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ABSTRACT

Biological membranes are important structural units in the cell. Composed of a lipid
bilayer with embedded proteins, most exploration of membranes has focused on the proteins.
While proteins play a vital role in membrane function, the lipids themselves can behave in
dynamic ways which affect membrane structure and function. Furthermore, the dynamic
behavior of the lipids can affect and be affected by membrane geometry. A novel fluid
membrane model is developed in which two different types of lipids flow in a deforming
membrane, modelled as a two-dimensional Riemannian manifold that resists bending. The
two lipids behave like viscous Newtonian fluids whose motion is determined by realistic
physical forces. By examining the stability of various shapes, it is shown that instability
may result if the two lipids forming the membrane possess biophysical qualities, which cause
them to respond differently to membrane curvature. By means of numerical simulation of
a simplified model, it is shown that this instability results in curvature induced phase
separation. Applying the simplified model to the Golgi apparatus, it is hypothesized that
curvature induced phase separation may occur in a Golgi cisterna, aiding in the process of
protein sorting.

In addition to flowing tangentially in the membrane, lipids also flip back and forth
between the two leaflets in the bilayer. While traditionally assumed to occur very slowly,
recent experiments have indicated that lipid flip-flop may occur rapidly. Two models are
developed that explore the effect of rapid flip-flop on membrane geometry and the effect
of a pH gradient on the distribution of charged lipids in the leaflets of the bilayer. By
means of a stochastic model, it is shown that even the rapid flip-flop rates observed are
unlikely to be significant inducers of membrane curvature. By means of a nonlinear Poisson—
Boltzmann model, it is shown that pH gradients are unlikely to be significant inducers of

bilayer asymmetry under physiological conditions.
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CHAPTER 1

INTRODUCTION

Biological membranes are important structural units in the cell. They serve to separate
the intracellular domain from the extracellular domain. Further, they serve to separate the
intracellular domain into separate structures called organelles. Biomembranes are made up
primarily of lipids, proteins, and cholesterol. The classic fluid mosaic model proposed by
Singer and Nicolson in 1972 [59] describes the lipid bilayer as a two-dimensional viscous
fluid in which proteins can diffuse relatively freely. Figure 1.1 shows a schematic drawing of
a membrane as described by Singer and Nicolson. While the fluid mosaic model was quite
popular and remains useful today, the focus was primarily on proteins, not lipids. To this
day, lipids are often assumed to play a relatively passive role in cellular function [5]. On the
contrary, the lipids themselves are being shown to have interesting and dynamic behaviors.
In this dissertation, we explore how lipid motion can influence the dynamic behavior of
biological membranes.

A lipid is a small biological molecule, generally cylindrical or cone shaped, with length on
the order of nine nanometers [74] and head group area on the order of 40 square Angstroms

[1]. A lipid usually has a hydrophilic head group and hydrophobic tail as shown in Figure 1.2.
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Figure 1.1. Schematic drawing of a membrane. The globular structures are protens. The
balls with two tails are lipids. Adapted from [59].
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Figure 1.2. Various lipid shapes.

Individual lipids can have different geometries based on the number and shape of their
hydrophobic tails and size of their head groups [48]. When dissolved in a polar solvent such
as water, the hydrophilic head interacts favorably with the solvent, while the hydrophobic
tail interacts unfavorably with the solvent. For low lipid concentrations, the positive effect
of translational entropy on the free energy ensures that most of the lipid molecules remain
as monomers in the solvent in spite of the negative interactions of the tails with the solvent.
Above a specific concentration, often called the critical micellar concentration, the negative
interactions between the hydrophobic tails and the polar solvent overcome the positive
effects of translational entropy and cause the lipid molecules to spontaneously aggregate [14].
These aggregates are often in the form of bilayers or micelles, as shown in Figure 1.3, where
the shape of the aggregate depends on the geometry and concentration of the individual
lipids [48]. These shapes allow the hydrophobic tails to interact favorably with each other
and the hydrophilic heads to interact favorably with the solvent.

There are three main classes of lipids in biological membranes, glycerolipids, sphin-
golipids, and sterols [20]. These main classes of lipids are shown schematically in Figure 1.4.
Sphingolipids have a sphingoid base as their backbone, while glycerolipids have a glycerol
backbone [28]. Cholesterol has a different shape and tends to associate with the tails of
the other lipids in the interior or the bilayer. The different structures of sphingolipids and

Bilayer sheet Micelle

Figure 1.3. Various lipid structures. (Adapted from [66].)
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Figure 1.4. Schematic drawing of different classes of lipids. a) Sphingolipid. b) Glyc-
erolipid. ¢) Cholesterol. (Adapted from [28].)

glycerolipids endows them with different physical properties. Sphingolipids tend to associate
with cholesterol and form more tightly packed bilayers that are thicker and more resistant
to bending than bilayers formed primarily of glycerolipids [28]. Further, model membranes
made up of appropriate combinations of sphingolipids and glycerolipids exhibit the ability
to spontaneously phase separate [24]. Phase separation means that certain areas of the
membrane are enriched in sphingolipids and cholesterol while other areas of the membrane
are enriched in glycerolipids. It occurs because lipid self interactions are energetically more
favorably than mixed interactions between different types of lipids. Phase separation of
the lipids which make up the membrane can result in interesting geometries as shown
in Figure 1.5. Phase separation in membranes may also be relevant to the membrane
raft hypothesis in which small transitory membrane patches enriched in sphingolipids,
cholesterol, and associated proteins may play an important role in cellular signalling events
[58]. The existence of different classes of lipids with different biophysical properties and
the possibility of phase separation provides the motivation for the two phase fluid models
developed in this dissertation.

A classical model widely used to study phase separation phenomena is called the Cahn—
Hilliard (C-H) model [9]. Briefly, the C-H model is given by [36]

gj — V- (MVu) = MAg, (1.1)

where c¢ is a phase variable usually scaled to range between 1 and -1, M is the constant

mobility coefficient, and p is the local chemical potential given by
pw=F'(c)— kAc. (1.2)

In equation 1.2, F' is the Helmholz free energy density, and k is a positive constant.

The C-H model is derived by assuming a free energy density of the form
k
F(c)+ 5 |Vel?. (1.3)

The second term represents a free energy penalty for gradients in the phase variable c.

From this point, one can either define the chemical potential via the variational derivative
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Figure 1.5. Interesting shapes caused by phase separation. The different colors indicate
different phases. The scale bar is 5um. (Adapted from [6].)

and assume a conservation law with flux given via J = —M Ve [36], or describe the time
evolution via a gradient flow in a cleverly chosen inner product space [19, 32]. Either way,
one ends up with the C—H model.

The squared gradient term in equation 1.3 acts to penalize sharp gradients in the
concentration ¢ and leads to pattern formation as demonstrated in Figure 1.6. In the
figure, we start the simulation with a random perturbation of the value ¢ = 0. The value
of the parameter k dictates the size of the channels formed and the width of the interface
between phases.

While the C—H model describes phase separation, it lacks certain aspects necessary to
study phase separation in a biological membrane. First, the model as presented can describe
phase separating in two-dimensional or three-dimensional Euclidean space. The membrane,
on the other hand, is described as a two-dimensional Riemannian manifold embedded in
three-dimensional space, so the C—H model must be reformulated accordingly. Second,
biological membranes are resistant to bending [48]. We will see in Chapter 2 that our free
energy density includes bending energy terms in addition to the homogeneous free energy
and gradient penalty terms present in the classical C—H model. Finally, the fluid mosaic
model describes the membrane as a two-dimension viscous fluid [59]. The classical C-H
model neglects the viscosity of the species undergoing phase separation.

Other attempts to study phase separation involve so called multiphase fluid models. Two

phase fluid models have been used previously to describe the swelling of polyelectrolyte gels
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Figure 1.6. The result of a Cahn—Hilliard result. The colors indicate concentration,
showing clear phase separation and pattern formation.

[68, 17], but those models do not treat both phases as viscous fluids. A later model [69]
expanded upon the earlier work to treat each phase as an incompressible viscous fluid. More
recently, authors have developed a two phase fluid model where each phase behaves as a
compressible viscous or viscoelastic fluid [33, 60]. The model can describe phase separation
[71], but is formulated for Euclidean space using Cartesian coordinates. It also does not
include terms in the free energy to penalize sharp gradients. In this dissertation, we extend
previous models to describe two phase flow on a two-dimensional Reimannian manifold.
Returning to our discussion of biological membranes and the lipids therein, the main
location of sphingolipid synthesis is the Golgi apparatus [21], a cellular organelle important
in the exocytic and endocytic pathways [28]. The main job of the Golgi is to package
and sort proteins for transport to different parts of the cell [28]. The Golgi is usually
described as a sequence of flattened membranous sacks called cisternae, possibly connected
by tubules [23] as shown in Figure 1.7. While protein sorting in the Golgi is not fully
understood, it has been hypothesized that phase separation in the Golgi may be influential
to the protein sorting processes essential to cellular transport [47, 63] and that this phase
separation may be influenced by membrane curvature [12, 61, 31, 54, 42]. This hypothesis
provides the motivation for the model of curvature-induced phase separation explored in
Chapter 4 of this dissertation. While there has been some mathematical treatment of this

phenomenon [12, 31, 42], those treatments all differ significantly from our model. The
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Figure 1.7. A schematic drawing of the Golgi apparatus. The thicker membranes indicate
areas enriched in sphingolipids, while the thinner membranes indicate areas enriched in
glycerolipids. (Adapted from [28].)

models in [12] and [31] are both equilibrium models. The model in [42] describes dynamic
phase separation, but uses a level set method to describe the membrane instead of modelling
it as a two-dimensional Riemannian manifold.

One of the earliest attempts to describe a membrane mathematically was by Canham
in 1970 [11], where he undertook to explain the biconcave shape of the red blood cell. A
few years later in 1973, Helfrich proposed a similar model describing the elastic properties
of bilayers [27]. Briefly, the Helfrich (or Helfrich-Canham) model treats the membrane as
an elastic surface and describes a functional for the energy of the membrane. Energetic
contributions come through two terms, the mean curvature of the surface with associated
bending modulus and the Gaussian curvature of the surface with associated Gaussian

bending modulus. The free energy density in the Helfrich model is given by
f== (2H Co) + kgG, (1.4)

where H is the mean curvature of the membrane and G is the Gaussian curvature. These
quantites are defined mathematically in Chapter 2. The bending moduli x and x4, have
units of energy. The constant Cj is called the spontaneous or preferred curvature, has units
of curvature, and reflects the possibility that the preferred state of a membrane is not flat.
The Helfrich model is derived via writing the free energy density as a function of curvature,

Taylor expanding, and keeping only lowest order terms [55].
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The original Helfrich model shown in equation 1.4 has a contribution to the energy
from the Gaussian curvature of the surface. According to the Gauss—Bonnet theorem, the
Guassian curvature is constant for a closed surface that does not change genus [55]. As
a result, many authors neglect the Gaussian curvature contribution to the free energy, a
pattern we follow in this dissertation.

The Helfrich model has had a dramatic impact on later membrane studies, being cited
thousands of times since its original publication. Using the Helfrich model and its variants,
authors have had much success describing the shapes of fluid membranes, especially the
shapes of vesicles. The review [55] provides an in depth description of membrane models
and results. Though much work has been done, the majority of models have been static,
describing the equilibrium shapes of vesicles. Other models have undertaken to model
fluctuations around steady states, but still have not attempted a complete fluid model.

While the majority of membrane models are static, there has been some work to model
the membrane as a viscous fluid. One of the earliest attempts to describe flow on a surface
is described in [53] where the author derives flow equations for a fluid interface. The book
[2] makes significant use of these ideas in its chapter on surface flow. In both [53] and
[2], the equations describing flow are described first using a purely intrinsic formulation
and then using an extrinsic formulation in terms of the basis of the three-dimensional
Euclidean embedding space. In more recent work [3, 10, 29, 46, 49, 50, 51, 72], authors
have formulated the fluid equations in terms of the local basis formed by the two tangent
vectors to the surface and the associated normal vector. These models describe flow and
bending resistance, but do not incorporate the existence of multiple types of lipids in the
membrane.

As has been mentioned, certain combinations of lipids exhibit the ability to sponta-
neously phase separate. It has been shown experimentally that giant unilamellar vesicles
made up of different lipid compositions exhibit the ability to phase separate and that this
phase separation can result in interesting geometrical shapes [6]. This phenomenon has
be explored mathematically by various authors [39, 42, 54, 57| with the basis of most
models being the Helfrich model. Existing models have had some success in reproducing
experimental shapes, but again most of the existing models examine only equilibrium
shapes. In other words, the shapes predicted by the models come from minimizing a
free energy functional, but do not treat the lipids as dynamic fluids. Essential to most
of these models is the inclusion of line tension [39]. Line tension is a phenomenological

force to minimize the length of an interface between two lipid phases. It is based on the
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idea that interfaces between two phases are energetically unfavorable due to unfavorable
interactions with water resulting from the two phases having different thicknesses. Line
tension is most often expressed as an energy contribution proportional to the length of the
interface between the phases [39]. An implicit assumption in this formulation is that the
membrane already exists in a phase separated state. In the model we present in Chapter 2,
we use a Cahn-Hilliard type penalty term [36], similar to the treatment in [42] and [31],
in an attempt to model line tension during dynamic phase separation. The model in [31]
uses a Cahn—Hiliard penalty term, but is still a static model, only looking at equilibrium
membrane configurations. To our knowledge, the model in [42] is the most similar to the
model presented in Chapter 2 of this dissertation. The authors of [42] describe a model of
dynamic phase separation, incorporating fluid viscosity, bending rigidity, and Cahn-Hilliard
penalty terms. The fundamental difference from the current model is that the authors in
[42] use a diffuse interface technique to describe the membrane surface, while we leverage
the tools of differential geometry to describe the membrane shape and fluid flow equations.
We demonstrate in Chapter 3 that our treatment is amenable to mathematical analyses
such as linear stability analysis.

A simplification in the Helfrich model is the treatment of the membrane as a thin elastic
sheet. Biological membranes are in fact made up of two lipid monolayers. It has been
shown that different types of lipids are enriched in different membranes of the cell [65], and
that lipids are asymmetrically distributed between different leaflets in the bilayer [64], with
an important example being the location of phosphatidylserine in the plasma membrane of
platelets [37]. It has long been believed that lipid motion within a specific leaflet is quick,
while flip-flop between leaflets of the bilayer is very slow [45] and that the maintenance and
loss of membrane asymmetry is primarily a protein-mediated process [35, 64]. Work in John
Conboy’s lab at the University of Utah has cast doubt on this conventional belief. Their
experiments have measured lipid flip-flop rates much faster than those measured previously,
and they hypothesize that flip rates may be even faster under physiological conditions [41].
Based on these findings, we develop and explore two models in Chapter 5 to investigate
the effects of rapid flip-flop between leaflets of the bilayer. In the first model, we explore
a stochastic description of the membrane to see if lipid flip-flop can significantly deform a
membrane and possibly serve as an initiator of vesicle budding. In the second, we use the
Poisson—Boltzmann equation to explore a model of bilayer asymmetry to see whether an
asymmetric distribution of negatively charged lipids can be maintained by a pH gradient

rather than by an active protein-mediated process.
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Chapters 24 of this dissertation present the derivation and analysis of two phase fluid
models of a membrane. In Chapter 2, we treat the membrane as a two-dimensional viscous
fluid which resists bending. Using the tools of differential geometry, we derive the equations
of motion governing the behavior of the membrane. In Chapter 3, we explore two specific
parametrizations of the general model derived in Chapter 2. Using linear stability analysis,
we highlight situations in which curvature induced instability occurs. In Chapter 4, we
explore a one-dimensional simplification of the model with the goal of studying curvature
induced phase separation in the Golgi apparatus. Chapter 5 addresses the bilayer nature of
membranes. Specifically, we explore various implications of rapid flip-flop of lipids between
the two leaflets of the bilayer with the goal to shed light on the process of vesicle formation
in the multivesicular body. We conclude the dissertation with a brief description of ideas

for model extensions and future work.



CHAPTER 2

TWO PHASE FLUID FLOW ON A
SURFACE

Phase separation has important impacts on the shape and functions of biological mem-
branes. While much work has been done to understand the flow of a single lipid phase
in a membrane, there has been little effort to describe multiphase flow on a membrane.
That is the goal of the current work. Much of the subsequent notation follows [2]. Some of
the logic, especially in the meaning of a surface fixed coordinate system follows [51]. The
derivation was also influenced by [46]. A nice treatment of much of the differential geometry
used in the derivation can be found in [49] and in the unpublished notes [13]. Our goal in
the current work is not to describe new results in the fields of differential geometry or to
describe flow on a surface in a completely new way. Rather, we seek to combine existing
theories of two phase fluid flow and flow on a deforming surface in a new and novel way. By
using a realistic free energy density developed in this chapter, we provide a description of a
biological membrane that more accurately reflects the reality that a membrane is a surface
composed of various lipid species with different biophysical properties.

In the following chapter, we first describe the differential geometry background necessary
to derive the model. We then derive in detail the equations describing the flow of lipids on
a surface along with the shape of the surface. We conclude by examining simplifications of
the derived model to show that the model generalizes various published works in the fields

of membrane shape and two phase fluid flow.

2.1 Basic Setup and Differential Geometry
Background

Let S(t) be a time varying surface in R? upon which a fluid can flow. Let {u®}, a = 1,2

be some surface coordinates. Then S(¢) can be described parametrically by

r(ula U2, t) = (x(ula u27t)7y(u17u27t)7 Z(ulvuzvt))T' (21)
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Any coordinate description of the surface yields a natural basis for vectors originating on
the surface. Define two tangent vectors t, = aaTra for @« = 1,2. Note that in general, these
tangent vectors are neither orthogonal nor unit vectors. Define the unit normal via

t1 X to

= - Z 2.2
™= e bl (22)

A schematic diagram showing the surface with the two tangent vectors and the normal
vectors is shown in Figure 2.1.

Using the tangent vectors, define the surface metric tensor

aop = tq - tg. (2.3)
The metric tensor is symmetric with a nonzero determinant denoted

a = det(aqg). (2.4)
The local area element in the surface dA is given via the metric tensor as

dA = vadu'du®. (2.5)

The inverse metric tensor a®® is defined via

a®a,g = 03, (2.6)

where 6;‘ is the delta function, and the Einstein summation convention is used. Using the
summation convention, a repeated index that appears as both a superscript and subscript
is summed. A raised index indicates a contravariant component of a tensor, and a lowered
index indicates a covariant component of a tensor. The words covariant and contravariant
indicate that the tensor component follows a specific transformation rule under a change of

coordinates. These rules are described in section A.7. Given a basis of covariant tangent

Figure 2.1. Schematic diagram of a surface.
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vectors {t,} for the tangent space at a point P, the inverse metric tensor can be used to
define a biorthogonal basis of contravariant tangent vectors {t®} at P via t* = a®Ptg for
a, B = 1,2 with the feature t,, - t% = (55

Any vector w in the tangent space to P can be expressed as a linear combination
of either the covariant or contravariant tangent vectors, w = w%t, or w = wgtﬁ . The
relationship between the contravariant components w® and the covariant components wg
is given by w® = ao‘ﬁwﬁ and wg = aqgw®. Thus, the metric tensor and its inverse can be
used to raise or lower indices. In other words, they allow us to switch between a covariant
or contravariant description of a vector or tensor quantity.

The metric tensor is also used to define the dot product of two surface vectors. Let v

and w be two vectors in the tangent space to P. Write v = v,t“ and w = wﬁtﬁ. Define

VoW = v,w” = aaﬁvﬁwa = ao‘ﬁvawg. (2.7)

Since n is a unit vector, it follows that 597'; -n = 0. Thus, 6‘27‘31 can be written as a

linear combination of the tangent vectors {t,}. This linear combination is given by the
Weingarten equations [49] as

;; = —bapalTty = —blt,, (2.8)

where b,z is called the curvature tensor and describes how the normal to the surface varies

due to movements along the coordinate lines. Since n and tg are orthogonal, n-tg =0 =

aaTIL tg=-n- a%tﬁv and equation 2.8 implies that
On
25 b8 = —bap
ou®
2.9
i (29)
= n- Tuatﬂ = baﬁ,
which provides a way to calculate the components of the curvature tensor. Since a%tﬁ =

%%r = %%r = %ta, it follows that the curvature tensor is symmetric.

The curvature tensor also appears in the Gauss Equations [13], which describe the
derivative of a tangent vector. Since the tangent vectors are not generally unit vectors,
their partial derivatives have both tangential and normal components given by

0

where the tangential coefficients Fgﬁ, are Christoffel symbols discussed in section A.5, and
the normal components are found to be the components of the curvature tensor as given by

equation 2.9. Note that because the left hand side and b, are symmetric, it follows that
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the Christoffel symbols are symmetric in the two lower indices.

The curvature tensor furnishes two concepts of curvature, both given by exploring
a®7b,g, sometimes referred to as the shape operator. The two eigenvalues of the shape
operator at P are the two principal curvatures of the surface at the point P. The mean
curvature, denoted H, is the average of the two principal curvatures, given by 1/2 the trace
of the shape operator,

1 1
H= 5aaﬁbag = 5(C1+C), (2.11)

where C] and Cy are the principal curvatures. The Guassian curvature, denoted K, is the

product of the two principal curvatures, given by the determinant of the shape operator,
K = det(ambvg) = CCh. (2.12)

The mean curvature H is an extrinsic quantity of the surface, meaning that knowledge
of the embedding space is needed in order to define H. In other words, H could not be
measured by an entity living on the surface with no knowledge of the embedding space.
Gauss’ Theorema Egregium states that K is an intrinsic quantity of the surface and can be
expressed independently of the curvature tensor. K could be measured by an entity living
on the surface and only making local measurements. In practice though, it is often easier
to calculate K by making use of the curvature tensor.

In addition to appearing in the description of partial derivatives of the tangent vectors,
the Christoffel symbols also allow for the definition of the covariant derivative. Consider

the partial derivative of the purely tangential vector field w = fwﬂtg given by

ow’
ot +w? (T, + bagn) (2.13)

ow 0
ow _ By \ _
ou®  Ou“ (w ts ) ou®

By permuting summed indices, this can be expressed as

SZ‘; = (gjﬁ + w“’f‘fw> ts + wbagn. (2.14)

The covariant derivative of the contravariant components of a vector field is defined as the
tangential component of gT“g and is expressed as

Vouw’ = gz;’f +w T, (2.15)

The covariant derivative is a tensor quantity whose components change according to the

transformation rules in section A.7 upon a change of coordinates. The partial derivative gﬁ:’f ,

on the other hand, does not transform like a tensor and thus does not give the components

of a physical object. One can think of the first term in the covariant derivative as describing
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the change in the component upon movement in the t, direction and the second term as
describing the change in the component caused by changes in the basis vectors {tg} upon
movement in the t,, direction.

The covariant derivative can be generalized to scalar functions on the surface, covariant
vector fields, and higher order tensor fields. The covariant derivative of a scalar function
is simply the partial derivative, Vo f = 8{%' Using the fact that the dot product of two
surface vectors v and w is a scalar, Va(vﬁwg) = 8%(1)511)5), one can use the product rule

on both the partial derivative and the covariant derivative to define the covariant derivative

of a covariant vector field,
ﬂ —w, I (2.16)

In general, the covariant derivative of a tensor field is defined as the partial derivative with
an added term with a Christoffel symbol for each raised index and a subtracted term with

a Christoffel symbol for each lowered index,

afBy...

oT
8 STy 153 5 5 B6..
VET)C\YM:/ T oud T)\uz Fgﬁ - T;\L;’ T T;\IW Fw N (2.17)
B B B
— T;;“:Y F T)?‘(SV’Y F Tf‘ug F

Further, note that V,w® is a scalar, often called the surface divergence, and it can be shown
to be given by

1
Vo

As a final detail, we mention that the Lemma of Ricci states that covariant derivatives of

Ve =

(Vau®). (2.18)

the metric tensor, inverse metric tensor, and determinant of the metric tensor are all zero

[13]. Thus, these quantities can freely cross the covariant derivative symbol.

2.2 Convected Coordinates
Parametrize the surface at time ¢ = 0 using surface coordinates {u'},T' = 1,2 in
such a way that a particular fluid particle retains its coordinate label. We denote these
convected or material coordinates using capital Greek indices. The associated surface Sy
with representation r(u', 0) is fixed and serves as a reference surface. So for fixed {u'}, the
map r(u',t) describes the path through R? of the particle labelled by {u'}.
Assume there is an invertible transformation between the two coordinate descriptions

given by

u® = vl t), a,I'=1,2, (2.19)
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and
ul =l (ut), o, I'=1,2, (2.20)

subject to u®(ul, tg) = u! and ul (u®, ty) = u®.

Any function f(u®,t) defined on the surface can be expressed in convected coordinates
as f(u®(u',t),t). Denote the material derivative (derivative with fixed u') by % and the
derivative with fixed u® by % The material derivative of f(u®,t) is given by

of dut  of

“ouw at ot (2.21)

d ar, I
%f(u (U 7t)¢t)

where % is the velocity of the particle labelled by fixed u! with respect to the u® coordinate

system. Denote this velocity v®.

2.3 Surface Fixed Coordinates
Consider the velocity v € R3 of a material particle on the surface,

Ldr_ Gedw or L O
Yot

VT @ T due ar ot (2:22)

The term v*t, describes the tangential velocity of the particle due to the particle’s flow

in the surface. The term % describes the velocity of the particle due to movement of the

coordinate system. In general, % can have components both tangential and normal to the
surface.
Another description of the velocity of a material particle can be given using the local

basis induced by the u® parametrization of the surface,
v = 0%, + Upn. (2.23)

In this description, % are the contravariant components of a vector field, while U, are
the components of a scalar field. The n in the subscript denotes the normal direction, not
covariant components. Note that in general % is not the same as v<, for v* describes the
total tangential component of the velocity through the Euclidean embedding space, while v
describes the velocity with respect to the u® coordinates caused by the flow of the particle
(which is necessarily tangential to the surface).

It is possible to choose the {u®} coordinate system in a specific way, such that

e du® ~an s o r
V= =0 with u®(tg) = u . (2.24)

In other words, choose the u® coordinate system so that the velocity of the particle with

respect to the coordinate system is the same as the tangential component of the velocity
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through the embedding space. This coordinate system has the feature that a fixed coordi-
nate u® moves entirely in a direction normal to the surface,

% = Upn, (2.25)
which is useful when deriving equations of motion for fluids on the surface. Following [2],
we call this coordinate system the surface fixed coordinate system. For notational clarity,
¢ for a = 1,2 is used to denote surface fixed coordinates.

An intuitive way to visualize this particular coordinate system is as follows: imagine the
surface at time ¢ with coordinates given by £* for a = 1,2. Consider a specific coordinate
éo‘. This coordinate has a specific spatial location X in the embedding space. Now imagine
the surface at time ¢ + At. The surface has deformed and no longer occupies the same
locations in the embedding space. Find the point on the surface at time ¢ + At that has the
smallest Euclidean distance from the point %, and label the new point €. Clearly, the new
point lies along the normal n. This provides a time dependent parametrization such that

motion of a fixed £ on the surface is always normal to the surface.

2.4 General Coordinates
The surface fixed coordinate system &% will prove to be convenient when deriving
equations of motion for fluids on a surface, but it is not always suitable to describe the
motion of a surface. Consider a surface described using the Monge parametrization r(z,y) =
(x,, h(z,y))T. In this coordinate system, motion of a specific (z,y) on the surface is purely

in the z direction, not normal to the surface. Thus it is useful to formulate equations of

motion in terms of general coordinates in addition to surface fixed coordinates. Suppose %
has components both tangential and normal to the surface,
Jr
o _ ot +Upn. (2.26)
ot
Then the velocity of a material particle is given by
v = 1%, + U%%, + Uy,n. (2.27)

Note that the quantities v, U%, and the tangent vectors t, depend on the specific coordinate
description of the surface, but the quantity U, and the normal vector n are indepenent of
the coordinate system. (They depend on the description of the Euclidean embedding space,
which is always assumed to be Cartesian.) For notational clarity, u® for o = 1,2 will be
used to denote any coordinate system that is not specifically a surface-fixed or convected

coordinate system.
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2.5 Continuity Equations
2.5.1 Continuity Equations for Concentrations

Consider a material patch inside the domain Q(t) expressed in a general coordinate
system, with concentration cg; of sphingolipid particles in the material patch. Note that
concentration in this context means number of particles per unit area. Let €y be the
corresponding fixed patch expressed in the convected coordinate system. Let o' = det(ara)
denote the determinant of the metric tensor in the convected coordinates. From conservation
of mass, it follows that

d d
— dA ¢, = dul du""Vd' ey = /

dc cs da’
— duldu™Va | == + =2 —") =0. 2.98
dt Jou dt Jo, 0 Ve <dt t o dt) (2.28)

Since §2(t) is arbitrary, the convected coordinated description of the continuity equation is

des ¢y dd

The first term is simply the material derivative defined in equation (2.21). Thus in both
surface fixed and general coordinates

des  Ocg o
Ty + 0%V, (2.30)

where v is the tangential component of the velocity of a sphingolipid particle. We show in

section A.3 that

1 dd o
2 dt Vo™ = 2HUn, (2.31)
in surface fixed coordinates, and
1 dd o o
ﬁa = Vav + VaU - 2HUn, (232)

in general coordinates.
This yields the surface fixed coordinate version of the continuity equation for cg,

dcs
ait + Val(esv®) — 2¢, HU,, = 0, (2.33)

and general coordinate version,

0cs

5 + Val(csv®) + ¢s(Vo U* —2HU,) = 0. (2.34)
Similar expressions exist for the glycerlipid concentration c,:
oc

6—5 + Valequ®) — 2¢,HU, = 0, (2.35)

for surface fixed coordinates, and
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% + Val(eqw®) + ¢g(VaU® — 2HU,) = 0, (2.36)

for general coordinates, where w® is the tangential component of the velocity of a glyc-
erolipid particle. We wish to express these continuity equations in terms of volume fractions

s and 6,.

2.5.2 Continuity Equations for Volume Fractions

Define the volume fractions
05 = csvs, (2.37)
0y = cqvg, (2.38)
where v, and v, are constants giving the area of a sphingolipid and glycerolipid molecule,

respectively. Upon substituting definitions 2.37 and 2.38 into the continuity equations for

¢s and ¢4, we find the continuity equations

%0; + Va(0s0%) —20,HU,, = 0, (2.39)
%9;’ + Va(B,w®) — 20,HU,, = 0, (2.40)
for surface fixed coordinates, and
O Va(ft) + 0, (VoU™ — 2HU,) = (2.41)
% - Va(6,0%) + 0, (VU™ — 2HU,) = 0, (2.42)

for general coordinates.

Let us assume that the membrane is a closed surface. Then the total number of lipid
particles must be fixed. If we think of the lipid particles as forming the membrane, we
should assume that particles fill all space in the membrane. This space filling assumption

is equivalent to the assumption that
0s +0,=1. (2.43)

Using the conservation laws, we can restate the space filling assumption as the coincom-

pressibilty condition
Va (00 + 0,w) —2HU,, =0, (2.44)
for surface fixed coordinates, and

Va (00" + 0,w*) + V U —2HU, =0, (2.45)
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for general coordinates. We note that flows that satisfy the space filling assumption conserve
the total area of the membrane since the total number of particles is fixed, and particles do

not change size.

2.6 Equations of Motion

To find the equations of motion for our two-phase fluid, we first make the assumption that
intertia is negligible in the system. Then the conservation of linear momentum equations
become force balance equations. Many analyses simply write down equations that account
for all the forces at this point. The current system, however, has forces from viscosity, from
drag between the two phases, from gradients in the chemical potential, and from bending
of the membrane. It is not straightforward to simply write down equations that balance
all the forces in the tangential and normal directions. To mitigate this difficulty, we follow
the method presented in [16] of minimizing what the author calls the Rayleighian over all
admissible velocities. The method is based on Onsager’s reciprocal relation, which is an
extension of Rayleigh’s principle of least energy dissipation [16]. The main idea is that the
system evolves in such a way that the rate of energy dissipation is minimized, i.e. in the
most efficient way possible. In [16], the author derives various classical models using the
Rayleighian. Other authors [50, 3] have used the same technique, but refer to it as the
principle of virtual power.

The Rayleighian is defined as the sum of one half the total viscous dissipation and the
rate of change of the free energy of the system,

1.0
R=3®+ o F (2.46)

Since the system evolves via velocities that minimize the Rayleighian, its first variation
respect to velocity is set to zero, yielding the appropriate force balance equations.

In the following sections, we describe the different components of the Rayleighian and
how to take their first variation. All of the calculations that follow are carried out in
the surface fixed coordinates. The reason for this is that in surface fixed coordinates,
the tangential components of the velocity of a particle are given by the velocity of that
particle with respect to the coordinate system. Thus there is no need to try to disentangle
components in the velocity due to flow of the particles from components in the velocity due
to motion of the coordinate system. Further, calculations are simpler in the surface fixed

coordinates due to the simpler form of %.
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2.6.1 Viscous Dissipation

We assume viscous dissipation occurs via two mechanisms, internal viscosity in each
phase and drag between the two phases. The internal viscosity dissipation rate for each
phase is given by the doubly contracted product of the stress tensor for that phase with
the rate of strain tensor for that phase. This term is scaled by the volume fraction. The
rate of dissipation from drag between the two phases is taken to be proportional to the
squared magnitude of the difference in their velocities. The frictional coefficient is taken to
be 0,0,¢, where  is a constant. Putting all these contributions together, the rate of the

viscous dissipation is given by
o = / derde®v/a [sTaﬁsSaBes + g7 1S 050, + 050,60°% (va — wa)(vs —wp)|,  (2.47)
S

where (TP, gTO‘B . sSap, and 4S5 are the stress and rate of strain tensors for the sph-
ingolipid and gylcerolipid phases, respectively. The integration is taken over the entire
surface S. Note that the expression a®’ (v, — w,)(vs — wg) is the surface generalization of
the expression (v —w) - (v — w).

Under the assumption that both phases behave as compressible Newtonian fluids, each

has a stress tensor of the form [2]
T = na*?a™M Sy, + e(a®*a™ + a™aP* — a®Pa?) Sy, (2.48)

where 1 and € describe the bulk and shear moduli of the phase. Note that these could be
different for the different phases, and are subscripted accordingly. We show in section A.2

that the rates of strain for the two phases in surface fixed coordinates are given by

1

3804,3 = §(vavﬂ + vﬂva - 2b0c,8UTL)7 (2.49)
1

95015 = i(vawﬁ + Vﬁwa - QbaﬁUn)- (250)

The first variation of the viscous dissipation is worked out explicitly in section A.4. We find

that
%5@ - / detde?\/a H—Va(sTaﬂﬁs) + 0,0,6a° (v — wa)} dvg
S
+ {—Va(gTaﬁeg) + Hsﬂggaaﬁ(wa — va)} dwpg (2.51)

- {_sTaBba,Bes - gT‘“ﬁba/ﬂg} 5Un} :
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2.6.2 Free Energy and Its Time Derivative

The second term that appears in the Rayleighian is the time derivative of the free
energy of the system. We assume that the free energy has three distinct parts, a homo-
geneous part, a curvature dependent part, and a part which penalizes sharp gradients in
the volume fraction. The derivation of the homogeneous part of the free energy comes
from a typical lattice model as described in [14]. We suppose that each point in space
is made up of N lattice sites, N, of them filled with sphingolipids, and N, of them
filled with glycerolipids. Let FF = U — T'S be the Helmholtz free energy, where U is
the internal energy, T is the absolute temperature, and S is the entropy. Using Boltz-
mann’s equation, we have S = k;In(W), where k; is Boltzmann’s constant and W is the
number of arrangements of molecules. In our case W = N!/(N,N,!). Using Stirling’s
approximation, we get after simplification that S = —kj (NsIn(Ns/N) + NyIn(Ny/N)).
For internal energy U, we count the number of interactions between molecules using the
Bragg—Williams approximation, essentially an assumption that things are well mixed. This
gives U = (z2wgss/2) Ns+(2wgq/2) Ng+kpyTx Ns Ny /N, where x = (z/kpT) (wsg— (wss+wgg)/2)
is the unitless Flory interaction parameter, z is the coordination number of the lattice, and

wy; is the interaction energy between two lipids of type 7 and j, respectively. Then

[ ZWss zwgg> NsN, % &
F=(Z52) Not (552) Ny + e Tx =572 + b ( Noln (22 ) + Ny n (2] ) - (252)

Suppose that vy = v, = v so that both types of lipids have the same area per lipid. In

the analysis that follows, we use the free energy density, f = F'//(Nv). Under the assumption
that both types of lipids have the same area per lipid, N5/N and N,/N, though technically
particle fractions, are also equal to the volume fractions 6 and 6,. It follows that the
homogeneous free energy density is given by

kT
£ (05, 0,) = €5s0s + €490y + bT (xBs0, + 0,100, + 6,1n6,) , (2.53)

where €;; = zw;;/2v for i, j = s, g are energy densities, and the unitless parameter x is now
X = [(2v)/ (KpT)(€sg — (€ss + €49)/2)-

For the curvature dependent part of the free energy density, we follow the Helfrich model
[27] and take the bending free energy density to be

Osks

0
105,05, H) = =2 (2H = C)? + LL(2H - C,)?, (2.54)

where ks and kp are bending moduli with units of energy, H is the mean curvature of the
surface, and Cs and Cj are the preferred curvatures of the sphingolipid and glycerolipid

phases. Nonzero Uy or Cy reflect the preference for the lipids to be in a curved instead of
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flat state. Though often a result of inhomogeneities between the two leaflets of the bilayer
[55], different types of lipids also have different basic shapes which could contribute to the
spontaneous curvatures of the two phases [18, 25].

For the third part of the free energy density, we include two Cahn—Hilliard type terms,
2

a2 o %9 jop

5@ VabsV g, and - @ VabyV sy, (2.55)
where o, and o4 are constants with units of the square root of energy and characterize the
resistance to sharp gradients in the volume fractions. These terms may play a similar role to
the phenomenological line tension terms that appear in various models of phase separation
and penalize boundaries between phases [39]. They are also the usual terms appearing in
the free energy density used to derive the Cahn—Hilliard equation [36], formulated for a
surface.

Define
f(0s,04, H) = f"(05,0,) + £°(05,0,, H). (2.56)

Define the total free energy density to be
2

T ag af Oég af
[ (05,04, H) = f(6s,04, H) + 5 @ ValsVls + 5 ¢ ValyVgl,. (2.57)
The total free energy of the system is given by

F= [ a6 ag™ (0.5, 1) (2.58)
S

with time derivative

T T T T
ofT 00, ofT 09, OofTOH _ f 8a>’ (250)

0

—F = [ detde? —_—t ——

at /55 5\/&<598 ot 56, ot | OH o  2a 0t
where the § notation indicates a functional derivative. The functional derivative of f is

simply the partial derivative. For the functional derivative of the Cahn—Hilliard penalty

terms (shown only for the sphingolipid phase here), we have the first variation
/ detde®/a [Ofaaﬂ (VabsV 5605 + vaéesvﬁes)}
- / de'de®/a [agaaﬁvaaasvﬁas} (2.60)
=— / detde?/a [agaaﬁvavﬁas} 50,

so that % = ngs — a2a®? VoV b, and similarly for the glycerolipid phase.

Using the continuity equations for s and 6, given in equations 2.39-2.40 and equa-

tions A.9 and A.3 for 0H /0t and da/0t, we then have
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0

F = / detde®y/a K of _ a’;’aaﬁvavﬁes) (=Va(0s0%) + 20,HU,,)
S

ot 00,
af 2 af «
+ 87 - ozga VO(VBag (—Va(egw ) + ZGQHUn)
g
1 (2.61)
+ 3}2 ((2H2 — K)U, + 2aa5v/3vaUn)

2 a2
—2 (f + %aaﬁvaesvges + ;aaﬁvaegvﬁeg> HU,

2.6.3 Constrained Rayleighian
Combining equation 2.47 for the rate of viscous dissipation and equation 2.61 for the

the time derivative of the free energy, we have the full Rayleighian

1
R= / de'de*v/a {2 (77,505 + 4T Saglly + 08460 (v — wa) (v — wp)]
S

8f 2 « a 8f 2 « a
_ (898 —aga ﬁvaVﬁes> Va(ﬁsv ) - (aeg — Oéga BvaVﬂeg Va(ﬁgw )
af 1,
+ OH <(2H2 - KU, + 50, ’BVgVaUn> (2.62)

Of 2 ap Of 9 ap
2 S - @ « S - . o
+ [9 <893 aga VVgH)—I—Hg <8«99 aga®’ Vo'Vl
HUn}.

We wish to minimize the Rayleighian over velocity, but only velocities that satisfy the

Oég af 043 af
- f + ?a Va95V595 + 7(1 VaegV509

coincompressiblity constraint (2.44). Using the Lagrange multiplier o, we seek to minimize
R.=R-— / de'de*o (Vo (050 + O,w*) — 2HU,,) . (2.63)
S

The Lagrange multiplier ¢ acts as a surface pressure and affects both the tangential and

normal force balance equations.

2.6.4 Full Force Balance Equations
Using equation (2.51) and integration by parts (section A.6), the variation of R, with

respect to velocity is given by
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SR, = / delde/a [{—VQ(ST“%) + 050,€a% (v, — wa)
S

+a*%0,V (géf 20V, 0, + a> } 60 + { ~Val,T°6)
afs af af 2 X\
+ 050,8a%" (wo — va) + a4V o 7, —a a'Vy\V 0, + 0 ) ¢ dwg
o o (2.64)
+ {—STaﬁbaﬁes — Tbag, + (2H? — K) 82 + -0V, Vg 81{1
0 0
+2 [es (aaf — a2a"PV 4V 50, ) + 6, <89f — a2a"P VoV, >

2 2
<f+ 5 a®’V 05V 505 + 2 5 9 g0y ewe)

} 50,

Using a Lagrange multiplier to constrain the variation allows us to treat dvg,dwg, and

0U, as independent and arbitrary variations. Thus, R, is zero when the following three

equations are satisfied:

ValeT0,) ~ 0.0,60°7 (00 — ) ~ 40,5 (41— 2TAT,0. 40 ) =0, (269
Va(gTaﬂeg) - 0399£aa5(wa —Va) — aaﬂegva (gef -« CL/\MVAV O + U) =0, (2.66)
af 1 af
af af o 2 ~S 2 aB <
STbagbs + g T*bagly — (2H? — K) 5 — 50" Va Vo
af 2 af af af
-2 |:9$ (808 —aga VO{V593> + 99 <89 - Oé a VQVﬁeg (267)

2 2
<f+ K a“PV 05V 505 + 2 5 9 g0 ev59> H=0.

Equation 2.65 is a tensor equation and describes the balance of tangential forces for the
sphingolipid phase. Equation 2.66 is a tensor equation and describes the balance of tangen-
tial forces for the glycerolipid phase. Equation 2.67 is a scalar equation and describes the

balance of forces in the normal direction.

2.7 Full System
2.7.1 Surface Fixed Coordinates
The full system of equations includes the continuity equations, the force balance equa-
tions, and the equation of motion for the membrane. These equations are given by

00

ot
a6,
5+ Vallgu®) = 20,HU, =0, (2.69)

o(00%) — 20,HU, =0,  (2.68)



25

VQ(STQBGS) — 056’g§(vﬁ — wﬁ) AR (géf — a?a)‘“VAV,ﬁS + 0> =0, (2.70)
Va(gTaﬁeg) - esggf(wﬁ —v7) - aaﬁegva <§0f - QEGA“VAW% + U) =0, (2.71)
g

of 1 of

aff a3 - 2 Y 2 ap _J

ST bages + gT bagtgg (2H K) OH 2(1 VQVB OH

af 2 _apf 8f 2 _af

-2 |:95 <805 — aga VaVﬁ95> + 99 (899 — aga VQV50g (272)

2

2 o
- (f + %aaﬂvaasvﬂes + gaaﬁvaegvﬁeg> to

- H=0
9 ’

or

5 ~Um=0. (273

This system of equations is supplemented by either of the following equations,

V(050 + 0,w*) — 2HU,, = 0, (2.74)
0s +0,=1, (2.75)

each of which expresses the space filling assumption.

2.7.2 General Coordinates

The continuity equations and coincompressibility condition for general coordinates have
already been described in section 2.5. It is not necessary to repeat the derivation in
section 2.6 for general coordinates. Because the force balance equations derived are valid
tensor equations, they hold true in any coordinate system, and expressing them in gen-
eral coordinates only involves a coordinate transformation from surface fixed to general
coordinates. (See section A.7 for a description of coordinate transformations.) Though
the components in the tensors depend on the coordinate system, the general form of
the equations appears the same after transformation, with the only difference being the
expression for the rate of strain tensor. We show in section A.2 that the rate of strain

tensor in general coordinates for the sphingolipid phase is given by
1
Sag = B (VQ’UB + Vgua + Vo Ug + VU, — QbQﬂUn) . (2.76)

The rate of strain tensor for the glycerolipid phase is identical with w substituted for v.
Thus the full system of equations in general coordinates is given by

00

ot
0
({;tg + Val0yw®) 4+ 0,(Vo U® —2HU,) =0,  (2.78)

FVa(00%) + 0,(VaU® — 2HU,) =0,  (2.77)
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VQ(STQBGS) — 059g§(vﬁ — wﬁ) AR (géf — a?a)‘“VAV,ﬂS + 0> =0, (2.79)
a o of
Val,T%0,) — 00,6 (w? —vP) — a0,V <aeg — a2aMV\V 0, + a> =0, (2.80)
of 1 of
af af - 2 “) 2 aB <
ST bages +gT bagtgg (2H K) OH 2(1 VQVB OH
af 2 _apf 8f 2 _af
-2 |:95 <805 — aga VQV595 + (99 aieg — aga VQV509 (281)
o? o’
— | F+ faaﬂvaesvﬂes + faaﬁvaegvﬁeg +o| H=0,
or o
5 Uy —Upn=0. (2.82)
supplemented by either of the following
Va(0s0® + 0,w%) + VU —2HU, =0, (2.83)
0s +0,=1. (2.84)

2.8 Simplifications
In this section we explore three simplifications of the two phase model developed in the
previous sections. First, we examine the equations under the assumption that there is only
one phase and no flow. Second, we explore the simplification to the flat plane R?. Third,

we explore the simplification to a single phase fluid on a moving surface.

2.8.1 Comparison with the Classical Shape Equations
Consider the system 2.68-2.75 when 0, = 1, 6, = 0, o = 0, all the velocities are zero,

and the free energy density is given by the Helfrich free energy density,
f= g (2H — Cy)?. (2.85)

We see from the tangential force balance equations that ¢ is constant. Then with a short

calculation, the normal force balance equation yields the classical shape equation [55, 73]
K [(2}1 — Cy) (2H? = 2K + HC,) + 2a*°V,V3H| + 2Ho = 0. (2.86)

This equation has been used extensively to describe the equilibrium shape of vesicles [55].
Thus our system generalizes the simpler situation of a single phase fluid membrane at
equilibrium. We should note that the original derivation in [73] uses a different sign
convention for mean curvature and includes a term to maintain constant volume inside

the closed surface.
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2.8.2 Simplification to R?

Suppose we use the system 2.68-2.75 to describe the flow of a two phase fluid in R?
using Cartesian coordinates. We briefly cover the current form of the geometric quantities
described in section 2.1.

The surface in this case is simply given by r(z,y,t) = (x,y,0)’, with no time dependence.
The tangent vectors are t, = (1,0,0)” and t, = (0,1,0)T. The normal velocity is U,, = 0
because the surface does not deform in time. The metric tensor is the identity tensor, and
the curvature tensor is the zero tensor. The determinant of the metric tensor is one. Since
Christoffel symbols are linear combinations of partial derivatives of the metric tensor (see
section A.5), all components of the Christoffel symbols are zero, and covariant derivatives
are simply partial derivatives. Because the curvature tensor is zero, both the mean and
Gaussian curvatures are zero.

With the simple forms of the geometric quantities, we see that the rate of strain tensor

for the sphingolipid phase is simply
1
Sy = 3 (Vv +vvl), (2.87)

where V is the typical cartesian gradient operator. The rate of strain tensor for the
glycerolipid phase is identical, but with w. The stress tensor for the sphingolipid phase

is
Ts = (ns — €5)IV - v + 245, (2.88)

where [ is the identity tensor, and the expression for the sphingolipid stress tensor is similar.

Combining all these aspects, we arrive at the system of equations

96, -

oV (0) =0, (2.89)

%‘9;’ V- (0,w) =0, (2.90)

V- (0.T) — 0,0,6(v — W) — 0,V ( o v a) —0, (2.91)
of b )

V- (0,T,) — 0s0,6(w —v) — 60,V 0. agVol,+o) =0, (2.92)

g
V- (05v + 6,w) = 0. (2.93)

Except for a different form of the free energy (or chemical potential), this is the same two
phase system used previously [33, 60, 70, 71], which has been used to study the kinetics of
gels in 2- and three-dimensional Euclidean space. Thus we see that our system generalizes

existing models of two phase fluid flow in Euclidean space.
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2.8.3 Simplification to a Single Phase

Suppose that 05 = 1 and 6, = 0. Then the coincompressibility condition becomes
Va(v®) = 2HU, = a®S,p =0,
corresponding to an incompressible fluid [2, 49]. In this case, the stress tensor simplifies to
T = e(a®*a®" 4 a®"a"*)S),.

The surface fixed coordinate coordinate representation of the system of equations is now

Ve (T) = a®PV 40 = 0, (2.94)
of 1 of
af o 2 I N 751 ~J _ —
T%bap = (2H? = K) 5 = 5™ VaVs oo +2(f —0) H =0, (2.95)
Vv —2HU, =0, (2.96)
or
5~ Unn =0. (2.97)

Except for possible differences in the form of the free energy density, this is a the same
system presented in other published works describing flow on an evolving surface [3, 51, 49].

Thus our system generalizes incompressible Stokes’ flow on an evolving surface.

2.9 Conclusion

Using the tools of differential geometry, we have derived the equations describing two
phase flow on a two-dimensional Riemannian manifold. We explored two classes of coordi-
nate systems, a surface fixed coordinate system where the motion of the surface is purely
normal to the surface, and a more general coordinate system where motion is not normal
to the surface. We found that the resulting systems of equations are different depending
on the assumptions on the coordinate system. In deriving the equations of motion for the
flows on our surface, we used a free energy density which combined Flory—Huggins theory,
Helfrich bending theory, and Cahn-Hilliard theory. Using our free energy density, we made
use of the Rayleighian to produce the force balance equations describing the motion of our
two phase fluid.

Though we have specifically discussed two types of lipids, sphingolipids and glycerolipids,
the model derivation is general and describes any two phase fluid which fills space. We have
seen that the derived equations reproduce the classical shape equations, existing two phase
models in two dimensional cartesian coordinates, and existing surface flow models under

appropriate simplifying assumptions.



CHAPTER 3

EXPLORATION OF TWO SPECIFIC
PARAMETRIZATIONS

In this chapter, we explore two specific parametrizations of the general system derived in
Chapter 2. First, we explore the Monge parametrization, useful for describing perturbations
of the flat sheet. In the Monge parametrization, the surface coordinates are the Cartesian
coordinates x and y, and the surface is described by the height function h(x,y). We note
that motion is not expected to be normal to the surface in the Monge parametrization, so
it is necessary to use the general coordinate version of the two phase fluid equations instead
of the simpler surface fixed coordinate version.

Second, we explore a parametrization suitable for describing axisymmetric shapes. In
the axisymmetric parametrization, the surface parameters are taken to be u and 6 where
u parametrizes the generating curve, and € describes the azimuthal angle. For the axisym-
metric perturbation, it is appropriate to use the surface fixed coordinate version of the
system.

For each parametrization, we first derive the basic objects necessary to describe the
system. We then derive the parametrization-specific version of the two phase fluid equations.
Finally, we perform linear stability analysis to explore the interaction between curvature

and phase separation.

3.1 Monge Parametrization
3.1.1 Basic Setup and Definitions

Suppose we have an infinite surface S(t) described by the parametrization

r(z,y,t) = (z,y, h(z,y,1))" (3.1)

for z,y € R. Note that because we are on in infinite surface, all boundary conditions that
may have arisen from integrating by parts in the derivation presented in Chapter 2 are
neglected. A schematic representation of the surface is shown in Figure 3.1.

The tangent vectors are given by
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X

Figure 3.1. The Monge parametrization.

te = (1,0, hy) T (3.2)
and
ty = (07 17 hy)Tv (33)

where h, and h, indicate the partial derivatives of h(z,y,t) with respect to x and vy,
respectively.

The metric tensor is given by
o 1+hE hghy
Gap = ( hohy 1452 ) (3:4)
with determinant given by
a=1+hl+h.. (3.5)

The inverse metric tensor is given by

1/ 1+h: —hyh
af _ = Y ztty
a - < Chohy 142 ) , (3.6)
and the outward unit normal vector is given by
1
n=—=(—hyg,—hy, 1) (3.7)

Va

Using equation 2.9, we find that the curvature tensor is given by

o 1 h:cx hxy
bt = Va ( hay By ) ' (38)
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The mean curvature is given by

1
H = itrace (a®7byB)

D (14 52) + By (14 h2) = 2hohyhay (3.9)
- 2a3/2 )
and the Gaussian curvature is given by
K = det (a®"b,p)
 haghyy — B2, (3.10)
D
Since we are working in a general coordinate system, we have
Or
Y _Uet, + Uyn. 3.11
5 + Unn (3.11)
This can be written as
0 1 0 U —hyg
o |=v0"( o0 |+U0Y( 1 |+-2[ —-h |, (3.12)
hy hy hy Va 1
and we can calculate that
hahy
U* = 3.13
L (3.13)
UY = hyht, (3.14)
a
h
U, = —=. (3.15)

3.1.2 Full System of Equations
Using the derivations laid out in section B.1, we are able to express the full two phase
fluid system from Chapter 2 using the Monge parametrization. In what follows, we use
fs, fg, and fg to indicate partial derivatives with respect to 05, 0,, and H, respectively. The

two continuity equations are given by

s 9 gy + 2 (0.0)

+ -
) ot  Ox oy (3.16)
+ES [he (V' hag + VWhay + hat) + hy (V5 Ry + 0¥hyy + hyt)] =0
and
00 0 0
87759 + O (Ogw™) + EW (OgwY)
; v y (3.17)
+E~" [ha (W' hag + WYhay + hat) + hy (W5 hgy 4+ WY hyy + hyt)] = 0.

The coincompressibility condition is given by
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0 0
P2 (050" + Gw™) + ay (Os0Y + GwY)
1

(3.18)

The two tangential force balance equations for the sphingolipid phase are given by

L2 () L8 (i)

a O0x

aoy
98 TTT T 2 T T
-3 (T gy = ST (b = hyhyy) = T holyy ) = 0,0,6(0" — )
(1+h2)0s 0 o? NCR 920, 5. 020,
LA {fs— [(1+h )G~ 2hehy g+ (L D)
+ (h e Ty, ) (1 + hi)haa — 2hehyhaey + (14 hx)hyy]] + a}
hehyfs O o2 o 020 R 5. 020,
p {fs [(1+h)ax2—2hhyaa (1+h)ay2
D0, 90,
+ (h 2 T, ) [(1 4 B2)hea — 2hehyhey + (1 + hi)hyy]] - 0} =0
and
10 10 /-
Y = (.Tvy
adz <T0>+a8y(5 95)
+% (j““h haw — T (hohag — hyhay) — Tythw) — 0,0,(v? — w)
hohyBs O o? 0 020 90, 0. 020,
s h 1+h
+— {f [(1+h)6$ —2h, yaxay+(+ ) " 50
3.20
90, 90,
- (h e Ty, > (14 B2)hew — 2hehyhey, + (1 + hi)hyy]] a}
(14 h2)0, j 0 020 90, 20,
E—T fs— (1+hy)83€2 2h, hyaa + (14 h2) 2
D0, 90,
- (h 5. Yoy > (14 h)hag — 2hahyhey + (1 + hi)hyy]] a} =0,
where
ST = (s + €5) (1 + hl)dy
ov® vy 3.21
<hh En +(1 +h2)8y + hyhgyv" + hyhyyvY —i—hhyt) (3:21)
~ ot ovY ov* oY
T = —(ns + €5)hohydy, + €5 [hxh <+> + 1+ h2)——+ (1 +h3)=—
(hyhas + hohey) 0" + (hahyy + Byhay)o? + hyho + By |
TV = (ns + €5)(1 + h2)d,
ov” (3.23)

<h hy Ov? + (14 h2)

v g + hahawt” + hahgyv? + hy hmt>

Ox

and the expression d,, is given by
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dy = a®PSu5 = Vo™ + VU — 2HU,
" hy ovY  hy (3.24)

= Oz ( xh:px +v h;py + h:rt) + Ty + — ( xhwy + ’Uyhyy + hyt)-

The two tangential force balance equations for the glycerolipid phase are given similarly by

TGRS TG
0

0 (T gy = T (hohay — hyhyy) = T hohyy ) = 0856 (w” = v°)

a?

S A R (Rer BERR=C Rk

+ (h a; +h %6;) (14 h))hee — 2hahyhay + (1 + hi)hyy]} + a} 52
+h ZG 0 {fg j [(1+h2)%2529 —thhyg;g‘; +(1+h2 )%2:2

- <h %9 T h %%) (14 B2)haw — 2hahyhay + (1 + h?c)hyy]} + a} =0
and

2 (070) + o (770,)
22 ( T hyhgy — g T (hahas — hyhay) — g7V hxy) — 0,0,E(w? — oY)
ﬁ%yegi {fg — Cf [( h?f?j —2h hyg;gz + (1 + hi)‘?jf

+ (hxaaif’ + hy, a;y > (14 h))hew — 2hahyhay + (14 hi)hyy]] + a} (320)
B +52)0 ;y {fg —; [( h"’)%e thhyg;gg +(1+ h2)(?9202

a0, a0
+ (h S I 4 hy, ay") (14 B2 haw — 2hahyhay + (1 + hi)hyy]] + a} = 0.

Where the expressions g’f @8 are analogous to equations 3.21-3.23. The normal force balance

equation is quite complicated, and is given by
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(ns + €5)(2H)dybs + (ng + €5) (2H ) duwby

26898 ov h =
+ 4372 { [hay (1 + hzz/) — hahyhy,] [81: + Zy (V" hay + VY hay + hxt)]
2 ov® hz - y i
+ [ha:y(l + hx) - hgjhyhxx] aiy + ; (U hxy + v hyy + hyt)
2¢e,0 owY h
+ ;??/29 [hﬂﬁy(l + h2) h‘ h hyy] |:au; + ;y (wmhx:c + wyhxy + hxt)]
2 ow® hx z y i
1 a fH anH anH
—(2H? - K)fy — — |(1+ R —2h,h 1+ h?
@ = ) 5 |+ ) ST oo, S0 402) O,

o 0
n (h 8fH +hy, g;) (1 + h2)haw — 2hahyhay + (1 + hi)hw}]

a? 5. 0%0, 020, 020,
_2{95 <fs—a [(1+hy)ax2 = 2hahyg o +(1+n2 )5,

(3.27)

00, 00,
+ (hméhy—%hyéﬁ/> (14 k) hea 2hmhyhmy+—(14—hi)hmj}>
2 2 2 2
%(n %[u+#9 oy L0 1220

dy?

a 022 Y 9zdy

+OL %w>m+%mm—%mmw+u+@mﬂb
00\ 2 90, 00 005\ >
2 s - UYs s 2 s
<f o () -n s (5
(

2 2
90,4 00 a0
2 g 1 2) (=2 =0.
+h)< > 2hha o (+hf’f)<ay> >+0}H 0

The above system, when paired with appropriate initial conditions, serves to determine

the unknowns 0y, 0,, v*, v¥, w*, wY, h, and 0. Note that if desired, we can omit the coincom-

pressibility equation and instead use the fact that 0, + 6, = 1.

3.1.3 Stability Analysis
3.1.3.1 Steady State

One steady state of the system presented is given by 65 = 6y = constant, 8, = 1 -0y, v =
v =w® =wY =h =0, and 0 = 09 = constant. Note that the constant oy is not specified

due to the fact that H = 0 when h = 0. Similarly to section 4.3.2, we suppose
0s = 0y + N0, (328)
0y =1—00— \on, (3.29)
v¥ = i, (3.30)



v’ = o, (3.31)
w’ = Ay, (3.32)
w¥ = M, (3.33)
h = Ay, (3.34)
o = 00 + Ao (3.35)

Note that we have used 6, = 1 — 05 to eliminate one unknown. We substitute into the full
system of equations (omitting the coincompressiblity equation), and only keep terms which

are first order in A. The resulting system is

(989; + 6o (881)5 + 8;5) =0, (3.36)
90, owt  dwy

——, +(1—6) ( ot 8;) =0, (3.37)
w (G 2oy e (G4 + 2 - - oot -

o= b =55 (G )+ (5 + amge) e =0 639
s (g;?; + f:j) + e (8;;5 + Eg;j) — (1= 00 (o] —w})

—(fsso — fsgo)a;; - f;H <aa;}§y %Z?) : (8(13295y + ?yé;) - 3;; =0, (3.39)
Mg <a;;f + gjfgi) e (a;:f + 8;;”;) — 00¢ (wi —of)

~(fsgo — fggo)% - % (a;;l 55;) - a; (ff; + 55;) - % =0, (3.40)
g (gj}gi + 8;?) + € (8;:5 + 8;%) — 0o€ (w} = v})

oo = fgg")aﬁeyl - fg2HO <3T2h@1y i %;?31> % (8?632%3/ N 8@1?) R a(’;;l -0 By

1 0%0, 0%, frm, (0*h 0*hy 0*hy
2 {(fSHO ~ Jom) <8m2 * Oy? ) Ty < ozt 0%2x0%y * Y4 ﬂ

Ohy | O
+ (6o fso + (1 —00) fgo — fo + o0) <aa:2 + 5, > =0. (3.42)

We express each perturbation as a linear combination of e¥*tte?*®¢i¥ 5o that we have
6)1 — E elewk,ltezkxezly’
k,l

Uf — 2 :@glvewkyltezkxezly’

k.l
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§ :@y wklt ikx zly
w® = Ax Wk, lt ikx zly
wy = E

where the coefficients with hats are constant. Upon substitution into the system 3.36-3.42,

we have the following for a given k and [,

w1 + 0o (ik0] + oY) =0, (3.43)

—wg + (1= 6p) (ikwf + ilw]) =0, (3.44)
s (K207 + KI6Y) + €5 (k> +1%)07 + (1 — 0)& (87 — wy)

+ik (fsso — fgo + Q2 (K2 +12)) 0; — @(kﬁ +12)hy + 61| =0, (3.45)
no(kIOT + 1260) + e (K2 + )0 + (1 — 60)E(oY — oY)

+il (fsso — fogo + Q2(K2+12)) 01 — %(k? +1%)hy + 01- =0, (3.46)
(R 4+ R + ey (K + 2)dF + 0o (dF — o)

+ik _(fsgo — fogo — @2(K* +12)) 61 — %(/{2 +1%)hy + 01- =0, (3.47)
(KT 4 PY) + ey (K + 12)dY + Gof (! — oY)

+il —(fsgo — fogo — 02(k* +12)) 61 — %(lﬁ +1%)hy + &1_ =0, (3.48)
o |t — o) (82 + )6 — %(iﬁ )2

(00 for + (L= 00) fyo — fo+ o) (K2 + D) 0. (3.49)

The system 3.43-3.49 can be written as the matrix equation Mx = 0 where x =

(01,07, 0Y, 0¥, 0¥, 61, h1). We solve the equation det(M) = 0 for wg, to yield the following

dispersion relationship,

B
WE,1 = — Z(fSSO + fggo - 2f590)

2 (3.50)
—I-E (K +1?) (fsmo — fomn) —25(k2+l2)a2
A (K2 + 1) fun, — 4100 fso + (1 = 00)fgo — fo+00] A
where
B = 0y(1 — 6p)(K* +1?), (3.51)
and

A= n+e) (k2 +1%) +¢, (3.52)
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and we have assumed for simplicity that ns =1y, =n,€; = ¢ = ¢, and a; = ay = a.
The equation for wy splits into three parts. The first part describes the mixture’s
intrinsic nature to phase separate. Using the fact that 65 + 6, = 1, the homogenous free

energy density can be written as
F(05) = €ss0s + €49(1 — 05) + xO5(1 — 05) + 05 In O + (1 — 5) In(1 — 65). (3.53)

The expression fgs + fyg — 2fsqg, evaluated at s = 0y and 0, = 1 — 0y, is the same as the
expression 02 f /062, evaluated at 5 = 6. The function f"(6;) is plotted for two different
values of x in Figure 3.2. Figure 3.2a is plotted with x = 1.5, while Figure 3.2b has x = 2.5.
The self interaction parameters e, and €44 are taken to be the same in these plots. We
notice that for x > 2, the plot of f* has a region that is concave down. This concave down
region corrosponds to the region where fgs + fgq — 2fsg < 0, which destabilizes wy. This
result matches up with classical phase separation results [15], where a double well potential
energy leads to phase separation in the mixture.

The second term describes the effect of curvature on stability. This term is only nonzero
when fip, and fypg, are different from each other. Recall that the difference in these
two quantities comes from the phases having different bending moduli or spontaneous

curvatures. Since frgp, > 0 for a Helfrich-like free energy density, we see that the two

a) b)
0 T T T T 0

-0.02

-0.04
;015 X
f 006
-0.2
-0.08
-0.25-
03 -0.1
035 0.2 04 o 06 0.8 1 015 0.2 04 o 06 0.8 1
S S

Figure 3.2. Homogeneous free energy density, plotted for different values of x. a) Homoge-
nous free energy density with x = 1.5. b) Homogeneous free energy density with x = 2.5.
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phases being different can lead to instability for large wave numbers. Interestingly, low
wave numbers can actually be stabilized by curvature if 0 fs, + (1 —6o) f4, — fo + 00 is large
and positive. This expression appears as a consequence of the fact that oy is arbitrary for
a flat sheet. We will see in the subsequent parametrization that og must take on a definite
value for a nonflat steady state.

The third term in the dispersion relationship describes the effect of the Cahn—Hilliard
term, which penalizes sharp gradients in the volume fractions. Because the third term is
negative and is higher order in k and [ than the first two terms, we see that higher modes
are damped out. The damping means that lower order modes may be unstable, while
higher order modes are stable. This indicates the existence of a most unstable mode. The
most unstable mode will dominate pattern formation in the linear model, an effect that will
likely carry over in some degree to the fully nonlinear model. Thus, the conclusion of the
Cahn—Hilliard penalty terms in our model leads to pattern formation in a way analogous

to the classical Cahn—Hilliard model.

3.2 Axisymmetric Parametrization
3.2.1 Basic Setup and Definitions

We suppose that our surface is axisymmetric and given by
r(ut,u? t) = r(u,6,t) = (x(u,t) cos(f), z(u,t) sin(h), z(u, )T, (3.54)

where u € [0, L] parametrizes the generating curve of the axisymmetric shape, and 6 € [0, 27|
is the counterclockwise rotation angle around the z axis. We assume boundary conditions
x(0,t) = x(L,t) = 0 and 2/(0,t) = 2/(L,t) = 0 where the prime indicates a derivative
with respect to u. We further assume that all objects dwelling on the surface (velocities,
volume fractions, etc.) are independent of the angle 6 so that they too are axisymmetric.
Note that this implies that v*(0,¢) = v*(L,t) = w"(0,t) = w*(L,t) = 0. These boundary
conditions mean that any boundary contributions arising from integrating by parts in the
orignal derivation described in Chapter 2 are identically zero. For notational expediency,
we suppress the v and ¢ dependence in the following derivation. A schematic picture of our
axisymmetric surface is shown in Figure 3.3.

The two tangent vectors are given by
t, = (' cos(0), ' sin(h), 2/)T (3.55)

and
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Figure 3.3. An axisymmetric surface.

tg = (—xsin(f), z cos(d),0)”. (3.56)

This gives a metric tensor of

20
aaﬂ = < % 2 > ) (357)

T

where p? = 22 4 2’2 and «, 8 = u, §. The determinant of the metric tensor is given by
a = det(ang) = pz”. (3.58)

The inverse metric tensor is given by

1
b — | P? (3.59)
0

0
1 )
22
and inward unit normal vector by
bty Xty
Ve (3.60)

= }(—z’ cos(f), —2'sin(0), z")T.
p

Note that we use the inward unit normal so that the mean curvature of a sphere will be a

positive constant instead of a negative constant. The coefficients of the second fundamental
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form are given by b,g = % -n. This yields
1 9
bag = Z(j o | (3.61)
p
where ¢ = —2”2' + 2’2”. To define the mean and Gaussian curvatures, we need
<0
b3 = a®b,g = 7; 2 | (3.62)
T
From that we have the mean curvature
1 1/gq 2
H:Trba:<+>, 3.63
STo(es) = 5 (5 + (3.63)
and the Gaussian curvature
/
qz
K = det (b3) = ——. 3.64
et (15) = 4 (3.60)
We will also need
40
b8 = 4Py, = 1; . (3.65)
pa3
and
2 2
2 q z
b*Pbos = (4H? — 2K) = <p6 + pr2> . (3.66)
The equation
0
a% — Upn (3.67)
implies that
ox 2!
—=-2yu, 3.68
i (3.68)
and
0z 1

3.2.2 Full System of Equations
Using the details shown in section B.2, we are able to express the full two phase system
derived in Chapter 2 in the axisymmetric parametrization. In what follows, we use fs, f,

and fy to express partial derivatives of the free energy density with respect to 0, 6,, and
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H. The full system of equations is given by

00

ot
09,

+ 0", + 05d, =0, (3.70)

+wf) + 0ydyy =0, (3.71)

ot
S S 2 S /95 ! ]' /95 n ! 98 !
n +26 [Qsdv]/—l—Z[—v“(p) (x ) +<> (z U> B gx Un:|
p p T p €T p p-r (3.72)
0.0 f('l}u wu) 05 f O‘z (0// 9 (p/ 1,‘/)) 4 ]/ 0
—VYslg - o |Js T o s Ys\ T — o =Y,
p p p z
b g 2 e (2) (25 (1) (20 0
P2 grw P2 T P T P pix "
0 2 J / (3.73)
—050,€ (w" — ") — 5 fg—p—g <9;’—0; <p_:v>) +o| =0,
2€,0, qx’ 2 ;o 2q7 ]
2H — w2 - uy 247
(ns + €5) (2H) Osd,, pe [v ( x)—l—(q:)(pv) meUn_
2¢,0 e 2! u 2q2" ]
+(ng + €g) (2H) Oydoy — ngg [w <m> + <x> (pw")' — %Un
1 / ﬁB, ]
SRS
980‘2 " / p/ ' 99043 1" / p/ x
_lesfs_ p2 <05_95 p_x +99f9_ p2 09_99 p_fL’
o2 o’
TSSO - 50 0| ) =0,
o q W
W%w«p+$>—Qﬁ—m>m—@:m (3.75)
/ / /
ww+uﬂ<i+i)-gi—;;ﬁ%—dwzm (3.76)
/
Z+Zm:& (3.77)
0z
% Ty, =0, (3.78)
ot p
€s n’ (32 p
M{Pwﬂ-+@w<aj—p)}—@%g@ﬁﬂﬁ)za (3.79)
’ / /
{1 (24) )0 o

Notice in the above system the velocities in the u direction, v* and w", are completely
decoupled from the velocities in the 6 direction, v? and w?. Clearly, the final two equations
can be solved by choosing v? = w? = 0. We make this assumption and eliminate the final

two equations from the system.



3.2.3 Stability Analysis
3.2.3.1 Steady State

One steady state of the above system is given by

0s = 6y = constant,

0y =1— 0,
v =0,
w" =0,
U, =0,
dy, =0,
dy =0,

H = Hy = constant,
K = Ky = constant,

o = og = constant.

42

The only H = constant shape that meets the appropriate boundary conditions is a sphere.

Let
Th = po COS (ﬁu)
0 = Do I
and
! e
29 = po sin <ZU> ,

where pg = constant. Then

and
=27 cos ()
T L L
so that
qo = —xgzé + 37626'
_ngw
7

Then

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)
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iy
0=35\ 3
2\#g - poto (3.96)

and

_ <L7Tpo>2 (3.97)

SO
2HF — Ko = Hj. (3.98)

That means that for the normal force balance equation to be satisfied at steady state, we
need

Hy

— [Ho- (3.99)

0o = fO - 90fso - (1 *eo)fgo - 9

This is different than what we saw in section 3.1.3 where the steady state value og was not

specified due to the fact that Hy was zero.

3.2.3.2 Perturbation of Steady State

To explore the stability of the system, we examine a perturbation of the steady state

values,

0, = 0o + A0y, (3.100)
0, =1— 00— A0, (3.101)
v = vy, (3.102)
W = i, (3.103)
Uy = AUy, . (3.104)
dy = Ay, (3.105)
dp = Mo, (3.106)
H = Hy+ \Hj, (3.107)
K = Ko+ \K], (3.108)

o =00+ Ao1, (3.109)

where Hy, Ko, and o( are the steady state values given above.
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Substituting the perturbed steady state into the system, using the identities presented

in section B.2.5 and keeping first order terms in A yields the linear system
01+ Ood,, =0,  (3.110)
01+ (1 = 0p)dw, =0,  (3.111)

T 2
(s + €5)dl, + € [m (F) + HOU;M] — (1~ fo)épd(vr — wi)

o2 (3.112)
- I:(fsso_fsgo) i‘f‘szOH{ g (9” ZCOt (L >(9/) +o'£:| =0,
! ™ / 2
(g + €g)dyy, + 2€4 [wl (E) + HoUnl} — Oo&pi (w1 — v1)
02 . (3.113)
T
- [(fsgo - fggo)9/1 + ngOH{ + 173 (0’1/ 7 cot (L ) 0’) + (7/1 =0,
0
(ns + €5)0ody, — €569 [pOHU cot (%u) v+ V] — 2H0Un1_
. -
+(ng + €5)(1 — bp)dw, — €4(1 — 6p) [png cot (Eu) wi + w) — 2HoUy,
1 /
*m [(szo — fom,) (91 ZCOt ( )6 )
H (3.114)
+fHH0 <H{/ ZCOt (L ) Hl):| — 20 [(szO ng0)91 + fHHoHl]

+%H N { bo [(fsso - fsgo)el + szoHl] + (1 - 90) [(fSQO - fggO)Hl

1 —0)a2 — Opa?
+ng0H1]+( 0)29 05(9/1' Ecot( )9’)+al =0,
0

L

’U’l + %COt (%U) U1 — 2H0Un1 - dv1 =0, (3115)

w) + %cot (%u) wy — 2HoUy, — dy, =0, (3.116)

where 6; indicates a partial derivative with respect to time.

3.2.3.3 Derivation of Final Linear Equation for H
Notice that the above system is underdetermined. There are eight unknowns, but only

seven equations. The eighth equation comes from the time derivative of Hi. We have

/
2H = ]%Jr;—x. (3.117)

From this, we find

2

Q1 47 m T , us us
2H1 = — — —5p1 + —5 csc (—u) 21— <> csc (—u) x1. 3.118
pg Loy Ly \L /T \Lpo L (3:18)

We now substitue for ¢; and p; so that everything is in terms of z and z. Using the

definitions of p and ¢ we have
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p1 = cos (%u) o} + sin (%u) 24 (3.119)
and
q = % sin (%u) 21 — po sin (%u) 2 + po cos (%u) 2+ Z% cos (%u) . (3.120)

Upon substitution, this yields
1 3 3
2H, = " [—; sin (%u) 2} + cos (%u) 2 — % cos (%u) T} —sin (%u) x'{]

+ T cscC (Eu> 2} o i csc (ﬁu) x
Lp? L) \Lpo L)h

We now take the time derivative of both sides to find H; in terms of 41,21 and their

derivatives. Given that

i =—"U,, (3.122)
p
we have
. . ™
1 = —sin (zu) Un,., (3.123)
i) = —% cos (%u) Up, — sin (%u) Ul (3.124)
. ™2 . /T 2 T T
] = (Z) sin (ZU> Un, — - cos (Eu) U, —sin (Zu> Uy, (3.125)
And from
/
=2y, (3.126)
p
we have
# = —% sin (%u) Uy, + cos (%u) U, (3.127)
. T\ 2 T 2r . /m T
2 =— (Z) cos (Zu) Un, — - sin (zu) U, + cos (Eu) Uy.. (3.128)
Substituting into the equation for A, and simplifying, we have
. 1
2T = — [U;;l + %cot (%u) U;Ll} +2H2U,,. (3.129)
Po

This is the eighth equation necessary to close the system.

3.2.3.4 Eigenfunctions of the system
In section 3.1.3, we expressed each perturbation as a linear combination of the eigen-
functions of the system so we could derive a system of linear equations. In order to more

easily find the eigenfunctions of our system, we first make a change of variables. Let
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T
s = cos (Zu) . (3.130)
Then
d T d
— =2\ /1 -2 131
du L ¥ ds (3.131)
and
d? T\ 2 d? d
L (Y (a-sHE —s2). 132
du? (L) <( S>d32 Sds) (3:132)

This yields the system
01 + 0od,, =0, (3.133)
—61 4+ (1 — 0g)dy, =0, (3.134)
(s + €5) (—\/@) &, + 2, [poHov1 + Hy ( 1- 32) }
—(1—60)¢ (ig}) (v1 —w1) (3.135)
— (V=) [(oso = fog)8h + Fom Hf — a2H3 (1 = s2)0 — 2567)" + o |
(ng + €g) <—m> dyy, + 2€4 [P0H0w1 + Hp (—M) U7/11:|
—0o¢ <p(;> (w1 — v1) (3.136)
~ (VI=52) [ (oan = Joan)01 + Forg H} + 023 (1= 5261 = 2561) + 04| =0,

to {(773 + fs)dvl —esHp |:p0 <\/18_782’U1 —Vv1- 82’01) — 2Un1 }
+(1 - 00) {(779 + Eg)dun - egHO |:p0 <\/1S_752w1 -v1- 52w/1> - 2Un1:| }
—% [(fsm = fgro) (1 = 5701 = 2501) + fun, (1= s*)HY — 25H])] (3.137)

H
=0 (fsHy — ng0)91+fHH0H1)+%H

(
2
_[90((f880 fsgo)‘gl +szoH1) (1 _90)((f890 _fggo)el +f9H0H1)
+((1 — o) — boad) Hy (1 — %6 — 261) + 1] =0,
S

vy — mfug) — 2HyUy, — dy, =0, (3.138)
poHo (Swl - \/@ué) — 2HyU,, — du, =0, (3.139)
—2H, + H; [(1 - s*)Uy, — 2sU, ] + 2H3 Uy, =0, (3.140)

where the prime now indicates a partial derivative with respect to s.

We can notice in the above system a combination of Legendre and associated Legendre
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functions multiplied by exponentials in time work as eigenfunctions. We assume

01 = 017t P, (s), (3.141)
v) = d1e*"' Pl(s), (3.142)
wy = 1" Pl(s), (3.143)
Upn, = Uy, e*"' P, (s), (3.144)
dy, = dy, " Py (s), (3.145)
dy, = du, e Py (s), (3.146)
H, = Hie“"'P,(s), (3.147)
o1 = 61" P, (s), (3.148)

where P, (s) is the Legendre function of the first kind of order n, and P! (s) is the associated

Legendre function of order n defined by

dP
Pl(s) = -1 - ds( ). (3.149)
We note that
d*P, dP,
(1—s5% FEa QSK =-n(n+1)P, (3.150)

and

V1—s2 ds
d*P, dP, (3.151)
=(1-8)—02 — 25—
(=572 ~ 275
=-n(n+1)P,

After substitution into the system, we end up with the linear system

wby + Oody, = 0, (3.152)
—wly + (1 = 0g)dw, =0, (3.153)

(775 + ES)CZ’Ul + 2¢s [pOHOﬁl + Hoﬁ’ru] (1 - 00)& ( > ( 1)
(3.154)

— [0 = Fog + 0+ DEZ2)1 + fumry Fy + 6] = 0
)

(ng + €g)dus, + 2¢4 [PoHowl + Hoffnl} 3 < ) (w1 —
(3.155)

- [(fgso_fggo_ (n+1)H0a )01+ngoH1+0'1 =
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B {(775 + es)ch1 + €5 [poHon(n + 1), + QHOUA'M} }
+(1 —6y) {(ng +€g)du, + €4 [poHon(n + 1)y + 2H00m} }

fgﬂ bin) (3.156)

2
- [00((fsso - fsgo + n(n + 1)Hgag>é1 + szof:Il)

(1= 00)(fogo = Fago =m0+ D HF2)01 + fyng 1) + 61| = 0,

+ <€i0n(n + 1) - }IO) [(szo - ngo)él + fHHOI:Arl] +

A

—poHon(n 4+ 1)01 — 2HoU,, — dy, = 0, (3.157)
—poHon(n + 1)ty — 2HU,, — du, = 0, (3.158)
—2wH, — H2n(n + 1)Uy, +2H2U,, = 0. (3.159)

3.2.3.5 Dispersion Relationship

This linear system 3.152-3.159 can be written as the matrix equation Mx = 0 where
X = (élad’ulad\wp@lvwlaUnlaﬁla&l)T7 (3160)

and M is a matrix of the coefficients given in the above system. For x # 0, the system
is only satisfied if det(M) = 0. Under the assumptions €, = €5 = €,1s = 17y = 1 and

as = ag = «, the expression det(M) is the following quadratic polynomial in w,,

Aewr,

n(n+1) {1"(‘5 [2Ho fut, + (n — 1) (n + 2)H] frim,
+Be [(fso + fago — 2fsgo) + 20(n + 1) Hzo®] }wy
SO 1)+ 2 (o — for)

+ [2Ho ity + (1~ 1)(n+ 20 HE frrno] [(Foso + Fago — 2sg0) + 20(n + 1) HZa?] } =0,

(3.161)

where
A=Hin+e)nn+1) —2Hze + ¢ (3.162)
B = H20p(1 — bp). (3.163)

For n = 0, the above polynomial becomes Aew? = 0. Thus, the n = 0 mode is time
independent. This mode corresponds to the Legendre polynomial Py(cos(mu/L)) = 1. To
understand the meaning of this mode, we look at the resulting shape when the mode is

perturbed. Recall that the shape evolution is given by

T =—-"U,, 3.164
) (3.164)
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z2=—U,. (3.165)
p
That means that the first order perturbations of x and z for n = 0 are given by
. . m
&1 = —sin (zu) Un,, (3.166)
4 = cos <%u> U, (3.167)

Since Uy, is a linear combination of exponentials in time multipled by Legendre polynomials,
we see that for n = 0, 21 is —sin(mu/L)U,,t and z; is cos(mu/L)Up,t. Since the original
sphere is given by xg = poL/msin(mu/L), zg = —poL /7 cos(mu/L), it follows that the n = 0
mode is simply a contraction or expansion of the sphere. Since the total area is fixed, it is
clear that this mode has no effect on shape.

In the derivation of the polynomial, we divided by n — 1. Thus, the equation det(M) =0
is true for n = 1 regardless of the w,, value chosen. The n = 1 mode corresponds to the

Legendre polynomial Pj(cos(mu/L)) = cos(mwu/L). For this mode, the shape is given by

])07[/ sin (Z ) — /\[cjull @1t gin (%u) cos <L ) +O(\?) (3.168)
z= —pO—WL cos (Z ) + )\anl “it cos? (L ) + O(\?). (3.169)

Consider a small perturbation to the parametrization given by U = u + A¢(u), where ¢ is

some unknown function. Expanding in A yields

07-[/ ™ E U ni1 _wit E 2
T = sin (L ) + Acos (Lu) pod(u) — o —=e“*sin (Lu> + O(X?) (3.170)
_ kL cos (ﬁu) + X | po sin (ﬁu) o(u) + %ewlt cos? <Eu> +0(\?).  (3.171)
7 L L w1 L
Choose
_ Unl w1t : E
o(u) = w1poe sin (Lu> . (3.172)
Then we have
_pol . (T 2
z == sin <Lu> + O(X9) (3.173)
~ pL  m Uni wont 2
2= ——cos (Lu> +)\<w1 + O(\9). (3.174)

We see via the reparametrization that to first order in A, the n = 1 mode corresponds to
a vertical translation, but not a change in shape. In the following section, we explore the

dispersion relationship for n > 1.
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3.2.3.6 Analysis of the Dispersion Relationship
To analyze the behavior of the dispersion relationship 3.161, recall the behavior of the

roots of the quadratic equation
aw? 4+ Buw+v =0, (3.175)

for @ > 0 as shown in Figure 3.4. If either 8 or v is negative, at least one of the roots has
positive real part. For our situation, we can calculate that 32 — 4oy > 0, so the roots of
the dispersion relationship are always real.

By examining the dispersion relationship, we notice that there are essentially three
important expressions that highlight three different paths to instability. These three ex-

pressions are

(fsso + fago — 2fsg0) + 2n(n + 1)HEa?, (3.176)
2Ho [, + (n = 1)(n + 2) H{ firm,, (3.177)

and
(n—1)(n+2)Hg (fary — fom)® - (3.178)

The first two expressions appear added together in the § coefficient and multiplied in the
~ coefficient. The third appears subtracted in the ~ coefficient.

Expression 3.176 describes the tendency for phase separation to occur when the inter-
action parameter x is large enough. For x > 2, fssq + fgg0 — 2fsgo < 0. This effect is
similar to the effect seen in the dispersion relationship for the Monge parametrization seen
earlier in this chapter. The second part of the expression shows the stabilizing effect of the

Cahn—Hilliard penalty terms. As expected, this stabilizing effect dominates all other effects

Two complex Two complex
with + real part | with - real part

Two real +
Two real
one + one -

Figure 3.4. Behavior of quadratic roots.
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in the dispersion relationship for large enough n so that high wave numbers are always
stable. We note that the stabilization is more important for smaller spherical steady states
(large Hy).

Expression 3.177 describes instability caused by the steady state curvature being smaller
than the preferred curvature. This is an effect that was not seen in the Monge parametriza-
tion. If both phases have a nonzero and positive spontaneous curvature, then fg, < 0 for
Hj small enough. This effect is only important for small n due to the fact that fgm, > 0.

Expression 3.178 describes instability caused by the two phases responding differently
to curvature. This same effect was seen in the analyses of both the one dimensonal model
and the Monge parametrization. We notice that the two phases being different is always
destabilizing and that this effect is more pronounced for smaller spherical steady states.

Since full dispersion relationship for the axisymmetric parametrization is quite compli-
cated, we seek to understand it more fully by examining three cases. First, we assume that
the free energy density is independent of curvature. In this case, the two solutions of the

dispersion relationship are given by

Wy =0 (3.179)

n(n+1)B 2n%(n+1)’B
_(A)(fSSO + fog0 — 2fs90) — (A)Hgaz. (3.180)

Wnp =

As expected, stability depends on the value of x, but not on shape. We note that though
instability exists, this instability affects the tangential flow of the lipids, but does not affect
the shape of the membrane. We can see this by examining the matrix M. For f independent
of H, the matrix M can be modified using elementary row operations, which do not change

the value of the determinant to have the block diagonal form

_f My O
M= < 0 My > : (3.181)
where
0 60 1-¢6 0 0
00 1 0 poHon(n +1)
M = 0 0 0 poHon(n+1) (1*90)11050"(%1) ;
0 0 0 0 7wnp£106 {Bn(n + 1) [(fSSo =+ fggo - 2fsgo)

+2n(n + 1)Hia?| + Aw, }
(3.182)

and
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2Hp(n—1)(n+2)e
O(n(n—l)-(l) ) 0 0

Moy = | B 1)n42) w, 0 |- (3.183)
0 0 -1

We see that equation 3.179 corresponds to det Moy = 0, while equation 3.180 corresponds
to det M1; = 0. This means that for nonzero w, given by equation 3.180, the expansion
coeflicients Unn, fIn, and &, must be zero. Thus the instability affects the distributions and
velocities of the volume fractions but does not correspond to a change in membrane shape.
We see the instability graphically in Figure 3.5. Figure 3.5a shows a plot of the positive
root of the dispersion relationship when y = 2.5, H = 0.05, and a = 0. Figure 3.5b shows
the same plot for x = 2.5, H = 0.05, and o = 1. Notice how nonzero a damps out higher
wave numbers so that there exists a most unstable mode. Unless otherwise specified, the

parameters in this and all subsequent figures are n = e =& = KT =v = 1.
For our second case, we suppose ks = k4 and Cs = Cj so that the two phases respond
similarly to curvature. This implies that fsg, = fyH,. Under these conditions, the dispersion

relationship can be factored to reveal the two roots

= "D (o iy + (0 1)+ 2B Fim,) (3.184)

a) e b)

Figure 3.5. Stability for free energy independent of curvature. a) The positive root of the
dispersion relationship plotted as a function of 6y and n for x = 2.5 and a« = 0. b) The
positive root of the dispersion relationship plotted as a function of 6§y and n for y = 2.5 and
« = 1. The contour lines in both figures are merely present for ease of visualization.
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s _n(n + 1)B 2n2(n + 1)2B

o T(fsso + fggo B 2fsgo) - TH(%QQ. (3.185)

The superscript b indicates that the root depends on the resistance to bending, while the
superscript s indicates dependence on the homogenous free energy density without bending.
Notice that the root 3.185 is the same as the root 3.180 that we found when the free energy
density was independent of curvature.

We can see from equations 3.184-3.185 that instability can arise in two different ways.
It can arise either because Hj is smaller than the spontaneous curvature of the two phases,
or because x is sufficiently large. We can see these two types of behavior in Figure 3.6.
We have plotted the largest positive root of the dispersion relationship as a function of 6
and n for ks = kg = Cs = Cy = 1,x = 2.5, Hy = 0.05, and a = 1. Notice how there are
two distinct bulges. The first corresponds to w’, while the second corresponds to wg. The
heavy red curve shows w?, while the heavy black curve shows w, each plotted for fy = 0.5.
We can see that the two curves cross, giving rise to the two different bulges in the surface.
We note that both bulges disappear for large enough Hy. The first because of the Hg frH,

term in w’ and the second because of the HZa? term in w3,

0.07 —eoro
0.06 .o e

Q.05 oo e

0.04 <

0.08 e T

Figure 3.6. Stability for phases with the same constants. Parameter values are
ks = kg = Cs = Cyg = 1,x = 2.5,H = 0.05, and o = 1. The heavy red curve is a plot
of w for fy = 0.5. The heavy black curve is a plot of w? for fy = 0.5.
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It is somewhat surprising that there is curvature induced instability in the case where
ks = kg and Cs = Cy. In this case, the curvature dependent terms in the free energy density
are given by

ksl kst

(2H - 03)2 + 82

(2H - C,)? = % (2H — C;)> (3.186)

so that curvature and volume fraction are decoupled. Given this fact, we would not expect
phase separation and shape changes to affect each other. We will see that this intuition is
valid.

For fsm, = fyH,, We are again able to perform elementary row operations on the matrix

M to write it in the block diagonal form

M= ( M 1\522 ) (3.187)
The matrix Mj; is the same as 3.182 corresponding to w;, but Msy is now given by
Ho(n—1)(n+2
o= 0042) [ 4 1) (2Ho f, 0 0
+(n = 1)(n+ 2)H§ frrn,) + 16ew,]
Mz = B (n—1)(n+2) on o |
0 12fm, + (n—1)(n+2)fum,) —1
_ngO
(3.188)

corresponding to wfl. Thus when w = w;,, we have that 61, d,,,dy,,v1, and w; are nonzero,
but U,,, H1, and o7 are identically zero. Similarly, when w = wz, we have that 61, d,,, dy,,
v1, and w; are identically zero, but U,,, H;, and o; are nonzero. It follows that shape
changes and tangential lipid flow are decoupled when fsg, = fyH,-

For our third case, we suppose that the two phases respond differently to curvature.
In this most general situation, shape and tangential lipid flow are no longer decoupled. In
this case, we can truly have curvature induced lipid flow. All three expressions 3.176-3.178
affect the stability of the steady state with 3.176 and 3.177 having a larger effect for smaller
Hy values and 3.178 having a larger effect for larger Hy values. We can see the effect of
changing Hy in Figure 3.7 where we have plotted the zero isosurface of w,. Parameter values
are kg = 6,kg = 1,Cs = 2,0y = 1, and o = 1. We have also used x = 0, so we only see
instability caused by curvature. Spherical steady states with mean curvature smaller than
the preferred curvatures of the two phases correspond to regions below the lower surface
and are unstable due to the effect of expression 3.177. This is similar to the second case
where the phases responded similarly to curvature. In this third case, we have a new source

of instability. Spherical steady states with mean curvature much larger than the preferred
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Loy

Ll ]

Figure 3.7. Zero Isosurface of w,. Parameter values are xs = 6, K, = 1, Cs = 2,
Cy=1,x =0, and a = 1. Regions below the lower surface and above the upper surface are
unstable.

curvatures of the two lipids correspond to regions above the upper surface and are unstable
due to the effect of expression 3.178.

While Figure 3.7 provides information about stability as a function of 8g,n, and Hy, it
does not provide information about the most unstable modes or the resulting shape. It is
possible to extract this information from the linear stability analysis results. We first choose
a mean curvature Hy. This allows us to plot the largest possible root of w,, as a function of
0o and n as shown in Figure 3.8a. We have chosen Hy = 0.3 and all other parameter values
the same as Figure 3.7. We see that the surface has a maximum at approximately 6y = 0.4
and n = 4. Thus for Hy = 0.3 and 0y = 0.4, the pattern formation will be dominated by
Py and P{. We have plotted the Legendre polynomial Py(cos(u)) for u € [0,] in Figure
3.8b. Since we have a specific value of w, for our given values of Hy,f0y and n, we can
substitute that value into the matrix M. This value of w, makes M singular so that it
has a nontrivial null space. The null vector of M describes the relationship between the
expansion coefficients of the perturbations from the steady state values. We have used this
relationship in Figures 3.8c and d. In Figure 3.8c, we plot the perturbed generating curve
using fp = 0.4,n = 4, and the small expansion parameter A = 0.1. The arrows correspond
to Uy, and show the motion of the surface. In Figure 3.8d, we plot the perturbed shape
with overlaid perturbed 6, distribution. In this figure, Hy = 0.3 is smaller than the two

preferred curvatures Cs = 2 and C, = 1. Because 05 has a larger bending modulus than
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u

0.415

€]
5
- lo.40s

Figure 3.8. Shape associated with the most unstable mode. Parameter values are the
same as Figure 3.7 except that Hg = 0.3 in all plots, and 6y = 0.4 and A = 0.1 in b, ¢, and
d. a) The largest positive root of wy,. b) A plot of ps(cosu). ¢) The perturbed generating
curve with normals overlaid. d) The perturbed surface with 65 values overlaid.

0y (ks = 6 and Kk, = 1), we see that regions with higher 65 tend to bulge out to increase
curvature toward Cj, while regions with lower 65 tend to bulge inward.

While a full numerical simulation is necessary to explore the dynamics of the model far
from steady state, this analysis provides information about the initial pattern formation in
the system. For any set of parameters that exhibits a most unstable mode, we are able
perform similar analysis and glean information about the patterns and shapes that will

likely be observed in the full system.

3.3 Conclusion

In this chapter, we explored two specific parametrizations of the general model derived in
Chapter 2. The first parametrization explored was the Monge parametrization. The Monge
parametrization describes the surface by giving the height above the z-y plane. Because
motion is described via changes in height rather than changes in the normal direction, it was
necessary to use the general coordinate version of the two phase equations. While the Monge
parametrization is quite intuitive to understand, the resulting equations are complicated due
to the fact that the resulting metric and curvature tensors are not diagonal tensors.

After deriving the full system, we explored the system by examining the stability of a
flat sheet. We found that stability depends on three factors. The first factor determining



57

stability is the value of the interaction parameter . For large y, the system tends to phase
separate. The second factor is the value of fsp, — fyn,, which reflects the differences between
the two phases. We found that when phases are sufficiently different, it is possible to have
curvature induced phase separation. The third factor affecting stability is the Cahn—Hilliard
penalty term. This term uniformly stabilizes and has larger effect for higher wave numbers.
Thus high wave numbers are always stabilized. Further, this stabilization leads to the
existance of a most unstable mode and affects pattern formation in the system.

The second parametrization explored was an axisymmetric parametrization. In this
parametrization, it is valid to use the surface fixed form of the general two phase system.
We derived the axisymmetric form of the full system, finding it to be less complicated than
in the Monge parametrization due to the fact that certain tensors are diagonal, and partial
derivatives with respect to the angular direction are identically zero.

We explored the system by examining perturbations of a spherical steady state. We
discovered that the eigenfunctions of the system are given by Legendre functions. We
found that in addition to the factors affecting stability in the Monge parametrization, the
axisymmetric system can go unstable if the curvature of the sphere is smaller than the
spontaneous curvatures of the two phases. We explored specific forms of the free energy
density and found that shape changes and phase separation are decoupled if the two phases
respond indentically to curvature. Finally, we used information from the null vectors of the

matrix M to explore the shape and behavior of the perturbations of the sphere.



CHAPTER 4

CURVATURE-INDUCED PHASE
SEPARATION IN ONE
DIMENSION

The Golgi apparatus is an important membraneous organelle. Located in the secretory
pathway between the endoplasmic reticulum and the plasma membrane, it is a central
location for lipid synthesis and lipid and protein modification and sorting [7]. This protein
sorting is not fully understood, though some authors have hypothesized that it may be
accomplished via phase separation [63]. Various authors have examined the effects of
curvature on phase separation, both in the context of the Golgi apparatus [12] and otherwise
[26, 61]. In the following sections, we describe a one-dimensional simplification of the
equations presented in Chapter 2 and use the simplification to explore curvature-induced
phase separation in a single Golgi cisterna.

We first describe the simplifications and assumptions that lead to the one-dimensional
model. We then analyze the model equations to show analytically that they exhibit phase
separation under certain regimes and that the phase separation is enhanced by the influence
of curvature. We further show that curvature effects can induce phase separation when the
system is in close proximity to a critical point as has been demonstrated experimentally
[61]. Finally, we present numerical simulations of the model equations and explore different

model behaviors.

4.1 One-Dimensional Simplification
We model a single Golgi cisterna as a simple closed curve in R? of length L. We define
¢(x), where z is the arc length, to be the angle between the tangent to the curve and the
horizontal as shown in Figure 4.1.
Many of the components of the two-dimensional system such as the metric and curvature
tensors do not have one-dimensional equivalents. We choose to proceed as follows: Since

there is no stretching in an arc length parametrization, we treat all of the metric tensors
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Figure 4.1. Representative Golgi cisterna. ¢(x) is defined to be the angle between the
tangent vector and the horizontal.

as the single number one. As a result, all quantities that arose from the time derivative of
the metric tensor in the two-dimensional derivation (namely the HU,, terms) are zero. We

define the curvature via

_d
H="F. (4.1)

We treat all covariant derivatives as partial derivatives with respect to the arc length variable
x. We further assume that at any time ¢, the current shape of the cisterna corresponds to
the shape that minimizes the free energy of the system. The equation resulting from this
assumption (derived in Section 4.1.1) takes the place of the force balance equation in the
normal direction.

The one-dimensional form of the rate of strain tensor for the sphingolipid phase is

ov
= — 4.2
Ss = o (4.2)
so that the stress tensor has the simple form
Ov
Ts =ns—, 4.3
sy (4.3)

where the dilational and shear viscosity parameters have been combined into a single
parameter 7. The rate of strain and stress tensors for the glycerolipid phase have an

identical form, but with w instead of v.

4.1.1 Free Energy Density and Shape Equation
The free energy density is assumed to be the same as in Chapter 2, but we neglect the

Cahn—Hilliard penalty terms for simplicity. Thus the free energy density is given by

f(0s,0g,62) = f(0s,04) + f*(0s,04, ¢), (4.4)
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where ¢, indicates the partial derivative of ¢ with respect to x, the homogenous free energy
density is given by

K,T
F(B5,0,) = €ssBs + €gg8y + % (xOs0y + 05100, + 6,1n06,) , (4.5)

and the bending free energy density is given by

P00y 00) = 202 (20, - €+ "2 (29, — 2, (1.6

To find the shape of the cisterna, we minimize f over all functions ¢(z) that meet certain
criteria. First, we only want closed curves that have a single loop. This means we must
have ¢(0) = ¢(L) — 2w. Second, we want smooth curves. Thus we want ¢ to be smooth and
further need ¢,(0) = ¢,(L). Finally, we only want closed curves. This can by accomplished

by guaranteeing that

L L
/ sin(¢(z))dx = / cos(p(z))dx = 0. (4.7)
0 0

Using the Lagrange multipliers A and p to guarantee conditions 4.7, we seek to minimize

L L L
:/0 f(GS,Gg,<bx)dx—)\/0 Sln(qﬁ(x))d;r—,u/o cos(¢(x))dx (4.8)

over all ¢ that meet our desired boundary conditions. We find the first variation (see

section A.4), set it equal to zero, and recover the following Euler-Lagrange equation:

(%fH + Acos(¢) — psin(¢) =0, (4.9)

where fy indicates df/0¢,, the partial derivative with respect to curvature. Note that we
do not pick up any boundary contributions when integrating by parts because the condition
#(0) = ¢(L)—2m guarantees that d¢ is L periodic. Since we are on a closed curve, we assume

the fg is also L periodic.

4.2 The Full One-Dimensional System

Taking into account the simplifications described in Section 4.1, the full system of

equations is given by

895 0

5 T 92 —(bsv) = (4.10)

a0, 0

ﬁ 8—(0 w) =0, (4.11)
ns% (&gg) — 0s0,&(v —w) — 6, 8 <89f > =0, (4.12)

o (, ow of B
Mg (egax> 00,6 (w —v) — 05 - (ae + >_o, (4.13)
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%fH + Acos(¢) — psin(¢) =0, (4.14)
0
p (Osv + 0,w) = 0, (4.15)

for € [0,L]. We assume that 6y,0,,v, and w are periodic, ¢(0) = ¢(L) — 27, and
¢.(0) = ¢,(L). Along with the system 4.10-4.15, we have the two constraints

L
/0 sin(¢(x))dx = 0, (4.16)

L
/0 cos(¢p(x))dx = 0. (4.17)

4.2.1 Further Assumptions and Simplifications

We first assume a small amount of diffusion in the continuity equations 4.10-4.11,

20, 0 020,
5 g 0s0) =g (4.18)
00 0 0%0

where € is a small diffusion coefficient. As described in [71], this small amount of diffusion
does not change the qualitative features of the model, but ensures that solutions remain
continuous and smooth even in the event of phase separation. Note further that this
assumption does not affect the coincompressiblity condition.

Our second assumption deals with the coincompressibility condition 4.15, which states

that 6sv 4 0,w is equal to a constant. We suppose that the constant is zero so that
0sv 4 0w = 0. (4.20)

This assumption allows us to eliminate pressure from the system. Multiply equation 4.12
by 6, and equation 4.13 by 0, and subtract. Define V' = v — w. Using equation 4.20 and
the fact that 05 + 0, = 1, we have

v =10,V (4.21)
w=—0,V (4.22)

so that the entire system the entire system can be written as the following four equations:

0s+0,=1, (4.23)
00, 0 020,
8t + %(9399‘/) — € 8.%'2 =

0 0 0 0 0
nsgg% <988:U(9gv)) + 77905% (agm(esv)> - gesegv - aseg%(fs - fg) =0, (4'25)

0, (4.24)
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%fh{ + Acos(¢) — usin(¢p) =0, (4.26)

with the appropriate boundary conditions and constraints. The notation f; and f; in

equation 4.25 indicates partial derivatives with respect to 6, and 6,.

4.3 Model Analysis

4.3.1 Nondimensionalization

We introduce the nondimensional quantities

. x o €ii
T = T’ €ii 7KbT’
N 1% K
V = —_— i = —
Vo’ KT
~ 1)0 ~

where i = s, g. This gives the homogeneous free energy density

KT

F(05,0,) = == (5505 + E4g04 + X050, + 05005 +6,1n6,)
Kbeh(Q&H . (4.27)
and the bending free energy density
7 (0,00 00) = 2L (”; (20— C.)" + "2 (26, - ég)2> .
= B0 (0,0, 02),
where v = v/L?. We define the total free energy density to be
F (00 0g:00) = 220 (01, 00,05) (4.29)
where
£ (05,04, 02) = f"(05,0) +vf° (05,04, 63) . (4.30)

Suppressing the hats, the entire system can be written in nondimensional form

0,+0,=1, (4.31)
20, 9 920,
ot T oz 0s0V) ~ G

d 0 d d 0
My (9 550 V)> 057 (egax(esw) —ab b,V — Besﬁgaj(fs —fg) =0, (4.33)

=0, (4.32)

;;fH + Acos(¢) — psin(¢) =0, (4.34)
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for x € [0,1] with constraints

1 1
/ sin(¢)dx :/ cos(¢)dr =0, (4.35)
0 0
¢(0) — ¢(1) = 2, (4.36)
and 65,04, and V periodic on [0,1]. The nondimensional parameters in equation 4.33

are given by n = ns/ng,a = £L%/n,, and B = K,TL/(nyv’v). A fourth nondimensional

parameter, v = v/L?, appears inside the free energy density.

4.3.2 Linear Stability Analysis
One steady state of the system 4.31-4.36 is given by 05 = 0y = constant, 0, =1 — 0o,
V = 0,6 =2mx,A =0, and p = 0. We wish to explore the stability of this steady state.

We suppose
Os = 0o + 701 (x, 1), (4.37)
0y =1—0p —v01(z,1), (4.38)
V =~Vi(x,t), (4.39)
¢ = 2mx 4+ v (2, ), (4.40)
A=A, (4.41)
=y, (4.42)

where 7 is a small paramter. We substitute into the system 4.31-4.36, and keep terms that

are linear in . This yields

001 ovy %0, B
s Bo(1 — 90)% —e5z =0 (4.43)
0’
[n(1 —6o) + 0o 3721 —aV;
9 (4.44)
00, 0°d1
_/8 (fsso + fggo - 2fsgo) % + (szo - ngo) W = O,
82¢1 801 )‘1 + iM1 2mix )‘1 - il”'l —2mix
Frno 5 + (s = fyrg) 5+ =™+ ——F——e¢ =0, (4.45)
1
/ ¢1 (™ + 77 dy = 0, (4.46)
0
1
/ h1 (62’”“ — 6727”'1) dx =0, (4.47)
0
d1(1) — ¢1(0) =0, (4.48)

where the sine and cosine terms have been replaced with complex exponentials and the

notation fsp, indicates a mixed partial derivative with respect to 6, and with respect to
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the curvature ¢, and evaluated at the steady state values.

We now express all functions as series using complex exponentials:

01(x,t) = Z ékewkte%rik:w’ (4.49)
k

Vi(z,t) = Z Vyertedmike (4.50)
k

¢1(l’, t) _ Z ékewkteZWikzx’ (4'51)
k

where the terms with hats are the constant expansion coefficients. Note that the Lagrange
multipliers mey take on different values for each wavenumber k.

Consider the result of substituting the k" term into the linearize system. The constraint
equations 4.46—4.47 are satisfied by orthogonality for all £ # 1. Since the Lagrange multi-
pliers are introduced to guarantee that the constraint equations are satisfed, we can choose
A = pg =0 for k # 1.

For k = 1, the only way the constraints are satisfied is if (;31 = 0. In this case, we choose
A = dpg with Ay = (27wik) (fsm, — for,) fre“r! to satisfy the shape equation. We now have
a system of two equations in two unknows. Since we are interested in the interplay between
shape and phase separation, we consider modes k > 1 where shape and phase separation

are coupled. We have the system of three equations in three unknowns for each k:

(wr. + (27k)%€) ) + (27ik) 0o (1 — 60) Vi = 0, (4.52)
—(2mik)B(fsso + Fogo — 2Fs90) 00 (453)

— [(2mk)2(n(1 = Oo) + 60) + o] Vi + (27k)2B(fsrto — Farty) Pk = 0,
(2mik) (fsrty — fomo) Ok — (27k)? Frpo b1, = 0. (4.54)

This system can be expressed as the matrix equation Mx = 0, where x = (ék, Vi, q@k)T
The matrix equation is only true for nonzero x when the determinant of M is zero. We

solve det(M) = 0 for wy, and find the following dispersion relationship:

B B (fsrty — fort)?

Wk = _Z (fsso + fggo - 2fsgo) + Z fHH - (277]{7)2 € (4'55)

where
B = (27k)*B0,(1 — 6y), (4.56)
and

A= (2rk)2(n(1 — o) + 6) + a. (4.57)
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The dispersion relationship 4.55 is very similar to the dispersion relationship for the
Monge parametrization, equation 3.50. The first term describes the inherent tendency to
phase separate when the interactions parameter y is greater than 2.

The second term describes curvature-induced phase separation. Since the Helfrich
bending energy is a quadratic function of curvature, frp, > 0, and this second term
is always nonnegative. It destabilizes the steady state when fsp, and f,m, are different.
This occurs when the two phases have different bending moduli or spontaneous curvatures.
Since sphingolipids and glycerolipids have different biophysical properties, we expect that
curvature in a golgi cisterna would serve to destabilize the steady state. Specifically,
curvature can destabilize the steady state under situations where phase separation would
not normally occur. For example, if x is slightly less than two, curvature can cause the
system to go unstable, as has been observed experimentally in [61].

The third term in the equation 4.55 describes the effect of diffusion. Notice that this
term looks very similar to the term arising from the Cahn—Hilliard penalty terms in the
Monge parametrization. It is always negative and increases in magnitude as the wavenumber
increases. Thus, diffusion serves to stabilize high wavenumber perturbations. Further, this
damping of high wave numbers implies the existence of a most unstable mode. This most
unstable mode, corresponding to the largest value of wy, is the fastest growing mode upon
random perturbation of the steady state and describes the patterns formed, at least initially

when the full system is well described by the linearized system.

4.3.3 Integration to See Phase Separated Solutions
While the linear stability analysis performed in Section 4.3.2 allows us to see when the
evenly mixed circular steady state will go unstable, it does not provide us with information
about whether the loss of stability corresponds to phase separation. In this section, we
show that the inclusion of diffusion in the continuity equation 4.32, in addition to ensuring
that solutions stay smooth, also allows us to see that phase separation actually occurs.

Written in conservation form, equation 4.32 is

20, 0 20,

While 00,/0t is clearly zero when V = 0 and 6, = 6y, it is also zero when the flux, given
by 0,04V — €00/0x, is zero. Assuming that the flux is zero, we have

80, /0
0.0,

V=e (4.58)

Substituting this value into equation 4.33 and making use of equation 4.31 yields
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oo o (52) i e (325 -5

010010 =0 (459)

Note that we have replaced fs — f; with f’(6s) where the prime indicates a derivative with
respect to 6, and f () is the result of replacing 0, with 1—6, in f(0s,6,). We can integrate
twice (with the second integration coming after multiplying each term by 96,/0z) to yield

20,
ox

1 (4.60)
- 2M[ (051005 + (1 — 05) In(1 — 6,)) + Bf(0s) + k10 + ko] i
577(1*05)+05 €a\Us N Ug s) 1 s s 1Us 2 )
where k1 and ko are integration constants. Notice that for e << 1, the right hand side of
equation 4.60 is very large except where ea(0s In 05+ (1—6;) In(1—05))+5f(05)+k105+k2 = 0.
Thus where 05 is not almost constant, it is either increasing or decreasing rapidly. This

behavior indicates a phase separated steady state solution where the discontinuities between

the two phases have been smoothed out by the diffusion.

4.4 Results

4.4.1 Numerical Implementation

To further explore the interplay between curvature and phase separation, we seek to
numerically simulate the system 4.31-4.36. All simulations are performed using the software
Matlab. We discretize the system using a finite volume method on a staggered grid as
described in [71]. We calculate 6, and 6, at cell centers, and V and ¢ at cell edges. We
calculate all spatial derivatives using centered differences. We implement the following
algorithm at each time point.

1. Solve the shape equation to find ¢.

2. Solve the force balance equation to find V.

3. Step forward in time to find 65 at the next time point.

4. Update 0, =1 — ;.
We describe the details of steps one, two, and three of the algorithm in the following
paragraphs.

We solve shape equation 4.34 along with constraints 4.35 using a Newton method. We
discretize the shape equation and constraints using centered differences for the derivatives
and Riemann sums for the integrals. Without loss of generality, we assume that ¢(0) = 0.

Note that the shape equation 4.34 only has unique solutions up to a constant because any
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shift in ¢ can be absorbed into the Lagrange multipliers A and u. Thus ¢(0) is known
and ¢(1) is chosen via equation 4.36, so the unknowns in the system are interior values of
®, $(0), A\, and pu. We iterate the discretized system until the error is sufficiently small and
then calculate ¢, from ¢. This Newton iteration must occur at each time step, so we save
o, 0(0),\, and p at each time step to be used as starting guesses in the subsequent step.
In addition to providing ¢, for the free energy density used in the force balance equation,
the function ¢(x) resulting from the Newton iteration also allows us to visualize the shape

corresponding to the minimum free energy. We define
x
o) = [ sin(o(a))dr', (4.61)
0
q(x) = / cos(¢(z'))dx’. (4.62)
0

Plotting p(z) vs ¢(x) gives the shape corresponding to the minimum free energy for given
s and 0,.

Once the shape has been calculated, we can solve the force balance equation 4.33. In
discretizing the variable coefficient Laplacian, the centered differences require 6, and 6,
at cell edges. We calculate these values using linear interpolation of the two adjacent
cell-center values. Discretization of the force balance equation 4.33 results in a largely
tridiagonal system where the only off-diagonal terms are those resulting from periodicity.
We use the Matlab function mldivide (the backslash operator) to solve this matrix system.

The continuity equation 4.32 requires simulating an advection-diffusion equation. We
implement the advection term using first order upwinding and the diffusion term using either
Crank—Nicolson or backward Euler [38]. We choose the time step adaptively following the

method implemented in [71]. We repeat the algorithm until a steady state is reached.

4.4.2 Numerical Results

We saw analytical evidence in Section 4.3.2 that the the system can phase separate
both in the presence and absence of curvature. In Figure 4.2, we show phase separation
of the system in the situation where x5 = k4 = 0. The phase separation in this case is
driven completely by the homogeneous free energy density. Further, since fg = 0, the
shape equation is identically zero, so the phase separation does not affect the shape of the
cisterna. Figure 4.2a shows snapshots in time of an initial #, distribution taken to be a small
cosine perturbation of §, = 0.5. The parameters are chosen tobe n =a =8 =1,e = 1077,
and x = 2.5 so that f(6s) is a double well potential as is shown in Figure 4.2b.

The more interesting cases arise when curvature is included. There, local membrane
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Figure 4.2. Phase separation in the absence of curvature. Parameters values are
n=a=pf=1¢=10"7, and xy = 2.5. a) Snapshots in time of an initial @, distribution
of 0.5(1 + 0.1cos(4mx)). b) The double well free energy density responsible for the phase
separation.

shape influences the dynamic behavior of the lipids. With the inclusion of curvature,
it is possible to induce phase separation under situations where it would not happen
otherwise. This can happen because the different phases have different bending moduli,
different spontaneous curvature, or both. In Figure 4.3 we show phase separation caused
by one of the phases being stiffer than the other. Here, we have used parameter values
n=a=p=1v=103,e=10"",x = 1.9, ks = 5,kg = 1, and Cs = Cy = 0. Sphingolipids
preferentially associate with cholesterol and form thicker bilayers than glycerolopids [28].
For this reason, we assume that sphingolipids are more resistant to curvature. Figure 4.3a
shows snapshots in time of the same initial 65 distribution as Figure 4.2. Note that x < 2, so
we see that the phase separation is indeed caused by curvature effects. Notice further that
phase separation does not occur symmetrically under these conditions. Rather, long regions
of relatively large 85 develop, separated by short regions of very low 6. In Figure 4.3b, we
have plotted the final shape of the cisterna with an overlaid heat map indicating regions of
high and low sphingolipid volume fraction. We see that the regions of high 65 correspond
to areas of low curvature, while the regions of low 8, correspond to areas of high curvature.

Curvature induced phase separation can also be caused by the different phases having
different spontaneous curvature. In Figure 4.4a we have used ks = kg = 1,Cs = —15,

and Cy = 15 and all other parameters the same as Figure 4.3. Figure 4.4b has k; = 2,
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Figure 4.3. Phase separation caused by different bending moduli. Parameter values are
n=a=B=10v=10"3e=1075x = 1.9,k5 = 5,k, = 1, and Cs = C, = 0. a) Snapshots
in time of an initial 5 distribution of 0.5(1 + 0.1 cos(47x)). b) The resulting shape of the
cisterna with a heat map overlaid to indicate areas of high 6;.
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Figure 4.4. Phase separation caused by different spontaneous curvatures. Both shapes

result from an initial 6, distribution of 0.5(1 4+ 0.1 cos(4mx)).

All unspecified parameter

values are the same as in Figure 4.3. a) Cisternal shape when kg = kg = 1,Cs = —15, and
Cy = 15. b) Cisternal shape when k, = 2,xy = 1,Cs = —15, and Cy = 15,
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kg = 1,Cs = =15, and C; = 15. Notice how the combination of different bending moduli
and spontaneous curvatatures can result in interesting shapes.

We should note that elongated elliptical shapes as shown in Figure 4.4 are not the only
possible shapes produced by the model. Rather, the final pattern resulting from phase
separation may depend on the initial perturbation. We see this in Figure 4.5. Each shape
in the figure corresponds to a different wavenumber cosine perturbation of 85 = 0.5.

A more relevent consideration than what happens to a specific wavenumber perturbation
is whether a dominant pattern emerges from a random initial perturbation in the volume
fraction. Recall from Section 4.3.2 that the diffusion term in the dispersion relationship
given in equation 4.55 damps out high wave numbers, so there exists a most unstable mode.
We expect that this mode will dominate the pattern formation in the linear system and will
likely also have a dominant effect on the patterns formed in the full nonlinear system. This
phenomenon is explored in Figure 4.6. We choose the parameter values x = 1.5, ks = 5,
kg = 1,Cs = —5,C, =1,e =1073° 0 = 0.001, and n = o = 8 = 1 so that the k = 2,3,
and 4 modes are unstable, while all higher modes are stable as shown in Figure 4.6a. The

initial 6, distribition is taken to be

Fi
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Figure 4.5. Various shapes depending on the initial 65 distribution. In this figure,
ks =5,kg =1,Cs = —4,Cy = 0,x = 1.9, and all the other paramaters are the same as Fig-
ure 4.3. Each shape corresponds to a different initial condition: a) 6, = 0.5(14-0.1 cos(67z)).
b) s = 0.5(1 4 0.1 cos(8mx)). ¢) s = 0.5(1 + 0.1 cos(107x)). d) 65 = 0.5(1 + 0.1 cos(127x)).
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Figure 4.6. Phase separation of a random perturbation. Parameter values are
X = 15,ks = 5,kg = 1,05 = —=5,Cy = 1, and € = 1073, All other parameter values
are the same as Figure 4.3. a) The dispersion relationship plotted as a function of k. b) The
initial 65 perturbation. c¢) The final 0 distribution after phase separation. d) The final
shape of the cisterna with overlaid 6 values.

100
0s = 0.5+ Y 0.01r (cos(2rkz) + sin(27kz)) , (4.63)
k=1

where 7 is a random number drawn from a normal distribution that has been truncated
between —10 and 10. One such random distribution is shown in Figure 4.6b. Since the
k = 2,3, and 4 modes are the only unstable modes, we expect them to dominate the
pattern formation, with the & = 2 mode dominating most often because it is the largest.
This intuition is born out in simulations. Figure 4.6¢ shows the final 0, distribution, and
Figure 4.6d the final shape corresponding to the initially random distribution given in
Figure 4.6b. Notice how the final distribution looks like a £ = 2 mode, and the final shape
given in Figure 4.6d has the ellipsoidal shape we have seen in other figures.

In the previous paragraphs, we have been exploring the interplay between curvature and
phase separation. In reality, while the shape of a cisterna may be influenced by the lipids in
the membrane, it is likely determined at least in part by interactions with the cytoskeleton
[67]. That leads to the question of whether an imposed membrane shape can induce phase
separation in the model. This behavior is demonstrated in Figure 4.7. Here, ¢(x) is imposed

to be 6.28 — 6.279 tanh(1/.1sin(4m(z — 1/8))) at each time step. This strange functional



72

0.65

0.6

r 10.55

r10.5

F10.45

0.35

0.3

Figure 4.7. Phase separation under imposed curvature. Parameters values are
ks = kg = 1,Cs = 10,Cy = 0,x = 1.8, = 1077, and all others the same as Figure 4.3.
a) The initial distribution s = 0.5. b) A snapshot early in the simulation of phase separation
beginning to occur. c¢) A snapshot later in the simulation. d) The final phase separated
state.

form corresponds to the elongated pill shape shown in the figure. The simulation is started
with a constant initial condition, 85 = 0.5, and snapshots are taken in time. We see as time
progressed from a) to d) that the imposed curvature is able to induce phase separation in an
initially homogeneous membrane. While phase separation here is caused by the two phases
having different spontaneous curvature, it can also be caused by the two phases having
different bending moduli (not shown). This situation of imposed curvature causing phase
separation is similar to the experimental results discussed in [26], where the introduction
of a membrane tubule induces phase separation. We note that this phenomenon has been
modeled in [31]. Unlike the current model, the model in [31] is purely a steady state model

with no dynamics.



CHAPTER 5

LIPID ASYMMETRY AND FLIP-FLOP

It has long been known that the lipids in biological membranes are distributed asymmet-
rically between different leaflets of the lipid bilayer [64]. Classical experiments showed that
lipid motion is rapid within a bilayer leaflet, but that flip-flop between leaflets is slow and
occurs with a half time on the order of hours [45]. Given this paradigm, it has been assumed
that lipid flip-flop and the maintenance of transbilayer asymmetry is a protein-mediated
process [35]. However, experiments done in the Conboy lab at the University of Utah
have cast doubt on this reigning paradigm, finding that flip-flop can occur on a much
faster time scale under physiological conditions [40]. The older experiments were done by
modifying the head group of a lipid in order to visualize asymmetry, a process that could
clearly affect the dynamics of lipid flip-flop. The newer experiments were done using a
method called sum frequency vibrational spectroscopy (SFVS) on planar supported lipid
bilayers (PSLBs) [41]. Briefly, the method involves making a bilayer with asymmetric
leaflets by using deuterated lipids to create one of the leaflets and regular lipids to create
the other leaflet. The two leaflets are combined to create an asymmetric PSLB. (See [1]
for a description of the method). The method of SFVS is used to visualize the loss of
asymmetry and thereby characterize the rate of lipid flip-flop. Briefy, two lasers of different
wavelength are focused on the PSLB. The wavelength of one of the lasers is varied so
that the magnitude of the measured signal strength changes depending on the vibrational
frequencies of different molecular configurations. The method is useful because destructive
interference causes symmetric bilayers to yield no signal while asymmetric bilayers yield
a signal. Thus the experimenter can use the decay of signal intensity to characterize the
loss of asymmetry caused by lipid flip-flop. (See [41] for a description of the method.) Not
only have experiments shown faster flip-flop, the experimenters have used the method with

modified lipid head groups to reproduce the slow rates of flip-flop seen previously [41].
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5.1 Lipid Flip-Flop as an Inducer of Curvature
5.1.1 Model Motivation and Description

Building on the idea that lipids may be able to transition quickly between leaflets of the
bilayer, we seek to explore the interplay between lipid flip-flop and membrane curvature.
The motivation comes from considering vesicle formation in the multivesicular body (MVB).
The MVB is an organelle in the endocytic pathway where proteins are tagged and sorted
either towards degradation in the lysosome or towards transport and reuse in other parts
of the cell [30]. This process of sorting proteins into intralumenal vesicals (ILVs) is largely
controlled by endosomal sorting complexes required for transport (ESCRT proteins), but
there remain questions as to the exact mechanisms of vesicle formation [4]. Though ESCRT's
seem to be important in most situations, there are certain situations where ILVs form in
the absence of ESCRT proteins [44, 62], leading to the hypothesis that vesicle budding in
the MVB may be largely controlled by lipid dynamics [4]. We develop a simple stochastic
model to explore this hypothesis.

We suppose we have a lipid bilayer with two leaflets, each with the thickness given by d
so that the bilayer has a thickness of 2d. We suppose further that the section of the bilayer
we are considering has a total of IV lipids, n of which are part of the inner leaflet and N —n
of which are part of the outer leaflet. We view the system as a discrete Markov process
on n as shown in Figure 5.1. Let p,(t) be the probability that there are n lipids in the
inner leaflet at time ¢. Let «; be the transition rate from n = ¢ ton = ¢+ 1 and 3; be the

transition rate from n =14 to n =4 — 1. This yields the master equation

% = j—1pi-1 + Bi+1pi+1 — (i + Bi)pis (5.1)

fore=1,2,--- ,N —1, and
% = —agpo + Sip1, (5.2)
dgf;v = an-1PN-1 — BNDN- (5.3)

o o o_ o, o
YR YR /77N
n=0 1 2 i1 i i+1 - N-1 N

1 2 i i+l

Figure 5.1. Markov chain describing flip-flop.
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Using the fact that probabilities add to 1, the master equation is solved at steady state to
yield
1
DD 5
anPOH?ﬂTa forn=1,2,---,N. (5.5)
i

po = : (5.4)

Suppose there is an energy FE,, associated with state n and that there is an energy barrier
between states as shown in Figure 5.2. Let A, be the energy barrier for transitions from
state n to state n+1 and A_,, be the energy barrier for transitions from state n—+ 1 to state
n. Define AFE,, = E,+1 — E,. We assume that transitions follow Arrhenius-type behavior

and take the transition rates to be

on = vemm (22), 59
Bn ’yexp< ;;), (5.7)

where k; is Boltzmannn’s constant, 1" is absolute temperature, and  is a constant. Using

these transition rates, the steady state probabilities become
exp ( Tfjﬁ )
N —En

> n—0€XP ( BT )

forn=0,1,2,---, N. This is exactly the Boltzmannn distribution.

(5.8)

DPn =

A—(n+1)

E

n+1

Figure 5.2. Schematic drawing of an energy landscape. F, is the energy of state n, A,
is the activation energy for transitions from state n to state n + 1, A_,, is the activation
energy for transitions from state n to state n — 1, and AFE, = E,+1 — E,,.
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5.1.2 Energy from Curvature
To investigate the interaction between lipid flip-flop and membrane curvature, we desire
a form of FE, that depends on curvature. We derive this form using a spherical cap
approximation as shown in Figure 5.3. Assume that the two opposite faces of the bilayer
are maintained at a constant separation 2d. Thus, area differences between the two leaflets
in the bilayer impose a curvature on the membrane. Using the spherical cap approximation,
it is relatively easy to derive a formula for the curvature of the sperical cap. We denote the
curvature ¢ = 1/r where r is the radius of the midline of the membrane. We find that
A~ VA
A/ Aput + VAin

where A,y is the area of the outer leaflet, A;, is the area of the inner leaflet, and d is the

(5.9)

thickness of each leaflet. The area of the midline is given by

2
A A;
e (B’ san
To express the energy in terms of our stochastic variable n, we suppose that each lipid
head group has cross-sectional area a. Then the area of the inner and outer leaflets are
given by A;p, = na and Ay = (N —n)a. For the energy, we follow the Helfrich model [27].

Recall that the Helfrich model gives the bending energy per unit area
By = %(QH — c0)? + KgK, (5.11)

where H is the mean curvature, K is the Gaussian curvature, xy is the bending modulus, &,
is the Gaussian bending modulus, and ¢ is the spontaneous curvature. For a spherical cap,

H = 1/r. The Gauss-Bonnet theorem states that the integral of the Guassian curvature

MVB

Cytosol

Figure 5.3. Schematic drawing of a spherical cap budding into the MVB.
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over a surface stays constant if the surface does not change topology, so the Gaussian
curvature enters into the energy as an additive constant, and we can neglect it. We further
assume that ¢y = 0, meaning that the preferred state of the membrane is flat. This yields
the bending energy for state n
By = 2Ky (Amia) <M>2
d2 VN —n+/n

RpQ
= SN = V),

We use a lattice model as described in section 2.6.2 to calculate the energetic contribution

(5.12)

from entropy to be

Eopy = kT [nln (%) + (N —n)ln (N];”)} (5.13)

This yields a free energy for state n,

En=%<m_m2+m [nln (%)—l—(N—n)ln <NJ;”>} (5.14)

For given parameter values, we can use equation 5.8 to visualize the probability dis-
tribution for n where E, comes from equation 5.14. Since each n corresponds to a given
curvature, we can also visualize the probability distribution for ¢. We use k, = 20k,T,
d = 2 nm, and a = 40A2, numbers that are fairly standard based on the literature
[43, 1, 74]. A weakness in this model formulation comes in choosing a reasonable value for
N. The value chosen essentially reflects the ratio between bending resistence in the bilayer
and compression resistance in the lipids making the bilayer. If bending resistance is much
larger than compression resistance, a flip of one lipid will cause a very small change in
curvature, and N should be taken to be large. On the other hand, if the bending resistance
is much smaller than the compression resistance, a flip of one lipid will cause a large change
in curvature, and N should be taken to be small. For visualization purposes, we use the fact
that a typical ILV has a diameter of 25-50 nm [30]. This yields a value of approximately
2500 lipids per leaflet, so we choose IV to be 5000. The resulting probability distribution is
shown in Figure 5.4. Note that a spherical vesicle of radius 25 nm has curvature 4 x 107m 1.
We can see from Figure 5.4 that the probability of spontaneously forming a vesicle of this
radius through flip-flop is virtually zero. For larger and smaller values of N, the probability

distribution is more or less sharply peaked around ¢ = 0 as we would expect.
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Figure 5.4. Probability density function for curvature. Parameter values are
kp = 10k, T, d = 2 nm, a = 5042, and N = 5000.

5.1.3 Mean First Passage Time

Though a complete vesicle is unlikely to form simply from membrane fluctuations caused
by lipid flip-flop, it is interesting to ask how long on average one must wait before a
specific curvature is realized. It has been hypothesized that ESCRT III, the protein largely
responsible for vesicle fission, may be able to detect and stabilize negative membrane
curvature [4]. This could help explain ESCRT III’s involvement in ILV budding in certain
protazoa that lack the earlier ESCRT machinery and its involvement in HIV budding. We
would like to calculate the average time it takes for an initially flat membrane to achieve a
given curvature.

Because our system is a temporally homogeneous Markov process (the transition rates
do not depend explicitly on time), we can follow the method presented in [22] to find an
analytic expression for the mean first passage time. The average time it takes for a system

starting at n = ng to first arrive at n = n, is given by

mol ™ o—4(n)
€
Tl(no — nl) = E 6¢(m) E o s (515)
m=ng n=0 n

where

0 forn=20
o(n) = {Zn In (’8—;) for n > 1. (5-16)
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In order to use equations 5.15-5.16, we need explicit formulas for «,, and 5,. In general,
ay, and (3, are given by equations 5.6-5.7. We suppose that A, = A* + (1/2)AFE,, and
A_(n41) = A" = (1/2)AE,. Then A, — A_(,11) = —AE, as shown in Figure 5.2, and we

still recover the correct Boltzmannn behavior at steady state. This gives

—exp [ A exp (ZAER (5.17)
an = yexp { po Jexp | 5o ) :
—A* AFE, 1
Bn = yexp < T ) exp < T > . (5.18)

The energy independent flip rate has been measured experimentally by the Conboy lab [41],
allowing us to take yexp(—A*/(kyT)) as a known quantity. We assume that the bilayer is
initially flat with ng = N/2 and calculate the mean first passage time to n;. We assume the
n is the number of lipids on the MVB lumenal leaflet of the membrane and choose n; > N/2
so that the bud is forming into the lumen of the MVB. We choose values of n; and calculate
the mean first passage time to that value. The results are shown in Table 5.1 where we
used the literature value v exp(A*/kyT) = 200 x 10~5s~! and other parameters as described
in Figure 5.4. As we can see from the table, it takes hours on average for one lipid to flip
from the outer to the inner leaflet. It takes over a day on average for 10 lipids to flip from
the outer to the inner leaflet. This allows us to conclude that even for the faster flip rate
measured by the Conboy lab, lipid flip-flop is not expected to be a significant inducer of
curvature and spontaneous vesicle formation in the MVB. The researchers do mention that
the experiments were conducted with lipids 5 °C below their melting temperature and that
lipids in biological membranes are usually in the liquid phase [41], so it is quite possible
that the native flip-flop rate used here is slower than the physiological rate. In order for
the process described above to take place on physiologically relevant time scales, though,
the flip rate would have to be orders of magnitude faster than the one described here. It
remains to be seen whether the physiological flip rate meets this criterion. It is also not
known what curvature ESCRT III prefers to bind and stabilize. Having better data on
these biological questions will allow us to say more definitively whether flip-flop might be

significant in the MVB.

5.2 Electrostatic Induction of Lipid Asymmetry
5.2.1 Model Motivation and Description
In addition to showing the lipid flip-flop may be faster than previously assumed, re-
searchers in the Conboy lab showed that electrostatic interactions can maintain bilayer

asymmetry [8]. Other research on vesicle budding in the multivesicular body showed that
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Table 5.1. Mean first passage time starting from ng = N/2.

ny N curvature time (hours)
1000 5 x 10° 2.02
no+1 5000 1 x 10° 4.42
10000 5 x 10% 6.22
1000 5 x 100 30.4
no+10 5000 1x106 51.8
10000 5 x 10° 69.4

vesicles can form in the absence of proteins, but only in the presence of a specific negatively
charged lipid and a strong pH gradient [44]. We wondered whether the significance of the
pH gradient lay in some ability to maintain an asymmetric distribution of charged lipids
across the membrane. The following model uses the Poisson—Boltzmann equation to address
this question.

We assume that we have an infinite flat lipid bilayer of thickness 2d in an electrolyte
bath. Instead of assuming the all lipids are the same as we did in the previous model, we
assume the lipids are either neutral or negatively charged. The negative charges are located
at spatial locations x = +d and have charge density (charged particles/area) Cp, at © = —d
and Cr at * = d. We assume that there are no charges for |z| < d and that there is an
infinite electrolyte bath for |z| > d. In the bath, there are positively charged sodium ions
with concentration n, positively charged hydrogen ions with concentration s, and negatively
charged chloride ions with concentration c¢. We assume that h — Hyp,n — Nar, and
c— Clpasx— —ooand h — Hr,n — Nag, and ¢ — Clr as ¢ — oo. We further assume
that the electrostatic potential ¢ — 0 as x — Foco. Finally, we assume electroneutrality
far from the membrane so that Naj + H;, = Cl;, and Nag + Hgr = Clg. A schematic

description of the model setup is shown in Figure 5.5.

5.2.1.1 Bath Equations

In the electrolyte bath, we use the steady state Nernst—Planck equation to describe the
concentration of each electrolyte [34]. The Nernst—Planck equation states that ion flux is
caused by concentration gradients and gradients in the chemical potential. We assume zero

flux, yielding

dh  F d¢

dn  F do

de F d

de  F 40, (5.21)
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Figure 5.5. Schematic drawing of an infinite bilayer containing charged lipids. The
bilayer is sitting in an electrolyte bath. Cp and Cp are the charge densities of negatively
charged lipid head groups one the surfaces of the left and right leaflets, respectively. n
is sodium concentration, h is hydrogen concentration, and ¢ is chloride concentration. All
concentrations approach the given limiting values as |x| — 0o. ¢ is the electrostatic potential
caused by the charged particles.

where F' is Faraday’s constant, R is the universal gas constant, and T is the absolute
temperature. Note that the charge on hydrogen and sodium is 4+1 and the charge on

chlorine is —1. Using the boundary conditions at x = +o00, we find that

h = Hp 1 exp <R§i¢> , (5.22)

n = Napg [, exp (_F¢> ) (5.23)
’ RT

¢ =Clp,exp <F¢) , (5.24)
’ RT

where the R subscript is taken for « > d and the L subscript is taken for x < —d.

To get an equation for the electrostatic potential ¢, we use Guass’ law, which states
that the electric flux through the boundary of a region is equal to the sum of the charges
inside the region. In the bath, this gives Poisson’s equation

de) o qNg
dIL’2 N EoDw

(c—h—n), (5.25)

where ¢ is the charge on an electron, €y is the permittivity of a vacuum, and D,, is the
dialectric constant of water. Using equations 5.22-5.24 and the fact that Nagr  + Hg 1 =
ClR,1,, we have the Poisson Boltzmannn equation

d’¢  2qN,Cly, F

— =———"sinh| —¢ ], 5.26

@2~ Dy S| 7p? (5:26)

for x < —d and
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Zif = 2(]6]:213% sinh <RF¢> (5.27)
for x > d.
Under conditions that %qb < 1, sinh (%gb) R %(ﬁ. Define
k% = 2qN,FCly/(egDwRT), (5.28)
K% = 2qN,FClg/(e0DyRT). (5.29)

The expression 1/k; for i = L, R has units of length and is called the Debye length. Solving

the linearized forms of 5.26—5.27 and making use of boundary conditions as x — 400 yields

¢(x) = ¢(—d) exp(kL(z + d)), (5.30)

for z < —d, and

¢(x) = ¢(d) exp(kr(d — ), (5.31)

for > d, where ¢(—d) and ¢(d) are the (so far) unknown values of ¢ at the two faces of

the membrane.

5.2.1.2 Lipid Equations
Inside the lipid bilayer (for |z| < d), we assume that h = n = ¢ = 0. To find equations

for ¢, we use the integral form of Gauss’ law, which for an infinite sheet is given by

A/wf d ( )dx_—A/xf ! (5.32)

where A is some arbitrary cross-sectional area, D(x) is the space dependent dialectric
constant of the medium, z is the valence of the charged particle, and p(z) is the charge
density. We use equation 5.32 and integrate across the left leaflet from z = —d~ toz = —d™.
The right hand side of 5.32 is the enclosed charge and is given by AqCL/ey. At x = —d~,
we are in the bath with dialectric constant D,,, and at + = —d™, we are in the lipid with
dialectric constant D;. Thus, using 5.32 across the left leaflet yields
«Cy
€0

Dl(z)x(_dJr) - Dw(ﬁx(_di) - (533)

where ¢, indicates a first derivative with respect to . Similarly, using equation 5.32 across

the right leaflet yields

Duoa(dT) — Dygpa(d™) = QEC;R. (5.34)

Since the electric field F is defined via F = —V ¢, and we expect E to remain finite as
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long as charge density remains finite, it follows that ¢(x) is continuous everywhere. Thus
d(—d™) = ¢(—d") = ¢(—d) and ¢(d~) = ¢(d™) = ¢(d). Further, since there are no charges
inside the membrane and D(x) = D; is constant, we have d?¢/dz? = 0 for |z| < d. This

yields the relationship

ul-d") = gy(a7) = ADZAD, (5.35)
Finally, using equations 5.30-5.31, we have
bold7) = rr0(~d) (5.36)
and
62(d*) = ~rnold). (5.37)

The system of equations 5.33-5.37 can be solved to yield

—qdCy | Dy(Cr + Cr) + 2dDykrCr
—d) = .
¢( ) €0 Dy le(liL + KR) + 2d2DwI€LIiR (5 38)
—qdCy | Dy(Cr + Cr) + 2dDykCr
d) = .
o(d) eoDy |dDy(kL + KkR) + 2d2Dy, kKR (5 39)

where C; = Cf, /Cp and Cr = Cr/Cy are nondimensional charge densities, making the
terms in brackets nondimensional. Using equations 5.22—5.24, 5.30-5.31, and 5.38-5.39, the

system is fully determined for given input parameters Hy g, Nar g, C’L7 r and Cj.

5.2.2 Electrostatic Free Energy and Lipid Asymmetry
Given a volume V with charge density p and electrostatic potiential ¢, the electrostatic

free energy is given by [14]

G =+ / pbdV. (5.40)
2 )y

In our situation, p is given by ¢Ng(h+n—c), which is —2¢N,Clr, g sinh(F¢/(RT')) depending
on whether < —d or x > d. Using the same linear approximation for the hyperbolic sine

that we used earlier, we have

A —d oo
G =7 [ / —eo Dy (¢(x))*dx + / —e0Dyrg(¢(2))*dz
oo d (5.41)
~4Co(Cré(—d) + Cro(d)|
where A is the area of one leaflet of the membrane. We solve equation 5.41 to yield
—Ag?dC? - - - A 5
Ga= 15" |drL((~))* + drp(8(d))? - 2ACrd(—d) + Cré(a)| . (5.42)



84

where ¢(—d) and ¢(d) are the nondimensional potentials (bracketed terms) from equa-
tions 5.38-5.39. Thus the bracketed term above is a nondimensional free energy.

To explore whether pH gradients can maintain an asymmetric distribution of charged
lipids, we suppose that Hy r and Nar r are given. We assume that Cr + Cr = Cy,
where Cj is some given maximal charge distribution. Then C’L +C r = 1. We take Cj to
be 0.1/ag, where ag is the area of one lipid head group, meaning that 10% of the lipids
making up the membrane are negatively charged. Under the assumption that lipids can
flip between leaflets of the bilayer, we numerically minimize the electrostatic free energy
given in equation 5.42 to find the steady state distribution of charged lipids. The results are
shown in Table 5.2 for Na;, = Nar = 0.1M and various pH gradients. Other parameters
are d = 2nM and ag = 40A2. We use D,, = 80.4 as the dialectric constant of water, and
D; = 2, the dialectric constant of oil, as the dialectric constant of the lipids. We can
see that with this bath electrolyte concentration, pH gradients have very little effect on
lipid asymmetry. The reason for this lack of pH dependence is clear. For these high bath
electrolyte concentrations, even large changes in pH correspond to relatively small changes
in the overall electrostatics of the system. Unfortunately, the linear assumption used to

simplify equations 5.26-5.27 is not valid for low bath electrolyte concentrations.

5.2.3 Nonlinear Poisson Boltzmann Formulation
For Nar g and Clp g small, it is not true that F¢/(RT) < 1. We must work with
equations 5.26-5.27 in their nonlinear form. By multiplying each side by d¢/dr and using

the conditions that ¢ and d¢/dx — 0 and z — +00, we can integrate once and find that

2 — sy (B2) 2 (ot () 1) 589
2 s (B 2 (co (o) 1), (49

Table 5.2. Leaflet asymmetry imposed by various pH gradients. The sodium concentration
is taken to be 0.1M.

for x < —d, and

Hy, Hpg Cr

107 1077* 0.5000
107* 1077 0.5001
1072 1077* 0.5012
1072 107"* 0.5119
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for x > d. Because the membrane charges are negative, we expect ¢ to be negative at
x = *+d. Thus, we choose the negative branch in equation 5.43 and the positive branch in

equation 5.44. We perform further algebra inside the square root to yield

do RT\ | . F

% = —2/{L (F) sinh (M¢> y (545)
for x < —d, and

d RT\ | . F

for > d. Because the lipid equations described in section 5.2.1.2 are not affected by the
nonlinear assumption, we can follow the same logic but use equations 5.45-5.46 instead of

5.36-5.37 to find the following pair of nonlinear equations for ¢(—d) and ¢(d) :

Dz(¢(d)2(—1 4D S (2;ET> sinh (QgTW))‘ = quL, (5.47)
—Dl((b(d)z;z ¢(=d) | Dukin <231;T> sinh (leTgb(_d))‘ — qce‘fR (5.48)

We solve the system 5.47-5.48 numerically and use the resulting values for ¢(—d) and ¢(d)
as boundary conditions to numerically integrate equations 5.45-5.46. We use the resulting
profiles for ¢ to calculate the electrostatic free energy

—d
AGe = ? [/_OO —2¢N,Cly sinh <15T¢(3:)> o(x)dx

# [ 2aVCtesinn (7600 ) 6a)de — aCoCuo(—d) + Caota)].

where the integrations are done numerically using the trapezoidal rule.

As expected, when bath electrolyte concentrations are high, the results from the non-
linear theory are very similar to the results from the linear theory. Even large pH gradients
cause very little asymmetry in the bilayer. As bath concentrations are lowered, however,
pH gradents have a more significant effect.

Figure 5.6 shows the electrostatic free energy plotted as a function of C 1, the proportion
of negatively charged lipids in the left leaflet. The pH is 3 in the left bath and 7.4 in the right
bath. Notice that for large bath electrolyte concentrations, charged lipids are almost evenly
split between the two leaflets of the bilayer. As bath electrolyte concentrations decrease,
the minimum moves to the right. For salt bath concentrations of 0.1 mM, the minimum
energy corresponds to approximately 66.5% of the charged lipids in the left leaflet.

For a more realistic pH gradient of 5 on one side of the membrane and 7.4 on the other,

similar to the physiological pH gradient in the MVB [44], less than 51% of the charged lipids
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Cy

Figure 5.6. Energy AG,; plotted as a function of scaled Cr. The blue, green, red, cyan,
magenta, and yellow curves correspond to Nay, g = 100mM, 10mM,1mM,0.5mM,0.3mM,
and 0.1mM, respectively. The pH in the left bath is 3, and the pH in the right bath is 7.4.
All other parameters are the same as described previously.

are in the left leaflet, even at a bath electrolyte concentrations of 0.1mM, indicating that pH
gradients are not significant inducers of bilayer asymmetry under the conditions modeled.
It is likely that actual electrolyte concentrations in the MVB are higher than 0.1mM [52],
further emphasizing the idea that pH gradients are not major inducers of lipid asymmetry,
at least as described by the current model. The fact remains, however, that pH gradients
seem to be important in the formation of vesicles in the MVB body. The significance of

those gradients remains an interesting question in cellular physiology.

5.3 Conclusion
We developed and explored two models based on the idea that lipids may flip rapidly
between the two leaflets of the bilayer in a protein independent way. In the first model, we
found that though the model predicted a range of steady state curvatures, the waiting times
to transition from a flat membrane to a curved membrane corresponding to the initiation
of a vesicle are too long to be physiologically relevant, at least under the parameters used
from the literature. In the second model, we found that unless salt concentrations are very

low, pH gradients are not likely to be significant inducers of bilayer asymmetry.



CHAPTER 6

CONCLUSION

Biological membranes are important structural units in the cell. More than just serving
as barriers between different compartments inside the cell, membranes themselves behave
in interesting and dynamic ways that can affect cellular function. In this dissertation, we
have focused on two specific behaviors of membranes, the tangential flows of the lipids that
form the bilayer, and the flip-flop of lipids between leaflets in the bilayer.

In the majority of this dissertation, we worked to develop and analyze a two phase fluid
model of a membrane. Our main goal was to explore the interplay between membrane shape
and phase separation. While there have been experimental findings indicating the existence
of curvature-induced phase separation, there has been limited mathematical treatment of
the phenomenon. Through our model, we were able to explore situations, both in one
dimension and in two dimensions, under which curvature can cause phase separation. We
hypothesized that one specific situtation where curvature induced phase separation may be
important is in the proper functioning of the Golgi apparatus.

In the latter part of this dissertation, we briefly explored some of the implications of
facile lipid flip-flop between the two leaflets of the bilayer. We were specifically interested
in understanding some of the processes that may contribute to vesicle budding in the
multivesicular body. Though our explorations did not yield substantial information about
the processes of vesicle formation, we still find the experiments indicating more rapid flip-flop
to be compelling. The conventional belief is that flip-flop is a very slow process in the absence
of specific proteins, and it remains to be seen what implications rapid flip-flop may have on

the understanding of cellular processes.

6.1 Future Work

We believe the work presented in this dissertation to be substantial and original work
that serves to enhance our understanding of biological membranes. Even so, there always
remains more work that can be done. We conclude with several brief descriptions of ideas

for future work.
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In our derivation of the two phase fluid equations presented in Chapter 2, we included
viscosity of the membrane lipids, but neglected to take into account the fluid in which the
membrane is embedded. Many papers that model the flow of a single phase on a membrane
take into account the viscous nature of the ambient fluid [3, 10, 29, 46, 49, 53, 72]. Some even
neglect the membrane viscosity and only model the viscosity of the embedding fluid[46, 56].
In general, authors have modeled the ambient fluid as an incompressible Newtonian fluid.
They assume a no slip boundary between the ambient fluid and the surface fluid. Though
no slip does not make sense in the context of our two phase model, it may be reasonable
to include a drag term between the surface phases and the ambient fluid similar to the
drag term between the two phases. This inclusion of the ambient fluid is one relatively
obvious and interesting extension to the current model, which may serve to make it more
physiologically relevant.

Related to the issue of the ambient fluid is the issue of volume conservation. Our model
preserves the area of the membrane, but does not conserve the volume inside closed surfaces.
In other words, our membrane is permeable. Many of the interesting shapes resulting from
the study of the shape equation arise via the combination of conserved area and conserved
volume [57]. While we have chosen not to conserve volume in our formulation, it can likely
be done by means of a Lagrange multiplier. This would allow us to explore the effects of
volume conservation even without including the ambient fluid.

Another interesting extension of the two phase model is to include lipids with charged
head groups. Electrostatic repulsion could be included as another term in the free energy
density. This would enable electrostatic effects to enter naturally as new forcing terms
in the force balance equations. If desired, a second Lagrange multiplier could be used to
ensure charge neutrality, though this would likey require the inclusion of the ambient fluid
since there exist negatively charged, but no positively charged lipids. The work presented
in Chapter 5 regarding electrostatics could serve as a nice starting point in this exploration
of the effects of charged lipids. A biologically relevant question is whether phase separation
of charged lipids can serve as an initiator of vesicle bud formation or tubule formation.

A further use of the work presented in Chapter 5 could be to combine flip-flop with
the two phase model derived in Chapter 2 to serve as a basis for a fluid model describing
the bilayer nature of a membrane. This has been investiged to some extent in [50] and
[46], but only in the context of one lipid species. Our model describes the membrane as
a single surface, but the membrane is in fact made up of two surfaces maintained at an

approximately fixed distance apart. If lipids can truly undergo rapid flip-flop, the two
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surfaces actually exchange area with each other. This could have important impacts on the
shape of a bilayer.

An additional idea for future investigation involves the one-dimensional form of the full
model presented in Chapter 4. In that derivation we made the assumption that our closed
surface is actually a closed curve in the plane. While this assumption allowed us to greatly
simplify the system, it introduced a certain amount of ambiguity due to the fact that many
two-dimensional elements used to describe a surface do not have one-dimensional analogues.
We made the further assumption that shape equilibrates instantaneously so that the shape
is given by minimizing the free energy instead of balancing forces in the normal direction.
An alternative one-dimensional derivation is to assume that the two-dimensional surface is
cylindrically shaped, but uniform in one direction as shown in Figure 6.1. If we assume the
surface is uniform and infinite in the y direction, the shape is given by a simple closed curve
in the z—z plane. In this case, the two-dimensional elements such as the metric tensor and
curvature tensor are well defined even though the problem is essentially one-dimensional.
It would be interesting to see if the system resulting from this alternate derivation behaves
differently in any fundamental ways than the system explored in the current chapter.

A final extension of the current work involves the numerical simulation of the full two-
dimensional system. We were able to perform linear stability analysis of the equations,
but that analysis does not provide much information about the system at later times. A
functioning numerical simulation would allow us to explore the nonlinear dynamics of the
system as it phase separates and changes shape. We would be able to describe more fully

the behaviors of the two-dimensional system and the biological relevance of those behaviors.

%

Figure 6.1. Two-dimensional surface, uniform in one dimension.



APPENDIX A

CALCULATIONS TO SUPPLEMENT
CHAPTER 2

A.1 Time Derivatives of Geometric Quantities

We wish to calculate the time derivatives of various geometric quantities. Most of these

quantities are only needed in the surface fixed coordinates, though a few of them are needed

in both the surface fixed and general coordinates.

A.1.1 Surface-Fixed Coordinates

For the time derivative of the tangent vector, we have

9, _9 9
ot Otoex
B 0 Or
= %25t
~ e (Um)
U,
= 5o

n — U,b/t,

where we have used the fact that % = U,n in surface-fixed coordinates.

follows that
o) o) o)
57008 = grbatg + ta - 5ot
= (=Unbty) - tg — to - Unbjt,

= —Upblag — Unbgaw
= *2Unbaﬁa

From there, it

(A.2)

where we have used the fact that t, and n are orthogonal and b,z is symmetric.

To calculate the derivative of the square root of the metric, we use equation A.23. Thus

(A.3)
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To calculate the time derivative of the inverse metric tensor, we use the fact that
ao‘)‘a)\u =0y It follows that

0 0

aX aX
a(a )a)\# = —a a(a/\u)
= ;(GQA)GANMB = —auﬁawgt(aw)
9 a\ aX 9
= . )85y = —a aﬁﬂa(akﬂ) (A.4)
9 o aX 9
= a(a f)=—a aﬁua(a)\#)
0
afy _ af
= — = 2U,b%".
5:@")
Using n - t, = 0, we calculate the time derivative of the unit normal,
ot ot
= on ty = _9Un A5
ot Oug (A.5)
on A oU,
== t).
oY e
To calculate %baﬂ, we use equation 2.8, which states aa?‘}g = —baﬁao"\t,\. We initially

focus on the derivatives of the left and right hand sides of the equation individually.

oom _ 0om
ot ol OEP Ot
0 ,,.0U,
ou, 0 oU ou,
(AN A n A A
= ((I ’YI‘:B + az’yur,yﬂ)aif‘ut)\ —a Maifﬁﬁ A—a M@Z(Fﬁ)\t’y + b)\/gn) (A 6)
= CL)‘VF/’L OUn Ap 9 OUp _ g™ OUn b)\,Bn '

N
0 ou, 0U, ou,

A v YYn n Y _

= —a H(afﬁ 85“ 8£’VPH5> t)\ a “%wan

ou,

oEH

where we have used equation A.38 for the partial derivative of the inverse metric tensor.

= —aA“tAVﬂVMUn - a)‘”

bysgn,

For the right hand side, we have

0 0 ou,
—f(bagaa)\t)\) = —f(baﬂ)aaAt)\ - baB(QUnba)\)t)\ — bagaa)\ ( n— Unbl;tu>

ot ot o
= —gt(bag)aa)\t)\ - 2Unba5ba)\t)\ —a™ gUf\L baﬁl’l + Unbagba“tu (A7)
u
0 o o o OUp,
= —&(bag)a )\t)\ — Unbagb >\t>\ —a Aau)\ baﬂn.

Comparing equation A.6 with equation A.7, we see that that normal components cancel,
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leaving
aX 9 a\ al
—a tAVBVaU = —a(bag)a t>\ - Unba@b t)\
0
= a(baﬁ)aam = (V5VaUy, — Unb,sbl)a® (A.8)
0
= a(bag) = VﬁvaUn — Unbuﬁbg.

With all of these identities, we are able to calculate the time derivative of the mean
curvature, H = %ao‘ﬁ bag. We have

OH 1/0 0
1 of of
ot 2 (at(a Jbap + @ at(baﬂ)>

1
= (2Unbaﬂbaﬁ +a®B(VVaU, — Unbﬂﬁbg))

1
= = (2U,b*Pb, 5 + a®PV 5V U, — Upb,sb"°
( 8 8 u ) (A.9)

(Vb + a5V oy

(Un(4H? = 2K) + a®PV 5V, Uy,)
1

= (2H? - K)U, + 5aaﬁvﬁvaUn,

where we have used the fact given in [2] that b*b,5 = 4H? — 2K.

A.1.2 General Coordinates
In general coordinates, we need only calculate the time derivative of the metric tensor.

Starting with the tangent vectors, we have
0 o ([ or
- ta —_ R
8t( ) ot <8u0‘>
_ o (o
~ Ou \ ot

- % (U%A + Unn)

U
- O N Upblt
ou® 8u"‘n Unbat,

Ut R U,
(8ua +U Fz”\> ty + U boan + o Unblty

(A.10)
ou
ta + U (T],t, + baym) +

ou,
ou®

= (VU = UB)) &, + ( + waw> n.

This gives
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9. _9, 0,
a8 = pyte PTA
= (VoU" = UpnbY) agy + (vgm - Unbg) o (A.11)

“tpg+ty -

=V Ug + VgUqy — 2bagUy.

A.2 Rate of Strain Tensor

We derive the rate of strain tensor following arguments [2]. In convected coordinates,

1d

Sra =55

ara, (A.12)
where the derivative is the material derivative following a particle. We wish to find S,z,
the components of the rate of strain tensor expressed in terms of general coordinates. Using

the transformation rule A.45 for covariant tensor components,

d d <8u“ oub )
ara = — | 575 A9

dt dt \ oul gud "’
woo (A.13)
_d (ol o d (N 0w ot d
T at \oul ) 9ul " T gul ar \ oul BT gul gul ar?
Since % is a derivative with fixed {u'}, we can swap orders of integration to get
d [ ou® 0 du®* Ov*  Ov*ou”
il = = = . A.14
(8ur> out dt  oul'  Our oul ( )
Thus we have
A _oronod oo ow  owton’ d s
dt " T 9w oul 9ud P T 9l dur 9ud VP T gl fub dt e ’
which upon permuting the repeated indices, can be written as
ia _8u0‘6u6 oY +8v7a +8a 4o 8(1 (A.16)
it T ul gud \ gue TP T guBter T el TV gy Mol '
where we have expanded the material derivative of a,3. Now Since
1 0u®™ ou? [ o7 oY 0 0
=5 @ « @ ’ Al
Sta 5 9k Jud (aua%,ﬁ 0 550 ~ T 875& ,3-1-11 auﬂa ﬂ) (A.17)
it follows that Sra, expressed in fixed coordinates, is given by
ov” ov? 0 0
Saﬁ <8 a 'YB Waa»y + aaaﬁ + ,U,Yau’yaa6> . (A18)

This expression can be cleaned up significantly. We use the definition of the covariant

derivative to replace g”a and a”ﬂ with Vav7 —0"T7, and Vo7 —o¥T7 VB respectively. Further,

we use the fact that the covariant derivative of a,g is zero to replace %aaig with aCWI’g)AY +

aypl'¢. Upon simplification, all the terms with Christoffel symbolys cancel, yielding
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Sap = % <Vav5 + Vgva + gtaag> . (A.19)
Recall that the form of %aaﬁ depends on the type of coordinates. Thus
Sup = % (Vavs + Ve — 2basln) | (A.20)
in surface-fixed coordinates, and
Sap = % (Vavg + Vgva + VoUg + VU — 2b05U,,) (A.21)

in general coordinates.

A.3 Areal Dilation
Recall that an area element is given by /adu'du? where a is the determinant of the
metric tensor. Thus ﬁ%\/& = i% can be thought of as a relative change in area.

Because the metric tensor is only second order, it has a simple form given by
a = aiia2 — a12021. (A.22)

Taking the time derivative on both sides, using the fact that the components of the inverse

of a second order tensor have a simple form, and using the symmetry of a®?, we have

da dana ta dazg dama —a dag
da — dt 2T g a g
da da da da
_ 11 “¢11 22 W22 12 12 21 421
=a <a I +a I +a I +a e > (A.23)
— qa®P =
aa™’ - dog.

This relationship holds true in surface fixed, convected, and general coordinates.

A _ oul gud
- Ou* Out

Using the transformation rule A.43 for a a™ and equation A.16, we have

1 dd’

2a’ dt

d

rA
—a
7.0ra

AuL ou du® ouP 0
A hdl
TP ur ouk Db <V‘Y“ﬁ  Vava + ata"ﬁ>

o 0
2a>\#5/\ 65 <Vavg + Vgus + (%aw)

_1
T2
_1
2
E (A.24)

1 0
= iaaﬂ (Voﬂ)ﬁ + Vg, + 875%'8) .
Thus we have

1 dd
ﬁ?i - va’l}a - 2HUn7 (A25)

in surface-fixed coordinates and
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1 dd o o

in general coordinates.

A.4 Viscous Dissipation Variation

The total rate of viscous dissipation is given by
1
o—= / detde®/a [STC“BSS&BQS + TS50,
2 (A.27)
+9599£aaﬂ(va — Wa)(vg — wﬁ)} .

To find the first variation with respect to velocity, we first replace each velocity with
that same velocity plus a variation, for example v, — vy + pdv, Where p is a positive real
number. The variation dv, must be admissible, meaning that it must meet certain criteria
such as smoothness or boundary conditions. These criteria are situation dependent. We
then calculate the derivative of the result with respect to p at p = 0.

Consider the dissipation in the sphingolipid phase. This is identical to the glycerolipid

phase except that v is replaced with w, and the viscosity constants may be different. Define
QPM = @B 4 e(ao‘)‘aﬁ“ + a*aP — aaﬁa)‘“). (A.28)

Then T8 Sap can be written
T Sus = Q*PM'S) S 0. (A.29)

Notice that Qo‘ﬁ’\“Sag = T™M and QS A = T8, For the first variation of the sphin-

golipid viscous dissipation, we have
% / detde®/ab, {QQW [Vavy + Vs — 200,05 [ Va(605) + V(6v4)
e dUn] + QPN [V A (6v,) + V,(60x) — 2b2,0Un] [V + V 00 — 2ba5Un]}
_ i / A€ dE2aby { TP [V (8p) + V5(8va) — 2DapdUs]
FTM [V (0v,) + V,(60y) — 2b,\M5Un]}

= /dflde\/aes {TaB [Va(0vg) — baﬁéUn]}

(A.30)

= /d§1d§2\/605 {—Va(TO"B)évg — To‘ﬁbagéUn} + boundary terms,

noindent where we have used the fact that 7% is symmetric, and have used integration
by parts to move the derivative from dvg to T as shown in section A.6. The boundary

terms that possibly arise when integrating by parts are dealt with in the specific situations
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addressed in this dissertation.

It is easy to see that variations of
1
3 / derde?\/afs0,£a°P (vo, — wa) (V5 — wp) (A.31)
will result in

/ dEL A€/ a0,0,€0% (v — wa) (505 — Sws). (A.32)

Combining the contributions from sphingolipid viscosity, glycerolipid viscosity, and drag

results in equation 2.47.

A.5 Christoffel Symbols and Identities
The Christoffel symbols of the first kind are denoted I'n3, and are defined in terms of
partial derivatives of the metric tensor as

1 (0ays  Oaya Oanp
Lapy = 2 <8u0‘ * oub  our ) (A.33)

Notice that the Christoffel symbols of the first kind are symmetric in their first two indices.

Christoffel symbols of the second kind, which appear in the covariant derivative, are defined
g =a"Tog,. (A.34)

Notice that Christoffel symbols of the second kind are symmetric in their bottom two indices.
In the literature, the term Christoffel symbol is often meant to mean the Christoffel symbol
of the second kind.

From equation A.33, we see that partial derivatives of the metric tensor can be expressed
in terms of Christoffel symbols,

Jdaag
ou”

= F'yaﬁ + F'y,@a = aﬁyl—‘,l;a + a,m,F,’;B. (A35)

This equation is useful for computing partial derivatives of the determinant of the metric
tensor.
Using an argument very similar to the one shown in equation A.23 and using equa-

tion A.35, we have
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da _  ap0aap
ou” ou”
= aaaﬁ (aﬁyr,l;a + (la,/r,l;ﬂ)
= a (0T, + 70T ) (A.36)
_ B
—a (15, +T5,)
= 2al'y,.
Thus
1 ova
— =TI . A.37

This equation is important when carrying out integration by parts.
To find the time derivative of the mean curvature, it is necessary to calculate partial
derivatives of the inverse metric tensor. Using a“*a,, = da and equation A.35, it follows

that

8(?[\(ao‘“)a,,Y = —ao‘“w(aw)
= %(aa“)aw = —a™ (Dxpy + Taqp)
= w(aa“)aw = —a™" Ty — Fgfv (A.38)
= w(ao‘“)awaw = _aaupfu — Ty,
= %(ao‘ﬁ) = —ao‘”Ffu - a“ﬁfi‘u.

A.6 Integration by Parts
In this appendix, we show the details of one integration by parts. Other integrations
used in the manuscript are not shown explicitly, but involve similar machinations. Consider

the expression
/ dutdu®/a TPV 4vg. (A.39)

Carrying out integration parts (and using a comma to denote partial derivative where

convenient) yields
/duldu2x/§ TPV 4v5

9
— [ du'du?va T8 [ 225 0,1y,
ou® @

af
= —/dulduQﬁ [(W) vg + TO‘BUVFZB} + boundary terms (b.t.)
a
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_ / du'du?/a [(T“B,a +T0‘5F5a) vs +Ta%yr;6} + bt
- / duldu?\/a [(T“'B o ATVPTS 4 TOvTE Ta”rfa) vg + T, T%5| + bt. (A.40)
= —/dulduQ\/& V(T + bt

where we have permuted indices to use the fact that T“”Ffavg = TP v,,FZﬂ.

A.7 Coordinate Transformations
Let {u“},a = 1,2 be some set of coordinates and {u*},a = 1,2 be some other set of

coordinates. Suppose the two coordinates are related via
u® = u(at, 7?) and @® = @ (ul, u?). (A.41)

Consider the tangent vector w. Using contravariant components, we have

Wt or
a = =w'—
ou®

o Or ou”

Y 9u due (A.42)

where
w? = w. (A.43)

Equation A.43 gives the contravariant transformation rule. Using covariant components,
wgtﬁ = fwga’g'y
ouP ou” _\u Or ou”
59 8ul‘a oun duy
ouP ou™ ou" G
Y5 u dur gur T (A.44)
= wg ngégaA“En
iy
=W )\t)‘,
where

ouP

Equation A.45 gives the covariant transformation rule.
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The covariant and contravariant transformation rules can be combined together (as was
done in equation A.44) to give transformation rules for higher order covariant, contravariant,

and mixed tensors.



APPENDIX B

CALCULATIONS TO SUPPLEMENT
CHAPTER 3

B.1 Monge Parametrization
In this section, we present many of the background calculations necessary to derive the
Monge Parametrization form of the two phase fluid equations. We show most calculations

for the sphingolipid phase. Similar results exist for the glycerolipid phase.

B.1.1 Christoffel Symbols and Covariant Derivatives
Using equation A.33, we calculate the Christoffel symbols of the first kind to be

h h
Case = e (7 1) (B.1)
ope hay Ty
and
h h
Logy = h ( oo Doy > | (B.2)
By Yy hay  hyy
Using equation A.34, we find that the Christoffel symbols of the second kind are
hy < hae Py )
2= (B3
P a \ hay hyy
and
po =P (R hay (B.4)
h a hay  hyy

Using the Christoffel symbols of the second kind, we calculate the components of the

covariant derivative of contravariant vector components to be

oof ( W 4 b (7 By + WWhay) B 4 B (0T hyy + 0Vhg) ) |

: / B.5
aavy + %I(Uxhzy + v¥hyy) %Lyy + @(Uxhwy +0hy,) B

a
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B.1.2 Surface Dilation

Using equations 3.13-3.15, we can calculate
hxazht + hxhxt =+ hyyht + hyhyt

VU =
@ (B.6)
 hahi(hoheg + hyhay) + hyhi(hahay + hyhyy)
a2
and
Paw(1 + h2) + hyy (1 + h2) — 2k hyh,
2HU, = (L Fy) 7 By . ) Ty (B.7)
a
so that
chzt + hyh
VU — 20U, = Mahat = hyhye (B.8)
a
It follows that the surface dilation is given by
a®?Spp = Vav® + Vo U® — 2HU,
ov®  hy oY hy, .
= 81;3' + ;('Uthx + 'Uyhgjy + hzt) + Ty + Zy(v hmy + 'Uyhyy + hyt) (Bg)
= dy.
B.1.3 Tangential Force Balance Terms
B.1.3.1 Divergence of the Stress Tensor
The stress tensor is given by
T8 = naaﬂa/\”S)\# +e (ao"\aﬁ“ + a®"a — aaﬂa’\“> S
(B.10)
=(n+ e)ao‘ﬁaMSM + 2¢ (50‘5 - aaﬁa/\“SM) ,
where
1
geB — = (amvw + PV 0% + 0 V0P 4 Y 0 — 2b°‘5Un> . (B.11)
We can calculate the components of S*? to be
L+hy (™ hy
wa = Y < av + — (’Uxh;px + 'Uyhyy + hxt))
@ o (B.12)

hzhy, (OVY  hy
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1|1+h v oh
STY — QUT — — Y ai-f—*y(vth-f—vyhzh-l-hxt)
2 a Ox a
1+ hZ (Ov®  hy
" o <U + — (v hay + vV hyy + hyt))
a \dy a (B.13)
hyhy (OV*  hy
- ay <8x + = (0" hag + 0V hay + hat)
oY h
+ a% L (07 hay + 0y, + h@)] ,
and
1+ h? Yy h
SY = 7—; = (%1; + ;y (V" hay + vV hyy + hyt))
B.14
_ Dahy (O Py gy iy + ) .
a O a T Ty xt .
This yields the components of T%7:
+e)(1+h?
pee _ (1AL
a
(B.15)
2 ov” ovY
- = <hzhyaz; + (14 hZ)a—z + iy v® + hyhy ¥ + hyhyt> :
T — TYT — _ (77 + 6)h$hyd
a
€ ov*  OvY ov® ovY
— lhehy | 5=+ 5~ 1+ h? 14 h2)=— B.16
+a[ y<8$+ay)+(+m)ay+(+y)aw (B.16)
(hyhas + hohey) 0" + (hahyy + Byhay )0 + hyho + By |
and
qwy — M+ +03)
a
B.17)
2e ovY ov” . (
- (hxhyax + (14 Rh2) T hayhywv® + hyhg v + hxhxt> .
Using equation 2.17, we have
vaTax — ;Txx + aaTxy
: v y (B.18)
+ " [T (2hghaz + hyhey) + T (Bhghay + hyhyy) + TV hyhy,y)
and
VT = ;Tmy + ;Tyy
* Y (B.19)

1
= [T hyhae + T (hahas + 3hyhay) + T (hahay + 2hyhyy)] .

Define
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T8 = aTP, (B.20)
The terms that appear in the tangential force balance equations can be expressed as

Vo (TO00,) = 2% (T”93> + clz(fy (TW@S)

93 LT yals 2
-5 (T hyhay = T oy = hyhyy) = T hohy )

(B.21)

and

Vo (1) = o5z (T8.) + iaay (7s.) (B.22)
O (T b~ T (b — hyhy) — T¥hshsy )

B.1.3.2 Surface Laplacian
The surface Laplacian appears in both the tangential and normal force balance equations.

Suppose g is some scalar function. We calculate the surface Laplacian of g to be

o 1
a BVQVQQ == a {(1 + hf,)gm - thhyga:y + (1 + hi)gyy

+ (9che + gyhy) [(1 + h;)hm — 2hghyhgy + (1 + hi)hyy} } .

(B.23)

B.1.4 Normal Force Balance Terms

B.1.4.1 Contraction of Stress and Curvature Tensors
The contraction of the stress and curvature tensors that appears in the normal force

balance equation is given by

To‘ﬁb(w = [(n + e)aaﬂa’\”SM + 2¢ (Saﬂ — aaﬁa)‘“S,\u)] bag

(B.24)
— (n+¢) (2H) (a)‘“SM) 42 [Saﬁbag — (2H) (a)‘“S)\M)} .
We calculate that S8 bap is given by
o 1 o' hy ,
SPbgg = =7 { [P (1 + hf/) — hyhyhgy) [83: + o (V" hyg + VW hgy + hxt)]
[OvY R
+ [hay(1 + hj) — hahyhy,y] 8% + Zy (V" Rz + YRy + hxt)]
(9v® B (B.25)
v Tz
+ [hay(1 + h3) — hahyh,] By + o (v hay + vV hyy + hzﬁ)}
T h
+ [Py (1 4 h3) = hahyhay] 671; + ;y (v hay + vV hyy + hyt)} }

so that
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SPbos — 2Ha Sy,

1 2 oY hy ”
= W [hxy(l + hy) - ha;hyhyy] 87 + ; (’U hxar +v hxy + hact) (B26)
2 o hy , y
t [hxy(l + hx) B hxhyhm?] aiy + ; ('U hmy +v hyy + hyt)
and
Tbog = (n+€)(2H)d,

2¢ oy h

2 T
+ m { [hxy(l + hy) - hmhyhyy] |:3SL‘ + ;y (U hmc + Uyhxy + h:):t):| (B.27)

ov*  hy
+ [hay (L + h2) — hohyhy,] [avy + == (0 hay + vhyy + hyt)] } .

B.1.4.2 Cahn—Hilliard Penalty Terms

The Cahn—Hilliard penalty term for a scalar function g is given by

(1+h2) (?)2 —onn, 2929 (1+h2) <g§>1 : (B.28)

o 1
a BVang = - - y%ay

a

B.2 Axisymmetric Parametrization
In this section, we present many of the background calculations necessary to derive and
analyze the axisymmetric parametrization form of the two phase fluid equations. We show

most calculations for the sphingolipid phase. Similar results exist for the glycerolipid phase.

B.2.1 Christoffel Symbols and Covariant Derivatives
Using equation A.33, we calculate the Christoffel symbols of the first kind to be

Lo = PP, (B.29)
Tugo = Loug = ', (B.30)
Togy = —x2’, (B.31)
and
Lyuo = Tugu = Touu = Togo = 0, (B.32)

where the prime notation indicates a derivative with respect to wu.

Using equation A.34, the Christoffel symbols of the second kind are given by
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Py
= P L (B.33)
-
and
0z
hs=| » © (B.34)
=0
X

Using these definitions, and under the assumption that %L; = 0, we calculate the covariant

derivative of contravariant vector components to be

(v'p)  (v'x)

Voo = T (B.35)
7?] rxr v
p? x

B.2.2 Surface Dilation

We calculate

/ /
Vov® = v¥ + ot (p + x) , (B.36)
p
so the local surface dilation is given by
a*? S5 = Vo™ — 2HU,
/ / !/
p Z p y2

= dy.

B.2.3 Tangential Force Balance Terms
B.2.3.1 Divergence of the Stress Tensor

The stress tensor is defined as
T8 — naa'ga/\”SM + e(ao‘/\aﬁ“ + a™aPr — aaﬁa’\“)SM
(B.38)
=(n+ e)aaBaA“SM + 26(5“'8 - aaﬁa)‘“)S,\M,
where

1
5P = 3 (vaﬁ + aPhV 0 — 2baBUn) : (B.39)

Using the definitions of Vov?,a®?, and b*?, we find that
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3 5 2
g | P P P . (B.40)

This yields the components of 7% to be

2 / /
T = nre t Edv - % Uu£ - iUn ’ (B41)
p p r px
Tl — pou = (B.42)
= =2 )
and
2 /
T — ”x;;edv - ;2 (W st - ;Un> . (B.43)
Using equation 2.17, we have
o0 = O puo s (P TN | gy opuops | qoeps B.44
VoI™ = o T + EJFE + wu T w + 90> (B.44)
so then
Vore =1 <q
p
g (%) N (L) (2 ey B
P a/ \p )\ p piz "
and
0 € o o/ 31'/ p/
The terms that appear in the tangential force balance equations can be expressed as
Vo (1°6,) = ”; “{0.d,Y
L2 (3) P05\, (LY (Z0Un\ _ bsar’ (A7
P x)\ p x p pdz "
and
/ 3 / /
Vo <T“993> - ]% { [951)9’} + 00" (:j - ’;) } . (B.48)

B.2.3.2 Surface Laplacian
The surface Laplacian appears in both the tangential and normal force balance equations.
Suppose g is some scalar function. We calculate the surface Laplacan of g to be

1 o
af — m_ g E . B4
a**VaVsg = <g g (p x)) (B.49)
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B.2.4 Normal Force Balance Components
B.2.4.1 Contraction of Stress and Curvature Tensors
The contraction of the stress and curvature tensors that appears in the normal force

balance equation is given by

Taﬁba/g =T""byu + Teebeg

= (n+€)(2H)d, (B.50)
2¢ [ , (g2 z w 2q7
() () ey =]
B.2.4.2 C(Cahn—Hilliard Penalty terms

The Cahn—Hilliard penalty term for a scalar function g is given by

a Lone
a*’VagVag = e (9)". (B.51)

B.2.5 Simplifications to the First Order System
After substituting the perturbations 3.100-3.109 into the full system 3.70-3.78, we use
the following identities to arrive at the system 3.110-3.116:

g _ fp[)?T/L.SiH(TFU/L) _ <E>27 (B.52)
xo poL/msin(mu/L) L
. _ pom/Leos(mu/L) _ 7;2 cot (Tu) (B.53)
poro  pgL/msin(mu/L)  L2pg L
o _ _posin(re/L) 7 _ g (B.54)
poro  pgL/msin(mu/L)  Lpo
qory  pam/Lcos(mu/L) 2 <7r )

_ _ (T, B.55
o pal/msin(wu/T)  L?po  \L" (5%
wh _ phr/Leos(my/L) _ por? o (7, (B.56)
poro  pgL/msin(mu/L) L L

pozy _ _pgsin(mu/L) _ pom (B.57)

xo poL/msin(mu/L) L

qozy  pim/Lsin(mu/L) T\ 2

0% _ Po ! :<f> ’ (B.58)

pgro  pyL/msin(mu/L) L

and



x|, po cos(mu/L) T <7r >

Lo _ = ot 2 B.59

xo  poL/msin(ru/L) L oriz? ( )
Further, in terms of principle curvature C7 and Csy, we have H = %(01 +Cs) and K = C1Cs.

Letting C1 = C1, + AC1, and Cy = Cy, + ACy,, the expression 2HyH; — K is given by
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1
2HyH, — K1 = = (Clo + CQO> (011 + 021) — (010021 + 020011)
2

1
= § (Olo - 020) (011 - 021) .

(B.60)
Now, if the equilibrium shape is a sphere, C1, = Cy, so that 2HyH; — K1 = 0. Thus the

expression (4HoH; — K1) fr,, which appears in the normal force balance equation upon

substitution of the perturbed steady state values, can be replaced with 2HoH fp,.
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