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ABSTRACT 

 

Hybrid systems for analyzing big data integrate an analytic tool and a dedicated data-

management platform, storing data and operating on the data at both components. While 

hybrid systems have benefits over alternative architectures, in order to be effective, data 

movement between the two hybrid components must be minimized.  Extant hybrid 

systems either fail to address performance problems stemming from inter-component data 

movement, or else require the user to reason about and manage data movement.  My 

work presents the design, implementation, and evaluation of a hybrid analytic system for 

array-structured data that automatically minimizes data movement between the hybrid 

components.  

 The proposed research first motivates the need for automatic data-movement 

minimization in hybrid systems, demonstrating that, under workloads whose inputs vary 

in size, shape, and location, automation is the only practical way to reduce data 

movement.  I then present a prototype hybrid system that automatically minimizes data 

movement.  The exposition includes salient contributions to the research area, including a 

partial semantic mapping between hybrid components, the adaptation of rewrite-based 

query transformation techniques to minimize data movement in array-modeled hybrid 

systems, and empirical evaluation of the approach’s utility.  Experimental results not only 

illustrate the hybrid system’s overall effectiveness in minimizing data movement, but also 

illuminate contributions made by various elements of the design.   
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CHAPTER 1:  INTRODUCTION 

 

 

 Many of today’s datasets are so large they cannot be adequately analyzed with 

conventional desktop tools.  The size and number of these massive datasets is growing at 

an increasing rate, in fields as diverse as astronomy, genetics, and engineering.  Data 

scientists are responsible for transforming this data, through analysis, into actionable 

information.  Behind the hype around “Big Data”, there are important research questions 

to be answered through the analysis of large, disk-resident datasets.   

 This abundance of data, and the desire to analyze it, motivates multiple lines of 

research.  Database researchers develop methods for storing, organizing, and retrieving 

the data.  Their main tool for the job is a database management system.  Other researchers 

from a variety of fields – including statistics and computer science – focus on analyzing 

the data.  Their goal is to extract meaningful information from the data, and their tools of 

choice are dedicated software systems implementing sophisticated statistical and 

machine-learning methods.   

  The limitations of these two tool types are exposed when the size of the datasets 

grow large.  Database management systems excel at managing large collections of data, 

but they are poor tools for performing all but the most rudimentary analytics. Analytic 

systems are superb at performing complex analyses on small collections of data, but 

operate unacceptably when the size of the data exceeds the size of main memory.  Data 

scientists have developed workarounds for analyzing massive datasets using their 

traditional tools.  Some resort to sampling the data, others process the data “one bite at a 
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time,” dividing it into main-memory-sized chunks for iterative processing.  Though often 

effective, these ad-hoc solutions are often both slower and more brittle than systems 

explicitly designed for analyzing big data.   

  When workarounds fail, data scientists must switch to a dedicated big-data analytic 

system.  There are three strategies.  In place of his or her existing analysis tool, a data 

scientist may: 

 Replace the analytic tool with an analytic system explicitly designed to efficiently 

manage and analyze big data. Such systems range from traditional relational 

databases to newer data processing platforms based on a MapReduce processing 

paradigm. 

 Install an augmented version of the analytic tool, which has been extended to 

improve performance on big data through mechanisms such as parallelization or 

out-of-core libraries.  

 Adopt a hybrid analytic system, which integrates the analytic tool with a big-data 

tool, capturing the best of both worlds: sophisticated analytic abilities and functions 

common to analytic tools plus the data-handling capabilities of big-data systems.  

Though the first two strategies may bear fruit, it is difficult to believe that a database 

system such as Postgres can ever be extended to the point where its sophistication rivals 

an analytic system such as MATLAB, just as it is hard to expect that MATLAB might be 

augmented to provide the robust data-management features provided by Postgres.  The 

limitations of MapReduce systems – as both an analytic system and a data-management 

system – are documented [1].  As an analytic system, MapReduce systems are effective 

primarily only on “embarrassingly parallel” problems, an incomplete subset of common 
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analytic tasks.  As a data-management system, the MapReduce stack lacks features 

associated with data-management best practices, such as schemas and indexes.   

  The hybrid approach is a solid candidate for the best approach:  it presents to data 

scientists a familiar interface with known functionality, while ably handling large disk-

resident datasets.    The fact that hybrid systems consist of two components, however, 

raises a problem not faced by the other two approaches.  Two fundamental properties of 

hybrid systems are that:  i)  data can be stored at both components, and ii) analytic 

operations can be performed at both components.  These properties mean that execution 

locations of query operations must be specified; a particular specification determines what 

data moves where.  We maintain that this decision-making process should not only be 

managed, but automatically managed in such a way that data movement is reduced or 

minimized.  This claim motivates the research in this thesis.   

 Our research includes a solution satisfying the demands of this claim.  The 

solution is named Agrios; it is a hybrid analytic system integrating R and SciDB.  R is a 

powerful data-analysis software package, and SciDB is a database management system 

designed for managing disk-resident array-structured datasets.  Agrios integrates these 

two components, and through the application of techniques pioneered in relational 

database optimization, automatically minimizes data movement between the hybrid 

components. My particular contributions include:  

 Motivating the need for automated minimization of data movement in hybrid 

systems, through experimental evaluation.  The need for automatic 

minimization versus alternative approaches may not be obvious, so we 

motivate our solution by exploring the problem space empirically. 
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 Theoretical contribution of a partial semantic mapping between the R 

language and SciDB’s Array Functional Language (AFL).  This mapping 

enables the coupling of the two hybrid components. 

 Design of a cost-based optimization technique for automatically minimizing 

data movement between R and SciDB.  Our work builds off of proven 

techniques from database query optimization.  These techniques were 

originally intended for use in databases using a relational data model; we 

extend, refine, and apply them to a hybrid system that uses an array data 

model. 

 Prototype implementation of a hybrid system – named Agrios – constructed 

using R and SciDB.  Agrios is the research platform upon which our 

experiments are conducted.  The platform implements our cost model and 

optimization-technique designs. 

 Validation of this hybrid approach, through experimental evaluation.  We 

evaluate our hybrid approach, demonstrating the effectiveness of our 

optimization techniques.  Our experimental work also examines some of the 

subtler aspects of the optimization process, including the relationship between 

data movement minimization and optimization time, and the effectiveness of 

different optimization techniques. 

Together these contributions advance the state of the art in analytic systems for large, 

disk-resident datasets.   

We focus on minimizing data movement for two reasons.  First, there is a dearth 

of research on the topic in the context of hybrid analytic systems.  Our work is intended 
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to fill this lacuna.  Problems involving data movement, and techniques for resolving the 

problems, are common to many areas of computer science.  The high-performance 

computing (HPC) community has developed numerous techniques for reducing data 

movement between computing nodes [2-4].  Researchers in distributed databases have 

explored optimization techniques and identified new algorithms for reducing data 

movement between components of distributed relational databases.  These techniques for 

data movement minimization typically assume the homogeneity of computing resources 

and data models, however, so are not immediately applicable to hybrid systems.  Second, 

data movement is becoming an increasingly significant cost in distributed and hybrid 

systems.  Data movement between processing nodes or hybrid components comes with 

costs: it takes time and energy.  Recent work in high-performance computing shows that 

time spent moving data between computing nodes often dominates the time spent 

computing with it [5-6].  Similarly, researchers in energy-efficient computing expect that 

inter-machine data movement costs will soon rival computation costs for some scientific 

analyses [7-8].  The growing importance of data movement relative to data processing is 

in part a result of the growing speed differences between computing hardware and 

communication hardware.  DRAM access in a new server, for example, is already an 

order of magnitude faster than data access over a 10-Gigabit network connection [5].  

Problems involving data movement are exacerbated by the rapid growth of data available 

for analysis.  There is growing interest in converting workaday objects into data-

collecting sensors: from phones and laptops to thermostats, toasters, and hot water 

heaters.  In some areas of science and engineering, the growth rates are remarkable:  due 

to new sequencing techniques, the growth rate of genomics data is doubling every five 
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months.  Though there are other factors that affect the cost of analysis – computation 

times at each component, obviously – reducing the cost of data movement is worthy of a 

dedicated, programmatic effort.   

There are multiple components of data movement costs, including “time on the 

wire,” the overhead of setting up and maintaining communication connections, 

competition with other systems for network bandwidth and database access, and the 

formatting and restructuring required to map one system’s storage model to another.  

These costs are an agglomeration of computation and communication costs.  Consider the 

work required to transfer a data object from R to SciDB: 

 The R object is serialized (computation cost). 

 Object is written from R’s process space to network buffers (shared 

computation and communication cost). 

 Network connection between R and SciDB established, if not already in place 

(communication cost) 

 Data is transferred from R to SciDB (communication cost). 

 Object is copied from network buffer to SciDB process space (shared 

computation and communication cost). 

 Object is deserialized at the SciDB master node (computation cost). 

 Object is sharded and distributed among SciDB worker nodes, as applicable 

(computation and communication cost). 

Similar steps apply to moving data from SciDB to R.  (The process only gets more costly 

– and complicated – at greater levels of detail.  If the data is compressed before 

transmission, for example, a compression and decompression step must be added to this 
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workflow.)  Given the potential aggregate costs of these tasks, we should find a way to 

reduce them.  There are several strategies for lowering costs, including: 

1. Reduce the cost of switching storage formats between systems, 

2. increase network communication speed and capacity, and 

3. reduce the amount of data moved. 

RICE, a hybrid system integrating the data analysis software R and SAP’s HANA 

relational database, exemplifies the first strategy [9].  The RICE middleware arranges 

transferred data from HANA into a format easily consumed by R; this streamlined 

transfer technique avoids some serialization costs, especially those incurred from 

common exchange protocols such as ODBC.  Strategy (2) falls largely outside the 

purview of data scientists, though electrical and communication engineers are hard at 

work on its many challenges.
1
  They face a formidable task in keeping up with the 

improvements in CPU and memory we noted above.  Complicating strategy (2) is the fact 

that network communication improvements are often require increased energy 

consumption.  Existing literature on hybrid systems acknowledges the cost of data 

movement, and admits the validity of strategy (3) [10-12].  To date, however, little effort 

has been spent on designing solutions founded upon the strategy.  Our research helps fill 

this gap. 

 Any efforts to minimize data movement would be in vain were there not decisions 

to be made that could reduce data movement.  A simple example – illustrated by Figure 

1.1 – shows the kind of opportunities for reducing data movement available in hybrid 

systems.  The figure shows that there are better and worse places to perform operations, 

                                                           
1
 History suggests that this problem is not solvable, however.  No matter how big we “make the pipe,” it is 

never big enough for long. 
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when considering data movement.  Suppose vectors C and R are stored at component B, 

and their product is required at component A.  The product can be computed at A, which 

requires that C and R are first shipped from B to A.  Alternatively, the product can be 

computed at B, and the result shipped to A.  In this example, the decision is clear about 

which option moves less data – the choice of execution location affects the amount of 

data moved by orders of magnitude.  If C and R are both vectors containing 1000 

elements, there is a difference of 998,000 elements moved between computing the 

product of C and R at A, and computing their product at B. 

 

A

B

R
C

D
at

a 
m

o
ve

m
en

t

A

B

A

B

C × R

R
C

Initial state: 
data at B

Computation 
performed at A

Computation 
performed at B

 

Figure 1.1.  The amount of data moved depends on the computation location.  The column at the right 

shows the initial state of affairs:  vectors C and R are both stored at location B.  A and B are processing 

nodes separated by a network connection (illustrated by the cloud).  The product of the two vectors is 

required at location A.    

 The rightmost two columns show two ways to compute the product of C and R.  In one alternative, 

the computation is performed at location A, first requiring both C and R to be moved from node B to node 

A.   In the other alternative, the vector product is first computed at B, and the result shipped from B to A.  

Because the output size of the vector product of C and R is typically larger than the size of both vectors C 

and R (in terms of number of array elements), performing the computation at A moves less data than 

performing the computation at B. 
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 This example illustrates that in hybrid systems:  a)  there are choices about where 

operations can be performed, and b)  some choices move less data than others.  The fact 

that there are consequential decisions about data movement means that there are 

opportunities to build a better hybrid system through the automated management of data 

movement.  Managing data movement between components amounts to either:  i)  stating 

the location at which operations should be performed, or ii)  stating what input data 

should be moved before operations are performed.  These alternatives are different sides 

of the same coin:  stating the locations at which operations should be performed 

determines what data must be moved, while stating what data should be moved 

determines the location at which operations must be performed.  For ease of exposition in 

this thesis we focus only on managing data movement through specification of execution 

location.   

 An example helps illustrate the challenges involved in managing data movement.  

Imagery data, captured by satellite, is often used for geophysical research.  Data scientist 

Jane captures forest-canopy imagery from a dozen satellites.  Hundreds of times per day 

the twelve satellites photograph regions of the planet’s surface and transmit the image data 

back to Earth.  Figure 1.2 illustrates several of these satellites at work.  Jane analyses this 

data primarily with a hybrid system integrating R and SciDB.  The hybrid system takes an 

R script as input, and divides the analytic work specified by the script between the R 

component and the SciDB component.  Some details of this workflow: 

 Most of Jane’s data analysis is performed on the hybrid system using a single R 

script, though she also performs additional analyses using different software tools. 
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Figure 1.2.  Satellites capturing images of the Earth’s surface.   The size and shape of images captured vary, 

both over time and across satellites.   

 

 Jane uses a hybrid system to run her analytic script hundreds of times per day, each 

instance potentially with different inputs.  

 The size of each image ranges between tens to thousands of MB in size. 

 Each image is represented as a two-dimensional array, each cell of the array 

containing a floating-point value.   

 Images vary in logical shape and size, depending both on what is being observed, 

and the location of the satellite relative to the ground.  Table 1 shows some sample 

dimensions for each image, per satellite and time.   

 Some image files are transferred directly to Jane’s local desktop machine, while 

others are directly loaded onto her SciDB cluster.  A number of factors determine 

the files’ initial destinations, including the size of the data, institution policy, and 

accessibility demands from other researchers.  For example, some images are loaded 
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on Jane’s local machine so she can use additional research software to process and 

analyze the data.  Larger files are often, though not always, loaded on the SciDB 

cluster.  Initial storage locations of images are parenthesized in Table 1.1 – for each 

time (row). 

Jane is collecting large array-modeled datasets, and analyzing them with her hybrid 

system and other tools.  Arrays of varying sizes, shapes and location are the inputs to the 

analysis.  Between each instance of the analysis, the storage locations of the data objects 

can vary (compare the image storage locations at T1 and T2), the properties of the data 

objects can vary (compare the shapes and sizes of images at T2 and T3), or both can vary 

(compare the shapes, sizes, and storage locations of images at T1 and T3).  The analytic 

script used in Jane’s hybrid analytic system takes as inputs all arrays for a given time 

period.  Ideally its performance would not suffer from the variations in properties of the 

input data.  

 

Table 1.1.  Inputs into Jane’s analysis.  Each row captures satellite imagery at a certain time period.  Each 

column captures the array shape of images captured for a particular satellite.  Initial storage locations for 

each image are stated in parentheses.  Note that there is variation both in storage locations over time, and 

image shape and size over time. 

  

  We showed earlier that the choice of execution location can affect the amount of 

data moved.  Given this fact, if Jane is concerned about data movement costs, then for 

each query instance she wishes to analyze – each instance potentially having inputs that 

differ in size, shape and location – she must specify execution locations for the query’s 

operations.  To produce this specification, she has three primary options:   

Time A B C ... K L

T1 100k × 100k (R) 100k × 1 (R) 50k × 3k (SciDB) ... 40k × 900k (SciDB) 1 × 1 (R)

T2 100k × 100k (SciDB) 100k × 1 (R) 50k × 3k (R) ... 40k × 900k (R) 1 × 1 (R)

T3 40k × 10k (SciDB) 100k × 100k (R) 1 × 1 (R) ... 40k × 900k (R) 300k × 7k (R)

Satellite ID, A through L
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1. For each query instance, inspect the placement, shape, and size of the inputs, 

reason about the appropriate execution locations, and assign execution locations 

such that data movement is minimized. 

2. Use fixed execution location assignments across all query instances. 

3. Use a system that dynamically identifies the execution locations that minimize data 

movement, based on properties of the input data objects, for each query instance. 

We argue that (3) is the only practical alternative.  Automatically identifying optimal 

execution location assignments is not a luxury for hybrid systems with diverse input 

properties, but a necessity. 

  There are two main reasons why option (1) is poor.  First, reasoning about data 

movement takes time.  The number of possible execution location assignments is 

exponential in the number of query operations.  For even a single query containing a 

handful of operators, it may not be practical to manually consider all the possible 

combinations of execution locations.  The problem is exacerbated when the volume of 

query instances is high, and when there is significant variation in the size, shape, and 

placement of query inputs.  Second, reasoning about data movement can be conceptually 

difficult.  As we demonstrate in Chapter 5, our intuitions are not always the best guides to 

minimizing data movement; some simple approaches that would seem to minimize data 

movement may in fact fail to do so.  Many systems give data scientists the chore of 

reasoning about, and deciding on, the best ways to reduce data movement between hybrid 

components.  Data scientists should not shoulder this burden, not only because it is outside 

their job description (they signed up to answer research questions, after all, not struggle 
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with improving their research tools), but also because it is a challenging task best left out 

of human hands.  As our findings will demonstrate, when it comes to minimizing data 

movement there are plenty of ways to get things wrong, and the cost of failure can be 

high.     

  Option (2) is poor because, as will be shown in Chapter 5, execution location 

assignments that minimize data movement for one query may not minimize data 

movement for other queries whose inputs differ in size, shape, or location.  That is, if 

execution location assignments minimize data movement in one query instance, the same 

execution location assignments likely do not minimize data movement for another query 

instance.  Execution location assignments minimizing data movement are often not 

“recyclable” over different inputs. 

 Hybrid systems instantiating option (3) give the system physical data 

independence.  Systems with physical data independence let users operate on stored data 

without knowledge of physical details about the data.  That is, physical data 

independence lets users focus on articulating what information they need from the 

system, rather than how to get the information they need.  From the perspective of a data 

scientist, physical data independence is a virtuous property of a system.  Jane’s hybrid 

system exhibits physical data independence if it implements a mechanism for 

determining the execution locations minimizing data movement, based on properties of 

the input data objects, for each query instance.  Physical data independence means that 

Jane can run the same R script, without any changes, on different query instances – 

regardless of where the input data objects are stored, and regardless of variations in the 
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size and shape of the input data objects.  The system automatically executes the script, 

handling these variations without Jane’s attention.   

We touch on additional design principles that guided this work.  While not 

essential to our contributions, they colored and informed our design decisions.  All things 

being equal, a tool satisfying these principles is better than one that does not; the 

principles state that good new tools do not require users to: 

 learn new languages; 

 learn new programming paradigms; 

 maintain multiple scripts that are functionally identical; or 

 refactor scripts that already work well. 

Systems that do not satisfy these principles force data scientists’ attention away from 

their research problems.  Data scientists want to spend their time answering science and 

engineering questions, not working on their research tools [13].  Each time a system fails 

to satisfy one of these principles, it faces a new obstacle to adoption.  There is a learning 

curve with new languages and programming paradigms, and ascending the curve takes 

time away from the problem under investigation.  Refactoring scripts or maintaining 

multiple versions of a script – different versions for different sizes or locations of input 

datasets – is inefficient and introduces opportunities for error.  Maintenance of multiple 

codebases is a recognized problem in data-science practice.  Often an analysis is 

prototyped and tested on a small subset of the data using a particular tool or set of 

libraries.  Once the analysis is validated, it is modified or rewritten as a production script, 

often using different tools or libraries that can handle the size of the complete dataset.  
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An analytic system that could do away with this duplication of effort – e.g. by enabling a 

single script to work on datasets of any size – would be a boon to data-science practice.   

 This thesis is organized as follows:  Chapter 2 defines terms and concepts 

essential for understanding data movement in hybrid analytic systems.  Some of the terms 

and concepts presented are new and unique, others are refinements to extant ideas in 

relational database optimization research.  The chapter also examines related background 

research, especially alternative hybrid systems and the relevant aspects of query 

optimization.  In Chapter 3 we introduce our own hybrid system – Agrios – at a 

conceptual level, identifying the approach and algorithms that it uses to minimize data 

movement in hybrid systems.  The lion’s share of the chapter is devoted to the conceptual 

operation of Agrios’ stager subcomponent, which is the primary part responsible for 

minimizing data movement.  Chapter 4 gives Agrios’ lower-level implementation details.  

The stager is examined in depth, as well as the other three subcomponents of Agrios:  its 

parser, accumulator, and executor.  In Chapter 5 we motivate the need for automatic 

data-movement minimization through an empirical examination of plan costs.  Chapter 6 

presents experimental results of Agrios’ use.  These results include quantification of 

Agrios’ performance as a solution to the problem of automatically minimizing data 

movement in hybrid systems, and engineering details into the system components that 

make Agrios effective.  We conclude our investigation in Chapter 7, also identifying next 

steps and additional questions for future research. 
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CHAPTER 2:  ASSUMPTIONS, DEFINITIONS, AND BACKGROUND 

 

 

 Before we examine how Agrios automatically reduces data movement in hybrid 

analytic systems, we must understand both the assumptions that underlie our work, and 

the definitions used in the exposition to follow.  This chapter consists of three main 

sections.  The first section lists and explains our assumptions.  The second section 

articulates the key concepts relevant to minimizing data movement with Agrios; these 

include both Agrios-specific concepts and general concepts from relational database 

optimization.  The final section reviews work related to our research.  

 

2.1 ASSUMPTIONS 

2.1.1 LIST OF FOUNDATIONAL OBSERVATIONS AND ASSUMPTIONS 

 A number of observations and assumptions found this research.   It is important 

that we explicitly address them now.  They are: 

 Standard commercial relational database systems are not general-purpose 

analytic systems.  Effective general-purpose analytic systems should intuitively 

and quickly perform a wide range of analytic tasks, including sophisticated 

statistical techniques and machine-learning methodologies.  Databases excel at 

some analytic tasks, including calculation of aggregates and simple summary 

statistics.  However, databases struggle in a number of ways with more complex 

analytic tasks.  SQL, the standard declarative query language for databases is not 

well-suited for the implementation of most sophisticated analyses.  In addition to 
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language issues, empirical comparison tests have shown that databases perform 

poorly on many fundamental analytic tasks, such as finding the singular value 

decomposition of a matrix [14].   

 “Augmented” relational database systems such as MADSkills and Shark 

may challenge this assumption, but as of this time of writing, quantitative 

comparisons of their performance versus pure analytic systems has not been 

performed [1, 6].  Similarly, stored procedures and user-defined functions 

constructed within traditional RDBMSs may go some way towards improving 

database capability on analytic tasks.  Specific procedures and functions would 

need to be written by a user with sufficient technical savvy to implement the 

desired functionality, e.g. a machine learning technique such as a k-means 

clustering algorithm.  When a database’s functionality has been extended this far, 

then regardless of the performance benefits, the database has ceased to 

“intuitively” provide the analytic functionality required of an effective general-

purpose analytic system.   

 General-purpose analytic systems do not perform effectively on large datasets 

[10, 14-15].  The computational model of many common analytic systems, such 

as R and SPSS, assumes that the dataset under analysis fits within main memory.  

This computational model has numerous consequences.  Some systems limit the 

maximum size of objects that can be directly created by users.  In R, for example, 

the maximum length of a vector is 2
31

-1 elements.  This size restriction is 

potentially problematic, given the size of some “Big Data” datasets.  A simple 

vector representation of a single human genome in R is not possible, for example; 
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to do so over three billion bases must be represented, nearly 50% more than the 

maximum vector size in R.  Even if user-created data objects are all within 

allowable size limits, the computational model which assumes that all objects fit 

in memory can still cause problems.  One possible cause is the creation, during 

the execution of analytic work, of intermediate results large enough to overwhelm 

R’s allocated memory space.  The memory footprint of the R process might grow 

during execution for several reasons:  analysis might generate many intermediate 

results of moderate size, or just a few intermediate results of large size might be 

created.  In the worst case, paging is required, which may slow execution 

substantially.    

 Similar to what we saw with database systems, extensions to general-

purpose analytic systems ameliorate some of the performance problems 

engendered with large datasets.  Many of these extensions, however, require 

substantial code refactoring, or require reimplementation of algorithms in new 

programming paradigms [4, 8].  These extensions conflict with many of the 

design principles we articulated at the end of the previous chapter. 

 Analytic work is performed at both components of the hybrid system, and data is 

stored at both components of the hybrid system.  These are essential properties of 

hybrid systems.  These properties distinguish hybrid systems from other 

integrations of analytic tools and data storage and management tools.   

One common type of non-hybrid integration both stores data and performs 

analyses exclusively on the database component.  In this arrangement, the analytic 

component serves strictly as a “front-end” for the database.  In common 
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implementations, users write SQL queries, which are then passed via a wrapper 

function from the analytic system to the data management tool.  The query is 

executed in the data management tool, and the results are returned to the analytic 

system.  Results are then viewed or visualized there, and may also undergo 

additional analysis.  One example of such an integration is the integration of R 

and a Postgres RDBMS, using the RPostgreSQL package.   

 Another common non-hybrid integration performs analytic work 

exclusively on the analytic component, but stores data objects at the data-

management component.  In this arrangement, the data management tool is 

effectively used only as a secondary storage device for the analytic system.  If the 

stored data exceeds the size of main memory on the analytic component, then 

subsets of the data are transferred from the data management component to the 

analytic component.  The analytic work is performed exclusively by the analytic 

system, “one bite at a time.”  Depending on the analytic work, a single pass 

through the entire dataset may suffice (possibly consisting of many “bites”), or 

multiple iterations might be required.  

 Even though in hybrid systems data is both stored and operated upon at 

both hybrid components, we recognize that there are some operations which can 

only be performed on one component.  Plotting, for example, is an operation 

performed by analytic systems but not typically performed by database systems.  

Our approach accommodates such limitations.   

 Scripts for sophisticated analyses typically execute many operations.  This 

assumption is intended to help distinguish advanced data analysis work from the 
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computation of simple aggregates or summary statistics.  Though calculating the 

mean of a numeric-valued dataset is technically data analysis, when we speak of 

“analyses” we mean more complex analyses.  The complex analyses we are 

concerned with involve multiple operators and multiple data inputs.  The analyses 

may include multiple instances of a small set of operations, a computation pattern 

often seen iterative algorithms such as those used in k-means cluster analyses.  

Alternatively, the analyses might be constituted of a larger number of unique 

operations.  The result of each analytic operation is an intermediate result, and the 

result of the final analytic operation is the final result.  Generally, scripts produce 

several outputs, including the final result.  The analytic operations we consider 

also include operations not always thought of as analytic operations; these include 

various operations often described as “preprocessing” or “data management” 

work.  Examples of such operations include sorting, grouping, and aggregation.   

 We do not focus on simple analyses (such as calculation of means) 

because they are insufficiently complex to take full advantage of a hybrid system.  

Simple analyses are not very interesting, from a research perspective.  Consider 

the simple analysis mentioned above:  given vector V compute the mean of the 

vector’s values.  In R this is performed by the following simple script: 

mean(V); 

While Agrios can minimize the data movement in this analysis (as will be 

demonstrated below), the script is not sufficiently complex to warrant significant 

attention. 



 

21 
 

 Each operator requires all data be colocated for processing.  There are some 

operator implementations that do not require colocation of all input data, e.g. 

some semijoin algorithms for distributed systems.  Our work does not consider 

such operators, instead requiring that all inputs to an operator be colocated at one 

particular hybrid component for execution.   

 The fewer resources consumed during the analysis, the better.  The data analysis 

process is typically constrained by two common resources:  time and money.  

Consumption of these resources should be minimized, to the degree possible.  

Data scientists want results as quickly as possible, even in applications where 

realtime results are not required.  All analyses, being human endeavors, are 

effectively time-constrained; the urgency of the analysis is a matter of degree.  

Realtime systems are simply one end of a continuum.     

In addition to the time required for an analysis, the financial cost required 

to compute an analysis must be considered.  Financial costs form an additional 

constraint on analyses, and are often considered through a proxy cost.  For 

example, energy use, as introduced in Chapter 1, functions in our research as a 

proxy for financial cost.  Reducing the energy used in an analysis effectively 

reduces the financial cost of analysis.  Similar to the case above, all things being 

equal, less expensive analyses are preferable to more expensive analyses.     

As noted in Chapter 1, there are numerous costs to moving data; costs 

include both time and money.  Our work is agnostic as to which of these resources 

is being reduced.  Note that when it comes to the resources of time and money, 

reducing use of one of them typically requires consuming more of the other.  To 
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some extent our work has the potential to sidestep this dilemma, since in principle 

minimizing data movement could reduce both the time and money spent on 

analysis. 

 Data scientists prefer to work with familiar systems.  This assumption relates to 

some of the design principles articulated in Chapter 1.  For our purposes, this 

assumption means that the user-facing parts of the hybrid should present, to the 

degree possible, a native R environment.  Practically, this assumption means that:  

i)  the input to a good hybrid system should be a “normal” R script, suitable for 

running a standard R instance, and ii)  final results should be returned to the R 

component of the hybrid (if the final operation is not performed at R).  Because of 

(i), Agrios inputs are presented in the form of queries or expressions written in R.  

Though (ii) is not essential for the correctness of our research, the constraint aids 

in its exposition.  Agrios requires that all final results be stored at R.  The data-

movement-minimization techniques presented here are applicable even if (ii) is 

relaxed.
2
 

2.1.2 DISCUSSION 

The observations and assumptions identify:  i) relevant properties about hybrid 

systems, relational databases, and analytic systems, and ii) circumstances in which hybrid 

systems might be especially effective.  The concrete example of satellite data presented in 

Chapter 1 illustrated a situation where all of these assumptions hold.  Though there are 

                                                           
2
 In production versions of Agrios it might be practical to limit the size of results (both intermediate and 

final) moved to R, since the memory capacity of the R component is likely substantially less than the 

aggregate memory capacity of the SciDB cluster.   

 Such limits may prove unnecessary, however, since many analyses and analytic tasks reduce the 

size of their inputs.   
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situations in which one or more of these assumptions fail, we believe our research is 

warranted because there are an adequate number of situations in which they are jointly 

satisfied.  Note, moreover, that the hybrid approach to scalable data analysis is still fairly 

new; there is relatively little information about properties of hybrid systems.  Given the 

paucity of our knowledge of hybrid systems and their potential utility for a variety of 

application, there is value in examining them and studying their properties.   

 

2.2 DEFINITIONS 

2.2.1 AGRIOS-SPECIFIC TERMS AND CONCEPTS 

To better understand Agrios we need to define a handful of terms and concepts:  

query, data object, plan, placement, shape, size, location, and staging.  The inputs to 

Agrios are queries or expressions; we use the terms interchangeably here.  An R script 

contains one or more R queries.  A query performs an analytic task, typically involving 

multiple operations on multiple data objects.  Let A and B be two-dimensional arrays of 

floating-point values.  The following R script contains a single query, and identifies the 

top three average scores, for a calculated value involving these two data objects: 

 result ← order ( 
     apply ( A + B,  
         1,  
         mean 
       ),   
      decreasing = TRUE ) [ 1:3 ]; 
 

The query is best understood by examining it from the inside out.  First, the arrays A and 

B are added together, elementwise.  Apply performs a specified operation – in this case 

finding the mean – across a specified dimension.  Here the mean is computed across the 
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columns of the input array; had the input parameter to apply been ‘2’ instead of ‘1’, the 

mean would have been calculated across rows.  Order sorts the column vector output by 

apply.  The values are sorted in decreasing order as specified in the function call.  Finally, 

the subscript operator selects the first three elements from the sorted column vector. 

Operators in queries are all logical; i.e. operators do not specify on which hybrid 

component the operator should be physically executed.  While queries use exclusively 

logical operators, plans use exclusively physical operators.  An operator in Agrios is 

physical if and only if it specifies at which hybrid component the operation is to be 

physically executed.
3
  In Agrios, there are two possible execution locations:  R and SciDB.  

Physical operators and logical operators are distinguished in Agrios by the presence or 

absence of an execution location:  a physical operator is annotated with a subscript 

indicating its execution location, while a logical operator is not.  For example, in a script 

the logical elementwise addition operator is identified as “+”, while its physical 

counterparts are identified as “+R” and “+SciDB”.    

A simple example illustrates both the distinction between logical operators and 

physical operators, and the distinction between queries and plans.  This expression is a 

query, since it contains only logical operators: 

    A + B 

Here is one plan that is logically equivalent to this query: 

      A +R B 

                                                           
3
 Note that according to these definitions, it is possible for a query to contain both logical and physical 

operators.  These queries are not addressed in our research.  For our purposes queries contain exclusively 

logical operators and plans contain exclusively physical operators; so far as our research is concerned, there 

are no interesting properties attaching to queries containing both logical and physical operators. 
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Note that it contains only physical operators, viz., the physical operator +R.  Here is a 

second plan, equivalent to both the query and plan above: 

     A +SciDB B 

Note that the logical operator + can be associated with two physical operators:  +R and 

+SciDB.  Similarly, multiple plans can be associated with a single query.  These facts are 

used by Agrios in its data movement minimization process. 

order(..., decreasing=TRUE )order(..., decreasing=TRUE )

A

++

B

apply(..., 1, mean)apply(..., 1, mean)

[ ][ ] 1:3

 

Figure 2.1.  A sample query, represented in tree form.  The tree leaf nodes are data objects stored either at 

R or SciDB.  Internal nodes are operations which generate intermediate results. 

 

Queries are often represented as trees, containing both leaf nodes and internal 

nodes.  Leaf nodes represent data objects, and internal nodes represent operations 

producing intermediate results.  A data object is a unit of information that can serve as the 

input to an operator.  Data objects are “bulk” inputs, and so distinguished from 

parameters, which can also be operator inputs.  Arrays and vectors containing empirical or 

simulated data are typical bulk inputs; parameter values are usually specified by the user 

or system at the time the query is written.  We assume that any data object at the leaf level 

of a query or plan has a fixed location:  R or SciDB.  Intermediate results are also data 
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objects.  In contrast with leaf-level data objects, prior to staging, intermediate results are 

not constrained to a particular location.  Figure 2.1 represents in tree form the query 

shown at the beginning of this section.   

C D

10

10

5

20 E20

20

F

10

10

 

Figure 2.2.  Several arrays with different properties:  C and D differ in shape but not size; C and E differ in 

size but not shape; C and F are identical in shape and size.  C is a 10 × 10 array of size 100; D is a 20 × 5 

array of size 100; E is a 20 × 20 array of size 400; F is a 10 × 10 array of size 100. 

Data objects have a number of important logical properties, including shape and 

size.  The number of dimensions an array has, together with the relative lengths of its 

dimensions, determines the array’s shape.  For our purposes, the size of an array is the 

count of its data elements, which is the product of its dimension lengths.  Several arrays 

with varying shapes and sizes are shown in Figure 2.2.   

 Data objects also have a number of physical properties.  In Agrios the most 

important physical property is location.  The location of a data object is the component of 

the hybrid system on which it is stored (if it is a leaf-level data object) or created (if it is 

an intermediate result).  In Agrios, leaf-level data objects are stored once, either at R or at 

SciDB.   If an operation creates an intermediate result, the location of that data object is 

the location at which the operation was performed (though Agrios may later move the 

object).  A placement is a complete assignment of locations to all leaf-level data objects 

in a query.  If a query has n leaf-level data objects, there are 2
n
 possible placements.   The 

query shown in Figure 2.3 has four possible placements:  i) A is stored at R and B at 
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SciDB, ii) A is stored at SciDB and B at R, iii) both A and B are stored at R, and iv) both 

A and B are stored at SciDB. 

A B
(SciDB)(SciDB) (R)(R)

A B A B

(a) (b)(i) (b)(ii)

(SciDB)(SciDB) (SciDB)(SciDB)(R)(R) (R)(R)

1010

1010 1010

11

%*%%*% %*%%*%

 

Figure 2.3. The amount of data moved during processing depends on where the computation is performed.  

The initial state of affairs is shown in (a):  the 10 × 10 array A is placed at SciDB (colored blue), and the 10 

× 1 array B is placed at R (colored grey).  In (b)(i) the matrix multiplication computation is performed at 

SciDB, and the result moved to R, for a total cost of 20.  The movement of input B to SciDB and the 

intermediate result to R is indicated with red arrows.  In (b)(ii) input A is moved at R and the computation 

is performed at R.  The total cost of (b)(ii) is 100.   
 

The final concept to define is staging.  A staging is a complete assignment of 

execution locations to a plan’s operators.  Here is one staging for our running example: 

   result ← orderSciDB  ( applySciDB (A +R B, 1, mean ),  

   decreasing = TRUE ) [ 1:3 ]R; 

 

Here is another staging: 

result ← orderSciDB  ( applySciDB ( A +SciDB B, 1, mean ), 

       decreasing = TRUE )[ 1:3 ]SciDB 

 

These two stagings differ in the execution location of the plan’s elementwise addition 

operation and its subscript operation.  The number of possible stagings is exponential in 
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the number of the query’s operators.  The process of staging – i.e. assigning execution 

locations to a query’s operators – transforms queries into plans.
4
   

Stagings are important because they effectively determine data movement during 

query execution.  Given a staging and a placement, we can determine what data needs to 

be moved where to execute the query.  The placement states where the input data objects 

are, and the staging states where the operations are to be performed.  If the execution 

location of an operation differs from the storage or generation locations of its inputs, the 

inputs must be moved.  Figure 2.3(b)(ii) illustrates how a staging and a placement 

determine data movement.  The placement in the figure locates data object A at SciDB 

and data object B at R; these locations are indicated by both the annotations and 

colorations of the leaf-level data objects.  The plan’s staging, also indicated by the 

annotation and coloration, executes the operation at R.  Given this placement and staging, 

data object A must be moved from SciDB to R.  This data movement is indicated in the 

figure by the red arrow. 

We noted in Chapter 1 that stagings can vary in the amount of data they move, for 

a given placement.  That is, two different stagings can have substantially different costs 

in terms of data movement.  Figure 2.3 also illustrates how different stagings can have 

different costs.  Compare the costs of the two possible stagings for our simple query 

multiplying matrices A and B.  Recall that the final result must be end up at R.  One 

staging – pictured in Figure 2.3(b)(i) – specifies that the multiplication should be 

performed at SciDB.  This staging has a cost of 20:  10 to move B from R to SciDB, and 

10 to move the final result from SciDB to R.  The alternative staging specifies that the 

                                                           
4
 The product of the staging process is a staging.  Though at first glance this situation seems to be ripe for 

confusion, in practice context or usage indicates the appropriate sense. 
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operation should be performed at R, as shown in Figure 2.3(b)(ii).  Using this staging, 

input A must be moved from SciDB to R, at a cost of 100.  

2.2.2 TERMS AND CONCEPTS IN RELATIONAL QUERY PROCESSING 

 

 Our approach to staging and data movement minimization is largely founded 

upon query-processing techniques pioneered by the database community.  Given this 

ancestry of our approach, it is important to examine relevant concepts and practices from 

relational-database query optimization.  This section will reveal the relational roots of 

some of the terms we just explored, and will also present some additional concepts from 

relational research:  query optimization, cost, search space, and rewrite rule. 

 In relational database management systems (RDBMS), the process of query 

optimization improves database performance by automatically identifying a good (or the 

best) implementation of a user-written query.  Even a remarkably inefficient query 

written by a ham-fisted SQL scripter may execute quickly within an RDBMS, thanks to 

the behind-the-scenes work of the optimizer.  Optimizers help create an important 

abstraction between logical queries and the physical details of the objects stored in the 

database.   We noted in Chapter 1 that this abstraction means that database users need not 

incorporate into their query facts about how the data is stored, or how the data should be 

accessed or searched.  Put another way, the abstraction created in part by the optimizer 

lets query authors focus on specifying what information they want from the database, 

rather than how they wish that information to be retrieved.  Similarly, Agrios lets users 

analyze data without knowing where their data is stored, and without specifying where 

operations should be performed.  Agrios is performing a kind of query optimization, 
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though since we are concerned with minimizing data movement, in the context of Agrios 

we refer to the optimization process as staging.  

Agrios’ distinction between logical operators and physical operators originated in 

relational database research.  Recall that in Agrios, an operator is physical if and only if it 

specifies at which hybrid component the operation is to be executed; all other operators 

are logical.  In the case of relational databases, physical operators specify a particular 

algorithmic implementation of an operation, while logical operators do not.  (Certain 

algorithmic implementations may also require that inputs have particular physical 

properties.  For example, a common implementation of the MERGE JOIN physical 

operator requires that both inputs have the physical property of being sorted.)   

In both relational systems and Agrios, logical operators indicate only that an 

operation must be performed; implementation details of the operation are specified in 

both systems only by the physical operator.  These details might include a particular 

algorithmic implementation specifying how the operation is to be performed – as in the 

case of relational systems – or include a particular execution location specifying where 

the operation is to be performed – as in the case of Agrios.   

Each logical operator is paired with one or more physical operators.  In relational 

systems, for a given logical operator there is one physical operator for each of the 

algorithms implementing the operation.  An example of a logical operator in an RDBMS 

is GET.  The GET logical operator accesses the specified data object:  GET(A) accesses 

data object A.  FILE SCAN and INDEX SCAN are two common physical operators 

paired with the GET logical operator.  These two physical operators each specify a 

particular method for accessing physical records stored in the RDBMS.  Because each 
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logical operator can typically be implemented using one of several physical operators, as 

is the case with Agrios, there is often one more than one plan that is logically equivalent 

to a particular query.  Consider the relational query: 

GET(A) 

Equivalent to the query above are the two plans: 

FILE SCAN(A) 

and 

INDEX SCAN(A) 

Logically, these two plans and one query are all pairwise equivalent.  (This situation is 

similar to the Agrios query A + B and its two equivalent plans A +R B and A +SciDB B.)   

The performance of these two plans, however, most likely differ from one 

another.  This performance difference is captured as a cost, another important concept 

from relational query optimization used in our research.  Cost is what allows comparison 

of one plan to another:  in general, the least expensive plan is the preferred plan.   

The particular cost metric used in a system depends on the application; in some 

cases the less expensive plan is one that is faster, or one that requires less energy, or one 

that uses fewer system resources, such as disk accesses.  Most relational systems are 

especially concerned with query latency.  These systems place special important on costs 

related to I/O, as they typically dominate query-processing time.  Costs are more 

accurately described as cost estimates, as plan costs are calculated prior to query 

processing based on the cost model and facts about the query and input data objects.  

That plan costs are only estimates is typically not a problem, since costs are used 

primarily to compare plans to one another, not to compare a plan cost with a particular 
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target cost.
5
  As such, cost estimates only have to be sufficiently accurate to rank plans 

against one another.  Agrios’ cost model, examined in depth in subsequent chapters, is 

concerned with data movement between hybrid components.  In Agrios the lowest-cost 

plan is referred to as the movement-minimizing plan.  

The collection of queries and plans logically equivalent to the user-written query 

form the optimizer’s search space.  From a process perspective, the job of an optimizer is 

to explore the search space and identify the plan with the lowest cost.  In Agrios, the 

search space is explored to find the plan that moves the least amount of data.  Intuitively, 

the larger the search space the better, since the more plans that are in the search space the 

greater the odds the search space contains a low-cost plan.  Things are not this simple in 

practice, and the subtleties of the search space are explored in Chapter 3.  Subtleties 

aside, the intuition has merit, and we operate under the assumption that barring additional 

constraints, the larger the search space, the better.  

A search space contains plans and queries logically equivalent to a user-written 

query.  A search space is populated through rewrite rules; these rules rewrite queries into  

equivalent queries, or queries into equivalent plans.  Transformation rules rewrite queries 

into equivalent queries, and implementation rules rewrite queries into plans.   

Rules are often articulated as conditionals, and the process of applying rules is 

framed as a pattern-matching process.  Suppose a relational optimizer’s search space 

contains the query:  

A JOIN B 

                                                           
5
 There are exceptions to this, e.g. when systems let users specify hard limits to costs, e.g. a maximum 

permissible query-processing time. 
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and that the optimizer contains the following commute rewrite rule (expressed as a 

conditional): 

If X JOIN Y, then Y JOIN X 

The form of the query here matches the antecedent of the conditional.  Because of the 

match, the query B JOIN A is added to the search space.  This particular example uses a 

transformation rule to rewrite a query into an equivalent query.  Adding a plan to the 

search space through the application of an implementation rule to a query proceeds in a 

similar manner. 

Rules apply at the level of individual operations.  Multiple rule applications may 

be required to generate a particular equivalent query or plan.  Consider a query 

containing two join operations, which are parenthesized here for clarity: 

A JOIN (B JOIN C) 

A single application of the commute rule can produce this query: 

(B JOIN C) JOIN A 

or this query: 

A JOIN (C JOIN B) 

but it cannot create this query: 

 (C JOIN B) JOIN A 

because it requires two applications of the commute rule. 

In order to create this query: 

 (C JOIN B) JOIN A 

the commute rule must be applied twice:  once to the original query, and once to the 

query generated by the application of the first rule application. 
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Let us fix all the concepts we examined with an example.  The example will help 

clarify the meanings of query, plan, logical operator, and physical operator, and 

illustrate the query optimization process, including how both transformation rules and 

implementation rules are used to populate the search space.  We build off the example 

above to illustrate the optimization process in its entirety for relational database systems.  

Since staging is a form of optimization, clearly understanding how relational optimization 

works will aid in understanding how staging works, when presented in Chapters 3 and 4.   

 John writes a simple query on a relational database containing relations A and B.  

In this particular database system there are two join algorithms implemented, each of 

which is a physical operator:  merge join, and hash join.  This relational database 

optimizer includes three rules: 

IF X JOIN Y, THEN Y JOIN X 

IF X JOIN Y, THEN X JOINMERGE Y 

IF X JOIN Y, THEN X JOINHASH Y 

The first rule is a transformation rule, the second and third rules are implementation rules.  

John’s query joins the two relations: 

A JOIN B 

This statement represents a query, not a plan, because the only operation in the query – 

the join – is a logical operator.  The join operator in this query states neither how (nor 

where) the join is to be performed, only that it is to be performed, and on which 

arguments.  Through application of the first transformation rule, the user-written query: 

A JOIN B 

is transformed into the equivalent query: 
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B JOIN A 

This query is added to the search space.  Application of the second and third rewrite rules 

to the user-written query generates two plans: 

A JOINMERGE B 

A JOINHASH B 

The physical operators in these plans state how the join is to be performed, unlike the 

logical join operator which only states that a join must occur.  Similarly, application of 

the second and third rules transforms the query: 

B JOIN A 

into two equivalent plans: 

B JOINMERGE A 

B JOINHASH A 

The optimizer’s search space now consists of the two queries and four plans
6
: 

A JOIN B 

B JOIN A 

A JOINMERGE B 

A JOINHASH B 

B JOINMERGE A 

B JOINHASH A 

A cost estimate is now assigned to each of the four plans in the search space.  Since the 

goal of query optimization is the best implementation of a query written by the user – i.e. 

                                                           
6
 Readers may note that in this example we omit the logical GET operation and its physical counterpart(s).  

This is intentional:  our focus here is not to precisely portray the internal operations of a relational 

optimizer, but to illustrate how rewrite rules are used to populate a search space, and how costs are used in 

selecting one plan over another. 
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the best plan for executing the query – the query optimizer selects for execution the plan 

with the lowest-cost estimate.   

 This overview of relational query optimization illustrates the important concepts 

in query optimization.  Some of the concepts are new to our research, and some are 

extensions of concepts used in relational database query optimization.  In Chapters 3 and 

4 we build off of this example to examine how queries are optimized by Agrios to 

minimize data movement. 

 

2.3 BACKGROUND 

 Our research builds upon related work in several areas; we examine that work 

here.  The first section below addresses the two main components of Agrios.  The second 

and third sections below address the two research areas most relevant to our work:  

hybrid analytic systems and query optimization.   

2.3.1 R, ARRAY DATABASES, AND SCIDB 

R and SciDB are the primary components of the Agrios hybrid system.  Our 

purpose in this section is to introduce the systems in historical context.  In Chapter 4 we 

look at both systems in greater technical depth, also justifying their use in our hybrid 

system.  

R 

 R is a programming language and computing environment based on the S system 

developed at Bell Labs [16].  At the time of writing, R is enjoying widespread use among 

data scientists [17-18].  Ross Ihaka and Robert Gentleman released the first version of R 
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in the late 1990s under an open source license.  Since then the software has undergone 

four major revisions and spawned at least one company offering commercial 

deployments.   

R is expressly dedicated to data analysis, providing a wide range of statistical 

methods and machine-learning techniques.  Many of these analytic methods ship with the 

core version of the system, and many more are available through thousands of user-

developed “packages” extending the core system’s functionality [19].  In part because 

many analytic techniques involve linear algebra operations, R has an array data model 

recognizing vectors and arrays as fundamental data objects.  Though elements of vectors 

and arrays can be individually accessed, R functions can also operate upon vectors and 

arrays in their entirety.  

Array Databases and SciDB 

While some of the more commonly used database systems have a relational data 

model, there are databases with array data models.  Array database development was 

driven largely by the observation that the relational data model was not well-suited for 

representing many datasets from science and engineering [20-21].  Data in these fields is 

often modeled as multidimensional arrays, not relations.  Though array-modeled data can 

be mapped into a relational data model, researchers recognized that there would be 

benefits to a database explicitly designed around an array data model.  Such systems are 

Array Data Base Management Systems, or ADBMS. 

Kersten et al. note that there are three main types of array database management 

systems [22-23].  In the first type, arrays are “simulated” on top of a standard relational 

system through an RDBMS’ extensibility mechanisms.  This is the approach favored by 
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RAM, AQuery, and some Microsoft systems.  RAM is built upon the MonetDB column-

store relational database.  Queries operating on arrays, written in the RAM language, are 

translated by RAM into queries operating on relations [24].  AQuery is also an ADBMS 

implemented on top of a relational database.  AQuery’s data model defines an object type 

called “arrables”, a portmanteau of “array tables” [25].  Logically, arrables are arrays, but 

physically they are stored and operated upon as relations.  Users operate on arrables 

through extensions to the SQL language. 

While the first approach incorporates arrays into an RDMBS using the 

extensibility features of the underlying relational database, the second solution modifies 

core components of an extant relational database system.  RasDaMan – short for “Raster 

Data Manager” – takes this approach.  It is designed primarily for use with image data, 

with the original version built from a modified version of the O2 Object Database 

Management System [26-27].  Unlike systems that “simulate” arrays on top of extended 

relational systems, in the interests of performance and usability RasDaMan made 

substantial changes to O2’s storage manager and optimizer.  Users query the system 

using the language RasQL, an SQL-like language.  Current versions of RasDaMan work 

with both open-source and commercial RDBMS systems.  Relations remain the primary 

data structure in RasDaMan’s current implementation, with arrays being represented as a 

new column type. 

The third approach constructs an ADBMS from scratch.  SciDB is an example of 

this approach [21, 28-29].  SciDB is neither an extended nor heavily modified RDBMS, 

but is designed from the ground up to operate exclusively on array-modeled data.  Work 

began on the system in the late 2000s, including a series of workshops involving both 
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scientists and database researchers.  Many of the design requirements elucidated in these 

workshops have since been implemented in SciDB.  Unlike most relational systems, data 

analysis tasks are supported through high-level native array operators.  The system 

supports two query languages, an algebraic language AFL and an SQL-like language 

AQL.  SciDB is designed for deployment and easy scalability on a computing cluster or 

cloud infrastructure, and performance tests show that, for many analytic tasks on large 

datasets, SciDB outperforms at least relational databases [14].  However, to the best of 

our knowledge, direct comparison of SciDB to the other two types of array database 

implementations mentioned above has not been performed. 

2.3.2 HYBRID ANALYTIC SYSTEMS 

 To date, a number of hybrid analytic systems have been built.  These systems, like 

Agrios, were not constructed for the sake of building a hybrid system, but because the 

hybrid approach showed promise for scalable data analysis.  Recall from Chapter 1 the 

prima facie benefits of a hybrid approach:  the analytic tool provides sophisticated 

analytic capabilities and a familiar interface to data scientists, and the data management 

system efficiently performs lower-level analytic tasks on large, disk-resident data.  

 Many of these hybrid systems use R as the analytic component.  We can divide 

such systems into three main categories, depending on the system with which R is 

integrated:  i)  Hadoop, ii)  a DBMS, or iii)  a proprietary data management system.  

 RHIPE and Ricardo both integrate R with the Hadoop/HDFS software stack, an 

open-source implementation of Google’s MapReduce/GFS architecture [10, 30].  With 

RHIPE, large datasets are stored as replicated, partitioned objects in the HDFS file 

system.  The data can be operated upon in parallel, in multiple locations, by different 
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processes:  an R process at a single coordinator node, R processes on multiple worker 

nodes within the Hadoop cluster, or Hadoop worker nodes not running R at all.  Data 

scientists are responsible for distributing their data across the Hadoop cluster, writing 

scripts for processing the data, and writing scripts for aggregating results.  A core 

component of RHIPE is its interface, written in R, modeled on Hadoop’s Java API.  To 

utilize RHIPE, R users must refactor their R scripts to accord with the MapReduce 

execution paradigm.  As a hybrid system, RHIPE has two clear benefits.  First, many of 

the benefits provided by the Hadoop/HDFS framework transfer over to RHIPE:  e.g. the 

Hadoop/HDFS framework provides fault tolerance and manages parallel computation on 

large datasets (provided that the analytic work is correctly programmed in the 

MapReduce paradigm).  Second, since RHIPE is essentially an R wrapper around the 

Java Hadoop API, RHIPE relieves data scientists from the burden of learning Java.  

 Unlike Agrios, Ricardo requires its users to break down analytic work into two 

parts: those performed by R, and those performed by Hadoop.  Data scientists are 

responsible for dividing up the work.  Ricardo provides no R wrapper around the Hadoop 

API, as RHIPE does.  Ricardo instead requires users to write scripts for execution in 

Hadoop using Jaql, one of several higher-level languages used in Hadoop development.  

Ricardo users are also responsible for writing a specialized R “control script” that 

manages the flow of control within the analysis.  When work is to be performed at 

Hadoop, the control script ships the appropriate user-written scripts (written in the Jaql 

language) to Hadoop worker nodes, and collects the results of work done by them.  In 

addition to managing workflow, the control R script may also perform some analysis.  As 
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with RHIPE, the benefits provided by the Hadoop/MapReduce framework transfer to 

Ricardo.   

 Importantly, Ricardo’s designers explicitly acknowledge that, in the interests of 

performance, data movement should be minimized between R and Hadoop [10].  Rather 

than automatically minimize this data movement, however, Ricardo provides only a 

framework for doing so.  Using Ricardo for an analytic task (such as modeling) “requires 

a decomposition of the modeling into a small-data part, which R handles, and a large-data 

part, which Hadoop handles” [10].  Ricardo users are responsible for performing this 

decomposition.  Though in some cases the decomposition is straightforward, a good 

decomposition can be challenging, in some cases requiring expert knowledge in multiple 

domains:  Hadoop programming, the relevant machine learning or statistical methods, 

and the subject matter under investigation. 

 R-Op, RIOT-DB, and SciDB-R exemplify the second type of R integration.  R-Op 

integrates R not with the Hadoop/HDFS stack, but with the SAP HANA relational 

database [9].  HANA is optimized for storing and parallel-processing large in-memory 

datasets.  Its integration with R provides a framework for the parallelization of R 

operations.  Queries in R-Op are programmed as SAP calcModels, a dataflow 

programming model using a proprietary query language.  Operators in calcModels can be 

“native” HANA operators or operators written by a user.  Custom operators may execute 

programs written in other languages (such as R).  R scripts executed within HANA 

operate on R data frames, an R data type roughly analogous to a relational database table.  

At runtime, the HANA executor runs the input calcModel program.  If the calcModel has 

been designed to do so, HANA may perform the specified operations in parallel.  If some 
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calcModel operators are custom ones invoking R scripts, the HANA executor spawns R 

processes that execute the scripts.  R scripts can thus be parallelized inside HANA.  This 

parallelization of the computation within the database is R-Op’s primary benefit as a 

hybrid system; work can be performed not only in parallel, but also “close to the data.”   

 R-Op differs from Agrios in some of the same ways that Ricardo differs from 

Agrios.  R-Op requires the user to use new languages (HANA’s calcModel) in addition to 

R, and to use a programming paradigm other than R’s imperative-functional paradigm.  

The utility of a calcModel depends on the data scientist’s script-writing talents, and his or 

her familiarity with HANA’s abilities.  The designers of R-Op acknowledge this 

limitation explicitly, stating that “... calcModels need to be modeled thoughtfully if the 

integration [of R scripts] is to fully utilize the capabilities of the parallelization 

framework” [9].  Though R-Op gives data scientists the ability to reduce data movement 

by performing analyses “close to the data,” data movement reductions are the 

responsibility of the data scientist; they are not automated. 

 RIOT-DB integrates R with a MySQL relational database [15, 31].  RIOT stands 

for “R with I/O Transparency.”  Large datasets are stored in the RDBMS, with 

computations on the data performed either at R or within the database.  RIOT is 

noteworthy in that it defers the evaluation of queries until necessary, e.g. until 

computation is prompted by a print statement.  While deferring execution, RIOT 

accumulates multiple queries into one, which is then processed by the optimizer and 

executed.  As complex queries yield a larger number of optimization opportunities, the 

chance of the optimizer finding a lower-cost query increases.   
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 RIOT-DB has several benefits as a hybrid system.  First, data stored within the 

database is operated upon there.  For simple analyses of datasets whose size exceeds 

main memory, operating on the data in the database may be faster than operating on the 

data within R.  Operating on the data within the database also lets RIOT utilize the power 

of the MySQL optimizer to determine the best plan implementing the user-written query.  

Second, RIOT-DB lets data scientists use the same script to analyze datasets regardless of 

where they are stored in the hybrid system – this feature provides the transparency 

promised by the “T” in “RIOT”.  This transparency is a kind of physical data 

independence, a desideratum for good analytic systems we mentioned in Chapter 1.  

Though RIOT provides physical data independence from the data, the system does not 

attempt to reduce data movement between R and the MySQL database. 

 SciDB-R integrates R not with a relational DBMS, but with the array DBMS 

SciDB.  Paradigm4, a private company with close ties to SciDB, developed SciDB-R; it 

is implemented as an R package [32-33].  Arrays stored in SciDB are represented in R’s 

process space as objects of the R type scidbdf or scidb.  Objects of these types serve 

as proxies for SciDB arrays, and contain relevant metadata about the arrays.  For a 

limited number of operations, R users can use these proxy objects to operate on SciDB 

arrays, often with minimal or no modifications to standard R code.  This feature is 

attractive, as it offers a measure of physical data independence to the integration.  For 

SciDB operations with no analogue in R, users may explicitly ship AQL or AFL queries 

from R to SciDB using a wrapper function provided by the package.   

Data movement is handled by the package in two ways.  Objects can be explicitly 

moved between systems.  This method for moving data from R to SciDB is 
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recommended for the sake of convenience only, as it is “far from the most efficient way 

to import data into SciDB” [32].  Alternatively, some functions move data objects 

automatically from R to SciDB.  Automatic movement occurs when the R interpreter 

encounters queries containing both data objects stored at R and data objects stored at 

SciDB.  In such cases, the R objects are automatically moved from R to SciDB and stored 

there as temporary arrays.  The computation is performed at SciDB, the result stored 

there, and a new proxy object for the result created in R.  This method of moving data is 

also inefficient and not recommended for use.  Finally, note that if the user requires the 

result at R it must be explicitly moved from SciDB to R.   

 There are a number of differences between Agrios and the SciDB-R package, the 

key difference being the fact that only Agrios automatically minimizes data movement 

between R and SciDB.  As with systems like Ricardo, if SciDB-R users wish to minimize 

data movement between components the responsibility for doing so is theirs alone.   In a 

number of ways, however, Agrios and SciDB-R are similar.  Both use local objects in R 

as proxies for SciDB arrays, and both automatically translate a number of R operations 

into their AFL equivalent. 

 The third approach is instantiated by a modification of the RIOT-DB system.  

RIOT (with no “-DB”), is an integration of R with a special-purpose storage system 

developed by the RIOT-DB team.  We noted previously that relational databases often 

exhibit poor performance executing complex analytic tasks such as those involving linear 

algebra operations.  Likely motivated by this shortcoming of relational systems, the 

purpose-built storage system used in RIOT outperforms relational databases at common 

analytic operations [15, 31].  RIOT provides the same transparency and physical data 
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independence as RIOT-DB, though since unlike RIOT-DB the hybrid does not use 

MySQL, it cannot utilize the refined MySQL optimizer to reduce query-execution time.   

 While presenting these alternative hybrid systems we examined differences 

between them and Agrios.  None of these systems automatically minimize data 

movement between hybrid components; the fact that they do not do so is the key 

difference between them and Agrios.  In addition, many of these hybrid systems fail to 

satisfy one or more of the design guidelines articulated at the end of Chapter 1.  RIOT 

and RIOT-DB, however, are laudable for providing physical data independence; an R 

script can be used in RIOT and RIOT-DB, regardless of whether the data is stored in R or 

in the data-management hybrid component.     

  We mention here several other hybrid systems that have been developed in recent 

years.  Revolution Analytics has developed an analytic system known as “Revolution 

Enterprise.”  The system appears to be an amalgam of R and numerous tools for 

processing large datasets, including Hadoop and out-of-core algorithm libraries.  (It is 

worth noting that in recent years RHIPE’s lead designer was employed by Revolution 

Analytics.)  Another new hybrid system does not use R:  SAS, an analytics platform 

similar to R, partnered with Teradata in providing system similar to RIOT and R-Op.  As 

both Revolution Enterprise and the SAS/Teradata hybrid are  commercial systems, there 

is less visibility into their inner workings than there is into the research systems discussed 

above.  Primarily for this reason we did not investigate them deeply.  Based on the 

publicly available details of these systems, however, most (if not all) of the research 

challenges faced by these systems are also confronted by RHIPE, Ricardo, R-Op, RIOT, 
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and RIOT-DB.  Mutatis mutandis our research results can likely be applied to these two 

commercial systems. 

2.3.3 QUERY OPTIMIZATION 

 As discussed earlier in this chapter, the staging process performed by Agrios to 

minimize data movement is built upon proven techniques from query optimization.  

Given this conceptual foundation, we must consider some key developments in query 

optimization research.  Since the lion’s share of query optimization work has been 

performed on relational databases, we focus primarily on relational database optimizers. 

Cost-based optimizers 

 IBM’s System R introduced dynamic programming into optimization, 

guaranteeing discovery of an optimal plan, within a defined set of constraints [34].  

System R also was the first optimizer that used cost estimates in plan selection.  

 The Exodus Optimizer Generator differs from System R in two significant ways 

[35].  First, in contrast to System R’s “bottom up” dynamic programming methodology, 

Exodus uses “top down” memoization. Second, while possible query transformations are 

hard-wired into System R, in Exodus, allowable transformations are stated by a set of 

user-defined rules.  Exodus is extensible by design; System R is not.  Work on Exodus 

also identified a distinction between two rule types that persists to present-day: 

transformation rules and implementation rules.  The input of both rule types is a query, 

and the output of both a logically equivalent query or plan.  The key difference is that the 

input and output queries of transformation rules contain only logical operators, while the 

inputs and outputs of implementation rules may contain physical operators.  Recall our 

discussion above about the difference between queries (or expressions) and plans.  
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Roughly: we apply transformation rules to queries to generate additional queries, and we 

apply implementation rules to queries to generate plans.  The distinction between rule 

types is important since it enables the division of the optimizer’s work into the creation of 

queries, and the creation of plans.     

 Volcano built off of Exodus, and is another extensible, rule-based, top-down 

optimizer [36].  Volcano explores the plan space using what it terms “directed dynamic 

programming,” similar to the top-down memoization used by Exodus.  The key 

contribution made by Volcano is the fact that it prunes suboptimal plans and subplans 

from the search space, prior to costing them.  This pruning strategy means that the 

optimizer spends less time doing its job, decreasing query-processing latency.   

 The Cascades optimizer builds off of the basic framework of Volcano, and 

remains in use in Microsoft’s current SQL Server product [37-38].  Like Volcano, 

Cascades is extensible through the definition of user-defined rules.  Cascades also 

recognizes the distinction between transformation rules and implementation rules, and 

utilizes top-down memoization.  The primary difference between Cascades and Volcano 

lies in the details of the search space expansion.  At each level of evaluation, Volcano 

articulates all queries equivalent to the input query, prior to exploring physical plans.  

Cascades, by contrast, immediately begins applying implementation rules and examining 

physical plans generated by the initial query.  This strategy allows Cascades to prune 

suboptimal plans earlier in the optimization process than Volcano, resulting in less time 

spent exploring suboptimal plans.  The Columbia optimizer builds off of the Cascades 

framework [39].  Both systems guarantee identification of the optimal plan, where the 

optimal plan is defined as the lowest-cost plan, per the optimizer’s cost model.  Both 
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systems also use dynamic programming to identify the optimal plan; Columbia differs 

from Cascades in that the former uses a more aggressive pruning strategy than the latter.   

 Cascades and Columbia are also noteworthy because they are extensible by 

design; they refine this design aspect of Exodus.  Many elements of the system can be 

modified with relative ease, including their rule sets and cost models.  Adding new 

operators and properties – both logical and physical – requires primarily only the addition 

of several new C++ objects to the codebase.  This easy extensibility makes Cascades and 

Columbia valuable as research platforms.   

Distributed database optimization 

 Distributed database query optimization is a special subfield of query 

optimization.  As with hybrid systems, query processing on distributed databases may 

require moving data between components of the distributed database.  Researchers in the 

distributed database field noted the negative performance impact potentially caused by 

data movement.  Various strategies were explored in an effort to reduce data movement.  

One approach utilized new algorithms for performing common relational operations, such 

as distributed versions of semijoin algorithms.   

 Let us take a close look at one such algorithm.  Semijoins comes in two variants:  

left semijoins and right semijoins.  A left semijoin joins two relations R and S, and its 

output is all tuples from R for which there is a match in S on common attribute names.
7
  

Assuming that R and S are stored at different locations in the distributed database, a naïve 

implementation of a distributed semijoin algorithm either ships R in its entirety to the 

location at which S is stored, or vice versa.  Once both relations are colocated, the join 

                                                           
7
 The process is very similar for a right semijoin.  For ease of exposition we consider only the case of a 

distributed left semijoin. 
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operation is performed.  The key to the design of a distributed semijoin algorithm was 

identified by Bernstein et al:  in order to perform a left semijoin between R and S, not all 

attributes of relation S are required, but only those common between R and S [40].  A 

distributed left semijoin of R and S, then, proceeds in several steps.  Assuming that R and 

S are stored at different locations, the join attributes in R are first projected and shipped 

to S’s storage location.  Using the values of these shipped attributes, relation S is then 

“reduced” through the elimination of tuples without matches in R.  The matching rows 

from S are then shipped from S’s storage location to R’s storage location, where the join 

is performed.  Though this distributed semijoin algorithm requires two separate data 

movement operations, the “reduction” step may reduce overall data movement when 

compared to the naïve version of a distributed semijoin.    

While our work does not explore the utility of new algorithms for reducing data 

movement in hybrid systems, such approaches may prove useful.  Researchers interested 

in pursuing this approach in hybrid systems should first consider whether or not such an 

approach is suitable for an array data model.  The benefit of the distributed semijoin 

algorithm described above, for example, depends upon particular attribute values in the 

relations being joined.  The degree of “reduction” – which affects the degree to which 

data movement is reduced – depends on the number of attribute values common to the 

two relations being joined.  The algorithm thus depends on the content of the two data 

object.  Array databases, like the relational systems for which the distributed semijoin 

algorithm was designed, include content-dependent operators.  However, many array 

database operators are not content-dependent, instead depending upon the shape of the 

input data object.  There may be shape-dependent analogues to the distributed semijoin 
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algorithm, and these analogues may reduce data movement in hybrid systems.  But 

identification of such algorithms remains an open research question.  It must also be 

noted that in most distributed database systems, distributed semijoin algorithms are 

applied regardless of whether or not they actually reduce data movement – it is simply 

assumed that they do so.  This differs from our work, as distributed versions of the 

semijoin algorithm would be applied only if the movement-minimizing plan actually was 

estimated to reduce data movement.    

  New algorithms are but one approach for reducing data movement in distributed 

database query optimization.  Two other approaches have some similarities to our work; 

one approach reduces data movement through selection of join locations.  Much of the 

research on this front has been conducted by D. Kossman and colleagues [41-42].  

Kossman’s work simulated a query optimizer capable not only of commuting and 

reassociating its join inputs, but capable of changing the execution locations of joins.  His 

strategy for determining what data to move is founded on a semi-random simulated 

annealing algorithm.  Kossman’s algorithm often reduces data movement but does not 

guarantee that the minimal amount of data will be moved.  A similar approach is 

addressed by Cornacchia, Papadimos, and Maier.  After confirming that logically 

equivalent queries with different physical plans may differ in the optimal distribution of 

data for processing, Cornacchia demonstrates that a simple cost model is effective in 

determining how to distribute the constituent operations of a query, to a coordinator and 

worker nodes [43].  Papadimos and Maier extend the work of Kossman, relaxing 

Kossman’s requirement that query plan construction fall exclusively under the purview of 

a coordinator node [44].  Using their “mutant query plans,” processing nodes dynamically 
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adjust the execution locations of their sub-plans by consulting local resources.  They 

demonstrate that by mutating query plans, the amount of data transferred during query 

processing is less than that of the same query processed according to traditional 

distributed query-processing protocols.  In sketching some details of how queries are 

mutated, the authors explore the possibility of rewriting queries to reduce the movement 

of data, partly anticipating our work here. 

 Another approach similar to ours is the Pyxis project under development at MIT 

[45].  Pyxis is a middleware system for deployment between an RDBMS and applications 

built upon the RDMBS.  Pyxis automatically partitions the application code into two 

categories:  code to be executed on the application side, code to be executed on the 

database side.  The optimal partition is determined through a binary integer-programming 

solver.  Though there are similarities between Pyxis and our work, there are several 

important differences.  Pyxis does not perform transformations to the application code 

prior to optimization; the code that is written is the code that is optimized.  Pyxis is also 

developed around a relational data model, not an array data model.  The difference in 

data models is most significant with respect to the cost models used between Agrios and 

Pyxis.  Since Agrios uses an array data model, size estimates for many operations can be 

explicitly calculated from the size of the input and applicable parameters.  By contrast, 

Pyxis profiles previously-executed queries to develop size estimates of operator outputs.  

Query profiling is one possible technique for estimating result size, should Agrios be 

extended to include content-dependent operations (though we suspect use of database 

statistics will be a more useful technique for size estimation). 
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2.4 CONCLUSION 

Our review of related work examined research areas and tools most relevant to 

our work.  We examined both R and SciDB, the primary components of Agrios.  In later 

chapters we take a closer look at both of these systems, both examining their limitations 

and articulating why they are well-suited for integration into a hybrid system.   

We also examined a number of extant hybrid systems.  These systems 

successfully integrate R with data management systems, moving data between the two 

components as required.  None of these systems, however, automatically minimizes data 

movement between the two systems.  Techniques adapted from relational database query 

optimization show promise for automatically minimizing data movement in hybrid 

systems.  Because these techniques appear applicable, we examined related work from 

relevant areas in query optimization.  
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CHAPTER 3:  AGRIOS’ CONCEPTUAL MODEL 

 

 

 In the previous chapter we introduced the concepts and terms relevant to 

minimizing data movement in hybrid systems.  In this chapter, we use those terms to 

explain at a conceptual level how Agrios automatically minimizes data movement 

between R and SciDB.  Readers eager for the implementation details of the techniques 

described in this chapter must wait until Chapter 4; also discussed there are details of 

Agrios components not directly involved with reducing data movement.   

 We begin by articulating a research question and the related research hypothesis.   

 Research question:  How can we automatically minimize data movement in a 

hybrid analytic system? 

We argue that minimization of data movement can be automated, through the application 

and refinement of optimization techniques and frameworks originating in relational 

database research.   

 Hypothesis:  Data movement in a hybrid system can be automatically minimized 

through the application of techniques derived from relational database query 

optimization.  These techniques are:  i)  staging, ii)  query rewriting through the 

application of rewrite rules, and iii)   query accumulation.   

Together, these three techniques make up Agrios’ staging process, working alone (in 

some cases) or working in concert with one another to reduce data movement.  Staging is 

the part of the staging process that creates plans equivalent to the user-written query, and 

selects the best one.  The alternative plans created during staging differ only in their 
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execution locations.  The structure of the plans for all alternative plans is identical.  

Staging is the “heart” of the staging process, and is always performed, regardless of 

whether or not query rewriting and query accumulation is also performed.   

 Staging can be augmented through query rewriting.  Query rewriting through 

application of rewrite rules helps minimize data movement by generating queries that 

differ structurally from the user-written query.  The newly-generated queries indirectly 

increase the number of alternative plans explored by the stager during staging.  These 

new plans may be less expensive than the plans generated from the query input to the 

rewrite rule.  

 Staging can also be augmented through query accumulation.  Accumulation helps 

minimize data movement by increasing the size of the query considered during staging 

and query rewriting.  Query size is especially important for query rewriting, since the 

applicability of rewrite rules is dependent upon the query having particular substructures.  

Accumulation increases the size of the query, and all things being equal, the larger the 

query, the greater the likelihood of the query having a structure that either directly 

reduces data movement or enables reductions in data movement. 

 An example illustrates how each of the three techniques work, and how the 

techniques can work together.  Consider a script containing two queries, where matrix 

multiplication is performed on data objects: 

   D <- (A %*% B) %*% C; 
   F <- D %*% E; 
 

Suppose too that only staging is used to reduce data movement.  When performing 

staging, Agrios considers one input query at a time.  It first considers the plans that are 
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equivalent to the first query.  Each staging creates one plan.  For the first query in our 

example, there are four possible plans: 

   (A %*%R B) %*% R C 

   (A %*% SciDB B) %*%SciDB C 

   (A %*% R B) %*% SciDB C 

   (A %*% SciDB B) %*% R C 

 

Agrios assigns each plan a cost based on the locations of inputs and operations, then 

selects the least expensive plan for evaluation.  This process is then repeated for the 

second query in the script.  The ultimate result of the staging process for the two-query 

script written by the user is two plans.  The first plan is the movement-minimizing plan 

for the first user-written query, the second plan the movement-minimizing plan for the 

second user-written query.   

 Let us walk through the example again, this time also performing query rewriting 

during the staging process.  To keep the example simple, assume that the only possible 

rewrite is a left-to-right association.  When performing query rewriting during the staging 

process, Agrios rewrites queries into other queries logically identical to, but structurally 

different from, the user-written query.  In this example, when using query rewriting and 

staging in conjunction, during the staging process Agrios considers not only the four 

plans stated above (when only staging was used), but also these four plans generated by 

staging a left-to-right associative rewrite of the first user-written query: 

   A %*% R (B %*% R C) 

   A %*% SciDB (B %*% SciDB C) 

   A %*% R (B %*% SciDB C) 

   A %*% SciDB (B %*% R C) 

 

In this particular case there are twice the number of candidate plans in Agrios’ search 

space as there were when performing only staging.  One of these four new plans might 
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move less data than one of the original four plans considered during staging.  The value 

of query rewriting is that it increases the number of alternative plans considered by the 

stager.     

 Let us walk through the example a final time, using all three techniques Agrios 

uses to minimize data movement:  staging, query accumulation and query rewriting.  

When query accumulation is performed during staging, Agrios aggregates multiple 

queries into one query, if permissible.  In our example, since the output of one query is an 

input to the other query, using query accumulation Agrios combines the two original 

queries into a single query: 

   ((A %*% B) %*% C) %*% E; 

(Additional parentheses are added to this query to aid understanding.)  This accumulated 

query could then be rewritten into equivalent queries through one or more left-to-right 

associate transformations.  This query rewriting results in a number of additional 

equivalent queries, each associated with 2
4
 plans – far more plans than when staging, or 

query rewriting with staging, are performed in isolation.  Given the wealth of plans, 

Agrios has more plans to choose from when searching for the movement-minimizing 

plan. 

 This example provided an overview of how these three techniques minimize data 

movement.  Let us now examine how Agrios performs each technique.  We begin with a 

high-level overview, then examining particular parts – viz. staging and query rewriting – 

in detail.   
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3. 1  AGRIOS AS OPTIMIZER 

 Agrios is middleware integrating R and SciDB, as illustrated in Figure 3.1.  The 

system has been designed in its entirety, and the parts essential to our research – viz. the 

parser, accumulator, and stager – individually implemented, refined, and tested.  Agrios 

has four main subcomponents:  accumulator, parser, stager, and executor.  We only 

introduce the accumulator, parser, and executor here; they are examined in depth in 

Chapter 4.  This chapter focuses on Agrios’ stager, because it is the primary 

subcomponent responsible for minimizing data movement.  Figure 3.2 shows a workflow 

diagram of Agrios, illustrating the subcomponents both in relation to one another, and to 

R and SciDB.  The input to Agrios is an R script, and the output is the result of the 

script’s execution, stored at R.   

R
Operations Data

+   \  %*%  *  /  ^  .  &&
[ ]  max()  cbind()  aov()  factor()

t.test()  anova()  glm()  plot()

A

C

SciDB
Data

apply()
mult()
join()

ED

Operations

B

Agrios

 

Figure 3.1.  Agrios is middleware integrating R and SciDB.  Data objects are stored at both 

hybrid components, though larger data objects are typically stored at SciDB and smaller data 

objects typically stored at R.  Operations are performed at both components, though lower-level 

operations are offered by SciDB and more sophisticated operations by R.  Note that only one 

copy of each data item is stored in the system. 
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Agrios’ accumulator is responsible for reducing data-movement costs through 

query accumulation.  The accumulator subcomponent collects and combines queries in 

the input R script, under appropriate conditions.  The parser scans R queries output by 

the accumulator and converts them into data structures used internally by Agrios.   

 

Figure 3.2.  The architecture and workflow of Agrios.  Agrios’ four primary parts are surrounded 

by the dotted line.  Queries contained in an R script are input to Agrios, and query results are 

returned to R. 

 

The stager subcomponent consumes the data structures created by the parser.  The 

accumulator having done its work, the stager exploits the remaining two opportunities for 

reducing data movement identified above; it:  i) rewrites queries and ii) converts queries 

to plans through staging.  At the end of the staging process the movement-minimizing 

plan is identified.   

 Once the movement-minimizing plan is identified by the stager, the executor 

executes the plan.  The executor ensures that operators are executed at the location 

specified by the movement-minimizing plan, managing operator execution at both R and 

SciDB.   
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3.2 STAGING 

 The stager is the most important subcomponent in Agrios for minimizing data 

movement.  Agrios’ stager is named Bonneville, and is derived from the Columbia query 

optimizer designed for “traditional” query optimization in relational database 

management systems.  Bonneville is a cost-based optimizer that uses rule-based 

transformations to populate a search space in its search for the movement-minimizing 

plan.  There are several aspects to Bonneville that we must examine, including its cost 

model, rule set, and search strategy.  We examine each in turn, then illustrate Bonneville 

in action with some concrete examples. 

3.2.1 COST MODEL 

 As noted in Chapter 2, plans have estimated costs, and the plan with the lowest 

cost estimate we regard as the movement-minimizing plan.  Generally plan costs are 

calculated according to a cost model that uses facts about the operations and data objects 

that constitute a plan.  The facts relevant to Agrios’ cost model concern the storage 

location of input data objects, the size of the input data objects, and the execution 

locations of operations.  The cost of a plan in Agrios is the sum of all data elements 

moved in the plan.  Though simple, this cost model is reasonable when arrays in the 

hybrid system are uncompressed and stored in a dense array format, properties common 

in a number of applications.  The dense array format ensures that an array’s physical size 

is consistently proportional to its logical size.  The format means that logical properties 

such as shape and size are effective proxies for measuring data movement.  Assuming 

that arrays are uncompressed means that the physical size of the array depends only on 

the array’s shape and size, not its content.   The physical size of a compressed array 
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whose cells all contain the same value will be smaller than the physical size of a 

compressed array whose cells contain a wide variety of values.  All things being equal, 

however, these two arrays will have the same physical size if they are uncompressed.  

The operations implemented in Agrios are structural array operators, meaning that the 

logical size of the output can typically be estimated with high accuracy.8 

 Determining an optimizer’s cost model is a combination of art and science, and a 

cost model’s specification should be driven by a specific set of design goals.  Since our 

research objective is the minimization of data movement, our cost model focuses 

exclusively on the number of data elements moved between hybrid components.  This 

cost model is independent of the particular hardware on which R and SciDB run, which 

lets us focus on reducing data movement.9  In Chapter 7 we discuss augmenting this cost 

model to include other factors, such as compression status, estimated execution time at 

components, and network-transfer time.   

 While nearly all database optimizers select plans from a collection of equivalent 

plans, most but not all use a cost model to do so.  Some optimizers instead use heuristics 

to select a final plan.  Though there are advantages to heuristic-based optimizers, one 

                                                           
8
 Structural array operations include many operations common in data analysis, such as matrix 

multiplication and subscripting arrays.  The logical size of the output of these operations do not depend 

upon the contents of the array.  By contrast, the output contentful array operations may depend upon the 

contents of the array – depending on how the operator is implemented.  Filtering is an example of a 

contentful array operator, though in SciDB’s implementation the output size does not depend on individual 

array values. 
9
 The source of data-movement costs depends on whom you ask.  To some, the reason that data movement 

costs are high is because the hardware isn’t fast enough:  “if the hardware were faster, we could move as 

much data as we want without penalty!”  If the problem is viewed in this way, the obvious fix is to make 

the hardware faster.  To others – ourselves included – data movement costs are high in part because more 

data than necessary is being moved during query processing.   

 These two views of the problem are not mutually exclusive.  We maintain both that faster 

hardware helps reduce data movement costs, and that minimizing data movement helps reduce data 

movement costs.  Hardware performance aside, the question at hand is whether or not automatically 

minimizing data movement can help substantially reduce data movement costs.  We believe that it can.  
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negative is that they do not guarantee identification of the optimal plan.  The plan 

selected by Agrios is guaranteed to move the minimal amount of data among all 

considered plans; at present Agrios does not rely on heuristics.  

3.2.2 TRANSFORMATION TYPES  

A transformation may reduce data movement in several ways:  it can reduce the amount 

of data moved in a given transfer, the total number of transfers in a query, or possibly 

both.  Figure 3.3 shows a “reductive” transformation that reduces the amount of data 

moved in a particular transfer.  The size of the data objects relative to one another are 

captured in the figure.  Applying the “subscript pushdown” rule to the query on the left 

results in the query on the right.  The number of transfers unchanged before and after the 

transformation, but by “pushing” the subscript operation through the addition, this 

transformation reduces the amount of data moved in the transfers. 

[ ]

+

+

[ ] [ ]

 

 

Figure 3.3.  An example of a reductive transformation.  A “subscript pushdown” transformation 

changes the query on the left to the query on the right.  The size of the objects in the tree is 

proportional to the size of the data objects.  Prior to the transformation, the large square matrix 

must be moved in its entirety in order to perform the addition operation.  After the transformation, 

the subscript operation is performed before the addition operation.  Because of this 

transformation, only a small portion of the large array must be moved. 
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 A reduction in the number of transfers usually results from “consolidating” 

transformations that group operations and objects at the same location.  Figure 3.4 

provides an example.  Suppose the objects colored grey are located at one component of 

the hybrid, and objects colored blue are at the other.  A left-to-right associate 

transformation changes the query on the left to the query on the right.  This association 

groups like-located objects, reducing the number of transfers performed; the change is 

illustrated by the two red arrows indicating inter-component data movement prior to the 

transformation, and the red single arrow after the transformation.    Note  that  during this 

transformation process, the execution location of the intermediate operation was changed 

by the stager. 

+

+ +

+

 
 

Figure 3.4. An example of a consolidating transformation.  A left-to-right association transforms 

the query on the left to the query on the right.  Triangles are input objects, squares are operators.  

Grey nodes are located at one component of the hybrid, blue nodes at the other.  Red arrows 

indicate data transfers. 

 

Accumulation without query rewriting can also bring about consolidating 

transformations reducing data movement.  Consider this analytic script: 

C <- A + B; 
result <- C + D; 

 

Let data objects A, B, and D all be stored at SciDB (C is an intermediate result, so will be 

stored at the location determined by the staging).  The movement-minimizing plan for the 
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first query performs the binary addition operator at SciDB, then moves the result from 

SciDB to R (recall that we require final query results at R).  The plan is depicted in (i)(a) 

in Figure 3.5.  Though neither data object needs to be moved to complete the operation, 

the cost of moving the final result is 100.  The second query requires the result of the first 

query as an input.  The movement-minimizing plan for the second query has a cost of 

100; the cost is incurred by the movement of input D from SciDB to R.  The plan is 

depicted in Figure 5.3(i)(b).  The total cost for the analysis is 200 data elements:  100 

from the first query, 100 from the second query.  Consider what happens with the two 

queries are accumulated prior to staging and query rewriting.  Figure 5(ii) shows the 

movement-minimizing plan for the accumulation of the two queries.  Given this 

accumulated query, the movement-minimizing plan stages both operations at SciDB, 

moving only the final result from SciDB to R.  This plan moves only 100 data elements, 

half as many data elements as when the two queries were executed without accumulation. 

 Query rewriting and accumulation may work in concert with one another to 

reduce data movement through consolidating transformations.  Accumulation increases 

the size and scope of the query considered during staging and query rewriting.  All things 

being equal, the larger the query, the more rewrite rules can be applied to it.  Consider the 

same analytic script: 

C <- A + B; 
result <- C + D; 
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Table 3.1.  Rules currently implemented in Agrios. 

Rule name Rule description
Transformation Implementation Enforcer

Non-

enforcer Reductive Consolidating

R_MATRIX_MULT_LTOR Left-to-right association, matrix multiplication X X X X

R_MATRIX_MULT_RTOL Right-to-left association, matrix multiplication X X X X

R_BIN_ARITH_COMMUTE Commute binary arithmetic X X X

R_BIN_ARITH_LTOR Left-to-right association, binary arithmetic X X X

R_BIN_ARITH_RTOL Right-to-left association, binary arithmetic X X X

R_XFER_RULE Transfer rule X X n/a n/a

R_SUBSCRIPT_THRU_BIN_ARITH Push subscript through binary arithmetic X X X

R_SUBSCRIPT_THRU_MATRIX_MULT Push subscript through matrix multiplication X X X

R_SUM_THRU_BIN_ARITH Push sum through binary arithmetic X X X

R_SUBSCRIPT_THRU_APPLY Push subscript through apply X X X

R_IMPL_BIN_ARITH_R Perform binary arithmetic at R X X n/a n/a

R_IMPL_BIN_ARITH_S Perform binary arithmetic at SciDB X X n/a n/a

R_IMPL_MATRIX_MULT_R Perform matrix multiplication at R X X n/a n/a

R_IMPL_MATRIX_MULT_S Perform matrix multiplication at SciDB X X n/a n/a

R_IMPL_SUM_R Perform sum at R X X n/a n/a

R_IMPL_SUM_S Perform sum at SciDB X X n/a n/a

R_IMPL_SUBSCRIPT_R Perform subscript at R X X n/a n/a

R_IMPL_SUBSCRIPT_S Perform subscript at SciDB X X n/a n/a

R_IMPL_AGGREGATE_R Perform aggregation at R X X n/a n/a

R_IMPL_AGGREGATE_S Perform aggregation at SciDB X X n/a n/a

R_IMPL_APPLY_R Perform apply at R X X n/a n/a

R_IMPL_APPLY_S Perform apply at SciDB X X n/a n/a

R_IMPL_P_FORCE_UNARY Force unary operation at specified location X X n/a n/a

R_IMPL_P_FORCE_BINARY Force binary operation at specified location X X n/a n/a

Transformation vs. 

implementation

Enforcer vs. non-

enforcer

Reductive vs. 

consolidating
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Figure 3.5.  An example of how accumulation can reduce data movement without query 

rewriting.  The movement-minimizing plans shown in (i)(a) and (i)(b) each move 100 data 

elements, for a total of 200.  The result of the computation in panel (i)(a) is moved to R, per our 

requirement that all query final results must be located at R. In panel (i)(b), the final result of the 

query executed in (i)(a) – i.e. C – is the input to the query’s operation.  Panel (ii) shows the 

movement-minimizing plan when (i)(a) and (i)(b) are accumulated.  It moves only 100 data 

elements, 100 elements less than the two plans executed separately.  Note that the stager has 

determined that both operations in the query should be performed at SciDB. 

 

This time, let A be stored at R, and B and D be stored at SciDB, as shown in Figure 3.6.  

(C is not an input data object, but the result of executing the plan in Figure 3.6(i).)  When 

these queries are considered in isolation, there are very few reasonable rewrites possible.  

Commute is the only commonly applicable rewrite:  commuting rewrites A + B into B + 

A, and commuting rewrites C + D into D + C.  Figure 3.6 shows movement-minimizing 

plans for both queries.  The total cost for the analysis is 200 data elements:  the first 

query requires that B be moved from SciDB to R, and the second query requires that D be 

moved from SciDB to R.  The movement-minimizing plan associated with each of these  

queries does not require commuting of the user-written query, so the rewrites are of no 

value. 
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Figure 3.6.  The movement-minimizing plans for the two queries in our example, prior to 

accumulation.  The total cost of executing both plans moves a total of 200 data objects.   
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Figure 3.7.  An example of how accumulation and query rewriting can reduce data movement.  

Panel (i) shows a plan resulting from accumulation of queries associated with the plans 

represented in Figure 3.6.  If the plan in panel (i) is associated, the movement-minimizing plan is 

shown in panel (ii).    

 

Accumulating the script’s two queries into one, however, means that additional 

rewrites are possible.  Figure 3.7(i) shows the movement-minimizing plan associated 

with the accumulated query.  Figure 3.7(ii) shows the movement-minimizing plan for the 

accumulated query after application of a left-to-right association transformation rule.  

While the total cost for the accumulated but untransformed plan is 200 data elements, the 

consolidating transformation affected by application of the transformation rule reduces 
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the total cost of the transformed plan is only 100.  Accumulation, together with query 

rewriting, has reduced data movement.  

3.2.3 RULE TYPES 

 Transformations – both reductive and consolidating – typically occur through the 

application of rules.  Collectively the rewrite rules within Agrios form a rule set; Agrios’ 

current rule set is shown in Table 3.1.  Rules can be classified in several different ways.  

We broadly discussed rules in the context of relational systems in Chapter 2.  The first 

rule-type distinction we discussed there:  it is the distinction between transformation 

rules and implementation rules.  Implementation rules are the means by which queries are 

converted into plans.  In Agrios, implementation rules are all and only rules that 

transform at least one logical operator in the input query to a physical operator.  Two 

implementation rules are associated with each logical operator in Agrios.  One rule 

converts the logical operator to a physical operator performed at R, the other transforms 

the logical operator to a physical operator performed at SciDB.  All other rules that are 

not implementation rules are transformation rules.  Transformation rules generate 

equivalent queries from the input query.  All rules – of both types – function at the level 

of operators.   

 The distinction between implementation rules and transformation rules relates 

directly to two of the opportunities Agrios uses to minimize data movement:  staging and 

query rewriting, respectively.  If only implementation rules are used by Agrios during the 

staging process, only staging is performed.  If implementation rules and transformation 

rules are both used by Agrios during staging, then both query rewriting and staging is 

also performed during staging.   
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 The next rule-type distinction is between enforcer rules and non-enforcer rules.  

This distinction is also derived from a distinction recognized in relational database 

research [46].  Enforcer rules “enforce” the satisfaction of a dependency within a query, 

and non-enforcer rules do not.  Dependencies may exist between physical operators and 

their inputs.  Consider a case from relational query optimization, as seen in Figure 3.8.  

At the left of the figure, the physical operator at the root of the plan specifies a merge 

join, a join algorithm often requiring that both inputs are sorted.  This is a dependency 

between a physical operator and its inputs.  As seen in the figure, input Q is sorted, while 

input P is not.  In this case, an enforcer rule inserts a sort operator between the merge join 

and input P, resulting in the plan shown in the right half of the figure.  Other enforcer 

rules in relational systems enforce dependencies on physical properties such as input-

compression status.  Suppose the unary physical operator M in a relational plan operates 

only on uncompressed data.  Suppose also that its input is compressed.  An enforcer rule 

enforcing a compression-related dependency would insert between M and its input a 

physical operator that decompressed the input prior to the execution of M. 

P

joinmerge

Q
(sorted)

P

joinmerge

Q
(sorted)

sort

 

Figure 3.8.  An enforcer rule at work, in a relational database system.  The physical merge join 

operation typically requires that both inputs are sorted.  Note that Q is sorted, while P is not.  

Application of a “sort-enforcer” rule inserts a sort physical operator between the merge join 

operation and unsorted input P.  The rule enforces the requirement of merge join that its inputs be 

sorted. 
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The key dependency in Agrios currently involves data location, not sort order nor 

compression status.  Because of our requirement that an operation’s input data must be 

colocated at the operator’s processing node, if the inputs to an operator are not colocated 

with it, they must be moved to the operator’s execution location.  Agrios’ enforcer rule is 

responsible for colocating inputs at operator execution locations.  The rule operates by 

inserting a “transfer” operator (abbreviated “XFER”) between the operator and input that 

are not colocated.  Figure 3.9 shows a concrete example.  The plan contains a single 

operation, a matrix multiplication performed at R.  The operation’s two inputs are located 

at different locations, and the plan’s staging requires that the matrix multiplication is 

performed at R.  Bonneville’s transfer enforcer rule inserts a XFER operator between the 

matrix multiplication operator and its right input.  The unary XFER physical operator 

moves its input from one hybrid component to the other.  The logical counterpart of the 

physical XFER operator is the logical identity operator, since at a logical level, the output 

of the XFER operator is identical to its input. 

%*%R

R SciDB R

SciDB

%*%R

XFER

 

Figure 3.9.  An enforcer rule at work, in Agrios.  An excerpt from a plan is shown at left.  The 

operation is performed at R, the left input is located at R, and the right input at SciDB.    The plan 

shown at right depicts the plan excerpt after application of the R_XFER_RULE (insert XFER) 

rule.  The colocating data transfer required by the plan is now shown explicitly by the XFER 

operator.  The two-part red arrow shows the movement from SciDB to R, via the XFER operator.    
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 Agrios’ current sole enforcer rule is unique in that it is the only rule that inserts an 

operation into a plan that is not present in the plan prior to rule application.  In Agrios, 

while non-enforcer rules may reorganize existing operators (e.g. a left-to-right 

association), or even duplicate operators already present in the input query or plan (e.g. a 

subscript pushdown), they do not add new operators to a query or plan.  Additional 

enforcer rules may be added to Agrios if necessary.  Of particular interest are enforcer 

rules enforcing compression-related dependencies, as incorporation of compression status 

into Agrios’ cost model shows promise for future research. 

 The final rule-type distinction is between reductive and consolidating rules.  This 

distinction loosely corresponds to the distinction between reductive and consolidating 

transformations explored earlier in this chapter.  Reductive rules can reduce inter-

operator movement.  Reductions in inter-operator data movement may be reductive 

transformations, if the two operators between which data movement is reduced are staged 

at different hybrid locations.  Agrios’ subscript pushdown rules are reductive rules.  For 

example, an application of R_SUBSCRIPT_THRU_BIN_ARITH, as illustrated above in 

Figure 3.3, actually reduces the amount of data moved between the binary addition 

operations in the query.   

Consolidating rules may reduce the number of transfers in a given plan.  Agrios’ 

rule for associating binary addition – “R_BIN_ARITH_LTOR” – is a consolidating rule.  

Application of R_BIN_ARITH_ LTOR to a query changes the structure of the input 

query – by reassociating the operator’s inputs, potentially creating a consolidating 

transformation.  If we suppose that the two visible operations in Figure 3.4 are binary 

arithmetic operations, the figure shows how R_BIN_ARITH_ LTOR is a consolidating 
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rule.  Prior to rule application the plan required the movement of two data objects; after 

the rule application only one movement was required. 

The distinction between reductive and consolidating rules was intentionally drawn 

as a non-exclusive distinction.  Association of matrix multiplication operators, for 

example (both left-to-right and right-to-left) are classified both as a reductive rule and a 

consolidating rule.  Because matrix multiplication can produce output whose size is either 

smaller or larger than the sum of the sizes of its inputs, associating the query may 

generate a plan less expensive than the movement-minimizing plan related to the original 

query.   

 Not all transformation-based optimizers use rules, though nearly all modern 

optimizers do.  One original motivation behind the use of rules was to provide a simple 

and intuitive extensibility mechanism.  Another motivation was to easily capture domain 

knowledge; when the first rule-based systems were under development, domain-specific 

databases and systems (“expert systems”) were in vogue.  Some believed that the best 

way to improve optimizer performance was through the knowledge of domain experts.  

Rules were identified as a feasible way to capture this knowledge and integrate it into a 

database system.    

In the early days of rule-based optimizers, transformation rules were hard-coded 

into optimizers.  Over time, rule after rule was hard-coded into these systems, and the 

number and sophistication of hard-coded rules caused numerous problems.  First, such 

rules were a maintenance and documentation liability.  Second, while optimizer 

performance could be measured easily, hard-coded rules often offered no visibility into 

why optimizers were performing as they did.  It was difficult to know what 



 

72 
 

transformations were doing the work.  This lack of transparency was complicated by the 

fact that some transformations appeared to interact with one another in unusual ways.  

Use of a flexible rule set that is not hard-coded into the optimizer somewhat ameliorates 

these problems, for example, by letting us easily remove rules and experimentally 

determine the effects of the removal. 

3.2.4 SEARCH ENGINE  

  The final primary part of Agrios’ Bonneville optimizer is the search engine.  

During the staging process the search engine explores a search space of queries and 

plans, through the execution of three main tasks: 

1. It expands the collection of queries in the search space, through application of 

transformation rules.  We saw above that plans generated through the 

application of transformation rules can require less data movement than 

queries written by the user:  recall how transformation rules created 

consolidating and reductive transformations in Figures 3.3 and 3.4.  Had the 

transformation rules not been applied to the user-written query, the search 

space would not have been expanded to include these less expensive plans. 

2. It creates multiple plans from each query, each with different stagings.  We 

also saw above how different plans created from the same query can have 

different costs; that is, some stagings move less data than other stagings.  The 

stager considers all possible plans generated from a particular query from the 

application of implementation rules. 

3. It calculates plan costs, based on the cost model, properties of the data 

objects, and properties deduced for the plans’ operations and outputs.  It is 
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through plan costs that Bonneville compares one plan to another, so costs are 

essential to selecting the movement-minimizing plan.  

 Agrios’ stager considers alternative plans using a top-down memoization algorithm that 

guarantees identification of the movement-minimizing plan within the search space. 

This optimizer component is deliberately referred to as the “search engine”, since 

its job can be usefully framed as a search problem.  The search engine's responsibility is 

to “navigate” or “explore” a search space populated by queries and plans equivalent to 

the user-written query.  At first blush, exploring the search space may seem like an easy 

task:  the search engine simply creates all possible queries and plans, costs each plan, and 

selects the least expensive one.  However, for queries of any practical size, the search 

engine must create and consider not just a few queries and plans, but millions, billions, or 

more.  The number of plans in Agrios’ search space is exponential in the number of 

operations in the query.  Some transformation rules, by introducing new operator 

instances into queries and plans, further increase the number of plans that must be 

considered.  A naïve approach towards exploring search space requires an impractical 

amount of resources. 

To better understand the challenges in exploring the search space, it is helpful 

understand more about it.  Figure 3.10 illustrates plan space and search space, showing 

also that one space is a subset of the other.  Plan space is infinite in size, and contains all 

possible equivalent queries and plans.  Search space contains only those queries and plans 

that can be derived from the user-written query through the application of rewrite rules.  

That is, the search space, for a particular user-written query, is defined in plan space by:  

i) the query, and ii) the optimizer’s rewrite rules.   
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Now that we have recognized the distinction between plan space and search 

space, note that when we wrote about the “movement-minimizing plan”, what we really 

mean is the movement-minimizing plan in search space.  A plan located exclusively in 

Plan space

Search space

 

Figure 3.10.  Plan space is infinite in size (hence the dotted line), and contains all possible 

equivalent plans and queries.  Search space is defined by a query and a rule set, and consists of all 

plans and queries that can be created from the query with the rule set.  

 

plan space may have lower cost than the movement-minimizing plan (in search space), 

but since the plan cannot be accessed by the rule set that partly determines search space, 

the plan cannot be put to use.   

Agrios’ search algorithm guarantees identification of the movement-minimizing 

plan (in search space), according to the cost function.  It is natural to wonder, however, 

how the cost of the movement-minimizing plan compares to the cost of other plans 

existing exclusively in plan space.  Is it possible that plans exclusive to plan space have 

costs substantially less than the cost of the movement-minimizing plan?  “If we could 

only get to those plans through the right rewrite rules,” we might think, “then we’d really 

be optimizing!”  While we can calculate the cost of nearly any conceivable plan, 

unfortunately we have no way to know whether or not the plan is in search space without 

deriving the plan from the user-written query using the rewrite rules.  In a sense, search 

space is “constructed” from plan space.  In order to find a movement-minimizing plan in 
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the search space with a lower cost we must expand the search space, and in order to 

expand the search space we must add new rewrite rules.   

Suppose we expand the size of search space through the addition of new rewrite 

rules.  The new rule set may result in the identification of a movement-minimizing plan 

less expensive than the movement-minimizing plan identified before the addition of new 

rewrite rules:  under the original rule set the plan was in plan space but not search space, 

while under the new rule set the plan is within search space.  However, adding rewrite 

rules to a rule set comes with a cost:  the more rules in the rule set, the longer it takes to 

explore the search space.  For each query or plan under evaluation by Agrios, rule 

antecedents must be checked to determine rule applicability; if the rule is applicable, the 

plan or query output by the rule must be represented in Agrios’ internal data structures.  

All of these steps take time, and performing these steps many times over can take a 

substantial amount of time.  Preliminary tests show that in the worst case the time 

required for optimization is exponential in the number of rewrite rules; we examine 

optimization time in Chapter 6. 

The tradeoff between larger and smaller rule sets is one of the key engineering 

challenges in rule-based optimizer design.  On the one hand, we want to identify the 

lowest-cost plan within plan space.  Adding rules to the rule set may increase the size of 

the search space, which in turn may permit discovery of a less expensive movement-

minimizing plan.  On the other hand we want to identify the movement-minimizing plan 

as quickly as possible.  However, adding rules to the rule set increases the time and 

memory required for the system to do its job, slowing down identification of the 

movement-minimizing plan.     
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This engineering tradeoff is complicated by two observations: 

1. New rules can be redundant to a rule set.  Adding a redundant rule to a rule 

set does not increase the size of the search space.  For example, let a rule set 

contain only a left-to-right associate rule and a commute rule.  This rule set 

and a query determine a particular search space.  For certain queries, the 

addition of a right-to-left associate transformation rule to this rule set is 

redundant.  That is, for some queries, the plans in the search space generated 

through applications of the right-to-left associate rule could also have been 

generated through applications of only the commute and left-to-right associate 

rules.   

    Whether or not a rule is a redundant addition to a rule set is not always 

obvious.  Rules may interact with one another in unexpected ways; a rule that 

does not appear to be redundant may in fact prove to be.  Moreover, the fact 

that a rule is a redundant addition to a rule set does not mean that it should not 

be included in a rule set.  Returning to our example above, suppose through a 

single application of the right-to-left associate rule we can generate the same 

query that takes multiple applications of the commute and left-to-right 

associate rules.  As noted above, rule applications take time, and in this case 

generation of a particular query through a single application of the right-to-left 

associate rule takes less time than multiple applications of the left-to-right 

associate and commute rule.  Though the right-to-left associate rule may be 

redundant, if the rule can lead to faster creations of new queries and plans, 

including it in the rule set may be a good engineering decision. 
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2. New rules may not add useful or low-cost plans to the search space.  Some 

queries and plans are not obviously valuable in optimization.  Consider this 

query:  

B[1:100, 1:100]; 

Let a new rewrite rule add the following equivalent query to search space: 

(B[1:100, 1:00])[1:100, 1:100]; 

Suppose, moreover, that the new rule is not redundant.  The cost of plans 

generated from this new query will not be lower than plans generated from the 

query input to the rule.  From the perspective of optimization, the plans 

generated by this rule are simply not immediately useful.  As with 

redundancy, however, things can be more complicated than they seem.  

Because this rule is not redundant, it adds new queries and plans to the search 

space.  While some queries it adds to the search space – such as the one above 

– may not be immediately useful, it is possible that such queries are essential 

intermediate steps in derivations that yield low-cost new plans in the search 

space.   

From these points we should draw two conclusions:  i)  some rules appear to be more 

useful than others, and ii)  there is not always a simple way to determine which rules are 

useful rules.  There are a host of issues and questions surrounding these conclusions.  Is 

addition of the rule worthwhile?  Does the order of rule application matter?  How do we 

know that a rule that generates apparently useless queries is not essential to the eventual 

creation of low-cost plans, when it is combined with other rules?  Is the best strategy to 

add as many rules as possible to the rule set?  Or to pare the rule set down to as small a 
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collection as possible?  There is no known “secret formula” for identifying the best rule 

set for array-based analytic systems.  At this point the decision ultimately rests on 

empirical facts exposed through experiment.  To this end we perform some preliminary 

experiments in Chapter 6.   

 Let us tie together these ideas about search space with a particular example.  

Figure 3.11 shows a user-written query in Bonneville, at the beginning of the 

optimization process.  The colors in the inputs (leaf-level data objects) indicate a 

particular placement.  The query’s operators are uncolored because queries contain only 

logical operators; the stager has yet to assign execution locations to operations.    

 Figure 3.12 shows the search space after transformation rules have been applied 

to the user-written query.  The transformation rules create queries logically equivalent to 

the user-written query.  Due to space limitations not all alternative queries are shown in 

the figure.  We indicate that there are more queries than depicted in the figure, and more 

query rewrites than depicted in the figure, with the grayed-out arrows and objects. 

Figure 3.13 shows the search space after implementation rules have generated 

plans from the queries.  Operator coloring shows execution locations in the plans.   Note 

that multiple plans are associated with a single query.   As with queries, not all alternative 

plans are shown. 
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Figure 3.11.  The initial search space. The user-written query is the only object in the search 

space. 
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Figure 3.12.  Search space expansion.  Application of transformation rules creates queries 

logically equivalent to the user-written query.  The absence of color in the operations indicate that 

they have not yet been assigned an execution location.  Grayed-out queries and arrows simply 

indicate that not all transformations and queries are shown, due to practical space limitations. 
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Figure 3.13.  Plans are created from queries through the application of implementation rules. 
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Figure 3.14.  Plans are assigned costs, based on the staging, the cost model and facts about the 

input data objects stored in the catalog. 
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Figure 3.15.  The plan with lowest estimated cost (the movement-minimizing plan) is selected for 

execution.  Enforcer rules will insert the necessary XFER operations required for data movement 

into the movement-minimizing plan. 

 

 In Figure 3.14 costs have been assigned to plans, according to Bonneville’s cost 

model.  The movement-minimizing plan is selected for execution, as shown in Figure 

3.15.  After the plan is selected, enforcer rules insert any required XFER operators into 

the plan.  In the case of the movement-minimizing plan in the example above, a XFER 

operator would be inserted between the root operator and the nested operator, since their 

staged execution locations differ.  The XFER would move the intermediate result from 

one hybrid component to the other. 

 The example is helpful in understanding staging at a high level, but it glosses over 

some important details.  Let us now examine these details.  There are two related issues:  

the search space expansion strategy and pruning.   
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 The example above suggests that Bonneville’s search space is expanded in a 

breadth-first fashion.  The illustration creates the impression that Bonneville sequentially: 

1. creates all queries logically equivalent to the original query,  

2. creates all plans equivalent to the queries,  

3. generates costs for the plans in the search space,  

4. selects the least-expensive (movement-minimizing) plan for execution. 

5. inserts necessary XFER operators 

Though some early relational database query optimizers did operate in this fashion 

Bonneville does not.  Rather, Bonneville, like Columbia before it, explores staging space 

in a depth-first manner.  Bonneville tries to assign a cost to a plan as early as possible 

during staging, a process that is more accurately illustrated by Figure 3.16.  Panel (a) 

begins as the example above, with the user-written query.  Note that only a single query 

is present in the search space’s collection of logically equivalent queries.  Bonneville then 

applies implementation rules to this query, creating the single plan found in the collection 

of equivalent plans.  A cost for the plan is then calculated.  These steps are illustrated in 

panels (b) through (d) of Figure 3.16. 

 Prior to applying transformation rules, Bonneville next generates all possible 

stagings of the sole query in the search space, through application of implementation 

rules.  This process, together with the costing of the resulting plans, is depicted in panels 

(e) through (j) of Figure 3.16.  Only then does Bonneville apply transformation rules to 

generate a new query, as shown in panel (k).  Bonneville would then generate and cost all 

plans associated with this newly-generated query, and so on, until the movement-

minimizing plan is identified.   
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 The primary reason Bonneville employs this depth-first search strategy is because 

in principle, a depth-first search can bound the search space more quickly than a breadth-

first search strategy, by quickly arriving at a plan cost.  As noted above, each step of the 

staging process takes time:  applying rules, creating and organizing alternative queries 

and plans, and calculating data-movement costs.  Given Bonneville’s objective to quickly 

find the optimal plan, it tries to perform as few of these tasks as rapidly as possible 

without sacrificing optimality.  A depth-first search, together with pruning, means that 

Bonneville can potentially identify the movement-minimizing plan faster than a breadth-

first search.  Through pruning, Bonneville can reduce the number of alternative plans and 

queries created without sacrificing plan quality.  Bonneville’s pruning strategy takes 

advantage of the fact that plans are typically constituted of subplans.  Just as plans have 

costs, subplans have costs.  Suppose that the total cost c of a complete plan P is known.  

We wish to know whether or not a new candidate plan P′ is less expensive or more 

expensive than the cost of plan P.  (If P′ is more expensive than P, then P′ cannot be the 

movement-minimizing plan.)  If a subplan of P′ costs more than c, then the total cost of P′ 

cannot be less than the total cost of P.  Bonneville can prune P′ because in virtue of the 

cost of P′’s subplan; i.e. since the subplan of P′ costs more than c, P′ it cannot be the 

movement-minimizing plan.   

 Bonneville’s depth-first search and pruning strategy is best approached here 

through an analogy.  You need to bake a cake for a party, and have two recipes to choose 

from.  Because you are missing some key ingredients, you head to the store with the 

recipes in hand.  One of the recipes calls for flour, sugar, milk, the other recipe calls for 
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flour, corn syrup, and cider.  In addition to purchasing the ingredients on your errand, you 

must satisfy two additional constraints.  You must: 

1. spend the minimal amount of time walking store aisles finding prices, and   

2. spend the minimal amount of money on ingredients. 

Let us look at two different ways to solve this problem. 

1. Walk to the aisle containing sugar, record the cost of the least expensive sugar.  

Walk to the milk aisle, record the cost of the least expensive milk.  Walk to the 

flour aisle, record the cost of the least expensive flour.  Walk to the corn syrup 

aisle, record the cost of the least expensive corn syrup.  Walk to the cider aisle, 

record the cost of the least expensive bottle of cider.  Add up the total ingredient 

costs for the first cake:  the costs of the flour, sugar, and milk.  Add up the total 

ingredients costs for the second cake:  the costs of the flour, corn syrup, and cider.  

Compare the two totals, and purchase the ingredients for the cake with the lowest 

cost. 

2. Walk to the sugar aisle, record the cost of the least expensive sugar.  Walk to the 

milk aisle, record the cost of the least expensive milk.  Walk to the flour aisle, 

record the cost of the least expensive flour.  Add up the total ingredient costs for 

the first cake:  the costs of the flour, sugar, and milk; call this c1.  Walk to the 

corn syrup aisle, record the cost of the least expensive corn syrup.  Total the flour 

cost and the corn syrup cost:  this is a subtotal s2 of the total cost for the second 
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Figure 3.16.  Depth-first exploration of search space.  The figure is broken into panels (a) through 

(k). 
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Figure 3.16 (continued).   
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Figure 3.16 (continued) 
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Figure 3.16 (continued).   

cake.  Compare s2 to c1.  If s2 exceeds c1, purchase the ingredients for the 

first cake.  Otherwise, walk to the cider aisle, record the cost of the least 

expensive bottle of cider.  Total the ingredient costs for the second cake:  this 

is the sum of the costs of the flour, corn syrup, and cider; call it c2.  Compare 

c1 to c2, and purchase the ingredients for the less expensive cake. 

The first strategy is roughly analogous to a breadth-first search, while the second strategy 

approximates Agrios’ depth-first search strategy with pruning.  Plans are typically 

composed of several subplans, just as a recipe typically has multiple ingredients.  Each 

ingredient has a particular cost, contributing to the total cost of ingredients.  Subplans too 
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have a particular cost, each contributing to the overall plan cost.  Time spent walking the 

aisles is time spent exploring and expanding search space.   

While this example does not capture all the subtleties of Bonneville’s search and 

pruning approach, it illustrates relevant details:   

1. The optimal plan can be identified without considering all subplans of 

alternative plans.  Under both approaches the optimal (lowest-cost) set of 

ingredients is purchased.  But with the second approach, under certain 

conditions – e.g. when the cost of flour and corn syrup exceeds the total 

cost of the first cake – we need not walk down the cider aisle to cost the 

cider.  Since one of our optimization goals is to spend the minimal amount 

of time walking the aisles, if we can avoid walking an aisle, we should do 

so.   

 Agrios maintains a variable storing the cost of the current 

movement-minimizing plan.  If during the exploration of search space 

Agrios discovers that a plan contains a subplan whose cost exceeds the 

cost of the current movement-minimizing plan, then the containing plan is 

pruned immediately, and its remaining subplans are not explored or costed 

at that time.  This tactic reduces the amount of time Agrios spends 

exploring search space, while still guaranteeing identification of the 

overall movement-minimizing plan.  

2. A total plan cost is essential for pruning, so the sooner one is identified, 

the better.  The decision about whether or not we needed to walk down the 

cider aisle depended on comparing a total cost to a subtotal.  Without the 
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total cost, it was not possible to determine whether subplans’ costs 

exceeded the total cost.  The lowest total plan cost is the upper bound of 

data-movement cost, so any candidate plan exceeding that cost is not the 

movement-minimizing plan.  If during staging a subplan’s cost exceeds 

the current lowest total-plan cost, that plan cannot be the movement-

minimizing plan.  As it explores search space, Bonneville considers one 

plan at a time.  When costing a particular plan, Bonneville costs the plan’s 

subplans, one by one.  These subplans are partitioned by Bonneville into 

those that have not been costed, and those that have been costed.  The 

plan’s subplans are costed and moved from the former class to the latter.  

Along the way, Bonneville maintains a subtotal of the costed subplans.  If 

this subtotal exceeds the upper bound (the cost of the current movement-

minimizing plan), then the subplans in the unexamined partition need not 

be costed; they can be pruned for this particular plan.  (These subplans 

might also be subplans of other plans; when those other plans are 

evaluated, the subplans might be fully costed, not pruned.)  Pruning 

reduces the time spent searching the search space, but pruning cannot 

occur without a total cost; therefore, the sooner a total cost can be 

established, the better.  

The more plans and subplans that can be pruned, the less time 

Bonneville spends exploring the search space.  A depth-first search 

strategy means Bonneville calculates a total plan cost sooner than a 

breadth-first search strategy.  Since the depth-first search identifies the 
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total cost more quickly than a breadth-first search, Bonneville can begin 

pruning early in the staging process.  Plans are pruned only if the cost of a 

subplan or plan exceeds the current minimum total-plan cost.   

3. Pruning opportunities are not guaranteed.  Pruning only occurs under 

certain conditions.  In the second approach above, if the cost of the flour 

and corn syrup does not exceed the total cost of the first cake’s 

ingredients, then we must walk to the cider aisle and calculate a total cost 

for the second cake.  Similarly in Agrios, plans are pruned only when the 

subtotal of the candidate plan’s costed subplans exceeds the current best 

plan cost.  In the worst case, pruning cannot be performed and all subplans 

for all plans must be considered before the movement-minimizing plan 

can be identified. 

4. Subplans must be costed only once.  Both cakes contained flour.  With the 

second approach above, after visiting the flour aisle to gather costs for the 

first cake, we recorded the cost of the flour.  When we later began 

calculating the total cost of the second cake, we did not have to revisit the 

flour aisle – instead we simply used the recorded value.  Bonneville has a 

data structure containing the costs of subplans considered during the 

exploration of search space.  Before costing any given subplan, this data 

structure is first consulted.  If the value is present in the data structure then 

it need not be computed; again, this tactic reduces time spent exploring 

search space. 
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Bonneville’s pruning strategy is inherited from the Columbia optimizer.  We take 

advantage of Bonneville’s pruning functionality in our project, though the degree to 

which pruning reduces optimization time was not quantified as part of our investigation.  

An inquiry into this topic would likely yield a bounty of useful knowledge; it is revisited 

in Chapter 7’s discussion of future work. 

 

3.3 DISCUSSION 

3.3.1 SEARCH-SPACE REPRESENTATION 

 The challenge in search-space representation stems from the large number of 

plans the system must potentially represent.  Because we want to minimize the time spent 

staging, the challenge is making a large number of plans quickly accessible.  Brute-force 

representation of a large number of plans is easy – we simply create the plans and retrieve 

them for usage as necessary.  This approach is not practical, however, since Bonneville 

may consider many plans during execution, potentially even all possible plans (if pruning 

is ineffective or switched off).   

 A naïve representation of complete plans in memory is not the most efficient way 

to represent search space, since a given subplan can be shared by multiple plans.  

Bonneville avoids naïve representation of plans through the use of a “MEMO” data 

structure.  The MEMO is a compact representation of the search space, originally 

developed for use in the Cascades query optimizer [46].  The MEMO represents the plan 

space with two mutually recursive object types:  multiexpressions and groups.  A 

multiexpression is an operator (logical or physical) with groups as inputs.  A group is a 
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collection of logically equivalent multiexpressions.  Logical multiexpressions are roughly 

analogous to queries, while physical multiexpressions are roughly analogous to plans.   

 A visual representation of the memo structure is shown in Figure 3.17.  Groups 

are identified in bracket notation, and the arrows indicate references.  Consider Group 

[AB], depicted in the box in the figure’s upper left-hand corner.  The group contains two 

logically equivalent multiexpressions: 

    [A] +R [B] 

and  

    [A] +SciDB [B] 

Each of these entities is a multiexpression because:  i) each contains an operator, viz., the 

physical operator +R and the physical operator +SciDB, respectively, and ii) the inputs to 

each multiexpression are groups.  That the two multiexpressions are logically equivalent 

should be obvious on inspection; they differ only on where the elementwise addition 

operation is performed.  Multiexpressions with identical input groups are individuated by 

their operator.   

 Group [AB] does not store complete representations of the two multiexpressions 

it contains.  The groups which are inputs to Group [AB]’s multiexpressions are instead 

referenced.  Since the input groups are referenced by the multiexpression, not stored as 

separate objects, the representation of a multiexpression is smaller than it would be if 

complete representations were stored in each group.  For example, the single physical 

multiexpression [AB] +R [C] currently represents two plans: 

(A +R B) +R C 

(A +SciDB B) +R C 



 

94 
 

 

Figure 3.17.  The MEMO structure used by Bonneville to represent search space.  Arrows 

indicate references.  Groups are labled grey boxes, and contain boxed multiexpressions.  

Operations in the depicted  physical multiexpressions are subscripted with an execution location. 

 

Depending on the rule set, the multiexpression can represent more plans, including: 

(B +SciDB A) +R C 

(B +R A) +R C 

When a new query or plan is created through a rule application, Agrios first 

determines whether or not it is already represented in the MEMO.  If it is not, a new 
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multiexpression or group is added to the data structure.  The MEMO structure also 

contains cost information about multiexpressions and groups.  Note that costs are 

displayed at the bottom of some of the multiexpressions.  Other costs have been omitted 

for simplicity of exposition.        

3.3.2 PARTICULAR REFINEMENTS 

 Above we examined aspects of Bonneville’s design that reduced staging time 

without sacrificing identification of the movement-minimizing plan.  These aspects 

included pruning, its depth-first search strategy, and compact representation of the search 

space.  A number of additional enhancements – all inherited from Columbia – help 

expedite staging.  These include: 

 Hash-based duplicate checking. It takes time to create new queries and plans, so 

during the staging process as few plans and queries as possible should be created.  

In particular, we should avoid duplicating plans and queries.  Suppose the 

commute transformation is performed on the query A + B.  The transformation 

generates the query B + A, which then becomes part of the search space.  If query 

B + A is commuted, then the query A + B is generated; this query is a duplicate of 

a query already in the search space.  Duplication can be avoided in some cases 

through the use of particular rule sets [47].  In practice, however, rule applications 

may generate duplicates even with avoidance mechanisms (for example, a 

duplicate may be generated if a plan is created through multiple derivation paths).  

Bonneville prevents the buildup of duplicate plans and queries by checking for 

duplicates prior to creation of the plan within the MEMO data structure.  First 



 

96 
 

checking for duplicates reduces time spent creating representations of duplicate 

plans within the MEMO structure. 

 Separation of logical and physical multiexpressions.  Within a group, logical 

multiexpressions and physical multiexpressions are stored in separate data 

structures.  This segregation by type results in more efficient application of 

rewrite rules and more efficient exploration of the search space.  For example, 

since transformation rules apply only to queries and not plans, when processing a 

query Bonneville can search only the data structure containing logical 

multiexpressions.  Separating multiexpressions by type saves time because the 

data structure containing physical multiexpressions (Bonneville’s MEMO 

representation of plans) need not be searched.  Similarly, when costing plans, 

Bonneville needs only to search the data structure containing physical 

multiexpressions.     

3.3.3 WHY BONNEVILLE? 

 Bonneville is based off of the Columbia database optimizer for several reasons.  

First, there are many analogues between staging in hybrid systems and query 

optimization in relational systems.  In both cases, we try to identify the least costly query 

or expression that is logically equivalent to the query written by the user.  During 

optimization, traditional optimizers consider physical properties such as sort order; 

stagers consider physical properties such as location.  The cost model of relational 

optimizers considers factors such as disk blocks read, whereas a stager’s cost model is 

concerned with data movement between hybrid components.  Second, Columbia was 

designed as an extensible optimizer, so modifying it for application to hybrid systems 
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was relatively straightforward – certainly easier than modifying a system not designed for 

extensibility, or building an optimizer from scratch.  Array-specific operators were 

straightforward to add, modifications to the cost model were reasonable, and query 

rewrite rules were fairly easy to define.  Third, the code base was publicly available and 

accessible, having been developed at Portland State University under National Science 

Foundation funding.   

 

3.4 CONCLUSION 

 We began this chapter by introducing a research question and its associated 

hypothesis.  The research question asked: “how can data movement be automatically 

minimized in a hybrid analytic system?”, and the research hypothesis stated that “data 

movement in a hybrid system can be automatically minimized through the application of 

techniques derived from relational database query optimization.  These techniques are:  i) 

staging, ii) query rewriting through the application of rewrite rules, and iii) query 

accumulation.”  In this chapter we examined these three techniques at a conceptual level.  

We paid particular attention to the staging and query rewriting process. 

   Now that we have a conceptual understanding of automatically minimizing data 

movement, we consider the implementation details of Agrios.  In Chapter 4 we examine 

the four components of Agrios (parser, accumulator, stager, and executor), their 

integration with one another, and their integration with R and SciDB. 
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CHAPTER 4:  AGRIOS IMPLEMENTATION 

  

 In Chapter 3 we considered Agrios at an abstract level, examining in particular 

how it stages queries.  In this chapter we examine the implementation details of Agrios’ 

stager, as well as its accumulator, parser, and executor.  We begin by looking at the two 

components that form the basis of Agrios’ hybrid system:  R and SciDB. 

 

4.1 COMPONENTS OF AGRIOS 

4.1.1  R 

 R is a language and computing environment modeled after Bell Lab’s S [16].  

Unlike S, R software is released under an open-source license.  R is specifically designed 

for data analysis.  The basic version of R is called “core R”, and its analytic capabilities 

are substantial.   

 Core R’s functionality can be extended through the addition of user-contributed 

packages.  At the time of this writing there are thousands of these packages; they include 

ggplot for visualization, BenfordTest for specialized statistical tests, and C50 for 

decision-tree generation and modeling.  The power of R, together with its availability and 

extensibility, make it a popular tool with data scientists and analysts.  Researchers 

estimated over a quarter-million regular R users as of 2009 [17].  The number of in-links 

to the main R website (www.r-project.org) are more than double that of R’s competitors 

SAS and SPSS; similarly the average monthly amount of usergroup email traffic for R is 

substantially higher than that of alternative tools [18]. 

http://www.r-project.org/
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 Both vectors and arrays are first-class objects in R.  Vectors are the fundamental 

data type, and R represents arrays as vectors with attached metadata; the metadata 

indicates the number and extents of the array’s dimensions.  Vectors are constituted of 

cells, each cell containing a single value.  Vectors must be of a given type, for example, a 

vector can contain only integers, or contain only doubles.  R represents scalar values as 

unit vectors of the appropriate type. 

 Many R functions and operations take complete vectors or arrays as inputs.  

Explicit control structures such as while and for are part of the language, but their use for 

iterating through individual vector and array elements is discouraged.  This C-like R code 

sums all elements of the vector vec, storing the result in variable x: 

   for ( i in 1:length(vec)) 

    x <- x + vec[i]; 

 

Such code is frowned upon, as it explicitly accesses vector cells.  Best practice – and 

common practice – in R is to instead add all elements of the vector with a single 

operation that takes the entire vector as input: 

sum(vec); 

Apply is another R operator that takes arrays as inputs.  The elements of an n × m integer 

array A: 

 

are added across rows or columns using apply: 

5 7 12

1 1 0

3 5 2
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   apply(A, 1, sum); # row summation 

   apply(A, 2, sum); # column summation 

yielding results [9  13  14] and [24  2  10], respectively. 

 These examples illustrate some of the lower-level operations found in the R 

language.  In general, analytic work is performed using higher-level functions presented 

by both core R and add-on packages.  For example, the R function lm builds a linear 

model from an input dataset.  Though one could use R’s low-level operations such as 

sum, apply, and “%*%” (matrix multiplication) to create a linear model from a dataset 

(duplicating the functionality of lm), in practice the simpler call to the higher-level 

operation lm is typically used.   

 Core R has two related limitations: it operates only on in-memory data, and its 

interpreter is implemented as a single-threaded process.
10

  As a result, R is slow when 

processing large amounts of data, in particular datasets whose size exceeds that of main 

memory.  As discussed in Chapter 3, problems occur even when the sizes of the input 

data objects do not exceed main memory.  R’s performance substantially suffers if too 

many intermediate results accumulate during analysis, or if the size of particular 

intermediate results are large enough to force storage in virtual memory.  Any time R’s 

memory footprint exceeds its allotted amount of physical memory, performance is 

noticeably slowed [14-15]. 

 

 

                                                           
10

 Though recent versions of core R are come shipped with the “multicore” package already installed, most 

R functions – and many R users – do not utilize its capabilities.   
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4.1.2 SCIDB 

 SciDB is a joint academic and commercial endeavor that launched in 2010 [28-

29]. The fundamental data object in SciDB’s data model is the array.  SciDB was 

designed from the ground up to operate on arrays.  Unlike many other array database 

systems, SciDB is not an extended or modified RDBMS.  All of SciDB’s components – 

including its query processor and storage manager – are optimized for array operations.  

The design decision to optimize the system for array processing was motivated by the 

desire for good performance, and it appears to have paid off for several analytic 

operations; in a recent benchmark testing common analytic tasks on large disk-resident 

datasets, SciDB regularly outperformed other systems by significant margins [14].  

SciDB is also designed to scale easily and well, through the addition of off-the-shelf 

commodity computing nodes.     

 SciDB arrays are constituted of cells, each cell storing the value of one or more 

named attributes.  All cells of an array hold the same attribute types.  While attributes in 

array cells can be referenced individually, SciDB operators used in practice typically take 

entire arrays as inputs.  Users write SciDB queries in one of its two languages:  AQL or 

AFL.  AQL is an SQL-like declarative query language, and AFL a functional language 

with similarities to relational algebra.  Agrios interacts with SciDB in AFL.  AFL queries 

are submitted to SciDB through SciDB’s iquery interpreter.   

 Suppose that the 3 × 3 array A shown above is stored in SciDB.  Each cell in the 

array contains a single integer value.  Since attributes in SciDB arrays must be named, let 
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the sole attribute for array A be “brightness”.  The AFL expression summing the values 

of all cells in A is: 

    sum(A, brightness); 

The AFL operator sum has an input and a parameter: the name of the array and the 

attribute of the array to be summed, respectively.  Suppose B is a second two-

dimensional 3 × 3 array stored in SciDB, also with each cell containing a single value of 

the attribute “brightness”.  Array B is added to array A with the following AFL code:  

  project( 
    apply(join(A, B), 
     result,  
     A.brightness + B.brightness), 
    result 
    ); 
 

The computation is shown in Figure 4.1.   
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Figure 4.1.  An array computation in SciDB.  Array A is represented in (i).  The array’s nine cells each 

store an integer value of the attribute brightness. Panel (ii) shows the intermediate result of joining A and B 

(B is not shown).  Each cell in this array contains two values – the brightness attributes for both A and B.  

The intermediate result following the apply operator is shown in (iii); the result attribute is stored in each 

cell together with the brightness attributes.  The final result is seen in (iv). 

 The performance and scalability of SciDB show promise, but its language and 

APIs are obstacles to adoption.  Though the intentions of SciDB’s designers are good, the 
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system would benefit from an interface and language more familiar to data scientists.  

SciDB’s designers intend AQL to be an array-modeled analog to SQL, in the hopes that 

AQL will be easily mastered by SQL users.  This approach is challenging, since SQL is 

itself not a language eagerly embraced by many members of the scientific and 

engineering communities [48-49].  Given the relative dislike of SQL in these subsets of 

the data analysis community, the odds of a language one step removed from SQL gaining 

traction in the data science community seem low.  Some work has been done in this arena 

by the SciDB team; they have developed effective SciDB-to-R and SciDB-to-Python 

connectors; we discussed SciDB-R in Chapter 2. 

4.1.3 MOTIVATION 

 R’s popularity among data scientists and researchers is in part why we selected it 

to be the primary language for Agrios.  SciDB was a natural choice for our data 

management system because it exhibited good performance with common analytic 

operations on large array-modeled datasets.  Additional reasons for the selection of R and 

SciDB for our work stem from the fact that both systems treat “structured” data objects 

such as vectors and arrays as fundamental, and that both systems are optimized to operate 

on such data objects.  Best practices for both systems, for example, recommends use of 

operators and functions that take entire vectors and arrays as inputs.  Our hope was that 

these commonalities would make integration of the two systems relatively 

straightforward.  In addition to these similarities at the conceptual level, there are some 

practical reasons that make R and SciDB good components for experimenting with 

hybrid systems.  Both systems are easily extensible, and both codebases are open source.   
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 In areas where R and SciDB are not similar, the differences between the two 

systems often complement one another.  Unlike R, SciDB scales easily and simply.  The 

R language is much more familiar to data scientists than SciDB’s AFL and AQL 

languages.  Compared to SciDB’s AFL and AQL, the R language also presents users with 

higher-level functions for operating on data.  For example, R users can perform a 

principal component analysis on a dataset with a single function call.  The single function 

call hides the complexity of the linear algebra operations used to implement the method.  

While SciDB can perform principal component analysis with a complex query that 

explicitly calls the necessary linear algebra operators, SciDB does not expose a specific 

function call for the statistical technique.   

In addition to the two systems’ common and complimentary aspects, a fact about 

scientific and engineering practice further increases the utility of an R and SciDB hybrid:  

many scientific and engineering problems, solutions, and datasets are naturally modeled 

as arrays of one or more dimensions [49].  Scientists and engineers are used to working 

with arrays and vectors.  A good example is provided by CERN’s ATLAS experiment.  

Events are fundamental data objects in the ATLAS data model [50].  Events are changes 

in the physical properties of an object, occurring in space and time. Not only are events 

naturally modeled as multidimensional arrays (e.g. a collection of values, each at a 

particular location along an x-axis, y-axis, z-axis, and t-axis), many of the software tools 

used to analyze them assume representation as a multidimensional array.  Because the 

data models of both R and SciDB are built around these types of data objects common in 

scientific and engineering practice, it should be relatively easy for scientists and 

engineers to conduct their analyses in hybrid systems such as Agrios.  Though it is 
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possible to map array-modeled data into a relational data model, such a mapping should 

be avoided unless there is a clear benefit.   

 

4.2 AGRIOS AS INTEGRATION 

4.2.1 SCOPE 

Operators 

 A number of R operators are implemented in Agrios; the current list is shown in 

Table 1.  All of these operations are capable of being performed by both R and SciDB. 

We selected these specific operators for several reasons.  First, the operations selected are 

important operations in analyses.  Matrix multiplication, for example, is at the heart of 

many analytic tasks, from linear regression to singular value decomposition.  Second, the 

selected operations affect the size of their inputs in interesting ways.  Operations that 

change the size of their inputs are important because the size of an object is one of the 

factors determining inter-component data-movement costs.  The subscript operation, for 

example, typically reduces the size of its input.  Similarly, the output of a matrix 

multiplication operation may differ in size from one or both of its inputs, depending on 

the shape of the inputs and their ordering.  Figure 4.2 provides an example.  The 

operators we implemented were also selected because they are present in the 

transformation rules we identified for implementation.  Operator selection and rule 

selection went hand-in-hand during Agrios’ design:  the operators we selected influenced 

the transformation rules we selected, and the transformation rules we selected influenced 

the operators we selected.  Not all operators have associated transformation rules 

permitting data-reducing transformations.  The operators implemented in Agrios do.     
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Table 4.1. R operators currently implemented in Agrios. 

A B

A %*% B

A
B

A %*% B

A B

A %*% B

 

Figure 4.2.  Three instances of a matrix multiplication.  Note that the size and shape of the output can vary, 

depending on the size and shape of the inputs.   

 

 Finally, we selected these operators because they can be performed at either 

location of the hybrid.  If operators are not executable at both locations, the utility of this 

research drops substantially.  Consider the limit case, where each operation can be 

performed only at one of the two hybrid components.  In this case the operators in the 

query effectively determine the only possible staging; i.e. there are no alternative stagings 

with potentially different plan costs.  The fact that the operators implemented in Agrios 

can be performed at both hybrid components means that there are choices as to what 

staging is best. 

 Though we focused on operations capable of execution at either location, some 

operations can be performed only at one of the two hybrid components.  For example, 

Name Symbol in R

matrix multiplication %*%

elementwise addition +

aggregate sum sum( )

subscript [ , ]

apply apply( )

aggregate aggregate( )
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data can be plotted at R, but cannot be plotted at SciDB.  Our system easily 

accommodates such operations.  Later in this chapter we discuss how it can do so. 

 Agrios accommodates new operators without any changes to the logic or core 

code of the Bonneville optimizer.  Typically, adding a new operator requires adding to 

Agrios a logical operator and its two associated physical operators:  one physical operator 

for executing the operation at R, the other physical operator for executing the operation at 

SciDB.  There are four main steps to adding a new operator: 

1) Add a new class representing the logical operator to the logop.cpp file. A 

constructor and destructor must be defined for the class, as well as hash and 

dump methods.  Bonneville uses the hash method to hash class instances.  The 

hash value provides a unique identifier for the object, which is used during 

staging to help avoid creation of duplicate multiexpressions.  The dump method 

prints human-readable information about the operator to a file; the method is 

useful for debugging.  The user must also write a FindLogProp method for the 

operator.  Bonneville uses the method to learn logical properties of the operator 

instance, such as the shape and size of the output it will return.   

2) Add two new classes representing two physical operators to physop.cpp file.  

Two versions of the operator are required because the operator can be performed 

at either R or SciDB – thus one class represents the physical operation being 

performed at R, the other class represents the physical operation being performed 

at SciDB.  Similar to the case with logical operators, constructors and destructors 

must be added, along with a dump method and a FindPhysProp method.  The 

FindPhysProp is used by Bonneville to determine the physical property essential 
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to Bonneville’s operation, namely, the operator’s execution location.  

Additionally, for each version of the physical operator the user must write a 

FindLocalCost method.  This method uses Bonneville’s cost model and facts 

about the location of operator inputs to compute the cost of moving the data to 

the operator. 

3) Add a class for both of the two implementation rules that link the logical operator 

to its two related physical operators.  These classes must be added to the 

rules.cpp file.  The key method for these classes is next_substitute.  The method 

takes a logical multiexpression as an input and outputs the appropriate physical 

multiexpression. The method for one of the two rules replaces the root logical 

operator with the associated physical operator performed at R, the other replaces 

the root logical operator with the associated physical operator performed at 

SciDB.  A constructor and destructor should also be defined for the classes.  

4) Add the two rules to the file rules.txt.  While rules.cpp is a source file compiled 

into the Bonneville executable, rules.txt is a Bonneville configuration file 

accessed at runtime.  The rules.txt file tells the system what rules are available 

for use during staging.  This is an excerpt of the rules.txt file: 

 1  //R_IMPL_BIN_ARITH_R 

 1  //R_IMPL_BIN_ARITH_S 

 1  //R_IMPL_MATRIX_MULT_R 

 1  //R_IMPL_MATRIX_MULT_S 

 0  //R_IMPL_SUM_R 

 0  //R_IMPL_SUM_S 

 1  //R_IMPL_SUBSCRIPT_R 

 1  //R_IMPL_SUBSCRIPT_S 

 1    //R_SUBSCRIPT_THRU_BIN_ARITH 

 1  //R_SUBSCRIPT_THRU_MATRIX_MULT 
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The numeral “1” indicates that a rule is enabled, “0” indicates that a rule is not 

enabled.   

After these steps are performed queries containing the new logical operator can be staged 

by Bonneville.  At this point, however, no transformations involving the operator can 

occur.  In order for transformations to be applied, a class for each new transformation 

rule must be added to rules.cpp.  As with the implementation rules, a constructor and 

destructor must be defined for the rule’s class, as well as the next_substitute 

method.  In order for Bonneville to utilize the transformation rules, they must be added to 

and enabled in the rules.txt file.  Additional details about the process of adding a new 

operator or transformation rule to Bonneville can be found at the Bonneville wiki page, 

built under supervision by Brent Dombrowski [51].   

Some operators in R have semantic peculiarities that are not shared by SciDB.  A 

noteworthy example is “recycling” in R.   Suppose that in R we wish to add the unit 

vector [2] to the row vector [1 2 3 4 5 6].  (In R, this row vector is represented as 1:6.)  

Prima facie, pairwise addition is not possible, because the two addends differ in length.  

However, R permits the addition of a unit vector (or scalar) to a non-unit vector.  R’s 

output for the expression adding these two values: 

   2 + 1:6; 

is the vector: 

    [3 4 5 6 7 8] 
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Though that calculation may be relatively intuitive, recycling in R permits some less-

intuitive calculations.  For example, adding the vector  

[1 2]  

to  

[1 2 3 4 5 6]  

yields the vector  

[2 4 4 6 6 8]. 

Recycling effectively transforms the expression: 

    [1 2] + [1 2 3 4 5 6]; 

into the expression: 

    [1 2 1 2 1 2] + [1 2 3 4 5 6]; 

Neither one of these two addition operations is legal in SciDB, because SciDB’s 

analogue to pairwise addition in R requires the operands be of identical length.  If one 

tries in SciDB to add addends of differing dimensions, SciDB will raise an exception and 

not process the expression.  We designed, implemented and tested code in Agrios’ 

executor that handles recycling when unit vectors are added to non-unit vectors and 

arrays.  This code builds the appropriate AFL expression, which can then be evaluated in 

SciDB.  It would be possible to extend the code to handle more complicated instances of 

recycling. 
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Data Model 

 The data models for R and SciDB are similar but not identical.  Both systems 

recognize as fundamental types of objects considered “complex” or “structured” in most 

mainstream languages:  vectors and arrays.  While the two data models are not identical, 

because both systems recognize vectors and arrays as fundamental types we can fairly 

easily map objects in one language to objects in the other.  As with operator semantics, in 

order to present a familiar interface to data scientists, we tried to emulate R’s data model 

as closely as possible.  SciDB recognizes as a data type only arrays, not vectors, so 

Agrios maps R vectors to one-dimensional SciDB arrays.  N-dimensional arrays in R map 

to N-dimensional arrays in SciDB, when N is greater than 1.  We restricted our research 

to arrays of one and two dimensions.  Extension of our work to higher-dimensional 

objects would require non-trivial effort but is not conceptually challenging.   

R requires that vectors and arrays be of only one particular native data type; e.g., a 

vector V must either be a vector of integers, or a vector of characters, or a vector of 

doubles, etc.  Because R’s native data types do not always correspond to SciDB’s native 

data types, we stipulated mappings between the two.   Table 4.2 shows mappings 

between R and SciDB, for different vectors and arrays element types. These data types 

are common in analytic applications.  Though the number of data types is small, many 

analyses can be performed with them.  Integers and characters often serve as qualitative 

factors, while doubles are useful for representing both probabilities and quantitative 

measurements, such as length, brightness, latitude, and longitude. 
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Table 4.2.  Data type equivalencies, R and SciDB.  Agrios is “R-centric”, so the SciDB data types are used 

to “simulate” R data types when Agrios data objects are stored in SciDB. 

SciDB arrays can store multiple values in a single array cell, while vectors and 

arrays in R may contain only one value per cell.  Agrios’ data model follows R’s, 

allowing arrays to contain only one value per cell.  This restriction does not limit the 

usefulness of our research into reducing data movement in hybrid analytic systems.  

Should future researchers wish to make R’s (and Agrios’) data model more similar to 

SciDB’s data model, there are some practical ways in which to do so.  An example 

illustrates some of the approaches.   

The vector (or one-dimensional array) shown in Figure 4.3 can be represented in 

SciDB, though it cannot be represented as a vector in R.  The vector depicted in the 

figure is common in genomics research; it stores DNA data, each cell specifying 

nucleotide information at a particular location in the DNA strand.  Each cell of the vector 

contains values for two attributes, of different data types:  i)  a character value specifying 

the nucleotide, and ii)  a floating point value indicating the confidence that the nucleotide 

value is correct.  There are several alternatives for representing this multi-attribute array 

in R.  First, the data could be stored as two separate, parallel vectors:  one character 

vector to hold the nucleotide value, and one double vector to hold the probability value.  

The user or application would be responsible for correctly maintaining and accessing the 

vectors, enforcing that they remain parallel.  Second, these two parallel vectors could be 

combined into a single S3 or S4 data object, using the R language’s object-oriented 

R data type SciDB data type

double double

character string

integer int64
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programming features.  Methods could be defined for this object for modifying and 

accessing values.  Finally, the array could be represented in R as a data frame, a table-like 

data structure common in R.  Regardless of which of these three approaches is chosen, it 

is interesting to note that internally SciDB implements multi-attribute arrays as a 

collection of parallel arrays:  one array for each attribute.  This fact potentially makes 

extending R’s data model to mimic SciDB’s more straightforward than if SciDB did not 

store individual attributes in separate data structures.   

 

Figure 4.3.  A vector (or one-dimensional array) containing genomics data.  The position in the array 

indicates the position in the DNA strand.  Each cell contains two values:  the nucleotide present at the 

location, and a value indicating the confidence that the nucleotide value is correct. 

 

Data Model Limitations:  Array Representation 

 We mentioned in Chapter 3 that Agrios’ cost model assumes that arrays are 

uncompressed and stored in a dense storage format.  These two simplifying restrictions 

focus our research because they let us directly assess the effect that operators and 

transformations have on data movement.  If an array has a dense storage format, its 

physical size is consistently proportional to its logical size.  Similarly, if an array is 

uncompressed the physical size of the array depends only on the array’s shape and size, 

not its content.   Let us examine each of these restrictions in turn. 

 Some array systems, including SciDB, store arrays in two main storage formats:  

dense or sparse.  Arrays represented in dense format are stored in memory or on disk with 

1 2 3 4 . . . 10000000

"G", 0.3301 "A", 0.9109 "A", 0.8769 "T", 0.9132 . . . "T", 0.7691

Position
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all cell values adjacent to one another, in either row-major or column-major order.
11

  

(Layout orders generalize to higher dimensions as necessary.)  Each cell value inhabits an 

equal-sized piece of storage space, including empty or null-valued cells.  Empty or null 

values are indicated by a special cell value.  Array index values are not stored with the 

data, and a particular cell is accessed through calculation of the appropriate offset from 

the array’s first value.   

By contrast, arrays represented in sparse format store cell indices along with the 

cell value.  Each cell value is stored together with its index values.  Empty or null values 

are typically not stored; if a sparsely-stored array does not contain a value at a particular 

set of indices, the array cell is assumed empty or null, depending on the context.  Note 

that this is essentially a relational representation of the data. 

Which array representation – sparse or dense – is more efficient depends on the 

array’s content and the operations being performed on it.  The content and relevant 

operators, in turn, often depend on the particular research field or problem domain.  

Unsurprisingly, array datasets that are logically dense are typically most efficiently 

represented in a dense storage format; the format requires only cell values to be stored.  

Similarly, array datasets that are logically sparse are often best represented in a sparse 

storage format. 

 Arrays with dense storage formats are common in a number of problem domains, 

sparse storage formats common in other problem domains.  Genomics is one field where 

arrays are often dense; the array shown above in Figure 4.3 provides an example.  The 

                                                           
11

 SciDB’s storage model is more sophisticated than this; arrays are actually broken into storage units 

named “chunks” or “tiles”.  This and other details of the storage model are not essential here; the important 

fact remains that in arrays stored in dense storage format, each cell value occupies an equal number of 

bytes.  
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human genome can be represented as a one-dimensional array approximately 3.5 billion 

elements in length, with each cell containing a single nucleotide value.  Because all but 

the first and last nucleotides are next to two adjacent nucleotides, the array is intuitively 

modeled as a dense array.  In addition to genomics, many datasets in image analysis  are 

also commonly represented in a dense storage format.    

 If all arrays are dense, determining the output size of an operation is a 

straightforward calculation.  Suppose a subscript operation on a dense array A occurs in a 

plan immediately prior to a XFER operation: 

A[100,100]R 

After completion of the subscript operation we know that exactly 10,000 logical data 

elements will be transferred from R to SciDB.  Because the array is dense, we know that 

the physical amount of data moved is 10,000 times the size of the one cell’s storage size 

in bytes.  The same subscript operation, with identical subscript parameters, performed 

on any other array will always return a physical result of the same size.   

 Suppose that we drop the assumption that all arrays have a dense storage format 

and that array B has a sparse storage format.  If the same subscript operation is performed 

on B, we know that the logical result will be of the same size.  What we do not know, 

however, is what the physical size of the output will be.  If array B has no values in the 

area indicated by the subscript parameters, the query: 

B[100,100]R 

will not return a result with any significant physical size.  If, however, there are some 

values in the area indicated by the subscript parameters, the physical size of the 
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operations result is at minimum the size of one cell’s storage size in bytes, plus twice the 

size of each index’s storage size.  At a maximum, the result of this operation it is 10,000 

times the size of one cell’s storage size plus 2 × 10,000 times the size of each index’s 

storage size.   

Similarly, two different queries against a single array might also yield outputs 

with identical logical sizes, but different physical sizes.  This divergence of logical and 

physical sizes is not encountered when arrays are all dense.  Let C be a 50 × 50 array with 

dense regions and sparse regions, as pictured below: 

 

Consider the following two queries on C: 

    C[1:25, 1:25];  (1) 

    C[26:50, 26:50];  (2) 

9 8 5 4 4 0 8 3 9 2 7 6 9 2 2 9 8 1 0 8 5

6 8 9 4 6 3 4 8 1 5 0 6 2 5 6 7 0 8 0 2 8

6 4 6 2 9 1 7 3 2 3 8 1 3 2 6 1 3 9 8 3 9

2 7 6 1 6 5 8 1 3 3 9 2 7 5 9 5 6 1 4 0 9

3 4 4 6 7 2 4 5 2 5 9 7 8 7 9 7 1 2 8 2 8

5 3 2 5 3 5 2 7 4 6 1 9 2 0 0 1 6 7 7 5 7

6 1 6 4 9 3 6 3 9 0 1 2 5 1 9 7 3 5 6 7 3

1 9 9 8 8 5 3 9 9 0 0 6 8 3 5 7 4 8 5 8 2

1 3 1 9 3 0 4 9 9 3 9 1 8 8 9 7 2 6 7 4 7

9 1 1 4 4 8 9 0 7 3 6 9 8 2 0 5 7 3 0 7 2

3 5 9 5 6 0 5 8 6 7 9 9 4 7 7 4 3 8 5 3 4 3

8 0 3 7 0 8 2 1 3 0 5 6 3 3 2 1 2 3 7 6 2

2 2 7 4 7 4 3 2 8 3 9 2 8 2 7 1 5 1 8 8 3 6

9 4 3 5 8 0 4 4 7 1 7 3 0 3 0 2 6 8 0 7 8

7 8 4 1 8 7 6 9 1 6 7 8 6 4 5 1 1 2 5 5 4

2 9 4 1 9 1 3 5 0 2 5 6 5 2 0 0 9 3 8 6 9

3 0 2 4 2 6 1 0 4 9 6 5 5 8 5 9 4 6 1 7 2

4 2 8 3 4 4 4 5 9 6 1 6 6 7 8 3 3 1 2 0 6

0

0

6

3

1

2

3

2

9 1



 

117 
 

Both queries return a logical result of size 25 × 25.  Both results are a subarray of the 

input array C, but from different regions of the input array.  If C is represented in a dense 

storage format, the logical and physical result size of both Query 1 and Query 2 are 

identical.  If C is represented in a sparse storage format, though the logical size of both 

query results are identical, the physical sizes of the results differ markedly.    

 These examples show that relaxing the assumption that all arrays are stored in a 

dense format introduces variability into the physical output size of operators and query 

results.  This variability in physical output size thus potentially introduces variability into 

the amount of physical data moved during query execution.  The variability in physical 

output size partly obscures our understanding of how transformations and rewrite rules 

reduce data movement.  In the interests of answering our research question with a clear 

comprehension of the role transformations play in reducing data movement, we maintain 

the assumption that all arrays are stored in a dense storage format. 

 Assuming that arrays are uncompressed is equally valuable in pointedly 

answering our research question, as the assumption isolates the role transformations play 

in reducing data movement.  When arrays are compressed, situations similar to the ones 

sketched above may introduce variability into the physical output size of operators; this 

variability in turn introduces variability into the amount of physical data moved during 

query execution, potentially obscuring the benefits of transformations.  The assumption 

that arrays are uncompressed is not unreasonable.  R operates only on uncompressed 

data, and only some operations in SciDB can be performed on compressed arrays (though 

all operations in SciDB can be performed on arrays represented in either dense or sparse 

storage format).  
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4.2.2 ARCHITECTURE 

 The previous chapter provided an overview of the Agrios system.  Chapter 3’s 

high-level architectural diagram showing the components and workflow is reproduced 

here for reference in Figure 4.4.  We now examine the four main components of Agrios 

in detail, starting with the accumulator. 

Accumulator 

 The accumulator is the first stage in Agrios’ workflow.  It takes as input an R 

script written by the user.  If the script contains multiple queries, the accumulator tries to 

combine several queries into a single query.  Its output is one or more queries that are 

semantically equivalent to the original R script.  Recall from Chapter 3 that the 

accumulator can reduce data movement in at least two ways.  First, for some queries, 

accumulation can create consolidating transformations.  Second, accumulating multiple 

queries into one query makes possible query rewrites that are not possible when queries 

are treated individually.   

The mechanics of the accumulator’s operation are relatively straightforward.  The 

accumulator is written in R.  It reads a text file containing an R script, where the queries 

in the script are represented in R character vectors (effectively, text strings).  Queries 

must terminate with a semicolon, something permitted but not required in R.  Operand 

names must be single capital letters.  Text strings are decomposed into tokens by the 

accumulator, and the tokens classified as either operations or operands.  Operands are 

further classified according to whether they are the part of the source of an assignment 

expression, the target of an assignment query, or both a source and target of an 

assignment query.   
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Agrios’ accumulator lets the user specify structural limitations on its outputs.  

Users can limit the maximum number of operators allowed in accumulated queries.  The 

accumulator tries to create an accumulated expression as close to this upper bound as it 

can, without exceeding it.  There is value in higher accumulation thresholds, as higher 

thresholds mean larger queries, and larger queries in turn mean the more likely useful 

transformations result.  However, preliminary tests show that without pruning, the time 

required to stage queries is exponential in the number of query operations.  Therefore, if 

the upper bound for accumulation is set too high, the time required for staging will be 

unacceptable.  Our research did not investigate optimal or recommended accumulation 

thresholds.  We placed no restriction on allowable accumulations; the accumulation 

threshold for our test queries were sized such that staging times were reasonable.   

 

Figure 4.4.  The architecture and workflow of Agrios, reproduced from Chapter 3. 

 An example illustrates the accumulation process.  Below are two queries from an 

R script; each line is read into Agrios’ accumulator as a single character vector: 

    A <- B + C;    (1) 
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    D <- A + E;    (2) 

These two queries are then broken up into their constituent parts, respectively.  Query (1) 

breaks into: 

    “A”  “<-“  “B”  “+”  “C”  (3) 

and Query (2) breaks into: 

    “D”  “<-“  “A”  “+”  “E”  (4) 

In (3) and (4) the operators are “<-“ and “+”.   “D” is a target operand; “B”, “C”, and “E” 

source operands; and “A” both a source and target operand. 

 The accumulator attempts to combine Queries (1) and (2) by looking for matches 

between operands common to both the source and target groups.  If a match is found, the 

accumulator makes the appropriate substitution, creating one query out of two.  In our 

example above, the accumulator notes that A belongs both to the source and target 

subgroups, so substitutes “B + C” for “A” in Query (2).  This yields the accumulated 

query: 

    D <- (B + C) + E;   (5) 

Query (5) is semantically equivalent to the original Queries (1) and (2).  Note that 

parentheses are inserted during substitution, both to ensure correctness and aid 

debugging.   

Further work with accumulation – including both exploring its benefits and 

refining the accumulation process – are natural extensions of our work.  Such work 
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should also explore the semantic restrictions required for correct accumulation, as our 

examination into this topic has been limited.   

Parser 

 Agrios’ parser is implemented in R, and it converts any query produced by the 

accumulator into a data structure used internally by Agrios:  an Agrios Abstract 

Expression Tree (AAET).  AAETs store information about both operators and input data 

objects, with each internal node (except the root node) representing the root operation of 

a subquery.  The parser operates on the AAET bottom-up, first processing the most 

deeply-nested subqueries in query, then working upwards to higher-level expressions.  

Leaf-level nodes of the AAET represent stored data objects, which are query inputs.  

Internal nodes of the AAET represent operations, and so contain relevant facts about the 

operations.   The root node of an AAET is the final operation of the query.  An AAET is 

constituted of S3 objects, a data type in the R language roughly analogous to a C struct.  

The S3 type “internal.node” represents operators, and the S3 type “leaf.node” represents 

data objects.  S3 objects of both types store object properties in named “slots”.   

 Agrios must know facts about input data objects in order to populate certain fields 

in an AAET.  For example, Agrios must know whether input data objects are stored at R 

or at SciDB, and must know the number of and extent of an array’s dimensions.  Agrios 

can easily find the necessary facts for data objects stored at R, as the parser is 

implemented in R; the parser simply examines the relevant R environment to see if the 

data object exists.  If the object exists at R, relevant properties needed to populate the 

AAET – such as its size and shape – can be determined by examining the object.  Finding 

information about data objects stored in SciDB is not as simple.  Agrios maintains a 
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catalog in R containing facts about data objects stored at SciDB.  This catalog is accessed 

by Agrios’ parser as necessary.  The facts stored by the catalog data structure include 

arrays’ dimensions and the arrays’ names in SciDB.  The catalog exists in Agrios as a list 

of instances of the S3 class agrios.object.  The class definition for a catalog object is: 

setClass("agrios.array", 

 representation ( 

  dimension.extents="numeric", #  dimension lengths 

  dimension.names="character", 

  storage.size="numeric", 

  compression.type="character", 

  chunk.scheme="numeric", 

  storage.mode="character",#  dense or sparse 

  scidb.identifier="character", #  name in SciDB 

  attribute.names="character",  

  attribute.types="character" 

 ) 

) # end class definition 

The slot names in the object reflect the data stored in them.  The scidb.identifier 

slot, for example, stores the name of an object in SciDB, while the 

dimension.extents slot stores information on the array’s shape.  Slots also may have 

vector values.  The value of the dimension.names slot for a 2-D array, for example, 

will be a vector of length 2.  Some of the slots are not currently used, but could be used 

for future research.  The storage.mode slot, for example, may be used to specify the 
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storage format of an array stored in SciDB:  either dense or sparse.  Similarly, the 

compression.type slot may be used to specify the compression scheme (if any) used 

to compress an array stored at SciDB. 

 Figure 4.5 shows the parser’s output for the input R query: 

    A %*% B[1:10,1]; 

R’s operator-precedence rules specify that the subscript operation is performed before the 

matrix multiplication.  The storage location of input data objects is saved in the 

st.location slot of leaf nodes, as seen in the figure.  Data object A, for example, is 

stored at R.  Details about operators are stored in appropriate slots, too; the name of an 

operation is stored in the operation slot of the internal.node object representing the 

operation.  The special slots in the S3 object store additional relevant facts about 

operations, such as the subscript parameters (stored in the special.1 slot).   

 By inspection we see that the AAET in Figure 4.5 has not been staged.  This 

situation is indicated by missing values for particular slots.  For example, we see that the 

intermediate result sizes have not been calculated, since the result.size slots in the 

internal nodes are empty.  (An empty slot is represented in an S3 object by “num(0)”.)  

Similarly, the op.location slots in the internal nodes (which represent operations) 

have the value of unk.  After staging, all op.location slots will have been assigned 

either the value R or SciDB.  The AAET output by the stager and input to the executor is 

used to execute the minimal-movement plan. 

Stager 

 As discussed both in Chapter 3 and this chapter, staging in Agrios is performed by 

its Bonneville component.  The stager takes as input the AAET output by the parser.  The 
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AAET is transformed, via “glue code” between the parser and stager, into a text file 

readable by Bonneville.  Taking this text file as an input, Bonneville’s CopyIn function 

populates the MEMO structure with a multiexpression representing the user-written 

query.  Ancillary functions determine from the text file the relevant physical and logical 

properties of the query’s input data objects:  these properties include an  objects’ shapes, 

sizes, and placements (storage locations).  Bonneville stores these properties in a 

dedicated “catalog” data structure, which is referenced as necessary during the 

optimization process.  After the CopyIn function completes, Bonneville determines the 

movement-minimizing plan, using staging and – if enabled – query rewriting.  Once the 

movement-minimizing plan is identified, a CopyOut function extracts the plan from the 

MEMO structure and outputs it to a text file for consumption by the executor. 

The Bonneville stager is derived from the Columbia relational database query 

optimizer.  The modifications made to Columbia were significant enough to warrant 

renaming the system.
12

  Bonneville differs from Columbia in two main ways.  First, 

unlike Columbia, Bonneville optimizes queries for a distributed system.  Columbia was 

designed to optimize queries on homogenous (non-hybrid) systems.  Its cost model 

reflects this design; there is no accounting for data-movement costs.  Instead, Columbia’s 

cost model focuses exclusively on database costs common to non-distributed systems, 

such as the number of disk reads and disk-seek time.  Some may not think that a hybrid 

system such as Agrios is a distributed system, since by “a distributed database” authors 

often mean an interlinked collection of homogenous systems sharing a common data 

                                                           
12

 We thoughtfully renamed the system.  Bonneville is derived from Columbia, which is derived from 

Cascades.  Columbia earned its name because it “cuts through” the Cascades; Bonneville earned its name 

because it “reshaped” the Columbia. 
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model.  However, hybrid systems such as Agrios are effectively distributed systems in a 

broader sense of “distributed”, in that data is stored at multiple locations, and that 

operations on data are performed at multiple locations.   

Second, unlike Columbia, Bonneville optimizes queries on array-structured data 

objects.  Columbia optimizes queries written for databases using a relational data model.  

Its transformation rules rewrite queries containing only relational operators such as select, 

project, and join.  Bonneville, by contrast, optimizes over queries written with array 

operators, using array-specific transformation rules.   

    Columbia transformed into Bonneville through these significant changes: 

 Alterations were made to Bonneville’s catalog, to accommodate the new physical 

and logical properties required for staging.  Space for storing a new physical 

property – location – was added to the catalog’s structure.  The value of the 

location property indicate the storage location of the input data object.  The two 

possible values of this property are “SciDB” and “R”.  Additional space was 

provided in the catalog for storing new logical properties about data objects, 

specifically, the number of dimensions and extent of each dimension, for each 

leaf-level data object.     

 Logical array operators replaced logical relational operators.  For example, JOIN, 

SELECT, and PROJECT were discarded, and MATRIX_MULT, SUBSCRIPT, and 

SUM added.   

 Physical array operators replaced physical relational operators.  Two versions of 

each physical operator were coded, one for each hybrid component.  In the case of 
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Figure 4.5. An Agrios Abstract Expression Tree, represented as an S3 object in R.  Objects of class 

“internal.node” represent operators, while objects of class “leaf.node” represent data objects.  Each “slot”, 

prefixed by the “@” symbol, contains a fact about the operator or data object.   

 

the logical MATRIX_MULT operation, for example, the two associated physical 

operators are MATRIX_MULT_R and MATRIX_MULT_S.  These physical operators 

stage a matrix multiplication operation at R or SciDB, respectively. 
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 A new physical operator named “XFER” (transfer) was added.  XFER is a unary 

operation that takes a data object at a given location, and moves it to a new 

location.  For example, if the input to XFER is an object at R, the output is at 

SciDB, and vice versa. 

 A “XFER” enforcer rule was added, replacing Columbia’s “SORT” rule. The 

transfer rule ensures that data objects are moved as necessary, by inserting a XFER 

operator between the operation and the data object (leaf-level or intermediate) 

required to move.   

 The cost model was supplemented with a value for calculating data movement 

costs.  Specifically, the cost model now considers the size of an array – i.e. the 

number of cells in the array – when determining plan costs.  Array sizes for leaf-

level inputs are calculated based on the array’s logical properties stored in 

Bonneville’s catalog.  During the staging process, array sizes for intermediate 

data objects are calculated and stored in Bonneville’s MEMO structure; these 

values are accessed as necessary as the process continues.  Since different 

operations produce outputs of different sizes, each operator was given a particular 

cost formula.  The catalog is accessed during size calculation if necessary. 

 New rewrite rules were added:  both implementation rules and transformation 

rules.  New rules were necessary because Columbia’s rewrite rules applied only to 

relational operators.  Since Columbia’s relational operators were replaced with 

Bonneville’s array-specific operators, the rewrite rules needed replacement as 

well.   
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Chapter 3 contains a table showing all rules currently implemented in R.  Of all of 

Agrios’ rules, transformation rules are worth a closer examination as they expand the 

number of queries in the search space.  Figure 4.6 shows several instances of 

transformation rules, illustrating some of the ways the rules can transform their inputs.     

Executor 

   The executor is the final step in Agrios’ workflow.  The input to the executor is 

the text file output by the Stager.  The contents of the text file are converted into and 

AAET via some “glue code” in the Executor.  The output of the executor is the result of 

the computation specified by the plan (which was specified by the original user query 

from which it was derived).  The executor is responsible for executing the movement-

minimizing plan, as the stager merely identifies – and does not execute – that plan.   

 The executor performs one operation at a time, working its way from the deepest 

physical operator in the AAET up to the root operator.  If the movement-minimizing plan 

dictates that an operation is performed at R, the executor generates the appropriate R 

expression and issues it to the R interpreter for execution.  If the movement-minimizing 

plan dictates that an operation is performed at SciDB, the executor generates the 

appropriate command as an AFL expression, and issues the command to SciDB’s iquery 

interpreter for execution.  In order to generate AFL code from AAETs we devised R-to-

AFL translations for the operations Bonneville handles.   

The XFER operator is unique in that there is no XFER operator in either R or 

SciDB; it is not an operation an Agrios user would ever write in a query.
13

   The XFER 

                                                           
13

 Recall from Chapter 3 that the logical analogue to the physical XFER operator is the identity operator. 
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operator is also unique because it is a single physical operator that requires processing at 

both hybrid components:  both the source and the destination of the transfer.  As such,  

A B

C A

B C A B B A

[ ]

+
+

[ ] [ ]

[ ]

%*%
[ ]

[ ]

%*%

sum()

+

+
sum() sum()

[ ]

apply()

apply()

[ ]

 

Figure 4.6.  Examples of transformation rules.  Panel (a) shows left-to-right association.  Agrios also 

contains a right-to-left association rule.  The commute rule is shown in (b).  This rule does not directly 

reduce data movement, but can do so when used in concert with other transformation rules.  Subscript-

through-binary addition is shown in (c), and subscript-through-matrix-multiplication shown in (d).  Panel 

(e) shows the sum-through-binary addition rule, and panel (f) shows the subscript through apply rule.  
    

execution of the XFER operator is not simply delegated by the executor to the 

appropriate hybrid component.  Instead, the executor fully handles the execution of each 

XFER operation, ensuring that data is moved from the source correctly to the destination. 

(a) (b) 

(c) (d) 

(e) (f) 
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An example illustrates the executor’s function.  Let Figure 4.7 represent the 

movement-minimizing plan.  As input, the executor receives from the stager an AAET 

representing this plan.  The most deeply nested operation is a binary arithmetic operation 

staged at SciDB.  The executor first constructs the AFL code as an R character vector: 

aggregate(join(B,C), sum); 

It then prepends the AFL code with a call to SciDB’s iquery interpreter.  The appropriate 

parameters are added to the iquery call, as necessary:   

iquery -aq “\"aggregate(join(B,C),sum)\"” 

This character vector is then passed to Agrios’ scidb.command wrapper function, which 

passes invokes iquery and passes it the constructed AFL: 

scidb.command("iquery -aq 

 “\"aggregate(join(B,C),sum)\"”) 

SciDB executes the AFL code, storing the result at SciDB.   

Moving from the bottom of the query upwards, the executor handles the XFER 

operator next.  The transfer from SciDB to R is performed with Agrios’ SciDB.to.R.2D 

function.  The function extracts the object from SciDB and places it at R, storing it there 

as an array data object.  The R array is stored with the name “temp.1”.  Now that both 

operands are colocated at R, the executor processes the matrix multiplication at the plan’s 

root.  The executor assembles the appropriate R code: 
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paste("result <- ", 

  "A",  

 " %*% ",  

 "temp.1",  

 sep="") 

This yields the following expression, stored as an R character vector: 

"result <- A %*% temp.1" 

This expression is evaluated in R using eval: 

eval(text="result <- A %*% temp.1") 

The expression is passed to the eval function through its text parameter.  This function 

call multiplies A and temp.1 and stores the result in a variable named “result”. 

BSciDB CSciDB

+SciDB

AR

%*%R

XFER

 

Figure 4.7.  A simple plan:  The elementwise addition of B and C is staged at SciDB, while the matrix 

multiplication at the plan’s root is staged at R.   

 

 Agrios’ executor interacts with SciDB through SciDB’s iquery interpreter, though  

alternative communication methods were possible.  R is implemented in both R and C, 
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and SciDB is implemented in C++.  We considered having the executor interact with 

SciDB at the C/C++ level.  A connection at this level likely would have provided better 

performance than connecting R and SciDB through SciDB’s iquery interpreter.  We 

decided against a C/C++ interface for several reasons.  First, our research focuses on 

minimizing data movement at the level of queries and plans, not in the system-level 

integration of the hybrid-level components.  Optimizing the integration of the two 

systems at the language level was of secondary importance.  More importantly, the 

higher-level integration method we selected made debugging and troubleshooting much 

easier, since the meaning of high-level R and AFL expressions are often more transparent 

than their system-level implementations. 

   

 

4.3 CONFIGURATION OPTIONS 

 Agrios’ configuration can be altered to address particular research questions.  

Some of these configuration options are utilized in the experiments whose results are 

presented in later chapters.  Specifically: 

 Individual transformation rules can be turned on or off.  An entire rule type (e.g. 

reductive rules, or consolidating rules) can be enabled or disabled if all its 

member rules are enabled or disabled.  This configuration option lets us test the 

effects of how different rules and rule types affect data movement.  By default all 

rules are turned on. 

 An accumulation threshold can be specified. The accumulation threshold sets an 

upper bound for the accumulator; the accumulator tries to create an accumulated 
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expression as close to this upper bound as it can, though it will not exceed the 

value. 

  Implementation rules can be individually turned on or turned off.  The option to 

individually enable or disable implementation rules is valuable because it lets us 

restrict stagings for individual operators to only one hybrid component.   

 For example, the apply operation can be performed at both R and SciDB, 

so Agrios’ rule set includes two implementation rules:  R_IMPL_APPLY_R and 

R_IMPL_APPLY_S.  The former stages apply operations at R, the latter at SciDB.  

If R_IMPL_APPLY_R rule is intentionally disabled by the user in the rules.txt 

configuration file, then during staging Agrios finds only one rule match for the 

apply operation:  R_IMPL_APPLY_S.  This means that all instances of the apply 

operator must be staged only at SciDB.   

 

4.4 CONCLUSION 

 In this chapter we examined technical details of the concepts introduced in 

Chapter 3.  Our examination included a look at both R and SciDB, as well as the four 

main components of Agrios:  its accumulator, parser, stager, and executor.  In Chapter 5 

we return to our research question and hypothesis, addressing them both through a host of 

experiments. 
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CHAPTER 5:  THE CASE FOR STAGING 

 

 

 

 

5.1 GENERAL OVERVIEW 

 This chapter motivates the need for automatic minimization of data movement in a 

hybrid analytic system.  We motivate the need for a system such as Agrios primarily by 

examining plan costs, from several perspectives. 

5.2 STAGING COSTS 

  In Chapter 1 we noted that in some high-performance computing applications, data 

movement between computing nodes often dominates time spent computing on the data.  

In Chapter 3 we noted that staging itself has a cost, and identified several techniques 

Bonneville uses to reduce staging time.  Moving data takes time, but so does staging.     

  In the particular context of a hybrid analytic system we should have a sense of the 

relationships between data movement costs, computation costs, and staging costs.  

Understanding these relationships does not conclusively demonstrate the need for 

automated minimization of data movement, but does ground the discussion of data 

movement costs.  The first question is:  how does data movement time compare to 

computation time?  If data movement times are comparable to computation times – 

appreciating that there is room for discussion as to what is “comparable” – then the need 

for minimizing data movement in hybrid systems is warranted.  Data movement time can 

be a significant relative to computation time, as illustrated by examining performance data 

for both typical analytic operations and entire queries. 
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  Computing the singular value decomposition (SVD) of a matrix is a common 

operation in data analysis.  Published benchmark figures show that on a modern cluster, 

SciDB takes approximately 20 seconds to compute the SVD of an 8000 × 8000 array, 

while R takes approximately 400 seconds.  Though SciDB outperforms R for this 

operation, SVD computation at either system may be faster than the time required to move 

the computation’s output from one system to the other.  Performance measurements we 

conducted on Portland State University’s Barista server indicate an average R-to-SciDB 

transfer rate of 8600 elements per second, and an average SciDB-to-R transfer rate of 

250,000 elements per second
14

.  Given these transfer rates, moving the result of the 

computation – two 8000 × 8000 arrays and a 8000 × 1 vector, a total of 128,000,000 data 

elements – may take longer than the computation time at either R or SciDB:  517 seconds 

to transfer results from SciDB to R, and 14,700 seconds to transfer from R to SciDB.   

  The time required to move data between the two systems may seem surprising, 

especially the amount of time it takes to move data into SciDB.  However, recall that there 

is more to transferring data between the two hybrid components than pushing bits across a 

bus or network.  In the case of moving data from R to SciDB, for example, the data output 

by R must be rewritten into a special load format required by SciDB.  This operation is 

performed by a SciDB utility script, and it contributes to the total time required to transfer 

data from R to SciDB.   

  Comparing computation times with data movement times may initially seem to 

reinforce the “conventional wisdom” that it is always better to perform an operation at the 

                                                           
14Barista is a modest system but sufficient for our purposes here, as we are interested not in absolute 

performance figures, but in comparing the performance of movement-minimizing plans to alternative plans.  

Barista has a quad-core processor operating at 2.2 GHz, and has 4 GB of RAM.   The operating system is 

Ubuntu 12.04.  R and SciDB were colocated on Barista, and communicated through the file system. 



 

136 
 

location of the data than perform the operation elsewhere.  Though the slogan associated 

with this conventional wisdom – “always ship the query to the data” – may often hold 

true, in other cases – e.g. when a binary operation requires collocated inputs, and the two 

inputs are not collocated – it does not provide useful guidance for deciding where 

computations should be performed.   

  Before we look at additional examples we must address the asymmetry in data 

movement times between R and SciDB.  Our tests show that on average the SciDB-to-R 

transfer rate is nearly 30 times faster than the R-to-SciDB transfer rate.  It is important to 

discuss both likely causes of this difference, as well as ways in which the difference can 

be handled by Agrios. 

  There are likely two main reasons the average R-to-SciDB transfer rate is less than 

the SciDB-to-R transfer rate.  First, as noted above, moving data from R to SciDB requires 

use of a script – named “csv2scidb”, and provided with the SciDB distribution – that 

reformats the csv file output by R into a file format capable of being imported by SciDB.  

Such a script is not required for moving data from SciDB to R, since R is capable of 

importing csv files directly, and SciDB is capable of directly outputting csv files.  Though 

the run time for this script contributes to the asymmetry in data-movement times between 

the two hybrid components, it is not the major contributor, as tests show that csv2scidb 

takes only a few seconds to run on the data objects tested above.  The primary contributor 

to the asymmetry in data-movement times is likely SciDB’s data import design and 

implementation.  At present SciDB writes all data to disk as part of the import process.  

The I/O time required by SciDB to write data to disk is likely the primary contributor to 

the asymmetry in data-movement times.    
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  There are several ways that this asymmetry could be addressed.  Agrios could 

address this asymmetry through modification of its cost model.  The current cost model 

implicitly assumes symmetry in data movement times.  However, by introducing a factor 

into Agrios’ cost model, the asymmetry could be accounted for.  At its simplest, the 

calculation of data-movement costs from SciDB to R would remain unchanged, while the 

currently-calculated costs of moving data from R to SciDB would be multiplied by a 

factor of 30.  Another way that the asymmetry could be addressed is through modification 

of SciDB’s data import design.  The existing system, which writes imported data to disk 

prior to operating on the data, could simply be optimized or given a different 

implementation.  SciDB does offer a parallel-load utility that is designed for this purpose.  

Alternatively, SciDB’s import routines could be modified or extended such that imported 

data need not be written to disk.  That is, SciDB’s import routines could create in-memory 

representations of imported data objects, suitable for being operated upon, rather than 

directly writing data objects to disk.  If the import routines were modified as such, SciDB 

could then operate on imported data objects immediately, without having to first incur the 

I/O time required when writing objects to persistent storage.  Any one of these techniques 

would likely reduce the difference between R-to-SciDB and SciDB-to-R data-transfer 

times.   

  The example above addressed just a single operation.  The necessity of considering 

data-movement costs is further illuminated by examining query processing times for 

complete queries.  Again using Portland State University’s Barista server, we determined 

overall query processing times – in this case wall-clock time – for several queries, using 

staging alone.  The overall query processing time is the sum of two values:  i)  the 
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computation times at both hybrid components, and ii)  the inter-component data transfer 

times.  Combining computation times measured on Barista with the average transfer rates 

gives us total query processing times for some particular cases. 
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Figure 5.1.  One placement for Query 2.  Input data objects colored blue are placed at SciDB, those colored 

gray at R.  The sizes of the input data objects are labeled. 
 

  Consider one particular placement for Query 2, as shown in Figure 5.1.  The size, 

shape, and location of input data objects are annotated in the figure.  Let us first consider, 

for this placement, the query-processing time of a staging other than that of the 

movement-minimizing plan.  The plan’s staging is depicted in Figure 5.2.  The total query 

processing time for this plan is 16422 seconds.  Data movement costs for this suboptimal 

plan constitute 70% of query-processing time.  Compare this query-processing time with 

that required to perform all of the query’s operations at R.  Performing all of the plan’s 

operations at R takes 5886 seconds, averaged over three runs.  In this case 93% of the total 
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query processing time is spent performing calculations on the data; the remainder of the 

time is spent transferring data from SciDB to R.   
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Figure 5.2.  A suboptimal plan for this placement of Query 2.  This plan spends less time computing on the 

data than the movement-minimizing plan, but moves more data than the movement-minimizing plan. 
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Figure 5.3  The movement-minimizing plan for this placement of Query 2.  Operator execution locations are 

subscripted 
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  Finally, consider the query-processing time for the movement-minimizing plan, as 

shown in Figure 5.3.  The average query processing time for this plan is 5249 seconds, 

over ten minutes less than the plan that performs all computations at R.  In contrast to the 

“all-at-R” plan, in the movement-minimizing plan less than 1% of the 5249 second query 

processing time is spent transferring data.  These results are shown in Table 5.1 

 
Time in seconds (% of total) 

 

Movment-
minimizing plan 

Random 
suboptimal plan 

All-at-R 

Computing 5197 (99%) 4927 (30%) 5886 (93%) 

Moving data 52 (1%) 11495 (70%) 412 (7%) 

TOTAL 5249 (100%) 16422 (100%) 6298 (100%) 

 

Table 5.1  Query processing time for three different plans, Query 2. Query processing times are broken down 

into time spent computing on the data and time spent moving the data.  Note that the plan with the lower 

computation time (the random suboptimal plan) has a higher total query processing time.   
 

      Query 3 shows similar results.  The total query processing time for the movement-

minimizing plan is 14962 seconds, 25% of which is spent transferring data between hybrid 

components.  The plan is shown in Figure 5.4.  The total query processing time for a 

random suboptimal plan, shown in Figure 5.5, requires 24978 seconds, 49% of which is 

spent moving data. 

  The upshot of these results is that the time required to move data can contribute 

substantially to overall query-processing time, so the cost of moving data during query 

processing should not be ignored when considering overall query-processing costs.  In the 

example above for Query, 2, the time spent computing on the data in the suboptimal plan 

was shown to be several minutes less than the computation time required by movement-

minimizing plan and the plan performing all operations at R.  The suboptimal plan’s 

relatively low computation time, however, was far overshadowed by the cost of moving 

data from R to SciDB.  In this case, while the movement-minimizing plan spent more time 
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computing on the data than the suboptimal plan, its overall query-processing time was 

less. 
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Figure 5.4.  The movement-minimizing plan for this placement of Query 3.  Data objects A through E are 

10,000 × 10,000 elements in size, Data objects F through I are 5000 × 5000 elements in size.  Input data 

objects colored blue are placed at SciDB, those colored gray at R.  Operator execution locations are 

subscripted. 
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Figure 5.5.  A suboptimal plan for this placement of Query 3.  This plan results in a higher total query 

processing time, largely because it moves more data than the movement-minimizing plan.   
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  The second question we asked is:  how does staging time compare to data 

movement time?  Ideally, the time spent staging should not exceed any reductions in data 

movement time gained from staging.  That is, if the time spent staging is greater than the 

time saved by minimizing data movement, then staging provides no net benefit.  

Examining additional performance-measurement data shows that time spent staging 

generally is substantially less than time spent moving data.  Performance tests run on 

Bonneville (which we examine in greater detail below) show that the staging of queries 

containing 10 or 12 operators takes on average approximately ½ second.  Comparing the 

data transfer rate calculated above to this average staging time, we see that staging pays 

for itself if it eliminates the transfer of more than five million data elements.  This savings 

of five million data elements can be accrued over multiple operations in a query, but it is 

instructive to note that a single 2200 × 2200 array contains five million data elements; 

should staging eliminate a single transfer of an array this size it has justified the time spent 

staging.  Arrays of this size – and larger – are not uncommon in “Big Data” datasets.  

Below we explore staging time in more detail.  

  The relationships between data movement time, computation time, and staging 

time suggest that staging can significantly reduce overall execution time (computation 

time and data movement time), without adding substantial overhead. 

 

5.3 EXAMINATION OF PLAN COSTS 

5.3.1 OVERVIEW 

 In hybrid systems, each query instance has a particular placement, and a staging is 

required for each query instance.  Because a placement may place leaf-level data objects 
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at locations different from operators’ execution locations, a staging may entail that data 

must be moved from one component of the hybrid to the other.  As we saw in previous 

chapters, some plans move more data than other plans. Minimizing data movement in 

hybrid analytic systems, then, amounts to identifying the staging for the minimal-

movement plan.  This staging moves the minimal amount of data for the given 

placement; it determines the movement-minimizing plan.   

 We argue that finding the staging for the movement-minimizing plan is 

challenging, and a task best left to a tool that automatically identifies it, such as Agrios.  

There are two reasons that finding a movement-minimizing plan is challenging.  First, 

reasoning about the movement-minimizing plan can be conceptually difficult.  Our 

intuitions are not always the best guides; some “naive” plans that appear movement-

minimizing or near-movement-minimizing in fact may be not be movement-minimizing 

plans.  The challenge of identifying the movement-minimizing plan gets even more 

difficult if the initial query is altered through transformation rules.     

 Second, finding a minimal-movement plan takes time.  The size of the search 

space for queries of any reasonable size cannot practically be searched by human beings 

– it is simply too large.  The number of possible plans in the search space is exponential 

in the number of query operations, so the more plans in the search space, the more time 

required to identify the movement-minimizing plan.  If query rewriting is also performed 

during the staging process, even more time is required to find the movement-minimizing 

plan.  The application of transformation rules itself takes time, and the new queries and 

plans generated from rule application further increase the size of the search space.   
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These two reasons illustrate challenges in identifying a movement-minimizing 

plan from a single user-written query, for one particular placement.  Finding movement-

minimizing plans becomes even more difficult for users when we consider multiple 

instances of a single query, where instances vary in the size, shape, and placement of the 

input data objects.  These input variations are found in the example sketched in Chapter 

1:  the images Jane analyzed with her analytic script varied in the three ways listed above.  

We show below that plans that are movement-minimizing for one placement are rarely 

movement-minimizing for a different placement.  Thus, if a movement-minimizing plan 

for one placement is “recycled” for other placements, then it likely is not a movement-

minimizing plan for the new placements.  Similarly, movement-minimizing plans for 

inputs of a particular size and shape are typically not movement-minimizing plans for 

inputs of other sizes and shapes, even when placements are fixed.  Movement-minimizing 

placements typically cannot be “recycled” across inputs varying in size and shape. 

 Users of hybrid systems must supply a staging for the placement of each query 

instance.  To supply a staging, the user has three main options: 

1. For each query instance, inspect the placement, shape, and size of the inputs, 

reason about the appropriate staging (applying transformations as applicable), 

and select the best one. 

2. Use a fixed staging across all query instances. 

3. Use a system such as Agrios that dynamically identifies movement-minimizing 

stagings for each query instance (applying transformations as applicable), based 

on the placements and other properties of the input data objects. 
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We argue that (3) is the only practical alternative.  Automatically identifying movement-

minimizing plans is not a luxury for hybrid systems with diverse input properties, but a 

necessity.  Closely examining plan costs – which we do for the remainder Section 5.2 – 

shows that (1) and (2) are unacceptable options for hybrid systems.  (Option (2) remains 

problematic even if we extend it to select from a small set of plans.)  After mapping and 

examining the costs for several queries, we argue against the feasibility of (1) and (2) by 

supporting three claims: 

A. Good stagings for a placement are rare.  The odds of arbitrarily choosing a 

movement-minimizing or acceptable staging are low, as only a small fraction of 

stagings are good for a given placement. 

B. A good staging has limited applicability.  A staging that has an acceptable cost for 

one placement will likely not be good for another, arbitrary placement, as a 

staging is generally good for at most a small number of placements. 

C. Worst-case costs are unacceptable.  The cost of the worst stagings for a 

placement are much greater than the cost of the best stagings.  Ignoring the choice 

of staging is a poor strategy. 

5.3.2 METHODOLOGY 

We performed a number experiments and analyses to argue for Claims A, B, and C 

above.  In these experiments and the experiments to follow we primarily use three 

synthetic test queries.  Written in R, Query 1 is: 

 (A+((B%*%C)%*%D))[1:100,1:20] 
 %*%((sum(E)+(F+G))+(H%*%(I%*%J)))[1:20,1:100]; 
 

Query 2 is: 
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          (((sum(B) + C) %*% A[1:50,1:50];   
 %*% (((D %*% E ) + F[1:100,1])[1:50]); 
 

Query 3 is: 

 

          (((A %*% B) %*% (C + (D + E)))           
 + ((F + (G %*% (H %*% I)))[1,1]))[1:30,1:40]; 
 

The queries are depicted graphically in Figure 5.6.  Four different operators are used in 

the queries:  matrix multiplication: %*%, elementwise addition: +, subscript: [], and 

aggregate sum: sum.  We selected these queries for several reasons.  First, the queries 

utilize operators we identified as common in analytic workflows.  Second, the queries 

were sufficiently large and complex enough to permit transformation-rule application.  In 

practice, queries vary in the number of operators they contain.
15

  Our test queries may be 

viewed as either as sophisticated user-written queries, or else as accumulations of several 

simpler user-written queries. 

 Multiple catalogs were used with each query, and unless stated otherwise, the 

standards catalog for each query is used.  A catalog, in this context, is a collection of data 

object descriptions that is input to a query.
16

  Two catalogs differ from one another by 

virtue of a difference in at least one data object; differences can be in an array’s shape, 

size, or both shape and size.  The catalogs used in our research are depicted in Table 5.1.  

To see how two catalogs may vary, compare the “standard” catalog and the “big_e” 

catalog for Query 2.  The catalogs differ in the size and shape of data object E.  Note that 

a catalog does not specify storage locations for data objects, merely their sizes and 

                                                           
15

 Each user-written query is a line of user-written R code.  An “analytic script” is one or more lines of R 

code performing an analytic function, such as creating a linear model of a dataset. 
16

 Recall that Bonneville and Agrios both use “catalog” data structures for maintaining information about 

input data objects. 
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shapes.  Having multiple catalogs for each query is useful because it lets us investigate 

the effect on data movement when the shape and size of query inputs vary.  For example, 
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Figure 5.6.  Queries 1, 2, and 3 (ordered top to bottom).  Query 1 has 12 operators and 10 data objects, 

Query 2 nine operators and six data objects, Query 3 10 operators and nine data objects. 
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suppose we select a particular placement, for a given catalog and query.  The movement-

minimizing plan for this combination of placement, catalog, and query has a cost.  

Suppose we then use a different catalog for the same query, holding the placement fixed.  

The movement-minimizing plan for this combination also has a cost, which may differ 

from the cost of the initial combination.  The difference between these two costs can be 

attributed in part to the difference in catalogs – i.e. the difference in size and shape of the 

input data objects.   

 

Figure 5.7.  A section of staging space for Query 2.  Placements form rows, stagings form colums.  Each 

cell is the staging cost for that placement.  The value circled in red shows the data movement cost for a 

placement locating data objects A, B, C, E, and F at SciDB and data object D at R, and a staging executing 

all operations at R except the matrix multiplication on the main right-hand branch of the query tree. 

 

 We argue for Claims A, B, and C using a representation of a query’s staging 

space.  The staging space for a query consists of the costs for all possible stagings and all 

possible placements.  We represent a query’s staging space as an array.  At its simplest, a 

staging-space array is two-dimensional:  one dimension corresponds to possible 

placements, the other to all possible stagings.  Each cell of the array shows the plan cost 

for that particular placement and that particular staging.  Figure 5.7 shows part of staging 

space for Query 2.  The entire array has dimensions of 64 × 512, since the query consists 

of six inputs and nine operators.  The circled value shows data movement costs when all 

leaf-level data inputs except D are placed at R, and all operations but the matrix 
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multiplication on the main right-hand branch are performed at R.  All of the staging-

space arrays considered here are two-dimensional. 

Staging-space arrays are valuable to our investigation because they show the 

calculated costs of all possible stagings and placements.  The array captures not only the 

movement-minimizing stagings for all placements, but also all alternative stagings.  

Staging-space arrays show us both how expensive – and how inexpensive – stagings can 

be.  We created staging-space arrays using a test harness attached to Agrios.  The harness 

populated the array by iterating through all of a query’s possible placements and stagings.  

Query rewriting was disabled to keep this investigation simple.  Experiments presented 

later in this chapter show that the costs of movement-minimizing plans can only decrease 

when query rewriting is enabled; thus the utility of automated staging only grows with 

transformations enabled. 

5.3.3 RESULTS 

 Examining staging space we see that there are very few movement-minimizing 

stagings for each of a query’s placements.  Query 2’s staging-space array has 64 

placements and 512 stagings.  For each placement, there can be between one and 512 

stagings with minimal – i.e. movement-minimizing – estimated cost.  If Agrios is used in 

this hybrid system, identification of the movement-minimizing staging for any placement 

is guaranteed.  If Agrios is not used, the data scientist is responsible for finding the 

movement-minimizing staging from among the alternatives. 
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Table 5.2.  Catalogs used by Agrios’ test queries

Query 1
catalog name A B C D E F G H I J

standard 100 x 100 100 x 100 100 x 100 100 x 100 50 x 50 100 x 100 100 x 100 100 x 100 100 x 100 100 x 100

large 1000 x 1000 1000 x 1000 1000 x 1000 1000 x 1000 50 x 50 100 x 100 100 x 100 100 x 100 100 x 100 100 x 100

time_series_1 100 x 20 100 x 100 100 x 100 100 x 20 50 x 50 100 x 100 100 x 100 100 x 100 100 x 100 100 x 100

time_series_2 100 x 100 100 x 100 100 x 100 100 x 100 50 x 50 100 x 1000 100 x 1000 100 x 100 100 x 100 100 x 1000

time_series_3 100 x 10000 100 x 100 100 x 100 100 x 10000 50 x 50 100 x 10000 100 x 10000 100 x 100 100 x 100 100 x 10000

Query 2
catalog name A B C D E F

standard 100 x 100 50 x 10 100 x 100 100 x 100 100 x 1 200 x 200

big_e 100 x 100 50 x 10 100 x 100 100 x 100 100 x 100 200 x 200

long_a 1000 x 10 50 x 10 10 x 50 100 x 100 100 x 1 200 x 200

big_c 50 x 10000 50 x 10 10000 x 10000 100 x 100 100 x 1 200 x 200

varying_1 1000 x 1 50 x 10 1 x 1000 100 x 100 100 x 100 200 x 200

Query 3
catalog name A B C D E F G H I

standard 100 x 100 100 x 100 100 x 100 100 x 100 100 x 100 50 x 50 50 x 50 50 x 50 50 x 50

reverse 50 x 50 50 x 50 50 x 50 50 x 50 50 x 50 100 x 100 100 x 100 100 x 100 100 x 100

time_series_1 100 x 100 100 x 100 100 x 100 100 x 100 100 x 100 50 x 5 50 x 50 50 x 50 50 x 5

time_series_2 100 x 100 100 x 100 100 x 1000 100 x 1000 100 x 1000 50 x 50 50 x 50 50 x 50 50 x 50

time_series_3 100 x 100 100 x 100 100 x 10000 100 x 10000 100 x 10000 50 x 500 50 x 50 50 x 50 50 x 500

time_series_1_1 30 x 1 1 x 1 1 x 1 1 x 40 1 x 40 50 x 1 50 x 50 50 x 50 50 x 1

time_series_2_1 30 x 100 100 x 1 1 x 400 1 x 400 1 x 400 50 x 50 50 x 50 50 x 50 50 x 50

time_series_3_1 30 x 1000 1000 x 1 1 x 1000 1 x 1000 1 x 1000 50 x 500 50 x 50 50 x 50 50 x 500

Data Object

Data Object

Data Object
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Figure 5.8  Histogram of placements for Query 2.  The horizontal axis shows what percentage of all 

possible stagings fall within a given percent of movement-minimizing.  The vertical axis is the count of 

placements in each range.  For forty of the 64 placements, fewer than 0.2% of stagings (i.e. only one 

staging) are movement-minimizing.  For over a third of the placements, fewer than 16 of the 512 stagings 

(3%) are within 150% of movement-minimizing cost.  The upshot is that there are very few acceptable 

stagings, regardless of placement. 

 

 Figure 5.8 presents an analysis of Query 2’s staging space.  It shows that 

generally, for a given placement, the percentage of movement-minimizing stagings 

among possible stagings for a placement is low.  For example, for 40 of the query’s 64 

placements, less than 0.2% of the 512 possible stagings have movement-minimizing cost.  

In fact, for each these forty placements, only one of the 512 possible stagings are 

movement-minimizing.  The odds of a data scientist identifying the movement-

minimizing plan are not good.  The likelihood of finding a movement-minimizing plan 

does not improve much when we look over all 64 placements, even though there are 

multiple movement-minimizing stagings for some placements.  If we look across all pairs 

of a placement and a staging, the staging will be movement-minimizing for the placement 

only 0.07% of the time. 
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 It might be argued that movement minimization is too lofty an objective, that a 

staging is acceptable if it is “close enough” to the movement-minimizing cost.  Removing 

the requirement of movement minimization does not much improve matters.  While there 

are more “acceptable” stagings than movement-minimizing stagings, even acceptable 

stagings are by no means common.  Figure 5.8 also shows what percentage of stagings 

fall within 150% and 200% of the movement-minimizing cost; these are shown by the red 

and green columns, respectively.  These columns show that acceptable stagings are nearly 

as rare as movement-minimizing stagings. 

 In practice, a data scientist likely would not randomly select a staging, but rather 

reason about which staging is movement-minimizing.  (Note that the ability of a data 

scientist to reason about stagings assumes the query volume is small enough that the data 

scientist has enough time to perform this work.  Under some reasonable workloads – e.g., 

when query instances are evaluated many times per minute – this assumption is shaky at 

best.)  While “in the wild” there might be a variety of placements, we would expect in 

many cases that large inputs are placed at SciDB, and small inputs are placed at R. 

 Suppose that a query instance had this sort of “typical” placement – most large 

objects at SciDB, most small objects at R.  This sort of placement suggests that an 

intuitive, “naïve” staging approach such as “Do all operation at SciDB” would be 

effective.  Results presented later in this chapter, however, show that naïve staging 

strategies for some “typical” placements may result in stagings up to ten times more 

expensive than the movement-minimizing plan.  Intuition is not a reliable guide for 

identifying the movement-minimizing staging.  Reliance upon naïve staging approaches, 

moreover, does not address the time required to reason about transformations.  Plans that 
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have been rewritten through transformation rules may be less expensive than their 

untransformed alternatives.  If the movement-minimizing plan requires a number of 

transformations of the original query, a naïve approach is likely insufficient to identify it.   

 The results presented in Figure 5.8 support Claim A above:  movement-

minimizing stagings, and even acceptable non-movement-minimizing stagings, are few 

and far between.  Data scientists hoping to identify movement-minimizing or acceptable 

stagings by hand have a tall order.  Agrios, by contrast, automates identification of the 

movement-minimizing staging, relieving data scientists from that burden. 

 We demonstrated that acceptable stagings are uncommon.  Let us now assume a 

good staging – even a movement-minimizing one – for a particular placement has been 

identified.  Just how useful is this staging for other placements?  Alternatively:  How 

often is a good staging a good staging?    Ideally,  a  good staging would perform well 

over a large percentage of the possible placements – such a staging is robust.  If typically 

good stagings are robust, then there is little need for Agrios; once a movement-

minimizing staging for a given placement is identified, the staging can simply be reused 

for other placements. 

 Staging space shows that most stagings, however, are not robust.  A staging 

whose cost is movement-minimizing for one particular placement is not movement-

minimizing for many placements, and wholly unacceptable for others.  Figure 5.9 shows 

results for Query 3; these results are typical.  Nearly all of the query’s 1024 stagings are 

movement-minimizing for less than 2% of its 512 placements.  Reframing this result in 

terms of likelihoods, odds are nearly certain that if a movement-minimizing staging is 

identified, it is movement-minimizing only for ten or fewer placements out of hundreds 
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of possible placements.  Figure 5.9 also shows results for experiments when the 

movement minimization requirement is relaxed – counts of stagings when costs are 

within 150% and 200% of movement-minimizing for some placement.  We see that even 

acceptable stagings (though not movement-minimizing) remain acceptable for only a 

limited number of placements.  

 

Figure 5.9.  Histogram of stagings for Query 3.  The horizontal axis shows what percentage of placements 

for which the stagings are movement-minimizing or near-movement-minimizing.  Over 1000 stagings (out 

of 1024) are movement-minimizing for fewer than 2% of placements. Given a movement-minimizing 

staging for a particular placement, odds are it is not movement-minimizing for most other placements. 

 

E
F

E
F

 

Figure 5.10. Two instances of Query 2.  The two instances differ only in their placements of data objects E 

and F.  In the instance at left, E is stored at R and F at SciDB.  In the instance at right, E is stored at SciDB 

and F is stored at R.  The storage locations of all other data objects in both query instances are identical.   
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E
F  

Figure 5.11. A comparison of the movement-minimizing stagings for the two instances of Query 2 depicted 

in Figure 5.10.  Operations whose execution locations differ between movement-minimizing stagings are 

shaded red.  Note that both main branches of the tree contain shaded operators, though the initial placement 

difference between the two instances is isolated to one branch. 

 

 Examining a particular example explains why some stagings are acceptable for 

only a limited number of placements.  Figure 5.10 shows two instances of a query, 

differing only in the initial placement of data objects E and F.  In the first instance of the 

query, shown at left in Figure 5.10, E is placed at R and F is placed at SciDB.  In the 

second instance, shown at right in Figure 5.10, E is placed at SciDB and F is placed at R. 

The input placements of these two query instances differ only slightly, but their 

movement-minimizing stagings differ significantly.  Figure 5.11 shows the difference 

between stagings for both instances; execution locations differing between instances are 

shaded red.  Though the differences in inputs are isolated to the right-hand branch of the 

tree’s root operation, movement-minimizing execution locations differ in both the right-

hand and left-hand branches.  Suppose the movement-minimizing plan for the left query 

instance in Figure 5.10 had been repurposed for the query instance at the figure’s right.  

While the plan would be movement-minimizing for the placement of the one query 

instance, it would not be movement-minimizing for the other instance.  Repurposing the 

left instances’ movement-minimizing plan for the right instance, in fact, results in moving 
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nearly five times more data elements than the right instance’s movement-minimizing 

plan. 

 The fact that two similar placements might have substantially different 

movement-minimizing stagings is significant because intuition suggests otherwise.  

Suppose a data scientist decided to bank on this intuition, for a workflow exhibiting only 

small variations in initial data placements.  She might dismiss the need for Agrios, 

believing that once a movement-minimizing staging had been identified for a given 

placement, that it could be reused for the similar placements in the workflow.  This 

example shows that at least in some cases, her intuition would be incorrect.  It is 

especially important to note that in some instances, such as the one shown in Figure 5.10, 

variations in input placements affect the optimal execution locations of “nonlocal” 

operations.  Local staging adjustments, then, may not be sufficient to repurpose a 

movement-minimizing plan for one placement to another query instance with a different 

placement.  

 We showed earlier that movement-minimizing stagings are rare for a given 

placement, and now see that movement-minimizing stagings are also typically acceptable 

for only a small number of placements.  Efforts spent on hand-staging may very well be 

in vain, and the fruit borne from the work likely has utility only for a small number of 

placements.  Automatically identifying the movement-minimizing staging is a more 

sensible solution for managing data movement. 

 We have been motivating the automated minimization of data movement in part 

by arguing that hand-identifying movement-minimizing stagings is difficult.  The 

difficulty of hand-staging is moot, however, if the price for misidentifying the movement-
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minimizing staging is low.  Additional examination of staging space shows that the cost 

of failure is not low, as illustrated by Figures 5.12 and 5.13.  These plots show that the 

price of failure can be high, arguing for the utility of a system such as Agrios that 

guarantees identification of the movement-minimizing staging. 

 

Figure 5.12.  Another perspective on the plan space for Query 1.  Costs for all stagings are sorted and 

plotted, for all 512 placements; each line represents a particular placement.  The left end of a line shows the 

movement-minimizing staging cost for that placement. 

 

 In Figures 5.12 and 5.13, each line represents an individual placement.  Figure 

5.12 depicts results for Query 1, while Figure 5.13 depicts results for Query 2.  In both 

figures, each line’s shape depicts costs for all possible stagings, sorted in increasing 

order.  Thus, the lower-left end of each line shows the movement-minimizing cost for 

that placement.  Figure 5.12 shows actual costs on the vertical axis, while Figure 5.13 

shows normalized costs, i.e. cost as a ratio to movement-minimizing costs.  In Figure 

5.13, for one placement, we see that the most expensive staging moves over 50,000 times 

more data elements than the movement-minimizing staging.  A strategy of ignoring the 
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movement-minimizing staging can yield a 50,000-fold cost penalty, at least in some 

cases.  Even in cases where the penalty is not so high, the cost of non-movement-

minimizing stagings is often substantially greater than the cost of movement-minimizing 

stagings. 

 

Figure 5.13.  Normalized costs for all stagings of Query 2; one line for each placement.  Note both that the 

vertical axis has a logarithmic scale, and that some lines overlay one another; a total of 64 placements are 

represented here. This plot illustrates how expensive non-movement-minimizing plans can be.  For one 

placement, the worst staging moves over 50,000 times more data elements than the movement-minimizing 

one.  Though the worst-case for other placements are not this extreme, all worst-case stagings still move 

over 200 times more data elements than the movement-minimizing staging. 

 

5.3.4 ADDITIONAL CONSIDERATIONS 

Variations in input shape and size 

 Up to this point we have focused exclusively on differences in staging costs due 

to variations in placements.  In the example introduced in Chapter 1, however, query 

inputs varied not only in their initial placement, but in their shape and size.  Let us now 

examine how variations in the shape and size of leaf-level data objects affect staging 

costs. 
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 Experiments show that movement-minimizing plans often vary from catalog to 

catalog.  We input three different catalogs through Query 2, where catalogs varied in the 

size and shape of their inputs.  Using Agrios’ test harness we created individual staging-

space arrays for the three catalogs, capturing the cost for each catalog of all stagings at all 

placements.  Analysis of these staging space arrays shows that there are 119 movement-

minimizing stagings, across all three catalogs.  Of these 119, 56 stagings – or 47% of 

optimal stagings – were optimal only to one of the three catalogs. 

 These results are illuminated in more detail through examination of a particular 

case.  Figure 5.14 shows two instances of Query 2, differing only in the shape of data 

object E.  In the first instance of the query, shown at left in Figure 5.14, E is an n × 1 

column vector.  In the second instance, shown at right in the figure, E is an n × n matrix.  

The placements for both instances are identical. 

E

A

B C D
F

E

A

B C D
F

 

Figure 5.14.  Two instances of Query 2.  The instances differ only in the size and shape of input E.  

Coloration of the input data objects indicates their storage locations:  objects B, C, and F are stored at R, 

objects A, D, and E at SCiDB.  Placements are identical for both instances. 

 

 The inputs to these two instances differ only slightly, but the movement-

minimizing stagings differ significantly.  Figure 5.15 shows the difference between 

stagings for both instances; execution locations differing between instances are shaded 
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red.  Similar to the case examined earlier, though the differences in inputs are isolated to 

a single data object in the right-hand branch of the tree’s root operation, movement-

minimizing execution locations differ in both the right-hand and left-hand branches.  

Variations in input locations affect the movement-minimizing execution locations of 

“nonlocal” operations; the query instances shown in Figure 5.14 are another case where 

our intuitions about staging can be incorrect.  It would be wrong to assume that small 

changes in input shape and size may only cause a small increase in plan cost.  For the 

query in Figure 5.14, repurposing the left instances’ movement-minimizing plan for the 

right instance requires moving nearly to times as many data elements than the right 

instance’s movement-minimizing plan. 

 

Figure 5.15.  A comparison of the movement-minimizing stagings for the two instances of Query 2 

depicted in Figure 5.14.  Operations whose execution locations differ between movement-minimizing 

placements are shaded red.  (For ease of exposition input E is represented simply as a column vector.) 

 

Time-series datasets 

 In addition to these catalogs, it is instructive to rerun these experiments on 

catalogs that reflect datasets common in data science, viz., time-series datasets.  Time-

series datasets are common in many science and engineering applications.  Such datasets 
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are found, for example, when a collection of sensors periodically samples a phenomenon.  

The collection of sensors remain constant, but the data collected grows over time.   

 Several time-series catalogs are included in Table 5.1.   For Query 1, for example, 

catalogs time_series_1, time_series_2, and time_series_3 respectively show data objects 

at time T1, T2, T3.  Figure 5.16 shows such growth for Query 3.  This unidimensional 

growth reflects growth along a dataset’s temporal dimension.  A concrete example 

illustrates this.  Suppose an experimental setup includes a linear array of five sensors.  

The first reading of the array, performed at time T1, is stored as a 1 × 5 array.  Each time 

the array stores and samples an environment, the “height” of the array grows by one unit.  

The growing dimension is the arrays’ “time” dimension.  After n samples, the shape of 

the array is n × 5, and after n + 1 samples, the shape of the array is (n + 1) × 5.  Such an 

array might be used in industrial or scientific applications, e.g. monitoring fluid flow 

through a chute or streambed.  Figure 5.17 provides a visual representation of the 

catalog’s growth over the three time slices. 
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Figure 5.16.  An example of unidimensional time-series growth for Query 3.  The relative size of the data 

objects gives a sense of how data objects D, E, F, and I grow over time. 
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Figure 5.17.  Unidimensional time-series growth of a dataset.  Samples are taken at intervals by a physical 

array of five sensors.  At left is the sensor output at time T1.  Only one reading has been recorded by the 

sensors.  The center image shows the dataset at time T5, the rightmost image the dataset at time T8. 

 

Given this scenario, we should ask:  can the movement-minimizing plan at T1 be 

reused at T2 and T3, provided that the data’s placement does not change?  If movement-

minimizing plans from T1 can be “recycled” at multiple times for time-series datasets, 

these plans would be fairly robust.  To answer the question, we ran the time_series_1 

catalog through Agrios, for Queries 1 and 3.  Transformations were switched off, and the 

movement-minimizing plan for each placement extracted.  These movement-minimizing 

plans were then costed for each query, for the catalogs time_series_2 and time_series_3, 

effectively recycling the movement-minimizing plan at T1 on the unidimensionally larger 

datasets.   Figures 5.18 through 5.21 show the results.  Each plot depicts two sets of costs:  

i)  movement-minimizing costs determined by Agrios, given the catalog, and ii)  costs of 

plans that were movement-minimizing for the T1 catalog, and recycled at a later time.  

Costs for each placement are shown, and costs are ordered in decreasing order based on 

the cost of the movement-minimizing plan. 

| 

T1 

T5 

T8 
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 The meaning of the figures is illuminated if we examine a couple of particular 

points.  Two points are highlighted in Figure 5.18.  Point A shows the plan cost when the 

movement-minimizing staging from T1 is recycled for time T2, for the same placement.  

Point B shows the movement-minimizing plan cost for a placement, for the catalog at T2; 

this is the cost identified by staging.    The upshot, for this particular placement, is that 

the movement-minimizing stagings differ between T1 and T2.  The difference between 

the two points – roughly 70,000 data elements – is the price paid by recycling in lieu of 

optimization. 

 Several conclusions follow from these results.  First, in roughly half the cases, the 

cost of the recycled plan is no greater than the cost of the movement-minimizing plan.  

The frequency of recycled plans having the same cost as movement-minimizing plans is 

nearly identical for both Query 1 and Query 3.  This suggests that there may be some 

degree of robustness to plans in time-series data applications with fixed placements.  

Second, where there is a cost difference between the movement-minimizing plan and the 

recycled plan, the amount of the difference depends on the particular placement.  For 

both queries we see recycled plans that are much more expensive – e.g. twice as 

expensive – than the movement-minimizing plan.  For both queries we also see that 

recycled plans are only slightly more expensive than the movement-minimizing plan.  

Table 5.2 captures some of these findings. 

 These results have a mixed impact on Agrios’ utility in cases where catalogs 

exhibit time-series growth.  Depending on the particular placement, a plan recycled over 

time may or may not move more data than the movement-minimizing plan for that 
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placement.  In cases where the recycled plan’s cost differs from the movement-

minimizing plan’s cost, the cost difference can be large or small. 

 

Table 5.3.  Summary statistics for recycling plans, for Queries 1 and 3.  The “Plans recycled” column 

captures what percentage of movement-minimizing plans at T2 or T3 are identical to the movement-

minimizing plan at T1.  For this percentage, recycling T1’s movement-minimizing plan at T2 or T3 is 

practical.  For example, there is a movement-minimizing plan for each of the 512 possible placements for 

Query 3.  For 230 of these placements, the movement-minimizing plan at T3 is identical to the movement-

minimizing plan at T3:  giving the percentage of 45%.  

The additional three columns – Mean, Median, and Max – show summary statistics for the cases 

where the optimal plan at T1 differs from the optimal plan at T2 or T3.  These are summary statistics of the 

282 placements for Query 3 where the movement-minimizing plan at T1 differs from the movement-

minimizing plan at T3.  Mean, median, and maximum plan costs are simply stated.  The parenthesized 

values show the penalty for recycling T1’s movement-minimizing plan, as a percentage of the movement-

minimizing plan’s cost for the new time.  For example, the movement-minimizing plan at T1 for one 

placement of Query 3 moves 1100 data elements.  The movement minimizing plan at T3 for the same 

placement also moves 1100 data elements.  The movement-minimizing plans for that placement at T1 and 

T3 differ, however, and if T1’s movement-minimizing plan is recycled at T3, the plan moves 47,000 data 

elements.  The difference between the cost of T3’s movement-minimizing plan and recycling T1’s 

movement-minimizing plan is 45,900, and the cost of the recycled plan is over 4200% the cost of T3’s 

movement-minimizing plan. 

 

In case the findings above incline a data scientist towards recycling, we should 

explicitly address two details contained in the exposition above.  First, the results above 

are applicable when only the shape and size of input data objects vary, not when data 

placements change.  Though the cost penalty for recycling may be little or none when 

placements are static, the cost penalty of recycling may be prohibitively high if a 

placement changes.  Results in the first part of this section illustrated how costs can vary 

with placement changes.  Second, while unidimensional time-series data growth like that 

modeled above might seem common, in practice the behavior of data growth is not 

always so predictable.  Consider the sensor array shown earlier, in Figure 5.17.  In this 

Plans 

recycled Mean Median Max

Plans 

recycled Mean Median Max

Optimal T1 plans 

recycled at T2
49% 47270 (140%) 10000 (110%) 188000 (910%) 53% 19760 (130%) 2500 (100%) 91300 (890%)

Optimal T1 plans 

recycled at T3
49% 1454000 (950%) 998000 (150%) 3968000 (50000%) 45% 212400 (320%) 47500 (100%) 1036000 (8930%)

Query 1 - Plan costs (percent of optimal) Query 3 - Plan costs (percent of optimal)
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  Figure 5.18.  Cost comparison for recycled plans, Query 1, time_series_2.  Recycled plan costs show cost for reusing the movement-minimizing  

  plan for time_series_1 catalog.  Placements have been sorted by optimal cost, in decreasing order.  Point A shows the plan cost when the movement- 

  minimizing staging from T1 is recycled for time T2, for the same placement.  Point B shows the movement-minimizing plan cost for a placement, for  

  the catalog at T2; this is the cost identified by staging.    
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  Figure 5.19.  Cost comparison for recycled plans, Query 1, time_series_3.  Recycled plan costs show the cost for reusing the movement- 

  minimizing plan for time_series_1 catalog. 
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  Figure 5.20.  Cost comparison for recycled plans, Query 3, time_series_2.  Recycled plan costs show cost for reusing the movement-minimizing  

  plan for time_series_1 catalog. 
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  Figure 5.21.  Cost comparison for recycled plans, Query 3, time_series_3. Recycled plan costs show cost for reusing the movement-minimizing  

  plan for time_series_1 catalog. 
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example, the 1 × 5 array regularly adds samples to its output, growing its output array 

unidimensionally over time.  At some point in time, however, the sensor array will likely 

be replaced, possibly with a finer-grained array of sensors.  For example, the new sensor 

array may cover the same physical distance, but be composed of ten sensors, not five.  

The size of the stored output array, after the last sample of the original sensor array, is n 

× 5.  The size of the stored data array after the first sample of the new sensor array is (n + 

1) × 10.  The transition from the old sensor array to the new sensor array causes 

multidimensional growth of the output array.  In this situation, the results presented in 

Figures 5.18 through 5.21 above may not adequately model the cost difference between 

recycled plans and movement-minimizing plans.
17

   

Data placement  

  Up to this point we assumed that users of hybrid analytic systems have no control 

over the placement of their data.  Because of this assumption, up to now in our 

experiments we examined all placements, figuring that one of these possible placements 

would be the actual placement.  In practice, however, not all placements are possible or 

likely; the actual placement of data is typically determined by institutional policy, 

community access needs, and hardware availability.  These social factors constrain 

placement alternatives [13].  For the sake of inquiry it is worth relaxing these constraints 

and considering how data movement costs would be affected through the deliberate initial 

placement of input data.  Suppose data could be freely placed at either hybrid component, 

perhaps manually specified by the user or automatically specified through a user-written 

                                                           
17

 New hardware installations are not necessary to cause multidimensional changes in input data size.  

Often data generated from predictive models are inputs to analytic workflows.  If the predictive model is 

changed, the size of its output may grow multidimensionally.  Such a change, for example, has been 

identified in analyses used at the Center for Coastal Margin Observatory and Prediction [52].  
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script.  Given this supposition, does staging continue to play an important role in 

minimizing data-movement costs? 

 Staging space shows that while specifying placements may lower costs, it cannot 

reduce costs to the degree that staging can.   Figure 5.12 – originally introduced in 

another context – also illustrates this fact.  Recall that each line depicts the costs for a 

given placement, sorted in increasing order.  For each placement (line), the leftmost point 

shows the movement-minimizing staging costs, while the rightmost point shows the costs 

for the most expensive staging.  The ratio of the most expensive movement-minimizing 

cost to the least expensive movement-minimizing cost is approximately 1:22,000.  (These 

costs consist of the highest and lowest points on the y-axis, respectively.)  This ratio 

shows the greatest reduction that initial placement can have on plan costs.  Contrast this 

ratio to that between the movement-minimizing staging cost and the most expensive 

staging cost, for a particular placement (the leftmost and rightmost points, respectively, 

of any one line in Figure 5.12).  For many lines this ratio exceeds 1:100,000, and 

represents the greatest decrease that staging can have on cost.  This ratio is nearly five 

times the ratio between the best placement and worst placement for movement-

minimizing plans.  Though initial data placement can reduce costs, the potential cost 

benefits of staging are far higher.  Additionally, recall that even if the user specifies a 

particular placement, the hybrid system still requires a staging to execute the query.  User 

specification of initial data placement does not obviate the need to state where that 

query’s operations are performed.  As we saw above, the movement-minimizing staging 

for any particular placement – user-specified or otherwise – is likely not movement-

minimizing or unacceptable for other placements. 
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 These results show that staging plays a valuable role in reducing estimated data 

movement costs.  While deliberate data placement can help reduce data movement, the 

contribution to data-movement minimization by staging is more important than the 

contribution from data placement.
18

  

 

5.4 CONCLUSION 

 This chapter motivated the need for a automatically minimizing data movement in 

hybrid systems.  Through an examination of plan costs, we showed that good stagings are 

rare, that good stagings are typically only good for a narrow number of placements, and 

that worst-case costs incurred by ignoring staging are unacceptably high. 

 We established earlier that under many workflows, it is not practically possible to 

hand-stage individual query instances so that data movement is minimized.  Given that 

hand-staging was unacceptable, two alternatives remained:  use of an automated system 

such as Agrios, or reliance upon a single staging – or small set of stagings – for use in all 

circumstances.  In this chapter we argued that reliance upon a single staging or several 

stagings was also an unacceptable alternative for workflows where input data varied in 

placement, shape, and size.  Our argument rests upon our demonstrations that good 

stagings for a placement are rare (Claim A), that a good staging has limited applicability 

                                                           
18

 One issue regarding data placement is not addressed here.  The results presented immediately above 

argue that staging plays an important role in reducing data movement, even if data placements are 

specified.  What these results do not address is the fact that some data placements might be better, over all 

stagings, than other data placements.  Suppose, for example, that all stagings for placement A had costs 

between 1000 and 2000.  Suppose that most stagings for placement B had costs between 1000 and 2000, 

but that a handful of stagings for placement B had costs of over 1,000,000.  Intuitively, placement A is 

better than placement B, since for placement A, regardless of the staging the costs will never exceed 2000.   

Our research did not investigate whether or not some placements are better than others, in this 

sense.  We suspect that while some placements may turn out to be much better than others, there will likely 

be some stagings that have very high costs for the placement.  
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(Claim B), and that worst-case staging costs are unacceptable (Claim C).  The only 

acceptable method for minimizing data movement for such workloads is an automated 

tool such as Agrios. 
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CHAPTER 6:   EXPERIMENTAL EVALUATION 

 
 

 

6.1 OVERVIEW 

 In the previous chapter we motivated the need for automatic data-movement 

minimization in hybrid systems.  We now evaluate Agrios’ performance in minimizing 

data movement.  As explained in Chapter 3, Agrios reduces data movement through three 

related techniques:  i)  identifying the staging for the movement-minimizing plan 

(staging), ii) rewriting queries through the application of rewrite rules, and iii) 

accumulating multiple queries into one. 

 These three techniques can work together to minimize data movement.  Staging is 

the essential staging technique.  Staging creates alternative plans from a query, costs the 

plans, and identifies the least expensive one.  Query rewriting can assist staging during 

the staging process.  Query rewriting helps by both increasing the number of plans and 

queries considered during staging, and by facilitating transformations that often directly 

reduce the amount of data transferred between operators.  Query accumulation can also 

assist the staging process.  It increases the scope of both query rewriting and staging, by 

aggregating multiple queries in a user-written script into a single larger query.   

 Our methodology for evaluating Agrios’ performance addresses each of these 

techniques, first measuring how staging minimizes data movement, then staging plus 

query rewriting, then staging plus both query rewriting and accumulation.  
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6.2 METHODOLOGY 

 We conducted experiments using all three test queries introduced in Chapter 5.  

Multiple catalogs were used for each query; see Table 5.1 in the previous chapter for 

details on catalog properties.  Similar to the previous section, in each experiment we 

consider all possible placements.  Each experiment considers, therefore, a placement 

where all data objects are located at R, a placement where all data objects are located at 

SciDB, and all combinations of placement in-between.  In keeping with our cost model, 

in each experiment we measure the number of data elements that would have to be 

moved to execute the query. 

 

6.3 RESULTS 

6.3.1 STAGING 

 Our first claim is that staging alone substantially reduces the amount of data 

transferred.   Specifically, Agrios’ cost-staged queries transfer fewer data elements than 

queries staged by alternative staging policies.  Recall that the staging process does not 

rewrite queries using transformation rules, and does not accumulate multiple queries into 

one.  Bonneville’s search space for staging contains one plan for each possible staging, 

plus the original query.  If the query being simply staged contains n operations, there are 

2
n
 plans and one query in the search space; these plans and queries are represented in 

Bonneville’s MEMO data structure.  

 For each of the three test queries, and for three alternative staging policies, we 

recorded the number of data elements moved.  These results we compared to the number 

of data elements moved by Agrios’ cost-based staging.  The first two alternative staging 
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policies are simple:  they are “do everything at R” and “do everything at SciDB.”  The 

third policy is a greedy policy.  For binary operations, the greedy policy performs an 

operation at the location of the larger input object, randomly breaking ties if the inputs 

have identical sizes.  For unary operations, the greedy policy performs the operation at 

the location of the input.  The greedy policy operates “bottom up”; its decisions on 

execution location consider only one operator at a time.  For each operation, the greedy 

policy assigns it an execution location that guarantees that that particular operation moves 

the minimal amount of data given its input locations.  Because it considers only one 

operation at a time, the greedy policy does not guarantee that the amount of data moved 

by the entire query is minimized.   

 

Figure 6.1.  Data movement of cost-staged plans compared to naïvely-staged “do it all at one place” plans – 
Query 1.  There is one point for each placement, each point showing the cost of the two alternative staging 
(plan) costs.  Some points overlap, as costs for multiple placements can be identical.  The vertical axis 
shows staging costs using staging with Agrios, while the horizontal axis shows staging costs using an 
alternative staging policy.  If a point falls on the 45-degree line dividing the plot, Agrios’ cost-staged plan 
has an identical cost as the plan staged according to the alternative staging policy:   here the alternatives are 
“All at R” and “All at SciDB”.  Note that no points fall above the 45-degree line, indicating that Agrios’ 
cost-based staging policy moves no more data than the alternative policy. 
 

 Figure 6.1 shows typical results, for the standard catalog of Query 1.  Each point 

on the plot shows a result for at least one different placement.  In both graphs, the vertical 
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axes represent the number of data elements transferred by Agrios, the horizontal axes the 

number of data elements transferred by the alternative staging policy.  Points to the lower 

right of the line indicate instances where Agrios transferred fewer data elements than the 

alternative, while points on the line represent instances where the two policies transferred 

the same number.  

 

Agrios vs. All-at-R 

Agrios vs. All-at-

SciDB Agrios vs. Greedy 

Query 1 35.6  (39.2) 41.9  (43.2) 19.9  (25.5) 

Query 2 70.0  (77.4) 68.8  (77.2) 1.1  (2.5) 

Query 3 32.7  (42.3) 34.3  (41.5) 17.4  (23.3) 

 
Table 6.1.  Average percentage reduction in data elements moved: all placements (improved placements) 

 

 Table 6.1 presents results for all three queries.  The table shows the average 

percent reduction in the number of data elements moved, between Agrios’ staging and 

one of the three alternate staging policies.  The first value shows average reductions for 

all placements, across all catalogs for the query; the value in parentheses shows average 

reductions across all catalogs, but only for cases where cost-based staging moves fewer 

data elements than the alternative policy.  (Staging moves the same number of elements 

as alternative policies on average only 13, 25, and 21% of the time, for Queries 1, 2, and 

3, respectively.)  Across all queries, Agrios moves substantially fewer data elements than 

both of the “All-at” policies.  Agrios also outperforms Greedy, though by smaller 

margins than the “All-at” policies.   In no cases does Agrios’ cost-based staging move 

more data elements than an alternative policy. 

 Examining all possible placements helps bound the performance of Agrios, but 

one could argue that certain placements are more likely to be found “in the wild” than 

others.  While hybrid systems can store data at both locations of the hybrid, in practice 
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one might expect to see the smaller input data objects of a query stored at R, and the 

larger input data objects stored at SciDB.  Intuitively, such placements lend themselves to 

an All-at-SciDB staging policy.  With this in mind, we hand-identified a number of 

placements satisfying this expected data distribution, and compared the number of data  

elements  moved  by  an  All-at-SciDB  policy  to  the number  of  data elements moved 

by Agrios’ staging.  Though in some instances the results were similar, in many cases 

Agrios’ cost-based staging moved four- to ten-times fewer data elements than All-at-

SciDB.  In no cases did Agrios move more data elements than All-at-SciDB.  As we 

argued in the previous chapter, intuition can be an unreliable guide to identifying the 

movement-minimizing plan.  In this case, the intuition that an “All-at-SciDB” staging 

policy necessarily moves less data than Agrios’ staging policy, when large input data 

objects are stored at SciDB, would be incorrect. 

6.3.2 TRANSFORMATIONS AND QUERY REWRITING 

 Query rewriting can reduce the amount of data moved, over and above the 

reduction provided by staging alone.  Query rewriting, which transforms the user-written 

query into logically equivalent queries, ultimately increases the number of plans 

considered by Agrios’ stager; the query-rewriting process was articulated in Chapter 3.  

The benefits of query rewriting are illustrated by comparing the number of data elements 

moved by staging alone, to the number of data elements moved by staging augmented by 

query rewriting.  Figure 6.2 shows results for Query 3, using two different input catalogs. 

 The vertical axes for both graphs show the number of data elements moved when 

Agrios performs query rewriting during staging.  The horizontal axes show the number of 

data elements moved when Agrios stages queries without query rewriting (staging alone).  
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Though on some placements query rewriting provides no benefit over and above staging, 

in many cases query rewriting reduces data movement.  This fact is shown by the number 

of points falling below the 45-degree line dividing the plot. 

 

Figure 6.2.  Staging and query rewriting moves fewer data elements than staging alone.  Shown are results 

for Query 3, for the standard catalog (left) and reverse catalog (right).  The vertical axis shows staging costs 

using staging with query rewriting, while the horizontal axis shows staging costs using staging (staging 

without query rewriting).   

 

  Supplementing the results above with additional findings helps illustrate 

query rewriting’s breadth of effect in reducing data movement costs.  We ran several 

additional queries through Agrios, randomly sampling 10% of all placementsft.  The 

additional queries are shown in Figure 6.3, and the experimental results shown in Figure 

6.4. 

 The results show that query rewriting may reduce data movement costs over and 

above staging.  The results also show variation between queries in the data-movement 

reductions brought about by query rewriting.  This variation is to be expected, as the 

structure of the query and the operators it contains determines the applicability of rewrite 

rules.  For some queries, little is to be gained by query rewriting, as seen for the samples 

of Query 7.  For others, while query rewriting does not always reduce data movement, 
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when query rewriting is effective, the reduction in data movement can be substantial.  

The results seen with these additional queries are similar to those seen with Queries 1 

through 3. 
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Figure 6.3.  Additional queries used for testing:  Queries 4 (panel (a)), Query 5 (b), Query 6 (c), and Query 

7 (d), which use catalogs q2_standard, q3_time_series_2, q2_big_e, and q2_big_c, respectively.   

 

 Table 6.2 shows the percent reduction in the number of data elements moved by 

Agrios compared to the number moved by Greedy.  In all cases query rewriting and 

staging moves fewer data elements than staging alone.  The maximum reductions 

presented in Table 6.2 deserve special attention.  While on average the performance of 

Agrios versus Greedy may not be exceptional, the maximum reductions illustrate that 

there are cases where Agrios’ performance is remarkably better than Greedy’s.  For 

(a) (b) 

(c) (d) 
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some, the real value of an optimizer such as Agrios comes not by eking out small 

performance improvements for many plans, but by helping users avoid terrible plans.  

The maximum reductions achieved by Agrios show that it succeeds in avoiding terrible 

Greedy plans.  In no cases does Agrios move more data elements than Greedy.   

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 6.4.  Additional test result showing how staging and query rewriting moves fewer data elements 

than staging alone.  Query 4 (a), Query 5 (b), Query 6 (c), and Query 7 (d) use catalogs q2_standard, 

q3_time_series_2, q2_big_e, and q2_big_c, respectively.  Plots show costs for a random 10% of query 

placements. 
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Average percent reduction in data elements 

moved:  all placement (improved 

placements) 

Maximum percent reduction in data 

elements moved:  all placements 

 

Agrios vs. Greedy, 

staging only 

Agrios vs. Greedy, 

staging with query 

rewriting 

Agrios vs. 

Greedy,staging 

only 

Agrios vs. 

Greedy, staging 

with query 

rewriting 

Query 1 19.9  (25.5) 27.1  (29.4) 63.0 83.3 

Query 2 1.1  (2.5) 8.3  (12.7) 33.3 66.7 

Query 3 17.4  (23.3) 46.1  (50.3) 65.5 99.9 

 
Table 6.2.  Results comparing Agrios to Greedy, for Queries 1, 2, and 3, “standard” catalogs.  The results 

for Agrios include both results using only staging, and results using query rewriting during staging.   

 

6.3.3 QUERY ACCUMULATION 
 

 Query accumulation can also reduce data movement. To explore the utility of 

accumulation, we first ran our queries through Agrios, recording the amount of data 

moved with the movement-minimizing plan.  We then divided the query into several 

subqueries, and independently staged each of the subqueries.  In all cases, query rewriting 

was enabled.  Breaking the queries up in this way mimics how Agrios would handle 

unaccumulated queries – rather than process the query as a whole, Agrios would first 

process one of the subqueries, then process the other subquery.  The total cost of the 

unaccumulated query was the sum of the costs of the individual subqueries, staged 

piecewise.   

 This experiment simulates cases where an analytic script contains many lines of 

code, i.e. many queries.  Figure 6.5 illustrates a test case, showing the complete 

(accumulated) Query 1, together with the “cut planes” that chop the query into smaller 

subqueries.  For ease of exposition the complete Query 1 is reproduced here: 

 (A+((B%*%C)%*%D))[1:100,1:20] 
 %*%((sum(E)+(F+G))+(H%*%(I%*%J)))[1:20,1:100]; 
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If we rewrite the query to reflect the cut planes shown in Figure 6.5, we have three 

queries.  Written as R code, these three queries are: 

 

 temp.1 <- (B%*%C)%*%D; 
 temp.2 <- (sum(E)+(F+G)); 
  +(H%*%(I%*%J)) [1:20,1:100] 
 result <- (A + temp.1)[1:100,1:20] 
  %*% temp.2; 
 

In the three-line version of the query, substituting the values for temp.1 and temp.2 into 

result yields the single-line version of the query.  A data scientist might prefer the latter 

3-line chunk of code over the former for many reasons:  legibility, coding standards, or 

ease of debugging. 
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Figure 6.5.  Query 1, subdivided into subqueries along dotted “cut planes”. 

 The benefit of accumulation is demonstrated by comparing the amount of data 

moved in the large single query to the total amount moved by all of the subqueries.  

Figure 6.6 shows representative results.  An accumulated query moves no more data 

elements than its unaccumulated subqueries.  In many cases the accumulated query 

moves fewer data elements.  The histogram adjacent to the scatter plot shows the 
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frequency and impact of accumulation.  More often than not, accumulating queries 

reduces data movement, in many cases reducing the number of data elements transferred 

by over 40%. 

 

Figure 6.6. Data movement of accumulated queries compared to unaccumulated queries, Query 1, standard 

catalog.  The plot at left is similar to plots seen previously.  The vertical axis shows data elements moved 

when multiple subqueries are accumulated into a single query, the horizontal axis shows the total cost when 

subqueries are executed piecewise.  The plot at right shows a histogram, for all 512 of the query’s 

placements.  For approximately 140 placements, accumulating reduces data movement not at all or only a 

small amount.  For roughly 140 placements, however, accumulation reduces data movement by 

approximately 40% over piecewise execution of the subqueries. 

 

 We ran Queries 4 through 7 through Agrios to further illustrate the effects of 

accumulation in reducing data movement costs.  The queries are reproduced in Figure 

6.7, with cut planes added.  Experimental results for these test queries are shown in 

Figure 6.8; the placements used were the same 10% of all placements (randomly 

selected) used earlier. 

 The results show that accumulation, when used in concert with query rewriting 

and staging, may reduce data-movement costs more than these techniques alone.  As with 

the query-rewriting tests performed with Queries 4 through 7, we also see variation 

between queries in the benefits of accumulation.  Here too, query structure and operators 

are responsible for some of the differences.  Unlike the case of comparing costs for 
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simply staged queries with rewritten queries, however, in the case here the location of the 

query’s “cut plane” also restricts the applicability of query rewrite rules.   
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Figure 6.7.  Additional queries used for testing, reproduced from Figure 6.3 with cut planes added.  Shown 

are Queries 4 (a), 5 (b), 6 (c), and 7 (c).  

 

 

 

6.4 RULE TYPES AND STAGING 

 Agrios has a number of transformation rules, each belonging to various rule 

classes.  The previous section demonstrated that staging with query rewriting often 

resulted in plans whose costs were lower than those using staging alone.  Beyond 

illustrating potential benefits of query rewriting, however, these results provided no 

visibility into the query-rewriting process.  A more detailed level of understanding is 

essential, especially for future work looking to augment and refine methods in rewrite-

(c) (d) 

(a) (b) 



 

185 
 

based reduction of data movement.  In particular, it would be helpful to know the effect 

of different rule types in the staging process.  Provided that we perform query rewriting 

during staging, we should know whether some rule types reduce plan costs more than 

other rule types.  In particular, we should know whether reductive rules or consolidating 

rules more effective in reducing data movement between hybrid components. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8.  Additional test results showing how accumulation, staging, and query rewriting moves fewer 

data elements than staging and query rewriting alone.  Shown are Queries 4 (a), 5 (b), 6 (c), and 7 (d), as 

depicted in Figure 6.7.  The four queries use catalogs q2_standard, q3_time_series_2, q2_big_e, and 

q2_big_c, respectively.  Plots show costs for a random 10% of query placements. 

 

Elements transferred, accumulated 
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 To answer these questions we ran several queries and catalogs through Agrios 

four times, each time capturing the cost of the movement-minimizing plan.  For the first 

run we performed only staging, the second using only reductive rules, the third using only 

consolidating rules, and the fourth using both rule types.  Typical results are presented in 

Figures 6.9 and 6.10.  These figures give insight into the particular rule types responsible 

for decreasing plan costs.  The sort order for all placements was determined by optimal 

plan costs when no rewrite rules were used.   

 Agrios’ top-down memoization algorithm guarantees identification of the optimal 

staging, for a given set of transformation rules.  All of the costs shown in Figures 6.9 and 

6.10, then, are optimal costs.  There is no paradox in a particular query and placement 

having multiple costs across multiple instances of the query; if different rules are used in 

each instance, the optimal cost for a given query and placement can differ from another 

optimal cost for the same query and placement.  The cost difference between these two 

instances – where the only difference between the two instances is the rewrite rules used 

– is what interests us.  This cost difference sheds light onto the efficacy of different rules 

and rule types.  Recall that Agrios currently implements three consolidating rules and 

four reductive rules. 

 The plot reveals a number of facts.  Utilizing both rule types is sufficient for 

identifying the least-expensive query from the four runs.  However, both rule types are 

not always necessary to identify the lowest cost:  for some placements the optimal cost 

using only one rule type is identical to the optimal cost using both rule types.  In some 

cases, the data movement reduction brought about by using both consolidating and 

reductive rule types together is greater than the sum of the reductions in data movement 
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brought about by separately applying consolidating and reductive rules.  As noted earlier 

the more rules used during query rewriting, the larger the search space for the query.  A 

larger search space may contain a plan whose cost is less than the lowest-cost plan in a 

smaller search space.  This result also shows that the union of the search spaces defined 

by consolidating rules and reductive rules is smaller than the search space defined by the 

union of both rule types.  That is, when both rule types are used during query rewriting, 

the rules can interact and cause synergistic data-movement reductions.   

 Another important feature of the results is the range of differences between 

optimal costs for different rule types.  The differences between highest and lowest costs, 

for a given placement, range from many multiples of the lowest cost, to only small 

fraction above the lowest cost.  That is, in some cases plans generated using one rule type 

move much less data than plans generated using another rule type, but in other cases, the 

differences between plan costs generated from different rule types are small. 

  These results provide some insight about how staging costs relate to different 

types of rewrite rules.  While this information has some utility, these tests provide no 

visibility into the time required to identify the movement-minimizing plan.  In Chapter 5 

we noted that staging takes time; Agrios must consider and cost alternative stagings in 

order to identify the movement-minimizing plan.  Staging with query rewriting takes 

more time than staging alone.  When query rewriting is enabled, for each query under 

evaluation, and for each rewrite rule, the query must be examined and compared to rule 

antecedents, to determine whether or not a rule is applicable to a query.  If the rule is 

applicable, a representation of the query that is output by the rule must be added to 

Agrios’ internal data structures representing the search space.  Adding a new query 
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representation takes time:  beside adding the new representation to the data structure 

(which potentially involves costly memory allocation), ancillary “bookkeeping” tasks 

must be performed, which take additional time.   

The objective of staging and query rewriting is to reduce query-processing time 

by minimizing data movement.  However, the processes of staging and query rewriting 

themselves take time.  There is a tradeoff between execution time saved through staging 

and optimization time.  On the one hand, we want to identify the movement-minimizing 

plan.  Increasing the number of rules used during query rewriting may result in more 

alternative plans for consideration, which in turn may permit discovery of a less 

expensive movement-minimizing plan.  On the other hand, we want to identify the 

movement-minimizing plan as quickly as possible.  The fewer rewrite rules used during 

optimization the more quickly the movement-minimizing plan can be identified for the 

resulting search space. 

Visibility into this tradeoff is provided by comparing measured staging time with 

data movement reductions gained through query rewriting.  These results are presented in 

Figures 6.11 and 6.12.  The plots show summary statistics for each rule type, plotted as a 

function of staging time.  The plots reveal several important facts: 

1. Staging with transformation rules takes more time than staging without 

transformations.  This result aligns with our expectations; as noted above rule 

application involves additional optimization steps over and above staging 

alone.  The plots in Figures 6.11 and 6.12 quantify the time penalty incurred 

by staging with transformations.  We also see that when both rule types are 
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  Figure 6.9.  Comparison of plan costs by rule type, Query 1, standard catalog.  The sort order for all placements was determined by 

  optimal plan costs when neither rule set was used. 
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  Figure 6.10.  Comparison of plan costs by rule type, Query 3, standard catalog.  The sort order for all placements was determined by 

  optimal plan costs when neither rule set was used. 
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  Figure 6.11.  Plan costs as a function of optimization time, by rule type.  Results for Query 3, standard catalog. 
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  Figure 6.12.  Plan costs as a function of optimization time, by rule type.  Results for Query 1, standard catalog. 
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used during staging, the amount of time required to stage is greater than sum 

of the time required to stage when rule sets are used individually.  The time 

required for staging relates to the size of the search space; the larger the search 

space, the more time is required to search it.  These results again show that the 

union of the search spaces when rule sets are used individually is smaller than 

the search space defined when both rule types are used. 

2. When only one rule type is used during staging, sometimes staging with 

consolidating rules is faster than staging with reductive rules, and sometimes 

staging with reductive rules is faster than staging with consolidating rules.  

Use of both rule sets during staging takes substantially more time than using 

only one rule set.  In addition, we see that the average time required to use 

both rule sets is greater than the sum of the average times required for using 

both rule sets individually.  This is expected, since the search space defined by 

both rule sets is larger than the union of the two search space defined by each 

individual rule set. 

3. On average, data-movement costs using only reductive rules are less than 

data-movement costs using only consolidating rules. There is a notable 

amount of variability in these costs, however, and in some cases a plan 

generated using only consolidating rules is less expensive than a plan using 

only reductive rules.  We also see that the mean costs using both rule sets is 

less than the mean cost using either rule set individually.   

4. While costs using both rule sets are less than costs using individual rule sets, 

the costs using both sets are on average not much less than costs seen with one 
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rule set.  Though we have evidence of synergistic interactions between rule 

types, the gains achieved through synergistic interactions appear to typically 

be additive and incremental, not multiplicative.  These results correspond to 

the results shown earlier, in Figures 6.9 and 6.10.   

 At the beginning of this section we asked whether certain rule types – such as 

consolidating or reductive – reduced more data movement than other rule types.  The 

results shown provide visibility into how different rule types participate in the staging 

process, and how different rule types affect staging time.  These results are helpful in 

understanding the relationship between plan costs and staging time.  An understanding of 

this relationship is important for developing and refining methodologies for rule 

application.   

 Different methodologies for rule application may be important because different 

applications place different constraints upon staging.  Consider two likely cases: 

1. Find the least expensive movement-minimizing plan.  There is no particular 

constraint upon the time required to identify the movement-minimizing plan.  

As noted above, the key tradeoff in staging is between the time spent staging 

and the time spent executing the query.  Generally, the more rewrite rules 

used during staging, the longer staging takes.  In this case all rewrite rules 

should likely be used during the staging process. 

2. Find the least-expensive movement-minimizing plan using no more than a 

given amount of optimization time.  Depending on the permitted time, it may 

not be practical to use all rewrite rules during staging.  We instead may need 

to apply only a subset of all available rules; we then must determine what 
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rules to apply, and decide on how they should be applied.  There are a number 

of ways a staging system might make these decisions.   To consider one 

example, suppose a system can apply and combine rules ad hoc, selecting the 

best rules for each query.  Such a system might perform a preprocessing step 

to extract significant features from the query.  It would then determine, based 

on these features, which rules (or rule types) would likely deliver the 

movement-minimizing plans within the time constraints; the query would then 

be optimized using only those rules or rule types.  This rule-selection process 

could likely not offer guarantees about cost, but might be able to provide 

likelihood estimates about costs.   

Regardless of the particular case, the time required to stage should always be less than the 

time required to execute the plan selected by the stager.  Suppose that a cost c must not 

be exceeded during staging.  There are a number of techniques for ensuring that this 

constraint is not violated.  One such technique performs staging using all rules until c is 

reached; the best plan generated up to that point is then selected and executed.  Another 

technique could stage using one rule set.  If the cost constraint was exceeded or nearly 

exceeded, the system selects and executes the best plan.  Otherwise, the system adds an 

additional rule set and restages the query.  An approach similar to this this latter 

technique was suggested in a thesis by Kooi [53].  

 At the beginning of this section we asked whether certain rule types – such as 

consolidating or reductive – reduced more data movement than other rule types.  The 

results shown and discussed above answer the question somewhat.  From Point (4) above, 

however, we should not draw the conclusion that reductive rules will always tend to be 
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more effective that consolidating rules, for several reasons.  First, only consolidating 

rules can be applied to some queries.  A simple example of such a query is one containing 

only matrix multiplication operators.  Consolidating rules such as association can 

decrease plan costs for these query types through consolidating transformations, but 

reductive transformation rules are not applicable.  Facts about the query may indicate 

whether reductive or consolidating rule types are applicable.  Relevant facts include both 

the operators in the query and the query structure.   

 Second, the benefits of reductive rules are a function of several variables, 

including the size of the input and user-specified parameters (as applicable).  For some 

values of these variables, reductive transformations do not meaningfully decrease plan 

costs.  Consider the query in Figure 6.13, for a simple example of why this might be so.  

In this case the “subscript through binary addition” reductive transformation rule 

transforms the two query instances.  In the first (topmost) instance in the figure, data 

movement after rule application is only 1% of the data moved prior to rule application.  

In the second instance, data movement after rule application is 81% of the data moved 

prior to rule application.  The only difference between query instances are the parameters 

found in the subscript operation.  Though the “subscript through binary addition” rule is 

applied in both cases, inter-operator data movement is not substantially reduced in the 

latter query instance because the subscript parameters are nearly identical to the extents 

of the input data objects.  The lesson here is that the utility of some reductive 

transformations depends upon arbitrary parameters specified by the user.  The 

experimental results presented in Figures 6.9 and 6.10 presume certain parameter values.  
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Had they been different then consolidating rules might have produced lower-cost plans 

that reductive rules.  

 

6.5 CONCLUSION 

The results presented in this chapter illustrate Agrios’ effectiveness in reducing 

data movement.  Experimental results reveal the benefits of staging in comparison to 

alternate staging policies, such as All-at-R, All-at-SciDB, or Greedy. The positive effects 

of accumulation and query rewriting on staging were also demonstrated in this chapter.  

Rewriting queries during the staging process resulted in lower-cost minimal-movement 

plans than the minimal-movement plans identified through staging alone.   The benefits 

of query accumulation were also demonstrated.  Plan costs for accumulated queries were 

shown to be often less than the piecewise plan costs for subqueries.  In no cases did query 

rewriting during staging result in a higher movement-minimizing plan costs than the cost 

achieved through staging alone, just as in no cases did accumulation result a higher 

movement-minimizing plan cost than the cost achieved through piecewise execution of 

subplans. 

Experimental results presented here also provided some quantitative insight into 

the tradeoff between staging time and data movement reduction.  The results provide 

baseline data showing the time required to apply different transformation rule types, and 

the relative efficacy of different transformation rule types.  Insights into staging space 

were also provided by these results.  We saw that the time required to stage using both 

rule sets was greater than the sum of the times required to stage when rule sets were 

applied independently.  Similarly, we saw that the data-movement reductions possible 
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when using both rule types at times were greater than the sum of the data-movement 

reductions made possible when rule sets were applied independently.  Both of these facts 

suggest that the search space defined by both rule sets is larger than the union of the 

search spaces defined by each rule set.  
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CHAPTER 7:  CONCLUSION AND FUTURE WORK 

 

 

 

7.1 CONCLUSION 

 Hybrid analytic systems integrate familiar analytic tools such as R, with dedicated 

platforms for managing big data.  These hybrid systems present familiar functionality to 

data scientists, while extending the capability of the analytic tool to include analyses on 

large, disk-resident datasets.  The hybrid approach has benefits, but with its utility comes 

the burden of managing data movement between the hybrid components.  The cost of 

data movement degrades system performance in several ways:  data movement can 

increase both query processing time and energy use.  A performance-oriented hybrid 

system requires reduction or minimization of data movement between its components.  

We hypothesized that data movement between hybrid system components can be 

automatically minimized using techniques adapted from relational database query 

optimization.   

The prototype system we constructed for the task is named Agrios; it integrates 

the analytic tool R and the array big-data management system SciDB.  Agrios minimizes 

data movement through three techniques:  i)  staging, ii)  query rewriting through the 

application of rewrite rules, and iii)   query accumulation.  For an initial placement of 

input data objects, Agrios provides a staging for a query instance by specifying execution 

locations for each of the query’s operations, which in turn determines data movement.  

We claimed that stagings should be automatically identified at runtime with a tool such as 

Agrios, arguing that hand-staging is impractical for an important class of workloads, 

particularly those that exhibit variety in the size, shape, and storage location of the input 
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data.  Experimental results showed that under such workloads “recycling” plans or 

relying on a single plan may slow performance, due to unnecessary data movement.  We 

motivated the need for Agrios through an examination of staging space.  Our analysis 

showed that optimal stagings are difficult to find and typically optimal for only a small 

number of placements, and that the costs of worst-case stagings are so large they cannot 

be ignored.  Acceptable, near-optimal stagings are nearly as rare and limited in utility as 

optimal stagings.   

Agrios’ stager minimizes data movement with a search algorithm using top-down 

memoization to identify the optimal execution locations for the operations in an analytic 

script.  Experimental evaluation showed that the optimal plan identified through staging 

often resulted in less data movement than alternative staging policies.  We also 

demonstrated how staging is rendered more effective through the accumulation of 

expressions, and the rewriting of queries through the application of transformation rules.  

Prior to query transformation, accumulating expressions into larger expressions both 

increases the scope of expression-rewriting opportunities, and may yield less-expensive 

stagings even if transformations are not used.   Query rewriting through the application of 

transformation rules typically reduced data movement costs over and above the 

reductions effected through staging.  Query rewriting reduces data movement by bringing 

about either reductive or consolidating transformations, reducing the amount of data 

transferred or the number of transfers, respectively.  
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7.2 FUTURE WORK 

 During the course of our research we noted directions in which our work could be 

extended.  Two main paths stood out:  i) extending the cost model, and ii) better utilizing 

transformation rules during query rewriting.   

7.2.1 EXTENSIONS TO AGRIOS 

Cost Model 

 The first way our work can be extended is through the development of a more 

sophisticated cost model.  For a number of reasons, stated in earlier chapters, our cost 

model calculates cost strictly as a function of data elements moved.  These assumptions 

focused our work but also bound its applicability to particular domains.  By extending the 

cost model, future researchers could extend our work to additional domains.  Recall that a 

cost model should be defined with particular aims in mind, depending on the application.  

Common aims for cost models include reducing (or minimizing) CPU cycles, wall-clock 

time, energy consumption, I/O, or data movement. Cost models may include more than 

one of these goals, as well. 

The cost model used in this research can be extended in two main ways.  First, it 

can be extended to incorporate additional facts about the input data objects.  Second, it 

can include facts about the operations performed on inputs.  Let us examine each 

extension in turn. 

 Our cost model used facts about only the shape, size, and location of data objects.  

There are additional properties of input data objects that may warrant inclusion; these 

include objects’ compression status, physical size, and storage format.  As noted in 

previous chapters, this work made assumptions regarding data objects’ storage format 
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and compression status.  Relaxing these assumptions permits inclusion of these properties 

into the cost model.  Note that an extended cost model may prove beneficial even if no 

additional work is performed on accumulation or query-rewriting techniques.  This result 

occurs because the cost model is used only during Agrios’ assignment of costs to a 

particular assignment of execution locations; i.e. the cost model is only used during 

staging.  An improved cost model only lets Agrios make better decisions as to which plan 

is the lowest-cost plan; it does not change the contents of plan space.      

 Our assumption that arrays had a dense storage format means that the physical 

size of an array is consistently proportional to its logical size.  If a dense storage format is 

used, two arrays with identical logical size have the same physical size, even if one of the 

arrays is sparsely populated with values and the other is densely populated.  If we remove 

the assumption that only dense storage formats are used, then the physical size of the 

array – not just the logical size – should be considered in the cost model.  The physical 

size of the data object directly affects the cost of data movement, as it is the movement of 

physical bytes between hybrid components that takes time and consumes energy, not the 

movement of logical data elements.  (Note that the system must continue to track the 

logical shape of the array, since logical shape constrains the application of rewrite-based 

transformations.)  

 There is a more subtle way that storage format could be incorporated into a cost 

model.  Particular operations on a system may assume a specific storage format, either 

dense or sparse.  Operation P, for example, may operate only on densely formatted 

arrays.  If the input data object is stored in a different format than the storage format 
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required by the operator, the data must be reformatted.  Reformatting takes time, and an 

extended cost model may anticipate the time required for format conversion.   

 An extended cost model may also track the compression status of an array, 

another physical property of a data object.  Relevant properties of an array’s compression 

status include:  i)  whether or not the array is compressed, and ii)  how the array is 

compressed.  These physical properties involving compression are important for the same 

reasons that storage formats were important.  Compressing and uncompressing data 

objects takes time.  While some operators have alternative implementations for working 

on either compressed and uncompressed data, other operators might require that the 

inputs are uncompressed.  If compressing or uncompressing data is required, an extended 

cost model may account for the time required to perform these operations.  If the cost 

model considers not only whether or not the data is compressed, but also how the data is 

compressed, it can more accurately estimate the time required to compress or decompress 

the data.     

 Considering additional physical properties of the input data objects is the first way 

Agrios’ cost model can be extended.  The second way is through the inclusion of 

operation-execution properties.  Relevant facts about operations include I/O required for 

computation, CPU cycles used, and energy consumed.  Each of these facts may admit of 

finer-grained distinctions, if necessary.  For example, in heterogeneous computing 

environments, the number of CPU cycles required to perform a given operation may vary 

substantially from platform to platform.  In such a case the cost model would not include 

a single value for estimating the CPU cycles for an operation, but rather a number of 

different values, each indexed to one or more execution environments. 
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 In discussions regarding operator execution times, people often assume that 

SciDB will always outperform R.  For a number of operations and inputs this expectation 

holds, as we saw in Chapter 5.  However it should be noted that SciDB does not always 

outperform R [14].  SciDB is typically deployed on a cluster and enjoys the advantages 

that accompany such a setup, such as a large aggregate memory capacity.  However, in a 

cluster-based deployment SciDB also suffers from problems not experienced by single-

node systems such as R.  For example, the overhead required to move data between 

computation nodes on a cluster-based system takes time and energy; this overhead cost is 

an intra-system data movement cost, distinct from the inter-system data movement cost 

that is the primary focus of our research.   

 The hardware on which SciDB is deployed also might be older – and slower – 

than the hardware on which R is deployed.  The standard type of machines that make up 

the computing nodes on a SciDB cluster are inexpensive, off-the-shelf commercial boxes.  

A desktop workstation running R used by a data scientist may have less aggregate 

memory than a SciDB cluster, but its processors are probably several times faster (and at 

least one generation newer) than those found on the commodity machines in the SciDB 

cluster.  Processors aside, the storage and memory technology found in the data 

scientist’s workstation are likely much newer and faster than the inexpensive technology 

found in a cluster.  Finally, it is likely that, within several years, parallelized versions of 

R will become available that will execute “vanilla” R scripts, not requiring the use of 

special R libraries supporting parallel processing.  If R is developed along these lines, the 

performance difference between SciDB and R may decrease.  The upshot is that a 
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thorough incorporation of operation computation time into a cost model should capture 

the subtleties sketched above; this task is non-trivial. 

If Agrios cost model is extended in both of these ways, interactions between 

compression status, storage format, and operation execution times may also be 

incorporated into the cost model.  For example, some operations may operate on both 

compressed or uncompressed inputs.  The execution time required to operate on a 

compressed input may differ, however, from the execution time required to operate on an 

uncompressed input.  

Transformation Rules 

 Above we proposed extending our work through the elaboration of Agrios’ cost 

model.  A more complex cost model will let Agrios relax assumptions about input data 

objects, potentially resulting in better selection of movement-minimizing plans.  

However, additions to the cost model do not increase the size of the staging space 

considered during staging.  As discussed in Chapter 4, staging space is expanded through 

the application of rewrite rules.  The second primary way in which our work can be 

extended is through additional research into transformation rules.  In Chapter 6 we 

explored some characteristics of a handful of rules, together with characteristics of 

different rule types.  This work constituted a proof-of-concept, showing that 

transformation rules can assist in reducing data movement.  Additional investigations 

there also provided some insight into the rule types responsible for the data-movement 

reductions.  Further research would build off these results, in several ways.   

 First, additional transformation rules could be added to Agrios’ rule set.  If the 

newly-added rules are not redundant to those already in the rule set, the staging space 
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searched by Agrios increases in size.  Potentially, one of the new plans added via 

application of the new transformation rule has a lower cost than the movement-

minimizing plan for a staging space without the rule; i.e. the new rule might be necessary 

for the creation of a new, lower-cost movement-minimizing plan.   

 If the time spent staging, accumulating, and rewriting queries is not an issue, the 

larger the staging space, the better.  In practice, of course, the time spent on these 

activities demands our attention.  In Chapter 6 we saw that time spent staging and query 

rewriting increased with the number of rules in the rule set.  Initial tests suggest that 

presently there are practical limits to both query size and rule set size.  This means we 

should not capriciously add new rules to Agrios’ rule set.  

The sensible way to approach the addition of new rules is to first gain a deeper 

understanding of the rules currently implemented.  A more sophisticated understanding of 

what rules are responsible for reducing data movement could be achieved by associating 

rule applications to multiexpressions generated during the staging process.  Such an 

understanding may help us differentiate between rules that are typically effective in 

generating “useful” alternative queries and rules that are not.  (Here “useful” queries are 

essential to the generation of the movement-minimizing plan.)  Such a research effort 

would ideally advance our understanding of two relationships:  i)  the relationship 

between transformation rules and data-movement reductions, and ii)  the relationship 

between transformation rules and query properties.  Query properties relevant to (ii) 

include properties of the input objects such as size and shape, properties of the operations 

(such as their effect on the shape of input properties), and properties of the query 

structure itself.  A more thorough understanding of these two relationships might allow us 
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to reduce staging time without sacrificing reductions in data movement.  Such a result 

could be brought about in a number of ways, including:  i)  conditional application of 

transformation rules based on either query properties, data-object properties, or a history 

of previous rule applications, and ii)  plan-space pruning strategies.   

 A better understanding of transformation rules may also allow us to design rule 

sets or rule application methodologies that make the most of good rule interactions and 

avoid harmful rule interactions.  We saw evidence of beneficial rule interactions in our 

experiments.  Recall, for example, that in some instances the data movement reduction 

achieved through the combined application of reductive and consolidating rules exceeded 

the sum of the data-movement reductions when the two rule-type transformations were 

applied separately.  Rule interactions leading to such results might be beneficially 

exploited if the circumstances precipitating them were well-understood.  Similarly, 

superfluous rule interactions, if identified, should be avoided. 

 A final note on extending Agrios through the introduction of new transformation 

rules:  the addition of new transformation rules may be constrained by implemented 

operators, and may also affect the cost model.  The operations and transformation rules 

implemented in Agrios involve what are called “structural” array operators:  i.e. those 

operations whose logical output size can be calculated prior to operator execution.  

Through matrix multiplication involves the contents of the input data objects, for 

example, the logical size of the output array does not depend on the contents.  By contrast 

the output size of “contentful” array operations depends on the values in the array.  

Certain implementations of filtering operations, for example, display this behavior.  R has 
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a which operation that returns the indices of array or vector objects satisfying a 

particular criteria.  When the vector V: 

   [1 3 5 7 2 4 1 1]  

is input to this R expression: 

   which(V == 1); 

R returns: 

   [1 7 8] 

Had the contents of V been different from what they actually were, the output of which 

may have had a different size.   The effect that an operator with variable output shape and 

size has on the cost model should be apparent.  In the case of “contentful” operators, even 

assuming a dense storage format, the size of the output array cannot be known with 

certainty prior to operator execution.   

 Relational database systems faced a similar problem early in their development.  

The query: 

  SELECT * from students WHERE age > 20; 

might return half the records if the query is directed at the database of a liberal arts 

college, and no records if directed at the database of a nursery school.  The potential 

variability in the number of records returned, and the difference in execution times for 

access methods used during query processing, made cost estimation difficult for these 

sorts of queries.   Relational databases mitigated the effect of such operations on cost 

estimates through a number of techniques.  The most relevant technique here is the 

collection and use of statistics about the values contained in database fields.  Should 

Agrios be extended to include “contentful” operations and transformation rules involving 
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“contentful” operators, a similar approach is recommended.  In a manner similar to 

relational systems, simple statistics gathered on data values may result in  better cost 

estimates.   

Additional Refinements 

 The two specific extensions above outline two paths for future research based on 

our work.  Several additional opportunities for improving Agrios are worth a brief 

mention, however, especially if Agrios is to be deployed for production use.   

 First, the code implementing all parts of Agrios could be optimized; this code 

includes both the portions written in R and the portions written in C++.  Second, the 

methods for moving data between R and SciDB – in both directions – also could be 

improved.  There are several possible techniques that may work.  One technique would 

reduce the time spent reformatting data moving between R and SciDB.  Paradigm4, for 

example, sells an optimized R-to-SciDB connector that moves data between the two 

systems in a common binary format, speeding data transfer.  While we were not able to 

gather performance figures for R-to-SciDB transfers, Paradigm4’s connector speeds data 

transfer from SciDB to R by several orders of magnitude.  Finally, the processes for 

loading and storage of data could be parallelized, again reducing one of the contributors 

to data transfer cost.   

Finally, the algorithm used by Bonneville to populate and explore the search 

space could be optimized.  A particular area in which Bonneville’s expansion and search 

algorithm may stand to benefit is with respect to pruning suboptimal subplans.  Pruning 

was disabled in our experiments, but in theory an effective pruning system could reduce 

the time required by the stager to identify the movement-minimizing plan.  A pruning 
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system could either reduce the time required to stage, or else permit the staging of even 

larger queries for a given amount of time.  Of particular interest is whether Agrios’ array 

data model admits of pruning opportunities not enjoyed by optimizers using a relational 

model.  Since with an array data model under certain conditions the size of operator 

outputs can be precisely calculated, it seems likely that optimizers designed around an 

array data model may be more effective than optimizers designed around a relational 

model. 

7.2.2 APPLICATIONS TO OTHER SETTINGS 

Our work assumed a particular architecture, viz. an integration of R and SciDB.  

During the course of our research we became aware that elements of our work could be 

applied to different architectures.  Mutatis mutandis, our findings are applicable to any 

system that:  i) performs computational work, ii)  represents this computational work in a 

form that can be analyzed and manipulated, and iii)  stores data at different locations.  At 

a high level Agrios is simply a tool for deciding – based on cost – at what location work 

is best performed.  As such, if there is a decision to be made about where to perform an 

operation Agrios can help make that decision.  The system must have certain properties 

in order for Agrios to function – e.g. Agrios must have the ability to estimate sizes of 

intermediate results – but these properties could be built into a system.  Let us look at two 

domains with potential applications for our research.  

The first possible new application is the minimization of data movement between 

computing nodes in a cluster, or minimization of data movement between cores within a 

compute node. As noted in Chapter 1, data movement of any sorts takes time and energy; 

these costs are incurred regardless of whether the terminal ends of the transfer are 
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heterogeneous systems such as R and SciDB or computing nodes within a homogenous 

cluster.  The techniques for reducing data movement used by Agrios could be applied to 

reduce intra-cluster or inter-core data movement in homogeneous systems.   

A second possible application is the reduction of data movement in scientific 

workflows.  For example, “DNA pipeline” workflows used by genomics research labs 

typically perform ten to fifteen operations, taking between five to ten input data objects.  

The operations performed vary, from filtering and index creation, to sophisticated string-

alignment algorithms implemented using matrix data structures.  Input sizes range from 

gigabytes to hundreds of gigabytes, and individual operations on extant computational 

resources take between one to dozens of hours.   An entire “pipeline” may take one week 

to run from start-to-finish. 

To date such labs have worked largely in isolation, but there is increasing interest 

in collaboration, including the sharing of data and computational resources.   A network 

of collaborating labs in some ways resembles the architecture of Agrios:  data is stored at 

multiple locations, and computation is performed at multiple locations.  The size of the 

datasets preclude effortless transfer from one lab to another, so data movement costs must 

be considered.  Though costly, moving data from one lab to another may result in the best 

overall pipeline performance, depending on the computational resources available.   

In recent years the Stork system has gained some traction in workflow 

optimization [54].  Stork is in a sense an analogue of Agrios; given the ability to decide 

where input data objects are stored, Stork determines the optimal data placement.  Agrios 

is a counterpart to Stork, instead selecting execution locations of operations when data 
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object input locations are fixed.  Stork has seen some success in workflow optimization, 

suggesting that Agrios too may also be able to address workflow optimization problems.  

Our current research results could be used to determine execution locations that 

minimize data movement between the computing centers.  An augmented version of 

Agrios – specifically a version whose cost model considered properties of operator 

execution – could provide additional optimizations to scientific workflows. In the case of 

“DNA pipeline” workflows, many common operations have several implementations, 

with particular implementations varying in their execution times, energy usage, 

scalability, and resource requirements.  An extended version of Agrios could be used to 

assist with dynamic selection of the appropriate operator implementation, given the 

currently available computational resources.   
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