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ABSTRACT

Biological membranes are important structural units in the cell. Composed of a lipid

bilayer with embedded proteins, most exploration of membranes has focused on the proteins.

While proteins play a vital role in membrane function, the lipids themselves can behave in

dynamic ways which affect membrane structure and function. Furthermore, the dynamic

behavior of the lipids can affect and be affected by membrane geometry. A novel fluid

membrane model is developed in which two different types of lipids flow in a deforming

membrane, modelled as a two-dimensional Riemannian manifold that resists bending. The

two lipids behave like viscous Newtonian fluids whose motion is determined by realistic

physical forces. By examining the stability of various shapes, it is shown that instability

may result if the two lipids forming the membrane possess biophysical qualities, which cause

them to respond differently to membrane curvature. By means of numerical simulation of

a simplified model, it is shown that this instability results in curvature induced phase

separation. Applying the simplified model to the Golgi apparatus, it is hypothesized that

curvature induced phase separation may occur in a Golgi cisterna, aiding in the process of

protein sorting.

In addition to flowing tangentially in the membrane, lipids also flip back and forth

between the two leaflets in the bilayer. While traditionally assumed to occur very slowly,

recent experiments have indicated that lipid flip-flop may occur rapidly. Two models are

developed that explore the effect of rapid flip-flop on membrane geometry and the effect

of a pH gradient on the distribution of charged lipids in the leaflets of the bilayer. By

means of a stochastic model, it is shown that even the rapid flip-flop rates observed are

unlikely to be significant inducers of membrane curvature. By means of a nonlinear Poisson–

Boltzmann model, it is shown that pH gradients are unlikely to be significant inducers of

bilayer asymmetry under physiological conditions.
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CHAPTER 1

INTRODUCTION

Biological membranes are important structural units in the cell. They serve to separate

the intracellular domain from the extracellular domain. Further, they serve to separate the

intracellular domain into separate structures called organelles. Biomembranes are made up

primarily of lipids, proteins, and cholesterol. The classic fluid mosaic model proposed by

Singer and Nicolson in 1972 [59] describes the lipid bilayer as a two-dimensional viscous

fluid in which proteins can diffuse relatively freely. Figure 1.1 shows a schematic drawing of

a membrane as described by Singer and Nicolson. While the fluid mosaic model was quite

popular and remains useful today, the focus was primarily on proteins, not lipids. To this

day, lipids are often assumed to play a relatively passive role in cellular function [5]. On the

contrary, the lipids themselves are being shown to have interesting and dynamic behaviors.

In this dissertation, we explore how lipid motion can influence the dynamic behavior of

biological membranes.

A lipid is a small biological molecule, generally cylindrical or cone shaped, with length on

the order of nine nanometers [74] and head group area on the order of 40 square Angstroms

[1]. A lipid usually has a hydrophilic head group and hydrophobic tail as shown in Figure 1.2.

a small fraction of the lipid is more 
tightly coupled to protein. With any 
one membrane protein, the tightly 
coupled lipid might be specific; that is, 
the interaction might require that the 
phospholipid contain specific fatty acid 
chains or particular polar head groups. 
There is at present, however, no satis- 
factory direct evidence for such a dis- 
tinctive lipid fraction. This problem is 
considered again in connection with a 
discussion of the experiments of Wilson 
and Fox (23). 

Fluid Mosaic Model 

Mosaic structure of the proteins and 
lipids of membranes. The thermody- 
namic considerations and experimental 
results so far discussed fit in with the 
idea of a mosaic structure for mem- 
branes (1-3, 24) in which globular mol- 
ecules of the integral proteins (perhaps 
in particular instances attached to oli- 
gosaccharides to form glycoproteins, 
or interacting strongly with specific lip- 
ids to form lipoproteins) alternate with 
sections of phospholipid bilayer in the 
cross section of the membrane (Fig. 2). 
The globular protein molecules are pos- 
tulated to be amphipathic (3, 4) as are 
the phospholipids. That is, they are 
structurally asymmetric, with one highly 
polar end and one nonpolar end. The 
highly polar region is one in which the 
ionic amino acid residues and any co- 
valently bound saccharide residues are 
clustered, and which is in contact with 
the aqueous phase in the intact mem- 
brane; the nonpolar region is devoid of 
ionic and saccharide residues, contains 
many of the nonpolar residues, and is 
embedded in the hydrophobic interior 
of the membrane. The amphipathic 
structure adopted by a particular in- 
tegral protein (or lipoprotein) molecule, 
and therefore the extent to which it is 
embedded in the membrane, are under 
thermodynamic control; that is, they 
are determined by the amino acid se- 
quence and covalent structure of the 
protein, and by its interactions with its 
molecular environment, so that the free 
energy of the system as a whole is at a 
minimum. An integral protein molecule 
with the appropriate size and structure, 
or a suitable aggregate of integral pro- 
teins (below) may transverse the entire 
membrane (3); that is, they have re- 
gions in contact with the aqueous sol- 
vent on both sides of the membrane. 

It is clear from these considerations 
that different proteins, if they have the 
appropriate amino acid sequence to 
18 FEBRUARY 1972 

adopt an amphipathic structure, can be 
integral proteins of membranes; in this 
manner, the heterogeneity of the pro- 
teins of most functional membranes can 
be rationalized. 

The same considerations may also ex- 
plain why some proteins are membrane- 
bound and others are freely soluble in 
the cytoplasm. The difference may be 
that either the amino acid sequence of 
the particular protein allows it to adopt 
an amphipathic structure or, on the 
contrary, to adopt a structure in which 
the distribution of ionic groups is nearly 
spherically symmetrical, in the lowest 
free energy state of the system. If the 
ionic distribution on the protein sur- 
face were symmetrical, the protein 
would be capable of interacting strongly 
with water all over its exterior surface, 
that is, it would be a monodisperse sol- 
uble protein. 

The mosaic structure can be readily 
diversified in several ways. Although 
the nature of this diversification is a 
matter of speculation, it is important to 
recognize that the mosaic structure need 
not be restricted by the schematic rep- 
resentation in Fig. 2. Protein-protein 
interactions that are not explicitly con- 
sidered in Fig. 2 may be important in 
determining the properties of the mem- 
brane. Such interactions may result 
either in the specific binding of a 
peripheral protein to the exterior ex- 
posed surface of a particular integral 

protein or in the association of two or 
more integral protein subunits to form 
a specific aggregate within the mem- 
brane. These features can be accom- 
modated in Fig. 2 without any changes 
in the basic structure. 

The phospholipids of the mosaic 
structure are predominantly arranged as 
an interrupted bilayer, with their ionic 
and polar head groups in contact with 
the aqueous phase. As has been dis- 
cussed, however, a small portion of the 
lipid may be more intimately associated 
with the integral proteins. This feature 
is not explicitly indicated in Fig. 2. The 
thickness of a mosaic membrane would 
vary along the surface from that across 
a phospholipid bilayer region to that 
across a protein region, with an average 
value that could be expected to corre- 
spond reasonably well to experimentally 
measured membrane thicknesses. 

Matrix of the mosaic: lipid or pro- 
tein? In the cross section of the mosaic 
structure represented in Fig. 2, it is not 
indicated whether it is the protein or the 
phospholipid that provides the matrix of 
the mosaic. In other words, which com- 
ponent is the mortar, which the bricks? 
This question must be answered when 
the third dimension of the mosaic struc- 
ture is specified. Trhese two types of 
mosaic structure may be expected to 
have very different structural and func- 
tional properties, and the question is 
therefore a critical one. It is our hy- 

Fig. 3. The lipid-globular protein mosaic model with a lipid matrix (the fluid mosaic 
model); schematic three-dimensional and cross-sectional views. The solid bodies with 
stippled surfaces represent the globular integral proteins, which at long range are 
randomly distributed in the plane of the membrane. At short range, some may form 
specific aggregates, as shown. In cross section and in other details, the legend of 
Fig. 2 applies. 
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Figure 1.1. Schematic drawing of a membrane. The globular structures are protens. The
balls with two tails are lipids. Adapted from [59].



2

Figure 1.2. Various lipid shapes.

Individual lipids can have different geometries based on the number and shape of their

hydrophobic tails and size of their head groups [48]. When dissolved in a polar solvent such

as water, the hydrophilic head interacts favorably with the solvent, while the hydrophobic

tail interacts unfavorably with the solvent. For low lipid concentrations, the positive effect

of translational entropy on the free energy ensures that most of the lipid molecules remain

as monomers in the solvent in spite of the negative interactions of the tails with the solvent.

Above a specific concentration, often called the critical micellar concentration, the negative

interactions between the hydrophobic tails and the polar solvent overcome the positive

effects of translational entropy and cause the lipid molecules to spontaneously aggregate [14].

These aggregates are often in the form of bilayers or micelles, as shown in Figure 1.3, where

the shape of the aggregate depends on the geometry and concentration of the individual

lipids [48]. These shapes allow the hydrophobic tails to interact favorably with each other

and the hydrophilic heads to interact favorably with the solvent.

There are three main classes of lipids in biological membranes, glycerolipids, sphin-

golipids, and sterols [20]. These main classes of lipids are shown schematically in Figure 1.4.

Sphingolipids have a sphingoid base as their backbone, while glycerolipids have a glycerol

backbone [28]. Cholesterol has a different shape and tends to associate with the tails of

the other lipids in the interior or the bilayer. The different structures of sphingolipids and

Figure 1.3. Various lipid structures. (Adapted from [66].)
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Figure 1.4. Schematic drawing of different classes of lipids. a) Sphingolipid. b) Glyc-
erolipid. c) Cholesterol. (Adapted from [28].)

glycerolipids endows them with different physical properties. Sphingolipids tend to associate

with cholesterol and form more tightly packed bilayers that are thicker and more resistant

to bending than bilayers formed primarily of glycerolipids [28]. Further, model membranes

made up of appropriate combinations of sphingolipids and glycerolipids exhibit the ability

to spontaneously phase separate [24]. Phase separation means that certain areas of the

membrane are enriched in sphingolipids and cholesterol while other areas of the membrane

are enriched in glycerolipids. It occurs because lipid self interactions are energetically more

favorably than mixed interactions between different types of lipids. Phase separation of

the lipids which make up the membrane can result in interesting geometries as shown

in Figure 1.5. Phase separation in membranes may also be relevant to the membrane

raft hypothesis in which small transitory membrane patches enriched in sphingolipids,

cholesterol, and associated proteins may play an important role in cellular signalling events

[58]. The existence of different classes of lipids with different biophysical properties and

the possibility of phase separation provides the motivation for the two phase fluid models

developed in this dissertation.

A classical model widely used to study phase separation phenomena is called the Cahn–

Hilliard (C–H) model [9]. Briefly, the C–H model is given by [36]

∂c

∂t
= ∇ · (M∇µ) = M∆µ, (1.1)

where c is a phase variable usually scaled to range between 1 and -1, M is the constant

mobility coefficient, and µ is the local chemical potential given by

µ = F ′(c)− k∆c. (1.2)

In equation 1.2, F is the Helmholz free energy density, and k is a positive constant.

The C–H model is derived by assuming a free energy density of the form

F (c) +
k

2
|∇c|2 . (1.3)

The second term represents a free energy penalty for gradients in the phase variable c.

From this point, one can either define the chemical potential via the variational derivative
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Figure 1.5. Interesting shapes caused by phase separation. The different colors indicate
different phases. The scale bar is 5µm. (Adapted from [6].)

and assume a conservation law with flux given via J = −M∇c [36], or describe the time

evolution via a gradient flow in a cleverly chosen inner product space [19, 32]. Either way,

one ends up with the C–H model.

The squared gradient term in equation 1.3 acts to penalize sharp gradients in the

concentration c and leads to pattern formation as demonstrated in Figure 1.6. In the

figure, we start the simulation with a random perturbation of the value c = 0. The value

of the parameter k dictates the size of the channels formed and the width of the interface

between phases.

While the C–H model describes phase separation, it lacks certain aspects necessary to

study phase separation in a biological membrane. First, the model as presented can describe

phase separating in two-dimensional or three-dimensional Euclidean space. The membrane,

on the other hand, is described as a two-dimensional Riemannian manifold embedded in

three-dimensional space, so the C–H model must be reformulated accordingly. Second,

biological membranes are resistant to bending [48]. We will see in Chapter 2 that our free

energy density includes bending energy terms in addition to the homogeneous free energy

and gradient penalty terms present in the classical C–H model. Finally, the fluid mosaic

model describes the membrane as a two-dimension viscous fluid [59]. The classical C–H

model neglects the viscosity of the species undergoing phase separation.

Other attempts to study phase separation involve so called multiphase fluid models. Two

phase fluid models have been used previously to describe the swelling of polyelectrolyte gels
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Figure 1.6. The result of a Cahn–Hilliard result. The colors indicate concentration,
showing clear phase separation and pattern formation.

[68, 17], but those models do not treat both phases as viscous fluids. A later model [69]

expanded upon the earlier work to treat each phase as an incompressible viscous fluid. More

recently, authors have developed a two phase fluid model where each phase behaves as a

compressible viscous or viscoelastic fluid [33, 60]. The model can describe phase separation

[71], but is formulated for Euclidean space using Cartesian coordinates. It also does not

include terms in the free energy to penalize sharp gradients. In this dissertation, we extend

previous models to describe two phase flow on a two-dimensional Reimannian manifold.

Returning to our discussion of biological membranes and the lipids therein, the main

location of sphingolipid synthesis is the Golgi apparatus [21], a cellular organelle important

in the exocytic and endocytic pathways [28]. The main job of the Golgi is to package

and sort proteins for transport to different parts of the cell [28]. The Golgi is usually

described as a sequence of flattened membranous sacks called cisternae, possibly connected

by tubules [23] as shown in Figure 1.7. While protein sorting in the Golgi is not fully

understood, it has been hypothesized that phase separation in the Golgi may be influential

to the protein sorting processes essential to cellular transport [47, 63] and that this phase

separation may be influenced by membrane curvature [12, 61, 31, 54, 42]. This hypothesis

provides the motivation for the model of curvature-induced phase separation explored in

Chapter 4 of this dissertation. While there has been some mathematical treatment of this

phenomenon [12, 31, 42], those treatments all differ significantly from our model. The
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Figure 1.7. A schematic drawing of the Golgi apparatus. The thicker membranes indicate
areas enriched in sphingolipids, while the thinner membranes indicate areas enriched in
glycerolipids. (Adapted from [28].)

models in [12] and [31] are both equilibrium models. The model in [42] describes dynamic

phase separation, but uses a level set method to describe the membrane instead of modelling

it as a two-dimensional Riemannian manifold.

One of the earliest attempts to describe a membrane mathematically was by Canham

in 1970 [11], where he undertook to explain the biconcave shape of the red blood cell. A

few years later in 1973, Helfrich proposed a similar model describing the elastic properties

of bilayers [27]. Briefly, the Helfrich (or Helfrich–Canham) model treats the membrane as

an elastic surface and describes a functional for the energy of the membrane. Energetic

contributions come through two terms, the mean curvature of the surface with associated

bending modulus and the Gaussian curvature of the surface with associated Gaussian

bending modulus. The free energy density in the Helfrich model is given by

f =
κ

2
(2H − C0)2 + κgG, (1.4)

where H is the mean curvature of the membrane and G is the Gaussian curvature. These

quantites are defined mathematically in Chapter 2. The bending moduli κ and κg have

units of energy. The constant C0 is called the spontaneous or preferred curvature, has units

of curvature, and reflects the possibility that the preferred state of a membrane is not flat.

The Helfrich model is derived via writing the free energy density as a function of curvature,

Taylor expanding, and keeping only lowest order terms [55].
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The original Helfrich model shown in equation 1.4 has a contribution to the energy

from the Gaussian curvature of the surface. According to the Gauss–Bonnet theorem, the

Guassian curvature is constant for a closed surface that does not change genus [55]. As

a result, many authors neglect the Gaussian curvature contribution to the free energy, a

pattern we follow in this dissertation.

The Helfrich model has had a dramatic impact on later membrane studies, being cited

thousands of times since its original publication. Using the Helfrich model and its variants,

authors have had much success describing the shapes of fluid membranes, especially the

shapes of vesicles. The review [55] provides an in depth description of membrane models

and results. Though much work has been done, the majority of models have been static,

describing the equilibrium shapes of vesicles. Other models have undertaken to model

fluctuations around steady states, but still have not attempted a complete fluid model.

While the majority of membrane models are static, there has been some work to model

the membrane as a viscous fluid. One of the earliest attempts to describe flow on a surface

is described in [53] where the author derives flow equations for a fluid interface. The book

[2] makes significant use of these ideas in its chapter on surface flow. In both [53] and

[2], the equations describing flow are described first using a purely intrinsic formulation

and then using an extrinsic formulation in terms of the basis of the three-dimensional

Euclidean embedding space. In more recent work [3, 10, 29, 46, 49, 50, 51, 72], authors

have formulated the fluid equations in terms of the local basis formed by the two tangent

vectors to the surface and the associated normal vector. These models describe flow and

bending resistance, but do not incorporate the existence of multiple types of lipids in the

membrane.

As has been mentioned, certain combinations of lipids exhibit the ability to sponta-

neously phase separate. It has been shown experimentally that giant unilamellar vesicles

made up of different lipid compositions exhibit the ability to phase separate and that this

phase separation can result in interesting geometrical shapes [6]. This phenomenon has

be explored mathematically by various authors [39, 42, 54, 57] with the basis of most

models being the Helfrich model. Existing models have had some success in reproducing

experimental shapes, but again most of the existing models examine only equilibrium

shapes. In other words, the shapes predicted by the models come from minimizing a

free energy functional, but do not treat the lipids as dynamic fluids. Essential to most

of these models is the inclusion of line tension [39]. Line tension is a phenomenological

force to minimize the length of an interface between two lipid phases. It is based on the
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idea that interfaces between two phases are energetically unfavorable due to unfavorable

interactions with water resulting from the two phases having different thicknesses. Line

tension is most often expressed as an energy contribution proportional to the length of the

interface between the phases [39]. An implicit assumption in this formulation is that the

membrane already exists in a phase separated state. In the model we present in Chapter 2,

we use a Cahn-Hilliard type penalty term [36], similar to the treatment in [42] and [31],

in an attempt to model line tension during dynamic phase separation. The model in [31]

uses a Cahn–Hiliard penalty term, but is still a static model, only looking at equilibrium

membrane configurations. To our knowledge, the model in [42] is the most similar to the

model presented in Chapter 2 of this dissertation. The authors of [42] describe a model of

dynamic phase separation, incorporating fluid viscosity, bending rigidity, and Cahn–Hilliard

penalty terms. The fundamental difference from the current model is that the authors in

[42] use a diffuse interface technique to describe the membrane surface, while we leverage

the tools of differential geometry to describe the membrane shape and fluid flow equations.

We demonstrate in Chapter 3 that our treatment is amenable to mathematical analyses

such as linear stability analysis.

A simplification in the Helfrich model is the treatment of the membrane as a thin elastic

sheet. Biological membranes are in fact made up of two lipid monolayers. It has been

shown that different types of lipids are enriched in different membranes of the cell [65], and

that lipids are asymmetrically distributed between different leaflets in the bilayer [64], with

an important example being the location of phosphatidylserine in the plasma membrane of

platelets [37]. It has long been believed that lipid motion within a specific leaflet is quick,

while flip-flop between leaflets of the bilayer is very slow [45] and that the maintenance and

loss of membrane asymmetry is primarily a protein-mediated process [35, 64]. Work in John

Conboy’s lab at the University of Utah has cast doubt on this conventional belief. Their

experiments have measured lipid flip-flop rates much faster than those measured previously,

and they hypothesize that flip rates may be even faster under physiological conditions [41].

Based on these findings, we develop and explore two models in Chapter 5 to investigate

the effects of rapid flip-flop between leaflets of the bilayer. In the first model, we explore

a stochastic description of the membrane to see if lipid flip-flop can significantly deform a

membrane and possibly serve as an initiator of vesicle budding. In the second, we use the

Poisson–Boltzmann equation to explore a model of bilayer asymmetry to see whether an

asymmetric distribution of negatively charged lipids can be maintained by a pH gradient

rather than by an active protein-mediated process.
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Chapters 2–4 of this dissertation present the derivation and analysis of two phase fluid

models of a membrane. In Chapter 2, we treat the membrane as a two-dimensional viscous

fluid which resists bending. Using the tools of differential geometry, we derive the equations

of motion governing the behavior of the membrane. In Chapter 3, we explore two specific

parametrizations of the general model derived in Chapter 2. Using linear stability analysis,

we highlight situations in which curvature induced instability occurs. In Chapter 4, we

explore a one-dimensional simplification of the model with the goal of studying curvature

induced phase separation in the Golgi apparatus. Chapter 5 addresses the bilayer nature of

membranes. Specifically, we explore various implications of rapid flip-flop of lipids between

the two leaflets of the bilayer with the goal to shed light on the process of vesicle formation

in the multivesicular body. We conclude the dissertation with a brief description of ideas

for model extensions and future work.



CHAPTER 2

TWO PHASE FLUID FLOW ON A

SURFACE

Phase separation has important impacts on the shape and functions of biological mem-

branes. While much work has been done to understand the flow of a single lipid phase

in a membrane, there has been little effort to describe multiphase flow on a membrane.

That is the goal of the current work. Much of the subsequent notation follows [2]. Some of

the logic, especially in the meaning of a surface fixed coordinate system follows [51]. The

derivation was also influenced by [46]. A nice treatment of much of the differential geometry

used in the derivation can be found in [49] and in the unpublished notes [13]. Our goal in

the current work is not to describe new results in the fields of differential geometry or to

describe flow on a surface in a completely new way. Rather, we seek to combine existing

theories of two phase fluid flow and flow on a deforming surface in a new and novel way. By

using a realistic free energy density developed in this chapter, we provide a description of a

biological membrane that more accurately reflects the reality that a membrane is a surface

composed of various lipid species with different biophysical properties.

In the following chapter, we first describe the differential geometry background necessary

to derive the model. We then derive in detail the equations describing the flow of lipids on

a surface along with the shape of the surface. We conclude by examining simplifications of

the derived model to show that the model generalizes various published works in the fields

of membrane shape and two phase fluid flow.

2.1 Basic Setup and Differential Geometry
Background

Let S(t) be a time varying surface in R3 upon which a fluid can flow. Let {uα}, α = 1, 2

be some surface coordinates. Then S(t) can be described parametrically by

r(u1, u2, t) = (x(u1, u2, t), y(u1, u2, t), z(u1, u2, t))T . (2.1)
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Any coordinate description of the surface yields a natural basis for vectors originating on

the surface. Define two tangent vectors tα = ∂r
∂uα for α = 1, 2. Note that in general, these

tangent vectors are neither orthogonal nor unit vectors. Define the unit normal via

n =
t1 × t2

||t1 × t2||
. (2.2)

A schematic diagram showing the surface with the two tangent vectors and the normal

vectors is shown in Figure 2.1.

Using the tangent vectors, define the surface metric tensor

aαβ = tα · tβ. (2.3)

The metric tensor is symmetric with a nonzero determinant denoted

a = det(aαβ). (2.4)

The local area element in the surface dA is given via the metric tensor as

dA =
√
adu1du2. (2.5)

The inverse metric tensor aαβ is defined via

aαγaγβ = δαβ , (2.6)

where δαβ is the delta function, and the Einstein summation convention is used. Using the

summation convention, a repeated index that appears as both a superscript and subscript

is summed. A raised index indicates a contravariant component of a tensor, and a lowered

index indicates a covariant component of a tensor. The words covariant and contravariant

indicate that the tensor component follows a specific transformation rule under a change of

coordinates. These rules are described in section A.7. Given a basis of covariant tangent

t2

n

Figure 2.1. Schematic diagram of a surface.
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vectors {tα} for the tangent space at a point P , the inverse metric tensor can be used to

define a biorthogonal basis of contravariant tangent vectors {tα} at P via tα = aαβtβ for

α, β = 1, 2 with the feature tα · tβ = δβα.

Any vector w in the tangent space to P can be expressed as a linear combination

of either the covariant or contravariant tangent vectors, w = wαtα or w = wβt
β. The

relationship between the contravariant components wα and the covariant components wβ

is given by wα = aαβwβ and wβ = aαβw
α. Thus, the metric tensor and its inverse can be

used to raise or lower indices. In other words, they allow us to switch between a covariant

or contravariant description of a vector or tensor quantity.

The metric tensor is also used to define the dot product of two surface vectors. Let v

and w be two vectors in the tangent space to P . Write v = vαtα and w = wβtβ. Define

v ·w = vαw
α = aαβv

βwα = aαβvαwβ. (2.7)

Since n is a unit vector, it follows that ∂n
∂uα · n = 0. Thus, ∂n

∂uα can be written as a

linear combination of the tangent vectors {tα}. This linear combination is given by the

Weingarten equations [49] as

∂n

∂uα
= −bαβaβγtγ = −bγαtγ , (2.8)

where bαβ is called the curvature tensor and describes how the normal to the surface varies

due to movements along the coordinate lines. Since n and tβ are orthogonal, n · tβ = 0⇒
∂n
∂uα · tβ = −n · ∂

∂uα tβ, and equation 2.8 implies that

∂n

∂uα
· tβ = −bαβ

⇒ n · ∂

∂uα
tβ = bαβ,

(2.9)

which provides a way to calculate the components of the curvature tensor. Since ∂
∂uα tβ =

∂
∂uα

∂
∂uβ

r = ∂
∂uβ

∂
∂uα r = ∂

∂uβ
tα, it follows that the curvature tensor is symmetric.

The curvature tensor also appears in the Gauss Equations [13], which describe the

derivative of a tangent vector. Since the tangent vectors are not generally unit vectors,

their partial derivatives have both tangential and normal components given by

∂

∂uα
tβ = Γγαβtγ + bαβn, (2.10)

where the tangential coefficients Γγαβ, are Christoffel symbols discussed in section A.5, and

the normal components are found to be the components of the curvature tensor as given by

equation 2.9. Note that because the left hand side and bαβ are symmetric, it follows that
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the Christoffel symbols are symmetric in the two lower indices.

The curvature tensor furnishes two concepts of curvature, both given by exploring

aαγbγβ, sometimes referred to as the shape operator. The two eigenvalues of the shape

operator at P are the two principal curvatures of the surface at the point P . The mean

curvature, denoted H, is the average of the two principal curvatures, given by 1/2 the trace

of the shape operator,

H =
1

2
aαβbαβ =

1

2
(C1 + C2), (2.11)

where C1 and C2 are the principal curvatures. The Guassian curvature, denoted K, is the

product of the two principal curvatures, given by the determinant of the shape operator,

K = det(aαγbγβ) = C1C2. (2.12)

The mean curvature H is an extrinsic quantity of the surface, meaning that knowledge

of the embedding space is needed in order to define H. In other words, H could not be

measured by an entity living on the surface with no knowledge of the embedding space.

Gauss’ Theorema Egregium states that K is an intrinsic quantity of the surface and can be

expressed independently of the curvature tensor. K could be measured by an entity living

on the surface and only making local measurements. In practice though, it is often easier

to calculate K by making use of the curvature tensor.

In addition to appearing in the description of partial derivatives of the tangent vectors,

the Christoffel symbols also allow for the definition of the covariant derivative. Consider

the partial derivative of the purely tangential vector field w = wβtβ given by

∂w

∂uα
=

∂

∂uα
(wβtβ) =

∂wβ

∂uα
tβ + wβ

(
Γγαβtγ + bαβn

)
. (2.13)

By permuting summed indices, this can be expressed as

∂w

∂uα
=

(
∂wβ

∂uα
+ wγΓβαγ

)
tβ + wβbαβn. (2.14)

The covariant derivative of the contravariant components of a vector field is defined as the

tangential component of ∂w
∂uα and is expressed as

∇αwβ =
∂wβ

∂uα
+ wγΓβαγ . (2.15)

The covariant derivative is a tensor quantity whose components change according to the

transformation rules in section A.7 upon a change of coordinates. The partial derivative ∂wβ

∂uα ,

on the other hand, does not transform like a tensor and thus does not give the components

of a physical object. One can think of the first term in the covariant derivative as describing
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the change in the component upon movement in the tα direction and the second term as

describing the change in the component caused by changes in the basis vectors {tβ} upon

movement in the tα direction.

The covariant derivative can be generalized to scalar functions on the surface, covariant

vector fields, and higher order tensor fields. The covariant derivative of a scalar function

is simply the partial derivative, ∇αf = ∂f
∂uα . Using the fact that the dot product of two

surface vectors v and w is a scalar, ∇α(vβwβ) = ∂
∂uα (vβwβ), one can use the product rule

on both the partial derivative and the covariant derivative to define the covariant derivative

of a covariant vector field,

∇αwβ =
∂wβ
∂uα

− wγΓγαβ. (2.16)

In general, the covariant derivative of a tensor field is defined as the partial derivative with

an added term with a Christoffel symbol for each raised index and a subtracted term with

a Christoffel symbol for each lowered index,

∇ξTαβγ...λµν... =
∂Tαβγ...λµν...

∂uξ
+ T δβγ...λµν...Γ

α
δξ + Tαδγ...λµν...Γ

β
δξ + Tαβδ...λµν...Γ

γ
δξ + · · ·

− Tαβγ...δµν... Γδλξ − T
αβγ...
λδν... Γδµξ − T

αβγ...
λµδ... Γδνξ − · · ·

(2.17)

Further, note that ∇αwα is a scalar, often called the surface divergence, and it can be shown

to be given by

∇αwα =
1√
a

∂

∂uα
(√
awα

)
. (2.18)

As a final detail, we mention that the Lemma of Ricci states that covariant derivatives of

the metric tensor, inverse metric tensor, and determinant of the metric tensor are all zero

[13]. Thus, these quantities can freely cross the covariant derivative symbol.

2.2 Convected Coordinates

Parametrize the surface at time t = 0 using surface coordinates {uΓ},Γ = 1, 2 in

such a way that a particular fluid particle retains its coordinate label. We denote these

convected or material coordinates using capital Greek indices. The associated surface S0

with representation r(uΓ, 0) is fixed and serves as a reference surface. So for fixed {uΓ}, the

map r(uΓ, t) describes the path through R3 of the particle labelled by {uΓ}.

Assume there is an invertible transformation between the two coordinate descriptions

given by

uα = uα(uΓ, t), α,Γ = 1, 2, (2.19)
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and

uΓ = uΓ(uα, t), α,Γ = 1, 2, (2.20)

subject to uα(uΓ, t0) = uΓ and uΓ(uα, t0) = uα.

Any function f(uα, t) defined on the surface can be expressed in convected coordinates

as f(uα(uΓ, t), t). Denote the material derivative (derivative with fixed uΓ) by d
dt and the

derivative with fixed uα by ∂
∂t . The material derivative of f(uα, t) is given by

d

dt
f(uα(uΓ, t), t) =

∂f

∂uα
duα

dt
+
∂f

∂t
, (2.21)

where duα

dt is the velocity of the particle labelled by fixed uΓ with respect to the uα coordinate

system. Denote this velocity vα.

2.3 Surface Fixed Coordinates

Consider the velocity v ∈ R3 of a material particle on the surface,

v =
dr

dt
=

∂r

∂uα
duα

dt
+
∂r

∂t
= vαtα +

∂r

∂t
. (2.22)

The term vαtα describes the tangential velocity of the particle due to the particle’s flow

in the surface. The term ∂r
∂t describes the velocity of the particle due to movement of the

coordinate system. In general, ∂r
∂t can have components both tangential and normal to the

surface.

Another description of the velocity of a material particle can be given using the local

basis induced by the uα parametrization of the surface,

v = v̂αtα + Unn. (2.23)

In this description, v̂α are the contravariant components of a vector field, while Un are

the components of a scalar field. The n in the subscript denotes the normal direction, not

covariant components. Note that in general v̂α is not the same as vα, for v̂α describes the

total tangential component of the velocity through the Euclidean embedding space, while vα

describes the velocity with respect to the uα coordinates caused by the flow of the particle

(which is necessarily tangential to the surface).

It is possible to choose the {uα} coordinate system in a specific way, such that

vα =
duα

dt
= v̂α with uα(t0) = uΓ. (2.24)

In other words, choose the uα coordinate system so that the velocity of the particle with

respect to the coordinate system is the same as the tangential component of the velocity
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through the embedding space. This coordinate system has the feature that a fixed coordi-

nate uα moves entirely in a direction normal to the surface,

∂r

∂t
= Unn, (2.25)

which is useful when deriving equations of motion for fluids on the surface. Following [2],

we call this coordinate system the surface fixed coordinate system. For notational clarity,

ξα for α = 1, 2 is used to denote surface fixed coordinates.

An intuitive way to visualize this particular coordinate system is as follows: imagine the

surface at time t with coordinates given by ξα for α = 1, 2. Consider a specific coordinate

ξ̃α. This coordinate has a specific spatial location x̃ in the embedding space. Now imagine

the surface at time t + ∆t. The surface has deformed and no longer occupies the same

locations in the embedding space. Find the point on the surface at time t+ ∆t that has the

smallest Euclidean distance from the point x̃, and label the new point ξ̃α. Clearly, the new

point lies along the normal n. This provides a time dependent parametrization such that

motion of a fixed ξα on the surface is always normal to the surface.

2.4 General Coordinates

The surface fixed coordinate system ξα will prove to be convenient when deriving

equations of motion for fluids on a surface, but it is not always suitable to describe the

motion of a surface. Consider a surface described using the Monge parametrization r(x, y) =

(x, y, h(x, y))T . In this coordinate system, motion of a specific (x, y) on the surface is purely

in the z direction, not normal to the surface. Thus it is useful to formulate equations of

motion in terms of general coordinates in addition to surface fixed coordinates. Suppose ∂r
∂t

has components both tangential and normal to the surface,

∂r

∂t
= Uαtα + Unn. (2.26)

Then the velocity of a material particle is given by

v = vαtα + Uαtα + Unn. (2.27)

Note that the quantities vα, Uα, and the tangent vectors tα depend on the specific coordinate

description of the surface, but the quantity Un and the normal vector n are indepenent of

the coordinate system. (They depend on the description of the Euclidean embedding space,

which is always assumed to be Cartesian.) For notational clarity, uα for α = 1, 2 will be

used to denote any coordinate system that is not specifically a surface-fixed or convected

coordinate system.
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2.5 Continuity Equations

2.5.1 Continuity Equations for Concentrations

Consider a material patch inside the domain Ω(t) expressed in a general coordinate

system, with concentration cs of sphingolipid particles in the material patch. Note that

concentration in this context means number of particles per unit area. Let Ω0 be the

corresponding fixed patch expressed in the convected coordinate system. Let a′ = det(aΓ∆)

denote the determinant of the metric tensor in the convected coordinates. From conservation

of mass, it follows that

d

dt

∫
Ω(t)

dA cs =
d

dt

∫
Ω0

duIduII
√
a′cs =

∫
Ω0

duIduII
√
a′
(
dcs
dt

+
cs
2a′

da′

dt

)
= 0. (2.28)

Since Ω(t) is arbitrary, the convected coordinated description of the continuity equation is

dcs
dt

+
cs
2a′

da′

dt
= 0. (2.29)

The first term is simply the material derivative defined in equation (2.21). Thus in both

surface fixed and general coordinates

dcs
dt

=
∂cs
∂t

+ vα∇αcs, (2.30)

where vα is the tangential component of the velocity of a sphingolipid particle. We show in

section A.3 that

1

2a′
da′

dt
= ∇αvα − 2HUn, (2.31)

in surface fixed coordinates, and

1

2a′
da′

dt
= ∇αvα +∇αUα − 2HUn, (2.32)

in general coordinates.

This yields the surface fixed coordinate version of the continuity equation for cs,

∂cs
∂t

+∇α(csv
α)− 2csHUn = 0, (2.33)

and general coordinate version,

∂cs
∂t

+∇α(csv
α) + cs(∇αUα − 2HUn) = 0. (2.34)

Similar expressions exist for the glycerlipid concentration cg:

∂cg
∂t

+∇α(cgw
α)− 2cgHUn = 0, (2.35)

for surface fixed coordinates, and
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∂cg
∂t

+∇α(cgw
α) + cg(∇αUα − 2HUn) = 0, (2.36)

for general coordinates, where wα is the tangential component of the velocity of a glyc-

erolipid particle. We wish to express these continuity equations in terms of volume fractions

θs and θg.

2.5.2 Continuity Equations for Volume Fractions

Define the volume fractions

θs = csνs, (2.37)

θg = cgνg, (2.38)

where νs and νg are constants giving the area of a sphingolipid and glycerolipid molecule,

respectively. Upon substituting definitions 2.37 and 2.38 into the continuity equations for

cs and cg, we find the continuity equations

∂θs
∂t

+∇α(θsv
α)− 2θsHUn = 0, (2.39)

∂θg
∂t

+∇α(θgw
α)− 2θgHUn = 0, (2.40)

for surface fixed coordinates, and

∂θs
∂t

+∇α(θsv
α) + θs (∇αUα − 2HUn) = 0, (2.41)

∂θg
∂t

+∇α(θgw
α) + θg (∇αUα − 2HUn) = 0, (2.42)

for general coordinates.

Let us assume that the membrane is a closed surface. Then the total number of lipid

particles must be fixed. If we think of the lipid particles as forming the membrane, we

should assume that particles fill all space in the membrane. This space filling assumption

is equivalent to the assumption that

θs + θg = 1. (2.43)

Using the conservation laws, we can restate the space filling assumption as the coincom-

pressibilty condition

∇α (θsv
α + θgw

α)− 2HUn = 0, (2.44)

for surface fixed coordinates, and

∇α (θsv
α + θgw

α) +∇αUα − 2HUn = 0, (2.45)
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for general coordinates. We note that flows that satisfy the space filling assumption conserve

the total area of the membrane since the total number of particles is fixed, and particles do

not change size.

2.6 Equations of Motion

To find the equations of motion for our two-phase fluid, we first make the assumption that

intertia is negligible in the system. Then the conservation of linear momentum equations

become force balance equations. Many analyses simply write down equations that account

for all the forces at this point. The current system, however, has forces from viscosity, from

drag between the two phases, from gradients in the chemical potential, and from bending

of the membrane. It is not straightforward to simply write down equations that balance

all the forces in the tangential and normal directions. To mitigate this difficulty, we follow

the method presented in [16] of minimizing what the author calls the Rayleighian over all

admissible velocities. The method is based on Onsager’s reciprocal relation, which is an

extension of Rayleigh’s principle of least energy dissipation [16]. The main idea is that the

system evolves in such a way that the rate of energy dissipation is minimized, i.e. in the

most efficient way possible. In [16], the author derives various classical models using the

Rayleighian. Other authors [50, 3] have used the same technique, but refer to it as the

principle of virtual power.

The Rayleighian is defined as the sum of one half the total viscous dissipation and the

rate of change of the free energy of the system,

R =
1

2
Φ +

∂

∂t
F. (2.46)

Since the system evolves via velocities that minimize the Rayleighian, its first variation

respect to velocity is set to zero, yielding the appropriate force balance equations.

In the following sections, we describe the different components of the Rayleighian and

how to take their first variation. All of the calculations that follow are carried out in

the surface fixed coordinates. The reason for this is that in surface fixed coordinates,

the tangential components of the velocity of a particle are given by the velocity of that

particle with respect to the coordinate system. Thus there is no need to try to disentangle

components in the velocity due to flow of the particles from components in the velocity due

to motion of the coordinate system. Further, calculations are simpler in the surface fixed

coordinates due to the simpler form of ∂r
∂t .
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2.6.1 Viscous Dissipation

We assume viscous dissipation occurs via two mechanisms, internal viscosity in each

phase and drag between the two phases. The internal viscosity dissipation rate for each

phase is given by the doubly contracted product of the stress tensor for that phase with

the rate of strain tensor for that phase. This term is scaled by the volume fraction. The

rate of dissipation from drag between the two phases is taken to be proportional to the

squared magnitude of the difference in their velocities. The frictional coefficient is taken to

be θsθgξ, where ξ is a constant. Putting all these contributions together, the rate of the

viscous dissipation is given by

Φ =

∫
S
dξ1dξ2√a

[
sT

αβ
sSαβθs + gT

αβ
gSαβθg + θsθgξa

αβ(vα − wα)(vβ − wβ)
]
, (2.47)

where sT
αβ, gT

αβ, sSαβ, and gSαβ are the stress and rate of strain tensors for the sph-

ingolipid and gylcerolipid phases, respectively. The integration is taken over the entire

surface S. Note that the expression aαβ(vα − wα)(vβ − wβ) is the surface generalization of

the expression (v −w) · (v −w).

Under the assumption that both phases behave as compressible Newtonian fluids, each

has a stress tensor of the form [2]

Tαβ = ηaαβaλµSλµ + ε(aαλaβµ + aαµaβλ − aαβaλµ)Sλµ, (2.48)

where η and ε describe the bulk and shear moduli of the phase. Note that these could be

different for the different phases, and are subscripted accordingly. We show in section A.2

that the rates of strain for the two phases in surface fixed coordinates are given by

sSαβ =
1

2
(∇αvβ +∇βvα − 2bαβUn), (2.49)

gSαβ =
1

2
(∇αwβ +∇βwα − 2bαβUn). (2.50)

The first variation of the viscous dissipation is worked out explicitly in section A.4. We find

that

1

2
δΦ =

∫
S
dξ1dξ2√a

[{
−∇α(sT

αβθs) + θsθgξa
αβ(vα − wα)

}
δvβ

+
{
−∇α(gT

αβθg) + θsθgξa
αβ(wα − vα)

}
δwβ

+
{
−sTαβbαβθs − gT

αβbαβθg

}
δUn

]
.

(2.51)
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2.6.2 Free Energy and Its Time Derivative

The second term that appears in the Rayleighian is the time derivative of the free

energy of the system. We assume that the free energy has three distinct parts, a homo-

geneous part, a curvature dependent part, and a part which penalizes sharp gradients in

the volume fraction. The derivation of the homogeneous part of the free energy comes

from a typical lattice model as described in [14]. We suppose that each point in space

is made up of N lattice sites, Ns of them filled with sphingolipids, and Ng of them

filled with glycerolipids. Let F = U − TS be the Helmholtz free energy, where U is

the internal energy, T is the absolute temperature, and S is the entropy. Using Boltz-

mann’s equation, we have S = kb ln(W ), where kb is Boltzmann’s constant and W is the

number of arrangements of molecules. In our case W = N !/(Ns!Ng!). Using Stirling’s

approximation, we get after simplification that S = −kb (Ns ln(Ns/N) +Ng ln(Ng/N)).

For internal energy U , we count the number of interactions between molecules using the

Bragg–Williams approximation, essentially an assumption that things are well mixed. This

gives U = (zwss/2)Ns+(zwgg/2)Ng+kbTχNsNg/N, where χ = (z/kbT )(wsg−(wss+wgg)/2)

is the unitless Flory interaction parameter, z is the coordination number of the lattice, and

wij is the interaction energy between two lipids of type i and j, respectively. Then

F =
(zwss

2

)
Ns +

(zwgg
2

)
Ng + kbTχ

NsNg

N
+ kbT

(
Ns ln

(
Ns

N

)
+Ng ln

(
Ng

N

))
. (2.52)

Suppose that νs = νg = ν so that both types of lipids have the same area per lipid. In

the analysis that follows, we use the free energy density, f = F/(Nν). Under the assumption

that both types of lipids have the same area per lipid, Ns/N and Ng/N , though technically

particle fractions, are also equal to the volume fractions θs and θg. It follows that the

homogeneous free energy density is given by

fh(θs, θg) = εssθs + εggθg +
kbT

ν
(χθsθg + θs ln θs + θg ln θg) , (2.53)

where εij = zwij/2ν for i, j = s, g are energy densities, and the unitless parameter χ is now

χ = [(2ν)/(KbT )](εsg − (εss + εgg)/2).

For the curvature dependent part of the free energy density, we follow the Helfrich model

[27] and take the bending free energy density to be

f b(θs, θg, H) =
θsκs

2
(2H − Cs)2 +

θgκg
2

(2H − Cg)2, (2.54)

where κs and κb are bending moduli with units of energy, H is the mean curvature of the

surface, and Cs and Cg are the preferred curvatures of the sphingolipid and glycerolipid

phases. Nonzero Cs or Cg reflect the preference for the lipids to be in a curved instead of
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flat state. Though often a result of inhomogeneities between the two leaflets of the bilayer

[55], different types of lipids also have different basic shapes which could contribute to the

spontaneous curvatures of the two phases [18, 25].

For the third part of the free energy density, we include two Cahn–Hilliard type terms,

α2
s

2
aαβ∇αθs∇βθs and

α2
g

2
aαβ∇αθg∇βθg, (2.55)

where αs and αg are constants with units of the square root of energy and characterize the

resistance to sharp gradients in the volume fractions. These terms may play a similar role to

the phenomenological line tension terms that appear in various models of phase separation

and penalize boundaries between phases [39]. They are also the usual terms appearing in

the free energy density used to derive the Cahn–Hilliard equation [36], formulated for a

surface.

Define

f(θs, θg, H) = fh(θs, θg) + f b(θs, θg, H). (2.56)

Define the total free energy density to be

fT (θs, θg, H) = f(θs, θg, H) +
α2
s

2
aαβ∇αθs∇βθs +

α2
g

2
aαβ∇αθg∇βθg. (2.57)

The total free energy of the system is given by

F =

∫
S
dξ1dξ2√afT (θs, θg, H), (2.58)

with time derivative

∂

∂t
F =

∫
S
dξ1dξ2√a

(
δfT

δθs

∂θs
∂t

+
δfT

δθg

∂θg
∂t

+
∂fT

∂H

∂H

∂t
+
fT

2a

∂a

∂t

)
, (2.59)

where the δ notation indicates a functional derivative. The functional derivative of f is

simply the partial derivative. For the functional derivative of the Cahn–Hilliard penalty

terms (shown only for the sphingolipid phase here), we have the first variation∫
dξ1dξ2√a

[
α2
s

2
aαβ(∇αθs∇βδθs +∇αδθs∇βθs)

]
=

∫
dξ1dξ2√a

[
α2
sa
αβ∇αδθs∇βθs

]
=−

∫
dξ1dξ2√a

[
α2
sa
αβ∇α∇βθs

]
δθs,

(2.60)

so that δfT

δθs
= ∂f

∂θs
− α2

sa
αβ∇α∇βθs and similarly for the glycerolipid phase.

Using the continuity equations for θs and θg given in equations 2.39–2.40 and equa-

tions A.9 and A.3 for ∂H/∂t and ∂a/∂t, we then have



23

∂

∂t
F =

∫
S
dξ1dξ2√a

[(
∂f

∂θs
− α2

sa
αβ∇α∇βθs

)
(−∇α(θsv

α) + 2θsHUn)

+

(
∂f

∂θg
− α2

ga
αβ∇α∇βθg

)
(−∇α(θgw

α) + 2θgHUn)

+
∂f

∂H

(
(2H2 −K)Un +

1

2
aαβ∇β∇αUn

)
−2

(
f +

α2
s

2
aαβ∇αθs∇βθs +

α2
g

2
aαβ∇αθg∇βθg

)
HUn

]
.

(2.61)

2.6.3 Constrained Rayleighian

Combining equation 2.47 for the rate of viscous dissipation and equation 2.61 for the

the time derivative of the free energy, we have the full Rayleighian

R =

∫
S
dξ1dξ2√a

{
1

2

[
sT

αβ
sSαβθs + gT

αβ
gSαβθg + θsθgξa

αβ(vα − wα)(vβ − wβ)
]

−
(
∂f

∂θs
− α2

sa
αβ∇α∇βθs

)
∇α(θsv

α)−
(
∂f

∂θg
− α2

ga
αβ∇α∇βθg

)
∇α(θgw

α)

+
∂f

∂H

(
(2H2 −K)Un +

1

2
aαβ∇β∇αUn

)
+ 2

[
θs

(
∂f

∂θs
− α2

sa
αβ∇α∇βθs

)
+ θg

(
∂f

∂θg
− α2

ga
αβ∇α∇βθg

)
−

(
f +

α2
s

2
aαβ∇αθs∇βθs +

α2
g

2
aαβ∇αθg∇βθg

)]
HUn

}
.

(2.62)

We wish to minimize the Rayleighian over velocity, but only velocities that satisfy the

coincompressiblity constraint (2.44). Using the Lagrange multiplier σ, we seek to minimize

Rc = R−
∫
S
dξ1dξ2σ (∇α(θsv

α + θgw
α)− 2HUn) . (2.63)

The Lagrange multiplier σ acts as a surface pressure and affects both the tangential and

normal force balance equations.

2.6.4 Full Force Balance Equations

Using equation (2.51) and integration by parts (section A.6), the variation of Rc with

respect to velocity is given by
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δRc =

∫
S
dξ1dξ2√a

[{
−∇α(sT

αβθs) + θsθgξa
αβ(vα − wα)

+aαβθs∇α
(
∂f

∂θs
− α2

sa
λµ∇λ∇µθs + σ

)}
δvβ +

{
−∇α(gT

αβθg)

+ θsθgξa
αβ(wα − vα) + aαβθg∇α

(
∂f

∂θg
− α2

ga
λµ∇λ∇µθg + σ

)}
δwβ

+

{
−sTαβbαβθs − gT

αβbαβθg + (2H2 −K)
∂f

∂H
+

1

2
aαβ∇α∇β

∂f

∂H

+ 2

[
θs

(
∂f

∂θs
− α2

sa
αβ∇α∇βθs

)
+ θg

(
∂f

∂θg
− α2

ga
αβ∇α∇βθg

)
−

(
f +

α2
s

2
aαβ∇αθs∇βθs +

α2
g

2
aαβ∇αθg∇βθg

)
+ σ

]
H

}
δUn

]
.

(2.64)

Using a Lagrange multiplier to constrain the variation allows us to treat δvβ, δwβ, and

δUn as independent and arbitrary variations. Thus, δRc is zero when the following three

equations are satisfied:

∇α(sT
αβθs)− θsθgξaαβ(vα − wα)− aαβθs∇α

(
∂f

∂θs
− α2

sa
λµ∇λ∇µθs + σ

)
= 0, (2.65)

∇α(gT
αβθg)− θsθgξaαβ(wα − vα)− aαβθg∇α

(
∂f

∂θg
− α2

ga
λµ∇λ∇µθg + σ

)
= 0, (2.66)

sT
αβbαβθs + gT

αβbαβθg − (2H2 −K)
∂f

∂H
− 1

2
aαβ∇α∇β

∂f

∂H

−2

[
θs

(
∂f

∂θs
− α2

sa
αβ∇α∇βθs

)
+ θg

(
∂f

∂θg
− α2

ga
αβ∇α∇βθg

)
−

(
f +

α2
s

2
aαβ∇αθs∇βθs +

α2
g

2
aαβ∇αθg∇βθg

)
+ σ

]
H = 0.

(2.67)

Equation 2.65 is a tensor equation and describes the balance of tangential forces for the

sphingolipid phase. Equation 2.66 is a tensor equation and describes the balance of tangen-

tial forces for the glycerolipid phase. Equation 2.67 is a scalar equation and describes the

balance of forces in the normal direction.

2.7 Full System

2.7.1 Surface Fixed Coordinates

The full system of equations includes the continuity equations, the force balance equa-

tions, and the equation of motion for the membrane. These equations are given by

∂θs
∂t

+∇α(θsv
α)− 2θsHUn = 0, (2.68)

∂θg
∂t

+∇α(θgw
α)− 2θgHUn = 0, (2.69)
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∇α(sT
αβθs)− θsθgξ(vβ − wβ)− aαβθs∇α

(
∂f

∂θs
− α2

sa
λµ∇λ∇µθs + σ

)
= 0, (2.70)

∇α(gT
αβθg)− θsθgξ(wβ − vβ)− aαβθg∇α

(
∂f

∂θg
− α2

ga
λµ∇λ∇µθg + σ

)
= 0, (2.71)

sT
αβbαβθs + gT

αβbαβθg − (2H2 −K)
∂f

∂H
− 1

2
aαβ∇α∇β

∂f

∂H

−2

[
θs

(
∂f

∂θs
− α2

sa
αβ∇α∇βθs

)
+ θg

(
∂f

∂θg
− α2

ga
αβ∇α∇βθg

)
−

(
f +

α2
s

2
aαβ∇αθs∇βθs +

α2
g

2
aαβ∇αθg∇βθg

)
+ σ

]
H = 0,

(2.72)

∂r

∂t
− Unn = 0. (2.73)

This system of equations is supplemented by either of the following equations,

∇α(θsv
α + θgw

α)− 2HUn = 0, (2.74)

θs + θg = 1, (2.75)

each of which expresses the space filling assumption.

2.7.2 General Coordinates

The continuity equations and coincompressibility condition for general coordinates have

already been described in section 2.5. It is not necessary to repeat the derivation in

section 2.6 for general coordinates. Because the force balance equations derived are valid

tensor equations, they hold true in any coordinate system, and expressing them in gen-

eral coordinates only involves a coordinate transformation from surface fixed to general

coordinates. (See section A.7 for a description of coordinate transformations.) Though

the components in the tensors depend on the coordinate system, the general form of

the equations appears the same after transformation, with the only difference being the

expression for the rate of strain tensor. We show in section A.2 that the rate of strain

tensor in general coordinates for the sphingolipid phase is given by

Sαβ =
1

2
(∇αvβ +∇βvα +∇αUβ +∇βUα − 2bαβUn) . (2.76)

The rate of strain tensor for the glycerolipid phase is identical with w substituted for v.

Thus the full system of equations in general coordinates is given by

∂θs
∂t

+∇α(θsv
α) + θs(∇αUα − 2HUn) = 0, (2.77)

∂θg
∂t

+∇α(θgw
α) + θg(∇αUα − 2HUn) = 0, (2.78)
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∇α(sT
αβθs)− θsθgξ(vβ − wβ)− aαβθs∇α

(
∂f

∂θs
− α2

sa
λµ∇λ∇µθs + σ

)
= 0, (2.79)

∇α(gT
αβθg)− θsθgξ(wβ − vβ)− aαβθg∇α

(
∂f

∂θg
− α2

ga
λµ∇λ∇µθg + σ

)
= 0, (2.80)

sT
αβbαβθs + gT

αβbαβθg − (2H2 −K)
∂f

∂H
− 1

2
aαβ∇α∇β

∂f

∂H

−2

[
θs

(
∂f

∂θs
− α2

sa
αβ∇α∇βθs

)
+ θg

(
∂f

∂θg
− α2

ga
αβ∇α∇βθg

)
−

(
f +

α2
s

2
aαβ∇αθs∇βθs +

α2
g

2
aαβ∇αθg∇βθg

)
+ σ

]
H = 0,

(2.81)

∂r

∂t
− Uαtα − Unn = 0. (2.82)

supplemented by either of the following

∇α(θsv
α + θgw

α) +∇αUα − 2HUn = 0, (2.83)

θs + θg = 1. (2.84)

2.8 Simplifications

In this section we explore three simplifications of the two phase model developed in the

previous sections. First, we examine the equations under the assumption that there is only

one phase and no flow. Second, we explore the simplification to the flat plane R2. Third,

we explore the simplification to a single phase fluid on a moving surface.

2.8.1 Comparison with the Classical Shape Equations

Consider the system 2.68–2.75 when θs = 1, θg = 0, α = 0, all the velocities are zero,

and the free energy density is given by the Helfrich free energy density,

f =
κ

2
(2H − C0)2 . (2.85)

We see from the tangential force balance equations that σ is constant. Then with a short

calculation, the normal force balance equation yields the classical shape equation [55, 73]

κ
[
(2H − C0)

(
2H2 − 2K +HC0

)
+ 2aαβ∇α∇βH

]
+ 2Hσ = 0. (2.86)

This equation has been used extensively to describe the equilibrium shape of vesicles [55].

Thus our system generalizes the simpler situation of a single phase fluid membrane at

equilibrium. We should note that the original derivation in [73] uses a different sign

convention for mean curvature and includes a term to maintain constant volume inside

the closed surface.
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2.8.2 Simplification to R2

Suppose we use the system 2.68–2.75 to describe the flow of a two phase fluid in R2

using Cartesian coordinates. We briefly cover the current form of the geometric quantities

described in section 2.1.

The surface in this case is simply given by r(x, y, t) = (x, y, 0)T , with no time dependence.

The tangent vectors are tx = (1, 0, 0)T and ty = (0, 1, 0)T . The normal velocity is Un = 0

because the surface does not deform in time. The metric tensor is the identity tensor, and

the curvature tensor is the zero tensor. The determinant of the metric tensor is one. Since

Christoffel symbols are linear combinations of partial derivatives of the metric tensor (see

section A.5), all components of the Christoffel symbols are zero, and covariant derivatives

are simply partial derivatives. Because the curvature tensor is zero, both the mean and

Gaussian curvatures are zero.

With the simple forms of the geometric quantities, we see that the rate of strain tensor

for the sphingolipid phase is simply

Ss =
1

2

(
∇v +∇vT

)
, (2.87)

where ∇ is the typical cartesian gradient operator. The rate of strain tensor for the

glycerolipid phase is identical, but with w. The stress tensor for the sphingolipid phase

is

Ts = (ηs − εs)I∇ · v + 2εsSs, (2.88)

where I is the identity tensor, and the expression for the sphingolipid stress tensor is similar.

Combining all these aspects, we arrive at the system of equations

∂θs
∂t

+∇ · (θsv) = 0, (2.89)

∂θg
∂t

+∇ · (θgw) = 0, (2.90)

∇ · (θsTs)− θsθgξ(v −w)− θs∇
(
∂f

∂θs
− α2

s∇2θs + σ

)
= 0, (2.91)

∇ · (θgTg)− θsθgξ(w − v)− θg∇
(
∂f

∂θg
− α2

g∇2θg + σ

)
= 0, (2.92)

∇ · (θsv + θgw) = 0. (2.93)

Except for a different form of the free energy (or chemical potential), this is the same two

phase system used previously [33, 60, 70, 71], which has been used to study the kinetics of

gels in 2- and three-dimensional Euclidean space. Thus we see that our system generalizes

existing models of two phase fluid flow in Euclidean space.
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2.8.3 Simplification to a Single Phase

Suppose that θs = 1 and θg = 0. Then the coincompressibility condition becomes

∇α(vα)− 2HUn = aαβSαβ = 0,

corresponding to an incompressible fluid [2, 49]. In this case, the stress tensor simplifies to

Tαβ = ε(aαλaβµ + aαµaβλ)Sλµ.

The surface fixed coordinate coordinate representation of the system of equations is now

∇α(Tαβ)− aαβ∇ασ = 0, (2.94)

Tαβbαβ − (2H2 −K)
∂f

∂H
− 1

2
aαβ∇α∇β

∂f

∂H
+ 2 (f − σ)H = 0, (2.95)

∇αvα − 2HUn = 0, (2.96)

∂r

∂t
− Unn = 0. (2.97)

Except for possible differences in the form of the free energy density, this is a the same

system presented in other published works describing flow on an evolving surface [3, 51, 49].

Thus our system generalizes incompressible Stokes’ flow on an evolving surface.

2.9 Conclusion

Using the tools of differential geometry, we have derived the equations describing two

phase flow on a two-dimensional Riemannian manifold. We explored two classes of coordi-

nate systems, a surface fixed coordinate system where the motion of the surface is purely

normal to the surface, and a more general coordinate system where motion is not normal

to the surface. We found that the resulting systems of equations are different depending

on the assumptions on the coordinate system. In deriving the equations of motion for the

flows on our surface, we used a free energy density which combined Flory–Huggins theory,

Helfrich bending theory, and Cahn–Hilliard theory. Using our free energy density, we made

use of the Rayleighian to produce the force balance equations describing the motion of our

two phase fluid.

Though we have specifically discussed two types of lipids, sphingolipids and glycerolipids,

the model derivation is general and describes any two phase fluid which fills space. We have

seen that the derived equations reproduce the classical shape equations, existing two phase

models in two dimensional cartesian coordinates, and existing surface flow models under

appropriate simplifying assumptions.



CHAPTER 3

EXPLORATION OF TWO SPECIFIC

PARAMETRIZATIONS

In this chapter, we explore two specific parametrizations of the general system derived in

Chapter 2. First, we explore the Monge parametrization, useful for describing perturbations

of the flat sheet. In the Monge parametrization, the surface coordinates are the Cartesian

coordinates x and y, and the surface is described by the height function h(x, y). We note

that motion is not expected to be normal to the surface in the Monge parametrization, so

it is necessary to use the general coordinate version of the two phase fluid equations instead

of the simpler surface fixed coordinate version.

Second, we explore a parametrization suitable for describing axisymmetric shapes. In

the axisymmetric parametrization, the surface parameters are taken to be u and θ where

u parametrizes the generating curve, and θ describes the azimuthal angle. For the axisym-

metric perturbation, it is appropriate to use the surface fixed coordinate version of the

system.

For each parametrization, we first derive the basic objects necessary to describe the

system. We then derive the parametrization-specific version of the two phase fluid equations.

Finally, we perform linear stability analysis to explore the interaction between curvature

and phase separation.

3.1 Monge Parametrization

3.1.1 Basic Setup and Definitions

Suppose we have an infinite surface S(t) described by the parametrization

r(x, y, t) = (x, y, h(x, y, t))T (3.1)

for x, y ∈ R. Note that because we are on in infinite surface, all boundary conditions that

may have arisen from integrating by parts in the derivation presented in Chapter 2 are

neglected. A schematic representation of the surface is shown in Figure 3.1.

The tangent vectors are given by
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x

y

h

Figure 3.1. The Monge parametrization.

tx = (1, 0, hx)T (3.2)

and

ty = (0, 1, hy)
T , (3.3)

where hx and hy indicate the partial derivatives of h(x, y, t) with respect to x and y,

respectively.

The metric tensor is given by

aαβ =

(
1 + h2

x hxhy
hxhy 1 + h2

y

)
, (3.4)

with determinant given by

a = 1 + h2
x + h2

y. (3.5)

The inverse metric tensor is given by

aαβ =
1

a

(
1 + h2

y −hxhy
−hxhy 1 + h2

x

)
, (3.6)

and the outward unit normal vector is given by

n =
1√
a

(−hx,−hy, 1)T . (3.7)

Using equation 2.9, we find that the curvature tensor is given by

bαβ =
1√
a

(
hxx hxy
hxy hyy

)
. (3.8)
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The mean curvature is given by

H =
1

2
trace (aαγbγβ)

=
hxx

(
1 + h2

y

)
+ hyy

(
1 + h2

x

)
− 2hxhyhxy

2a3/2
,

(3.9)

and the Gaussian curvature is given by

K = det (aαγbγβ)

=
hxxhyy − h2

xy

a2
.

(3.10)

Since we are working in a general coordinate system, we have

∂r

∂t
= Uαtα + Unn. (3.11)

This can be written as 0
0
ht

 = Ux

 1
0
hx

+ Uy

 0
1
hy

+
Un√
a

 −hx−hy
1

 , (3.12)

and we can calculate that

Ux =
hxht
a

, (3.13)

Uy =
hyht
a

, (3.14)

Un =
ht√
a
. (3.15)

3.1.2 Full System of Equations

Using the derivations laid out in section B.1, we are able to express the full two phase

fluid system from Chapter 2 using the Monge parametrization. In what follows, we use

fs, fg, and fH to indicate partial derivatives with respect to θs, θg, and H, respectively. The

two continuity equations are given by

∂θs
∂t

+
∂

∂x
(θsv

x) +
∂

∂y
(θsv

y)

+
θs
a

[hx (vxhxx + vyhxy + hxt) + hy (vxhxy + vyhyy + hyt)] = 0

(3.16)

and

∂θg
∂t

+
∂

∂x
(θgw

x) +
∂

∂y
(θgw

y)

+
θg
a

[hx (wxhxx + wyhxy + hxt) + hy (wxhxy + wyhyy + hyt)] = 0.

(3.17)

The coincompressibility condition is given by
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∂

∂x
(θsv

x + θgw
x) +

∂

∂y
(θsv

y + θgw
y)

+
1

a
[hx (wxhxx + wyhxy + hxt) + hy (wxhxy + wyhyy + hyt)] = 0.

(3.18)

The two tangential force balance equations for the sphingolipid phase are given by

1

a

∂

∂x

(
sT̃

xxθs

)
+

1

a

∂

∂y

(
sT̃

xyθs

)
− θs
a2

(
sT̃

xxhyhxy − sT̃
xy(hxhxy − hyhyy)− sT̃

yyhxhyy

)
− θsθgξ(vx − wx)

−
(1 + h2

y)θs

a

∂

∂x

{
fs −

α2
s

a

[
(1 + h2

y)
∂2θs
∂x2

− 2hxhy
∂2θs
∂x∂y

+ (1 + h2
x)
∂2θs
∂y2

+

(
hx
∂θs
∂x

+ hy
∂θs
∂y

)[
(1 + h2

y)hxx − 2hxhyhxy + (1 + h2
x)hyy

]]
+ σ

}
+
hxhyθs
a

∂

∂y

{
fs −

α2
s

a

[
(1 + h2

y)
∂2θs
∂x2

− 2hxhy
∂2θs
∂x∂y

+ (1 + h2
x)
∂2θs
∂y2

+

(
hx
∂θs
∂x

+ hy
∂θs
∂y

)[
(1 + h2

y)hxx − 2hxhyhxy + (1 + h2
x)hyy

]]
+ σ

}
= 0

(3.19)

and

1

a

∂

∂x

(
sT̃

xyθs

)
+

1

a

∂

∂y

(
sT̃

yyθs

)
+
θs
a2

(
sT̃

xxhyhxx − sT̃
xy(hxhxx − hyhxy)− sT̃

yyhxhxy

)
− θsθgξ(vy − wy)

+
hxhyθs
a

∂

∂x

{
fs −

α2
s

a

[
(1 + h2

y)
∂2θs
∂x2

− 2hxhy
∂2θs
∂x∂y

+ (1 + h2
x)
∂2θs
∂y2

+

(
hx
∂θs
∂x

+ hy
∂θs
∂y

)[
(1 + h2

y)hxx − 2hxhyhxy + (1 + h2
x)hyy

]]
+ σ

}
−(1 + h2

x)θs
a

∂

∂y

{
fs −

α2
s

a

[
(1 + h2

y)
∂2θs
∂x2

− 2hxhy
∂2θs
∂x∂y

+ (1 + h2
x)
∂2θs
∂y2

+

(
hx
∂θs
∂x

+ hy
∂θs
∂y

)[
(1 + h2

y)hxx − 2hxhyhxy + (1 + h2
x)hyy

]]
+ σ

}
= 0,

(3.20)

where

sT̃
xx = (ηs + εs)(1 + h2

y)dv

− 2εs

(
hxhy

∂vx

∂y
+ (1 + h2

y)
∂vy

∂y
+ hyhxyv

x + hyhyyv
y + hyhyt

)
,

(3.21)

sT̃
xy = −(ηs + εs)hxhydv + εs

[
hxhy

(
∂vx

∂x
+
∂vy

∂y

)
+ (1 + h2

x)
∂vx

∂y
+ (1 + h2

y)
∂vy

∂x

+(hyhxx + hxhxy)v
x + (hxhyy + hyhxy)v

y + hyhxt + hxhyt

]
,

(3.22)

sT̃
yy = (ηs + εs)(1 + h2

x)dv

− 2εs

(
hxhy

∂vy

∂x
+ (1 + h2

x)
∂vx

∂x
+ hxhxxv

x + hxhxyv
y + hxhxt

)
,

(3.23)

and the expression dv is given by
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dv = aαβSαβ = ∇αvα +∇αUα − 2HUn

=
∂vx

∂x
+
hx
a

(vxhxx + vyhxy + hxt) +
∂vy

∂y
+
hy
a

(vxhxy + vyhyy + hyt).
(3.24)

The two tangential force balance equations for the glycerolipid phase are given similarly by

1

a

∂

∂x

(
gT̃

xxθg

)
+

1

a

∂

∂y

(
gT̃

xyθg

)
−θg
a2

(
gT̃

xxhyhxy − gT̃
xy(hxhxy − hyhyy)− gT̃

yyhxhyy

)
− θsθgξ(wx − vx)

−
(1 + h2

y)θg

a

∂

∂x

{
fg −

α2
g

a

[
(1 + h2

y)
∂2θg
∂x2

− 2hxhy
∂2θg
∂x∂y

+ (1 + h2
x)
∂2θg
∂y2

+

(
hx
∂θg
∂x

+ hy
∂θg
∂y

)[
(1 + h2

y)hxx − 2hxhyhxy + (1 + h2
x)hyy

]]
+ σ

}
+
hxhyθg
a

∂

∂y

{
fg −

α2
g

a

[
(1 + h2

y)
∂2θg
∂x2

− 2hxhy
∂2θg
∂x∂y

+ (1 + h2
x)
∂2θg
∂y2

+

(
hx
∂θg
∂x

+ hy
∂θg
∂y

)[
(1 + h2

y)hxx − 2hxhyhxy + (1 + h2
x)hyy

]]
+ σ

}
= 0

(3.25)

and

1

a

∂

∂x

(
gT̃

xyθg

)
+

1

a

∂

∂y

(
gT̃

yyθg

)
+
θg
a2

(
gT̃

xxhyhxx − gT̃
xy(hxhxx − hyhxy)− gT̃

yyhxhxy

)
− θsθgξ(wy − vy)

+
hxhyθg
a

∂

∂x

{
fg −

α2
g

a

[
(1 + h2

y)
∂2θg
∂x2

− 2hxhy
∂2θg
∂x∂y

+ (1 + h2
x)
∂2θg
∂y2

+

(
hx
∂θg
∂x

+ hy
∂θg
∂y

)[
(1 + h2

y)hxx − 2hxhyhxy + (1 + h2
x)hyy

]]
+ σ

}
−(1 + h2

x)θg
a

∂

∂y

{
fg −

α2
g

a

[
(1 + h2

y)
∂2θg
∂x2

− 2hxhy
∂2θg
∂x∂y

+ (1 + h2
x)
∂2θg
∂y2

+

(
hx
∂θg
∂x

+ hy
∂θg
∂y

)[
(1 + h2

y)hxx − 2hxhyhxy + (1 + h2
x)hyy

]]
+ σ

}
= 0.

(3.26)

Where the expressions gT̃
αβ are analogous to equations 3.21–3.23. The normal force balance

equation is quite complicated, and is given by
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(ηs + εs)(2H)dvθs + (ηg + εg)(2H)dwθg

+
2εsθs

a3/2

{[
hxy(1 + h2

y)− hxhyhyy
] [∂vy

∂x
+
hy
a

(vxhxx + vyhxy + hxt)

]
+
[
hxy(1 + h2

x)− hxhyhxx
] [∂vx

∂y
+
hx
a

(vxhxy + vyhyy + hyt)

]}
+

2εgθg

a3/2

{[
hxy(1 + h2

y)− hxhyhyy
] [∂wy

∂x
+
hy
a

(wxhxx + wyhxy + hxt)

]
+
[
hxy(1 + h2

x)− hxhyhxx
] [∂wx

∂y
+
hx
a

(wxhxy + wyhyy + hyt)

]}
−(2H2 −K)fH −

1

2a

[
(1 + h2

y)
∂2fH
∂x2

− 2hxhy
∂2fH
∂x∂y

+ (1 + h2
x)
∂2fH
∂y2

+

(
hx
∂fH
∂x

+ hy
∂fH
∂y

)[
(1 + h2

y)hxx − 2hxhyhxy + (1 + h2
x)hyy

]]
−2

{
θs

(
fs −

α2
s

a

[
(1 + h2

y)
∂2θs
∂x2

− 2hxhy
∂2θs
∂x∂y

+ (1 + h2
x)
∂2θs
∂y2

+

(
hx
∂θs
∂x

+ hy
∂θs
∂y

)[
(1 + h2

y)hxx − 2hxhyhxy + (1 + h2
x)hyy

]])
+θg

(
fg −

α2
g

a

[
(1 + h2

y)
∂2θg
∂x2

− 2hxhy
∂2θg
∂x∂y

+ (1 + h2
x)
∂2θg
∂y2

+

(
hx
∂θg
∂x

+ hy
∂θg
∂y

)[
(1 + h2

y)hxx − 2hxhyhxy + (1 + h2
x)hyy

]])
−

(
f +

α2
s

2a

[(
1 + h2

y

)(∂θs
∂x

)2

− 2hxhy
∂θs
∂x

∂θs
∂y

+
(
1 + h2

x

)(∂θs
∂y

)2
]

+
α2
g

2a

[(
1 + h2

y

)(∂θg
∂x

)2

− 2hxhy
∂θg
∂x

∂θg
∂y

+
(
1 + h2

x

)(∂θg
∂y

)2
])

+ σ

}
H = 0.

(3.27)

The above system, when paired with appropriate initial conditions, serves to determine

the unknowns θs, θg, v
x, vy, wx, wy, h, and σ. Note that if desired, we can omit the coincom-

pressibility equation and instead use the fact that θs + θg = 1.

3.1.3 Stability Analysis

3.1.3.1 Steady State

One steady state of the system presented is given by θs = θ0 = constant, θg = 1−θ0, v
x =

vy = wx = wy = h = 0, and σ = σ0 = constant. Note that the constant σ0 is not specified

due to the fact that H = 0 when h = 0. Similarly to section 4.3.2, we suppose

θs = θ0 + λθ1, (3.28)

θg = 1− θ0 − λθ1, (3.29)

vx = λvx1 , (3.30)
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vy = λvy1 , (3.31)

wx = λwx1 , (3.32)

wy = λwy1 , (3.33)

h = λh1, (3.34)

σ = σ0 + λσ1. (3.35)

Note that we have used θg = 1− θs to eliminate one unknown. We substitute into the full

system of equations (omitting the coincompressiblity equation), and only keep terms which

are first order in λ. The resulting system is

∂θ1

∂t
+ θ0

(
∂vx1
∂x

+
∂vy1
∂y

)
= 0, (3.36)

−∂θ1

∂t
+ (1− θ0)

(
∂wx1
∂x

+
∂wy1
∂y

)
= 0, (3.37)

ηs

(
∂2vx1
∂x2

+
∂2vy1
∂x∂y

)
+ εs

(
∂2vx1
∂x2

+
∂2vx1
∂y2

)
− (1− θ1)ξ (vx1 − wx1 )

−(fss0 − fsg0)
∂θ1

∂x
− fsH

2

(
∂3h1

∂x3
+

∂3h1

∂x∂y2

)
+ α2

s

(
∂3θ1

∂x3
+

∂3θ1

∂x∂y2

)
− ∂σ1

∂x
= 0, (3.38)

ηs

(
∂2vx1
∂x∂y

+
∂2vy1
∂y2

)
+ εs

(
∂2vy1
∂x2

+
∂2vy1
∂y2

)
− (1− θ1)ξ (vy1 − w

y
1)

−(fss0 − fsg0)
∂θ1

∂y
− fsH

2

(
∂3h1

∂x2∂y
+
∂3h1

∂y3

)
+ α2

s

(
∂3θ1

∂x2∂y
+
∂3θ1

∂y3

)
− ∂σ1

∂y
= 0, (3.39)

ηg

(
∂2wx1
∂x2

+
∂2wy1
∂x∂y

)
+ εg

(
∂2wx1
∂x2

+
∂2wx1
∂y2

)
− θ0ξ (wx1 − vx1 )

−(fsg0 − fgg0)
∂θ1

∂x
− fsg

2

(
∂3h1

∂x3
+

∂3h1

∂x∂y2

)
− α2

g

(
∂3θ1

∂x3
+

∂3θ1

∂x∂y2

)
− ∂σ1

∂x
= 0, (3.40)

ηg

(
∂2wx1
∂x∂y

+
∂2wy1
∂y2

)
+ εg

(
∂2wy1
∂x2

+
∂2wy1
∂y2

)
− θ0ξ (wy1 − v

y
1)

−(fsg0 − fgg0)
∂θ1

∂y
−
fgH0

2

(
∂3h1

∂x2∂y
+
∂3h1

∂y3

)
− α2

g

(
∂3θ1

∂x2∂y
+
∂3θ1

∂y3

)
− ∂σ1

∂y
= 0, (3.41)

1

2

[
(fsH0 − fgH0)

(
∂2θ1

∂x2
+
∂2θ1

∂y2

)
+
fHH0

2

(
∂4h1

∂x4
+ 2

∂4h1

∂2x∂2y
+
∂4h1

∂y4

)]
+ (θ0fs0 + (1− θ0)fg0 − f0 + σ0)

(
∂2h1

∂x2
+
∂2h1

∂y2

)
= 0. (3.42)

We express each perturbation as a linear combination of eωk,lteikxeily so that we have

θ1 =
∑
k,l

θ̂1e
ωk,lteikxeily,

vx1 =
∑
k,l

v̂x1e
ωk,lteikxeily,
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vy1 =
∑
k,l

v̂y1e
ωk,lteikxeily,

wx1 =
∑
k,l

ŵx1e
ωk,lteikxeily,

...

where the coefficients with hats are constant. Upon substitution into the system 3.36–3.42,

we have the following for a given k and l,

ωk,l + θ0 (ikv̂x1 + ilv̂y1) = 0, (3.43)

−ωk,l + (1− θ0) (ikŵx1 + ilŵy1) = 0, (3.44)

ηs(k
2v̂x1 + klv̂y1) + εs(k

2 + l2)v̂x1 + (1− θ0)ξ(v̂x1 − ŵx1 )

+ik

[(
fss0 − fsg0 + α2

s(k
2 + l2)

)
θ̂1 −

fsH0

2
(k2 + l2)ĥ1 + σ̂1

]
= 0, (3.45)

ηs(klv̂
x
1 + l2v̂y1) + εs(k

2 + l2)v̂y1 + (1− θ0)ξ(v̂y1 − ŵ
y
1)

+il

[(
fss0 − fsg0 + α2

s(k
2 + l2)

)
θ̂1 −

fsH0

2
(k2 + l2)ĥ1 + σ̂1

]
= 0, (3.46)

ηg(k
2ŵx1 + klŵy1) + εg(k

2 + l2)ŵx1 + θ0ξ(ŵ
x
1 − v̂x1 )

+ik

[(
fsg0 − fgg0 − α2

g(k
2 + l2)

)
θ̂1 −

fgH0

2
(k2 + l2)ĥ1 + σ̂1

]
= 0, (3.47)

ηg(klŵ
x
1 + l2ŵy1) + εg(k

2 + l2)ŵy1 + θ0ξ(ŵ
y
1 − v̂

y
1)

+il

[(
fsg0 − fgg0 − α2

g(k
2 + l2)

)
θ̂1 −

fgH0

2
(k2 + l2)ĥ1 + σ̂1

]
= 0, (3.48)

1

2

[
(fsH0 − fgH0)(k2 + l2)θ̂1 −

fHH0

2
(k2 + l2)2ĥ1

]
+(θ0fs0 + (1− θ0)fg0 − f0 + σ0)(k2 + l2)ĥ1 = 0. (3.49)

The system 3.43–3.49 can be written as the matrix equation Mx = 0 where x =

(θ̂1, v̂
x
1 , v̂

y
1 , ŵ

x
1 , ŵ

y
1 , σ̂1, ĥ1). We solve the equation det(M) = 0 for ωk,l to yield the following

dispersion relationship,

ωk,l =− B

A
(fss0 + fgg0 − 2fsg0)

+
B

A

(k2 + l2) (fsH0 − fgH0)2

(k2 + l2)fHH0 − 4 [θ0fs0 + (1− θ0)fg0 − f0 + σ0]
− 2

B

A
(k2 + l2)α2,

(3.50)

where

B = θ0(1− θ0)(k2 + l2), (3.51)

and

A = (η + ε)(k2 + l2) + ξ, (3.52)
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and we have assumed for simplicity that ηs = ηg = η, εs = εg = ε, and αs = αg = α.

The equation for ωk splits into three parts. The first part describes the mixture’s

intrinsic nature to phase separate. Using the fact that θs + θg = 1, the homogenous free

energy density can be written as

fh(θs) = εssθs + εgg(1− θs) + χθs(1− θs) + θs ln θs + (1− θs) ln(1− θs). (3.53)

The expression fss + fgg − 2fsg, evaluated at θs = θ0 and θg = 1 − θ0, is the same as the

expression ∂2fh/∂θ2
s , evaluated at θs = θ0. The function fh(θs) is plotted for two different

values of χ in Figure 3.2. Figure 3.2a is plotted with χ = 1.5, while Figure 3.2b has χ = 2.5.

The self interaction parameters εss and εgg are taken to be the same in these plots. We

notice that for χ > 2, the plot of fh has a region that is concave down. This concave down

region corrosponds to the region where fss + fgg − 2fsg < 0, which destabilizes ωk. This

result matches up with classical phase separation results [15], where a double well potential

energy leads to phase separation in the mixture.

The second term describes the effect of curvature on stability. This term is only nonzero

when fsH0 and fgH0 are different from each other. Recall that the difference in these

two quantities comes from the phases having different bending moduli or spontaneous

curvatures. Since fHH0 > 0 for a Helfrich-like free energy density, we see that the two
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Figure 3.2. Homogeneous free energy density, plotted for different values of χ. a) Homoge-
nous free energy density with χ = 1.5. b) Homogeneous free energy density with χ = 2.5.
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phases being different can lead to instability for large wave numbers. Interestingly, low

wave numbers can actually be stabilized by curvature if θ0fs0 + (1− θ0)fg0 −f0 +σ0 is large

and positive. This expression appears as a consequence of the fact that σ0 is arbitrary for

a flat sheet. We will see in the subsequent parametrization that σ0 must take on a definite

value for a nonflat steady state.

The third term in the dispersion relationship describes the effect of the Cahn–Hilliard

term, which penalizes sharp gradients in the volume fractions. Because the third term is

negative and is higher order in k and l than the first two terms, we see that higher modes

are damped out. The damping means that lower order modes may be unstable, while

higher order modes are stable. This indicates the existence of a most unstable mode. The

most unstable mode will dominate pattern formation in the linear model, an effect that will

likely carry over in some degree to the fully nonlinear model. Thus, the conclusion of the

Cahn–Hilliard penalty terms in our model leads to pattern formation in a way analogous

to the classical Cahn–Hilliard model.

3.2 Axisymmetric Parametrization

3.2.1 Basic Setup and Definitions

We suppose that our surface is axisymmetric and given by

r(u1, u2, t) = r(u, θ, t) = (x(u, t) cos(θ), x(u, t) sin(θ), z(u, t))T , (3.54)

where u ∈ [0, L] parametrizes the generating curve of the axisymmetric shape, and θ ∈ [0, 2π]

is the counterclockwise rotation angle around the z axis. We assume boundary conditions

x(0, t) = x(L, t) = 0 and z′(0, t) = z′(L, t) = 0 where the prime indicates a derivative

with respect to u. We further assume that all objects dwelling on the surface (velocities,

volume fractions, etc.) are independent of the angle θ so that they too are axisymmetric.

Note that this implies that vu(0, t) = vu(L, t) = wu(0, t) = wu(L, t) = 0. These boundary

conditions mean that any boundary contributions arising from integrating by parts in the

orignal derivation described in Chapter 2 are identically zero. For notational expediency,

we suppress the u and t dependence in the following derivation. A schematic picture of our

axisymmetric surface is shown in Figure 3.3.

The two tangent vectors are given by

tu = (x′ cos(θ), x′ sin(θ), z′)T (3.55)

and
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Figure 3.3. An axisymmetric surface.

tθ = (−x sin(θ), x cos(θ), 0)T . (3.56)

This gives a metric tensor of

aαβ =

(
p2 0
0 x2

)
, (3.57)

where p2 = x′2 + z′2 and α, β = u, θ. The determinant of the metric tensor is given by

a = det(aαβ) = p2x2. (3.58)

The inverse metric tensor is given by

aαβ =

 1

p2
0

0
1

x2

 , (3.59)

and inward unit normal vector by

n =
tu × tθ√

a

=
1

p
(−z′ cos(θ),−z′ sin(θ), x′)T .

(3.60)

Note that we use the inward unit normal so that the mean curvature of a sphere will be a

positive constant instead of a negative constant. The coefficients of the second fundamental
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form are given by bαβ = ∂2r
∂uα∂uβ

· n. This yields

bαβ =


q

p
0

0
xz′

p

 , (3.61)

where q = −x′′z′ + x′z′′. To define the mean and Gaussian curvatures, we need

bαβ = aαγbγβ =


q

p3
0

0
z′

px

 . (3.62)

From that we have the mean curvature

H =
1

2
Tr(bαβ) =

1

2

(
q

p3
+
z′

px

)
, (3.63)

and the Gaussian curvature

K = det (bαβ) =
qz′

p4x
. (3.64)

We will also need

bαβ = aαλaβµbλµ =


q

p5
0

0
z′

px3

 (3.65)

and

bαβbαβ = (4H2 − 2K) =

(
q2

p6
+

z′2

p2x2

)
. (3.66)

The equation

∂r

∂t
= Unn (3.67)

implies that

∂x

∂t
= −z

′

p
Un (3.68)

and

∂z

∂t
=
x′

p
Un. (3.69)

3.2.2 Full System of Equations

Using the details shown in section B.2, we are able to express the full two phase system

derived in Chapter 2 in the axisymmetric parametrization. In what follows, we use fs, fg,

and fH to express partial derivatives of the free energy density with respect to θs, θg, and
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H. The full system of equations is given by

∂θs
∂t

+ vuθ′s + θsdv = 0, (3.70)

∂θg
∂t

+ wuθ′g + θgdw = 0, (3.71)

ηs + εs
p2

[θsdv]
′ +

2εs
p2

[
−vu

(p
x

)(x′θs
p

)′
+

(
1

x

)(
z′θsUn
p

)′
− θsqx

′

p3x
Un

]
−θsθgξ (vu − wu)− θs

p2

[
fs −

α2
s

p2

(
θ′′s − θ′s

(
p′

p
− x′

x

))
+ σ

]′
= 0,

(3.72)

ηg + εg
p2

[θgdw]′ +
2εg
p2

[
−wu

(p
x

)(x′θg
p

)′
+

(
1

x

)(
z′θgUn
p

)′
− θgqx

′

p3x
Un

]
−θsθgξ (wu − vu)− θg

p2

[
fg −

α2
g

p2

(
θ′′g − θ′g

(
p′

p
− x′

x

))
+ σ

]′
= 0,

(3.73)

(ηs + εs) (2H) θsdv −
2εsθs
p2

[
vu
(
qx′

px

)
+

(
z′

x

)
(pvu)′ − 2qz′

p2x
Un

]
+(ηg + εg) (2H) θgdw −

2εgθg
p2

[
wu
(
qx′

px

)
+

(
z′

x

)
(pwu)′ − 2qz′

p2x
Un

]
−
(
2H2 −K

)
fH −

1

2p2

[
f ′′H − f ′H

(
p′

p
− x′

x

)]
−

[
θsfs −

θsα
2
s

p2

(
θ′′s − θ′s

(
p′

p
− x′

x

))
+ θgfg −

θgα
2
g

p2

(
θ′′g − θ′g

(
p′

p
− x′

x

))

−f − α2
s

2p2
(θ′s)

2 −
α2
g

2p2
(θ′g)

2 + σ

]
(2H) = 0,

(3.74)

vu′ + vu
(
p′

p
+
x′

x

)
−
(
q

p3
− z′

px

)
Un − dv = 0, (3.75)

wu′ + wu
(
p′

p
+
x′

x

)
−
(
q

p3
− z′

px

)
Un − dw = 0, (3.76)

∂x

∂t
+
z′

p
Un = 0, (3.77)

∂z

∂t
− x′

p
Un = 0, (3.78)

εs
p2

{[
θsv

θ ′
]′

+ θsv
θ ′
(

3x′

x
− p′

p

)}
− θsθgξ

(
vθ − wθ

)
= 0, (3.79)

εg
p2

{[
θgw

θ ′
]′

+ θgw
θ ′
(

3x′

x
− p′

p

)}
− θsθgξ

(
wθ − vθ

)
= 0. (3.80)

Notice in the above system the velocities in the u direction, vu and wu, are completely

decoupled from the velocities in the θ direction, vθ and wθ. Clearly, the final two equations

can be solved by choosing vθ = wθ = 0. We make this assumption and eliminate the final

two equations from the system.
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3.2.3 Stability Analysis

3.2.3.1 Steady State

One steady state of the above system is given by

θs = θ0 = constant, (3.81)

θg = 1− θ0, (3.82)

vu = 0, (3.83)

wu = 0, (3.84)

Un = 0, (3.85)

dv = 0, (3.86)

dw = 0, (3.87)

H = H0 = constant, (3.88)

K = K0 = constant, (3.89)

σ = σ0 = constant. (3.90)

The only H = constant shape that meets the appropriate boundary conditions is a sphere.

Let

x′0 = p0 cos
(π
L
u
)

(3.91)

and

z′0 = p0 sin
(π
L
u
)
, (3.92)

where p0 = constant. Then

x′′0 = −p0π

L
sin
(π
L
u
)

(3.93)

and

z′′0 =
p0π

L
cos
(π
L
u
)

(3.94)

so that

q0 = −x′′0z′0 + x′0z
′′
0

=
p2

0π

L
.

(3.95)

Then
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H0 =
1

2

(
q0

p3
0

+
z′0
p0x0

)
=

π

Lp0

(3.96)

and

K0 =
q0z
′
0

p4
0x0

=

(
π

Lp0

)2

= H2
0 ,

(3.97)

so

2H2
0 −K0 = H2

0 . (3.98)

That means that for the normal force balance equation to be satisfied at steady state, we

need

σ0 = f0 − θ0fs0 − (1− θ0)fg0 −
H0

2
fH0 . (3.99)

This is different than what we saw in section 3.1.3 where the steady state value σ0 was not

specified due to the fact that H0 was zero.

3.2.3.2 Perturbation of Steady State

To explore the stability of the system, we examine a perturbation of the steady state

values,

θs = θ0 + λθ1, (3.100)

θg = 1− θ0 − λθ1, (3.101)

vu = λv1, (3.102)

wu = λw1, (3.103)

Un = λUn1 , (3.104)

dv = λdv1 , (3.105)

dw = λdw1 , (3.106)

H = H0 + λH1, (3.107)

K = K0 + λK1, (3.108)

σ = σ0 + λσ1, (3.109)

where H0,K0, and σ0 are the steady state values given above.
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Substituting the perturbed steady state into the system, using the identities presented

in section B.2.5 and keeping first order terms in λ yields the linear system

θ̇1 + θ0dv1 = 0, (3.110)

−θ̇1 + (1− θ0)dw1 = 0, (3.111)

(ηs + εs)d
′
v1

+ 2εs

[
v1

(π
L

)2
+H0U

′
n1

]
− (1− θ0)ξp2

0(v1 − w1)

−
[
(fss0 − fsg0)θ′1 + fsH0H

′
1 −

α2
s

p2
0

(
θ′′1 +

π

L
cot
(π
L
u
)
θ′1

)′
+ σ′1

]
= 0,

(3.112)

(ηg + εg)d
′
w1

+ 2εg

[
w1

(π
L

)2
+H0U

′
n1

]
− θ0ξp

2
0(w1 − v1)

−

[
(fsg0 − fgg0)θ′1 + fgH0H

′
1 +

α2
g

p2
0

(
θ′′1 +

π

L
cot
(π
L
u
)
θ′1

)′
+ σ′1

]
= 0,

(3.113)

(ηs + εs)θ0dv1 − εsθ0

[
p0H0 cot

(π
L
u
)
v1 + v′1 − 2H0Un1

]
+(ηg + εg)(1− θ0)dw1 − εg(1− θ0)

[
p0H0 cot

(π
L
u
)
w1 + w′1 − 2H0Un1

]
− 1

4H0p2
0

[
(fsH0 − fgH0)

(
θ′′1 +

π

L
cot
(π
L
u
)
θ′1

)
+fHH0

(
H ′′1 +

π

L
cot
(π
L
u
)
H ′1

)]
− H0

2
[(fsH0 − fgH0)θ1 + fHH0H1]

+
fH0

2
H1 −

{
θ0 [(fss0 − fsg0)θ1 + fsH0H1] + (1− θ0) [(fsg0 − fgg0)θ1

+ fgH0H1] +
(1− θ0)α2

g − θ0α
2
s

p2
0

(
θ′′1 +

π

L
cot
(π
L
u
)
θ′1

)
+ σ1

}
= 0,

(3.114)

v′1 +
π

L
cot
(π
L
u
)
v1 − 2H0Un1 − dv1 = 0, (3.115)

w′1 +
π

L
cot
(π
L
u
)
w1 − 2H0Un1 − dw1 = 0, (3.116)

where θ̇1 indicates a partial derivative with respect to time.

3.2.3.3 Derivation of Final Linear Equation for H

Notice that the above system is underdetermined. There are eight unknowns, but only

seven equations. The eighth equation comes from the time derivative of H1. We have

2H =
q

p3
+
z′

px
. (3.117)

From this, we find

2H1 =
q1

p3
0

− 4π

Lp2
0

p1 +
π

Lp2
0

csc
(π
L
u
)
z′1 −

(
π

Lp0

)2

csc
(π
L
u
)
x1. (3.118)

We now substitue for q1 and p1 so that everything is in terms of x and z. Using the

definitions of p and q we have
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p1 = cos
(π
L
u
)
x′1 + sin

(π
L
u
)
z′1 (3.119)

and

q1 =
p0π

L
sin
(π
L
u
)
z′1 − p0 sin

(π
L
u
)
x′′1 + p0 cos

(π
L
u
)
z′′1 +

p0π

L
cos
(π
L
u
)
x′1. (3.120)

Upon substitution, this yields

2H1 =
1

p0

[
−3π

L
sin
(π
L
u
)
z′1 + cos

(π
L
u
)
z′′1 −

3π

L
cos
(π
L
u
)
x′1 − sin

(π
L
u
)
x′′1

]
+

π

Lp2
0

csc
(π
L
u
)
z′1 −

(
π

Lp0

)2

csc
(π
L
u
)
x1.

(3.121)

We now take the time derivative of both sides to find Ḣ1 in terms of ẋ1, ż1 and their

derivatives. Given that

ẋ = −z
′

p
Un, (3.122)

we have

ẋ1 = − sin
(π
L
u
)
Un1 , (3.123)

ẋ′1 = −π
L

cos
(π
L
u
)
Un1 − sin

(π
L
u
)
U ′n1

, (3.124)

ẋ′′1 =
(π
L

)2
sin
(π
L
u
)
Un1 −

2π

L
cos
(π
L
u
)
U ′n1
− sin

(π
L
u
)
U ′′n1

. (3.125)

And from

ż =
x′

p
Un, (3.126)

we have

ż′1 = −π
L

sin
(π
L
u
)
Un1 + cos

(π
L
u
)
U ′n1

(3.127)

ż′′1 = −
(π
L

)2
cos
(π
L
u
)
Un1 −

2π

L
sin
(π
L
u
)
U ′n1

+ cos
(π
L
u
)
U ′′n1

. (3.128)

Substituting into the equation for Ḣ1 and simplifying, we have

2Ḣ1 =
1

p2
0

[
U ′′n1

+
π

L
cot
(π
L
u
)
U ′n1

]
+ 2H2

0Un1 . (3.129)

This is the eighth equation necessary to close the system.

3.2.3.4 Eigenfunctions of the system

In section 3.1.3, we expressed each perturbation as a linear combination of the eigen-

functions of the system so we could derive a system of linear equations. In order to more

easily find the eigenfunctions of our system, we first make a change of variables. Let
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s = cos
(π
L
u
)
. (3.130)

Then

d

du
= −π

L

√
1− s2

d

ds
(3.131)

and

d2

du2
=
(π
L

)2
(

(1− s2)
d2

ds2
− s d

ds

)
. (3.132)

This yields the system

θ̇1 + θ0dv1 = 0, (3.133)

−θ̇1 + (1− θ0)dw1 = 0, (3.134)

(ηs + εs)
(
−
√

1− s2
)
d′v1

+ 2εs

[
p0H0v1 +H0

(
−
√

1− s2
)
U ′n1

]
−(1− θ0)ξ

(
p0

H0

)
(v1 − w1)

−
(
−
√

1− s2
) [

(fss0 − fsg0)θ′1 + fsH0H
′
1 − α2

sH
2
0

(
(1− s2)θ′′1 − 2sθ′1

)′
+ σ′1

]
= 0,

(3.135)

(ηg + εg)
(
−
√

1− s2
)
d′w1

+ 2εg

[
p0H0w1 +H0

(
−
√

1− s2
)
U ′n1

]
−θ0ξ

(
p0

H0

)
(w1 − v1)

−
(
−
√

1− s2
) [

(fsg0 − fgg0)θ′1 + fgH0H
′
1 + α2

gH
2
0

(
(1− s2)θ′′1 − 2sθ′1

)′
+ σ′1

]
= 0,

(3.136)

θ0

{
(ηs + εs)dv1 − εsH0

[
p0

(
s√

1− s2
v1 −

√
1− s2v′1

)
− 2Un1

]}
+(1− θ0)

{
(ηg + εg)dw1 − εgH0

[
p0

(
s√

1− s2
w1 −

√
1− s2w′1

)
− 2Un1

]}
−H0

4

[
(fsH0 − fgH0)

(
(1− s2)θ′′1 − 2sθ′1

)
+ fHH0

(
(1− s2)H ′′1 − 2sH ′1

)]
−H0

2
((fsH0 − fgH0)θ1 + fHH0H1) +

fH0

2
H1

− [θ0((fss0 − fsg0)θ1 + fsH0H1) + (1− θ0)((fsg0 − fgg0)θ1 + fgH0H1)

+((1− θ0)α2
g − θ0α

2
s)H

2
0

(
(1− s2)θ′′1 − 2sθ′1

)
+ σ1

]
= 0,

(3.137)

p0H0

(
s√

1− s2
v1 −

√
1− s2v′1

)
− 2H0Un1 − dv1 = 0, (3.138)

p0H0

(
s√

1− s2
w1 −

√
1− s2w′1

)
− 2H0Un1 − dw1 = 0, (3.139)

−2Ḣ1 +H2
0

[
(1− s2)U ′′n1

− 2sU ′n1

]
+ 2H2

0Un1 = 0, (3.140)

where the prime now indicates a partial derivative with respect to s.

We can notice in the above system a combination of Legendre and associated Legendre
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functions multiplied by exponentials in time work as eigenfunctions. We assume

θ1 = θ̂1e
ωntPn(s), (3.141)

v1 = v̂1e
ωntP 1

n(s), (3.142)

w1 = ŵ1e
ωntP 1

n(s), (3.143)

Un1 = Ûn1e
ωntPn(s), (3.144)

dv1 = d̂v1e
ωntPn(s), (3.145)

dw1 = d̂w1e
ωntPn(s), (3.146)

H1 = Ĥ1e
ωntPn(s), (3.147)

σ1 = σ̂1e
ωntPn(s), (3.148)

where Pn(s) is the Legendre function of the first kind of order n, and P 1
n(s) is the associated

Legendre function of order n defined by

P 1
n(s) = −

√
1− s2

dPn(s)

ds
. (3.149)

We note that

(1− s2)
d2Pn
ds2

− 2s
dPn
ds

= −n(n+ 1)Pn (3.150)

and

s√
1− s2

(
−
√

1− s2
dPn
ds

)
−
√

1− s2
d

ds

(
−
√

1− s2
dPn
ds

)
= (1− s2)

d2Pn
ds2

− 2s
dPn
ds

= −n(n+ 1)Pn.

(3.151)

After substitution into the system, we end up with the linear system

ωθ̂1 + θ0d̂v1 = 0, (3.152)

−ωθ̂1 + (1− θ0)d̂w1 = 0, (3.153)

(ηs + εs)d̂v1 + 2εs

[
p0H0v̂1 +H0Ûn1

]
− (1− θ0)ξ

(
p0

H0

)
(v̂1 − ŵ1)

−
[
(fss0 − fsg0 + n(n+ 1)H2

0α
2
s)θ̂1 + fsH0Ĥ1 + σ̂1

]
= 0,

(3.154)

(ηg + εg)d̂w1 + 2εg

[
p0H0w1 +H0Ûn1

]
− θ0ξ

(
p0

H0

)
(ŵ1 − v̂1)

−
[
(fgs0 − fgg0 − n(n+ 1)H2

0α
2
g)θ̂1 + fgH0Ĥ1 + σ̂1

]
= 0,

(3.155)
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θ0

{
(ηs + εs)d̂v1 + εs

[
p0H0n(n+ 1)v̂1 + 2H0Ûn1

]}
+(1− θ0)

{
(ηg + εg)d̂w1 + εg

[
p0H0n(n+ 1)ŵ1 + 2H0Ûn1

]}
+

(
H0

4
n(n+ 1)− H0

2

)[
(fsH0 − fgH0)θ̂1 + fHH0Ĥ1

]
+
fH0

2
Ĥ1

−
[
θ0((fss0 − fsg0 + n(n+ 1)H2

0α
2
s)θ̂1 + fsH0Ĥ1)

+(1− θ0)((fsg0 − fgg0 − n(n+ 1)H2
0α

2
g)θ̂1 + fgH0Ĥ1) + σ̂1

]
= 0,

(3.156)

−p0H0n(n+ 1)v̂1 − 2H0Ûn1 − d̂v1 = 0, (3.157)

−p0H0n(n+ 1)ŵ1 − 2H0Ûn1 − d̂w1 = 0, (3.158)

−2ωĤ1 −H2
0n(n+ 1)Ûn1 + 2H2

0 Ûn1 = 0. (3.159)

3.2.3.5 Dispersion Relationship

This linear system 3.152–3.159 can be written as the matrix equation Mx = 0 where

x = (θ̂1, d̂v1 , d̂w1 , v̂1, ŵ1, Ûn1 , Ĥ1, σ̂1)T , (3.160)

and M is a matrix of the coefficients given in the above system. For x 6= 0, the system

is only satisfied if det(M) = 0. Under the assumptions εs = εg = ε, ηs = ηg = η and

αs = αg = α, the expression det(M) is the following quadratic polynomial in ωn,

Aεω2
n

+n(n+ 1)

{
A

16

[
2H0fH0 + (n− 1)(n+ 2)H2

0fHH0

]
+Bε

[
(fss0 + fgg0 − 2fsg0) + 2n(n+ 1)H2

0α
2
]}
ωn

+
n2(n+ 1)2B

16

{
−(n− 1)(n+ 2)H2

0 (fsH0 − fgH0)2

+
[
2H0fH0 + (n− 1)(n+ 2)H2

0fHH0

] [
(fss0 + fgg0 − 2fsg0) + 2n(n+ 1)H2

0α
2
] }

= 0,

(3.161)

where

A = H2
0 (η + ε)n(n+ 1)− 2H2

0 ε+ ξ (3.162)

B = H2
0θ0(1− θ0). (3.163)

For n = 0, the above polynomial becomes Aεω2
n = 0. Thus, the n = 0 mode is time

independent. This mode corresponds to the Legendre polynomial P0(cos(πu/L)) = 1. To

understand the meaning of this mode, we look at the resulting shape when the mode is

perturbed. Recall that the shape evolution is given by

ẋ = −z
′

p
Un, (3.164)
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ż =
x′

p
Un. (3.165)

That means that the first order perturbations of x and z for n = 0 are given by

ẋ1 = − sin
(π
L
u
)
Un1 , (3.166)

ż1 = cos
(π
L
u
)
Un1 . (3.167)

Since Un1 is a linear combination of exponentials in time multipled by Legendre polynomials,

we see that for n = 0, x1 is − sin(πu/L)Ûn1t and z1 is cos(πu/L)Ûn1t. Since the original

sphere is given by x0 = p0L/π sin(πu/L), z0 = −p0L/π cos(πu/L), it follows that the n = 0

mode is simply a contraction or expansion of the sphere. Since the total area is fixed, it is

clear that this mode has no effect on shape.

In the derivation of the polynomial, we divided by n−1. Thus, the equation det(M) = 0

is true for n = 1 regardless of the ωn value chosen. The n = 1 mode corresponds to the

Legendre polynomial P1(cos(πu/L)) = cos(πu/L). For this mode, the shape is given by

x =
p0L

π
sin
(π
L
u
)
− λÛn1

ω1
eω1t sin

(π
L
u
)

cos
(π
L
u
)

+O(λ2) (3.168)

z = −p0L

π
cos
(π
L
u
)

+ λ
Ûn1

ω1
eω1t cos2

(π
L
u
)

+O(λ2). (3.169)

Consider a small perturbation to the parametrization given by U = u + λφ(u), where φ is

some unknown function. Expanding in λ yields

x =
p0L

π
sin
(π
L
u
)

+ λ cos
(π
L
u
)[

p0φ(u)− Ûn1

ω1
eω1t sin

(π
L
u
)]

+O(λ2) (3.170)

z = −p0L

π
cos
(π
L
u
)

+ λ

[
p0 sin

(π
L
u
)
φ(u) +

Ûn1

ω1
eω1t cos2

(π
L
u
)]

+O(λ2). (3.171)

Choose

φ(u) =
Ûn1

ω1p0
eω1t sin

(π
L
u
)
. (3.172)

Then we have

x =
p0L

π
sin
(π
L
u
)

+O(λ2) (3.173)

z = −p0L

π
cos
(π
L
u
)

+ λ

(
Ûn1

ω1
eω1t

)
+O(λ2). (3.174)

We see via the reparametrization that to first order in λ, the n = 1 mode corresponds to

a vertical translation, but not a change in shape. In the following section, we explore the

dispersion relationship for n > 1.
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3.2.3.6 Analysis of the Dispersion Relationship

To analyze the behavior of the dispersion relationship 3.161, recall the behavior of the

roots of the quadratic equation

αω2 + βω + γ = 0, (3.175)

for α > 0 as shown in Figure 3.4. If either β or γ is negative, at least one of the roots has

positive real part. For our situation, we can calculate that β2 − 4αγ > 0, so the roots of

the dispersion relationship are always real.

By examining the dispersion relationship, we notice that there are essentially three

important expressions that highlight three different paths to instability. These three ex-

pressions are

(fss0 + fgg0 − 2fsg0) + 2n(n+ 1)H2
0α

2, (3.176)

2H0fH0 + (n− 1)(n+ 2)H2
0fHH0 , (3.177)

and

(n− 1)(n+ 2)H2
0 (fsH0 − fgH0)2 . (3.178)

The first two expressions appear added together in the β coefficient and multiplied in the

γ coefficient. The third appears subtracted in the γ coefficient.

Expression 3.176 describes the tendency for phase separation to occur when the inter-

action parameter χ is large enough. For χ > 2, fss0 + fgg0 − 2fsg0 < 0. This effect is

similar to the effect seen in the dispersion relationship for the Monge parametrization seen

earlier in this chapter. The second part of the expression shows the stabilizing effect of the

Cahn–Hilliard penalty terms. As expected, this stabilizing effect dominates all other effects

β

γ

Two real

one + one -

Two real -Two real +

Two complex

with - real part

Two complex

with + real part β2 = 4αγ

Figure 3.4. Behavior of quadratic roots.
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in the dispersion relationship for large enough n so that high wave numbers are always

stable. We note that the stabilization is more important for smaller spherical steady states

(large H0).

Expression 3.177 describes instability caused by the steady state curvature being smaller

than the preferred curvature. This is an effect that was not seen in the Monge parametriza-

tion. If both phases have a nonzero and positive spontaneous curvature, then fH0 < 0 for

H0 small enough. This effect is only important for small n due to the fact that fHH0 > 0.

Expression 3.178 describes instability caused by the two phases responding differently

to curvature. This same effect was seen in the analyses of both the one dimensonal model

and the Monge parametrization. We notice that the two phases being different is always

destabilizing and that this effect is more pronounced for smaller spherical steady states.

Since full dispersion relationship for the axisymmetric parametrization is quite compli-

cated, we seek to understand it more fully by examining three cases. First, we assume that

the free energy density is independent of curvature. In this case, the two solutions of the

dispersion relationship are given by

ωn = 0 (3.179)

ωn = −n(n+ 1)B

A
(fss0 + fgg0 − 2fsg0)− 2n2(n+ 1)2B

A
H2

0α
2. (3.180)

As expected, stability depends on the value of χ, but not on shape. We note that though

instability exists, this instability affects the tangential flow of the lipids, but does not affect

the shape of the membrane. We can see this by examining the matrix M . For f independent

of H, the matrix M can be modified using elementary row operations, which do not change

the value of the determinant to have the block diagonal form

M =

(
M11 0

0 M22

)
, (3.181)

where

M11 =



ωn θ 0 0 0
0 θ 1− θ 0 0
0 0 1 0 p0H0n(n+ 1)

0 0 0 p0H0n(n+ 1) (1−θ0)p0H0n(n+1)
θ0

0 0 0 0 − p0

ωnH0θ
{Bn(n+ 1) [(fss0 + fgg0 − 2fsg0)

+2n(n+ 1)H2
0α

2
]

+Aωn
}


,

(3.182)

and
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M22 =


2H0(n−1)(n+2)ε

n(n+1) 0 0
H2

0
2 (n− 1)(n+ 2) ωn 0

0 0 −1

 . (3.183)

We see that equation 3.179 corresponds to detM22 = 0, while equation 3.180 corresponds

to detM11 = 0. This means that for nonzero ωn given by equation 3.180, the expansion

coefficients Ûnn , Ĥn, and σ̂n must be zero. Thus the instability affects the distributions and

velocities of the volume fractions but does not correspond to a change in membrane shape.

We see the instability graphically in Figure 3.5. Figure 3.5a shows a plot of the positive

root of the dispersion relationship when χ = 2.5, H = 0.05, and α = 0. Figure 3.5b shows

the same plot for χ = 2.5, H = 0.05, and α = 1. Notice how nonzero α damps out higher

wave numbers so that there exists a most unstable mode. Unless otherwise specified, the

parameters in this and all subsequent figures are η = ε = ξ = KbT = ν = 1.

For our second case, we suppose κs = κg and Cs = Cg so that the two phases respond

similarly to curvature. This implies that fsH0 = fgH0 . Under these conditions, the dispersion

relationship can be factored to reveal the two roots

ωbn = −n(n+ 1)

16ε

(
2H0fH0 + (n− 1)(n+ 2)H2

0fHH0

)
, (3.184)

Figure 3.5. Stability for free energy independent of curvature. a) The positive root of the
dispersion relationship plotted as a function of θ0 and n for χ = 2.5 and α = 0. b) The
positive root of the dispersion relationship plotted as a function of θ0 and n for χ = 2.5 and
α = 1. The contour lines in both figures are merely present for ease of visualization.
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ωsn = −n(n+ 1)B

A
(fss0 + fgg0 − 2fsg0)− 2n2(n+ 1)2B

A
H2

0α
2. (3.185)

The superscript b indicates that the root depends on the resistance to bending, while the

superscript s indicates dependence on the homogenous free energy density without bending.

Notice that the root 3.185 is the same as the root 3.180 that we found when the free energy

density was independent of curvature.

We can see from equations 3.184–3.185 that instability can arise in two different ways.

It can arise either because H0 is smaller than the spontaneous curvature of the two phases,

or because χ is sufficiently large. We can see these two types of behavior in Figure 3.6.

We have plotted the largest positive root of the dispersion relationship as a function of θ0

and n for κs = κg = Cs = Cg = 1, χ = 2.5, H0 = 0.05, and α = 1. Notice how there are

two distinct bulges. The first corresponds to ωbn, while the second corresponds to ωsn. The

heavy red curve shows ωbn, while the heavy black curve shows ωsn, each plotted for θ0 = 0.5.

We can see that the two curves cross, giving rise to the two different bulges in the surface.

We note that both bulges disappear for large enough H0. The first because of the H2
0fHH0

term in ωbn and the second because of the H2
0α

2 term in ωsn.

Figure 3.6. Stability for phases with the same constants. Parameter values are
κs = κg = Cs = Cg = 1, χ = 2.5, H = 0.05, and α = 1. The heavy red curve is a plot
of ωbn for θ0 = 0.5. The heavy black curve is a plot of ωsn for θ0 = 0.5.
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It is somewhat surprising that there is curvature induced instability in the case where

κs = κg and Cs = Cg. In this case, the curvature dependent terms in the free energy density

are given by

κsθs
2

(2H − Cs)2 +
κsθg

2
(2H − Cs)2 =

κs
2

(2H − Cs)2 (3.186)

so that curvature and volume fraction are decoupled. Given this fact, we would not expect

phase separation and shape changes to affect each other. We will see that this intuition is

valid.

For fsH0 = fgH0 , we are again able to perform elementary row operations on the matrix

M to write it in the block diagonal form

M =

(
M11 0

0 M22

)
. (3.187)

The matrix M11 is the same as 3.182 corresponding to ωsn, but M22 is now given by

M22 =



H0(n−1)(n+2)
8n(n+1)ωn

[n(n+ 1)(2H0fH0 0 0

+(n− 1)(n+ 2)H2
0fHH0) + 16εωn

]
H2

0
2 (n− 1)(n+ 2) ωn 0

0 1
4 [2fH0 + (n− 1)(n+ 2)fHH0 ] −1

−fgH0


,

(3.188)

corresponding to ωbn. Thus when ω = ωsn, we have that θ1, dv1 , dw1 , v1, and w1 are nonzero,

but Un1 , H1, and σ1 are identically zero. Similarly, when ω = ωbn, we have that θ1, dv1 , dw1 ,

v1, and w1 are identically zero, but Un1 , H1, and σ1 are nonzero. It follows that shape

changes and tangential lipid flow are decoupled when fsH0 = fgH0 .

For our third case, we suppose that the two phases respond differently to curvature.

In this most general situation, shape and tangential lipid flow are no longer decoupled. In

this case, we can truly have curvature induced lipid flow. All three expressions 3.176–3.178

affect the stability of the steady state with 3.176 and 3.177 having a larger effect for smaller

H0 values and 3.178 having a larger effect for larger H0 values. We can see the effect of

changing H0 in Figure 3.7 where we have plotted the zero isosurface of ωn. Parameter values

are κs = 6, κg = 1, Cs = 2, Cg = 1, and α = 1. We have also used χ = 0, so we only see

instability caused by curvature. Spherical steady states with mean curvature smaller than

the preferred curvatures of the two phases correspond to regions below the lower surface

and are unstable due to the effect of expression 3.177. This is similar to the second case

where the phases responded similarly to curvature. In this third case, we have a new source

of instability. Spherical steady states with mean curvature much larger than the preferred
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Figure 3.7. Zero Isosurface of ωn. Parameter values are κs = 6, κg = 1, Cs = 2,
Cg = 1, χ = 0, and α = 1. Regions below the lower surface and above the upper surface are
unstable.

curvatures of the two lipids correspond to regions above the upper surface and are unstable

due to the effect of expression 3.178.

While Figure 3.7 provides information about stability as a function of θ0, n, and H0, it

does not provide information about the most unstable modes or the resulting shape. It is

possible to extract this information from the linear stability analysis results. We first choose

a mean curvature H0. This allows us to plot the largest possible root of ωn as a function of

θ0 and n as shown in Figure 3.8a. We have chosen H0 = 0.3 and all other parameter values

the same as Figure 3.7. We see that the surface has a maximum at approximately θ0 = 0.4

and n = 4. Thus for H0 = 0.3 and θ0 = 0.4, the pattern formation will be dominated by

P4 and P 1
4 . We have plotted the Legendre polynomial P4(cos(u)) for u ∈ [0, π] in Figure

3.8b. Since we have a specific value of ωn for our given values of H0, θ0 and n, we can

substitute that value into the matrix M . This value of ωn makes M singular so that it

has a nontrivial null space. The null vector of M describes the relationship between the

expansion coefficients of the perturbations from the steady state values. We have used this

relationship in Figures 3.8c and d. In Figure 3.8c, we plot the perturbed generating curve

using θ0 = 0.4, n = 4, and the small expansion parameter λ = 0.1. The arrows correspond

to Un1 and show the motion of the surface. In Figure 3.8d, we plot the perturbed shape

with overlaid perturbed θs distribution. In this figure, H0 = 0.3 is smaller than the two

preferred curvatures Cs = 2 and Cg = 1. Because θs has a larger bending modulus than
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Figure 3.8. Shape associated with the most unstable mode. Parameter values are the
same as Figure 3.7 except that H0 = 0.3 in all plots, and θ0 = 0.4 and λ = 0.1 in b, c, and
d. a) The largest positive root of ωn. b) A plot of p4(cosu). c) The perturbed generating
curve with normals overlaid. d) The perturbed surface with θs values overlaid.

θg (κs = 6 and κg = 1), we see that regions with higher θs tend to bulge out to increase

curvature toward Cs, while regions with lower θs tend to bulge inward.

While a full numerical simulation is necessary to explore the dynamics of the model far

from steady state, this analysis provides information about the initial pattern formation in

the system. For any set of parameters that exhibits a most unstable mode, we are able

perform similar analysis and glean information about the patterns and shapes that will

likely be observed in the full system.

3.3 Conclusion

In this chapter, we explored two specific parametrizations of the general model derived in

Chapter 2. The first parametrization explored was the Monge parametrization. The Monge

parametrization describes the surface by giving the height above the x-y plane. Because

motion is described via changes in height rather than changes in the normal direction, it was

necessary to use the general coordinate version of the two phase equations. While the Monge

parametrization is quite intuitive to understand, the resulting equations are complicated due

to the fact that the resulting metric and curvature tensors are not diagonal tensors.

After deriving the full system, we explored the system by examining the stability of a

flat sheet. We found that stability depends on three factors. The first factor determining
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stability is the value of the interaction parameter χ. For large χ, the system tends to phase

separate. The second factor is the value of fsH0−fgH0 , which reflects the differences between

the two phases. We found that when phases are sufficiently different, it is possible to have

curvature induced phase separation. The third factor affecting stability is the Cahn–Hilliard

penalty term. This term uniformly stabilizes and has larger effect for higher wave numbers.

Thus high wave numbers are always stabilized. Further, this stabilization leads to the

existance of a most unstable mode and affects pattern formation in the system.

The second parametrization explored was an axisymmetric parametrization. In this

parametrization, it is valid to use the surface fixed form of the general two phase system.

We derived the axisymmetric form of the full system, finding it to be less complicated than

in the Monge parametrization due to the fact that certain tensors are diagonal, and partial

derivatives with respect to the angular direction are identically zero.

We explored the system by examining perturbations of a spherical steady state. We

discovered that the eigenfunctions of the system are given by Legendre functions. We

found that in addition to the factors affecting stability in the Monge parametrization, the

axisymmetric system can go unstable if the curvature of the sphere is smaller than the

spontaneous curvatures of the two phases. We explored specific forms of the free energy

density and found that shape changes and phase separation are decoupled if the two phases

respond indentically to curvature. Finally, we used information from the null vectors of the

matrix M to explore the shape and behavior of the perturbations of the sphere.



CHAPTER 4

CURVATURE-INDUCED PHASE

SEPARATION IN ONE

DIMENSION

The Golgi apparatus is an important membraneous organelle. Located in the secretory

pathway between the endoplasmic reticulum and the plasma membrane, it is a central

location for lipid synthesis and lipid and protein modification and sorting [7]. This protein

sorting is not fully understood, though some authors have hypothesized that it may be

accomplished via phase separation [63]. Various authors have examined the effects of

curvature on phase separation, both in the context of the Golgi apparatus [12] and otherwise

[26, 61]. In the following sections, we describe a one-dimensional simplification of the

equations presented in Chapter 2 and use the simplification to explore curvature-induced

phase separation in a single Golgi cisterna.

We first describe the simplifications and assumptions that lead to the one-dimensional

model. We then analyze the model equations to show analytically that they exhibit phase

separation under certain regimes and that the phase separation is enhanced by the influence

of curvature. We further show that curvature effects can induce phase separation when the

system is in close proximity to a critical point as has been demonstrated experimentally

[61]. Finally, we present numerical simulations of the model equations and explore different

model behaviors.

4.1 One-Dimensional Simplification

We model a single Golgi cisterna as a simple closed curve in R2 of length L. We define

φ(x), where x is the arc length, to be the angle between the tangent to the curve and the

horizontal as shown in Figure 4.1.

Many of the components of the two-dimensional system such as the metric and curvature

tensors do not have one-dimensional equivalents. We choose to proceed as follows: Since

there is no stretching in an arc length parametrization, we treat all of the metric tensors
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Φ(x) 

Figure 4.1. Representative Golgi cisterna. φ(x) is defined to be the angle between the
tangent vector and the horizontal.

as the single number one. As a result, all quantities that arose from the time derivative of

the metric tensor in the two-dimensional derivation (namely the HUn terms) are zero. We

define the curvature via

H =
dφ

dx
. (4.1)

We treat all covariant derivatives as partial derivatives with respect to the arc length variable

x. We further assume that at any time t, the current shape of the cisterna corresponds to

the shape that minimizes the free energy of the system. The equation resulting from this

assumption (derived in Section 4.1.1) takes the place of the force balance equation in the

normal direction.

The one-dimensional form of the rate of strain tensor for the sphingolipid phase is

Ss =
∂v

∂x
(4.2)

so that the stress tensor has the simple form

Ts = ηs
∂v

∂x
, (4.3)

where the dilational and shear viscosity parameters have been combined into a single

parameter ηs. The rate of strain and stress tensors for the glycerolipid phase have an

identical form, but with w instead of v.

4.1.1 Free Energy Density and Shape Equation

The free energy density is assumed to be the same as in Chapter 2, but we neglect the

Cahn–Hilliard penalty terms for simplicity. Thus the free energy density is given by

f(θs, θg, φx) = fh(θs, θg) + f b(θs, θg, φx), (4.4)
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where φx indicates the partial derivative of φ with respect to x, the homogenous free energy

density is given by

fh(θs, θg) = εssθs + εggθg +
KbT

ν
(χθsθg + θs ln θs + θg ln θg) , (4.5)

and the bending free energy density is given by

f b(θs, θg, φx) =
κsθs

2
(2φx − Cs)2 +

κgθg
2

(2φx − Cg)2 . (4.6)

To find the shape of the cisterna, we minimize f over all functions φ(x) that meet certain

criteria. First, we only want closed curves that have a single loop. This means we must

have φ(0) = φ(L)− 2π. Second, we want smooth curves. Thus we want φ to be smooth and

further need φx(0) = φx(L). Finally, we only want closed curves. This can by accomplished

by guaranteeing that ∫ L

0
sin(φ(x))dx =

∫ L

0
cos(φ(x))dx = 0. (4.7)

Using the Lagrange multipliers λ and µ to guarantee conditions 4.7, we seek to minimize

F =

∫ L

0
f(θs, θg, φx)dx− λ

∫ L

0
sin(φ(x))dx− µ

∫ L

0
cos(φ(x))dx (4.8)

over all φ that meet our desired boundary conditions. We find the first variation (see

section A.4), set it equal to zero, and recover the following Euler–Lagrange equation:

∂

∂x
fH + λ cos(φ)− µ sin(φ) = 0, (4.9)

where fH indicates ∂f/∂φx, the partial derivative with respect to curvature. Note that we

do not pick up any boundary contributions when integrating by parts because the condition

φ(0) = φ(L)−2π guarantees that δφ is L periodic. Since we are on a closed curve, we assume

the fH is also L periodic.

4.2 The Full One-Dimensional System

Taking into account the simplifications described in Section 4.1, the full system of

equations is given by

∂θs
∂t

+
∂

∂x
(θsv) = 0, (4.10)

∂θg
∂t

+
∂

∂x
(θgw) = 0, (4.11)

ηs
∂

∂x

(
θs
∂v

∂x

)
− θsθgξ(v − w)− θs

∂

∂x

(
∂f

∂θs
+ σ

)
= 0, (4.12)

ηg
∂

∂x

(
θg
∂w

∂x

)
− θsθgξ(w − v)− θg

∂

∂x

(
∂f

∂θg
+ σ

)
= 0, (4.13)
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∂

∂x
fH + λ cos(φ)− µ sin(φ) = 0, (4.14)

∂

∂x
(θsv + θgw) = 0, (4.15)

for x ∈ [0, L]. We assume that θs, θg, v, and w are periodic, φ(0) = φ(L) − 2π, and

φx(0) = φx(L). Along with the system 4.10–4.15, we have the two constraints∫ L

0
sin(φ(x))dx = 0, (4.16)∫ L

0
cos(φ(x))dx = 0. (4.17)

4.2.1 Further Assumptions and Simplifications

We first assume a small amount of diffusion in the continuity equations 4.10–4.11,

∂θs
∂t

+
∂

∂x
(θsv) = ε

∂2θs
∂x2

, (4.18)

∂θg
∂t

+
∂

∂x
(θgw) = ε

∂2θg
∂x2

, (4.19)

where ε is a small diffusion coefficient. As described in [71], this small amount of diffusion

does not change the qualitative features of the model, but ensures that solutions remain

continuous and smooth even in the event of phase separation. Note further that this

assumption does not affect the coincompressiblity condition.

Our second assumption deals with the coincompressibility condition 4.15, which states

that θsv + θgw is equal to a constant. We suppose that the constant is zero so that

θsv + θgw = 0. (4.20)

This assumption allows us to eliminate pressure from the system. Multiply equation 4.12

by θg and equation 4.13 by θs and subtract. Define V = v − w. Using equation 4.20 and

the fact that θs + θg = 1, we have

v = θgV, (4.21)

w = −θsV (4.22)

so that the entire system the entire system can be written as the following four equations:

θs + θg = 1, (4.23)

∂θs
∂t

+
∂

∂x
(θsθgV )− ε∂

2θs
∂x2

= 0, (4.24)

ηsθg
∂

∂x

(
θs
∂

∂x
(θgV )

)
+ ηgθs

∂

∂x

(
θg

∂

∂x
(θsV )

)
− ξθsθgV − θsθg

∂

∂x
(fs − fg) = 0, (4.25)
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∂

∂x
fH + λ cos(φ)− µ sin(φ) = 0, (4.26)

with the appropriate boundary conditions and constraints. The notation fs and fg in

equation 4.25 indicates partial derivatives with respect to θs and θg.

4.3 Model Analysis

4.3.1 Nondimensionalization

We introduce the nondimensional quantities

x̂ =
x

L
, ε̂ii =

εii
KbT

,

V̂ =
V

V 0
, κ̂i =

κi
KbT

,

t̂ =

(
v0

L

)
t, Ĉi = LCi,

where i = s, g. This gives the homogeneous free energy density

fh(θs, θg) =
KbT

ν
(ε̂ssθs + ε̂ggθg + χθsθg + θs ln θs + θg ln θg)

=
KbT

ν
f̂h(θs, θg),

(4.27)

and the bending free energy density

f b (θs, θg, φx) =
KbT

ν

ν

L2

(
κ̂sθs

2

(
2φx̂ − Ĉs

)2
+
κ̂gθg

2

(
2φx̂ − Ĉg

)2
)

=
KbT

ν
υf̂ b(θs, θg, φx̂),

(4.28)

where υ = ν/L2. We define the total free energy density to be

f (θs, θg, φx) =
KbT

ν
f̂ (θs, θg, φx̂) , (4.29)

where

f̂ (θs, θg, φx̂) = f̂h(θs, θg) + υf̂ b (θs, θg, φx̂) . (4.30)

Suppressing the hats, the entire system can be written in nondimensional form

θs + θg = 1, (4.31)

∂θs
∂t

+
∂

∂x
(θsθgV )− ε∂

2θs
∂x2

= 0, (4.32)

ηθg
∂

∂x

(
θs
∂

∂x
(θgV )

)
+ θs

∂

∂x

(
θg

∂

∂x
(θsV )

)
− αθsθgV − βθsθg

∂

∂x
(fs − fg) = 0, (4.33)

∂

∂x
fH + λ cos(φ)− µ sin(φ) = 0, (4.34)
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for x ∈ [0, 1] with constraints∫ 1

0
sin(φ)dx =

∫ 1

0
cos(φ)dx = 0, (4.35)

φ(0)− φ(1) = 2π, (4.36)

and θs, θg, and V periodic on [0, 1]. The nondimensional parameters in equation 4.33

are given by η = ηs/ηg, α = ξL2/ηg, and β = KbTL/(ηgv
0ν). A fourth nondimensional

parameter, υ = ν/L2, appears inside the free energy density.

4.3.2 Linear Stability Analysis

One steady state of the system 4.31–4.36 is given by θs = θ0 = constant, θg = 1 − θ0,

V = 0, φ = 2πx, λ = 0, and µ = 0. We wish to explore the stability of this steady state.

We suppose

θs = θ0 + γθ1(x, t), (4.37)

θg = 1− θ0 − γθ1(x, t), (4.38)

V = γV1(x, t), (4.39)

φ = 2πx+ γφ1(x, t), (4.40)

λ = γλ1, (4.41)

µ = γµ1, (4.42)

where γ is a small paramter. We substitute into the system 4.31–4.36, and keep terms that

are linear in γ. This yields

∂θ1

∂t
+ θ0(1− θ0)

∂V1

∂x
− ε∂

2θ1

∂x2
= 0, (4.43)

[η(1− θ0) + θ0]
∂2V1

∂x2
− αV1

−β
[
(fss0 + fgg0 − 2fsg0)

∂θ1

∂x
+ (fsH0 − fgH0)

∂2φ1

∂x2

]
= 0,

(4.44)

fHH0

∂2φ1

∂x2
+ (fsH0 − fgH0)

∂θ1

∂x
+
λ1 + iµ1

2
e2πix +

λ1 − iµ1

2
e−2πix = 0, (4.45)∫ 1

0
φ1

(
e2πix + e−2πix

)
dx = 0, (4.46)∫ 1

0
φ1

(
e2πix − e−2πix

)
dx = 0, (4.47)

φ1(1)− φ1(0) = 0, (4.48)

where the sine and cosine terms have been replaced with complex exponentials and the

notation fsH0 indicates a mixed partial derivative with respect to θs and with respect to
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the curvature φx and evaluated at the steady state values.

We now express all functions as series using complex exponentials:

θ1(x, t) =
∑
k

θ̂ke
ωkte2πikx, (4.49)

V1(x, t) =
∑
k

V̂ke
ωkte2πikx, (4.50)

φ1(x, t) =
∑
k

φ̂ke
ωkte2πikx, (4.51)

where the terms with hats are the constant expansion coefficients. Note that the Lagrange

multipliers mey take on different values for each wavenumber k.

Consider the result of substituting the kth term into the linearize system. The constraint

equations 4.46–4.47 are satisfied by orthogonality for all k 6= 1. Since the Lagrange multi-

pliers are introduced to guarantee that the constraint equations are satisfed, we can choose

λk = µk = 0 for k 6= 1.

For k = 1, the only way the constraints are satisfied is if φ̂1 = 0. In this case, we choose

λ1 = iµ1 with λ1 = (2πik) (fsH0 − fgH0) θ̂ke
ωkt to satisfy the shape equation. We now have

a system of two equations in two unknows. Since we are interested in the interplay between

shape and phase separation, we consider modes k > 1 where shape and phase separation

are coupled. We have the system of three equations in three unknowns for each k:(
ωk + (2πk)2ε

)
θ̂k + (2πik)θ0(1− θ0)V̂k = 0, (4.52)

−(2πik)β(fss0 + fgg0 − 2fsg0)θ̂k

−
[
(2πk)2(η(1− θ0) + θ0) + α

]
V̂k + (2πk)2β(fsH0 − fgH0)φ̂k = 0,

(4.53)

(2πik) (fsH0 − fgH0) θ̂k − (2πk)2fHH0 φ̂k = 0. (4.54)

This system can be expressed as the matrix equation Mx = 0, where x = (θ̂k, V̂k, φ̂k)
T .

The matrix equation is only true for nonzero x when the determinant of M is zero. We

solve det(M) = 0 for ωk and find the following dispersion relationship:

ωk = −B
A

(fss0 + fgg0 − 2fsg0) +
B

A

(fsH0 − fgH0)2

fHH0

− (2πk)2 ε, (4.55)

where

B = (2πk)2βθ0(1− θ0), (4.56)

and

A = (2πk)2(η(1− θ0) + θ0) + α. (4.57)



65

The dispersion relationship 4.55 is very similar to the dispersion relationship for the

Monge parametrization, equation 3.50. The first term describes the inherent tendency to

phase separate when the interactions parameter χ is greater than 2.

The second term describes curvature-induced phase separation. Since the Helfrich

bending energy is a quadratic function of curvature, fHH0 > 0, and this second term

is always nonnegative. It destabilizes the steady state when fsH0 and fgH0 are different.

This occurs when the two phases have different bending moduli or spontaneous curvatures.

Since sphingolipids and glycerolipids have different biophysical properties, we expect that

curvature in a golgi cisterna would serve to destabilize the steady state. Specifically,

curvature can destabilize the steady state under situations where phase separation would

not normally occur. For example, if χ is slightly less than two, curvature can cause the

system to go unstable, as has been observed experimentally in [61].

The third term in the equation 4.55 describes the effect of diffusion. Notice that this

term looks very similar to the term arising from the Cahn–Hilliard penalty terms in the

Monge parametrization. It is always negative and increases in magnitude as the wavenumber

increases. Thus, diffusion serves to stabilize high wavenumber perturbations. Further, this

damping of high wave numbers implies the existence of a most unstable mode. This most

unstable mode, corresponding to the largest value of ωk, is the fastest growing mode upon

random perturbation of the steady state and describes the patterns formed, at least initially

when the full system is well described by the linearized system.

4.3.3 Integration to See Phase Separated Solutions

While the linear stability analysis performed in Section 4.3.2 allows us to see when the

evenly mixed circular steady state will go unstable, it does not provide us with information

about whether the loss of stability corresponds to phase separation. In this section, we

show that the inclusion of diffusion in the continuity equation 4.32, in addition to ensuring

that solutions stay smooth, also allows us to see that phase separation actually occurs.

Written in conservation form, equation 4.32 is

∂θs
∂t

+
∂

∂x

(
θsθgV − ε

∂θs
∂x

)
= 0.

While ∂θs/∂t is clearly zero when V = 0 and θs = θ0, it is also zero when the flux, given

by θsθgV − ε∂θs/∂x, is zero. Assuming that the flux is zero, we have

V = ε
∂θs/∂x

θsθg
. (4.58)

Substituting this value into equation 4.33 and making use of equation 4.31 yields
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ε

[
(1− θs)

∂

∂x

(
θs
∂

∂x

(
∂θs/∂x

θs

))
+ θs

∂

∂x

(
(1− θs)

∂

∂x

(
∂θs/∂x

1− θs

))
− α∂θs

∂x

]
−θs(1− θs)

∂

∂x
(f ′(θs)) = 0. (4.59)

Note that we have replaced fs − fg with f ′(θs) where the prime indicates a derivative with

respect to θs, and f(θs) is the result of replacing θg with 1−θs in f(θs, θg). We can integrate

twice (with the second integration coming after multiplying each term by ∂θs/∂x) to yield

∂θs
∂x

=

±
(

2

ε

θs(1− θs)
η(1− θs) + θs

[εα(θs ln θs + (1− θs) ln(1− θs)) + βf(θs) + k1θs + k2]

) 1
2

,

(4.60)

where k1 and k2 are integration constants. Notice that for ε << 1, the right hand side of

equation 4.60 is very large except where εα(θs ln θs+(1−θs) ln(1−θs))+βf(θs)+k1θs+k2 = 0.

Thus where θs is not almost constant, it is either increasing or decreasing rapidly. This

behavior indicates a phase separated steady state solution where the discontinuities between

the two phases have been smoothed out by the diffusion.

4.4 Results

4.4.1 Numerical Implementation

To further explore the interplay between curvature and phase separation, we seek to

numerically simulate the system 4.31–4.36. All simulations are performed using the software

Matlab. We discretize the system using a finite volume method on a staggered grid as

described in [71]. We calculate θs and θg at cell centers, and V and φ at cell edges. We

calculate all spatial derivatives using centered differences. We implement the following

algorithm at each time point.

1. Solve the shape equation to find φ.

2. Solve the force balance equation to find V .

3. Step forward in time to find θs at the next time point.

4. Update θg = 1− θs.

We describe the details of steps one, two, and three of the algorithm in the following

paragraphs.

We solve shape equation 4.34 along with constraints 4.35 using a Newton method. We

discretize the shape equation and constraints using centered differences for the derivatives

and Riemann sums for the integrals. Without loss of generality, we assume that φ(0) = 0.

Note that the shape equation 4.34 only has unique solutions up to a constant because any
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shift in φ can be absorbed into the Lagrange multipliers λ and µ. Thus φ(0) is known

and φ(1) is chosen via equation 4.36, so the unknowns in the system are interior values of

φ, φx(0), λ, and µ. We iterate the discretized system until the error is sufficiently small and

then calculate φx from φ. This Newton iteration must occur at each time step, so we save

φ, φx(0), λ, and µ at each time step to be used as starting guesses in the subsequent step.

In addition to providing φx for the free energy density used in the force balance equation,

the function φ(x) resulting from the Newton iteration also allows us to visualize the shape

corresponding to the minimum free energy. We define

p(x) =

∫ x

0
sin(φ(x′))dx′, (4.61)

q(x) =

∫ x

0
cos(φ(x′))dx′. (4.62)

Plotting p(x) vs q(x) gives the shape corresponding to the minimum free energy for given

θs and θg.

Once the shape has been calculated, we can solve the force balance equation 4.33. In

discretizing the variable coefficient Laplacian, the centered differences require θs and θg

at cell edges. We calculate these values using linear interpolation of the two adjacent

cell-center values. Discretization of the force balance equation 4.33 results in a largely

tridiagonal system where the only off-diagonal terms are those resulting from periodicity.

We use the Matlab function mldivide (the backslash operator) to solve this matrix system.

The continuity equation 4.32 requires simulating an advection-diffusion equation. We

implement the advection term using first order upwinding and the diffusion term using either

Crank–Nicolson or backward Euler [38]. We choose the time step adaptively following the

method implemented in [71]. We repeat the algorithm until a steady state is reached.

4.4.2 Numerical Results

We saw analytical evidence in Section 4.3.2 that the the system can phase separate

both in the presence and absence of curvature. In Figure 4.2, we show phase separation

of the system in the situation where κs = κg = 0. The phase separation in this case is

driven completely by the homogeneous free energy density. Further, since fH = 0, the

shape equation is identically zero, so the phase separation does not affect the shape of the

cisterna. Figure 4.2a shows snapshots in time of an initial θs distribution taken to be a small

cosine perturbation of θs = 0.5. The parameters are chosen to be η = α = β = 1, ε = 10−7,

and χ = 2.5 so that f(θs) is a double well potential as is shown in Figure 4.2b.

The more interesting cases arise when curvature is included. There, local membrane
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Figure 4.2. Phase separation in the absence of curvature. Parameters values are
η = α = β = 1, ε = 10−7, and χ = 2.5. a) Snapshots in time of an initial θs distribution
of 0.5(1 + 0.1 cos(4πx)). b) The double well free energy density responsible for the phase
separation.

shape influences the dynamic behavior of the lipids. With the inclusion of curvature,

it is possible to induce phase separation under situations where it would not happen

otherwise. This can happen because the different phases have different bending moduli,

different spontaneous curvature, or both. In Figure 4.3 we show phase separation caused

by one of the phases being stiffer than the other. Here, we have used parameter values

η = α = β = 1, υ = 10−3, ε = 10−5, χ = 1.9, κs = 5, κg = 1, and Cs = Cg = 0. Sphingolipids

preferentially associate with cholesterol and form thicker bilayers than glycerolopids [28].

For this reason, we assume that sphingolipids are more resistant to curvature. Figure 4.3a

shows snapshots in time of the same initial θs distribution as Figure 4.2. Note that χ < 2, so

we see that the phase separation is indeed caused by curvature effects. Notice further that

phase separation does not occur symmetrically under these conditions. Rather, long regions

of relatively large θs develop, separated by short regions of very low θs. In Figure 4.3b, we

have plotted the final shape of the cisterna with an overlaid heat map indicating regions of

high and low sphingolipid volume fraction. We see that the regions of high θs correspond

to areas of low curvature, while the regions of low θs correspond to areas of high curvature.

Curvature induced phase separation can also be caused by the different phases having

different spontaneous curvature. In Figure 4.4a we have used κs = κg = 1, Cs = −15,

and Cg = 15 and all other parameters the same as Figure 4.3. Figure 4.4b has κs = 2,
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Figure 4.3. Phase separation caused by different bending moduli. Parameter values are
η = α = β = 1, υ = 10−3, ε = 10−5, χ = 1.9, κs = 5, κg = 1, and Cs = Cg = 0. a) Snapshots
in time of an initial θs distribution of 0.5(1 + 0.1 cos(4πx)). b) The resulting shape of the
cisterna with a heat map overlaid to indicate areas of high θs.
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Figure 4.4. Phase separation caused by different spontaneous curvatures. Both shapes
result from an initial θs distribution of 0.5(1 + 0.1 cos(4πx)). All unspecified parameter
values are the same as in Figure 4.3. a) Cisternal shape when κs = κg = 1, Cs = −15, and
Cg = 15. b) Cisternal shape when κs = 2, κg = 1, Cs = −15, and Cg = 15.
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κg = 1, Cs = −15, and Cg = 15. Notice how the combination of different bending moduli

and spontaneous curvatatures can result in interesting shapes.

We should note that elongated elliptical shapes as shown in Figure 4.4 are not the only

possible shapes produced by the model. Rather, the final pattern resulting from phase

separation may depend on the initial perturbation. We see this in Figure 4.5. Each shape

in the figure corresponds to a different wavenumber cosine perturbation of θs = 0.5.

A more relevent consideration than what happens to a specific wavenumber perturbation

is whether a dominant pattern emerges from a random initial perturbation in the volume

fraction. Recall from Section 4.3.2 that the diffusion term in the dispersion relationship

given in equation 4.55 damps out high wave numbers, so there exists a most unstable mode.

We expect that this mode will dominate the pattern formation in the linear system and will

likely also have a dominant effect on the patterns formed in the full nonlinear system. This

phenomenon is explored in Figure 4.6. We choose the parameter values χ = 1.5, κs = 5,

κg = 1, Cs = −5, Cg = 1, ε = 10−3.5, υ = 0.001, and η = α = β = 1 so that the k = 2, 3,

and 4 modes are unstable, while all higher modes are stable as shown in Figure 4.6a. The

initial θs distribition is taken to be

a) b)

c) d)
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Figure 4.5. Various shapes depending on the initial θs distribution. In this figure,
κs = 5, κg = 1, Cs = −4, Cg = 0, χ = 1.9, and all the other paramaters are the same as Fig-
ure 4.3. Each shape corresponds to a different initial condition: a) θs = 0.5(1+0.1 cos(6πx)).
b) θs = 0.5(1 + 0.1 cos(8πx)). c) θs = 0.5(1 + 0.1 cos(10πx)). d) θs = 0.5(1 + 0.1 cos(12πx)).
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Figure 4.6. Phase separation of a random perturbation. Parameter values are
χ = 1.5, κs = 5, κg = 1, Cs = −5, Cg = 1, and ε = 10−3.5. All other parameter values
are the same as Figure 4.3. a) The dispersion relationship plotted as a function of k. b) The
initial θs perturbation. c) The final θs distribution after phase separation. d) The final
shape of the cisterna with overlaid θs values.

θs = 0.5 +
100∑
k=1

0.01r (cos(2πkx) + sin(2πkx)) , (4.63)

where r is a random number drawn from a normal distribution that has been truncated

between −10 and 10. One such random distribution is shown in Figure 4.6b. Since the

k = 2, 3, and 4 modes are the only unstable modes, we expect them to dominate the

pattern formation, with the k = 2 mode dominating most often because it is the largest.

This intuition is born out in simulations. Figure 4.6c shows the final θs distribution, and

Figure 4.6d the final shape corresponding to the initially random distribution given in

Figure 4.6b. Notice how the final distribution looks like a k = 2 mode, and the final shape

given in Figure 4.6d has the ellipsoidal shape we have seen in other figures.

In the previous paragraphs, we have been exploring the interplay between curvature and

phase separation. In reality, while the shape of a cisterna may be influenced by the lipids in

the membrane, it is likely determined at least in part by interactions with the cytoskeleton

[67]. That leads to the question of whether an imposed membrane shape can induce phase

separation in the model. This behavior is demonstrated in Figure 4.7. Here, φ(x) is imposed

to be 6.28 − 6.279 tanh(1/.1 sin(4π(x − 1/8))) at each time step. This strange functional
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Figure 4.7. Phase separation under imposed curvature. Parameters values are
κs = κg = 1, Cs = 10, Cg = 0, χ = 1.8, ε = 10−7, and all others the same as Figure 4.3.
a) The initial distribution θs = 0.5. b) A snapshot early in the simulation of phase separation
beginning to occur. c) A snapshot later in the simulation. d) The final phase separated
state.

form corresponds to the elongated pill shape shown in the figure. The simulation is started

with a constant initial condition, θs = 0.5, and snapshots are taken in time. We see as time

progressed from a) to d) that the imposed curvature is able to induce phase separation in an

initially homogeneous membrane. While phase separation here is caused by the two phases

having different spontaneous curvature, it can also be caused by the two phases having

different bending moduli (not shown). This situation of imposed curvature causing phase

separation is similar to the experimental results discussed in [26], where the introduction

of a membrane tubule induces phase separation. We note that this phenomenon has been

modeled in [31]. Unlike the current model, the model in [31] is purely a steady state model

with no dynamics.



CHAPTER 5

LIPID ASYMMETRY AND FLIP-FLOP

It has long been known that the lipids in biological membranes are distributed asymmet-

rically between different leaflets of the lipid bilayer [64]. Classical experiments showed that

lipid motion is rapid within a bilayer leaflet, but that flip-flop between leaflets is slow and

occurs with a half time on the order of hours [45]. Given this paradigm, it has been assumed

that lipid flip-flop and the maintenance of transbilayer asymmetry is a protein-mediated

process [35]. However, experiments done in the Conboy lab at the University of Utah

have cast doubt on this reigning paradigm, finding that flip-flop can occur on a much

faster time scale under physiological conditions [40]. The older experiments were done by

modifying the head group of a lipid in order to visualize asymmetry, a process that could

clearly affect the dynamics of lipid flip-flop. The newer experiments were done using a

method called sum frequency vibrational spectroscopy (SFVS) on planar supported lipid

bilayers (PSLBs) [41]. Briefly, the method involves making a bilayer with asymmetric

leaflets by using deuterated lipids to create one of the leaflets and regular lipids to create

the other leaflet. The two leaflets are combined to create an asymmetric PSLB. (See [1]

for a description of the method). The method of SFVS is used to visualize the loss of

asymmetry and thereby characterize the rate of lipid flip-flop. Briefy, two lasers of different

wavelength are focused on the PSLB. The wavelength of one of the lasers is varied so

that the magnitude of the measured signal strength changes depending on the vibrational

frequencies of different molecular configurations. The method is useful because destructive

interference causes symmetric bilayers to yield no signal while asymmetric bilayers yield

a signal. Thus the experimenter can use the decay of signal intensity to characterize the

loss of asymmetry caused by lipid flip-flop. (See [41] for a description of the method.) Not

only have experiments shown faster flip-flop, the experimenters have used the method with

modified lipid head groups to reproduce the slow rates of flip-flop seen previously [41].
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5.1 Lipid Flip-Flop as an Inducer of Curvature

5.1.1 Model Motivation and Description

Building on the idea that lipids may be able to transition quickly between leaflets of the

bilayer, we seek to explore the interplay between lipid flip-flop and membrane curvature.

The motivation comes from considering vesicle formation in the multivesicular body (MVB).

The MVB is an organelle in the endocytic pathway where proteins are tagged and sorted

either towards degradation in the lysosome or towards transport and reuse in other parts

of the cell [30]. This process of sorting proteins into intralumenal vesicals (ILVs) is largely

controlled by endosomal sorting complexes required for transport (ESCRT proteins), but

there remain questions as to the exact mechanisms of vesicle formation [4]. Though ESCRTs

seem to be important in most situations, there are certain situations where ILVs form in

the absence of ESCRT proteins [44, 62], leading to the hypothesis that vesicle budding in

the MVB may be largely controlled by lipid dynamics [4]. We develop a simple stochastic

model to explore this hypothesis.

We suppose we have a lipid bilayer with two leaflets, each with the thickness given by d

so that the bilayer has a thickness of 2d. We suppose further that the section of the bilayer

we are considering has a total of N lipids, n of which are part of the inner leaflet and N −n

of which are part of the outer leaflet. We view the system as a discrete Markov process

on n as shown in Figure 5.1. Let pn(t) be the probability that there are n lipids in the

inner leaflet at time t. Let αi be the transition rate from n = i to n = i+ 1 and βi be the

transition rate from n = i to n = i− 1. This yields the master equation

dpi
dt

= αi−1pi−1 + βi+1pi+1 − (αi + βi)pi, (5.1)

for i = 1, 2, · · · , N − 1, and

dp0

dt
= −α0p0 + β1p1, (5.2)

dpN
dt

= αN−1pN−1 − βNpN . (5.3)

i+1

. . . . . .
n=0 1 2

β

α
0

α
1

β
1 2

α α
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β
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N

i−1 i

i−1 i i+1

β
i

Figure 5.1. Markov chain describing flip-flop.
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Using the fact that probabilities add to 1, the master equation is solved at steady state to

yield

p0 =
1

1 +
∑N

n=1 Πn
i=1

αi−1

βi

, (5.4)

pn = p0Πn
i=1

αi−1

βi
, for n = 1, 2, · · · , N. (5.5)

Suppose there is an energy En associated with state n and that there is an energy barrier

between states as shown in Figure 5.2. Let An be the energy barrier for transitions from

state n to state n+1 and A−n be the energy barrier for transitions from state n+1 to state

n. Define ∆En = En+1 − En. We assume that transitions follow Arrhenius-type behavior

and take the transition rates to be

αn = γ exp

(
−An
kbT

)
, (5.6)

βn = γ exp

(
−A−n
kbT

)
, (5.7)

where kb is Boltzmannn’s constant, T is absolute temperature, and γ is a constant. Using

these transition rates, the steady state probabilities become

pn =
exp

(
−En
kbT

)
∑N

n=0 exp
(
−En
kbT

) (5.8)

for n = 0, 1, 2, · · · , N . This is exactly the Boltzmannn distribution.

En

An A
−(n+1)

En+1

−∆E n

Figure 5.2. Schematic drawing of an energy landscape. En is the energy of state n,An
is the activation energy for transitions from state n to state n + 1, A−n is the activation
energy for transitions from state n to state n− 1, and ∆En = En+1 − En.
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5.1.2 Energy from Curvature

To investigate the interaction between lipid flip-flop and membrane curvature, we desire

a form of En that depends on curvature. We derive this form using a spherical cap

approximation as shown in Figure 5.3. Assume that the two opposite faces of the bilayer

are maintained at a constant separation 2d. Thus, area differences between the two leaflets

in the bilayer impose a curvature on the membrane. Using the spherical cap approximation,

it is relatively easy to derive a formula for the curvature of the sperical cap. We denote the

curvature c = 1/r where r is the radius of the midline of the membrane. We find that

c =
1

d

√
Aout −

√
Ain√

Aout +
√
Ain

(5.9)

where Aout is the area of the outer leaflet, Ain is the area of the inner leaflet, and d is the

thickness of each leaflet. The area of the midline is given by

Amid =

(√
Aout +

√
Ain

2

)2

. (5.10)

To express the energy in terms of our stochastic variable n, we suppose that each lipid

head group has cross-sectional area a. Then the area of the inner and outer leaflets are

given by Ain = na and Aout = (N − n)a. For the energy, we follow the Helfrich model [27].

Recall that the Helfrich model gives the bending energy per unit area

Eb =
κb
2

(2H − c0)2 + κgK, (5.11)

where H is the mean curvature, K is the Gaussian curvature, κb is the bending modulus, κg

is the Gaussian bending modulus, and c0 is the spontaneous curvature. For a spherical cap,

H = 1/r. The Gauss–Bonnet theorem states that the integral of the Guassian curvature

mid

in

Aout

A

Cytosol

MVB

θ
r

Figure 5.3. Schematic drawing of a spherical cap budding into the MVB.
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over a surface stays constant if the surface does not change topology, so the Gaussian

curvature enters into the energy as an additive constant, and we can neglect it. We further

assume that c0 = 0, meaning that the preferred state of the membrane is flat. This yields

the bending energy for state n

Eb =
2κb
d2

(Amid)

(√
N − n−

√
n√

N − n+
√
n

)2

=
κba

2d2
(
√
N − n−

√
n)2.

(5.12)

We use a lattice model as described in section 2.6.2 to calculate the energetic contribution

from entropy to be

Eent = kbT

[
n ln

( n
N

)
+ (N − n) ln

(
N − n
N

)]
. (5.13)

This yields a free energy for state n,

En =
κba

2d2
(
√
N − n−

√
n)2 + kbT

[
n ln

( n
N

)
+ (N − n) ln

(
N − n
N

)]
. (5.14)

For given parameter values, we can use equation 5.8 to visualize the probability dis-

tribution for n where En comes from equation 5.14. Since each n corresponds to a given

curvature, we can also visualize the probability distribution for c. We use κb = 20kbT ,

d = 2 nm, and a = 40Å2, numbers that are fairly standard based on the literature

[43, 1, 74]. A weakness in this model formulation comes in choosing a reasonable value for

N . The value chosen essentially reflects the ratio between bending resistence in the bilayer

and compression resistance in the lipids making the bilayer. If bending resistance is much

larger than compression resistance, a flip of one lipid will cause a very small change in

curvature, and N should be taken to be large. On the other hand, if the bending resistance

is much smaller than the compression resistance, a flip of one lipid will cause a large change

in curvature, and N should be taken to be small. For visualization purposes, we use the fact

that a typical ILV has a diameter of 25–50 nm [30]. This yields a value of approximately

2500 lipids per leaflet, so we choose N to be 5000. The resulting probability distribution is

shown in Figure 5.4. Note that a spherical vesicle of radius 25 nm has curvature 4×107m−1.

We can see from Figure 5.4 that the probability of spontaneously forming a vesicle of this

radius through flip-flop is virtually zero. For larger and smaller values of N , the probability

distribution is more or less sharply peaked around c = 0 as we would expect.
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Figure 5.4. Probability density function for curvature. Parameter values are
κb = 10kbT, d = 2 nm, a = 50Å2, and N = 5000.

5.1.3 Mean First Passage Time

Though a complete vesicle is unlikely to form simply from membrane fluctuations caused

by lipid flip-flop, it is interesting to ask how long on average one must wait before a

specific curvature is realized. It has been hypothesized that ESCRT III, the protein largely

responsible for vesicle fission, may be able to detect and stabilize negative membrane

curvature [4]. This could help explain ESCRT III’s involvement in ILV budding in certain

protazoa that lack the earlier ESCRT machinery and its involvement in HIV budding. We

would like to calculate the average time it takes for an initially flat membrane to achieve a

given curvature.

Because our system is a temporally homogeneous Markov process (the transition rates

do not depend explicitly on time), we can follow the method presented in [22] to find an

analytic expression for the mean first passage time. The average time it takes for a system

starting at n = n0 to first arrive at n = n1 is given by

T1(n0 → n1) =

n1−1∑
m=n0

eφ(m)
m∑
n=0

e−φ(n)

αn
, (5.15)

where

φ(n) =

{
0 for n = 0∑n

j=1 ln
(
βj
αj

)
for n ≥ 1.

(5.16)
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In order to use equations 5.15–5.16, we need explicit formulas for αn and βn. In general,

αn and βn are given by equations 5.6–5.7. We suppose that An = A∗ + (1/2)∆En and

A−(n+1) = A∗ − (1/2)∆En. Then An − A−(n+1) = −∆En as shown in Figure 5.2, and we

still recover the correct Boltzmannn behavior at steady state. This gives

αn = γ exp

(
−A∗

kbT

)
exp

(
−∆En
2kbT

)
, (5.17)

βn = γ exp

(
−A∗

kbT

)
exp

(
∆En−1

2kbT

)
. (5.18)

The energy independent flip rate has been measured experimentally by the Conboy lab [41],

allowing us to take γ exp(−A∗/(kbT )) as a known quantity. We assume that the bilayer is

initially flat with n0 = N/2 and calculate the mean first passage time to n1. We assume the

n is the number of lipids on the MVB lumenal leaflet of the membrane and choose n1 > N/2

so that the bud is forming into the lumen of the MVB. We choose values of n1 and calculate

the mean first passage time to that value. The results are shown in Table 5.1 where we

used the literature value γ exp(A∗/kbT ) = 200×10−5s−1 and other parameters as described

in Figure 5.4. As we can see from the table, it takes hours on average for one lipid to flip

from the outer to the inner leaflet. It takes over a day on average for 10 lipids to flip from

the outer to the inner leaflet. This allows us to conclude that even for the faster flip rate

measured by the Conboy lab, lipid flip-flop is not expected to be a significant inducer of

curvature and spontaneous vesicle formation in the MVB. The researchers do mention that

the experiments were conducted with lipids 5 ◦C below their melting temperature and that

lipids in biological membranes are usually in the liquid phase [41], so it is quite possible

that the native flip-flop rate used here is slower than the physiological rate. In order for

the process described above to take place on physiologically relevant time scales, though,

the flip rate would have to be orders of magnitude faster than the one described here. It

remains to be seen whether the physiological flip rate meets this criterion. It is also not

known what curvature ESCRT III prefers to bind and stabilize. Having better data on

these biological questions will allow us to say more definitively whether flip-flop might be

significant in the MVB.

5.2 Electrostatic Induction of Lipid Asymmetry

5.2.1 Model Motivation and Description

In addition to showing the lipid flip-flop may be faster than previously assumed, re-

searchers in the Conboy lab showed that electrostatic interactions can maintain bilayer

asymmetry [8]. Other research on vesicle budding in the multivesicular body showed that
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Table 5.1. Mean first passage time starting from n0 = N/2.
n1 N curvature time (hours)

n0+1
1000
5000
10000

5× 105

1× 105

5× 104

2.02
4.42
6.22

n0+10
1000
5000
10000

5× 106

1×106

5× 105

30.4
51.8
69.4

vesicles can form in the absence of proteins, but only in the presence of a specific negatively

charged lipid and a strong pH gradient [44]. We wondered whether the significance of the

pH gradient lay in some ability to maintain an asymmetric distribution of charged lipids

across the membrane. The following model uses the Poisson–Boltzmann equation to address

this question.

We assume that we have an infinite flat lipid bilayer of thickness 2d in an electrolyte

bath. Instead of assuming the all lipids are the same as we did in the previous model, we

assume the lipids are either neutral or negatively charged. The negative charges are located

at spatial locations x = ±d and have charge density (charged particles/area) CL at x = −d

and CR at x = d. We assume that there are no charges for |x| < d and that there is an

infinite electrolyte bath for |x| > d. In the bath, there are positively charged sodium ions

with concentration n, positively charged hydrogen ions with concentration h, and negatively

charged chloride ions with concentration c. We assume that h → HL, n → NaL, and

c→ ClL as x→ −∞ and h→ HR, n→ NaR, and c→ ClR as x→∞. We further assume

that the electrostatic potential φ → 0 as x → ±∞. Finally, we assume electroneutrality

far from the membrane so that NaL + HL = ClL and NaR + HR = ClR. A schematic

description of the model setup is shown in Figure 5.5.

5.2.1.1 Bath Equations

In the electrolyte bath, we use the steady state Nernst–Planck equation to describe the

concentration of each electrolyte [34]. The Nernst–Planck equation states that ion flux is

caused by concentration gradients and gradients in the chemical potential. We assume zero

flux, yielding

dh

dx
+

F

RT
h
dφ

dx
= 0, (5.19)

dn

dx
+

F

RT
n
dφ

dx
= 0, (5.20)

dc

dx
− F

RT
c
dφ

dx
= 0, (5.21)
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φ=0

L
C

R

c=Cl
R

c=Cl
L

L
h=H

n=Na
R

h=H
R

n=Na
L

x=0

x=−d x=d

φ=0

C

Figure 5.5. Schematic drawing of an infinite bilayer containing charged lipids. The
bilayer is sitting in an electrolyte bath. CL and CR are the charge densities of negatively
charged lipid head groups one the surfaces of the left and right leaflets, respectively. n
is sodium concentration, h is hydrogen concentration, and c is chloride concentration. All
concentrations approach the given limiting values as |x| → ∞. φ is the electrostatic potential
caused by the charged particles.

where F is Faraday’s constant, R is the universal gas constant, and T is the absolute

temperature. Note that the charge on hydrogen and sodium is +1 and the charge on

chlorine is −1. Using the boundary conditions at x = ±∞, we find that

h = HR,L exp

(
−F
RT

φ

)
, (5.22)

n = NaR,L exp

(
−F
RT

φ

)
, (5.23)

c = ClR,L exp

(
F

RT
φ

)
, (5.24)

where the R subscript is taken for x > d and the L subscript is taken for x < −d.

To get an equation for the electrostatic potential φ, we use Guass’ law, which states

that the electric flux through the boundary of a region is equal to the sum of the charges

inside the region. In the bath, this gives Poisson’s equation

d2φ

dx2
=

qNa

ε0Dw
(c− h− n), (5.25)

where q is the charge on an electron, ε0 is the permittivity of a vacuum, and Dw is the

dialectric constant of water. Using equations 5.22–5.24 and the fact that NaR,L +HR,L =

ClR,L, we have the Poisson Boltzmannn equation

d2φ

dx2
=

2qNaClL
ε0Dw

sinh

(
F

RT
φ

)
, (5.26)

for x < −d and
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d2φ

dx2
=

2qNaClR
ε0Dw

sinh

(
F

RT
φ

)
, (5.27)

for x > d.

Under conditions that F
RT φ� 1, sinh

(
F
RT φ

)
≈ F

RT φ. Define

κ2
L = 2qNaFClL/(ε0DwRT ), (5.28)

κ2
R = 2qNaFClR/(ε0DwRT ). (5.29)

The expression 1/κi for i = L,R has units of length and is called the Debye length. Solving

the linearized forms of 5.26–5.27 and making use of boundary conditions as x→ ±∞ yields

φ(x) = φ(−d) exp(κL(x+ d)), (5.30)

for x < −d, and

φ(x) = φ(d) exp(κR(d− x)), (5.31)

for x > d, where φ(−d) and φ(d) are the (so far) unknown values of φ at the two faces of

the membrane.

5.2.1.2 Lipid Equations

Inside the lipid bilayer (for |x| < d), we assume that h = n = c = 0. To find equations

for φ, we use the integral form of Gauss’ law, which for an infinite sheet is given by

A

∫ xf

x0

d

dx

(
D(x)

dφ

dx

)
dx = −A

∫ xf

x0

zq

ε0
ρ(x)dx, (5.32)

where A is some arbitrary cross-sectional area, D(x) is the space dependent dialectric

constant of the medium, z is the valence of the charged particle, and ρ(x) is the charge

density. We use equation 5.32 and integrate across the left leaflet from x = −d− to x = −d+.

The right hand side of 5.32 is the enclosed charge and is given by AqCL/ε0. At x = −d−,

we are in the bath with dialectric constant Dw, and at x = −d+, we are in the lipid with

dialectric constant Dl. Thus, using 5.32 across the left leaflet yields

Dlφx(−d+)−Dwφx(−d−) =
qCL
ε0

, (5.33)

where φx indicates a first derivative with respect to x. Similarly, using equation 5.32 across

the right leaflet yields

Dwφx(d+)−Dlφx(d−) =
qCR
ε0

. (5.34)

Since the electric field E is defined via E = −∇φ, and we expect E to remain finite as
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long as charge density remains finite, it follows that φ(x) is continuous everywhere. Thus

φ(−d−) = φ(−d+) = φ(−d) and φ(d−) = φ(d+) = φ(d). Further, since there are no charges

inside the membrane and D(x) = Dl is constant, we have d2φ/dx2 = 0 for |x| < d. This

yields the relationship

φx(−d+) = φx(d−) =
φ(d)− φ(−d)

2d
. (5.35)

Finally, using equations 5.30–5.31, we have

φx(−d−) = κLφ(−d) (5.36)

and

φx(d+) = −κRφ(d). (5.37)

The system of equations 5.33–5.37 can be solved to yield

φ(−d) =
−qdC0

ε0Dw

[
Dl(ĈL + ĈR) + 2dDwκRĈL
dDl(κL + κR) + 2d2DwκLκR

]
, (5.38)

φ(d) =
−qdC0

ε0Dw

[
Dl(ĈL + ĈR) + 2dDwκLĈR
dDl(κL + κR) + 2d2DwκLκR

]
. (5.39)

where ĈL = CL/C0 and ĈR = CR/C0 are nondimensional charge densities, making the

terms in brackets nondimensional. Using equations 5.22–5.24, 5.30–5.31, and 5.38–5.39, the

system is fully determined for given input parameters HL,R, NaL,R, ĈL,R and C0.

5.2.2 Electrostatic Free Energy and Lipid Asymmetry

Given a volume V with charge density ρ and electrostatic potiential φ, the electrostatic

free energy is given by [14]

Gel =
1

2

∫
V
ρφdV. (5.40)

In our situation, ρ is given by qNa(h+n−c), which is−2qNaClL,R sinh(Fφ/(RT )) depending

on whether x < −d or x > d. Using the same linear approximation for the hyperbolic sine

that we used earlier, we have

Gel =
A

2

[∫ −d
−∞
−ε0Dwκ

2
L(φ(x))2dx+

∫ ∞
d
−ε0Dwκ

2
R(φ(x))2dx

−qC0(ĈLφ(−d) + ĈRφ(d))
]
,

(5.41)

where A is the area of one leaflet of the membrane. We solve equation 5.41 to yield

Gel =
−Aq2dC2

0

4ε0Dw

[
dκL(φ̂(−d))2 + dκR(φ̂(d))2 − 2(ĈLφ̂(−d) + ĈRφ̂(d))

]
, (5.42)



84

where φ̂(−d) and φ̂(d) are the nondimensional potentials (bracketed terms) from equa-

tions 5.38–5.39. Thus the bracketed term above is a nondimensional free energy.

To explore whether pH gradients can maintain an asymmetric distribution of charged

lipids, we suppose that HL,R and NaL,R are given. We assume that CL + CR = C0,

where C0 is some given maximal charge distribution. Then ĈL + ĈR = 1. We take C0 to

be 0.1/a0, where a0 is the area of one lipid head group, meaning that 10% of the lipids

making up the membrane are negatively charged. Under the assumption that lipids can

flip between leaflets of the bilayer, we numerically minimize the electrostatic free energy

given in equation 5.42 to find the steady state distribution of charged lipids. The results are

shown in Table 5.2 for NaL = NaR = 0.1M and various pH gradients. Other parameters

are d = 2nM and a0 = 40Å2. We use Dw = 80.4 as the dialectric constant of water, and

Dl = 2, the dialectric constant of oil, as the dialectric constant of the lipids. We can

see that with this bath electrolyte concentration, pH gradients have very little effect on

lipid asymmetry. The reason for this lack of pH dependence is clear. For these high bath

electrolyte concentrations, even large changes in pH correspond to relatively small changes

in the overall electrostatics of the system. Unfortunately, the linear assumption used to

simplify equations 5.26–5.27 is not valid for low bath electrolyte concentrations.

5.2.3 Nonlinear Poisson Boltzmann Formulation

For NaL,R and ClL,R small, it is not true that Fφ/(RT ) � 1. We must work with

equations 5.26–5.27 in their nonlinear form. By multiplying each side by dφ/dx and using

the conditions that φ and dφ/dx→ 0 and x→ ±∞, we can integrate once and find that

dφ

dx
= ±κL

(
RT

F

)√
2

(
cosh

(
F

RT
φ

)
− 1

)
, (5.43)

for x < −d, and

dφ

dx
= ±κR

(
RT

F

)√
2

(
cosh

(
F

RT
φ

)
− 1

)
, (5.44)

Table 5.2. Leaflet asymmetry imposed by various pH gradients. The sodium concentration
is taken to be 0.1M .

HL HR CL
10−7 10−7.4 0.5000
10−4 10−7.4 0.5001
10−3 10−7.4 0.5012
10−2 10−7.4 0.5119
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for x > d. Because the membrane charges are negative, we expect φ to be negative at

x = ±d. Thus, we choose the negative branch in equation 5.43 and the positive branch in

equation 5.44. We perform further algebra inside the square root to yield

dφ

dx
= −2κL

(
RT

F

) ∣∣∣∣sinh

(
F

2RT
φ

)∣∣∣∣ , (5.45)

for x < −d, and

dφ

dx
= 2κR

(
RT

F

) ∣∣∣∣sinh

(
F

2RT
φ

)∣∣∣∣ , (5.46)

for x > d. Because the lipid equations described in section 5.2.1.2 are not affected by the

nonlinear assumption, we can follow the same logic but use equations 5.45–5.46 instead of

5.36–5.37 to find the following pair of nonlinear equations for φ(−d) and φ(d) :

Dl(φ(d)− φ(−d))

2d
+DwκL

(
2RT

F

) ∣∣∣∣sinh

(
F

2RT
φ(d)

)∣∣∣∣ =
qC0ĈL
ε0

, (5.47)

−Dl(φ(d)− φ(−d))

2d
+DwκR

(
2RT

F

) ∣∣∣∣sinh

(
F

2RT
φ(−d)

)∣∣∣∣ =
qC0ĈR
ε0

. (5.48)

We solve the system 5.47–5.48 numerically and use the resulting values for φ(−d) and φ(d)

as boundary conditions to numerically integrate equations 5.45–5.46. We use the resulting

profiles for φ to calculate the electrostatic free energy

∆Gel =
A

2

[∫ −d
−∞
−2qNaClL sinh

(
F

RT
φ(x)

)
φ(x)dx

+

∫ ∞
d
−2qNaClR sinh

(
F

RT
φ(x)

)
φ(x)dx− qC0(ĈLφ(−d) + ĈRφ(d))

]
,

where the integrations are done numerically using the trapezoidal rule.

As expected, when bath electrolyte concentrations are high, the results from the non-

linear theory are very similar to the results from the linear theory. Even large pH gradients

cause very little asymmetry in the bilayer. As bath concentrations are lowered, however,

pH gradents have a more significant effect.

Figure 5.6 shows the electrostatic free energy plotted as a function of ĈL, the proportion

of negatively charged lipids in the left leaflet. The pH is 3 in the left bath and 7.4 in the right

bath. Notice that for large bath electrolyte concentrations, charged lipids are almost evenly

split between the two leaflets of the bilayer. As bath electrolyte concentrations decrease,

the minimum moves to the right. For salt bath concentrations of 0.1 mM, the minimum

energy corresponds to approximately 66.5% of the charged lipids in the left leaflet.

For a more realistic pH gradient of 5 on one side of the membrane and 7.4 on the other,

similar to the physiological pH gradient in the MVB [44], less than 51% of the charged lipids



86

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ĈL
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Figure 5.6. Energy ∆Gel plotted as a function of scaled ĈL. The blue, green, red, cyan,
magenta, and yellow curves correspond to NaL,R = 100mM, 10mM, 1mM, 0.5mM, 0.3mM,
and 0.1mM , respectively. The pH in the left bath is 3, and the pH in the right bath is 7.4.
All other parameters are the same as described previously.

are in the left leaflet, even at a bath electrolyte concentrations of 0.1mM, indicating that pH

gradients are not significant inducers of bilayer asymmetry under the conditions modeled.

It is likely that actual electrolyte concentrations in the MVB are higher than 0.1mM [52],

further emphasizing the idea that pH gradients are not major inducers of lipid asymmetry,

at least as described by the current model. The fact remains, however, that pH gradients

seem to be important in the formation of vesicles in the MVB body. The significance of

those gradients remains an interesting question in cellular physiology.

5.3 Conclusion

We developed and explored two models based on the idea that lipids may flip rapidly

between the two leaflets of the bilayer in a protein independent way. In the first model, we

found that though the model predicted a range of steady state curvatures, the waiting times

to transition from a flat membrane to a curved membrane corresponding to the initiation

of a vesicle are too long to be physiologically relevant, at least under the parameters used

from the literature. In the second model, we found that unless salt concentrations are very

low, pH gradients are not likely to be significant inducers of bilayer asymmetry.



CHAPTER 6

CONCLUSION

Biological membranes are important structural units in the cell. More than just serving

as barriers between different compartments inside the cell, membranes themselves behave

in interesting and dynamic ways that can affect cellular function. In this dissertation, we

have focused on two specific behaviors of membranes, the tangential flows of the lipids that

form the bilayer, and the flip-flop of lipids between leaflets in the bilayer.

In the majority of this dissertation, we worked to develop and analyze a two phase fluid

model of a membrane. Our main goal was to explore the interplay between membrane shape

and phase separation. While there have been experimental findings indicating the existence

of curvature-induced phase separation, there has been limited mathematical treatment of

the phenomenon. Through our model, we were able to explore situations, both in one

dimension and in two dimensions, under which curvature can cause phase separation. We

hypothesized that one specific situtation where curvature induced phase separation may be

important is in the proper functioning of the Golgi apparatus.

In the latter part of this dissertation, we briefly explored some of the implications of

facile lipid flip-flop between the two leaflets of the bilayer. We were specifically interested

in understanding some of the processes that may contribute to vesicle budding in the

multivesicular body. Though our explorations did not yield substantial information about

the processes of vesicle formation, we still find the experiments indicating more rapid flip-flop

to be compelling. The conventional belief is that flip-flop is a very slow process in the absence

of specific proteins, and it remains to be seen what implications rapid flip-flop may have on

the understanding of cellular processes.

6.1 Future Work

We believe the work presented in this dissertation to be substantial and original work

that serves to enhance our understanding of biological membranes. Even so, there always

remains more work that can be done. We conclude with several brief descriptions of ideas

for future work.
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In our derivation of the two phase fluid equations presented in Chapter 2, we included

viscosity of the membrane lipids, but neglected to take into account the fluid in which the

membrane is embedded. Many papers that model the flow of a single phase on a membrane

take into account the viscous nature of the ambient fluid [3, 10, 29, 46, 49, 53, 72]. Some even

neglect the membrane viscosity and only model the viscosity of the embedding fluid[46, 56].

In general, authors have modeled the ambient fluid as an incompressible Newtonian fluid.

They assume a no slip boundary between the ambient fluid and the surface fluid. Though

no slip does not make sense in the context of our two phase model, it may be reasonable

to include a drag term between the surface phases and the ambient fluid similar to the

drag term between the two phases. This inclusion of the ambient fluid is one relatively

obvious and interesting extension to the current model, which may serve to make it more

physiologically relevant.

Related to the issue of the ambient fluid is the issue of volume conservation. Our model

preserves the area of the membrane, but does not conserve the volume inside closed surfaces.

In other words, our membrane is permeable. Many of the interesting shapes resulting from

the study of the shape equation arise via the combination of conserved area and conserved

volume [57]. While we have chosen not to conserve volume in our formulation, it can likely

be done by means of a Lagrange multiplier. This would allow us to explore the effects of

volume conservation even without including the ambient fluid.

Another interesting extension of the two phase model is to include lipids with charged

head groups. Electrostatic repulsion could be included as another term in the free energy

density. This would enable electrostatic effects to enter naturally as new forcing terms

in the force balance equations. If desired, a second Lagrange multiplier could be used to

ensure charge neutrality, though this would likey require the inclusion of the ambient fluid

since there exist negatively charged, but no positively charged lipids. The work presented

in Chapter 5 regarding electrostatics could serve as a nice starting point in this exploration

of the effects of charged lipids. A biologically relevant question is whether phase separation

of charged lipids can serve as an initiator of vesicle bud formation or tubule formation.

A further use of the work presented in Chapter 5 could be to combine flip-flop with

the two phase model derived in Chapter 2 to serve as a basis for a fluid model describing

the bilayer nature of a membrane. This has been investiged to some extent in [50] and

[46], but only in the context of one lipid species. Our model describes the membrane as

a single surface, but the membrane is in fact made up of two surfaces maintained at an

approximately fixed distance apart. If lipids can truly undergo rapid flip-flop, the two
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surfaces actually exchange area with each other. This could have important impacts on the

shape of a bilayer.

An additional idea for future investigation involves the one-dimensional form of the full

model presented in Chapter 4. In that derivation we made the assumption that our closed

surface is actually a closed curve in the plane. While this assumption allowed us to greatly

simplify the system, it introduced a certain amount of ambiguity due to the fact that many

two-dimensional elements used to describe a surface do not have one-dimensional analogues.

We made the further assumption that shape equilibrates instantaneously so that the shape

is given by minimizing the free energy instead of balancing forces in the normal direction.

An alternative one-dimensional derivation is to assume that the two-dimensional surface is

cylindrically shaped, but uniform in one direction as shown in Figure 6.1. If we assume the

surface is uniform and infinite in the y direction, the shape is given by a simple closed curve

in the x–z plane. In this case, the two-dimensional elements such as the metric tensor and

curvature tensor are well defined even though the problem is essentially one-dimensional.

It would be interesting to see if the system resulting from this alternate derivation behaves

differently in any fundamental ways than the system explored in the current chapter.

A final extension of the current work involves the numerical simulation of the full two-

dimensional system. We were able to perform linear stability analysis of the equations,

but that analysis does not provide much information about the system at later times. A

functioning numerical simulation would allow us to explore the nonlinear dynamics of the

system as it phase separates and changes shape. We would be able to describe more fully

the behaviors of the two-dimensional system and the biological relevance of those behaviors.

x

z

y

Figure 6.1. Two-dimensional surface, uniform in one dimension.



APPENDIX A

CALCULATIONS TO SUPPLEMENT

CHAPTER 2

A.1 Time Derivatives of Geometric Quantities

We wish to calculate the time derivatives of various geometric quantities. Most of these

quantities are only needed in the surface fixed coordinates, though a few of them are needed

in both the surface fixed and general coordinates.

A.1.1 Surface-Fixed Coordinates

For the time derivative of the tangent vector, we have

∂

∂t
tα =

∂

∂t

∂

∂ξα
r

=
∂

∂ξα
∂r

∂t

=
∂

∂ξα
(Unn)

=
∂Un
∂ξα

n− Unbγαtγ ,

(A.1)

where we have used the fact that ∂r
∂t = Unn in surface-fixed coordinates. From there, it

follows that

∂

∂t
aαβ =

∂

∂t
tα · tβ + tα ·

∂

∂t
tβ

= (−Unbγαtγ) · tβ − tα · Unbγβtγ

= −Unbγαaγβ − Unb
γ
βaαγ

= −2Unbαβ,

(A.2)

where we have used the fact that tα and n are orthogonal and bαβ is symmetric.

To calculate the derivative of the square root of the metric, we use equation A.23. Thus

∂a

∂t
= aaαβ

∂

∂t
aαβ

= aaαβ(−2Unbαβ)

= −4aHUn.

(A.3)
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To calculate the time derivative of the inverse metric tensor, we use the fact that

aαλaλµ = δαµ . It follows that

∂

∂t
(aαλ)aλµ = −aαλ ∂

∂t
(aλµ)

⇒ ∂

∂t
(aαλ)aλµa

µβ = −aµβaαλ ∂
∂t

(aλµ)

⇒ ∂

∂t
(aαλ)δβλ = −aαλaβµ ∂

∂t
(aλµ)

⇒ ∂

∂t
(aαβ) = −aαλaβµ ∂

∂t
(aλµ)

⇒ ∂

∂t
(aαβ) = 2Unb

αβ.

(A.4)

Using n · tα = 0, we calculate the time derivative of the unit normal,

∂n

∂t
· tα = −n · ∂

∂t
tα

⇒ ∂n

∂t
· tα = −∂Un

∂uα

⇒ ∂n

∂t
= −aλµ∂Un

∂ξµ
tλ.

(A.5)

To calculate ∂
∂tbαβ, we use equation 2.8, which states ∂n

∂ξβ
= −bαβaαλtλ. We initially

focus on the derivatives of the left and right hand sides of the equation individually.

∂

∂t

∂n

∂ξβ
=

∂

∂ξβ
∂n

∂t

= − ∂

∂ξβ
(aλµ

∂Un
∂ξµ

tλ)

= (aλγΓµγβ + aγµΓλγβ)
∂Un
∂ξµ

tλ − aλµ
∂

∂ξβ
∂Un
∂ξµ

tλ − aλµ
∂Un
∂ξµ

(Γγβλtγ + bλβn)

= aλγΓµγβ
∂Un
∂ξµ

tλ − aλµ
∂

∂ξβ
∂Un
∂ξµ

tλ − aλµ
∂Un
∂ξµ

bλβn

= −aλµ
(

∂

∂ξβ
∂Un
∂ξµ

− ∂Un
∂ξγ

Γγµβ

)
tλ − aλµ

∂Un
∂ξµ

bλβn

= −aλµtλ∇β∇µUn − aλµ
∂Un
∂ξµ

bλβn,

(A.6)

where we have used equation A.38 for the partial derivative of the inverse metric tensor.

For the right hand side, we have

− ∂

∂t
(bαβa

αλtλ) = − ∂

∂t
(bαβ)aαλtλ − bαβ(2Unb

αλ)tλ − bαβaαλ
(
∂Un
∂ξλ

n− Unbµλtµ
)

= − ∂

∂t
(bαβ)aαλtλ − 2Unbαβb

αλtλ − aαλ
∂Un
∂uλ

bαβn + Unbαβb
αµtµ

= − ∂

∂t
(bαβ)aαλtλ − Unbαβbαλtλ − aαλ

∂Un
∂uλ

bαβn.

(A.7)

Comparing equation A.6 with equation A.7, we see that that normal components cancel,
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leaving

−aαλtλ∇β∇αUn = − ∂

∂t
(bαβ)aαλtλ − Unbαβbαλtλ

⇒ ∂

∂t
(bαβ)aαλtλ = (∇β∇αUn − Unbµβbµα)aαλtλ

⇒ ∂

∂t
(bαβ) = ∇β∇αUn − Unbµβbµα.

(A.8)

With all of these identities, we are able to calculate the time derivative of the mean

curvature, H = 1
2a

αβbαβ. We have

∂H

∂t
=

1

2

(
∂

∂t
(aαβ)bαβ + aαβ

∂

∂t
(bαβ)

)
=

1

2

(
2Unb

αβbαβ + aαβ(∇β∇αUn − Unbµβbµα)
)

=
1

2

(
2Unb

αβbαβ + aαβ∇β∇αUn − Unbµβbµβ
)

=
1

2

(
Unb

αβbαβ + aαβ∇β∇αUn
)

=
1

2
(Un(4H2 − 2K) + aαβ∇β∇αUn)

= (2H2 −K)Un +
1

2
aαβ∇β∇αUn,

(A.9)

where we have used the fact given in [2] that bαβbαβ = 4H2 − 2K.

A.1.2 General Coordinates

In general coordinates, we need only calculate the time derivative of the metric tensor.

Starting with the tangent vectors, we have

∂

∂t
(tα) =

∂

∂t

(
∂r

∂uα

)
=

∂

∂uα

(
∂r

∂t

)
=

∂

∂uα

(
Uλtλ + Unn

)
=
∂Uλ

∂uα
tλ + Uλ

(
Γγαλtγ + bαγn

)
+
∂Un

∂uα
n−Unbγαtγ

=

(
∂Uγ

∂uα
+ UλΓγαλ

)
tγ + Uλbαλn +

∂Un
∂uα

n− Unbγαtγ

=
(
∇αUγ − Unbλα

)
tγ +

(
∂Un
∂uα

+ Uγbαγ

)
n.

(A.10)

This gives
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∂

∂t
aαβ =

∂

∂t
tα · tβ + tα ·

∂

∂t
tβ

= (∇αUγ − Unbγα) aβγ +
(
∇βUγ − Unbγβ

)
aαγ

= ∇αUβ +∇βUα − 2bαβUn.

(A.11)

A.2 Rate of Strain Tensor

We derive the rate of strain tensor following arguments [2]. In convected coordinates,

SΓ∆ =
1

2

d

dt
aΓ∆, (A.12)

where the derivative is the material derivative following a particle. We wish to find Sαβ,

the components of the rate of strain tensor expressed in terms of general coordinates. Using

the transformation rule A.45 for covariant tensor components,

d

dt
aΓ∆ =

d

dt

(
∂uα

∂uΓ

∂uβ

∂u∆
aαβ

)
=

d

dt

(
∂uα

∂uΓ

)
∂uβ

∂u∆
aαβ +

∂uα

∂uΓ

d

dt

(
∂uβ

∂u∆

)
aαβ +

∂uα

∂uΓ

∂uβ

∂u∆

d

dt
aαβ.

(A.13)

Since d
dt is a derivative with fixed {uΓ}, we can swap orders of integration to get

d

dt

(
∂uα

∂uΓ

)
=

∂

∂uΓ

duα

dt
=
∂vα

∂uΓ
=
∂vα

∂uγ
∂uγ

∂uΓ
. (A.14)

Thus we have

d

dt
aΓ∆ =

∂vα

∂uγ
∂uγ

∂uΓ

∂uβ

∂u∆
aαβ +

∂uα

∂uΓ

∂vβ

∂uγ
∂uγ

∂u∆
aαβ +

∂uα

∂uΓ

∂uβ

∂u∆

d

dt
aαβ, (A.15)

which upon permuting the repeated indices, can be written as

d

dt
aΓ∆ =

∂uα

∂uΓ

∂uβ

∂u∆

(
∂vγ

∂uα
aγβ +

∂vγ

∂uβ
aαγ +

∂

∂t
aαβ + vγ

∂

∂uγ
aαβ

)
, (A.16)

where we have expanded the material derivative of aαβ. Now Since

SΓ∆ =
1

2

∂uα

∂uΓ

∂uβ

∂u∆

(
∂vγ

∂uα
aγβ +

∂vγ

∂uβ
aαγ +

∂

∂t
aαβ + vγ

∂

∂uγ
aαβ

)
, (A.17)

it follows that SΓ∆, expressed in fixed coordinates, is given by

Sαβ =
1

2

(
∂vγ

∂uα
aγβ +

∂vγ

∂uβ
aαγ +

∂

∂t
aαβ + vγ

∂

∂uγ
aαβ

)
. (A.18)

This expression can be cleaned up significantly. We use the definition of the covariant

derivative to replace ∂vγ

∂uα and ∂vγ

∂uβ
with∇αvγ−vνΓγνα and∇vγ−vνΓγνβ , respectively. Further,

we use the fact that the covariant derivative of aαβ is zero to replace ∂
∂uγ aαβ with aανΓνβγ +

aνβΓναγ . Upon simplification, all the terms with Christoffel symbolys cancel, yielding
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Sαβ =
1

2

(
∇αvβ +∇βvα +

∂

∂t
aαβ

)
. (A.19)

Recall that the form of ∂
∂taαβ depends on the type of coordinates. Thus

Sαβ =
1

2
(∇αvβ +∇βvα − 2bαβUn) , (A.20)

in surface-fixed coordinates, and

Sαβ =
1

2
(∇αvβ +∇βvα +∇αUβ +∇βUα − 2bαβUn) (A.21)

in general coordinates.

A.3 Areal Dilation

Recall that an area element is given by
√
adu1du2 where a is the determinant of the

metric tensor. Thus 1√
a
∂
∂t

√
a = 1

2a
∂a
∂t can be thought of as a relative change in area.

Because the metric tensor is only second order, it has a simple form given by

a = a11a22 − a12a21. (A.22)

Taking the time derivative on both sides, using the fact that the components of the inverse

of a second order tensor have a simple form, and using the symmetry of aαβ, we have

da

dt
=
da11

dt
a22 + a11

da22

dt
− da12

dt
a21 − a12

da21

dt

= a

(
a11da11

dt
+ a22da22

dt
+ a12da12

dt
+ a21da21

dt

)
= aaαβ

d

dt
aαβ.

(A.23)

This relationship holds true in surface fixed, convected, and general coordinates.

Using the transformation rule A.43 for aΓ∆ = ∂uΓ

∂uλ
∂u∆

∂uµ a
λµ and equation A.16, we have

1

2a′
da′

dt
=

1

2
aΓ∆ d

dt
aΓ∆

=
1

2
aλµ

∂uΓ

∂uλ
∂u∆

∂uµ
∂uα

∂uΓ

∂uβ

∂u∆

(
∇αvβ +∇βvα +

∂

∂t
aαβ

)
=

1

2
aλµδαλδ

β
µ

(
∇αvβ +∇βvα +

∂

∂t
aαβ

)
=

1

2
aαβ

(
∇αvβ +∇βvα +

∂

∂t
aαβ

)
.

(A.24)

Thus we have

1

2a′
da′

dt
= ∇αvα − 2HUn, (A.25)

in surface-fixed coordinates and
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1

2a′
da′

dt
= ∇αvα +∇αUα − 2HUn (A.26)

in general coordinates.

A.4 Viscous Dissipation Variation

The total rate of viscous dissipation is given by

Φ =
1

2

∫
dξ1dξ2√a

[
sT

αβ
sSαβθs + gT

αβ
gSαβθg

+θsθgξa
αβ(vα − wα)(vβ − wβ)

]
.

(A.27)

To find the first variation with respect to velocity, we first replace each velocity with

that same velocity plus a variation, for example vα → vα + pδvα where p is a positive real

number. The variation δvα must be admissible, meaning that it must meet certain criteria

such as smoothness or boundary conditions. These criteria are situation dependent. We

then calculate the derivative of the result with respect to p at p = 0.

Consider the dissipation in the sphingolipid phase. This is identical to the glycerolipid

phase except that v is replaced with w, and the viscosity constants may be different. Define

Qαβλµ = ηaαβaλµ + ε(aαλaβµ + aαµaβλ − aαβaλµ). (A.28)

Then TαβSαβ can be written

TαβSαβ = QαβλµSλµSαβ. (A.29)

Notice that QαβλµSαβ = T λµ and QαβλµSλµ = Tαβ. For the first variation of the sphin-

golipid viscous dissipation, we have

1

8

∫
dξ1dξ2√aθs

{
Qαβλµ [∇λvµ +∇µvλ − 2bλµUn ][∇α(δvβ) +∇β(δvα)

−2bαβδUn] +Qαβλµ [∇λ(δvµ) +∇µ(δvλ)− 2bλµδUn] [∇αvβ +∇βvα − 2bαβUn]
}

=
1

4

∫
dξ1dξ2√aθs

{
Tαβ [∇α(δvβ) +∇β(δvα)− 2bαβδUn]

+T λµ [∇λ(δvµ) +∇µ(δvλ)− 2bλµδUn]
}

=

∫
dξ1dξ2√aθs

{
Tαβ [∇α(δvβ)− bαβδUn]

}
=

∫
dξ1dξ2√aθs

{
−∇α(Tαβ)δvβ − TαβbαβδUn

}
+ boundary terms,

(A.30)

noindent where we have used the fact that Tαβ is symmetric, and have used integration

by parts to move the derivative from δvβ to Tαβ as shown in section A.6. The boundary

terms that possibly arise when integrating by parts are dealt with in the specific situations
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addressed in this dissertation.

It is easy to see that variations of

1

2

∫
dξ1dξ2√aθsθgξaαβ(vα − wα)(vβ − wβ) (A.31)

will result in ∫
dξ1dξ2√aθsθgξaαβ(vα − wα)(δvβ − δwβ). (A.32)

Combining the contributions from sphingolipid viscosity, glycerolipid viscosity, and drag

results in equation 2.47.

A.5 Christoffel Symbols and Identities

The Christoffel symbols of the first kind are denoted Γαβγ and are defined in terms of

partial derivatives of the metric tensor as

Γαβγ =
1

2

(
∂aγβ
∂uα

+
∂aγα
∂uβ

−
∂aαβ
∂uγ

)
. (A.33)

Notice that the Christoffel symbols of the first kind are symmetric in their first two indices.

Christoffel symbols of the second kind, which appear in the covariant derivative, are defined

Γδαβ = aδγΓαβγ . (A.34)

Notice that Christoffel symbols of the second kind are symmetric in their bottom two indices.

In the literature, the term Christoffel symbol is often meant to mean the Christoffel symbol

of the second kind.

From equation A.33, we see that partial derivatives of the metric tensor can be expressed

in terms of Christoffel symbols,

∂aαβ
∂uγ

= Γγαβ + Γγβα = aβνΓνγα + aανΓνγβ. (A.35)

This equation is useful for computing partial derivatives of the determinant of the metric

tensor.

Using an argument very similar to the one shown in equation A.23 and using equa-

tion A.35, we have
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∂a

∂uγ
= aaαβ

∂aαβ
∂uγ

= aaαβ
(
aβνΓνγα + aανΓνγβ

)
= a

(
δαν Γνγα + δβνΓνγβ

)
= a

(
Γαγα + Γβγβ

)
= 2aΓαγα.

(A.36)

Thus

1√
a

∂
√
a

∂uγ
= Γαγα. (A.37)

This equation is important when carrying out integration by parts.

To find the time derivative of the mean curvature, it is necessary to calculate partial

derivatives of the inverse metric tensor. Using aαµaµγ = δγα and equation A.35, it follows

that

∂

∂uλ
(aαµ)aµγ = −aαµ ∂

∂uλ
(aµγ)

⇒ ∂

∂uλ
(aαµ)aµγ = −aαµ (Γλµγ + Γλγµ)

⇒ ∂

∂uλ
(aαµ)aµγ = −aαµΓλµγ − Γαλγ

⇒ ∂

∂uλ
(aαµ)aµγa

γβ = −aαµΓβλµ − a
γβΓαλγ

⇒ ∂

∂uλ
(aαβ) = −aαµΓβλµ − a

µβΓαλµ.

(A.38)

A.6 Integration by Parts

In this appendix, we show the details of one integration by parts. Other integrations

used in the manuscript are not shown explicitly, but involve similar machinations. Consider

the expression ∫
du1du2√a Tαβ∇avβ. (A.39)

Carrying out integration parts (and using a comma to denote partial derivative where

convenient) yields∫
du1du2√a Tαβ∇avβ

=

∫
du1du2√a Tαβ

(
∂vβ
∂uα

− vνΓναβ

)
= −

∫
du1du2√a

[(
(
√
aTαβ),α√
a

)
vβ + TαβvνΓναβ

]
+ boundary terms (b.t.)
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= −
∫
du1du2√a

[(
Tαβ,α +TαβΓννα

)
vβ + TαβvνΓναβ

]
+ b.t.

= −
∫
du1du2√a

[(
Tαβ,α +T νβΓααν + TανΓβνα − TανΓβνα

)
vβ + TαβvνΓναβ

]
+ b.t.

= −
∫
du1du2√a ∇α(Tαβ)vβ + b.t.,

(A.40)

where we have permuted indices to use the fact that TανΓβναvβ = TαβvνΓναβ.

A.7 Coordinate Transformations

Let {uα} , α = 1, 2 be some set of coordinates and {ūα} , α = 1, 2 be some other set of

coordinates. Suppose the two coordinates are related via

uα = uα(ū1, ū2) and ūα = ūα(u1, u2). (A.41)

Consider the tangent vector w. Using contravariant components, we have

wαtα = wα
∂r

∂uα

= wα
∂r

∂ūγ
∂ūγ

∂uα

= wα
∂ūγ

∂uα
t̄γ

= w̄γ t̄γ ,

(A.42)

where

w̄γ =
∂ūγ

∂uα
wα. (A.43)

Equation A.43 gives the contravariant transformation rule. Using covariant components,

wβt
β = wβa

βγtγ

= wβ
∂uβ

∂ūλ
∂uγ

∂ūµ
āλµ

∂r

∂ūη
∂ūη

∂uγ

= wβ
∂uβ

∂ūλ
∂uγ

∂ūµ
∂ūη

∂uγ
āλµt̄η

= wβ
∂uβ

∂ūλ
δηµā

λµt̄η

= wβ
∂uβ

∂ūλ
t̄λ

= w̄λt̄
λ,

(A.44)

where

w̄λ = wβ
∂uβ

∂ūλ
. (A.45)

Equation A.45 gives the covariant transformation rule.
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The covariant and contravariant transformation rules can be combined together (as was

done in equation A.44) to give transformation rules for higher order covariant, contravariant,

and mixed tensors.



APPENDIX B

CALCULATIONS TO SUPPLEMENT

CHAPTER 3

B.1 Monge Parametrization

In this section, we present many of the background calculations necessary to derive the

Monge Parametrization form of the two phase fluid equations. We show most calculations

for the sphingolipid phase. Similar results exist for the glycerolipid phase.

B.1.1 Christoffel Symbols and Covariant Derivatives

Using equation A.33, we calculate the Christoffel symbols of the first kind to be

Γαβx = hx

(
hxx hxy
hxy hyy

)
(B.1)

and

Γαβy = hy

(
hxx hxy
hxy hyy

)
. (B.2)

Using equation A.34, we find that the Christoffel symbols of the second kind are

Γxαβ =
hx
a

(
hxx hxy
hxy hyy

)
(B.3)

and

Γyαβ =
hy
a

(
hxx hxy
hxy hyy

)
. (B.4)

Using the Christoffel symbols of the second kind, we calculate the components of the

covariant derivative of contravariant vector components to be

∇αvβ =

(
∂vx

∂x + hx
a (vxhxx + vyhxy)

∂vy

∂x +
hy
a (vxhxx + vyhxy)

∂vx

∂y + hx
a (vxhxy + vyhyy)

∂vy

∂y +
hy
a (vxhxy + vyhyy)

)
. (B.5)
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B.1.2 Surface Dilation

Using equations 3.13–3.15, we can calculate

∇αUα =
hxxht + hxhxt + hyyht + hyhyt

a

− hxht(hxhxx + hyhxy) + hyht(hxhxy + hyhyy)

a2

(B.6)

and

2HUn =
hxx(1 + h2

y) + hyy(1 + h2
x)− 2hxhyhxy

a2
ht (B.7)

so that

∇αUα − 2HUn =
hxhxt + hyhyt

a
. (B.8)

It follows that the surface dilation is given by

aαβSαβ = ∇αvα +∇αUα − 2HUn

=
∂vx

∂x
+
hx
a

(vxhxx + vyhxy + hxt) +
∂vy

∂y
+
hy
a

(vxhxy + vyhyy + hyt)

= dv.

(B.9)

B.1.3 Tangential Force Balance Terms

B.1.3.1 Divergence of the Stress Tensor

The stress tensor is given by

Tαβ = ηaαβaλµSλµ + ε
(
aαλaβµ + aαµaβλ − aαβaλµ

)
Sλµ

= (η + ε)aαβaλµSλµ + 2ε
(
Sαβ − aαβaλµSλµ

)
,

(B.10)

where

Sαβ =
1

2

(
aαλ∇λvβ + aβµ∇µvα + aαλ∇λvβ + aβµ∇µvα − 2bαβUn

)
. (B.11)

We can calculate the components of Sαβ to be

Sxx =
1 + h2

y

a

(
∂vx

∂x
+
hx
a

(vxhxx + vyhyy + hxt)

)
− hxhy

a

(
∂vy

∂y
+
hx
a

(vxhxy + vyhyy + hyt)

)
,

(B.12)
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Sxy = Syx =
1

2

[
1 + h2

y

a

(
∂vy

∂x
+
hy
a

(vxhxx + vyhxh + hxt)

)
+

1 + h2
x

a

(
∂vx

∂y
+
hx
a

(vxhxy + vyhyy + hyt)

)
− hxhy

a

(
∂vx

∂x
+
hx
a

(vxhxx + vyhxy + hxt)

+
∂vy

∂y
+
hy
a

(vxhxy + vyhyy + hyt)

)]
,

(B.13)

and

Syy =
1 + h2

x

a

(
∂vy

∂y
+
hy
a

(vxhxy + vyhyy + hyt)

)
− hxhy

a

(
∂vy

∂x
+
hy
a

(vxhxx + vyhxy + hxt)

)
.

(B.14)

This yields the components of Tαβ:

T xx =
(η + ε)(1 + h2

y)

a
dv

− 2ε

a

(
hxhy

∂vx

∂y
+ (1 + h2

y)
∂vy

∂y
+ hyhxyv

x + hyhyyv
y + hyhyt

)
,

(B.15)

T xy = T yx = −(η + ε)hxhy
a

dv

+
ε

a

[
hxhy

(
∂vx

∂x
+
∂vy

∂y

)
+ (1 + h2

x)
∂vx

∂y
+ (1 + h2

y)
∂vy

∂x

+(hyhxx + hxhxy)v
x + (hxhyy + hyhxy)v

y + hyhxt + hxhyt

]
,

(B.16)

and

T yy =
(η + ε)(1 + h2

x)

a
dv

− 2ε

a

(
hxhy

∂vy

∂x
+ (1 + h2

x)
∂vx

∂x
+ hxhxxv

x + hxhxyv
y + hxhxt

)
.

(B.17)

Using equation 2.17, we have

∇αTαx =
∂

∂x
T xx +

∂

∂y
T xy

+
1

a
[T xx(2hxhxx + hyhxy) + T xy(3hxhxy + hyhyy) + T yyhxhyy]

(B.18)

and

∇αTαy =
∂

∂x
T xy +

∂

∂y
T yy

+
1

a
[T xxhyhxx + T xy(hxhxx + 3hyhxy) + T yy(hxhxy + 2hyhyy)] .

(B.19)

Define
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T̃αβ = aTαβ. (B.20)

The terms that appear in the tangential force balance equations can be expressed as

∇α(Tαxθs) =
1

a

∂

∂x

(
T̃ xxθs

)
+

1

a

∂

∂y

(
T̃ xyθs

)
− θs
a2

(
T̃ xxhyhxy − T̃ xy(hxhxy − hyhyy)− T̃ yyhxhyy

) (B.21)

and

∇α
(
T̃αy

)
=

1

a

∂

∂x

(
T̃ xyθs

)
+

1

a

∂

∂y

(
T̃ yyθs

)
+
θs
a2

(
T̃ xxhyhxx − T̃ xy(hxhxx − hyhxy)− T̃ yyhxhxy

)
.

(B.22)

B.1.3.2 Surface Laplacian

The surface Laplacian appears in both the tangential and normal force balance equations.

Suppose g is some scalar function. We calculate the surface Laplacian of g to be

aαβ∇α∇βg =
1

a

{
(1 + h2

y)gxx − 2hxhygxy + (1 + h2
x)gyy

+ (gxhx + gyhy)
[
(1 + h2

y)hxx − 2hxhyhxy + (1 + h2
x)hyy

]}
.

(B.23)

B.1.4 Normal Force Balance Terms

B.1.4.1 Contraction of Stress and Curvature Tensors

The contraction of the stress and curvature tensors that appears in the normal force

balance equation is given by

Tαβbαβ =
[
(η + ε)aαβaλµSλµ + 2ε

(
Sαβ − aαβaλµSλµ

)]
bαβ

= (η + ε) (2H)
(
aλµSλµ

)
+ 2ε

[
Sαβbαβ − (2H)

(
aλµSλµ

)]
.

(B.24)

We calculate that Sαβbαβ is given by

Sαβbαβ =
1

a3/2

{[
hxx(1 + h2

y)− hxhyhxy
] [∂vx

∂x
+
hx
a

(vxhxx + vyhxy + hxt)

]
+
[
hxy(1 + h2

y)− hxhyhyy
] [∂vy

∂x
+
hy
a

(vxhxx + vyhxy + hxt)

]
+
[
hxy(1 + h2

x)− hxhyhxx
] [∂vx

∂y
+
hx
a

(vxhxy + vyhyy + hyt)

]
+
[
hyy(1 + h2

x)− hxhyhxy
] [∂vy

∂y
+
hy
a

(vxhxy + vyhyy + hyt)

]}
(B.25)

so that
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Sαβbαβ − 2HaλµSλµ

=
1

a3/2

{[
hxy(1 + h2

y)− hxhyhyy
] [∂vy

∂x
+
hy
a

(vxhxx + vyhxy + hxt)

]
+
[
hxy(1 + h2

x)− hxhyhxx
] [∂vx

∂y
+
hx
a

(vxhxy + vyhyy + hyt)

]} (B.26)

and

Tαβbαβ = (η + ε)(2H)dv

+
2ε

a3/2

{[
hxy(1 + h2

y)− hxhyhyy
] [∂vy

∂x
+
hy
a

(vxhxx + vyhxy + hxt)

]
+
[
hxy(1 + h2

x)− hxhyhxx
] [∂vx

∂y
+
hx
a

(vxhxy + vyhyy + hyt)

]}
.

(B.27)

B.1.4.2 Cahn–Hilliard Penalty Terms

The Cahn–Hilliard penalty term for a scalar function g is given by

aαβ∇αg∇βg =
1

a

[(
1 + h2

y

)(∂g
∂x

)2

− 2hxhy
∂g

∂x

∂g

∂y
+
(
1 + h2

x

)(∂g
∂y

)2
]
. (B.28)

B.2 Axisymmetric Parametrization

In this section, we present many of the background calculations necessary to derive and

analyze the axisymmetric parametrization form of the two phase fluid equations. We show

most calculations for the sphingolipid phase. Similar results exist for the glycerolipid phase.

B.2.1 Christoffel Symbols and Covariant Derivatives

Using equation A.33, we calculate the Christoffel symbols of the first kind to be

Γuuu = pp′, (B.29)

Γuθθ = Γθuθ = xx′, (B.30)

Γθθu = −xx′, (B.31)

and

Γuuθ = Γuθu = Γθuu = Γθθθ = 0, (B.32)

where the prime notation indicates a derivative with respect to u.

Using equation A.34, the Christoffel symbols of the second kind are given by
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Γuαβ =


p′

p
0

0 −xx
′

p2

 (B.33)

and

Γθαβ =

 0
x′

x
x′

x
0

 . (B.34)

Using these definitions, and under the assumption that ∂vα

∂θ = 0, we calculate the covariant

derivative of contravariant vector components to be

∇αvβ =


(vup)′

p

(vθx)′

x

−v
θxx′

p2

vux′

x

 . (B.35)

B.2.2 Surface Dilation

We calculate

∇αvα = vu′ + vu
(
p′

p
+
x′

x

)
, (B.36)

so the local surface dilation is given by

aαβSαβ = ∇αvα − 2HUn

= vu′ + vu
(
p′

p
+
x′

x

)
−
(
q

p3
+
z′

px

)
Un

= dv.

(B.37)

B.2.3 Tangential Force Balance Terms

B.2.3.1 Divergence of the Stress Tensor

The stress tensor is defined as

Tαβ = ηaαβaλµSλµ + ε(aαλaβµ + aαµaβλ − aαβaλµ)Sλµ

= (η + ε)aαβaλµSλµ + 2ε(sαβ − aαβaλµ)Sλµ,
(B.38)

where

Sαβ =
1

2

(
aαλ∇λvβ + aβµ∇µvα − 2bαβUn

)
. (B.39)

Using the definitions of ∇αvβ, aαβ, and bαβ, we find that
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Sαβ =


(vup)′

p3
− q

p5
Un

vθ
′

2p2

vθ
′

2p2

vux′

x3
− z′

px3
Un

 . (B.40)

This yields the components of Tαβ to be

T uu =
η + ε

p2
dv −

2ε

p2

(
vu
x′

x
− z′

px
Un

)
, (B.41)

T uθ = T θu =
ε

p2
vθ
′
, (B.42)

and

T θθ =
η + ε

x2
dv −

2ε

x2

(
vu′ + vu

p′

p
− q

p3
Un

)
. (B.43)

Using equation 2.17, we have

∇αTαβ =
∂

∂u
T uβ + T uβ

(
p′

p
+
x′

x

)
+ T uuΓβuu + 2T uθΓβuθ + T θθΓβθθ, (B.44)

so then

∇αTαu =
η + ε

p2
d′v

+
2ε

p2

[
−vu

(p
x

)(x′
p

)′
+

(
1

x

)(
z′Un
p

)′
− qx′

p3x
Un

] (B.45)

and

∇αTαθ =
ε

p2

[
vθ
′′

+ vθ
′
(

3x′

x
− p′

p

)]
. (B.46)

The terms that appear in the tangential force balance equations can be expressed as

∇α
(
Tαβθs

)
=
η + ε

p2
{θsdv}′

+
2ε

p2

[
−vu

(p
x

)(x′θs
p

)′
+

(
1

x

)(
z′θsUn
p

)′
− θsqx

′

p3x
Un

] (B.47)

and

∇α
(
Tαθθs

)
=

ε

p2

{[
θsv

θ ′
]′

+ θsv
θ ′
(

3x′

x
− p′

p

)}
. (B.48)

B.2.3.2 Surface Laplacian

The surface Laplacian appears in both the tangential and normal force balance equations.

Suppose g is some scalar function. We calculate the surface Laplacan of g to be

aαβ∇α∇βg =
1

p2

(
g′′ − g′

(
p′

p
− x′

x

))
. (B.49)
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B.2.4 Normal Force Balance Components

B.2.4.1 Contraction of Stress and Curvature Tensors

The contraction of the stress and curvature tensors that appears in the normal force

balance equation is given by

Tαβbαβ = T uubuu + T θθbθθ

= (η + ε)(2H)dv

− 2ε

p2

[
vu
(
qx′

px

)
+

(
z′

x

)
(pvu)′ − 2qz′

p2x
Un

]
.

(B.50)

B.2.4.2 Cahn–Hilliard Penalty terms

The Cahn–Hilliard penalty term for a scalar function g is given by

aαβ∇αg∇βg =
1

p2

(
g′
)2
. (B.51)

B.2.5 Simplifications to the First Order System

After substituting the perturbations 3.100–3.109 into the full system 3.70–3.78, we use

the following identities to arrive at the system 3.110–3.116:

x′′0
x0

=
−p0π/L sin(πu/L)

p0L/π sin(πu/L)
= −

(π
L

)2
, (B.52)

z′′0
p0x0

=
p0π/L cos(πu/L)

p2
0L/π sin(πu/L)

=
π2

L2p0
cot
(π
L
u
)
, (B.53)

z′0
p0x0

=
p0 sin(πu/L)

p2
0L/π sin(πu/L)

=
π

Lp0
= H0, (B.54)

q0x
′
0

p3
0x0

=
p3

0π/L cos(πu/L)

p4
0L/π sin(πu/L)

=
π2

L2p0
cot
(π
L
u
)
, (B.55)

q0x
′
0

p0x0
=
p3

0π/L cos(πu/L)

p2
0L/π sin(πu/L)

=
p0π

2

L2
cot
(π
L
u
)
, (B.56)

p0z
′
0

x0
=

p2
0 sin(πu/L)

p0L/π sin(πu/L)
=
p0π

L
, (B.57)

q0z
′
0

p2
0x0

=
p3

0π/L sin(πu/L)

p3
0L/π sin(πu/L)

=
(π
L

)2
, (B.58)

and
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x′0
x0

=
p0 cos(πu/L)

p0L/π sin(πu/L)
=
π

L
cot
(π
L
u
)
. (B.59)

Further, in terms of principle curvature C1 and C2, we have H = 1
2(C1+C2) and K = C1C2.

Letting C1 = C10 + λC11 and C2 = C20 + λC21 , the expression 2H0H1 −K1 is given by

2H0H1 −K1 =
1

2
(C10 + C20) (C11 + C21)− (C10C21 + C20C11)

=
1

2
(C10 − C20) (C11 − C21) .

(B.60)

Now, if the equilibrium shape is a sphere, C10 = C20 so that 2H0H1 −K1 = 0. Thus the

expression (4H0H1 − K1)fH0 , which appears in the normal force balance equation upon

substitution of the perturbed steady state values, can be replaced with 2H0H1fH0 .
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