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Abstract

Evolutionary forces such as recombination, demography, and selection can shape patterns of

genetic diversity within populations and contribute to phenotypic variation. While theoretical

models exist for each of these forces independently, mathematically modeling their joint impact

on patterns of genetic diversity remains very challenging. Fortunately, it is possible to perform

forward-in-time computer simulations of DNA sequences that incorporate all of these forces

simultaneously. Here, I show that there are trade-o↵s between computational e�ciency and

accuracy for simulations of a widely investigated model of recurrent positive selection. I develop

a theoretical model to explain this trade-o↵, and a simple algorithm that obtains the best possible

computational performance for a given error tolerance. I then pivot to develop a framework

for simulations of human DNA sequences and genetically complex phenotypes, incorporating

recently inferred demographic models of human continental groups and selection on genes and

non-coding elements. I use these simulations to investigate the power of rare variant association

tests in the context of rampant selection and non-equilibrium demography. I show that the power

of rare variant association tests is in some cases quite sensitive to underlying assumptions about

the relationship between selection and e↵ect sizes. This work highlights both the challenge and

the promise of applying forward simulations in genetic studies that seek to infer the parameters

of evolutionary models and detect statistical associations.
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1.1 Evolutionary models and simulations of DNA sequences

There is tremendous variation in human phenotypes such as height and eye color. Ancient humans

observed that, to some extent, these attributes are passed on from parent to child. Genetics is

the study of the physical basis of this inheritance, and population genetics concerns itself with the

dynamics of genetic inheritance over long time scales.

Evolutionary forces such as mutation, recombination, genetic drift, demography, and natural

selection all influence genetic variation in populations. Theoretical interest in these forces stretches

back over a century, predating even the knowledge of DNA as the molecule of inheritance. Many

mathematical models have been developed to explore their impact on genes, amongst which the most

influential are the coalescent and di↵usion theory. Thanks to these models, we have a theoretical

framework for investigating patterns of genetic diversity in populations as a function of fundamental

model parameters, such as mutation rate and selection strength.

In recent years, the price of both genotyping and DNA sequencing have dropped dramatically

while their throughput has increased. Many large scale e↵orts are underway to catalog genetic

variation in humans or other organisms, or have already been published (most notably Interna-

tional HapMap Consortium et al. 2007; 1000 Genomes Project Consortium et al. 2012).

While these studies have largely substantiated the predictions of population genetic theory, they

have also demonstrated the need for more sophisticated models to fully understand the impact

of evolutionary forces on genetic diversity. For example, it is clear that both positive selection

(the influence of alleles that improve an organism’s fitness) and negative selection (alleles that are

deleterious for the reproductive success of the organism) impact patterns of genetic diversity, but

these forces are seldom modeled simultaneously. Demographic processes such as population growth,

contraction, and migration also impact patterns of diversity, but these processes are challenging to

model simultaneous to selection. Recombination further complicates theoretical models. General

predictions about patterns of diversity that simultaneously account for all these factors are lacking

in the literature.

Though it is very challenging to incorporate all these processes simultaneously in theoretical

models, much recent progress has been made in simulating genetic data under complex models.

Simulations can provide insight into the impact of evolutionary forces on patterns of diversity,
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allow us to quantify the accuracy of theoretical predictions, assess the performance of statistical

inference techniques, and generate phenotypes under quantitative models of complex genetic traits.

Here, I will introduce the two most popular classes of simulation tools (namely coalescent and

forward simulation), and discuss current limitations of each method and how this work contributes

to the genetics simulation literature.

1.2 Methods of simulation for DNA sequences under evolutionary models

Simulations are widely used in population genetics, and many computer methods for simulating

DNA sequences under population genetic models have been developed and published. The goal

of these simulation programs is to generate DNA sequence data stochastically under a model of

replication in a population. The two most popular categories of methods are coalescent simulators

(Hudson 2002; Spencer and Coop 2004; Hellenthal and Stephens 2007; Liang et al. 2007;

Ewing and Hermisson 2010; Excoffier and Foll 2011; Zeng 2013) and forward simulators

(Hernandez 2008; Zanini and Neher 2012; Messer 2013; Thornton 2014). Coalescent simu-

lators follow the genealogy of a sample of chromosomes backwards in time, while forward simulators

model every chromosome in the population and follow these chromosomes forward in time.

1.2.1 Coalescent simulators

Coalescent simulators generate a random genealogical history for a sample of chromosomes by mod-

eling the shared ancestry process backwards in time. Suppose that there are N total chromosomes

in the population at all times in the past, and that the population reproduces in non-overlapping

generations. Then the chance that any two chromosomes share a parent in the previous generation

is 1/N. If the chromosomes in our sample were chosen randomly and uniformly from a population

of size N , then all pairs of chromosomes are equally likely to share common ancestry at any point

in time. If n⌧ N , then the total rate R
n

at which common ancestry events occur is approximately

proportional to the number of pairs of lineages, R
n

= 1
N

�
n

2

�
, and the waiting time to the next

coalescent event is geometrically distributed with this rate parameter. Assuming that N is a large

number, then we can approximate this geometric waiting time with an exponential process.

This process of ancestry sharing immediately suggests an algorithm for generating genealogies

under the coalescent. We draw an exponential random number with rate R
n

; this is the time of
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the first coalescent event. Since all pairs of lineages are equally likely to share common ancestry,

we choose two lineages uniformly at random and join them together at this time. The number

of lineages has now decreased to n � 1, so we now draw a random exponential number with rate

R
n�1, and repeat the above lineage joining procedure. We repeat these steps until a single lineage

remains.

Mutation events occur at a constant rate through time, so the the number of mutations that

occur on any given branch of the tree is proportional to the branch length. Given that we have a

random tree under the model, we can then generate random sequences under the model by allowing

mutations to occur on the simulated tree. Note that adding mutations only after simulating the

tree assumes that the mutations do not a↵ect the genealogical process.

The coalescent has many advantages as a model for simulations. First, it is very fast to generate

samples under the coalescent when there is no recombination because we only need to follow the

n sampled lineages back in time. Second, the coalescent can easily accommodate many kinds

of demographic events, such as changes in population size and migration events (Hudson 2002;

Excoffier and Foll 2011). These events change the overall rate at which lineages coalesce, but

they do not break the fundamental assumption that the probability of common ancestry does not

depend on the mutation events that are observed under demographic models. Recombination can

also be accommodated, but comes at a large computational cost for chromosome scale sequences or

high recombination rates. For this reason some simplifications to the coalescent have been proposed,

where very unlikely coalescent events are prohibited in order to maintain computational feasibility

(McVean and Cardin 2005; Marjoram and Wall 2006).

In contrast, natural selection is very challenging to simulate under the coalescent (but see

Spencer and Coop 2004; Ewing and Hermisson 2010; Zeng 2013, for examples of selection-

based coalescent simulators with some simplifying assumptions and Hudson and Kaplan 1988;

Neuhauser and Krone 1997 for early theoretical insights into the coalescent with selection). Se-

lected mutations, by definition, alter the probability of common ancestry. Hence, it is inappropriate

to simulate the genealogy backwards in time completely independent of the mutation events. To

get around this problem, it is necessary to have some foreknowledge of the impact of selection

on the genealogy, either by simulating some portion of the data forward in time and conditioning

on these forward simulations, or modeling the impact of selected sites on the genealogy. For this
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reason, it is often advantageous to adopt a di↵erent simulation methodology when the model of

interest involves complex selection (e.g., simultaneous positive and negative selection, or selection

at many partially linked sites).

1.2.2 Forward simulators

As an alternative to coalescent simulations, it is possible to simulate DNA sequences forward-

in-time under arbitrarily complex models that include selection, recombination, and demography.

Forward simulators follow the population genealogical history from some point in the distant past,

until the time of sampling. Because we simulate the genealogy forward in time, mutations can be

generated simultaneous to the genealogy, and any impact these mutations have on the genealogy

in future generations is accommodated as the simulation progresses.

The simulation procedure proceeds directly from the model of replication introduced in the

previous section, by simply reversing the direction of time. In each new generation t + 1, we pick

parents from generation t. If there is no selection, then every individual in generation t is equally

likely to be a parent of an individual in generation t + 1. If selection is present, then parents are

picked with probability proportional to their fitness divided by the population average fitness. We

repeat this process N(t+ 1) times, where N(t+ 1) is the population size in generation t+ 1. New

mutations are introduced in the o↵spring at a pre-specified rate. If we wish to simulate multiple

populations, we allow the populations to split at pre-specified times, or merge, or accommodate

migration at a pre-specified rate. At the end of the simulation, we sample n individuals from the

population and report the mutations present on each of their chromosomes.

In a forward simulation, we are sampling directly from the model, whereas to build the coalescent

simulator, we made several approximations and assumptions about the underlying genetic process.

As a result, coalescent simulators only work well when the underlying assumptions are met (e.g.,

n ⌧ N). Forward simulators always produce patterns of diversity that are sampled exactly from

the underlying stochastic model. However, this flexibility comes at a large cost. In the forward

simulator, we must store every (N) chromosome in the population in RAM, whereas we only

followed the sampled (n) chromosomes in the coalescent simulation. Moreover, in order to reach

“steady state” it is necessary to run the simulation for a duration (in generations) proportional

to N . Thus, the performance cost of the simulation scales roughly with N2. For many natural

5



populations, N may be in the millions (or larger), which is too costly to simulate for many interesting

models.

Throughout this dissertation, I examine the theory and practice of using forward simulations in

population genetic studies of selection and complex demography. In the second chapter, I examine

approaches for reducing the computational burden of forward simulation, and show that these

approaches sometimes come at the expense of accuracy of the simulated patterns of diversity. I

develop a method for constraining the bias in the simulations for a simple model of recurrent

selection, and discuss extensions to more sophisticated models. In the third and fourth chapters,

I pivot to discuss joint forward simulation of complex traits and genotypes in models that include

selection and demography. I show that the power of a widely used rare variant association test may

be strongly impacted by selection, and argue that selection must be included in simulations when

assessing statistical power in order to obtain sensible and interpretable power estimates. These

studies demonstrate that forward simulations can provide insights into models that are di�cult to

simulate under the coalescent, but also highlight the potential for forward simulations to provide

misleading results when applied inappropriately.
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Liang, L., S. Zöllner, and G. R. Abecasis, 2007 Genome: a rapid coalescent-based whole
genome simulator. Bioinformatics (Oxford, England) 23: 1565–1567.

Marjoram, P., and J. D. Wall, 2006 Fast “coalescent” simulation. BMC genetics 7: 16.

McVean, G. A. T., and N. J. Cardin, 2005 Approximating the coalescent with recombination.
Philosophical transactions of the Royal Society of London. Series B, Biological sciences 360:
1387–1393.

Messer, P. W., 2013 Slim: simulating evolution with selection and linkage. Genetics 194: 1037–
1039.

Neuhauser, C., and S. M. Krone, 1997 The genealogy of samples in models with selection.
Genetics 145: 519–534.

Spencer, C. C. A., and G. Coop, 2004 Selsim: a program to simulate population genetic data
with natural selection and recombination. Bioinformatics (Oxford, England) 20: 3673–3675.

Thornton, K. R., 2014 A c++ template library for e�cient forward-time population genetic
simulation of large populations. Genetics 198: 157–166.

Zanini, F., and R. A. Neher, 2012 Ffpopsim: an e�cient forward simulation package for the
evolution of large populations. Bioinformatics (Oxford, England) 28: 3332–3333.

7



Zeng, K., 2013 A coalescent model of background selection with recombination, demography and
variation in selection coe�cients. Heredity 110: 363–371.

8



2 Robust forward simulations of recurrent hitchhiking

Uricchio, L. H., and R. D. Hernandez, 2014 Robust forward simulations of recurrent hitchhik-

ing. Genetics 197: 221–236.

9



2.1 Introduction

A central goal of population genetics is to determine the strength and rate of natural selection in

populations. Natural selection impacts patterns of genetic diversity within populations, and is likely

to influence phenotypes of biological and medical interest (Bustamante et al. 2005; Torgerson

et al. 2009; Maher et al. 2012; Arbiza et al. 2013). There exists a large body of literature

focused on mathematical models of selection in populations and inferring the action of selection on

DNA sequences under these models (recent reviews include Pool et al. 2010; Crisci et al. 2012;

Cutter and Payseur 2013). One such model is known as recurrent hitchhiking, in which patterns

of diversity at a selectively neutral locus are altered due to repeated positive selection at linked

loci.

Recurrent hitchhiking has been theoretically explored (Smith and Haigh 1974; Ota and

Kimura 1975; Kaplan et al. 1989; Stephan et al. 2006; Coop and Ralph 2012) and applied

to DNA sequences of various organisms (Bachtrog 2008; Jensen et al. 2008; Ingvarsson 2010;

Singh et al. 2013). The classic work of Stephan et al. 1992 modeled the dynamics of the neutral

locus in a single sweep with di↵usion-based di↵erential equations, which they solved approximately.

Wiehe and Stephan 1993 later showed that their solution for single sweeps could be applied to a

recurrent sweep model, where the expected reduction in neutral diversity is well approximated by

r

r+↵I�

; ↵ = 2Ns where N is the population size and s is the selection coe�cient, r is the recombi-

nation rate, � is the rate of positively selected substitutions, and I is a constant that approximates

the value of an integral. However, little work has been done to explore recurrent sweeps with

forward simulations (but see Kim and Stephan 2003, and Chevin et al. 2008, where interfering

substitutions were studied with forward simulations, and the discussion herein).

It is crucial to understand the dynamics of recurrent sweeps (and other population genetic

models) when realistic perturbations to the model are introduced, which is often di�cult in a

coalescent framework. In contrast, with forward simulations it is straightforward to introduce

arbitrarily complex models, including demographic processes, interference between selected sites,

simultaneous negative and positive selection, and variable strength of selection or recombination

rate across a chromosome. Furthermore, forward simulations can be performed exactly under a

given model, and hence they can be used as a direct test of theoretical predictions. Simulations
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can be used in conjunction with inference methods such as Approximate Bayesian Computation

to estimate parameters when the likelihood function of the data under the model is unknown

(Beaumont et al. 2002).

In population genetics, forward methods have often been overlooked in favor of reverse time coa-

lescent simulators due to computational e�ciency (Hernandez 2008; for an overview of coalescent

and forward simulation techniques, see Kim and Wiehe 2009). Although coalescent simulations are

generally more computationally e�cient, in most applications they require some a priori knowledge

of allele trajectories. Recent improvements in computer memory and processor speeds have made

forward simulations more tractable. However, simulations of recurrent hitchhiking in some pa-

rameter regimes of interest (e.g., N > 105) are still computationally prohibitive, so it is frequently

necessary to rescale model parameters (e.g., N and chromosome length, L) (Kim and Wiehe 2009).

Currently, the literature provides some guidelines for performing parameter scaling in forward sim-

ulations (Hoggart et al. 2007), but it is not clear that these methods will be generally applicable

to all models or hold in all parameter regimes.

In this investigation, we examine recurrent sweeps through forward simulation and theory. We

provide a detailed, practical discussion of simulations of recurrent sweeps in a forward context,

focusing on scaling laws of relevant parameters such as N , �, r, ↵, and L. We evaluate a “naive”

parameter rescaling algorithm, and show that this technique can bias patterns of variation in the

simulations because it is not conservative with respect to the underlying genealogical process, par-

ticularly in the large ↵, small N regime. We quantify the e↵ect of large values of the selection

coe�cient s on recurrent hitchhiking through theory. Finally, we leverage these principles to make

gains in computational e�ciency with a simple algorithm that provides the best possible per-

formance for a prespecified error threshold, and apply the method to simulations of parameters

previously inferred in Drosophila.

2.2 Model

Here, we describe the recurrent hitchhiking model (shown schematically in Figure 2.1), upon which

we build the results and simulations in this article. Key parameters of the model are discussed

below, and summarized in Table 1.

A neutral locus is flanked on both sides by sequences experiencing repeated positively selected
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substitutions at rate � per generation per site. � is assumed to be small enough that multiple

positively selected mutations do not simultaneously sweep in the population and hence there is

no interference (though interference between selected sites is not prohibited in the simulations

performed herein). Population size is fixed at N . In forward simulations, there is no distinction

between e↵ective and census population size, so N = N
e

. Recombination occurs at rate r
f

(re-

combination fraction) per generation per chromosome. Note that the recombination fraction is

the probability that the number of recombination events between two loci is an odd number, and

cannot exceed 0.5. Each positively selected site has a selection coe�cient s = ↵/2N. Heterozygous

individuals have fitness 1+s, while individuals homozygous for the selected allele have fitness 1+2s.

The neutral locus itself is assumed to be non-recombining. Any of the above constraints and model

assumptions can be relaxed in forward simulations.

Table 1: Parameter definitions

N Population size
⌧
f

Time of fixation of selected allele
t Time in generations

x(t) Frequency of the selected allele
h(t) Relative heterozygosity at the neutral locus among selected chromosomes
q
l

Minor allele frequency at site l
l0 Length of neutral region
L Flanking sequence length

⇡ Nucleotide diversity, ⇡ =
P

l

0

l=1
2ql(1�ql)(n�1)

n

⇡0 Nucleotide diversity under neutrality
⇡
N

Nucleotide diversity in a population of size N
p(t) Probability of common ancestry at the neutral locus
n Number of sampled sequences
µ Mutation rate/generation/chromosome/base pair

✓ = 4Nµ Population scaled mutation rate
s Selection coe�cient

↵ = 2Ns Population scaled selection strength
r Recombination rate/generation/chromosome/base pair

⇢ = 4Nr Population scaled recombination rate
r
f

Recombination fraction (probability of productive recombination, per generation per chromosome)
� Rate of positively selected substitutions per site per generation
k
h

Rate of common ancestry induced by sweep events (see (2.4))
R

c

Total rate of common ancestry induced by sweep and coalescent events
I
↵,s

The integral
R
u⇤
0 p

⌧f (u)du (see (2.4))
I⇤
↵,s

The integral
R
u⇤
0 p⇤

⌧f
(u)du (see (2.14))

I = 0.075 A constant approximating I
↵,s
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Consider the coalescent history at the neutral locus of two sequences sampled immediately after

a selective sweep. If there is no recombination between the neutral and selected loci during the

sweep, then the two sequences must share a common ancestor at some point during the sweep. If

selection is su�ciently strong, then the time to fixation of selected alleles is e↵ectively instantaneous

relative to the neutral fixation process (Kaplan et al. 1989), and thus the expected heterozygosity

at the neutral site at the completion of the sweep is nearly 0 because very few mutations are

introduced during the sweep.

Recombination significantly complicates this model. Immediately after a sweep, the reduction

in heterozygosity at the neutral locus is a function of the recombination distance between the

selected substitution and the neutral locus, and the strength of selection. Stephan, Wiehe, and

Lenz (SWL) calculated the reduction in heterozygosity at the neutral locus with a di↵usion based,

di↵erential equation framework (Stephan et al. 1992). They showed that the expected reduction

in heterozygosity at the neutral locus among chromosomes carrying the selected allele, relative to

the baseline heterozygosity, h(t), can be modeled with a simple di↵erential equation, which they

solved approximately.

Kaplan et al. 1989 showed that h(t) is closely related to the probability that two sequences

sampled at the end of the sweep share a common ancestor at the neutral site during the sweep,

p(t).

p(t) = 1� h(t) (2.1)

This allows the results of SWL to be interpreted in terms of the coalescent process at the neutral

locus. Note that when t = ⌧
f

(the end of the sweep), p(⌧
f

) represents the probability of common

ancestry at the neutral locus for a pair of sequences at some point during the sweep because all

chromosomes carry the selected allele at the end of a sweep. Throughout the article, we subscript

variables of interest with ⌧
f

to denote their values at the time of fixation and emphasize their

dependence on the recombination fraction r
f

(e.g., p
⌧f (rf )). Rewriting SWL results with (2.1), we

obtain

d

dt
p(t) =

1� p(t)

2Nx(t)
� 2r

f

p(t) (1� x(t)) (2.2)
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where x(t) is the frequency of the selected allele at time t during the sweep. Equation (2.2) is

equivalent to equation 5 of Barton 1998 when the selected allele is at low frequency.

Equation (2.2) can be interpreted in terms of the recombination process between the neutral and

selected loci. In particular, there are two mechanisms that can change the proportion of selected

sequences that share common ancestry at the neutral locus. The first term on the RHS of (2.2)

represents that chance of common ancestry in the previous generation among selected sequences that

have already recombined o↵ of the original background. The chance that any two such sequences

share a common ancestor in the previous generation is 1
2Nx(t) . The second term represents the

chance that a recombination event occurs between a selected chromosome and some non-selected

chromosome, thereby reducing p(t). The first term is only important when the frequency of the

selected site is low, because it is inversely proportional to the number of selected chromosomes,

whereas the second term contributes non-negligibly to the dynamics at all allele frequencies of the

selected locus.

Consider the coalescent history at the neutral locus of two lineages sampled at the current time

(not necessarily immediately after a sweep event). In each preceding generation, there is some

chance that they share a common ancestor at the neutral locus due to normal coalescent events,

and some chance that they share common ancestry because of a sweep event. Since sweeps occur

nearly instantaneously relative to the timescale of coalescence under neutrality, we can approximate

the chance of common ancestry as two competing processes. Neutral events occur at rate 1/2N and

compete with sweep events, which happen at rate 2�
r

p
⌧f (rf )drf in a window of size dr

f

, assuming

that sweeps occur homogeneously across the chromosome and r
f

⇡ rL. Note that r and � appear

in a quotient in this rate, which implies that multiplying both the substitution and recombination

rates by a common factor has no impact on the model. The factor of 2 represents the flanking

sequence on either side of the neutral locus.

Following the results of SWL, an approximate solution to (2.2) is:

p
⌧f (rf ) = 1�

2r
f

s
↵

�2rf
s �


�2r

f

s
,
1

↵

�
(2.3)

where � is the incomplete gamma function. Note that (2.3) is a function of r
f

,↵, and s, but we

only denote the dependence on r
f

since ↵ and s are assumed to be fixed for the analysis herein.
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Following SWL, we denote the rate at which lineages merge due to sweep events as k
h

,

k
h

= 2N

 
2�

r

Z
rf

⇤

0
p
⌧f (rf ) drf

!
(2.4)

where r
f

⇤ is taken as the value of r
f

that corresponds to the end of the flanking sequence. If the

flanking chromosome being modeled exceeds s

r

base pairs, previous work suggests that r⇤
f

can be

taken to be any value su�ciently far away from the neutral locus such that the value of k
h

is as

close as desired to its asymptotic limit Jensen et al. 2008. The factor of 2N is introduced to rescale

in coalescent units, such that neutral coalescent events happen at rate 1 relative to sweep merger

events.

2.2.1 The expectation of ⇡ in recurrent hitchhiking

In the recurrent hitchhiking (RHH) model, it is of great interest to describe the reduction in

diversity as a function of the basic parameters of the model (↵, r,�, etc.). To make this dependence

clearer, we perform two changes of variables in (2.4). First, we note that (2.4) was derived by SWL

under the assumption that r⇤
f

is small, such that the recombination fraction is given by r
f

⇡ rL.

Here we will frequently be concerned with values of r
f

that approach its maximum value of 0.5,

which invalidates this approximation. We therefore rewrite (2.4) as a function of L, substituting

r
f

= 1�e

�2rL

2 for the quantity r
f

(Haldane 1919). We then substitute the quantity u = 2r
s

L for

L. Rewriting p
⌧f and k

h

as functions of u, we have

p
⌧f (u) = 1� (1� e�su)

s
↵

�(1�e�su
)

s �


�(1� e�su)

s
,
1

↵

�
(2.5)

and

k
h

=
2Ns�

r

Z
u

⇤

0
p
⌧f (u) du (2.6)

It is useful to examine the properties of (2.5) and (2.6) as a function of s. When s is small,

(2.5) can be rewritten as
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p
⌧f (u) ⇡ 1� u↵�u �


�u, 1

↵

�
(2.7)

which removes the dependence on s and is identical to the quantity inside the integral on the RHS

of equation 4 of Wiehe and Stephan 1993. Thus, the integral on the RHS of (2.6) is a function

only of the parameter ↵ when s is small. This is not necessarily the case as s becomes large, but

we also note that (2.3) was originally derived under the assumption that s is small, so it is possible

that the large s behavior is not accurately captured by (2.5) and (2.6).

Similar to Wiehe and Stephan 1993, we define the integral in (2.6) as I
↵,s

, but we include

the subscript ↵, s to emphasize that, under some circumstances, I
↵,s

may be a function of both ↵

and s and cannot be written as a function of only the population scaled strength of selection. The

total rate of coalescence R
c

(in coalescent units) due to both sweep and neutral coalescent events

is then

R
c

= 1 + k
h

= 1 +
↵�

r
I
↵,s

(2.8)

The expected height of the coalescent tree for two sequences is the inverse of this rate. The

expected reduction in diversity at the neutral locus is proportional to the decrease in the height of

the coalescent tree, relative to neutrality.

E
↵,s

[⇡/⇡0] =
1

R
c

=
r

r + ↵�I
↵,s

(2.9)

Wiehe and Stephan 1993 found that I
↵,s

is approximately constant (I=0.075) over a range of

large values of ↵.

E
WS

[⇡/⇡0] =
r

r + ↵�I
(2.10)

Note that this removes the dependence on s, which is asserted by (2.9). In the following subsections

we show that both (2.9) and (2.10) may not hold when s is large.
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2.3 Materials & Methods

2.3.1 Simulating RHH Models

We performed forward simulations of RHH with SFS CODE (Hernandez 2008; see Appendix for

details). A pictorial representation of the model is shown in Figure 2.1.

All simulations in this article were performed with ✓ = 0.002 at the neutral locus, and reductions

in diversity were calculated as the ratio of the observed diversity to 0.002, unless otherwise noted.

Nucleotide diversity ⇡ and Tajima’s D were calculated with a custom script. We often report

the di↵erence proportion in ⇡
N

1

(diversity in a rescaled population of size N1) as compared to

⇡
N

0

(diversity in the population of size N0), which we define as
⇡N

1

�⇡N
0

⇡N
0

. For each simulation we

sampled 10 individuals (20 chromosomes) from the population. The neutral loci in all simulations

are 1 Kb in length.

2.3.2 Fixing the probability of fixation

Throughout the article, we discuss appropriate choices of r, �, s, L, andN for simulations. However,

in forward simulations, the rate of substitution is not explicitly provided to the software, but rather

a rate of mutation. In order to calculate the appropriate mutation rate for a simulation, one must

incorporate the probability of fixation for a positively selected site. For s < 0.1, the fixation

probability of Kimura 1962 is su�cient:

P
Kimura

(s,↵) =
1� e�2s

1� e�2↵
(2.11)

However, when s > 0.1, this approximation overestimates the probability of fixation. For s > 0.1,

we treat the initial trajectory of the selected site as a Galton-Watson process and calculate the

probability of extinction by generation i, P
e

(i), with procedure P
GW

(s) Fisher 1999.

In practice, this algorithm takes fewer than 200 iterations to converge for s > 0.1, and provides

accurate results (Figure 2.2). Simulations for this figure were performed with a simple Wright-

Fisher simulator that only sampled the trajectory of the selected site and followed it until either 1)

loss or 2) the frequency of the selected site exceeded 100/↵, which very nearly guarantees eventual

fixation.
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procedure P
GW

(s)
P
e

(0) = e�(1+s)

i = 1
while P

e

(i)� P
e

(i� 1) > � do
P
e

(i) = e�(1+s)(1�Pe(i�1))

i i+ 1
end while

return 1� P
e

(i)
end procedure

All analysis and simulation scripts used in this article are available upon request from the

authors.

2.4 Results

2.4.1 A “naive” approach to parameter rescaling

In forward simulations, the most computationally costly parameters are N and L, so we seek to

reduce these parameters as much as possible. A simple and widely used rescaling assumption is

that patterns of diversity are conserved when population scaled parameters ⇢ = 4Nr, ↵ = 2Ns, and

✓ = 4Nµ are held fixed and N is varied (Kim and Wiehe 2009; for more discussion, see subsection

5 of the SFS CODE manual). This is equivalent to the statement that the e↵ective population size

is not a fundamental parameter of the dynamics, and is similar to the rescaling strategy described

in Hoggart et al. 2007, which was not designed specifically for RHH simulations.

Equation (2.9) provides an informed view of rescaling that incorporates RHH theory. Equation

(2.9) predicts that the impact of the underlying genealogical process on neutral sequence depends

on the compound parameters Ns and r/�, but not directly on ⇢. Hence, if s is increased and N

decreased while holding their product constant, and r and � are increased while holding their ratio

constant, (2.9) predicts that patterns of variation will be maintained.

Finally, (2.3) suggests as we decrease N and increase s for fixed ↵ we must also increase the

length of the flanking sequence, because selection at more distant sites can impact the neutral

locus as s is increased. Note that we can accomplish this either by fixing the recombination rate

and increasing the length in base pairs of the flanking region or by increasing the recombination
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rate for some fixed flanking length. Since the same number of mutations are introduced, these

options are functionally identical, but the latter may require less RAM for some forward simulation

implementations.

Taken together, these scaling principles suggest a simple algorithm for choosing simulated values

of N1, ↵1, r1, and �1 that are conservative with respect to the genealogical process as predicted

by (2.9). We wish to model L0 flanking base pairs of sequence in a population of size N0 with

parameters ⇢0,↵0, and �0. We choose L1 and N1 to be any computationally convenient flanking

length and population size. We compute the remaining simulation parameters with Algorithm 1.

procedure Algorithm 1(⇢0,↵0, L0,�0, N0, N1, L1)
Let s0 =

↵

0

2N
0

; r0 =
⇢

0

4N
0

; a = s

0

L

0

r

0

↵1 = ↵0

s1 =
↵

1

2N
1

r1 =
s

1

aL

1

�1 =
r

1

�

0

r

0

⇢1 = 4N1r1
return N1, ⇢1,↵1, L1,�1

end procedure

Note that if we choose L1 = L0, we obtain ↵1 = ↵0, ⇢1 = ⇢0, and 4N1�1 = 4N0�0, which is

consistent with the rescaling strategy of Hoggart et al. 2007 and di↵usion theory.

In Figures 2.3A-C, we show results obtained with Algorithm 1. In 2.3A, we plot the normalized

di↵erence in mean diversity between simulations performed in a population with N0 = 5, 000 and

simulations performed with rescaled parameters and varying choices of N1. The dashed black

line at 0 represents the expectation under perfect rescaling, because perfect rescaling will result

in a normalized di↵erence in means equal to zero between rescaled parameters and the original

parameters. The colored points each represent the mean of 5,000 simulations and the solid colored

curves were explicitly calculated with (2.9).

Algorithm 1 generates patterns of diversity in the rescaled populations (colored points, 2.3A)

that are similar to the simulated diversity in the model population (black dashed line, 2.3A) when

the strength of selection is low, but the algorithm performs poorly when the strength of selection

gets arbitrarily large. Qualitatively similar results are observed for the variance in ⇡ (2.3B) and

Tajima’s D (2.3C). Furthermore, the mean diversity of simulations performed with Algorithm 1

does not agree well with explicit calculation of the expected diversity using (2.9) when selection is
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strong, as seen by the divergence between the mean diversity in the simulations and the solid curves.

In fact, (2.9) predicts that the diversity will decrease as N grows because of the dependence of I
↵,s

on s (2.3A, solid colored curves), but simulations show the opposite pattern. This demonstrates

that the simulated value of s has some e↵ect on the expected patterns of diversity (which is not

predicted by the results of Wiehe and Stephan 1993, which we used to build Algorithm 1), and

that (2.9) does not appropriately model this dependence.

In the next subsections we examine circumstances under which the assumptions used to derive

(2.9) and (2.10) may break down, and we use insights from this analysis to design a more robust

approach to parameter rescaling.

2.4.2 RHH with large values of s

We have predicated Algorithm 1 on (2.9) and (2.10), and hence it is likely that it will not perform

adequately in parameter regimes in which (2.9) or (2.10) is not accurate. Equation (2.9) was derived

using (2.3), which used the assumption that s is small, so it is possible that in the large s regime

(2.9) will fail to accurately predict the reduction in diversity. Here, we derive a theoretical form

that describes the impact of RHH in the large s regime by conditioning on the altered dynamics of

the selected locus under very strong selection.

For genic selection, the dynamics of the selected locus are described by

d

dt
x(t) =

sx(t)(1� x(t))

1 + 2sx(t)
(2.12)

For small s, the denominator of (2.12) is very close to 1 and is typically ignored (and was ignored in

the derivation of (2.3) by SWL). However, for very large s the denominator is non-negligible, which

slows the rate of growth of the selected site when it is at moderate to high frequency. To investigate

RHH with large s, we solved (2.2) approximately, conditioning on (2.12) for the dynamics of the

selected site (see Appendix for derivation). We find

p⇤
⌧f
(r

f

) = e�4rf

✓
1�

2r
f

s
↵

�2rf
s �


�2r

f

s
,
1

↵

�◆
(2.13)

This result di↵ers by only a factor of e�4rf from (2.3), but makes very di↵erent predictions for

20



large s and r
f

. As s increases, more distant sites can impact the diversity at the neutral locus. In

fact, s can be made arbitrarily large whereas r
f

is constrained to remain less than 0.5. As a result,

we expect that (2.9) will underestimate the observed diversity for large s. If we use Algorithm 1

to make N arbitrarily small and s arbitrarily large, (2.13) predicts that patterns of diversity in

the simulated population may be significantly di↵erent from the larger population because of this

s dependence. We denote the reduction in diversity calculated with (2.13) as

E⇤
↵,s

[⇡/⇡0] =
r/�

r/� + ↵I⇤
↵,s

(2.14)

with an asterisk to di↵erentiate it from (2.9). I⇤
↵,s

is computed exactly as in subsection 2.1, but

replacing (2.3) with (2.13).

We performed simulations of RHH with large values of s to test (2.14). We find that (2.14)

accurately predicts the impact of RHH on diversity for large s, whereas (2.9) is a poor predictor in

the large s regime (Figure 2.4). We have performed this analysis primarily to explain the biased

patterns of diversity produced by Algorithm 1, but we note that in some cases (e.g., microbes

under extreme selection pressures), it is possible that s can be much larger than 0.1. Indeed, one

experimental evolution study of Pseudomonas fluorescens reported values of s as large as 5 and a

mean value of 2.1 (Barrett et al. 2006). If and when s achieves such large values in recombining

organisms it will be advantageous to use equation (2.13) in place of (2.3).

2.4.3 Robust parameter rescaling for RHH simulations

Using the results in the previous subsection, we modify Algorithm 1 to guard against violating the

assumptions of the RHH model as we rescale the parameters of the simulations.

Let N1, L1, etc., be defined as in the previous subsection. Our goal is to reduce N0 as much as

possible without altering the underlying dynamical process by more than a prespecified amount.

Let �
I

be the maximum deviation between I⇤
↵,s

for a population of size N1 and the model population

of size N0 that we are willing to accept in our simulations. For example, let �
I

= 0.01 if we desire

simulated sequences in which I⇤
↵,s

in a population of size N1 di↵ers by no more than 1% from a

population of size N0. Let �p be the maximum di↵erence between p⇤
⌧f
(u) in populations of size N0

and N1 that we are willing to accept in our simulations, over all u from 0 to u⇤, the length of the
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flanking region. Qualitatively, �
I

is a constraint on the total area under p⇤
⌧f
(u), which influences

the overall level of diversity, while �
p

is a constraint on the shape of p⇤
⌧f
(u), which influences the

coalescent dynamics for a substitution that occurs at a given distance from the neutral locus. See

Figure 2.5 for a pictorial explanation. We formalize these constraints in Algorithm 2. Note that

every parameter chosen by Algorithm 2 is exactly with consistent Algorithm 1, but in Algorithm 2

we precompute how small we can make N without altering the dynamics of the RHH model.

procedure Algorithm 2(⇢0,↵0, L0, N0,�0, L1, �I , �p)
Let s0 =

↵

0

2N
0

; r0 =
⇢

0

4N
0

; a = s

0

L

0

r

0

; u
max

= 2/a
↵1 = ↵0 = ↵
Numerically solve I↵,s0�I↵,s1

I↵,s0
= �

I

for the quantity s1.

D = Max[p⇤
⌧f ,s0

(u)� p⇤
⌧f ,s1

(u)] over all u on [0,u
max

]
if D > �

p

then Numerically solve Max[p⇤
⌧f ,s0

(u)� p⇤
⌧f ,s1

(u)]=�
p

for s1 over all u on [0,u
max

]
end if
N1 =

↵

1

2s
1

r1 =
s

1

aL

1

�1 =
r

1

�

0

r

0

⇢1 = 4N1r1
return N1, ⇢1,↵1, L1,�1

end procedure

We implemented Algorithm 2 in Python, using the numerical optimization tools in SciPy (Jones

et al. 2001–) for the numerical optimization steps. In Figures 2.3D-F, we demonstrate the perfor-

mance of Algorithm 2 for three di↵erent values of �
I

= �
p

. Smaller values of � generate sequences

that are more closely matched to the diversity in the population of size N0, but require a larger

simulated N1 and are hence more computationally intensive. Note that for the values of � that

we have chosen herein, only a very small change in the overall diversity is expected. While larger

values of � may be acceptable for some applications, we do not recommend large values in general

because the underlying dynamics are not necessarily expected to be conserved even if the change

in overall diversity is small. Indeed, small deviations in mean ⇡ and Tajima’s D are observed for

the largest value of � with strong selection (2.3F).

Computational performance of the rescaled simulations is shown in Figure 2.11 (see Appendix).
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2.4.4 The notion of “su�ciently distant” flanking sites

We designed Algorithm 2 to work for any given L0 in a population of size N0. In the RHH literature,

flanking regions of L0 =
s

r

are of particular interest because equation (2.3) suggests that sites that

are more than s

r

base pairs from the neutral locus have no impact on the neutral site Jensen et al.

2008, at least for small s. However, this result does not hold in the large s regime. First, the

recombination fraction is not linear in the number of base pairs of flanking sequence when r
f

> 0.1,

and r
f

cannot exceed 0.5, even for arbitrarily long flanking sequences. Equations (2.3) and (2.13)

are functions of
rf

s

, so as s gets large (s > 0.5) it is not possible to make compensatory linear

increases in r
f

. Second, the dynamics of the selected site are altered when s is large, as we noted

in the previous subsections. In particular, (2.13) suggests that sites that have r
f

= 0.5 (unlinked

sites) have a non-negligible impact on the diversity at the neutral site when s is very large. Our

model predicts the impact of L
u

unlinked sites to be

E[⇡/⇡0] =
1

1 + 2N�L
u

p⇤
⌧f
(r

f

= 0.5)
(2.15)

Figure 2.6 shows the reduction in diversity, relative to neutrality, for simulations of RHH that

include a neutral region and L
u

unlinked selected sites, and no linked selected sites. Equation

(2.15) accurately predicts the reduction in diversity for these simulations. These results highlight

another problem with Algorithm 1. In Algorithm 1, we linearly increase the flanking sequence as s

increases. However, for large s, the majority of these flanking sites are essentially unlinked to the

neutral locus, but can have a non-negligible impact on the neutral locus. This is fundamentally

di↵erent from the dynamics in the small s regime, where unlinked sites have no impact on the

neutral locus.

While this result may not be intuitive, it is a natural consequence of very large values of s.

Consider the implausible but instructive case when s ⇡ 2N . In the first generation after the

selected site is introduced into the population, approximately half of the o↵spring are expected to

be descendants of the individual with the selected site. At a locus that is unlinked to the selected

site, one of the two chromosomes of the individual with the selected mutant is chosen with equal

probability for each of the descendants, which causes an abrupt and marked decrease in diversity.

Though this e↵ect is more subtle in our simulations in Figure 2.6 (which have 1 < s⌧ 2N), there
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is a measurable decrease in ⇡ due to the accumulated e↵ect of unlinked sites with large s.

2.4.5 The role of interference

In the previous subsections, we have restricted our analysis to parameter regimes in which interfer-

ence between selected sites is very rare, which is an assumption of the RHH model. However, one

of the advantages of forward simulations is that they can be performed under conditions with high

levels of interference.

In Figure 2.7, we examine the performance of Algorithm 2 with very high rates of positive

selection. Note that the value of � on the x-axis is the expected value in the absence of interference

in a population of size N0, and the observed value of � in the simulations is slightly lower. Point

sizes in Figure 2.7 indicate the amount of interference between selected sites, as measured by the

fraction of selected substitutions that overlap with at least one other substitution while segregating

in the population. This is a conservative metric for the total e↵ect of interference because it does

not include the fraction of selected sites that are lost due to competition with other selected sites.

As the rate of interference increases, the theoretical predictions of equation (2.13) underestimate

the reduction in diversity by an increasing amount (2.7A, black points). This is expected because

as interference increases, a smaller fraction of selected sites reach fixation, and furthermore the

trajectories of the sites that fix are altered due to competition. Neither of these e↵ects is modeled

by equation (2.13).

More strikingly, as the rate of interference increases, the separation between the rescaled pop-

ulations (green and red points) and the original population (black points) also increases. This

demonstrates that Algorithm 2 does not recapitulate the expected diversity in the rescaled popu-

lations when the rate of interference is high in the population of size N0. This result is expected

when we consider that the rate of interference is a function of both the rate of substitutions and

the time that selected substitutions segregate in the population before fixation. It is well known

that the time to fixation is a function of both ↵ = 2Ns and N , and cannot be written naturally

as a function of only one or the other. Hence, when we rescale the population with fixed ↵, we

necessarily change the amount of interference. We analyze this e↵ect in more detail in the next

subsection when we perform rescaling for two sets of parameters inferred in Drosophila.
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2.4.6 An application to Drosophila parameters

In Figure 2.8, we perform rescaling with RHH parameters that are relevant toDrosophila. Macpher-

son et al. 2007 found evidence supporting strong selection (s = 0.01), which occurred relatively

infrequently (� = 3.6 ⇥ 10�12) in a Drosophila population of size N0 = 1.5 ⇥ 106. Jensen et al.

2008 found weaker (s = 0.002), more frequent selection (� = 10�10) in a population of N0 = 106.

Our goal is not to debate the “true” parameters, but rather to investigate the practicability of

rescaling using previously inferred parameters. Assuming a flanking sequence length of L0 = s0/r0

and a recombination rate of r0 = 2.5⇥ 10�8, we apply Algorithms 1 and 2 to these parameter sets

and investigate the e↵ect on diversity.

In Figure 2.8A, we show that the trend in simulated diversity (solid red curve) as a function of N

under the Macpherson et al. 2007 parameters is correctly described by (2.14), which predicts that

the diversity decreases at low N . However, the model slightly underestimates the mean diversity

compared to simulations. In contrast, the model predictions of the diversity are very inaccurate

under the parameters estimated by Jensen et al. 2008 (Figure 2.8B, solid blue curve). In both

2.8A and 2.8B, Algorithm 1 strongly alters the patterns of diversity as N is decreased. The value

of N1 calculated with Algorithm 2 and �
I

= �
p

= 0.06 are shown with the dotted vertical line.

Point sizes in 2.8A and 2.8B indicate the proportion of substitutions that are introduced while

another substitution is on the way to fixation (as in Figure 2.7). While the interference is fairly mild

for large values of N under the parameters of Macpherson et al. 2007, the amount of interference

is extreme at all values of N under the Jensen et al. 2008 parameters. In both cases the amount

of interference in the simulations changes as we rescale N1.

We designed Algorithm 2 under the assumption that interference is negligible in the population

of size N0. This assumption is approximately met under the parameters of Macpherson et al.

2007, where sweeps are infrequent and overlapping sweeps are rare. However, this assumption is

broken by the parameters of Jensen et al. 2008, where the rate of sweeps is more than an order of

magnitude higher. As a result, the diversity is not well predicted by equation (2.14) at any value

of N , and Algorithm 2 fails to generate sequences with accurate patterns of genetic diversity.

In general, it is useful to know a priori when the assumptions of the RHH model are not met as

a result of high interference in a population of size N0. Consider the probability that a positively
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selected substitution arises in the population while another substitution is heading towards fixation,

p
inter

. Under the assumption that interference is su�ciently infrequent such that the mean time to

fixation and probability of fixation are not strongly altered, we can approximate p
inter

as

p
inter

⇡ 1� (1� 2L�)⌧f = 1�
✓
1� 2s�

r

◆ 2(1+s) log 2N
s

⇡ 4(1 + s)� log 2N

r
(2.16)

The probability of no substitution in a single generation is 1� 2L�, and hence the probability

that no new selected substitutions are introduced while a given selected mutation is on its way to

fixation is (1� 2L�)⌧f . Supposing that L = s

r

and plugging in the expectation of ⌧
f

garners the rest

of the terms in the equation. The final approximation is valid for very small 2s�
r

. Note that we do

not expect (2.16) to hold exactly in any parameter regime because the time to fixation is actually

a random variable (and furthermore, both ⌧
f

and � are altered when interference is frequent), but

we find that p
inter

is a useful approximation for describing the interference in simulations during

the rescaling process.

In Figures 2.8C and 2.8D, we investigate the behavior of (2.16) as we rescale the population size.

As N is decreased from N0, the value of pinter initially decreases because the product (1+s) log 2N

decreases. However, as N gets very small with Algorithm 1, (1 + s) log 2N eventually begins to

increase because 1+s increases faster than log 2N decreases, increasing the amount of interference.

Although the exact calculation of the e↵ects of interference is very challenging, it is straightfor-

ward to calculate the value of p
inter

in a population of size N0. If the value of p
inter

is large (e.g.,

> 0.05, as with the parameters in Figure 2.8B), then the assumptions of Algorithm 2 are broken

and there is no guarantee that the rescaled simulated sequences will be su�ciently accurate. By

contrast, if there is low interference in a population of size N0 then it is safe to perform rescaling

so long as the value of p
inter

is constrained. In practice, the value of p
inter

(or other quantities that

are related to the rate of interference) can be taken as an additional constraint in the calculation

of N1 in Algorithm 2 such that the impact of interference is limited under rescaling.

2.5 Discussion

Simulations are an integral part of population genetics because it is often di�cult to obtain ex-

act analytical expressions for many quantities of interest, such as likelihoods for sequence data
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under a given model. Until recently, forward simulations were not practical because of the large

computational burden that they can impose. However, several new forward simulation techniques

have been proposed and published (Hoggart et al. 2007; Hernandez 2008; Zanini and Neher

2012; Aberer and Stamatakis 2013; Messer 2013), and their use in population genetic studies

is becoming increasingly popular.

Despite these computational advances, it remains very computationally intensive to simulate

large populations and long chromosomes in a forward context. It is frequently necessary to perform

parameter rescaling to achieve computational feasibility for parameter regimes of interest (e.g.,

N > 105 with long flanking sequences), particularly for applications such as Approximate Bayesian

Computation which require millions of simulations for accurate inference. The hope of such rescal-

ing e↵orts is that expected patterns of diversity will be maintained after rescaling, and that the

underlying genealogical process will remain unaltered.

In this investigation, we tested a “naive” approach to parameter rescaling, and showed that

this approach can strongly alter the expected patterns of diversity because it does not conserve

the underlying genealogical process at the neutral site. In particular, for fixed values of ↵, s can

get arbitrarily large as N is decreased, and previous theoretical results do not accurately predict

the patterns of diversity in this parameter regime. We derived a new theoretical form for the

reduction in diversity when s is large, and show that it has strong predictive power in simulations.

We leveraged this result to develop a simple rescaling scheme (Algorithm 2) that approximately

conserves the underlying genealogical process. We note that in practice Algorithm 2 may not always

be necessary, and as long as s remains small (say, < 0.1) Algorithm 1 will su�ce. The advantage

of Algorithm 2 is that it allows us to quantitate the e↵ect of rescaling, and to get the best possible

computational performance for a given error tolerance.

It will be of great interest to extend the rescaling results for recurrent sweeps presented herein

to models that include arbitrary changes in population size and interference between selected sites.

In the case of changes in population size, we note that the strategy presented in Algorithm 2

can be easily extended to perform optimization across a range of population sizes such that the

constraints are simultaneously satisfied at all time points in a simulation. This strategy is consistent

with previous approaches to rescaling in the context of complex demography Hoggart et al. 2007.

Interference poses a greater challenge, because the amount of interference is dependent both on
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the rate of substitution and the time that selected sites segregate. It is well known that the time to

fixation of selected alleles cannot be written as a simple function of ↵ and depends on N as well, and

hence rescaling population size with fixed ↵ alters the e↵ects of interference on sequence diversity

Comeron and Kreitman 2002. Improved understanding of scaling laws for interference may be

necessary in order to develop appropriate rescaling strategies, to the extent that such rescaling is

possible at all in a forward simulation context. However, recent progress was made in the case

of very strong interference, where scaling laws were recently derived by Weissman and Barton

2012.

The rescaling results presented here pose an interesting dilemma for the use of forward simula-

tions in population genetic studies, as previously noted by Kim and Wiehe 2009. A major appeal

of forward simulations (as compared to coalescent simulators) is the ability to incorporate arbitrary

models (e.g., interference between selected sites, complex demographic processes) without knowing

anything about the distribution of sample paths a priori. However, if simulations are only feasible

when the parameters are rescaled, there is no guarantee for any given theoretical model that the

rescaling will maintain expected dynamics. We also note that the rescaling method proposed herein

was informed by in-depth knowledge provided by the previous work of several authors, and that

in general it may not always be obvious which parameters must be simultaneously adjusted to

maintain expected patterns of variation in simulations for a given complex model.

Nonetheless, forward simulation in population genetics has a bright future. Forward simulation

remains the only way to simulate arbitrarily complex models. For many populations of interest

(e.g., ancestral human populations), population size is su�ciently small such that it can often be

directly simulated without rescaling. Continued computational advances in both hardware and

software in coming years will expand the boundaries of computational performance of forward

simulation. Finally, active development of the theory of positive selection, interfering selected sites,

background selection, demographic processes, and the joint action thereof will lend further insight

into parameter rescaling and advances in the use of forward simulations in population genetic

studies.
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2.6 Appendix

2.6.1 Derivation of p⇤
⌧f

for large s

In this subsection, we solve for the probability of identity p
⌧f when the selection coe�cient is large.

We will be concerned with the probability of identity p at various frequencies throughout the sweep

process. We will subscript p with t(x) to indicate the value of p at the time when the selected site

reaches frequency x (e.g., p
t(1/2N)). The trajectory of the selected site for large s is given (2.12),

while the dynamics of the neutral site are given by (2.2). We transform (2.2) into allele frequency

space by dividing by (2.12). We obtain:

d

dx
p =

(1� p)(1 + 2sx)

2Nsx2(1� x)
�

2r
f

p(1 + 2sx)

sx
(2.17)

This equation can be solved in Mathematica with the initial condition p
t(1/2N) = 1, meaning

that all backgrounds carrying the selected locus are identical at the neutral locus when the selected

site is introduced. At the end of the sweep, x ⇡ 1. We take the solution with x = 1� 1/2N because

x = 1 results in a singularity.

p
⌧f = e2rf (�2+ 1

2N )+ 2N�2

s�2Ns

✓
2� 1

N

◆�
1+2Nrf+2s

Ns
✓

1
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◆ 2+

1/s
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0

@e
2rf
N

✓
1

N

◆ 1+4Nrf+2s

2Ns

+ 4
rf
s e

1

s

✓
2� 1

N

◆ 2+

1

s
2N

0

@
Z 1� 1

2N

1

e
1

C �8Nrf sC+(1+2s) log[1�C]�(1+4Nrf+2s) log[C]

2Ns (�1 + 2sC)

2Ns (�1 + C)C2
dC

�
Z 1

2N

1

e
1

C �8Nrf sC+(1+2s) log[1�C]�(1+4Nrf+2s) log[C]

2Ns (�1 + 2sC)

2Ns (�1 + C)C2
dC

1

A

1

A

(2.18)

Equation (2.18) can be numerically integrated in Mathematica. However, this solution is compli-

cated, slow to evaluate, and provides little intuition about the dynamics. As an alternative, we

employ an approximate solution strategy.

Following Barton 1998 and others, we subdivide the trajectory of the selected allele into low
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frequency and high frequency portions. For small x, the term (1 + 2sx) ⇡ 1, even for large s.

As a result, there is little di↵erence between the dynamics for small s and large s sweeps at low

frequency. We rewrite (2.17) as

d

dx
p =

(1� p)

2Nsx2(1� x)
�

2r
f

p

sx
(2.19)

which is valid for low x. We define the solution to (2.19) on the interval x = [1/2N, ✏] as p
t(✏).

For x > ✏, the second term on the RHS of (2.17) dominates the first term, because the first term

is inversely proportional to the number of selected chromosomes. To obtain the high frequency dy-

namics of the selected allele, we take p
t(✏) as the initial condition and solve the following di↵erential

equation on the interval x = [✏, 1]:

d

dx
p = �

2r
f

p(1 + 2sx)

sx
(2.20)

We find the solution:

p
⌧f =

⇣
e4rf (✏�1)

⌘
✏
2rf
s p

t(✏) (2.21)

We can perform the exact same analysis under the assumption that the dynamics are given by

dx(t)
dt

= sx(t)(1� x(t)), as was done by SWL. This garners the solution:

pSWL

⌧f
= ✏

2rf
s p

t(✏) (2.22)

which di↵ers by only a factor of e4rf (✏�1) from (2.21). Since (2.22) was derived under assumptions

identical to those used in Stephan et al. 1992, we conclude that sweeps with large s can be modeled

with the equation

p
⌧f = e�4rf

✓
1�

2r
f

s
↵

�2rf
s �


�2r

f

s
,
1

↵

�◆
(2.23)

This equation provides very similar results to (2.3) for small s, as expected, but deviates for large

s (Figure 2.9).

To verify that this approximation provides accurate results to the full solution given by equation
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(2.18), we compared (2.18) to (2.23) in Mathematica. Agreement is very good between the exact

and approximate solutions for all values of s that we investigated (Figure 2.9).

2.6.2 RHH simulations in SFS CODE

We performed forward simulations of RHH with SFS CODE (Hernandez 2008). An example

command line for a RHH simulation is:

sfs code 1 10 -t <✓> -Z -r <⇢> -N <N> -n <n> -L 3 <L> <l0> <L> -a N R -v L A 1 -v L

1 <R
mid

> -W L 0 1 <↵> 1 0 -W L 2 1 <↵> 1 0

All of these options are described in the SFS CODE manual, which is freely available online at

sfscode.sourceforge.net, or by request from the authors. Briefly, this command line runs 10

simulations of a single population of size N and samples n individuals at the end. The recombi-

nation rate is set to ⇢, and 3 loci are included in the simulation. The middle locus (locus 1) is

l0 base pairs long while the flanking loci are L bp long. The middle locus is neutral, while the

flanking loci contain selected sites with selection strength ↵ = 2Ns. Every mutation in the flanking

region is positively selected. The sequence is set to be non-coding with the option “-a N r”. The

“-v” option provides the flexibility to designate di↵erent rates of mutation at di↵erent loci, and the

mechanics of its usage are described in detail in the SFS CODE manual. R
mid

specifies the rate at

which mutations are introduced into the middle segment relative to the flanking sequences. Please

see the SFS CODE manual for a detailed example of parameter choice for RHH simulations.

Forward simulations of DNA sequences can require large amounts of RAM and many compu-

tations. Recurrent hitchhiking models are particularly challenging to simulate because very long

sequences must be simulated. In particular, for a given selection coe�cient s, RHH theory suggests

that sites as distant as r
f

⇡ s must be included in the simulation to include all su�ciently distant

sites (see (2.3)).

In many organisms, r ⇡ 10�8. Assuming r
f

⇡ rL, this implies that a selection coe�cient

of s = 0.1 would require 107 base pairs of simulated sequence on each side of the neutral locus

in order to include all possible impactful sites. This is a prohibitively large amount of sequence
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for many reasonably chosen values of ✓ and N in forward simulations (Figure 2.10). However, in

simulations of RHH, we are primarily interested in examining the diversity at a short, neutral locus.

We adapted SFS CODE such that individual loci can have di↵erent mutation rates and di↵erent

proportions of selected sites. For RHH simulations, we set the proportion of selected sites to zero

in the neutral locus, and 1 in the flanking sequence. This greatly increases the speed and decreases

RAM requirements for SFS CODE because much less genetic diversity is generated in the flanking

sequences (Figure 2.10, blue curves). Time and RAM usage were measured with the Unix utility

“time” with the command “/usr/bin/time -f ‘%e %M’ sfs code [options]”. Note that time

reports a maximum resident set size that is too large by a factor four due to an error in unit

conversion on some platforms, which we have corrected herein. Simulations were performed on the

QB3 cluster at UCSF, which contains nodes with a variety of architectures and di↵ering amounts

of computational load at any given time. As such, the estimates of e�ciency herein should be taken

only as qualitative observations.

2.6.3 E�ciency of rescaled simulations

We report the time to completion of rescaled simulations relative to non-scaled populations using

Algorithm 2 (Figure 2.11). We observe reductions in time between approximately 99% and 40% for

the parameters under consideration here. In general, the best performance is obtained for weaker

selection, since in this case s is small in the population of size N0, meaning that the value of N

can be changed quite dramatically without breaking the small s approximation. Better gains are

also observed as the error threshold is increased, but this comes at an accuracy cost (see subsection

2.4.3).
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Figure 2.1: A pictorial representation of the recurrent hitchhiking model. Diverse neutral haplo-
types are indicated with various colors at the neutral locus. When a selected site is introduced and
eventually goes to fixation, it drags linked neutral variation to higher frequency. Selected mutations
can occur at any distance from the neutral locus within the flanking sequence. Viewed from the
perspective of the genealogy, sweep events generate an excess of recent common ancestry at a linked
neutral site, reducing the overall height of the coalescent tree relative to neutrality. Selected sites
that are more closely linked to the neutral site have a stronger impact on the overall height of the
tree because they induce more common ancestry on a short time scale. The overall impact of linked
selection at a neutral locus is a function of the strength of selection, the rate of recombination, and
the rate at which selected sites reach fixation. The neutral site is assumed to be non-recombining,
but this assumption can be relaxed in simulations.
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Figure 2.3: Mean and variance of observed diversity in the rescaled populations (N1) relative to the
model population (N0 = 5, 000). Rescaled parameters were obtained with Algorithm 1 in panels A,
B, and C and with Algorithm 2 in panels D, E, and F. 10,000 simulations were performed for each
parameter combination. The theoretical curves in A were calculated with (2.9) in Mathematica
(Wolfram 2010). Parameters: N0 = 5⇥ 103, ⇢0 = 10�3, �0 = 10�10, L0 = 106, L1 = 105. Panels
C and F show the mean Tajima’s D for the same simulations. Error bars in C and F are the
standard error of the mean.
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Figure 2.4: Simulations of recurrent hitchhiking with di↵ering amounts of flanking sequence. In each
panel, we vary the amount of flanking sequence and calculate the expected reduction in diversity
using (2.9) (red curves) or (2.14) (blue curves), where we have used u⇤ = 2r

s
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of the integration for calculating I

↵,s
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. Simulation points each represent the mean of 5,000
simulations, and the dashed black lines represent loess smoothing of the simulated data.
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3 Simulating complex phenotypes under evolutionary models
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3.1 Introduction

Genome-wide association studies have identified many common loci that contribute to complex

heritable phenotypes, but a large proportion of the heritability remains unexplained (Manolio

et al., 2009; Witte, 2010). Proposed sources of this missing heritability include rare variants,

environmental interactions, structural variants, common variants of weak e↵ect, and upward biases

in the original estimates of heritability. Sequencing studies with large numbers of samples may o↵er

new opportunities to find the unexplained heritability of complex phenotypes, especially rare causal

variants as these sites were mostly absent from and very poorly tagged by the original array-based

genotyping platforms.

Unfortunately, power to detect rare causal variants using single-marker statistical tests at the

genome-wide scale is generally much lower than is desirable. As a result, researchers have proposed

statistical methods to pool rare variants within a putatively causal locus and jointly test for the

contribution of these variants to the phenotype (Hoffmann et al., 2010; Neale et al., 2011; Wu

et al., 2011; Lee et al., 2012). While these methods all presuppose that low frequency causal sites

have larger e↵ects than high frequency causal sites, there are few mechanistic reasons for such a

phenomenon other than the action of purifying selection restraining the frequencies of large e↵ect

mutations. Moreover, it has been argued that only those phenotypes with causal sites that are

under selection will have a large fraction of heritability explained by rare variants (Simons et al.,

2014). Unfortunately, most rare variant association tools have not directly modeled selection on

causal alleles or used simulations of selection to test their performance (but see King et al. (2010)

and Price et al. (2010)). Since both natural selection and demography have strong e↵ects on the

frequency spectrum of variant sites, these evolutionary forces may have considerable impact on the

performance of rare variant association tests (Zuk et al., 2014).

Demography and selection both impact genetic variation within populations, and population

geneticists have developed a rich literature that models the e↵ects of these forces on sampled

DNA sequences (for reviews, see Emerson et al. (2001); Nielsen (2005)). In general, changes

in population size alter the probability of common ancestry between two sampled sequences per

generation as the genealogical history is traced backwards in time. Meanwhile, selection acts to

reduce the overall amount of genetic variation by shrinking the time to common ancestry, and in
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some cases also changes the shape of the genealogy. The height and shape of the genealogical

tree relating sequenced chromosomes a↵ect the total amount of variation in the samples and the

frequencies of the variant sites.

However, only as the scale of sequencing experiments has increased in recent years has it become

possible to apply models of selection and demography to real data sets. In particular, it is now

possible to use statistical inference techniques to infer the parameters of demographic/selection

models (e.g., population split times, growth rates, and the strength and rate of selection). Perhaps

the most influential such model is known as the Poisson Random Field (Sawyer and Hartl, 1992),

which has been used to infer both demographic events (Gutenkunst et al., 2009; Gravel et al.,

2011; Tennessen et al., 2012) and selection (Bustamante et al., 2001; Williamson et al., 2005;

Boyko et al., 2008; Torgerson et al., 2009).

As a result of these studies and others, we have rich information about the recent history of

human continental groups and natural selection acting on human genomic elements such as con-

served noncoding sequences and exons. In general, studies of human demography have found that

human genetic variation is consistent with a population bottleneck as humans moved out of Africa

and into Europe and Asia, and that in the recent past human populations have expanded rapidly.

Studies of selection have found that most amino acid changes in proteins are weakly deleterious,

and a substantial proportion of changes are strongly deleterious (Boyko et al., 2008). Moreover,

conserved noncoding elements have a qualitatively similar distribution of selective constraints with

a lower mean strength of selection (Torgerson et al., 2009), but there exist ultra-conserved non-

coding regions in the human genome with even stronger selective constraints than coding regions

(Katzman et al., 2007).

There has been tremendous recent interest in both population genetic inference and association

testing, and several studies connecting the fields have now been published (e.g., see Pritchard

(2001); Eyre-Walker (2010);Maher et al. (2012); Thornton et al. (2013); Simons et al. (2014);

Lohmueller (2014)). Population genetics has direct implications for association studies, since the

relationship between allele frequencies and e↵ect sizes determines the power to detect causal sites.

In particular, recent population growth and selection (Keinan and Clark, 2012; ?; Tennessen

et al., 2012) have both increased the proportion of sites at low frequency and impacted the total

number of segregating sites in a sample. Accounting for the impact of selection and demography
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on the frequency spectrum may be crucial to making sensible estimates of statistical power for

association tests that pool putatively causal rare variants.

Perhaps the most widely used rare variant association test is the sequence kernel association

test, or SKAT (Wu et al., 2011). SKAT provides a regression-based framework for rare variant

association testing, and has several advantages over tests that count the prevalence of rare variants

in cases and controls (collectively known as burden tests, e.g. Cohen et al. (2004);Morgenthaler

and Thilly (2007); Li and Leal (2008)). SKAT retains statistical power when rare variants have

e↵ects with opposing directions and provides the machinery for covariate adjustment. Furthermore,

many burden tests can be treated as special cases of SKAT (Wu et al., 2011). For these reasons,

we focus on SKAT in this article (specifically SKAT-O, an optimized version of SKAT (Lee et al.,

2012; ?)).

Here, we introduce a simulation tool that incorporates recently inferred population genetic

models of natural selection and demography, and accounts for the inferred functional elements

and local recombination rate of any desired locus in the human genome. We demonstrate how

local genomic features can impact patterns of variation within sampled DNA sequences, and show

that accounting for these patterns may have practical implications for rare variant association test

power calculations under some phenotype models. We also consider the impact of linked selection on

patterns of genetic variation and discuss the simulation of phenotypes under models with selection.

3.2 Materials and Methods

3.2.1 sfs coder: A Python-based interface to SFS CODE

We built a Python-based front-end to the forward simulator SFS CODE, which we have named

sfs coder. sfs coder is designed to allow users to simulate human DNA sequences using inferred

demographic histories and human selection models. A typical workflow in sfs coder consists of 1)

importing the appropriate modules, 2) performing SFS CODE simulations of the desired population

genetic model and/or locus in the human genome, and 3) analyzing the output of the command

or simulating phenotype data using the simulated genetic data. The post-processing analysis tools

include locus-by-locus computation of ⇡, Tajima’s D, Z
nS

, Watterson’s ✓, Fay and Wu’s H, and

the site frequency spectrum. Each step can be accomplished with a few lines of code if the user
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simulates one of the models that we have included, but any acceptable SFS CODE command can be

called from sfs coder. Furthermore, advanced Python users can use sfs coder’s object-oriented

framework to write their own analysis tools beyond what we have provided.

In the next sections, we detail the models that are simulated in this paper, all of which are

immediately accessible through our free software, except as noted. The software is available at

sfscode.sourceforge.net and complete documentation is available at uricchio.github.io/sfs coder.

3.2.2 Simulations of human demography and selection

We simulated human demography and selection for three human continental groups (African, Asian,

and European) using the parameter estimates of previous studies. All of the demographic models

we considered include discrete population size changes, population splits, and continuous migra-

tion (Schaffner et al., 2005). Two of the models incorporate the above features with recent

exponential growth in the European and Asian continental groups (Gutenkunst et al., 2009;

Gravel et al., 2011), and the final model incorporates all of the above features with recent ac-

celeration of the growth rate in the African and European continental groups (Tennessen et al.,

2012). The model of Schaffner et al. (2005) was simulated with the coalescent simulator cosi

(http://www.broadinstitute.org/~sfs/cosi/) and is not included in sfs coder, while the other

models were simulated using the forward simulator SFS CODE (Hernandez, 2008) and sfs coder.

The parameters of the population split times, migration rates, bottlenecks, and growth rates were

obtained from the maximum likelihood estimates of the relevant publications (Gutenkunst et al.,

2009; Gravel et al., 2011; Tennessen et al., 2012). Model parameters were scaled as described in

the SFS CODE manual, available at sfscode.sourceforge.net. Sample SFS CODE command

lines for each of the di↵erent models are provided in the Appendix.

In all simulations of selection on coding regions, we used the distribution of selection coe�cients

on non-synonymous sites that was inferred by Boyko et al. (2008). For conserved noncoding

elements, we applied the distribution inferred by Torgerson et al. (2009). Both are �-distributed,

and parameters for the distributions are given in the Appendix.

To summarize the results of our simulations, we plot the cumulative site frequency spectrum

(cSFS). The value of the cSFS at frequency x is defined as the proportion of variant sites below

or equal to frequency x in our simulations. We also report the nucleotide diversity, ⇡, for some of
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our simulations. ⇡ is defined as the mean number of pairwise di↵erences per base pair between a

random pair of chromosomes within the sample. The values of ⇡ that we report are the mean over

a set of independent simulations.

3.2.3 Simulations of genomic elements

sfs coder allows users to input the coordinates of a human genomic region and models the local

genomic structure of this region. We model human genomic elements within sfs coder as shown in

Figure 1. The positions of exons were extracted from GENCODE v14 (Harrow et al., 2012). The

positions of conserved noncoding elements were inferred by Siepel et al. (2005), and recombination

rates by International HapMap Consortium et al. (2007). Data sources for each of these

elements are included in sfs coder.

Furthermore, we allow users to specify one of several recently inferred models of human demog-

raphy, namely those of Gutenkunst et al. (2009), Gravel et al. (2011), and Tennessen et al.

(2012), simultaneous to simulating complex genomic structure. Both the exonic regions and con-

served noncoding regions are under selection in the simulations, with selection coe�cients drawn

from distributions that were inferred specifically for these regions by recent studies (Boyko et al.,

2008; Torgerson et al., 2009).

3.2.4 Haplotype resampling with Hapgen2

Haplotype resampling methods provide an e�cient mechanism for simulating large samples based

on an existing reference panel, and constitute an alternative to forward simulations of DNA se-

quences. Such methods include Hapgen2 (Su et al., 2011) and others, and are often applied based

on the deep catalog of variation represented by the HapMap project (International HapMap

Consortium et al., 2007) or the 1000 Genomes Project (1000 Genomes Project Consortium

et al., 2012). Haplotype resampling has the demonstrated ability to recapitulate the haplotype and

genetic variation of large samples when the population size remains constant, but it is not clear

that they will perform well in cases of rapid population growth. Recent studies have suggested that

the excess of rare variants associated with recent growth may only be detectable with very large

sample sizes (Keinan and Clark, 2012; Tennessen et al., 2012).

We simulated thirty unlinked 10Mb regions of the human genome under the European demo-
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graphic model of Tennessen et al. (2012) and sampled 104 chromosomes using SFS CODE. Each

10Mb region was based on chr15:59200000-69200000, and incorporated natural selection on all ex-

ons and conserved noncoding regions, as well as the genetic map inferred by the HapMap project

(International HapMap Consortium et al., 2007). We randomly chose 100 chromosomes from

this simulation to form a reference panel. We then used Hapgen2 to resample this reference panel

up to a larger sample size of 103, 5 ⇥ 103, or 104 chromosomes and compared the distributions of

derived allele frequencies (DAF) at each sample size to a random subsample of equivalent size from

SFS CODE simulations.

3.2.5 Choosing a region under strong linked selection

We performed simulations of a genomic region under strong linked selection using sfs coder. To

select a candidate region for these simulations, we computed the density of phastCons elements

(Siepel et al., 2005) and total genetic distance separately in 1Mb sliding windows (10 kb sliding

distance) across the human genome (hg19). We then took the intersect of those windows that were

in the top 10% of the distribution of phastCons (phastConsElements46wayPlacental) density and

the bottom 10% of the distribution of recombination distance (HapMapII GRCh37). From that

intersection, we extracted windows that had a mean B value less than 25 (indicating very strong

background selection (McVicker et al., 2009)). We found 931 transcripts (GENCODE version

14) that fell within these regions. We then picked chr3:50320000-50350000 for our simulations of

selection and power since it had among the highest densities of transcripts within this set of regions.

Our background selection simulations incorporate the 2 Mb surrounding this region (chr3:49335000-

51335000). This region also contains 13 Genome-Wide Association Study loci in the NHGRI GWAS

Catalog.

3.2.6 Simulations of phenotypes and the power of SKAT-O

We followed Wu et al. (2011) in simulating phenotypes and testing the power of the rare variant

association method SKAT-O. E↵ect sizes �(x) of causal variants were taken as �(x) = �0.4 log10(x),

where x is the minor allele frequency. Thus, lower frequency sites have larger e↵ect sizes. Among

variants under 3% frequency, 5% were taken to be causal. Phenotypes, Y , of each sampled individual

were then generated as

53



Y = X1 +X2 + �G+ ✏ (3.1)

where X1 is a standard normal covariate, X2 is a dichotomous covariate that takes the value 0 with

probability 0.5 and the value 1 otherwise, and ✏ is a standard normal random variable (not taken as

a covariate). � is the vector of e↵ect sizes and G represents the genotypes. This phenotype model

is included in sfs coder, as are the models of Eyre-Walker (2010) and Simons et al. (2014),

which map selection coe�cients, rather than allele frequencies, to e↵ect sizes. Our software also

allows the user to set the desired genetic variance explained by the causal sequence for each of the

models.

For each of the demographic models considered in our power calculations, we generated 250 in-

dependent simulations with the relevant sample size and selective constraint for the human genomic

locus at chromosome 3, hg19 positions 50320000-50350000. For each simulation, we randomly se-

lected causal loci and generated phenotypes as described above. We resampled causal sites from

each genetic simulation 4 times, for a total of 103 simulations of phenotypes for each demographic

model. We then ran SKAT-O and computed the fraction of results with p-values under 10�6.

Depending on the exact sequencing experiment performed, the number of statistical tests might

range from approximately 2⇥104 (all genes) to 105 (all 30 kb sequences in the genome), so Bonferroni

corrected significance thresholds may range from 5⇥10�7 to 2.5⇥10�6. Here we have chosen 10�6,

but we emphasize that the trends in power as a function of sample size, selection, and demography

are not dependent on this choice.

We obtained the SKAT R-package from http://www.hsph.harvard.edu/skat/download/.

3.3 Results

3.3.1 Demography, sample size, and selection impact rare variants

The results of rare variant association tests are contingent on the joint distribution of variant

frequencies and e↵ect sizes. In this section, we examine the e↵ects of selection and demography on

the simulated frequency spectrum through simulations.

We simulated human demography and selection under several previously inferred models (Schaffner

et al., 2005; Gutenkunst et al., 2009; Gravel et al., 2011; Tennessen et al., 2012). In Figure 2,
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we plot the simulated cumulative site frequency spectra of each of the three demographic models

that we considered. Consistent with population genetic theory (Keinan and Clark, 2012) (and

the data that was used to infer the models), exponential or two-phase exponential growth results

in a large excess of rare variants relative to a constant population size model (gray dashed line).

Furthermore, when sample size is large (5⇥ 103 chromosomes, lower panels), the two-phase model

of exponential growth (Tennessen et al., 2012) generates many more low frequency variants than

the other growth models.

Our simulations also included natural selection on non-synonymous sites (Boyko et al., 2008).

Negative selection tends to constrain variants to lower frequencies, so the site frequency spectra of

non-synonymous sites are shifted towards the left (Figure 2, dotted lines). Note that we do not

include non-synonymous sites for the model of Schaffner et al. (2005) in Figure 2 because the

coalescent simulator cosi does not allow for the introduction of natural selection.

3.3.2 Haplotype resampling under-estimates the number of rare variants in large

samples

As an alternative to forward simulations, investigators might opt to resample haplotypes from a

previously sequenced sample. In this section, we test whether a haplotype resampling method (also

known as a “sideways” simulation, (Chen et al., 2014)) is able to recapitulate the extent of rare

variation expected in large samples when based on a modest reference panel of 100 chromosomes

in the context of rapid population growth.

We find that under the demographic model of Tennessen et al. (2012), Hapgen2 (Su et al.,

2011) does a poor job of recapitulating the extent of rare variation expected at large sample sizes.

In Figure 3A, we show a quantile-quantile (QQ) plot of the DAF distribution inferred from Hapgen2

versus the DAF distribution expected by SFS CODE under the Tennessen et al. (2012) European

demographic model. If Hapgen2 were able to recapitulate the underlying DAF distribution Figure

3A would follow the diagonal dotted line. However, we find that as the sample size increases,

the extent to which Hapgen2 underestimates the fraction of rare variants increases (indicated by

curves deviating above the diagonal). In Figure 3B we look closely at the expected (based on

SFS CODE) and inferred (based on Hapgen2) frequencies of each SNP observed in the sample of

104 chromosomes using a scatter plot. We do not expect points to fall along the diagonal in this
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case because of the resampling procedure, but we would expect the points to be symmetrically

distributed about the diagonal (blue curve). Instead, we find that Hapgen2 DAF frequencies are

skewed toward higher frequencies for rare variants. This is demonstrated using a loess smoothing

(red curve). The loess curve shows that the Hapgen2 DAF may be strongly biased by the reference

panel size.

3.3.3 Power estimates may be impacted by local genomic context and demography

Forward simulations allow investigators to model the e↵ects of demography and selection on sampled

DNA sequences (Peng et al., 2014). Since recombination and natural selection jointly impact the

number of segregating sites and the proportion of sites at low frequency, it may be important to

accurately account for these features when performing power calculations. Moreover, in the case of

a targeted resequencing study, it is desirable to model the genomic architecture of the target locus

directly.

We tested the performance of the method SKAT-O with our simulations of demography and

selection (Lee et al., 2012). We simulated 30 kb of sequence from chromosome 3 (hg19 coordinates

50320000-50350000, which is a region under strong selection, see Methods), under two di↵erent

demographic models (Gutenkunst et al., 2009; Tennessen et al., 2012), with and without se-

lection on coding and conserved noncoding elements. Selection coe�cients were drawn from the

distributions inferred by Boyko et al. (2008) for coding regions and Torgerson et al. (2009) for

conserved noncoding regions. We also ran simulations where the entire 30 kb region was treated as

a single gene (i.e., ignoring the local structure of conserved elements and allowing selection on all

non-synonymous sites).

Following Wu et al. (2011), we generated phenotypes by allowing 5% of the sampled variants

under 3% frequency to be causal (see Methods). We ran SKAT-O on the phenotypes and genotypes

from the African and European continental groups and computed the fraction of simulations with

p-values under 10�6. Selection impacts power by increasing the fraction of sites at low frequency

and decreasing the overall level of genetic variation. The net result is a loss of power. When the

entire locus is under selection, genetic variation is pushed to even lower levels and the site frequency

spectrum is further shifted to rare alleles, which substantially reduces power. Note that we have

not forced the genetic variance explained by the test sequence to be the same between the neutral
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and selected models, but this is precisely the point of this experiment. Because of reduced levels

of overall variation, regions under direct selection must have larger e↵ect sizes in order to explain

an equal proportion of the genetic variance as neutral regions and reach the same power as neutral

sequences.

In general, we observe higher power in the African continental group for this phenotype model

(Figure 4, with > 80% power for a sample size of 5⇥ 103), which is in line with the overall higher

level of genetic diversity within Africans (Figure 5). We also observe a subtle di↵erence in power

between the demographic models of Tennessen et al. (2012) (which includes rapid growth of the

African population) and Gutenkunst et al. (2009) (which includes only an ancient expansion in

the African population) in the African population.

Figure 4 shows that the e↵ect of selection on power for this particular phenotype model ranges

from ⇡ 5 � 50% depending on the sample size and demographic model. However, we emphasize

that these results should not be interpreted as general e↵ects of human selection and demography

on statistical power, but rather a reflection of a specific phenotype model commonly used in the

literature (Wu et al., 2011). In general, the e↵ects of recent selection and demography on power

may be more or less severe depending on sample size and the relationship between e↵ect sizes and

allele frequency, which is still a matter of some debate. One of the main advantages of our simulation

method over other methods for estimating power is that the selection strength operating on every

variant in the simulation is known. In two of the phenotype models included in sfs coder, we use

selection coe�cients rather than allele frequencies to draw e↵ect sizes when simulating phenotypes.

In the Discussion section we further deliberate on the simulation of phenotypes. Here we have

examined direct selection, but linked selection may also play a role in altering patterns of variation

and a↵ecting power calculations, as we address in the next section.

3.3.4 The impact of linked selection

Patterns of genetic diversity at neutral sites can be altered via physical linkage to sites under

selection (Smith and Haigh, 1974; Charlesworth et al., 1993). The e↵ects of linked nega-

tive selection (known as “background selection”) on variation in humans have been well studied

(McVicker et al., 2009). Sites that are closely linked to deleterious variants are also prohibited

from increasing in frequency, resulting in a local decrease in genetic diversity. The mean number of
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variants segregating at such loci is lower than in regions that are unlinked to selected loci. Back-

ground selection also has an e↵ect on the shape of the site frequency spectrum (i.e., the proportion

of variant sites at a given frequency) (Zeng and Charlesworth, 2011; Nicolaisen and Desai,

2013), but this e↵ect is often subtle.

We ran 250 simulations incorporating the demographic model of Gutenkunst et al. (2009) for

a 2Mb region that is centered on the 30 kb region considered in Figure 4 (chr3:50320000-50350000).

This locus is expected to have among the strongest e↵ects of background selection in the human

genome under the model of McVicker et al. (2009). All inferred exons and conserved noncoding

elements within this region were simulated. In Figure 5, we show the mean observed nucleotide

diversity ⇡ for these simulations as compared to simulations we used for Figure 4, which did not

include the flanking sequences (but did incorporate selection on the 30 Kb central region). The

overall level of diversity is strongly reduced in the background selection simulations. Additionally,

there is a very small shift in the site frequency spectrum towards rare variants in the background

selection simulations (data not shown).

We used these background selection simulations to compute power of SKAT-O with the same

phenotype model that we considered in Figure 4. For a sample size of 2,000 individuals, power in

Europeans drops from 44% for simulations without background selection to 38% when background

selection is included, and power in Africans drops from 67% to 57%, due to the overall reduction in

genetic diversity. Note that this reduction in overall diversity also implies a reduction in variance

explained by the test sequence under the phenotype model of Wu et al. (2011), as discussed in the

previous section.

3.4 Discussion

Simulations play an increasingly prominent role in statistical and population genetics because they

can be used to generate DNA sequence data under models that are too complex to handle analyt-

ically. In statistical genetics, simulations have been used to generate sequence data under various

demographic scenarios and to assess the performance of various statistical tests of association in

the presence of complex demographics (e.g., see Wu et al. (2011)). However, natural selection also

impacts patterns of genetic variation and thus might influence conclusions about statistical power.

Here, we introduced a new simulation tool (sfs coder) that allows users to model human
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demography, selection, recombination, and genomic elements (exons and conserved noncoding se-

quences) for any locus in the human genome. Both selection and demography alter the frequency

spectrum of variant sites and the number of variant sites within a sample of sequenced chromo-

somes. Jointly modeling these evolutionary forces may prove to be an important step forward for

the use of simulations in assessing the performance of tests of statistical association (King et al.,

2010), and indeed we showed here that natural selection and demography can impact the power of

rare variant association tests under some phenotype models.

As an alternative to forward simulations of DNA sequences, researchers have also proposed

“sideways” simulations (Chen et al., 2014). These simulations use a reference panel of sequenced

(or genotyped) chromosomes to generate new chromosomes under the model of Li and Stephens

(2003). The advantage of these methods is that they rely on observed genetic data, so the impact of

natural selection and demography on the genealogy and the sampled genetic diversity are present

in the reference panel and do not need to be directly modeled. However, here we showed that these

methods do not recapitulate expected patterns of variation for rare variants when the population

has experienced recent growth and the size of the reference panel is much smaller than the desired

sample size.

While it is straightforward to use forward simulation tools such as sfs coder to model the

e↵ects of selection and demography on DNA sequences, an important caveat of forward simulation

is model misspecification. Here, we have tapped into the deep population genetics literature to

incorporate recently inferred models, but these models should not be considered absolute truth.

In particular, in future studies with larger sample sizes, considerable refinement could be made in

the estimates of recent human growth as well as the strength of selective constraint. For example,

there remains some debate about the rate of recent human growth and its influence on DNA

sequences. One study of neutral genomic regions did not find support for recent acceleration in the

growth rate (Gazave et al., 2014), in contrast to Tennessen et al. (2012). Furthermore, more

diverse annotations of genomic elements than we have considered here may allow for more precise

distributions of selection coe�cients for each locus in the genome.

Another important consideration when performing forward simulations is the choice of simu-

lation parameters, especially sequence length and population size. Larger sequence lengths and

population sizes can dramatically increase the computation time of forward simulations, so it is
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advantageous to pick these variables to be as small as possible (Hoggart et al., 2007). However,

we showed here that ignoring the impact of linked negative selection can alter patterns of simulated

diversity and potentially a↵ect power calculations. Furthermore, for some evolutionary models the

simulated population size can also bias simulated patterns of genetic diversity if it is chosen to be

too small (Uricchio and Hernandez, 2014). Some further work is needed to explore appropriate

choices of sequence length and population size for forward simulations of background selection and

demography, and we have left these choices up to the end-user in our software sfs coder.

Applications of simulations abound in the genetics literature, but one use that is of particular

interest to statistical geneticists is the estimation of statistical power. For rare variant association

tests (or any test of association that pools putatively causal variants), power is a function of the

joint distribution of allele frequencies and e↵ect sizes. Here, we showed that power is higher in

Africans as compared to non-Africans for a simple phenotype model that asserts a logarithmic

increase in e↵ect size as allele frequency decreases. A side-e↵ect of this phenotype model is that

populations with more genetic variation have a greater proportion of variance explained by the test

sequence. For a real phenotype, this may or may not hold, since it is not necessarily true that

1) e↵ect sizes will be the same in two di↵erent populations or 2) the environmental variance is

the same in two di↵erent populations. Exactly how the joint distribution of e↵ect sizes and allele

frequencies di↵er between populations may depend intimately on the action of selection on causal

sites in each population and recent demographic history.

Generally, the distribution of e↵ect sizes is not known, so arbitrary distributions have been

proposed in previous work (and were applied here). These distributions assign larger e↵ect sizes to

rare variants than common causal alleles, but they do not necessarily have an obvious interpretation

in terms of the strength and rate of selection in the human genome. Rare variants are not likely

to contribute substantially to the variance observed in complex phenotypes unless causal sites are

under selection (Simons et al., 2014), so the interpretability of power studies could be improved

substantially by performing assessments with genetic models that include selection. In future

studies it will be advantageous to simulate phenotypes where the e↵ect sizes are modeled directly

based on the selection coe�cients of the causal sites, reminiscent of the work of Eyre-Walker

(2010). Tools such as sfs coder should enable this work as human geneticists push further into

the age of deep sequencing, large sample sizes, and complex genetic architectures.
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3.6 Appendix

We ran used the default parameter settings of the model “bestfit”, included in the cosi distribution,

to simulate the model of Schaffner et al. (2005).

The following are representative command lines for our SFS CODE simulations.

Gutenkunst et al. (2009): sfs code 3 10 -N 7000 -n 50 50 0 -A -L 1 100 -t 0.001

-r 0.001 -TS 0.219178 0 1 -TS 0.544658 1 2 -TE 0.60274 -Td 0 P 0 1.68493 -Td

0.219178 P 1 0.170732 -Td 0.544658 P 1 0.47619 -Tg 0.544658 P 1 58.4 -Td 0.544658

P 2 0.242857 -Tg 0.544658 P 2 80.3 -Tm 0.219178 P 0 1 6.15 -Tm 0.219178 P 1 0 0.5

-Tm 0.544658 L 0.738 0.4674 0.06 0.192 0.01938 0.09792

Gravel et al. (2011): sfs code 3 10 -N 7000 -n 50 50 0 -A -L 1 100 -t 0.001 -r 0.001

-TS 0.265753 0 1 -TS 0.342466 1 2 -TE 0.405479 -Td 0 P 0 1.982738 -Td 0.265753

P 1 0.128575 -Td 0.342466 P 1 0.554541 -Tg 0.342466 P 1 55.48 -Td 0.342466 P

2 0.29554 -Tg 0.342466 P 2 70.08 -Tm 0.265753 P 0 1 4.3422 -Tm 0.265753 P 1 0

0.5583 -Tm 0.342466 L 0.7237 0.225794 0.09305 0.115754 0.00858 0.03421

Tennessen et al. (2012): sfs code 3 10 -N 7000 -n 50 50 0 -A -L 1 100 -t 0.001

-r 0.001 -TS 0.265753 0 1 -TS 0.342466 1 2 -TE 0.405479 -Td 0 P 0 1.982738

-Td 0.265753 P 1 0.128575 -Td 0.342466 P 1 0.554541 -Tg 0.342466 P 1 44.822

-Td 0.342466 P 2 0.29554 -Tg 0.342466 P 2 70.08 -Tm 0.265753 P 0 1 4.3422 -Tm

0.265753 P 1 0 0.5583 -Tm 0.342466 L 0.7237 0.225794 0.09305 0.115754 0.00858

0.03421 -Tg 0.391465 P 0 242.36 -Tg 0.391465 P 1 284.7

We rescaled the ancestral population size toN = 5⇥103 (as opposed to 7⇥103 above) for compu-

tational feasibility for our simulations. We applied the distribution of selection coe�cients ofBoyko
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et al. (2008) to coding loci, which is given by the flag -W 2 0 0 0 0.184 0.00040244. For con-

served noncoding elements, we applied the distribution of Torgerson et al. (2009), which is given

by -W 2 0 0 0 0.0415 0.0015625. See the SFS CODE manual at sfscode.sourceforge.net

for more information.
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Figure 3.1: A model of human genomic sequences that incorporates selection on exons and conserved
noncoding elements (with separate distributions of selection coe�cients) and local recombination
rates. Selection coe�cients on exons and conserved noncoding elements were taken from Boyko
et al. (2008) and Torgerson et al. (2009), respectively. The positions of the conserved noncod-
ing elements were inferred by Siepel et al. (2005), and the recombination map was inferred by
International HapMap Consortium et al. (2007). (CNC: conserved noncoding).
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Figure 3.2: Simulated cumulative site frequency spectra in three human continental groups under
several recently inferred demographic models. Sample size is 103 chromosomes in the top panels
and 5⇥ 103 chromosomes in the lower panels. Note that the model of Tennessen et al. (2012) did
not infer demography of the Asian continental group, so we do not plot a curve for this population.
However, the Asian continental group is included in the Tennessen et al. (2012) simulations. Each
curve was calculated using 103 independent simulations of 5⇥103 base pairs each. The gray dashed
curve represents the analytical expectation based on the standard neutral model and is not the
result of simulations. (SNM: standard neutral model, AFR: African population, EUR: European
population, ASN: Asian population, NS: non-synonymous, SYN: synonymous).
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Figure 3.3: Generating large samples by haplotype resampling results in a deficiency of rare variants
in the presence of population growth. For this plot we simulated 104 chromosomes from thirty
unlinked 10Mb regions of the human genome (300Mb total) in SFS CODE under the Tennessen
et al. (2012) demographic model discussed in the text. We then used 100 chromosomes as a reference
panel in Hapgen2 to generate a much larger sample (as indicated in the legend). (A) shows a
quantile-quantile plot of the derived allele frequencies (DAF) for chromosomes simulated using
Hapgen2 versus the expected DAF distribution from SFS CODE (with sample sizes indicated in
the legend). (B) shows a scatter plot of the frequencies of each SNP inferred by Hapgen2 compared
to SFS CODE for a sample of size 104 chromosomes. Both figures demonstrate that Hapgen2 fails
to recapitulate the extent of rare variation expected under rapid population growth, particularly
for large sample sizes. Figure credit: Ryan Hernandez
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Figure 3.4: Power of SKAT-O at the ↵ = 10�6 level for two di↵erent models of demography with
and without selection, for di↵erent sample sizes N . We applied both a locus specific model of
selection ( and a model that treats the entire 30kb locus as a single gene. All results are for a
region on chromosome 3, hg19 coordinates 50320000-50350000.
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Figure 3.5: We calculated the pairwise nucleotide diversity ⇡ for for the locus at chr3:50320000-
50350000, for simulations with and without background selection and the demographic model of
Gutenkunst et al. (2009). The simulations without background selection simulated only this
locus, while the background selection simulations also included 1 Mb of flanking sequence on either
side of the locus of interest. Note, sites in the flanking 1Mb are not included in the diversity
calculations. Figure credit: Raul Torres
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4.1 Introduction

Much recent debate among geneticists has focused on the role of rare variants in complex traits

(Pritchard 2001). While there is evidence that rare variants can in some cases contribute to com-

mon diseases of interest (Haller et al. 2009; Torgerson et al. 2012), it has not been established

whether they explain a large proportion of the genetic variance for any traits of interest. Indeed,

a number of recent papers have suggested that most of the variance is attributable to common

variants of weak e↵ect, at least for some phenotypes (Yang et al. 2010; Gaugler et al. 2014).

Nonetheless, several large-scale sequencing studies of cases and controls or quantitative phenotypes

are underway, and these studies will uncover a large amount of novel rare variation within their

samples. Most of this variation is likely to be unrelated to the phenotype of interest, so it is imper-

ative that population and statistical geneticists continue to make progress on methods to interpret

this deluge of data and provide biological insights from noisy data (Maher et al. 2012).

Classically, geneticists have relied on single-marker tests of association to discover causal sites,

where the contribution to the phenotype of each genotyped allele is assessed with a likelihood ratio

test. The power to detect an association is a function of allele frequency, sample size, and e↵ect size,

so (ignoring complications such as linkage and cryptic population structure) it is straightforward

in this framework to compute power by rastering over a grid of e↵ect sizes and allele frequencies.

Recent work has shown that the power of single-marker tests is sensitive to the relationship between

selection strength and e↵ect sizes, as well as population demography (Lohmueller, 2014).

Unfortunately, power to detect rare causal variants with single-marker tests of association is

very low, even in large samples. For this reason, several statistical tests that pool rare variants

within a putatively causal locus and jointly test for their role in the phenotype have been proposed

and published (Hoffmann et al. 2010; Wu et al. 2011; Lee et al. 2012a,b). When pooling variants

of di↵ering e↵ects, it is no longer a simple matter to consider all possible e↵ect sizes and allele

frequency combinations, because the state space of possible joint distributions is very large. Since

this distribution is unknown, studies that assess the power of rare variant association tests have

proposed arbitrary joint distributions of e↵ects and allele frequencies. It is not obvious that these

proposed distributions are biologically or evolutionarily plausible, or that power of rare variant

tests is insensitive to assumptions made about this joint distribution.
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It has long been appreciated by geneticists that rare variants can only contribute substantially

to genetic variance when they have dramatically larger e↵ect sizes than common variants. The most

plausible explanation for an inverse relationship between allele frequency and e↵ect size is natural

selection on trait altering alleles (Eyre-Walker 2010; Simons et al. 2014), but most rare variant

association tests have been assessed using simulations that do not include the action of natural

selection (Uricchio et al. 2015). It is well known that both natural selection and demography

impact the frequency spectrum of alleles, and hence these forces may also have some impact on the

joint distribution of e↵ects and frequencies.

Very little is known about e↵ect sizes for very low frequency alleles, but several recent studies

have examined the distribution of selection coe�cients in human genomic elements such as exons

and conserved non-coding elements (Boyko et al. 2008; Torgerson et al. 2009; McVicker et al.

2009). Selection-based models assert that every conserved base in the genome has some (potentially

very small) impact on reproductive fitness, and mutations at such bases are likely to deleteriously

impact the organism. While it is not possible to accurately estimate the strength of selection

acting on individual rare sites, it is possible to infer the distribution of selection coe�cients using

the distribution of observed allele frequencies across all segregating mutations. Intuitively, the

reason that some genomic sites are conserved is that they contribute to important functions, such

as maintaining protein structure or activity. If there is a strong evolutionary pressure to constrain

values of some phenotype to fall within a narrow range, then selection will constrain mutations

with large e↵ects on the phenotype to low frequency. Hence, there is a natural relationship between

selection coe�cients and e↵ect sizes for phenotypes under direct or pleiotropic selection (by which

we mean selection on another phenotype, which has some common genetic basis with the phenotype

of interest). In particular, recent models relating selection strength and e↵ect size have asserted that

there is a monotonic increasing relationship between selection strength and the mean absolute value

of e↵ect size (Eyre-Walker, 2010; Simons et al., 2014). Combining models that relate selection

strength to e↵ect sizes with recently inferred human-specific distributions of selection coe�cients,

it is possible to use simulations to learn about implications of demography and selection for genetic

architecture and the power of statistical tests (Lohmueller, 2014).

Here, we examine the power of one the most popular (and elegant) rare variant association

tests (the “sequence kernel association test”, SKAT-O, which subsumes many other rare variant
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association tests as special cases; Wu et al. 2011; Lee et al. 2012b,a) in the context of population

genetic simulations of simultaneous selection and demography. We develop a model of complex

traits that explicitly captures the relationship between e↵ect sizes and selection strength and sim-

ulate genotypes and phenotypes under the model. Following earlier studies, we show that only

under very strong assumptions about the relationship between e↵ect sizes and selection coe�cients

do rare variants contribute substantially to the genetic variance. We extend these results by consid-

ering the impact of various model parameters in the context of two di↵erent demographic models

of human history, one of which includes recent accelerated growth, and show that most of the

contribution to the genetic variance from rare variants is due to extremely rare variants for a broad

range of parameters. We show that our selection-based model of complex phenotypes can result in

dramatically di↵erent power calculations for SKAT-O, and that power is sensitive to assumptions

about recent demographic history – particularly the rate of population growth in the past several

thousand years. Moreover, we show that the power of SKAT-O (using its default settings) is in-

versely proportional to the genetic variance explained by rare variants under our phenotype model,

even when the total genetic variance of the test sequence is fixed. This means that the test has the

worst power when the rare variants make the greatest contribution to genetic variance. We show

that the most obvious strategy to increase power within the SKAT-O framework – adjusting the

parameters of SKAT-O’s weight distribution – increases power, but also dramatically increases false

positive rates. These results suggest that the power of rare variant association tests may have been

overestimated in previous studies, and that more work may need to be done to develop methods

for rare variant association tests (or adapt current methods) to be well powered under realistic

assumptions about demographic history and recent selection.

4.2 Materials & Methods

4.2.1 An evolutionary model of complex phenotypes

We develop a phenotype model that explicitly captures the relationship between selection strength

and e↵ect size and is a variant of models proposed by Eyre-Walker (2010) and Simons et al.

(2014). Here, we will briefly describe these two models and motivate the modifications we have

made.
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The model of Eyre-Walker (2010) computes e↵ect sizes z with z = �s⌧ (1 + ✏). � is �1 or 1

with equal probability, thereby allowing for both trait-increasing and trait-decreasing mutations. ⌧

is an exponent that transforms the distribution of selection coe�cients to allow phenotypic e↵ects

to grow faster (⌧ > 1) or slower (⌧ < 1) than selection coe�cients. The central idea is that e↵ect

sizes may not have the same marginal distribution as selection coe�cients, but sites with larger

e↵ects on fitness will also have larger e↵ects on the phenotype. ✏ is a random normal variable with

mean zero and variance �2. As the variance of ✏ grows, the correlation between selection coe�cient

and e↵ect size decreases.

In our study, we are concerned with how the joint distribution of e↵ect sizes and allele frequencies

impacts statistical power for discovering causal loci. It is plausible that power will depend on both

the marginal distribution of e↵ects and the relationship between e↵ects and allele frequencies, so it is

desirable to have a mechanism to hold the marginal distribution of e↵ects constant in order to focus

on the relationship between allele frequency and e↵ects. Simons et al. (2014) proposed a model

with two selection coe�cients, one strong and one weak, that has this property. With probability ⇢,

a mutation has e↵ect size proportional to its selection coe�cient, and with probability 1� ⇢, it has

an e↵ect size randomly sampled from the marginal distribution of selection coe�cients (and then

scaled by a proportionality constant). Here, we extend this model by 1) including a �-distribution

of selection coe�cients that was inferred for human coding regions (Boyko et al. 2008) and 2)

including both the ⌧ and � parameters from the model of Eyre-Walker (2010).

Thus, our model for e↵ect sizes z
s

for a site with selection coe�cient s can be summarized as:

z
s

=

8
><

>:

�|s|⌧ if p  ⇢

�|s
r

|⌧ if p > ⇢
(4.1)

where p is a uniform random number and s
r

is a random sample from the marginal distribution

of selection coe�cients. Since we do not have an analytical expectation for the distribution of

sampled selection coe�cients for the complicated demographic models that we simulate here, we

use the sampled variants in any given simulation to provide a distribution on s. When ⌧ = 1, ⇢

is also the Pearson correlation between the selection coe�cient and the e↵ect size, but this is not

the case when ⌧ 6= 1. However, the interpretation that a high value of ⇢ corresponds to a tight

correlation between e↵ects and a low value corresponds to a weak correlation holds across all values
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of ⌧ . Note, we only take non-synonymous sites as causal; synonymous sites always have 0 e↵ect in

our simulations.

When ⇢ = 1, we obtain exactly the model of Eyre-Walker (2010). We do not include the

� parameter of the original model, but this parameter was shown to have no impact on genetic

architecture (Eyre-Walker, 2010). When ⌧ = 1, we obtain the model of Simons et al. (2014), but

with a distribution of selection coe�cients inferred from human genomic data, and the additional

possibility for causal sites to be either trait increasing or decreasing.

From an evolutionary perspective, this model captures the idea that phenotypes under direct

selection will have a tight correlation between selection strength and e↵ect size (i.e., high ⇢), but

the marginal distribution of e↵ects may grow faster or slower than the distribution of selection

coe�cients (i.e., ⌧ can be a value greater than or less than 1). Due to pleiotropic e↵ects, some

selection coe�cients may be large while their e↵ect on the phenotype is small (i.e., decreasing ⇢

allows increased emphasis on pleiotropic e↵ects).

We also simulate phenotypes under the model ofWu et al. (2011), which was used in the original

SKAT study to test the power of their method. In this model, an allele with frequency x < 0.03

has e↵ect size z(x) / log10(x) with probability 0.05, and otherwise has an e↵ect size of zero. Here,

we take all non-synonymous sites under 3% frequency to be causal, such that the total number of

causal sites are roughly comparable between simulations under our model and simulations using

the e↵ect size distribution of Wu et al. (2011). Note that our loci are ⇡ 18 times shorter than the

loci simulated by Wu et al. (2011), so by taking all the variants as causal we will have close to

the same expected number of causal variants within the locus as in their study, but we have far

fewer non-associated variants. In this sense, our simulations represent a “best-case” scenario, since

a very high proportion of the sites within each causal locus are causal for the trait, though some

sites have very small e↵ect sizes.

The statistical power of association tests is a function of the fraction of the variance in the

phenotype that is explained by the test sequence. For this reason, we always fix the total contribu-

tion of the test loci at a pre-specified amount (and hence any observed di↵erences in power cannot

be explained by systematic di↵erences in the contribution of genetics to the phenotype). In some

analyses, we simulate phenotypes by allowing only a single gene to be causal for the phenotype,

and fix the proportion of the variance explained by this gene at 5%. We also perform analyses
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using a polygenic model where genetic variation in the trait is driven by 20 genes, and fix the total

contribution of genetics to the phenotype at 50% (i.e., h2 = 0.5). Thus, each simulated gene will

have a di↵erent contribution to the phenotype, but we calculate power as a function of variance

explained.

4.2.2 Calculating the impact of demographic events on genetic architecture

We investigated the impact of selection and demography on the site frequency spectrum, as well

as the genetic architecture of complex traits, using exact numerical calculations under the Wright-

Fisher model and stochastic forward simulations.

For our numerical calculations, we consider a model consisting of discrete and exponential pop-

ulation size changes. While our software is generalizable to other demographic models of interest,

here we focused on the marginal European demographic history of the model of Gutenkunst et al.

(2009). This model includes population size changes of magnitudes ⌫ = [1.685, 0.170732, 0.47619]

at times t = [0, 0.219178, 0.544658] (times are in coalescent units). These events correspond to

an expansion in the African ancestral population, a bottleneck event as Europeans moved out of

Europe, and a second later bottleneck. Immediately after the last bottleneck event, the population

grows exponentially at rate 58.4 (scaled in coalescent units). For further details on the model

parameters, see Uricchio et al. (2015).

To calculate the site frequency spectrum as a function of time after demographic events, we

propagated Wright-Fisher transition matrices forward in time. The transition probability for a site

present in k copies in a population of size 2N to k⇤ in the next generation with selection coe�cient

s is given as

Binomial

✓
k⇤; 2N,

(1 + s)x

1 + sx

◆
(4.2)

where x = k

2N , the allele frequency of the site. Discrete changes in population size change the state

space on k, and hence the rate at which drift happens in each subsequent generation, as well as the

equilibrium proportion of variable sites present at any given frequency. The code we developed is

implemented in Python and is freely available upon request.

We performed these calculations for two selection coe�cients, s = �0.01 and s = �0.0002,

each with identical underlying mutation rates, exactly as in the selection-based phenotype model
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proposed in Simons et al. (2014). We assumed a human ancestral population size of 7.3⇥ 103, as

was inferred in Gutenkunst et al. (2009), such that the � = 2Ns = �146 for the large selection

coe�cient and � = �2.92 for the small selection coe�cient.

We used our code to calculate the proportion of variable sites that are present in a single copy

(singletons) in a sample of 100 chromosomes for each of the selection coe�cients in this model,

which we denote as  . We also calculated the genetic variance due to singleton sites as a function

of ⇢ in our phenotype model, assuming that ⌧ = 1 (we later relax this assumption).

We also performed simulations under this model of selection and demography, and sampled

variants at time points from t = 0 to t = 1 (in coalescent units). We performed 100 simulations

per time point. Scripts for the simulations, which were performed using sfs coder, are available

upon request of the authors.

4.2.3 Three-population forward simulations of human selection and demography

We used sfs coder to perform forward simulations of human selection and demography (Uricchio

et al. 2015). sfs coder is a python based front-end to the forward simulation software SFS CODE

(Hernandez 2008) that includes several models of human demography and selection. The demo-

graphic models we simulated are those of Gutenkunst et al. (2009) and Tennessen et al. (2012).

Briefly, the model of Gutenkunst et al. (2009) includes three populations, namely the African,

European, and Asian continental groups. The European and Asian populations are formed by a se-

ries of bottlenecks as the human population moved out of Africa, and the model also includes recent

exponential growth in the European and Asian continental groups. Migration between all pairs of

populations is also included in the model. The model of Tennessen et al. (2012) includes all of

the above features, but also adds a second (more-recent) phase of accelerated exponential growth

in the European continental group and includes recent exponential growth in the African continen-

tal group. sfs coder is available at http://sourceforge.net/projects/sfscode/files/sfs coder/.

Throughout the paper, we will refer to theGutenkunst et al. (2009) model as the “growth” model,

and the Tennessen et al. (2012) model as the “accelerated growth” model. We chose these two

models because they both represent plausible demographic histories of human continental groups

inferred from human sequence data, but propose dramatically di↵erent rates of recent expansion

in Europeans and Africans, and hence generate di↵erent patterns of variation in samples.
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We used the selection model that was inferred by Boyko et al. (2008), which is a �-distribution

of selection coe�cients on non-synonymous sites in the human genome. Throughout the simulation,

every non-synonymous mutation has a selection coe�cient drawn from this distribution, while

synonymous sites are neutral. In each simulation, we included 20 unlinked genes. Each gene

was 1.65 ⇥ 103 base pairs long, which is the mean length a gene in RefSeq. While each gene is

unlinked, recombination was included within each gene. Assuming a per-base recombination rate of

⇢
r

= 4Nr = 10�3 and that the typical gene is composed of exons and introns spanning an average

of 5.115 ⇥ 104 bp, we set the per-base ⇢
r

= 5.115⇥104⇥10�3

1.65⇥103 = 0.031. While this does not maintain

the intron/exon structure of a gene, average linkage disequilibrium across the entire gene should

be maintained.

We performed 2⇥103 simulations under each demographic model and sampled between 103 and

5 ⇥ 103 individuals (2 ⇥ 103 to 104 chromosomes) at the end of each simulation from the African

and European populations. The number of simulations was chosen in order to obtain su�ciently

small standard error around our power estimates such that parameter sets investigated are easily

distinguishable.

4.2.4 Calculating the genetic variance

We follow several earlier studies in calculating the genetic variance due to alleles at frequency !,

including Pritchard (2001) and Simons et al. (2014). Genetic variance V
!

due to variants at or

below allele frequency ! is given by

V
!

=

Z
!

x=0

1

2
E(z2|x)f(x)(1� x)(x)dx (4.3)

where f(x) is the site frequency spectrum, i.e. the proportion of sampled alleles at frequency x,

E(z2|x) is the mean squared e↵ect size of variants at frequency x, and n is the sample size. In

order to obtain an accurate measure of the site frequency spectrum and the e↵ect sizes of variants

at frequency x, we pool all 250 simulations performed under each model, for a total of 5⇥103 total

simulated genes. We divide by V1, the total variance explained by genetic factors, in order to obtain

a measure that represents the proportion of the variance explained by variants under frequency !.
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4.2.5 Power of SKAT-O

We obtained the SKAT-O R package from http://www.hsph.harvard.edu/skat/. We computed

power as the proportion of simulations with p-values below 2.5 ⇥ 10�6. We used this threshold

since our study focuses on selection in coding regions, and hence our analysis is relevant to a whole

exome study with ⇡ 2⇥ 104 genes. 2⇥ 104 statistical tests corresponds to a Bonferroni corrected

p-value of 2.5⇥ 10�6. We used the default settings for SKAT-O unless otherwise stated.

4.3 Results

4.3.1 Selection and demography impact the genetic architecture of complex traits

We investigated the impact of selection and demography on the site frequency spectrum as a

function of time using numerical calculations and simulations, as well as the role of singleton

variants in driving variance in genetic traits under the selection-based phenotype model discussed

in the methods.

In the Gutenkunst et al. (2009) model of European demographic history, our numerical cal-

culations predict that the proportion of variable sites that are singletons is strongly impacted by

demographic events (solid lines, Figure 4.1A), and that the non-equilibrium predictions made under

the model are in agreement with results from stochastic forward simulations (points, Figure 4.1A).

In particular, expansion events increase the proportion of sites that are singletons, while contrac-

tions decrease the proportion of sites that are singletons. The vertical gray dashed line shows the

current time, while the lighter dashed line shows the model predictions for the neutral case (� = 0,

not simulated).

In Figure 4.1B, we show the proportion of the variance in a genetic trait that is explained

by singleton variants under this model of demography, selection and complex traits, for various

values of ⇢ and ⌧ = 1 (solid lines are again model predictions while the points are the results

of simulations). We find that the proportion of the variance in the trait that is explained by

rare variants (in this case, singletons in a sample of 100 chromosomes), is strongly impacted by

demographic events, and the relationship between selection and demography. Expansions increase

the proportion of variable sites that are rare, which increases the role of rare variants in the trait.

Contractions have the opposite e↵ect. When ⇢ = 1, the majority of the variance in the trait is
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driven by singleton variants under this model, but this proportion rapidly drops o↵ as ⇢ decreases

to 0.7 and then 0.

These results show that selection, demography, and the relationship between selection and

e↵ect sizes all impact the architecture of complex traits. Since these forces (and model parameters)

strongly impact the joint distribution of allele frequencies and e↵ect sizes, there is reason to believe

that they may also impact the performance of association tests that seek to uncover causal variation.

In the next sections, we build on these results by performing forward simulations under more

complicated models that include multiple populations, migration events, and �-distributed selection

coe�cients.

4.3.2 Architecture of complex traits in multiple human populations under a selection-

based phenotype model

We examined the proportion of the variance that is due to rare variants in our model of complex

phenotypes using simulations of the three human continental groups under two di↵erent demo-

graphic models (Gutenkunst et al., 2009; Tennessen et al., 2012). In Figure 4.2, we plot the

proportion of the genetic variance due to variants under allele frequency ! as a function of ! for

several di↵erent values of ⇢ with ⌧ = 1 for a sample of 1,000 individuals. Consistent with previous

studies, we find that a substantial proportion of the genetic variance is attributable to rare variants

only when the selection strength is very tightly correlated with the e↵ect size. This result echoes

the findings of Simons et al. (2014), but here we have extended the previous argument by including

a distribution of selection coe�cients that was inferred for human coding regions.

We find that demography plays a subtle role in the proportion of variance explained by rare

variants. In both Europeans and Africans, the proportion of the variance explained by rare variants

increases when recent accelerated growth is included in the demographic model (i.e., in the model of

Tennessen et al. (2012)). Europeans and Africans have slightly di↵erent proportions of variance

explained by rare variants for all sets of model parameters, with European demographic models

tending to have slightly more variance explained by extremely rare variants than the corresponding

African demographic model.

Interestingly, among rare variants, the preponderance of variance explained is determined by

singleton variants, and not variants at more intermediate frequencies in the sample. This result
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holds across all values of ⇢ when ⌧ = 1, for both populations and both demographic models, but

is more extreme in the accelerated growth model of Tennessen et al. (2012). In the gray dashed

lines, we plot V!
V

1

when e↵ect sizes are given by log10(x) for alleles with frequency x under 3%. Under

this e↵ect size function, much more of the variance is attributable to variants at intermediate rare

frequencies.

In Figures 4.3 and 4.4, we further extend the results of Simons et al. (2014) by considering

values of ⌧ where e↵ect sizes grow much slower than selection coe�cients. Similar to the case when

⌧ = 1, we find that a substantial proportion of the variance is explained by rare variants only when

⇢ � 0.9. However, the demographic model subtly changes the shape of the V!
V

1

curves, meaning

that the relative proportion of the variance explained by singletons vs intermediate frequency rare

variants is di↵erent under the two demographic models that we considered. Specifically, we find that

nearly all of the variance due to rare variants is attributable to singleton variants when ⌧ = 1, but

an increasing proportion of the variance is due to moderate frequency rare variants as ⌧ decreases.

More variance is due to intermediate frequency rare variants in the growth model of Gutenkunst

et al. (2009) than than the accelerated growth model of Tennessen et al. (2012).

To further emphasize the role of singleton variants as a function of the parameters ⌧ and ⇢

for the two demographic models, in Figure 4.5 we plot the proportion of the genetic variance

due to variants under 3% frequency that is explained singletons (V 1
2n
/V0.03). As ⌧ decreases, the

proportion of the variance that is explained by singleton variants decreases. However, the variance

due to singletons is always much larger under the model of accelerated growth (blue curves), and

represents a substantial proportion of the total variance due to rare variants when ⇢ is large for

all values of ⌧ considered. The phenotype model of Wu et al. (2011) also results in substantially

di↵erent proportions of the variance explained by singleton variants for the two demographic models.

However, variance explained by singletons is always substantially lower in the model of Wu et al.

(2011) than our model when ⇢ � 0.9, i.e., when a substantial proportion of the total genetic variance

in the phenotype is attributable to rare variants.

These results demonstrate that the joint distribution of allele frequencies and e↵ects are very

di↵erent between our model and the log10(x) model. In particular, very-rare variants have much

larger e↵ects relative to intermediate frequency rare variants than previously considered models.

Since statistical power is a function of this joint distribution of frequencies and e↵ects, there is
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reason to believe that the parameters of our population-genetic model may impact the power of

the test..

4.3.3 The power of SKAT-O is inversely proportional to variance explained by rare

variants

We investigated the power of SKAT-O as a function of the proportion of variance explained by rare

variants by altering the parameter ⇢ in our simulations of complex phenotypes, while fixing the

variance explained by the test sequence at 5% (Figure 4.6). Note that 5% is a very large amount

of variance to attribute to a single gene, but we are largely concerned with the trends in power as

a function of the model parameters and not whether power is overall “high” or “low”. Later in the

section we will consider power calculations across a range of values of variance explained.

We find that the power is substantially lower when e↵ects are drawn from our model as opposed

to e↵ects given by log10(x), the function that was used to test the power of SKAT (Wu et al., 2011;

Lee et al., 2012b). This result holds for all model parameters, for both Europeans and Africans,

and both demographic models that we considered. We also find that under the model of Wu et al.

(2011), the power is not highly sensitive to the demographic model. This is not the case under

our model of e↵ect sizes, where power is always substantially higher under the growth model of

Gutenkunst et al. (2009) than the accelerated growth model of Tennessen et al. (2012). Under

the accelerated growth model, a larger proportion of the genetic variance due to rare variants is

driven by very-rare variants (as opposed to intermediate frequency rare variants).

Since we have fixed the total variance explained by the test sequence at 5% in each simulation,

we might expect that the power of SKAT-O would be una↵ected by changing ⇢ (if SKAT-O is

entirely insensitive to the joint distribution of e↵ect sizes and allele frequencies). Alternatively,

power might increase as ⇢ increases since SKAT-O is tuned to test for the contributions from rare

variants, and rare variants play a greater role in the genetic variance as ⇢ increases. Counter-

intuitively, we find the opposite, and the power decreases as ⇢ increases (Figure 4.6). This e↵ect

is most prominent under the accelerated growth model (blue bars) and when ⌧ is large. When ⌧

decreases to 0.5, and intermediate rare variants play some role in the trait, the trend is much less

prominent.
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4.4 The impact of increased sample size: a mock sequencing study with multiple

genes

We repeated our power calculations for the model of Tennessen et al. (2012) using larger sample

sizes of 2.5 ⇥ 103 and 5 ⇥ 103. In these simulations, we generated phenotypes using 20 unlinked

genes. We set the total heritability h2 = 0.5, so the mean variance explained by each gene is 2.5%,

but there is considerable variance in variance explained among genes– the variance explained for a

given gene depends on the simulated e↵ect sizes that gene. Using the simulated phenotypes and

genotypes, we ran SKAT-O independently on each gene, and then aggregated the data across all

genes to investigate power as a function of variance explained and sample size.

In Figure 4.7, we investigate the power of SKAT-O for ⌧ = 1 in Africans and Europeans. As in

the previous section, we find that power is anti-correlated with ⇢, and is substantially lower in our

model than in a log10(x) e↵ect size model. Additionally, we find that increasing the sample size

to 5⇥ 103 only slightly increases power for large values of ⇢, even for very large values of variance

explained up to 5% per gene. Note, there are equal numbers of simulations in each curve, but far

fewer simulations with variance explained between 2% and 5% under our model than the log10(x)

based model, which explains the additional noise in the blue curves.

In Figures 4.8 and 4.9, we repeat this analysis for ⌧ = 0.75 and ⌧ = 0.5. We find that power is

substantially increased for ⌧ = 0.5, but only slightly increased when ⌧ = 0.75. For all values of ⌧ ,

we observe large di↵erences in power between di↵erent values of ⇢, and the highest power when ⇢

is 0 and very little of the variance is explained by rare variants.

4.4.1 A simple strategy to increase power may also increase the false-positive rate

SKAT-O includes a flexible weight-distribution over allele frequencies, which is e↵ectively a prior

on the frequency distribution of causal variants. The default distribution is a �-distribution with

shape parameters 1 and 25, which gradually puts more weight on rarer alleles.

As was noted in Wu et al. (2011), the performance of SKAT may improve when a good choice

of weights is made. We re-ran SKAT-O for ⌧ = 1.0 in the African population with the rare

shifted weight distribution (�[0.1, 500]). This resulted in substantial increases in power, although

power was always lower than under the the log10(x) e↵ect size model with the default �-distribution
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(Figure 4.10A). Moreover, power now increases as the fraction of variance explained by rare variants

increases. Unfortunately, this increased power comes at a cost. We permuted the phenotypes for

the same simulations and ran the same test. Under the null, we expect only 0.00025% of these tests

to have p-values under 2.5 ⇥ 10�6, but we observe that ⇡ 0.3% of simulations have p-values this

low, or approximately a factor of 1.2 ⇥ 103 more than expected under the null. This result holds

across all values of ⇢ that we investigated (Figure 4.10B).

If we suppose that 10 genes harbor causal rare variants for a trait of interest and that our power

is approximately 50%, then we expect to find 5 of these genes in a genome-wide scan with the above

parameterization of SKAT-O. However, we also expect to find 60 (0.003 ⇥ 2 ⇥ 104) false positive

genes, providing a false discovery rate of 92%.

4.5 Discussion

A great deal of research interest has focused on the problem of “missing heritability”, which refers

the discrepancy between variance explained by associated variants discovered by Genome Wide

Association Studies (GWAS) and estimates of the narrow-sense heritability of common, genetically

complex phenotypes. Although there are many possible explanations for this discrepancy, one of

the most popular explanations is that rare variants of large e↵ect may make up the di↵erence.

This hypothesis has been used as motivation for a number of large-scale sequencing studies of large

cohorts.

As sequencing technology has progressed to the point where very-rare (and potentially novel)

variants are routinely detected in a large samples, there has been a corresponding push to develop

statistical tools to detect causal rare variants. One of the most popular tools is known as SKAT-O,

or the optimized sequence kernel association test (Lee et al. 2012a). This test is now routinely

applied to large sequencing datasets.

Although it is clear that rare variant association tests are very successful at detecting associ-

ations under some phenotype models, it does not necessarily follow that previously investigated

phenotype models are biologically or evolutionarily plausible. Here, we built o↵ previous models

of the relationship between selection strength and e↵ect size to develop a model of complex phe-

notypes (Eyre-Walker 2010; Simons et al. 2014), and performed simulations under this model

that include complex human demography and a previously inferred distribution of selection coe�-
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cients for human coding sequences. We showed that genetic architecture and power calculations are

quite sensitive to demography and the relationship between selection strength and e↵ect size, and

that power estimates under our model are generally substantially lower than under the previously

investigated model.

A principle reason for this discrepancy is the role of very-rare variants in complex phenotypes

under our model. Under our evolutionary model, when rare variants explain a substantial propor-

tion of the genetic variance, the greatest contributions are made by extremely rare variants. When

accelerated growth is included in the demographic model, singleton variants have even larger e↵ect

sizes. Singleton variants are the hardest of all variants to detect since they occur only once in the

data set, and non-causal singletons are ubiquitous in sequencing of large samples. We showed that

some modifications to the default settings of SKAT-O can substantially improve power under our

model, but these changes may also come at an increase in false positive rates. Although we cannot

provide a concrete reason for this increase in false positives, we speculate that the distribution of

singleton variants is not well captured by the null model of the statistical test.

If very-rare variants do play a substantial role in driving variance in phenotypes at the popu-

lation level, then this may also have implications for the design of sequencing experiments, where

researchers sometimes must choose between deeper sequencing and more samples. Singletons are

the hardest variants to call in the data set and power and false positive rates for detecting single-

tons may depend strongly on variant calling methods (e.g., multi-sample vs. single-sample calling).

These considerations may have important implications for power of rare variant association tests if

our model accurately captures the genetic architecture for some complex phenotypes of interest.

Our results demonstrate that it may be more di�cult to interpret a null signal from a rare

variant association test than previously appreciated, as power is highly sensitive to several model

assumptions and may be lower than was estimated in previous studies. However, it is entirely

possible that while the distribution of selection coe�cients that we used was inferred from human

polymorphisms, the resulting phenotype model does not accurately depict complex human pheno-

types. Still, it is clear that any phenotype model that is relevant to a rare variant association test

must include selection, because rare variants do not contribute substantially to variance in pheno-

types in the absence selection. Our model also has implications for the distribution of phenotypes

in a population. In particular, the distribution is not expected to be exactly normal because of
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the presence of very large e↵ect mutations, which generate fatter tails. In future studies, it will be

advantageous to exploit these signals to compare various models of heritability (including models

with and without selection) to put firmer bounds on the proportion of the genetic variance that is

determined by rare variants and provide further insight into the utility of rare variant association

tests.
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Figure 4.1: We calculated  , the proportion of variable sites that are singletons (A) as well as
the proportion of the genetic variance in a complex trait that is due to singleton variants (B) for
a sample of 100 chromosomes for the marginal European demographic history in the model of
Gutenkunst et al. (2009) and the selection-based phenotype model of Simons et al. (2014). The
solid, dashed, and dotted lines show the results of numerical calculations under the Wright-Fisher
model, whereas the points are the results of stochastic forward simulations. Each point represents
the mean across 200 simulations.
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1

explained by variants under allele frequency !
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Figure 4.5: The proportion of the variance due to rare variants (allele frequency < 0.03) that is due
to singleton variants under various models of e↵ect sizes. The solid lines and points show results for
our model, where e↵ect sizes are a function of selection coe�cients (see Methods). The dashed lines
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Figure 4.6: The power of SKAT-O under various e↵ect size models. The dashed lines show the
power when the e↵ect sizes are taken to be proportional to log10(x) for alleles at frequency x, while
the bars show our model (see Methods). The accelerated growth model of Tennessen et al. (2012)
is shown in blue, and growth model of Gutenkunst et al. (2009) in red. (Abbreviations: AFR,
African continental group; EUR, European continental group).
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Figure 4.7: The power of SKAT-O as a function of variance explained and sample size N , for
various values of ⇢ and ⌧ = 1. All simulations are under the model of Tennessen et al. (2012).
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Figure 4.8: The power of SKAT-O as a function of variance explained and sample size N , for
various values of ⇢ and ⌧ = 0.75. All simulations are under the model of Tennessen et al. (2012).
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Figure 4.9: The power of SKAT-O as a function of variance explained and sample size N , for
various values of ⇢ and ⌧ = 0.5. All simulations are under the model of Tennessen et al. (2012).
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Figure 4.10: We adjusted the default weights of SKAT-O to be more rare-shifted (�[0.1, 500]). We
computed the power of SKAT-O with these weights in the African continental group (A). We also
computed the false-positive rate by permuting the phenotypes (B).
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