iT
T  v v v v  (2.14) 
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while keeping the positions of the atoms unchanged. It is straightforward to check 
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This means that the temperature has been upgraded to *T and, although the velocities have 

been changed, the total momentum is conserved because 
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Since the positions of the atoms are kept unchanged, the total potential energy is 

unchanged. On the other hand, the kinetic energy has been changed from 
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2.2.2.2 Berendsen Thermostat 

The Berendsen algorithm can be better understood by rewriting the governing equations as 
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It is seen that if *   1T T    , then Eq.(2.19) is essentially Eq.(2.1) in finite difference 

form. 

 

2.2.2.3 Gaussian Constraints 

In Gaussian Constraints algorithm, the governing equations are the same as Eq.(2.1). 

However the idea behind it is quite different. Rewrite the temperature of N atoms as 
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If the temperature reaches equilibrium, i.e., *T T , or it is considered to be true, then 
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Therefore   is chosen to be 
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It is noticed that by writing the temperature as in Eq.(2.21) one implicitly assume the total 

momentum of this group of atoms is zero. 

 

2.2.2.4 Nose-Hoover thermostat 

In this algorithm, the governing equations, Eq.(2.1), are modified to 
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and the so-called “friction coefficient”,  , is a scalar-valued function controlled by the 

first order differential equation 
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where  is a specified time constant, normally in the range 0.5~2 picoseconds. 

Note: In using velocity upgrade or random number generation, one modifies the velocities 

once in a while without changing the governing equations. It is noticed that these governing 

equations are actually the Newton’s second Law for those atoms. Modification of the 

velocities is essentially an action to implement the boundary condition, which reflects the 

interaction between the material body and its environment. On the contrary, in using Nose-

Hoover thermostat, Berendsen thermostat, or Gaussian constraints, one has to modify the 

governing equations. 

 

2.3 Objectivity Incorporated Molecular Dynamics 

Since the first introduction of MD, most simulations have been performed in an inertial 

reference frame, which means the reference frame is at still or at a constant velocity. 

However, rare discussion has been given with respect to non-inertial reference frames, e.g. 

a reference frame that undergoes rotation or acceleration, which is more general and 

common in nature. It is essentially important to investigate into physical phenomena in the 

non-inertial reference frame, while features of the existing NEMD should be preserved. To 

achieve this goal, the simulation scheme needs to include additional physical laws to 

accommodate the change/motion of reference frames.  
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Principle of objectivity, which is a basic concept in continuum mechanics, plays an 

essential role in capturing the invariance of mechanics of materials under the change of 

reference frame. The simple idea of this notion is that material measurements made in 

different reference frames are required to be the objectively equivalent and are not subject 

to the motion of the observers. Following this principle, this research proposes the theory of 

Objectivity Incorporated Molecular Dynamics (OIMD) [68].  

 

2.3.1 Groundwork of Objectivity 

The concept of objectivity has been introduced in almost every continuum mechanics 

textbook. For example, in Mechanics of Continua [69] and Microcontinuum Field Theories 

[70,71], it is clear that the material properties do not depend on the reference frame 

selected. The measurements made by an observer, whether he/she is in motion or not, 

should be the same. With this viewpoint taken, the measurements made in one reference 

frame are sufficient to determine the material properties in all other frames which are in 

rigid motion with respect to one another. In the formulation of the response functions, it is 

desirable to employ quantities that are not dependent on the motions of the observer. Such 

quantities are called objective or material frame-indifferent. For example, the velocity of an 

automobile will appear different to two observers, one stands on the roadside and the other 

rides in the car. Therefore, the velocity vector is not objective. Similarly, the acceleration is 

not an objective vector. The distance between two points and angles between two 



29 

directions are independent of the rigid motions of the reference frame (the observer). 

Hence, they are objective quantities. 

Definition 1. Two motions ( , )kx tX   and  ** ( , )kx tX  are called objectively equivalent if and 

only if 

 * ** ( ) (( , ) ( ),  , )kl l kk t x tx t Q b tt t a  XX  (2.25) 

Or in matrix notation,    

 *( , ) ( ) ( , ) ( )t t X t t *x X Q x b  (2.26) 

where a   is a constant time shift, ( )tb   is a time-dependent translation, and ( )tQ   is time-

dependent orthogonal transformations, i.e. 

 ,  de ( ) 1tkl ml lk lm kmQ QQQ    Q  (2.27) 

It is seen that klQ  consists of all rigid rotations ( det 1 Q  ). Two objectively equivalent 

motions differ only in relative frame and time.  

Definition 2 (Objectivity). Any tensorial quantity that obeys the tensor transformation law 

under Eq.(2.25) is said to be objective or material frame-indifferent. 
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For example, a vector ka  and a tensor klt  are objective if they obey the transformation 

laws. 

 
*

*

*

*

( , ) ( ) ( , )

( , ) ( ) ( ) ( , )

k kl l

km ln mkl n

a t Q t a t

t t Q t tQ t t



 X

X X

X
 (2.28) 

 

2.3.2 Objectivity Incorporated Molecular Dynamics 

In Objectivity Incorporated Molecular Dynamics (OIMD), the equations of motion are 

   ori i i i i i i i im m m   i f fv iv   (2.29) 
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f rΦ Φ v Φ Φ

Φ v Φ Φ
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 

 
 (2.30) 

where Eq.(2.29) and Eq.(2.30) may be regarded as the governing equation and the 

constitutive equations, respectively; im , ir , iv  are the mass, position and velocity of the ith 

atom, respectively. The fictitious force i im i , which accounts for the motion of the reference 

frame itself, can be calculated as 

  2 ( ) ( ) ( )i i i i           i ω v b ω ω r b ω r b b   (2.31) 
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where ω  and b  are the angular velocity and translational velocity of the reference frame in 

simulation, which are non-vanishing in non-inertial reference frame. 

The driving force if  of the ith atom is a linear combination of various types of body forces 

0 1 2 3{ ,  ,  ,  ,  ...}Φ Φ Φ Φ ; 0 ( )i i
i

V
 




Φ
r

r  is the interatomic force, where V is the 

interatomic potential of the system; 1 ( )i iΦ v  is the damping force, 2 )(i TΦ   is the 

temperature force; and 3 )(i pΦ   is the pressure force. Moreover, OIMD requires that each 

term of the body force must be objective, i.e. it obeys the transformation law as in 

Eq.(2.25). To satisfy this requirement, the objective velocity v , may also be called thermal 

velocity or disturbance velocity [72,73]  is defined as: 

 i i i v v v η  (2.32) 

where v  and iη  can be found by the following procedure 

 
1 1 1

,   / ,   /i i
N N N

i i i

i i iM m m M m M
  

        
   

  r r v v  (2.33) 

 ˆ ˆ,   i i i i  r r r v v v  (2.34) 

  
1 1

ˆ ˆ ˆ ˆ ˆ,  ˆ · i i i i i i
N N

i

i

i

i

m m
 

       L r J r r rv I r  (2.35) 

  1 ˆ ˆ·i i i   η J r ω rL  (2.36) 
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It is proved that the thermal velocity v  satisfies the tensor transformation law (c.f. 

APPENDIX-I): 

 * v vQ    (2.37) 

Therefore, the objective temperature T  can be defined as: 

 
1

·i i i
dof

N

B i

mT
N k 

  v v   (2.38) 

The objective virial stress σ  can be defined as: 

 
1 1

2
ij ij

N
i i i

i j i

m
 

 
   

  


 v v fσ r    (2.39) 

The objective pressure p  can be defined as: 
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 (2.40) 

Here I  is the identity matrix;   is the volume of the region of interest; 3 6dofN N   is 

the number of degree of freedom; N  is the number of atoms in  ; N  is the number of 

atoms within the cutoff of  ; Bk  is the Boltzmann constant. 
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Following the requirement of principle of objectivity and using the definitions as in 

Eq.(2.32), Eq. (2.38), Eq.(2.39), and Eq.(2.40), all body forces 0 1 2 3{ ,  ,  ,  ,  ...}Φ Φ Φ Φ  in 

the constitutive equations are now objective:  

 * ,   0,1,2,...s s s Φ ΦQ   (2.41) 

It is proved that in the governing equation, the difference between the apparent acceleration 

and the fictitious force-induced acceleration is objective (c.f. APPENDIX - II).  

    * *  a i Q a i   (2.42) 

By design, both the constitutive equation and governing equation satisfy the principle of 

objectivity, i.e. they are form-invariant under change of reference frame. Therefore, this set 

of equations of motion is valid for all situations within the scope of Newtonian mechanics. 

OIMD is capable of simulating motions of atoms objectively no matter what reference 

frame is used in the simulation.  

 

2.4 Molecular Dynamics in Electromagnetic Field 

2.4.1 Governing Equation 

The governing equation of non-equilibrium molecular dynamics (NEMD) simulations in 

electromagnetic field can be expressed as 
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 ( / )          [1,2,3,...., ]i i i i ext i extm q c i N    f E v Bv  (2.43) 

Where mi, qi, ri, and vi represent the mass, electric charge, position, and velocity of the ith 

atom respectively. fi represents the body forces acting on atom i and N is the total number 

of atoms within the system. c represents the speed of the light whereas Eext and Bext 

represent the external electric and magnetic fields respectively.  

 

2.4.2 Maxwell Equation at Atomic Scale 

The third term on the right-hand side of Eq.(2.43) is the Lorentz force acting on a charged 

particle and is modeled using Maxwell’s equation. In a vacuum, The Maxwell’s equations 

are expressed as: 
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B

 (2.44) 

Since the goal is to simulate the environmental effects on a material system, the external 

electromagnetic (EM) field is considered as part of the environment. It is noticed that in 

vacuum (the situation in air is very close to that in vacuum), there is no free charge, no 

current, and no distinction between E and D and between B and H. 
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In a simulation, one of the following three situations can be chosen: 

1) There is no external EM field: Eext = Bext = 0  

2) External EM field is constant in space and in time: Eext = c1 and Bext = c2 

3) External EM field is specified as function of space and time: Eext = E(x,t) and Bext 

= B(x,t) 

However, it is emphasized that when the EM field is set up in the simulation, it has to 

satisfy the Maxwell’s equations, otherwise the simulation result is not physical and cannot 

be validated by experiments. 

 

2.4.3 Induced Electromagnetic Quantities 

In the MD simulation with EM feature, one may calculate the induced EM quantities, such 

as polarization of a unit cell p, voltage  , electric field e  , and magnetic field b as follows: 

 
1

1 aN
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q
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 



 p r  (2.45) 
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 
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  
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x r


 (2.48) 

Where, aN  is the number of atoms in a unit cell. It is noted that the above mentioned 

formulation is based on the non-relativistic assumption [74]. 

 

2.5 Numerical Procedure for MD Simulations 

2.5.1 Simple Procedure of Classical MD 

A number of important features of MD simulations can be illustrated through a simple 

program. The program is constructed as following: 

1) Read in the parameters that specify the conditions of the run (e.g., initial 

temperature, number of particles, density, time step). 

2) Initialize the system (i.e., select initial positions and velocities). 

3) Compute the forces on all particles. 
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4) Integrate Newton’s equation of motion. This step and the previous one make up the 

core of the simulation. They are repeated until the time evolution of the system  has 

been computed for the desired length of time. 

5) After completion of the central loop, compute and print the average ages of 

measured quantities, and stop. 

To start the simulation, initial positions and velocities are assigned to all particles in the 

system. The particle positions should be chosen compatible with the structure. In any event, 

the particles should not be positioned at position that results in an appreciable overlap of 

the atomic or molecular cores. Often this is achieved by initially placing the particle on a 

cubic lattice. 

What comes next is the most time-consuming part of almost all MD simulations: the 

calculation of the force acting on every particle. For example, for a model system with 

pairwise additive interaction, one has to consider the contribution to the force on particle i 

due to all its neighbors. For a system of N  particles, it is needed to evaluate ( 1) / 2NN     

pair distances. This implies that, if there are no tricks, the time needed for evaluation of the 

force scales as 2N . There exists certain efficient techniques to speed up the evaluation of 

both short-range and long-range forces in such a way that the computing time scales as N , 

rather than  2N . 
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Now that all forces between the particles have been computed, Newton’s equations of 

motion are ready to be integrated. Algorithms such as Verlet algorithm [28-31] have been 

designed to do this.  

 

2.5.2 Velocity Verlet Method 

Velocity Verlet integration is a numerical method used to integrate Newton's equations of 

motion. The Velocity Verlet integrator provides a good numerical stability, as well as other 

important properties such as time-reversibility, at no significant additional computational 

cost over the simple Euler method [29]. The standard implementation scheme of this 

algorithm is 

1) Calculate a half step velocity:  1 1
2 2) (( ( ))t tt t t   v av  . 

2) Calculate the full timestep position:  1
2) ( ) )( (t t t t tt     r vr . 

3) Use the new positions to obtain the updated force )(t t f  and hence the 

acceleration  )(t t a . 

4) Calculate the full timestep velocity: 1 1
2 2( () ) ( )t t t tt t t       v v a    
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These steps update the information from ( )ta , ( )tv , and ( )tr  to ( )t ta , ( )t t v , and 

( )t t r , so the time marching can move forward. 

 

2.5.3 Heun's Method 

The scheme of the Velocity Verlet algorithm can be summarized as: 

 

1
2

1
2

1
2

1

1

1
2

1 1

1
2

1 1

(2)  

(3) 

(

 

1)  

(

(4)  

)

n n n

nn n

n n n

nn n

t

t

t





  

 

  











 

v A

x

a A

A

v

x v

A x

v v

  (2.49) 

It is noted that in this scheme, it is assumed that acceleration 1na  can be determined by 

atomic position 1nx  only, as in step (3) of Eq.(2.49). However, sometimes acceleration 

1na  can also depend on the simultaneous velocity 1nv , e.g. when damping force, Lorentz 

force, or fictitious force is present, this scheme may fail to precisely predict the trajectory 

of the atoms. Therefore, for numerical accuracy purpose, other integration methods may be 

needed, such as Heun’s method [75]. Heun's method involves a two-stage calculation of 

acceleration. The implementation scheme consists of the following steps: 
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  (2.50) 

It is seen that step (5) of Eq.(2.50) is identically step (1), so within one full timestep there 

are twice calculation of force, which is the most time consuming part in MD computation. 

Despite the computational cost, this procedure will provide more reliable numerical results.  

 

2.5.4 Inverse Method for MD in EM Field 

The governing equation of MD in EM field is: 

 ( / )m q c   f E v Bv  (2.51) 

It is clear that in the presence of a magnetic field which acts on charged particles, the 

instantaneous acceleration/force of an atom depend on its instantaneous velocity. It seems 

that the Velocity Verlet scheme as shown in Eq. (2.49) fails to calculate 1na . However, 

since the cross product v B  mixes v  and B  in a linear way, the integration scheme can 

be rewritten to solve 1nv  explicitly. The following is the derived scheme: 
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where I


 is the identity matrix, W


 is an antisymmetric matrix such that    · B W


  

In particular, W


can be constructed as: 
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This scheme is a modification to the integration scheme of Velocity Verlet method, when 

the velocity 1nv  is required in the calculation of 1na . Since the calculation of 

1
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q t

mc


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


WI


 involves the inverse of a matrix, this method may be called Inverse 

Method. Inverse Method has an advantage over original Velocity Verlet method because it 

is more accurate, and an advantage over Heun's method because it is faster. 
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2.6 Summary 

Molecular dynamics simulation is ideally suited for the study of nanopolycrystalline 

materials. In this chapter, the basic idea and theory of classical MD and NEMD simulations 

are introduced. In addition to the existing method, the theory of Objectivity Incorporated 

Molecular Dynamics (OIMD) is proposed to extend the credibility and capability in 

simulating material systems in arbitrary reference frame or local systems with arbitrary 

motions. It is worthwhile to note that the concept of objectivity in OIMD is Euclidean 

objectivity, which is associated with the domain of classical mechanics. In contrast, when 

electromagnetic field is present, the motions of atoms are no longer only governed by 

classical mechanics. Therefore, simulating MD in EM field is not required to satisfy the 

principle of objectivity. Once equations of motions are obtained, numerical integration 

methods are employed to calculate the dynamic process of the atomistic system. While the 

original Velocity Verlet method can only handle position-based force calculation, Heun’s 

method and Inverse Method are introduced in this research to calculate both position- and 

velocity- based force calculation. These integrators can be selected to use in MD 

simulations to accommodate different needs.   
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CHAPTER 3:  MOLECULAR MECHANICS FORCE FIELDS 

To study nanostructures composed of several hundred to several billion atoms or 

molecules, the most computationally efficient approach is the use of phenomenological 

interatomic potential, since the existing quantum mechanical techniques are able to deal 

with at most a few hundred atoms. The interatomic potential gives the starting point for the 

majority of simulation techniques, i.e., the calculation of energy. These phenomenological 

potentials are obtained by selecting a mathematical function and fitting its unknown 

parameters to various experimentally determined properties of the systems, such as lattice 

constant, energies, forces, stresses, phonons, dielectric constants and so on.  

This chapter first reviews the most widely used interatomic potentials in current atomistic 

simulation studies. In particular, Coulomb potential for charged particles, the Buckingham 

potential for short range interaction, and the Lennard-Jones potential, are some of the most 

useful interatomic potentials in nanopolycrystalline materials simulation. Then, an efficient 

treatment of the calculation of Coulomb potential is addressed. To enable simulations of 

complex material system that consists of various kinds of crystals, this research established 

a database to contain interatomic potentials and their parameters. Further the combination 

rule for using different potential parameters of Buckingham potential is revisited and 

validated.  
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3.1 Empirical Interatomic Potentials 

The most general form of potential energy in MD simulation can be expressed by: 

        (1) (2) (3)

1 , 1 , , 1

1 1
, , , ...
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! !
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n n n
i j n i i j i j k

i i j i j k

V VV V
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    r r r r rr rr r  (3.1) 

where nr  is the position vector of the n-th atom, and the function ( )mV  is called the m-body 

potential. The first term of equation represents the energy due to an external force field or 

boundary conditions, such as gravitational or electrostatic, into which the system is 

immersed; the second term shows pairwise interaction of the particles, the interaction of 

any pair of atoms depends only on their spacing and is not affected by the presence of a 

third atom; the third term gives the three-body potentials, etc. In theory, the m in ( )mV  can 

be as large as possible, but the computational expense will increase exponentially. 

 

3.1.1 Coulomb Interaction 

When considering ionic materials, such potentials usually comprise a Coulomb term for the 

long-range interactions along with a term to describe the short-range interactions. The 

Coulomb interaction is by far the dominant term, and it can represent up to 90% of the total 

energy. It is given by Coulomb’s law 

 ( ) i j
ij

ij

q q
V r

r
  (3.2) 
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where ij i jr  r r is the distance between atom i  and atom j ; iq  and jq  are the charge of 

the i -th atom and the j -th atom.  

One issue associated with the Coulomb term concerns the charges of ions. In most 

simulations, the charges of ions are fixed (i.e. independent of geometry) for simplicity, and 

their magnitude is determined by one of two methods: (i) fitted parametrically along with 

other interatomic potential parameters, and (ii) extracted from quantum mechanical 

information. In the later method, the choice would be to employ the Born effective charges 

that describe the response of the ions to an electric field. 

 

3.1.1.1 Computational Methods for Coulomb Interaction 

Coulomb interaction is computationally demanding because of the long-range 1r decay, a 

variety of techniques have been developed to address the proper and practical handling of 

electrostatic interactions For a specimen of finite size, the Coulomb potential and force can 

be calculated directly. For infinite 3-D periodic systems, the most widely employed 

approach is the Ewald method [76,77,28,31]. In Ewald summation method, to accelerate 

the evaluation, the Coulomb term is subjected to a Laplace transformation and then 

separated into two components, one of which is rapidly convergent in real space and a 

second which decays quickly in reciprocal space. Conceptually, this approach can be 

viewed as adding and subtracting a Gaussian charge distribution centered about each ion. 
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Recently, Wolf et al [78] devised a new method for Coulombic interactions, which may be 

referred as a damped shifted force model. Here the formulation and a simple routine for 

parameter selection is shown. 

For Coulomb potential between i -th atom and j -th atom, instead of 

 ( )      ,       ,    
i j

ij ij i j i jq q
V r r

r
    r r r r r  (3.3) 

Wolf et al proposed the following formula 
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where   is a constant; R is a cutoff; and 
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It is seen that 

 2 2[erfc( )] 2
exp( )

d r
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Now it is straightforward to obtain 
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It is noticed that the interatomic force and the stiffness can be derived as follows: 
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Define 
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It is straightforward to obtain 
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There are two parameters in Wolf's formula:   and R , where   accounts for damping 

and R  accounts for cutoff radius. To determine a proper range of these two parameters so 
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that they can work effectively and efficiently, it is useful to look at their physical meanings. 

That is,   needs to be small enough to keep the accumulated potential (and force) close to 

the original Coulomb interaction, and R  needs to be big enough to accommodate the 

convergence condition that imposed by   while small enough to reduce the computational 

cost, respectively. 

The evaluation of the potential energy of an MgO specimen demonstrates the roles of   

and R  in Wolf's representation of Coulomb interaction. 

Figure 3-1 essentially shows that if the value of   is given, the potential energy will 

converge as the cutoff radius goes big. The "knee" point of the curve tells that the 

corresponding value of R  is sufficiently large for convergence purpose such that a bigger 

value is unnecessary. Different values of   (different curves in the figure) will result in 

different values of R  for the "knee" point. Therefore,   and R  are correlated, and R  can 

be properly determined once   is set. 
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Figure 3-1: Potential energy vs. R (cutoff). Different lines represent 

different values of α (R in units of Å, and α in units of Å-1) 
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Figure 3-2: Potential energy vs. α (damping). Different lines represent 

different values of R (R in units of Å, and α in units of Å-1) 

 

Figure 3-2 takes   as the horizontal axis and a set of R  is evaluated, thus several curves 

are obtained. The left portions of the curves show that the bigger the cutoff radius R  the 

lower potential energy the system will reach. The extreme case is that when R   and  

   the potential energy reaches the lowest value, which is the exact value of the 

electrostatic potential in the shifted force model. The right portions of the curves show that 

all curves come together like "one strand" and the energy level is high, which indicates that 

the highly damped system is non-physical. Therefore, a proper value of   should be 
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selected near the left side. Also note that there is also a "knee" point for each curve where it 

joins the "one strand". To the right of the "knee" point, the increasing of cutoff R  will do 

no change of potential energy, which is similar to the result from Figure 3-1. An example 

"knee" point may be 10.3100Å    with R 7.0  Å .  

From the results by Figure 3-1 and Figure 3-2, the correlation between   and R  are 

known. Now the parameter selection routine can be established as following: 

    1) manually and empirically determine the value of R  so that the estimated 

computational cost of the simulation program is acceptable with the computer resource. 

    2) with the R  value obtained above, use the study as in Figure 3-2, and find the "knee" 

point. The value of   is thus determined. 

    3) with the   value obtained above, use the study as in Figure 3-1 to justify that the 

cutoff R  satisfies the convergence requirement. 

With this routine, the parameters for MgO material system is found that 10.18Å   and 

R 12.0  Å . 
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3.1.2 Two-Body Potentials 

Two-body potentials are very common in interatomic potentials. They represent the 

interaction between two atoms when they are bonded, or two ions when they are in the 

immediate coordination shells. For the ionic case, a repulsive potential is usually adequate, 

with the most common choices being either a positive term which varies inversely with 

distance, or an exponential form. These lead to the Lennard-Jones [79] and Buckingham 

[80] potentials, respectively, when combined with the attractive 6r   term. 

  1) Lennard-Jones potential: 
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( ) 4ij
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V r
r r
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 (3.19) 

  2) Coulomb-Buckingham potential: 
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 (3.20) 

where   is the depth of the potential well,   is the distance at which the interatomic 

potential is zero, ijr  is the distance between the i -th atom and j -th atom, iq  and jq  are the 

charges of the i -th and j -th atom, , , andij ij ijA C  are all potential parameters of the pair of 

the i -th and j -th atom. 
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The Buckingham potential is easier to justify from a theoretical perspective since the 

repulsion between overlapping electron densities. Due to the Pauli principle, it assumes an 

exponential form at reasonable distances. However, the Lennard-Jones potential, where the 

exponent is typically 9-12, is more robust since the repulsion term increases faster with 

decreasing distance than the attractive dispersion term. 

For covalently bonded atoms, the Coulomb force is often subtracted, and the interaction is 

described with either a harmonic potential or the Morse potential [81]. The result is a 

potential where the parameters have physical significance. For instance, in the case of the 

Morse potential, the parameters become the dissociation energy of the diatomic species.  

The following is a list of other two-body potential functions that are presently widely used 

[82] 

  3) Harmonic 

 2
0

1
( ) ( )

2ij ij ijV r k r r   (3.21) 

  4) Morse 

 2
0( ) {[1 exp( ( ))] 1}ij ij ij ijV r D k r r      (3.22) 

  5) Four-range Buckingham 
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  6) Lennard-Jones Buffered 
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  7) General/Del Re 
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  8) Rydberg 
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  9) Fermi-Dirac 
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  10) Inverse Gaussian 

 2
0( ) exp( ( ) )ij ij ij ijV r A B r r    (3.28) 

  11) Polynomial 

 2 3 4 5
0 1 2 3 4 5( )ij ij ij ij ij ij ij ij ij ij ij ijV r c c r c r c r c r c r       (3.29) 

  12) Covalent exponential 
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, , , , , ( 0 ~ 5), ( 0 ~ 5), ( 0 ~ 5)ij ij ij ij ij ijk ijk ijkA B C D k a k b k c k   , and ij are potential 

parameters of the pair of the i -th atom and the j -th atom, m  and n  are integers 

depending on the users’ choices, ijr  and 0r  are the distance between two atoms and the 

reference distance, respectively, and cutoffr  is the cutoff distance for short-range 

interactions. 
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3.1.3 Many Body Potentials 

Some important interactions for particular systems cannot be described by simply two-body 

force fields. Many-body potentials have been commonly used for metallic system, silicon, 

carbon and hydrocarbons, large molecules, etc. Below, a few higher-order interaction 

potentials are described.  

 

  1) The Embedded Atom Method 

The embedded atom model (EAM) [83] is a successful approach for the description of a 

metallic system. Its foundation lies within the density functional theory, and it is based on 

the tenet that the energy is a function of the electron density. Simply, the EAM embeds a 

positively-charged ion into a linear superposition of spherically averaged atomic electron 

densities. Thus, instead of integrating the density across all space, the energy is expressed 

as a function of the density i  at the nucleus i , summed over all atoms 

 
1

( )
N

EAM i
i

V F 


   (3.31) 

and ( )
N

i ij
j i

f r


 , ( )ijf r is the contribution to the electron density from atom j  at the 

location of atom i . 

In the original work of Sutton and Chen [84], which developed and extended the ideas of 

Finnis and Sinclair [85], a square root was used as the density functional, while the density 
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itself was represented as an inverse power of the interatomic distance. Eq.(3.31) 

encapsulates the idea that the interaction between any given pair of atoms is dependent on 

the number of other atoms within the coordination sphere. 

 

  2) Tersoff Potential 

The Tersoff potential [86,87] is a three-body potential functional which explicitly includes 

an angular contribution of the force. The potential is widely used at present in various 

applications for silicon, carbon, germanium etc. The interatomic potential is taken to have 

the form 

 
1

2i ij
i i j

E E V


    (3.32) 

 ( )[ ( ) ( )]ij c ij R ij ij A ijV f r f r b f r   (3.33) 

Here E  is the total energy of the system, which is decomposed for convenience into a size 

energy iE  and a bond energy ijV . The indices i  and j  run over the atoms of the system, 

and ijr  is the distance from atom to atom. ijb  represents a measure of the bond order, and is 

assumed to be a monotonically decreasing function of the coordination of atom  i  and j . 

The function Rf  represents a repulsive pair potential, and Af  represents an attractive pair 

potential associated with bonding. The extra term cf  is merely a smooth cutoff function, to 
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limit the range of the potential, since for many applications short-ranged functions permit a 

tremendous reduction in computational effort.  

Here the functions Rf , Af  and cf  are simply taken as 

 ( ) exp( )R ij ij ij ijf r A r   (3.34) 

 ( ) exp( )]A ij ij ij ijf r B r    (3.35) 
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Where 

 

1 2

,

2 2 2 2 2

ij

1/2 1/2

1/2 1/

(1 )

( ) ( )

( ) 1 / / [ ( cos ) ]

1,   1,

( ) ,    B ( ) ,   ( ) / 2,   ( ) / 2,   

( ) ,    ( )

i in nn
ij ij i ij

ij c ik ik ijk
k i j

ijk i i i i i ijk

ij

ij i j ij i j ij i j ij i j

ij i j ij i j

b

f r g

g c d c d h

A A A B B

R R R S S S

  

  

 

 

     





 



    

 

     

 



2  

 (3.37) 

Here i , j  and k  labels the atoms of the system, ijk is the bond angle between bond ij  and 

ik . Single subscripted parameters, such as iA , iB , iS , iR , i , in  and i , are material 

constants depending on the type of atom (C, Si or Ge). The energy is modeled as a sum of 
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pair-like interactions, where, however, the coefficient of the attractive term in the pair-like 

potential depends on the local environment, giving a many-body potential. 

 

  3) Stillinger-Weber Potential 

Stillinger-Weber potential [88] is one of the first attempts to model a semiconductor. It is 

based on a two-body as well as a three-body term expressed as follows: 

 

 

2 3

2

2

3 0

, ,

, , co

( ) ( )

( ) exp

s( ) cos exp exp

ij ij

ij ij ik ijk
i

p

ij ij ij
ij ij ij ij

ij ij ij ij ij

ij ij i
ij ik ijk ijk ijk ijk

i

ijk
ij ij ij

j i i j k j

q

r

r r r

E r r

r A B
a

r r
r a

  

  




      


 

 

   
 

   
        


     
 

  

  

 


 



 k ik

ik ik ikr a




 
  

 (3.38) 

In Eq.(3.38), ijk  is the angle formed between the ij  bond and the ik  bond. In particular, 

4ijp  , 4ijq   and 0 1os / 3c ijk   . Thus the potential can be rewritten as: 
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 (3.39) 

This potential gives a fairly realistic description of crystalline silicon. The potential 

parameters for carbon and germanium are also available in literature. Since Stillinger-
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Weber potential is capable of modeling structural and dynamical properties with a very 

high precision, it is widely used in research and hence incorporated in our program. 

 

3.2 Parameters for Empirical Interatomic Potentials 

3.2.1 Parametrization Methods and Data Source 

The reliability and hence the usefulness of atomistic modeling techniques is inherently 

limited by the availability of interatomic potentials of sufficient quality. The practical 

approach to derive empirical potentials for a given system may be fitting the form of the 

chosen potential model to experimental data typically measured from a simple binary or 

ternary system containing the interaction of interest. Such data includes the crystal 

structure, relative permittivities and elastic constants [89-91]. While much of the potential 

fitting work has been focused on one specific type of single crystalline solid, the routine 

application of such models to problems in solid-state chemistry involving complex 

materials further demands transferability of potentials between the systems for which they 

are derived and the system of interest [92-94].  

Following this methodology, various groups of researchers have obtained their sets of 

potential parameters, each of which supports one specific structure group of crystals. For 

example, Levy et al [95] did the potential fitting study on perovskite with the structure 

A2+B4+O2-
3, thus the parameters in that paper is suitable for the ions in this group of 

crystals. The philosophy is that within the same structure group of crystals, the anions and 
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cations shall behave the same in constructing the crystal structure, thus their potential 

functions shall be the same in another (but same structured) crystals. That is, for example, 

the Ti in PbTiO3 should be the same Ti in BaTiO3, given that PbTiO3 and BaTiO3 are of 

same crystal structure. The consequence is that for each set of the parameters, the common 

anion interaction, oxygen-oxygen, shares the same value, while this parameter value may 

be different from another set in another publication. The potential fitting results for group 

of crystals are listed in Table 3-1 to Table 3-5: Lewis et al [93], Collins et al [96], Bush et 

al [92], Grimes et al [97,95,98]. 

Table 3-1: Buckingham potential parameter, Lewis et al (1985) 

Interaction type /A eV  / Å  6/  C eV Å  

2 2Mg O   1428.5 0.2945 0.0 

2 2Ca O   1090.4 0.3437 0.0 

2 2Sr O   959.1 0.3721 0.0 

2 2Ba O   905.7 0.3976 0.0 

2 2Mn O   1007.4 0.3262 0.0 

2 2Fe O   1207.6 0.3084 0.0 

2 2Co O   1491.7 0.2951 0.0 

2 2Ni O   1582.5 0.2882 0.0 

2 2O O   22764 0.149 27.879 

 

Table 3-2: Buckingham potential parameter, Collins et al (1992) 

Interaction type /A eV  / Å  6/  C eV Å  
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2 2O O   22764.0 0.149 27.88 

4 2Si O   1283.9 0.3205 10.6 

4 1.426 ( )Si O H   999.9 0.3012 0 

3 2Al O   146.03 0.2991 0 

2K O   65269.7 0.2130 0 

2 2Mg O   1275.2 0.3012 0 

2 2Ni O   683.5 0.3332 0 

2 2Mg O   821.6 0.3242 0 

2 2Co O   696.3 0.3362 0 

2 2Fe O   694.1 0.3399 0 

2 2Zn O   499.6 0.3595 0 

2 2Mn O   715.8 0.3464 0 

2 2Cd O   868.3 0.3500 0 

 

Table 3-3: Buckingham potential parameter, Bush et al (1994) 

Interaction type /A eV  / Å  6/  C eV Å  

2Li O   426.480 0.3000 0.0 

2Na O   1271.504 0.3000 0.0 

2K O   3587.750 0.3000 0.0 

2 2Mg O   2457.243 0.2610 0.0 

2 2Ca O   2272.741 0.2986 0.0 

2 2Sr O   1956.702 0.3252 0.0 

2 2Ba O   4818.416 0.3067 0.0 

3 2Fe O   3219.335 0.2641 0.0 

4 2Ti O   2088.107 0.2888 0.0 

3 2Al O   2409.505 0.2649 0.0 
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3 2Ga O   2339.776 0.2742 0.0 

3 2Y O   1519.279 0.3291 0.0 

3 2La O   5436.827 0.2939 0.0 

3 2Pr O   13431.118 0.2557 0.0 

3 2Nd O   13084.217 0.2550 0.0 

3 2Gd O   866.339 0.3770 0.0 

3 2Eu O   847.868 0.3791 0.0 

3 2Tb O   845.137 0.3715 0.0 

3 2Yb O   -991029 0.3515 0.0 

2 2O O   25.41 0.6937 32.32 

 

Table 3-4: Buckingham potential parameter, Perovskite A3+B3+O3 – 

Grimes (2004) 

Interaction type /A eV  / Å  6/  C eV Å  

2 2O O    9547.96 0.2192 32.0 

3 2Al O   1365.79 0.30096 2.538 

3 2Ce O   2034.18 0.34380 15.86 

3 2Cr O   1452.25 0.309 18 4.472 

3 2Dy O   1767.64 0.337 70 10.94 

3 2Er O   1678.21 0.337 81 10.81 

3 2Eu O   1886.71 0.339 75 11.997 

3 2Fe O   1478.98 0.313 06 6.960 

3 2Ga O   1456.72 0.309 88 4.616 

3 2Gd O   1868.75 0.338 80 11.62 

3 2Ho O   1726.29 0.337 76 10.72 

3 2In O   1595.65 0.329 60 7.402 
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3 2La O   2051.32 0.345 85 15.51 

3 2Lu O   1561.36 0.338 54 10.01 

3 2Nd O   1979.11 0.341 48 13.07 

3 2Pr O   2025.54 0.342 70 13.83 

3 2Sc O   1587.95 0.321 90 8.143 

3 2Sm O   1944.44 0.340 80 12.49 

3 2Tb O   1818.00 0.338 45 14.33 

3 2Y O   1721.23 0.338 21 10.29 

3 2Yb O   1616.68 0.337 98 13.34 

 

Table 3-5: Buckingham potential parameter, Pyrochlore - Grimes 

(2002) 

Interaction type /A eV  / Å  6/  C eV Å  

2 2O O   35 686.18 0.2010 32.00 

3 2Lu O   2 062.99 0.3086 16.87 

3 2Yb O   2 251.26 0.3052 16.57 

3 2Er O   2 115.00 0.3111 17.55 

3 2Y O   2 442.60 0.3054 17.51 

3 2Gd O   2 214.40 0.3154 19.90 

3 2Eu O   2 468.00 0.3114 20.59 

3 2Sm O   2 074.70 0.3215 21.49 

3 2Nd O   2 148.14 0.3227 22.59 

3 2Pr O   2 313.21 0.3212 23.94 

3 2La O   2 266.26 0.3276 23.25 

4 2Ti O   1 859.40 0.2959 0.00 

4 2Ru O   1 889.34 0.2974 0.00 
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4 2Mo O   1 899.18 0.3016 0.00 

4 2Sn O   1 168.41 0.3417 13.66 

4 2Zr O   1 402.57 0.3312 5.10 

4 2Pb O   1 401.36 0.3433 19.50 

 

Note that there are also other researches that each is focused on just one crystal. This kind 

of potential parameters may be best fitted to all the properties of the targeting crystal, or at 

least the properties the paper was investigating into and fitting upon. Table 3-6 - Table 3-10 

show the Buckingham potential parameters for PbTiO3, BaTiO3, BiScO3, KNbO3, and 

KTaO3, respectively (Exner et al [99]; Sepliarsky et al [100]; Tinte [101]) 

 

Table 3-6: Buckingham potential parameters for PbTiO3 

Interaction type /A eV  / Å   6/  C eV Å  

2 2Pb O    613.4160  0.387 0.0 

4 2Ti O   270.950 0.588 0.0 

2 2O O   9547.96 0.2192 32.32 

 

Table 3-7: Buckingham potential parameters for BaTiO3 

Interaction type /A eV  / Å   6/  C eV Å  

2 2Ba O    1061.30  0.374 0.0 

4 2Ti O   3769.93 0.259 0.0 
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2 2O O   4740.00 0.269 160.0 

 

Table 3-8: Buckingham potential parameters for BiScO3 

Interaction type /A eV  / Å  6/  C eV Å  

2.5253 1.7268Bi O    358.587 0.4258 0.0 

2.6550 1.7268Sc O   503.411 0.4075 0.0 

1.7268 1.7268O O   4758.190 0.2811 310.005 

 

Table 3-9: Buckingham potential parameters for KNbO3 

Interaction type /A eV  / Å   6/  C eV Å  

1 2K O   124189.4 0.3516 0.0 

5 2Nb O   1131.3 0.4972 0.0 

2 2O O   3576.9 0.3516 833.5 

 

Table 3-10: Buckingham potential parameters for KTaO3 

Interaction type /A eV  / Å  6/  C eV Å  

2K O   523.156 0.34356 0.0 

5 2Ta O   1315.572 0.36905 0.0 

2 2O O   22764.3 0.149 27.627 
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3.2.2 Combining Scheme 

Now that a database of interatomic potential parameters has been established, the question 

comes how to use these different sets of potential parameters simultaneously when one is 

about to solve a complex material system with many different types of crystals in the 

specimen. This problem can be solved by the following assumptions and techniques: 

(i) The cation – cation interactions are considered to be purely coulombic. Therefore, the 

potential function is easily determined once the charges on the ions are known. 

(ii) The cation – anion interactions, which are of the Born-Mayer form, opt to use the 

parameters developed for the specific crystal structure that appears in the simulation case. 

For example, the parameters for Mg2+ – O2- in rocksalt structure MgO and Ba2+ – O2- in 

rocksalt structure BaO should be found from the potential parameter set by Lewis [93]; 

while the parameters for Ba2+ – O2- in perovskite structure BaTiO3 need to be from Bush et 

al [92]. 

(iii) The anion – anion interactions, that is O2- – O2-, are considered to follow the same 

approach as in (ii) to get the parameters to describe the oxygen-oxygen relation within the 

same type of structure (thus from the same data source). For the oxygen-oxygen interaction 

between different types of structure (thus from different data source), the oxygen ions are 

considered as different species, therefore, a combination rule shall be applied to bridge 

these species. 
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The above treatments (i)-(iii) solve the problem of using different data sources so that a 

large complex system with various kinds of chemical compound can be studied. These 

treatments are considered as the "protocols" that link different data sources of potential 

parameter, as illustrated in Figure 3-3. This is the key to the modeling and simulation of 

polycrystalline materials with multiple kinds of elements and multiple types of crystals.  

 

 

Figure 3-3: Protocols that link different data sources of potential 

parameters. 



70 

Now the combination rule mentioned in (iii) is to be elaborated. For example, four sets of 

parameters of O2- – O2- interaction from four different data sources are to be evaluated, as 

listed in Table 3-11. 

Table 3-11: O2- – O2- parameters from four sources 

Number 
Interaction 

Type 
 /A eV   / Å   6/C eVÅ  Source 

1 O2- – O2- 25.41 0.6937 32.32 Bush 

2 O2- – O2- 9547.96 0.2192 32.0 Levy  

3 O2- – O2- 22764 0.149 27.879 Lewis 

4 O2- – O2- 35686.18 0.2010 32.0 Grimes 

 

From the plot of the potential energy profile and force profile, as shown in Figure 3-4, it is 

seen that there is much difference among these different sets of data.  
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(b) Force 

Figure 3-4: Potential energy and force profiles of O2- – O2- with the 

parameters from Table 3-11 

Therefore, when it comes to use any two of them, a combination rule is needed such that 

the mixed potential should be a fair interpolation of these two potentials. A good 
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interpolation requires that the interpolated values of potential and force matches the 

averaging value of the two original potentials. In the literature, it is common to calculate 

the mixed parameters using the combination rule proposed by Mirskaya [102,103]: 
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 (3.40) 

Here the index i  and j  indicate the potential parameters between the i -th species and j -

th species of atom/ion. It is found, however, that this simple rule may not always yield the 

promising mixed potential parameter for two species. For example, for the 1st set and 3rd 

set, if the above rule is applied, the mixed potential, as Figure 3-5, will seem to be out of 

the bound of the original two, rather than being the average. 
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(b) Force 

Figure 3-5: Potential energy and force profiles of 1st set, 3rd set of O2- – 

O2- and their interpolation by common combination rule (Mirskaya) 

Since the dataset is a definite collection, a case-by-case potential evaluation is made for 

every pair combination among the four sets of parameters. Here 3 types of averaging 

methods are introduced and thus used for the interpolation of the parameters A ,   and C .  
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(i) Arithmetic Mean (AM): 

 1 2

1
( )

2
XAM X  (3.41) 

(ii) Geometric Mean (GM): 

 1 2GM X X   (3.42) 

(iii) Harmonic Mean (HM): 

 

1 2

2
1 1
X

H

X

M


  (3.43) 

Through evaluating the mixed potential profiles with different averaging methods, the 

optimal selection is obtained and thus summarized in Table 3-12: 
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Table 3-12: The combination rule of mixing O2- – O2- parameters from 

the data sets in Table 3-11  

/A eV  / Å  6/C eVÅ  /A eV  / Å 6/C eVÅ /A eV / Å 6/C eVÅ /A eV  / Å  6/C eVÅ

1 2 3 4 

1 

2 GM AM GM 

3 GM HM GM HM AM GM 

4 GM AM GM AM HM GM AM AM GM 

 

With this combination rule, as given in Table 3-12, the mixed potentials and forces are 

achieved, as shown in Figure 3-6 to Figure 3-11. 
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(b) Force 

Figure 3-6: Potential energy and force profiles of 1st set, 2nd set of O2- – 

O2- and their optimal interpolation 
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Figure 3-7: Potential energy and force profiles of 1st set, 3rd set of O2- – 

O2- and their optimal interpolation 
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Figure 3-8: Potential energy and force profiles of 1st set, 4th set of O2- – 

O2- and their optimal interpolation 



79 

 

0 1 2 3 4 5 6
-4

-2

0

2

4

6

8

10

Distance A.U. length

En
er

gy
A.

U
.e

ne
rg

y

average

mix

3rd set

2nd set

 

(a) Potential energy 

 

0 1 2 3 4 5 6
-4

-2

0

2

4

6

8

10

Distance A.U. length

Fo
rc

e
A.

U
.

fo
rc

e

average

mix

3rd set

2nd set

 

(b) Force 

Figure 3-9: Potential energy and force profiles of 2nd set, 3rd set of O2- – 

O2- and their optimal interpolation 
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Figure 3-10: Potential energy and force profiles of 2nd set, 4th set of O2- 

– O2- and their optimal interpolation 
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Figure 3-11: Potential energy and force profiles of 3rd set, 4th set of O2- 

– O2- and their optimal interpolation 

 

In the above 6 pair combinations, in most of the cases the mixed potential matches the 

average value very well while in others cases the mixed potential is close to the average 
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value. It can be concluded that all these cases provide a reasonable mixed potential. It is 

expected that this combination scheme will provide an energy/force profile that smoothly 

connects oxygen atoms/ions as described by different parameter sets, meanwhile the merits 

of each parameter set will be best preserved. Therefore the overall properties of single 

crystals and polycrystals can be best calculated. 

 

3.2.3 Remedy to Avoid Buckingham Catastrophe 

In the original Coulomb-Buckingham potential, there is a potential barrier existed to 

prevent the collision of two oxygen atoms at a critical distance. This means if the 

interatomic distance is less than the critical distance, the interatomic force becomes 

attractive instead of repulsive. It is seen that when the relative distance of two atoms gets 

smaller, the r-6 term dominates and approach to negative infinity. This attraction will cause 

the paired atom to move even closer and thus induces instability. This violates the physics 

and it is referred as Buckingham Catastrophe [104]. Chen and Lee investigated how the 

Buckingham Catastrophe affects the multiscale modeling of fracture and pointed out that 

adding the remedy term r-12 will correct the wrong physics and provides a reasonable 

interatomic potential [105-107].  

Equation (3.44) gives the full representation of the modified Coulomb-Buckingham 

potential after the r-12 term is added. The coefficient of the remedy Dij shares the same 

numerical value as Cij in the units of eV and angstrom. 
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  (3.44) 

 

3.3 Summary 

The heart of atomistic simulations is the interatomic potential. In classical simulations the 

atoms are most often represented by point-like centers which interact through two, three or 

many-body interaction potentials. In this chapter, a list of different types of interatomic 

potentials is introduced, which are adequate to solve a vast variety of materials. Then, an 

interatomic potential parameter database is established for the Coulomb-Buckingham 

potential. Combination techniques have been developed to relate different parameter sets so 

that potential parameters from different data source can be used simultaneously and their 

own merits can be best preserved. The parameter sets, as given in Table 3-1 to Table 3-10, 

cover the elements marked red in the periodic table as shown in Table 3-13. It means that 

this research is capable of simulating nanopolycrystalline materials that consist of a variety 

of chemical elements. Lastly, a remedy of a higher order term is recommended to be 

included in Buckingham potential in order to avoid Buckingham catastrophe, which is 

unphysical.  
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Table 3-13: Periodic table (red colored elements are covered in the 

potential parameter database) 

IA VIIIB

1 H IIA IIIB IVB VB VIB VIIB He 

2 Li Be B C N O F Ne 

3 Na Mg IIIA IVA VA VIA VIIA [---- VIIIA ----] IB IIB Al Si P S Cl Ar 

4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 

5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 

6 Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 

7 Fr Ra ** Rf Db Sg Bh Hs Mt Uun Uuq

* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 
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CHAPTER 4:  NANOPOLYCRYSTALLINE MATERIAL SYSTEM 

The properties of a material are influenced profoundly by its microstructure. For 

nanopolycrystalline materials, the material characteristics are strongly influenced by their 

definitive (generic) structural peculiarities which are nanoscopic size of grains and high 

volume fraction of the interfacial phase. Besides these definitive structural peculiarities, 

there are structural peculiarities that can be different in different nanopolycrystalline 

materials with the same mean grain size and are sensitive to material characteristics. These 

non-generic structural peculiarities of nanopolycrystalline materials include typical grain 

shape, grain-size distribution, grain phase, and inter-phase boundaries, etc. Therefore, if 

one is to generate atomistic models, which are sufficiently realistic to calculate properties 

or simulate processes with sufficient accuracy to be of benefit to experiment, a strategy for 

introducing such microstructure into a model is required. 

This chapter starts with the energy minimization technique to find realistic crystal 

structures in computer simulation. Then, it presents a general strategy for constructing full 

atomistic models of nanopolycrystalline materials with grains of arbitrary and controllable 

grain type/orientation/distribution, and grain boundaries of amorphous phase/tight 

connection. 
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4.1 Crystal Structures 

In mineralogy and crystallography, a crystal structure is a unique arrangement of atoms or 

molecules in a crystalline liquid or solid. A crystal structure describes a highly ordered 

structure, occurring due to the intrinsic nature of molecules to form symmetric patterns. A 

crystal structure can be thought of as an infinitely repeating array of 3D 'boxes', known as 

unit cells. The unit cell is calculated from the simplest possible representation of molecules, 

known as the asymmetric unit. The asymmetric unit is translated to the unit cell through 

symmetry operations, and the resultant crystal lattice is constructed through repetition of 

the unit cell infinitely in 3-dimensions. Patterns are located upon the points of a lattice, 

which is an array of points repeating periodically in three dimensions. The lengths of the 

edges of a unit cell and the angles between them are called the lattice parameters. The 

symmetry properties of the crystal are embodied in its space group.  

In this research, several typical crystal structures are investigated and thus introduced here. 

 

4.1.1 Rocksalt 

In the type of rocksalt, each of the two atom types forms a separate face-centered cubic 

lattice, with the two lattices interpenetrating so as to form a 3D checkerboard pattern [108]. 

Examples of compounds with this structure include sodium chloride (NaCl) itself, along 

with almost all other alkali halides, and “many divalent metal oxides, sulfides, selenides, 
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and tellurides” [109]. More generally, this structure is more likely to be formed if the cation 

is slightly smaller than the anion (a cation/anion radius ratio of 0.414 to 0.732). 

 

Illustration Atom position in unit cell Base vector 

  

 

    

 

Figure 4-1: Structure of rocksalt (e.g. MgO) 
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Perovskite materials exhibit many interesting and intriguing properties from both the 

theoretical and the application point of view. Colossal magnetoresistance, ferroelectricity, 

superconductivity, charge ordering, spin dependent transport, high thermopower and the 

interplay of structural, magnetic and transport properties are commonly observed features 

in this family. These compounds are used as sensors and catalyst electrodes in certain types 

of fuel cells and are candidates for memory devices and spintronics applications. 
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Figure 4-2: Structure of perovskite (ABO3) 
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chemical prototype is conventionally given as ZnS, although mineral wurtzite is a multi-

component alloy compound. 

Among the compounds that can take the wurtzite structure are wurtzite itself, AgI, ZnO, 

CdS, CdSe, α-SiC, GaN, AlN, BN and other semiconductors. In most of these compounds, 

wurtzite is not the favored form of the bulk crystal, but the structure can be favored in some 

nanocrystalline forms of the material. 

The wurtzite structure is non-centrosymmetric (i.e., lacks inversion symmetry). Due to this, 

wurtzite crystals can (and generally do) have properties such as piezoelectricity and 

pyroelectricity, which centrosymmetric crystals lack.  

Illustration Atom position in unit cell Base vector 

  

    

 

Figure 4-3: Structure of perovskite (ABO3) 
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4.1.4 Pyrochlore 

The Pyrochlore crystal structure describes materials of the type A2B2O6 and A2B2O7, where 

the A and B species are generally rare-earth or transition metal species [113,114]; e.g. 

Y2Ti2O7. The pyrochlore structure is a super structure derivative of the simple fluorite 

structure. These systems are particularly susceptible to geometrical frustration and novel 

magnetic effects. 

The pyrochlore structure shows varied physical properties ranging from electronic 

insulators (e.g. La2Zr2O7), ionic conductors (Gd1.9Ca0.1Ti2O6.9), metallic conductivity 

(Bi2Ru2O7-y), mixed ionic and electronic conductivity, spin ice systems (Dy2Ti2O7), spin 

glass systems (Y2Mo2O7), and superconducting material (Cd2Re2O7).  

 

4.2 Structural Optimization of Crystals 

Structural optimization to find the minimum energy structure at zero temperature is a 

method to find the static properties of crystals. It also provides a way to compare the 

computation results and experimental results. 

For a given lattice structure, the internal energy is the summation of all interatomic 

potentials within this system, 

 2 31
1

( , ,...,, ) ( )total total
i

i
i

N

NV V V


   rr r r r  (4.1) 
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where, Vi(ri) represents the energy associated with the i -th atom located at ri , and i sums 

over the total number of atoms in the system.  

Usually, the lattice structure is to be determined for the bulk materials, so the infinite 

regular aligned specimen is considered. In that sense, the energy of one unit cell Vunit is 

calculated instead of Vtotal . And Vunit can be expressed as the function of three lattice 

constants, a, b and c, three lattice angles, α, β and γ , and l −1 atomic position vectors, 

 1 2 3 1
1

( , , , , , ..., ), , , ,unit uni
i

l

l
t

i

V V a b c V   


  r r r r  (4.2) 

where l is the number of atoms within one unit cell. Then the equilibrium and optimized 

structure requires that 

 
1,2,...,3 3

0
unit

i i l

V

I
 

 
  

 (4.3) 

where Ii represents all possible geometric components associated with the lattice 

1 2 3 1, , , ,( , , , , ,..., )la b c    r r r r . They will be the design variables in the structural 

optimizations. In the case of lattice structure under certain symmetry, the number of design 

variables may be reduced. Naturally, Eq.(4.3) further implies that the forces acting on each 

atom and the stress of the system should be zero automatically when the minimum energy 

is achieved.  
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The computation results in this research demonstrate that the energy minimized structure 

indeed has zero forces and zero stresses. It is noted that the minimized energy may not be 

the global minimum, because there would be different symmetry constraints or external 

strains applied to the system for the structural optimization. The global minimum energy is 

only associated with the lattice structure in the existing lowest symmetry, namely the 

ground state of one crystal. In that sense, it provides a reasonable way to explore the 

different phases for multiphase materials and the ground state of such materials. Certain 

symmetry requirements are defined as the optimization constraints according to the general 

geometry of crystal structures.  

Table 4-1 shows the structural optimization results and experimental results for several 

crystals, including wurtzite, zincblende, rocksalt, and perovskite. It is noted that three 

phases of ZnO (wurtzite, zincblende, and rocksalt) are captured via structural optimization, 

which represents three local minimum energies. It is seen that the computation results are 

in great agreement with the experimental data as found from Springer Material Science 

Online Database [115]. 
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Table 4-1: Structural Optimization Results and Experimental Results 

for Several Crystals 

   Optimization Result Experimental Result 

ZnO (Wurtzite) a = b =3.24 Å, c = 5.08 Å a = b =3.25 Å, c = 5.2 Å 

ZnO (Zincblende) a = b = c = 4.51 Å a = b = c = 4.37 ~ 4.47 Å 

ZnO (Rocksalt) a = b = c = 4.28 Å a = b = c = 4.06 ~ 4.32 Å 

PbTiO3 (Perovskite) a = b = c = 3.81 Å a = b = c = 3.97 Å 

BaTiO3 (Perovskite) a = b = c = 3.99 Å a = b = c = 4.00 Å 

KNbO3 (Perovskite) a = b = c = 4.00 Å a = b = c = 4.02 Å 

KTaO3 (Perovskite) a = b = c = 3.95 Å a = b = c = 3.99 Å 

MgO (Rocksalt) a = b = c = 4.21 Å a = b = c = 4.21 Å 

CaO (Rocksalt) a = b = c = 4.73 Å a = b = c = 4.81 Å 

BaO (Rocksalt) a = b = c = 5.49 Å a = b = c = 5.54 Å 

 

4.3 Geometric Modeling of Nanopolycrystals 

This research attempts to generate nanopolycrystalline "samples'' with a structure 

reasonably similar to the structures observed experimentally. There are two parts in general: 
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grain and grain boundaries. For instance, the grains can be produced using a Voronoi 

construction: a set of grain centers are chosen randomly, and the part of space closer to a 

given center than to any other center is filled with atoms in a randomly rotated orientation. 

In the grain boundaries thus generated, it is possible that two atoms from two different 

grains get too close to each other, in such cases one of the atoms is removed to prevent 

unphysically large energies and forces as the simulation is started. Or, a gap can be 

produced between grains and can filled with amorphous phase atoms. To obtain more 

relaxed grain boundaries, the constructed system is usually treated with annealing process, 

followed by an energy minimization. This procedure is important to allow unfavorable 

local atomic configurations to relax. 

A similar generation procedure has been reported by Chen [116], by D'Agostino and Van 

Swygenhoven [117], and by Van Swygenhoven and Caro [118,119]. A different approach 

was proposed by Phillpot, Wolf and Gleiter [120,121]: a nanocrystalline metal is generated 

by a computer simulation where a liquid is solidified in the presence of crystal nuclei, i.e. 

small spheres of atoms held fixed in crystalline positions. The system was then quenched, 

and the liquid crystallized around the seeds, thus creating a nanocrystalline metal. In the 

reported simulations, the positions and orientations of the seeds were deterministically 

chosen to produce eight grains of equal size and with known grain boundaries, but the 

method can naturally be modified to allow randomly placed and oriented seeds.  

 



95 

4.3.1 Generating Crystalline Grains 

Two algorithms are adopted in this research to generate the geometric structure for 

polycrystalline material models. The first algorithm follows the Voronoi construction, 

which partitions the space to a configuration known as Voronoi tessellation. The second 

algorithm resembles the grain nucleation process, in which the domain of each grain is 

claimed through the process of wrapping atoms around each seed (grain point).  

 

4.3.1.1 Voronoi Method 

Voronoi tessellation is a way to divide the space into a number of regions [122]. A set of 

points (called seeds) are specified beforehand and for each seed there will be a 

corresponding region consisting of all points closer to that seed than to any other. These 

regions are called Voronoi cells. Figure 4-4 gives an example of the seeds and Voronoi 

cells in a 2D diagram. 
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Figure 4-4: A 2D Voronoi diagram with 20 seeds and associated cells 

In the generation of grains, the positions of the seeds can be determined by random number 

generators. For each seed, the corresponding Voronoi cell consists of all points closer to 

that seed than to any other. Then, each Voronoi cell is assigned with a crystallite, within 

which atoms are repeatedly arranged, as illustrated in Figure 4-5. Figure 4-6 shows a 

nanopolycrystalline cubic block of 1.6 million atoms, with the size 480*480*480 A.U. 

length3, as obtained by this method. 
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Figure 4-5: The schematic arrangement of atoms by Voronoi method (Left picture shows 

the grain partition, right picture shows the filling of the first grain) 

 

Figure 4-6: Nano-polycrystalline block of 1.6 million atoms generated using Voronoi 

method 
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4.3.1.2 Grain Nucleation Method 

Grain nucleation is a phenomenal feature in polycrystalline materials such as metals and 

most ceramics. The natural process of grain nucleation and growth involves localized 

budding and increasing in size in a grain. This research tries to mimic the natural process of 

grain nucleation to determine the arrangement of polycrystals. 

In the grain nucleation method, like Voronoi method, the positions of a set of seeds are 

determined by random number generators. For each seed, a specific crystallite, with 

random selection of species and random orientation, is assigned. Then atoms are placed to 

wrap around the seed, i.e. layer by layer outwards from the seeds. But for each grain, not all 

atoms are placed around the seed at one shot. In contrast, only one layer of atoms are 

placed around a seed each time, and then another layer of atoms are placed around the next 

seed, rather than the first seed. As this process goes on, whenever it is found that the atom 

to be placed is too close to an existing atom, this atom is skipped. This iteration is 

performed until the whole space is filled up. Figure 4-7 illustrates this construction.  

Figure 4-8 shows a nanopolycrystalline cubic block of 0.33 million atoms, with size 

300*300*300 A.U. length3, as obtained by this method. 
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Figure 4-7: The schematic arrangement of atoms by grain nucleation method 
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Figure 4-8: Nanopolycrystalline block of 0.33 million atoms generated using grain 

nucleation method 

 

4.3.2 Grain Orientation and Euler Angles 

As aforementioned, crystalline orientation is an important structural peculiarity and thus 

should be incorporated into the structural modeling. In this research, Euler angles are 

adopted to set the crystalline orientations of the grains. The Euler angles are three angles 

introduced by Leonhard Euler to describe the orientation of a rigid body [123]. To describe 

such an orientation in 3-dimensional Euclidean space three parameters are required. Euler 

angles are also used to describe the orientation of a frame of reference relative to another.  

Euler angles represent a sequence of three elemental rotations. A common way to achieve 

the an orientation is composed by three steps: (1) a first rotation about z  by an angle  , 
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(2) a second rotation about N  (the intermediate x , or the line of nodes) by an angle  , 

and (3) a last rotation again about Z  (the intermediate z ) by an angle  . These three steps 

and three Euler angles are shown in Figure 4-9. The transformation matrix A  can be 

obtained as the triple product of three separate rotations B , C , D:  

 A BCD  (4.4) 

where each rotation has a relatively simple matrix form. 

The D transformation is a rotation about z  axis, hence has a matrix of the form: 

 

cos sin 0

sin cos 0

0 0 1

 
 

 
   
  

D  (4.5) 

The C  transformation corresponds to a rotation about N , which is the line of nodes, with 

the matrix: 

 

1 0 0

0 cos sin

0 sin cos

 
 

 
   
  

C  (4.6) 

and finally B  is a rotation about Z  and therefore has the same form as D: 

 

cos sin 0

sin cos 0

0 0 1

 
 

 
   
  

B  (4.7) 
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The product matrix A BCD  then follows as  

 

cos cos sin sin sin cos cos sin sin

cos cos sin cos sin cos co

cos cos sin

sin sin cos

sin si

s cos sin

sin cn cosos

           
           

    

 


 
   


 
  

A (4.8) 

After obtaining the transformation matrix A , the transformation of a vector x  in 3-

dimensional space can be obtained: 

 'x Ax  (4.9) 

 

 

Figure 4-9: Proper Euler angles representing rotations about z, N, 

and Z axes. The xyz (original) system is shown in blue, 

the XYZ (rotated) system is shown in red. The line of nodes (N) is 

shown in green. 
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It is seen that the transformation matrix is determined by three angles , ,   . To generate 

an arbitrary orientation of a grain, random number generators are used to produce a set of 

values for , ,    and calculate the corresponding transformation matrix. Finally, the three 

primitive translation vectors of the crystallites can be transformed according to which 

atoms can be placed. 

 

4.3.3 Generating Amorphous Grain Boundaries 

Simulated amorphous structures can be prepared computationally in the same way as real 

glasses are produced. Models of crystalline systems are melted and the melts turn into a 

disordered amorphous phase. The biggest challenge here is in the time scale: compared to 

the melting and more particularly the quench occurring in nature, current computational 

capabilities can only achieve the process with several orders of magnitude greater than the 

rates achieved experimentally. As a consequence, simulated amorphous structures may 

have very high fictive residue stress. Therefore, a long time relaxation treatment is 

mandated to achieve a low stress level specimen, which is still a challenge in MD 

simulations of nanopolycrystalline solids. 
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4.3.4 Combining Grains and Grain Boundaries 

In the aforementioned approach in generating grains, a controllable space or gap can be 

produced between any two grains. Grains and grain boundaries can be combined simply by 

Boolean operation, which includes union, intersection and difference. The Boolean 

operation performs the union of grains and gain boundaries, followed by subtracting their 

intersection. 

 

4.4 Characterization of Nanopolycrystals 

4.4.1 Characterizing Indices 

Following the idea of OIMD, a characterizing index needs to be objective to be qualified to 

present the real-time characteristics of an atom or the region during the simulation. The 

following is a list of objectivity-proved characterizing indices: 

  1) Potential energy 

  2) Force (interatomic force) 

  3) Centrosymmetric parameter 

  4) Coordinate number 
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  5) Von-Mises stress 

  6) Temperature 

  7) Displacement 

  8) Polarization 

 

4.4.2 Examples 

The generated nanostructure can be visualized in different MD analysis and visualization 

software, such as VMD and AtomEye. Quantities of interest can be displayed via isometric 

view, orthographic view, section view, etc. Ensemble properties as well as distribution of 

individual atom properties can provide insightful information about the simulation. Figure 

4-10 shows a series of section views of the polycrystal of a block of 15 grains. Figure 4-11 

shows its isometric view. Figure 4-12 shows several instantaneous physical quantities in 

the polycrystals. 
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Figure 4-10: A series of section view from back to front of a block of 

polycrystal 

 

Figure 4-11: Configuration of a 15 grain polycrystal 
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(a)                                                                        (b) 

          

(c)                                                                      (d) 

Figure 4-12: (a) Centrosymmetric parameter (b) Resultant force (c) 

Coordination number (d) Von Mises stress (based on Virial stress) 
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4.5 Summary 

This chapter presents the framework to generate realistic while controllable 

nanopolycrystalline material models. Through the energy minimization based structural 

optimization study, realistic crystal structures are reproduced, which are in agreement with 

experimental results. This serves as the starting point of the configuration modeling of 

nanopolycrystalline solids. Then, two schemes are used to generate the geometric model of 

grains. Between the Voronoi method and the grain nucleation method, the grain nucleation 

method may give a model more closely to the naturally occurring multi-grain 

nanostructure, compared to Voronoi method, which can only produce convex polygon 

grains. To control the orientations of grains, Euler angles are used. As for grain boundaries, 

amorphous phase atoms are firstly obtained via amorphization process, and then filled to 

the gap between grains. Once the models are built, visualization tools and characterization 

indices can be employed to evaluate the sample nanopolycrystals. 
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CHAPTER 5:  SIMULATED BEHAVIORS OF 

NANOPOLYCRYSTALS 

In the previous chapters, a complete framework has been established to model and simulate 

nanopolycrystalline solids. In this chapter, the task is to demonstrate that the devised 

method is capable of solving different problems for the supposed material systems. In 

particular, applications to study the mechanical property, thermal property, electrical 

property and magnetic property of nanopolycrystalline materials are to be demonstrated. A 

computer program, called POLY (c.f. APPENDIX - III), has been developed for the 

purpose of computational simulation.  

 

5.1 Mechanical Behaviors 

5.1.1 Simple Tests on Single Nanocrystalline Solids 

Before starting to simulate the mechanical behaviors of complex nanopolycrystalline 

solids, simple tests on single nanocrystalline solids are performed. Here the term “simple 

tests” refers to simple tension, simple compression and simple shear, which are considered 

as basic mechanical tests for engineering materials. 
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In this study, a single crystalline MgO specimen, consisting of 8232 atoms, is subjected to 

tension loading, compressive loading or shear loading, with the displacement specified 

boundary conditions being applied at the two ends of the specimen, as illustrated in Figure 

5-1. The displacement controlled loading is applied according to Figure 5-2, which is 

divided into three stages: (i) a relaxation stage in which damping is used to damp out all the 

kinetic energy of the system, (ii) a loading stage in which the displacement is linearly 

increasing with time, and (iii) a holding stage in which the displacement is kept as a 

constant.  

 

Figure 5-1: Schematic drawing of the specimen with three types of 

mechanical loadings. 
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Figure 5-2: The loading history of the displacement specified boundary 

condition 

In each simulation there are 160,000 time steps in total with 30 (a.u.)t  . A maximum 

strain of 28% is applied to evaluate the material response, which covers from the linear 

response region to failure. The simulation results are presented and discussed below.  
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5.1.1.1 Simple Tension 

For the simple tension test, Figure 5-3 shows the structural evolution during the linearly 

increasing loading stage and during the constant loading (holding) stage. The first snapshot 

shows that initial dislocations were developed around the middle plane of the specimen. 

The development of dislocation plane results in a noticeable crystal lattice transformation 

from an fcc structure to a hexagonal structure. This transformation leads to crystal structure 

relaxation/reconfiguration, which spreads throughout the whole specimen except the 

boundaries, as shown in the second snapshot in Figure 5-3. The dislocation necking was 

developed as the strain keeping increasing and finally the specimen fractured into two 

parts. 

 

Figure 5-3: Structural evolution of MgO specimen under tensile 

loading. 
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The resultant forces acting on the two boundaries are recorded. Figure 5-4 shows the 

history of force (z-component, which is along the loading direction). With the information 

of the loading history, Figure 5-4 can be converted to a force-displacement relation, and 

further a stress-strain relation. The calculated value of young’s modulus from the linear 

portion of the stress-strain curve is about 370 GPa, which is in good agreement with the 

experimental data, 270 ~ 330 GPa [124,125].  

As aforementioned, stress at atomic level can also be evaluated via virial stress, which is 

often linked to macroscopic “Cauchy stress” or “engineering stress”. Here, the virial stress 

is averaged over the center part of the specimen, as displayed in Figure 5-5. The 

comparison between Figure 5-4 and Figure 5-5 shows that the profiles of the force and the 

virial stress are very close to each other. In particular, the stress increases linearly with time 

at the loading stage to reach the maximum tensile stress. After reaching this critical stress, 

the stress drops, which corresponds to the fact that the material loses its stability and it 

yields. The recorded virial stress shows a great agreement with the engineering stress (force 

over area) in terms of the shape of the curve. The value of young’s modulus calculated by 

virial stress is about 70 GPa. This value is close to the range of the experimental result but 

is much lower than the result obtained by engineering stress. Therefore, further quantitative 

study is needed to validate the equivalence of virial stress and engineering.  

Ultimate strengths obtained by the engineering stress approach and the virial stress 

approach are 18.5 GPa and 3.6 GPa, respectively, both of which are much higher than the 
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experimental data of the bulk MgO: 166.7 MPa [124,125], but they are in agreement with 

the reported MD simulation results: 7.0 ~ 13.0 GPa [126]. 
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Figure 5-4: History of the boundary force of the MgO specimen under 

tensile loading 
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Figure 5-5: History of T33 component of the virial stress, averaged over 

the center part of the MgO specimen under tensile loading. 

 

5.1.1.2 Simple Compression 

For simple compression test, Figure 5-6 shows the structural evolution during the linearly 

increasing loading stage and during the constant loading (holding) stage; Figure 5-7 shows 

the history of the force (z-component, which is along the loading direction); Figure 5-8 

shows the calculated virial stress averaged over the center part of the specimen. It is seen 

that the stress increases (compressive stress is negative, “increase” refers to its magnitude) 

with the time at the loading stage to reach the maximum compressive stress. Then 
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dislocations were initiated and the stress drops. With continuous compressive loading, the 

stress climbs again and drops again, till the end of the simulation.  

 

Figure 5-6: Structural evolution of MgO specimen under compressive 

loading 
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Figure 5-7: History of the boundary force of the MgO specimen under 

compressive loading 
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Figure 5-8: History of T33 component of the virial stress, averaged over 

the center part of the MgO specimen under compressive loading. 

 

Like the previous study of simple tension test, it is observed that there is a great agreement 

between the engineering stress and the virial stress in terms of the shape of the stress-strain 

curve. The maximum compressive strengths obtained by the engineering stress approach 

and the virial stress approach are 72 GPa and 11.3 GPa, respectively. These results are 

much higher than the experimental result of the bulk MgO: 1666.6 MPa [124,125]. It is 

noticed that the calculated maximum compressive stress is larger than the maximum tensile 
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stress as found in the simple tension simulation. Therefore they are consistent with the 

previous cases thus considered as reasonable.  

 

5.1.1.3 Simple Shear 

For simple shear test, Figure 5-9 shows the structural evolution during the linearly 

increasing loading stage and during the constant loading (holding) stage. It is seen that 

dislocations initiate near the boundaries as well as in the diagonal plane across the 

specimen. 

This time, to calculate the shear stress, the boundary force along x-direction, which is along 

the loading direction, is recorded, as shown in Figure 5-10; the T13 component of the virial 

stress is displayed in Figure 5-11. Again, it is observed that there is a great agreement 

between the engineering stress and the virial stress in terms of the shape of the stress-strain 

curve. It is seen that in both figures the shear stress (represented by force and T13 virial 

stress, respectively) rises with the time at the loading stage to reach the maximum shear 

stress, then collapses. Shear modulus is obtained: 159 GPa by engineering stress approach 

and 33 GPa by virial stress approach. The reported experimental data for bulk MgO is 92 ~ 

122 GPa. Therefore, the simulation result is on the same order of magnitude as the 

experimental results thus considered reasonable. 
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Figure 5-9: Structural evolution of MgO specimen under shear loading. 
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Figure 5-10: History of the boundary force of the MgO specimen under 

shear loading. 
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Figure 5-11: History of T13 component of the virial stress, averaged 

over the center part of the MgO specimen under shear loading. 

 

5.1.2 Mechanical Loading on Nanopolycrystals 

The material response of nanopolycrystals under mechanical loading is simulated in this 

study. The specimen is prepared as a slab of nanopolycrystalline, which consists of 44520 

atoms. In the specimen there are 10 grains of MgO or CaO and grain boundaries of mixed 

MgO-CaO. A notch is made on the edge of the middle plane to test the material response. 

The specimen, as shown in Figure 5-15, has been through initial damped relaxation process 

to reach its equilibrium. 
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This specimen is subjected to displacement specified boundary conditions being applied at 

the two ends of the specimen. Like previous cases, the displacement controlled loading 

consists of three stages: (i) a relaxation stage in which damping is used to damp out all the 

kinetic energy of the system, (ii) a loading stage in which the displacement is linearly 

increasing with time, and (iii) a holding stage in which the displacement is kept as a 

constant.  

There are 80,000 time steps in total with 40 (a.u.)t   . The maximum strain is 50%.  

 

Figure 5-12: A nanopolycrystalline specimen, consisting of 10 grains, 

and the displacement specified boundary condition.  

Displacement Specified BC 

Displacement Specified BC 
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This setting is the same to a typical mode-I fracture mechanics problem. If the material is 

homogeneous and elastic, the tensile loading on the two sides of the specimen is expected 

to initiate a crack at the notch and the crack will propagate through the middle plane, in a 

direction perpendicular to the direction of the loading.  

Figure 5-13 shows the structural evolution of the specimen. It turns out that no sharp crack 

is produced during the process. Rather, the material still fails in a way similar to tension 

test.  In particular, the failure initiates from the region of amorphous grain boundaries and 

stays mostly within the grain boundaries, until the whole specimen is torn apart. This may 

be possibly explained by the highly concentrated stress in the grain boundaries. On the one 

hand, the grain boundary contains highly disordered atoms, which are far away from 

perfect crystal structure environment, so it is very likely that these atoms will suffer high 

stress. On the other hand, amorphous phase grain boundaries are obtained through 

amorphization process and residue stress is commonly seen in the resulting structure. An 

extremely long time of relaxation is necessary to reduce the residue stress to a very low 

level but it is computationally expensive. It is possible that the residue stress that comes 

from the structure model itself plays an important role in influencing the material response. 

This interesting result provides an example about the unique properties of 

nanopolycrystalline solids.  



124 

 

Figure 5-13: Structural evolution of nanopolycrystalline specimen 

under mechanical loading  
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5.2 Thermal Behaviors 

5.2.1 Thermal Behaviors with Uniform Heat Bath 

In this study, the thermal behaviors of nanopolycrystalline materials with the effect of a 

uniform heat bath are investigated. Heat bath means temperature control, which is realized 

by upgraded Nose-Hoover thermostat algorithm. 

 

5.2.1.1 Relaxation to Near Absolute Zero Temperature 

After obtaining the nanopolycrystalline model as demonstrated in CHAPTER 4, the first 

treatment to the specimen is relaxation, which aims to reduce the highly concentrated stress 

at the imperfection sites. Figure 5-14 shows the specimen that are prepared for the thermal 

analysis, which consists of 15 grains, including MgO grains and CaO grains. There are 

48928 atoms in total in the nanopolycrystal with a dimension of 160*160*160 A.U. length3 

and the mean grain size is 65 A.U. length. Figure 5-15 shows the specimen that have 

passed the relaxation process. Now the specimen is ready for thermal loadings. 
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Figure 5-14: A nanopolycrystalline specimen of 15 grains (MgO + 

CaO). This figure shows the initial configuration (before relaxation). 
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Figure 5-15: A nanopolycrystalline specimen of 15 grains (MgO + 

CaO). This figure shows the relaxed configuration (after damped 

relaxation). T ≈ 0 K. 

 

5.2.1.2 Heating 

Based on the specimen prepared by the relaxation process, temperature loading is added via 

upgraded Nose-Hoover thermostat. The temperature control is applied in a similar way as 

the aforementioned mechanical loading, which is divided into three stages: (i) a flat stage in 

which the specimen is controlled at a constant low temperature, (ii) a heating stage in 

which the target temperature is linearly increasing with time, and (iii) a flat stage in which 

the specimen is kept at a constant high temperature. 
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In this initial heating process, the target temperature ends at 2,000 K. Figure 5-16 shows the 

temperature history that the specimen experiences. Figure 5-17 shows the specimen 

configuration by the end of the heating process. It is seen that, although the atoms vibrate 

fiercely, it can still be recognized that there are different grains, each of which maintains a 

crystalline internal structure. This result indicates that the nanopolycrystalline specimen is 

thermally stable at 2,000 K.  
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Figure 5-16: Temperature history of the nanopolycrystalline specimen 

during the heating process. 
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Figure 5-17: A nanopolycrystalline specimen of 15 grains (MgO + 

CaO). This figure shows the configuration when it is heated up to T = 

2,000 K. 

 

5.2.1.3 Melting 

In this study, the specimen obtained in the last section is continued to be heated up from 

2,000 K to 4,000 K and now the melting phenomenon is observed. The temperature history 

of the specimen is recorded as in Figure 5-18. When the temperature is about 3,000 K, the 

specimen can hardly hold its crystalline internal structure in each grain, as it is observed in 

Figure 5-19. Just a few hundred time steps after reaching 3,000 K, the specimen turns into 

amorphous phase and crystalline structure is no longer observed. Figure 5-20 shows the 
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chaotic state of the melted specimen at 4,000 K. The bulk configuration of the melted 

specimen loses its original cubic shape and is now in liquid state. Therefore, the simulation 

result records the melting point of the MgO-CaO mixed nanopolycrystalline specimen is 

about 3,000 K. 

By looking up the material properties of Magnesium oxide and Calcium oxide [127], it is 

found that the melting point of bulk MgO is 3,125 K (2,852°C, 5,166°F), and the melting 

point of bulk CaO is 2,886 K (2613 °C, 4735 °F). It has been known in the scientific 

community that the melting temperature of a bulk material is not dependent on its size. 

However as the dimensions of a material decrease towards the atomic scale, the melting 

temperature scales with the material dimensions, which is referred as melting-point 

depression [128-130]. The decrease in melting temperature can be on the order of tens to 

hundreds of degrees for metals with nanometer dimensions. Therefore, it is anticipated that 

such a phenomenon may be observed on nanopolycrystalline materials. In this simulation, 

the recorded melting point of MgO-CaO nanopolycrystal is about 3,000 K, which is at 

about the same order of the reported melting points of the two substrates. The melting-point 

depression phenomenon is not apparently observed. Since the characteristics of the melting 

process depend on a variety of parameters such as size and shape of the particles, 

concentration of impurities, and presence of substrates, further study can be proposed to 

investigate into this intriguing process. 
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Figure 5-18: Temperature history of the nanopolycrystalline specimen 

during the continued heating process. 
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Figure 5-19: A nanopolycrystalline specimen of 15 grains (MgO + 

CaO). This figure shows the configuration at T = 3,000 K, which is a 

few moment before melting. 
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Figure 5-20: A nanopolycrystalline specimen (MgO + CaO). This 

figure shows the melted configuration at T = 4,000 K. 

 

5.2.1.4 Cooling and Grain Growth 

Cooling process is an interesting and important topic since it usually restores order. In this 

study, the cooling process is performed on a slab of nanopolycrystals with 6 grains, which 

take 2-dimensional Voronoi tessellation for its grains geometry. This model is chosen for 

the purpose of its simplicity in demonstration.   
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Figure 5-21: A slab of nanopolycrystals, with grains of 2-D Voronoi 

pattern. This figure shows the initial configuration. 

This specimen is firstly heated up to 2,000 K, then cooled back to zero temperature, 

followed by long time relaxation. The configuration at 2,000 K is shown in Figure 5-22 and 

the final configuration after cooling and relaxation is shown in Figure 5-23.  

It is seen that at a high temperature, while not melting, several grains start to deform and 

even merge together. After the cooling and relaxation process, the kinetic energy has been 

damped out and the structure reaches a stable state at a local energy minimum. It is 

observed that the original 6-grain nanopolycrystals is now 3-grain. This simulation 

successfully replicates the phenomenon of grain growth, which was also reported in many 

other researchers (Xiao et al, 2006). 
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Figure 5-22: A slab of nanopolycrystals, with grains of 2-D Voronoi 

pattern. This figure shows the configuration at T = 2,000 K. 

 

Figure 5-23: A slab of nanopolycrystals, with grains of 2-D Voronoi 

pattern. This figure shows the final configuration after cooling process. 
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5.2.2 Heat Conduction 

In this study, heat conduction is demonstrated on polycrystalline materials. Compared to 

the uniform heat bath, heat conduction simulation involves distributed heat sources or heat 

sinks, which can also be implemented by upgraded Nose-Hoover thermostat. Figure 5-24 

shows the configuration of the nanopolycrystalline slab, which consists of grains of MgO 

and CaO and grain boundaries of mixed MgO-CaO. The specimen is divided into 16 

groups. 

 

Figure 5-24: A slab of nanopolycrystalline specimen consisting of 

MgO and CaO. 
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    1) Heat Conduction Case 1 

In the first case of heat conduction, the thermostat controls temperature at the left side 

(groups 1 – 4) and right side (groups 13 – 16), as shown in Figure 5-25. 

 

Figure 5-25: Schematics of distributed temperatures control – heat 

conduction case-1 

After a long time simulation, a temperature gradient is produced between the left and right 

side, as shown in Figure 5-26. The temperature history of all 16 groups is shown in Figure 

5-27. 
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Figure 5-26: Temperature distribution after a long time simulation – 

Heat conduction case-1 
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Figure 5-27: Temperature history by groups – Heat conduction case-1 

 

    2) Heat Conduction Case 2 

In the second case of heat conduction, the thermostat controls temperature at the upper left 

corner (groups 1) and lower right corner (groups 16), as shown in Figure 5-28. 
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Figure 5-28: Schematics of distributed temperature control – heat 

conduction case-2 

After a long time simulation, a temperature gradient is produced between the upper left 

corner and lower right corner, as shown in Figure 5-29. 

 

Figure 5-29: Temperature distribution after a long time simulation – 

Heat conduction case-2 
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Both case 1 and case 2 demonstrate that a clear monotonic temperature gradient is 

produced with the distributed temperature control, in which two ends of the specimen are 

controlled at low and high temperature, respectively. This result is consistent with Fourier's 

law. It is also noted that the temperature gradient is not uniform throughout the specimen, 

which means the thermal conductivity varies across the space and reflects the 

inhomogeneity of nanopolycrystals.  

Although this simulation studies a hypothetical problem of heat conduction, which is 

artificial because it is physically unlikely to have such a large temperature difference 

between regions just a few nanometers away, it has a significant meaning in theory and 

technique that local temperature control can now be realized in NEMD. Furthermore, the 

observed physical process is consistent with key physical laws phenomenologically. 

Therefore, future quantitative analysis of the material properties of nanopolycrystalline 

solids can be performed and a deeper understanding may be obtained. 

 

5.3 Electromagnetic Behaviors 

Electromagnetic properties are of important value for many nanopolycrystalline materials, 

thus the EM field should be incorporated in the MD simulations. In this section, it is to 

demonstrate the validity of the MD theory with the aforementioned numerical schemes as 

introduced in CHAPTER 2. The investigations into the material responses under specific 

EM fields with specific applications are left to future research study. 
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5.3.1 Electric Effects 

The effect of an external electrical field on the atomistic material system can be added to 

the MD simulation through the term qE .  

Some particular nanocrystalline solids have unique electrical properties and are of growing 

importance for a variety of recent and potential applications. These applications include 

piezoelectric transducers and actuators, non-volatile ferroelectric memories, dielectrics for 

microelectronics and wireless communication, pyroelectric arrays, and non-linear optical 

applications 

For instance, a ferroelectric material exhibits a spontaneous polarization in a direction that 

can be switched by the application of an external electric field or stress. This phenomenon 

is a manifestation of the strong coupling between mechanical strain and electric field. One 

of the earliest technological applications of ferroelectric materials was in the area of 

electromechanical transducers, of which the physical basis is the piezoelectric effect. The 

piezoelectric coefficients characterize the linear change in polarization in the presence of an 

external stress, or equivalently, a change in shape under the application of an external 

electric field. In microelectromechanical systems applications, the 

piezoelectric/electrostrictive nature of ferroelectrics is utilized in the design of highly 

accurate microscopic sensors and actuators. 
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5.3.2 Magnetic Effects 

5.3.2.1 Response to Magnetic Field at Zero Temperature 

In the MD equations of motion with EM field, it is clear that the magnetic effect acts on the 

velocity of the atom through the cross product v B . At zero temperature, all atoms stand 

still and have no velocity. Thus it is straightforward to conclude that there is no effect by 

magnetic field when the temperature is at absolute zero. This is confirmed in our 

simulations. 

 

5.3.2.2 Response to Magnetic Field at Non-Zero Temperature 

At any non-zero temperature, atoms do move and are influenced by the magnetic field. In 

this work, it is worthwhile to discuss time integration methods that affect the validity and 

accuracy of simulations. 

    1) Using Velocity Verlet method 

The Velocity Verlet method as given in Eq. (2.49) does not include 1nv  in calculating 

1na . It is to be discussed here, if one prefers to use Velocity Verlet method and calculate 

1na based on 1nx and 
1
2nv , one may observe some unphysical phenomena. These results 

may not be unique to nanopolycrystalline solids, but can also be seen in any MD simulation 

with the presence of EM field. 
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Two cases with different magnetic fields are studied here: 

    a) Case 1: B = (1, 0, 0) 

    b) Case 2: B = (1, 1, 1) 

The histories of linear momentum and angular momentum of the material with B = (1, 0, 0) 

are shown in Figure 5-30 and Figure 5-31. 

The histories of linear momentum and angular momentum of the material with B = (1, 1, 1) 

are shown in Figure 5-32 and Figure 5-33. 
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Figure 5-30: History of linear momentum of a material body under the 

effect of a magnetic field B = (1, 0, 0) 
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Figure 5-31: History of angular momentum of a material body under 

the effect of a magnetic field B = (1, 0, 0) 
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Figure 5-32: History of linear momentum of a material body under the 

effect of a magnetic field B = (1, 1, 1) 
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Figure 5-33: History of angular momentum of a material body under 

the effect of a magnetic field B = (1, 1, 1). 

It is observed that the linear momentum in both case maintain at a stable level. In 

particular, when B = (1, 0, 0), no force is produced along the x-direction by the magnetic 

field, thus the linear momentum is preserved. On the contrary, the angular momentum in 

these two cases shows an interesting behavior. The x-component of angular velocity in case 

1, and all three components of angular velocity in cases 2 are increasing along with time. 

The physical interpretation is that the material is accelerating spinning! More particularly, 

the acceleration of spinning occurs in the direction of the applied magnetic field.  

This is due to the improper use of Velocity Verlet method in conducting MD with magnetic 

field. When 1na  is calculated by 1nr  and 
1
2nv , such that 

1
21 1 1( , )nn n n   a a r v  , the half 

step error in v  is accumulated every time the magnetic force is calculated by the cross 
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product v B . This leads to the unphysical phenomenon that the material body is 

constantly accelerated to align with the B field. 

 

2) Using inversed method 

Figure 5-34 and Figure 5-35 show the linear momentum and angular momentum of the 

material body with a magnetic field of B = (1, 1, 1), as obtained by inversed method. The 

result demonstrates that the linear momentum and angular momentum maintain at a stable 

level and do not drift away. This is compared to the unphysical results as previously 

obtained. It is concluded that the time integration method is of importance in studying the 

magnetic field response of atomistic material system. 
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Figure 5-34: History of linear momentum of a material body under the 

effect of a magnetic field B = (1, 1, 1), as obtained by inversed method. 
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Figure 5-35: History of angular momentum of a material body under 

the effect of a magnetic field B = (1, 1, 1), as obtained by inversed 

method. 
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5.4 Summary 

In this chapter, several kinds of material behaviors of nanopolycrystalline materials, such as 

mechanical, thermal, electrical and magnetic behaviors are studied via simulation. To begin 

with, mechanical properties of single nanocrystalline solids are obtained through simple 

tension, simple compression and simple shear tests. Then the material response of a 

nanopolycrystalline specimen under mechanical loading is analyzed. For thermal analysis, 

heating and cooling process are realized on nanopolycrystals via upgraded Nose-Hoover 

thermostat, during which melting and grain growth phenomena are observed, respectively. 

Besides the uniform heat bath analysis, two demonstrations of heat conduction simulations 

are achieved by local temperature control. The result of heat conduction unveils the 

inhomogeneity feature of nanopolycrystals. Lastly, to study the EM-field induced motions 

of atomistic material systems, electrical field and magnetic field are included in the MD 

simulation. Testing cases show that time integration method need careful attention when a 

magnetic field is present. 
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CHAPTER 6:   CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this research, a systematic approach for atomistic modeling and simulation of 

nanopolycrystalline solids has been constructed. Many challenges, as mentioned in the 

introduction chapter, have been addressed. The merits and advancement of this research lie 

in its theory, techniques and applications. 

 

6.1.1 Non-equilibrium molecular dynamics 

This research starts the physical model and mathematical representation with molecular 

dynamics (MD), which is proved to be a capable and credible tool to study the nano-

structured materials.  

In addition to the latest theories and techniques of non-equilibrium molecular dynamics 

(NEMD) simulations, this research proposes the theory of Objectivity Incorporated 

Molecular Dynamics (OIMD), in which both governing equation and constitutive equations 

satisfy principle of objectivity, i.e. they are form-invariant under change of reference frame. 

The theory of OIMD provides an MD solution for all kinds of reference frames (inertial or 

non-inertial). As a consequence of following the principle objectivity, an observation in any 

reference frame is sufficient to capture the essence of one physical process (which may also 
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be observed in many other reference frames). OIMD is considered as a new theoretical 

foundation for the investigation of multi-physics phenomena at atomic scale.  

To investigate a broad range of properties of nanopolycrystalline solids, this research 

considers the effects by external electrical and magnetic field. Therefore, the governing 

equation is supplemented with EM field body force. Maxwell’s equations at atomic scale 

and induced EM quantities are presented. 

 

6.1.2 Numerical scheme 

The equations of motions in classical MD simulations can be integrated through Velocity 

Verlet methods, which is simple, fast and most commonly used. 

Since there are multi-physics body forces and fictitious force that are dependent on the 

instantaneous velocities of atoms, the original scheme of Velocity Verlet are not ready to 

integrate the equations of motion. This research introduces two methods to resolve the 

velocity-dependency issue. The first method, called Heun’s method, involves twice 

calculations of force in each time step and the accuracy is improved. This scheme is in 

general suitable to calculate velocity-dependent force, no matter whether velocity is 

involved in a linear or a non-linear way. The main drawback of Heun’s method is also 

obvious that the computational cost is high since the extra time of calculation of force in 

each time step. The second method, called inversed method, can be used when the velocity 
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acts in a linear way in the force calculation. For example, velocity enters the cross product 

with the magnetic field to give the Lorentz force when there exists an external magnetic 

field. Inversed method takes the advantage of the linearity of the velocity-force relation in 

the Lorentz force term, and provides an explicit scheme to update the velocity and force at 

the next time step. It can be shown that this method is almost as fast as Velocity Verlet 

method while it is more stable and accurate. It is noted that while all these numerical 

integration methods are used in this research, the selection of a particular method depends 

on the simulation settings and the requirement of accuracy or computational time.   

 

6.1.3 Interatomic potential database 

Most of the reported MD research on nanopolycrystalline materials is focused on 

monatomic materials systems (mostly metallic), such as nickel or copper. A few researches 

involve more than one kind of atom, such as a certain species of metal oxides or metal 

alloy. No general scheme was reported to simulate a heterogeneous nanopolycrystalline 

material system with different types of atom and chemicals.  

In order to deal with a broad spectrum of materials with a variety of physical properties, 

this research has established a database of interatomic potentials and their potential 

parameters. Since most of the potential parameters were developed separately, a protocol to 

link different database is devised so that the potential parameters from different data 

sources can be used simultaneously, in the meantime the advantages of each separate set of 
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potential parameters can be mostly preserved. Combination rule, as commonly adopted to 

mix different potential parameters, is considered as the key to link different potential 

parameters from different sources thus is revisited and validated. The investigation 

demonstrates that the potential parameters obtained by the combination rule are able to 

provide a smooth interaction between atoms.    

The database established by this research covers many elements in the periodic table. It 

means that in principle a variety of materials that consist of these chemical elements can be 

studied with this framework.  

 

6.1.4 Structure optimization and prediction of multiple phases of crystallites 

The previous research of MD study of nanopolycrystalline mateirals mainly focuses on a 

certain type of crystal structure, while little discussion is given to the different possible 

structures of a crystallite. 

This research performs structure optimization study based on the mathematical formula and 

parameters of interatomic potential and potential parameters. The optimization results 

predict reasonable unit cell information which is in great agreement with the experimental 

results. Moreover, the optimization results also show that one chemical formula of crystal 

can have more than one form of stable (or meta-stable) structures, which is called 



154 

polymorphism phenomenon. Therefore, multi-phase grains can now be realized in the 

modeling and simulation of nanopolycrystalline materials. 

 

6.1.5 Multi-grain nanopolycrystalline material system 

The main task of the model construction process is to create nanopolycrystalline models 

with grains and grain boundaries, where the grains consist of different kinds of crystallites 

and are arranged in arbitrary orientations, and grain boundaries consist of amorphous phase 

atoms. 

To construct the gains system, two in-house algorithms are used in this research: Voronoi 

method and grain nucleation method. While Voronoi method is also commonly used in 

existing research, it can only generate grains in the shape of convex polygon. In contrast, 

the grain nucleation method may give a model more close to the natural multi-grain 

nanostructure, where there may be irregular grain boundaries and more intertwined and 

integrated grains.  

For the grain boundaries, amorphous phase atoms are firstly obtained via amorphization 

process and then filled to the gap between the grains.  

These modeling techniques can produce nanopolycrystalline material system with selective 

and controllable structural feature. In particular, there can be arbitrary kinds of crystallites, 
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arbitrary phases of crystallites, arbitrary grain geometry, arbitrary grain orientation and 

amorphous grain boundaries in the material system. These are all structural variables that 

can be used to study the structural impact on material properties. 

 

6.1.6 Simulated behaviors 

Several simulations are performed to demonstrate the capability of this work on 

understanding the behaviors of nanopolycrystalline materials.  

Firstly, Simple tension, simple compression and simple shear tests are performed on single-

crystalline solids. In each simulation, the material failure occurs in a featured way that 

reflects the mechanical loading. Then, material constants, such as young’s modulus and 

shear modulus, are obtained and compared with experimental result. Since the calculated 

elastic constants are in agreement with experimental results, it is considered that the 

potential parameters used in the study are of good quality in restoring the macroscopic 

properties of the materials. Secondly, mechanical response of a large and complex 

nanopolycrystals is studied. The material failure shows an interesting behavior: most of the 

dislocations initiate in the grain boundaries thus the failure path lies along the grain 

boundaries. This simulation is a clear demonstration that the grain boundaries have a key 

effect on the mechanical properties of nanopolycrystalline solids.  
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For thermal analysis, heating process, cooling process, and heat conduction simulations are 

realized with upgraded Nose-Hoover thermostat. The simulation of heating up a block of 

nanopolycrystal shows that the specimen will sustain the nanocrystalline structure at a 

relatively high temperature while melt at a higher temperature. The study of thermal 

stability of nanopolycrystalline materials can be extended such that many interesting 

phenomena such as melting-point depression can be studied. The simulation of cooling 

process replicates the phenomenon of grain growth, where multiple grains may merge 

during the heat treatment. The heat conduction cases show that the upgraded Nose-Hoover 

thermostat can be used for local temperature control. By controlling the temperature at 

different regions in the specimen, temperature gradient can be produced between the 

temperature-controlled regions. Although the testing problems are artificially defined, the 

simulation realizes distributed temperature control, which is advancement in the NEMD.  

Lastly, testing cases with the presence of electromagnetic field are studied. It is noted in 

this research that while the equation of motion of MD can be modified by simply adding 

the EM force terms, the integration method needs more attention. Testing cases 

demonstrate that the original Velocity Verlet method can approximate the time marching 

by calculating Lorentz force based on half-time-step-lag velocity, but it also introduces 

undesirable drift in angular momentum. The inversed method, which can be derived from 

the same scheme of Velocity Verlet method, provides an explicit form to update velocity. 

Simulation results show that the inversed method will not introduce undesirable drift in 

angular momentum and thus is considered a better integration method in studying atomistic 

material systems with the presence of EM field.  
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6.2 Recommendations for Future Studies 

This research provides the groundwork for atomistic modeling and simulation of 

nanopolycrystalline solids. The applications are anticipated to facilitate the rational design 

and application of nanostructured materials in the future. 

In the meantime, this research has mainly focused on the development of theory and 

techniques. The performed simulation work demonstrates the capability and validity of the 

developed approach, and the main interest in these simulation cases is the 

phenomenological and qualitative behaviors of the sample material system. At current 

stage, less detailed attention is given to the quantitative comparison between the simulation 

results and the experimental results. Therefore, in order to investigate realistic problems 

with practical applications, quantitative study of particular behavior of a particular 

composition of nanopolycrystalline solids under certain external loading is required. The 

qualitative study and potential applications of nanopolycrystalline solids are proposed here 

in several directions and are left for future studies.   
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6.2.1 Parametric studies of material properties influenced by different interatomic 

potentials and potential parameters 

It is clear that the interatomic potential is the heart of molecular dynamics simulations and 

dictates the simulated behaviors. This work has established a database of many interatomic 

potentials and potential parameters, in which each set of potential parameters was obtained 

by other researchers through fitting with experimental data. It is wise to select a set of 

potential parameters such that the interested physical properties in the simulations are those 

that the potential parameters were initially fitted to. Therefore, a careful parametric study 

on the selection of potential parameters is recommended in each application of simulation 

study.  

 

6.2.2 Parametric studies of material behaviors influenced by structural variables  

The properties of a material are influenced profoundly by its microstructures. This work 

makes possible to control structural variables such as the kind of crystallites, the phase of 

crystallites, the grain geometry, the grain orientation and the grain boundaries geometry. It 

is recommended in the future studies to use these structural variables to investigate the 

structural impact on material properties, such as grain/grain-boundary ratio study and size-

dependency study.  
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6.2.3 Thermo-mechanical-electrical-magnetic coupling 

This research provides a basis for atomistic simulation of multi-physics material behaviors. 

In the current stage, initial study of nanopolycrystalline material under several physical 

loadings is conducted and validated. It is anticipated that this research can be used to study 

complex material systems with more complicated loadings in the future. In particular, 

thermo- mechanical- electrical- magnetic coupling of nanopolycrystalline materials can be 

investigated. Interesting topics may include thermoelectricity, piezoelectricity, etc. 
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APPENDICES 

APPENDIX - I   PROOF OF THE OBJECTIVITY OF THE THERMAL 

VELOCITY 

 

To begin with, an atomic material system or sub-system, which has N atoms, each with 

mass im , position vector ir , and velocity vector iv ; 1,2,3,...,i N . 

The total mass, position of the centroid and the bulk velocity are: 
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The relative position and relative velocity are defined as 

 ˆ i i r r r  (A-1.4) 

 ˆ i i v v v  (A-1.5) 
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The total angular momentum is 

 
1 1
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N N
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The moment of inertia of the atomic system with respect to the centroid is 
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Angular velocity of the system is 

 1 L ω ω JJ L  (A-1.8) 

Then the part of velocity that the ith atom contributes to the rotation is 

 ˆ ˆori i i i
n nkl k le r    η ω r  (A-1.9) 

With above information, the expression of the thermal velocity is obtained: 

 i i i v v v η  (A-1.10) 

Or in index notation 
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Theorem 1. The objective velocity iv is an objective vector, i.e. it obeys the transformation 

law 

  *i i
k kl lv Q v   (A-1.12) 

Proof: 

The right hand side of Eq. (A-1.12) can be written as: 

 
1

1

1

1
ˆ ˆˆ

N
i i j j j j j i

kl kl l l lij ip prs r s j
j

N

l
j

Q v Q v v e J em m r v r
M



 

  
    

   
   (A-1.13) 

By using the formula 

 ) )( )( (ijk lmn il jm kn jn km im jn kl jl kn in jl km jm kle e                      (A-1.14) 

It can be further derived as 

 

     

1

1

1

1 1

1

1

1 1 1 1

ˆ

ˆ ˆ ˆ

1
ˆ

1

ˆ ˆ

ˆ

ˆˆ ˆ

N
i i j j j j j i

kl kl l kl l kl lij prs ip r s j
j

N
i j j

kl l kl l
j

i i i i i i j j j
kp rp s sp r kr sp p pp s ks pp r rp p r

N

j

j
s

l

N

Q v Q v Q v Q e J m r

Q v Q v

Q J r J r

m e v r
M

m
M

Q J r J r Q J r J r m r v







     





   
     

   
 

   
 

           













 

(A-1.15) 

Recall the definition of objectively equivalent motions as in Eq.(2.25): 
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  *i i
k kl l kQx x b   (A-1.16) 

We can write down the position vectors in starred reference frame: 

 

 

 

     

*

*

1 1

* * *
ˆ

/

ˆ

i i
k kl l k

N N
i i i i i

k kl l k kl l k
i i

i i i i
k k k kl l

r

r r

r r

Q r b

m Q r m b M Q b

Qr r

 

 



 


    
 



   (A-1.17) 

and the velocity vectors in starred reference frame: 

 

 
 
 

*

*

*
ˆ ˆˆ

i i i
k kl l kl l k

i i i
k kl l kl l k

i i i
k kl l kl l

v Q r

v Q r

v

v Q b

v Q b

v QQ r

 

 





 







 (A-1.18) 

The moment of inertia and its inverse matrix are both objective: 

 

         

 

   

* * * **

*1

1

1

1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

N
i i i i i

np k k np n p

i i i i i
nr ps k k rs r s

nr ps rs

np nr ps

i

r

N

i

s

J m r r r r

Q m rQ

Q

Q

r r r

Q J

J Q J













    

 







  (A-1.19) 

The results of Eq.(A-1.17) - (A-1.19) and also the definition in Eq.(A-1.11) can be used to 

further derive the left side of Eq.(A-1.12) : 
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 

 

 

*

1

1

1

1

1

1

ˆ

ˆ ˆ

1

ˆ ˆ ˆ

1

N
i i j j i
k kl l kl l kl l

j

j j j j j j i
kij ip lq pq lmn mr ns r s mr ns r s jt t

N
i j j

kl l kl l kij lmn ip lq

N N

j j

pq mr ns
j

m
M

Q Q v Q r

v Q v Q v Q r

e Q J e Q m r Q m r Q

Q v Q

r

m Q Qv Q Q m
M

e e J













  

            
    

 
 


   

 



 
 

 

 









 

   

1

1

1 1 1

1

1

ˆ

ˆ

ˆ ˆ

ˆ ˆ

1

ˆ

ˆ ˆ ˆ ˆ ˆ

j j j i
r s jt t

i j j j i
kl l kij lmn ip lq pq mr ns r s jt t

N
i j j

kl l kl l
j

i i i i i
pp ks r kr s rp kp s ks p sp kr p kp

N

j

N

j

r Q

Q r e e Q J Q m r Q

v r

Q Q

Q v Q v

J Q r Q r J Q r Q r J Q r

r r

m
M

Q









  

 
 
 

 
  

 

 


 

 
 
 




 

  
  

 
 


  









 

 

 

1

1

1

ˆ ˆ

ˆ ˆ

ˆ

ˆ ˆ

i j j j
r r s

i j j j i
kl l kij lmn ip lq pq mr n

N

j

N

j
s r s jt t

r m r

Q r e e Q J

v

Q Q r rQ m r Q







       

      
  





 
  

   



 

 

 (A-1.20) 

Note that the term in the first bracket in the last line of Eq.(A-1.20) is identical to the result 

in Eq.(A-1.15). Therefore, the remaining of the proof is equivalent to prove 

   1

1

0ˆˆ ˆˆi j j j i
kl l kij lmn ip lq p

N

j
q mr ns r s jt tQ r e e Q J QQ r QQ r rm




  

  
 

 
  

  (A-1.21) 

Suppose that at time t , the atomic system is brought back to the original orientation (i.e. 

Q 1 , having only constant translational and angular velocities). Also, identify that 

 
1

ˆˆ
1

2
j j j

N

r s r pp j
j

s im r Jr J 


    (A-1.22) 
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Eq. (A-1.21) becomes 

 
1 1 1 1

1 1 1                        0

pp qq kl pk qq pl pl qq pk pk ls ps

pl kq pq pp kq lq pp lq kq kl

J Q J QJ J J J

J J

J Q J Q

J Q J Q J QJ Q

   

  

  

    

   

     (A-1.23) 

Note that in Eq.(A-1.23), only a non-singular symmetric matrix J  and an antisymmetric 

matrix Q  are involved. J  has six independent variables and Q  has three independent 

variables. No neat proof of Eq.(A-1.23) is ready in hand. But one may verify it by using 

nine symbols to write out the full matrix form. This part of proof is straightforward but too 

tedious to be shown here. Alternatively, this equation can be verified via computer 

software. 
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APPENDIX - II DERIVATION OF FICTITIOUS FORCE AND PROOF OF THE 

OBJECTIVITY OF THE DIFFERENCE BETWEEN THE APPARENT 

ACCELERATION AND THE FICTITIOUS FORCE-INDUCED ACCELERATION  

 

From principle of objectivity, two equivalent motions in two reference frame (starred 

reference frame and un-starred reference frame) are related to each other by: 

 * x Qx b   (A-2.1) 

In the first approach to derive the fictitious force, we can directly differentiate Eq.(A-2.1) 

with respect to time to get 

 *  Qv bv Qx    (A-2.2) 

 * 2  a Qx Qva bQ      (A-2.3) 

If the un-starred system is an inertial system and the starred system is a non-inertial system, 

we can denote the acceleration due to fictitious force in the non-inertial system as 

 * 2 i Qx Qv b     (A-2.4) 

Hence we obtain the relation: 

  * * a i Qa  (A-2.5) 
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In the second approach, we rewrite Eq.(A-2.1) 

 -1 * -1x Q x Q b   (A-2.6) 

Using the definitions of angular velocity vector and angular velocity tensor, and property of 

transformation matrix 

 TΩ QQ   (A-2.7) 

 ? ) ()  Ω ω   (A-2.8) 

 -1 TQ Q   (A-2.9) 

and using the relation in Eq.(A-2.6), Eq.(A-2.2) can be further derived as 

 

 * -1 * -1

*

*

 

   

    





v Q Q b

Qv Ωx Ωb b

Qv ω x ω

v Q x Q b

b b

 




  (A-2.10) 

    -1 * -1 * -1 -1     v Q ω x Q ω b Qv Q b   (A-2.11) 

Now the acceleration is obtained by differentiating Eq.(A-2.10) with respect to time: 

 * * *         Qv Qa ω x ω v ω b ω b ba       (A-2.12) 

Substituting Eq.(80) into Eq.(81), it results 
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    
   

* -1 * -1 * -1 -1 * *

* * * *

* * *2 ( ( )2)

              

              

                   





 

Q v Q ω x Q ω b Q b Qa ω x ω v ω b ω b b

Qa Ωv Ω ω x Ω ω b Ωb ω x ω v ω b ω b b

Qa ω v ω ω x ω x ω b ω ω b ω b b

a Q    

   

  

   

(A-2.13) 

If the un-starred system is an inertial system and the starred system is a non-inertial system, 

we can denote the acceleration due to fictitious force in the non-inertial system as 

 * * * *2 ( ) ( )2                   i ω v ω ω x ω x ω b ω ω b ω b b    (A-2.14) 

Again we obtain the relation as in Eq.(A-2.5). Equation (A-2.4) and Eq.(A-2.14) are 

equivalent expressions for fictitious force, where the difference is the use of different 

description of motion.  

Equation (A-2.5) provides the relation between the descriptions of a motion in an inertial 

frame (un-starred) and a non-inertial frame (starred). Note that the fictitious force vanishes 

( 0i ) in the inertial system ( 0  Q Q b    or 0 ω ω b ). We can include the 

fictitious term too for the inertial system so that 

    * *  a i Q a i  (A-2.15) 

Furthermore, the descriptions of a motion in two non-inertial systems (*1 and *2) can be 

connected via the inertial system. 
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   
   
   

*1 *1
1

*2 *2
2

*2 *2 1 *1 *1
2 1



  

  

  

i Q a i

i Q a

a

a

a

i

i Q iaQ

 (A-2.16) 

Then, we conclude that the relation Eq.(A-2.15) holds for all reference frames. Therefore, 

the difference between the apparent acceleration and the fictitious force-induced 

acceleration satisfies tensor transformation law, which means this combination ( a i ) is 

objective. 
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APPENDIX - III FLOW CHART OF PROGRAM POLY 

 

 

 

 

INPUT 
Load database, including atom information, crystal information, 
potential information, etc. 
Read input file, including control parameters, geometry, initial 
condition and boundary condition, dynamics parameters, etc. 

POLY 

INITIAL 
Initialize the program: 
The dynamical Variables: i.e. f(0), a(0), v(0), x(0), etc,. 
Output quantities: P(0), L(0), E

potential
(0), E

kinetic
(0), E

total
(0), 

T(0), σ(0), etc. 

DECIDE 
Determine control IDs (e.g. whether use damping) 

OUTPUT 
Print output files 

Is this the end of 
simulation? 

Exit 

CENTRAL 
    Time marching using Central Difference scheme (Velocity Verlet): 

1. Calculate 

2. Calculate 

3. Calculate 

4. Calculate 

5. Calculate 

GETFORCE 

1 1
2 2) ( ) ( )( tv t t tt v a   

1
2) ( ) (( )x t xt t v t t t     

 )( )(t ff t x t t   

1 1
2 2 )( ) ( ) (t v t t a t tv t t       

( () ) /a t ft tt m   


