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Abstract of Dissertation 

Allocation of Resources to Defend Spatially Distributed Networks Using Game 

Theoretic Allocations 

This dissertation presents research that focuses on efficient allocation of defense 

resources to minimize the damage inflicted on a spatially distributed physical network 

such as a pipeline, water system, or power distribution system from an attack by an active 

adversary.  The allocation methodology recognizes the fundamental difference between 

preparing for natural disasters such as hurricanes, earthquakes, or even accidental 

systems failures and the problem of allocating resources to defend against an opponent 

who is aware of and anticipating the defender’s efforts to mitigate the threat.   

Conceptualizing the problem as a Stackelberg “leader–follower” game, the 

defender first places his assets to defend key areas of the network, and the attacker then 

seeks to inflict the maximum damage possible within the constraints of resources and 

network structure.  The approach is to utilize a combination of integer programming and 

agent-based modeling to allocate the defensive resources.  The criticality of arcs in the 

network is estimated by a deterministic network interdiction formulation, a maximum-

flow linear program (LP), or a combination of both of these methods, which then inform 

an evolutionary agent-based simulation.  The evolutionary agent-based simulation is used 

to determine the allocation of resources for attackers and defenders that results in 

evolutionarily stable strategies in which actions by either side alone cannot increase their 

share of victories. 

These techniques are demonstrated on several example networks using several 

different methods of evaluating the value of the nodes and comparing the evolutionary 
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agent-based results to a more traditional, Probabilistic Risk Analysis (PRA) approach.  

The results show that the agent-based allocation approach results in a greater percentage 

of defender victories than does the PRA-based allocation approach.   
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Glossary of Terms 

 

1. Attackers:  Resources applied to the network in an attempt to damage it by the 

individual who is seeking to cause harm to the network.   

2. Adversarial Risk Analysis:  Risk analysis in which one is confronted by a thinking, 

planning adversary who is trying to maximize the damage he causes. 

3. Allocation Model:  The agent-based simulation developed in this research, which is 

used to determine an Evolutionarily Stable Solution (ESS) and thus the Game 

Theoretic (GT) allocation of resources.  In this model, both the defenders and 

attackers evolve their strategies in response to one another. 

4. Attacker–Defender:  A type of two-person game in which one player chooses a 

strategy first, without any knowledge of the second player’s strategy.  The second 

player then chooses a strategy with full knowledge of the first player’s strategy.   

5. Classic Risk Analysis:  A method of assigning Risk in which Risk is defined as the 

probability of an occurrence times the consequences of that occurrence. 

6. Consequence:  The result of risk being realized.   

7. CPLEX:  A solver for mathematical programming  

8. Defenders:  The resources applied by the owner of the network to protect nodes from 

damage by the opponent. 

9. Evaluation Model:  The agent-based model developed in this research, which allows 

attackers to evolve their tactics over time to respond to a fixed defensive strategy.  

This model was used to compare the effectiveness of various defensive resource 

allocations.   
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10. GUROBI:  A solver for mathematical programming. 

11. Leader–Follower:  Another name for an Attacker–Defender game. 

12. Probabilistic Risk Analysis:  A risk analysis technique in which the probability of a 

specific risk occurring is estimated and used to calculate risk. 

13. Resilience:  The ability of a network to maintain operation after it is damaged.  This 

includes redundancy, additional capacity, design for graceful degradation and 

recovery, and other design features that improve the ability of a network to continue 

to function when damaged. 

14. Resource:  In the context of this research, a resource is a fungible measure of 

capability that is assigned to a particular node for either attack or defense.   

15. Stackelberg Game:  An attacker–defender or leader–follower game used in economic 

modeling. 

16. Strategy:  In the context of this research, a strategy is an allocation of resources to 

either attack or defend nodes of a specific network.  One specifies a strategy by listing 

each node and then listing the number of attacker or defender resources allocated to 

each node in the network.   

17. Tactics:  In the context of this research, tactics refer to the specific rule set that 

governs how any particular agent (unit or resource) chooses which node to attack or 

defend.   

18. Terrorists:  Synonymous with attackers to the network: Individuals who desire to 

harm the network or interfere with its operation in some manner 
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Chapter 1: Introduction  

1.1 Background 

Those individuals responsible for the security of networks and systems such as 

pipelines, power grids, and water or information systems are faced with the problem of 

protecting those systems from varying threats.  These threats can be both those resulting 

from natural events and from human design.  One of the most pivotal decisions that must 

be made is the allocation of protective resources to various portions of the network.  

These resources could be purely passive, such as “hardening” a node against physical 

intrusion.  The resources could be utilized for the gathering of intelligence or for the 

active defense of a portion of the network.  The resources could also be allocated to 

active kinetic or nonkinetic actions to render an attack ineffective against a particular 

node.  Although this research concentrates on the nodes of a network in this effort, the 

ideas could be equally applicable to arcs that connect the nodes.  Ideally, there would be 

sufficient resources to prevent the success of any possible attack against the network, 

allowing it to maintain its functionality.   

One can theoretically develop an allocation plan to defend against almost any 

conceivable threat.  However, in practice resources are never “unlimited,” and decisions 

must be made regarding how they should be allocated.  For this analysis, “resources” are 

considered to represent a finite, fungible, and unitary measure of capability that could be 

applied to increase the defensive capability or “hardness” of a particular node.  Resources 

could be the effort applied to gathering intelligence about a particular part of the network 

or surveillance to provide information about those attacking a particular part of the 

network.  Resources could just as easily be physical hardening of a key node (shipping 
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terminal in a pipeline or transformer station on a power distribution line) or individuals 

assigned to defend or target a particular node.  When allocating resources in the real 

world to protect the network, the network defender is often at a disadvantage in that 

resources must be allocated without direct, specific knowledge of the attacker’s plans (J. 

L. Cox, 2009).  The attacker’s goals, values, and objectives might be known in a general 

sense, but the specifics of force allocation, timing, and points of attack are generally not 

known with certainty.  Additionally, many resources devoted to defense of network nodes 

are not easily moved once in place.  Sensors, fences, and other fixed systems, once 

installed, generally are not repositioned.  These resources also have a limited range for 

their effects.   

The attacker also has limited resources.  Thus, the attacker must determine the 

best method of allocating attack resources against the network to accomplish his stated 

goal, which might involve limiting the effectiveness of the network by reducing the flow 

of “product” through the network.  In this context, “product” is considered to be whatever 

flows through the network.  It could be a physical product such as fluids or gas through a 

pipeline, or energy such as electricity through a distribution system, or even information 

through a data network.  The attacker’s goals could also be to gather publicity for a 

particular cause, affect political decisions, or induce fear in a population.  Many such 

goals are possible, and any system that recommends resource allocation should include 

the ability to consider these multiple goals.  The attackers, however, have a great 

advantage because their decision regarding which nodes to attack, and how to allocate 

resources, will be made with at least some knowledge of the defensive capability and 

resource allocation of the targeted network.  In essence, while the defenders must allocate 
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resources without knowing the plans of the attacker, the attackers can see what the 

defender has done and can then plan accordingly.   

The situation under discussion is different from the situation in which a planner 

decides on resource allocation in the face of natural, “non-thinking” events resulting from 

random occurrences in nature such as weather, random failures of equipment, or other 

natural disasters.  The network “attacker” in this case is not making decisions of any 

kind.  The events are considered random and would occur regardless of any actions of the 

defender.  While many of the tools, techniques, and terminology used for analysis of 

courses of action against forces of nature are similar to those used for the allocation of 

resources against a determined, thinking opponent, the problems have a fundamental 

difference.  The forces of nature do not change their points of attack or allocation of 

resources on a network node based upon the defenses of that node, but a terrorist will 

gather as much intelligence as possible when deciding on targets and resource 

allocations.  A hurricane does not change its path based on whether or not you have 

installed hurricane shutters and emergency power, but a terrorist may pass on attacking a 

node that is heavily defended by multiple layers of defense and sensors.  In this work, 

several different methods that can be used for the resource allocation decision are 

discussed, focusing on the situation in which an active and malevolent “opponent” exists 

who is attempting to inflict the maximum damage to the network.  Without loss of 

generality, this opponent and the opposition forces controlled by this individual are 

referred to as “terrorists.” 

Most common models or methods for resource allocation are based on some 

measure of “Risk.”  Risk analysis in the form of equating risk with a probability of 
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occurrence and severity of consequence, such as the classic “risk cube,” is a concept very 

familiar to engineers and decision makers.  The Department of Homeland Security (DHS) 

has repeatedly maintained that the concept of risk must be used in establishing priorities 

for the department (Dillon, Liebe, & Bestafka, 2009).  Many risk models are based on the 

classic formula:  

 Risk=(Threat)(Vulnerability)(Consequence) (0.1) 

As reported by Cox (L. A. T. Cox, Jr., 2008), the DHS standard for risk analysis 

in the chemical industry beginning in 2007 is based upon this method.  In his article, Cox 

goes on to discuss how this model, while very useful, is limited when confronting an 

active opponent.  The problem he highlights is that the uncertainty represented in this 

model is fundamentally different if it is a result of acts of nature or acts of man.  Golany 

et al. (Golany, Kaplan, Marmur, & Rothblum, 2009) discussed this at some length in 

2009, characterizing the two types of uncertainty as either caused by random acts of 

nature or insufficient knowledge (Probabilistic Uncertainty) or caused by the lack of 

knowledge of the plans of an active adversary (Strategic Uncertainty).   

1.2  Research Question 

The primary question for this research is to determine an approach that, under 

Strategic Uncertainty, provides a better allocation of resources than does a 

straightforward application of the classic Probabilistic Resource Allocation (PRA) 

method, which is often used (and quite successfully) for the allocation of resources to 

counter the effect of various natural disasters.  It is desirable that the proposed method 

meet the following criteria: 
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1. The method must be usable for actual real-world problems, not just small 

textbook examples (Scalable). 

2. The method must be better than, or at least as good as, the classic PRA-based 

approach (Efficient). 

3. It should assume a thinking, plotting adversary who will seek to maximize the 

effectiveness of his attack against the network (Responsive). 

4. It should be applicable to many different means of node evaluation (Flexible).  

Specifically, the research hypothesis is that, when facing an opponent who has 

knowledge of the defender’s resource allocation and can plan accordingly, an allocation 

approach based on a Game Theoretic (GT) allocation of resources will perform as well 

as, or better than, an allocation based upon a pure PRA-based approach, which only takes 

the value of the nodes under consideration without considering the potential actions of 

the attacker.   

1.3  Overview of Technique 

Using the taxonomy of uncertainty described by Golany and Kaplan (Golany et 

al., 2009) in the preceding section, an approach that only looks at the value of each node 

and makes an allocation of resources based upon the value of the node is focused on 

probabilistic uncertainty.  The approach developed in this research for allocating 

resources under strategic uncertainty is one that combines deterministic network 

interdiction for node evaluation with an agent-based approach to finding the solution of 

the underlying GT model that is most favorable to the defender.  The situation is 

considered as a two-person game of the type generally known as “leader–follower,” 
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“attacker–defender,” or Stackelberg games.  In this formulation, one person (the leader) 

will place his resources without the knowledge of the opponent’s actions.  The second 

player (the follower) then allocates resources with the full knowledge of how the leader 

has allocated his resources.  

 The method of solution for these “leader–follower” games is through the use of an 

evolutionary agent-based simulation, with the agents representing individual units of 

resources to be allocated by the attackers and defenders.  The method of evaluation of the 

value of the nodes is flexible and allows for multiple categories of “value” or importance 

of any particular node.  Each node of the network is considered to have two distinct 

“values”: a public relations value, which represents the value of the publicity gained by 

an attack against the node, and a network value, which represents the contribution of that 

particular node to the mission of the network (the delivery of some product or service).  

The network values were calculated in one of two ways, either through a maximum-flow 

linear program (LP) (max-flow LP) or by a combination of a max-flow LP with a mixed-

integer network interdiction program.   

 It is not really feasible to use data from actual attacks to evaluate the results of 

this modeling.  The actual data are far too sparse, and what might be available is usually 

unavailable for unclassified research due to security considerations.  Therefore, 

simulation is used to compare the effectiveness of the method’s allocation method with a 

PRA-based method.  By comparing simulation results from a GT allocation and a PRA-

based allocation, a relative comparison of the success of each method is calculated and 

then compared.   
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1.4  Organization 

 This paper is organized into eight major chapters.  Chapter 1 is the introduction, 

which provides a brief introduction to the question and frames the discussion for the 

literature review, which is Chapter 2.  After a brief overview, the literature review 

devotes a section to each of the major topical categories in the review.  This chapter 

completes with a short synthesis section that serves to blend the threads from the 

literature review topics together into a unified conclusion. 

 Chapter 3 is a detailed discussion of the approach, including the elements of the 

problem, the solution approach, and the approach to the evaluation of the solution.  

Chapter 4 is a discussion of all the various formulations and models used in the research, 

along with a discussion regarding the implementation of the models and the techniques 

used in the actual analysis of the results.   

 Three different networks were used in the actual evaluation of the technique.  

Chapter 5 discusses a small-scale, 13-node notional model, which was chosen as an 

initial test of the technique.  Chapter 6 extends this to a 30-node model, which represents 

a simplification of major portions of the Irish Electrical Power Grid.  Chapter 7 extends 

the analysis to an 85-node model, which is a simplification of the Plantation Pipeline that 

runs from Gulf Coast ports up the East Coast of the United States to Baltimore-

Washington International (BWI) and Dulles International airports.  Each of these three 

chapters is organized in the same manner: a description of the network to be analyzed, the 

results of the GT and PRA-based resource allocations, and a comparison of the results. 
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Chapter 8 contains conclusions and recommendations for further research.   
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Chapter 2: Literature Review 

2.1  Overview 

 The initial literature review for this research cut across a wide range of disciplines 

and topics.  Initially, the review focused on gathering information on various methods of 

allocating resources and assessing risk for systems subject to attack by thinking 

opponents or other natural events.  Over time, this became more focused, encompassing 

various aspects of adversarial risk analysis, network design, terrorism characterization 

and analysis, and probability estimation.  As the solution space narrowed down to a GT 

approach, research concentrated on various aspects of game theory and the solution of 

specific types of games, finally settling upon the determination of Evolutionarily Stable 

Solutions (ESSs) to certain types of games.  Several hundred scholarly articles and 

standard reference works were reviewed and consulted.  Many were either duplicative or 

not germane to the ultimate solution method.  However, the topics that proved to be most 

useful in developing this research are presented in visual form in Figure 1.  This 

organization breaks down the topics into three major categories: Classic Risk Analysis, 

Adversarial Risk Analysis, and Networks.   
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Figure 1  Literature Review Topics 

 Classic Risk Analysis involves the use of estimates of probability of occurrence 

and the consequence of the occurrence as key factors in the estimation of risk.  This 

approach requires that the probability of an occurrence and its impact upon the system 

(consequences) must be estimated or measured in some manner.  The estimation of these 

parameters highlights the differences between characterizing terrorists, who are thinking, 

planning entities, and characterizing natural events, which occur with no conscious 

thought, design, or plan.  Many different techniques, both analytic and simulation-based, 

have been proposed to characterize these risks.  Of special interest in this area is the fact 

that some highly improbable (very low probability) events can have extremely 

devastating consequences.  These high-consequence, low-probability events, under 
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certain circumstances, have a dramatic (some would argue distorting) effect upon 

resource allocation methods.  Related to these types of events are so called “black 

swans,” i.e., events that are almost totally unforeseen.  

 The approach used for the allocation of resources in this research is based in game 

theory, in which two opposing “players” make decisions that affect the outcome of the 

“game.”  Each player is attempting to maximize his own payoff.  In this research, a 

specific type of game called a “leader—follower,” “attacker – defender,” or 

“Stackelberg” game is used as a basis for the allocation of resources.  There are many 

different variations on these types of games, and multiple approaches to both defining 

and determining their solution, which can be thought of as the optimal decisions by either 

player.  Pure analytic techniques are suitable for small games, but they lose their utility 

on most “real-world” sized problems.  Other methods, such as linear or mixed-integer 

linear programming approaches, are used along with evolutionary agent-based 

approaches.   

 Networks themselves have a rich literature.  They are becoming increasingly 

important and correspondingly the subject of greatly increased research over the past few 

years.  Two major branches of network risk analysis were reviewed in this work: physical 

networks such as power grids, water or gas distribution systems, or pipelines for the 

delivery of various liquid products, and information networks, in which packets of 

information vice physical product are distributed to nodes through the structure of the 

network.  Another network specific topic that was explored was the concept of resilience, 

which simply means the network’s ability to continue to function when damaged.  This 

ability is usually the result of the configuration of the connections between nodes in the 
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network.  A more resilient network is one that offers multiple redundant paths and nodes 

to ensure functionality.   

 For the purposes of this literature review, four major research lanes are discussed.  

Classic Risk Analysis includes general discussions about the quantification of 

uncertainty, resilience, and redundancy.  This literature generally focuses on the ability of 

a network to withstand damage from a non-malevolent opposition such as weather or 

other natural events.  Adversarial Risk Analysis includes analysis of risk in which there 

are two (or more) opponents, each of which is trying to maximize his own return.  

Computational Approaches focuses on methods to solve the Stackelberg “Leader–

Follower” games, including analytic solutions, mathematical programming solutions, and 

simulation methods.  Other useful references are discussed in a section on Related 

Discussions.  In each of these research lanes, the references are discussed in 

chronological order, starting with the earliest reference in each lane, grouped by general 

topics within the category.   

2.2  Classic Risk Analysis 

Resilience is a concept that is often used to ensure that a network maintains 

functionality even if portions of it are damaged.  Rose, Benavides, et al., in a 1997 article 

looked at resiliency as a key component of minimizing the effect of earthquakes in 

Memphis, Tennessee (Rose, Benavides, Chang, Szczesniak, & Lim, 1997).  Through the 

use of an input/output model of electrical power mapped to economic output, they 

evaluated various resource reallocation strategies through a linear programming model to 

assess changes in output.  Although their work focused on earthquakes, the method is 
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extensible to other natural and manmade disruptions of a region.  Their linear program 

was designed to minimize the economic disruption through the reallocation of resources.  

They included the effect of resiliency through modifying the estimates for electrical 

power generation after the incident and for reducing the need for electrical power after 

the incident, reflecting alternative sources of power or techniques of reducing demand 

while maintaining output.  In their analysis, a magnitude 7.5 earthquake in Memphis 

resulted either in a 49.6 or 78.7 percent reduction in regional gross domestic product, 

depending upon the production assumptions used.  However, their linear program model 

looking at reallocation (i.e., taking resilience into account) showed a 13.5 percent 

reduction, which was a significant savings.  This work focused on the need to capture 

resiliency and the efficient allocation of assets after an accident, but it has important 

implications estimating the consequences of severe disruptions of electrical power. 

In 2005, Rose and Liao used a Computable General Equilibrium (GCE) analysis 

instead of the Input-Output models just mentioned to estimate the regional economic 

impact of the loss of water supply to Portland, Oregon (Rose & Liao, 2005).  The primary 

advantage of this technique is that it made explicit use of “behavioral content” of decision 

makers, showing a change in behavior of producers and consumers to market conditions.  

This sensitivity makes it easier to introduce a systematic analysis of resiliency by 

substitution of required goods and services.  The authors further characterize resiliency as 

either inherent, which is “… the ability of individual firms to substitute other inputs for 

those curtailed by an external shock,” or adaptive, which is “increasing input substitution 

possibilities…by providing information to match suppliers without customers to 

customers without suppliers.” (Rose & Liao, 2005)  In this research, resiliency has been 
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considered in the techniques used to evaluate the network flow and, in some cases, the 

interdiction of key nodes in the network.   

In 2004, Beitel et al. developed a model to consider the selection of targets by 

terrorists (Beitel, Gertman, & Plum, 2004).  This article focused on a model that was 

developed to consider the selection of targets by terrorists as a part of a larger modeling 

effort.  Employing a “classic” risk model approach, which uses the probability of 

occurrence and the consequence of occurrence, they sought to develop a methodology of 

assessing the probability that a terrorist would attack a specific target.  Their target model 

used four investment measures (number of terrorists, terrorist resources, terrorist 

schedule, and the likelihood of success) and six return-on-investment measures (loss of 

life, primary economic loss, national economic stress and inconvenience, decreased 

Western presence, increased Islamic presence, and the opportunity to leverage with other 

terrorists).  These measures were then combined in a multiplicative manner.  Beitel et al. 

found that this model was very close to predictions based on historical data.  This work 

was key in showing that the methods developed needed to be capable of dealing with 

multiple (nonhomogeneous) terrorist goals.   

Recognizing the need to consider the behavior of the adversary in developing 

defensive strategies was a central component of Bier and Nagaraj’s 2005 paper, in which 

they stated that “good defensive strategies must consider the adversaries’ behavior” (V. 

Bier, Nagaraj, & Abhichandani, 2005).  They maintained that the goals and motivations 

of the attackers must be considered, to determine if they are opportunistic or determined.  

If the attacker is opportunistic, he will be looking for easy targets.  If the attacker is 

determined, it can be much more difficult to counter.  To protect a specific target against 
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opportunistic attackers (such as vandals) it is only necessary to provide a defense that is a 

little better than the rest (relatively).  However, for a determined attacker this will not 

help appreciably. 

The authors developed a series of equations looking at both series and parallel 

systems of two targets, and then they developed equations more generalizable to many 

components or targets.  For a parallel system, the probability of a successful attack is the 

probability of successfully attacking all the components.  However, in a series system, the 

probability of a successful attack against the system (assuming perfect knowledge) is the 

probability of success against the weakest component of the system. They maintain that, 

if the defenses are known to the attacker, the defender should seek to make all targets 

equally difficult, illustrating the importance of secrecy in a series system:  For a fixed 

budget, the defender will achieve better results if the attacker has no knowledge of the 

defensive preparations.  They recommended continued work on sequential attacks and on 

attacks with Bayesian updating of the probabilities. They stated, “…it would be 

worthwhile to extend our models to include a time dimension, rather than the current 

static or snapshot view of system security.  This would allow us to model imperfect 

attacker information (including Bayesian updating of the probability that an attack will be 

successful, as estimated by both attacker and defender) and the possibility of multiple 

attacks (either attacks against multiple components, or multiple attacks against the same 

component)” (V. Bier et al., 2005). 

A slight variation of the standard DHS risk approach of “Threat–Vulnerability–

Consequence,” as discussed in  Equation 1.1, was proposed by Ayyub et al. in 2007, who 

applied it to the study of infrastructure in Maryland (Ayyub, McGill, & Kaminskiy, 
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2007).  They emphasized that there was an inherent difference between natural disasters 

and terrorist attacks because the deliberate attacks were the result of intelligent human 

adversaries.  These people (the terrorists) are able to adapt and change depending upon 

the situation.  Because the actions of the attacker are inherently unpredictable, the 

effectiveness of any countermeasure is more difficult to measure because of the 

uncertainty in the capabilities and intentions of the attacker.  The authors therefore started 

with the most certain (the consequences) and then proceeded to the least certain (the 

attacker actions).  They developed a five-phase approach to risk analysis for systems, 

which resulted in an all hazard risk expression very similar to the standard DHS 

consequence, vulnerability, and risk model.   

In 2008, Bier, Haphuriwat, et al. approached the problem by relying on the minimization 

of expected loss from the attacker through proper allocation of the defender’s resources, 

constrained by a budget and considering “cost effectiveness” of the improvements to 

infrastructure (V. Bier, Haphuriwat, Menoyo, Zimmerman, & Culpen, 2008).  An 

interesting part of their work was the observation that the more uncertainty in the 

defender about an attacker’s valuation of targets leads to the more efficient policy of 

spreading resources across multiple targets.  The same year, Cox postulated that the 

traditional product approach embodied in Equation 1.1 (the DHS-based model) was 

limited due to limitations in the product rule, the potential correlation between 

components, and the subjectivity and ambiguity of the categories.(L. A. T. Cox, Jr., 

2008).  The DHS-based model was based on the Risk Analysis and Management for 

Critical Asset Protection (RAMCAP) model, which used a “reasonable worst-case” 

approach.  This model contains rules for both quantitative and qualitative risk assessment.  
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In this paper, Cox demonstrated that intelligent attackers can optimize their attack 

method in such a way as to achieve the maximum damage by changing their attack plans 

as needed.  He reviewed problems with that model due to aggregating attack scenarios, 

non-additive vulnerabilities, estimating the expected value of a product of random 

variables, risk ranking inadequacies, and the difficulty of assessing threat vulnerability 

from event trees.  He suggested that attackers’ actions should be modeled in such a way 

as to achieve the maximum damage by changing their attack plans as needed.  Methods 

he recommended included decision tree analysis, probabilistic activity AND-OR 

networks, planning models of attacks, and hierarchical optimization and GT approaches.   

Golany and Kaplan provided an excellent working taxonomy regarding the nature 

of uncertainty in their 2009 paper (Golany et al., 2009).  Their structure, briefly discussed 

in the preceding chapter, partitioned uncertainty into two categories: probabilistic 

uncertainty, which is caused by states of nature, and strategic uncertainty, which is 

caused by not knowing the plans of an adversary.  For probabilistic uncertainty, they 

proposed a knapsack type optimization problem called PRAP (Probabilistic Risk 

Assessment Problem).  For strategic uncertainty, they proposed SRAP (Strategic Risk 

Allocation Model).  The forms of the objective function were slightly different.  

However, their results can be summarized with some simple rules.  When dealing with 

probabilistic risk, they recommended the allocation resources evenly across all targets.  

When dealing with strategic risks, they recommended protecting the highest value target 

first, until it reaches the level of the second target.  Move both of those down together 

until you reach the third target level, and continue to “add” targets to be protected, 

keeping them all “level” as you continue down the list until you run out of resources. 
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 That same year, Dillon and Liebe reported on the problems of defining 

acceptable levels of risk in the standard DHS models, based on Equation (1.1) (Dillon et 

al., 2009).  They focused on the problems of aggregating different consequences and 

properly defining baseline risks.  The use of multi-attribute utility theory and risk analysis 

recognizes the problem and contributes to the solution of these challenges, which leads to 

the ARDA model (Anti-Terrorism Risk-based Decision Aid).  Using this model involves 

a process of defining the system, assessing the baseline risk, assessing the risk mitigation 

alternatives, prioritizing the risk mitigation alternatives, and making a risk-based decision 

with feedback back into the process.  Consequences are defined in terms of Mission 

Impact, Personnel Impact, and Economic Impact and then combined in a linear function 

to determine total consequence through a utility score.  The authors propose a model for 

looking at portfolios, which eventually evolved into a risk cube approach weighting risk 

in the traditional manner.  The utility theoretic approach and multi-attribute model tend to 

show that strategies that address a wide range of risks are preferred over those that 

counter a single strategy.  However, the development of these utility functions is often 

problematic.   

Brown and Cox, in a recent (2011) article, highlighted the problems of using a 

typical systems engineering approach using PRA-based tactics against a thinking 

adversary.  They specifically criticized the assumption that the “…same type of 

conditional probability assessment applies as well to terrorism risk analysis as to 

probabilistic risk analysis of natural hazards and engineered systems…” (G. Brown & 

Cox, 2011).  They further claim that applying these techniques may increase the risk of 

terrorist attack when applying the traditional Threat Vulnerability Consequence (TVC) 
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concept.  They give several examples of how PRA estimates may be self-defeating 

(attackers deliberately not attacking targets that PRA directs them to attack because they 

know the defender will be defending against them).  Their key points include the 

following, which are all taken from (G. Brown & Cox, 2011): 

  “…the probabilities of alternative attacker actions…assessed by the defender 

should depend on what research opportunities are available to the attacker.” 

(p. 199) 

 “…the probabilities of different attacks (based on the attacker’s information) are 

uncertain and are not uniquely predictable by the defender.” (p. 200) 

 “Additional research may have zero information value to the attacker and 

defender.” (p. 200) 

 “Better information for attackers may reduce threats.” (p. 200) 

 “…knowledge of threat and vulnerability data… (together with consequence 

data), does not allow us to predict how alternative risk management interventions 

will affect risk.  Other factors are essential, such as what types of attacker 

resources … produce how much damage when deployed in alternate ways.” 

(p. 202) 

 “PRA, as currently practiced, does not represent the function of the infrastructure 

at all.” (p. 203) 

The points highlighted in this article provide a succinct and useful summary of the 

problems inherent in using the classic PRA-based approach when looking at the defense 

of infrastructure.   
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2.3 Adversarial Risk Analysis 

 Insua and Rios discussed the key difference between Adversarial Risk Analysis 

(ARA) and PRA in 2009 (Insua, Rios, & Banks, 2009).  Beginning with the fact that 

there are two decision makers in an ARA formulation and only one decision maker in a 

PRA problem, they demonstrated that these problems are a natural fit for GT solutions.  

These ideas were developed further in a later work (Rios & Insua, 2012) in which they 

further explore the role of GT formulations for ARA problems.  Game theory is 

frequently used to describe and solve ARA problems.  This section includes some 

references regarding the use of game theory in these problems.   

Game theory has been discussed as a means of looking at thinking adversaries for 

many years.  However, it has often been, as Hall indicated in his 2009 letter to the editor 

of Risk Analysis, “… the elephant in the room.” (Hall Jr, 2009).   

Before reviewing recent articles on the application of game theory to the defense 

of networks, the following discussion highlights several useful standard references 

regarding game theory and points out elements of game theory especially germane to this 

issue.  One of the early and very useful examples focused on how cooperation can evolve 

in real-world systems (Axelrod, 1984).  Building on the simple example of the Prisoners’ 

dilemma, which is an analysis of whether two prisoners are better off cooperating against 

their jailor or competing against each other, Axelrod discussed many different conditions 

that can give rise to situations in which competition or cooperation can be better off for 

the individuals involved.   
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The essence of the Prisoner’s Dilemma as discussed by Axelrod is the following: 

There are two prisoners, each of whom must choose to either cooperate with the other 

prisoner or defect.  If both prisoners cooperate, each gets a payoff whose value is equal to 

3.  If one defects and one cooperates, the defecting player gets a payoff of 5 and the 

cooperating player gets a payoff of 0.  If both players defect, each one gets a payoff of 1 

(Axelrod, 1984).   

Myerson’s 1991 book on Game Theory (Myerson, 1991) provides a complete 

treatment of many of the elements of game theory used in this research.  As he discusses 

on page 2, a game is defined as a social situation involving two or more individuals.  

These individuals, called players, are considered to be rational and intelligent.  Because 

they are rational, they seek to maximize the benefit to them.  This benefit is called the 

utility of the game.  In the simple form of a game, two players are opposed to each other.  

In the example of the previous paragraph, the players must make a decision as to which 

strategy to follow.  In the context of the Prisoner’s Dilemma game, a strategy is the 

decision as to whether to cooperate or defect.  The players make this decision without 

knowing the decision of the other player.   

As in many decision theory models, the “best” strategy in some sense may not be 

a “pure” strategy, or one in which the same decision is made every time the game is 

played.  A mix of pure strategies may be the best, where the mixed strategy is a defined 

probability that each pure strategy is chosen on any one turn or play of the game.  At a 

conceptual level, consider a game in which one player must decide which of two possible 

routes to take to reach an objective.  One route is faster—but more dangerous due to 

natural hazards—than the other.  The second player must place assets in such a way as to 
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defend one of the two paths.  If each player knew what the other player would be doing, 

the problem would be simple. However, by appealing to common sense, it is readily 

believable that some variation in strategies would be best (sometimes taking one route, 

and sometimes the other).  Game theory serves as a means to quantify this intuitive 

insight.   

Many of the solutions to these game theory problems are characterized as finding 

the Nash equilibrium of the game.  The Nash equilibrium is a combination of strategies in 

which both players are at their optimal payoffs and neither player can increase his payoff 

by his own actions alone.  As brought out in Chapter 3 of Game Theory: Analysis of 

Conflict (Myerson, 1991), a randomized strategy vector is one which, for each pure 

strategy, specifies a probability that players would choose that pure strategy.  As stated 

on page 93, the condition for a Nash equilibrium is “…a randomized strategy profile is a 

Nash Equilibrium if and only if no player could increase his expected payoff by 

unilaterally deviating from the prediction of the randomized strategy profile.”  (Myerson, 

1991).  Note that there can be multiple Nash equilibria for a game, each with different 

payoffs.  Myerson goes on to present an analytic approach to the solution of finding a 

Nash equilibrium but warns that this method may be unworkable as the size of the 

problem increases.   

Another very useful reference for general game theory problems and their 

solutions is Game Theory Evolving (Gintis, 2009).  Of particular importance to this 

research is that Gintis proposed and discussed an evolutionary approach to the solution of 

game theory problems.  In particular, he showed how, “… in a process where successful 

strategies drive out unsuccessful ones over time, stable stationary states are always Nash 
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Equilibria.” (Gintis, 2009).  Formally, he stated his Nash Existence Theorem as “If each 

player in an n-player game has a finite number of pure strategies, then the game has a 

(not necessarily unique) Nash equilibrium in (possibly) mixed strategies.”  (Gintis, 2009).   

Often GT approaches were used to evaluate terrorist’s goals, or the effects of 

negotiating with terrorists, such as described in 1988 by Sandler and Lapan (Lapan & 

Sandler, 1988).  In this article, they developed a theoretical framework for looking at the 

question of bargaining between terrorists and governments, specifically on the wisdom of 

having a “no negotiation” policy with terrorists.  The authors framed their argument from 

an economic standpoint.  They treated the problem as a game theory problem and 

developed an expected value approach to determine when, based on the goals of the 

terrorist, it might make sense to negotiate.  They also considered the reputation effects 

from negotiating and how changes in reputation over the long haul might affect the 

decision.  They recommended modeling reputation as uncertainty of some aspect of the 

government information set. 

Also in 1988, the authors published other research analyzing how terrorists 

determine their targets, and how “over deterrence” or “under deterrence” could result in 

transnational vice national terrorism (Todd Sandler & Lapan, 1988).  In this article, the 

authors took a GT look at how terrorists determine their targets.  They began with a 

review of then current terrorist attacks and pointed out that terrorists are not random but 

rather have specific goals in their attacks.  Their basic model was a two-target, single-

attacker model in which only one target can be attacked.  Each target was assumed to be 

in a different country.  The terrorists can either not attack any targets, or attack Country 

1, or Country 2.  They developed a decision tree analysis for payoffs to the terrorists and 
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costs to the respective governments.  Their decision rule was that the terrorist group will 

not attack if the expected payoff from attacking is negative.  They held that the terrorists 

would attack the country with the highest net expected payoff. 

Sandler & Lapan then developed payoff models, with costs to each country 

involving the deterrence expenditures, the expended cost of domestic attack, and the 

expected costs of an attack on another country (Country 1’s assets located in Country 2).  

They characterized the cooperative solution as efficient because all costs are included.  

For domestic terrorists (military or civilian targets, for example) a non-cooperative 

solution (one in which the targets do not cooperate) will imply over deterrence, as 

compared with a cooperative solution.  Interestingly, more information may cause the 

non-cooperative solution to depart further from the cooperative solution.  The fallout 

from this is that sharing intelligence between terrorist targets may worsen efficiency 

rather than improve it when these governments do not also coordinate their deterrence 

expenditures.  They also found that piecemeal policies to thwart terrorism may be 

detrimental. 

On the domestic side, the choice of targets was modeled between government 

(hard) and private (soft) targets.  In this case, non-cooperation leads to over-deterrence.  

In the transnational case, however, if the attack against Country 1 imposes equal costs on 

both countries, then the non-cooperative solution leads to under-provision of deterrence.  

An increase in information may worsen inefficiency when targets do not cooperate when 

choosing deterrence.  Sandler & Lapan then move on to adapt the model to suicidal 

terrorists who are not affected by deterrence.   
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Their major findings were that over-deterrence can be identified in domestic 

terrorism, and that either over-deterrence or under-deterrence can result in transnational 

terrorism.  This article was a relatively early example of the use of game theory in 

planning to counter terrorist attacks, and although the example was small, it was an 

excellent example of how game theory could be applied to the problem.   

Overgaard examined the problem of imperfect information between terrorists and 

the government (Overgaard, 1994).  The article posits a two-person game environment in 

which the terrorist has perfect information about the government, but the government 

may not have perfect information regarding the capabilities of the terrorist: if they are a 

high-resource group or a low-resource group.  This situation was called a “signaling 

game” as discussed in (Lapan & Sandler, 1988) and others.  The authors proposed that if 

an opponent terrorist group is rich in resources, then it was to the benefit of the 

government to bargain.  They also brought out differences between the single-period and 

multi-period models.  They attributed these differences primarily to the storability of 

terrorist resources.   

Sandler and Arce  provided several reasons game theory was an appropriate 

vehicle to analyze terrorism (Todd Sandler & Arce, 2003). On page 4, they listed several 

specific reasons for the appropriateness of game theory:  

1. It captures the strategic interactions between terrorists and the targeted 

government (interdependent actions of both players);”  

2.  “It models strategic interactions between rational actors;” 

3. “Each side issues both threats and promises to the other in order to gain strategic 

advantage (signaling in game theory);” 
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4. “Both terrorists and governments seek to maximize a good under constraints 

(resource and constrained actions);” 

5. “Game theoretic bargaining analysis is applicable to hostage situations, which are 

frequently encountered in terrorism analysis;” and 

6. “Both uncertainty and learning are relevant in the analysis of terrorism.” (Todd 

Sandler & Arce, 2003)   

They gave several examples of two-player and three-player games, looking at 

active deterrence or passive hardening of targets and the role asymmetric information.  

Another interesting and informative use of game theory was their analysis as to whether 

or not a terrorist should attack either a hard commercial target or a softer tourist target.  

They analyze this situation as a game with four possible outcomes, either successful or 

unsuccessful for each of the two target types.  Their analysis showed that the soft (tourist) 

target actually is a more attractive target, which they claim explained why so few military 

and government targets have been attacked, relative to commercial targets.   

These same authors expanded on these ideas in a 2005 article, in which they 

specifically looked at a two-person zero-sum game examining the actions of two 

countries adopting the strategies of active, pre-active, or defensive action against 

terrorists (Arce & Sandler, 2005). The authors looked at a 3x3 matrix of actions between 

two different countries, looking at the potential of preemption, deterrence, or doing 

nothing.  These are analyzed as a series of 2x2 games, first looking at decisions between 

preemption and doing nothing, then looking at doing nothing versus deterrence, and 

finally at the 3x3 example.  Their major result was that the policy of deterrence 

dominates over preemption, even though it may not be the most optimal policy. 
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Electronic networks of sensors or computers have been the subject of several 

articles postulating the value of the GT approach.  Agah and Basu examined a Denial of 

Service (DOS) attack against a network of wireless sensors (WSAN) (Agah, Basu, & 

Das, 2005).  They concentrated their analysis on sensor-to-actor and actor-to-actor 

coordination within the network.  A DOS attack was characterized by how it affects the 

ability of sensors to communicate with each other via the network.  They consider two 

types of attacks: nodes not forwarding control messages or data and nodes falsifying 

route messages or causing error messages.  These attacks are modeled as a two-player, 

non-zero sum, non-cooperative game.  They rated nodes on cooperation (a node that has 

more power or energy forwards more messages) and reputation (whether or not a node 

forwards messages from its neighbors).  Two different types of routing strategies for 

information were used:  One is a linear combination of reputation and cooperation; this is 

a utility-based model.  The second one is a watch list, where each actor monitors its 

neighbors, evaluates their trustworthiness, and routes accordingly.  They compared two 

different algorithms for efficiency.  

Also in 2005, Lye and Wing examined intrusion detection and defense of 

networks as a general sum game (Lye & Wing, 2005).  They utilized a nonlinear program 

to solve for the Nash Equilibrium points of the game, taking as an example a network 

with a web server and private server.  They consider the combinations of attacker and 

defender strategies for possible interactions.  The game was a general sum game because 

the attacker and defender payoffs were not symmetric.  They considered a multiple time 

period model of infinite time duration, discounting future benefits at varying parametric 

rates to consider both the possibility of favoring far future payoffs or near future payoffs.  
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Their analysis assumed that both the attacker and defender have perfect knowledge of 

each other’s actions. 

Machado and Tekinay looked at the problems of power management, reliability, 

and the preservation of wireless sensor networks in the face of both natural problems and 

terrorist attacks by using tree diagrams to examine these relationships (Machado & 

Tekinay, 2008).  They described several different applications of Pursuit Evasion Games 

(PEG), which provided an excellent theoretical construct for modeling sensor networks in 

which one player is seeking to avoid surveillance and the other is trying to maintain 

surveillance.  Of particular note to this research, they made a distinction between classic 

game theory, in which the players have decision making abilities for obtaining payoff 

maximization strategies, and evolving game theory, in which the most successful 

strategies are used with greater frequency by various agents.  The method presented for 

solving the resource allocation problem in this research involves the use of evolutionary 

game theory.   

Anderton and Carter looked at the problem of modeling terrorism as a 

microeconomic problem.  They examined choices for terrorism or other activities as a 

maximization model in which one seeks to set the marginal rate of substitution as equal 

(Anderton & Carter, 2006).  They examined income consumption curve based models as 

well as price consumption curve models, which examined the sensitivity of terrorists to 

changes in costs imposed by governments.  They also examined cooperation between 

governments from a game theory perspective.  They examined cooperation between 

governments, as discussed previously by (Todd Sandler & Arce, 2003) which looked at 

terrorism as a prisoner’s dilemma game. 
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In an excellent 2007 article, Bier expanded on the two-person zero-sum approach 

by allowing the attacker’s and defender’s valuation of targets to differ (Vicki Bier, 2007).  

She began with a basic model of defending two targets and allowed for the defender to 

have uncertainty as to the attacker’s preferences.  In modeling this effort, it became clear 

that the ratio of the probabilities is the most important in determining which target should 

be defended and how many resources should be optimally allocated to its defense.  After 

reviewing how this game behaved with allocations under different conditions (equal 

worth, unequal worth, etc.), the article showed that this game formulation behaved in a 

manner consistent with real-world expectations.  The author also spent a great deal of 

time illustrating how centralized decision making for allocation of defensive assets was 

more efficient than decentralized allocation, which may defend targets that should not be 

defended, leading to wasted resources.  The discussion then flowed into the problem of 

per capita allocation of anti-terrorism resources, which is wasteful when the probability 

of attacks in a particular area is very low.  She also provided an example showing the 

value of intelligence and the value of deception for the defender.   

Both cooperative and non-cooperative games were reviewed by examining the 

budget tradeoffs between anti-terror actions and purely defensive actions under a fixed 

budget allocation in a 2009 article by Sandler and Siqueira (T. Sandler & Siqueira, 2009).  

They brought out the role of central authority in decision making, discussed the signaling 

games inherent in imperfect communications between governments and terrorists, and 

demonstrated how to analytically examine suicide bombers in a game theory analysis.  

They also brought up how central authority results in more efficient decisions and 

resource allocations, agreeing with the previous article by Bier (Vicki Bier, 2007).  They 
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then examine the proactive – status quo – defensive game decision as a 3x3 game.  In this 

area, they expand upon (Arce & Sandler, 2005).  The authors also examined how to 

quantify the effect of a nation’s independent choices ignoring the spillover effect of 

common benefit to all.  These effects can be particularly important when considering the 

tradeoff between proactive measures and purely defensive measures.  They then 

mentioned how leadership can reduce inefficient allocations of resources.  They 

examined the time sequencing of these decisions and showed that altering of the 

sequence of choices did not affect the results.  They also discussed the problem of games 

of asymmetric information: the signaling of intentions by terrorists.  These games are 

called “signaling games.” There was a discussion suicide terrorism, multi-agent and 

multiplayer games.  The key idea they maintain with respect to signaling games is that 

interplay among targeted governments over time can cause schism of terrorist groups 

over time.   

At the start of this section, I quoted Hall as saying that “…the elephant in the 

room is game theory” (Hall Jr, 2009).  In a response to that letter, Cox (J. L. Cox, 2009) 

made the point that the games most relevant to terrorist analysis were the leader–follower 

or attacker–defender games in which first one “player” allocates resources, and then the 

second player allocates his resources.  He claimed these were similar to Stackelberg 

games in economic theory and discussed how they were complementary to PRA-based 

approaches.  He claimed that in many cases the full “game theoretic” approach was 

unnecessary because of perfect information and a turn-based logic, so a simple 

optimization approach looking for the Nash equilibrium was sufficient.  However, he also 
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observed that other approaches (such as a “min-max” linear program) are better if the 

defender allocates resources first.   

Insua and Rios applied influence diagrams to the ARA approach in their 2009 

article (Insua et al., 2009).  They sought to maximize utility of the expected decisions of 

the two players.  They examined both leader–follower games and games with 

simultaneous decisions by both players.  After discussion about finding Nash equilibria 

for games using linear programming techniques (to be discussed in more detail shortly), 

they highlighted the problems inherent in this type of solution, which was the assumption 

of perfect knowledge of the opponent and the opponent’s actions.  Insua and Rios also 

showed that the solution of a sequential game might not correspond to a Nash equilibrium 

for the game.  They discussed simultaneous move games and developed a unified 

Bayesian framework for the ARA.   

Other approaches were proposed by Ezell and Bennett in 2010, who examined 

many different techniques, including logic and fault trees, attack and success trees, 

influence diagrams, causal loop diagrams for system dynamics approaches, Bayesian 

network analysis, and GT analysis (Ezell, Bennett, Von Winterfeldt, Sokolowski, & 

Collins, 2010).  They utilized an “expanded” version of PRA to include any probabilistic-

based approach such as fault trees. While not explicitly taking issue with any GT 

approach, they did stress the importance and utility of tree diagrams and probabilistic 

models to describe the actions of the terrorists.  Recognizing the importance of taking an 

intelligent, thinking adversary into account, they traced out the development of the DHS 

approach on bioterrorism, which began as a “pure” PRA-based approach in 2005 and 

evolved into an approach that recognized intelligent adversaries by 2008.   
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One of the very useful contributions of this article was the articulation of issues 

regarding analysis methods that assumed that the probabilities of various terrorist 

decisions and actions were an input to the model, and not developed as a result of the 

model.  They believed that two major issues affected these a priori estimates: the 

incomplete nature of intelligence estimates and fact that such estimates were inherently 

static, not recognizing the dynamic nature of the terrorists (Ezell et al., 2010).  These 

authors proposed four major families of approaches, three using decision trees and one 

using event trees.  The difference between these decision trees was reflected in the 

identity of the player whose utility is maximized while the opposing player’s choices 

were reflected as choices modeled on uncertain events.  Ezell et al. discussed the need for 

decomposing large, complex problems into simpler components or sub-problems, and 

they proposed five major approaches to solving these problems: (1) Logic and Fault trees, 

(2) Influence diagrams, (3) Causal loop diagrams, (4) Bayesian Networks, and (5) Game 

Theory.   

They found two main problems with many GT approaches: determining the 

proper Nash equilibrium to study out of the many that might exist, and the fact that the 

analysis, while it might give the best solution, may not adequately describe the terrorist’s 

actual actions.  This succinct summarization of the problems of game theory in the 

context of analyzing terrorism provided good guidance for the pitfalls of this approach.   

The role of imperfect or limited knowledge of the adversary’s actions or decision 

has been a thread running through several of these recently cited articles.  This question 

was specifically addressed by Sorrentino and Mecholsky in the context of solutions to the 

classic “Prisoner’s Dilemma” game, in which the agents have only imperfect knowledge 
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of the other player’s strategies (Sorrentino & Mecholsky, 2011).  They considered the 

problem as an evolutionary network and sought analytic solutions for this game.  Another 

article to use the Bayesian approach to developing probabilities appeared in 2011, but this 

article extended the development of subjective probability distributions to three-player 

games (Banks, Petralia, & Wang, 2011).  They examined both turn-based and continuous 

games, providing additional examples of the ARA-based approach.  Rios and Insua 

examined the game theory solution to the ARA problem under imperfect information and 

expanded this to the use of private information: information possessed by the defender 

that the attacker does not know the defender possesses (Rios & Insua, 2012).  Although 

their analysis was based on attacker–defender games, they used influence diagrams in an 

essentially analytic approach.  Another recent article extended the idea of imperfect 

information to imperfect observability, where the players may not be able to observe the 

actions of their opponent (Rothschild, McLay, & Guikema, 2012).  Their approach used 

“level K game theory,” in which a recursive algorithm is employed at each level of play 

to determine the prior probability map for the actions of opponents.  This article 

highlighted the importance of information and the assumptions regarding the visibility of 

information in the formulation of the model.   

2.4  Computational Approaches 

Many of the proposed solutions using a GT approach consider the problem as a 

leader–follower, or Stackelberg game, in which one player first allocates resources 

without knowledge of the second player’s force laydown.  The second player then, with 

the full knowledge of the first player’s laydown, allocates his forces.  The major 
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groupings of these approaches are linear programming models, analytic solutions, and 

evolutionary approaches.  

One of the earlier approaches used was to solve this leader–follower game as a bi-

level optimization problem.  This mixed-integer programming approach was proposed by 

Moore and Bard in 1990 (Moore & Bard, 1990), but it is computationally difficult to 

solve.  Moore & Bard developed several different types of heuristics to approach the 

solution of bi-level optimization problems in a tractable period of time.  The basic 

problem was defined as having an attacker who sought to maximize the amount of 

damage done during an attack and a defender who sought to minimize this damage.  The 

primary focus of their effort was on the heuristics, not on the actual formulation of the 

problem.   

Related to these problems is the proper representation of the network, especially 

the problem of identifying the critical nodes and determining the “weak points” in the 

network whose loss would result in the greatest loss of total network throughput.  

Network Interdiction is the determination of the key arcs (or nodes) of a network to target 

for elimination that will result in the maximum disruption of the flow through the 

network.  Perhaps the single most useful starting point for any discussion in Network 

Interdiction was written by Wood in 1993 (Wood, 1993), which examined the maximum 

flow in a network and sought to find a minimal cut set that would stop flow between the 

source and sink of a planar network.  Initially, it looks at the max-flow/min-cut 

algorithm, then adds the complexity of limited resources for the cuts.  The problem with 

this approach is that solution required an inefficient algorithm to a bi-level optimization 

problem using a Bender’s decomposition.  They begin by using the Bender’s 
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decomposition of the problem as a max-min problem.  They then develop a 

generalization of integer cutting planes so as to be more efficient in the Bender’s 

decomposition solution.  They reduce the number of possible cuts through the use of 

Super Valid Inequalities (SVI), reducing the size of the feasible region.  The authors 

implement their algorithms through the use of callable subroutines from CPLEX, and 

then show the efficiency.  They also reference how this work is used for hardening a 

road.  Although these two articles did not address the issue of resource allocation in great 

detail, taken together they provide a solid basis for a great deal of the body of work 

focused on solving these leader–follower games using linear programming methods.  

Brown and Carlyle (Gerald Brown, Carlyle, Diehl, Kline, & Wood, 2005) 

developed a model called JOINT DEFENDER (JD), which used an attacker–defender 

framework for allocating defending intercepts to counter nuclear attacks at a theater level.  

The key to this work is the general model, which is based on an LP solution to leader–

follower games.  They began by formulating a min-max model, which had as its objective 

function the maximum value of target damage, subject to constraints for missile 

availability and available feasible target missile pairings.  The goals were then to find the 

minimum of these possible maximum solutions.  While this could be done by specialized 

decomposition algorithms, it is easier to look at the LP relaxation of the inner problem to 

create an inner maximization, using the dual variables, and then take the dual again to 

form a “min-min” problem, which can be solved via a standard solver.  The solution of 

the JOINT DEFENDER MIP gives the optimal defense pre-positioning plan and the 

interceptor commitment plan.  The mobile missile transport and attack plan are then 
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discovered by entering these plans into the JD-min-max, which gives mobile missile 

transport plan and the attack plan. 

The authors discussed the value of secrecy by allowing the attacker or defender to 

“hide” some of their assets from the applicable LP.  They then presented a case study 

using Korea and discussed how the infrastructure might be evaluated for target values 

using standard army doctrine.  In the appendix, they discuss the variations to the 

formulation that would allow for targets that can be damaged over time combined with 

point targets.  The same sort of leader–follower formulation was applied to minimizing 

the penalties for a natural gas shipper, solving the problem as a mixed-integer bi-level 

programming problem with a reformulation to ease the computational difficulty of 

solving the optimization (Dempe, Kalashnikov, & Rios-Mercado, 2005). 

The following year, Brown and Carlyle did further development of their ideas in 

three distinct “variants” of models (Gerald Brown, Carlyle, Salmerón, & Wood, 2006), 

which examined an attack on the U.S. Petroleum Reserve.  This article presented several 

deterministic LP solution templates for solution of infrastructure defense problems.  The 

authors began with a quick review of the 13 sectors critical to national defense and then 

discussed how “cutting sets” of traditional network analysis fell short of surviving a 

malicious attack, illustrating the problem of risk-based analysis as compared with GT 

analysis.  They then discussed the ready availability of data from open sources and cited 

various writings of al Qaeda as evidence of how terrorists exploit the open nature of our 

society and information sources.  They applied various bi-level and tri-level optimization 

models to examine the complete infrastructure system and its value to society.   
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They discuss three different variants of models: Attacker–Defender (AD), 

Defender–Attacker (DA), and Defender–Attacker–Defender (DAD). AD models have as 

an objective function the value of the infrastructure system.  This formulation is a bi-level 

problem, where the defender chooses to minimize the losses, and the attacker tries to 

maximize the min losses, leading to a max-min problem.  They then developed a method 

of taking the dual of the inner problem to turn this formulation into a straight 

maximization problem, which might be amenable to a Bender’s decomposition for 

solution.   

Next they motivated the DA (Defender–Attacker) model by means of the DAD 

(Defender–Attacker–Defender) models.  These tri-level models are very difficult to solve, 

so they often resort to a DA model, of the form minimizing maximum costs.  The 

problem with this approach is that the inner problem is often not linear.  One advantage 

of the DA model is that it allows the inclusion of limited information.   

The DAD model is a tri-level optimization of the form minimizing the maximum 

of the minimal costs.  These can be solved (at times) using a Bender’s decomposition, but 

work is still ongoing.  They then give three examples in some detail: the use of an AD 

model of an attack on the U.S. strategic petroleum reserve, a DA model of border 

defense, and finally a DAD model on the defense of electrical power grids. 

A Stackelberg game formulation was used to examine the interactions between 

the largest and medium sized firms in the electricity and emission allowance markets 

(Chen, Hobbs, Leyffer, & Munson, 2006).  They solved this Mathematical Program with 
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Equilibrium Constraints (MPEC) through a smooth reformulation of some of the 

constraints.   

In 2008, Scaparra and Church (Scaparra & Church, 2008) looked at both natural 

and manmade disasters but focused on manmade disasters formulated as a Stackelberg 

games and solved it as a bi-level min-max optimization problem, in a similar manner to 

earlier work by Brown and Carlye (Gerald Brown et al., 2005).  They discuss how the 

problem is non-deterministic polynomial-time (NP) hard, and examined a tree search 

algorithm to solve the problem.  They postulated three approaches to the problem: to do a 

decomposition, use duality (as done by Brown), or reformulation.  Because their problem 

did not have a linear parameterized inner flow problem, they could not use duality, so 

they developed their own tree algorithm to solve the min-max problem.   

These “leader–follower” games were used by Pita and Jain in their 2009 work 

examining the assignment of police to random patrols and check points at the 

Los Angeles airport using game theory (James Pita et al., 2009).  They developed a 

software scheduling tool called ARMOR, which provided randomized strategies for the 

manning of these checkpoints and patrol activities.  They sought to develop a method to 

overcome three specific challenges.  The first was that potential attackers could, over 

time, observe the schedules of police at the checkpoints and patrols and plan their attacks 

with those schedules in mind.  Second, the actual goals of the attacker could not be 

known with certainty.  Finally, they wished that their randomization process would take 

the benefits of protecting different targets into account.  After an extensive review of 

Bayesian Stackelberg games, they discussed a classic method of transforming such games 

of incomplete information into the normal form of the game through the use of chance 
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nodes (the Harsanyi transformation). This method had the disadvantage of the game 

losing its compact structure, but it did allow the game to be solved.  Their solution did 

not require the use of this transformation.  It is based on several earlier works, most 

notably (Conitzer & Sandholm, 2006) and (Paruchuri et al., 2008; Paruchuri, Tambe, 

Ordóñez, & Kraus, 2006).  Their ARMOR model used a maximization problem 

formulation, which considers the payoff matrices, probabilities of different types of 

attackers, and the possible strategies.  The formulation as presented was a quadratic 

problem, which they then linearized through a change of variables.  

This work was further developed as a scheduling tool in another paper by the 

same primary authors (J. Pita et al., 2009).  They gave an excellent discussion of the 

existing methods of solving these sorts of leader–follower or attacker–defender games, 

but pointed out that one common element was the use of a priori assumption about the 

value function of the terrorists.  They treated uncertainty as having three distinct 

dimensions: the uncertainty caused when the terrorist does not choose the optimal 

strategy, the uncertainty caused when the terrorist is unable to observe the defender 

strategy, and the uncertainty caused by the terrorists having different reward matrices 

than initially assumed.  While the third type of uncertainty was incorporated into existing 

algorithms for solution of these types of games, they proposed new algorithms (based on 

MILPs) to deal with the first two types of uncertainty.  These algorithms were discussed 

in some detail and then compared with human adversaries using “human-in-the-loop” 

experiments.   

The Stackelberg game formulation was used in 2010 to develop a system for 

allocating U.S. Coast Guard security patrols in ports and harbors (An et al., 2012).  One 
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unique aspect of this work was that they did not assume perfect rationality on the part of 

decision makers.  They also simplified the formulation to facilitate solution by grouping 

points for patrol areas to exploit dominance and equivalence.  Other examples of using 

various methods to reduce the computational workload in solving bi-level optimization 

problems for the solution to Stackelberg games include new relaxation methods for 

mathematical program with equilibrium constraints (MPEC) (Steffensen & Ulbrich, 

2010), and transforming the lower-level problem through a Schurs Decomposition of the 

MPEC to examine decisions relating to the natural gas market (Siddiqui & Gabriel, 

2013).   

A recent book on algorithmic game theory (Nisan, Roughgarden, Tardos, & 

Vazirant, 2007) has a very complete discussion of many different algorithmic approaches 

to solving games.  This book focused less on the applications of games than the technical 

manner of determining analytic solutions to those games.  Some of the methods discussed 

include the use of linear and nonlinear programming (as discussed earlier in this section).  

They presented a complete discussion as to the difficulty of solving these problems 

analytically.  It provided a very complete review of many different approaches.  Another 

recent book on multi-agent systems (Shoham & Leyton-Brown, 2009) provided 

outstanding examples on how to use agents in the modeling of many different situations, 

including various types of games described by game theory.  The book provided practical 

examples that were coupled to various classes of games commonly seen in game theory 

applications. 

Recently, Hong (Hong, 2011) also used network interdiction approaches to 

examine conflict on a network in which one player is delivering “goods” through a 
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network and the other is delivering “bads” through the same network.  He characterized 

this as a “flow game” in which the value of the flow is the net flow of “bads” into the 

target.  Following this formulation, he recasts the problem into a discussion of min-cut 

algorithms, in a manner based on that originally used by Wood (Wood, 1993) 

Another approach to finding solutions to Stackelberg games is founded in 

evolutionary biology.  By casting a conflict between animals as a sort of “limited war” 

Smith and Price developed the concept of the Evolutionarily Stable Solution (ESS) 

(Smith & Price, 1973).  This strategy can be simply expressed as “…a strategy that, if 

most of the members of the population adopt it, there is no mutant strategy which would 

give higher reproductive fitness.” (Smith & Price, 1973).  One of the keys of this 

approach is that it involved the evolution of stable solutions over time through the 

development of strategies or behaviors.  In this article, the strategies or behaviors were 

the types of tactics used (either lethal or non-lethal) by animals against each other.  These 

ideas were further developed by Smith in Evolution and the Theory of Games (Smith, 

1982). He defines a strategy as a specification of what a particular individual will do in a 

given situation.  Populations are defined as groups of individuals who share a common 

strategy.  He motivated the idea of the ESS as one in which, if a mutant utilizing a 

different strategy were to invade the population it would be at a disadvantage because the 

payoff of the prevailing strategy was greater than the payoff for the mutant strategy 

against all possible combinations of strategies.   

These concepts were then taken from an infinite population to a finite population 

by Schaffer, who showed that an evolutionarily stable strategy is globally stable against 

invasion by any other mutant strategy (Schaffer, 1988).  He also demonstrated the 
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existence of both locally stable and globally stable equilibrium points.  The ESS concept 

was applied to an economic context looking at profit maximizers under imperfect 

competition in markets (Schaffer, 1989).  Further discussion of the ESS in an economic 

context appeared in Evolution, Games and Economic Behavior (Vega-Redondo, 1996).  

In particular, he discussed the centrality of the ESS in evolutionary theory, stating how it 

reflected a stationary situation a revolutionary process.  He further showed that there was 

no available result that identified sufficient conditions to guarantee the existence of an 

ESS in general situations.  He also provided examples of how an ESS may not exist 

(consider the game of “rock, paper, scissors,” which has no stable ESS).   

2.5 Related Discussions 

The area of cyber infrastructure has become increasingly important, and the 

defense and analysis of information networks has been the subject of numerous articles in 

the past few years.  In 2002 Haimes and Longstaff addressed this issue by their work on 

assessing the consequences of a terrorist attack (Haimes & Longstaff, 2002).  They 

characterized the problem of analyzing attacks on infrastructure as highly complex due to 

both the spatial distribution of the physical components of these networks and the 

inherent nonlinearity of their interactions.  They characterized interconnected 

infrastructures as structure-based (hardware, structures, and facilities) and human-based 

(institutions, organizations, culture, and languages).   

They recommended the use of Hierarchical Holographic Modeling (HHM) as a 

way to capture most of the elements of risk.  They also proposed a so-called Risk 

Filtering, Ranking and Management Method (RFRM) to manage a large number of risks 
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and combine these using an eight-step process to filter and rank the risks prior to the 

application of a more conventional risk analysis method.  They made specific mention of 

the fact that 90% of the national security communications in the U.S. are on the civilian 

Internet backbone, and they discussed in qualitative terms the risks inherent in this 

vulnerability.   

One key element of many of the studies on terrorism has been the need to 

adequately describe the terrorists’ motivations so that their actions can be predicted.  

Goldstein (Goldstein, 2006) proposed the use of agent-based models as a useful tool in 

the development of understanding about terrorists’ actions.  He maintained that better 

predictions would lead to better estimates as to the possible actions that terrorists might 

take. In particular, the article discusses the use of various Knowledge Management 

techniques such as named entity extraction and linguistic analysis of unstructured news 

input data to develop identities of terrorists, their roles and the relationships in the 

network.  By intense study of the specific reactions of individuals in a given area or 

network, the author maintained that the ability to predict actions and results was greatly 

enhanced.  This work has great potential to assist in the development of realistic 

probability of attack in different scenarios by allowing the evaluation of multiple 

“spawns” of the life of a terror cell.  However, this article did not specifically address the 

use of agent-based models for infrastructure resource allocation, nor did it directly 

address game theory. 

Another aspect of the analysis of terrorist attacks is the proper estimation of the 

impact of the attack, not only upon the actual infrastructure, but the secondary effects that 

the disruption of the services delivered by the infrastructure to the larger economy.  In a 
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2007 article, Rose, Oladosu, and Liao examined the effects of the economic impacts of a 

major terrorist attack to the power distribution system of Los Angeles (Rose, Oladosu, & 

Liao, 2007). They concentrated on indirect effects and resilience.  Within the context of 

this article, they defined resilience as including the ability of the customer (region) to 

adapt and react to the outage.  The indirect effects increase the damage effects by 

disrupting the flow of the goods and services outside the area immediately affected by the 

outage.  Within their effort, they focused on business interruption and its economic 

effects, not on the loss of life and damage to property that such an attack would entail.  

This explicit inclusion of the economic interdependence up and down the supply chain, 

radiating out from the affected area, was the heart of the contribution of this article.  In 

order to accomplish this goal, they developed a regional economic model, based on a 

simulation that has been used for modeling the regional economic impact of other events 

and policies.  They simplified the productive capacity of the area to 33 productive 

variables and made allowance for resilience (alternate energy production, backup 

generators, transfer of production to an unaffected area, etc.). Their research showed that 

the losses of a 2-week power outage in Los Angeles caused a loss of about 20.5 billion 

dollars, but that resilience could recoup about $2.8 billion of that loss.  They also 

believed that this work had applicability to the reduction of damage from natural disasters 

as well. 

Another recent article focusing on the use of game theory for network intrusion 

by published by Kantzavelou and Katsikas  (Kantzavelou & Katsikas, 2010).  They 

focused on the insider threat, which by a 2007 survey accounts for 34% of all intrusion 

events.  They formulated their analysis as a game between the defender (the Intrusion 
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Detection System, or IDS), and the attacker.  The attacker’s actions were characterized as 

one of four different possible actions: Normal, Mistakes, Pre Attack, and Attack.  The 

IDS also had four distinct actions: Continue, Give recommendation, Warning, or Stop 

User.  The game is based upon a “two-player non-cooperative game” in which the 

defender has imperfect monitoring, because the IDS does not know what the defender is 

doing.  They go on to show that the problem is NP complete, and very difficult to solve 

analytically.   

2.6  Synthesis 

 After I reviewed this literature and examined the fabric of the combined analysis, 

several facts became quite clear.  Most important was that there was a fundamental 

difference between risk analysis for natural disasters and risk analysis for terrorist 

attacks.  In order to model events to some level of accuracy that would provide useful 

insight for the decision maker, the analysis had to take into account the interplay between 

the thinking, adapting attacker and the network.  The attacker would not blindly charge in 

like an earthquake or tornado and attack indiscriminately; the attacker would seek to find 

weak spots and take advantage of them.   

 Second, the role of limited information had to be included in any realistic 

modeling of the situation.  While the attacker would have ample time to study the 

network and make good (although not necessarily perfect) decisions based on the 

resource allocations of the defender, the defender did not have such flexibility.  Once the 

allocation was made, it was essentially “fixed.” While such things as changing schedules 
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or rotating the location of reserves could have some effect upon the attacker, the defender 

did not have the flexibility to adjust as the attack was in progress.   

 These two facts led to the conclusion that a GT approach based on the “attacker–

defender” model was highly desirable.  However, for any problem of a size to be useful 

beyond a simple classroom example, the analytic solution of such a problem was 

extremely difficult.  The deterministic solution approach using linear programming was 

very attractive, but implementation of such an approach required a well-defined objective 

function.  The ability of such an approach to deal with multiple objectives could be 

problematic. The goal was to have a system that would allow for differing terrorist 

objectives.  Some might wish to attack the target that would do the most damage to the 

network, which others might wish to attack one for maximum publicity.  Some terrorists 

might tend to choose a lightly defended target to increase their chances of survival, while 

others might be deliberately planning on a “suicide attack” without regard for the chances 

of survival.   

 After reviewing multiple approaches, the most promising new approach seemed 

to be the use of an agent-based model to develop solutions in an evolutionary manner.  

This approach was consistent with the concept of the ESS discussed previously.   

There was an excellent tutorial on agent-based simulation (Macal & North, 2010) 

that proved to be pivotal in both the decision to proceed with the agent-based model and 

with the general outline of the final form of the model.  According to their structure, any 

Agent-Based Simulation (ABS) has three distinct elements: a set of agents, which 

includes their attributes and behaviors; a set of agent relationships that define the 



47 

 

topology of their interactions; and the agent’s environment, which includes how the 

environment affects the agents and how they interact with the environment.  The agents 

only have local information available to them, and while they interact with other local 

agents, they may not interact with all the agents.  They can adapt, have interactions with 

other agents, and sense the behaviors of other agents in their vicinity.   

 Based on this article, it was decided that a method that could identify favorable 

evolutionarily stable solutions would have the potential to provide good decisions for 

resource allocation under ARA.  An evolutionary, agent-based approach offered an 

excellent way to model the actions of terrorists attacking a network.  While many 

approaches had been suggested and applied to problems of varying sizes, the process of 

modeling the behavior of terrorists with multiple goals in larger problems was one that 

had room for exploration.   
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Chapter 3: Problem Delineation and Approach 

3.1  Elements of the Problem 

After I reviewed the available literature, it became clear that the problem of 

resource allocation under strategic uncertainty required that the actions of both the 

defender (the entity assigning resources that protected the network) and the attacker (the 

terrorist or the entity assigning resources that sought to damage or reduce the functioning 

of the network) be taken into account in a dynamic manner.  The fundamental difference 

between an act of nature, such as a flood or storm, and a terrorist was that the terrorist 

had certain goals in mind and was able to take the defense measures of the network 

defender into account.  After evaluating different approaches, the GT approach of casting 

the problem as an “attacker–defender” (also called “leader–follower” or Stackelberg) 

game was considered to be the best way to capture the adversarial relationship between 

the attackers (or terrorists) and the defenders.   

From the reviews of recent literature examining the characterization of terrorist 

goals and objectives, two issues that needed to be considered became clear.  The first was 

that terrorist organizations often had multiple goals.  They might seek to inflict maximum 

damage upon their target with overwhelming force at that point, or they might attack with 

a weaker force that was indifferent about its own casualties.  They might strike a weakly 

protected but non-vital target in order to “make a statement” with minimal risk to 

themselves, or they might seek to gain the maximum publicity and notoriety from an 
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attack.  They might seek in-depth damage at a critical node or widespread but more 

superficial damage at multiple nodes.  The second issue to consider was that determining 

the actual probabilities for these different goals was very difficult and subject to much 

interpretation and error.  Therefore, the technique developed had to be one that made as 

few assumptions about the prior goals of the attacker as possible.  Further, the terrorists 

might not be homogeneous with regard to their goals, tactics, or tolerance to casualties, 

and the method chosen has to allow for this variability.  These differences might lead the 

terrorists to concentrate their resources upon different locations in the network.   

The valuation of network structures also needed to be addressed.  For simplicity 

and ease of illustration, the examples focus upon values of the nodes of the network.  

There is nothing inherent in the technique that requires focusing upon the nodes:  The 

arcs, or indeed both the arcs and the nodes, could just as easily have been evaluated.  

However, focusing on the nodes allowed the reduction of the physical location to a single 

point, rather than a locus of points in a line as an arc would have required.  Each node of 

the network should have a value of some sort or another.  However, there could be 

multiple values.  For example, the destruction of the Liberty Bell or the Washington 

Monument would have little impact upon the functioning of the country but would have a 

great psychological and publicity impact upon the country.  The 9-11 attack on the 

Pentagon had a direct (although short-lived due to redundancy) impact upon the operation 

of the country but a long-lasting impact upon our thinking.  Continuing on in this same 

direction of thought, a successful attack that demolished a power switching substation 

might have a considerable economic impact upon an area but very limited public 

relations impact in its own right (not considering the impact due to loss of power).  The 
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solution system chosen had to be flexible enough to deal with multiple “values” for the 

nodes and be flexible with respect to how those values were determined.  While the 

examples chosen had both attacker and defender holding consistent values for the nodes, 

the method does not depend upon that sort of reflexive commonality of valuation.   

Another part of the problem with this analysis is that data are sparse and difficult 

to obtain.  Further, no one would recommend letting terrorists repeatedly attack a target 

just to obtain experimental data, and any such data would obviously be tainted by the fact 

that the terrorists were not acting as they would under normal circumstances.  Yet, it was 

essential to have a well-defined metric for the success of the allocation method and the 

ability to investigate the technique in some reasonably comprehensive and analytic 

manner.  As in so many other conflict situation analyses, simulation seemed to offer the 

best mix of fidelity and rigor.   

With these thoughts in mind, a working hypothesis was formed:  When facing an 

opponent who has knowledge of the defender’s resource allocation and can plan 

accordingly, an allocation approach based on a GT allocation of resources will perform as 

well as, or better than, an allocation based upon a pure Probabilistic Resource Allocation 

(PRA)-based approach, which only takes the value of the nodes under consideration 

without considering the actions of the attacker.   

3.2  Solution Approach 

The problem is postulated upon determining the best way for a defender to 

allocate resources to defend nodes of a spatially distributed network against a reasoning 

adversary.  The attacker and defender are provided with a quantity of resources, which 
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are then allocated to various nodes of a network.  For maximum flexibility and clarity of 

presentation, these resources are considered to be nonspecific and fungible.  They could 

be thought of as fiscal resources to be used to purchase offensive or defensive value at the 

nodes.  Examples of these “purchases” might be fences, alarm systems, guards, 

intelligence, weapons, or explosives.   

Each of the nodes has two numeric quantities associated with it that serve as 

expressions of the value of the node: one that reflects the importance of the node in 

maintaining flow through the system, called a node value, and a quantity called the public 

relations value, which reflects the value the terrorist would place on the publicity gained 

by an attack to this particular node.  In the examples presented in this dissertation, the 

node value either reflects the quantity of flow through a node in the network when it is 

flowing at maximal capacity, or a combination of the maximum flow through the network 

and the value of lost flow if the node is interdicted, or removed from the network.  It is 

highly desirable that the solution system be totally agnostic with respect to the method 

used to determine the value of the nodes.  In a well-understood and studied network, 

these values will most likely be a mixture of historical usage, flow modeling, and 

engineering/operator judgment regarding the difficulty of replacing the functionality of 

each node.  In order to keep this work as generic and non-sensitive as possible, although 

some of the networks were based upon real-world examples, the node capacities were 

chosen for illustration only.  Two methods were used (sometimes in combination) for the 

determination of network flow using a combination of two linear programming models.  

The first is a network flow model, which determines the flow through each part of the 

network that will maximize the flow through the system.  The second is a network 
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interdiction model, which determines the identity of the nodes in the network that, if 

disabled, will cause the greatest reduction in the flow through the network.  These two 

models provide input data for the determination of the values of each node of the 

network.  They are discussed at length in Chapter 4.   

The public relations value (PR value) of the node reflects the point of view of the 

terrorists.  These values are only considered relative to each other, so the actual range 

they encompass is purely arbitrary.  In the course of the modeling, the terrorists’ choice 

of target node may be affected by the PR value of the node.  Methodologies for the 

proper assignment of these values would depend upon available intelligence and profiles 

of terrorist motivation.  The actual method used to determine the PR value the terrorists 

place upon a particular node is not germane to this research; the only impact upon current 

work is the actual PR value assigned to each of the nodes.  In this dissertation, the PR 

value was arbitrarily assigned to the nodes and sometimes varied by the scenario under 

analysis.  Within the context of this work, the PR value can best be considered as an 

alternative value for the nodes, which may affect some terrorists and defenders but not 

others.   

Given the complexity of finding the solutions to even a small Attacker–Defender 

game using analytic approaches, the approach taken is an evolutionary approach to 

finding the solution (allocation of defenders to nodes) that is most advantageous to the 

defenders.  This problem is solved through the use of an agent-based model, referred to 

as the allocation model.  Within the context of this work, the term “strategy” refers to the 

overall allocation of resources: the quantity of resources the attacker or the defender 

allocates to each node in the network.  The term “tactics” refers to the rules governing the 
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behavior of the individual agents.  This agent-based model provides combinations of 

strategies that coincide with the ESSs for the terrorists and defenders.  Each of these 

strategy combinations (the number of agents located at a particular node) results in an 

allocation of resources to each node.  By choosing the allocation of resources (number of 

resources assigned to each node) that result from the most favorable ESS for the 

defender, a resource allocation for the defender is developed.  The overall approach is 

shown in Figure 2. 

 

 

Figure 2  Overall Solution Approach 

 The network diagram and capacities of the nodes are the primary inputs to the 

network analysis, which determines the node values as discussed previously.  Information 

on any existing non-movable resources already deployed to specific nodes, along with the 

number of resources to be allocated, are then used along with the network characteristics 

by the agent-based model.  This model develops an ESS for attacker and defender, which 

consists of an allocation of resources by the attacker and the defender to each node.  The 

resource allocation that provides the greatest number of victories by the defender (the 

largest number of nodes which remain in operation) is considered to be the defender’s 

resource allocation from the model.   
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 Note that the system is totally agnostic with respect to the method of evaluating 

the values of the nodes of the network.  It does not require that the attacker and defender 

have the same values for each node.  Indeed, the evaluation could be equally applied to 

arcs as well as nodes.  It also is not limited to a particular number of values.  Although 

this research is predicated upon two different values for each node (flow value and PR 

value), there is nothing in the technique limiting it to only two values per node.   

3.3  Analysis Approach 

The key to proving the usefulness of this technique was to show that, as measured 

by some meaningful metric, the agent-based evolutionary method performed as well as, 

or better than, a simple PRA-based approach. The available data sets in the public domain 

are very sparse, and those that were available were not amenable to this research for there 

was no way to determine if the “solution,” or allocation of resources, actually represented 

the “best” that could be done or was just a single realization of a wide number of possible 

solutions, with varying degrees of success.  After investigating the available data, it was 

determined that the best and most meaningful method to test the hypothesis was to 

employ simulation.   

The method used to determine the various potential stable points (the ESS) of the 

systems involved using an agent-based simulation in which the agents on both sides 

represented resources applied to nodes.  Two agent-based models were used in this 

research.  In the first model, both sides (the attacker and the defender) evolved over time 

and then stabilized at a point at which changes by one side alone could not change or 

improve the outcome.  This model is called the allocation model. The result of the 



55 

 

allocation model is an allocation of defensive resources for each node in the network.  In 

order to see how the allocation derived in this manner fared against a PRA-based 

allocation, another agent-based simulation (the evaluation model) was developed.  In this 

second simulation, only the attackers (terrorists) were able to evolve and change over 

time.  The allocation of resources was fixed at the start of the simulation run and was 

invariant during the run and between runs.  In this manner, the full possible range of 

strategies by the terrorists could be examined, and a probability distribution of the 

potential outcomes as the terrorists evolved could be empirically derived from the results 

of multiple runs of the model.   

The metric chosen for the final measure of success or failure was the number of 

nodes that were successfully defended (defender victories).  The technique involved three 

different model runs.  The allocation model was run to determine the best ESS from the 

perspective of the defenders.  The resource allocation from that model was considered the 

GT allocation.  A PRA-based allocation for defenders was determined using the node 

values, which were derived from analytic means.  Then the evaluation model was run 

twice, first to determine the empirical probability distribution of the number of defender 

victories when using the defensive resource allocation from the PRA-based model.  The 

model was then rerun to determine the empirical probability distribution for the number 

of defender victories using the GT allocation for defenders.  The two different allocation 

models were also tested under several different conditions to examine the sensitivity of 

the results to certain assumptions regarding public relations values and the importance of 

public relations victories to the terrorists and different distributions of PR value with the 
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same network flow value.  For each of these runs, the empirical cumulative distribution 

of the number of defender victories was compared.   
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Chapter 4: Formulations and Models 

4.1  Overview 

 Several different formulations and models are used throughout this research.  Two 

linear programming formulations were used to assist in determining the value of the 

nodes to the network.  The first of these was a network flow formulation, which sought to 

determine the flow through each node of the network when it was operating at its 

maximum capacity.  The second linear programming formulation was a network 

interdiction model, which determined which network nodes would, if eliminated, cause 

the greatest reduction in the flow through the network.  Linear programming methods 

were chosen as representative of the typical means of evaluating the importance of a 

network node to its overall functioning.  The actual means of determining the value of the 

network nodes has no bearing on the agent-based simulation approach to resource 

allocation.   

 Both of these formulations were then implemented and used to determine network 

node value in one of the examples.  In one of the three networks evaluated, the node 

values were chosen to be a combination of the results of the two network models (the 

network flow formulation and the network interdiction formulation).  In the other two 

examples, only the network flow model was used.  The methods chosen were dependent 

upon the topology of the networks.  The use of multiple valuation approaches also 

showed that the results of the agent-based simulation were not dependent upon any one 

network evaluation methodology.   
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 As discussed previously, two different agent-based simulations were developed.  

The first one, the allocation model, allowed the agents for both the attacker and defender 

to evolve and determine their optimal strategies.  The second model, the evaluation 

model, was very similar except that it did not allow the defender agents to evolve.  They 

were assigned to a node at the start of the model run and never varied.  However, the 

terrorist agents did evolve and seek to do their best against the allocation.  The structure 

of these two models will be presented.  The final sections of this chapter discuss how the 

formulations, models, and analysis were implemented.   

4.2  Network Flow Model Formulation 

The network flow model is one that calculates the maximum flow through a 

capacitated network, as described by Bazaraa et al. (Bazaraa, Jarvis, & Sherali, 1990).  

The model formulation used in this work is presented below: 

Indices 

 𝐽 nodes 

 𝐾 arcs 

Sets 

 Kja set of arcs entering node j 

 Kjb set of arcs leaving node j 

 Jt set of terminal nodes in the network 

Variables 

 𝑥𝑘         flow through arc k 

Parameters 

 𝑐𝑘 capacity of arc k 
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Model 

,
     ,

j ak t

k

Max x k j J   flow into terminal arcs 

Subject To 

0     ,  jb ja tx x K K j J          flow balance constraints 

     k kx c k         arc capacity constraints 

0     kx k         non-negativity constraint 

The model seeks to maximize the flow into the terminal nodes of the network, 

ensuring that the flow into and out of every node is balanced, and ensuring that the 

capacity of each arc is not exceeded.  By using the flow through each node as an input to 

the value of the node, the “bottlenecks,” or nodes that are operating at capacity, are 

identified.  These are the critical nodes that will affect the ability of the network to 

maintain flow in a damaged state.   

4.3  Network Interdiction Model Formulation 

Network interdiction is related to—but more computationally difficult than—a 

relatively simple maximum-flow model. Network interdiction models require the 

extensive use of binary variables, which increase the computational difficulty of the 

model.  Without loss of generality, it is assumed that the network is a directed flow 

capacitated network with source and sink nodes located on the outer boundaries of the 

network.  This assumption allows for a compact and relatively efficient network 

interdiction model.  The following formulation, taken from Wood (Wood, 1993), is used 

to determine the most important arcs to interdict. 
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Indices 

 𝐽 nodes 

 𝐾 arcs 

Sets 

 𝑁𝑠 nodes that are sources 

 𝑁𝑡 nodes that are sinks 

 𝐴𝑠𝑡 set of arcs incident to a node in either 𝑁𝑠 or 𝑁𝑡 

 𝐴̅𝑠𝑡 set of arcs that are not incident to a source or sink node (A Complement) 

Variables 

 𝛼𝐽 variable associated with nodes 

 𝛽𝑘 variable associated with arcs. (Those whose value is 1 define the minimum 

capacity cut) 

 𝛾𝑘 variable associated with arcs.  (Those whose value is 1 define the 

interdicted arcs) 

Parameters 

 𝑢𝑘 capacity of arc k 

 𝑟𝑘 resource cost for cutting arc k 

 R total resources available for the interdiction 

Model 

k k

k

Min u   capacity of unbroken forward arcs 

Subject To 

, , 0s t s t s t        for all arcs that connect to a source or sink node 

, , 0s t s t s t        for all arcs that do not connect to a source or sink node 

, , 0t s s t s t        for all arcs that do not connect to a source or sink node 



61 

 

0j     for all source nodes 

1j     for all sink nodes 

k k

k

r R    Resource constraint for interdiction activity 

, ,      Binaryj k k    

 The results of this model were used as inputs to help determine the node values 

for some of the example networks.  Due to the topology of a network, sometimes the 

removal of a single node did not affect the overall flow through the network because of 

the inherent redundancy in flow paths.  However, this formulation can be used to 

determine the identity of the node that, if removed, will have the greatest effect upon the 

flow through the network.  
 

4.4  Agent-Based Model Structure 

As described by Gilbert (Gilbert, 2008), agent-based models differ from other 

equation-based computational models in the manner of focus.  In “conventional” models, 

or models that are not agent-based, the entire system is defined from the top down with a 

series of equations that represent all the interactions.  The interactions must be 

completely specified and probabilities assigned to all possible events.  However, agent-

based models concentrate on developing a simple set of rules that both prescribe and 

constrain the actions of individual agents.  These simple rules also prescribe how the 

agents interact with each other and their environment.  The complexity of the interactions 

at high levels of the model are not specified but are allowed to develop from the simple 

interactions of the agents.   
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Macal and North (Macal & North, 2010) provided a useful framework for the 

development of agent-based models.  According to their construct, the three distinct 

elements in an agent-based model are defined as follows: 

1. A set of agents, their attributes and behaviors. 

2. A set of agent relationships and method of interaction: an underlying topology of 

connectedness defines how and with whom agents interact. 

3. The agents’ environment: agents interact with their environment in addition to 

other agents. 

Each of these three elements is discussed in the following sections.  

4.4.1  The Set of Agents  

Agents can have differing characteristics and rule sets that govern their behavior.  

Agents with the same characteristics and rule sets (but not necessarily the same values for 

those characteristics) are called “breeds.”  The models for this research have three distinct 

breeds of agents: Terrorists, Defenders, and Nodes.  Although the Nodes are agents, they 

only serve to describe features in the environment for the Terrorists and Defenders.  They 

provide a location in the Cartesian grid that constitutes the agents’ “world,” focal points 

for interaction and data gathering.  The behaviors of the defenders and terrorists are 

called “tactics.”  These strategies all relate as to how the agents pick their “target,” which 

is the individual node of the network they choose to attack or defend.  Each agent has a 

rule that defines its tactics.  This rule determines how the particular agent picks its target.   

Initially, these tactics are assigned randomly to all terrorists and defenders.  The 

actual probability that any one agent has a particular tactic is a parameter that is 
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established before the start of the model runs.  The terrorists’ and defenders’ physical 

location on the Cartesian grid is also randomly assigned each turn.  Over time and 

continuing repetitions, the population of less successful agents is reduced through 

attrition.  Eventually, the percentage of the total agents that follow each of the target 

allocation strategies is the percentage of times each of these strategies would be 

employed in the optimal mixed strategy for the ESS of the game.  The actual number of 

agents that cluster at each node also tends to stabilize as the strategies stabilize.  The 

proportion of agents at each node thus represents the resource allocation that should be 

assigned to the node.  These proportions of agents are referred to as strategies because 

they refer to the overall allocation of resources for the attack or defense of each node in 

the network.   

This fact provides one of the key strengths of the model.  The behavior of the 

terrorists (their tactics) can be described in general terms as to how they might pick their 

target or their goal.  It is not necessary to determine the probability that they would strike 

at a particular target.  In a similar manner, it is not necessary to estimate the probability 

that a given defender will defend any one single node of the network:  The choice of 

strategy can be described more generally in terms of behavior and values.  The model 

then allows a correspondence to be established between these behaviors and the actual 

decision the planner must make, i.e., how many resources to devote to attacking or 

defending each node.   

The behaviors of the agents (terrorists or defenders) can be one of the following: 
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1. Attack or defend the most valuable node in the network.  This choice reflects an 

“all or nothing” valuation by the agent.  No consideration is given the physical 

location of the terrorist or the most valuable node.   

2. Attack or defend the closest node in the network.  Each node has been assigned an 

unchanging “location” in the XY plane.  All attackers and defenders are initially 

distributed randomly over the entire XY plane.  This choice reflects a random 

spatial distribution of effort, independent of the value of the node to the network. 

3. Attack or defend the least defended node within a specified distance.  This 

strategy reflects the desire to attack a network at its weakest point, where one is 

more likely to achieve success and survive the encounter.  For the defender, it 

reflects the desire to evenly distribute resources without regard to the value of the 

node in question.  For both sides, the specified distance reflects limited 

information available to the individual agent.   

4. Attack or defend the most valuable node within a specified distance.  This reflects 

the desire to do the most damage in the attack, or to defend the most important 

part of the network.  For both sides, the specified distance reflects limited 

information available to the individual agent. 

5. Attack or defend a random node.  This strategy reflects a desire to attack or 

defend without regard to the value of a node, the number of defenders, or the 

relative strength or weakness of the node.   

6. Attack or defend the node with the highest public relations value within a 

specified distance.  This represents the desire to gain publicity for a cause through 

completing an attack, without regard for the actual value of the target node to the 
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network or the defenses of this node.  For the defender, it represents the desire to 

counter this type of action. 

These behaviors, or tactics, of the terrorists and defenders are considered 

representative of the actions of actual decision makers who control the terrorists or 

defenders.  These tactics could be modified to represent different behaviors.  Although 

the tactics in this version of the model are the same for both attackers and defenders, 

there is no requirement for them to be reflexive in this manner.  It is also important to 

note that the “decision-making horizon” of the agents is the range that encompasses their 

field of vision to choose nodes.  The horizon represents limitations on the information 

available to the agents.   

4.4.2  The Set of Agent Relationships 

The agents (terrorists and defenders) interact based on their location.  Each terrorist or 

defender will be assigned to a single node based upon their geographic location within 

the Cartesian grid and their strategy.  Once the strategy for each agent is determined, and 

their “target” node is defined, they move to that node.  First, the defenders determine 

their target node and move to it.  After the defenders have been assigned in this way (the 

resource allocation of the defenders fixed), the terrorists then determine their targets and 

move to their target nodes.   

The sequential “movement” of agents to their respective target nodes is the key to 

finding the ESS to the “leader–follower” or “attacker–defender” game.  The defender, or 

leader, must make an allocation decision without reference to the actions of the terrorist.  

The only information available to the defender is the value of the various nodes of the 
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network and the history of how successful that particular agent has been in the past.  The 

attacker (terrorist), or follower, on the other hand, has not only this valuation information 

but also knows the current disposition of defenders.  By managing the visibility of 

knowledge in this manner between the terrorists and defenders, the allocations that result 

will represent the ESSs of the overall game.   

After all the agents have determined their strategy and moved toward their target 

node, the number of terrorist agents and defender agents are counted at each node.  The 

agent breed (terrorist or defender) with the largest number of agents at the node is 

considered the winner at that node.  During the terrorists’ allocation of resources, if the 

terrorists have numbers far in excess of what is required for a victory, the strategy of the 

agent that is attempting to move to the node is randomly reassigned, resulting in its 

movement to a different node.  Once the number of terrorist agents at a node is greater 

than twice the number of attacker agents at that node, the strategy for any further agents 

attempting to move to that node for that iteration is randomly changed so that they will 

move to another node.  Agents (terrorists and defenders) have the knowledge of the 

location of the network nodes, and terrorists have knowledge of the number of defenders 

at each node.  Defenders know how many defenders are at any particular node.  Both 

breeds know the value and the public relations value of all nodes.  Note that defenders 

move to their nodes first, and they never have knowledge of the attackers.   

This program seeks Evolutionarily Stable Solutions, so the terrorist and defender 

agents evolve over time.  If an agent “evolves,” its tactics change.  After a number of 

turns, each agent is evaluated for the number of times it has been present at a node where 

it has been successful and the number of times it has failed.  A percentage of the least 
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successful agents then have their strategy randomly reset to a new strategy.  This 

resetting reflects the evolution of the agent.  In effect, the least successful agents are 

“killed off” and replaced by other agents.  Over time, agents with the least successful 

tactics form a smaller percentage of the population of agents.  All the success and failure 

history for each agent is then reset to zero, and the simulation continues until the next 

evolution evaluation occurs, based only on what has occurred with the set of newly 

evolved agent tactics from the previous evaluation.  Additionally, at this time a certain 

percentage of all the agents, regardless of their success or failure record, have their 

strategy randomly reassigned.  This randomization helped to ensure that all parts of the 

solution space were explored by representing totally random changes that were not driven 

solely by the fitness, or success, of any one agent.   

4.4.3  The Agents’ Environment 

The agents’ environment is a Cartesian plane.  The nodes of the network are assigned 

coordinates on this plane that correspond to the physical locations of the nodes.  The 

nodes are connected by arcs, which begin and end at specified nodes.  In the current 

version of the model, the arcs do not affect the decisions of the terrorists or defenders.  

They only serve to affect the value of the nodes through their effect on flow, as detailed 

in the maximum-flow model and the interdiction model.  All resources are directed at the 

nodes, not the arcs.  Future work could address a formulation in which resources are 

deployed for the defense of the arcs.   
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4.5  Agent-Based Models Used in this Research 

Two distinct agent-based models were developed for this research.  In the first 

model (the allocation model), the behaviors (tactics) of both the defending agents and the 

terrorist agents are allowed to evolve over time.  This allocation model is used to develop 

the solutions corresponding to the ESS for the game.  The second (evaluation) model is 

used to compare a fixed (non-evolving) defensive strategy of resource allocation to an 

evolving terrorist strategy.  The allocation of defensive resources, node by node, is 

assigned as an input to this model, and the terrorists evolve to fight it.  There are no 

defender agents in this model: only terrorists.  The terrorists behave exactly as just 

described for the allocation model.  The only difference between the two models is that 

the defensive resources at each node are invariant over time in the evaluation model.  The 

terrorists evolve, changing their strategies to inflict maximum damage upon the network.  

However, the number of defenders at each node never varies and is reflective of the input 

allocation being evaluated.  This model is used to compare various resource allocations 

by defenders (solutions) to determine how well they protect the network as the terrorists 

evolve to attack the network and its resources.  This evaluation model provides insight 

into how well the resource allocation performs against an informed and evolving terrorist 

threat. 

Both of these models are built on a similar structure.  The discussion follows the 

operation of the allocation model.  The evaluation model follows exactly the same 

sequence except that the defender resources are fixed at each node, and this allocation 

never changes.  Differences between the two models will be pointed out during the 
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discussion.  The sequence diagram, Figure 3, provides a visual representation of the flow 

of events in a single repetition of the model. 

 

Figure 3  Sequence Diagram for Allocation Model 

The observer tracks all events in the simulation, calculates statistics, and directs 

events as shown in the diagram.  Network agents refer to the nodes.  When the nodes are 

initialized, their values (location, value, and PR value) are set and do not vary.  They also 

may have an inherent defense value that will not vary throughout the run of the 

simulation.  For the allocation model, these values represent resources that are already 

deployed to the nodes and are not subject to reassignment based on the results of the 

model.  For the evaluation model, this inherent defense will reflect the final allocation of 

resources under evaluation.  These defenses could be the result of a PRA-based allocation 

or the result of an ABS analysis determining the GT allocation.   
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When the terrorists or defenders are first initialized, their tactics are randomly 

assigned, as is their location in the XY plane.  A single cycle begins when the defenders 

move to the node that corresponds to their current tactics.  Once this movement is 

complete, the terrorists move to the node that corresponds to their current tactics.  Again, 

it is important to note that each terrorist or defender agent represents a single unit of 

resources.  The resolution of the conflict at each node depends upon the number of 

terrorists and defenders at each node.   

The resolution mechanism for the conflicts at each node assigned victory to the 

breed of agent (terrorists or defenders) that has the most resources at that node.  After the 

conflict is resolved and the win/loss counters of each terrorist and defender are updated, a 

new cycle begins by randomly reassigning locations to every terrorist and defender.  

After a number of cycles, the total number of victories is calculated for each terrorist and 

defender.  A percentage of the agents with the least victories have their strategies 

randomly reassigned to a new strategy.  Both the percentage of the agents to have their 

strategies reassigned and the number of cycles between these evaluations can be set as 

parameters in the simulation.  Over time, the number of agents with the less successful 

strategies will be reduced, and the percentage of agents with each tactic—and the overall 

numbers of agents at each of the nodes—will approach an ESS for the network.   

One inherent problem with any evolutionary approach to finding the ESS is that it 

is impossible to determine if all of the potential points have been found.  Therefore, in no 

sense is there a claim that this technique provides the “best” solution to the resource 

allocation problem.  No matter how many simulation runs are performed, there is a 

chance (albeit small with a large number of runs) that a better allocation could exist. 
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However, it will be shown that in the three example networks presented this approach 

provides an improvement over a more traditional PRA-based approach when basing the 

allocation on the ESS from 400 runs, which provides for the successful defense of the 

largest number of nodes.   

4.6  Model Implementation 

The two linear programming models were implemented using the General 

Algebraic Modeling System (GAMS) (GAMS Development Corporation, 2009) and the 

GUROBI (Gurobi Optimization, 2010) solver.  The two agent-based simulations were 

implemented in NetLogo Version 5.03 (Wilensky, 1999).  NetLogo is a freeware, 

dedicated agent-based simulation platform.  It has a rich environment of built-in 

functions and operators that allow for rapid development of agent-based models.  Many 

guides for programming in NetLogo are readily available, but in this development work 

the book, A Field Guide to NetLogo, by Scott and Koehler (Scott & Koehler, 2011), was 

particularly useful in the design and implementation of the model code.   

The allocation model was developed first.  The evaluation model is the same as 

the allocation model except that resources assigned to defend each node are an input to 

the model and never vary.  The terrorists behave as they do in the allocation model except 

that the conflict is resolved based on the number of terrorists and the resources assigned 

to defend each node.  The details of the network configuration (node coordinates, node 

value, node PR value, etc.) are configured via easily modified text files.  Most of the run 

data are entered via a customized Graphical User Interface (GUI), which also provides 

run time graphical status updates and diagnostics.  The GUI, pictured in Figure 4, 
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presents a visual representation of the network being analyzed, as well as diagnostic 

information regarding the state of the model.  It is possible to “step” through the model, 

one repetition at a time, or to run it for a specified number of repetitions.  For runs to be 

used for analysis, the NetLogo environment has a feature called “Behavior Space,” which 

automates sensitivity analysis by varying parameters over a specified range for a series of 

runs.  These results are then automatically entered into a Microsoft Excel spreadsheet.   

 

Figure 4  Allocation Model GUI 
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4.7  Analysis Implementation 

The analysis of the model data runs used several different software tools.  All 

model runs used for analysis used the “Behavior Space” option, which allowed selected 

output to be written to Excel-compatible Comma Separated Value (CSV or .csv) files.  

Depending upon the size of the network under analysis, anywhere from 4 to 16 of these 

files were required to capture 400 simulation runs of 2000 repetitions each.  The disparity 

in the number of files required is due to the increasing amount of data as the number of 

network nodes increased.  The software used in the analysis had limitations on the total 

size of the input files that could be imported.  Summary tables of data results were 

prepared using Excel.   

The results of the Behavior Space runs were combined using a custom MATLAB 

script, which read in all that data, combined the results from the various .csv files, and 

then organized them into a single large data structure.  All subsequent analysis was done 

on this data structure via a series of custom MATLAB scripts.  These scripts performed 

all the data manipulation, and presented the data in formats most amenable to analysis 

and interpretation.  All of the histograms, Cumulative Distribution Function (CDF) plots, 

and Quantile-Quantile (QQ) plots that appear in the individual analysis sections, as well 

as the calculation of statistical tests such as the Lilliefors tests for normality, were done 

using MATLAB. 

Initially, the allocation model was run under certain specified conditions (which 

were dependent upon the network under analysis), and the results (number of nodes 

where the defender was victorious) were evaluated.  A detailed examination of the actual 
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number of defenders at each of the nodes was then completed.  Usually, there were very 

slight differences in the number of defenders at each node within the subset of results, 

which had the same total number of defender victories.  These numbers were averaged 

and then normalized to the total number of defenders (amount of resources) available.  

This set of ordered pairs (node ID and number of defenders) was then considered to be 

the GT allocation for resource allocation under the specified set of conditions.  This 

process was continued for each of the various conditions under consideration until the GT 

allocation was established for each of the sets of conditions under examination. 

The number of defender resources was then allocated based on a straight PRA-

based approach, with the percentage of resources allocated to each node equal to 

percentage of total network value assigned to each of the nodes.  This was normalized to 

the total resources available.  At the end of this process, for each set of conditions, there 

were two sets of resource allocations to each node: one based on the results of the 

evolutionary agent-based simulation (the GT allocation) and one based on the “fair share” 

allocation of resources considering node value (the PRA allocation).  Each of these 

allocations was then used as the defender resource allocation for the evaluation model, 

when 400 separate runs of 2000 iterations were performed against each allocation under 

the specified conditions.  These results (within each run) also tended to stabilize.  The 

empirical distribution for the number of defender victories was developed for each 

allocation method (GT and PRA) for their respective conditions.  The CDF for each of 

these allocations was developed from the available data, and the results compared.  The 

data were combined using custom MATLAB scripts to create data structures of results 
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(as previously described), and then other MATLAB scripts were used to compare the 

results and prepare QQ plots of the distribution of the number of defender victories.   

4.8  Overview of Evaluation Networks 

This analysis technique was applied to three different networks as examples.  The 

first, small-scale example is for a 13-node network, which is a capacitated network with 

sources and sinks on the boundaries of the network.  The network valuation model used 

was a combination of the network flow model (maximizing the flow through the 

network) and the network interdiction model (determining the most critical node to 

remove to have the greatest reduction in network flow).   

The second network is a mid-size (31-node) network that is loosely based upon 

the Irish electrical power grid.  The network valuation model used was a pure maximum-

flow model based on assumed values for the demand and generating power available at 

various nodes of the network.  The network represented a simplification of the actual 

power network down to one that contained twice the number of nodes of the first small-

scale example.  Values taken for capacity and demand were purely for illustrative 

purposes.   

The third network example is a large-scale (85-node) network that is a slight 

simplification of the Plantation Pipeline, which runs from several Gulf Coast ports along 

the Eastern Seaboard of the United States, delivering liquid product to a variety of 

locations running up to Dulles International Airport in Dulles, Virginia.  This network 

was essentially a main branch with several smaller branches extending off of it.  It was 

assessed that an interdiction model would provide essentially the same information as a 
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straightforward network flow analysis, so only the later formulation was used to 

determine the network value of the nodes.  Again, this network was analyzed for several 

different conditions.   

4.9  Overview of Statistical Tests Used in This Analysis 

 Two different statistical tests were used in this analysis: the Lilliefors test for 

normality and the two-sample t-test for the difference in means (Sheskin, 2000).  Both 

tests were executed on test data using functions from the MATLAB statistical toolbox.  

The results are presented in tables corresponding to the test results in each of the three 

networks analyzed.   

 The Lilliefors test is a test for normality of data.  In this test, the null hypothesis is 

that the sample in the test data comes from a normal distribution, against the two-sided 

alternative that the data does not come from a normal distribution.  Therefore, if the null 

hypothesis is rejected, the data are not normal.   

 For the two-sample t-test, the null hypothesis is that the two data samples are 

independent random samples from two normal populations with equal means and 

unknown but equal variances, against the two-sided alternative that the means are not 

equal.  If the null hypothesis is rejected, the test result is that the means are different.   
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Chapter 5: Small-Scale Example 

5.1  Evaluation Network 

The small-scale network, which consisted of 13 nodes, was used as a first test of 

the technique.  This network, represented in Figure 5, has two source nodes and five sink 

nodes.  

 

Figure 5  Small-Scale Network 

In order to deal with the issue of node–arc equivalence, each node is split virtually into 

two nodes, one for all incoming arcs and one for all outgoing arcs, connected by a single 
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virtual arc whose capacity defines the capacity of the node.  The technique was followed 

in all the networks analyzed. 

The network flow model and the network interdiction model were used in 

combination to determine the value of each node.  First, the maximum-flow model was 

run and the flow through the nodes tabulated.  Then the network interdiction model was 

run to identify the single node whose interdiction has the greatest effect upon the flow of 

the system.  The flow through each node was determined under these conditions.  The 

interdiction model was limited to selecting a single node by making the costs of 

interdiction and resources available for interdiction to drive the model to selecting a 

single node to interdict.  This node was then temporarily removed from the set of possible 

nodes to interdict by making its cost of removal greater than the total removal budget 

available, driving the solution to the next, more important node.  This process was 

repeated for several iterations, looking for other less-critical nodes.  Interdicting some 

nodes of a network by setting their capacity to zero and then running a maximum-flow 

LP may result in some nodes having a greater flow through them than the original 

maximum-flow model.  The final node value was determined by the maximum flow 

through the node considering all cases (both maximum-flow and interdicted).  This 

method ensured that a node that was critical as a “backup” to another node was given the 

proper importance.   

To examine the effect of other assumptions upon the results, six different 

scenarios were developed.  The scenarios were characterized by the distribution of 

terrorist tactics and the PR values of different nodes.  The distribution of terrorist tactics 

are either (1) uniform, which implied that the initial distribution of tactics for all terrorists 
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is uniformly distributed among the possible strategies, or (2) favoring PR, in which case 

one half of the initial terrorists followed a tactic that attacks a node with a high PR value, 

and the rest of the of terrorists’ tactics were uniformly distributed among the remaining 

tactics.  The three sets of node PR values are (1) where one node has a higher PR value 

than the rest (Baseline Case), (2) the source nodes have a higher PR value (Source High), 

and (3) the sink nodes have a higher PR value (Sink High).  The PR value was an 

arbitrary scale relating the relative importance of each node from a public relations 

standpoint.  Note that at no time does this model require any sort of a transfer function to 

map PR values into network flow values or vice versa.  They are completely separate 

valuations for the nodes.  While these illustrations were done with only two values (PR 

and network flow), there is no reason that other “values” measuring other potential goals 

could not be included into this model.  The key values for the nodes in this network are 

shown in Table 1. 

Table 1  Small-Scale Network Node Data 
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The allocation model was run for the six scenarios (combinations of node values 

and terrorist strategies), and best resource allocation determined from those model runs.  

This allocation is called the Game Theoretic (GT) allocation.  The comparison model was 

then run on the PRA allocation and on the GT allocation for all six scenarios and the 

results compared.   

5.2  Determination of Resource Allocations 

The resource allocation model was run for 2000 iterations for each of these six 

scenarios.  The scenarios are characterized in Table 2.   

Table 2  Small-Scale Network Scenarios 

 

Examination of the results showed that the distribution of agents (either terrorists 

or defenders) at each node tended to stabilize with little change after 1000 repetitions.  

Each scenario was run for 2000 repetitions.  The number of defenders at each node was 

averaged for the last 500 repetitions, as was the number of defender victories.  This 

process was then repeated for 400 simulation runs for each scenario to provide a 

distribution of results.  The results for these cases can be seen in Figure 6 to Figure 11.  

The number of defender victories refers to the number of nodes that were successfully 

defended.  Both terrorists and defenders had the same number of resources, which 

Scenario Publicity Terrorist Strategy

1 Baseline Uniform

2 Sinks High Uniform

3 Sources High Uniform

4 Baseline Favor PR

5 Sinks High Favor PR

6 Sources High Favor PR
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contributed to the seeming advantage held by the terrorists in application of resources.  

The average number of defenders at each node for the results that were most favorable to 

the defenders were then determined.  This allocation became the Game Theoretic (GT) 

allocation of resources for the scenario.  The Probabilistic Resource Allocation (PRA) 

was determined by allocating the resources according to the proportion of total value held 

by each of the nodes.  This allocation was invariant across all scenarios.  The resource 

allocations used for the defenders in the PRA case and each of the GT cases are 

summarized in Table 3.  Two hundred terrorists and 200 defenders were used in these 

examples to minimize rounding error to determine a unitary number of defenders at each 

node.   

Figure 6  Small Network Scenario 1 Histogram 
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Figure 7  Small Network Scenario 2 Histogram 

 

Figure 8  Small Network Scenario 3 Histogram 
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Figure 9  Small Network Scenario 4 Histogram 

 

Figure 10  Small Network Scenario 5 Histogram 
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Figure 11  Small Network Scenario 6 Histogram 

Table 3  Small Network Resource Allocations 
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5.3  Comparison of Allocation Results 

Using the same run parameters (2000 repetitions per run, results taken as the 

average of the last 500 repetitions, 400 runs for each allocation and scenario) the 

comparison model was then run for each of these scenarios. The comparison model 

examined the performance of the PRA allocation and the GT allocation against an 

evolving terrorist threat in all six of the scenarios.  The results were examined for 

normality using QQ plots and tested using the Lilliefors test, as previously discussed.  

The QQ plots are shown in Figure 12 to Figure 17.  The results of the Lillefors tests for 

normality are shown in Table 4.  In this test, the null hypothesis was that the distribution 

is normal against a two-sided alternative that the distribution is not normal.  

 

Figure 12  Small Network Scenario 1 QQ Plot 
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Figure 13  Small Network Scenario 2 QQ Plot 

 

 

Figure 14  Small Network Scenario 3 QQ Plot 
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Figure 15  Small Network Scenario 4 QQ Plot 

 

 

Figure 16  Small Network Scenario 5 QQ Plot 
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Figure 17  Small Network Scenario 6 QQ Plot 

Table 4  Small Network Lilliefors Test Results 

 

For each of the scenarios, the CDF of the number of defender victories observed 

with the PRA-based allocation and the CDF of the number of defender victories with the 

GT-based allocation was compared.  These results are shown in Figure 18 to Figure 23.   
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Figure 18  Small Network Scenario 1 CDF 

 

 

Figure 19  Small Network Scenario 2 CDF 
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Figure 20  Small Network Scenario 3 CDF 

 

Figure 21  Small Network Scenario 4 CDF 
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Figure 22  Small Network Scenario 5 CDF 

 

Figure 23  Small Network Scenario 6 CDF 
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Examination of the CDF plots in Figure 18 to Figure 23 shows that, in every case, 

the PRA-based allocation is dominated by the GT-based allocation in the sense that, for 

any specified value of the CDF, the GT-based approach always produces a higher number 

of defender victories than does the PRA-based approach.  As shown in Table 5, the 

differences between the means of the GT- and PRA-based solutions are statistically 

significant. 

Table 5  Small-Scale Network Means Test Results 

 

 

  

Mean Test Result

Scenario T statistic Result

1 -332.1778 Reject H0

2 -326.0212 Reject H0

3 -341.3158 Reject H0

4 -320.6159 Reject H0

5 -310.9925 Reject H0

6 -359.9671 Reject H0
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Chapter 6: Mid-Scale Example 

6.1  Evaluation Network 

The mid-scale network example, which consists of 31 nodes, was used to see how 

the technique would scale to larger problems.  The network was derived from publically 

available data on the form of the Irish power grid ("Transmission System," 2007).  These 

data were then simplified to a smaller network of the desired size by consolidating nodes.  

Values for generating capacity, maximum flow, and demand were constructive and 

chosen for illustrative purposes.  Actual data were not available, but the actual capacities 

were not critical to the research.  The key was to determine if the behavior observed in 

the small-scale example discussed in the preceding chapter would continue in the larger 

example.  The network representation used is shown in Figure 24.  Details as to the 

function of the various nodes are shown in Table 6. 

To examine the effect that the method of determining the value of each node 

might have on the overall problem, only the maximum-flow algorithm was used to 

determine the value of each node.  Four different scenarios were created to facilitate the 

sensitivity analysis of different parameters.  In each of these scenarios, there were 93 

defenders who were fixed by assigning them to specific nodes.  An additional 310 

defenders were allowed to move from node to node depending upon their strategies.   
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Figure 24  Mid-Scale Network 

Table 6  Mid-Scale Network Node Details 

Node Function Capacity Demand Inflow Node Function Capacity Demand Inflow

A SOURCE 500 300 Q SINK 500 150

B NODE 500 50 R NODE 500 50

C NODE 500 50 S SINK 500 100

D SINK 500 100 T SINK 500 100

E NODE 500 50 U SOURCE 500 300

F SOURCE 500 300 V NODE 500 50

G SINK 500 100 W SINK 500 100

H SINK 500 100 X NODE 500 50

I SOURCE 500 300 Y NODE 500 50

J NODE 500 50 Z NODE 500 50

K SINK 500 200 AA NODE 500 50

 L SOURCE 500 300 AB SINK 500 100

M NODE 500 50 AC NODE 500 50

N SINK 500 100 AD SOURCE 500 500

O SOURCE 500 300 AE SOURCE 500 300

P NODE 500 50
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There were 403 terrorists in the analysis, all of whom were free to evolve their 

strategies.  Scenarios were created by varying assumptions.  The two assumptions that 

varied were the allocation of fixed defenders and the distribution of the terrorists.  In 

some scenarios, the fixed, or inherent, defenders were allocated in a non-uniform manner; 

i.e., some nodes had more inherent defenders than others.  In other scenarios, these were 

allocated uniformly with three inherent defenders to each node.  The other assumption 

that varied was that in some of the scenarios the terrorists had a uniform probability of 

being any one of the six tactics, and in the other case the probability that they would 

favor PR was 0.5, with the remaining probability uniformly distributed among the other 

tactics, in a similar manner previously described for the small-scale network example.  

The PR values were arbitrarily assigned to nodes and did not vary from one scenario to 

another.  Table 7 lists a summary of the varying values for the scenarios, and Table 8 

provides a summary of the actual values used. 

Table 7  Mid-Scale Scenarios 

 

  

Scenario

Inherent 

defense 

allocation

Terrorist 

Strategies

1 targeted Constant

2 targeted Favor PR

3 uniform Constant

4 uniform Favor PR
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Table 8  Mid-Scale Network Parameters 

 

 The allocation model was run for the four scenarios (combinations of inherent 

defense allocations and terrorist strategies) and the best allocation determined from those 

model runs.  The allocation is called the Game Theoretic (GT) allocation.  The 

comparison model was then run on the PRA allocation and on the GT allocation for all 

four scenarios and the results compared.   

6.2  Determination of Resource Allocations 

The resource allocation model was run for 2000 repetitions for each of these four 

scenarios.  Examination of the results showed that the method of analysis used on the 

small network example was applicable.  The allocation of resources stabilized after 1000 

repetitions, and the average number of defenders at each node over the last 500 

repetitions was used as the basis for a distribution of results.  The results for these cases 

Inherent Defense Inherent Defense

Node Value PRValue Targeted Uniform Node Value PRValue Targeted Uniform

A 300 10 5 3 Q 150 10 1 3

B 200 10 1 3 R 150 10 4 3

C 150 10 1 3 S 100 10 1 3

D 100 10 1 3 T 100 10 1 3

E 50 10 1 3 U 300 10 9 3

F 300 10 9 3 V 190 10 1 3

G 100 10 1 3 W 140 10 1 3

H 100 10 1 3 X 290 30 1 3

I 300 10 9 3 Y 280 10 1 3

J 50 10 1 3 Z 90 30 1 3

K 340 20 1 3 AA 510 10 1 3

L 300 10 8 3 AB 100 40 1 3

M 650 10 1 3 AC 700 10 1 3

N 690 30 1 3 AD 300 10 9 3

O 300 10 9 3 AE 300 10 9 3

P 200 10 1 3
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can be seen in Figure 25 to Figure 28.  The number of defender victories refers to the 

number of nodes that were successfully defended.  The GT and PRA allocations were 

calculated as discussed in the small network example.  Table 9 lists the final allocations 

that were calculated.   

 

Figure 25  Mid-Scale Network Scenario 1 Histogram 
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Figure 26  Mid-Scale Network Scenario 2 Histogram 

 

Figure 27  Mid-Scale Network Scenario 3 Histogram 
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Figure 28  Mid-Scale Network Scenario 4 Histogram 

Table 9  Mid-Scale Network Resource Allocations 

 

6.3  Comparison of Allocations 

Using the same run parameters (2000 repetitions per run, results taken as the 

average of the last 500 repetitions, 400 runs for each allocation and scenario) the 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 1 Scenario 2 Scenario 3 Scenario 4

PRA

Targeted 

Defense

Targeted 

Defense

Uniform 

Defense

Uniform 

Defense PRA

Targeted 

Defense

Targeted 

Defense

Uniform 

Defense

Uniform 

Defense

Node ID Targeted Uniform

Terrorist 

Strategy 

Uniform

Terrorist 

Strategy 

favors PR

Terrorist 

Strategy 

Uniform

Terrorist 

Strategy 

Favors PR Node ID Targeted Uniform

Terrorist 

Strategy 

Uniform

Terrorist 

Strategy 

favors PR

Terrorist 

Strategy 

Uniform

Terrorist 

Strategy 

Favors PR

A 17 15 16 16 14 14 Q 7 9 9 8 10 11

B 9 11 9 9 11 11 R 10 9 12 12 11 11

C 7 9 9 9 11 11 S 5 7 9 9 11 11

D 5 7 9 9 11 11 T 5 7 9 9 11 11

E 3 5 9 9 11 11 U 21 15 18 18 12 12

F 21 15 19 19 12 13 V 8 10 9 9 11 11

G 5 7 11 11 14 14 W 7 9 9 9 11 11

H 5 7 9 9 11 11 X 12 14 10 10 12 12

I 21 15 18 18 12 12 Y 12 14 9 8 11 10

J 3 5 9 9 11 11 Z 4 6 10 10 13 13

K 14 16 14 14 16 16 AA 21 23 14 15 16 16

L 20 15 16 16 11 11 AB 5 7 13 13 15 15

M 27 29 11 11 13 13 AC 29 31 33 34 35 35

N 28 30 16 17 18 18 AD 21 15 17 17 11 11

O 21 15 18 18 12 12 AE 21 15 20 20 14 14

P 9 11 9 8 11 10
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comparison model was then run for each of these scenarios.  The comparison model 

examined the performance of the PRA allocation and the GT allocation against an 

evolving terrorist threat in all four of the scenarios.  The results were examined for 

normality using QQ plots and tested using the Lilliefors test.  The QQ plots are shown in 

Figure 29 to Figure 32.  The Lilliefors tests for normality are shown in Table 10.   

 

Figure 29  Mid-Scale Network Scenario 1 QQ Plot 

 

Figure 30  Mid-Scale Network Scenario 2 QQ Plot 
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Figure 31  Mid-Scale Network Scenario 3 QQ Plot 

 

Figure 32  Mid-Scale Network Scenario 4 QQ Plot 
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Table 10  Mid-Scale Network Lilliefors Test Results 

 

 For each of the scenarios, the CDF of the number of defender victories observed 

with the PRA-based allocation and the CDF of the number of defender victories observed 

with the GT-based allocation were compared.  These results are shown in Figure 33 to 

Figure 36. 

 

Figure 33  Mid-Scale Network Scenario 1 CDF 

Lilliefors Test Results

Scenario Allocation p value Result

1 PRA > .5 Do Not Reject H0

2 PRA > .5 Do Not Reject H0

3 PRA > .5 Do Not Reject H0

4 PRA > .5 Do Not Reject H0

1 GT > .5 Do Not Reject H0

2 GT > .5 Do Not Reject H0

3 GT > .5 Do Not Reject H0

4 GT 0.2404 Do Not Reject H0
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Figure 34  Mid-Scale Network Scenario 2 CDF 

 

Figure 35  Mid-Scale Network Scenario 3 CDF 
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Figure 36  Mid-Scale Network Scenario 4 CDF 

 Examination of the CDF plots in Figure 33 to Figure 36 shows that in every case 

the PRA-based allocation is dominated by the GT-based allocation in the sense that, for 

any specified value of the CDF, the GT-based approach always produces a higher number 

of defender victories than does the PRA-based approach.  These results are consistent 

with the results for the small-scale network presented in the previous chapter.  The 

differences in means are statistically significant.  The means test results are shown in 

Table 11.   

Table 11  Mid-Scale Network Means Test Results 

  

Mean Test Result

Scenario T statistic Result

1 -131.3408 Reject H0

2 -118.095 Reject H0

3 -216.9933 Reject H0

4 -217.7804 Reject H0
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Chapter 7: Large-Scale Example 

7.1  Evaluation Network 

The large-scale network, which consists of 85 nodes, was used to continue to 

examine the ability of the technique to work on problems of increasing scale.  This 

network was also derived from publically available data on Kinder-Morgan Corporation’s 

Plantation Pipeline ("Plantation Pipeline System Map," 2012).  The capacities and 

demands were chosen for illustrative purposes only.  The key elements of this example 

that make it different from the previous two examples are both the scale of the network 

and the very linear arrangement of the network.  The pipeline consists of a main branch 

running up and down the East Coast of the United States, with a number of smaller 

branches running off and leading to locations where the product is demanded.  As in the 

Irish power grid example, actual data were not available, but the actual capacities were 

not critical to the research.  The goal was to see if the results continued to scale up with 

larger networks and with a different network topology.  The network representation is 

shown in Figure 37.  Note that the physical arrangement of this figure has been modified 

to allow for easy publication.  In actuality, the lower section (from Anderson, SC to 

Washington, DC) would be a continuation of the “main trunk,” which runs from Baton 

Rouge, LA to Hartwell, GA.  This Northeastern portion of the network was “moved” for 

illustration to allow it to fit comfortably on a single page.  Details as to the function of the 

various nodes are shown in Table 12.   
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Figure 37  Large-Scale Network 
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Because of the topology of this network, only the maximum-flow algorithm was 

used to determine the value of the nodes.  Given the serial arrangement of the network 

nodes, an interruption on the main branch would affect any flow upstream with little 

ability to find new sources.  Therefore, the interdiction algorithm was considered of 

Table 12  Large-Scale Network Node Details 
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limited utility in this example.  Four different scenarios were created for sensitivity 

analysis.  The parameters for defining the scenarios were the same as was done for the 

mid-scale example, with fixed defenders either targeted to specific nodes or uniformly 

distributed among all the nodes, and the attackers either with uniformly distributed 

strategies or favoring PR targets.  In each of these scenarios, there were 170 defenders 

who were fixed by assigning them to specific nodes.  An additional 400 defenders were 

allowed to move from node to node, depending upon their strategies.  There were 500 

terrorists in this analysis.  This was the first model analyzed that had an imbalance 

between terrorist assets and defender assets.  All the terrorists were free to evolve their 

strategies.  In some scenarios, the fixed, or inherent, defenders were allocated in a non-

varying but non-uniform manner; i.e., some nodes had more inherent defenders than 

others.  In other scenarios, they were allocated uniformly with two inherent defenders per 

node.  The other assumption that varied was that in some of the scenarios the terrorists 

had a uniform probability of using any of the tactics, and in the other case the probability 

that they would favor PR was 0.5, with the remaining probability uniformly distributed 

among the other tactics, in a similar manner previously described for the mid-scale 

network example.  The PR values were arbitrarily assigned and did not vary from one 

scenario to another.  Table 13 provides a summary of the varying values for the 

scenarios, and Table 14 provides a summary of the actual values used.   
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Table 13  Large-Scale Scenarios 

 

Table 14  Large-Scale Network Parameters 
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The allocation model was run for the four scenarios (combinations of inherent 

defense allocations and terrorist strategies) and the best allocation determined from those 

model runs.  The allocation is called the Game Theoretic (GT) allocation.  The 

comparison model was then run on the PRA allocation and on the GT allocation for all 

four scenarios and the results compared.   

7.2  Determination of Resource Allocations 

The resource allocation model was run for 2000 repetitions for each of these four 

scenarios.  Examination of the results showed that the method of analysis used on the 

small- and mid-scale network examples was applicable.  The allocation of resources 

stabilized after 1000 repetitions, and the average number of defenders at each node over 

the last 500 repetitions was used as the basis for a distribution of results.  The results for 

these cases can be seen in Figure 38 to Figure 41.  The number of defender victories 

refers to the number of nodes that were successfully defended.  The GT and PRA 

allocations were calculated as discussed in the small network example.  Table 15 lists the 

final allocations that were calculated. 
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Figure 38  Large-Scale Example Scenario 1 Histogram 

 

Figure 39  Large-Scale Network Scenario 2 Histogram 
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Figure 40  Large-Scale Network Scenario 3 Histogram 

 

Figure 41  Large-Scale Network Scenario 4 Histogram 
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Table 15  Large-Scale Network Resource Allocations 

 

7.3  Comparison of Allocations 

Using the same run parameters (2000 repetitions per run, results taken as the 

average of the last 500 repetitions, 400 runs for each allocation and scenario) the 

comparison model was then run for each of these scenarios.  The comparison model 
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examined the performance of the PRA allocation and the GT allocation against an 

evolving terrorist threat in all four of the scenarios.  The results were examined for 

normality using QQ plots and tested using the Lilliefors test.  The QQ plots are shown in 

Figure 42 to Figure 45.  The results of the Lilliefors tests for normality are shown in 

Table 16.   

 

Figure 42  Large-Scale Network Scenario 1 QQ Plot 

 

 

Figure 43  Large-Scale Network Scenario 2 QQ Plot 
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Figure 44  Large-Scale Network Scenario 3 QQ Plot 

 

 

Figure 45  Large-Scale Network Scenario 4 QQ Plot 
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Table 16  Large-Scale Network Lilliefors Test Result 

 

For each of the scenarios, the CDF of the number of defender victories observed 

with the PRA-based allocation and the CDF of the number of defender victories observed 

with the  GT-based allocation was compared.  These results are shown in Figure 46 to 

Figure 49.   

 

Figure 46  Large-Scale Network Scenario 1 CDF 
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Figure 47  Large-Scale Network Scenario 2 CDF 

 

Figure 48  Large-Scale Network Scenario 3 CDF 
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Figure 49  Large-Scale Network Scenario 4 CDF 

Examination of the CDF plots in Figure 46 to Figure 49 shows that, in every case 

the PRA-based allocation is dominated by the GT-based allocation in the sense that, for 

any specified value of the CDF, the GT-based approach always produces a higher number 

of defender victories than does the PRA-based approach.  These results are consistent 

with the results for the small and mid-scale networks presented in the previous two 

chapters.  The differences in mean are statistically significant.  The means test result is 

shown in Table 17. 

Table 17  Large-Scale Network Means Test Results 

 

Mean Test Result

Scenario T statistic Result

1 -594.3224 Reject H0

2 -658.4476 Reject H0

3 -992.697 Reject H0

4 -1188.4 Reject H0
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Chapter 8: Summary and Conclusions 

8.1  Summary 

The goal of this research was to determine if there was a useful way to formally 

bring the concept of strategic uncertainty (ARA-based approach) into the allocation of 

resources to protect spatially distributed networks against a planning adversary that 

would allow flexibility for multiple adversary goals and multiple methods of network 

node valuation.  A hypothesis was developed that the insights gained through the use of 

an evolutionary agent-based solution to the “leader–follower” game would provide an 

allocation that was at least as good as, and hopefully better than, an allocation based 

strictly on a more traditional probabilistic risk analysis approach (PRA-based approach) 

using the value of the network nodes, determined in some logical manner related to their 

importance to the network structure.   

After finding a dearth of literature on the application of an evolutionary agent-

based model to this problem, such a model was developed.  Currently, this model 

assumes that there is a single value for the node’s contribution to the network’s mission, 

and it has another value relating to the publicity that attacking such a node may generate.  

This model assumes that both the attacker and defender of the network know the values 

of the nodes, and that, for each node, the values are the same for both the attacker and 

defender.  In all cases, the model followed the “leader–follower” or “attacker–defender” 

model in which the defender made allocations without the knowledge of the attacker, but 

the attacker made their deployment of resources with the full knowledge of the 

defender’s dispositions.   
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Due to the difficulty of obtaining actual data on attacks—and the fact that any 

single attack would only represent a single realization of attacks against that particular 

network—simulation was used to test the allocations.  For each scenario, a GT-based 

allocation was developed using this allocation model.  A PRA-based allocation was also 

developed using the values of the nodes.  These two allocations were then each run in an 

evaluation model that compared their results against an adversary who could adapt to the 

network’s defenses.  Three differently sized networks were used: a small network of 13 

nodes, a mid-sized network of 31 nodes, and a larger network of 85 nodes.  The small 

network was chosen to represent a network topology that would allow the ready use of 

both a network flow model and a network interdiction model to determine node values.  

The mid-size network was based on publically available data on the Irish power grid, and 

the large network was based on the Plantation Pipeline, which runs along the East Coast 

of the United States.  The large network was chosen to be a network based on a main 

“trunk” with several branches, rather than a ring or network rich with paths and 

interconnections.  Both the mid-sized and large networks had their node values taken 

from a network flow model.  The defenders of the mid-sized and large network consisted 

of some “inherent” defenders that were always assigned to the node, and some other 

defenders who could move from node to node on each repetition as their strategy 

evolved.   

In the small network, three different allocations of PR value to the nodes were 

tested.  One was considered a baseline, one favored source nodes, and one favored sink 

nodes.  In the medium and large networks, the PR values were held fixed, but the 

inherent defense was varied: one that was uniformly distributed among all the nodes, and 
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a second where the same number of resources were allocated, but some nodes received a 

higher defense value than others.  Finally, two different distributions of terrorist strategies 

were examined.  In the first case, the starting strategies for all the terrorists were 

uniformly distributed among all the possible strategies.  In the second case, the terrorists 

greatly favored attacks against targets with PR values.   

For all cases, the resulting distributions of the percentage of defender victories 

(expressed as the number of nodes where the defender won) was examined and 

compared.  A Lilliefors test for normality of results was run, and the CDFs were 

compared.  Finally, a test of means for the distribution of the proportion of defender 

victories was run to see if the differences observed were statistically significant at the 5% 

level.  Rejection of the null hypothesis that PRA GT   indicates that the difference in 

average number of defender victories was statistically significant.  The results are 

summarized in Table 18. 
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Table 18  Summary of All Run Test Results 

 

8.2  Conclusions 

In all the cases examined, the allocation of resources determined by the GT 

approach dominated the allocation of resources determined by the PRA approach.  This 

improvement grew larger as the number of nodes in the network grew.  The assumption 

of normality of results held at the 5% level for all but two of the 28 cases run.  While no 

simulation can “prove” what will happen in reality, this research has shown that using a 

GT approach to resource allocation based on an evolutionary agent-based model shows 

distinct promise.  Under simulated conditions, the agent-based evolutionary allocation 

method clearly performed better that a PRA-based allocation in all scenarios tested, 
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varying the network size, complexity, topology, terrorist tactics mix, node valuation 

method, and fixed defensive resource allocations.   

8.3  Recommendations for Further Research 

There are several natural outgrowths of this research that should be subject to 

further study.  Broadly, they fall into four areas: (1) refinements on the terrorist tactics, 

(2) refinements on the network valuations, (3) continued research into methods that will 

scale effectively to even larger networks, and (4) evaluation of proposed networks. 

The terrorists’ strategies examined in the effort should be considered as starting 

points for further research.  The model assumed that the terrorist would either go to a 

random node and attack or attack a node based on its PR value, its value to the network, 

its physical proximity to the terrorist, or some combination of node value and proximity.  

There have been several highly interesting works published in the last few years about 

using agents to determine how terrorists organize themselves.  A fusion of these efforts 

with the resource allocation capability developed in this dissertation would be most 

interesting and would provide a means of examining the resource allocation problem in a 

more “end-to-end” approach.  

Examples run in this research considered only two possible valuations of network: 

one for “flow” or value of the node in delivering product, and one for publicity generated 

by an attack.  Nothing inherent in the model or method limits the valuations to only two.  

Other dimensions of value to terrorists (and defenders) need to be explored.  In this work, 

the values of the nodes (both flow and PR) were known to both sides in the conflict.  

Variations on the scope of each opponent’s knowledge, and their valuation functions, 
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should be further explored.  Other methods of evaluating each node’s contribution to the 

network should be examined.  Because a physical network is also vulnerable to natural 

disaster, a comparison of the PRA- and GT-based allocations under a purely random act 

of nature is another obvious area to study.  Another obvious area for further study would 

be to compare the PRA and GT allocations when the PRA allocation is based on some 

combination of node values that combined the PR value and flow value of the node in 

some logical and realistic manner.  The research presented in this dissertation is also 

based on a single time step.  Extension of these techniques to a multi-time period 

“phased” attack is also a natural area for further exploration.  The use of different metrics 

(such as total flow through the network after attack) as opposed to the number of nodes 

successfully defended would also be of interest.   

In terms of scaling to ever larger networks, more efficient simulation models 

could be developed.  As the network size grows, comparisons to the “attacker–defender” 

linear programming solutions would be very interesting and informative.  Finally, this 

work could prove to be a basis for the evaluation of proposed network architectures, 

evaluating the resilience of different architectures to attack by comparing them under 

identical scenarios of attacker and defender resources.   
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