

Optimizing Data Movement in Hybrid Analytic Systems

by

Patrick Michael Leyshock

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

Dissertation Committee:

David Maier, Chair

Kristin Tufte

Mark P. Jones

Christopher Monsere

Portland State University

2014

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3670195

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3670195

ii

© 2014 Patrick Michael Leyshock

i

ABSTRACT

Hybrid systems for analyzing big data integrate an analytic tool and a dedicated data-

management platform, storing data and operating on the data at both components. While

hybrid systems have benefits over alternative architectures, in order to be effective, data

movement between the two hybrid components must be minimized. Extant hybrid

systems either fail to address performance problems stemming from inter-component data

movement, or else require the user to reason about and manage data movement. My

work presents the design, implementation, and evaluation of a hybrid analytic system for

array-structured data that automatically minimizes data movement between the hybrid

components.

 The proposed research first motivates the need for automatic data-movement

minimization in hybrid systems, demonstrating that, under workloads whose inputs vary

in size, shape, and location, automation is the only practical way to reduce data

movement. I then present a prototype hybrid system that automatically minimizes data

movement. The exposition includes salient contributions to the research area, including a

partial semantic mapping between hybrid components, the adaptation of rewrite-based

query transformation techniques to minimize data movement in array-modeled hybrid

systems, and empirical evaluation of the approach’s utility. Experimental results not only

illustrate the hybrid system’s overall effectiveness in minimizing data movement, but also

illuminate contributions made by various elements of the design.

ii

DEDICATION

Dedicated to Kate, for always reminding me what is important.

iii

ACKNOWLEDGEMENTS

Thanks to my advisor, David Maier, as well as Kristin Tufte, my committee, and the

Portland State University Datalab.

I could not have done this work without the support of my parents and friends – thank

you all.

Brent Dombrowski and Jason Nelson were instrumental in developing Bonneville and

Agrios; they have my appreciation. Thanks too to Paradigm4 and the SciDB team, for

the opportunity to contribute to their work.

My research was funded by the National Science Foundation (Grant #1110917) and

Intel’s Science and Technology Center for Big Data.

iv

TABLE OF CONTENTS

Abstract i

Dedication ii

Acknowledgements iii

List of Tables vi

List of Figures vii

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: ASSUMPTIONS, DEFINITIONS, AND BACKGROUND 16

2.1. Assumptions 16

2.1.1. List of Foundational Observations and Assumptions 16

2.1.2. Discussion 22

2.2. Definitions 23

2.2.1. Agrios-Specific Terms and Concepts 23

2.2.2. Terms and Concepts in Relational Query Processing 29

2.3. Background 36

2.3.1. R, Array Databases, and SciDB 36

2.3.2. Hybrid Analytic Systems 39

2.3.3. Query Optimization 46

2.4. Conclusion 52

CHAPTER 3: AGRIOS’ CONCEPTUAL MODEL 53

3.1. Agrios as Optimizer 56

3.2. Staging 59

3.2.1. Cost Model 59

3.2.2. Transformation Types 61

3.2.3. Search Engine 67

3.3. Discussion 92

3.3.1. Search-Space Representation 92

3.3.2. Particular Refinements 95

3.3.3. Why Bonneville? 96

3.4. Conclusion 97

v

CHAPTER 4: AGRIOS IMPLEMENTATION 98

4.1. Components of Agrios 98

4.1.1. R 98

4.1.2. SciDB 101

4.1.3. Motivation 103

4.2. Agrios as Integration 105

4.2.1. Scope 105

4.2.2. Architecture 118

4.3. Configuration Options 132

4.4. Conclusion 133

CHAPTER 5: THE CASE FOR STAGING 134

5.1. General Overview 134

5.2. Staging Costs 134

5.3. Examination of Plan Costs 142

5.3.1. Overview 142

5.3.2. Methodology 145

5.3.3. Results 149

5.3.4. Additional Considerations 158

5.4. Conclusion 171

CHAPTER 6: EXPERIMENTAL EVALUATION 173

6.1. Overview 173

6.2. Methodology 174

6.3. Results 174

6.3.1. Staging 174

6.3.2. Transformation and Query Rewriting 177

6.3.3. Query Accumulation 181

6.4. Rule Types and Staging 184

6.5. Conclusion 197

CHAPTER 7: CONCLUSION AND FUTURE WORK 199

7.1. Conclusion 199

7.2. Future Work 201

7.2.1. Extensions to Agrios 201

7.2.2. Applications to Other Settings 210

References 213

vi

LIST OF TABLES

1.1 Inputs into Jane’s analysis 11

3.1 All rules currently implemented in Agrios 64

4.1 R operators currently implemented in Agrios 106

4.2 Data type equivalencies, R and SciDB 112

5.1 Query processing time for three different plans, Query 2 140

5.2 Catalogs used by Agrios’ test queries 150

5.3 Summary statistics for recycling plans, for Queries 1 and 3 164

6.1 Average percentage reduction in data elements moved: all

placements (improved placements) 176

6.2 Results comparing Agrios to Greedy, for Queries 1, 2, and 3,

“standard” catalogs 181

vii

LIST OF FIGURES

1.1 The amount of data moved depends on the computation location 8

1.2 Satellites capturing images of the Earth’s surface 10

2.1 A sample query, represented in tree form 25

2.2 Several arrays with different properties 26

2.3 The amount of data moved during processing depends on where the

computation is performed 27

3.1 Agrios is middleware integrating R and SciDB 57

3.2 The architecture and workflow of Agrios 58

3.3 An example of a reductive transformation 61

3.4 An example of a consolidating transformation 62

3.5 An example of how accumulation can reduce data movement without

query rewriting 65

3.6 The movement-minimizing plans for the two queries in our

example, prior to accumulation 66

3.7 An example of how accumulation and query rewriting can reduce

data movement 66

3.8 An enforcer rule at work, in a relational database system 68

3.9 An enforcer rule at work, in Agrios 69

3.10 Plan space is infinite in size, and contains all possible equivalent

plans and queries 74

3.11 The initial search space 79

3.12 Search space expansion 79

3.13 Plans are created from queries through the application of

implementation rules 80

viii

3.14 Plans are assigned costs, based on the staging, the cost model and

facts about the input data objects stored in the catalog 80

3.15 The plan with lowest estimated cost is selected for execution 81

3.16 Depth-first exploration of search space 85-88

3.17 The MEMO structure used by Bonneville to represent

search space 94

4.1 An array computation in SciDB 102

4.2 Three instances of a matrix multiplication 106

4.3 A vector containing genomics data 113

4.4 The architecture and workflow of Agrios, reproduced

from Chapter 3 119

4.5 An Agrios Abstract Expression Tree, represented as an S3

object in R 126

4.6 Examples of transformation rules 129

4.7 A simple plan 131

5.1 One placement for Query 2 138

5.2 A suboptimal plan for this placement of Query 2 139

5.3 The movement-minimizing plan for this placement of Query 2 139

5.4 The movement-minimizing plan for this placement of Query 3 141

5.5 A suboptimal plan for this placement of Query 3 141

5.6 Queries 1, 2, and 3 147

5.7 A section of staging space for Query 2 148

5.8 Histogram of placements for Query 2 151

5.9 Histogram of stagings for Query 3 154

5.10 Two instances of Query 2 154

ix

5.11 A comparison of the movement-minimizing stagings for the two

instances of Query 2 depicted in Figure 5.10 155

5.12 Another perspective on the plan space for Query 1 157

5.13 Normalized costs for all stagings of Query 2 158

5.14 Two instances of Query 2 159

5.15 A comparison of the movement-minimizing stagings for the two

instances of Query 2 depicted in Figure 5.14 160

5.16 An example of how unidimensional time-series growth for Query 3 161

5.17 Unidimensional time-series growth of a dataset 162

5.18 Cost comparison for recycled plans, Query 1, time_series_2 165

5.19 Cost comparison for recycled plans, Query 1, time_series_3 166

5.20 Cost comparison for recycled plans, Query 3, time_series_2 167

5.21 Cost comparison for recycled plans, Query 3, time_series_3 168

6.1 Data movement of cost-staged queries compared to naively-staged

“do-it-all-at-one-place” queries – Query 1 175

6.2 Staging and query rewriting moves fewer data elements than

staging alone 178

6.3 Additional queries used for testing 179

6.4 Additional test result showing how staging and query rewriting

moves fewer data elements than staging alone 180

6.5 Query 1, subdivided into subqueries along dotted “cut planes” 182

6.6 Data movement of accumulated queries compared to unaccumulated

queries, Query 1, “standard” catalog 183

6.7 Additional queries used for testing, reproduced from Figure 6.3

with cut planes added 184

x

6.8 Additional test results showing how accumulation, staging, and

query rewriting moves fewer data elements than staging

and query rewriting alone 185

6.9 Comparison of plan costs by rule type, Query 1,

“standard” catalog 189

6.10 Comparison of plan costs by rule type, Query 3,

“standard” catalog 190

6.11 Plan costs as a function of optimization time, by rule type 191

6.12 Plan costs as a function of optimization time, by rule type 192

1

CHAPTER 1: INTRODUCTION

 Many of today’s datasets are so large they cannot be adequately analyzed with

conventional desktop tools. The size and number of these massive datasets is growing at

an increasing rate, in fields as diverse as astronomy, genetics, and engineering. Data

scientists are responsible for transforming this data, through analysis, into actionable

information. Behind the hype around “Big Data”, there are important research questions

to be answered through the analysis of large, disk-resident datasets.

 This abundance of data, and the desire to analyze it, motivates multiple lines of

research. Database researchers develop methods for storing, organizing, and retrieving

the data. Their main tool for the job is a database management system. Other researchers

from a variety of fields – including statistics and computer science – focus on analyzing

the data. Their goal is to extract meaningful information from the data, and their tools of

choice are dedicated software systems implementing sophisticated statistical and

machine-learning methods.

 The limitations of these two tool types are exposed when the size of the datasets

grow large. Database management systems excel at managing large collections of data,

but they are poor tools for performing all but the most rudimentary analytics. Analytic

systems are superb at performing complex analyses on small collections of data, but

operate unacceptably when the size of the data exceeds the size of main memory. Data

scientists have developed workarounds for analyzing massive datasets using their

traditional tools. Some resort to sampling the data, others process the data “one bite at a

2

time,” dividing it into main-memory-sized chunks for iterative processing. Though often

effective, these ad-hoc solutions are often both slower and more brittle than systems

explicitly designed for analyzing big data.

 When workarounds fail, data scientists must switch to a dedicated big-data analytic

system. There are three strategies. In place of his or her existing analysis tool, a data

scientist may:

 Replace the analytic tool with an analytic system explicitly designed to efficiently

manage and analyze big data. Such systems range from traditional relational

databases to newer data processing platforms based on a MapReduce processing

paradigm.

 Install an augmented version of the analytic tool, which has been extended to

improve performance on big data through mechanisms such as parallelization or

out-of-core libraries.

 Adopt a hybrid analytic system, which integrates the analytic tool with a big-data

tool, capturing the best of both worlds: sophisticated analytic abilities and functions

common to analytic tools plus the data-handling capabilities of big-data systems.

Though the first two strategies may bear fruit, it is difficult to believe that a database

system such as Postgres can ever be extended to the point where its sophistication rivals

an analytic system such as MATLAB, just as it is hard to expect that MATLAB might be

augmented to provide the robust data-management features provided by Postgres. The

limitations of MapReduce systems – as both an analytic system and a data-management

system – are documented [1]. As an analytic system, MapReduce systems are effective

primarily only on “embarrassingly parallel” problems, an incomplete subset of common

3

analytic tasks. As a data-management system, the MapReduce stack lacks features

associated with data-management best practices, such as schemas and indexes.

 The hybrid approach is a solid candidate for the best approach: it presents to data

scientists a familiar interface with known functionality, while ably handling large disk-

resident datasets. The fact that hybrid systems consist of two components, however,

raises a problem not faced by the other two approaches. Two fundamental properties of

hybrid systems are that: i) data can be stored at both components, and ii) analytic

operations can be performed at both components. These properties mean that execution

locations of query operations must be specified; a particular specification determines what

data moves where. We maintain that this decision-making process should not only be

managed, but automatically managed in such a way that data movement is reduced or

minimized. This claim motivates the research in this thesis.

 Our research includes a solution satisfying the demands of this claim. The

solution is named Agrios; it is a hybrid analytic system integrating R and SciDB. R is a

powerful data-analysis software package, and SciDB is a database management system

designed for managing disk-resident array-structured datasets. Agrios integrates these

two components, and through the application of techniques pioneered in relational

database optimization, automatically minimizes data movement between the hybrid

components. My particular contributions include:

 Motivating the need for automated minimization of data movement in hybrid

systems, through experimental evaluation. The need for automatic

minimization versus alternative approaches may not be obvious, so we

motivate our solution by exploring the problem space empirically.

4

 Theoretical contribution of a partial semantic mapping between the R

language and SciDB’s Array Functional Language (AFL). This mapping

enables the coupling of the two hybrid components.

 Design of a cost-based optimization technique for automatically minimizing

data movement between R and SciDB. Our work builds off of proven

techniques from database query optimization. These techniques were

originally intended for use in databases using a relational data model; we

extend, refine, and apply them to a hybrid system that uses an array data

model.

 Prototype implementation of a hybrid system – named Agrios – constructed

using R and SciDB. Agrios is the research platform upon which our

experiments are conducted. The platform implements our cost model and

optimization-technique designs.

 Validation of this hybrid approach, through experimental evaluation. We

evaluate our hybrid approach, demonstrating the effectiveness of our

optimization techniques. Our experimental work also examines some of the

subtler aspects of the optimization process, including the relationship between

data movement minimization and optimization time, and the effectiveness of

different optimization techniques.

Together these contributions advance the state of the art in analytic systems for large,

disk-resident datasets.

We focus on minimizing data movement for two reasons. First, there is a dearth

of research on the topic in the context of hybrid analytic systems. Our work is intended

5

to fill this lacuna. Problems involving data movement, and techniques for resolving the

problems, are common to many areas of computer science. The high-performance

computing (HPC) community has developed numerous techniques for reducing data

movement between computing nodes [2-4]. Researchers in distributed databases have

explored optimization techniques and identified new algorithms for reducing data

movement between components of distributed relational databases. These techniques for

data movement minimization typically assume the homogeneity of computing resources

and data models, however, so are not immediately applicable to hybrid systems. Second,

data movement is becoming an increasingly significant cost in distributed and hybrid

systems. Data movement between processing nodes or hybrid components comes with

costs: it takes time and energy. Recent work in high-performance computing shows that

time spent moving data between computing nodes often dominates the time spent

computing with it [5-6]. Similarly, researchers in energy-efficient computing expect that

inter-machine data movement costs will soon rival computation costs for some scientific

analyses [7-8]. The growing importance of data movement relative to data processing is

in part a result of the growing speed differences between computing hardware and

communication hardware. DRAM access in a new server, for example, is already an

order of magnitude faster than data access over a 10-Gigabit network connection [5].

Problems involving data movement are exacerbated by the rapid growth of data available

for analysis. There is growing interest in converting workaday objects into data-

collecting sensors: from phones and laptops to thermostats, toasters, and hot water

heaters. In some areas of science and engineering, the growth rates are remarkable: due

to new sequencing techniques, the growth rate of genomics data is doubling every five

6

months. Though there are other factors that affect the cost of analysis – computation

times at each component, obviously – reducing the cost of data movement is worthy of a

dedicated, programmatic effort.

There are multiple components of data movement costs, including “time on the

wire,” the overhead of setting up and maintaining communication connections,

competition with other systems for network bandwidth and database access, and the

formatting and restructuring required to map one system’s storage model to another.

These costs are an agglomeration of computation and communication costs. Consider the

work required to transfer a data object from R to SciDB:

 The R object is serialized (computation cost).

 Object is written from R’s process space to network buffers (shared

computation and communication cost).

 Network connection between R and SciDB established, if not already in place

(communication cost)

 Data is transferred from R to SciDB (communication cost).

 Object is copied from network buffer to SciDB process space (shared

computation and communication cost).

 Object is deserialized at the SciDB master node (computation cost).

 Object is sharded and distributed among SciDB worker nodes, as applicable

(computation and communication cost).

Similar steps apply to moving data from SciDB to R. (The process only gets more costly

– and complicated – at greater levels of detail. If the data is compressed before

transmission, for example, a compression and decompression step must be added to this

7

workflow.) Given the potential aggregate costs of these tasks, we should find a way to

reduce them. There are several strategies for lowering costs, including:

1. Reduce the cost of switching storage formats between systems,

2. increase network communication speed and capacity, and

3. reduce the amount of data moved.

RICE, a hybrid system integrating the data analysis software R and SAP’s HANA

relational database, exemplifies the first strategy [9]. The RICE middleware arranges

transferred data from HANA into a format easily consumed by R; this streamlined

transfer technique avoids some serialization costs, especially those incurred from

common exchange protocols such as ODBC. Strategy (2) falls largely outside the

purview of data scientists, though electrical and communication engineers are hard at

work on its many challenges.
1
 They face a formidable task in keeping up with the

improvements in CPU and memory we noted above. Complicating strategy (2) is the fact

that network communication improvements are often require increased energy

consumption. Existing literature on hybrid systems acknowledges the cost of data

movement, and admits the validity of strategy (3) [10-12]. To date, however, little effort

has been spent on designing solutions founded upon the strategy. Our research helps fill

this gap.

 Any efforts to minimize data movement would be in vain were there not decisions

to be made that could reduce data movement. A simple example – illustrated by Figure

1.1 – shows the kind of opportunities for reducing data movement available in hybrid

systems. The figure shows that there are better and worse places to perform operations,

1
 History suggests that this problem is not solvable, however. No matter how big we “make the pipe,” it is

never big enough for long.

8

when considering data movement. Suppose vectors C and R are stored at component B,

and their product is required at component A. The product can be computed at A, which

requires that C and R are first shipped from B to A. Alternatively, the product can be

computed at B, and the result shipped to A. In this example, the decision is clear about

which option moves less data – the choice of execution location affects the amount of

data moved by orders of magnitude. If C and R are both vectors containing 1000

elements, there is a difference of 998,000 elements moved between computing the

product of C and R at A, and computing their product at B.

A

B

R
C

D
at

a
m

o
ve

m
en

t

A

B

A

B

C × R

R
C

Initial state:
data at B

Computation
performed at A

Computation
performed at B

Figure 1.1. The amount of data moved depends on the computation location. The column at the right

shows the initial state of affairs: vectors C and R are both stored at location B. A and B are processing

nodes separated by a network connection (illustrated by the cloud). The product of the two vectors is

required at location A.

 The rightmost two columns show two ways to compute the product of C and R. In one alternative,

the computation is performed at location A, first requiring both C and R to be moved from node B to node

A. In the other alternative, the vector product is first computed at B, and the result shipped from B to A.

Because the output size of the vector product of C and R is typically larger than the size of both vectors C

and R (in terms of number of array elements), performing the computation at A moves less data than

performing the computation at B.

9

 This example illustrates that in hybrid systems: a) there are choices about where

operations can be performed, and b) some choices move less data than others. The fact

that there are consequential decisions about data movement means that there are

opportunities to build a better hybrid system through the automated management of data

movement. Managing data movement between components amounts to either: i) stating

the location at which operations should be performed, or ii) stating what input data

should be moved before operations are performed. These alternatives are different sides

of the same coin: stating the locations at which operations should be performed

determines what data must be moved, while stating what data should be moved

determines the location at which operations must be performed. For ease of exposition in

this thesis we focus only on managing data movement through specification of execution

location.

 An example helps illustrate the challenges involved in managing data movement.

Imagery data, captured by satellite, is often used for geophysical research. Data scientist

Jane captures forest-canopy imagery from a dozen satellites. Hundreds of times per day

the twelve satellites photograph regions of the planet’s surface and transmit the image data

back to Earth. Figure 1.2 illustrates several of these satellites at work. Jane analyses this

data primarily with a hybrid system integrating R and SciDB. The hybrid system takes an

R script as input, and divides the analytic work specified by the script between the R

component and the SciDB component. Some details of this workflow:

 Most of Jane’s data analysis is performed on the hybrid system using a single R

script, though she also performs additional analyses using different software tools.

10

Figure 1.2. Satellites capturing images of the Earth’s surface. The size and shape of images captured vary,

both over time and across satellites.

 Jane uses a hybrid system to run her analytic script hundreds of times per day, each

instance potentially with different inputs.

 The size of each image ranges between tens to thousands of MB in size.

 Each image is represented as a two-dimensional array, each cell of the array

containing a floating-point value.

 Images vary in logical shape and size, depending both on what is being observed,

and the location of the satellite relative to the ground. Table 1 shows some sample

dimensions for each image, per satellite and time.

 Some image files are transferred directly to Jane’s local desktop machine, while

others are directly loaded onto her SciDB cluster. A number of factors determine

the files’ initial destinations, including the size of the data, institution policy, and

accessibility demands from other researchers. For example, some images are loaded

11

on Jane’s local machine so she can use additional research software to process and

analyze the data. Larger files are often, though not always, loaded on the SciDB

cluster. Initial storage locations of images are parenthesized in Table 1.1 – for each

time (row).

Jane is collecting large array-modeled datasets, and analyzing them with her hybrid

system and other tools. Arrays of varying sizes, shapes and location are the inputs to the

analysis. Between each instance of the analysis, the storage locations of the data objects

can vary (compare the image storage locations at T1 and T2), the properties of the data

objects can vary (compare the shapes and sizes of images at T2 and T3), or both can vary

(compare the shapes, sizes, and storage locations of images at T1 and T3). The analytic

script used in Jane’s hybrid analytic system takes as inputs all arrays for a given time

period. Ideally its performance would not suffer from the variations in properties of the

input data.

Table 1.1. Inputs into Jane’s analysis. Each row captures satellite imagery at a certain time period. Each

column captures the array shape of images captured for a particular satellite. Initial storage locations for

each image are stated in parentheses. Note that there is variation both in storage locations over time, and

image shape and size over time.

 We showed earlier that the choice of execution location can affect the amount of

data moved. Given this fact, if Jane is concerned about data movement costs, then for

each query instance she wishes to analyze – each instance potentially having inputs that

differ in size, shape and location – she must specify execution locations for the query’s

operations. To produce this specification, she has three primary options:

Time A B C ... K L

T1 100k × 100k (R) 100k × 1 (R) 50k × 3k (SciDB) ... 40k × 900k (SciDB) 1 × 1 (R)

T2 100k × 100k (SciDB) 100k × 1 (R) 50k × 3k (R) ... 40k × 900k (R) 1 × 1 (R)

T3 40k × 10k (SciDB) 100k × 100k (R) 1 × 1 (R) ... 40k × 900k (R) 300k × 7k (R)

Satellite ID, A through L

12

1. For each query instance, inspect the placement, shape, and size of the inputs,

reason about the appropriate execution locations, and assign execution locations

such that data movement is minimized.

2. Use fixed execution location assignments across all query instances.

3. Use a system that dynamically identifies the execution locations that minimize data

movement, based on properties of the input data objects, for each query instance.

We argue that (3) is the only practical alternative. Automatically identifying optimal

execution location assignments is not a luxury for hybrid systems with diverse input

properties, but a necessity.

 There are two main reasons why option (1) is poor. First, reasoning about data

movement takes time. The number of possible execution location assignments is

exponential in the number of query operations. For even a single query containing a

handful of operators, it may not be practical to manually consider all the possible

combinations of execution locations. The problem is exacerbated when the volume of

query instances is high, and when there is significant variation in the size, shape, and

placement of query inputs. Second, reasoning about data movement can be conceptually

difficult. As we demonstrate in Chapter 5, our intuitions are not always the best guides to

minimizing data movement; some simple approaches that would seem to minimize data

movement may in fact fail to do so. Many systems give data scientists the chore of

reasoning about, and deciding on, the best ways to reduce data movement between hybrid

components. Data scientists should not shoulder this burden, not only because it is outside

their job description (they signed up to answer research questions, after all, not struggle

13

with improving their research tools), but also because it is a challenging task best left out

of human hands. As our findings will demonstrate, when it comes to minimizing data

movement there are plenty of ways to get things wrong, and the cost of failure can be

high.

 Option (2) is poor because, as will be shown in Chapter 5, execution location

assignments that minimize data movement for one query may not minimize data

movement for other queries whose inputs differ in size, shape, or location. That is, if

execution location assignments minimize data movement in one query instance, the same

execution location assignments likely do not minimize data movement for another query

instance. Execution location assignments minimizing data movement are often not

“recyclable” over different inputs.

 Hybrid systems instantiating option (3) give the system physical data

independence. Systems with physical data independence let users operate on stored data

without knowledge of physical details about the data. That is, physical data

independence lets users focus on articulating what information they need from the

system, rather than how to get the information they need. From the perspective of a data

scientist, physical data independence is a virtuous property of a system. Jane’s hybrid

system exhibits physical data independence if it implements a mechanism for

determining the execution locations minimizing data movement, based on properties of

the input data objects, for each query instance. Physical data independence means that

Jane can run the same R script, without any changes, on different query instances –

regardless of where the input data objects are stored, and regardless of variations in the

14

size and shape of the input data objects. The system automatically executes the script,

handling these variations without Jane’s attention.

We touch on additional design principles that guided this work. While not

essential to our contributions, they colored and informed our design decisions. All things

being equal, a tool satisfying these principles is better than one that does not; the

principles state that good new tools do not require users to:

 learn new languages;

 learn new programming paradigms;

 maintain multiple scripts that are functionally identical; or

 refactor scripts that already work well.

Systems that do not satisfy these principles force data scientists’ attention away from

their research problems. Data scientists want to spend their time answering science and

engineering questions, not working on their research tools [13]. Each time a system fails

to satisfy one of these principles, it faces a new obstacle to adoption. There is a learning

curve with new languages and programming paradigms, and ascending the curve takes

time away from the problem under investigation. Refactoring scripts or maintaining

multiple versions of a script – different versions for different sizes or locations of input

datasets – is inefficient and introduces opportunities for error. Maintenance of multiple

codebases is a recognized problem in data-science practice. Often an analysis is

prototyped and tested on a small subset of the data using a particular tool or set of

libraries. Once the analysis is validated, it is modified or rewritten as a production script,

often using different tools or libraries that can handle the size of the complete dataset.

15

An analytic system that could do away with this duplication of effort – e.g. by enabling a

single script to work on datasets of any size – would be a boon to data-science practice.

 This thesis is organized as follows: Chapter 2 defines terms and concepts

essential for understanding data movement in hybrid analytic systems. Some of the terms

and concepts presented are new and unique, others are refinements to extant ideas in

relational database optimization research. The chapter also examines related background

research, especially alternative hybrid systems and the relevant aspects of query

optimization. In Chapter 3 we introduce our own hybrid system – Agrios – at a

conceptual level, identifying the approach and algorithms that it uses to minimize data

movement in hybrid systems. The lion’s share of the chapter is devoted to the conceptual

operation of Agrios’ stager subcomponent, which is the primary part responsible for

minimizing data movement. Chapter 4 gives Agrios’ lower-level implementation details.

The stager is examined in depth, as well as the other three subcomponents of Agrios: its

parser, accumulator, and executor. In Chapter 5 we motivate the need for automatic

data-movement minimization through an empirical examination of plan costs. Chapter 6

presents experimental results of Agrios’ use. These results include quantification of

Agrios’ performance as a solution to the problem of automatically minimizing data

movement in hybrid systems, and engineering details into the system components that

make Agrios effective. We conclude our investigation in Chapter 7, also identifying next

steps and additional questions for future research.

16

CHAPTER 2: ASSUMPTIONS, DEFINITIONS, AND BACKGROUND

 Before we examine how Agrios automatically reduces data movement in hybrid

analytic systems, we must understand both the assumptions that underlie our work, and

the definitions used in the exposition to follow. This chapter consists of three main

sections. The first section lists and explains our assumptions. The second section

articulates the key concepts relevant to minimizing data movement with Agrios; these

include both Agrios-specific concepts and general concepts from relational database

optimization. The final section reviews work related to our research.

2.1 ASSUMPTIONS

2.1.1 LIST OF FOUNDATIONAL OBSERVATIONS AND ASSUMPTIONS

 A number of observations and assumptions found this research. It is important

that we explicitly address them now. They are:

 Standard commercial relational database systems are not general-purpose

analytic systems. Effective general-purpose analytic systems should intuitively

and quickly perform a wide range of analytic tasks, including sophisticated

statistical techniques and machine-learning methodologies. Databases excel at

some analytic tasks, including calculation of aggregates and simple summary

statistics. However, databases struggle in a number of ways with more complex

analytic tasks. SQL, the standard declarative query language for databases is not

well-suited for the implementation of most sophisticated analyses. In addition to

17

language issues, empirical comparison tests have shown that databases perform

poorly on many fundamental analytic tasks, such as finding the singular value

decomposition of a matrix [14].

 “Augmented” relational database systems such as MADSkills and Shark

may challenge this assumption, but as of this time of writing, quantitative

comparisons of their performance versus pure analytic systems has not been

performed [1, 6]. Similarly, stored procedures and user-defined functions

constructed within traditional RDBMSs may go some way towards improving

database capability on analytic tasks. Specific procedures and functions would

need to be written by a user with sufficient technical savvy to implement the

desired functionality, e.g. a machine learning technique such as a k-means

clustering algorithm. When a database’s functionality has been extended this far,

then regardless of the performance benefits, the database has ceased to

“intuitively” provide the analytic functionality required of an effective general-

purpose analytic system.

 General-purpose analytic systems do not perform effectively on large datasets

[10, 14-15]. The computational model of many common analytic systems, such

as R and SPSS, assumes that the dataset under analysis fits within main memory.

This computational model has numerous consequences. Some systems limit the

maximum size of objects that can be directly created by users. In R, for example,

the maximum length of a vector is 2
31

-1 elements. This size restriction is

potentially problematic, given the size of some “Big Data” datasets. A simple

vector representation of a single human genome in R is not possible, for example;

18

to do so over three billion bases must be represented, nearly 50% more than the

maximum vector size in R. Even if user-created data objects are all within

allowable size limits, the computational model which assumes that all objects fit

in memory can still cause problems. One possible cause is the creation, during

the execution of analytic work, of intermediate results large enough to overwhelm

R’s allocated memory space. The memory footprint of the R process might grow

during execution for several reasons: analysis might generate many intermediate

results of moderate size, or just a few intermediate results of large size might be

created. In the worst case, paging is required, which may slow execution

substantially.

 Similar to what we saw with database systems, extensions to general-

purpose analytic systems ameliorate some of the performance problems

engendered with large datasets. Many of these extensions, however, require

substantial code refactoring, or require reimplementation of algorithms in new

programming paradigms [4, 8]. These extensions conflict with many of the

design principles we articulated at the end of the previous chapter.

 Analytic work is performed at both components of the hybrid system, and data is

stored at both components of the hybrid system. These are essential properties of

hybrid systems. These properties distinguish hybrid systems from other

integrations of analytic tools and data storage and management tools.

One common type of non-hybrid integration both stores data and performs

analyses exclusively on the database component. In this arrangement, the analytic

component serves strictly as a “front-end” for the database. In common

19

implementations, users write SQL queries, which are then passed via a wrapper

function from the analytic system to the data management tool. The query is

executed in the data management tool, and the results are returned to the analytic

system. Results are then viewed or visualized there, and may also undergo

additional analysis. One example of such an integration is the integration of R

and a Postgres RDBMS, using the RPostgreSQL package.

 Another common non-hybrid integration performs analytic work

exclusively on the analytic component, but stores data objects at the data-

management component. In this arrangement, the data management tool is

effectively used only as a secondary storage device for the analytic system. If the

stored data exceeds the size of main memory on the analytic component, then

subsets of the data are transferred from the data management component to the

analytic component. The analytic work is performed exclusively by the analytic

system, “one bite at a time.” Depending on the analytic work, a single pass

through the entire dataset may suffice (possibly consisting of many “bites”), or

multiple iterations might be required.

 Even though in hybrid systems data is both stored and operated upon at

both hybrid components, we recognize that there are some operations which can

only be performed on one component. Plotting, for example, is an operation

performed by analytic systems but not typically performed by database systems.

Our approach accommodates such limitations.

 Scripts for sophisticated analyses typically execute many operations. This

assumption is intended to help distinguish advanced data analysis work from the

20

computation of simple aggregates or summary statistics. Though calculating the

mean of a numeric-valued dataset is technically data analysis, when we speak of

“analyses” we mean more complex analyses. The complex analyses we are

concerned with involve multiple operators and multiple data inputs. The analyses

may include multiple instances of a small set of operations, a computation pattern

often seen iterative algorithms such as those used in k-means cluster analyses.

Alternatively, the analyses might be constituted of a larger number of unique

operations. The result of each analytic operation is an intermediate result, and the

result of the final analytic operation is the final result. Generally, scripts produce

several outputs, including the final result. The analytic operations we consider

also include operations not always thought of as analytic operations; these include

various operations often described as “preprocessing” or “data management”

work. Examples of such operations include sorting, grouping, and aggregation.

 We do not focus on simple analyses (such as calculation of means)

because they are insufficiently complex to take full advantage of a hybrid system.

Simple analyses are not very interesting, from a research perspective. Consider

the simple analysis mentioned above: given vector V compute the mean of the

vector’s values. In R this is performed by the following simple script:

mean(V);

While Agrios can minimize the data movement in this analysis (as will be

demonstrated below), the script is not sufficiently complex to warrant significant

attention.

21

 Each operator requires all data be colocated for processing. There are some

operator implementations that do not require colocation of all input data, e.g.

some semijoin algorithms for distributed systems. Our work does not consider

such operators, instead requiring that all inputs to an operator be colocated at one

particular hybrid component for execution.

 The fewer resources consumed during the analysis, the better. The data analysis

process is typically constrained by two common resources: time and money.

Consumption of these resources should be minimized, to the degree possible.

Data scientists want results as quickly as possible, even in applications where

realtime results are not required. All analyses, being human endeavors, are

effectively time-constrained; the urgency of the analysis is a matter of degree.

Realtime systems are simply one end of a continuum.

In addition to the time required for an analysis, the financial cost required

to compute an analysis must be considered. Financial costs form an additional

constraint on analyses, and are often considered through a proxy cost. For

example, energy use, as introduced in Chapter 1, functions in our research as a

proxy for financial cost. Reducing the energy used in an analysis effectively

reduces the financial cost of analysis. Similar to the case above, all things being

equal, less expensive analyses are preferable to more expensive analyses.

As noted in Chapter 1, there are numerous costs to moving data; costs

include both time and money. Our work is agnostic as to which of these resources

is being reduced. Note that when it comes to the resources of time and money,

reducing use of one of them typically requires consuming more of the other. To

22

some extent our work has the potential to sidestep this dilemma, since in principle

minimizing data movement could reduce both the time and money spent on

analysis.

 Data scientists prefer to work with familiar systems. This assumption relates to

some of the design principles articulated in Chapter 1. For our purposes, this

assumption means that the user-facing parts of the hybrid should present, to the

degree possible, a native R environment. Practically, this assumption means that:

i) the input to a good hybrid system should be a “normal” R script, suitable for

running a standard R instance, and ii) final results should be returned to the R

component of the hybrid (if the final operation is not performed at R). Because of

(i), Agrios inputs are presented in the form of queries or expressions written in R.

Though (ii) is not essential for the correctness of our research, the constraint aids

in its exposition. Agrios requires that all final results be stored at R. The data-

movement-minimization techniques presented here are applicable even if (ii) is

relaxed.
2

2.1.2 DISCUSSION

The observations and assumptions identify: i) relevant properties about hybrid

systems, relational databases, and analytic systems, and ii) circumstances in which hybrid

systems might be especially effective. The concrete example of satellite data presented in

Chapter 1 illustrated a situation where all of these assumptions hold. Though there are

2
 In production versions of Agrios it might be practical to limit the size of results (both intermediate and

final) moved to R, since the memory capacity of the R component is likely substantially less than the

aggregate memory capacity of the SciDB cluster.

 Such limits may prove unnecessary, however, since many analyses and analytic tasks reduce the

size of their inputs.

23

situations in which one or more of these assumptions fail, we believe our research is

warranted because there are an adequate number of situations in which they are jointly

satisfied. Note, moreover, that the hybrid approach to scalable data analysis is still fairly

new; there is relatively little information about properties of hybrid systems. Given the

paucity of our knowledge of hybrid systems and their potential utility for a variety of

application, there is value in examining them and studying their properties.

2.2 DEFINITIONS

2.2.1 AGRIOS-SPECIFIC TERMS AND CONCEPTS

To better understand Agrios we need to define a handful of terms and concepts:

query, data object, plan, placement, shape, size, location, and staging. The inputs to

Agrios are queries or expressions; we use the terms interchangeably here. An R script

contains one or more R queries. A query performs an analytic task, typically involving

multiple operations on multiple data objects. Let A and B be two-dimensional arrays of

floating-point values. The following R script contains a single query, and identifies the

top three average scores, for a calculated value involving these two data objects:

 result ← order (
 apply (A + B,
 1,
 mean
),
 decreasing = TRUE) [1:3];

The query is best understood by examining it from the inside out. First, the arrays A and

B are added together, elementwise. Apply performs a specified operation – in this case

finding the mean – across a specified dimension. Here the mean is computed across the

24

columns of the input array; had the input parameter to apply been ‘2’ instead of ‘1’, the

mean would have been calculated across rows. Order sorts the column vector output by

apply. The values are sorted in decreasing order as specified in the function call. Finally,

the subscript operator selects the first three elements from the sorted column vector.

Operators in queries are all logical; i.e. operators do not specify on which hybrid

component the operator should be physically executed. While queries use exclusively

logical operators, plans use exclusively physical operators. An operator in Agrios is

physical if and only if it specifies at which hybrid component the operation is to be

physically executed.
3
 In Agrios, there are two possible execution locations: R and SciDB.

Physical operators and logical operators are distinguished in Agrios by the presence or

absence of an execution location: a physical operator is annotated with a subscript

indicating its execution location, while a logical operator is not. For example, in a script

the logical elementwise addition operator is identified as “+”, while its physical

counterparts are identified as “+R” and “+SciDB”.

A simple example illustrates both the distinction between logical operators and

physical operators, and the distinction between queries and plans. This expression is a

query, since it contains only logical operators:

 A + B

Here is one plan that is logically equivalent to this query:

 A +R B

3
 Note that according to these definitions, it is possible for a query to contain both logical and physical

operators. These queries are not addressed in our research. For our purposes queries contain exclusively

logical operators and plans contain exclusively physical operators; so far as our research is concerned, there

are no interesting properties attaching to queries containing both logical and physical operators.

25

Note that it contains only physical operators, viz., the physical operator +R. Here is a

second plan, equivalent to both the query and plan above:

 A +SciDB B

Note that the logical operator + can be associated with two physical operators: +R and

+SciDB. Similarly, multiple plans can be associated with a single query. These facts are

used by Agrios in its data movement minimization process.

order(..., decreasing=TRUE)order(..., decreasing=TRUE)

A

++

B

apply(..., 1, mean)apply(..., 1, mean)

[][] 1:3

Figure 2.1. A sample query, represented in tree form. The tree leaf nodes are data objects stored either at

R or SciDB. Internal nodes are operations which generate intermediate results.

Queries are often represented as trees, containing both leaf nodes and internal

nodes. Leaf nodes represent data objects, and internal nodes represent operations

producing intermediate results. A data object is a unit of information that can serve as the

input to an operator. Data objects are “bulk” inputs, and so distinguished from

parameters, which can also be operator inputs. Arrays and vectors containing empirical or

simulated data are typical bulk inputs; parameter values are usually specified by the user

or system at the time the query is written. We assume that any data object at the leaf level

of a query or plan has a fixed location: R or SciDB. Intermediate results are also data

26

objects. In contrast with leaf-level data objects, prior to staging, intermediate results are

not constrained to a particular location. Figure 2.1 represents in tree form the query

shown at the beginning of this section.

C D

10

10

5

20 E20

20

F

10

10

Figure 2.2. Several arrays with different properties: C and D differ in shape but not size; C and E differ in

size but not shape; C and F are identical in shape and size. C is a 10 × 10 array of size 100; D is a 20 × 5

array of size 100; E is a 20 × 20 array of size 400; F is a 10 × 10 array of size 100.

Data objects have a number of important logical properties, including shape and

size. The number of dimensions an array has, together with the relative lengths of its

dimensions, determines the array’s shape. For our purposes, the size of an array is the

count of its data elements, which is the product of its dimension lengths. Several arrays

with varying shapes and sizes are shown in Figure 2.2.

 Data objects also have a number of physical properties. In Agrios the most

important physical property is location. The location of a data object is the component of

the hybrid system on which it is stored (if it is a leaf-level data object) or created (if it is

an intermediate result). In Agrios, leaf-level data objects are stored once, either at R or at

SciDB. If an operation creates an intermediate result, the location of that data object is

the location at which the operation was performed (though Agrios may later move the

object). A placement is a complete assignment of locations to all leaf-level data objects

in a query. If a query has n leaf-level data objects, there are 2
n
 possible placements. The

query shown in Figure 2.3 has four possible placements: i) A is stored at R and B at

27

SciDB, ii) A is stored at SciDB and B at R, iii) both A and B are stored at R, and iv) both

A and B are stored at SciDB.

A B
(SciDB)(SciDB) (R)(R)

A B A B

(a) (b)(i) (b)(ii)

(SciDB)(SciDB) (SciDB)(SciDB)(R)(R) (R)(R)

1010

1010 1010

11

%*%%*% %*%%*%

Figure 2.3. The amount of data moved during processing depends on where the computation is performed.

The initial state of affairs is shown in (a): the 10 × 10 array A is placed at SciDB (colored blue), and the 10

× 1 array B is placed at R (colored grey). In (b)(i) the matrix multiplication computation is performed at

SciDB, and the result moved to R, for a total cost of 20. The movement of input B to SciDB and the

intermediate result to R is indicated with red arrows. In (b)(ii) input A is moved at R and the computation

is performed at R. The total cost of (b)(ii) is 100.

The final concept to define is staging. A staging is a complete assignment of

execution locations to a plan’s operators. Here is one staging for our running example:

 result ← orderSciDB (applySciDB (A +R B, 1, mean),

 decreasing = TRUE) [1:3]R;

Here is another staging:

result ← orderSciDB (applySciDB (A +SciDB B, 1, mean),

 decreasing = TRUE)[1:3]SciDB

These two stagings differ in the execution location of the plan’s elementwise addition

operation and its subscript operation. The number of possible stagings is exponential in

28

the number of the query’s operators. The process of staging – i.e. assigning execution

locations to a query’s operators – transforms queries into plans.
4

Stagings are important because they effectively determine data movement during

query execution. Given a staging and a placement, we can determine what data needs to

be moved where to execute the query. The placement states where the input data objects

are, and the staging states where the operations are to be performed. If the execution

location of an operation differs from the storage or generation locations of its inputs, the

inputs must be moved. Figure 2.3(b)(ii) illustrates how a staging and a placement

determine data movement. The placement in the figure locates data object A at SciDB

and data object B at R; these locations are indicated by both the annotations and

colorations of the leaf-level data objects. The plan’s staging, also indicated by the

annotation and coloration, executes the operation at R. Given this placement and staging,

data object A must be moved from SciDB to R. This data movement is indicated in the

figure by the red arrow.

We noted in Chapter 1 that stagings can vary in the amount of data they move, for

a given placement. That is, two different stagings can have substantially different costs

in terms of data movement. Figure 2.3 also illustrates how different stagings can have

different costs. Compare the costs of the two possible stagings for our simple query

multiplying matrices A and B. Recall that the final result must be end up at R. One

staging – pictured in Figure 2.3(b)(i) – specifies that the multiplication should be

performed at SciDB. This staging has a cost of 20: 10 to move B from R to SciDB, and

10 to move the final result from SciDB to R. The alternative staging specifies that the

4
 The product of the staging process is a staging. Though at first glance this situation seems to be ripe for

confusion, in practice context or usage indicates the appropriate sense.

29

operation should be performed at R, as shown in Figure 2.3(b)(ii). Using this staging,

input A must be moved from SciDB to R, at a cost of 100.

2.2.2 TERMS AND CONCEPTS IN RELATIONAL QUERY PROCESSING

 Our approach to staging and data movement minimization is largely founded

upon query-processing techniques pioneered by the database community. Given this

ancestry of our approach, it is important to examine relevant concepts and practices from

relational-database query optimization. This section will reveal the relational roots of

some of the terms we just explored, and will also present some additional concepts from

relational research: query optimization, cost, search space, and rewrite rule.

 In relational database management systems (RDBMS), the process of query

optimization improves database performance by automatically identifying a good (or the

best) implementation of a user-written query. Even a remarkably inefficient query

written by a ham-fisted SQL scripter may execute quickly within an RDBMS, thanks to

the behind-the-scenes work of the optimizer. Optimizers help create an important

abstraction between logical queries and the physical details of the objects stored in the

database. We noted in Chapter 1 that this abstraction means that database users need not

incorporate into their query facts about how the data is stored, or how the data should be

accessed or searched. Put another way, the abstraction created in part by the optimizer

lets query authors focus on specifying what information they want from the database,

rather than how they wish that information to be retrieved. Similarly, Agrios lets users

analyze data without knowing where their data is stored, and without specifying where

operations should be performed. Agrios is performing a kind of query optimization,

30

though since we are concerned with minimizing data movement, in the context of Agrios

we refer to the optimization process as staging.

Agrios’ distinction between logical operators and physical operators originated in

relational database research. Recall that in Agrios, an operator is physical if and only if it

specifies at which hybrid component the operation is to be executed; all other operators

are logical. In the case of relational databases, physical operators specify a particular

algorithmic implementation of an operation, while logical operators do not. (Certain

algorithmic implementations may also require that inputs have particular physical

properties. For example, a common implementation of the MERGE JOIN physical

operator requires that both inputs have the physical property of being sorted.)

In both relational systems and Agrios, logical operators indicate only that an

operation must be performed; implementation details of the operation are specified in

both systems only by the physical operator. These details might include a particular

algorithmic implementation specifying how the operation is to be performed – as in the

case of relational systems – or include a particular execution location specifying where

the operation is to be performed – as in the case of Agrios.

Each logical operator is paired with one or more physical operators. In relational

systems, for a given logical operator there is one physical operator for each of the

algorithms implementing the operation. An example of a logical operator in an RDBMS

is GET. The GET logical operator accesses the specified data object: GET(A) accesses

data object A. FILE SCAN and INDEX SCAN are two common physical operators

paired with the GET logical operator. These two physical operators each specify a

particular method for accessing physical records stored in the RDBMS. Because each

31

logical operator can typically be implemented using one of several physical operators, as

is the case with Agrios, there is often one more than one plan that is logically equivalent

to a particular query. Consider the relational query:

GET(A)

Equivalent to the query above are the two plans:

FILE SCAN(A)

and

INDEX SCAN(A)

Logically, these two plans and one query are all pairwise equivalent. (This situation is

similar to the Agrios query A + B and its two equivalent plans A +R B and A +SciDB B.)

The performance of these two plans, however, most likely differ from one

another. This performance difference is captured as a cost, another important concept

from relational query optimization used in our research. Cost is what allows comparison

of one plan to another: in general, the least expensive plan is the preferred plan.

The particular cost metric used in a system depends on the application; in some

cases the less expensive plan is one that is faster, or one that requires less energy, or one

that uses fewer system resources, such as disk accesses. Most relational systems are

especially concerned with query latency. These systems place special important on costs

related to I/O, as they typically dominate query-processing time. Costs are more

accurately described as cost estimates, as plan costs are calculated prior to query

processing based on the cost model and facts about the query and input data objects.

That plan costs are only estimates is typically not a problem, since costs are used

primarily to compare plans to one another, not to compare a plan cost with a particular

32

target cost.
5
 As such, cost estimates only have to be sufficiently accurate to rank plans

against one another. Agrios’ cost model, examined in depth in subsequent chapters, is

concerned with data movement between hybrid components. In Agrios the lowest-cost

plan is referred to as the movement-minimizing plan.

The collection of queries and plans logically equivalent to the user-written query

form the optimizer’s search space. From a process perspective, the job of an optimizer is

to explore the search space and identify the plan with the lowest cost. In Agrios, the

search space is explored to find the plan that moves the least amount of data. Intuitively,

the larger the search space the better, since the more plans that are in the search space the

greater the odds the search space contains a low-cost plan. Things are not this simple in

practice, and the subtleties of the search space are explored in Chapter 3. Subtleties

aside, the intuition has merit, and we operate under the assumption that barring additional

constraints, the larger the search space, the better.

A search space contains plans and queries logically equivalent to a user-written

query. A search space is populated through rewrite rules; these rules rewrite queries into

equivalent queries, or queries into equivalent plans. Transformation rules rewrite queries

into equivalent queries, and implementation rules rewrite queries into plans.

Rules are often articulated as conditionals, and the process of applying rules is

framed as a pattern-matching process. Suppose a relational optimizer’s search space

contains the query:

A JOIN B

5
 There are exceptions to this, e.g. when systems let users specify hard limits to costs, e.g. a maximum

permissible query-processing time.

33

and that the optimizer contains the following commute rewrite rule (expressed as a

conditional):

If X JOIN Y, then Y JOIN X

The form of the query here matches the antecedent of the conditional. Because of the

match, the query B JOIN A is added to the search space. This particular example uses a

transformation rule to rewrite a query into an equivalent query. Adding a plan to the

search space through the application of an implementation rule to a query proceeds in a

similar manner.

Rules apply at the level of individual operations. Multiple rule applications may

be required to generate a particular equivalent query or plan. Consider a query

containing two join operations, which are parenthesized here for clarity:

A JOIN (B JOIN C)

A single application of the commute rule can produce this query:

(B JOIN C) JOIN A

or this query:

A JOIN (C JOIN B)

but it cannot create this query:

 (C JOIN B) JOIN A

because it requires two applications of the commute rule.

In order to create this query:

 (C JOIN B) JOIN A

the commute rule must be applied twice: once to the original query, and once to the

query generated by the application of the first rule application.

34

Let us fix all the concepts we examined with an example. The example will help

clarify the meanings of query, plan, logical operator, and physical operator, and

illustrate the query optimization process, including how both transformation rules and

implementation rules are used to populate the search space. We build off the example

above to illustrate the optimization process in its entirety for relational database systems.

Since staging is a form of optimization, clearly understanding how relational optimization

works will aid in understanding how staging works, when presented in Chapters 3 and 4.

 John writes a simple query on a relational database containing relations A and B.

In this particular database system there are two join algorithms implemented, each of

which is a physical operator: merge join, and hash join. This relational database

optimizer includes three rules:

IF X JOIN Y, THEN Y JOIN X

IF X JOIN Y, THEN X JOINMERGE Y

IF X JOIN Y, THEN X JOINHASH Y

The first rule is a transformation rule, the second and third rules are implementation rules.

John’s query joins the two relations:

A JOIN B

This statement represents a query, not a plan, because the only operation in the query –

the join – is a logical operator. The join operator in this query states neither how (nor

where) the join is to be performed, only that it is to be performed, and on which

arguments. Through application of the first transformation rule, the user-written query:

A JOIN B

is transformed into the equivalent query:

35

B JOIN A

This query is added to the search space. Application of the second and third rewrite rules

to the user-written query generates two plans:

A JOINMERGE B

A JOINHASH B

The physical operators in these plans state how the join is to be performed, unlike the

logical join operator which only states that a join must occur. Similarly, application of

the second and third rules transforms the query:

B JOIN A

into two equivalent plans:

B JOINMERGE A

B JOINHASH A

The optimizer’s search space now consists of the two queries and four plans
6
:

A JOIN B

B JOIN A

A JOINMERGE B

A JOINHASH B

B JOINMERGE A

B JOINHASH A

A cost estimate is now assigned to each of the four plans in the search space. Since the

goal of query optimization is the best implementation of a query written by the user – i.e.

6
 Readers may note that in this example we omit the logical GET operation and its physical counterpart(s).

This is intentional: our focus here is not to precisely portray the internal operations of a relational

optimizer, but to illustrate how rewrite rules are used to populate a search space, and how costs are used in

selecting one plan over another.

36

the best plan for executing the query – the query optimizer selects for execution the plan

with the lowest-cost estimate.

 This overview of relational query optimization illustrates the important concepts

in query optimization. Some of the concepts are new to our research, and some are

extensions of concepts used in relational database query optimization. In Chapters 3 and

4 we build off of this example to examine how queries are optimized by Agrios to

minimize data movement.

2.3 BACKGROUND

 Our research builds upon related work in several areas; we examine that work

here. The first section below addresses the two main components of Agrios. The second

and third sections below address the two research areas most relevant to our work:

hybrid analytic systems and query optimization.

2.3.1 R, ARRAY DATABASES, AND SCIDB

R and SciDB are the primary components of the Agrios hybrid system. Our

purpose in this section is to introduce the systems in historical context. In Chapter 4 we

look at both systems in greater technical depth, also justifying their use in our hybrid

system.

R

 R is a programming language and computing environment based on the S system

developed at Bell Labs [16]. At the time of writing, R is enjoying widespread use among

data scientists [17-18]. Ross Ihaka and Robert Gentleman released the first version of R

37

in the late 1990s under an open source license. Since then the software has undergone

four major revisions and spawned at least one company offering commercial

deployments.

R is expressly dedicated to data analysis, providing a wide range of statistical

methods and machine-learning techniques. Many of these analytic methods ship with the

core version of the system, and many more are available through thousands of user-

developed “packages” extending the core system’s functionality [19]. In part because

many analytic techniques involve linear algebra operations, R has an array data model

recognizing vectors and arrays as fundamental data objects. Though elements of vectors

and arrays can be individually accessed, R functions can also operate upon vectors and

arrays in their entirety.

Array Databases and SciDB

While some of the more commonly used database systems have a relational data

model, there are databases with array data models. Array database development was

driven largely by the observation that the relational data model was not well-suited for

representing many datasets from science and engineering [20-21]. Data in these fields is

often modeled as multidimensional arrays, not relations. Though array-modeled data can

be mapped into a relational data model, researchers recognized that there would be

benefits to a database explicitly designed around an array data model. Such systems are

Array Data Base Management Systems, or ADBMS.

Kersten et al. note that there are three main types of array database management

systems [22-23]. In the first type, arrays are “simulated” on top of a standard relational

system through an RDBMS’ extensibility mechanisms. This is the approach favored by

38

RAM, AQuery, and some Microsoft systems. RAM is built upon the MonetDB column-

store relational database. Queries operating on arrays, written in the RAM language, are

translated by RAM into queries operating on relations [24]. AQuery is also an ADBMS

implemented on top of a relational database. AQuery’s data model defines an object type

called “arrables”, a portmanteau of “array tables” [25]. Logically, arrables are arrays, but

physically they are stored and operated upon as relations. Users operate on arrables

through extensions to the SQL language.

While the first approach incorporates arrays into an RDMBS using the

extensibility features of the underlying relational database, the second solution modifies

core components of an extant relational database system. RasDaMan – short for “Raster

Data Manager” – takes this approach. It is designed primarily for use with image data,

with the original version built from a modified version of the O2 Object Database

Management System [26-27]. Unlike systems that “simulate” arrays on top of extended

relational systems, in the interests of performance and usability RasDaMan made

substantial changes to O2’s storage manager and optimizer. Users query the system

using the language RasQL, an SQL-like language. Current versions of RasDaMan work

with both open-source and commercial RDBMS systems. Relations remain the primary

data structure in RasDaMan’s current implementation, with arrays being represented as a

new column type.

The third approach constructs an ADBMS from scratch. SciDB is an example of

this approach [21, 28-29]. SciDB is neither an extended nor heavily modified RDBMS,

but is designed from the ground up to operate exclusively on array-modeled data. Work

began on the system in the late 2000s, including a series of workshops involving both

39

scientists and database researchers. Many of the design requirements elucidated in these

workshops have since been implemented in SciDB. Unlike most relational systems, data

analysis tasks are supported through high-level native array operators. The system

supports two query languages, an algebraic language AFL and an SQL-like language

AQL. SciDB is designed for deployment and easy scalability on a computing cluster or

cloud infrastructure, and performance tests show that, for many analytic tasks on large

datasets, SciDB outperforms at least relational databases [14]. However, to the best of

our knowledge, direct comparison of SciDB to the other two types of array database

implementations mentioned above has not been performed.

2.3.2 HYBRID ANALYTIC SYSTEMS

 To date, a number of hybrid analytic systems have been built. These systems, like

Agrios, were not constructed for the sake of building a hybrid system, but because the

hybrid approach showed promise for scalable data analysis. Recall from Chapter 1 the

prima facie benefits of a hybrid approach: the analytic tool provides sophisticated

analytic capabilities and a familiar interface to data scientists, and the data management

system efficiently performs lower-level analytic tasks on large, disk-resident data.

 Many of these hybrid systems use R as the analytic component. We can divide

such systems into three main categories, depending on the system with which R is

integrated: i) Hadoop, ii) a DBMS, or iii) a proprietary data management system.

 RHIPE and Ricardo both integrate R with the Hadoop/HDFS software stack, an

open-source implementation of Google’s MapReduce/GFS architecture [10, 30]. With

RHIPE, large datasets are stored as replicated, partitioned objects in the HDFS file

system. The data can be operated upon in parallel, in multiple locations, by different

40

processes: an R process at a single coordinator node, R processes on multiple worker

nodes within the Hadoop cluster, or Hadoop worker nodes not running R at all. Data

scientists are responsible for distributing their data across the Hadoop cluster, writing

scripts for processing the data, and writing scripts for aggregating results. A core

component of RHIPE is its interface, written in R, modeled on Hadoop’s Java API. To

utilize RHIPE, R users must refactor their R scripts to accord with the MapReduce

execution paradigm. As a hybrid system, RHIPE has two clear benefits. First, many of

the benefits provided by the Hadoop/HDFS framework transfer over to RHIPE: e.g. the

Hadoop/HDFS framework provides fault tolerance and manages parallel computation on

large datasets (provided that the analytic work is correctly programmed in the

MapReduce paradigm). Second, since RHIPE is essentially an R wrapper around the

Java Hadoop API, RHIPE relieves data scientists from the burden of learning Java.

 Unlike Agrios, Ricardo requires its users to break down analytic work into two

parts: those performed by R, and those performed by Hadoop. Data scientists are

responsible for dividing up the work. Ricardo provides no R wrapper around the Hadoop

API, as RHIPE does. Ricardo instead requires users to write scripts for execution in

Hadoop using Jaql, one of several higher-level languages used in Hadoop development.

Ricardo users are also responsible for writing a specialized R “control script” that

manages the flow of control within the analysis. When work is to be performed at

Hadoop, the control script ships the appropriate user-written scripts (written in the Jaql

language) to Hadoop worker nodes, and collects the results of work done by them. In

addition to managing workflow, the control R script may also perform some analysis. As

41

with RHIPE, the benefits provided by the Hadoop/MapReduce framework transfer to

Ricardo.

 Importantly, Ricardo’s designers explicitly acknowledge that, in the interests of

performance, data movement should be minimized between R and Hadoop [10]. Rather

than automatically minimize this data movement, however, Ricardo provides only a

framework for doing so. Using Ricardo for an analytic task (such as modeling) “requires

a decomposition of the modeling into a small-data part, which R handles, and a large-data

part, which Hadoop handles” [10]. Ricardo users are responsible for performing this

decomposition. Though in some cases the decomposition is straightforward, a good

decomposition can be challenging, in some cases requiring expert knowledge in multiple

domains: Hadoop programming, the relevant machine learning or statistical methods,

and the subject matter under investigation.

 R-Op, RIOT-DB, and SciDB-R exemplify the second type of R integration. R-Op

integrates R not with the Hadoop/HDFS stack, but with the SAP HANA relational

database [9]. HANA is optimized for storing and parallel-processing large in-memory

datasets. Its integration with R provides a framework for the parallelization of R

operations. Queries in R-Op are programmed as SAP calcModels, a dataflow

programming model using a proprietary query language. Operators in calcModels can be

“native” HANA operators or operators written by a user. Custom operators may execute

programs written in other languages (such as R). R scripts executed within HANA

operate on R data frames, an R data type roughly analogous to a relational database table.

At runtime, the HANA executor runs the input calcModel program. If the calcModel has

been designed to do so, HANA may perform the specified operations in parallel. If some

42

calcModel operators are custom ones invoking R scripts, the HANA executor spawns R

processes that execute the scripts. R scripts can thus be parallelized inside HANA. This

parallelization of the computation within the database is R-Op’s primary benefit as a

hybrid system; work can be performed not only in parallel, but also “close to the data.”

 R-Op differs from Agrios in some of the same ways that Ricardo differs from

Agrios. R-Op requires the user to use new languages (HANA’s calcModel) in addition to

R, and to use a programming paradigm other than R’s imperative-functional paradigm.

The utility of a calcModel depends on the data scientist’s script-writing talents, and his or

her familiarity with HANA’s abilities. The designers of R-Op acknowledge this

limitation explicitly, stating that “... calcModels need to be modeled thoughtfully if the

integration [of R scripts] is to fully utilize the capabilities of the parallelization

framework” [9]. Though R-Op gives data scientists the ability to reduce data movement

by performing analyses “close to the data,” data movement reductions are the

responsibility of the data scientist; they are not automated.

 RIOT-DB integrates R with a MySQL relational database [15, 31]. RIOT stands

for “R with I/O Transparency.” Large datasets are stored in the RDBMS, with

computations on the data performed either at R or within the database. RIOT is

noteworthy in that it defers the evaluation of queries until necessary, e.g. until

computation is prompted by a print statement. While deferring execution, RIOT

accumulates multiple queries into one, which is then processed by the optimizer and

executed. As complex queries yield a larger number of optimization opportunities, the

chance of the optimizer finding a lower-cost query increases.

43

 RIOT-DB has several benefits as a hybrid system. First, data stored within the

database is operated upon there. For simple analyses of datasets whose size exceeds

main memory, operating on the data in the database may be faster than operating on the

data within R. Operating on the data within the database also lets RIOT utilize the power

of the MySQL optimizer to determine the best plan implementing the user-written query.

Second, RIOT-DB lets data scientists use the same script to analyze datasets regardless of

where they are stored in the hybrid system – this feature provides the transparency

promised by the “T” in “RIOT”. This transparency is a kind of physical data

independence, a desideratum for good analytic systems we mentioned in Chapter 1.

Though RIOT provides physical data independence from the data, the system does not

attempt to reduce data movement between R and the MySQL database.

 SciDB-R integrates R not with a relational DBMS, but with the array DBMS

SciDB. Paradigm4, a private company with close ties to SciDB, developed SciDB-R; it

is implemented as an R package [32-33]. Arrays stored in SciDB are represented in R’s

process space as objects of the R type scidbdf or scidb. Objects of these types serve

as proxies for SciDB arrays, and contain relevant metadata about the arrays. For a

limited number of operations, R users can use these proxy objects to operate on SciDB

arrays, often with minimal or no modifications to standard R code. This feature is

attractive, as it offers a measure of physical data independence to the integration. For

SciDB operations with no analogue in R, users may explicitly ship AQL or AFL queries

from R to SciDB using a wrapper function provided by the package.

Data movement is handled by the package in two ways. Objects can be explicitly

moved between systems. This method for moving data from R to SciDB is

44

recommended for the sake of convenience only, as it is “far from the most efficient way

to import data into SciDB” [32]. Alternatively, some functions move data objects

automatically from R to SciDB. Automatic movement occurs when the R interpreter

encounters queries containing both data objects stored at R and data objects stored at

SciDB. In such cases, the R objects are automatically moved from R to SciDB and stored

there as temporary arrays. The computation is performed at SciDB, the result stored

there, and a new proxy object for the result created in R. This method of moving data is

also inefficient and not recommended for use. Finally, note that if the user requires the

result at R it must be explicitly moved from SciDB to R.

 There are a number of differences between Agrios and the SciDB-R package, the

key difference being the fact that only Agrios automatically minimizes data movement

between R and SciDB. As with systems like Ricardo, if SciDB-R users wish to minimize

data movement between components the responsibility for doing so is theirs alone. In a

number of ways, however, Agrios and SciDB-R are similar. Both use local objects in R

as proxies for SciDB arrays, and both automatically translate a number of R operations

into their AFL equivalent.

 The third approach is instantiated by a modification of the RIOT-DB system.

RIOT (with no “-DB”), is an integration of R with a special-purpose storage system

developed by the RIOT-DB team. We noted previously that relational databases often

exhibit poor performance executing complex analytic tasks such as those involving linear

algebra operations. Likely motivated by this shortcoming of relational systems, the

purpose-built storage system used in RIOT outperforms relational databases at common

analytic operations [15, 31]. RIOT provides the same transparency and physical data

45

independence as RIOT-DB, though since unlike RIOT-DB the hybrid does not use

MySQL, it cannot utilize the refined MySQL optimizer to reduce query-execution time.

 While presenting these alternative hybrid systems we examined differences

between them and Agrios. None of these systems automatically minimize data

movement between hybrid components; the fact that they do not do so is the key

difference between them and Agrios. In addition, many of these hybrid systems fail to

satisfy one or more of the design guidelines articulated at the end of Chapter 1. RIOT

and RIOT-DB, however, are laudable for providing physical data independence; an R

script can be used in RIOT and RIOT-DB, regardless of whether the data is stored in R or

in the data-management hybrid component.

 We mention here several other hybrid systems that have been developed in recent

years. Revolution Analytics has developed an analytic system known as “Revolution

Enterprise.” The system appears to be an amalgam of R and numerous tools for

processing large datasets, including Hadoop and out-of-core algorithm libraries. (It is

worth noting that in recent years RHIPE’s lead designer was employed by Revolution

Analytics.) Another new hybrid system does not use R: SAS, an analytics platform

similar to R, partnered with Teradata in providing system similar to RIOT and R-Op. As

both Revolution Enterprise and the SAS/Teradata hybrid are commercial systems, there

is less visibility into their inner workings than there is into the research systems discussed

above. Primarily for this reason we did not investigate them deeply. Based on the

publicly available details of these systems, however, most (if not all) of the research

challenges faced by these systems are also confronted by RHIPE, Ricardo, R-Op, RIOT,

46

and RIOT-DB. Mutatis mutandis our research results can likely be applied to these two

commercial systems.

2.3.3 QUERY OPTIMIZATION

 As discussed earlier in this chapter, the staging process performed by Agrios to

minimize data movement is built upon proven techniques from query optimization.

Given this conceptual foundation, we must consider some key developments in query

optimization research. Since the lion’s share of query optimization work has been

performed on relational databases, we focus primarily on relational database optimizers.

Cost-based optimizers

 IBM’s System R introduced dynamic programming into optimization,

guaranteeing discovery of an optimal plan, within a defined set of constraints [34].

System R also was the first optimizer that used cost estimates in plan selection.

 The Exodus Optimizer Generator differs from System R in two significant ways

[35]. First, in contrast to System R’s “bottom up” dynamic programming methodology,

Exodus uses “top down” memoization. Second, while possible query transformations are

hard-wired into System R, in Exodus, allowable transformations are stated by a set of

user-defined rules. Exodus is extensible by design; System R is not. Work on Exodus

also identified a distinction between two rule types that persists to present-day:

transformation rules and implementation rules. The input of both rule types is a query,

and the output of both a logically equivalent query or plan. The key difference is that the

input and output queries of transformation rules contain only logical operators, while the

inputs and outputs of implementation rules may contain physical operators. Recall our

discussion above about the difference between queries (or expressions) and plans.

47

Roughly: we apply transformation rules to queries to generate additional queries, and we

apply implementation rules to queries to generate plans. The distinction between rule

types is important since it enables the division of the optimizer’s work into the creation of

queries, and the creation of plans.

 Volcano built off of Exodus, and is another extensible, rule-based, top-down

optimizer [36]. Volcano explores the plan space using what it terms “directed dynamic

programming,” similar to the top-down memoization used by Exodus. The key

contribution made by Volcano is the fact that it prunes suboptimal plans and subplans

from the search space, prior to costing them. This pruning strategy means that the

optimizer spends less time doing its job, decreasing query-processing latency.

 The Cascades optimizer builds off of the basic framework of Volcano, and

remains in use in Microsoft’s current SQL Server product [37-38]. Like Volcano,

Cascades is extensible through the definition of user-defined rules. Cascades also

recognizes the distinction between transformation rules and implementation rules, and

utilizes top-down memoization. The primary difference between Cascades and Volcano

lies in the details of the search space expansion. At each level of evaluation, Volcano

articulates all queries equivalent to the input query, prior to exploring physical plans.

Cascades, by contrast, immediately begins applying implementation rules and examining

physical plans generated by the initial query. This strategy allows Cascades to prune

suboptimal plans earlier in the optimization process than Volcano, resulting in less time

spent exploring suboptimal plans. The Columbia optimizer builds off of the Cascades

framework [39]. Both systems guarantee identification of the optimal plan, where the

optimal plan is defined as the lowest-cost plan, per the optimizer’s cost model. Both

48

systems also use dynamic programming to identify the optimal plan; Columbia differs

from Cascades in that the former uses a more aggressive pruning strategy than the latter.

 Cascades and Columbia are also noteworthy because they are extensible by

design; they refine this design aspect of Exodus. Many elements of the system can be

modified with relative ease, including their rule sets and cost models. Adding new

operators and properties – both logical and physical – requires primarily only the addition

of several new C++ objects to the codebase. This easy extensibility makes Cascades and

Columbia valuable as research platforms.

Distributed database optimization

 Distributed database query optimization is a special subfield of query

optimization. As with hybrid systems, query processing on distributed databases may

require moving data between components of the distributed database. Researchers in the

distributed database field noted the negative performance impact potentially caused by

data movement. Various strategies were explored in an effort to reduce data movement.

One approach utilized new algorithms for performing common relational operations, such

as distributed versions of semijoin algorithms.

 Let us take a close look at one such algorithm. Semijoins comes in two variants:

left semijoins and right semijoins. A left semijoin joins two relations R and S, and its

output is all tuples from R for which there is a match in S on common attribute names.
7

Assuming that R and S are stored at different locations in the distributed database, a naïve

implementation of a distributed semijoin algorithm either ships R in its entirety to the

location at which S is stored, or vice versa. Once both relations are colocated, the join

7
 The process is very similar for a right semijoin. For ease of exposition we consider only the case of a

distributed left semijoin.

49

operation is performed. The key to the design of a distributed semijoin algorithm was

identified by Bernstein et al: in order to perform a left semijoin between R and S, not all

attributes of relation S are required, but only those common between R and S [40]. A

distributed left semijoin of R and S, then, proceeds in several steps. Assuming that R and

S are stored at different locations, the join attributes in R are first projected and shipped

to S’s storage location. Using the values of these shipped attributes, relation S is then

“reduced” through the elimination of tuples without matches in R. The matching rows

from S are then shipped from S’s storage location to R’s storage location, where the join

is performed. Though this distributed semijoin algorithm requires two separate data

movement operations, the “reduction” step may reduce overall data movement when

compared to the naïve version of a distributed semijoin.

While our work does not explore the utility of new algorithms for reducing data

movement in hybrid systems, such approaches may prove useful. Researchers interested

in pursuing this approach in hybrid systems should first consider whether or not such an

approach is suitable for an array data model. The benefit of the distributed semijoin

algorithm described above, for example, depends upon particular attribute values in the

relations being joined. The degree of “reduction” – which affects the degree to which

data movement is reduced – depends on the number of attribute values common to the

two relations being joined. The algorithm thus depends on the content of the two data

object. Array databases, like the relational systems for which the distributed semijoin

algorithm was designed, include content-dependent operators. However, many array

database operators are not content-dependent, instead depending upon the shape of the

input data object. There may be shape-dependent analogues to the distributed semijoin

50

algorithm, and these analogues may reduce data movement in hybrid systems. But

identification of such algorithms remains an open research question. It must also be

noted that in most distributed database systems, distributed semijoin algorithms are

applied regardless of whether or not they actually reduce data movement – it is simply

assumed that they do so. This differs from our work, as distributed versions of the

semijoin algorithm would be applied only if the movement-minimizing plan actually was

estimated to reduce data movement.

 New algorithms are but one approach for reducing data movement in distributed

database query optimization. Two other approaches have some similarities to our work;

one approach reduces data movement through selection of join locations. Much of the

research on this front has been conducted by D. Kossman and colleagues [41-42].

Kossman’s work simulated a query optimizer capable not only of commuting and

reassociating its join inputs, but capable of changing the execution locations of joins. His

strategy for determining what data to move is founded on a semi-random simulated

annealing algorithm. Kossman’s algorithm often reduces data movement but does not

guarantee that the minimal amount of data will be moved. A similar approach is

addressed by Cornacchia, Papadimos, and Maier. After confirming that logically

equivalent queries with different physical plans may differ in the optimal distribution of

data for processing, Cornacchia demonstrates that a simple cost model is effective in

determining how to distribute the constituent operations of a query, to a coordinator and

worker nodes [43]. Papadimos and Maier extend the work of Kossman, relaxing

Kossman’s requirement that query plan construction fall exclusively under the purview of

a coordinator node [44]. Using their “mutant query plans,” processing nodes dynamically

51

adjust the execution locations of their sub-plans by consulting local resources. They

demonstrate that by mutating query plans, the amount of data transferred during query

processing is less than that of the same query processed according to traditional

distributed query-processing protocols. In sketching some details of how queries are

mutated, the authors explore the possibility of rewriting queries to reduce the movement

of data, partly anticipating our work here.

 Another approach similar to ours is the Pyxis project under development at MIT

[45]. Pyxis is a middleware system for deployment between an RDBMS and applications

built upon the RDMBS. Pyxis automatically partitions the application code into two

categories: code to be executed on the application side, code to be executed on the

database side. The optimal partition is determined through a binary integer-programming

solver. Though there are similarities between Pyxis and our work, there are several

important differences. Pyxis does not perform transformations to the application code

prior to optimization; the code that is written is the code that is optimized. Pyxis is also

developed around a relational data model, not an array data model. The difference in

data models is most significant with respect to the cost models used between Agrios and

Pyxis. Since Agrios uses an array data model, size estimates for many operations can be

explicitly calculated from the size of the input and applicable parameters. By contrast,

Pyxis profiles previously-executed queries to develop size estimates of operator outputs.

Query profiling is one possible technique for estimating result size, should Agrios be

extended to include content-dependent operations (though we suspect use of database

statistics will be a more useful technique for size estimation).

52

2.4 CONCLUSION

Our review of related work examined research areas and tools most relevant to

our work. We examined both R and SciDB, the primary components of Agrios. In later

chapters we take a closer look at both of these systems, both examining their limitations

and articulating why they are well-suited for integration into a hybrid system.

We also examined a number of extant hybrid systems. These systems

successfully integrate R with data management systems, moving data between the two

components as required. None of these systems, however, automatically minimizes data

movement between the two systems. Techniques adapted from relational database query

optimization show promise for automatically minimizing data movement in hybrid

systems. Because these techniques appear applicable, we examined related work from

relevant areas in query optimization.

53

CHAPTER 3: AGRIOS’ CONCEPTUAL MODEL

 In the previous chapter we introduced the concepts and terms relevant to

minimizing data movement in hybrid systems. In this chapter, we use those terms to

explain at a conceptual level how Agrios automatically minimizes data movement

between R and SciDB. Readers eager for the implementation details of the techniques

described in this chapter must wait until Chapter 4; also discussed there are details of

Agrios components not directly involved with reducing data movement.

 We begin by articulating a research question and the related research hypothesis.

 Research question: How can we automatically minimize data movement in a

hybrid analytic system?

We argue that minimization of data movement can be automated, through the application

and refinement of optimization techniques and frameworks originating in relational

database research.

 Hypothesis: Data movement in a hybrid system can be automatically minimized

through the application of techniques derived from relational database query

optimization. These techniques are: i) staging, ii) query rewriting through the

application of rewrite rules, and iii) query accumulation.

Together, these three techniques make up Agrios’ staging process, working alone (in

some cases) or working in concert with one another to reduce data movement. Staging is

the part of the staging process that creates plans equivalent to the user-written query, and

selects the best one. The alternative plans created during staging differ only in their

54

execution locations. The structure of the plans for all alternative plans is identical.

Staging is the “heart” of the staging process, and is always performed, regardless of

whether or not query rewriting and query accumulation is also performed.

 Staging can be augmented through query rewriting. Query rewriting through

application of rewrite rules helps minimize data movement by generating queries that

differ structurally from the user-written query. The newly-generated queries indirectly

increase the number of alternative plans explored by the stager during staging. These

new plans may be less expensive than the plans generated from the query input to the

rewrite rule.

 Staging can also be augmented through query accumulation. Accumulation helps

minimize data movement by increasing the size of the query considered during staging

and query rewriting. Query size is especially important for query rewriting, since the

applicability of rewrite rules is dependent upon the query having particular substructures.

Accumulation increases the size of the query, and all things being equal, the larger the

query, the greater the likelihood of the query having a structure that either directly

reduces data movement or enables reductions in data movement.

 An example illustrates how each of the three techniques work, and how the

techniques can work together. Consider a script containing two queries, where matrix

multiplication is performed on data objects:

 D <- (A %*% B) %*% C;
 F <- D %*% E;

Suppose too that only staging is used to reduce data movement. When performing

staging, Agrios considers one input query at a time. It first considers the plans that are

55

equivalent to the first query. Each staging creates one plan. For the first query in our

example, there are four possible plans:

 (A %*%R B) %*% R C

 (A %*% SciDB B) %*%SciDB C

 (A %*% R B) %*% SciDB C

 (A %*% SciDB B) %*% R C

Agrios assigns each plan a cost based on the locations of inputs and operations, then

selects the least expensive plan for evaluation. This process is then repeated for the

second query in the script. The ultimate result of the staging process for the two-query

script written by the user is two plans. The first plan is the movement-minimizing plan

for the first user-written query, the second plan the movement-minimizing plan for the

second user-written query.

 Let us walk through the example again, this time also performing query rewriting

during the staging process. To keep the example simple, assume that the only possible

rewrite is a left-to-right association. When performing query rewriting during the staging

process, Agrios rewrites queries into other queries logically identical to, but structurally

different from, the user-written query. In this example, when using query rewriting and

staging in conjunction, during the staging process Agrios considers not only the four

plans stated above (when only staging was used), but also these four plans generated by

staging a left-to-right associative rewrite of the first user-written query:

 A %*% R (B %*% R C)

 A %*% SciDB (B %*% SciDB C)

 A %*% R (B %*% SciDB C)

 A %*% SciDB (B %*% R C)

In this particular case there are twice the number of candidate plans in Agrios’ search

space as there were when performing only staging. One of these four new plans might

56

move less data than one of the original four plans considered during staging. The value

of query rewriting is that it increases the number of alternative plans considered by the

stager.

 Let us walk through the example a final time, using all three techniques Agrios

uses to minimize data movement: staging, query accumulation and query rewriting.

When query accumulation is performed during staging, Agrios aggregates multiple

queries into one query, if permissible. In our example, since the output of one query is an

input to the other query, using query accumulation Agrios combines the two original

queries into a single query:

 ((A %*% B) %*% C) %*% E;

(Additional parentheses are added to this query to aid understanding.) This accumulated

query could then be rewritten into equivalent queries through one or more left-to-right

associate transformations. This query rewriting results in a number of additional

equivalent queries, each associated with 2
4
 plans – far more plans than when staging, or

query rewriting with staging, are performed in isolation. Given the wealth of plans,

Agrios has more plans to choose from when searching for the movement-minimizing

plan.

 This example provided an overview of how these three techniques minimize data

movement. Let us now examine how Agrios performs each technique. We begin with a

high-level overview, then examining particular parts – viz. staging and query rewriting –

in detail.

57

3. 1 AGRIOS AS OPTIMIZER

 Agrios is middleware integrating R and SciDB, as illustrated in Figure 3.1. The

system has been designed in its entirety, and the parts essential to our research – viz. the

parser, accumulator, and stager – individually implemented, refined, and tested. Agrios

has four main subcomponents: accumulator, parser, stager, and executor. We only

introduce the accumulator, parser, and executor here; they are examined in depth in

Chapter 4. This chapter focuses on Agrios’ stager, because it is the primary

subcomponent responsible for minimizing data movement. Figure 3.2 shows a workflow

diagram of Agrios, illustrating the subcomponents both in relation to one another, and to

R and SciDB. The input to Agrios is an R script, and the output is the result of the

script’s execution, stored at R.

R
Operations Data

+ \ %*% * / ^ . &&
[] max() cbind() aov() factor()

t.test() anova() glm() plot()

A

C

SciDB
Data

apply()
mult()
join()

ED

Operations

B

Agrios

Figure 3.1. Agrios is middleware integrating R and SciDB. Data objects are stored at both

hybrid components, though larger data objects are typically stored at SciDB and smaller data

objects typically stored at R. Operations are performed at both components, though lower-level

operations are offered by SciDB and more sophisticated operations by R. Note that only one

copy of each data item is stored in the system.

58

Agrios’ accumulator is responsible for reducing data-movement costs through

query accumulation. The accumulator subcomponent collects and combines queries in

the input R script, under appropriate conditions. The parser scans R queries output by

the accumulator and converts them into data structures used internally by Agrios.

Figure 3.2. The architecture and workflow of Agrios. Agrios’ four primary parts are surrounded

by the dotted line. Queries contained in an R script are input to Agrios, and query results are

returned to R.

The stager subcomponent consumes the data structures created by the parser. The

accumulator having done its work, the stager exploits the remaining two opportunities for

reducing data movement identified above; it: i) rewrites queries and ii) converts queries

to plans through staging. At the end of the staging process the movement-minimizing

plan is identified.

 Once the movement-minimizing plan is identified by the stager, the executor

executes the plan. The executor ensures that operators are executed at the location

specified by the movement-minimizing plan, managing operator execution at both R and

SciDB.

59

3.2 STAGING

 The stager is the most important subcomponent in Agrios for minimizing data

movement. Agrios’ stager is named Bonneville, and is derived from the Columbia query

optimizer designed for “traditional” query optimization in relational database

management systems. Bonneville is a cost-based optimizer that uses rule-based

transformations to populate a search space in its search for the movement-minimizing

plan. There are several aspects to Bonneville that we must examine, including its cost

model, rule set, and search strategy. We examine each in turn, then illustrate Bonneville

in action with some concrete examples.

3.2.1 COST MODEL

 As noted in Chapter 2, plans have estimated costs, and the plan with the lowest

cost estimate we regard as the movement-minimizing plan. Generally plan costs are

calculated according to a cost model that uses facts about the operations and data objects

that constitute a plan. The facts relevant to Agrios’ cost model concern the storage

location of input data objects, the size of the input data objects, and the execution

locations of operations. The cost of a plan in Agrios is the sum of all data elements

moved in the plan. Though simple, this cost model is reasonable when arrays in the

hybrid system are uncompressed and stored in a dense array format, properties common

in a number of applications. The dense array format ensures that an array’s physical size

is consistently proportional to its logical size. The format means that logical properties

such as shape and size are effective proxies for measuring data movement. Assuming

that arrays are uncompressed means that the physical size of the array depends only on

the array’s shape and size, not its content. The physical size of a compressed array

60

whose cells all contain the same value will be smaller than the physical size of a

compressed array whose cells contain a wide variety of values. All things being equal,

however, these two arrays will have the same physical size if they are uncompressed.

The operations implemented in Agrios are structural array operators, meaning that the

logical size of the output can typically be estimated with high accuracy.8

 Determining an optimizer’s cost model is a combination of art and science, and a

cost model’s specification should be driven by a specific set of design goals. Since our

research objective is the minimization of data movement, our cost model focuses

exclusively on the number of data elements moved between hybrid components. This

cost model is independent of the particular hardware on which R and SciDB run, which

lets us focus on reducing data movement.9 In Chapter 7 we discuss augmenting this cost

model to include other factors, such as compression status, estimated execution time at

components, and network-transfer time.

 While nearly all database optimizers select plans from a collection of equivalent

plans, most but not all use a cost model to do so. Some optimizers instead use heuristics

to select a final plan. Though there are advantages to heuristic-based optimizers, one

8
 Structural array operations include many operations common in data analysis, such as matrix

multiplication and subscripting arrays. The logical size of the output of these operations do not depend

upon the contents of the array. By contrast, the output contentful array operations may depend upon the

contents of the array – depending on how the operator is implemented. Filtering is an example of a

contentful array operator, though in SciDB’s implementation the output size does not depend on individual

array values.
9
 The source of data-movement costs depends on whom you ask. To some, the reason that data movement

costs are high is because the hardware isn’t fast enough: “if the hardware were faster, we could move as

much data as we want without penalty!” If the problem is viewed in this way, the obvious fix is to make

the hardware faster. To others – ourselves included – data movement costs are high in part because more

data than necessary is being moved during query processing.

 These two views of the problem are not mutually exclusive. We maintain both that faster

hardware helps reduce data movement costs, and that minimizing data movement helps reduce data

movement costs. Hardware performance aside, the question at hand is whether or not automatically

minimizing data movement can help substantially reduce data movement costs. We believe that it can.

61

negative is that they do not guarantee identification of the optimal plan. The plan

selected by Agrios is guaranteed to move the minimal amount of data among all

considered plans; at present Agrios does not rely on heuristics.

3.2.2 TRANSFORMATION TYPES

A transformation may reduce data movement in several ways: it can reduce the amount

of data moved in a given transfer, the total number of transfers in a query, or possibly

both. Figure 3.3 shows a “reductive” transformation that reduces the amount of data

moved in a particular transfer. The size of the data objects relative to one another are

captured in the figure. Applying the “subscript pushdown” rule to the query on the left

results in the query on the right. The number of transfers unchanged before and after the

transformation, but by “pushing” the subscript operation through the addition, this

transformation reduces the amount of data moved in the transfers.

[]

+

+

[] []

Figure 3.3. An example of a reductive transformation. A “subscript pushdown” transformation

changes the query on the left to the query on the right. The size of the objects in the tree is

proportional to the size of the data objects. Prior to the transformation, the large square matrix

must be moved in its entirety in order to perform the addition operation. After the transformation,

the subscript operation is performed before the addition operation. Because of this

transformation, only a small portion of the large array must be moved.

62

 A reduction in the number of transfers usually results from “consolidating”

transformations that group operations and objects at the same location. Figure 3.4

provides an example. Suppose the objects colored grey are located at one component of

the hybrid, and objects colored blue are at the other. A left-to-right associate

transformation changes the query on the left to the query on the right. This association

groups like-located objects, reducing the number of transfers performed; the change is

illustrated by the two red arrows indicating inter-component data movement prior to the

transformation, and the red single arrow after the transformation. Note that during this

transformation process, the execution location of the intermediate operation was changed

by the stager.

+

+ +

+

Figure 3.4. An example of a consolidating transformation. A left-to-right association transforms

the query on the left to the query on the right. Triangles are input objects, squares are operators.

Grey nodes are located at one component of the hybrid, blue nodes at the other. Red arrows

indicate data transfers.

Accumulation without query rewriting can also bring about consolidating

transformations reducing data movement. Consider this analytic script:

C <- A + B;
result <- C + D;

Let data objects A, B, and D all be stored at SciDB (C is an intermediate result, so will be

stored at the location determined by the staging). The movement-minimizing plan for the

63

first query performs the binary addition operator at SciDB, then moves the result from

SciDB to R (recall that we require final query results at R). The plan is depicted in (i)(a)

in Figure 3.5. Though neither data object needs to be moved to complete the operation,

the cost of moving the final result is 100. The second query requires the result of the first

query as an input. The movement-minimizing plan for the second query has a cost of

100; the cost is incurred by the movement of input D from SciDB to R. The plan is

depicted in Figure 5.3(i)(b). The total cost for the analysis is 200 data elements: 100

from the first query, 100 from the second query. Consider what happens with the two

queries are accumulated prior to staging and query rewriting. Figure 5(ii) shows the

movement-minimizing plan for the accumulation of the two queries. Given this

accumulated query, the movement-minimizing plan stages both operations at SciDB,

moving only the final result from SciDB to R. This plan moves only 100 data elements,

half as many data elements as when the two queries were executed without accumulation.

 Query rewriting and accumulation may work in concert with one another to

reduce data movement through consolidating transformations. Accumulation increases

the size and scope of the query considered during staging and query rewriting. All things

being equal, the larger the query, the more rewrite rules can be applied to it. Consider the

same analytic script:

C <- A + B;
result <- C + D;

6
4

Table 3.1. Rules currently implemented in Agrios.

Rule name Rule description
Transformation Implementation Enforcer

Non-

enforcer Reductive Consolidating

R_MATRIX_MULT_LTOR Left-to-right association, matrix multiplication X X X X

R_MATRIX_MULT_RTOL Right-to-left association, matrix multiplication X X X X

R_BIN_ARITH_COMMUTE Commute binary arithmetic X X X

R_BIN_ARITH_LTOR Left-to-right association, binary arithmetic X X X

R_BIN_ARITH_RTOL Right-to-left association, binary arithmetic X X X

R_XFER_RULE Transfer rule X X n/a n/a

R_SUBSCRIPT_THRU_BIN_ARITH Push subscript through binary arithmetic X X X

R_SUBSCRIPT_THRU_MATRIX_MULT Push subscript through matrix multiplication X X X

R_SUM_THRU_BIN_ARITH Push sum through binary arithmetic X X X

R_SUBSCRIPT_THRU_APPLY Push subscript through apply X X X

R_IMPL_BIN_ARITH_R Perform binary arithmetic at R X X n/a n/a

R_IMPL_BIN_ARITH_S Perform binary arithmetic at SciDB X X n/a n/a

R_IMPL_MATRIX_MULT_R Perform matrix multiplication at R X X n/a n/a

R_IMPL_MATRIX_MULT_S Perform matrix multiplication at SciDB X X n/a n/a

R_IMPL_SUM_R Perform sum at R X X n/a n/a

R_IMPL_SUM_S Perform sum at SciDB X X n/a n/a

R_IMPL_SUBSCRIPT_R Perform subscript at R X X n/a n/a

R_IMPL_SUBSCRIPT_S Perform subscript at SciDB X X n/a n/a

R_IMPL_AGGREGATE_R Perform aggregation at R X X n/a n/a

R_IMPL_AGGREGATE_S Perform aggregation at SciDB X X n/a n/a

R_IMPL_APPLY_R Perform apply at R X X n/a n/a

R_IMPL_APPLY_S Perform apply at SciDB X X n/a n/a

R_IMPL_P_FORCE_UNARY Force unary operation at specified location X X n/a n/a

R_IMPL_P_FORCE_BINARY Force binary operation at specified location X X n/a n/a

Transformation vs.

implementation

Enforcer vs. non-

enforcer

Reductive vs.

consolidating

65

10 A
(SciDB)

10

10 B
(SciDB)

10

C
(SciDB)

(to R)

10 C
(R)

10

10 D
(SciDB)

10

result
(R)

10 A
(SciDB)

10

10 B
(SciDB)

10

C
(SciDB)

10 D
(SciDB)

10

(to R)

result
(SciDB)

(i)(a) (i)(b) (ii)

Figure 3.5. An example of how accumulation can reduce data movement without query

rewriting. The movement-minimizing plans shown in (i)(a) and (i)(b) each move 100 data

elements, for a total of 200. The result of the computation in panel (i)(a) is moved to R, per our

requirement that all query final results must be located at R. In panel (i)(b), the final result of the

query executed in (i)(a) – i.e. C – is the input to the query’s operation. Panel (ii) shows the

movement-minimizing plan when (i)(a) and (i)(b) are accumulated. It moves only 100 data

elements, 100 elements less than the two plans executed separately. Note that the stager has

determined that both operations in the query should be performed at SciDB.

This time, let A be stored at R, and B and D be stored at SciDB, as shown in Figure 3.6.

(C is not an input data object, but the result of executing the plan in Figure 3.6(i).) When

these queries are considered in isolation, there are very few reasonable rewrites possible.

Commute is the only commonly applicable rewrite: commuting rewrites A + B into B +

A, and commuting rewrites C + D into D + C. Figure 3.6 shows movement-minimizing

plans for both queries. The total cost for the analysis is 200 data elements: the first

query requires that B be moved from SciDB to R, and the second query requires that D be

moved from SciDB to R. The movement-minimizing plan associated with each of these

queries does not require commuting of the user-written query, so the rewrites are of no

value.

66

10 A
(R)

10

10 B
(SciDB)

10

C
(R)

10 C
(R)

10

10 D
(SciDB)

10

result
(R)

(i) (ii)

Figure 3.6. The movement-minimizing plans for the two queries in our example, prior to

accumulation. The total cost of executing both plans moves a total of 200 data objects.

10 A
(R)

10

10 B
(SciDB)

10

C
(R)

10 D
(SciDB)

10

result
(R)

(i)

10 A
(R)

10

B
(SciDB)

D
(SciDB)

10

10

10

10

C
(SciDB)

result
(R)

(ii)

Figure 3.7. An example of how accumulation and query rewriting can reduce data movement.

Panel (i) shows a plan resulting from accumulation of queries associated with the plans

represented in Figure 3.6. If the plan in panel (i) is associated, the movement-minimizing plan is

shown in panel (ii).

Accumulating the script’s two queries into one, however, means that additional

rewrites are possible. Figure 3.7(i) shows the movement-minimizing plan associated

with the accumulated query. Figure 3.7(ii) shows the movement-minimizing plan for the

accumulated query after application of a left-to-right association transformation rule.

While the total cost for the accumulated but untransformed plan is 200 data elements, the

consolidating transformation affected by application of the transformation rule reduces

67

the total cost of the transformed plan is only 100. Accumulation, together with query

rewriting, has reduced data movement.

3.2.3 RULE TYPES

 Transformations – both reductive and consolidating – typically occur through the

application of rules. Collectively the rewrite rules within Agrios form a rule set; Agrios’

current rule set is shown in Table 3.1. Rules can be classified in several different ways.

We broadly discussed rules in the context of relational systems in Chapter 2. The first

rule-type distinction we discussed there: it is the distinction between transformation

rules and implementation rules. Implementation rules are the means by which queries are

converted into plans. In Agrios, implementation rules are all and only rules that

transform at least one logical operator in the input query to a physical operator. Two

implementation rules are associated with each logical operator in Agrios. One rule

converts the logical operator to a physical operator performed at R, the other transforms

the logical operator to a physical operator performed at SciDB. All other rules that are

not implementation rules are transformation rules. Transformation rules generate

equivalent queries from the input query. All rules – of both types – function at the level

of operators.

 The distinction between implementation rules and transformation rules relates

directly to two of the opportunities Agrios uses to minimize data movement: staging and

query rewriting, respectively. If only implementation rules are used by Agrios during the

staging process, only staging is performed. If implementation rules and transformation

rules are both used by Agrios during staging, then both query rewriting and staging is

also performed during staging.

68

 The next rule-type distinction is between enforcer rules and non-enforcer rules.

This distinction is also derived from a distinction recognized in relational database

research [46]. Enforcer rules “enforce” the satisfaction of a dependency within a query,

and non-enforcer rules do not. Dependencies may exist between physical operators and

their inputs. Consider a case from relational query optimization, as seen in Figure 3.8.

At the left of the figure, the physical operator at the root of the plan specifies a merge

join, a join algorithm often requiring that both inputs are sorted. This is a dependency

between a physical operator and its inputs. As seen in the figure, input Q is sorted, while

input P is not. In this case, an enforcer rule inserts a sort operator between the merge join

and input P, resulting in the plan shown in the right half of the figure. Other enforcer

rules in relational systems enforce dependencies on physical properties such as input-

compression status. Suppose the unary physical operator M in a relational plan operates

only on uncompressed data. Suppose also that its input is compressed. An enforcer rule

enforcing a compression-related dependency would insert between M and its input a

physical operator that decompressed the input prior to the execution of M.

P

joinmerge

Q
(sorted)

P

joinmerge

Q
(sorted)

sort

Figure 3.8. An enforcer rule at work, in a relational database system. The physical merge join

operation typically requires that both inputs are sorted. Note that Q is sorted, while P is not.

Application of a “sort-enforcer” rule inserts a sort physical operator between the merge join

operation and unsorted input P. The rule enforces the requirement of merge join that its inputs be

sorted.

69

The key dependency in Agrios currently involves data location, not sort order nor

compression status. Because of our requirement that an operation’s input data must be

colocated at the operator’s processing node, if the inputs to an operator are not colocated

with it, they must be moved to the operator’s execution location. Agrios’ enforcer rule is

responsible for colocating inputs at operator execution locations. The rule operates by

inserting a “transfer” operator (abbreviated “XFER”) between the operator and input that

are not colocated. Figure 3.9 shows a concrete example. The plan contains a single

operation, a matrix multiplication performed at R. The operation’s two inputs are located

at different locations, and the plan’s staging requires that the matrix multiplication is

performed at R. Bonneville’s transfer enforcer rule inserts a XFER operator between the

matrix multiplication operator and its right input. The unary XFER physical operator

moves its input from one hybrid component to the other. The logical counterpart of the

physical XFER operator is the logical identity operator, since at a logical level, the output

of the XFER operator is identical to its input.

%*%R

R SciDB R

SciDB

%*%R

XFER

Figure 3.9. An enforcer rule at work, in Agrios. An excerpt from a plan is shown at left. The

operation is performed at R, the left input is located at R, and the right input at SciDB. The plan

shown at right depicts the plan excerpt after application of the R_XFER_RULE (insert XFER)

rule. The colocating data transfer required by the plan is now shown explicitly by the XFER

operator. The two-part red arrow shows the movement from SciDB to R, via the XFER operator.

70

 Agrios’ current sole enforcer rule is unique in that it is the only rule that inserts an

operation into a plan that is not present in the plan prior to rule application. In Agrios,

while non-enforcer rules may reorganize existing operators (e.g. a left-to-right

association), or even duplicate operators already present in the input query or plan (e.g. a

subscript pushdown), they do not add new operators to a query or plan. Additional

enforcer rules may be added to Agrios if necessary. Of particular interest are enforcer

rules enforcing compression-related dependencies, as incorporation of compression status

into Agrios’ cost model shows promise for future research.

 The final rule-type distinction is between reductive and consolidating rules. This

distinction loosely corresponds to the distinction between reductive and consolidating

transformations explored earlier in this chapter. Reductive rules can reduce inter-

operator movement. Reductions in inter-operator data movement may be reductive

transformations, if the two operators between which data movement is reduced are staged

at different hybrid locations. Agrios’ subscript pushdown rules are reductive rules. For

example, an application of R_SUBSCRIPT_THRU_BIN_ARITH, as illustrated above in

Figure 3.3, actually reduces the amount of data moved between the binary addition

operations in the query.

Consolidating rules may reduce the number of transfers in a given plan. Agrios’

rule for associating binary addition – “R_BIN_ARITH_LTOR” – is a consolidating rule.

Application of R_BIN_ARITH_ LTOR to a query changes the structure of the input

query – by reassociating the operator’s inputs, potentially creating a consolidating

transformation. If we suppose that the two visible operations in Figure 3.4 are binary

arithmetic operations, the figure shows how R_BIN_ARITH_ LTOR is a consolidating

71

rule. Prior to rule application the plan required the movement of two data objects; after

the rule application only one movement was required.

The distinction between reductive and consolidating rules was intentionally drawn

as a non-exclusive distinction. Association of matrix multiplication operators, for

example (both left-to-right and right-to-left) are classified both as a reductive rule and a

consolidating rule. Because matrix multiplication can produce output whose size is either

smaller or larger than the sum of the sizes of its inputs, associating the query may

generate a plan less expensive than the movement-minimizing plan related to the original

query.

 Not all transformation-based optimizers use rules, though nearly all modern

optimizers do. One original motivation behind the use of rules was to provide a simple

and intuitive extensibility mechanism. Another motivation was to easily capture domain

knowledge; when the first rule-based systems were under development, domain-specific

databases and systems (“expert systems”) were in vogue. Some believed that the best

way to improve optimizer performance was through the knowledge of domain experts.

Rules were identified as a feasible way to capture this knowledge and integrate it into a

database system.

In the early days of rule-based optimizers, transformation rules were hard-coded

into optimizers. Over time, rule after rule was hard-coded into these systems, and the

number and sophistication of hard-coded rules caused numerous problems. First, such

rules were a maintenance and documentation liability. Second, while optimizer

performance could be measured easily, hard-coded rules often offered no visibility into

why optimizers were performing as they did. It was difficult to know what

72

transformations were doing the work. This lack of transparency was complicated by the

fact that some transformations appeared to interact with one another in unusual ways.

Use of a flexible rule set that is not hard-coded into the optimizer somewhat ameliorates

these problems, for example, by letting us easily remove rules and experimentally

determine the effects of the removal.

3.2.4 SEARCH ENGINE

 The final primary part of Agrios’ Bonneville optimizer is the search engine.

During the staging process the search engine explores a search space of queries and

plans, through the execution of three main tasks:

1. It expands the collection of queries in the search space, through application of

transformation rules. We saw above that plans generated through the

application of transformation rules can require less data movement than

queries written by the user: recall how transformation rules created

consolidating and reductive transformations in Figures 3.3 and 3.4. Had the

transformation rules not been applied to the user-written query, the search

space would not have been expanded to include these less expensive plans.

2. It creates multiple plans from each query, each with different stagings. We

also saw above how different plans created from the same query can have

different costs; that is, some stagings move less data than other stagings. The

stager considers all possible plans generated from a particular query from the

application of implementation rules.

3. It calculates plan costs, based on the cost model, properties of the data

objects, and properties deduced for the plans’ operations and outputs. It is

73

through plan costs that Bonneville compares one plan to another, so costs are

essential to selecting the movement-minimizing plan.

 Agrios’ stager considers alternative plans using a top-down memoization algorithm that

guarantees identification of the movement-minimizing plan within the search space.

This optimizer component is deliberately referred to as the “search engine”, since

its job can be usefully framed as a search problem. The search engine's responsibility is

to “navigate” or “explore” a search space populated by queries and plans equivalent to

the user-written query. At first blush, exploring the search space may seem like an easy

task: the search engine simply creates all possible queries and plans, costs each plan, and

selects the least expensive one. However, for queries of any practical size, the search

engine must create and consider not just a few queries and plans, but millions, billions, or

more. The number of plans in Agrios’ search space is exponential in the number of

operations in the query. Some transformation rules, by introducing new operator

instances into queries and plans, further increase the number of plans that must be

considered. A naïve approach towards exploring search space requires an impractical

amount of resources.

To better understand the challenges in exploring the search space, it is helpful

understand more about it. Figure 3.10 illustrates plan space and search space, showing

also that one space is a subset of the other. Plan space is infinite in size, and contains all

possible equivalent queries and plans. Search space contains only those queries and plans

that can be derived from the user-written query through the application of rewrite rules.

That is, the search space, for a particular user-written query, is defined in plan space by:

i) the query, and ii) the optimizer’s rewrite rules.

74

Now that we have recognized the distinction between plan space and search

space, note that when we wrote about the “movement-minimizing plan”, what we really

mean is the movement-minimizing plan in search space. A plan located exclusively in

Plan space

Search space

Figure 3.10. Plan space is infinite in size (hence the dotted line), and contains all possible

equivalent plans and queries. Search space is defined by a query and a rule set, and consists of all

plans and queries that can be created from the query with the rule set.

plan space may have lower cost than the movement-minimizing plan (in search space),

but since the plan cannot be accessed by the rule set that partly determines search space,

the plan cannot be put to use.

Agrios’ search algorithm guarantees identification of the movement-minimizing

plan (in search space), according to the cost function. It is natural to wonder, however,

how the cost of the movement-minimizing plan compares to the cost of other plans

existing exclusively in plan space. Is it possible that plans exclusive to plan space have

costs substantially less than the cost of the movement-minimizing plan? “If we could

only get to those plans through the right rewrite rules,” we might think, “then we’d really

be optimizing!” While we can calculate the cost of nearly any conceivable plan,

unfortunately we have no way to know whether or not the plan is in search space without

deriving the plan from the user-written query using the rewrite rules. In a sense, search

space is “constructed” from plan space. In order to find a movement-minimizing plan in

75

the search space with a lower cost we must expand the search space, and in order to

expand the search space we must add new rewrite rules.

Suppose we expand the size of search space through the addition of new rewrite

rules. The new rule set may result in the identification of a movement-minimizing plan

less expensive than the movement-minimizing plan identified before the addition of new

rewrite rules: under the original rule set the plan was in plan space but not search space,

while under the new rule set the plan is within search space. However, adding rewrite

rules to a rule set comes with a cost: the more rules in the rule set, the longer it takes to

explore the search space. For each query or plan under evaluation by Agrios, rule

antecedents must be checked to determine rule applicability; if the rule is applicable, the

plan or query output by the rule must be represented in Agrios’ internal data structures.

All of these steps take time, and performing these steps many times over can take a

substantial amount of time. Preliminary tests show that in the worst case the time

required for optimization is exponential in the number of rewrite rules; we examine

optimization time in Chapter 6.

The tradeoff between larger and smaller rule sets is one of the key engineering

challenges in rule-based optimizer design. On the one hand, we want to identify the

lowest-cost plan within plan space. Adding rules to the rule set may increase the size of

the search space, which in turn may permit discovery of a less expensive movement-

minimizing plan. On the other hand we want to identify the movement-minimizing plan

as quickly as possible. However, adding rules to the rule set increases the time and

memory required for the system to do its job, slowing down identification of the

movement-minimizing plan.

76

This engineering tradeoff is complicated by two observations:

1. New rules can be redundant to a rule set. Adding a redundant rule to a rule

set does not increase the size of the search space. For example, let a rule set

contain only a left-to-right associate rule and a commute rule. This rule set

and a query determine a particular search space. For certain queries, the

addition of a right-to-left associate transformation rule to this rule set is

redundant. That is, for some queries, the plans in the search space generated

through applications of the right-to-left associate rule could also have been

generated through applications of only the commute and left-to-right associate

rules.

 Whether or not a rule is a redundant addition to a rule set is not always

obvious. Rules may interact with one another in unexpected ways; a rule that

does not appear to be redundant may in fact prove to be. Moreover, the fact

that a rule is a redundant addition to a rule set does not mean that it should not

be included in a rule set. Returning to our example above, suppose through a

single application of the right-to-left associate rule we can generate the same

query that takes multiple applications of the commute and left-to-right

associate rules. As noted above, rule applications take time, and in this case

generation of a particular query through a single application of the right-to-left

associate rule takes less time than multiple applications of the left-to-right

associate and commute rule. Though the right-to-left associate rule may be

redundant, if the rule can lead to faster creations of new queries and plans,

including it in the rule set may be a good engineering decision.

77

2. New rules may not add useful or low-cost plans to the search space. Some

queries and plans are not obviously valuable in optimization. Consider this

query:

B[1:100, 1:100];

Let a new rewrite rule add the following equivalent query to search space:

(B[1:100, 1:00])[1:100, 1:100];

Suppose, moreover, that the new rule is not redundant. The cost of plans

generated from this new query will not be lower than plans generated from the

query input to the rule. From the perspective of optimization, the plans

generated by this rule are simply not immediately useful. As with

redundancy, however, things can be more complicated than they seem.

Because this rule is not redundant, it adds new queries and plans to the search

space. While some queries it adds to the search space – such as the one above

– may not be immediately useful, it is possible that such queries are essential

intermediate steps in derivations that yield low-cost new plans in the search

space.

From these points we should draw two conclusions: i) some rules appear to be more

useful than others, and ii) there is not always a simple way to determine which rules are

useful rules. There are a host of issues and questions surrounding these conclusions. Is

addition of the rule worthwhile? Does the order of rule application matter? How do we

know that a rule that generates apparently useless queries is not essential to the eventual

creation of low-cost plans, when it is combined with other rules? Is the best strategy to

add as many rules as possible to the rule set? Or to pare the rule set down to as small a

78

collection as possible? There is no known “secret formula” for identifying the best rule

set for array-based analytic systems. At this point the decision ultimately rests on

empirical facts exposed through experiment. To this end we perform some preliminary

experiments in Chapter 6.

 Let us tie together these ideas about search space with a particular example.

Figure 3.11 shows a user-written query in Bonneville, at the beginning of the

optimization process. The colors in the inputs (leaf-level data objects) indicate a

particular placement. The query’s operators are uncolored because queries contain only

logical operators; the stager has yet to assign execution locations to operations.

 Figure 3.12 shows the search space after transformation rules have been applied

to the user-written query. The transformation rules create queries logically equivalent to

the user-written query. Due to space limitations not all alternative queries are shown in

the figure. We indicate that there are more queries than depicted in the figure, and more

query rewrites than depicted in the figure, with the grayed-out arrows and objects.

Figure 3.13 shows the search space after implementation rules have generated

plans from the queries. Operator coloring shows execution locations in the plans. Note

that multiple plans are associated with a single query. As with queries, not all alternative

plans are shown.

79

Original
query

Logically equivalent
queries

Logically equivalent
plans

R script

Figure 3.11. The initial search space. The user-written query is the only object in the search

space.

Original
query

Logically equivalent
queries

Logically equivalent
plans

R script

Figure 3.12. Search space expansion. Application of transformation rules creates queries

logically equivalent to the user-written query. The absence of color in the operations indicate that

they have not yet been assigned an execution location. Grayed-out queries and arrows simply

indicate that not all transformations and queries are shown, due to practical space limitations.

80

Original
query

Logically equivalent
queries

Logically equivalent
plans

R script

Figure 3.13. Plans are created from queries through the application of implementation rules.

Original
query

Logically equivalent
queries

Logically equivalent
plans

R script

1000

10

30,000

750

Figure 3.14. Plans are assigned costs, based on the staging, the cost model and facts about the

input data objects stored in the catalog.

81

Original
query

Logically equivalent
queries

Logically equivalent
plans

R script

1000

10

30,000

750

For
execution

Figure 3.15. The plan with lowest estimated cost (the movement-minimizing plan) is selected for

execution. Enforcer rules will insert the necessary XFER operations required for data movement

into the movement-minimizing plan.

 In Figure 3.14 costs have been assigned to plans, according to Bonneville’s cost

model. The movement-minimizing plan is selected for execution, as shown in Figure

3.15. After the plan is selected, enforcer rules insert any required XFER operators into

the plan. In the case of the movement-minimizing plan in the example above, a XFER

operator would be inserted between the root operator and the nested operator, since their

staged execution locations differ. The XFER would move the intermediate result from

one hybrid component to the other.

 The example is helpful in understanding staging at a high level, but it glosses over

some important details. Let us now examine these details. There are two related issues:

the search space expansion strategy and pruning.

82

 The example above suggests that Bonneville’s search space is expanded in a

breadth-first fashion. The illustration creates the impression that Bonneville sequentially:

1. creates all queries logically equivalent to the original query,

2. creates all plans equivalent to the queries,

3. generates costs for the plans in the search space,

4. selects the least-expensive (movement-minimizing) plan for execution.

5. inserts necessary XFER operators

Though some early relational database query optimizers did operate in this fashion

Bonneville does not. Rather, Bonneville, like Columbia before it, explores staging space

in a depth-first manner. Bonneville tries to assign a cost to a plan as early as possible

during staging, a process that is more accurately illustrated by Figure 3.16. Panel (a)

begins as the example above, with the user-written query. Note that only a single query

is present in the search space’s collection of logically equivalent queries. Bonneville then

applies implementation rules to this query, creating the single plan found in the collection

of equivalent plans. A cost for the plan is then calculated. These steps are illustrated in

panels (b) through (d) of Figure 3.16.

 Prior to applying transformation rules, Bonneville next generates all possible

stagings of the sole query in the search space, through application of implementation

rules. This process, together with the costing of the resulting plans, is depicted in panels

(e) through (j) of Figure 3.16. Only then does Bonneville apply transformation rules to

generate a new query, as shown in panel (k). Bonneville would then generate and cost all

plans associated with this newly-generated query, and so on, until the movement-

minimizing plan is identified.

83

 The primary reason Bonneville employs this depth-first search strategy is because

in principle, a depth-first search can bound the search space more quickly than a breadth-

first search strategy, by quickly arriving at a plan cost. As noted above, each step of the

staging process takes time: applying rules, creating and organizing alternative queries

and plans, and calculating data-movement costs. Given Bonneville’s objective to quickly

find the optimal plan, it tries to perform as few of these tasks as rapidly as possible

without sacrificing optimality. A depth-first search, together with pruning, means that

Bonneville can potentially identify the movement-minimizing plan faster than a breadth-

first search. Through pruning, Bonneville can reduce the number of alternative plans and

queries created without sacrificing plan quality. Bonneville’s pruning strategy takes

advantage of the fact that plans are typically constituted of subplans. Just as plans have

costs, subplans have costs. Suppose that the total cost c of a complete plan P is known.

We wish to know whether or not a new candidate plan P′ is less expensive or more

expensive than the cost of plan P. (If P′ is more expensive than P, then P′ cannot be the

movement-minimizing plan.) If a subplan of P′ costs more than c, then the total cost of P′

cannot be less than the total cost of P. Bonneville can prune P′ because in virtue of the

cost of P′’s subplan; i.e. since the subplan of P′ costs more than c, P′ it cannot be the

movement-minimizing plan.

 Bonneville’s depth-first search and pruning strategy is best approached here

through an analogy. You need to bake a cake for a party, and have two recipes to choose

from. Because you are missing some key ingredients, you head to the store with the

recipes in hand. One of the recipes calls for flour, sugar, milk, the other recipe calls for

84

flour, corn syrup, and cider. In addition to purchasing the ingredients on your errand, you

must satisfy two additional constraints. You must:

1. spend the minimal amount of time walking store aisles finding prices, and

2. spend the minimal amount of money on ingredients.

Let us look at two different ways to solve this problem.

1. Walk to the aisle containing sugar, record the cost of the least expensive sugar.

Walk to the milk aisle, record the cost of the least expensive milk. Walk to the

flour aisle, record the cost of the least expensive flour. Walk to the corn syrup

aisle, record the cost of the least expensive corn syrup. Walk to the cider aisle,

record the cost of the least expensive bottle of cider. Add up the total ingredient

costs for the first cake: the costs of the flour, sugar, and milk. Add up the total

ingredients costs for the second cake: the costs of the flour, corn syrup, and cider.

Compare the two totals, and purchase the ingredients for the cake with the lowest

cost.

2. Walk to the sugar aisle, record the cost of the least expensive sugar. Walk to the

milk aisle, record the cost of the least expensive milk. Walk to the flour aisle,

record the cost of the least expensive flour. Add up the total ingredient costs for

the first cake: the costs of the flour, sugar, and milk; call this c1. Walk to the

corn syrup aisle, record the cost of the least expensive corn syrup. Total the flour

cost and the corn syrup cost: this is a subtotal s2 of the total cost for the second

85

Original
expression

Equivalent logical
expressions

Equivalent physical
expressions

R script 1000

R script

R script

R script

R script

1000

R script

1000

5000

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.16. Depth-first exploration of search space. The figure is broken into panels (a) through

(k).

86

R script

1000

5000

R script

1000

5000

10

Original
expression

Equivalent logical
expressions

Equivalent physical
expressions

(g)

(h)

Figure 3.16 (continued).

87

R script

1000

5000

10

R script

1000

5000

10

3000

(i)

(j)

Original
expression

Equivalent logical
expressions

Equivalent physical
expressions

Figure 3.16 (continued)

88

R script

1000

5000

10

3000

(k)

Original
expression

Equivalent logical
expressions

Equivalent physical
expressions

Figure 3.16 (continued).

cake. Compare s2 to c1. If s2 exceeds c1, purchase the ingredients for the

first cake. Otherwise, walk to the cider aisle, record the cost of the least

expensive bottle of cider. Total the ingredient costs for the second cake: this

is the sum of the costs of the flour, corn syrup, and cider; call it c2. Compare

c1 to c2, and purchase the ingredients for the less expensive cake.

The first strategy is roughly analogous to a breadth-first search, while the second strategy

approximates Agrios’ depth-first search strategy with pruning. Plans are typically

composed of several subplans, just as a recipe typically has multiple ingredients. Each

ingredient has a particular cost, contributing to the total cost of ingredients. Subplans too

89

have a particular cost, each contributing to the overall plan cost. Time spent walking the

aisles is time spent exploring and expanding search space.

While this example does not capture all the subtleties of Bonneville’s search and

pruning approach, it illustrates relevant details:

1. The optimal plan can be identified without considering all subplans of

alternative plans. Under both approaches the optimal (lowest-cost) set of

ingredients is purchased. But with the second approach, under certain

conditions – e.g. when the cost of flour and corn syrup exceeds the total

cost of the first cake – we need not walk down the cider aisle to cost the

cider. Since one of our optimization goals is to spend the minimal amount

of time walking the aisles, if we can avoid walking an aisle, we should do

so.

 Agrios maintains a variable storing the cost of the current

movement-minimizing plan. If during the exploration of search space

Agrios discovers that a plan contains a subplan whose cost exceeds the

cost of the current movement-minimizing plan, then the containing plan is

pruned immediately, and its remaining subplans are not explored or costed

at that time. This tactic reduces the amount of time Agrios spends

exploring search space, while still guaranteeing identification of the

overall movement-minimizing plan.

2. A total plan cost is essential for pruning, so the sooner one is identified,

the better. The decision about whether or not we needed to walk down the

cider aisle depended on comparing a total cost to a subtotal. Without the

90

total cost, it was not possible to determine whether subplans’ costs

exceeded the total cost. The lowest total plan cost is the upper bound of

data-movement cost, so any candidate plan exceeding that cost is not the

movement-minimizing plan. If during staging a subplan’s cost exceeds

the current lowest total-plan cost, that plan cannot be the movement-

minimizing plan. As it explores search space, Bonneville considers one

plan at a time. When costing a particular plan, Bonneville costs the plan’s

subplans, one by one. These subplans are partitioned by Bonneville into

those that have not been costed, and those that have been costed. The

plan’s subplans are costed and moved from the former class to the latter.

Along the way, Bonneville maintains a subtotal of the costed subplans. If

this subtotal exceeds the upper bound (the cost of the current movement-

minimizing plan), then the subplans in the unexamined partition need not

be costed; they can be pruned for this particular plan. (These subplans

might also be subplans of other plans; when those other plans are

evaluated, the subplans might be fully costed, not pruned.) Pruning

reduces the time spent searching the search space, but pruning cannot

occur without a total cost; therefore, the sooner a total cost can be

established, the better.

The more plans and subplans that can be pruned, the less time

Bonneville spends exploring the search space. A depth-first search

strategy means Bonneville calculates a total plan cost sooner than a

breadth-first search strategy. Since the depth-first search identifies the

91

total cost more quickly than a breadth-first search, Bonneville can begin

pruning early in the staging process. Plans are pruned only if the cost of a

subplan or plan exceeds the current minimum total-plan cost.

3. Pruning opportunities are not guaranteed. Pruning only occurs under

certain conditions. In the second approach above, if the cost of the flour

and corn syrup does not exceed the total cost of the first cake’s

ingredients, then we must walk to the cider aisle and calculate a total cost

for the second cake. Similarly in Agrios, plans are pruned only when the

subtotal of the candidate plan’s costed subplans exceeds the current best

plan cost. In the worst case, pruning cannot be performed and all subplans

for all plans must be considered before the movement-minimizing plan

can be identified.

4. Subplans must be costed only once. Both cakes contained flour. With the

second approach above, after visiting the flour aisle to gather costs for the

first cake, we recorded the cost of the flour. When we later began

calculating the total cost of the second cake, we did not have to revisit the

flour aisle – instead we simply used the recorded value. Bonneville has a

data structure containing the costs of subplans considered during the

exploration of search space. Before costing any given subplan, this data

structure is first consulted. If the value is present in the data structure then

it need not be computed; again, this tactic reduces time spent exploring

search space.

92

Bonneville’s pruning strategy is inherited from the Columbia optimizer. We take

advantage of Bonneville’s pruning functionality in our project, though the degree to

which pruning reduces optimization time was not quantified as part of our investigation.

An inquiry into this topic would likely yield a bounty of useful knowledge; it is revisited

in Chapter 7’s discussion of future work.

3.3 DISCUSSION

3.3.1 SEARCH-SPACE REPRESENTATION

 The challenge in search-space representation stems from the large number of

plans the system must potentially represent. Because we want to minimize the time spent

staging, the challenge is making a large number of plans quickly accessible. Brute-force

representation of a large number of plans is easy – we simply create the plans and retrieve

them for usage as necessary. This approach is not practical, however, since Bonneville

may consider many plans during execution, potentially even all possible plans (if pruning

is ineffective or switched off).

 A naïve representation of complete plans in memory is not the most efficient way

to represent search space, since a given subplan can be shared by multiple plans.

Bonneville avoids naïve representation of plans through the use of a “MEMO” data

structure. The MEMO is a compact representation of the search space, originally

developed for use in the Cascades query optimizer [46]. The MEMO represents the plan

space with two mutually recursive object types: multiexpressions and groups. A

multiexpression is an operator (logical or physical) with groups as inputs. A group is a

93

collection of logically equivalent multiexpressions. Logical multiexpressions are roughly

analogous to queries, while physical multiexpressions are roughly analogous to plans.

 A visual representation of the memo structure is shown in Figure 3.17. Groups

are identified in bracket notation, and the arrows indicate references. Consider Group

[AB], depicted in the box in the figure’s upper left-hand corner. The group contains two

logically equivalent multiexpressions:

 [A] +R [B]

and

 [A] +SciDB [B]

Each of these entities is a multiexpression because: i) each contains an operator, viz., the

physical operator +R and the physical operator +SciDB, respectively, and ii) the inputs to

each multiexpression are groups. That the two multiexpressions are logically equivalent

should be obvious on inspection; they differ only on where the elementwise addition

operation is performed. Multiexpressions with identical input groups are individuated by

their operator.

 Group [AB] does not store complete representations of the two multiexpressions

it contains. The groups which are inputs to Group [AB]’s multiexpressions are instead

referenced. Since the input groups are referenced by the multiexpression, not stored as

separate objects, the representation of a multiexpression is smaller than it would be if

complete representations were stored in each group. For example, the single physical

multiexpression [AB] +R [C] currently represents two plans:

(A +R B) +R C

(A +SciDB B) +R C

94

Figure 3.17. The MEMO structure used by Bonneville to represent search space. Arrows

indicate references. Groups are labled grey boxes, and contain boxed multiexpressions.

Operations in the depicted physical multiexpressions are subscripted with an execution location.

Depending on the rule set, the multiexpression can represent more plans, including:

(B +SciDB A) +R C

(B +R A) +R C

When a new query or plan is created through a rule application, Agrios first

determines whether or not it is already represented in the MEMO. If it is not, a new

95

multiexpression or group is added to the data structure. The MEMO structure also

contains cost information about multiexpressions and groups. Note that costs are

displayed at the bottom of some of the multiexpressions. Other costs have been omitted

for simplicity of exposition.

3.3.2 PARTICULAR REFINEMENTS

 Above we examined aspects of Bonneville’s design that reduced staging time

without sacrificing identification of the movement-minimizing plan. These aspects

included pruning, its depth-first search strategy, and compact representation of the search

space. A number of additional enhancements – all inherited from Columbia – help

expedite staging. These include:

 Hash-based duplicate checking. It takes time to create new queries and plans, so

during the staging process as few plans and queries as possible should be created.

In particular, we should avoid duplicating plans and queries. Suppose the

commute transformation is performed on the query A + B. The transformation

generates the query B + A, which then becomes part of the search space. If query

B + A is commuted, then the query A + B is generated; this query is a duplicate of

a query already in the search space. Duplication can be avoided in some cases

through the use of particular rule sets [47]. In practice, however, rule applications

may generate duplicates even with avoidance mechanisms (for example, a

duplicate may be generated if a plan is created through multiple derivation paths).

Bonneville prevents the buildup of duplicate plans and queries by checking for

duplicates prior to creation of the plan within the MEMO data structure. First

96

checking for duplicates reduces time spent creating representations of duplicate

plans within the MEMO structure.

 Separation of logical and physical multiexpressions. Within a group, logical

multiexpressions and physical multiexpressions are stored in separate data

structures. This segregation by type results in more efficient application of

rewrite rules and more efficient exploration of the search space. For example,

since transformation rules apply only to queries and not plans, when processing a

query Bonneville can search only the data structure containing logical

multiexpressions. Separating multiexpressions by type saves time because the

data structure containing physical multiexpressions (Bonneville’s MEMO

representation of plans) need not be searched. Similarly, when costing plans,

Bonneville needs only to search the data structure containing physical

multiexpressions.

3.3.3 WHY BONNEVILLE?

 Bonneville is based off of the Columbia database optimizer for several reasons.

First, there are many analogues between staging in hybrid systems and query

optimization in relational systems. In both cases, we try to identify the least costly query

or expression that is logically equivalent to the query written by the user. During

optimization, traditional optimizers consider physical properties such as sort order;

stagers consider physical properties such as location. The cost model of relational

optimizers considers factors such as disk blocks read, whereas a stager’s cost model is

concerned with data movement between hybrid components. Second, Columbia was

designed as an extensible optimizer, so modifying it for application to hybrid systems

97

was relatively straightforward – certainly easier than modifying a system not designed for

extensibility, or building an optimizer from scratch. Array-specific operators were

straightforward to add, modifications to the cost model were reasonable, and query

rewrite rules were fairly easy to define. Third, the code base was publicly available and

accessible, having been developed at Portland State University under National Science

Foundation funding.

3.4 CONCLUSION

 We began this chapter by introducing a research question and its associated

hypothesis. The research question asked: “how can data movement be automatically

minimized in a hybrid analytic system?”, and the research hypothesis stated that “data

movement in a hybrid system can be automatically minimized through the application of

techniques derived from relational database query optimization. These techniques are: i)

staging, ii) query rewriting through the application of rewrite rules, and iii) query

accumulation.” In this chapter we examined these three techniques at a conceptual level.

We paid particular attention to the staging and query rewriting process.

 Now that we have a conceptual understanding of automatically minimizing data

movement, we consider the implementation details of Agrios. In Chapter 4 we examine

the four components of Agrios (parser, accumulator, stager, and executor), their

integration with one another, and their integration with R and SciDB.

98

CHAPTER 4: AGRIOS IMPLEMENTATION

 In Chapter 3 we considered Agrios at an abstract level, examining in particular

how it stages queries. In this chapter we examine the implementation details of Agrios’

stager, as well as its accumulator, parser, and executor. We begin by looking at the two

components that form the basis of Agrios’ hybrid system: R and SciDB.

4.1 COMPONENTS OF AGRIOS

4.1.1 R

 R is a language and computing environment modeled after Bell Lab’s S [16].

Unlike S, R software is released under an open-source license. R is specifically designed

for data analysis. The basic version of R is called “core R”, and its analytic capabilities

are substantial.

 Core R’s functionality can be extended through the addition of user-contributed

packages. At the time of this writing there are thousands of these packages; they include

ggplot for visualization, BenfordTest for specialized statistical tests, and C50 for

decision-tree generation and modeling. The power of R, together with its availability and

extensibility, make it a popular tool with data scientists and analysts. Researchers

estimated over a quarter-million regular R users as of 2009 [17]. The number of in-links

to the main R website (www.r-project.org) are more than double that of R’s competitors

SAS and SPSS; similarly the average monthly amount of usergroup email traffic for R is

substantially higher than that of alternative tools [18].

http://www.r-project.org/

99

 Both vectors and arrays are first-class objects in R. Vectors are the fundamental

data type, and R represents arrays as vectors with attached metadata; the metadata

indicates the number and extents of the array’s dimensions. Vectors are constituted of

cells, each cell containing a single value. Vectors must be of a given type, for example, a

vector can contain only integers, or contain only doubles. R represents scalar values as

unit vectors of the appropriate type.

 Many R functions and operations take complete vectors or arrays as inputs.

Explicit control structures such as while and for are part of the language, but their use for

iterating through individual vector and array elements is discouraged. This C-like R code

sums all elements of the vector vec, storing the result in variable x:

 for (i in 1:length(vec))

 x <- x + vec[i];

Such code is frowned upon, as it explicitly accesses vector cells. Best practice – and

common practice – in R is to instead add all elements of the vector with a single

operation that takes the entire vector as input:

sum(vec);

Apply is another R operator that takes arrays as inputs. The elements of an n × m integer

array A:

are added across rows or columns using apply:

5 7 12

1 1 0

3 5 2

100

 apply(A, 1, sum); # row summation

 apply(A, 2, sum); # column summation

yielding results [9 13 14] and [24 2 10], respectively.

 These examples illustrate some of the lower-level operations found in the R

language. In general, analytic work is performed using higher-level functions presented

by both core R and add-on packages. For example, the R function lm builds a linear

model from an input dataset. Though one could use R’s low-level operations such as

sum, apply, and “%*%” (matrix multiplication) to create a linear model from a dataset

(duplicating the functionality of lm), in practice the simpler call to the higher-level

operation lm is typically used.

 Core R has two related limitations: it operates only on in-memory data, and its

interpreter is implemented as a single-threaded process.
10

 As a result, R is slow when

processing large amounts of data, in particular datasets whose size exceeds that of main

memory. As discussed in Chapter 3, problems occur even when the sizes of the input

data objects do not exceed main memory. R’s performance substantially suffers if too

many intermediate results accumulate during analysis, or if the size of particular

intermediate results are large enough to force storage in virtual memory. Any time R’s

memory footprint exceeds its allotted amount of physical memory, performance is

noticeably slowed [14-15].

10

 Though recent versions of core R are come shipped with the “multicore” package already installed, most

R functions – and many R users – do not utilize its capabilities.

101

4.1.2 SCIDB

 SciDB is a joint academic and commercial endeavor that launched in 2010 [28-

29]. The fundamental data object in SciDB’s data model is the array. SciDB was

designed from the ground up to operate on arrays. Unlike many other array database

systems, SciDB is not an extended or modified RDBMS. All of SciDB’s components –

including its query processor and storage manager – are optimized for array operations.

The design decision to optimize the system for array processing was motivated by the

desire for good performance, and it appears to have paid off for several analytic

operations; in a recent benchmark testing common analytic tasks on large disk-resident

datasets, SciDB regularly outperformed other systems by significant margins [14].

SciDB is also designed to scale easily and well, through the addition of off-the-shelf

commodity computing nodes.

 SciDB arrays are constituted of cells, each cell storing the value of one or more

named attributes. All cells of an array hold the same attribute types. While attributes in

array cells can be referenced individually, SciDB operators used in practice typically take

entire arrays as inputs. Users write SciDB queries in one of its two languages: AQL or

AFL. AQL is an SQL-like declarative query language, and AFL a functional language

with similarities to relational algebra. Agrios interacts with SciDB in AFL. AFL queries

are submitted to SciDB through SciDB’s iquery interpreter.

 Suppose that the 3 × 3 array A shown above is stored in SciDB. Each cell in the

array contains a single integer value. Since attributes in SciDB arrays must be named, let

102

the sole attribute for array A be “brightness”. The AFL expression summing the values

of all cells in A is:

 sum(A, brightness);

The AFL operator sum has an input and a parameter: the name of the array and the

attribute of the array to be summed, respectively. Suppose B is a second two-

dimensional 3 × 3 array stored in SciDB, also with each cell containing a single value of

the attribute “brightness”. Array B is added to array A with the following AFL code:

 project(
 apply(join(A, B),
 result,
 A.brightness + B.brightness),
 result
);

The computation is shown in Figure 4.1.

5

1

3

7

1

5

12

0

2

5 4

1 9

3 5

7 9

1 2

5 8

12 7

0 8

2 5

5 4 9

1 9 10

3 5 8

7 9 16

1 2 3

5 8 13

0 8 8

2 5 7

9

10

8

16

3

13

19

8

7

12 7

(i) (ii) (iii) (iv)

19

brightness attribute of A1

brightness attribute of B1

result attribute

Figure 4.1. An array computation in SciDB. Array A is represented in (i). The array’s nine cells each

store an integer value of the attribute brightness. Panel (ii) shows the intermediate result of joining A and B

(B is not shown). Each cell in this array contains two values – the brightness attributes for both A and B.

The intermediate result following the apply operator is shown in (iii); the result attribute is stored in each

cell together with the brightness attributes. The final result is seen in (iv).

 The performance and scalability of SciDB show promise, but its language and

APIs are obstacles to adoption. Though the intentions of SciDB’s designers are good, the

103

system would benefit from an interface and language more familiar to data scientists.

SciDB’s designers intend AQL to be an array-modeled analog to SQL, in the hopes that

AQL will be easily mastered by SQL users. This approach is challenging, since SQL is

itself not a language eagerly embraced by many members of the scientific and

engineering communities [48-49]. Given the relative dislike of SQL in these subsets of

the data analysis community, the odds of a language one step removed from SQL gaining

traction in the data science community seem low. Some work has been done in this arena

by the SciDB team; they have developed effective SciDB-to-R and SciDB-to-Python

connectors; we discussed SciDB-R in Chapter 2.

4.1.3 MOTIVATION

 R’s popularity among data scientists and researchers is in part why we selected it

to be the primary language for Agrios. SciDB was a natural choice for our data

management system because it exhibited good performance with common analytic

operations on large array-modeled datasets. Additional reasons for the selection of R and

SciDB for our work stem from the fact that both systems treat “structured” data objects

such as vectors and arrays as fundamental, and that both systems are optimized to operate

on such data objects. Best practices for both systems, for example, recommends use of

operators and functions that take entire vectors and arrays as inputs. Our hope was that

these commonalities would make integration of the two systems relatively

straightforward. In addition to these similarities at the conceptual level, there are some

practical reasons that make R and SciDB good components for experimenting with

hybrid systems. Both systems are easily extensible, and both codebases are open source.

104

 In areas where R and SciDB are not similar, the differences between the two

systems often complement one another. Unlike R, SciDB scales easily and simply. The

R language is much more familiar to data scientists than SciDB’s AFL and AQL

languages. Compared to SciDB’s AFL and AQL, the R language also presents users with

higher-level functions for operating on data. For example, R users can perform a

principal component analysis on a dataset with a single function call. The single function

call hides the complexity of the linear algebra operations used to implement the method.

While SciDB can perform principal component analysis with a complex query that

explicitly calls the necessary linear algebra operators, SciDB does not expose a specific

function call for the statistical technique.

In addition to the two systems’ common and complimentary aspects, a fact about

scientific and engineering practice further increases the utility of an R and SciDB hybrid:

many scientific and engineering problems, solutions, and datasets are naturally modeled

as arrays of one or more dimensions [49]. Scientists and engineers are used to working

with arrays and vectors. A good example is provided by CERN’s ATLAS experiment.

Events are fundamental data objects in the ATLAS data model [50]. Events are changes

in the physical properties of an object, occurring in space and time. Not only are events

naturally modeled as multidimensional arrays (e.g. a collection of values, each at a

particular location along an x-axis, y-axis, z-axis, and t-axis), many of the software tools

used to analyze them assume representation as a multidimensional array. Because the

data models of both R and SciDB are built around these types of data objects common in

scientific and engineering practice, it should be relatively easy for scientists and

engineers to conduct their analyses in hybrid systems such as Agrios. Though it is

105

possible to map array-modeled data into a relational data model, such a mapping should

be avoided unless there is a clear benefit.

4.2 AGRIOS AS INTEGRATION

4.2.1 SCOPE

Operators

 A number of R operators are implemented in Agrios; the current list is shown in

Table 1. All of these operations are capable of being performed by both R and SciDB.

We selected these specific operators for several reasons. First, the operations selected are

important operations in analyses. Matrix multiplication, for example, is at the heart of

many analytic tasks, from linear regression to singular value decomposition. Second, the

selected operations affect the size of their inputs in interesting ways. Operations that

change the size of their inputs are important because the size of an object is one of the

factors determining inter-component data-movement costs. The subscript operation, for

example, typically reduces the size of its input. Similarly, the output of a matrix

multiplication operation may differ in size from one or both of its inputs, depending on

the shape of the inputs and their ordering. Figure 4.2 provides an example. The

operators we implemented were also selected because they are present in the

transformation rules we identified for implementation. Operator selection and rule

selection went hand-in-hand during Agrios’ design: the operators we selected influenced

the transformation rules we selected, and the transformation rules we selected influenced

the operators we selected. Not all operators have associated transformation rules

permitting data-reducing transformations. The operators implemented in Agrios do.

106

Table 4.1. R operators currently implemented in Agrios.

A B

A %*% B

A
B

A %*% B

A B

A %*% B

Figure 4.2. Three instances of a matrix multiplication. Note that the size and shape of the output can vary,

depending on the size and shape of the inputs.

 Finally, we selected these operators because they can be performed at either

location of the hybrid. If operators are not executable at both locations, the utility of this

research drops substantially. Consider the limit case, where each operation can be

performed only at one of the two hybrid components. In this case the operators in the

query effectively determine the only possible staging; i.e. there are no alternative stagings

with potentially different plan costs. The fact that the operators implemented in Agrios

can be performed at both hybrid components means that there are choices as to what

staging is best.

 Though we focused on operations capable of execution at either location, some

operations can be performed only at one of the two hybrid components. For example,

Name Symbol in R

matrix multiplication %*%

elementwise addition +

aggregate sum sum()

subscript [,]

apply apply()

aggregate aggregate()

107

data can be plotted at R, but cannot be plotted at SciDB. Our system easily

accommodates such operations. Later in this chapter we discuss how it can do so.

 Agrios accommodates new operators without any changes to the logic or core

code of the Bonneville optimizer. Typically, adding a new operator requires adding to

Agrios a logical operator and its two associated physical operators: one physical operator

for executing the operation at R, the other physical operator for executing the operation at

SciDB. There are four main steps to adding a new operator:

1) Add a new class representing the logical operator to the logop.cpp file. A

constructor and destructor must be defined for the class, as well as hash and

dump methods. Bonneville uses the hash method to hash class instances. The

hash value provides a unique identifier for the object, which is used during

staging to help avoid creation of duplicate multiexpressions. The dump method

prints human-readable information about the operator to a file; the method is

useful for debugging. The user must also write a FindLogProp method for the

operator. Bonneville uses the method to learn logical properties of the operator

instance, such as the shape and size of the output it will return.

2) Add two new classes representing two physical operators to physop.cpp file.

Two versions of the operator are required because the operator can be performed

at either R or SciDB – thus one class represents the physical operation being

performed at R, the other class represents the physical operation being performed

at SciDB. Similar to the case with logical operators, constructors and destructors

must be added, along with a dump method and a FindPhysProp method. The

FindPhysProp is used by Bonneville to determine the physical property essential

108

to Bonneville’s operation, namely, the operator’s execution location.

Additionally, for each version of the physical operator the user must write a

FindLocalCost method. This method uses Bonneville’s cost model and facts

about the location of operator inputs to compute the cost of moving the data to

the operator.

3) Add a class for both of the two implementation rules that link the logical operator

to its two related physical operators. These classes must be added to the

rules.cpp file. The key method for these classes is next_substitute. The method

takes a logical multiexpression as an input and outputs the appropriate physical

multiexpression. The method for one of the two rules replaces the root logical

operator with the associated physical operator performed at R, the other replaces

the root logical operator with the associated physical operator performed at

SciDB. A constructor and destructor should also be defined for the classes.

4) Add the two rules to the file rules.txt. While rules.cpp is a source file compiled

into the Bonneville executable, rules.txt is a Bonneville configuration file

accessed at runtime. The rules.txt file tells the system what rules are available

for use during staging. This is an excerpt of the rules.txt file:

 1 //R_IMPL_BIN_ARITH_R

 1 //R_IMPL_BIN_ARITH_S

 1 //R_IMPL_MATRIX_MULT_R

 1 //R_IMPL_MATRIX_MULT_S

 0 //R_IMPL_SUM_R

 0 //R_IMPL_SUM_S

 1 //R_IMPL_SUBSCRIPT_R

 1 //R_IMPL_SUBSCRIPT_S

 1 //R_SUBSCRIPT_THRU_BIN_ARITH

 1 //R_SUBSCRIPT_THRU_MATRIX_MULT

109

The numeral “1” indicates that a rule is enabled, “0” indicates that a rule is not

enabled.

After these steps are performed queries containing the new logical operator can be staged

by Bonneville. At this point, however, no transformations involving the operator can

occur. In order for transformations to be applied, a class for each new transformation

rule must be added to rules.cpp. As with the implementation rules, a constructor and

destructor must be defined for the rule’s class, as well as the next_substitute

method. In order for Bonneville to utilize the transformation rules, they must be added to

and enabled in the rules.txt file. Additional details about the process of adding a new

operator or transformation rule to Bonneville can be found at the Bonneville wiki page,

built under supervision by Brent Dombrowski [51].

Some operators in R have semantic peculiarities that are not shared by SciDB. A

noteworthy example is “recycling” in R. Suppose that in R we wish to add the unit

vector [2] to the row vector [1 2 3 4 5 6]. (In R, this row vector is represented as 1:6.)

Prima facie, pairwise addition is not possible, because the two addends differ in length.

However, R permits the addition of a unit vector (or scalar) to a non-unit vector. R’s

output for the expression adding these two values:

 2 + 1:6;

is the vector:

 [3 4 5 6 7 8]

110

Though that calculation may be relatively intuitive, recycling in R permits some less-

intuitive calculations. For example, adding the vector

[1 2]

to

[1 2 3 4 5 6]

yields the vector

[2 4 4 6 6 8].

Recycling effectively transforms the expression:

 [1 2] + [1 2 3 4 5 6];

into the expression:

 [1 2 1 2 1 2] + [1 2 3 4 5 6];

Neither one of these two addition operations is legal in SciDB, because SciDB’s

analogue to pairwise addition in R requires the operands be of identical length. If one

tries in SciDB to add addends of differing dimensions, SciDB will raise an exception and

not process the expression. We designed, implemented and tested code in Agrios’

executor that handles recycling when unit vectors are added to non-unit vectors and

arrays. This code builds the appropriate AFL expression, which can then be evaluated in

SciDB. It would be possible to extend the code to handle more complicated instances of

recycling.

111

Data Model

 The data models for R and SciDB are similar but not identical. Both systems

recognize as fundamental types of objects considered “complex” or “structured” in most

mainstream languages: vectors and arrays. While the two data models are not identical,

because both systems recognize vectors and arrays as fundamental types we can fairly

easily map objects in one language to objects in the other. As with operator semantics, in

order to present a familiar interface to data scientists, we tried to emulate R’s data model

as closely as possible. SciDB recognizes as a data type only arrays, not vectors, so

Agrios maps R vectors to one-dimensional SciDB arrays. N-dimensional arrays in R map

to N-dimensional arrays in SciDB, when N is greater than 1. We restricted our research

to arrays of one and two dimensions. Extension of our work to higher-dimensional

objects would require non-trivial effort but is not conceptually challenging.

R requires that vectors and arrays be of only one particular native data type; e.g., a

vector V must either be a vector of integers, or a vector of characters, or a vector of

doubles, etc. Because R’s native data types do not always correspond to SciDB’s native

data types, we stipulated mappings between the two. Table 4.2 shows mappings

between R and SciDB, for different vectors and arrays element types. These data types

are common in analytic applications. Though the number of data types is small, many

analyses can be performed with them. Integers and characters often serve as qualitative

factors, while doubles are useful for representing both probabilities and quantitative

measurements, such as length, brightness, latitude, and longitude.

112

Table 4.2. Data type equivalencies, R and SciDB. Agrios is “R-centric”, so the SciDB data types are used

to “simulate” R data types when Agrios data objects are stored in SciDB.

SciDB arrays can store multiple values in a single array cell, while vectors and

arrays in R may contain only one value per cell. Agrios’ data model follows R’s,

allowing arrays to contain only one value per cell. This restriction does not limit the

usefulness of our research into reducing data movement in hybrid analytic systems.

Should future researchers wish to make R’s (and Agrios’) data model more similar to

SciDB’s data model, there are some practical ways in which to do so. An example

illustrates some of the approaches.

The vector (or one-dimensional array) shown in Figure 4.3 can be represented in

SciDB, though it cannot be represented as a vector in R. The vector depicted in the

figure is common in genomics research; it stores DNA data, each cell specifying

nucleotide information at a particular location in the DNA strand. Each cell of the vector

contains values for two attributes, of different data types: i) a character value specifying

the nucleotide, and ii) a floating point value indicating the confidence that the nucleotide

value is correct. There are several alternatives for representing this multi-attribute array

in R. First, the data could be stored as two separate, parallel vectors: one character

vector to hold the nucleotide value, and one double vector to hold the probability value.

The user or application would be responsible for correctly maintaining and accessing the

vectors, enforcing that they remain parallel. Second, these two parallel vectors could be

combined into a single S3 or S4 data object, using the R language’s object-oriented

R data type SciDB data type

double double

character string

integer int64

113

programming features. Methods could be defined for this object for modifying and

accessing values. Finally, the array could be represented in R as a data frame, a table-like

data structure common in R. Regardless of which of these three approaches is chosen, it

is interesting to note that internally SciDB implements multi-attribute arrays as a

collection of parallel arrays: one array for each attribute. This fact potentially makes

extending R’s data model to mimic SciDB’s more straightforward than if SciDB did not

store individual attributes in separate data structures.

Figure 4.3. A vector (or one-dimensional array) containing genomics data. The position in the array

indicates the position in the DNA strand. Each cell contains two values: the nucleotide present at the

location, and a value indicating the confidence that the nucleotide value is correct.

Data Model Limitations: Array Representation

 We mentioned in Chapter 3 that Agrios’ cost model assumes that arrays are

uncompressed and stored in a dense storage format. These two simplifying restrictions

focus our research because they let us directly assess the effect that operators and

transformations have on data movement. If an array has a dense storage format, its

physical size is consistently proportional to its logical size. Similarly, if an array is

uncompressed the physical size of the array depends only on the array’s shape and size,

not its content. Let us examine each of these restrictions in turn.

 Some array systems, including SciDB, store arrays in two main storage formats:

dense or sparse. Arrays represented in dense format are stored in memory or on disk with

1 2 3 4 . . . 10000000

"G", 0.3301 "A", 0.9109 "A", 0.8769 "T", 0.9132 . . . "T", 0.7691

Position

114

all cell values adjacent to one another, in either row-major or column-major order.
11

(Layout orders generalize to higher dimensions as necessary.) Each cell value inhabits an

equal-sized piece of storage space, including empty or null-valued cells. Empty or null

values are indicated by a special cell value. Array index values are not stored with the

data, and a particular cell is accessed through calculation of the appropriate offset from

the array’s first value.

By contrast, arrays represented in sparse format store cell indices along with the

cell value. Each cell value is stored together with its index values. Empty or null values

are typically not stored; if a sparsely-stored array does not contain a value at a particular

set of indices, the array cell is assumed empty or null, depending on the context. Note

that this is essentially a relational representation of the data.

Which array representation – sparse or dense – is more efficient depends on the

array’s content and the operations being performed on it. The content and relevant

operators, in turn, often depend on the particular research field or problem domain.

Unsurprisingly, array datasets that are logically dense are typically most efficiently

represented in a dense storage format; the format requires only cell values to be stored.

Similarly, array datasets that are logically sparse are often best represented in a sparse

storage format.

 Arrays with dense storage formats are common in a number of problem domains,

sparse storage formats common in other problem domains. Genomics is one field where

arrays are often dense; the array shown above in Figure 4.3 provides an example. The

11

 SciDB’s storage model is more sophisticated than this; arrays are actually broken into storage units

named “chunks” or “tiles”. This and other details of the storage model are not essential here; the important

fact remains that in arrays stored in dense storage format, each cell value occupies an equal number of

bytes.

115

human genome can be represented as a one-dimensional array approximately 3.5 billion

elements in length, with each cell containing a single nucleotide value. Because all but

the first and last nucleotides are next to two adjacent nucleotides, the array is intuitively

modeled as a dense array. In addition to genomics, many datasets in image analysis are

also commonly represented in a dense storage format.

 If all arrays are dense, determining the output size of an operation is a

straightforward calculation. Suppose a subscript operation on a dense array A occurs in a

plan immediately prior to a XFER operation:

A[100,100]R

After completion of the subscript operation we know that exactly 10,000 logical data

elements will be transferred from R to SciDB. Because the array is dense, we know that

the physical amount of data moved is 10,000 times the size of the one cell’s storage size

in bytes. The same subscript operation, with identical subscript parameters, performed

on any other array will always return a physical result of the same size.

 Suppose that we drop the assumption that all arrays have a dense storage format

and that array B has a sparse storage format. If the same subscript operation is performed

on B, we know that the logical result will be of the same size. What we do not know,

however, is what the physical size of the output will be. If array B has no values in the

area indicated by the subscript parameters, the query:

B[100,100]R

will not return a result with any significant physical size. If, however, there are some

values in the area indicated by the subscript parameters, the physical size of the

116

operations result is at minimum the size of one cell’s storage size in bytes, plus twice the

size of each index’s storage size. At a maximum, the result of this operation it is 10,000

times the size of one cell’s storage size plus 2 × 10,000 times the size of each index’s

storage size.

Similarly, two different queries against a single array might also yield outputs

with identical logical sizes, but different physical sizes. This divergence of logical and

physical sizes is not encountered when arrays are all dense. Let C be a 50 × 50 array with

dense regions and sparse regions, as pictured below:

Consider the following two queries on C:

 C[1:25, 1:25]; (1)

 C[26:50, 26:50]; (2)

9 8 5 4 4 0 8 3 9 2 7 6 9 2 2 9 8 1 0 8 5

6 8 9 4 6 3 4 8 1 5 0 6 2 5 6 7 0 8 0 2 8

6 4 6 2 9 1 7 3 2 3 8 1 3 2 6 1 3 9 8 3 9

2 7 6 1 6 5 8 1 3 3 9 2 7 5 9 5 6 1 4 0 9

3 4 4 6 7 2 4 5 2 5 9 7 8 7 9 7 1 2 8 2 8

5 3 2 5 3 5 2 7 4 6 1 9 2 0 0 1 6 7 7 5 7

6 1 6 4 9 3 6 3 9 0 1 2 5 1 9 7 3 5 6 7 3

1 9 9 8 8 5 3 9 9 0 0 6 8 3 5 7 4 8 5 8 2

1 3 1 9 3 0 4 9 9 3 9 1 8 8 9 7 2 6 7 4 7

9 1 1 4 4 8 9 0 7 3 6 9 8 2 0 5 7 3 0 7 2

3 5 9 5 6 0 5 8 6 7 9 9 4 7 7 4 3 8 5 3 4 3

8 0 3 7 0 8 2 1 3 0 5 6 3 3 2 1 2 3 7 6 2

2 2 7 4 7 4 3 2 8 3 9 2 8 2 7 1 5 1 8 8 3 6

9 4 3 5 8 0 4 4 7 1 7 3 0 3 0 2 6 8 0 7 8

7 8 4 1 8 7 6 9 1 6 7 8 6 4 5 1 1 2 5 5 4

2 9 4 1 9 1 3 5 0 2 5 6 5 2 0 0 9 3 8 6 9

3 0 2 4 2 6 1 0 4 9 6 5 5 8 5 9 4 6 1 7 2

4 2 8 3 4 4 4 5 9 6 1 6 6 7 8 3 3 1 2 0 6

0

0

6

3

1

2

3

2

9 1

117

Both queries return a logical result of size 25 × 25. Both results are a subarray of the

input array C, but from different regions of the input array. If C is represented in a dense

storage format, the logical and physical result size of both Query 1 and Query 2 are

identical. If C is represented in a sparse storage format, though the logical size of both

query results are identical, the physical sizes of the results differ markedly.

 These examples show that relaxing the assumption that all arrays are stored in a

dense format introduces variability into the physical output size of operators and query

results. This variability in physical output size thus potentially introduces variability into

the amount of physical data moved during query execution. The variability in physical

output size partly obscures our understanding of how transformations and rewrite rules

reduce data movement. In the interests of answering our research question with a clear

comprehension of the role transformations play in reducing data movement, we maintain

the assumption that all arrays are stored in a dense storage format.

 Assuming that arrays are uncompressed is equally valuable in pointedly

answering our research question, as the assumption isolates the role transformations play

in reducing data movement. When arrays are compressed, situations similar to the ones

sketched above may introduce variability into the physical output size of operators; this

variability in turn introduces variability into the amount of physical data moved during

query execution, potentially obscuring the benefits of transformations. The assumption

that arrays are uncompressed is not unreasonable. R operates only on uncompressed

data, and only some operations in SciDB can be performed on compressed arrays (though

all operations in SciDB can be performed on arrays represented in either dense or sparse

storage format).

118

4.2.2 ARCHITECTURE

 The previous chapter provided an overview of the Agrios system. Chapter 3’s

high-level architectural diagram showing the components and workflow is reproduced

here for reference in Figure 4.4. We now examine the four main components of Agrios

in detail, starting with the accumulator.

Accumulator

 The accumulator is the first stage in Agrios’ workflow. It takes as input an R

script written by the user. If the script contains multiple queries, the accumulator tries to

combine several queries into a single query. Its output is one or more queries that are

semantically equivalent to the original R script. Recall from Chapter 3 that the

accumulator can reduce data movement in at least two ways. First, for some queries,

accumulation can create consolidating transformations. Second, accumulating multiple

queries into one query makes possible query rewrites that are not possible when queries

are treated individually.

The mechanics of the accumulator’s operation are relatively straightforward. The

accumulator is written in R. It reads a text file containing an R script, where the queries

in the script are represented in R character vectors (effectively, text strings). Queries

must terminate with a semicolon, something permitted but not required in R. Operand

names must be single capital letters. Text strings are decomposed into tokens by the

accumulator, and the tokens classified as either operations or operands. Operands are

further classified according to whether they are the part of the source of an assignment

expression, the target of an assignment query, or both a source and target of an

assignment query.

119

Agrios’ accumulator lets the user specify structural limitations on its outputs.

Users can limit the maximum number of operators allowed in accumulated queries. The

accumulator tries to create an accumulated expression as close to this upper bound as it

can, without exceeding it. There is value in higher accumulation thresholds, as higher

thresholds mean larger queries, and larger queries in turn mean the more likely useful

transformations result. However, preliminary tests show that without pruning, the time

required to stage queries is exponential in the number of query operations. Therefore, if

the upper bound for accumulation is set too high, the time required for staging will be

unacceptable. Our research did not investigate optimal or recommended accumulation

thresholds. We placed no restriction on allowable accumulations; the accumulation

threshold for our test queries were sized such that staging times were reasonable.

Figure 4.4. The architecture and workflow of Agrios, reproduced from Chapter 3.

 An example illustrates the accumulation process. Below are two queries from an

R script; each line is read into Agrios’ accumulator as a single character vector:

 A <- B + C; (1)

120

 D <- A + E; (2)

These two queries are then broken up into their constituent parts, respectively. Query (1)

breaks into:

 “A” “<-“ “B” “+” “C” (3)

and Query (2) breaks into:

 “D” “<-“ “A” “+” “E” (4)

In (3) and (4) the operators are “<-“ and “+”. “D” is a target operand; “B”, “C”, and “E”

source operands; and “A” both a source and target operand.

 The accumulator attempts to combine Queries (1) and (2) by looking for matches

between operands common to both the source and target groups. If a match is found, the

accumulator makes the appropriate substitution, creating one query out of two. In our

example above, the accumulator notes that A belongs both to the source and target

subgroups, so substitutes “B + C” for “A” in Query (2). This yields the accumulated

query:

 D <- (B + C) + E; (5)

Query (5) is semantically equivalent to the original Queries (1) and (2). Note that

parentheses are inserted during substitution, both to ensure correctness and aid

debugging.

Further work with accumulation – including both exploring its benefits and

refining the accumulation process – are natural extensions of our work. Such work

121

should also explore the semantic restrictions required for correct accumulation, as our

examination into this topic has been limited.

Parser

 Agrios’ parser is implemented in R, and it converts any query produced by the

accumulator into a data structure used internally by Agrios: an Agrios Abstract

Expression Tree (AAET). AAETs store information about both operators and input data

objects, with each internal node (except the root node) representing the root operation of

a subquery. The parser operates on the AAET bottom-up, first processing the most

deeply-nested subqueries in query, then working upwards to higher-level expressions.

Leaf-level nodes of the AAET represent stored data objects, which are query inputs.

Internal nodes of the AAET represent operations, and so contain relevant facts about the

operations. The root node of an AAET is the final operation of the query. An AAET is

constituted of S3 objects, a data type in the R language roughly analogous to a C struct.

The S3 type “internal.node” represents operators, and the S3 type “leaf.node” represents

data objects. S3 objects of both types store object properties in named “slots”.

 Agrios must know facts about input data objects in order to populate certain fields

in an AAET. For example, Agrios must know whether input data objects are stored at R

or at SciDB, and must know the number of and extent of an array’s dimensions. Agrios

can easily find the necessary facts for data objects stored at R, as the parser is

implemented in R; the parser simply examines the relevant R environment to see if the

data object exists. If the object exists at R, relevant properties needed to populate the

AAET – such as its size and shape – can be determined by examining the object. Finding

information about data objects stored in SciDB is not as simple. Agrios maintains a

122

catalog in R containing facts about data objects stored at SciDB. This catalog is accessed

by Agrios’ parser as necessary. The facts stored by the catalog data structure include

arrays’ dimensions and the arrays’ names in SciDB. The catalog exists in Agrios as a list

of instances of the S3 class agrios.object. The class definition for a catalog object is:

setClass("agrios.array",

 representation (

 dimension.extents="numeric", # dimension lengths

 dimension.names="character",

 storage.size="numeric",

 compression.type="character",

 chunk.scheme="numeric",

 storage.mode="character",# dense or sparse

 scidb.identifier="character", # name in SciDB

 attribute.names="character",

 attribute.types="character"

)

) # end class definition

The slot names in the object reflect the data stored in them. The scidb.identifier

slot, for example, stores the name of an object in SciDB, while the

dimension.extents slot stores information on the array’s shape. Slots also may have

vector values. The value of the dimension.names slot for a 2-D array, for example,

will be a vector of length 2. Some of the slots are not currently used, but could be used

for future research. The storage.mode slot, for example, may be used to specify the

123

storage format of an array stored in SciDB: either dense or sparse. Similarly, the

compression.type slot may be used to specify the compression scheme (if any) used

to compress an array stored at SciDB.

 Figure 4.5 shows the parser’s output for the input R query:

 A %*% B[1:10,1];

R’s operator-precedence rules specify that the subscript operation is performed before the

matrix multiplication. The storage location of input data objects is saved in the

st.location slot of leaf nodes, as seen in the figure. Data object A, for example, is

stored at R. Details about operators are stored in appropriate slots, too; the name of an

operation is stored in the operation slot of the internal.node object representing the

operation. The special slots in the S3 object store additional relevant facts about

operations, such as the subscript parameters (stored in the special.1 slot).

 By inspection we see that the AAET in Figure 4.5 has not been staged. This

situation is indicated by missing values for particular slots. For example, we see that the

intermediate result sizes have not been calculated, since the result.size slots in the

internal nodes are empty. (An empty slot is represented in an S3 object by “num(0)”.)

Similarly, the op.location slots in the internal nodes (which represent operations)

have the value of unk. After staging, all op.location slots will have been assigned

either the value R or SciDB. The AAET output by the stager and input to the executor is

used to execute the minimal-movement plan.

Stager

 As discussed both in Chapter 3 and this chapter, staging in Agrios is performed by

its Bonneville component. The stager takes as input the AAET output by the parser. The

124

AAET is transformed, via “glue code” between the parser and stager, into a text file

readable by Bonneville. Taking this text file as an input, Bonneville’s CopyIn function

populates the MEMO structure with a multiexpression representing the user-written

query. Ancillary functions determine from the text file the relevant physical and logical

properties of the query’s input data objects: these properties include an objects’ shapes,

sizes, and placements (storage locations). Bonneville stores these properties in a

dedicated “catalog” data structure, which is referenced as necessary during the

optimization process. After the CopyIn function completes, Bonneville determines the

movement-minimizing plan, using staging and – if enabled – query rewriting. Once the

movement-minimizing plan is identified, a CopyOut function extracts the plan from the

MEMO structure and outputs it to a text file for consumption by the executor.

The Bonneville stager is derived from the Columbia relational database query

optimizer. The modifications made to Columbia were significant enough to warrant

renaming the system.
12

 Bonneville differs from Columbia in two main ways. First,

unlike Columbia, Bonneville optimizes queries for a distributed system. Columbia was

designed to optimize queries on homogenous (non-hybrid) systems. Its cost model

reflects this design; there is no accounting for data-movement costs. Instead, Columbia’s

cost model focuses exclusively on database costs common to non-distributed systems,

such as the number of disk reads and disk-seek time. Some may not think that a hybrid

system such as Agrios is a distributed system, since by “a distributed database” authors

often mean an interlinked collection of homogenous systems sharing a common data

12

 We thoughtfully renamed the system. Bonneville is derived from Columbia, which is derived from

Cascades. Columbia earned its name because it “cuts through” the Cascades; Bonneville earned its name

because it “reshaped” the Columbia.

125

model. However, hybrid systems such as Agrios are effectively distributed systems in a

broader sense of “distributed”, in that data is stored at multiple locations, and that

operations on data are performed at multiple locations.

Second, unlike Columbia, Bonneville optimizes queries on array-structured data

objects. Columbia optimizes queries written for databases using a relational data model.

Its transformation rules rewrite queries containing only relational operators such as select,

project, and join. Bonneville, by contrast, optimizes over queries written with array

operators, using array-specific transformation rules.

 Columbia transformed into Bonneville through these significant changes:

 Alterations were made to Bonneville’s catalog, to accommodate the new physical

and logical properties required for staging. Space for storing a new physical

property – location – was added to the catalog’s structure. The value of the

location property indicate the storage location of the input data object. The two

possible values of this property are “SciDB” and “R”. Additional space was

provided in the catalog for storing new logical properties about data objects,

specifically, the number of dimensions and extent of each dimension, for each

leaf-level data object.

 Logical array operators replaced logical relational operators. For example, JOIN,

SELECT, and PROJECT were discarded, and MATRIX_MULT, SUBSCRIPT, and

SUM added.

 Physical array operators replaced physical relational operators. Two versions of

each physical operator were coded, one for each hybrid component. In the case of

126

Figure 4.5. An Agrios Abstract Expression Tree, represented as an S3 object in R. Objects of class

“internal.node” represent operators, while objects of class “leaf.node” represent data objects. Each “slot”,

prefixed by the “@” symbol, contains a fact about the operator or data object.

the logical MATRIX_MULT operation, for example, the two associated physical

operators are MATRIX_MULT_R and MATRIX_MULT_S. These physical operators

stage a matrix multiplication operation at R or SciDB, respectively.

127

 A new physical operator named “XFER” (transfer) was added. XFER is a unary

operation that takes a data object at a given location, and moves it to a new

location. For example, if the input to XFER is an object at R, the output is at

SciDB, and vice versa.

 A “XFER” enforcer rule was added, replacing Columbia’s “SORT” rule. The

transfer rule ensures that data objects are moved as necessary, by inserting a XFER

operator between the operation and the data object (leaf-level or intermediate)

required to move.

 The cost model was supplemented with a value for calculating data movement

costs. Specifically, the cost model now considers the size of an array – i.e. the

number of cells in the array – when determining plan costs. Array sizes for leaf-

level inputs are calculated based on the array’s logical properties stored in

Bonneville’s catalog. During the staging process, array sizes for intermediate

data objects are calculated and stored in Bonneville’s MEMO structure; these

values are accessed as necessary as the process continues. Since different

operations produce outputs of different sizes, each operator was given a particular

cost formula. The catalog is accessed during size calculation if necessary.

 New rewrite rules were added: both implementation rules and transformation

rules. New rules were necessary because Columbia’s rewrite rules applied only to

relational operators. Since Columbia’s relational operators were replaced with

Bonneville’s array-specific operators, the rewrite rules needed replacement as

well.

128

Chapter 3 contains a table showing all rules currently implemented in R. Of all of

Agrios’ rules, transformation rules are worth a closer examination as they expand the

number of queries in the search space. Figure 4.6 shows several instances of

transformation rules, illustrating some of the ways the rules can transform their inputs.

Executor

 The executor is the final step in Agrios’ workflow. The input to the executor is

the text file output by the Stager. The contents of the text file are converted into and

AAET via some “glue code” in the Executor. The output of the executor is the result of

the computation specified by the plan (which was specified by the original user query

from which it was derived). The executor is responsible for executing the movement-

minimizing plan, as the stager merely identifies – and does not execute – that plan.

 The executor performs one operation at a time, working its way from the deepest

physical operator in the AAET up to the root operator. If the movement-minimizing plan

dictates that an operation is performed at R, the executor generates the appropriate R

expression and issues it to the R interpreter for execution. If the movement-minimizing

plan dictates that an operation is performed at SciDB, the executor generates the

appropriate command as an AFL expression, and issues the command to SciDB’s iquery

interpreter for execution. In order to generate AFL code from AAETs we devised R-to-

AFL translations for the operations Bonneville handles.

The XFER operator is unique in that there is no XFER operator in either R or

SciDB; it is not an operation an Agrios user would ever write in a query.
13

 The XFER

13

 Recall from Chapter 3 that the logical analogue to the physical XFER operator is the identity operator.

129

operator is also unique because it is a single physical operator that requires processing at

both hybrid components: both the source and the destination of the transfer. As such,

A B

C A

B C A B B A

[]

+
+

[] []

[]

%*%
[]

[]

%*%

sum()

+

+
sum() sum()

[]

apply()

apply()

[]

Figure 4.6. Examples of transformation rules. Panel (a) shows left-to-right association. Agrios also

contains a right-to-left association rule. The commute rule is shown in (b). This rule does not directly

reduce data movement, but can do so when used in concert with other transformation rules. Subscript-

through-binary addition is shown in (c), and subscript-through-matrix-multiplication shown in (d). Panel

(e) shows the sum-through-binary addition rule, and panel (f) shows the subscript through apply rule.

execution of the XFER operator is not simply delegated by the executor to the

appropriate hybrid component. Instead, the executor fully handles the execution of each

XFER operation, ensuring that data is moved from the source correctly to the destination.

(a) (b)

(c) (d)

(e) (f)

130

An example illustrates the executor’s function. Let Figure 4.7 represent the

movement-minimizing plan. As input, the executor receives from the stager an AAET

representing this plan. The most deeply nested operation is a binary arithmetic operation

staged at SciDB. The executor first constructs the AFL code as an R character vector:

aggregate(join(B,C), sum);

It then prepends the AFL code with a call to SciDB’s iquery interpreter. The appropriate

parameters are added to the iquery call, as necessary:

iquery -aq “\"aggregate(join(B,C),sum)\"”

This character vector is then passed to Agrios’ scidb.command wrapper function, which

passes invokes iquery and passes it the constructed AFL:

scidb.command("iquery -aq

 “\"aggregate(join(B,C),sum)\"”)

SciDB executes the AFL code, storing the result at SciDB.

Moving from the bottom of the query upwards, the executor handles the XFER

operator next. The transfer from SciDB to R is performed with Agrios’ SciDB.to.R.2D

function. The function extracts the object from SciDB and places it at R, storing it there

as an array data object. The R array is stored with the name “temp.1”. Now that both

operands are colocated at R, the executor processes the matrix multiplication at the plan’s

root. The executor assembles the appropriate R code:

131

paste("result <- ",

 "A",

 " %*% ",

 "temp.1",

 sep="")

This yields the following expression, stored as an R character vector:

"result <- A %*% temp.1"

This expression is evaluated in R using eval:

eval(text="result <- A %*% temp.1")

The expression is passed to the eval function through its text parameter. This function

call multiplies A and temp.1 and stores the result in a variable named “result”.

BSciDB CSciDB

+SciDB

AR

%*%R

XFER

Figure 4.7. A simple plan: The elementwise addition of B and C is staged at SciDB, while the matrix

multiplication at the plan’s root is staged at R.

 Agrios’ executor interacts with SciDB through SciDB’s iquery interpreter, though

alternative communication methods were possible. R is implemented in both R and C,

132

and SciDB is implemented in C++. We considered having the executor interact with

SciDB at the C/C++ level. A connection at this level likely would have provided better

performance than connecting R and SciDB through SciDB’s iquery interpreter. We

decided against a C/C++ interface for several reasons. First, our research focuses on

minimizing data movement at the level of queries and plans, not in the system-level

integration of the hybrid-level components. Optimizing the integration of the two

systems at the language level was of secondary importance. More importantly, the

higher-level integration method we selected made debugging and troubleshooting much

easier, since the meaning of high-level R and AFL expressions are often more transparent

than their system-level implementations.

4.3 CONFIGURATION OPTIONS

 Agrios’ configuration can be altered to address particular research questions.

Some of these configuration options are utilized in the experiments whose results are

presented in later chapters. Specifically:

 Individual transformation rules can be turned on or off. An entire rule type (e.g.

reductive rules, or consolidating rules) can be enabled or disabled if all its

member rules are enabled or disabled. This configuration option lets us test the

effects of how different rules and rule types affect data movement. By default all

rules are turned on.

 An accumulation threshold can be specified. The accumulation threshold sets an

upper bound for the accumulator; the accumulator tries to create an accumulated

133

expression as close to this upper bound as it can, though it will not exceed the

value.

 Implementation rules can be individually turned on or turned off. The option to

individually enable or disable implementation rules is valuable because it lets us

restrict stagings for individual operators to only one hybrid component.

 For example, the apply operation can be performed at both R and SciDB,

so Agrios’ rule set includes two implementation rules: R_IMPL_APPLY_R and

R_IMPL_APPLY_S. The former stages apply operations at R, the latter at SciDB.

If R_IMPL_APPLY_R rule is intentionally disabled by the user in the rules.txt

configuration file, then during staging Agrios finds only one rule match for the

apply operation: R_IMPL_APPLY_S. This means that all instances of the apply

operator must be staged only at SciDB.

4.4 CONCLUSION

 In this chapter we examined technical details of the concepts introduced in

Chapter 3. Our examination included a look at both R and SciDB, as well as the four

main components of Agrios: its accumulator, parser, stager, and executor. In Chapter 5

we return to our research question and hypothesis, addressing them both through a host of

experiments.

134

CHAPTER 5: THE CASE FOR STAGING

5.1 GENERAL OVERVIEW

 This chapter motivates the need for automatic minimization of data movement in a

hybrid analytic system. We motivate the need for a system such as Agrios primarily by

examining plan costs, from several perspectives.

5.2 STAGING COSTS

 In Chapter 1 we noted that in some high-performance computing applications, data

movement between computing nodes often dominates time spent computing on the data.

In Chapter 3 we noted that staging itself has a cost, and identified several techniques

Bonneville uses to reduce staging time. Moving data takes time, but so does staging.

 In the particular context of a hybrid analytic system we should have a sense of the

relationships between data movement costs, computation costs, and staging costs.

Understanding these relationships does not conclusively demonstrate the need for

automated minimization of data movement, but does ground the discussion of data

movement costs. The first question is: how does data movement time compare to

computation time? If data movement times are comparable to computation times –

appreciating that there is room for discussion as to what is “comparable” – then the need

for minimizing data movement in hybrid systems is warranted. Data movement time can

be a significant relative to computation time, as illustrated by examining performance data

for both typical analytic operations and entire queries.

135

 Computing the singular value decomposition (SVD) of a matrix is a common

operation in data analysis. Published benchmark figures show that on a modern cluster,

SciDB takes approximately 20 seconds to compute the SVD of an 8000 × 8000 array,

while R takes approximately 400 seconds. Though SciDB outperforms R for this

operation, SVD computation at either system may be faster than the time required to move

the computation’s output from one system to the other. Performance measurements we

conducted on Portland State University’s Barista server indicate an average R-to-SciDB

transfer rate of 8600 elements per second, and an average SciDB-to-R transfer rate of

250,000 elements per second
14

. Given these transfer rates, moving the result of the

computation – two 8000 × 8000 arrays and a 8000 × 1 vector, a total of 128,000,000 data

elements – may take longer than the computation time at either R or SciDB: 517 seconds

to transfer results from SciDB to R, and 14,700 seconds to transfer from R to SciDB.

 The time required to move data between the two systems may seem surprising,

especially the amount of time it takes to move data into SciDB. However, recall that there

is more to transferring data between the two hybrid components than pushing bits across a

bus or network. In the case of moving data from R to SciDB, for example, the data output

by R must be rewritten into a special load format required by SciDB. This operation is

performed by a SciDB utility script, and it contributes to the total time required to transfer

data from R to SciDB.

 Comparing computation times with data movement times may initially seem to

reinforce the “conventional wisdom” that it is always better to perform an operation at the

14Barista is a modest system but sufficient for our purposes here, as we are interested not in absolute

performance figures, but in comparing the performance of movement-minimizing plans to alternative plans.

Barista has a quad-core processor operating at 2.2 GHz, and has 4 GB of RAM. The operating system is

Ubuntu 12.04. R and SciDB were colocated on Barista, and communicated through the file system.

136

location of the data than perform the operation elsewhere. Though the slogan associated

with this conventional wisdom – “always ship the query to the data” – may often hold

true, in other cases – e.g. when a binary operation requires collocated inputs, and the two

inputs are not collocated – it does not provide useful guidance for deciding where

computations should be performed.

 Before we look at additional examples we must address the asymmetry in data

movement times between R and SciDB. Our tests show that on average the SciDB-to-R

transfer rate is nearly 30 times faster than the R-to-SciDB transfer rate. It is important to

discuss both likely causes of this difference, as well as ways in which the difference can

be handled by Agrios.

 There are likely two main reasons the average R-to-SciDB transfer rate is less than

the SciDB-to-R transfer rate. First, as noted above, moving data from R to SciDB requires

use of a script – named “csv2scidb”, and provided with the SciDB distribution – that

reformats the csv file output by R into a file format capable of being imported by SciDB.

Such a script is not required for moving data from SciDB to R, since R is capable of

importing csv files directly, and SciDB is capable of directly outputting csv files. Though

the run time for this script contributes to the asymmetry in data-movement times between

the two hybrid components, it is not the major contributor, as tests show that csv2scidb

takes only a few seconds to run on the data objects tested above. The primary contributor

to the asymmetry in data-movement times is likely SciDB’s data import design and

implementation. At present SciDB writes all data to disk as part of the import process.

The I/O time required by SciDB to write data to disk is likely the primary contributor to

the asymmetry in data-movement times.

137

 There are several ways that this asymmetry could be addressed. Agrios could

address this asymmetry through modification of its cost model. The current cost model

implicitly assumes symmetry in data movement times. However, by introducing a factor

into Agrios’ cost model, the asymmetry could be accounted for. At its simplest, the

calculation of data-movement costs from SciDB to R would remain unchanged, while the

currently-calculated costs of moving data from R to SciDB would be multiplied by a

factor of 30. Another way that the asymmetry could be addressed is through modification

of SciDB’s data import design. The existing system, which writes imported data to disk

prior to operating on the data, could simply be optimized or given a different

implementation. SciDB does offer a parallel-load utility that is designed for this purpose.

Alternatively, SciDB’s import routines could be modified or extended such that imported

data need not be written to disk. That is, SciDB’s import routines could create in-memory

representations of imported data objects, suitable for being operated upon, rather than

directly writing data objects to disk. If the import routines were modified as such, SciDB

could then operate on imported data objects immediately, without having to first incur the

I/O time required when writing objects to persistent storage. Any one of these techniques

would likely reduce the difference between R-to-SciDB and SciDB-to-R data-transfer

times.

 The example above addressed just a single operation. The necessity of considering

data-movement costs is further illuminated by examining query processing times for

complete queries. Again using Portland State University’s Barista server, we determined

overall query processing times – in this case wall-clock time – for several queries, using

staging alone. The overall query processing time is the sum of two values: i) the

138

computation times at both hybrid components, and ii) the inter-component data transfer

times. Combining computation times measured on Barista with the average transfer rates

gives us total query processing times for some particular cases.

%*%%*%

%*%%*%

[][]

%*%%*%

++

AR

DR

++

CR

50,1
[][]

sumsum

[][]

50,50

10,000,1

FR

10,000

10,000

10,000

10,0005000

1000 10,000

10,000

10,000 10,000

10,000

1

BSciDB

ESciDB

Figure 5.1. One placement for Query 2. Input data objects colored blue are placed at SciDB, those colored

gray at R. The sizes of the input data objects are labeled.

 Consider one particular placement for Query 2, as shown in Figure 5.1. The size,

shape, and location of input data objects are annotated in the figure. Let us first consider,

for this placement, the query-processing time of a staging other than that of the

movement-minimizing plan. The plan’s staging is depicted in Figure 5.2. The total query

processing time for this plan is 16422 seconds. Data movement costs for this suboptimal

plan constitute 70% of query-processing time. Compare this query-processing time with

that required to perform all of the query’s operations at R. Performing all of the plan’s

operations at R takes 5886 seconds, averaged over three runs. In this case 93% of the total

139

query processing time is spent performing calculations on the data; the remainder of the

time is spent transferring data from SciDB to R.

%*%R%*%R

%*%SciDB%*%SciDB

[]SciDB[]SciDB

%*%SCiDB%*%SCiDB

+SciDB+SciDB

AR

BSciDB

DR

E
SciDB

+R+R

CR

50,1
[]R[]R

sumSciDBsumSciDB

[]SciDB[]SciDB

50,50

10,000,1

FR

Figure 5.2. A suboptimal plan for this placement of Query 2. This plan spends less time computing on the

data than the movement-minimizing plan, but moves more data than the movement-minimizing plan.

%*%R%*%R

%*%R%*%R

[]R[]R

%*%R%*%R

+R+R

AR

BSciDB

DR

E
SciDB

+R+R

CR

50,1
[]R[]R

sumSciDBsumSciDB

[]SciDB[]SciDB

50,50

10,000,1

FR

Figure 5.3 The movement-minimizing plan for this placement of Query 2. Operator execution locations are

subscripted

140

 Finally, consider the query-processing time for the movement-minimizing plan, as

shown in Figure 5.3. The average query processing time for this plan is 5249 seconds,

over ten minutes less than the plan that performs all computations at R. In contrast to the

“all-at-R” plan, in the movement-minimizing plan less than 1% of the 5249 second query

processing time is spent transferring data. These results are shown in Table 5.1

Time in seconds (% of total)

Movment-
minimizing plan

Random
suboptimal plan

All-at-R

Computing 5197 (99%) 4927 (30%) 5886 (93%)

Moving data 52 (1%) 11495 (70%) 412 (7%)

TOTAL 5249 (100%) 16422 (100%) 6298 (100%)

Table 5.1 Query processing time for three different plans, Query 2. Query processing times are broken down

into time spent computing on the data and time spent moving the data. Note that the plan with the lower

computation time (the random suboptimal plan) has a higher total query processing time.

 Query 3 shows similar results. The total query processing time for the movement-

minimizing plan is 14962 seconds, 25% of which is spent transferring data between hybrid

components. The plan is shown in Figure 5.4. The total query processing time for a

random suboptimal plan, shown in Figure 5.5, requires 24978 seconds, 49% of which is

spent moving data.

 The upshot of these results is that the time required to move data can contribute

substantially to overall query-processing time, so the cost of moving data during query

processing should not be ignored when considering overall query-processing costs. In the

example above for Query, 2, the time spent computing on the data in the suboptimal plan

was shown to be several minutes less than the computation time required by movement-

minimizing plan and the plan performing all operations at R. The suboptimal plan’s

relatively low computation time, however, was far overshadowed by the cost of moving

data from R to SciDB. In this case, while the movement-minimizing plan spent more time

141

computing on the data than the suboptimal plan, its overall query-processing time was

less.

%*%R%*%R

[]R[]R

%*%R%*%R

+R+R

[]SciDB[]SciDB

%*%SciDB%*%SciDB

%*%SciDB%*%SciDB

+SciDB+SciDB+R+R

+R+R

30,40

1,1

BR

A
SciDB C

SciDB

DR ER

F
SciDB

GR

H
SciDB

I
SciDB

Figure 5.4. The movement-minimizing plan for this placement of Query 3. Data objects A through E are

10,000 × 10,000 elements in size, Data objects F through I are 5000 × 5000 elements in size. Input data

objects colored blue are placed at SciDB, those colored gray at R. Operator execution locations are

subscripted.

%*%SCiDB%*%SCiDB

[]R[]R

%*%SciDB%*%SciDB

+R+R

[]R[]R

%*%R%*%R

%*%R%*%R

+R+R+SciDB+SciDB

+R+R

30,40

1,1

BRASciDB

CSciDB

DR ER

FSciDB

GR

HSciDB ISciDB

Figure 5.5. A suboptimal plan for this placement of Query 3. This plan results in a higher total query

processing time, largely because it moves more data than the movement-minimizing plan.

142

 The second question we asked is: how does staging time compare to data

movement time? Ideally, the time spent staging should not exceed any reductions in data

movement time gained from staging. That is, if the time spent staging is greater than the

time saved by minimizing data movement, then staging provides no net benefit.

Examining additional performance-measurement data shows that time spent staging

generally is substantially less than time spent moving data. Performance tests run on

Bonneville (which we examine in greater detail below) show that the staging of queries

containing 10 or 12 operators takes on average approximately ½ second. Comparing the

data transfer rate calculated above to this average staging time, we see that staging pays

for itself if it eliminates the transfer of more than five million data elements. This savings

of five million data elements can be accrued over multiple operations in a query, but it is

instructive to note that a single 2200 × 2200 array contains five million data elements;

should staging eliminate a single transfer of an array this size it has justified the time spent

staging. Arrays of this size – and larger – are not uncommon in “Big Data” datasets.

Below we explore staging time in more detail.

 The relationships between data movement time, computation time, and staging

time suggest that staging can significantly reduce overall execution time (computation

time and data movement time), without adding substantial overhead.

5.3 EXAMINATION OF PLAN COSTS

5.3.1 OVERVIEW

 In hybrid systems, each query instance has a particular placement, and a staging is

required for each query instance. Because a placement may place leaf-level data objects

143

at locations different from operators’ execution locations, a staging may entail that data

must be moved from one component of the hybrid to the other. As we saw in previous

chapters, some plans move more data than other plans. Minimizing data movement in

hybrid analytic systems, then, amounts to identifying the staging for the minimal-

movement plan. This staging moves the minimal amount of data for the given

placement; it determines the movement-minimizing plan.

 We argue that finding the staging for the movement-minimizing plan is

challenging, and a task best left to a tool that automatically identifies it, such as Agrios.

There are two reasons that finding a movement-minimizing plan is challenging. First,

reasoning about the movement-minimizing plan can be conceptually difficult. Our

intuitions are not always the best guides; some “naive” plans that appear movement-

minimizing or near-movement-minimizing in fact may be not be movement-minimizing

plans. The challenge of identifying the movement-minimizing plan gets even more

difficult if the initial query is altered through transformation rules.

 Second, finding a minimal-movement plan takes time. The size of the search

space for queries of any reasonable size cannot practically be searched by human beings

– it is simply too large. The number of possible plans in the search space is exponential

in the number of query operations, so the more plans in the search space, the more time

required to identify the movement-minimizing plan. If query rewriting is also performed

during the staging process, even more time is required to find the movement-minimizing

plan. The application of transformation rules itself takes time, and the new queries and

plans generated from rule application further increase the size of the search space.

144

These two reasons illustrate challenges in identifying a movement-minimizing

plan from a single user-written query, for one particular placement. Finding movement-

minimizing plans becomes even more difficult for users when we consider multiple

instances of a single query, where instances vary in the size, shape, and placement of the

input data objects. These input variations are found in the example sketched in Chapter

1: the images Jane analyzed with her analytic script varied in the three ways listed above.

We show below that plans that are movement-minimizing for one placement are rarely

movement-minimizing for a different placement. Thus, if a movement-minimizing plan

for one placement is “recycled” for other placements, then it likely is not a movement-

minimizing plan for the new placements. Similarly, movement-minimizing plans for

inputs of a particular size and shape are typically not movement-minimizing plans for

inputs of other sizes and shapes, even when placements are fixed. Movement-minimizing

placements typically cannot be “recycled” across inputs varying in size and shape.

 Users of hybrid systems must supply a staging for the placement of each query

instance. To supply a staging, the user has three main options:

1. For each query instance, inspect the placement, shape, and size of the inputs,

reason about the appropriate staging (applying transformations as applicable),

and select the best one.

2. Use a fixed staging across all query instances.

3. Use a system such as Agrios that dynamically identifies movement-minimizing

stagings for each query instance (applying transformations as applicable), based

on the placements and other properties of the input data objects.

145

We argue that (3) is the only practical alternative. Automatically identifying movement-

minimizing plans is not a luxury for hybrid systems with diverse input properties, but a

necessity. Closely examining plan costs – which we do for the remainder Section 5.2 –

shows that (1) and (2) are unacceptable options for hybrid systems. (Option (2) remains

problematic even if we extend it to select from a small set of plans.) After mapping and

examining the costs for several queries, we argue against the feasibility of (1) and (2) by

supporting three claims:

A. Good stagings for a placement are rare. The odds of arbitrarily choosing a

movement-minimizing or acceptable staging are low, as only a small fraction of

stagings are good for a given placement.

B. A good staging has limited applicability. A staging that has an acceptable cost for

one placement will likely not be good for another, arbitrary placement, as a

staging is generally good for at most a small number of placements.

C. Worst-case costs are unacceptable. The cost of the worst stagings for a

placement are much greater than the cost of the best stagings. Ignoring the choice

of staging is a poor strategy.

5.3.2 METHODOLOGY

We performed a number experiments and analyses to argue for Claims A, B, and C

above. In these experiments and the experiments to follow we primarily use three

synthetic test queries. Written in R, Query 1 is:

 (A+((B%*%C)%*%D))[1:100,1:20]
 %*%((sum(E)+(F+G))+(H%*%(I%*%J)))[1:20,1:100];

Query 2 is:

146

 (((sum(B) + C) %*% A[1:50,1:50];
 %*% (((D %*% E) + F[1:100,1])[1:50]);

Query 3 is:

 (((A %*% B) %*% (C + (D + E)))
 + ((F + (G %*% (H %*% I)))[1,1]))[1:30,1:40];

The queries are depicted graphically in Figure 5.6. Four different operators are used in

the queries: matrix multiplication: %*%, elementwise addition: +, subscript: [], and

aggregate sum: sum. We selected these queries for several reasons. First, the queries

utilize operators we identified as common in analytic workflows. Second, the queries

were sufficiently large and complex enough to permit transformation-rule application. In

practice, queries vary in the number of operators they contain.
15

 Our test queries may be

viewed as either as sophisticated user-written queries, or else as accumulations of several

simpler user-written queries.

 Multiple catalogs were used with each query, and unless stated otherwise, the

standards catalog for each query is used. A catalog, in this context, is a collection of data

object descriptions that is input to a query.
16

 Two catalogs differ from one another by

virtue of a difference in at least one data object; differences can be in an array’s shape,

size, or both shape and size. The catalogs used in our research are depicted in Table 5.1.

To see how two catalogs may vary, compare the “standard” catalog and the “big_e”

catalog for Query 2. The catalogs differ in the size and shape of data object E. Note that

a catalog does not specify storage locations for data objects, merely their sizes and

15

 Each user-written query is a line of user-written R code. An “analytic script” is one or more lines of R

code performing an analytic function, such as creating a linear model of a dataset.
16

 Recall that Bonneville and Agrios both use “catalog” data structures for maintaining information about

input data objects.

147

shapes. Having multiple catalogs for each query is useful because it lets us investigate

the effect on data movement when the shape and size of query inputs vary. For example,

%*%%*%

[][]

++

%*%%*%

%*%%*%

[][]

++

%*%%*%

%*%%*%

++

++sumsum

B

A

C

D

E F G

H

I J

20x100100x20

%*%%*%

%*%%*%

[][]

%*%%*%

++

A

B

D E

++

C

50,1
[][]

sumsum

[][]

50,50

100,1

F

%*%%*%

[][]

%*%%*%

++

[][]

%*%%*%

%*%%*%

++++

BA C

D

F

G

H I

++

E

30,40

1,1

Figure 5.6. Queries 1, 2, and 3 (ordered top to bottom). Query 1 has 12 operators and 10 data objects,

Query 2 nine operators and six data objects, Query 3 10 operators and nine data objects.

148

suppose we select a particular placement, for a given catalog and query. The movement-

minimizing plan for this combination of placement, catalog, and query has a cost.

Suppose we then use a different catalog for the same query, holding the placement fixed.

The movement-minimizing plan for this combination also has a cost, which may differ

from the cost of the initial combination. The difference between these two costs can be

attributed in part to the difference in catalogs – i.e. the difference in size and shape of the

input data objects.

Figure 5.7. A section of staging space for Query 2. Placements form rows, stagings form colums. Each

cell is the staging cost for that placement. The value circled in red shows the data movement cost for a

placement locating data objects A, B, C, E, and F at SciDB and data object D at R, and a staging executing

all operations at R except the matrix multiplication on the main right-hand branch of the query tree.

 We argue for Claims A, B, and C using a representation of a query’s staging

space. The staging space for a query consists of the costs for all possible stagings and all

possible placements. We represent a query’s staging space as an array. At its simplest, a

staging-space array is two-dimensional: one dimension corresponds to possible

placements, the other to all possible stagings. Each cell of the array shows the plan cost

for that particular placement and that particular staging. Figure 5.7 shows part of staging

space for Query 2. The entire array has dimensions of 64 × 512, since the query consists

of six inputs and nine operators. The circled value shows data movement costs when all

leaf-level data inputs except D are placed at R, and all operations but the matrix

0 40100 10200 50300 300 …

40000 100 50200 10300 40300 …

100 40200 10100 50200 400 …

40100 200 50100 10200 40400 …

10000 50100 200 40300 10300 …

… … … … … …

staging

p
la

c
e
m

e
n

t

149

multiplication on the main right-hand branch are performed at R. All of the staging-

space arrays considered here are two-dimensional.

Staging-space arrays are valuable to our investigation because they show the

calculated costs of all possible stagings and placements. The array captures not only the

movement-minimizing stagings for all placements, but also all alternative stagings.

Staging-space arrays show us both how expensive – and how inexpensive – stagings can

be. We created staging-space arrays using a test harness attached to Agrios. The harness

populated the array by iterating through all of a query’s possible placements and stagings.

Query rewriting was disabled to keep this investigation simple. Experiments presented

later in this chapter show that the costs of movement-minimizing plans can only decrease

when query rewriting is enabled; thus the utility of automated staging only grows with

transformations enabled.

5.3.3 RESULTS

 Examining staging space we see that there are very few movement-minimizing

stagings for each of a query’s placements. Query 2’s staging-space array has 64

placements and 512 stagings. For each placement, there can be between one and 512

stagings with minimal – i.e. movement-minimizing – estimated cost. If Agrios is used in

this hybrid system, identification of the movement-minimizing staging for any placement

is guaranteed. If Agrios is not used, the data scientist is responsible for finding the

movement-minimizing staging from among the alternatives.

1
5
0

Table 5.2. Catalogs used by Agrios’ test queries

Query 1
catalog name A B C D E F G H I J

standard 100 x 100 100 x 100 100 x 100 100 x 100 50 x 50 100 x 100 100 x 100 100 x 100 100 x 100 100 x 100

large 1000 x 1000 1000 x 1000 1000 x 1000 1000 x 1000 50 x 50 100 x 100 100 x 100 100 x 100 100 x 100 100 x 100

time_series_1 100 x 20 100 x 100 100 x 100 100 x 20 50 x 50 100 x 100 100 x 100 100 x 100 100 x 100 100 x 100

time_series_2 100 x 100 100 x 100 100 x 100 100 x 100 50 x 50 100 x 1000 100 x 1000 100 x 100 100 x 100 100 x 1000

time_series_3 100 x 10000 100 x 100 100 x 100 100 x 10000 50 x 50 100 x 10000 100 x 10000 100 x 100 100 x 100 100 x 10000

Query 2
catalog name A B C D E F

standard 100 x 100 50 x 10 100 x 100 100 x 100 100 x 1 200 x 200

big_e 100 x 100 50 x 10 100 x 100 100 x 100 100 x 100 200 x 200

long_a 1000 x 10 50 x 10 10 x 50 100 x 100 100 x 1 200 x 200

big_c 50 x 10000 50 x 10 10000 x 10000 100 x 100 100 x 1 200 x 200

varying_1 1000 x 1 50 x 10 1 x 1000 100 x 100 100 x 100 200 x 200

Query 3
catalog name A B C D E F G H I

standard 100 x 100 100 x 100 100 x 100 100 x 100 100 x 100 50 x 50 50 x 50 50 x 50 50 x 50

reverse 50 x 50 50 x 50 50 x 50 50 x 50 50 x 50 100 x 100 100 x 100 100 x 100 100 x 100

time_series_1 100 x 100 100 x 100 100 x 100 100 x 100 100 x 100 50 x 5 50 x 50 50 x 50 50 x 5

time_series_2 100 x 100 100 x 100 100 x 1000 100 x 1000 100 x 1000 50 x 50 50 x 50 50 x 50 50 x 50

time_series_3 100 x 100 100 x 100 100 x 10000 100 x 10000 100 x 10000 50 x 500 50 x 50 50 x 50 50 x 500

time_series_1_1 30 x 1 1 x 1 1 x 1 1 x 40 1 x 40 50 x 1 50 x 50 50 x 50 50 x 1

time_series_2_1 30 x 100 100 x 1 1 x 400 1 x 400 1 x 400 50 x 50 50 x 50 50 x 50 50 x 50

time_series_3_1 30 x 1000 1000 x 1 1 x 1000 1 x 1000 1 x 1000 50 x 500 50 x 50 50 x 50 50 x 500

Data Object

Data Object

Data Object

151

Figure 5.8 Histogram of placements for Query 2. The horizontal axis shows what percentage of all

possible stagings fall within a given percent of movement-minimizing. The vertical axis is the count of

placements in each range. For forty of the 64 placements, fewer than 0.2% of stagings (i.e. only one

staging) are movement-minimizing. For over a third of the placements, fewer than 16 of the 512 stagings

(3%) are within 150% of movement-minimizing cost. The upshot is that there are very few acceptable

stagings, regardless of placement.

 Figure 5.8 presents an analysis of Query 2’s staging space. It shows that

generally, for a given placement, the percentage of movement-minimizing stagings

among possible stagings for a placement is low. For example, for 40 of the query’s 64

placements, less than 0.2% of the 512 possible stagings have movement-minimizing cost.

In fact, for each these forty placements, only one of the 512 possible stagings are

movement-minimizing. The odds of a data scientist identifying the movement-

minimizing plan are not good. The likelihood of finding a movement-minimizing plan

does not improve much when we look over all 64 placements, even though there are

multiple movement-minimizing stagings for some placements. If we look across all pairs

of a placement and a staging, the staging will be movement-minimizing for the placement

only 0.07% of the time.

152

 It might be argued that movement minimization is too lofty an objective, that a

staging is acceptable if it is “close enough” to the movement-minimizing cost. Removing

the requirement of movement minimization does not much improve matters. While there

are more “acceptable” stagings than movement-minimizing stagings, even acceptable

stagings are by no means common. Figure 5.8 also shows what percentage of stagings

fall within 150% and 200% of the movement-minimizing cost; these are shown by the red

and green columns, respectively. These columns show that acceptable stagings are nearly

as rare as movement-minimizing stagings.

 In practice, a data scientist likely would not randomly select a staging, but rather

reason about which staging is movement-minimizing. (Note that the ability of a data

scientist to reason about stagings assumes the query volume is small enough that the data

scientist has enough time to perform this work. Under some reasonable workloads – e.g.,

when query instances are evaluated many times per minute – this assumption is shaky at

best.) While “in the wild” there might be a variety of placements, we would expect in

many cases that large inputs are placed at SciDB, and small inputs are placed at R.

 Suppose that a query instance had this sort of “typical” placement – most large

objects at SciDB, most small objects at R. This sort of placement suggests that an

intuitive, “naïve” staging approach such as “Do all operation at SciDB” would be

effective. Results presented later in this chapter, however, show that naïve staging

strategies for some “typical” placements may result in stagings up to ten times more

expensive than the movement-minimizing plan. Intuition is not a reliable guide for

identifying the movement-minimizing staging. Reliance upon naïve staging approaches,

moreover, does not address the time required to reason about transformations. Plans that

153

have been rewritten through transformation rules may be less expensive than their

untransformed alternatives. If the movement-minimizing plan requires a number of

transformations of the original query, a naïve approach is likely insufficient to identify it.

 The results presented in Figure 5.8 support Claim A above: movement-

minimizing stagings, and even acceptable non-movement-minimizing stagings, are few

and far between. Data scientists hoping to identify movement-minimizing or acceptable

stagings by hand have a tall order. Agrios, by contrast, automates identification of the

movement-minimizing staging, relieving data scientists from that burden.

 We demonstrated that acceptable stagings are uncommon. Let us now assume a

good staging – even a movement-minimizing one – for a particular placement has been

identified. Just how useful is this staging for other placements? Alternatively: How

often is a good staging a good staging? Ideally, a good staging would perform well

over a large percentage of the possible placements – such a staging is robust. If typically

good stagings are robust, then there is little need for Agrios; once a movement-

minimizing staging for a given placement is identified, the staging can simply be reused

for other placements.

 Staging space shows that most stagings, however, are not robust. A staging

whose cost is movement-minimizing for one particular placement is not movement-

minimizing for many placements, and wholly unacceptable for others. Figure 5.9 shows

results for Query 3; these results are typical. Nearly all of the query’s 1024 stagings are

movement-minimizing for less than 2% of its 512 placements. Reframing this result in

terms of likelihoods, odds are nearly certain that if a movement-minimizing staging is

identified, it is movement-minimizing only for ten or fewer placements out of hundreds

154

of possible placements. Figure 5.9 also shows results for experiments when the

movement minimization requirement is relaxed – counts of stagings when costs are

within 150% and 200% of movement-minimizing for some placement. We see that even

acceptable stagings (though not movement-minimizing) remain acceptable for only a

limited number of placements.

Figure 5.9. Histogram of stagings for Query 3. The horizontal axis shows what percentage of placements

for which the stagings are movement-minimizing or near-movement-minimizing. Over 1000 stagings (out

of 1024) are movement-minimizing for fewer than 2% of placements. Given a movement-minimizing

staging for a particular placement, odds are it is not movement-minimizing for most other placements.

E
F

E
F

Figure 5.10. Two instances of Query 2. The two instances differ only in their placements of data objects E

and F. In the instance at left, E is stored at R and F at SciDB. In the instance at right, E is stored at SciDB

and F is stored at R. The storage locations of all other data objects in both query instances are identical.

155

E
F

Figure 5.11. A comparison of the movement-minimizing stagings for the two instances of Query 2 depicted

in Figure 5.10. Operations whose execution locations differ between movement-minimizing stagings are

shaded red. Note that both main branches of the tree contain shaded operators, though the initial placement

difference between the two instances is isolated to one branch.

 Examining a particular example explains why some stagings are acceptable for

only a limited number of placements. Figure 5.10 shows two instances of a query,

differing only in the initial placement of data objects E and F. In the first instance of the

query, shown at left in Figure 5.10, E is placed at R and F is placed at SciDB. In the

second instance, shown at right in Figure 5.10, E is placed at SciDB and F is placed at R.

The input placements of these two query instances differ only slightly, but their

movement-minimizing stagings differ significantly. Figure 5.11 shows the difference

between stagings for both instances; execution locations differing between instances are

shaded red. Though the differences in inputs are isolated to the right-hand branch of the

tree’s root operation, movement-minimizing execution locations differ in both the right-

hand and left-hand branches. Suppose the movement-minimizing plan for the left query

instance in Figure 5.10 had been repurposed for the query instance at the figure’s right.

While the plan would be movement-minimizing for the placement of the one query

instance, it would not be movement-minimizing for the other instance. Repurposing the

left instances’ movement-minimizing plan for the right instance, in fact, results in moving

156

nearly five times more data elements than the right instance’s movement-minimizing

plan.

 The fact that two similar placements might have substantially different

movement-minimizing stagings is significant because intuition suggests otherwise.

Suppose a data scientist decided to bank on this intuition, for a workflow exhibiting only

small variations in initial data placements. She might dismiss the need for Agrios,

believing that once a movement-minimizing staging had been identified for a given

placement, that it could be reused for the similar placements in the workflow. This

example shows that at least in some cases, her intuition would be incorrect. It is

especially important to note that in some instances, such as the one shown in Figure 5.10,

variations in input placements affect the optimal execution locations of “nonlocal”

operations. Local staging adjustments, then, may not be sufficient to repurpose a

movement-minimizing plan for one placement to another query instance with a different

placement.

 We showed earlier that movement-minimizing stagings are rare for a given

placement, and now see that movement-minimizing stagings are also typically acceptable

for only a small number of placements. Efforts spent on hand-staging may very well be

in vain, and the fruit borne from the work likely has utility only for a small number of

placements. Automatically identifying the movement-minimizing staging is a more

sensible solution for managing data movement.

 We have been motivating the automated minimization of data movement in part

by arguing that hand-identifying movement-minimizing stagings is difficult. The

difficulty of hand-staging is moot, however, if the price for misidentifying the movement-

157

minimizing staging is low. Additional examination of staging space shows that the cost

of failure is not low, as illustrated by Figures 5.12 and 5.13. These plots show that the

price of failure can be high, arguing for the utility of a system such as Agrios that

guarantees identification of the movement-minimizing staging.

Figure 5.12. Another perspective on the plan space for Query 1. Costs for all stagings are sorted and

plotted, for all 512 placements; each line represents a particular placement. The left end of a line shows the

movement-minimizing staging cost for that placement.

 In Figures 5.12 and 5.13, each line represents an individual placement. Figure

5.12 depicts results for Query 1, while Figure 5.13 depicts results for Query 2. In both

figures, each line’s shape depicts costs for all possible stagings, sorted in increasing

order. Thus, the lower-left end of each line shows the movement-minimizing cost for

that placement. Figure 5.12 shows actual costs on the vertical axis, while Figure 5.13

shows normalized costs, i.e. cost as a ratio to movement-minimizing costs. In Figure

5.13, for one placement, we see that the most expensive staging moves over 50,000 times

more data elements than the movement-minimizing staging. A strategy of ignoring the

158

movement-minimizing staging can yield a 50,000-fold cost penalty, at least in some

cases. Even in cases where the penalty is not so high, the cost of non-movement-

minimizing stagings is often substantially greater than the cost of movement-minimizing

stagings.

Figure 5.13. Normalized costs for all stagings of Query 2; one line for each placement. Note both that the

vertical axis has a logarithmic scale, and that some lines overlay one another; a total of 64 placements are

represented here. This plot illustrates how expensive non-movement-minimizing plans can be. For one

placement, the worst staging moves over 50,000 times more data elements than the movement-minimizing

one. Though the worst-case for other placements are not this extreme, all worst-case stagings still move

over 200 times more data elements than the movement-minimizing staging.

5.3.4 ADDITIONAL CONSIDERATIONS

Variations in input shape and size

 Up to this point we have focused exclusively on differences in staging costs due

to variations in placements. In the example introduced in Chapter 1, however, query

inputs varied not only in their initial placement, but in their shape and size. Let us now

examine how variations in the shape and size of leaf-level data objects affect staging

costs.

159

 Experiments show that movement-minimizing plans often vary from catalog to

catalog. We input three different catalogs through Query 2, where catalogs varied in the

size and shape of their inputs. Using Agrios’ test harness we created individual staging-

space arrays for the three catalogs, capturing the cost for each catalog of all stagings at all

placements. Analysis of these staging space arrays shows that there are 119 movement-

minimizing stagings, across all three catalogs. Of these 119, 56 stagings – or 47% of

optimal stagings – were optimal only to one of the three catalogs.

 These results are illuminated in more detail through examination of a particular

case. Figure 5.14 shows two instances of Query 2, differing only in the shape of data

object E. In the first instance of the query, shown at left in Figure 5.14, E is an n × 1

column vector. In the second instance, shown at right in the figure, E is an n × n matrix.

The placements for both instances are identical.

E

A

B C D
F

E

A

B C D
F

Figure 5.14. Two instances of Query 2. The instances differ only in the size and shape of input E.

Coloration of the input data objects indicates their storage locations: objects B, C, and F are stored at R,

objects A, D, and E at SCiDB. Placements are identical for both instances.

 The inputs to these two instances differ only slightly, but the movement-

minimizing stagings differ significantly. Figure 5.15 shows the difference between

stagings for both instances; execution locations differing between instances are shaded

160

red. Similar to the case examined earlier, though the differences in inputs are isolated to

a single data object in the right-hand branch of the tree’s root operation, movement-

minimizing execution locations differ in both the right-hand and left-hand branches.

Variations in input locations affect the movement-minimizing execution locations of

“nonlocal” operations; the query instances shown in Figure 5.14 are another case where

our intuitions about staging can be incorrect. It would be wrong to assume that small

changes in input shape and size may only cause a small increase in plan cost. For the

query in Figure 5.14, repurposing the left instances’ movement-minimizing plan for the

right instance requires moving nearly to times as many data elements than the right

instance’s movement-minimizing plan.

Figure 5.15. A comparison of the movement-minimizing stagings for the two instances of Query 2

depicted in Figure 5.14. Operations whose execution locations differ between movement-minimizing

placements are shaded red. (For ease of exposition input E is represented simply as a column vector.)

Time-series datasets

 In addition to these catalogs, it is instructive to rerun these experiments on

catalogs that reflect datasets common in data science, viz., time-series datasets. Time-

series datasets are common in many science and engineering applications. Such datasets

161

are found, for example, when a collection of sensors periodically samples a phenomenon.

The collection of sensors remain constant, but the data collected grows over time.

 Several time-series catalogs are included in Table 5.1. For Query 1, for example,

catalogs time_series_1, time_series_2, and time_series_3 respectively show data objects

at time T1, T2, T3. Figure 5.16 shows such growth for Query 3. This unidimensional

growth reflects growth along a dataset’s temporal dimension. A concrete example

illustrates this. Suppose an experimental setup includes a linear array of five sensors.

The first reading of the array, performed at time T1, is stored as a 1 × 5 array. Each time

the array stores and samples an environment, the “height” of the array grows by one unit.

The growing dimension is the arrays’ “time” dimension. After n samples, the shape of

the array is n × 5, and after n + 1 samples, the shape of the array is (n + 1) × 5. Such an

array might be used in industrial or scientific applications, e.g. monitoring fluid flow

through a chute or streambed. Figure 5.17 provides a visual representation of the

catalog’s growth over the three time slices.

%*%%*%

[][]

%*%%*%

++

[][]

%*%%*%

%*%%*%

++++

BA C

D

F

G

H I

++

E

30,40

1,1
%*%%*%

[][]

%*%%*%

++

[][]

%*%%*%

%*%%*%

++
++

BA C

D

F

G

H I

++

E

30,40

1,1

%*%%*%

[][]

%*%%*%

++

[][]

%*%%*%

%*%%*%

++
++

BA

C

D

F

G

H I

++

E

30,40

1,1

Figure 5.16. An example of unidimensional time-series growth for Query 3. The relative size of the data

objects gives a sense of how data objects D, E, F, and I grow over time.

162

Figure 5.17. Unidimensional time-series growth of a dataset. Samples are taken at intervals by a physical

array of five sensors. At left is the sensor output at time T1. Only one reading has been recorded by the

sensors. The center image shows the dataset at time T5, the rightmost image the dataset at time T8.

Given this scenario, we should ask: can the movement-minimizing plan at T1 be

reused at T2 and T3, provided that the data’s placement does not change? If movement-

minimizing plans from T1 can be “recycled” at multiple times for time-series datasets,

these plans would be fairly robust. To answer the question, we ran the time_series_1

catalog through Agrios, for Queries 1 and 3. Transformations were switched off, and the

movement-minimizing plan for each placement extracted. These movement-minimizing

plans were then costed for each query, for the catalogs time_series_2 and time_series_3,

effectively recycling the movement-minimizing plan at T1 on the unidimensionally larger

datasets. Figures 5.18 through 5.21 show the results. Each plot depicts two sets of costs:

i) movement-minimizing costs determined by Agrios, given the catalog, and ii) costs of

plans that were movement-minimizing for the T1 catalog, and recycled at a later time.

Costs for each placement are shown, and costs are ordered in decreasing order based on

the cost of the movement-minimizing plan.

|

T1

T5

T8

163

 The meaning of the figures is illuminated if we examine a couple of particular

points. Two points are highlighted in Figure 5.18. Point A shows the plan cost when the

movement-minimizing staging from T1 is recycled for time T2, for the same placement.

Point B shows the movement-minimizing plan cost for a placement, for the catalog at T2;

this is the cost identified by staging. The upshot, for this particular placement, is that

the movement-minimizing stagings differ between T1 and T2. The difference between

the two points – roughly 70,000 data elements – is the price paid by recycling in lieu of

optimization.

 Several conclusions follow from these results. First, in roughly half the cases, the

cost of the recycled plan is no greater than the cost of the movement-minimizing plan.

The frequency of recycled plans having the same cost as movement-minimizing plans is

nearly identical for both Query 1 and Query 3. This suggests that there may be some

degree of robustness to plans in time-series data applications with fixed placements.

Second, where there is a cost difference between the movement-minimizing plan and the

recycled plan, the amount of the difference depends on the particular placement. For

both queries we see recycled plans that are much more expensive – e.g. twice as

expensive – than the movement-minimizing plan. For both queries we also see that

recycled plans are only slightly more expensive than the movement-minimizing plan.

Table 5.2 captures some of these findings.

 These results have a mixed impact on Agrios’ utility in cases where catalogs

exhibit time-series growth. Depending on the particular placement, a plan recycled over

time may or may not move more data than the movement-minimizing plan for that

164

placement. In cases where the recycled plan’s cost differs from the movement-

minimizing plan’s cost, the cost difference can be large or small.

Table 5.3. Summary statistics for recycling plans, for Queries 1 and 3. The “Plans recycled” column

captures what percentage of movement-minimizing plans at T2 or T3 are identical to the movement-

minimizing plan at T1. For this percentage, recycling T1’s movement-minimizing plan at T2 or T3 is

practical. For example, there is a movement-minimizing plan for each of the 512 possible placements for

Query 3. For 230 of these placements, the movement-minimizing plan at T3 is identical to the movement-

minimizing plan at T3: giving the percentage of 45%.

The additional three columns – Mean, Median, and Max – show summary statistics for the cases

where the optimal plan at T1 differs from the optimal plan at T2 or T3. These are summary statistics of the

282 placements for Query 3 where the movement-minimizing plan at T1 differs from the movement-

minimizing plan at T3. Mean, median, and maximum plan costs are simply stated. The parenthesized

values show the penalty for recycling T1’s movement-minimizing plan, as a percentage of the movement-

minimizing plan’s cost for the new time. For example, the movement-minimizing plan at T1 for one

placement of Query 3 moves 1100 data elements. The movement minimizing plan at T3 for the same

placement also moves 1100 data elements. The movement-minimizing plans for that placement at T1 and

T3 differ, however, and if T1’s movement-minimizing plan is recycled at T3, the plan moves 47,000 data

elements. The difference between the cost of T3’s movement-minimizing plan and recycling T1’s

movement-minimizing plan is 45,900, and the cost of the recycled plan is over 4200% the cost of T3’s

movement-minimizing plan.

In case the findings above incline a data scientist towards recycling, we should

explicitly address two details contained in the exposition above. First, the results above

are applicable when only the shape and size of input data objects vary, not when data

placements change. Though the cost penalty for recycling may be little or none when

placements are static, the cost penalty of recycling may be prohibitively high if a

placement changes. Results in the first part of this section illustrated how costs can vary

with placement changes. Second, while unidimensional time-series data growth like that

modeled above might seem common, in practice the behavior of data growth is not

always so predictable. Consider the sensor array shown earlier, in Figure 5.17. In this

Plans

recycled Mean Median Max

Plans

recycled Mean Median Max

Optimal T1 plans

recycled at T2
49% 47270 (140%) 10000 (110%) 188000 (910%) 53% 19760 (130%) 2500 (100%) 91300 (890%)

Optimal T1 plans

recycled at T3
49% 1454000 (950%) 998000 (150%) 3968000 (50000%) 45% 212400 (320%) 47500 (100%) 1036000 (8930%)

Query 1 - Plan costs (percent of optimal) Query 3 - Plan costs (percent of optimal)

1
6
5

 Figure 5.18. Cost comparison for recycled plans, Query 1, time_series_2. Recycled plan costs show cost for reusing the movement-minimizing

 plan for time_series_1 catalog. Placements have been sorted by optimal cost, in decreasing order. Point A shows the plan cost when the movement-

 minimizing staging from T1 is recycled for time T2, for the same placement. Point B shows the movement-minimizing plan cost for a placement, for

 the catalog at T2; this is the cost identified by staging.

1
6
6

 Figure 5.19. Cost comparison for recycled plans, Query 1, time_series_3. Recycled plan costs show the cost for reusing the movement-

 minimizing plan for time_series_1 catalog.

1
6
7

 Figure 5.20. Cost comparison for recycled plans, Query 3, time_series_2. Recycled plan costs show cost for reusing the movement-minimizing

 plan for time_series_1 catalog.

1
6
8

 Figure 5.21. Cost comparison for recycled plans, Query 3, time_series_3. Recycled plan costs show cost for reusing the movement-minimizing

 plan for time_series_1 catalog.

169

example, the 1 × 5 array regularly adds samples to its output, growing its output array

unidimensionally over time. At some point in time, however, the sensor array will likely

be replaced, possibly with a finer-grained array of sensors. For example, the new sensor

array may cover the same physical distance, but be composed of ten sensors, not five.

The size of the stored output array, after the last sample of the original sensor array, is n

× 5. The size of the stored data array after the first sample of the new sensor array is (n +

1) × 10. The transition from the old sensor array to the new sensor array causes

multidimensional growth of the output array. In this situation, the results presented in

Figures 5.18 through 5.21 above may not adequately model the cost difference between

recycled plans and movement-minimizing plans.
17

Data placement

 Up to this point we assumed that users of hybrid analytic systems have no control

over the placement of their data. Because of this assumption, up to now in our

experiments we examined all placements, figuring that one of these possible placements

would be the actual placement. In practice, however, not all placements are possible or

likely; the actual placement of data is typically determined by institutional policy,

community access needs, and hardware availability. These social factors constrain

placement alternatives [13]. For the sake of inquiry it is worth relaxing these constraints

and considering how data movement costs would be affected through the deliberate initial

placement of input data. Suppose data could be freely placed at either hybrid component,

perhaps manually specified by the user or automatically specified through a user-written

17

 New hardware installations are not necessary to cause multidimensional changes in input data size.

Often data generated from predictive models are inputs to analytic workflows. If the predictive model is

changed, the size of its output may grow multidimensionally. Such a change, for example, has been

identified in analyses used at the Center for Coastal Margin Observatory and Prediction [52].

170

script. Given this supposition, does staging continue to play an important role in

minimizing data-movement costs?

 Staging space shows that while specifying placements may lower costs, it cannot

reduce costs to the degree that staging can. Figure 5.12 – originally introduced in

another context – also illustrates this fact. Recall that each line depicts the costs for a

given placement, sorted in increasing order. For each placement (line), the leftmost point

shows the movement-minimizing staging costs, while the rightmost point shows the costs

for the most expensive staging. The ratio of the most expensive movement-minimizing

cost to the least expensive movement-minimizing cost is approximately 1:22,000. (These

costs consist of the highest and lowest points on the y-axis, respectively.) This ratio

shows the greatest reduction that initial placement can have on plan costs. Contrast this

ratio to that between the movement-minimizing staging cost and the most expensive

staging cost, for a particular placement (the leftmost and rightmost points, respectively,

of any one line in Figure 5.12). For many lines this ratio exceeds 1:100,000, and

represents the greatest decrease that staging can have on cost. This ratio is nearly five

times the ratio between the best placement and worst placement for movement-

minimizing plans. Though initial data placement can reduce costs, the potential cost

benefits of staging are far higher. Additionally, recall that even if the user specifies a

particular placement, the hybrid system still requires a staging to execute the query. User

specification of initial data placement does not obviate the need to state where that

query’s operations are performed. As we saw above, the movement-minimizing staging

for any particular placement – user-specified or otherwise – is likely not movement-

minimizing or unacceptable for other placements.

171

 These results show that staging plays a valuable role in reducing estimated data

movement costs. While deliberate data placement can help reduce data movement, the

contribution to data-movement minimization by staging is more important than the

contribution from data placement.
18

5.4 CONCLUSION

 This chapter motivated the need for a automatically minimizing data movement in

hybrid systems. Through an examination of plan costs, we showed that good stagings are

rare, that good stagings are typically only good for a narrow number of placements, and

that worst-case costs incurred by ignoring staging are unacceptably high.

 We established earlier that under many workflows, it is not practically possible to

hand-stage individual query instances so that data movement is minimized. Given that

hand-staging was unacceptable, two alternatives remained: use of an automated system

such as Agrios, or reliance upon a single staging – or small set of stagings – for use in all

circumstances. In this chapter we argued that reliance upon a single staging or several

stagings was also an unacceptable alternative for workflows where input data varied in

placement, shape, and size. Our argument rests upon our demonstrations that good

stagings for a placement are rare (Claim A), that a good staging has limited applicability

18

 One issue regarding data placement is not addressed here. The results presented immediately above

argue that staging plays an important role in reducing data movement, even if data placements are

specified. What these results do not address is the fact that some data placements might be better, over all

stagings, than other data placements. Suppose, for example, that all stagings for placement A had costs

between 1000 and 2000. Suppose that most stagings for placement B had costs between 1000 and 2000,

but that a handful of stagings for placement B had costs of over 1,000,000. Intuitively, placement A is

better than placement B, since for placement A, regardless of the staging the costs will never exceed 2000.

Our research did not investigate whether or not some placements are better than others, in this

sense. We suspect that while some placements may turn out to be much better than others, there will likely

be some stagings that have very high costs for the placement.

172

(Claim B), and that worst-case staging costs are unacceptable (Claim C). The only

acceptable method for minimizing data movement for such workloads is an automated

tool such as Agrios.

173

CHAPTER 6: EXPERIMENTAL EVALUATION

6.1 OVERVIEW

 In the previous chapter we motivated the need for automatic data-movement

minimization in hybrid systems. We now evaluate Agrios’ performance in minimizing

data movement. As explained in Chapter 3, Agrios reduces data movement through three

related techniques: i) identifying the staging for the movement-minimizing plan

(staging), ii) rewriting queries through the application of rewrite rules, and iii)

accumulating multiple queries into one.

 These three techniques can work together to minimize data movement. Staging is

the essential staging technique. Staging creates alternative plans from a query, costs the

plans, and identifies the least expensive one. Query rewriting can assist staging during

the staging process. Query rewriting helps by both increasing the number of plans and

queries considered during staging, and by facilitating transformations that often directly

reduce the amount of data transferred between operators. Query accumulation can also

assist the staging process. It increases the scope of both query rewriting and staging, by

aggregating multiple queries in a user-written script into a single larger query.

 Our methodology for evaluating Agrios’ performance addresses each of these

techniques, first measuring how staging minimizes data movement, then staging plus

query rewriting, then staging plus both query rewriting and accumulation.

174

6.2 METHODOLOGY

 We conducted experiments using all three test queries introduced in Chapter 5.

Multiple catalogs were used for each query; see Table 5.1 in the previous chapter for

details on catalog properties. Similar to the previous section, in each experiment we

consider all possible placements. Each experiment considers, therefore, a placement

where all data objects are located at R, a placement where all data objects are located at

SciDB, and all combinations of placement in-between. In keeping with our cost model,

in each experiment we measure the number of data elements that would have to be

moved to execute the query.

6.3 RESULTS

6.3.1 STAGING

 Our first claim is that staging alone substantially reduces the amount of data

transferred. Specifically, Agrios’ cost-staged queries transfer fewer data elements than

queries staged by alternative staging policies. Recall that the staging process does not

rewrite queries using transformation rules, and does not accumulate multiple queries into

one. Bonneville’s search space for staging contains one plan for each possible staging,

plus the original query. If the query being simply staged contains n operations, there are

2
n
 plans and one query in the search space; these plans and queries are represented in

Bonneville’s MEMO data structure.

 For each of the three test queries, and for three alternative staging policies, we

recorded the number of data elements moved. These results we compared to the number

of data elements moved by Agrios’ cost-based staging. The first two alternative staging

175

policies are simple: they are “do everything at R” and “do everything at SciDB.” The

third policy is a greedy policy. For binary operations, the greedy policy performs an

operation at the location of the larger input object, randomly breaking ties if the inputs

have identical sizes. For unary operations, the greedy policy performs the operation at

the location of the input. The greedy policy operates “bottom up”; its decisions on

execution location consider only one operator at a time. For each operation, the greedy

policy assigns it an execution location that guarantees that that particular operation moves

the minimal amount of data given its input locations. Because it considers only one

operation at a time, the greedy policy does not guarantee that the amount of data moved

by the entire query is minimized.

Figure 6.1. Data movement of cost-staged plans compared to naïvely-staged “do it all at one place” plans –
Query 1. There is one point for each placement, each point showing the cost of the two alternative staging
(plan) costs. Some points overlap, as costs for multiple placements can be identical. The vertical axis
shows staging costs using staging with Agrios, while the horizontal axis shows staging costs using an
alternative staging policy. If a point falls on the 45-degree line dividing the plot, Agrios’ cost-staged plan
has an identical cost as the plan staged according to the alternative staging policy: here the alternatives are
“All at R” and “All at SciDB”. Note that no points fall above the 45-degree line, indicating that Agrios’
cost-based staging policy moves no more data than the alternative policy.

 Figure 6.1 shows typical results, for the standard catalog of Query 1. Each point

on the plot shows a result for at least one different placement. In both graphs, the vertical

176

axes represent the number of data elements transferred by Agrios, the horizontal axes the

number of data elements transferred by the alternative staging policy. Points to the lower

right of the line indicate instances where Agrios transferred fewer data elements than the

alternative, while points on the line represent instances where the two policies transferred

the same number.

Agrios vs. All-at-R

Agrios vs. All-at-

SciDB Agrios vs. Greedy

Query 1 35.6 (39.2) 41.9 (43.2) 19.9 (25.5)

Query 2 70.0 (77.4) 68.8 (77.2) 1.1 (2.5)

Query 3 32.7 (42.3) 34.3 (41.5) 17.4 (23.3)

Table 6.1. Average percentage reduction in data elements moved: all placements (improved placements)

 Table 6.1 presents results for all three queries. The table shows the average

percent reduction in the number of data elements moved, between Agrios’ staging and

one of the three alternate staging policies. The first value shows average reductions for

all placements, across all catalogs for the query; the value in parentheses shows average

reductions across all catalogs, but only for cases where cost-based staging moves fewer

data elements than the alternative policy. (Staging moves the same number of elements

as alternative policies on average only 13, 25, and 21% of the time, for Queries 1, 2, and

3, respectively.) Across all queries, Agrios moves substantially fewer data elements than

both of the “All-at” policies. Agrios also outperforms Greedy, though by smaller

margins than the “All-at” policies. In no cases does Agrios’ cost-based staging move

more data elements than an alternative policy.

 Examining all possible placements helps bound the performance of Agrios, but

one could argue that certain placements are more likely to be found “in the wild” than

others. While hybrid systems can store data at both locations of the hybrid, in practice

177

one might expect to see the smaller input data objects of a query stored at R, and the

larger input data objects stored at SciDB. Intuitively, such placements lend themselves to

an All-at-SciDB staging policy. With this in mind, we hand-identified a number of

placements satisfying this expected data distribution, and compared the number of data

elements moved by an All-at-SciDB policy to the number of data elements moved

by Agrios’ staging. Though in some instances the results were similar, in many cases

Agrios’ cost-based staging moved four- to ten-times fewer data elements than All-at-

SciDB. In no cases did Agrios move more data elements than All-at-SciDB. As we

argued in the previous chapter, intuition can be an unreliable guide to identifying the

movement-minimizing plan. In this case, the intuition that an “All-at-SciDB” staging

policy necessarily moves less data than Agrios’ staging policy, when large input data

objects are stored at SciDB, would be incorrect.

6.3.2 TRANSFORMATIONS AND QUERY REWRITING

 Query rewriting can reduce the amount of data moved, over and above the

reduction provided by staging alone. Query rewriting, which transforms the user-written

query into logically equivalent queries, ultimately increases the number of plans

considered by Agrios’ stager; the query-rewriting process was articulated in Chapter 3.

The benefits of query rewriting are illustrated by comparing the number of data elements

moved by staging alone, to the number of data elements moved by staging augmented by

query rewriting. Figure 6.2 shows results for Query 3, using two different input catalogs.

 The vertical axes for both graphs show the number of data elements moved when

Agrios performs query rewriting during staging. The horizontal axes show the number of

data elements moved when Agrios stages queries without query rewriting (staging alone).

178

Though on some placements query rewriting provides no benefit over and above staging,

in many cases query rewriting reduces data movement. This fact is shown by the number

of points falling below the 45-degree line dividing the plot.

Figure 6.2. Staging and query rewriting moves fewer data elements than staging alone. Shown are results

for Query 3, for the standard catalog (left) and reverse catalog (right). The vertical axis shows staging costs

using staging with query rewriting, while the horizontal axis shows staging costs using staging (staging

without query rewriting).

 Supplementing the results above with additional findings helps illustrate

query rewriting’s breadth of effect in reducing data movement costs. We ran several

additional queries through Agrios, randomly sampling 10% of all placementsft. The

additional queries are shown in Figure 6.3, and the experimental results shown in Figure

6.4.

 The results show that query rewriting may reduce data movement costs over and

above staging. The results also show variation between queries in the data-movement

reductions brought about by query rewriting. This variation is to be expected, as the

structure of the query and the operators it contains determines the applicability of rewrite

rules. For some queries, little is to be gained by query rewriting, as seen for the samples

of Query 7. For others, while query rewriting does not always reduce data movement,

179

when query rewriting is effective, the reduction in data movement can be substantial.

The results seen with these additional queries are similar to those seen with Queries 1

through 3.

++

E

++

F

++

++

++

A B

C

D

%*%%*%

++

++

DB

100,100[][]

%*%%*%

[][]

%*%%*%

%*%%*%

%*%%*% %*%%*%

A

C E F G H I

50,50

%*%%*%

++

sumsum

%*%%*%%*%%*%

++

A C D E

sumsum sumsum

B F

++

CA

50,100[][]

%*%%*% ++

++

B

F

sumsum ++

D

E

sumsum

50,10[][]

Figure 6.3. Additional queries used for testing: Queries 4 (panel (a)), Query 5 (b), Query 6 (c), and Query

7 (d), which use catalogs q2_standard, q3_time_series_2, q2_big_e, and q2_big_c, respectively.

 Table 6.2 shows the percent reduction in the number of data elements moved by

Agrios compared to the number moved by Greedy. In all cases query rewriting and

staging moves fewer data elements than staging alone. The maximum reductions

presented in Table 6.2 deserve special attention. While on average the performance of

Agrios versus Greedy may not be exceptional, the maximum reductions illustrate that

there are cases where Agrios’ performance is remarkably better than Greedy’s. For

(a) (b)

(c) (d)

180

some, the real value of an optimizer such as Agrios comes not by eking out small

performance improvements for many plans, but by helping users avoid terrible plans.

The maximum reductions achieved by Agrios show that it succeeds in avoiding terrible

Greedy plans. In no cases does Agrios move more data elements than Greedy.

Figure 6.4. Additional test result showing how staging and query rewriting moves fewer data elements

than staging alone. Query 4 (a), Query 5 (b), Query 6 (c), and Query 7 (d) use catalogs q2_standard,

q3_time_series_2, q2_big_e, and q2_big_c, respectively. Plots show costs for a random 10% of query

placements.

(a) (b)

(c) (d)

181

Average percent reduction in data elements

moved: all placement (improved

placements)

Maximum percent reduction in data

elements moved: all placements

Agrios vs. Greedy,

staging only

Agrios vs. Greedy,

staging with query

rewriting

Agrios vs.

Greedy,staging

only

Agrios vs.

Greedy, staging

with query

rewriting

Query 1 19.9 (25.5) 27.1 (29.4) 63.0 83.3

Query 2 1.1 (2.5) 8.3 (12.7) 33.3 66.7

Query 3 17.4 (23.3) 46.1 (50.3) 65.5 99.9

Table 6.2. Results comparing Agrios to Greedy, for Queries 1, 2, and 3, “standard” catalogs. The results

for Agrios include both results using only staging, and results using query rewriting during staging.

6.3.3 QUERY ACCUMULATION

 Query accumulation can also reduce data movement. To explore the utility of

accumulation, we first ran our queries through Agrios, recording the amount of data

moved with the movement-minimizing plan. We then divided the query into several

subqueries, and independently staged each of the subqueries. In all cases, query rewriting

was enabled. Breaking the queries up in this way mimics how Agrios would handle

unaccumulated queries – rather than process the query as a whole, Agrios would first

process one of the subqueries, then process the other subquery. The total cost of the

unaccumulated query was the sum of the costs of the individual subqueries, staged

piecewise.

 This experiment simulates cases where an analytic script contains many lines of

code, i.e. many queries. Figure 6.5 illustrates a test case, showing the complete

(accumulated) Query 1, together with the “cut planes” that chop the query into smaller

subqueries. For ease of exposition the complete Query 1 is reproduced here:

 (A+((B%*%C)%*%D))[1:100,1:20]
 %*%((sum(E)+(F+G))+(H%*%(I%*%J)))[1:20,1:100];

182

If we rewrite the query to reflect the cut planes shown in Figure 6.5, we have three

queries. Written as R code, these three queries are:

 temp.1 <- (B%*%C)%*%D;
 temp.2 <- (sum(E)+(F+G));
 +(H%*%(I%*%J)) [1:20,1:100]
 result <- (A + temp.1)[1:100,1:20]
 %*% temp.2;

In the three-line version of the query, substituting the values for temp.1 and temp.2 into

result yields the single-line version of the query. A data scientist might prefer the latter

3-line chunk of code over the former for many reasons: legibility, coding standards, or

ease of debugging.

%*%%*%

[][]

++

%*%%*%

%*%%*%

[][]

++

%*%%*%

%*%%*%

++

++sumsum

B

A

C

D

E F G

H

I J

20x100100x20

Figure 6.5. Query 1, subdivided into subqueries along dotted “cut planes”.

 The benefit of accumulation is demonstrated by comparing the amount of data

moved in the large single query to the total amount moved by all of the subqueries.

Figure 6.6 shows representative results. An accumulated query moves no more data

elements than its unaccumulated subqueries. In many cases the accumulated query

moves fewer data elements. The histogram adjacent to the scatter plot shows the

183

frequency and impact of accumulation. More often than not, accumulating queries

reduces data movement, in many cases reducing the number of data elements transferred

by over 40%.

Figure 6.6. Data movement of accumulated queries compared to unaccumulated queries, Query 1, standard

catalog. The plot at left is similar to plots seen previously. The vertical axis shows data elements moved

when multiple subqueries are accumulated into a single query, the horizontal axis shows the total cost when

subqueries are executed piecewise. The plot at right shows a histogram, for all 512 of the query’s

placements. For approximately 140 placements, accumulating reduces data movement not at all or only a

small amount. For roughly 140 placements, however, accumulation reduces data movement by

approximately 40% over piecewise execution of the subqueries.

 We ran Queries 4 through 7 through Agrios to further illustrate the effects of

accumulation in reducing data movement costs. The queries are reproduced in Figure

6.7, with cut planes added. Experimental results for these test queries are shown in

Figure 6.8; the placements used were the same 10% of all placements (randomly

selected) used earlier.

 The results show that accumulation, when used in concert with query rewriting

and staging, may reduce data-movement costs more than these techniques alone. As with

the query-rewriting tests performed with Queries 4 through 7, we also see variation

between queries in the benefits of accumulation. Here too, query structure and operators

are responsible for some of the differences. Unlike the case of comparing costs for

184

simply staged queries with rewritten queries, however, in the case here the location of the

query’s “cut plane” also restricts the applicability of query rewrite rules.

++

E

++

F

++

++

++

A B

C

D

%*%%*%

++

++

DB

100,100[][]

%*%%*%

[][]

%*%%*%

%*%%*%

%*%%*% %*%%*%

A

C E F G H I

50,50

%*%%*%

++

sumsum

%*%%*%%*%%*%

++

A C D E

sumsum sumsum

B F

++

CA

50,100[][]

%*%%*% ++

++

B

F

sumsum ++

D

E

sumsum

50,10[][]

Figure 6.7. Additional queries used for testing, reproduced from Figure 6.3 with cut planes added. Shown

are Queries 4 (a), 5 (b), 6 (c), and 7 (c).

6.4 RULE TYPES AND STAGING

 Agrios has a number of transformation rules, each belonging to various rule

classes. The previous section demonstrated that staging with query rewriting often

resulted in plans whose costs were lower than those using staging alone. Beyond

illustrating potential benefits of query rewriting, however, these results provided no

visibility into the query-rewriting process. A more detailed level of understanding is

essential, especially for future work looking to augment and refine methods in rewrite-

(c) (d)

(a) (b)

185

based reduction of data movement. In particular, it would be helpful to know the effect

of different rule types in the staging process. Provided that we perform query rewriting

during staging, we should know whether some rule types reduce plan costs more than

other rule types. In particular, we should know whether reductive rules or consolidating

rules more effective in reducing data movement between hybrid components.

Figure 6.8. Additional test results showing how accumulation, staging, and query rewriting moves fewer

data elements than staging and query rewriting alone. Shown are Queries 4 (a), 5 (b), 6 (c), and 7 (d), as

depicted in Figure 6.7. The four queries use catalogs q2_standard, q3_time_series_2, q2_big_e, and

q2_big_c, respectively. Plots show costs for a random 10% of query placements.

Elements transferred, accumulated

(a) (b)

(c) (d)

186

 To answer these questions we ran several queries and catalogs through Agrios

four times, each time capturing the cost of the movement-minimizing plan. For the first

run we performed only staging, the second using only reductive rules, the third using only

consolidating rules, and the fourth using both rule types. Typical results are presented in

Figures 6.9 and 6.10. These figures give insight into the particular rule types responsible

for decreasing plan costs. The sort order for all placements was determined by optimal

plan costs when no rewrite rules were used.

 Agrios’ top-down memoization algorithm guarantees identification of the optimal

staging, for a given set of transformation rules. All of the costs shown in Figures 6.9 and

6.10, then, are optimal costs. There is no paradox in a particular query and placement

having multiple costs across multiple instances of the query; if different rules are used in

each instance, the optimal cost for a given query and placement can differ from another

optimal cost for the same query and placement. The cost difference between these two

instances – where the only difference between the two instances is the rewrite rules used

– is what interests us. This cost difference sheds light onto the efficacy of different rules

and rule types. Recall that Agrios currently implements three consolidating rules and

four reductive rules.

 The plot reveals a number of facts. Utilizing both rule types is sufficient for

identifying the least-expensive query from the four runs. However, both rule types are

not always necessary to identify the lowest cost: for some placements the optimal cost

using only one rule type is identical to the optimal cost using both rule types. In some

cases, the data movement reduction brought about by using both consolidating and

reductive rule types together is greater than the sum of the reductions in data movement

187

brought about by separately applying consolidating and reductive rules. As noted earlier

the more rules used during query rewriting, the larger the search space for the query. A

larger search space may contain a plan whose cost is less than the lowest-cost plan in a

smaller search space. This result also shows that the union of the search spaces defined

by consolidating rules and reductive rules is smaller than the search space defined by the

union of both rule types. That is, when both rule types are used during query rewriting,

the rules can interact and cause synergistic data-movement reductions.

 Another important feature of the results is the range of differences between

optimal costs for different rule types. The differences between highest and lowest costs,

for a given placement, range from many multiples of the lowest cost, to only small

fraction above the lowest cost. That is, in some cases plans generated using one rule type

move much less data than plans generated using another rule type, but in other cases, the

differences between plan costs generated from different rule types are small.

 These results provide some insight about how staging costs relate to different

types of rewrite rules. While this information has some utility, these tests provide no

visibility into the time required to identify the movement-minimizing plan. In Chapter 5

we noted that staging takes time; Agrios must consider and cost alternative stagings in

order to identify the movement-minimizing plan. Staging with query rewriting takes

more time than staging alone. When query rewriting is enabled, for each query under

evaluation, and for each rewrite rule, the query must be examined and compared to rule

antecedents, to determine whether or not a rule is applicable to a query. If the rule is

applicable, a representation of the query that is output by the rule must be added to

Agrios’ internal data structures representing the search space. Adding a new query

188

representation takes time: beside adding the new representation to the data structure

(which potentially involves costly memory allocation), ancillary “bookkeeping” tasks

must be performed, which take additional time.

The objective of staging and query rewriting is to reduce query-processing time

by minimizing data movement. However, the processes of staging and query rewriting

themselves take time. There is a tradeoff between execution time saved through staging

and optimization time. On the one hand, we want to identify the movement-minimizing

plan. Increasing the number of rules used during query rewriting may result in more

alternative plans for consideration, which in turn may permit discovery of a less

expensive movement-minimizing plan. On the other hand, we want to identify the

movement-minimizing plan as quickly as possible. The fewer rewrite rules used during

optimization the more quickly the movement-minimizing plan can be identified for the

resulting search space.

Visibility into this tradeoff is provided by comparing measured staging time with

data movement reductions gained through query rewriting. These results are presented in

Figures 6.11 and 6.12. The plots show summary statistics for each rule type, plotted as a

function of staging time. The plots reveal several important facts:

1. Staging with transformation rules takes more time than staging without

transformations. This result aligns with our expectations; as noted above rule

application involves additional optimization steps over and above staging

alone. The plots in Figures 6.11 and 6.12 quantify the time penalty incurred

by staging with transformations. We also see that when both rule types are

1
8
9

 Figure 6.9. Comparison of plan costs by rule type, Query 1, standard catalog. The sort order for all placements was determined by

 optimal plan costs when neither rule set was used.

1
9
0

 Figure 6.10. Comparison of plan costs by rule type, Query 3, standard catalog. The sort order for all placements was determined by

 optimal plan costs when neither rule set was used.

1
9
1

 Figure 6.11. Plan costs as a function of optimization time, by rule type. Results for Query 3, standard catalog.

1
9
2

 Figure 6.12. Plan costs as a function of optimization time, by rule type. Results for Query 1, standard catalog.

193

used during staging, the amount of time required to stage is greater than sum

of the time required to stage when rule sets are used individually. The time

required for staging relates to the size of the search space; the larger the search

space, the more time is required to search it. These results again show that the

union of the search spaces when rule sets are used individually is smaller than

the search space defined when both rule types are used.

2. When only one rule type is used during staging, sometimes staging with

consolidating rules is faster than staging with reductive rules, and sometimes

staging with reductive rules is faster than staging with consolidating rules.

Use of both rule sets during staging takes substantially more time than using

only one rule set. In addition, we see that the average time required to use

both rule sets is greater than the sum of the average times required for using

both rule sets individually. This is expected, since the search space defined by

both rule sets is larger than the union of the two search space defined by each

individual rule set.

3. On average, data-movement costs using only reductive rules are less than

data-movement costs using only consolidating rules. There is a notable

amount of variability in these costs, however, and in some cases a plan

generated using only consolidating rules is less expensive than a plan using

only reductive rules. We also see that the mean costs using both rule sets is

less than the mean cost using either rule set individually.

4. While costs using both rule sets are less than costs using individual rule sets,

the costs using both sets are on average not much less than costs seen with one

194

rule set. Though we have evidence of synergistic interactions between rule

types, the gains achieved through synergistic interactions appear to typically

be additive and incremental, not multiplicative. These results correspond to

the results shown earlier, in Figures 6.9 and 6.10.

 At the beginning of this section we asked whether certain rule types – such as

consolidating or reductive – reduced more data movement than other rule types. The

results shown provide visibility into how different rule types participate in the staging

process, and how different rule types affect staging time. These results are helpful in

understanding the relationship between plan costs and staging time. An understanding of

this relationship is important for developing and refining methodologies for rule

application.

 Different methodologies for rule application may be important because different

applications place different constraints upon staging. Consider two likely cases:

1. Find the least expensive movement-minimizing plan. There is no particular

constraint upon the time required to identify the movement-minimizing plan.

As noted above, the key tradeoff in staging is between the time spent staging

and the time spent executing the query. Generally, the more rewrite rules

used during staging, the longer staging takes. In this case all rewrite rules

should likely be used during the staging process.

2. Find the least-expensive movement-minimizing plan using no more than a

given amount of optimization time. Depending on the permitted time, it may

not be practical to use all rewrite rules during staging. We instead may need

to apply only a subset of all available rules; we then must determine what

195

rules to apply, and decide on how they should be applied. There are a number

of ways a staging system might make these decisions. To consider one

example, suppose a system can apply and combine rules ad hoc, selecting the

best rules for each query. Such a system might perform a preprocessing step

to extract significant features from the query. It would then determine, based

on these features, which rules (or rule types) would likely deliver the

movement-minimizing plans within the time constraints; the query would then

be optimized using only those rules or rule types. This rule-selection process

could likely not offer guarantees about cost, but might be able to provide

likelihood estimates about costs.

Regardless of the particular case, the time required to stage should always be less than the

time required to execute the plan selected by the stager. Suppose that a cost c must not

be exceeded during staging. There are a number of techniques for ensuring that this

constraint is not violated. One such technique performs staging using all rules until c is

reached; the best plan generated up to that point is then selected and executed. Another

technique could stage using one rule set. If the cost constraint was exceeded or nearly

exceeded, the system selects and executes the best plan. Otherwise, the system adds an

additional rule set and restages the query. An approach similar to this this latter

technique was suggested in a thesis by Kooi [53].

 At the beginning of this section we asked whether certain rule types – such as

consolidating or reductive – reduced more data movement than other rule types. The

results shown and discussed above answer the question somewhat. From Point (4) above,

however, we should not draw the conclusion that reductive rules will always tend to be

196

more effective that consolidating rules, for several reasons. First, only consolidating

rules can be applied to some queries. A simple example of such a query is one containing

only matrix multiplication operators. Consolidating rules such as association can

decrease plan costs for these query types through consolidating transformations, but

reductive transformation rules are not applicable. Facts about the query may indicate

whether reductive or consolidating rule types are applicable. Relevant facts include both

the operators in the query and the query structure.

 Second, the benefits of reductive rules are a function of several variables,

including the size of the input and user-specified parameters (as applicable). For some

values of these variables, reductive transformations do not meaningfully decrease plan

costs. Consider the query in Figure 6.13, for a simple example of why this might be so.

In this case the “subscript through binary addition” reductive transformation rule

transforms the two query instances. In the first (topmost) instance in the figure, data

movement after rule application is only 1% of the data moved prior to rule application.

In the second instance, data movement after rule application is 81% of the data moved

prior to rule application. The only difference between query instances are the parameters

found in the subscript operation. Though the “subscript through binary addition” rule is

applied in both cases, inter-operator data movement is not substantially reduced in the

latter query instance because the subscript parameters are nearly identical to the extents

of the input data objects. The lesson here is that the utility of some reductive

transformations depends upon arbitrary parameters specified by the user. The

experimental results presented in Figures 6.9 and 6.10 presume certain parameter values.

197

Had they been different then consolidating rules might have produced lower-cost plans

that reductive rules.

6.5 CONCLUSION

The results presented in this chapter illustrate Agrios’ effectiveness in reducing

data movement. Experimental results reveal the benefits of staging in comparison to

alternate staging policies, such as All-at-R, All-at-SciDB, or Greedy. The positive effects

of accumulation and query rewriting on staging were also demonstrated in this chapter.

Rewriting queries during the staging process resulted in lower-cost minimal-movement

plans than the minimal-movement plans identified through staging alone. The benefits

of query accumulation were also demonstrated. Plan costs for accumulated queries were

shown to be often less than the piecewise plan costs for subqueries. In no cases did query

rewriting during staging result in a higher movement-minimizing plan costs than the cost

achieved through staging alone, just as in no cases did accumulation result a higher

movement-minimizing plan cost than the cost achieved through piecewise execution of

subplans.

Experimental results presented here also provided some quantitative insight into

the tradeoff between staging time and data movement reduction. The results provide

baseline data showing the time required to apply different transformation rule types, and

the relative efficacy of different transformation rule types. Insights into staging space

were also provided by these results. We saw that the time required to stage using both

rule sets was greater than the sum of the times required to stage when rule sets were

applied independently. Similarly, we saw that the data-movement reductions possible

198

when using both rule types at times were greater than the sum of the data-movement

reductions made possible when rule sets were applied independently. Both of these facts

suggest that the search space defined by both rule sets is larger than the union of the

search spaces defined by each rule set.

199

CHAPTER 7: CONCLUSION AND FUTURE WORK

7.1 CONCLUSION

 Hybrid analytic systems integrate familiar analytic tools such as R, with dedicated

platforms for managing big data. These hybrid systems present familiar functionality to

data scientists, while extending the capability of the analytic tool to include analyses on

large, disk-resident datasets. The hybrid approach has benefits, but with its utility comes

the burden of managing data movement between the hybrid components. The cost of

data movement degrades system performance in several ways: data movement can

increase both query processing time and energy use. A performance-oriented hybrid

system requires reduction or minimization of data movement between its components.

We hypothesized that data movement between hybrid system components can be

automatically minimized using techniques adapted from relational database query

optimization.

The prototype system we constructed for the task is named Agrios; it integrates

the analytic tool R and the array big-data management system SciDB. Agrios minimizes

data movement through three techniques: i) staging, ii) query rewriting through the

application of rewrite rules, and iii) query accumulation. For an initial placement of

input data objects, Agrios provides a staging for a query instance by specifying execution

locations for each of the query’s operations, which in turn determines data movement.

We claimed that stagings should be automatically identified at runtime with a tool such as

Agrios, arguing that hand-staging is impractical for an important class of workloads,

particularly those that exhibit variety in the size, shape, and storage location of the input

200

data. Experimental results showed that under such workloads “recycling” plans or

relying on a single plan may slow performance, due to unnecessary data movement. We

motivated the need for Agrios through an examination of staging space. Our analysis

showed that optimal stagings are difficult to find and typically optimal for only a small

number of placements, and that the costs of worst-case stagings are so large they cannot

be ignored. Acceptable, near-optimal stagings are nearly as rare and limited in utility as

optimal stagings.

Agrios’ stager minimizes data movement with a search algorithm using top-down

memoization to identify the optimal execution locations for the operations in an analytic

script. Experimental evaluation showed that the optimal plan identified through staging

often resulted in less data movement than alternative staging policies. We also

demonstrated how staging is rendered more effective through the accumulation of

expressions, and the rewriting of queries through the application of transformation rules.

Prior to query transformation, accumulating expressions into larger expressions both

increases the scope of expression-rewriting opportunities, and may yield less-expensive

stagings even if transformations are not used. Query rewriting through the application of

transformation rules typically reduced data movement costs over and above the

reductions effected through staging. Query rewriting reduces data movement by bringing

about either reductive or consolidating transformations, reducing the amount of data

transferred or the number of transfers, respectively.

201

7.2 FUTURE WORK

 During the course of our research we noted directions in which our work could be

extended. Two main paths stood out: i) extending the cost model, and ii) better utilizing

transformation rules during query rewriting.

7.2.1 EXTENSIONS TO AGRIOS

Cost Model

 The first way our work can be extended is through the development of a more

sophisticated cost model. For a number of reasons, stated in earlier chapters, our cost

model calculates cost strictly as a function of data elements moved. These assumptions

focused our work but also bound its applicability to particular domains. By extending the

cost model, future researchers could extend our work to additional domains. Recall that a

cost model should be defined with particular aims in mind, depending on the application.

Common aims for cost models include reducing (or minimizing) CPU cycles, wall-clock

time, energy consumption, I/O, or data movement. Cost models may include more than

one of these goals, as well.

The cost model used in this research can be extended in two main ways. First, it

can be extended to incorporate additional facts about the input data objects. Second, it

can include facts about the operations performed on inputs. Let us examine each

extension in turn.

 Our cost model used facts about only the shape, size, and location of data objects.

There are additional properties of input data objects that may warrant inclusion; these

include objects’ compression status, physical size, and storage format. As noted in

previous chapters, this work made assumptions regarding data objects’ storage format

202

and compression status. Relaxing these assumptions permits inclusion of these properties

into the cost model. Note that an extended cost model may prove beneficial even if no

additional work is performed on accumulation or query-rewriting techniques. This result

occurs because the cost model is used only during Agrios’ assignment of costs to a

particular assignment of execution locations; i.e. the cost model is only used during

staging. An improved cost model only lets Agrios make better decisions as to which plan

is the lowest-cost plan; it does not change the contents of plan space.

 Our assumption that arrays had a dense storage format means that the physical

size of an array is consistently proportional to its logical size. If a dense storage format is

used, two arrays with identical logical size have the same physical size, even if one of the

arrays is sparsely populated with values and the other is densely populated. If we remove

the assumption that only dense storage formats are used, then the physical size of the

array – not just the logical size – should be considered in the cost model. The physical

size of the data object directly affects the cost of data movement, as it is the movement of

physical bytes between hybrid components that takes time and consumes energy, not the

movement of logical data elements. (Note that the system must continue to track the

logical shape of the array, since logical shape constrains the application of rewrite-based

transformations.)

 There is a more subtle way that storage format could be incorporated into a cost

model. Particular operations on a system may assume a specific storage format, either

dense or sparse. Operation P, for example, may operate only on densely formatted

arrays. If the input data object is stored in a different format than the storage format

203

required by the operator, the data must be reformatted. Reformatting takes time, and an

extended cost model may anticipate the time required for format conversion.

 An extended cost model may also track the compression status of an array,

another physical property of a data object. Relevant properties of an array’s compression

status include: i) whether or not the array is compressed, and ii) how the array is

compressed. These physical properties involving compression are important for the same

reasons that storage formats were important. Compressing and uncompressing data

objects takes time. While some operators have alternative implementations for working

on either compressed and uncompressed data, other operators might require that the

inputs are uncompressed. If compressing or uncompressing data is required, an extended

cost model may account for the time required to perform these operations. If the cost

model considers not only whether or not the data is compressed, but also how the data is

compressed, it can more accurately estimate the time required to compress or decompress

the data.

 Considering additional physical properties of the input data objects is the first way

Agrios’ cost model can be extended. The second way is through the inclusion of

operation-execution properties. Relevant facts about operations include I/O required for

computation, CPU cycles used, and energy consumed. Each of these facts may admit of

finer-grained distinctions, if necessary. For example, in heterogeneous computing

environments, the number of CPU cycles required to perform a given operation may vary

substantially from platform to platform. In such a case the cost model would not include

a single value for estimating the CPU cycles for an operation, but rather a number of

different values, each indexed to one or more execution environments.

204

 In discussions regarding operator execution times, people often assume that

SciDB will always outperform R. For a number of operations and inputs this expectation

holds, as we saw in Chapter 5. However it should be noted that SciDB does not always

outperform R [14]. SciDB is typically deployed on a cluster and enjoys the advantages

that accompany such a setup, such as a large aggregate memory capacity. However, in a

cluster-based deployment SciDB also suffers from problems not experienced by single-

node systems such as R. For example, the overhead required to move data between

computation nodes on a cluster-based system takes time and energy; this overhead cost is

an intra-system data movement cost, distinct from the inter-system data movement cost

that is the primary focus of our research.

 The hardware on which SciDB is deployed also might be older – and slower –

than the hardware on which R is deployed. The standard type of machines that make up

the computing nodes on a SciDB cluster are inexpensive, off-the-shelf commercial boxes.

A desktop workstation running R used by a data scientist may have less aggregate

memory than a SciDB cluster, but its processors are probably several times faster (and at

least one generation newer) than those found on the commodity machines in the SciDB

cluster. Processors aside, the storage and memory technology found in the data

scientist’s workstation are likely much newer and faster than the inexpensive technology

found in a cluster. Finally, it is likely that, within several years, parallelized versions of

R will become available that will execute “vanilla” R scripts, not requiring the use of

special R libraries supporting parallel processing. If R is developed along these lines, the

performance difference between SciDB and R may decrease. The upshot is that a

205

thorough incorporation of operation computation time into a cost model should capture

the subtleties sketched above; this task is non-trivial.

If Agrios cost model is extended in both of these ways, interactions between

compression status, storage format, and operation execution times may also be

incorporated into the cost model. For example, some operations may operate on both

compressed or uncompressed inputs. The execution time required to operate on a

compressed input may differ, however, from the execution time required to operate on an

uncompressed input.

Transformation Rules

 Above we proposed extending our work through the elaboration of Agrios’ cost

model. A more complex cost model will let Agrios relax assumptions about input data

objects, potentially resulting in better selection of movement-minimizing plans.

However, additions to the cost model do not increase the size of the staging space

considered during staging. As discussed in Chapter 4, staging space is expanded through

the application of rewrite rules. The second primary way in which our work can be

extended is through additional research into transformation rules. In Chapter 6 we

explored some characteristics of a handful of rules, together with characteristics of

different rule types. This work constituted a proof-of-concept, showing that

transformation rules can assist in reducing data movement. Additional investigations

there also provided some insight into the rule types responsible for the data-movement

reductions. Further research would build off these results, in several ways.

 First, additional transformation rules could be added to Agrios’ rule set. If the

newly-added rules are not redundant to those already in the rule set, the staging space

206

searched by Agrios increases in size. Potentially, one of the new plans added via

application of the new transformation rule has a lower cost than the movement-

minimizing plan for a staging space without the rule; i.e. the new rule might be necessary

for the creation of a new, lower-cost movement-minimizing plan.

 If the time spent staging, accumulating, and rewriting queries is not an issue, the

larger the staging space, the better. In practice, of course, the time spent on these

activities demands our attention. In Chapter 6 we saw that time spent staging and query

rewriting increased with the number of rules in the rule set. Initial tests suggest that

presently there are practical limits to both query size and rule set size. This means we

should not capriciously add new rules to Agrios’ rule set.

The sensible way to approach the addition of new rules is to first gain a deeper

understanding of the rules currently implemented. A more sophisticated understanding of

what rules are responsible for reducing data movement could be achieved by associating

rule applications to multiexpressions generated during the staging process. Such an

understanding may help us differentiate between rules that are typically effective in

generating “useful” alternative queries and rules that are not. (Here “useful” queries are

essential to the generation of the movement-minimizing plan.) Such a research effort

would ideally advance our understanding of two relationships: i) the relationship

between transformation rules and data-movement reductions, and ii) the relationship

between transformation rules and query properties. Query properties relevant to (ii)

include properties of the input objects such as size and shape, properties of the operations

(such as their effect on the shape of input properties), and properties of the query

structure itself. A more thorough understanding of these two relationships might allow us

207

to reduce staging time without sacrificing reductions in data movement. Such a result

could be brought about in a number of ways, including: i) conditional application of

transformation rules based on either query properties, data-object properties, or a history

of previous rule applications, and ii) plan-space pruning strategies.

 A better understanding of transformation rules may also allow us to design rule

sets or rule application methodologies that make the most of good rule interactions and

avoid harmful rule interactions. We saw evidence of beneficial rule interactions in our

experiments. Recall, for example, that in some instances the data movement reduction

achieved through the combined application of reductive and consolidating rules exceeded

the sum of the data-movement reductions when the two rule-type transformations were

applied separately. Rule interactions leading to such results might be beneficially

exploited if the circumstances precipitating them were well-understood. Similarly,

superfluous rule interactions, if identified, should be avoided.

 A final note on extending Agrios through the introduction of new transformation

rules: the addition of new transformation rules may be constrained by implemented

operators, and may also affect the cost model. The operations and transformation rules

implemented in Agrios involve what are called “structural” array operators: i.e. those

operations whose logical output size can be calculated prior to operator execution.

Through matrix multiplication involves the contents of the input data objects, for

example, the logical size of the output array does not depend on the contents. By contrast

the output size of “contentful” array operations depends on the values in the array.

Certain implementations of filtering operations, for example, display this behavior. R has

208

a which operation that returns the indices of array or vector objects satisfying a

particular criteria. When the vector V:

 [1 3 5 7 2 4 1 1]

is input to this R expression:

 which(V == 1);

R returns:

 [1 7 8]

Had the contents of V been different from what they actually were, the output of which

may have had a different size. The effect that an operator with variable output shape and

size has on the cost model should be apparent. In the case of “contentful” operators, even

assuming a dense storage format, the size of the output array cannot be known with

certainty prior to operator execution.

 Relational database systems faced a similar problem early in their development.

The query:

 SELECT * from students WHERE age > 20;

might return half the records if the query is directed at the database of a liberal arts

college, and no records if directed at the database of a nursery school. The potential

variability in the number of records returned, and the difference in execution times for

access methods used during query processing, made cost estimation difficult for these

sorts of queries. Relational databases mitigated the effect of such operations on cost

estimates through a number of techniques. The most relevant technique here is the

collection and use of statistics about the values contained in database fields. Should

Agrios be extended to include “contentful” operations and transformation rules involving

209

“contentful” operators, a similar approach is recommended. In a manner similar to

relational systems, simple statistics gathered on data values may result in better cost

estimates.

Additional Refinements

 The two specific extensions above outline two paths for future research based on

our work. Several additional opportunities for improving Agrios are worth a brief

mention, however, especially if Agrios is to be deployed for production use.

 First, the code implementing all parts of Agrios could be optimized; this code

includes both the portions written in R and the portions written in C++. Second, the

methods for moving data between R and SciDB – in both directions – also could be

improved. There are several possible techniques that may work. One technique would

reduce the time spent reformatting data moving between R and SciDB. Paradigm4, for

example, sells an optimized R-to-SciDB connector that moves data between the two

systems in a common binary format, speeding data transfer. While we were not able to

gather performance figures for R-to-SciDB transfers, Paradigm4’s connector speeds data

transfer from SciDB to R by several orders of magnitude. Finally, the processes for

loading and storage of data could be parallelized, again reducing one of the contributors

to data transfer cost.

Finally, the algorithm used by Bonneville to populate and explore the search

space could be optimized. A particular area in which Bonneville’s expansion and search

algorithm may stand to benefit is with respect to pruning suboptimal subplans. Pruning

was disabled in our experiments, but in theory an effective pruning system could reduce

the time required by the stager to identify the movement-minimizing plan. A pruning

210

system could either reduce the time required to stage, or else permit the staging of even

larger queries for a given amount of time. Of particular interest is whether Agrios’ array

data model admits of pruning opportunities not enjoyed by optimizers using a relational

model. Since with an array data model under certain conditions the size of operator

outputs can be precisely calculated, it seems likely that optimizers designed around an

array data model may be more effective than optimizers designed around a relational

model.

7.2.2 APPLICATIONS TO OTHER SETTINGS

Our work assumed a particular architecture, viz. an integration of R and SciDB.

During the course of our research we became aware that elements of our work could be

applied to different architectures. Mutatis mutandis, our findings are applicable to any

system that: i) performs computational work, ii) represents this computational work in a

form that can be analyzed and manipulated, and iii) stores data at different locations. At

a high level Agrios is simply a tool for deciding – based on cost – at what location work

is best performed. As such, if there is a decision to be made about where to perform an

operation Agrios can help make that decision. The system must have certain properties

in order for Agrios to function – e.g. Agrios must have the ability to estimate sizes of

intermediate results – but these properties could be built into a system. Let us look at two

domains with potential applications for our research.

The first possible new application is the minimization of data movement between

computing nodes in a cluster, or minimization of data movement between cores within a

compute node. As noted in Chapter 1, data movement of any sorts takes time and energy;

these costs are incurred regardless of whether the terminal ends of the transfer are

211

heterogeneous systems such as R and SciDB or computing nodes within a homogenous

cluster. The techniques for reducing data movement used by Agrios could be applied to

reduce intra-cluster or inter-core data movement in homogeneous systems.

A second possible application is the reduction of data movement in scientific

workflows. For example, “DNA pipeline” workflows used by genomics research labs

typically perform ten to fifteen operations, taking between five to ten input data objects.

The operations performed vary, from filtering and index creation, to sophisticated string-

alignment algorithms implemented using matrix data structures. Input sizes range from

gigabytes to hundreds of gigabytes, and individual operations on extant computational

resources take between one to dozens of hours. An entire “pipeline” may take one week

to run from start-to-finish.

To date such labs have worked largely in isolation, but there is increasing interest

in collaboration, including the sharing of data and computational resources. A network

of collaborating labs in some ways resembles the architecture of Agrios: data is stored at

multiple locations, and computation is performed at multiple locations. The size of the

datasets preclude effortless transfer from one lab to another, so data movement costs must

be considered. Though costly, moving data from one lab to another may result in the best

overall pipeline performance, depending on the computational resources available.

In recent years the Stork system has gained some traction in workflow

optimization [54]. Stork is in a sense an analogue of Agrios; given the ability to decide

where input data objects are stored, Stork determines the optimal data placement. Agrios

is a counterpart to Stork, instead selecting execution locations of operations when data

212

object input locations are fixed. Stork has seen some success in workflow optimization,

suggesting that Agrios too may also be able to address workflow optimization problems.

Our current research results could be used to determine execution locations that

minimize data movement between the computing centers. An augmented version of

Agrios – specifically a version whose cost model considered properties of operator

execution – could provide additional optimizations to scientific workflows. In the case of

“DNA pipeline” workflows, many common operations have several implementations,

with particular implementations varying in their execution times, energy usage,

scalability, and resource requirements. An extended version of Agrios could be used to

assist with dynamic selection of the appropriate operator implementation, given the

currently available computational resources.

213

REFERENCES

[1] DeWitt, D., and Stonebraker, M. "MapReduce: A major step backwards." The

Database Column 1, 2008.

[2] Pavlo, A., Paulson, E., Rasin, A., Abadi, D., DeWitt, D., Madden, S., Stonebraker, M.

"A comparison of approaches to large-scale data analysis." Proceedings of the 2009

ACM SIGMOD International Conference on Management of Data, 165-178, 2009.

[3] Golab, L., Hadjieleftheriou, M., Karloff, H., Saha, B. “Distributed data placement to

minimize communication costs via graph partitioning.” Proceedings of the 26th

International Conference on Scientific and Statistical Database Management (SSDMB),

2014.

[4] Vishwanath, V., Hereld, M., Papka, M. “Topology-aware data movement and staging

for I/O acceleration on Blue Gene/P supercomputing systems.” Proceedings of SC11:

International Conference for High Performance Computing, Networking, Storage and

Analysis 2011.

[5] Park, J., Bikshandi, G., Vaidyanathan, K., Tang, P., Dubey, P., and Kim, D. “Tera-

Scale 1D FFT with low-communication algorithm and Intel Xeon Phi coprocessors.”

Proceedings of SC13: International Conference for High Performance Computing,

Networking, Storage and Analysis, 2013.

[6] Xin, R., Rosen, J., Zaharia, M., Franklin, M., Shenker, S., and Stoica, I. “Shark: SQL

and rich analytics at scale.” Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data, 13-24.

[7] Harizopoulos, S., Shah, M., Meza, J., and Ranganathan, P. “Energy efficiency: The

new holy grail of data management systems research.” Conference on Innovative Data

Systems Research (CIDR), 2009.

[8] Tiwari, D., Vazhkudai, S., Kim, Y., Ma, X., Boboila, S. and Desnoyers, P. “Reducing

data movement costs using energy-efficient, active computation on SSD.” Proceedings

of the 2012 USENIX Conference on Power-Aware Computing and Systems. USENIX

Association, 1-5, 2012.

[9] Grosse, P., Lehner, W., Weichert, T., Farber, F., and Li, W.S. “Bridging two worlds

with RICE.” Proceedings of the VLDB Endowment, 1307-1317, 2011.

[10] Das, S., Simanis, Y., Beyer, K.S., Gemulla, R., Haas, P.J., and McPherson, J.

“Ricardo: Integrating R and Hadoop.” Proceedings of the 2010 ACM SIGMOD

International Conference on Management of Data, 987-998, 2011.

214

[11] Maier, D., Zdonik, S., and Stonebraker, M. “SciDB model and operators.” Personal

communication, 2010.

[12] Allen B., Bresnahan, J., Childers, L., Foster, I., Kandaswamy, G., Kettimuthu, R.,

Kordas, J., Link, M., Martin, S., Pickett, K., and Tuecke, S. “Software as a service for

data scientists.” Communications of the ACM, 81–88, 2012.

[13] Guo, P. J., and Engler, D. “Towards practical incremental recomputation for

scientists: An implementation for the Python language.” Proceedings of TaPP 10, 2010.

[14] Taft, R., Vartak, M., Rajagopalan, N., Sundaram, N., Madden, S., Stonebraker, M.

“GenBase: A Complex Analytics Genomics Benchmark.” Proceedings of the 2014

ACM SIGMOD International Conference on Management of Data, 177-188, 2014.

[15] Yang, J., Zhang, W., and Zhang, Y. “I/O-efficient statistical computing with RIOT.”

5
th

 Biennial Conference on Innovative Data Systems Research (CIDR), 67-92, 2010.

[16] Ihaka, R., and Gentelman, R. “R: A language for data analysis and graphics.”

Journal of Computational and Graphical Statistics, 299-314, 1996.

[17] Vance, A. “Data analysts captivated by R’s power.” New York Times, 6 January

2009.

[18] Smith, D. and Rickert, J. “RevoScaleR: Big data analysis for R using Revolution R

Enterprise,” [online: http://r4stats.com/popularity, accessed 12 January 2014].

[19] CRAN: http://cran.r-project.org/

[20] Maier, D. and Vance, B., “A call to order.” Proceedings of the 12th ACM

Symposium on Principles of Database Systems, 1-16, 1993.

[21] Becla, J., DeWitt, D., Lim, K., Maier, D., Ratzesberger, O., Stonebraker, M., and

Zdonik, S. “Requirements for science data bases and SciDB.” CIDR Perspectives, 202-

214, 2009.

[22] Kersten, M., Zhang, Y., Ivanova, M., and Nes, N. “SciQL, a query language for

science applications.” Proceedings of the EDBT/ICDT 2011 Workshop on Array

Databases. ACM, 2011.

[23] Zhang, Y., Kersten, M., Ivanova, M., and Nes, N. “SciQL: bridging the gap between

science and relational DBMS.” Proceedings of the 15th Symposium on International

Database Engineering & Applications. ACM, 2011.

[24] van Ballegooij, A. R. “Ram: A multidimensional array DBMS.” Current Trends in

Database Technology-EDBT 2004 Workshops. Springer Berlin Heidelberg, 2005.

[25] Lerner, A., and Dennis S. “Aquery: Query language for ordered data, optimization

techniques, and experiments.” Proceedings of the 29th International Conference on Very

Large Data Bases-Volume 29. VLDB Endowment, 2003.

http://r4stats.com/popularity

215

[26] Baumann, P., Dehmel, A., Furtado, P., Ritsch, R., and Widmann, N. “The

multidimensional database system RasDaMan.” ACM SIGMOD Record. Vol. 27. No. 2.

ACM, 1998.

[27] Baumann, P., Furtado, P., Ritsch, R., and Widmann, N. "The RasDaMan approach to

multidimensional database management." Proceedings of the 1997 ACM Symposium on

Applied Computing. ACM, 1997.

[28] Stonebraker, M., Brown, P., Poliakov, A., Raman, S. “The Architecture of SciDB.”

Scientific and Statistical Database Management, Springer Berlin Heidelberg, 1-10, 2011.

[29] Balazinska, M., Becla, M., Cudre-Mauroux, P., DeWitt, D., Heath, B., Kimura, H.,

Lim, K., Maier, D., Patel, J., Rogers, J., Simakov, R., Soroush, E., and Zdonik, S. “A

demonstration of SciDB: A science-oriented DBMS.” Proceedings of the VLDB

Endowment, 87-100, 2009.

[30] Hafen, B.R. Rhipe tutorial. [online: http://ml.stat.purdue.edu/rhafen/rhipe, accessed

May 2013].

[31] Yi, Z., Herodotou, H., and Yang, J. “RIOT: I/O-efficient numerical computing

without” SQL. Conference on Innovative Data Systems Research (CIDR), 1-11, 2009.

 [32] CRAN – package scidb [online: http://cran.r-project.org/web/packages/scidb/

accessed March 2014]

[33] SciDB-R Integration – Paradigm4 [online: http://www.paradigm4.com/scidb-r/,

accessed March 2014]

[34] Selinger, P., Astrahan, M., Chamberlin, D., Lorie, R., and Price, T. “Access path

selection in a relational database management system.” Proceedings of the 1979 ACM

SIGMOD International Conference on Management of Data, 1979.

[35] Graefe, G. and DeWitt, D., “The Exodus optimizer generator,” Proceedings of the

1987 SIGMOD International Conference on Management of Data, 160-172, 1987.

[36] Graefe, G. “Volcano: An extensible and parallel query evaluation system,” IEEE

Transactions on Knowledge and Data Engineering, 120-135, 1994.

[37] Graefe, G. “The Cascades framework for query optimization,” Data Engineering

Bulletin, 19-28, 1995.

[38] Billings, K. “A TPC-D model for database query optimization in Cascades,”

Master’s Thesis, Portland State University, 1997.

[39] Xu, Y. “Efficiency in Columbia database optimizer,” Master’s Thesis, Portland State

University, 1998.

[40] Bernstein, P., and Goodman, N. “Power of natural semijoins,” SIAM Journal on

Computing 10.4, 751-771, 1981.

http://ml.stat.purdue.edu/rhafen/rhipe
http://cran.r-project.org/web/packages/scidb/
http://www.paradigm4.com/scidb-r/

216

[41] Franklin, M., Jonsson, B., and Kossmann, D. “Performance tradeoffs for client-

server query processing,” SIGMOD Record, 149-160, 1996.

[42] Kossmann, D. “The state of the art in distributed query processing.” ACM

Computing Survey 32, 422–469, 2000.

[43] Cornacchia, R., van Ballegooij, A., and de Vries, A.P. “A case study on array query

optimization.” Proceedings of the 1st International Workshop on Computer Vision Meets

Databases, 3-10, 2004.

[44] Papadimos, V., and Maier, D. “Distributed queries without distributed state.”

WebDB, 95-100, 2002.

[45] Cheung, A., Madden, S., Arden, O., Myers, A. “Automatic partitioning of database

applications.” Proceedings of the VLDB Endowment, 1471-1482, 2012.

 [46] Pellenkoft, A., Galindo-Legaria, C., and Kersten, M. “The complexity of

transformation-based join enumeration.” Proceedings of the VLDB Endowment, 306-

315, 1997.

[47] Howe, B, and Halperin, D. “Advancing Declarative Query in the Long Tail of

Science.” IEEE Data Engineering Bulletin 35.3: 16-26, 2012.

[48] Howe, B and Cole, G. “SQL is dead; long live SQL: Lightweight query services for

ad hoc research data.” 4th Microsoft eScience Workshop. 2010.

[49] Ailamaki, A., Kantere, V., Dash, D. “Managing scientific data.” Communications

of the ACM 68–78, 2010.

[50] Åkesson, P. F., Atkinson, T., Moyse, E., Liebig, W., Costa, M. J., Siebel, M., and

Salzburger, A. “Atlas tracking event data model.” CERN Technical Report No. ATL-

SOFT-PUB-2006-004. 2006.

[51] Overview – bonneville – MCECS Projects [online:

https://projects.cecs.pdx.edu/projects/leyshocp-bonneville]

[52] Personal communication, David Maier, 2014.

[53] Kooi, R.P. “The Optimization of Queries in Relational Databases.” Ph.D.

Dissertation. Case Western Reserve University, Cleveland, OH, USA. AAI8109596,

1980.

[54] Kosar, T., and Livny, M. “Stork: Making data placement a first class citizen in the

grid.” In Distributed Computing Systems, 2004. Proceedings. 24th International

Conference on Distributed Computing Systems,342-349, IEEE, 2004.

https://projects.cecs.pdx.edu/projects/leyshocp-bonneville

