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ABSTRACT 

Berkopes, Kevin M. Ph.D., Purdue University, August 2014. The Development of 
Mathematics-for-Teaching: The Case of Fraction Multiplication. Major Professor: Signe 
Kastberg. 
 
 
 

The parallel research traditions of explicit-objective and tacit-emergent vary greatly 

in how they define, assess, and enable development of teacher mathematical knowledge. 

Despite these diversities, widespread agreement exists in mathematics education research 

that a teacher’s mathematical knowledge is a key competency of an effective teacher. 

This research report investigates the nature and development of teacher mathematical 

knowledge of fraction multiplication defined from a tacit-emergent perspective.  

Questions about the nature and development of teacher mathematical knowledge for 

fraction multiplication were investigated in this report at the individual and collective 

levels. In addition, this research report also investigated the developmental links between 

these levels.  The concept study design and the framework for teacher knowledge used in 

this report derived from the work of Davis and colleagues (Davis & Simmt, 2006; Davis 

& Renert, 2014).  

The results from this report were multifaceted for both the individual and collective 

levels of mathematical knowledge. Teachers’ individual mathematics-for-teaching (M4T) 

knowledge of fraction multiplication developed throughout their participation in the 
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mathematical environments of the concept study. Furthermore, two types of collective 

action emerged as proposed links between the collective and individual development of 

teachers’ M4T knowledge of fraction multiplication. These proposed links, titled 

synergistic realizations and recursive elaborations emerged in this report as patterns of 

mathematical action existent in moments of coaction. Recursive elaboration defines the 

decision-making mechanism where the collective expands the realm of what is possible 

for a single mathematical realization. Synergistic realization defines the collective 

decision action in which all previous realizations are abandoned for one innovation in the 

mathematical realization of a mathematical concept. A discussion of the implications for 

defining teachers’ mathematical knowledge of fraction multiplication as nested systems 

of individual and collective knowledge is included in the conclusion of this report. 
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CHAPTER 1. INTRODUCTION 

What does it mean to be a knowledgeable mathematics teacher?  This question is 

significant, as contemporary research has found that a knowledgeable teacher is a core 

element of teacher effectiveness (Baumert et al., 2010; Grossman & Schoenfeld, 2005; 

Krauss et al., 2008; Mewborn, 2003; NCTM, 2000). Therefore, we must also ask what it 

means to be a knowledgeable and an effective mathematics teacher—and the answer to 

these questions is more subjective than one might expect. The ways one characterizes 

knowledge, learning, and the purposes of mathematics education can have quite an 

impact on what it means for a mathematics teacher to be both knowledgeable and 

effective in the classroom (Davis, 2004). 

Early research traditions investigating mathematics teacher knowledge and 

effectiveness were very different in the manner that they defined knowledge and 

effectiveness (Hill, Rowan, & Ball, 2005). Empirical studies in the process-product 

tradition (Good, Grouws, & Ebmeier, 1983) found that certain teacher behaviors 

positively influenced students’ performance on basic skills tasks but not on tasks 

requiring problem-solving skills. Thus, teacher knowledge was defined by non-content-

specific teacher behaviors and effectiveness was tracked by student performance on 

assessments. Critiques of process-product literature concentrated mainly on the absence 

of content focus, claiming that the subject matter being taught influenced the findings of 
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these studies (Shulman, 1986). Production-function literature characterized teacher 

expertise as the content knowledge resources that teachers brought with them to the 

classroom. This research (Harbison & Hanushek, 1992; Mullens, Murnane, & Willet, 

1996; Rowan, Chiang, & Miller, 1997) focused on proxy variables for teacher 

mathematical knowledge: such as courses taken, degrees attained, or scores on 

certification examinations. Thus, expertise was defined by teacher content preparation 

rather than on teacher behaviors while effectiveness was still tracked by student outcomes 

on assessments. Critiques of production-function literature concentrated on the imprecise 

definition of “teacher knowledge”, making way for the emergence of a new paradigm for 

defining teacher knowledge and effectiveness.  

 Mathematics education scholars cite Lee Shulman’s (1986) AERA presidential 

address (Ball, Thames, & Phelps, 2008) as the beginning of the new paradigm that 

weighted teacher behavior equally with teacher resources brought to the classroom. 

Shulman and his colleagues’ work expanded the definition of teacher expertise to include 

combined facets of process-product and production-function literature. In his address, 

Shulman defined three domains of knowledge for teacher expertise: common content 

knowledge, curricular knowledge, and new and innovative type of teacher knowledge 

pedagogical content knowledge (PCK). Shulman and his colleagues’ were also the first to 

distinguish between the ways teachers must know academic content and the ways 

ordinary adults know such content. Subsequent empirical work verified these claims in 

the context of mathematics (Ball, 1990, 1991; Borko et al., 1992). This work prompted a 

significant conceptual leap forward for research into what it means to be a knowledgeable 

and effective mathematics teacher. It also provided dramatic new insights into for 
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considering mathematical content knowledge for teaching as specific type of professional 

knowledge.   

 For nearly two decades, the promising insights that began with Shulman (1986) 

for mathematical teacher knowledge and expertise went largely underdeveloped. 

However, after this brief period of stagnation the early twenty-first century spawned 

innovation. Some research groups focused on building on the promise of Shulman and 

colleagues’ notion of PCK and then attempted to link that knowledge to teacher 

effectiveness (Ball & Hill, 2008; Ball, Hill, & Bass, 2005; Ball, Thames, & Phelps, 2008; 

Hill, et al. 2008; Ma, 1999). Others concentrated on designing models for teacher 

knowledge, building from theories for learning that provide a groundwork for making 

claims about the nature and development of such knowledge (Davis & Simmt, 2006; 

Davis & Renert, 2009a, 2009b, 2014; Simmt, 2011). Despite conflicting theoretical 

underpinnings, these research traditions managed a key development in the field—

widespread agreement amongst scholars that a type of mathematical knowledge specific 

to teaching existed and that knowledge was part of teacher expertise (Baumert et al., 

2010). 

 Ongoing research now focuses on refining the definition of mathematical 

knowledge for teaching. Some research agendas—referred to here as explicit-objective 

research—depict mathematics for teaching as explicit knowledge (Ma, 1999; Hill, 

Rowan, Ball, 2005; Hill, Sleep, Lewis, & Ball, 2008; Izsak, 2008; Izsak & Araujo, 2012; 

Izsak, Orrill, Cohen, & Brown, 2010).  Explicit knowledge defines knowledge as an 

objective possession of expert teachers and can be assessed by observations, interviews, 

or teacher performance on written-task-based assessments.  In contrast other research 

 



4 

agendas—referred to here as tacit-emergent research, depicts mathematical knowledge 

for teaching as largely unconscious, tacit knowledge (Adler & Davis, 2006; Davis & 

Renert, 2009, 2014; Davis & Simmt, 2003, 2006; Davis, 2011, 2012; Simmt, 2011). The 

kind of knowledge that is “not a set of skills stored in one’s head but rather an emergent 

phenomenon that is enacted in the context of teaching mathematics” (Simmt, 2011, p. 

153). The explicit-objective and tacit-emergent research agendas do agree that teacher 

knowledge is much more complex than it was characterized in earlier process-product or 

production-function literature. Where they differ is in how to define, assess, and enable 

development of mathematical knowledge specific for teaching. 

 Currently we have better answers than ever before as to what it means to be a 

knowledgeable and effective mathematics teacher. A better understanding of how 

teachers learn to become knowledgeable and effective is an intuitive next step—and this 

is precisely where my research finds its place. Mathematics-for-teaching (M4T)—the 

tacit-emergent definition for teacher mathematical knowledge guiding this study—is 

defined by the work of Brent Davis and his colleagues (Davis & Simmt, 2006; Davis, 

2011, 2012; Davis & Renert, 2009, 2014; Simmt, 2011). This type of mathematical 

knowledge for teaching is described as “collective” (Davis & Simmt, 2003, 2006; Towers 

& Martin, 2009a), “tacit” (Polanyi, 1966; Davis, 2011, 2012), “complex” (Davis & 

Renert, 2014; Davis & Simmt, 2006), and “simultaneously biological and cultural” 

(Davis & Simmt, 2003, 2006). These descriptors are important to my study and will aid 

in situating it in the other tacit-emergent research. 

 For the purposes of my research, I focus on how M4T can be characterized by two 

different kinds of “collective.” The first—as Davis and Simmt (2006) argued—is that 
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M4T “always occurs in the contexts that involve others: hence, an awareness of how 

others might be engaged in productive collectivity is an important aspect” (p. 309). This 

aspect of teacher knowledge is a more refined evolution of the process-product literature 

definitions for teacher knowledge. The second type of “collective”—radically different 

than any other teacher knowledge literature—is that M4T is depicted as collectively 

emergent (Davis & Simmt, 2003, 2006; Kieren, Pirie, & Gordon-Calvert, 1999; Martin, 

Towers, Pirie, 2006; Martin & Towers, 2009a). This conceptualizes M4T as a collective 

body of shared cultural knowledge, distributed amongst teachers. Davis and Simmt 

(2003, 2006) expand upon this notion, finding that a group of teachers working together 

in some instances can also be characterized as an emergent cognitive unity called a 

collective learner. 

 Davis and his colleagues have provided insight into answering questions of 

access, development, and study of this form of collective M4T through their work with 

teachers in collective mathematical environments called concept studies (Davis, 2008a, 

2008b; Davis, 2012; Davis et al., 2009; Davis & Renert, 2009; Davis & Simmt, 2006; 

Davis & Sumara, 2007, 2008; Simmt, 2011). A concept study combines the collaborative 

work of lesson study (Chokshi & Fernandez, 2004; Fernandez & Yoshida, 2004) with the 

mathematical disciplinary knowledge focus of concept analysis (Usiskin, Peressini, 

Marchisotto, & Stanley, 2003). To date, preliminary results have shown that the concept 

study is a collective mathematical environment that “supports the development of robust, 

flexible individual understandings” (p. 309). Davis and his colleagues propose that 

development is possible in concept studies of differing mathematical foci, and with 

differing sample sizes of participants (Davis, 2008a, 2008b; Davis, 2012; Davis et al., 
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2009; Davis & Renert, 2009; Davis & Simmt, 2006; Davis & Sumara, 2007, 2008; 

Simmt, 2011).  

The work that remains is researching how individual and collective notions of 

M4T develop independently or collectively in mathematical environments like a concept 

study. Martin, Towers, and Pirie (2006) suggest that such research findings would 

provide potent perspectives on the process of coming to understand mathematics. Equally 

influential would be an understanding of the collective nature of M4T and how that links 

to individual M4T knowledge development. 

1.1 Purpose of the Study 

The purpose of this study is to research how teachers’ individual and collective M4T 

knowledge of fraction multiplication develops in the mathematical learning environment 

called a concept study. The research questions guiding this study are: 

1. How does in-service middle school teachers’ M4T of fraction multiplication 

develop while collaboratively engaging in a concept study focused on 

multiplication? 

2. How does the collective level of M4T of fraction multiplication develop through 

engagement in a concept study focused on multiplication? 

3. What links exist between the collective and individual teachers' M4T of fraction 

multiplication? 

1.2 Significance of the Study 

 

The parallel research traditions of explicit-objective and tacit-emergent perspectives vary 

greatly in how they define, assess, and enable development of teacher mathematical 
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knowledge. However, there is agreement from both traditions on the need for researchers 

to continue to better understand what types of mathematics teachers need to know to be 

an effective teacher (Davis & Renert, 2014; Thames & Ball, 2010). Davis (2012) 

concluded, “as a research community, mathematics educators are still far from making 

definitive claims about the relationships between teachers’ profound understandings of 

mathematics and their students’ mathematical understandings” (p. 19). Significant 

breakthroughs have been made, but much work is still to be done to continue to unravel 

the mystery of what it means to be a knowledgeable and effective mathematics teacher. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Teacher Subject Matter Knowledge: A Comparative Back Drop 

Lee Shulman and colleagues’ research program, Knowledge Growth in Teaching, 

examined teaching expertise. The research group focused on a teacher’s ability to manage 

students (Brophy & Good, 1986; Gage, 1986; Rosenshine & Stevenson, 1986) and the 

management of ideas of students within the discourse of a classroom (Shulman, 1987). 

Shulman (1986) coined the phrase the missing paradigm to refer to the content 

knowledge that this research group proposed as central to teaching. A central contribution 

of this work was that it shifted the scholarly focus of research on teacher knowledge from 

general aspects of teaching to the role of content knowledge in the action of teaching. 

This new paradigm of thought provided a non-discipline specific model that 

refined the definition of “content knowledge” to include three categories: “subject matter 

content knowledge” (SCK), “pedagogical content knowledge” (PCK), and “curricular 

knowledge” (CK). This model offered the first clear categorizations of teachers’ non-

discipline specific professional knowledge (Shulman, 1986, p. 9-10). Shulman’s (1986) 

AERA presidential address called on researchers to develop discipline-specific models 

for “categories of content knowledge in the minds of teachers” (p. 9). Within the context 

of mathematics education, the explosion of innovation in research produced diverse 
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perspectives on how teacher expertise could be theoretically and physically modeled. The 

researchers constructing these models interpreted knowledge ranging from “knowledge-

as-static to knowledge-as-dynamic, from knowledge-as-Platonic to knowledge-as-

embodied, from knowledge-as-established to knowledge-as-emergent” (Davis & Renert, 

2009, p. 37).  

What follows is a sequential discussion of three contemporary research programs 

that have elaborated upon Shulman’s (1986) original paradigm for teacher knowledge 

and expertise. The research-based models are sequenced to represent development from 

explicit-objective model for mathematical teacher disciplinary knowledge to the tacit-

emergent model that guides this study. These terms were explicitly defined in Chapter 1 

and should be considered as frames that contain many of the contemporary research 

programs examining teaching disciplinary knowledge for teaching mathematics. 

2.1.1 Mathematical Knowledge for Teaching 

Deborah Ball and her colleagues analyzed the tasks of teaching in order to define 

the mathematical skill requisite for handling these tasks (Thames & Ball, 2010). Their 

work produced Mathematics Knowledge for Teaching (MKT), an explicit-objective 

model for teacher knowledge that represents all of the mathematical knowledge important 

for teaching (Ball, Thames, & Phelps, 2008; Thames & Ball, 2010). Ball and her team 

found that MKT consisted of distinguishable, discrete domains that each correlated to the 

different tasks of their unique definition of expert teaching (Thames & Ball, 2010). Ball 

and colleagues created an elaboration of Shulman’s notions of content, curricular, and 

pedagogical content knowledge (PCK) within the discipline of mathematics education 
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(Ball, Thames, & Phelps, 2008). The most recent MKT model, from Thames and Ball 

(2010), appears below in Figure 2.1. 

 
Figure 2.1 The “knowledge egg” categorizations of the MKT model (Ball, 2010, p. 223). 

Ball’s research group has provided significant insights into the mathematical 

knowledge requisite of expert teaching. Their work also produced findings (Ball & Bass, 

2003; Bass, 2004) that characterized the knowledge for teaching as categorically different 

from the formal mathematical knowledge necessary for others, including mathematicians.  

One goal of research using MKT is to explicitly link specific facets of teacher 

knowledge to student achievement. The MKT model has been used by researchers to 

measure teacher quality (Ball & Hill, 2008; Ball, Hill, & Bass, 2005; Hill, et al. 2008), to 

understand teacher topic specific knowledge of students (Ball, Hill, & Shilling, 2008), to 

investigate predictors and effect of teacher knowledge on student achievement (Hill, 

2010; Hill, Rowan, & Ball, 2005), and to specifically measure teacher knowledge for 

teaching of fractions (Izsak, 2008; Izsak, Jacobson, & Araujo, 2012; Izsak et al., 2010). 

In the last 15 years, fine-grain analysis of differing aspects of teacher content knowledge 

has produced empirical results linking MKT knowledge domains to greater gains in 
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student achievement (Thames & Ball, 2010; Hill, 2010; Hill, et al., 2008). This has been 

an important movement empirically linking explicit representations of MKT to student 

performance. These research findings can serve as a lever to explore ways to support, 

develop, and strengthen the types of mathematical knowledge upon which effective 

teaching draws. 

One interpretation of Ball’s work is that it leaves unexplored the notion that teacher 

knowledge may be conceived as more than just explicit knowledge that is easily 

measured through assessments, interviews, and observation (Davis & Renert, 2014). As I 

will later argue, explicit representations of teacher knowledge leave completely 

unexplored unconscious and potentially tacit teacher knowledge. Tacit knowledge is 

knowledge that is not necessarily accessible to consciousness and is related to expert 

webs of associations that activate explicit knowledge. Tacit knowledge is not easily 

communicated through verbal or written means. As will be later described, tacit 

knowledge as it applies to teacher disciplinary knowledge is grounded in the work of 

Polanyi (1966) and other research agendas built from Polanyi’s foundational piece (Adler 

& Davis, 2006; Davis, 2011; Davis & Renert, 2009). 

MKT is presented as “distinguishable domains, each defined in relation to the work of 

teaching” (Thames & Ball, 2010, p. 223). Ball, Thames, and Phelps (2008) recognized 

categorizing knowledge with distinct boundaries as a shortcoming of their model: “It is 

not always easy to discern where one of our categories divides from the next, and this 

affects the precision (or lack thereof) of our definitions” (p. 403). There is little evidence 

that Ball and colleagues have progressed in attending to this shortcoming or in better 

understanding the relationship between the discrete domains in the act of teaching. Also 
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noticeably absent from the MKT model is a theory for learning that could ground 

knowledge claims about how teachers can learn and develop mathematical knowledge 

important for teaching. Addressing this absence would aid in understanding if MKT 

should be characterized as “objects or sets of skills stored in one’s head” or as “emergent 

phenomenon that is enacted in the context of teaching” (Simmt, 2010, p. 153).  

2.1.2 Profound Understanding of Fundamental Mathematics (PUFM) 

Ma (1999) proposed another model for the study of teacher disciplinary 

knowledge for mathematics: Profound Understanding of Fundamental Mathematics 

(PUFM). Ma’s title for her model offers an explicit picture of her theory for teacher 

disciplinary knowledge of mathematics. Fundamental is defined as having three “related 

meanings: foundational, primary, and elementary” (p. 116). She argues that, despite 

advancements in pure and theoretical mathematical research, what is taught in elementary 

school is still regarded as the foundation for even the newest parts of the discipline. The 

word profound describes the inherent possibilities of Ma’s PUFM model. Here, profound 

means a teacher’s “deep, vast, and thorough” understanding of mathematics (p. 120). 

More importantly, profound in Ma’s work means that a teacher must understand 

mathematics with breadth and depth in order to formulate cognitive interwoven 

connections among mathematical topics for teaching. A significant claim in Ma’s work is 

conceptualizing mathematical knowledge for teaching as much more than a procedural 

fluency with mathematics.  

The PUFM model physically models knowledge as an interwoven-web of 

connections, a movement beyond the concern of the MKT model’s discrete sub-domains 

of knowledge. The connections between knowledge categories called knowledge 
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packages consist of key ideas, sequences for developing the ideas, and concept knots that 

link related ideas of mathematical concepts. PUFM for the elementary operations 

mathematics knowledge package is modeled below in Figure 2.2.

Figure 2.2 as a whole represents what Ma (1999) defines as a knowledge package. 

The key ideas of this package are the four individual concepts inside the larger ellipses. 

The smaller interconnected ellipses of varying shades represent basic principles and 

conceptual knowledge that form a solid conceptual structure of the elementary operations 

for a teacher. Teachers’ mathematical knowledge, according to Ma, is constructed from 

many of these sorts of knowledge packages. Ma’s concept knot is the teachers’ 

knowledge, organized in such a way that privileges the interconnectedness of differing 

knowledge packages and the knots, which act as the knowledge support mechanism for 

teachers’ actions during teaching.  Ma found that these packages were diverse in their 

construction across teacher participants in her empirical work. One interpretation of the 

diversity is that the connections between types of teacher knowledge are very important, 

and that the connections are unique for each teacher. Ma’s work addresses the concern of 

distinguishable domains of knowledge by modeling that both the domains and the 

Figure 2.2 Example of PUFM as four interrelated content domains (Ma, 1999, p. 25). 
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interconnections that intertwine and intersect the domains should be considered as part of 

the mathematical knowledge used by a teacher. 

Both the MKT and PUFM models advanced the field in research of teacher 

disciplinary knowledge for mathematics. The shortcoming remains that these models 

ignore advancements in cognitive science that define knowledge as more than objects or 

sets of skills stored in teacher’s heads. Knowledge can be characterized very differently, 

such as phenomena that are enacted and simultaneously biologically and environmentally 

dependent (Lakoff & Nunez, 2000; Davis & Renert, 2014; Simmt, 2011; Varela, 

Thompson, & Rosch, 1991). Both models also solely assess a teacher’s explicit 

knowledge, ignoring research that has conceptualized expert knowledge as largely tacit 

and inaccessible to conscious thought (Lakoff & Nunez, 2000; Polanyi, 1966; Davis & 

Renert, 2014; Varela, Thompson, & Rosch, 1991). Characterizing knowledge as both 

explicit and tacit has implications for how knowledge is assessed. Enactive knowledge 

never reaches a steady state but transitions non-linearly between differing levels of 

refinement, suggesting that development could be privileged over explicit assessment 

(Kieren & Pirie, 1992). 

The work of Ball and colleagues (Ball, Thames, & Phelps, 2008) and Ma (1999) has 

advanced the field of research concerned with teacher mathematical knowledge. In this 

report, I am concerned with more than the construction of a model for teacher 

disciplinary knowledge; I am also concerned with activities that enable mathematics 

teachers to refine and develop such knowledge.  The model that I adopt for these 

purposes, proposed initially by researchers Brent Davis and Elaine Simmt (2006), 

capitalizes on qualities of the MKT and PUFM while addressing their shortcomings. 
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2.1.3 Mathematics-for-Teaching (M4T) 

Davis (2012) describes teacher disciplinary knowledge of mathematics as “vast, 

intricate, and evolving,” accounting for both explicit and unconscious knowledge. Davis 

and colleagues’ (Davis & Simmt, 2006; Davis, 2012; Davis & Renert, 2014) have built a 

model that also characterizes knowledge as enactive, emergent, and embodied. These 

defining characteristics, as will later be described, necessitate that mathematical 

knowledge-for-teaching is understood as “a flexible, vibrant category of knowing that is 

distributed across a body of professionals” (Davis, 2012, p. 3).  

Davis and Simmt’s M4T model was developed through professional development 

activities with teachers. This focus explains their emphasis on cognitive science 

innovations in regards to knowledge and development built into their model’s structure. 

Davis and Simmt (2006) model teacher knowledge in the tacit-emergent form similarly to 

other researchers (Adler & Davis, 2006; Davis, 2011; Davis & Renert, 2009). The goal of 

this work is not to focus on assessing teacher knowledge and link it to student 

achievement. Rather, this research agenda concerns investigating the complexity of 

teacher knowledge and helping teachers to refine and develop their own conceptions of 

the mathematics that they teach. Professional development research built using this model 

(Davis, 2008a, 2008b; Davis, 2012; Davis et al., 2009; Davis & Renert, 2009; Davis & 

Simmt, 2006; Davis & Sumara, 2007, 2008; Simmt, 2011) has found that teacher 

mathematical knowledge can be interrogated and develops in professional collective 

settings called concept studies. 

Concept analysis (Lakoff & Nunez, 2000; Leinhardt, Putnam, & Hattrup, 1992; 

Usiskin, Peressini, Marchisotto, & Stanley, 2003) is a fine-grained interrogation of 
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individual mathematical concepts. Davis and Renert (2013) paraphrased Usiskin et al.’s 

(2003) description of a concept analysis as examining the historical origins, common 

usages and applications, and the representations and definitions of a mathematical 

concept. Therefore, Usiskin’ s approach to mathematical study for teachers in his 

working group’s textbook is an example of a concept analysis approach. Another 

example of this type of approach, found in Leinhardt, Putnam, and Hattrup (1992) 

describe the purpose of their chapter on number sense as an “attempt to clarify the many 

dimensions of number sense, and to examine the ways in which number sense develops 

and is exhibited” by students (p. 3). Lakoff and Nunez (2000) further describe a concept 

analysis as “ a mathematical idea analysis, framed in terms of cognitive mechanisms, of 

what is required to understand—really understand” a mathematical equation or concept 

(p. 384). Lesson study (Fernandez & Yoshida, 2004; Stigler & Hiebert, 1999) is defined 

as a unique activity where teachers plan, observe, and discuss lessons collaboratively 

with their peer teachers. The key component of lesson study success, as described in 

Stigler and Hiebert (1999), is that teachers are provided with the opportunities to work 

collaboratively. A further discussion of concept studies is provided after the discussion of 

collective and individual M4T knowledge of fraction multiplication. 

Davis and Simmt (2006) intended to create a model for teacher disciplinary 

knowledge that recognized the complexity of teacher knowledge and oriented 

mathematical knowledge as emergent, dynamic, nested, and unconscious. The M4T 

model that emerged (Davis & Simmt, 2006) utilized the cross-disciplinary branch of 

scientific inquiry known as complexity science and merged it with enactivism, a theory of 

cognition built from the work of Varela, Thompson, and Rosch (1991). Complexity 
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science allows categorizations of teacher knowledge similar in content to the MKT and 

PUFM models, but physically modeled as nested complex systems that render obsolete 

the discrete modeling limitations of these models. Enactivism allows the recognition that 

teacher knowledge is predominantly tacit, evolving, dynamic, nested, and simultaneously 

an individual and collective knowledge construct. What follows is a clarification of 

enactivism and complexity science to ground the reader’s understanding of Davis and 

colleagues’ proposed M4T model. This discussion is then followed by a description of the 

M4T model in broad terms. Finally, a discussion on the model specifically in the context 

of fraction multiplication is provided. 

2.1.3.1 Understanding Complex Systems 

Complexity science has emerged in the past 60 years as a branch of scientific 

inquiry. Complexity science, known less formally as the science of learning systems 

(Davis & Simmt, 2003), provides an alternative perspective for how the universe is 

composed. This perspective closely aligns the physical environment with the biological 

mind and body of those co-creating the environment. Complexity science thought rejects 

the reductionist notion that the universe is composed of fundamental components that 

explain the higher order structure that has arisen from them. The universe, instead, is 

considered to be comprised of embedded complex systems. A complex system is not 

comprised of simple, discrete parts but rather is a collective of dynamic and similarly 

complex systems (Davis & Sumara, 2001). A complex system is irreducible, meaning 

that analyzing its embedded systems (or parts) in no way enables a predictive 

understanding of its transcendent whole. 
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Researchers using complexity theory have amassed evidence and assembled a 

model to help explain the growth of civilizations, weather patterns, brain patterning, and 

assumptions associated with tacit theories of formal education (Davis & Simmt, 2006). 

Critics of complexity science argue that the inability of scientists to reduce complex 

systems to the constituent parts and their interactions for study is a human computational 

inadequacy rather than a theoretical issue (Wilson, 1975). Further critique comes from 

reductionist scientists claiming that the whole may not be just the sum of the parts, but 

can also be explained by the sum of the parts and the interaction between those parts 

(Crick, 1994). 

To illustrate why complexity science has gained traction despite thoughtful 

criticism and a long history of reductionist success, I distinguish complexity science from 

computationally complicated phenomena. In 1948, Weaver, head of the applied 

mathematics panel of the US office of scientific research and development, specified a 

definition of complexity and called for a change from the reductionist understanding of 

the natural world (Weaver, 1948). Weaver (1948) divided phenomena into three 

categories: simple systems, disorganized complex systems, and organized complex 

systems. He proposed that the first two were complicated mechanical systems that are 

relatively predictable and dependent upon inputs and outputs. Waldrop (1992) built 

further vocabulary for these systems and termed them as non-complex or complicated 

systems. Weaver’s (1948) organized complex system and Waldrop’s (1992) complex 

system are phenomena theorized to be fundamentally different from complicated 

systems. These complex systems are not comprised of simple discrete parts, but rather are 
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theorized to be comprised of a “collective of dynamic and similarly complex systems” 

(Davis & Sumara, 2001, p. 88). 

Waldrop (1992) described three hypothesized distinguishing characteristics of 

complex systems from the reductionist view of complicated reducible systems. The first 

characteristic is that complex systems have the capacity to undergo self-organization, so 

that the capacities of the whole far outreach the capacities of the individual parts. For 

example, an individual is comprised of nested systems of the brain, heart, and organs and 

their interactions, but an individual cannot be reduced to a combination of the interactions 

of these systems. The capacities and potentialities of the individual far outreach the 

capacities of the individually nested complex systems. Moreover, an individual can do 

much more than a liver, yet the individual and the liver co-implicate and co-specify each 

other’s existence. That is, they would not exist nor would their purposes for existence be 

completely understood without their mutual embedded relationship. Waldrop’s (1992) 

second distinguishing characteristic of complexity is that these phenomena are adaptive. 

Here “adaptive” refers to another type of co-specifying relationship. This relationship 

describes the co-implication of an individual organism and its environment as the two 

shape and evolve each other. Adaptive also means that a system contains the ability to 

adapt its structure and to change its operations through the action of operating. It can 

“learn.”  

Waldrop’s (1992) third distinguishing characteristic of complicated versus 

complexity is that complexity is an emergent phenomenon. The definition of 

“emergence” is the least agreed upon, but is the most widely used adjective in the varied 

fields of complexity science (Corning, 2002).  Davis and Simmt (2003) described 
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emergence as the mechanism by which systems spontaneously coalesce into an entity that 

is more than the sum of its parts. Emergence should be understood as defining a 

phenomenon when novel or coherent structures momentarily arise through the patterns of 

self-organization. For example, language emerges from the combinations and patterns of 

letters and words (Corning, 2002). Emergence is a key indicator for complexity that will 

be utilized in later sections to help describe a “collective learner.” 

Complexity theorists focus on the co-implicated processes of subjects and 

environments. Complexity science research should be understood as having the ability to 

explain profound similarities between diverse natural phenomena. For example, 

complexity theorists find patterns similar in diverse natural phenomena such as water 

boiling, ant colonies, and neurological connections. Johnson (2001) explained the nature 

of complexity as both contextualized and decontextualized, meaning that there are 

suggested patterns that exist across contextualized cases (Opfer & Pedder, 2011). 

Looking across cases has produced insight on necessary pre-conditions for differentiating 

between the emergence of complexity and just interaction of combined forces (Bloom, 

2000; Casti, 1994; Corning, 2002; Davis & Simmt, 2003, 2006; Davis & Sumara, 2001; 

Johnson, 2001; Lewin & Regine, 2000; Opfer & Pedder, 2011; Ricks, 2007).  

2.1.3.2 Indicators for Complexity 

Davis and Simmt’s (2003) proposed pre-conditions or indicators for complexity 

were defined as internal diversity, internal redundancy, decentralized control, 

neighboring interactions, and organized chaos. What follows is a careful description of 

these indicators for complexity in the context of mathematical learning environments. 
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After careful description, I portray each pre-condition, including brief notes on how a 

researcher can claim the existence of or support the development of each individual pre-

condition for complexity in the design of a research study. 

2.1.3.2.1 Internal Diversity 

The ability to adapt and respond to novel mathematical situations is an indicator 

for the existence or potential for emergence of a complex system. This condition is a 

result of the lack of ability to predict what will be necessary for a novel mathematical 

task. Thus, internal diversity as a pre-condition is the amassing of all of the cognitive 

resources available to operate successfully within the context of the mathematical task. In 

complexity terms, this potential for adaptability and innovation is defined precisely with 

the word intelligence (Johnson, 2001). Internal diversity can be understood at differing 

levels of complexity. In the individual teacher context, internal diversity of mathematical 

knowledge would be the individual’s rich resource of diverse components from which to 

draw to respond appropriately and innovatively to a novel mathematical teaching task. 

This is different from the collective level of complexity where internal diversity can be 

understood as the diversity amongst the individuals forming the collective. Each 

individual brings a variation of intelligence to aid in solving novel mathematical tasks. 

For example, a teacher with many experiences teaching fraction multiplication for the 

first time would bring diversity to a group of educators that predominantly only teach 

fraction multiplication as a remediation topic. 

Davis and Simmt (2003) explained that internal diversity of individuals or 

collectives cannot be “assigned or legislated” (p. 149). The internal diversity of both the 
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collective and the individuals are considered as already present. Consciousness of 

diversity is not necessary for individuals, as it will emerge through the collaborative 

interactions of an environment like a concept study (Davis & Renert, 2014). A researcher 

concerned with the design of mathematical environments that occasion the emergence of 

complexity can take careful steps to enable the appreciation of diversity, though 

appreciation of diversity cannot be mandated. 

2.1.3.2.2 Internal Redundancy 

Davis and Simmt (2003) claim that the ability for individuals to work together 

often depends upon their similarities rather than their differences. Their claim is that 

similarities among individuals allow for more familiar interaction in mathematical 

environments.  Internal redundancy of an individual mathematics teacher is the elements 

of commonality between knowledge systems that allow the teacher to make sense of 

novel mathematical teaching tasks. Within the context of the collective learner, internal 

redundancy is commonalities across individuals such as shared vocabularies, teaching 

experiences, student interactions, and expectations for mathematical and teaching 

proficiencies (Davis & Simmt, 2003). These offer environmental commonalities that 

allow individual and collective learners the ability to build an agreed-upon mathematical 

course of action for overcoming novel mathematical tasks. For example, teachers that 

teach the same levels of mathematics would have common experiences, or redundancies, 

about the teaching of fraction multiplication with students. Further this example, teachers 

could share the experience that students mistakenly establish common denominators 
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when trying to multiply fractions. This redundancy would provide a platform for 

collective work investigating this shared facet of a common student misconception. 

 Redundancy is not something that can be mandated by a researcher interested in 

supporting the emergence of complexity (Davis & Simmt, 2003). The potential for 

redundancy in a research setting results from the careful selection of participants during 

the planning phase of a research study. This selection may include considerations of 

teachers’ area of expertise, similar school environments, and similar work environments. 

Such a selection process may result in commonalities among participants and the 

potential for redundancy in interaction. The researcher can also foster and support 

appreciation for redundancy of the collective (Davis & Simmt, 2003). Finally, the 

researcher can create a context for redundancy by designing opportunities for teachers to 

share commonalities of experience, expectations, and purposes for the teaching and 

learning of mathematics. 

2.1.3.2.3 Decentralized Control 

Davis and Simmt (2003) found that no one entity was in charge or acted as an 

overseer or director in the teachers’ learning community where complexity emerged. 

Control was decentralized. Similar findings have been reported in other non-education 

studies involving complex learning systems (Johnson, 2001). Decision-making is 

dispersed, adaptively and democratically, to the individual components comprising the 

system (Davis & Simmt, 2003). Some sub-systems may have a greater impact on the 

system’s outcomes, but no one centralized power exists. Within the context of the 

individual’s mathematical knowledge for teaching, decentralized control can be thought 
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of as weighted differences in importance for differing knowledge types in differing 

environments. For example, a teacher within the context of teaching the concept of 

divisibility by zero may not privilege graduate level mathematical content knowledge 

when working with middle school students, yet would perhaps do so when working with 

peer teachers. Within the context of the collective learner, decision-making is dispersed, 

adaptively and democratically, to the individual teachers co-acting in the mathematical 

environment (Varela, 1999; Davis & Simmt, 2003).  

Research in professional development literature has shown that decentralized 

control is an essential element for success. Yoshida and Fernandez (2004) described how 

the lesson study environment creates a collaborative collective. The collective is achieved 

through the empowerment of the participating teachers to organize, design, and 

implement their chosen goals for the lesson study instead of by situating power with the 

researcher. Chokshi and Fernandez (2004) warn that researchers interested in establishing 

this type of collaborative environment must carefully consider the stereotypes that exist 

in the United States’ educational system. For example, researchers may need to carefully 

plan methodologies that will allow for the distribution of power away from the researcher 

as the location for the final say in any mathematical investigation. 

2.1.3.2.4 Organized Randomness 

This pre-condition for complexity ensures balance between diversity and 

redundancy amongst embedded systems. Too much diversity or redundancy can result in 

the dissolution of a once-complex system (Davis & Simmt, 2003; Ricks, 2007). Complex 

systems can be understood as being governed by particular boundaries or rules. These 
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boundaries are limits to possible types of activity. These limits channel the activity, 

providing a context for higher potentialities of innovation (Varela, 1999; Johnson, 2001; 

Corning, 2002; Davis & Simmt, 2003). In other mathematics education research, this 

understanding can be illustrated through the use of the metaphor of improvisational 

action. Martin, Towers, and Pirie (2006) build from improvisational theory (Berliner, 

1997; Sawyer, 2000) the understanding that complexity occurs when community 

structures emerge that focus the action but simultaneously aid the further innovation 

within the constraints.  This is referred to as “the collective striking a groove” (Martin, 

Towers, & Pirie, 2006). The groove is the agreement by the collective to follow certain 

rules of action, but within those boundaries innovation is privileged. For example, when 

investigating the area model for fraction multiplication it would not be useful to begin by 

translating all written text into German. The boundaries, or organized randomness, 

provides limits for freedom that eliminates irrelevant action like translating into German. 

This then provides constraints that activate innovation. 

Within the individual mathematical knowledge for teaching context, organized 

randomness can be understood as the rules that bound the individual’s cognition. Davis, 

Sumara, and Luce-Kapler (2000) described these rules as liberating constraints, meaning 

that the rules of the system set boundaries for the system to operate within, while 

simultaneously liberating the individual to achieve total freedom of innovation within 

those bounds. For example, the rules that would govern an individual trying to solve a 

novel mathematical task would focus as well as channel the individual’s productive 

efforts. Organized randomness channels the efforts of the individual into necessary 

boundaries, after which total innovation is then privileged. For the collective learner 
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context, Davis and Simmt (2003) found that the teachers collaborating in their research 

study were operating under the restraints of time, course requirements, available 

technology, and established produced mathematics. Within the context of these restraints, 

however, the researchers found that the teachers were able to co-produce an environment 

rich with possibilities and innovation. A researcher can enable organized randomness by 

carefully limiting the mathematical focus of the co-created environment while 

simultaneously supporting complete innovation within those boundaries. 

2.1.3.2.5 Neighbor Interactions 

Embedded systems with the potential for complexity must “be able to affect one 

another’s activities” (Davis & Simmt, 2003, p. 155). Rather than referring to literal 

physical location and interaction, this term refers to the interactions of “ideas, hunches, 

queries and other manners of representations” (p. 156). Within the context of an 

individual’s mathematical knowledge for teaching, this interaction would include the 

teacher’s ability to co-develop action based on cross-embedded system-relevant 

knowledge, enabling a richer, more innovative, and dynamic approach to novel 

mathematical teaching tasks. For example, an individual teacher profits from the 

interactions of knowledge systems that contain knowledge about students’ cognition of 

the concept, best practices for modeling the concept, as well as the curricular level 

appropriateness of various definitions of the concept. Within the context of the collective 

mathematical learner, researchers have shown (Cobb, 1999; Rotman, 2000; Davis & 

Simmt, 2003) that ideas, metaphors, and images of individuals must be actively exposed 

and scrutinized by others in collaborative mathematical contexts. With the emergence of 
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complexity, this is the mathematical action of the individuals’ ideas as they collide and 

make space for collective development. 

Rotman (2000) described mathematical action as inherently containing the sorts 

of idea collisions necessary for the emergence of complexity at both the individual and 

collective levels. Namely, mathematical action is filled with the engagement of action 

between the self, others, and the cultural body of knowledge produced mathematical 

systems. As with the other preconditions of complexity, researchers cannot mandate the 

neighboring interactions through the design of the mathematical environment (Davis & 

Simmt, 2003). What has been shown to be possible is that the researcher can purposefully 

lead the ideas of individuals to stumble across one another at a high rate of efficiency in 

hopes of fostering neighboring interactions. 

In summary, it is possible for a researcher to consciously support the creation of 

mathematical environments that support the emergence of preconditions for complexity. 

Yet, complexity is synergistic action between embedded systems that cannot be mandated 

from the top down. The synergistic action is a consistent, negotiated collaborative action 

between systems that enables and restrains the emergence and sustainment of complexity. 

All the necessary preconditions can be consciously supported and present in a 

mathematical environment, and yet for reasons not fully understood complexity may not 

arise (Davis & Simmt, 2003). Following is an introduction to biological metaphors for 

cognition that will give the reader further tools for understanding the M4T model.  
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2.1.3.3 Enactivism: Biological Cognition of Mathematics in Action 

Following the publication of The Embodied Mind (Varela, Thompson, & Rosch, 

1991), enactivism has grown in popularity as a theory of learning in mathematics 

education research (Ernest, 2006). Enactivism defines knowledge as adequate or viable 

action in the world (Proulx, 2004). Knowledge as action is an emergent process, 

integrating past and present experiences to form new activities (von Foerster, 1972). 

Perception is considered an active process of categorization made possible by previous 

interactions with the lived world. This orientation to knowledge renders perception and 

action inseparable in lived cognition (Varela et al., 1991). Two critical elements of 

enactivism are the individual cognizing agent and the environment that is co-implicated 

with that agent. What follows is a description of these elements. 

2.1.3.3.1 The Agent 

Since knowledge is defined as the adequate or viable action of the agent in the 

world as assessed by an observer, learning is acquired through experiences that enable the 

continued viable action of an agent in an environment. The acquisition and categorization 

of these experiences emerge for an individual agent as recurrent sensorimotor patterns 

that enable action to be guided by perception (Varela et. al, 1991), meaning that there is a 

history of interaction between two or more systems. These systems are the agent’s body 

and mind, coupled to its environment. In dynamical-systems mathematical language, “the 

state variables of one system are parameters of the other system, and vice versa” 

(Thompson, 2007, p. 45). Learning results in a structural change of the agent. The agent’s 

structure is comprised of his or her own biological structure as well as previous actions in 
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an environment (Kieren et al., 1995). This structure is highly dynamic and easily shaped 

or molded, “a continuing interplay of biological constitution and socially and historically 

framed experience” (Davis, Sumara, & Kieren, 1996, p. 154). Every action changes the 

agent’s structure, which explains why an agent may act differently in seemingly identical 

environments.  

It is important to note that enactivism renders the terms “structure” and 

“organization” of an agent as non-interchangeable. The organization of an agent is the 

amalgam of particular characteristics that constrain the agent in order for that agent to 

remain part of that environment or community. For example, a student in a mathematics 

classroom has a highly dynamic individual structure, but the student must maintain 

certain characteristics of organization to continue to maintain his or her unique existence 

as a student in that classroom setting. Changes to organization are relatively static, 

constrained by the need of the individual to remain a member of a particular community 

(Lozano, 2005). The structure and organization of an agent defines Maturana and 

Varela’s (1987) structural determinism. The environment does not determine learning by 

an agent, but rather the structure and organization of the agent orients the effect that an 

experience with the environment can produce. The structure-determined engagement of a 

given system with its environment or another system is defined as structural coupling 

(Maturana & Varela, 1987). For example, the organization of the learning environment of 

a classroom does not determine the learning of an individual agent (student); it is the 

structural coupling possible between the student and the classroom environment that 

determines the type of learning possible. To elaborate this structural coupling a 

discussion of what constitutes an agent’s environment follows. 
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2.1.3.3.2 The Environment 

Learning is not determined by the agent’s environment, but it does depend on that 

environment. An agent’s interaction with the environment is dependent on that agent’s 

structure and organization, which allow for the recognition and activation of triggers that 

motivate action (Proulx, 2004). The agent and the environment are “reciprocal and 

simultaneous specifications of each other” or co-specifying (Proulx, 2008, p. 21). This is 

a continual, reciprocal, co-specifying, and co-determining relationship between the agent 

and the known, defined as structural coupling. Enactivism describes the embodiment of 

cognition as doubly embodied, meaning that both the individual and the environment 

experience the process of evolution: they are constant triggers that produce adaptations in 

each other’s structure (Kieren et al., 1995). A person’s perception is a structure-

dependent activity that changes the world of lived experience as the individual’s structure 

continually changes. This is aligned with the work of Merleau-Ponty (1962), where 

perception is active participation and engagement in the world, not separation from it. 

2.1.3.3.3 Knowing is Being is Doing 

Enactivist theory for cognition is a radical divergence from the pervasive 

understanding that knowledge is a possession of the individual to be sought after and 

accumulated. Varela et al. (1991) stated that learning is the complex interplay between 

the agent and the environment that also cannot be abstracted from an understanding of 

self. This orientation necessitates that mathematics education researchers concerned with 

theorizing about and assessing teacher disciplinary knowledge of mathematics pay 

attention to both formulated and unformulated mathematical knowledge. Formulated 
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knowledge, or explicit knowledge, is knowledge that is directly available to our 

consciousness. Unformulated knowledge is “tacit, embodied knowing that we 

continuously enact as we move through the world” (Davis et al., 1996, p. 155). Most 

cognition, from this perspective, is actually unconscious, unformulated knowledge. For 

example, we quickly and effortless navigate the complex rules and guidelines of 

language, without consciously considering word placement or grammatical 

appropriateness. What a person says and the actions of language that emerge in this 

situation could be considered as representations of that person’s unconscious knowledge 

of language. Specifically when considering mathematical knowledge, Lakoff and Nunez 

(2000) described unformulated mathematical knowledge as unconscious cognition similar 

to other types of cognition not largely available to us.  

Researching cognition from an enactivist, embodied orientation demands a 

particular interpretation of the discipline of mathematics and mathematical cognition. A 

researcher interested in assessing knowledge cannot simply look at conscious 

representations of formulated knowledge.  Embodied cognition necessitates interpreting 

the preceding actions, “the unformulated exploration, the undirected movement, the 

unstructured interaction, wherein the body is wholly engaged in mathematical play,” as 

representations of unconscious mathematical knowledge (Davis et al., 1996, p. 156). This 

interpretation provides a researcher with a comprehensive set of tools to assess 

unconscious and conscious teacher disciplinary knowledge of mathematics and to make 

claims about the development of this type of knowledge. With a fuller understanding of 

complexity science as a tool to understand the structural coupling between the agent and 

its environment as part of embodied mathematical cognition, we can now focus on the 
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specifics of Davis and Simmt’s (2006) M4T model for teacher disciplinary knowledge of 

mathematics. 

2.1.3.4 The M4T Model 

Davis and Simmt’s (2006) M4T model builds from the language of complexity 

science in order to attempt to provide a two-dimensional modeling of co-implicated 

phenomena. The nested complex systems of the two-dimensional model are an arbitrary 

representation of a system that is neither two-dimensional nor has visible boundaries 

between the nested systems. The M4T model achieves a coupling of the individual system 

with the environment of that system by placing the individual as a “subsystem to a series 

of increasingly complex systems (such as a classroom, a school, a neighborhood, a 

culture, humanity, the biosphere)” (p. 117). The nested complex systems of the M4T 

model build from the smaller knowledge-producing systems, such as the subjective 

individual teacher and the immediate collective mathematical environment of that 

teacher.  These knowledge-producing systems are then embedded in the knowledge-

produced systems relevant to mathematical teacher cognition such as curriculum 

structures and mathematical objects. The M4T model is then meant to portray the 

harmonization and co-evolution of historical action of the discipline of mathematics, 

represented as the knowledge-produced systems, with the emerging knowledge-producing 

of the teacher’s own individual cognitive activity. 

Figure 2.3 is the representation of the M4T model. It provides a visual for 

understanding the proposed competing evolutionary tensions of a teacher’s conscious and 

unconscious mathematical knowledge as four nested complex systems. These systems are 
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labeled subjective understandings, collective understandings, curriculum structures, and 

mathematical objects (Davis & Simmt, 2006; Davis & Renert, 2009). The time scale 

located at the left of Figure 2.3 represents Davis and Simmt’s attention to competing 

evolutionary tension of each embedded system. Size of the ellipses in this model is meant 

to signify the level of embedded complexity as well as the amount of time required to see 

significant evolutions in the system.   

 

Figure 2.3 Nested complex phenomena of M4T Model. 

To enable readers to better understand how a researcher can collect data about a teacher’s 

explicit and tacit mathematical knowledge for teaching, what follows is an elaboration of 

each complex system of the M4T model. 

2.1.3.4.1 Subjective Understanding 

This complex system is concerned with the unconscious potentially tacit and 

explicit representations of the individual teacher’s mathematical knowledge. Individual 

cognition is relatively volatile, meaning it can change and adapt quickly to new 
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mathematical environments and stimuli. The ellipse labeled subjective understanding 

represents embodied mathematical cognition as a structural coupling of the individual 

and the social, physical environments that an individual co-creates with others (Davis & 

Simmt, 2006; Davis & Renert, 2014; Simmt, 2011). The subjective understanding 

complex system is dynamic on multiple levels, as it represents teachers’ harmonization of 

their own emerging mathematical knowledge with their interpretations of the evolving 

cognition of student mathematical knowledge. The subjective understanding system 

evolves as a leveled, non-linear, and recursive phenomenon (Davis & Simmt, 2006; Pirie 

& Kieren, 1989). The experiences, images, and interpretations are teachers’ subjective 

understanding, as represented by their actions in relevant mathematical environments.  

The M4T model proposes, through its enactivist grounding, that subjective 

understanding of mathematical concepts are both biological and cultural. This claim is 

significant, as Davis and Simmt (2006) have included in their model that “mathematical 

knowing is rooted in our biological structure, framed by bodily experiences, elaborated 

within social interactions, enabled by cultural tools, and part of an ever-unfolding 

conversation of humans and the biosphere” (p. 315). Subjective understanding cannot be 

understood without being coupled with its environment, and for the first time this 

understanding appears in a mathematics-for-teaching knowledge model. The next level of 

the model is the first environmental system in which the subjective learner is embedded. 

This system includes the teacher’s knowledge of and participation in the immediate 

environment where the teacher’s mathematical cognition takes place.  

 



35 

2.1.3.4.2 Classroom Collectivity 

This embedded system concerns the teacher’s knowledge of how to participate in 

collective mathematical action and knowledge of how best to enable students to 

productively engage in mathematical action (Davis & Simmt, 2006). The ellipse labeled 

“classroom collectivity” represents Davis and colleagues’ model of the embodied 

mathematical cognition as a structural coupling of the individual and the social and 

physical environment within which the individual teacher co-exists (Davis & Simmt, 

2006; Davis & Renert, 2014; Simmt, 2011). It also represents pervasive high levels of 

volatility of this type of mathematical knowledge. Classroom collectivity is described as 

an inter-subjective complex system because it is meant to model the structural coupling 

between differing individual cognitions as embedded systems of a collective 

mathematical environment. 

The M4T model embeds the social context of mathematical cognition with the 

subjective understanding and the broader systems later described. Simmt (2011) 

described facets included in the classroom collectivity system drawing from other 

research (Bowers & Nickerson, 2001; Cobb, Gravemeijer, Yackel, McClain, & 

Whitenack, 1997).  These aspects are “(a) the social norms and individual students’ 

beliefs about them, (b) the socio-mathematical norms and individual students’ beliefs 

about them, and (c) the mathematical practices and individual students’ mathematical 

understandings” (Bowers & Nickerson, 2001, p. 4). Cobb (1999) offered examples of 

social norms from research (Cobb, Yackel, & Wood, 1989) such as norms for “explaining 

and justifying solutions, attempting to make sense of explanations given by others, 

indicating agreement or disagreement, and questioning alternatives in situations in which 
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a conflict in interpretations had become apparent” (p. 7). Cobb (1999) further identified 

socio-mathematical norms that included student activities specific to the mathematics 

classroom, such as what counts as “differing mathematical solutions, a sophisticated 

mathematical solution, an efficient mathematical solution, and an acceptable 

mathematical explanation” (p. 8).  The classroom collectivity and the embedded 

subjective understanding systems then represent the entirety of the knowledge-producing 

systems. I will now describe the knowledge-produced systems that are the larger complex 

systems containing all teachers’ subjective understanding systems and all of the 

embedded social contexts that are relevant to those teachers’ mathematical cognition. 

2.1.3.4.3 Curriculum Structures 

This complex system is concerned with the teacher’s knowledge of the shared 

cultural interpretations of the structure of mathematics for schooling (Davis & Simmt, 

2006). The ellipse labeled curriculum structures represents Davis and colleagues’ model 

of the embodied mathematical cognition as a structural coupling of the individual, the 

social context, and the larger cross-cultural curricular systems within a mathematical 

environment (Davis & Simmt, 2006; Davis & Renert, 2014; Simmt, 2011). The size of 

the ellipse represents the relatively static nature of mathematical knowledge at the 

curriculum level compared to the more volatile collectivity and subjective system levels.  

Curriculum structures are made up of “curriculum,” including teacher’s 

knowledge of the curriculum resource materials as well as mandated programs of study 

(Davis & Simmt, 2006; Simmt, 2011). Simmt (2011) defines this as curriculum-as-

planned and ties it in closely with the definition of intended mathematical curriculum 
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(Reys, 2006). A second facet of the curriculum structures system is curriculum-as-lived. 

This aspect is defined as the teacher’s knowledge of the “thought, action and 

relationships among the teacher and learners and objects” in the classroom (Simmt, 2011, 

p. 3). This closely aligns with what Clandinin and Connelly (1992) defined as the enacted 

mathematical curriculum. The knowledge-produced curriculum structures system and its 

embedded knowledge-producing systems are finally embedded in the largest complex 

system of the M4T model--the mathematical objects system. 

2.1.3.4.4 Mathematical Objects 

This complex system is a teacher’s knowledge of the broad system of the 

discipline and how it has evolved through the participation of all humanity (Davis & 

Simmt, 2006). The ellipse labeled “mathematical objects” represents the embodied 

mathematical cognition as a structural coupling of the individual, social context, 

curricular structures that bind those social contexts, and the larger discipline of 

mathematics. The larger discipline of mathematics provides the organization, or 

boundary, inside which all of these systems structurally couple (Davis & Simmt, 2006; 

Davis & Renert, 2014).  The large size of the ellipse represents the relatively static nature 

of mathematics as a discipline.  

The mathematical objects system is a teacher’s knowledge of the history and 

interconnections between fields of mathematical study as well as his/her orientation to the 

tools and products of the discipline (Davis & Simmt, 2006). Davis and colleagues’ notion 

of mathematical objects is akin to Ball and Bass’ (2009) horizonal knowledge. Horizonal 

knowledge is defined as an individual teacher’s knowledge of how students learning in 
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the present is connected to larger mathematical ideas, research, and computational 

techniques of the evolving discipline of mathematics. The theoretical difference between 

Ball’s horizonal knowledge and Davis and Simmt’s mathematical objects system is only 

in the recognition by Davis and Simmt of the structural coupling with other systems of 

the M4T model. In the next section, a further illustration of the definition of each system 

using the concept of fraction multiplication occurs. This illustration will enable the reader 

to understand what type of data can be collected about the nature and development of 

middle school teachers’ M4T knowledge of fraction multiplication. 

2.1.4 Individual M4T Knowledge of Fraction Multiplication 

A description of each complex system of M4T in the context of the middle school 

mathematical concept fraction multiplication follows. I chose fraction multiplication as 

the mathematical context for this research report because multiplication is implicit 

throughout the middle school curriculum. Multiplication on various number sets has been 

used in previous concept study literature (Davis, 2008, 2011, 2012; Davis & Renert, 

2009, 2012, 2014; Davis & Simmt, 2006). 

2.1.4.1 Subjective Understanding of Fraction Multiplication 

Subjective understanding includes how one’s mathematical knowledge is 

developed, the conceptual blends of topics, and the images and metaphors that define and 

connect mathematical topics. These ideas from mathematics education literature provide 

vocabulary for suggesting what I might consider as subjective understanding of fraction 

multiplication in a concept study environment. 
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2.1.4.1.1 Representations of Fraction 

Lamon (1999) identified four different representations of fractions: (a) fractions 

as symbols, (b) part-whole fractions, (c) fractions as rational numbers, and (d) fractions 

as numbers. Each of these is briefly described in the paragraphs that follow. 

Fractions as symbols. A fraction can be understood as a way of writing a pair of 

numbers. Lamon (1999) stated that this pair of numbers is constructed in the form of    

where “a” is called the numerator and “b” is called the denominator. So the word 

“fraction” can be used as a symbol for “writing a number, a notational system, a symbol, 

two numbers written with a bar between them” (Lamon, 1999, p. 27). For example,   is a 

symbol with multiple interpretations. 

Fractions as part-whole. A fraction is also a ratio of parts to whole (Greer, 1992; 

Lamon, 1999, 2007). This definition refers to the unitizing function of fractions, where 

the fraction “represents one or more parts of a unit that has been divided into some 

number of equal-sized parts” (Lamon, 1999, p. 27). This first interpretation of fraction 

that children learn is taken as the basis for their knowledge of fraction in the curriculum 

(Lamon, 1999). For example,   can be understood as the ratio of six parts out of the total 

of eight equal parts into which an arbitrary unit is divided. 

Fractions as rational numbers. Fractions as rational numbers allows individuals 

to “talk about wholes as well as pieces of a whole” (Lamon, 1999, p. 28). For example, 

the subset of rational numbers include  which is actually six whole groups of four parts 

of 24. Rational numbers also include  which can only be understood as a one piece of a 

whole. It is important to understand that fractions and rational numbers are not 
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coterminous. All fractions are not rational numbers, and all fractions do not correspond to 

different rational numbers. 

Fractions as numbers. When considering a fraction as a number, the user is 

actually referring to the underlying rational number, the number that the symbol of 

fraction represents (Lamon, 1999). Fractions as a number is a relative term, as it 

represents the single relative amount of all different fractional amounts of the same 

rational number. For example,   can be understood as a number, which is actually the 

same as all other variations of   such as  or . 

2.1.4.1.2 Representations of Multiplication 

From a procedural standpoint, multiplication of fractions is simple. Yet, it is quite 

complex when considered as a psychological process (Greer, 1992). Greer characterized 

multiplication as images for integers that included equal groups, multiplicative 

comparison, Cartesian product, and rectangular area, each of which are further 

explained below.  

Equal Groups. When the number and size of groups is known in the equal groups’ 

situation, the task is considered a multiplicative situation in which the whole is unknown. 

The multiplicative situation of equal groups has two different interpretations in research 

literature: repeated addition and related rates (Greer, 1992; Lamon, 1999). For example, 

the operation of 3 × 4 can be interpreted as the repeated addition of groups containing 

three arbitrary units, four distinct times. This interpretation can be transferred easily to 

the multiplication of rational numbers and whole numbers, for example a situation like × 4. This would signify the repeated addition of a group size of  , four distinct times. 
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Multiplicative Comparison. Multiplicative comparison problems consist of two 

different sets. One set consists of multiple copies of the other set. This situation can be 

modeled as n times as many as the other set. For example, “Mark saved three times as 

much as last month” or similarly with fractions, “Mark saved half as much as last 

month.” In these examples either number can be considered the multiplier. Explicitly 

applied to fraction multiplication, the multiplicative comparison can also be inverted. 

Therefore, “Mark saved three times as much as last month” could be interpreted as last 

month’s saved amount was  as much as this month (Greer, 1992; Lamon, 1999). 

Cartesian product. In Cartesian product, or combination problems, the formal 

definition of m x n defines the distinct number of ordered pairs that can be found when 

pairing two sets (Greer, 1992). The product consists of pairs of things, one member of the 

pair taken from each of the given sets. For example, if choosing to match four shirts with 

three pairs of shorts, the Cartesian product is a pairing of these sets in order to come up 

with the different number of outfits possible, or twelve total. Greer (1992) stated that this 

sophisticated way of defining multiplication maintains a symmetry between both 

numbers wherein either can act as the multiplier or the multiplicand. Cartesian products 

are possible with fractions, as many types of unit conversions have whole numbers of 

smaller unit sizes. For example,  of an hour can be interpreted as 20 minutes, so a 

Cartesian product would be possible with these fractional quantities. 

Rectangular Area. The area representation of a multiplicative situation can also be 

described as the product of measures problems (Greer, 1992). Rectangular area is similar 

to the Cartesian multiplicative situations; there is no distinction between which number is 
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the multiplier and which number is the multiplicand. One important facet that 

distinguishes this multiplicative situation from others, however, is that the product is 

literally a different type of unit from the two factors. For example, the area of a rectangle 

with dimensions 3cm by 4cm would be the product of the lengths, or 3 × 4 =12 . Explicitly applied to the multiplication of fractions, the measures of lengths of 

sides of rectangles can be fractional lengths of a whole unit. For example, the area of a 

rectangle that is  high and  wide where b, d  and . 

Extending the image of multiplication to rational numbers requires a conceptual 

leap (Lamon, 1999) to include notions such as rates, part-whole relationships, fractional 

areas, and products of measures (Greer, 1992). For the purposes of this report, the 

operation of multiplication on the set of whole numbers does not have a one-to-one 

relationship with the operation on the set of rational numbers (Fischbein, Deri, Nello, & 

Marino, 1985). For example, the notion of repeated addition of equal groups works well 

for understanding the operation of multiplication on whole numbers like 3 × 4 but does 

not transfer well to understanding the operation on rational numbers like × . 
2.1.4.1.3 Research on Teacher Knowledge of Fraction Multiplication 

Following are examples of explicit teachers’ knowledge of fraction multiplication 

that have been catalogued. This literature provides language for characterizing teachers’ 

M4T knowledge of fraction multiplication.  

Mistaking realizations for operations. Several studies have shown that teachers 

have difficulty differentiating between situations where fraction multiplication should be 

used and those that require division (Armstrong & Bezuk, 1995; Ball, 1990; Ma, 1999). 
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For example, Ball (1990) investigated knowledge of division of 35 preservice teachers 

using task-based interviews. Preservice teachers were asked to represent a situation that 

would illustrate 1  ÷  . Only four teachers were able to generate an appropriate 

representation, 12 generated an inappropriate representation, and 19 were unable to 

generate any representation. The inappropriate representations all depicted multiplication 

rather than division. Ball suggested that the teachers’ primitive notions of whole number 

division as making numbers smaller could be the potential source of misconception.  

Multiple levels of units. Multi-level unit structures play a role in reasoning about 

fractions as rational numbers and about operations with fractions. Research on unit 

structures drawn from conceptual analyses (Behr, Harel, Post, & Lesh, 1992) and 

teaching experiments with children (Hackenberg, 2010; Olive, 1999; Steffe, 2003; Steffe, 

2002; Steffe & Kieren, 1994; Tzur, 2004) have shown that teachers have diverse levels of 

fluency with unit structures. Steffe first defined reasoning with two levels of units as a 

child’s ability to understand simultaneously a whole number as several separate units and 

as a single unit or entity. For example, the number five can be thought of as a single unit 

that is comprised of five units of one. A child’s reasoning with three-levels of units is 

defined as a child who can view a whole number as an entity or unit and as a whole 

number that can be broken into units of other whole numbers, which can then be broken 

into units of ones. Izsak (2008) found that teachers’ actions were different when posed 

with tasks asking them to reason with multiple levels of units. One teacher used two 

levels of units when she taught and responded to students’ questions. Her actions, though 

viable in her environment, limited her ability to teach the mathematical concepts. Another 

teacher’s actions provided evidence of reasoning with three levels of units by using 
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lengths and areas when teaching and responding to students in her classroom 

environment. Despite this facility, the second teacher’s actions were not flexible enough 

to sufficiently respond to students’ reasoning about drawings from the Connected 

Mathematics Project (CMP) material (Lappan, Fey, Fitzgeral, Friel, & Phillips, 2002, 

2006). Izsak et al. (2012) confirmed Izsak’s (2008) findings that teachers reason with 

units at different levels of proficiency when teaching fraction multiplication. Izsak et al. 

also found that a central role of teacher’s performance seemed to be the ability to act in 

environments calling for the differentiation of and flexibility to move between two levels 

of units and three levels of units.  

What follows now is a transition from focusing on teacher’s individual subjective 

knowledge of fraction multiplication, signifying a shift to focusing on a teacher’s 

knowledge of student cognition. A teacher’s knowledge of student cognition is 

considered subjective understanding because it represents the necessary harmonization of 

teachers’ own knowledge with that of their students (Davis & Simmt, 2006; Davis & 

Renert, 2014). 

2.1.4.1.4 Teacher Knowledge of Student Cognition of Fraction Multiplication 

To find a teacher’s knowledge of student cognition, one must understand ways of 

categorizing a teacher’s labels for mathematical knowledge and learning. Below, three 

broad contemporary theories of cognition (Greeno, Collins, & Resnick, 1992) with 

examples provide vocabulary for labeling and tracking development of teacher’s 

knowledge of student cognition of fraction multiplication.  
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Behaviorism. In the behaviorist view of learning, knowing is a process in which 

associations, skills, and components of skills are acquired (Even & Tirosh, 2010). 

Transfer occurs “to the extent that behaviors learned in one situation are utilized in 

another situation” (Greeno, Collins, & Resnick, 1992, p. 16). Even and Tirosh (2010) 

outlined the basic tenets of behaviorism when applied directly to teacher’s knowledge of 

student learning. Teachers with a behaviorist perspective of cognition work from the 

assumption that mathematical mistakes are obstacles to mathematical learning and that 

student access to peer and teacher mathematical errors should be prevented (Even & 

Tirosh, 2010). A student’s motivation to learn mathematics is a characteristic of the 

learner, and incentives provide a context that the learner seeks out while constructing new 

associations and skills (Greeno, Collins, & Resnick, 1992). Behaviorism as a theory for 

mathematical cognition assumes that the teacher cannot build models for what students 

are thinking–-and therefore correctness of solutions and responses are valued over 

student cognition (Even & Tirosh, 2010). 

Basic Constructivism. To summarize the diverse uses of constructivism is 

difficult, though there are broad tenets that can be encapsulated here briefly. Following 

the tradition of Piaget, constructivism is focused on the characterization of the cognitive 

development of children (Greeno, Collins, & Resnick, 1992). According to the 

constructivist tradition, children’s knowledge differs significantly from adults’ 

knowledge (Even & Tirosh, 2010). Knowledge, be it in the individual or social context, is 

ultimately a construction of the individual (Davis & Simmt, 2003). Tenets of 

constructivism make it clear that the mathematics teacher is able to build a model of the 

students thinking about mathematical concepts. To that end, teachers who view 
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mathematical cognition from a constructivist perspective work to build a model of 

student mathematical thinking and then construct learning trajectories to enable the 

construction of viable mathematical knowledge (Even & Tirosh, 2010). 

Embodied Cognition/Enactivism. The situative perspective describes knowledge 

as being distributed among people and their environments (Greeno, Collins, & Resnick, 

1992). More precisely, enactivism describes knowledge as viable action in an 

environment, in which the individual and the environment are structurally coupled 

(Proulx, 2004).  In mathematical environments knowledge is understood as viable action 

instead of as a discrete body of knowledge to be collected and categorized (Even & 

Tirosh, 2010). A teacher who views learning from this perspective promotes learning by 

enabling students to better participate in shared mathematical activities. Teacher actions 

are guided by the principle that the teacher is “responsible for prompting differential 

attention” between ideas and students, and then for “selecting among the options for 

action and interpretation that arise” in the mathematical environment that enable the 

advancement of viable mathematical action in the classroom environment (Davis, 2005, 

p. 87).  

2.1.4.2 Classroom Collectivity of Fraction Multiplication 

As a knowledge-producing system, a teacher’s knowledge of the classroom 

culture—similar to a teacher’s knowledge of student mathematical cognitions—is based 

in part on an understanding of the theories of cognition (Even & Tirosh, 2010). Three 

broad contemporary theories of cognition (Greeno, Collins, & Resnick, 1992) and the 
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context of teacher knowledge of classroom collectivity in the context of fraction 

multiplication are found below.  

2.1.4.2.1 Behaviorism 

A teacher’s knowledge of the classroom culture informed by a behaviorist 

conception of cognition would characterize the classroom as a collection of unique 

individual learners (Even & Tirosh, 2010). The classroom culture then exists to facilitate 

the transmission of knowledge and the subsequent accumulation of facts, skills, and 

procedures relevant to fraction multiplication. This transmission typically occurs through 

the presentation of procedures to reinforce good facility with the mathematical 

procedures of fraction multiplication and through non-reinforcement of poor facility with 

the procedures. Presentation of procedures is often followed by the offering of ample 

time to practice mathematical skills similar to Mehan’s (1979) initiation, response, and 

evaluation (IRE) pattern or Bower and Nickerson’s (2001) elicitation, student response, 

and teacher elaboration (ERE) pattern. 

2.1.4.2.2 Basic Constructivism 

Teachers informed by the constructivist theories of cognition value differing types 

of knowledge such as conceptual, problem solving strategies, procedural, and 

metacognitive skills (Even & Tirosh, 2010). Consequently, the classroom culture exists to 

facilitate learning as an active process, not a passive acquisition of knowledge. The 

teacher views knowledge as something that is defined in the head of a person and 

believes that students have no alternative but to construct knowledge based on their own 

experiences (von Glaserfeld, 1995). The constructivist classroom is designed to provide 
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contexts where students can experientially test the viability of their mathematical 

knowledge. 

2.1.4.2.3 Embodied Cognition as Enactivism 

Teachers informed by an enactivism theory of cognition attend to multiple levels 

of collectivity. The classroom community is of the utmost importance to the teacher, and 

the classroom is considered as a collective learner rather than a collection of learners 

(Davis, 2005; Davis & Simmt, 2003). The teacher selects from viable options for action 

and interpretation that arise from emergent collective engagement with complex 

mathematical tasks about fraction multiplication. He/she also ensures that “diverse 

interpretive possibilities are present in the classroom” (Davis, 2005, p. 87). Implicit in 

this description is that a teacher will actively support the five characteristics previously 

described as the necessary preconditions for complexity. 

2.1.4.3 Curriculum Structures of Fraction Multiplication 

Curriculum structures is a combination of the teacher’s knowledge of the 

established curricular resources available to sequence and teach fraction multiplication 

and the teacher’s knowledge and use of how teacher, student, and curriculum interact in 

real-time in the classroom. 

2.1.4.3.1 Curriculum-as-Planned (CaP) 

The learning trajectories for the teaching of fraction multiplication can build from 

two different hypotheses in regards to the role of children’s intuitive knowledge of 

rational numbers in the development of rational number knowledge. These two 

hypotheses are the interference (Behr et al., 1992) and reorganization hypotheses (Steffe 
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& Olive, 2010). They provide vocabulary needed for characterizing teachers’ curriculum 

structures knowledge of fraction multiplication and their knowledge for sequencing 

learning.  

Interference hypothesis. Teachers informed by the interference hypothesis would 

be aware that children are first engaged with whole numbers and the operations of 

addition and subtraction, followed by a basic understanding of the operations of 

multiplication and division (Lamon, 1999). Teachers reason that the conceptual 

generalizations children have drawn interfere with the learning of computation with 

fractions. The assumption is that once operations on fractions are introduced, whole 

number multiplication may be used to operate on fractional quantities. To complicate 

matters further, the interference hypothesis also assumes that children come to their 

formal mathematical schooling with a complex array of pre-established conceptual 

metaphors for operating on rational numbers (Lamon, 1999, 2007; Johanning, 2008). For 

example, students learn cultural conceptual metaphors for fraction, such as parts, prior to 

coming to the classroom. Once in the classroom, grounding conceptual metaphors could 

interfere with other images for fraction and operations on fraction.   

The Rational Number Project (RNP) explored how children’s intuitive 

understandings interfere with the learning of fractions and operations on fractions (Behr 

et al., 1992; Behr, Harel, Post, & Lesh, 1993; Behr, Lesh, Post, & Silver, 1983; Mack, 

1995; Post, Cramer, Behr, Lesh, & Harel, 1993; Lamon, 1999). Results from the RNP 

show that children learning operations on fraction quantities using metaphors 

conceptually developed with whole numbers (Mack, 1995; Streefland, 1991; Lamon, 

1999) over relied on the part-whole model (Kerslake, 1986) and utilized the iterative act 
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of halving (Pothier & Sawada, 1983) to inform their thinking about the multiplication of 

fractions. The conclusions and curricular design emergent from the RNP research 

intentionally separates the teaching of whole and rational numbers in the context of the 

operation of multiplication to reduce interference (Cramer, Post, & del Mas, 2002). A 

teacher’s knowledge of this sequential design and the implicit reasons for the design 

based upon student conceptions is part of the teacher’s curricular structures knowledge. 

Reorganization hypothesis. Kieren (1993) hypothesized that fractions and natural 

numbers share common images and metaphors but that fraction knowledge is much more 

than a simple extension of natural numbers realizations. Lamon (1999) also argued that 

realizations of whole number operations, without significant refinement, are rendered 

defective when applied to fraction mathematical situations. Steffe and colleagues have 

posited that any interference of whole numbers with the cognition of rational numbers is 

a direct result of rational numbers isolation in curricular presentation (Steffe & Olive, 

2010). This hypothesis, one of reorganization, concludes that students must revise and 

reorganize operating with conceptual metaphors of whole numbers in order to build 

fractional knowledge (Olive, 1999; Olive & Steffe, 2002; Steffe, 2002; Tzur, 2004). 

Curriculum built to align with the reorganization hypothesis structures the learning of 

fraction and whole number multiplication to help students explicitly examine the 

differences between their operations rather than isolating the concepts from each other. A 

teacher’s knowledge of this embedded design, and the implicit reasons for the design 

based upon student conceptions, is part of the curricular structures knowledge. 

Textbook as the curriculum. Tarr et al. (2008) proposed that one method for 

improving school mathematics programs includes the selection and enactment of 
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curriculum in quality textbooks. This proposal from research identifies the textbook as 

the de facto curriculum for middle school mathematics teachers (Schmidt, McKnight, & 

Raizen, 1997; Weiss, Banilower, McMahon, & Smith, 2001; Weiss, Pasley, Smith, 

Banilower, & Heck, 2003). Moreover, Grouws and Smith (2000) found that nearly three-

fourths of eighth grade mathematics teachers responding to the NAEP surveys reported 

using the textbook on a daily basis. The use of the textbook and teachers’ knowledge of 

textbook design are included as part of the curricular structures knowledge, despite the 

inability to make explicit links to textbooks and student opportunities to learn since 

teachers have the freedom to make choices about the use and interpretation of the 

textbook (Tarr et al., 2008). 

2.1.4.3.2 Curriculum-as-Lived (CaL)  

Curriculum-as-lived for fraction multiplication is similar to the teachers’ 

knowledge of the classroom collective but is the teachers’ knowledge of the common 

patterns of interaction between themselves, students, and the multiplication of fractions 

curriculum-as-planned (intended curriculum). An explicit manifestation of curriculum-as-

lived is the mathematics teacher’s knowledge of the educative appropriateness of various 

images, analogies, and metaphors in the curriculum-as-planned, for example, a teacher’s 

knowledge of the appropriateness of using the array model for fraction multiplication 

compared to the area model with fractional lengths. Curriculum-as-lived is part of 

teachers’ professional understanding of students and of the learning trajectory of concepts 

that enable them to make moment-to-moment decisions in their representations of the 

teaching of fraction multiplication. For example, teachers decide which of the various 
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models for fraction multiplication are viable at particular times during mathematical 

investigations.  

2.1.4.4 Mathematical Objects of Fraction Multiplication 

The mathematical objects of fraction multiplication, a knowledge-produced 

system, includes teachers’ knowledge of the historical development of fractions and 

operations on fractions. Much more than an understanding of an anecdotal history, this 

knowledge-produced system also represents the teacher’s use of the diverse fields of 

mathematical study to interconnect the common images, metaphors, and analogies of a 

concept such as fraction multiplication. This system also includes how teachers orient 

themselves to these questions: What is mathematics? How was it developed? Is 

mathematics an evolving or static discipline? Ernest (2006) illustrated the significance of 

such philosophical orientations on teaching. Following a brief tracing of the historical 

development of fraction and operations on fractions that offers language to describe 

teacher’s knowledge of these historical developments is a discussion of the stages of 

mathematical development. The stages utilized for this discussion were proposed by 

Davis and Renert (2010) and provide vocabulary for interpreting teachers’ philosophical 

orientation to the discipline of mathematics. 

2.1.4.4.1 Historical Development 

Fractions were included in the first written accounts of symbolic systems (Struik, 1987). 

More complex mathematics, beyond primitive record keeping and counting, dates from 

written records to somewhere between 5000 and 3000 BC (Eves, 1997). Mathematics 

developed significantly during this era, spurred on by utility for practical tasks like 
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calendar computation, quantifying and distributing harvest, and other public programs 

such as tax collection (Struik, 1987). During this era the Egyptian, Sumerian, and 

Babylonian societies greatly advanced rational number understanding and operations on 

those rational numbers.  

 The Egyptian system for whole numbers was not a place value system, while 

Sumerian and Babylonian systems were (Flegg, 1989). Egyptian reliance on unit 

fractions complicated representations and computations with fractions. For example, the 

number  would have been written as +  and then computations on this number would 

have been accomplished using the addition of two unit fractions. The Egyptian repetitive 

representations of whole numbers provided an advantage over the positional system of 

the Babylonians and Sumerians because the Egyptian representation did not require zero 

(Cajori, 1894; Flegg, 1989; Kaplan, 2000; Katz, 1993). The Sumerian and Babylonian 

representations of fractions and whole numbers using the same sexagesimal system was 

perhaps the most significant difference between these systems of antiquity. The 

Babylonian and Sumerian place value system theoretically made it possible for unlimited 

accuracy in calculation (Flegg, 1989). Use of the Egyptian system for representation and 

computation on fractional quantities lasted into the 1400-1500s AD (Flegg, 1989). 

2.1.4.4.2 Orientation to Mathematics 

The researcher’s five suggested stages for the evolution of mathematics as a 

discipline throughout human history are described by Davis and Renert (2010). These 

stages are titled the oral stage, pre-formalist stage, formalist stage, hyper-formalist stage, 

and post-formalist stage. Davis and Renert (2010) hypothesize that much of 
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“mathematics education today resides in the formalist and pre-formalist conceptions of 

mathematics” (p. 184), meaning that mathematics is a source of procedures and activities 

that are part of the everyday occurrences of an individual. Moreover, mathematics is 

considered to be outside of the observer, discovered by humans through empirical study 

of their surroundings. This theory contrasts the orientation to mathematics that guides this 

research project: the post-formalist stage, in which mathematics is considered a “socially-

constructed interpretive discourse, rooted in our need to make sense of our environments 

and to construct our reality. Far from being separate from knowers, mathematical 

knowledge at this stage is embodied and enacted by both the individual and collective 

knowers” (Davis & Renert, 2010, p. 183). Davis and Renert (2010) argue that the 

transitions between the stages of mathematics represent a coherent evolution of 

increasingly sophisticated knowledge of the discipline of mathematics. 

2.1.4.4.3 Advanced and Horizonal Knowledge 

Davis’s (2012) findings provided evidence that advanced mathematical 

knowledge of concepts beyond that of the level of mathematics a teacher is teaching, as 

part of their M4T knowledge. This advanced knowledge is characterized as a teacher’s 

knowledge of concepts, areas of study, and research in the broader discipline of 

mathematics beyond the middle school curriculum. Horizonal, used as an adjective for 

this type of M4T knowledge, is derived from Ball and Bass’ (2009) work, described as “a 

sense of how the mathematics at play now is related to larger mathematical ideas, 

structures, and principles” (p. 7). This horizonal knowledge is characterized as 

mathematical objects knowledge because it is knowledge of the relatively static produced 
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system of mathematics activated while a teacher is working with newly produced 

mathematics in a mathematical environment.  

This concludes what comprises the individual M4T knowledge of fraction 

multiplication. What follows is a definition of the collective level of M4T knowledge of 

fraction multiplication. 

2.1.5 Defining the Collective Learner 

Donald (2002) described the development of collective unities, cognitive units formed 

through interactions among humans. The potentialities of these entities stem from the 

human capacity to coordinate attentional systems and brain functioning that can provide 

the support for grander-cognitive activities. Davis (2005b) built on this notion, claiming 

that collectively humans far outreach the potentialities of the individual in both outputs, 

links, and memory capacities. The human ability to form a communal cognition is 

biologically rooted, yet is greatly enabled by advances in language and social 

conventions (Donald, 2002; Davis, 2005a, 2005b). For example, as Donald relates, the 

human cognitive ability cannot be fully explained by biology alone as similar biological 

development in apes has resulted in no equivalent change. Rather, the human cognition 

has been also determined by culture, “the creative collision between the conscious mind 

and distributed cultural systems” (Donald, 2002, p. 153). Davis (2005b) takes this one 

step further, relating the potentiality for communal cognition to classroom mathematical 

teaching. The existence of multiple individual cognitive unities, combined with a 

potential for communal cognition, warrants a different outlook on the role of a 

mathematics teacher and the composition of a mathematics classroom. A mathematics 

classroom, understood this way, is a “learner – not a collection of learners, but a 
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collective learner” (Davis, 2005b, p. 87). Ricks (2007) described a mathematics 

classroom, or mathematical environment, as embodying the necessary characteristics to 

be called a complex system. 

Davis left largely unexplored the differentiation between the embedded systems 

of a collective learner and a collection of learners in a mathematical classroom. Martin, 

Towers, and Pirie (2006) provide vocabulary for this necessary differentiation and for the 

labeling of these proposed embedded systems within the complex system of a 

mathematical learning environment. The individual cognitive systems, or learners, and 

the potential for emergence of a larger cognitive unity can be described by the 

differentiation between the terms interaction and coaction provided by Martin and 

colleagues. Martin, Towers, and Pirie (2006) defined interaction as the collaboration 

between individuals in a mathematical context where individual contributions are shared, 

but do not build into the emergence of a collective cognitive unity. Interaction lacks the 

entanglement of ideas for a higher order cognitive system to arise. Martin, Towers, and 

Pirie describe mathematical learning environments where individuals interacted by 

communicating mathematically what they already know, individuals’ mathematical 

understandings were overlapping and occurring simultaneously, and individuals’ 

mathematical ideas were compatible but never taken-as-shared. No higher order unities 

emerge in these collaborative environments. In contrast, coaction is defined as moments 

in a mathematical environment when individuals carry out individual mathematical 

actions but the total product of that environment is not attributable to any one individual 

(Corning, 2002; Davis, 2005). For the purposes of this report, the existence of Davis’ 
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(2005b) collective learner should be understood as these moments of mathematical 

coactions.  

This report draws on the work of Martin and colleagues (Martin, Towers, & Pirie, 

2006) and Davis and colleagues (Davis & Simmt, 2003, 2006) to define the collective 

learner as coaction and the emergence complexity. Martin, Towers, and Pirie (2006) 

provide a definition for coaction, establishing a synergistic movement by a collaborative 

group whose output is greater than what is possible by any one individual. With 

complexity science, this can be understood as the emergence of complex learning 

systems (Davis & Simmt, 2003) blending the two research vocabularies. Therefore, the 

collective learner in the context of this study will hereafter be defined as moments of 

coaction and the emergence of complexity. Next, one must determine how a researcher 

may characterize M4T of the collective learner and what the development of such 

knowledge would consist of. 

The coaction among individual teachers resulting in the occasional emergence of 

a collective learner requires recognition that the collective learner could have unique 

evolving identity and coherence maintaining mechanisms. The coaction and resultant 

emergence of differing compositions of a collective learner could vary, as the 

environments of the mathematical context and the participation of the individuals vary. 

The emergence of a collective learner is a dynamic ongoing process of negotiating and 

interpreting collective engagement and does not disregard the histories and 

understandings of the individuals that comprise the collective learner (Davis & Simmt, 

2003; Martin, Towers, & Pirie, 2006). Rather, the collective is considered to be these 

individual’s understandings as embedded systems entangled in such a way as to enable 
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the growth of mathematical understanding of the transcendent whole (Davis & Simmt, 

2006). Therefore, the M4T development of the collective learner must be understood in 

two distinct ways. First, it is defined as the synergistic moments of coaction, where the 

mathematical output of the collective learner is not attributable to any one individual that 

comprises it. The description of mechanisms of organization for emergence in the context 

of a mathematical environment investigating fraction multiplication is the first facet of 

collective learner’s M4T of fraction multiplication development. The second facet of 

collectivity is the actual development of knowledge of this agent, or as defined by Davis 

and Simmt (2003) “the interactions and prompts that trigger new possibilities and insights 

for the collective” (p. 144). What emerges during these moments of coaction is 

considered the M4T knowledge of fraction multiplication, and how it develops is the self-

regulation or decision-making actions of the collective learner to maintain the coaction. 

The noticeable emergent activities during moments of coaction that reciprocate with 

individual action (Cobb, 1999; Kieren, 2000) will be understood as the links between the 

individual and the collective M4T development.  

After this description of the individual and collective M4T knowledge of fraction 

multiplication, it is now possible to describe the mathematical environment to which 

these embedded systems will be coupled. Following is a fuller description of a concept 

study mathematical environment, framed by the six emphases that guide the planning and 

creation of a concept study as a context for researching the development of middle school 

teachers’ M4T knowledge of fraction multiplication. 
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2.1.6 Concept Studies: A Context for Collective and Individual 

Development 

Concept studies (Davis & Simmt, 2006) combine “elements from two prominent 

notions in contemporary mathematics education research previously elaborated: concept 

analysis and lesson study” (Davis & Renert, 2009, p. 37). A concept study takes the form 

of six emphases that emerged from initial pilots (Davis, 2011, 2012; Davis & Renert, 

2009, 2013, 2014). The six emphases should be construed as always-present potentialities 

of the concept study that unfold recursively, guided by the participant co-production of 

the mathematical environments of the concept study (Davis, 2012, 2013; Davis & Renert, 

2014). I use these emphases—which are enacted as implicit emphases throughout a 

concept study rather than consciously implemented—to frame the developmental work of 

a concept study.  

A teacher’s work requires the unpacking of mathematical concepts (Ball, Hill, & 

Bass, 2005) so that students can gain access to the culturally created thought processes 

and ideas that the concepts represent. Davis and colleagues take this notion further, as 

unpacking pries apart a mathematical concept for teaching, while substructing (Davis & 

Renert, 2014) is how the various parts of the concept unite or conflict to formulate a 

profound understanding of the concept. These two mathematical actions—that of 

unpacking and then substructing—are the intended purposes of the implicitly and 

explicitly applied emphases of this concept study. Each of these emphases will be defined 

to provide vocabulary for readers to understand a concept study as a context for 

examining individual and collective development of M4T knowledge of fraction 

multiplication. The first three emphases are designed to create distinctions between 
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realizations and the consequences of those realizations for mathematical concepts such as 

fraction multiplication. Next, the blends emphasis is designed to achieve “meta-level 

coherences by exploring the deep connections among realizations” (Davis & Renert, 

2014, p. 70). Finally, the last two emphases are designed to allow teachers to obtain 

practical application of their emergent realizations for a mathematical concept like 

fraction multiplication. 

2.1.6.1 Emphasis 1: Realizations 

The term realizations is borrowed from Sfard (2008) and is defined as the 

associations that a learner might draw on and connect in efforts to make sense of a 

mathematical concept (Davis & Renert, 2014). Examples of possible realizations for a 

mathematical concept like fraction multiplication include formal definitions, algorithmic 

knowledge, metaphors, images, computational applications, and physical gestures. As 

evidenced in other concept study research (Davis, 2011, 2012; Davis & Renert, 2009, 

2012, 2014), teachers investigating their own realizations for mathematical concepts 

provide an environment where development of their knowledge of the concept is 

possible. Individual’s realizations for mathematical concepts evolve and can be shared by 

many or can be unique to an individual of a collaborative group. It is important to note 

“the assertion and assumption here is not that any particular realization is right, wrong, 

adequate, or insufficient” but rather that the process of making realizations will allow for 

further development of what teachers know about the concept of fraction multiplication 

(Davis & Renert, 2013, p. 253). 
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2.1.6.2 Emphasis 2: Landscapes 

Davis and colleagues noted a difference in the utility of various realizations for a 

concept like fraction multiplication.  Some realizations for fraction multiplication remain 

viable in most mathematical contexts in which teachers encounter the concept, while 

other realizations are relatively situation-specific or learner-specific. For example, the 

realization of multiplication as “repeated addition” varies in viability depending on the 

number sets to which it is applied. Landscapes are the activity of organizing and 

comparing lists of realizations for a particular mathematical concept like fraction 

multiplication. This type of activity produces a landscape, defined as a macro-level view 

(Davis, 2011, 2012; Davis & Renert, 2014) of a mathematical concept. The substructing 

of participant realizations for fraction multiplication provides a context where the 

collaborating individuals examine how realizations “hold together and fall apart in 

different contexts and circumstances” (Davis & Renert, 2014, p. 43). For example, a 

landscape for fraction multiplication would be a macro-level view of collectively 

produced and then organized realizations for fraction multiplication. This would then be 

followed by comparing and contrasting the viability of realizations for fraction 

multiplication such as parts of parts, fractional areas, and number line shrinking.  

2.1.6.3 Emphasis 3: Entailments 

Entailments is defined as the tracking and scrutinizing of the consequences of any 

one realization of a mathematical concept. Davis and Renert (2014) describe each 

realization of a concept as carrying with it a series of nested consequences, due to the 

nested and axiomatic system that builds contemporary mathematical curriculum. Davis 
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and Renert describe the entailments emphasis as a process where teachers gain access to 

fresh and innovative approaches to a concept, enabling them to move beyond just well 

rehearsed realizations for the concept. For example, the emphasis of entailments allows 

teachers to interrogate the realization for fraction multiplication as “parts of parts” and 

how it influences the teacher’s understanding of the commutative property of 

multiplication. The emphasis of entailments can be done through collaboratively 

scrutinizing the realization for fraction multiplication to determine any consequences for 

understanding the commutativity of the operation of multiplication on various number 

sets. 

2.1.6.4 Emphasis 4: Blends 

For a concept study, the activity of creating conceptual blends and collapsing of 

diverse realizations of a mathematical concept is defined as the emphasis of blends 

(Davis & Renert, 2014). The first three emphases aim to create distinctions between 

realizations and the consequences of those realizations for a mathematical concept like 

fraction multiplication. The blending emphasis is categorically different: teachers are 

asked to seek out “meta-level coherences by exploring the deep connections among 

identified realizations and/or assembling those realizations into a more encompassing 

interpretation—which, of course, might introduce emergent possibilities” (Davis, 2012, p. 

12). For example, the realization for fraction multiplication as “parts of parts” could be 

blended with the realization of fraction multiplication as the “shrinking of a number line.” 

The blends of these realizations focuses the collaborative effort on defining the deep 

connections between the two realizations, resulting in potentially new emergent 
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possibilities for the concept. Davis and Renert (2014) describe blends as a deliberate shift 

in emphasis from “multiple (and potentially disjointed) meanings toward coherent and 

encompassing definitions” (p. 71). 

2.1.6.5 Emphasis 5: Participation 

The emphasis of participation is defined as the planned effort to engage teachers 

with the post-formalist orientation to the discipline of mathematics. In previous concept 

study research (Davis, 2012; Davis & Renert, 2013), participants benefited from gaining 

researcher-initiated positive experiences with mathematics as a culturally created body of 

knowledge. Teachers are “vital participants in the creation of mathematics, principally 

through the selection of and preferential emphasis given to particular interpretations over 

others” (Davis & Renert, 2013, p. 251). The emphasis of participation explicitly 

interrogates this power structure through the concept study emphases, positioning 

teachers to develop awareness of the complex nature of realizations for even elementary 

mathematical concepts. Teachers need positive experiences with mathematics and with 

understanding that no “realization is right, wrong, adequate, or insufficient” (Davis & 

Renert, 2013, p. 253). The emphasis of participation, implicit in the previous four 

emphases, explicitly focuses teachers’ attention on their roles in actively creating a 

concept like fraction multiplication as a shared activity. 

2.1.6.6 Emphasis 6: Pedagogical Problem Solving 

The final emphasis is an explicit practical link between the concept study 

environments and the environments of the participant teachers’ classrooms. Every teacher 

of mathematics has encountered a student asking—why? Such questions are about the 
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nature of the mathematics that students and teachers are co-creating in the classroom. The 

question of why is a constant part of creating new mathematics with novice students, and, 

from experience, is one of the better parts of teaching mathematics. Often, these 

questions—for example, “Is a fraction a number?”—are neither innocuous nor 

straightforward. The various realizations for fraction as shared by Lamon (2007), among 

others, show that fractions can be considered as numbers dependent upon the 

mathematical context. Pedagogical problem solving “aims to capitalize on the 

interpretive potentials that arise on the collective level when individual expertise is drawn 

together around perplexing problems” of teaching mathematics to middle school students 

(Davis, 2012, p. 15). Unlike the other emphases that are implicitly tied to the actual 

cultural activities of teaching mathematics, this emphasis is explicitly tied to the work of 

teaching and investigates questions that many teachers have seen emerge in their own 

teaching experience.  

To conclude, these six emphases should be considered as implicitly applied 

throughout the course of a concept study environment. Explicit applications of the 

emphases can be planned, but Davis and colleagues have found that “causing emergent 

insights was impossible” (Davis & Renert, 2014, p. 71). The vocabulary mentioned in 

these emphases is used to describe the emergence of mathematical action during the 

individual and collective cases of this research report. The emphases will frame the 

presentation of the collective case, as many of the collective learner developmental 

actions took place while the participants were engaging in one or more of the emphases 

environments.  
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CHAPTER 3. METHODOLOGY 

3.1 Participants 

John Creswell (2003) suggested that when using qualitative research techniques it 

is often necessary to make a purposeful selection of both the site and the participants. 

Previous research (Brown & Cole, 2012; Martin & Towers, 2009; Davis & Renert, 2014) 

provide direction for choosing context and participants when interested in researching 

embodied cognition of individual and collective learners. With this advice in mind, I 

recruited a purposive sample of five mathematics teachers to co-create the mathematical 

environments of this concept study. All of the chosen teacher- participants were from the 

same mathematics department in a Midwestern suburban middle school. As part of the 

recruitment agreement, one administrator from the school staff was also included as a 

participant. Access to the research site was enabled by an existing professional 

relationship between my advisor and this administrator. 

3.2 Contexts 

For our purposes in this study, mathematical knowledge is defined as an 

“emergent phenomenon that is enacted in the context of teaching mathematics” and 

mathematical environments (Simmt, 2011, p. 153). Mathematical environments are any 

moment when mathematics is being produced by individuals or the collective. Seven of 

the eight concept study sessions took place in the same conference room in the 

 



66 

administration office of the Midwestern middle school. The conference room provided 

white board space, and a large table around which the participants were able to sit 

comfortably and within easy access to each other. One concept study session was moved 

to another conference room to accommodate security issues for the statewide 

standardized testing that took place during the months of the concept study. This 

conference room was similar to the regularly scheduled room.  

The design of this concept study was informed by the work of previous concept 

study literature (Davis, 2008a, 2008b; Davis, 2012; Davis et al., 2009; Davis & Renert, 

2009, 2014; Davis & Simmt, 2006; Davis & Sumara, 2007, 2008; Simmt, 2011) with an 

eye toward heightening the possibility that the participant teachers might recursively 

elaborate their knowledge through the emphases of the concept study. The eight meetings 

were scheduled to meet the demands of the teachers’ schedules. The time between 

meetings was spaced to allow initial analysis of the collected data and time for planning 

for the next concept study session. The number of meetings was chosen to provide 

enough time for participants to “confront, analyze, and blend represented ideas, concepts, 

and beliefs” of multiplication while co-creating the different emphases of the concept 

study design (Davis & Simmt, 2006, p. 299). The realizations and entailments emphases 

of fraction multiplication were the only pre-planned top down interventions for the 

concept study design. As part of these interventions, some literature derived tasks were 

organized to be used if the mathematical movements of the collective warranted the 

insertion into the environment to promote concept study emphases. These tasks are listed 

below in Table 3.1: 
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Below in Table 3.2 are the emphases tasks that were planned as part of the 

implementation of the six emphases of the concept study design: 

Table 3.1 Task bank for Emphases of concept study 
Fraction Multiplication 

Difficulties 
Sample Prompt for Concept study Citations 

Confusing fraction 
multiplication with 
fraction division 

Develop pictures, models, stories, or 
real world experiences that would 
represent the situation 1 ÷  

(Armstrong & Bezuk, 
1995; Ball, 1990; Ma, 
1999) 

Recognizing and 
reasoning with three 
levels of units 

To what unit does each of the following 
numbers refer to: 23 × 34 = 12 

(Hackenberg, 2010; Olive, 
1999; L. Steffe, 2003; L.P. 
Steffe, 2002; L. P. Steffe & 
Kieren, 1994; Tzur, 2004) 

Can use area to represent 
fraction multiplication 

Which of the following represent × : 

 

Izsak (2008); Izsak et al. 
(2012) 

Length as a 
representation for 
fraction multiplication 

Tape Problem: 

I have one-fourth of a meter of tape. I 
use one-sixth of my amount of tape to 

used. How much tape did I use (in 
meters)? 

Hackenberg, 2010 

Reasoning with the 
reverse of stated 
multiplicative situation 

Peppermint Stick Problem: 

A 7-inch peppermint stick is three times 
the length of another stick. Can you 
draw a picture of this situation? How 
long is the other stick in inches? 

Hackenberg, 2010; Norton, 
2008; Steffe, 2002 
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Table 3.2 Description of planned interventions for emphases of concept study. 
Planned Emphases 
Interventions 

Description and Days Planned for Implementation 

Realizations 1. Multiplication: Day 1 
2. Number: Day 2 
3. Fraction Multiplication: Day 3 

Landscapes 1. Landscape for fraction multiplication in the middle 
school curriculum:   Day 2 

Blends 1. Multiplication, number, fraction multiplication:  
Day 4 

Entailments 1. Multiplication: Day 5 
2. Number: Day 6 
3. Fraction Multiplication: Day 7 

Participation 1. Mathematics as invented/discovered: Day 1 
2. Mathematics as static or evolving: Day 6 
3. Mathematical Knowledge for teaching: Day 8 

Pedagogical Problem 
Solving 

1. Why can fractions not have zeroes in the 
denominator? Day 2 

2. Comparison of area and array models for modeling 
fraction multiplication: Day 3 

3. Why does the algorithm for fraction multiplication 
work? Day 8 

4. Egyptian fractions: Day 8 
 

All other facets were dependent upon the choices and moves of the unique collective 

towards investigating the realizations for fraction multiplication as well as the 

consequences of those realizations. 

3.2.1 Researcher Role 

This qualitative research study required me to be involved extensively and 

iteratively with the participants of the study. Locke, Spirduso, and Silverman (2000) 

suggest that this type of researcher involvement with participants introduces a range of 

intentional, ethical, and personal issues into the qualitative research process. For this 

research study, due to the necessary co-creation of the mathematical environments and 

the theoretical framework that places special emphasis on the role of the observer, it was 
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especially important for me to be rigorous about methods for attempting to remove as 

much personal bias as possible.  

Moschkovich and Brenner (2000) make a distinction between the researcher roles 

of the participant-observer (PO) and the observing participant (OP). They define a PO as 

a researcher takes a role in the social situation under observation in order to experience 

the events in the manner of the participants. The OP, on the other hand, is a researcher 

“belonging to a community and observing [his] own activity as well as those of others” 

(p. 476). In this research study I enacted both the PO and OP roles. I collected data about 

my own participation as an active member of the collectively created mathematical 

environment and a necessary planning mechanism for each subsequent concept study 

session. My intention was not to create a case study of my own understandings, but to 

acknowledge that I was an active member of the collective and that, as such, I uniquely 

affected its development.  

I cannot overlook the effect of my role as a researcher and facilitator. My position 

in the collective created circumstances of a centralized locus of power that provoked the 

participants to seek out my approval and validation for their understandings and opinions. 

I explicitly attended to this through Davis’ (2005) definition of a “complexivist teacher” 

where my major concern was to be “responsible for prompting differential attention, 

selecting among the options for action and interpretation that arise in the collective” 

when collaboratively working on fraction multiplication tasks (p. 87). My intention was 

to confine my role to provoking high levels of neighboring interactions and to influence 

the creation of the emphases of the study. 
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3.2.2 Qualitative Design and Appropriateness 

A researcher viewing mathematical activity through the lens of enactivism 

interprets learning and change as synonymous. Two points make this assumption clear: 

that perception and action are considered “inseparable in lived cognition” and that 

“cognitive structures emerge from the recurrent sensorimotor patterns that enable action 

to be perceptually guided” (Varela, Thompson, & Rosch, 1991, p. 173). This premise 

relates to cognition in that an individual’s environment is engaged with through the 

available senses and we learn through adapting to feedback through those senses in a 

“continual process of co-ordinations of actions and our environment” (Brown & Coles, 

2012, p. 221). For example, Brown and Coles (2012) studied teachers’ ability to reflect 

on their own practice from an enactivist perspective and based claims about their learning 

on analysis of their ability to make sense of their lived world. Put more precisely, they 

analyzed teacher’s learning as a change in the teacher’s ability to see more links between 

their actions and students’ learning. The methodological design for this study, framed by 

an enactivist perspective of cognition intending to make developmental claims for 

individuals and collective learners, must account for individual action and collective 

action in their shared environments. This intention necessitates a building of different 

types of cases for this study. 

 I selected an intrinsic case study design in order to gather evidence of the 

development of the collective learner’s M4T knowledge of fraction multiplication. Stake 

(1995) defined the intrinsic case study as a study in which the case itself is the primary 

interest for developing an understanding of the uniqueness of the case comparative to 

building theory about how the case represents other cases. This approach is most 

 



71 

appropriate for collecting and analyzing data for the collective learner case as it allows 

for the establishing, tracking, and charting of the M4T development of fraction 

multiplication. The weakness of this design is that it is possible that a collective learner 

will not emerge.  

Researchers have defined a multiple case study design as a research methodology 

that allows the concurrent studying of multiple cases in order to achieve greater insight 

(Johnson & Christensen, 2008; Stake, 1995). This case study design was most 

appropriate for studying the M4T development of fraction multiplication of the individual 

teachers as it provided the ability to compare and contrast the individual development and 

better answer the research questions. This was done by creating individual cases for each 

participant, with similar domains of M4T knowledge to make cross comparisons and 

generate evidence based conclusions about. 

3.2.3 Data and Artifacts 

3.2.3.1 Written Documents 

Creswell (2003) described the utility for collecting participants’ written 

documents as data sources. He described this practice as being advantageous because 

written documents capture the voice of the participants without needing to be transcribed.  

Further, they are convenient for the researcher as they can be analyzed at any time. The 

documents collected from the individual and collective learner in this study were 

realizations and entailments lists created by the collective as well as any handwritten 

mathematical work created by the individual participants. The Table 3.2 below lists these 

collectively created lists subdivided as realizations lists, landscapes list, entailments lists, 
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blends lists, and then itemization of individual participant hand-written work. The 

handwritten documents collected are listed in the table by the day and the participant that 

created them: 

Table 3.3 Written documents collected for data 
Written Documents 
Realizations 
Lists 

Day 1: Realizations for Multiplication 
Day 1: Realizations for Number 
Day 1: Realization for Fraction 
Day 3: Realizations for Multiplication  
Day 5: Realizations for Multiplication 

Landscapes 
List 

Day 2: Landscapes for Multiplication in Curriculum 
Day 3: Landscapes for Multiplication (Tools and Uses) 

Entailments 
Lists 

Day 2: Fractions are Numbers Because… 
Day 2: Fractions are Division Operations Because… 
Day 3: Entailments for Multiplication (Tools and Uses) 
Day 5: Entailments for Multiplication (Refine Tools and Uses) 

Blends Lists Day 3: Blends of Multiplication (Basic Multiplication) 
Day 5: Blends of Multiplication (Refine Basic) 

Individual 
Participant 
Work 

Day 1: David computation work 
Day 2: Faith computation work 
Day 5: Charlotte array modeling 
Day 5: Bailey cancellation of common factors work 
Day 6: Bailey fraction multiplication work 
Day 7: Charlotte Egyptian fraction work 

 

3.2.3.2 Audio-video Recordings and Transcripts 

Video of mathematical environments has increased in its use and capabilities for 

mathematics education research in the last decade (Powell, Francisco, & Maher, 2003). 

Figure 3.1 is a diagram of location and recording area of each of the cameras as well as 

the position of each of the participants. 
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Two videos for each of the eight concept study sessions, totaling 16 videos, were used in 

the creation of the transcripts for the mathematical activity of the concept study sessions. 

These line- itemized transcripts were created using a word processing software to transfer 

spoken mathematical utterances into text form. These texts acted as the main data source 

for mathematical action and were transferred to coding spreadsheets. 

3.2.3.3 Concept Study Reflections 

My role as part of the collective necessitated focus and full participation in the 

movements and choices that emerged in the collective for investigating fraction 

multiplication. At the conclusion of each day, I audio-recorded a reflective personal 

journal that I then used to coordinate video and audio data. The transcription of my audio 

journal was used to ensure that I was actively reflecting on my role as a part of the 

concept study mathematical environments.  It also provided data for making planning 

choices for subsequent concept study sessions. The reflective audio journals were 

subdivided into sections titled (a) overall impression, (b) moments of interest, and (c) 

recommendations for future session planning.  

Figure 3.1Camera angle diagram and participant seating 
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3.2.3.3.1 Moment of Interest Documents 

To plan for non-linear development of the collective I created a tracking and 

planning mechanism that I transcribed and superficially mapped into a preparatory 

document known as a moment of interest (MOI) document. This document acted as a 

data source for planning purposes that enabled me to quickly collect key moments from 

the previous concept study day videotape data and cross-reference it with my reflective 

journal data. This document became evidence used to plan the subsequent concept study 

emphases and the selection of interventions to be introduced into the collective 

mathematical environment. Below, Table 3.3 provides an example of the design of the 

MOI document that was used to coordinate artifacts and inform planning and later 

analysis of primary data sources: 

Table 3.4 Sample moment of interest (MOI) document 
MOI  Sample Moment of Interest (MOI) Document 
Researcher 
Description 

When trying to establish “why you teach what you teach” the teachers’ 
response was first that students would ask this question. They did not 
mention or seem to take any responsibility for the choice of the 
mathematics that they teach. The given responses indicated the 
different teachers’ frame of mind about how they individually defend 
what they teach on a daily basis.  

Video Time: 
2:00 

MOI Have you ever been asked why you teach what you teach or 
what it is that you teach? 

Researcher 
Description 

This is the first signal by the teachers that mathematics is not a utility 
for one’s life, but actually a way of practicing so that one’s brain 
works better. They used the metaphor of lifting weights for football 
and doing mathematics for the brain as equal types of operations. 

Video Time: 
2:03 

MOI Mathematics is brain practice: no, you will never use this in 
your life—but it is for practice.  
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3.2.4 Limitations 

Bottorff (1994) states that density and permanence are two main reasons that 

videotape has become such a powerful tool for educational researchers. “Density” refers 

to the ability of videotape data to collect simultaneous, different ongoing behaviors. 

Density also refers to video’s ability to capture two simultaneous data streams—audio 

and visual—moment to moment. “Permanence” is a reflection of the ability of the 

researcher to return again and again to the data source to analyze the moment-to-moment 

unfolding of mathematical behavior, including the subtle nuances in speech and non-

verbal mathematical behavior (Powell, Francisco, & Maher, 2003). Despite its 

unquestioned power for the purposes of research, videotape data does have limitations 

such as user error, storage concerns, and data loss (Creswell, 2003). As Pirie (1996) 

stated, “who we are, where we place the cameras, even the type of microphone that we 

use governs which data we get and which we will lose” (p. 553). Pirie (1996) went on to 

suggest means for overcoming these methodological issues for videotape data such as 

coupling videotape data with created lists and handwritten work by the participants of the 

study. Hall (2000) furthered these recommendations by suggesting that videotape data be 

combined with other types of observations such as ethnographic observations, interviews, 

and teaching experiments—advice I have taken in producing my journal reflections and 

MOI documents, as well as in my utilizing all written and collectively created lists as data 

sources to couple with the videotape data. 

3.3 Methods of Data Analysis 

While the artifacts remained the same, the data analysis techniques differed for 

analyzing the individual participant M4T knowledge development and the collective 
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learner case M4T knowledge development as the goals for analysis of each type of case 

differed. What follows is a careful description of the data analysis techniques used for the 

case creations of first the individual case studies followed by the collective learner case 

study.  

3.3.1 Individual Case Data Analysis 

The videotape data, video transcripts, MOI documents, audio journal transcripts, 

and documents produced individually by the participant teachers represented the data 

available for describing the individual teacher development while co-creating the 

mathematical environments of this concept study.  

3.3.1.1 Written Documents 

The lists and handwritten work illustrated in Table 3.1 consist of the artifact 

source for one form of data for the individual case studies.  This included co-produced 

realization and entailments charts for multiplication and fraction multiplication. Each 

individual mathematical utterance that went into the creation of the collective lists in 

Table 3.1 that was attributable to individuals was collected as part of the individual’s 

M4T knowledge. The handwritten work was coupled with mathematical utterances when 

possible, or was included as a mathematical action displaying M4T knowledge of the 

individual who created the work.  

3.3.1.2 Videotape Analysis 

The daily concept study session digital video clips and the transcripts of each 

session served as the primary source of data for analysis. Each participant was given a 

pseudonym that began with the letters A through F respectively and I used K to indicate 
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my utterances. The letters A through F were distributed counterclockwise to the 

participants based on their sitting location of the first concept study session.  

3.3.1.2.1 Transformation of video utterance to written text 

Each two-hour video was transcribed using a word-processing software. Each 

utterance was transcribed in its entirety, including vocal patterns and non-relevant words 

such as “um” and “uh” and saved as line itemized transcription data. When the 

mathematical utterances were in question, the separate videos for each concept study 

session were used to verify that the transference of utterances was reliable and complete. 

After the completion of each transcription, I watched the video again with the 

transcription to verify its completeness and reliability as a data source for the individual 

participants’ mathematical utterances. 

3.3.1.2.2 Preparation of data 

Prior to the application of coding schemes, I prepared each video tape and 

matching transcript data using the protocol described in Table 3.4:  

Table 3.5 Method for video transcript data organization 
Step Method for Video Transcript Data Organization  
1 Segregate each participant’s mathematical and non-mathematical utterances on 

transcripts using word processing software. 
2 Transfer each relevant utterance in its entirety to each participant’s Day 1-8 

workbook spreadsheets. 
3 Record line numbers for each utterance for tracking purposes and secondary 

level checks for consistency and inclusivity for all mathematical utterance data 
sources. 

4 Run line totals to ensure that all mathematical and non-mathematical utterances 
were transferred reliably.  
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To illustrate how Table 3.4 was applied, the following is a short excerpt of the Day 1 

transcript data: 

Researcher: Does anybody else have something to add? So … it … let me ask 

probably a little bit of a difficult question: If … if we collectively believe that some of 

the stuff that they’re going to do uh, in your curriculum, they may never use in their 

actual lives, why is it in the curriculum? 

Charlotte:  Well, not everybody is gonna do the same thing. Some kids might use it, 

some kids might not.  

Researcher: Ok, so, um, how would a kid use something like graphing inequalities 

someday, for example? 

Charlotte: Well, go to Pete’s standard answer, what did you say? 

David: When?  

Evan: Logical [inaudible] 

Charlotte: [interrupting] When you can’t think of something off the top of your head  

David: [interrupting] I thought you were talking about … I talked about this recently? 

Charlotte: No, no … 

Using the find function of the word processor software, each participant’s 

utterances were isolated from the other participant’s and a line total was counted. For 

example, from the above excerpt Charlotte’s (C) mathematical utterances were 

highlighted and then subdivided into an initial Day 1-8 workbook spreadsheet that listed 

the utterances in chronological order. When using the find function on the transcript, I 

was able to see in the above excerpt that there are four utterances that are attributable to 
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Charlotte, that total was cross-referenced with the workbook document total to ensure 

that all mathematical utterances were transferred to the Day 1-8 workbook spreadsheet. 

After completion of the artifact transformation into usable data, I created a system 

for coding and organizing the data so that I could create the individual case narratives for 

each individual’s development of M4T knowledge of fraction multiplication. The 

construction of the mini-narratives follows an adapted seven-step process for analyzing 

videotape data (Powell, Francisco, and Maher, 2003). The adapted seven-step process 

appears below for reader reference: 

1. View videotape data 

2. Create MOI documents identifying critical events 

3. Transcribe the video in its entirety 

4. Code participant mathematical utterances by M4T framework 

5. Apply Coding Scheme I, II, & III 

6. Identify and construct a story-line for each complex system 

7. Construct the mini-narratives and final full narratives for each case 

A fuller description of steps 5, 6, 7 appears below. 

3.3.1.2.3 Coding Scheme I 

I created an initial coding scheme from the research-based definitions for each of 

four complex systems of the M4T model for fraction multiplication. This coding scheme 

served to find a method for inclusion and exclusion of each mathematical utterance as a 

data source in the four complex systems of subjective understanding (SU), classroom 

collectivity (CC), curricular structures (CS), and mathematical objects (MO). To ensure 
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consistency, I created a table that started with the broad categories of the four complex 

systems based on their Chapter 2 definitions. The initial stage of refinement for this table 

was to code the Day 1 data for all participants and then look for similarities that emerged 

across participants. These similarities were recorded and then utilized as the first step in 

the refinement of the coding for inclusion or exclusion. This process was then repeated 

looking for consistency from the initial coding. As my familiarity grew with the data, I 

was able to refine the categorizations to finer-grained itemized definitions that enabled 

me to code and more efficiently isolate mathematical utterances that were specific to the 

M4T of fraction multiplication. I adopted a final quick reference table as the coding tool 

for coding scheme I. Table 3.5 below illustrates this final coding tool of coding scheme I 

for only the Mathematical Objects complex system of the individual teachers M4T 

knowledge. A complete table for coding scheme I categorizations can be found in the 

Appendix:  

Table 3.6 Mathematical Objects: Knowledge produced coding scheme I 
Mathematical Objects: Knowledge Produced Coding Scheme I  
Historical 
Development of: 

1. Fraction Concept 
2. Number Concept 
3. Operation of Multiplication 
4. Historical References 

Orientation of 
Mathematics: 
[oral, pre-formalist, 
formalist, hyper-
formalist, post-
formalist] 

1. What is mathematics? 
2. Invented, discovered, or created? 
3. Is mathematics a static or dynamic discipline? 
4. Connection to natural world 

Advanced 
Mathematical 
Knowledge 

1. References to advanced mathematical study 
2. Use of advanced mathematical techniques for 

understanding multiplication and fraction 
multiplication 

Horizonal Knowledge 1. Connections of middle school mathematical 
curriculum to the other Pre-K–16 curriculum 
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Coding scheme I acted as the first level of coding that enabled the transition from all 

mathematical utterances of participants to a new spreadsheet that isolated only the 

utterances that were relevant to M4T knowledge of fraction multiplication. I coded the 

mathematical utterances sequentially, one complex system at a time for all participants. 

The differences between utterances that were included and those that were not were 

based upon the four refined tables for each system that can be found in the Appendix. An 

example of the coding and organization of coding scheme I is provided in Table 3.6 and 

is a part of a one participant’s day 1-8 document: 

Table 3.7 Sample Day 1-8 Document for a participant 
Sample Day 1-8 Document 

Mathematical Utterance Line 
# 

S C CS MO DNA Embedded Count 

Day 2 
Well, I think we try to hit 
the basic ideas of 
multiplying now and then 
… you take, kind of what 
we said earlier … the rules 
of math and now we’re 
going to apply it to 
fractions. 

942  1 1 1  3 40 

Yeah, it’s both [fraction is a 
number and a division 
question]. 

953 1     1 41 

It’s part of a whole [what a 
fraction is]. 955 1     1 42 
We teach it as a number, 
like its two thirds, it’s two 
out of … if we had a group 
of three its two out of three. 
But we also sometimes 
teach it as an operation 
because … I hate saying this 
on camera, but I swear 

967 1 1 1 1  4 43 
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there’s a conspiracy with 
some of our elementary 
teachers: they don’t like 
fractions so they teach the 
kids that fraction bar means 
divide so put it as a decimal. 
Because it’s so much better 
as a decimal than it is a 
fraction. When they get here 
we have to undo that. 

Do you want the middle 
school answer or the … 

975     1 0 44 

 

Column Headings Translation Key 
S = Subjective Understanding  
C = Classroom Collectivity  
CS = Curriculum Structures  
MO = Mathematical Objects  
DNA = Does Not Apply; No relevant utterance 
Embedded = Number of total complex systems per utterance 
Count = Running count of total utterances 

Figure 3.2 Column headings translation key for sample day 1-8 document 
 

What resulted from this coding was the elaboration of the day 1–8 document for each 

participant that allowed for the transference of all mathematical utterances into another 

spreadsheet that organized the mathematical utterances by complex system type. I 

considered the systems as embedded, therefore one mathematical utterance could be 

categorized as a data source for more than one of the M4T knowledge of fraction 

multiplication systems. Concluding coding scheme I resulted in all mathematical 

utterances, of all participants, coded by the complex system to which they were relevant. 

The next step for coding was based on the necessity to transfer all of this raw complex 
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system data into a format that was organized and separated by each of the complex 

systems. This was accomplished by creation and application of coding scheme II. 

3.3.1.2.4 Coding Scheme II 

The purpose of creating and then applying coding scheme II was first to better 

organize the data by complex system for further analysis. Secondly, it was to look for 

themes within each of the complex systems to begin to have data for building the 

individual case narratives. I organized this data by transferring all mathematical 

utterances coded by complex system as well as by their coding scheme I codes together 

into their own spreadsheet.  The chronological order was no longer important as the 

theoretical framework for this research suggests that learning is not chronological, but 

rather that it depends upon a change in mathematical behaviors around a mathematical 

concept. I retained line numbers as a reference number that could be searched for as part 

of the organizational scheme. An example of the organizational structure for the MO 

system of one participant is provided below in Table 3.7, which shows the organization 

possible after coding scheme I but prior to the application of finer grain codes in coding 

scheme II.   

Table 3.8 Mathematical Objects of fraction multiplication UCE document: CS I 
Mathematical Objects UCE Document: CS I 
Utterance Line 

# 
Coding Scheme I  

Orientation to Mathematics 
Counting: math is counting 659 Orientation to Math 
In a simplistic way, yes (does my dog do math?) 745 Orientation to Math 
Historical Development  
I’ll bring my history book in 1167 Historical Development 
They’ll tune out stuff that is above their head 376 Historical Development 
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I created the coding scheme II codes initially from the coding scheme I table of codes. 

The MO example can be referenced in Table 3.4, which acted as the starting place for 

creating finer-grained codes for each complex system categorization for M4T of fraction 

multiplication. The initial stage of refinement for this table into coding scheme II codes 

was to code the Day 1 data for all participants and then look for similarities that emerged 

across participants within the subcategories provided by coding scheme I codes. I 

recorded these similarities and then used them as the first step in the refinement of the 

coding. I then repeated this process, again coding the Day 1 utterances of each participant 

by the new categorizations of each complex system looking for consistency from the 

initial coding scheme II codes. As my familiarity grew with the data, I was able to further 

refine the categorizations to finer-grained itemized codes. These codes enabled me to 

code and more efficiently isolate mathematical utterances that were specific to the coding 

scheme I sub-categories of the complex systems of M4T of fraction multiplication. I 

adopted a final quick reference table as the coding tool for coding scheme II. Table 3.8 

below illustrates this final coding tool of coding scheme II for only the Mathematical 

Objects complex system of the individual teacher’s M4T knowledge. A complete table for 

coding scheme II categorizations can be found in the Appendix:  

Table 3.9 Coding Scheme II reference chart 
Coding Scheme II Reference Chart 
Mathematical 
Objects of Fraction 
Multiplication 

1. Historical Development 
a. Historical Figures 
b. Concept 

2. Orientation to Mathematics 
a. Define mathematics 
b. Invented, discovered, or created 
c. Static or dynamic 
d. Natural world connection 

3. Advanced Knowledge 
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a. Name area of study 
4. Horizonal Knowledge 

a. Concept connection 
 

When I obtained the finalized version of the reference chart for coding scheme II—

illustrated in part in Table 3.7—I then applied coding scheme II to each participant’s 

mathematical utterances organized from the coding scheme I coding. This application 

resulted in a new document, a copy of the coding scheme I spreadsheet, with the addition 

of a new column for coding scheme II codes. An example of this new iteration of the 

UCE workbook spreadsheet document is provided in Table 3.9 below: 

Table 3.10 Mathematical Objects UCE document: CS II 
Mathematical Objects UCE Document: CS II  
Utterance Line 

# 
CS I CS II 

Orientation to Mathematics 

Counting: math is 
counting 659 Orientation to Math 

Invented, 
Discovered, or 

Created 
In a simplistic way, 
yes (does my dog do 
math?) 745 Orientation to Math 

Invented, 
Discovered, or 

Created 
Historical Development  
I’ll bring my history 
book in 1167 Historical Development 

Concept 

Really? (reaction to 
debate about 
Pythagoras and his 
theorem) 376 Historical Development 

Historical Figures 

 

The application of coding scheme II also provided me with a systematic, self-sustaining 

methodology for removing any utterances that were not actual data for building the 

individual M4T case narratives for the individual cases. The newest version of the UCE 

document provided a highly organized data set for each of the complex systems of each 
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individual participant. Many of the categorizations after coding scheme II were still too 

large, and felt much too broad to build narratives for each participant’s individual cases. 

This issue warranted the creation of coding scheme III to further refine the data to make 

ready for the creation of the individual case narratives. 

3.3.1.2.5 Coding Scheme III 

I created the coding scheme III codes initially from the coding scheme I & II table 

of codes. The MO example can be referenced in Table 3.4 and Table 3.7, which acted as 

the starting place for creating finer grained codes for each complex system categorization 

for M4T of fraction multiplication. The initial stage of refinement for this table into 

coding scheme III codes was the coding of Day 1 data for all participants and then 

looking for similarities that emerged across participants within the subcategories 

provided by coding scheme I & II codes. I then recorded these similarities and used them 

as the first step in the refinement of the coding. Then I repeated the process, again coding 

the Day 1 utterances of each participant by the new categorizations of each complex 

system looking for consistency from the initial coding scheme III codes. As my 

familiarity grew with the data, I was able to refine the categorizations to finer-grained 

itemized codes that enabled me to code and more efficiently isolate mathematical 

utterances that were specific to the coding scheme I & II sub-categories of the complex 

systems of M4T of fraction multiplication. I adopted a final quick reference table as the 

coding tool for coding scheme III. Table 3.10 below illustrates this final coding tool of 

coding scheme III for only the Mathematical Objects complex system of the individual 
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teacher’s M4T knowledge. A complete table for coding scheme III categorizations can be 

found in the Appendix:  

Table 3.11 Coding Scheme III reference chart 
Coding Scheme III Reference Chart 
Knowledge-Produced Categorizations 
Mathematical 
Objects of 
Fraction 
Multiplication 

1. Historical Development 
a. Historical Figures 
b. Concept 

2. Orientation to Mathematics 
a. Oral Stage 
b. Pre-formalist 
c. Formalist 
d. Hyper-formalist 
e. Post-formalist 

3. Advanced Knowledge 
a. Name area of study 

4. Horizonal Knowledge 
a. Concept connection 

 

The resulting finalized UCE document used for creating the individual case study 

narratives to build the individual M4T cases for fraction multiplication is a highly 

organized data set for each of the complex systems of each individual participant 

development. The transitions between the applications of the three coding schemes is 

illustrated in the transition between Table 3.7 and 3.9, coupled with 3.11 provided below: 

Table 3.12 Mathematical Objects finalized UCE Document 
Mathematical Objects Finalized UCE Document 
Utterance Line  CS I CS II CSIII 

Orientation to Mathematics 

Counting: math 
is counting 659 Orientation to Math 

Invented, 
Discovered, or 
Created 

Oral or Pre-
formalist 

In a simplistic 
way, yes (does 
my dog do 
math?) 745 Orientation to Math 

Invented, 
Discovered, or 
Created 

Oral or Pre-
formalist 

Historical Development  
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I’ll bring my 
history book in 1167 

Historical 
Development 

Concept N/A 

Really? (reaction 
to debate about 
Pythagoras and 
his theorem) 376 

Historical 
Development 

Historical 
Figures 

Pythagoras 

 

I used the finalized UCE documents to create the written narrative of each of the 

individual cases. I constructed these narratives to illustrate the complexity, nature of, and 

development of the participant’s M4T knowledge of fraction multiplication. 

3.3.2 Constructing Individual Case Study Narratives 

3.3.2.1 Storyline for Case Study Narratives 

I used the final UCE spreadsheet document for each complex system to construct 

the storyline for the case study narratives, transferring each coding scheme III 

categorization and all of the relevant utterances for that categorization into a text 

document as a block of text.  The block of text, because of the organizational strategies 

previously described, was already a story of sorts without any transitions or highlights of 

development. The transference between storyline, and the mini-narratives was a three-

step process that will be described below. 

3.3.2.2 Transition for Storyline to Final Narrative 

The first step was to choose how the narratives would be presented 

organizationally in the final individual cases. This choice was made based upon the 

amount of data available, working from the average least amount of data to the most 

amount of data. This choice resulted in the case study narratives being organized to 

represent the knowledge-produced systems followed by the knowledge-producing 
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systems starting with MO and CS, and then transferring to CC and SU complex systems. 

The second step of the storyline transformation was to take the block data storyline and 

begin to construct the mini-narrative for each complex system. For example, below is the 

transition from the storyline block for one participants MO complex system knowledge 

development from text to the first stage of mini-narrative creation. Here is what a sample 

storyline block looks like: 

I’ll bring my history book in […] Yes, Babylonians [the book of the Bible where 

Pi is estimated] […] Really? [reaction to debate about Pythagoras and his 

theorem] […] Oh I tell them there is […] One country discovered it before 

another […] I swear we’ve seen this. Okay so 2/3rds is 1/3rd and 1/3rd, but in the 

Egyptian thing, if I remember right, once you use 1/3rd you can’t use it again so I 

go smaller […] Oh! Is that right? [Egyptian representations] […] So that is how 

the Egyptians did it? 

In contrast, this is what the first iteration of the mini-narrative looks like: 

 Historical development of fraction multiplication. Faith’s image for the 

historical development of fractions and operations on fraction remained relatively tacit 

throughout her participation in the co-produced concept study sessions. Her actions 

warrant the claim that she has an anecdotal understanding of the historical use of 

Egyptian representation of fraction:  

Faith: I swear we’ve seen this. Okay so 2/3rds is 1/3rd and 1/3rd, but in the 

Egyptian thing, if I remember right, once you use 1/3rd you can’t use it again so I 

go smaller. […] So that is how the Egyptians did it? 
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This knowledge remained relatively inert, despite evidence that Faith had the most robust 

understandings of the historical development of mathematics in the concept study 

collective.  

 

The transformation between the two versions of the mini-narratives is organizational and 

also shows a selection of mathematical utterances that helps to tell the story of M4T 

development. The final step was the work with professional editors and my advisor for 

the refinement of the story of each mini-narrative into the full narrative of the M4T 

knowledge of fraction multiplication development. 

 

3.4 Collective Case Study Data Analysis 

To build the narrative for the collective case I had to first identify data for the 

collective learner from the transcript data, systematically differentiate between 

collaboration and the emergence of a collective learner, and then describe the 

composition and existence of the collective learner.  

3.4.1 Identifying Data for Collective Learner 

The initial stage of the collective case development was to code the transcript data 

for instances of high collaboration around the relevant mathematical topic of fraction 

multiplication. I did this by using the individual UCE documents to locate moments 

during each of the eight concept study days where fraction multiplication was an explicit 

part of the collaborative action of the concept study. I transferred each of these moments 

from the day 1–8 transcripts, in their entirety, to eight separate documents organized 

numerically as day 1–8 moments of high interactions. 
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3.4.2 Distinguishing Between Coaction and Interaction 

The eight separate documents organized numerically as day 1–8 moments of high 

interactions served as the data for finding instances of coaction and the emergence of the 

collective learner. I coded each moment of high interaction based upon the research 

distinctions outlined in Chapter 2 between collaborative groups interacting 

mathematically and the actual emergence of a collective learner (Davis, 1996; Martin & 

Towers, 2009, 2010; Martin, Towers, & Pirie, 2000, 2006). I created Table 3.12, below, 

was created to serve as a quick reference table for coding the moments of high interaction 

as moments either of coaction or of interaction: 

Table 3.13 Characteristics of Coaction and Interaction 
Distinguishing Characteristics of Coaction and Interaction 

Characteristic Description 

Coaction  Carried out by individuals  
 Dependent and contingent upon the actions of the others in the 

group 
 Acting with the mathematical ideas and actions of others in a 

mutual, joint way 
 Understandings are interactively achieved in discourse and may 

not be attributable as originating from any particular individual 
 Not automatic, or trivial 
 Individuals must make a conscious, continued effort to 

coordinate their language and activity with respect to shared 
knowledge 

 Ideas originally stemming from individual learners are taken 
up, built on, developed, reworked, and elaborated by others and 
thus emerge as shared understandings for and across the group 

 Phenomenon that are not located with any one individual or 
their contribution 
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Interaction  Individuals communicate what they already know 
 Understandings happen to overlap and their intersection is 

shared 
 Sets of only individual understandings occurring 

simultaneously 
 Different sets of ideas that are compatible with one another, but 

never truly shared 

 

The moments of interaction from the day 1–8 moments of high interaction documents 

were coded and transferred to a new set of documents labeled day 1–8 moments of 

interaction. The moments of coaction from the day 1–8 moments of high interaction 

documents were coded and transferred to a new set of documents labeled day 1–8 

moments of coaction and became the data for the creation of the collective learner M4T 

development of fraction multiplication case. 

3.4.3 Data Analysis for Collective Learner 

The data for the collective learner is the collection of moments of high interaction 

that were coded as coaction. I considered the moments of coaction to be those in which 

the collective learner emerged. What follows is each of these stages of the data analysis 

of the collective learner data. 

3.4.3.1 Collective Learner Composition 

The initial stage of data analysis for the collective learner was done to establish the 

physical composition of the collective learner and answer the question, “What individuals 

were present when the collective learner emerged?”  It is important to answer this 

question because change, even change in physical make-up, can be considered a facet of 

M4T knowledge development of the collective learner. I analyzed all instances of 
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coaction, and recorded data for which participants actively created the coaction. I define a 

participant as contributing actively when the participation contributed to the coaction and 

the emergence of the collective learner and was more than simply an utterance that took 

place in partnership with the coaction. This type of collective learner analysis followed 

this three-step protocol: 

1. Define the composition of the collective learner by individuals who 

actively participated with mathematical utterances during the moment of 

coaction. 

2. Label each collective learner by its active participant creators, and then 

group each collective learner by similar active participant creator 

categorizations. 

3. Analyze the self-regulation of the coaction coding for internal diversity, 

internal redundancy, and decentralized or centralized locus of control. 

I recorded this data in Table 3.13: 

Table 3.14 Collective Learner Composition 
Collective Learner Composition 

Collective Learner Co-Creators % of Total Coactions 

{All Participants} 5% 

{B,C,D,E,F,K} 65% 

{B,C,D,F,K} 25% 

{B,D,E,F,K} 5% 
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This data served as basis for creating the narrative of collective learner development in 

regards to the composition of each collective learner and how it developed across the 

moments of coaction. 

3.4.3.2 Differing Compositions of a Collective Learner 

The composition data served as an analysis point that allowed me to draw 

conclusions about the irregular change in composition of the collective learner during 

moments of coaction. What I noticed was troubling: how can an entity like a collective 

learner have a differing composition from the individuals that make up the unique 

collective of this concept study? The language of complexity science helped me to 

answer this question, but first I had to test the hypothesis that the collective learner was in 

fact a complex system. This became the next step of the analysis of the collective learner 

data and the creation of the collective learner case.  

3.4.3.3 Verifying Complexity in the Coactions 

I coded each instance of coaction for the necessary pre-conditions for complexity, 

and then examined each for the necessary preconditions of complexity by analyzing the 

written text in the transcripts and the mathematical environments viewable in the 

videotape data. I fashioned Table 3.14, below, from this relevant research (Bloom, 2000; 

Casti, 1994; Corning, 2002; Davis & Simmt, 2003; Johnson, 2001; Lewin & Regine, 

2000; Ricks, 2007) as a mechanism for coding each instance of coaction for the existence 

of the necessary pre-conditions of complexity. 
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Table 3.15 Preconditions for complexity 
Pre-conditions for Complexity 
Pre-condition Description 
Internal Diversity The coaction of the diverse individuals, each bringing a variation 

of the components necessary to aid the synergy needed to solve 
novel mathematical tasks. The synergy of the embedded complex 
systems of the individuals adds diversity and intelligence to the 
collective learner.  
 

Internal 
Redundancy 

Commonalities across individuals that would allow them to 
cohere in mathematical situations to overcome novel 
mathematical tasks. 

Decentralized 
Control 

Decision-making is dispersed, adaptively and democratically, to 
the individual teachers coacting in the mathematical 
environment. 

Organized 
Randomness 

Within the context of the restraints placed on the collective, the 
collective learner is able to co-produce an environment rich with 
possibilities and innovation. 

Neighbor 
Interactions 

Ideas, metaphors, and images must be given the opportunity to 
collide with one another in collaborative mathematical contexts. 
With the emergence of complexity, this is the coaction of the 
individuals’ ideas as they collide and make space for collective 
development. 

 

I moved each moment of coaction that had all the necessary pre-conditions for 

complexity to a new document titled coaction and pre-complexity. Any instances of 

coaction that were not coded to have all of the necessary pre-conditions for complexity 

were moved to a new document titled coaction without pre-complexity. This document 

remained empty, as all instances of coaction had evidence of the pre-conditions for 

complexity.  

Based on the complexity science literature, this level of analysis was insufficient, 

to actually title moments of coaction as complex systems. What was needed was further 

analysis to look for what Ricks (2007) defined as categorizations for recognizing 

complexity: emergence and self-regulation. I built a quick reference key, shown in Table 
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3.15, from literature (Corning, 2002; Davis & Simmt, 2003; Ricks, 2007) for coding for 

emergence and self-regulation in the moments of coaction and pre-complexity: 

Table 3.16 Coding definitions for Emergence and Self-Regulation 
Coding Definitions for Emergence and Self-Regulation 

Term Definitions 

Emergence A collective property of individual systems spontaneously 
materializing into a system that is more than the sum of its 
parts when prompted or necessitated by the co-created 
environment in which the system is embedded. 
Emergence is a property that belongs to the whole system 
and not to any single member. 

Self-Regulation A collective property of individual systems that approve 
and disapprove of other systems embedded in 
mathematical actions. These types of approval and 
disapproval are then communicated to other systems 
through interaction and subsequent mathematical action. 
Spontaneous input and mathematical discussion is a self-
regulating mechanism.  

 

Familiarity with the non-complexity term of coaction, may make readers wonder why 

this step of the data analysis was necessary. As the research-based definitions of these 

terms are very similar. The coding was motivated by the lack of existence of previous 

research based evidence for enabling coaction, collective learner, and the emergence of 

complexity as synonymous terms as I claim in this study. Therefore, each moment from 

the coaction and pre-complexity document was then analyzed using the code definitions 

from Table 3.13. Each moment of coaction and pre-complexity that I coded to have 

emergence and self-regulation was then transferred to a document titled coaction and 

complexity other moments were transferred to a document titled coaction and non-

complexity.  
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3.4.3.4 Collective Learner M4T of Fraction Multiplication 

The data for the collective learner became the moments of coaction identified as 

coaction and complexity. As I will describe later, these documents included all moments 

of coaction and were analyzed by the coding scheme I, II, III analysis methods of the 

individual cases looking for M4T knowledge of fraction multiplication. Each moment of 

coaction was placed into an UCE document, where each mathematical utterance was 

placed on its own row of the UCE document. Each mathematical utterance was then 

coded by the coding scheme I, II, III analysis methods of the individual cases in order to 

establish the existence of the complex systems of M4T within the moments of coaction 

and complexity. 

3.4.4 Linking Collective and Individual M4T Development 

The data utilized for the analysis of the moments of coaction as a link to 

individual M4T knowledge of fraction multiplication was all of the individual M4T of 

fraction multiplication cases and the moments of coaction defined as the collective 

learner. The noticeable emergent activities during moments of coaction that reciprocated 

with individual action (Cobb, 1999; Kieren, 2000) were defined as the links between the 

individual and the collective M4T development. The analysis methods were created to 

establish, if possible, categorizations for the emergent activities of the collective during 

moments of coaction. 
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3.4.4.1 Mini-narratives of the Coaction 

Each moment of coaction in its entirety began as the data source for the 

construction of the mini-narrative for the emergent activities during the coaction. For 

example, below is moment of coaction titled Episode 3, Day 1: 

Bailey: I personally think that everything can be put into repeated addition and 
grouping. ’Cause this is grouping inside of grouping. 
Researcher: Grouping inside of grouping?  
Bailey: It’s the grouping of the 1/4ths, grouping of the 3rds. 
Faith: Of means multiply. Can we write that up there? 
Bailey: Of! Sure! 
Faith: I try to brainwash them. 
Charlotte: Unless it’s a preposition 
Researcher: So why does of mean multiply? 
Faith: Groups of. Groups of groups. 
Bailey: It translates to multiplication. Why does is mean equal, why does of mean 
multiply? I have no idea. 
Faith: Is means equals.  
Researcher: Why? 
Charlotte: [inaudible] Switch the order … 
Faith: Result, your result, your final, your ending, your beginning … 
Evan: Could just be a part … 
Faith: Part over whole. Of 
Bailey: That’s a fraction.  
Faith: Well then he asked … 
Bailey: Part of the whole.  
Faith: Of the whole. Of means multiply. [Inaudible] two different ways … 
Bailey: Girls do is over of. The guys do equations. 
Charlotte: I do part of a whole. 
Evan: I do both because 2/3rd of part … 
Faith: I teach is over of. 
Researcher: For? 
Faith: Percent. But if they want to do it any way can they. So, we’re comfortable 
with the idea of repeated addition working for fractions?  
Bailey: I am. 
David: it’s not [inaudible] repeated addition though. You don’t just have repeated 
addition. It’s not 2/3rds or 3/4th over and over. You had to do some work first to 
get to the repeated addition. 
Bailey: I just cut it. It goes back to counting and repeated addition. Cause that’s 
all I did. I counted … 
Evan: She did some grouping and repeated addition. When you do repeated 
addition … 
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David: That grouping is different than the grouping we were talking about before. 
Grouping before, we said two times three is two groups of three. That’s what we 
were saying before for grouping.  
Bailey: This is just groups of 12. 
David: If we use that same definition, you’re saying 2/3rds grouping of 3/4ths.  
Faith: Ok, what if you do it this way …? Keep your numerators. Two groups of 
three and we divide, ’cause you said earlier or someone did with the half, is that 
repeated or is it division. Two times three and then you divide by the product of 
your denominators. So your still saying two groups of three, divide by 
denominators of fractions. 
Researcher: So do we need to include something in our definition that has to do 
with dividing?  
Evan: Well, you could say part of the whole with that one. You have two groups 
of three for the part, that’s going to happen. Three groups of the whole thing. 

 

The focus of the data analysis was to first find all of the introductions of innovations or 

realizations new to the collective by taking a moment of coaction—like the example 

above—and numbering the new innovations offered to the collective. For example, the 

first few lines of the moment of coaction given as an example are provided below: 

 

Bailey: I personally think that everything can be put into repeated addition and 
grouping. ’Cause this is grouping inside of grouping. [1] 
Researcher: Grouping inside of grouping?  
Bailey: It’s the grouping of the 1/4ths, grouping of the 3rds. 
Faith: Of means multiply [2]. Can we write that up there? 
Bailey: Of! Sure! 
Faith: I try to brainwash them. 
Charlotte: Unless it’s a preposition. [3] 
Researcher: So why does of mean multiply? 
Faith: Groups of. Groups of groups. [4] 

 

Once all moments of coaction were coded for the introductions of innovations, the second 

phase of the analysis was to code for how the collective utilized the introduction of 

innovations. Utilizing previous research (Davis & Simmt, 2003, 2006; Martin & Towers, 

2009a, 2009b, 2010; Martin, Towers, & Pirie, 2009; Stahl, 2006) I focused on whether 

 



100 

the innovations were utilized or disregarded and how they were collapsed and built upon. 

For example, the above mini-excerpt then transferred to the next stage of the coding by 

applying broad descriptive codes at each moment of introduction of a new innovation: 

 

Bailey: I personally think that everything can be put into repeated addition and 
grouping. ’Cause this is grouping inside of grouping. [1]–Shared 
Researcher: Grouping inside of grouping? [1]–Shared 
Bailey: It’s the grouping of the 1/4ths, grouping of the 3rds. [1]–Shared 
Faith: Of means multiply [2]. Can we write that up there? 
Bailey: Of! Sure! [2]–Shared 
Faith: I try to brainwash them. 
Charlotte: Unless it’s a preposition [3]–Disregarded 
Researcher: So why does of mean multiply? [2]–Shared 
Faith: Groups of. Groups of groups. [4]—Shared and combined with [1] 

 

I described the patterns that emerged in short mini-descriptions placed at the bottom of 

each of the moments of coaction. These mini-descriptions were then all transferred to a 

new document, in which the descriptions were organized by title but were without the 

contextual dialogue and the mathematical utterances that prompted the description. These 

descriptions were compared to each other, looking for themes across the descriptions. 

These themes were then cross-referenced with collective mathematical research looking 

for research-based definitions that could be utilized to describe the themes that emerged. 
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CHAPTER 4. INDIVIDUAL CASE STUDIES 

This section consists of six individual cases of the M4T development of fraction 

multiplication. Development of M4T of fraction multiplication is defined as “change” 

(Brown & Coles, 2012, p. 220) where an individual evolves internally or externally to 

maintain integration of a diverse set of mathematical elements, relationships, and 

knowledge. Change is not necessarily an increase toward some artificial level of 

adequacy for the M4T knowledge of fraction multiplication; rather, change is evolution in 

any manner identifiable by an observer.  

4.1 M4T of Fraction Multiplication Complex Systems 

Each individual case provides evidence of the complexity of the individual’s M4T 

knowledge and the development of that knowledge in action. The individual cases are 

organized by first the knowledge-produced systems: mathematical objects (MO) and 

curriculum structures (CS). The knowledge-produced systems are then followed by the 

knowledge-producing systems: classroom collectivity (CC) and subjective understanding 

(SU). Prior to the presentation of the individual cases I have placed a quick reference 

definition of the complex systems that comprise a teacher’s M4T knowledge of fraction 

multiplication.
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4.1.1 Mathematical Objects of Fraction Multiplication 

The mathematical objects of fraction multiplication, a knowledge-produced 

system, includes teachers’ knowledge of the historical development of fractions and 

operations on fractions. Three sub-systems will guide the discussion of this system in the 

individual cases: (a) orientation to the discipline of mathematics, (b) historical 

development of concepts, and (c) advanced and horizonal knowledge.  

4.1.2 Curriculum Structures of Fraction Multiplication 

Curriculum structures is a combination of the teacher’s knowledge of the 

established curricular resources available to sequence and teach fraction multiplication 

and the teacher’s knowledge and use of how teacher, student, and curriculum interact in 

real-time in the classroom. The two categories of curriculum structures used to frame this 

discussion in the individual cases are curriculum-as-planned (CaP) and curriculum-as-

lived (CaL).  

4.1.3 Classroom Collectivity of Fraction Multiplication 

As a knowledge-producing system, a teacher’s knowledge of the classroom 

culture—similar to a teacher’s knowledge of student mathematical cognitions—is based 

in part on an understanding of the theories of cognition (Even & Tirosh, 2010). Three 

broad contemporary theories of cognition (a) behaviorism, (b) constructivism, and (c) 

enactivism are used to frame this discussion on classroom collectivity of fraction 

multiplication.  
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4.1.4 Subjective Understanding of Fraction Multiplication 

Subjective understanding includes how one’s mathematical knowledge is 

developed, the conceptual blends of topics, and the images and metaphors that define and 

connect mathematical topics. The realizations that connect and define the concept of 

fraction multiplication will be discussed in each individual case. These are realizations of 

(a) fractions, (b) multiplication, and (c) fraction multiplication. Also included, as 

subjective understanding of fraction multiplication is student cognition of fraction 

multiplication. 

4.2 Individual Case 1: Faith 

Faith teaches middle school mathematics at the suburban Indiana school used for 

the site of this research study. Her career in education has spanned two decades, 

predominantly in seventh grade mathematics with a recent move to eighth grade 

mathematics.  

4.2.1 Mathematical Objects of Fraction Multiplication 

4.2.1.1 Orientation to Mathematics 

Faith’s initial realization for mathematics emerged as a formalist stage 

conception:  

Faith: I keep telling them … I make you think, and all of this [mathematical 

study]1 makes you think. Ya know, playing the piano, that … you can do it if 

you’re creative. I think. It’s more of a creative, ya know, it’s a talent. Math, you 

1 Context will be provided, when relevant, to enable full understanding of mathematical utterances 
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gotta think, and I always look for those kids, you know, you’ll have a question 

you’re gonna ask every class, and kinda compare your classes. [Day 1: Line 198] 

Here Faith represents mathematics as a distinct body of knowledge with a unique 

knowledge-producing methodology. Mathematics at this stage is a logical discipline with 

technologies that allow for calculation and problem solving. Faith’s orientation often 

paralleled the complexity of the mathematical environment, allowing for less 

sophisticated pre-formalist realizations to emerge where mathematics is a mode of 

reasoning about unchanging forms: 

 Faith: Counting, math is about counting. [Day 1: Line 1204] 

An iterative pattern of development emerged as Faith’s orientation evolved between pre-

formalist and formalist conceptions of mathematics. The following compilation of Faith’s 

mathematical utterances shows actions in differing environments that illustrate this non-

linear development of conceptions: 

Faith: When we discover it [mathematics] [Day 2: Line 57], it’s not invented; 

we’re in the process of discovery. [Day 1: Line 1182] […]2 It’s [mathematics] 

always been there, we just discovered it. [Day 2: Line 57] […] Then we need to 

invent [mathematics] [Day 8: Line 1042]. […] Yes [long division is an invented 

procedure] [Day 2: Line 1451]. [...] Math would still exist. Yes, in a roundabout 

way, your animals do math, they know [math] [Day 2: Line 1221]. 

Faith adapts her orientation to mathematics to fit her interpretation of the relative 

complexity of the mathematical tasks being investigated. 

2 Bracketed ellipses signify a transition between different mathematics utterances within a compilation 
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4.2.1.2 Historical Development of Fraction Multiplication 

Faith’s realizations for the historical development of fractions and operations on 

fraction did not develop while co-producing the mathematical environments of the 

concept study. Her actions suggest that she has seen Egyptian fraction representations, 

but the mathematical environments of the concept study did not support the development 

of that knowledge:  

Faith: I swear we’ve seen this. Okay so 2/3rds is 1/3rd and 1/3rd, but in the 

Egyptian thing—if I remember right—once you use 1/3rd you can’t use it again 

so I go smaller. … So that is how the Egyptians did it? [Day 5: Line 227] 

4.2.1.3 Advanced and Horizonal Knowledge 

Faith’s knowledge of advanced mathematical techniques and areas of research did 

not develop while co-producing the mathematical environments of the concept study. The 

areas of advanced mathematical study that emerged through her interactions with fraction 

multiplication were those of calculus and linear algebra: 

Faith: Sounds like Calculus. [Day 2: Line 989] […] I think it is. I think the 

formula [for how to set up an array]—I mean isn’t that how we learned it when 

we were taught Linear Algebra [rows by columns] [Day 5: Line 43]?  

The following compilation of mathematical utterances provides evidence that advanced 

mathematical study did not enable Faith to develop her conceptions of fraction 

multiplication in the concept study sessions: 

Faith: Yeah, I feel that with all those math classes [from undergraduate study] I 

had to make sure that it made sense and that I got through them. [Day 2: Line 
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1561]  […] No [higher-level mathematics does not help teach middle school 

mathematics]. [Day 2: Line 1752] 

Faith’s actions in the concept study sessions did not allow for claims about her horizonal 

knowledge. 

4.2.2 Curriculum Structures of Fraction Multiplication 

4.2.2.1 CaP: Interference 

Faith’s actions provide some evidence that she implicitly orients her 

understanding of the planned middle school curriculum to be similar to the interference 

hypothesis:  

Faith: Yes, that’s why kids don’t remember how to do fractions [lack of whole 

number mastery] and they still get frustrated in 7th and 8th grade when they do 

them again. [Day 2: Line 1249] 

Faith’s participation in co-creating the mathematical environments of the collective 

provided no evidence of development of this realization for the design of the middle 

school curriculum.  

4.2.2.2 Remediation 

. Faith’s actions in the concept study reveal a knowledge of the middle school curriculum 

that recognizes it as repetitive for the purpose of remediation of concepts:  

Faith: But then it’s [repeated presentation of concepts] for those other kids that 

still don’t get it, ya know. There’s the group that gets it … I know [a student] to 

multiply and even those that say multiplying fractions is dividing, then we divide 

and dah dah dah. But then this [repeated presentation of concept] is for that other 
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group that didn’t get it back in 4th grade or 5th. You still get them and now they 

need something, because they’re not remembering [how to perform the 

operations].[Day 5:Line 457] […] Um, I taught 7th grade before I taught 8th for 

almost all of the 20 years and—um—it was like, I don’t feel like I introduced a 

whole lot of new material. [Day 1:Line 143]   

Faith’s participation in co-creating the mathematical environments of the collective 

provided no evidence of development of this realization for the design of the middle 

school curriculum.  

4.2.2.3 Realizations of Student Development 

Faith’s diverse realizations for fraction multiplication emerged throughout the 

concept study when she explicitly referenced student understanding of fraction 

multiplication. These realizations included arrays, area, number-line hopping, and 

measurement. The following compilation of mathematical utterances shows the diversity 

of her realizations for fraction multiplication in the context of student development: 

Faith: Fraction multiplication, no [array not good representation for students]. But 

I can’t get her [an elementary student] to memorize multiplication facts [with 

whole numbers]. So we’re back to arrays. [Day 4: Line 916] […] So that’s where 

I would … can you draw a rectangle for me? ’Cause this doesn't support the 

repeated addition, but it supports area. Shade 2/3rds of it—OK new color. Of the 

2/3rds, shade 3/4ths of that … it’s area, it’s area again. Yeah, but you see it? The 

area that’s both shaded both [is the answer to the computation] [Day 1: Line 

1044]  . 

 



108 

Her actions showed a hierarchy of preference for the area model of fraction 

multiplication when working with students. This preference is linked to her subjective 

knowledge of the models of fraction multiplication. For example, Faith’s preference for 

the area model may stem from her confusion that emerged with the design of the array 

model and its relationship to the area model: 

Faith: Yeah, but when you connect [the dots in an array] you’re short. I only have 

one box when I connect [the dots in a 2x2 array modeling the same situation as 

the 2x2 area model]. [Day 3: Line 1435] 

Evidence was circumstantial for making claims about which system of Faith’s M4T 

knowledge supported most her preference for the area model.  

4.2.2.4 CaL: Common Patterns of Interaction 

To Faith, student realizations for fraction multiplication are diverse and that the 

teaching of fraction multiplication must account for students’ realizations for the concept: 

Faith: But then this [physical model] is for that other group. That didn’t get it 

back in 4th grade or 5th grade [Day 5: Line 457] […] You guys are right, there’s a 

group of kids that don’t need it and they look at you like, “Why are you doing it 

this way?” if we approach the full class like this. [Day 5: Line 459]   

The development of common patterns of collectivity about the co-created curriculum of 

Faith’s classrooms is difficult to track in only the mathematical environments of the 

concept study. This is directly related to the concept study design lacking classroom 

interactions with students. 
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4.3 Classroom Collectivity of Fraction Multiplication 

4.3.1 Collective Mathematics with Students 

Similar to the impediments for making claims about Faith’s CaL knowledge, it is 

difficult to do more than infer about her M4T knowledge of collectivity with students. 

The following compilation of mathematical utterances provides evidence that Faith 

characterizes her classroom environment as a collection of individual learners. These 

individual learners, to Faith, can be grouped based on her models for their mathematical 

knowledge level: 

Faith: All kids learn differently. [Day 2: Line 1369] […] Do you feel that this is 

just your lower portion? My upper level kids, I would never let them get away 

with  [instead of 8 as a completed answer]. [Day 4: Line 478]  […] It’s a 

question that pops up typically with one kid in one class, you know, a higher level 

kid. He’ll ask and then some other others will (sit up) “What? What? What’s he 

talking about?” And I hate to say “he” … but it tends to be a boy. [Day 2: Line 

356] 

The collectivity in Faith’s classroom is oriented to include collaborative activities, 

providing multiple opportunities for access to mathematical techniques, and also allowing 

for the presentation of multiple perspectives: 

Faith: Okay, I might present—I say “Who’s ready?” Volunteer, I don’t force 

them. So then you know those that, those first 10% grab it, go to the board. And 

then we get more examples of what they’re doing, and I’m watching, trying to 

help those that are going to be that last 10% that won’t get it. [Day 5: Line 711] 

[…] Ya know this is kind of like what we do to the kids [looking at different 
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representations]. Like we take what works for us … our personality, the kids too 

… you might present it this way or you might present it procedurally and they’re 

going to take what works [for them] [Day 5: Line 845]. 

Faith’s interpretation of the collectivity of her classroom is predominantly a constructivist 

orientation. Further evidence of this developed as Faith shared entailments of her 

classroom collectivity with students in the context of error handling: 

Faith: I drill that a lot especially when they’re wrong. “How’d you get that?” So 

then I know how to work backwards. [Day 5: Line 904]. […] Something we’ve 

been doing and stressing more—and I don’t know if it’s because of our morning 

discussions or what—but when there’s a wrong answer we put a lot of problems 

on the board and we’re all staring at everything, and they explain it back to the 

class. So, when something’s wrong—or if I notice a common mistake on a quiz or 

test—I’m like “This is what kids are getting. Why?” [Day 1: Line 461]. 

Faith’s orientation to the collectivity with students developed little from the constructivist 

orientation. However, development did occur. The following compilation of 

mathematical utterances is evidence that Faith has a behaviorist orientation for 

collectivity with students when the mathematical environments focused specifically on 

the pedagogical processes best suited for student learning: 

Faith: I feel I spend a lot of time on that lately, just explaining that “Yes, that one 

expected answer is right. But you also got the right answer and this is why.” So 

these are equivalent. [Day 1: Line 499]. […] Oh I tell them [students] that there is 

[Day 1: Line 1261]. […] You can show them all the philosophy, all the whys and 

whatever is behind it, but they—I could show them three ways to do it, but they 
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are like, “Well show me my three steps. How do I get to my answer?” [Day 2: 

Line 1390]. […] But for those kids that like it where it is—like that step, step, 

step, step. 

Faith’s actions also provided evidence that Faith defines knowledge as training, 

brainwashing, and programming of students:  

Faith: No, it lets them—and I think 7th and 8th grade are the first two spots where 

they can leave it 2/4ths—they can leave it as 6/4s—the elementary is 

brainwashing them to leave it as 1 and 1/2. [Day 7: Line 129] […] I try to 

brainwash them [into thinking that “of” means to multiply]. [Day 1: Line 722] 

[…] I mean they have been programmed up till this point to find an integer 

answer. [Day 8: Line 694] 

The non-linear development between the constructivist and behaviorist orientation to 

student collectivity was not unique to Faith’s case. Cognition and knowledge is a 

construct that, to Faith, develops dependent upon the student and the mathematical 

environment that the student is situated. 

4.3.2 Participation in Collectivity of Concept Study 

4.3.2.1 Internal Diversity 

Faith’s contributions to the collective’s intelligence, or range of variation 

embedded in the collective, developed significantly throughout the concept study 

sessions.  The following compilation of mathematical utterances are actions in differing 

environments where Faith contributed novel insights to the collective, significantly 

developing the diversity in the environment:  
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Faith: Here’s something I thought about this past week because I taught the 

algebra kids exponential growth and decay. So okay it’s growing by 2% or we’re 

losing something by 2% and ya know I’m teaching them 100% whole and I was 

like, “Well how would you explain to kids that back to this fractions aren’t 

numbers?”  Fractions aren’t numbers so then how would you explain if it 

increases by 2% or it decreased by 2%, ya know what I mean? [Day 2: Line 464] 

[…] I’m strong under arrays [as a definition for multiplication]. [Day 3: Line 

1382] […] The six that are left [definitions for multiplication] I like: I have no 

problems with. [Day 3: Line 1477] […] Not everyone has to see it every way. Just 

see a way that makes sense to you. [Day 6: Line 1099] 

4.3.2.2 Internal Redundancy 

Similarities are as important as diversity for coherence maintenance of a complex 

system. Faith often easily agreed with others’ mathematical propositions, adding 

redundancy within the mathematical context of fraction multiplication: 

Faith: The six that are left [definitions for multiplication] I like [Day 3: Line 

1477] […] I have no problems with that [Day 3: Line 1477] […] I completely 

agree. [Day 7: Line 1110] 

It is unclear how the development between diversity and redundancy for the collective 

was modified by Faith. Faith was a contributor to the balance between diversity and 

redundancy and the coherence maintenance of the collective in an unpredictable and 

evolutionary manner. 
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4.3.2.3 Decentralized Control 

Faith was integral in balancing the distribution of power in the collective of the 

concept study. Other participants iteratively shifted the power to me, perhaps due to their 

preconceived notions of professional development and mathematical learning 

experiences. Faith often served as a mediator, distributing knowledge to the collective, 

reiterating other’s understandings, and at times confirming their validity for the group: 

Faith: But then, you’re going to have the Charlottes that are just not going to 

warm up to the arrays, then yeah. But, then you’re going to have those kids that 

are only going to like the area so then they need that. I don’t think they’re all 

going to get [arrays]. [Day 5: Line 471] 

Faith also enabled decentralized control by freely contradicting and challenging 

propositions and actions presented by me to the collective environment: 

Faith: So then yes: with that definition [agrees with statement after clarification of 

definition]. [Day 1: Line 526] […] Did we say what a whole number was though? 

[Day 2: Line 1268] […] See [whole number wasn’t defined] and you still used it 

[vocabulary word whole number]. [Day 2: Line 1270] 

4.3.2.4 Organized Randomness 

Collectivity with complexity depends upon openness for innovation and novel 

interpretations of mathematical tasks. Openness does not imply that anything goes within 

a mathematical environment; rather, the randomness must be organized per the 

constraints existent. Faith’s major contribution to this area emerged only sparingly, but 
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she clearly enabled the collective by reminding them of the mathematical constraints in 

the evolving environments: 

Faith: So then yes, with that definition [response to the question of whether or not 

multiplication was formulaic]. [Day 1: Line 526]  […] But I feel we’re trying to 

use these words to come up with an agreed-upon definition of multiplication. 

[Day 3: Line 1359] 

4.3.2.5 Neighbor Interactions 

Rather than physical interaction, this pre-condition for complexity is the collision 

of realizations for fraction multiplication. Faith acknowledged the input of others as well 

as evolved it with her own conceptions: 

Faith: Yes, and that’s sequential and logical, and to them that’s good. But now 

there is also a group of kids that are going to have it memorized, multiply, 

multiply, multiply: and then when we get to fractions they know to multiply. 

Now, there is a reason that we don’t introduce multiplication of fractions till—I 

don’t know fourth or fifth grade—and we don’t start in first grade with that? [Day 

2: Line 1396] […] But, ya know… for those kids that like it where it is: like that 

step, step, step, step. [Day 4: Line 187] 

4.3.3 Subjective Understanding of Fraction Multiplication 

4.3.3.1 Realizations of Fraction 

Faith’s realizations of number developed with her realizations of fraction 

throughout the concept study sessions: 
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Faith: Counting a value a quantity [in answer to what is number?]. [Day 1: Line 

1156] […] A value a quantity [in answer to what is number?]. [Day 1: Line 1158] 

[…] Oh, I don’t care: [to start] measured amount, value, or quantity. [Day 2: Line 

284] 

Faith’s realization of number was highly dynamic, and was directly related to the 

development of her realizations for fraction.  

Faith: Yep [variable is a number]. [Day 2: Line 538] […] Yes [infinity is a 

number]. [Day 2: Line 807] […] Numbers [finishing other participant's sentence: 

i.e. operations with numbers are also numbers] [Day 4: Line 611] […] Yes [it’s 

hard to call a variable a number because it is a letter]. [Day 2: Line 583] 

For example, her realizations of fraction developed continuously between including and 

excluding the concept as a number: 

Faith: It’s a number, it’s not a whole number. [Day 1: Line 1080] […] It’s 

[fractions] two integers, not a number. [Day 2: Line 404] […] So it’s [fractions] a 

number. [Day 2: Line 433] […] It’s [fractions] a number because we can put it on 

a number line. [Day 1: Line 806] […] If fractions aren’t numbers so then how 

would you explain if it increases by 2% or it decreases by 2%? [Day 2: Line 464]  

4.3.3.2 Realizations of Multiplication 

Faith’s realization for multiplication as repeated addition was consistent 

throughout the concept study sessions: 

Faith: When we have a whole number [multiplication is repeated addition]. [Day 

1: Line 691] 
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Evidence suggested that this realization of multiplication was consistent, but blended 

with other realizations for multiplication such as the distributive property and groups-of-

groups:  

Faith: Now I also show the distributed property as repeated addition. Which ties 

in. [Day 1: Line 1002] […] Isn’t that repeated addition [the distributive property]? 

[Day 3: Line 1298] […] Repeated addition grouping, repeated addition, groups-

of-groups. [Day 3: Line 1470] 

Faith blended her realizations for multiplication, and began creating sub-categories that 

differentiated between what defined multiplication and what was a use or tool of 

multiplication: 

Faith: Mhmmm. Good point. [multiplication is a tool used in the distributive 

property]. [Day 3: Line 1300] 

Similarly, area as a realization for multiplication evolved into a tool for multiplication: 

Faith: I can still say it’s area: multiplication is area without having that tool 

though. [Day 3: Line 1470] […] Figure I’d call it a tool though.  [Day 2: Line 

1193] 

It is unclear how Faith differentiated these categorizations for her realizations, as arrays 

did not evolve this way: 

Faith: I’m strong under arrays [as multiplication]. [Day 3: Line 1382] 

The following quote compilation provides evidence that Faith had a less sophisticated 

understanding of arrays as compared to her other realizations of multiplication: 

Faith: I think officially—isn’t it rows times columns? I think that’s the way. [Day 

1: Line 599] […] No it doesn’t [response to the question of whether row x column 
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with arrays matters]. [Day 1: Line 601] […] No rows by columns closed rows by 

columns. [Day 3: Line 1452] […] That’s your dimensions [numbers in a 

multiplication task]. [Day 4: Line 1201] […] Yeah [the dots in an array are 

arbitrary, you can use other things to build arrays]. [Day 3: Line 1455] 

Rather than arrays developing into a tool of multiplication, they were collapsed with the 

realization of groups-of-groups and were recommended for elimination from the 

realizations list of the collective: 

Faith: I’m good with getting rid of arrays because we have grouping. It’s groups 

of groups. And that’s just the way I see groups of groups. [Day 3: Line 1459] 

Counting emerged as another realization for multiplication, but was not blended with 

groups of groups or tools and uses of multiplication: 

Faith: Can we question mark counting please? [Day 3: Line 1374] 

As was volume:  

Faith: Oh—no area I’m keeping volume: I would multiply the easiest ones first. 

[Day 3: Line 1386] […] Well, because I didn’t think volume. Volume is 

multiplying. [Day 3: Line 1355] […] Because when you start talking about 

volume—that was more complex because we can’t have—everything can’t apply. 

[Day 3: Line 1293] 

Faith’s actions mirror the blending emphasis of the concept study design. She was 

looking for coherence for the operation of multiplication as a blend of all the partial 

fragments of realizations that emerged during the first three emphases of realizations, 

landscapes, and entailments:   
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Faith: Can we call all of this [list of words defining multiplication] basic 

multiplication? [Day 3: Line 1289] 

 Faith’s realizations for multiplication developed considerably while participating in the 

collective environments of the concept study.  

4.3.3.3 Realizations of Fraction Multiplication 

Faith’s realization for fraction multiplication emerged as embedded realizations 

with those of number and multiplication. A rectangular model, similar to Faith’s 

realization for multiplication area model, was part of Faith’s fraction multiplication 

realizations. The entailments emphasis was where much of the development for this 

realization took place for Faith. She began by describing the area model for fraction 

multiplication as a realization: 

Faith: Here, change colors so you can see the overlap. [Day 7: Line 1020][…] 

You are shading 1/5th of 2/3rds, but you are separating it into parts to make it 

easier to shade is the way that I see it. [Day 8: Line 438] 

Through the entailments emphasis, the collective began to substruct the area model of 

fraction multiplication and Faith’s actions provide evidence that this was difficult for her:  

Faith: [The area model] Similar to a Venn diagram, I would say. [Day 7: Line 

1063] […] Well, the selecting is what you shade. You shade—there are eight that 

are not selected, but they are still marked, I just feel leaving that full unequal 

piece is misleading. [Day 8: Line 408] […] Yeah, because there are nine pieces. 

[Day 8: Line 411] 
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The entailments emphasis proved tedious and frustrating for Faith and the other 

participants. Substructing the realizations for fraction multiplication did provide a context 

for significant, non-linear development for her realizations of fraction multiplication. 

4.3.3.4 Student Cognition of Fraction Multiplication 

Similar to other M4T knowledge that is co-dependent on students’ understanding 

or participation in creating mathematics, it was difficult to chart development of such 

knowledge in the context of the multiplication of fraction. Utterances were often limited 

to how Faith understood children’s cognition in the context of fraction multiplication, and 

the environments of this unique concept study offered little activation for evolving this 

knowledge: 

Faith: Yes [agrees that procedures of mathematics do not teach students how to 

think]. [Day 2 Line 1527] […] Right [the students have no idea what they are 

doing during fraction multiplication procedure] [Day 2 Line 1532]. 

These small excerpts include an orientation to cognition where Faith is able to know what 

others are thinking. Faith understands student cognition in the context of fraction 

multiplication as a blend of constructivist and behaviorist notions of cognition. This 

understanding links well with her notions of collectivity that were also a blend of 

constructivist and behaviorist notions.  

4.4 Individual Case 2: Annie 

Annie, an assistant principal at the suburban Indiana school used for the site of this 

research study, has 20 years of teaching and administrative experience in U.S. public 

schools. Before her position as an administrator, Annie was a classroom teacher where 
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she gained relevant mathematical content experience for the concept study while teaching 

elementary level mathematics.  

4.4.1 Disclaimer 

Annie’s participation in the emphases of the concept study was dramatically 

different from the other participants. Annie troubled the internal coherence maintenance 

of the preconditions for complexity in the collective. Her position as an administrator was 

problematic for decentralized control and the redundancy and diversity of the collective. 

Annie continually removed herself from the collective environment when engaged with 

mathematical tasks:  

Annie: People that might be a little more outside the math world, the math realm, 

and may have a little more literacy background [pointing to self]. [Day 3: Line 

473] […] I just like listening to what you all think. It’s interesting. [Day 3: Line 

1196]. 

It was difficult to make claims about development of Annie’s M4T knowledge of fraction 

multiplication. Yet, as part of the collective coupled to the co-created mathematical 

environments, her case remains important to this research study. 

4.4.2 Mathematical Objects of Fraction Multiplication 

4.4.2.1 Orientation to Mathematics 

Annie’s initial realization for mathematics emerged as a pre-formalist conception 

of mathematics:  
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Annie: But when you think of teachers teaching math it appears to me a lot of 

times to be a giver of knowledge. “Here’s how you do the problem. Here’s the 

rule. Here’s the formula. Here’s the strategy. Go.” [Day 1: Line 473] 

The following compilation of mathematical utterances provides evidence that the 

emphasis of entailments for realizations of mathematics provided a context for little 

development of Annie’s orientation to the discipline: 

Annie: I think so, yes, about all math that is. I would say all math is formulaic. 

[Day 1: Line 519] […] Well, that is a way: but still, three times five is 15 

regardless of how you got to your answer. So that’s what I mean when I say it’s 

formulaic. There is an answer. Three times five is always going to be the same 

answer. Now, I could do multiple different strategies to get that answer, but it is 

always 15. [Day 1: Line 523] […] Math. I told you, I told you! You guys were 

expecting an answer [from researcher] because math always has an answer. [Day 

1: Line 891] 

4.4.2.2 Historical Development of Fraction Multiplication 

Annie’s actions in the concept study sessions prevented the ability to make claims 

about her knowledge of the historical development of fraction multiplication. 

4.4.2.3 Advanced and Horizonal Knowledge 

Annie’s actions in the concept study sessions prevented the ability to make claims 

about her knowledge of advanced mathematics and horizonal knowledge. 
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4.4.3 Curriculum Structures of Fraction Multiplication 

4.4.3.1 CaP: Remediation 

Annie’s actions in the concept study reveal a knowledge of the middle school 

curriculum that recognizes it as repetitive for the purpose of remediation of concepts:  

Annie: But it is the same in English [as in math]; they reteach parts of speech 

from Kindergarten, and we reteach speech in 7th and 8th grade. So there are 

concepts [in math] that are continually retaught and retaught and retaught. Why 

do you have to do that? [Day 2: Line 1683] 

Annie’s participation in co-creating the mathematical environments of the collective 

provided no evidence of development of this realization.  

4.4.3.2 CaP: Textbook as Curriculum 

Annie’s actions in the concept study sessions prevented the ability to make claims 

about her knowledge of the textbook as mathematical curriculum. 

4.4.3.3 CaL: Realizations of Student Development 

Annie’s actions in the concept study sessions prevented the ability to make claims 

about her knowledge of student realizations for fraction multiplication. 

4.4.3.4 CaL: Common Patterns of Interaction 

Annie’s actions provided evidence for making claims about her knowledge of the 

common interactional patterns existing in a mathematics classroom for fraction 

multiplication. To Annie student realizations of fraction multiplication are often 

procedural: 
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Annie: Memorizing your multiplication facts is generally not taught for any sort 

of pure understanding of the concept [multiplication]. Multiplication is a rote 

memorization of a process for most kids. [Day 2: Line 1355] 

The concept study collective co-created mathematical environments that were 

entailments of pedagogical realizations for fraction multiplication. In these environments, 

Annie developed a notion that rendered her previous mathematical utterance problematic: 

Annie: Yes [agrees that there is a better way to present fraction multiplication]. 

[Day 1: Line 1042] 

No further evidence emerged to make claims about this development. 

4.4.4 Classroom Collectivity of Fraction Multiplication 

4.4.4.1 Collective Mathematics with Students 

Similar to the impediments for making claims about Annie’s and other’s CaL 

knowledge, it is difficult to do more than infer about her M4T knowledge of collectivity 

with students. The following compilation of mathematical utterances provides evidence 

that Annie characterizes a classroom environment as a collection of individual learners 

where teaching is implicitly referred to as a transference of knowledge: 

Annie: Or do you guys probably [Day 2: Line 1693] […] do you think that 

because they are learning fractions way before they are coming here [Day 2: Line 

1701] […] do you think that if kids are taught initially in a more conceptual way 

and not in a more procedural way [Day 2: Line 1705] […] do you think they 

would have a better understanding? [Day 2: Line 1712] 
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Transference of knowledge is a behaviorist orientation to collectivity. Yet, also implicit 

in Annie’s mathematical utterances is the placing of importance on different knowledge 

types, which is a constructivist orientation to mathematical collectivity. No further 

evidence emerged to enable claims of development of these orientations to classroom 

collectivity. 

4.4.4.2 Participation of Collectivity in Concept Study 

4.4.4.2.1 Internal Diversity 

The collective’s intelligence was based upon the range of variation embedded in 

the collective. Annie’s physical presence as an administrator significantly impacted the 

internal diversity of the collective. For example, David directly referenced her presence 

as an administrator participating in the concept study. Her response to David’s utterance 

appears below: 

Annie: Correct [participants will not be judged].  Feel free to be open. This will 

not be reflected on your evaluation in any way [laughing]. [Day 1: Line 96] 

It is clear that Annie’s position in the collective as an administrator impacted the internal 

dynamics of the system. It is unclear, due to her low mathematical participation, how this 

impacted the mathematical output of the collective. 

4.4.4.2.2 Internal Redundancy 

Annie’s presence in the collective, as previously mentioned was a reliable 

stimulus of diversity for the collective. Evidence also suggests that Annie provided 

collective redundancy through the use of inclusive pronouns such as “our students,” 
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“we,” “us,” and “here at our school”. Similar to the findings for diversity, these 

redundancies were part of the collective social environment rather than mathematical. 

4.4.4.2.3 Decentralized Control 

While it would seem obvious that Annie’s position as the evaluator of the group 

would potentially disrupt the locus of power of the collective—distributing it to Annie 

unequally—this element proved to be the exact opposite of what occurred in 

mathematical contexts. Annie’s position of self as outside the mathematical culture 

resulted in little change to the balance of power within the mathematical environments 

involving fraction multiplication.  

4.4.4.2.4 Organized Randomness 

The collective had a self-regulating mechanism for balancing the redundancy and 

diversity that Annie offered to the collective. In non-mathematical environments, power 

shifted to Annie as an administrator. In mathematical environments, power shifted away 

from Annie as a non-mathematics expert. 

4.4.4.2.5 Neighbor Interactions 

Annie’s main position for the collision of ideas was neither interrogation of 

other’s opinions nor the presentation of her own opinions. Annie’s presence was a 

coherence environmental mechanism that provided a consistent and reliable locus of 

power to actively bring participants back to collective participation at intermittent times 

throughout the eight sessions of the concept study. 
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4.4.5 Subjective Understanding of Fraction Multiplication 

4.4.5.1 Realizations of Fractions 

Annie’s actions in the concept study sessions prevented the ability to make claims 

about her realizations for fraction. 

4.4.5.2 Realizations of Multiplication 

Annie’s actions in the concept study sessions prevented the ability to make claims 

about her realizations for the operation of multiplication. 

4.4.5.3 Realizations of Fraction Multiplication 

Annie’s participation in the entailments emphasis for the realizations of fraction 

multiplication did provide some evidence of her realizations for fraction multiplication. 

The mathematical utterance below implicitly references the confusion between the 

operations of multiplication and division when applied to rational numbers: 

Annie: But I think it is not [2/3 of 60]; I think it looks like division to people who 

don’t teach math. You just see 2/3rds of. [Day 4: Line 310] 

This is similar to explicit-objective research that found elementary teacher deficits for 

this type of knowledge. No evidence emerged to make claims of development for her 

realizations of fraction multiplication. 

4.4.5.4 Student Cognition of Fraction Multiplication 

Similar to other M4T knowledge that is co-dependent on students’ understanding 

or participation in creating mathematics, charting development of such knowledge in the 

context of the multiplication of fraction was difficult. Annie students acquire 
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associations, skills, and components of skills of fraction multiplication, exhibiting a 

behaviorist understanding of student cognition: 

Annie: [continuing through interruption] … early, yeah, early at the beginning of 

multiplication memorizing your multiplication facts is generally not taught by any 

sort of pure understanding of the concept. Multiplication is a rote memorization of 

a process for most kids. [Day 2: Line 1355] 

Yet, implicit in this utterance is that the teacher can build a model of student cognition, 

which is inherently a constructivist understanding. The embedded nature of M4T is 

evidenced here as the blends of behaviorism and constructivism were also present in 

other contexts that involved data-collecting about Annie’s orientation to cognition of 

mathematics. 

4.5 Individual Case 3: David 

David teaches middle school mathematics at the suburban Indiana school used for 

the site of this research study. David is currently in his fourth year of a middle school 

teaching career with both seventh and eighth grade level teaching experience.  

4.5.1 Mathematical Objects of Fraction Multiplication 

4.5.1.1 Orientation to Mathematics 

David’s initial realization for mathematics was in the formalist stage:   

David: I usually kinda take a … I guess maybe a cop-out easy way out of … you 

know, this [mathematics] is logical system of problem-solving, of the rules that 

you have. You know, all these tools and then you can use these tools to solve this 

problem. How are you going to solve this problem? It might not be a math 
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problem that you’re dealing with, but it’s [mathematics] the thinking. It’s the, 

“Here are my options, here’s what I can do, here’s what I can’t do, here’s how 

I’m going to solve this problem.” [Day 1: Line 61] 

This is considered the formalist stage because evidence in this utterance suggests that the 

goal of mathematics is absolute reason. The realization of mathematics as formalist 

remained relatively constant, as David’s mathematical utterances described mathematics 

as rule-bound and full of formal syntax for representations of truth. A significant 

development occurred when the collective investigated the entailments of realizations for 

mathematics:  

David: Math PhDs think about things when you don’t need them. [Day 2: Line 

1122] […] Yeah [imaginary numbers are intellectual pondering] [Day 2: Line 

981]. 

These mathematical utterances provide evidence of a hyper-formalist realization for 

mathematics as a discipline completely divorced from the experiential world. Similar to 

Faith’s case, David’s realizations for mathematics co-evolved with the level of 

complexity of the mathematics being investigated. The following compilation of 

mathematical utterances provides evidence of the non-linear development of David’s 

realizations for mathematics: 

David: The structure of it, I think, quantity [mathematics in the natural world]. It 

[quantity] was always there [to discover]. [Day 1: Line 1183] […] It’s still there 

once they prove it. It’s [mathematical proofs and ideas] always been there. [Day 

1: Line 1189] […] I feel like you could argue that everything was invented in 

general—well, not nature. But I feel like I could argue that everything is 
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invented—but you could also argue that the idea of that thing was a possibility 

because if it wasn’t, then we wouldn’t have it. So it’s been there, but we or the 

person [who is given credit for discovery] communicated it. [Day 2: Line 1102] 

David’s realizations for mathematics reached levels of sophistication that were greater 

than or equal to the others in the collective.   

4.5.1.2 Historical Development of Fraction Multiplication 

David’s actions in the concept study sessions prevented the ability to make claims 

about his knowledge of the historical development of fraction multiplication. 

4.5.1.3 Advanced and Horizonal Knowledge 

David has knowledge of advanced mathematical study. His mathematical 

utterances focused specifically on one course from his undergraduate studies that made a 

profound impact on him. This course, a geometry course, seemed to connect to facets of 

his middle school mathematical teaching:   

David: I think my college geometry class … they went through proving. But like, 

“Here are the theorems that you can use to prove.” You know, “Use the theorems 

from here to construct this and then prove” [Day 2: Line 1583] […] I think that 

that was … proving all these theorems, I think that helped to a certain extent [with 

his middle school teaching]. [Day 2: Line 1584] 

David recognized his advance mathematical study as helpful for informing his teaching 

of middle school mathematics: 

David: Yeah [undergraduate math may have implicitly helped him teach middle 

school]. [Day 2: Line 1590] 
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This developed as the participants co-created the emphasis of entailments of their 

realizations for advanced mathematical study. Some levels of mathematics were difficult 

for David:   

David: I mean there were some things, like, I remember: Linear Algebra, like, 

was the first time I really … I could do it. I could find the image of the matrix. I 

had no idea what an image of a matrix was. Like, “What? What does that even 

mean?” What does … I don’t know; I could find it for you. I could find all these 

things for you, but I didn’t really know what I was doing. […] Everything I’ve 

heard [in mathematics] is multiplication is established and then use multiplication 

as an axiom to define division. But I don’t know why we do that. [Day 1: Line 

327] 

No evidence emerged to make claims about how explicitly David’s advanced 

mathematical knowledge informed his teaching of the middle school curriculum. There 

was also no evidence that emerged to make claims about his horizonal knowledge. 

4.5.2 Curriculum Structures of Fraction Multiplication 

4.5.2.1 CaP: Interference 

David’s realizations for the planned middle school curriculum implicitly reference 

facets of the interference hypothesis. In the compilation of mathematical utterances 

below, whole number operations are positioned in the middle school curriculum to 

inform procedural fluency for operations on fractions: 

David: I think it’s easier to teach multiplication first because when you first teach 

multiplication you can use addition really easily—and they [students] learn 
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addition first, like counting. Use counting to help them add or adding. [Day 1: 

Line 777] […] It [whole number multiplication] helps in the procedure [of 

fraction multiplication]. [Day 2: Line 1389] […] But the process is so—I mean 

the process is not that much more complicated [fraction multiplication compared 

to whole number multiplication]. [Day 2: Line 1428] 

David’s implicit recognition of the advantages of ordering the contemporary curriculum 

in this manner developed as he co-created entailments of his realizations for the 

curriculum. While co-creating and entailments environment David’s substructure of the 

middle school curriculum developed his realization for the structure of the curriculum: 

David: Right [the common error with fractions links to students’ understanding of 

the whole number algorithm]. [Day 7: Line 219] 

No further evidence emerged to make claims about how this development fully impacted 

his realizations for the structure of the planned middle school curriculum. 

4.5.2.2 CaP: Remediation 

David’s realizations for the middle school mathematics curriculum provides 

evidence that he recognizes the curriculum as necessarily repetitive in order for students 

to comprehend and learn the mathematical concepts effectively:  

David: Right [teachers leave out the complicated concepts in curriculum at certain 

levels]. [Day 3: Line 348] […] New stuff [curriculum shouldn't have too much 

new stuff]. [Day 3: Line 351] 

No evidence emerged of development of this conception. 
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4.5.2.3 CaP: Textbook as Curriculum 

During the process of landscape building, David and his peers investigated the 

contemporary curriculum materials, including their textbooks, for representations of 

fraction multiplication. David’s mathematical utterances provide evidence that the 

textbook is a curricular resource for middle school mathematics teaching that is 

predominately used to reference the rules and procedures of mathematics: 

David: In the book, they give these rules which is basically, “Here’s how you do 

this.” [Day 3: Line 1147] […] Like multiplying fractions gives us a definition 

there, but it’s like how we, how we multiply fraction  and . Are we counting that 

[as a definition]? It’s not necessarily multiplication, but where in our book does it 

give a definition of multiplication? [Day 3: Line 1157] 

No data emerged that would provide the opportunity to discuss development of these 

conceptions. 

4.5.2.4 CaL: Realizations and Student Development 

The images that emerged for fraction multiplication from David’s actions were 

that of arrays, area, volume, line multiplication, repeated addition, line jumping, and 

metaphors linked to cooking. Little evidence emerged to make inferences about his 

understanding of the developmental appropriateness of these different realizations for 

fraction multiplication. Evidence does suggest that the entailments emphasis for the array 

model developed David’s conceptions of the viability for the array model as a 

pedagogical tool to enable student learning of fraction multiplication: 
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David: How do you explain to a kid that to get 12 [for the array] you have to 

multiply the denominators [of the fractions]? [Day 5: Line 1151] 

David’s actions suggest that learning conceptual models at the middle school level is not 

developmentally appropriate for students: 

David: I think some things need conceptual knowledge [through images], but I 

think I mentioned this before—or someone did—at this point [middle school] we 

no longer … like, do we care that they know what four times five means? Or do 

we just care that they know what four times five is? And if I was a kid, just me 

personally, if I learn, like, this array stuff and that stuff and then: “Oh by the way 

the short-cut is just multiply the top and bottom together,” I’d be, like, ticked. 

Like, “What the heck? Why did we do all that?” [Day 5: Line 439] 

No further data emerged to make claims about how David’s realizations of the models for 

fraction multiplication developed. 

4.5.2.5 CaL: Common Patterns of Interaction 

David orients his teachings of the realizations for fraction multiplication in a 

streamlined manner. A blended realization is preferable for David’s teaching of 

computations with fractions: 

David: Well, the reason we do that is because when we get question marks in the 

denominator then it takes both steps; you know what I mean? And so, instead of 

teaching … well, you know, if the x is in the numerator then it’s one step, but if 

the x is in the denominator then I think we just bundle it all and do it every time 

no matter what/where the x is. [Day 4: Line 533] 
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Students’ desire for a streamlined procedure was a recurrent theme in David’s 

realizations for the lived middle school curriculum. David’s actions developed during the 

entailments emphasis of the common student interactions around fraction multiplication 

in a middle school classroom. David’s utterances provide evidence that he recognizes that 

procedural fluency of fraction multiplication does not necessarily transfer to student 

understanding the concept: 

David: Right [students don't connect the procedure for fraction multiplication to 

parts of parts]. [Day 5: Line 95] […] They just know the procedure [of fraction 

multiplication]; they really don’t know what they are doing. [Day 6: Line 53] 

No evidence emerged to make claims about how David attempted to blend the 

realizations for students desiring procedures and that procedures provide little educational 

value.  

4.5.3 Classroom Collectivity of Fraction Multiplication 

4.5.3.1 Collective Mathematics with Students 

Similar to the cases of other participants, making more than inferences about 

David’s collective mathematical knowledge of co-created environments with students 

and the development of such knowledge is difficult. The following compilation of 

mathematical utterances provides evidence that David’s realizations for student cognition 

of mathematics is characterized as an individual activity where associations, skills, and 

components of skills are acquired: 

David: I feel like there is a lot of math to be able to tell a student that you can 

multiply the denominator of one fraction and the numerator of another fraction 
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[Day 8: Line 1324] […] I do. Because we make equations, not proportions [how 

David teaches these tasks compared to his peers]. [Day 5: Line 524] […] I feel 

like I do 30 example problems every day [when teaching mathematical concepts]. 

[Day 1: Line 23] […] Right [assigns a lot of homework so that students can 

overcome nuances in computations of topics]. [Day 5: Line 742] […] Every 

single time for every situation [algorithms work]. [Day 3: Line 956]   

David’s realizations for collectivity with students is to avoid error handling. This 

observation furthers the notion that David orients student cognition by the tenets of 

behaviorism: 

David: At the same time I feel like if I didn’t [perform many examples for 

students] and I let them come across it, then the next day we’re going to spend 3/4 

of class because they didn’t understand it. They don’t get those nuances because 

we didn’t talk about that. [Day 5: Line 755] 

David’s behaviorist orientation to student cognition develops as David blends his 

conceptions of knowledge and teaching:  

David: I mean, I don’t care if they don’t know how to work with mixed numbers: 

they can leave it improper or change it back. I think just letting them know that if 

this is a weakness then there is probably a way around it. [Day 7: Line 201] 

Evidence here emerges to suggest that David recognizes different knowledge types, a 

constructivist understanding of collectivity and student cognition. David’s participation in 

the blends of these realizations provides evidence that a certain level of mathematical 

expertise is necessitated at the middle school level. This level of expertise is more 

important than the necessity for students to have more than a procedural fluency with 
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fraction multiplication. The compilation of mathematical utterances below provides 

evidence for this claim:  

David: I’m trying to think, I mean initially back to whenever I learned it [place 

value] in second grade—I remember, like, manipulatives, where you have 

hundreds that you break into 10s: you know what I mean. I think initially when 

you first learn it … but I think after a while you forget what it means and then it 

becomes a process of doing because you have been at it for so long. You forget 

that you are breaking things apart and giving it to a 10. [Day 7: Line 232] […] 

Like multiplying whole numbers—at the beginning we care that they know that 

two times three is two groups of three. Then eventually, as long as they know that 

two times three is six then we [teachers] are good. I don’t know at what point is 

an algorithm mindless, or is that okay versus not okay? [Day 4: Line 1107] 

This example is a fascinating blend of Enactivist, constructivist, and behaviorist 

mentalities for collectivity and student cognition. The embedded nature of M4T renders 

these compatible, as it seems the environments where mathematics is created impacts 

how David orients the cognition of that mathematics. 

4.5.3.2 Participation in Collectivity of Concept Study 

4.5.3.2.1 Internal Diversity 

David’s contributions significantly added to the intelligence of the collective. 

David took part in the realizations of fraction multiplication through scrutinizing 

automated responses of others in regards to their definitions of fraction multiplication: 
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David: I just told her, I said, “You know he’s [the researcher] going to ask what is 

multiplication right?” What about fractions? That’s not repeated addition right? 

Because it’s not repeated addition. You don’t just have repeated addition. It’s not 

2/3rds or 3/4th over and over. You had to do some work first to get to the repeated 

addition. 

David also felt comfortable in his diversity from other participants’ mathematical 

realizations. At times, this diversity created uncomfortable social dynamics within the 

collective: 

David: I feel like you are saying that half is not a number-- then you are, like, in 

second grade. [Day 2: Line 1316] […] That is honestly what is going on in my 

head right now. [Day 2: Line 1319] […] I feel like we’ve changed our definition 

of grouping multiple times. First grouping was two groups of three’ I feel like it’s 

still groups. [Day 1: Line 1060] […] So you’re saying if I say it’s one gallon it’s a 

quantity. But if I say it’s 1/10th of my car tank it’s not a quantity? [Day 1: Line 

1383] 

4.5.3.2.2 Internal Redundancy 

David built on his redundancies with others by agreeing with and then adding to 

other participants’ statements. The following mathematical utterances compilation are 

evidence for moments when David recognized his redundancy with the collective but also 

added diversity through his additional actions: 

David: The procedure is one where it is more time consuming [for students]. 

There are three: I mean you have to know three operations in order to do the 
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procedure, going into it is division, multiplication and then you have to subtract. 

[Day 2: Line 1436] […] Yeah it would just take a lot longer for students [they can 

physically divide without other operations]. [Day 2: Line 1446] […] Right it’s the 

time consuming thing that gets me. [Day 2: Line 1449] 

4.5.3.2.3 Decentralized Control 

David was integral in the constant evolution of the locus of power in the 

collective. David’s diversity with the collective allowed for him to blend his realizations 

with the collective realizations but permitted a rejection of collective realizations when 

appropriate.  This is evidenced in the following mathematical utterance 

David: I agree that it works, but I feel like it is like telling a kid, “Here is another 

procedure with a visual. You do a fifth you do 2/3rds and then you—Hey look at 

the overlap!” But, I don’t know—Look, it is like magic: the overlap represents the 

answer. [Day 8: Line 487]  

These actions by David shifted the locus of control away from the momentum of the 

environment and also from the individuals who were integral in creating that moment. 

This is a coherence maintaining mechanism that significantly adds to the intelligence of 

the system. 

4.5.3.2.4 Organized Randomness 

David’s actions served as boundaries, limiting focus that functionally activated 

mathematical innovations within the realizations, entailments, and blends of the 

collective activity: 

 



139 

David: Because if fractions were factors you would—every number would have 

an infinite number of factors, so there would be no prime numbers. [Day 8: Line 

804] […] But you’re not adding it over and over. What you’re saying is right, but 

it’s not repeated addition. [Day 1: Line 935] 

David significantly added to the intelligence of the collective by providing mathematical 

boundaries for innovation. His actions were often a refocus, or a displacement of, 

previously accepted realizations 

David: I don’t think they need to be exclusive to each other [fractions can be 

numbers and division questions]. [Day 4: Line 68] 

4.5.3.2.5 Neighbor Interactions 

David was integral in the collision of ideas. The importance of his contribution is 

evident in the previously established embedded pre-conditions for complexity. David 

added diversity, redundancy, and organized randomness through his interactions and 

collective activity with his peers as they interpreted realization, entailments, and blends 

of fraction multiplication. His position in the collective necessarily developed as the 

mathematical environments developed. This is an emergent consistency in the individual 

cases. 

4.5.4 Subjective Understanding of Fraction Multiplication 

4.5.4.1 Realizations of Fraction 

David’s realization of fraction was linked to his realizations for number. The 

entailments of these realizations was tedious and difficult for David, as he developed 

between differing conceptions of fractions as number and fractions not as number:  
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David: I think so [is a fraction a number?]. [Day 1: Line 1125] […] It doesn’t 

have to be [is a fraction a number?] [Day 5: Line 1173] 

These contradictory realizations developed considerably as David co-created the 

entailments for the realizations of number with his peers in the concept study 

environments. The following compilation of mathematical utterances provides evidence 

of this non-linear development:  

David: Then that’s like saying a decimal is not a number because we could divide 

23 hundredths, 23 divided by a hundred. 23 over 100 could be written as a 

fraction. [Day 1: Line 1128] […] Well, I think that you could argue that if you 

wanted [that a decimal isn't a number]. [Day 1: Line 1131] […] You can write it 

multiple ways. A fraction is one way to represent a number, a decimal: to turn it 

into that decimal [why do we do operations to make fractions decimals?]. [Day 1: 

Line 1134] […] That doesn’t mean that decimals aren’t numbers. [Day 1: Line 

1138] […] The parts are numbers [fractions are not numbers]. [Day 1: Line 1393] 

[…] I think it’s a number. [Day 1: Line 1341] […] Yeah a fraction is not a whole 

number but it’s a number. [Day 1: Line 1397] 

David’s development was considerable, as the entailments emphasis for the realizations 

of fraction introduced irrational quantities for the first time to the collective:  

David: So you don’t think rational numbers, irrational numbers, and imaginary 

numbers are real numbers? [Day 2: Line 394] […] So irrational numbers are not 

  [Day 2: Line 

416] […] No, it’s an irrational number [square root of two]. [Day 2: Line 419] 

[…] It’s a number, we can’t measure it. So you’re saying only numbers we can 
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measure on a ruler are numbers? [Day 2: Line 421] […] Yeah I agree it’s [the 

square root of two] measurable. [Day 2: Line 432] […] Yes [square root two is a 

number] [Day 2: Line 434]. 

Further entailments blended David’s realizations of number with his realizations of 

operations and their embedded relationship with number: 

David: It is a symbol if you’re saying that the two thirds isn’t a number because 

it’s two divided by three, then you can say twenty is not a number because it’s 

four times five; it’s a multiplication problem. [Day 2: Line 438] […] So only one 

is a number? [Day 2: Line 444] […] If fractions aren’t numbers then we can’t 

multiply them, so shut off the cameras and let’s get out of here. [Day 2: Line 449] 

[…] Correct [you can't do mathematical operations on anything but numbers]. 

[Day 2: Line 483] 

These blends also prompted David to consider the inclusion of variables as number as 

evidenced in the compilation of mathematical utterances below: 

David: Yes [variables are numbers]. [Day 2: Line 489] […] Because they are 

[numbers] they represent a quantity. Do we know the quantity? No. But they are a 

quantity, so yes they [variables] are a number. [Day 2: Line 496] […] They’re not 

written in one of our numbers that we write on paper. But they’re numbers—we 

can add a+a and get 2a. [Day 2: Line 579] […] It has every single property of a 

number, so why wouldn’t we call it a number? We can add it, subtract it, multiply 

it,  divide it—it has all the properties of a number, so why is [it] not a 

number? Just because it’s a letter in our alphabet we don’t want to call it a 

number? [Day 2: Line 570] 
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David’s realization of fractions developed significantly to blend realizations of number, 

fraction, variable, and irrational quantities. This recursive elaboration was a fascinating 

example of the embedded nature of M4T knowledge of fraction multiplication and its 

relationship with knowledge of other mathematical concepts. 

4.5.4.2 Realizations of Fractions 

David’s realizations for multiplication were tied to the operation’s relationship 

with division: 

David: Everything I’ve heard is multiplication is established and then we use 

multiplication to define division. [Day 1: Line 770] […] Yes [all division can be 

changed to multiplication] [Day 1: Line 765]. 

The entailments emphasis for the realizations of multiplication developed David’s 

realizations of multiplication to include models as realizations: 

David: I feel like number line jumping, repeated addition, and counting are all 

kind of the same. One’s a visual representation of the repeated addition [Day 3: 

Line 1330] […] I said repeated addition, number line jumping, and counting were 

all the same. [Day 3: Line 1340] 

The blends of David’s realizations for multiplication continued to develop his realization 

for multiplication to include area. The following mathematical utterances compilation 

provides evidence for this claim: 

David: I guess what I was thinking goes with that [computation] is the area of a 

box with the dimensions being the factors. So 2 by 3, which is multiplication [Day 

1: Line 602] […] I could give a definition of multiplication, though, as 
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multiplication is the area of a rectangle whose dimensions are the factors of the 

multiplication. [Day 1: Line 629] […] I can define multiplication by saying it’s 

the area of a rectangle. [Day 3: Line 1253] 

David’s realization for multiplication as area was problematic as the entailments 

emphasis of this realization troubled his comprehension of the realization:  

David: But how does that show 2/3rds of a 1/5th? That doesn’t show 2/3rds of a 

5th. That shows 2/3rds and 1/5th and the overlap, which magically shows us the 

answer. [Day 8: Line 468] […] I agree that it works, but I feel like it is like telling 

a kid, “Here is another procedure with a visual. You do a fifth; you do 2/3rds, and 

then you—Hey, look at the overlap!” But, I don’t know, look at the, like, magic: 

the overlap represents the answer.  [Day 8: Line 487] 

David’s participation in entailments of multiplication developed realizations of volume as 

an entailment for the area realization:  

David: The volume of a rectangular prism with the dimensions if there is three 

factors to be multiplied. [Day 3: Line 1256] […] Yes [three numbers multiplied 

together can be represented by volume] [Day 3: Line 1273] […] Yes [volume is a 

definition of multiplication]. [Day 3: Line 1276] 

David’s participation in entailments of multiplication developed realizations of the array 

model—a large focus of investigation during the realizations and entailments of the 

concept study. David’s conception of an array developed significantly as the entailments 

allowed for considering the various units in the array model for fraction multiplication. 

This conception is similar to his realizations and blends for area as a realization of 

multiplication: 
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David: I’m fine with that visual representation. I just think it is different from the 

array that was originally up there. [Day 4: Line 629] […] I think our definition of 

it [array] has changed. [Day 5: Line 62] 

Using the process of entailments to refine, David was able to activate his knowledge of 

units and apply these actions to conceptualize the unit difference between whole number 

computations and fraction computations in the array model: 

David: Like, it’s a completely different process—it’s still using dots, so I don’t 

know why. I feel like we’re wanting to say, “Let’s use our arrays,” because 

they’ve seen arrays, but,  you know what I mean: we’re trying to connect it back 

to the whole number knowledge, but the process is different than when it’s whole 

numbers. I don’t know how much connection there is in between. [Day 5: Line 

69] […] So when you have fractions each dot isn’t a whole anymore. With whole 

number arrays each dot represents a whole. With fraction arrays that whole box is 

a whole. [Day 4: Line 993] 

The entailments emphasis of the array model provided enough evidence for David to 

blend realizations of area and array for multiplication: 

David: They’re not different [Day 7: Line 480] […] I said that on day two that 

they [array and area models] weren’t much different. [Day 7: Line 494] 

Further entailments of the array, area, and number line jumping realizations for 

multiplication enabled David categorize these realizations as uses rather than definitions 

for the operation:  
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David: Mark it off [remove arrays from the definition of multiplication]. [Day 4: 

Line 745] […] Then mark off area and number line jumping because those are 

both tools too. [Day 4: Line 754] 

4.5.4.3 Realizations of Fraction Multiplication 

The entailments emphasis of multiplication developed a realization of fraction 

multiplication as “parts of parts”. This was then blended with David’s realizations for 

multiplication as area:   

David: I agree that it helps them come up with the denominator; I’m not disputing 

that, but what I’m saying is that [modeling parts of parts] doesn’t really represent 

the original problem. [Day 8: Line 475] […] Yeah [by drawing the line all the 

way down you do not model the actual task]. [Day : Line 478] 

The array model was not a realization for fraction multiplication. The following 

mathematical utterance compilation provides evidence that David’s limited understanding 

of the array model is the cause of this: 

David: Can’t be done [an array can't model 12 ×  ]. [Day 4: Line 591] […] You 

have to do something to your array [to model the computation]. [Day 4: Line 610] 

[…] What about like 2/3rds times 11? You can’t show that in an array? [Day 4: 

Line 647] […] Because there’s a remainder [that is why you can't model 2/3rds 

times 11 with an array]. [Day 4: Line 649] 
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4.5.4.4 Student Cognition of Fraction Multiplication 

David the individual knower is a unique entity, encapsulating his own unique 

understanding of the mathematics curriculum. Also, repetition and the transference of 

proper mathematical techniques are the most successful means for teaching mathematics: 

David: I feel like me, personally, I didn’t need things repeated. Just solve once, 

take a snapshot and you’re good to go. A lot of kids, that’s not going to be the 

case. I think for some kids repetition, they need to do it. Some kids need to teach 

it, some kids. I mean, I don’t completely buy the whole percentage thing that we 

see a lot of that you learn this percent of what you hear and this percent of what 

you see, like the scientific research behind all that. [Day 1: Line 555] […] I think 

we harp to them about multiplication being across [recognizing fraction 

multiplication in a word problem with students] [Day 4: Line 307]. 

The mathematical utterance compilation above is filled with both behaviorist and 

constructivist realizations for student cognition. The blend of these orientations to student 

cognition is similar to other embedded systems of David’s M4T knowledge that require 

realizations for cognition.  

4.6 Individual Case 4: Charlotte 

Charlotte teaches middle school mathematics at the suburban Indiana school used 

for the site of this research study. Charlotte is currently in her 12th year of a middle 

school teaching career with both seventh and eighth grade level teaching experience.  
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4.6.1 Mathematical Objects of Fraction Multiplication 

4.6.1.1 Orientation to Mathematics 

Charlotte’s realization for mathematics was a situation-specific blend between a 

formalist and hyper-formalist orientation: 

Charlotte: Well, I think that it depends on the level of math that you are dealing 

with. Like, when I think of math I don’t think about the pondering, high-level 

math that only people that are in math classes use. I think of math as actually 

practical and usable [Day 2: Line 1002] […] I don’t know when in life I would 

ever use the square root of -1. Maybe someone out there uses it, I don’t, so. [Day 

2: Line 926] 

Charlotte’s realization for mathematics allows for a differentiation between mathematics 

and middle school mathematics. The emphasis of entailments for realizations of 

mathematics further developed Charlotte’s realizations by substructuring mathematics as 

“invented” or “discovered”. The following mathematical utterances compilation provides 

evidence of this claim: 

Charlotte: Yes [math is not invented]. [Day 2: Line 1002] […] What does 

invented mean? Man-made? [Day 1: Line 1181] […] The invented thing. It’s 

[math] not invented—with our definition of invented. [Day 1: Line 1196] […] I 

think it’s [quantity] always there. We’re just calling it … and we’re putting a 

name to it [numbers]. [Day 1: Line 1297] 
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Charlotte’s realizations for mathematics continued to develop between hyper-formalist 

orientations and much less sophisticated realizations when situating mathematics in the 

middle school classroom context: 

Charlotte: Yeah, I act like I do magic [with mathematics] all the time. [Day 8: 

Line 527] […] Sometimes I make stuff up, but I think it [the story of Pythagoras] 

is true. [Day 8: Line 994] […] No, I just sometimes make things up. [Day 8: Line 

998] […] It’s like Santa Claus [the story of Pythagoras] [Day 8: Line 1038]. 

The entailments emphasis was especially tedious for Charlotte, as she was continually 

prompted to substruct her professional knowledge of middle school mathematics and the 

discipline of mathematics. The following mathematical utterance compilation is evidence 

of her frustration: 

Charlotte: Why do we care? Why do we care if it is invented or discovered? [Day 

2: Line 1473] […] I just don’t know why this [invented or discovered debate] is 

important. [Day 2: Line 1477] […] Yeah, that’s philosophy [the invented or 

discovered debate]; that’s not math! [Day 2: Line 1110] 

Charlotte’s realizations for mathematics developed parallel with environments 

differentiating between mathematics and middle school mathematics. This was similar to 

both Faith and David’s realizations for mathematics. 

4.6.1.2 Historical Development of Fraction Multiplication 

Charlotte’s actions in the concept study sessions prevented the ability to make 

claims about her knowledge of the historical development of fraction multiplication. 
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4.6.1.3 Advanced and Horizonal Knowledge 

Charlotte’s realizations for advanced mathematical study was limited:  

Charlotte: So when I see these things like in college—because in high school I 

think it was just plug and chug—but in college I got to think about … somewhere 

in the world this is useful; somebody uses it, but it is just over my head, and I 

don’t know. [Day 2: Line 1127] 

No further evidence emerged to make claims about Charlotte’s realizations for advanced 

mathematical study or her horizonal knowledge realizations. 

4.6.2 Curricular Structures of Fraction Multiplication 

4.6.2.1 CaP: Interference 

Charlotte’s realizations for the planned middle school curriculum designed to 

teach fraction multiplication aligned with the interference hypothesis. The following 

mathematical utterance compilation provides evidence for this claim: 

Charlotte: What if we said that it’s more basic when you’re talking about whole 

numbers? When you throw in integers, and decimals or fractions, it gets more 

complicated. But, could we agree that if we’re just dealing with whole numbers [it 

is more basic]? [Day 1: Line 904] […] Yes [memorization of multiplication of 

whole numbers comes before fraction multiplication in curriculum]. [Day 2: Line 

1383] […] Yes [the idea of fraction multiplication is complicated]. [Day 2: Line 

1260] […] Do fractions complicate things? Yes! [Day 2: Line 1265] 
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This developed, as the entailments emphasis required the concept study participants to 

substruct their professional knowledge of multiplication as it operates on differing 

number sets:  

Charlotte: No [multiplication is not taught specific to different number types]. 

[Day 1: Line 941] […] Yes [whole number multiplication complicates 

understanding fraction multiplication]. [Day 2: Line 1260] […] No [whole 

number multiplication does not transfer to fraction multiplication]. [Day 2: Line 

1267] […] So, what, so are you inferring that we should start with parts of 

numbers? [Day 2: Line 1278] 

No further evidence emerged to make claims about Charlotte’s developing conception of 

the realizations for the middle school mathematics curriculum and its alignment with the 

interference or reorganization hypotheses. 

4.6.2.2 CaP: Remediation 

Charlotte’s realizations for the planned middle school mathematics curriculum as 

a mechanism for remediation impedes the conceptual teaching of topics:  

Charlotte: Some of them kinda remember how to do these things [fraction 

multiplication] by multiplying straight across; you know what I’m saying? So you 

have got to deal with that too. [Day 2: Line 1655] […] I’ve tried to explain the 

reasons behind and the whys—that stuff with them—but I usually get the: “Why 

do we have to think about this? We already know how to do it.”—and then so 

they turn themselves off. [Day 2: Line 1669] 
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This notion develops through the landscapes emphasis, as the middle school curriculum 

is not the place for the conceptual teaching of fraction multiplication: 

Charlotte: No. I think where we are failing is the fact that we aren’t the ones who 

should be teaching the conceptual part of this [fraction multiplication], but we are 

the ones who need to teach like, surface area, conceptually. But I, since it’s the 

first time they’ve seen it [surface area]—that it makes sense for me to 

conceptually teach it. [Day 5: Line 558] 

These realizations developed concurrently with David’s realizations for the middle school 

curriculum as a place where students should have already automatized fraction 

multiplication.   

4.6.2.3 CaP: Textbook as Curriculum 

Charlotte’s actions in the concept study sessions prevented the ability to make 

claims about her knowledge of the textbook as planned curriculum. 

4.6.2.4 CaL: Realizations of Student Development 

Charlotte, like David, Faith, and others, questioned the viability of the array 

model as a realization for multiplication suitable for use with students. The following 

mathematical utterances compilation provides evidence for this claim: 

Charlotte: Kids can do it [model fraction multiplication with an array] if you give 

them a 12 [initial unit size]. [Day 4: Line 1055] […] Could they do it if you gave 

them a—11 little pieces of things? [Day 4: Line 1057]  […] Well, I don’t think 

the kids are gonna [understand the model] when you have those 30 pieces and you 
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had to make them into five parts; that is where I think they would struggle: at least 

without me leading them into it. [Day 7: Line 1232] 

Entailments of the array model developed this notion very little. To Charlotte, the area 

model is the most viable pedagogical realization for multiplication: 

Charlotte: I would say that always [area is better than arrays for modeling fraction 

multiplication]. [Day 8: Line 762] […] Yes [area is better than arrays for 

modeling fraction multiplication]. [Day 8: Line 764] 

This preference is linked to Charlotte’s subjective understanding of the area and array 

models: 

Charlotte: Yeah, and I get that. I’m just saying, I don’t know, we spend all this 

time talking about arrays and we don’t even use them. Are they going to be 

helpful? Did they use them in 6th grade? Did they use little dots to do 

multiplying? [Day 3: Line 101] […] Because they are just pictures of things and 

they are not helpful [for teaching]. [Day 5: Line 6] 

As with other participants, development of M4T directly linked to collectivity with 

students was difficult to track because of little alignment between the concept study and 

the curriculum being taught in the classroom.  

4.6.2.5 CaL: Common Patterns of Interaction 

Charlotte’s actions in the concept study sessions prevented the ability to make 

claims about her knowledge of the common patterns of interaction between fraction 

multiplication curriculum and students. 
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4.6.3 Classroom Collectivity of Fraction Multiplication 

4.6.3.1 Collective Mathematics with Students 

It is difficult to make claims about development of her knowledge of collectivity 

with students. Charlotte’s realization for her mathematical classroom is a behaviorist 

orientation that is an environment for providing rules, facts, and skills that can be 

accumulated efficiently: 

Charlotte: Because we made up rules to help them understand it. When it comes 

to integers I feel like: so I’ve tried teaching it with number lines, I’ve tried 

teaching it with integer boxes; like, I’ve tried all these. The best thing is [the 

teacher] coming up with a rule, making them [the students] memorize it and say, 

“Here ya go.” [Day 3: Line 812] […] I make them chant it [rules for operations on 

integers]. [Day 3: Line 761] 

Implicit in these mathematical utterances are the notion that Charlotte is able to build 

models of children’s mathematical cognition. This developed, to be explicitly represented 

in her mathematical actions. The following compilation of mathematical utterances 

provides evidence that Charlotte’s realizations for student cognition iterates between 

constructivist and behaviorist notions: 

Charlotte: Absolutely not. [Students do not think of mathematics philosophically]. 

[Day 1: Line 1233][…] Cause I feel like it is the only time that I actually get to 

see what they are thinking and the only time that they actually try to do anything. 

[Day 8: Line 661] […]I think it’s different because they’re [students] young and 

they just know how to repeat the things that they have been told. [Day 1: Line 
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1417] […] Shortcuts no, but teaching them sometimes step-step-step helps 

starting to get them to think—and helps them to think to the next step. [Day 2: 

Line 1504] […] That is what I was saying [procedural competence negates 

conceptual understanding]. [Day 2: Line 1678] 

This evolution is similar to other participants that co-produced the concept study 

environments. 

4.6.3.2 Participation of Collectivity in the Concept Study 

4.6.3.2.1 Internal Diversity 

Charlotte’s presence in the collective added diversity for her realizations for 

mathematics and her position in relation to mathematical research and study: 

Charlotte: I’m not really a math nerd, so I’m not one to argue about it [one as a 

prime], but if we would like to talk about it more we could [with students]. And 

so, I tell them [students] that the math community cannot decide if one is prime or 

not prime. [Day 8: Line 991] 

Charlotte was comfortable with her level of diversity and was free to share this diversity 

amongst the collective: 

Charlotte: Yes [if you don't think fractions are numbers you are a second grader]. 

[Day 2: Line 1318] […] No, no no… [no name calling]. [Day 2: Line 1322] […] I 

can see what Bailey is saying, and I see what everybody else is saying, and I’m on 

this side. But, it all depends on what you call a number, what you call a whole. 

[Day 1: Line 1385] 
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4.6.3.2.2 Internal Redundancy 

Charlotte’s realizations for models of multiplication and fraction multiplication 

contributed to high levels of redundancy with the other participants of the collective. 

Similar to other participants, Charlotte’s contributions to the redundancy and diversity 

was directly dependent upon mathematical environment and the mathematical 

realizations being discussed. 

4.6.3.2.3 Decentralized Control 

Charlotte, similar to David, was key for the constant evolution of the locus of 

power in the collective. Charlotte was simultaneously the most forceful in shifting power 

away from me, but also consistently searched for my approval of collectively produced 

realizations. The following mathematical utterance compilation provides evidence for 

these claims: 

Charlotte: Tell me what a number is first [asking researcher], and I’ll tell you if I 

think it’s a fraction. [Day 2: Line 241] […] Is there something you want us to 

say? [Day 1: Line 898] […] What do others say? What else are you looking for? 

[Day 1: Line 905] […]What’s number? I don’t know, I don’t know. I would not 

talk about it. I would just be like, “What’s wrong with you?” [Day 2: Line 256] 

4.6.3.2.4 Organized Randomness 

Charlotte’s actions served as boundaries for mathematical innovation while 

providing focus during the realizations, entailments, and blends emphases of the concept 

study. The following mathematical utterance compilation provides evidence for how 
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Charlotte actively pursued boundaries of definitions that would allow the collective to 

operate more efficiently on the mathematical tasks under examination: 

Charlotte: What’s the definition of rational? [Day 1: Line 1117] […] What’s your 

definition of a number? [Day 1: Line 1139] […] What does invented mean? Man 

made? [Day 1: Line 1181] […] I don’t have a definition of a number so [Day 2: 

Line 246] […] I see a problem with that because we haven’t agreed with what 

basic multiplication is. [Day 3: Line 1352] […] I’m stuck on the word “number”; 

that’s where I’m stuck. When did we discuss multiplication as parts of parts? 

[Day 5: Line 81] […] People just make them up; we don’t want to go back to 

definitions. What’s a fraction? What’s a definition? What does “investigate” 

mean? [Day 5: Line 395] 

4.6.3.2.5 Neighbor Interactions 

Charlotte’s high level of participation within the collective mathematical 

environments often ensured a high level of neighbor interactions around the mathematical 

topic of fraction multiplication. Charlotte was able to add diversity, redundancy, and 

especially organized randomness through her interactions and collective activity with her 

peers. 

4.6.4 Subjective Understanding of Fraction Multiplication 

4.6.4.1 Realizations of Fraction 

Charlotte’s realizations for fraction emerged through her entailments of the 

realizations for number and operations: 
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Charlotte: Well, what if you decide all fractions are division problems and you 

have to do division before you can do multiplication? [Day 1: Line 947] […] A 

fraction is a number and a fraction is a division. [Day 1: Line 952]  […] Yeah 

[fractions can be both operations of multiplication and division]. [Day 1: Line 

1021] 

Charlotte continued to develop her realizations through the further entailments of her 

realizations for number: 

Charlotte: It’s the same thing [decimals are the same as fractions]. [Day : Line 

958] […] Well, they [decimals] can be written as a fraction; doesn’t mean that it 

is a fraction. [Day 1: Line 1121]  […] It’s both [a fraction is both a division 

operation and a number]. [Day 1: Line 964] 

Charlotte’s realization for fraction continued to develop dynamically as she participated 

in the tedious entailments emphasis of number and operation. The following 

mathematical utterance compilation provides evidence of this high rate of volatility for 

Charlotte’s realizations for fraction: 

Charlotte: I don’t know any more [she has no definition for number]. [Day 1: Line 

1155] […]What a number is I don’t know; can I go last? [Day 5: Line 81] […] 

What if one is the only number? What if a number is only one, base one—just 

everything is one. [Day 2: Line 268]  […] Okay, they invented the whole system 

around one and what we’re doing around it, yes. We’re deciding. Because we 

have different bases. [Day 2: Line 600]  […] I agree, which is why I am back to 

my nothing and a coke can idea, like your two bases are either zero or one. [Day 
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2: Line 1309]  […] No, I don’t want to do that [make numbers not include zero]. 

[Day 4: Line 135] 

No further evidence emerged during the blends emphasis if Charlotte was able to find a 

coherence to her realizations for fraction. 

4.6.4.2 Realizations of Multiplication 

Charlotte’s realizations for multiplication emerged as group making or repeated 

addition: 

Charlotte: So I said—my first answer if you ask me—is repeated addition. […] 

Yes, that’s why I like my repeated addition for counting slash natural numbers. 

This realization developed non-linearly through the entailments emphasis of realizations 

for multiplication on differing number sets. The following mathematical utterance 

compilation provides evidence for this claim: 

Charlotte: Now, if you’re multiplying by a fraction, I know that that is different. 

But, basic multiplication, I decided was repeated addition. [Day 1: Line 579] […] 

What fraction is a division problem? You’re still doing repeated addition. [Day 1: 

Line 952] […] No [whole number does not transfer to fraction multiplication]. 

[Day 1: Line 1268] […] I have nothing else; I’m sorry [nothing to add beyond 

repeated addition]. [Day 1: Line 655] 

The tedious entailments emphasis of the realizations for multiplication developed 

Charlotte’s realizations to distinguish between what defines multiplication, what models 

multiplication, and what is a use of multiplication: 
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Charlotte: Definition of multiplication? I’m going to go with hardly anything up 

there [on the list] is a definition. [Day 3: Line 1115] […] If we think that, then we 

think modeling is a definition of multiplication. What is multiplication? [Day 3: 

Line 1136] […] I think we can use modeling—the modeling manipulatives can be 

used to show a definition. [Day 3: Line 1118] […] I think all that’s multiplication, 

all that’s using multiplication. [Day 2: Line 1145] […] Well, area is on both sides 

as a definition and a use. [Day 3: Line 1124] […] So if it shows multiplication, 

it’s showing a use or a definition? [Day 3: Line 1126] […] Is division basic 

multiplication? [Day 3: Line 1311] […] Is number line jumping modeling or basic 

multiplication or actual basic multiplication? [Day 3: Line 1418] 

No further evidence emerged to better understand her distinguishing characteristic for the 

realizations of what defines multiplication, what models multiplication, and what is a use 

of multiplication. 

4.6.4.3 Realizations of Fraction Multiplication 

Charlotte’s realizations for fraction multiplication are embedded with her 

realizations for unitizing and the array model for fraction multiplication:  

Charlotte: I had a thought about all of that stuff [modeling with an array]. My 

thought was that when I make my little circle or I make my little square I’m 

finding 2/3rds of one whole; when you are making your little dots you are finding 

2/3rds of 12/12ths; so we aren’t really showing  ×  . You are really showing 

 ×   × . [Day 7: Line 9] […] Yeah, just draw 12 dots and that is 12/12ths. 

[…]Yeah, but you had to do something when you did two times three, you just 
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drew dots. Here [with fraction multiplication] you had to have a box or 

something. So if you have to do some kind of operation [to generate the unit]. 

[Day 4: Line 597] 

Charlotte’s realization for fraction multiplication did not develop further through her 

entailments of the array model. Eventually Charlotte was adamant about moving on from 

entailments for the array, though she was at ease with the relationship between the area 

model and fraction multiplication: 

Charlotte: It always works [the overlapping area to find the answer to fraction 

multiplication]. 

4.6.4.4 Student Cognition of Fraction Multiplication 

Charlotte’s realizations for student cognition is that students are unique entities, 

encapsulating their own unique understanding of the mathematics curriculum: 

Charlotte: Well, I see kids tune out, and I see kids get excited, I see both happen.  

But then there are also kids who just don’t care, and they will tune out anything. 

[Day 2: Line 374] 

This example suggests a behaviorist view of student cognition in which learning 

mathematics can be thought of as a characteristic of the individual learner. The following 

mathematical utterance compilation provides evidence that this realization remained 

static for part of the concept study environment:  

Charlotte: Because there are kids that don’t understand and can’t visualize these 

things, but you know what they can do? They can multiple and divide, add and 

subtract whole numbers—so they can do the procedure [and still get the correct 
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answer]. [Day 4: Line 464] […] They don’t understand the why, but once they get 

the answer some of them say, “Okay I see why that answer makes sense. [Day 2: 

Line 1515] […] Like if we are talking about multiplying fractions and the 

shortcuts that we teach to them to get the answers then, no. That … those steps 

have nothing to do with [understanding the concept]. [Day 2: Line 1517] […] 

Correct [doing the procedure is devoid of understanding]. [Day 2: Line 1531] 

Implicit in these statements are realizations for student cognition as a constructivist 

mentality for building models of student cognition and directing mathematical teaching 

based upon those models. This development is similar to other realizations of Charlotte 

that embed realizations for cognition and realizations for mathematics.  

4.7 Individual Case 5: Evan 

Evan teaches middle school mathematics at the suburban Indiana school used for 

the site of this research study. Evan is currently in his 11th year of a middle school 

teaching career with experience teaching all middle school levels.  

4.7.1 Mathematical Objects of Fraction Multiplication 

4.7.1.1 Orientation to Mathematics 

Evan’s initial realizations for mathematics was at the formalist Stage, where 

mathematics is regarded as the model for intelligent thought and reason: 

Evan: And I think we throw things in [to the curriculum] ’cause it’s one … it’s a 

logical process—with math it seems like it’s a logical process to build up to the 

other stuff. [Day 1: Line 181] 
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Evan’s realizations for mathematics, similar to other participants, developed according to 

the complexity of the mathematics being co-created in the concept study environments. 

Evan’s realizations developed between formalist and pre-formalist conceptions of 

mathematics. The following mathematical utterance compilation provides evidence to 

support this claim: 

Evan: We’re not arming them to understand all the Cartesian stuff behind it 

[graphs] … but we’re [teachers] arming them to be able to read a graph because 

there’s graphs in newspapers, magazines, TV. [Day 4: Line 258] [...] They’re able 

to understand it and pull some information, from it like she said, and just see it in 

a different light. [Day 4: Line 300] […] Yes, it [mathematics] is both [applied 

science and intellectual pursuit]. [Day 6: Line 967] 

The final utterance in the above compilation hints at a hyper-formalist realization for 

mathematics. Evan’s orientation to mathematics was thus similar to David’s and others, 

where a distinction is made between realizations of the mathematics that he teaches and 

realizations of the discipline of mathematics. 

4.7.1.2 Historical Development of Fraction Multiplication 

Evan’s actions in the concept study sessions prevented the ability to make claims 

about his knowledge of the historical development of fraction multiplication. 

4.7.1.3 Advanced and Horizonal Knowledge 

Evan’s realizations for advanced mathematical study and techniques were limited 

to anecdotal awareness of Euclidean and Non-Euclidean geometries as well as calculus. 

The following mathematical utterances provide evidence that these realizations are not 
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utilized for his development of realizations for fraction multiplication nor for his teaching 

of middle school mathematics:   

Evan: Just assume I’m going to forget all that [Euclidean and Non-Euclidean 

Geometries]. [Day 6: Line 494] […] It seems like so long ago [calculus topics]. 

It’s been so long since I’ve done calculus. [Day 6: Line 565] 

4.7.2 Curriculum Structures of Fraction Multiplication 

4.7.2.1 CaP: Interference 

Evan’s realizations for the planned middle school curriculum is constructed by 

tenets of interference hypothesis: 

Evan: Well I think we try to hit the basic ideas of multiplying now [whole 

number] and then you take … kind of what we said earlier, the rules of math and 

now we’re going to apply it to fractions. [Day 1: Line 942] […] New … some of 

that stuff is conceptually new to them; you want to get the basics down [whole 

number] and get good at some of the basics the [Day 2: Line 352] […] Teaching 

the easier stuff … building blocks and up as we go along. [Day 2: Line 355] 

Evan’s realizations for planned middle school curriculum developed through the 

entailments emphasis of multiplication on whole and fractional quantities: 

Evan: Yes [whole number operations complicate the learning of fraction 

operations]. [Day 2: Line 355] 

This development was non-linear, as later realizations returned to an interference 

hypothesis orientation to the planned middle school curriculum: 
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Evan: I think that some kids … going off what she just did and what she said a 

while ago: that kids that truly understand the whole numbers get fractions when it 

is presented. I think that is part of the reason why kids don’t get fractions is that 

they haven’t gotten the whole number system thing down. We get kids that are 

coming up here in the middle school that still can’t actually multiply whole 

numbers. [Day 2: Line 1277] 

No further evidence emerged of development of David’s realization for the planned 

middle school curriculum design. 

4.7.2.2 CaP: Remediation 

Evan’s realizations for the planned middle school curriculum acknowledges that 

repetition is meant to remediate procedural fluency for fraction multiplication: 

Evan: So my thought … I’m kind of with him on that—by eighth grade, by golly, 

I don’t even know if I could show you how it works anymore. I’m okay as long as 

I know the procedure. [Day 5: Line 453] […] You said it’s about a finger-pointing 

cycle. I don’t think it’s so much that as times I feel like I’m getting pressure to 

cover everything. And I don’t want to spend a week on something I think we 

could’ve covered in two days. So something else is either getting thrown out the 

window or something else is not going to get hit as hard as it should’ve been. And 

so things that should’ve been conceptually reached back in 4th or 5th grade [Day 

5: Line 673] […] our thoughts would be we’ve got to move on because we have 

more to do. [Day 5: Line 673] 

No further evidence emerged to make claims about development of this realization.  
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4.7.2.3 CaP: Textbook as Curriculum 

The textbook is a source of curriculum in Evan’s classroom:  

Evan: In our book or in our curriculum I guess [Day 3: Line 190] [...] We kinda 

pull decimals and fraction into one big grouping of rational numbers, so we 

mention it as multiplying rational numbers. [Day 6: Line 337] […] Rational 

numbers are in the beginning of the whole chapter dedicated to fractions and 

decimals. [Day 3: Line 346] 

The textbook is a part of the curriculum that Evan is free to scrutinize and adapt for the 

teaching of middle school mathematics: 

Evan: The fractions and decimals almost can’t be mentioned all together 

[pedagogically] as shown by the book. [Day 6: Line 337] 

No further evidence emerged to make claims about the development of this realization 

for the planned curriculum in Evan’s classroom. 

4.7.2.4 Realizations and Student Development 

Evan’s developing subjective knowledge of arrays, similar to his co-participants, 

prompted him to conclude that they were not viable models for working with middle 

school students: 

Evan: I don’t ever remember using them [arrays] myself so I mean [Day 5: Line 

126] […] I don’t hardly ever use them to show anyone [students] anything. [Day 

5: Line 130] […] Well, when we did the array, we were marking the entire array 

not just … well, I kind of thought that the last time [using an array] when we 

 



166 

weren’t marking everything off that that might be confusing for a kid to look at. 

[Day 8: Line 414] 

This, unlike Evan’s peers, developed significantly through Evan’s participation in the 

entailments emphasis of fraction multiplication. For example, after the tedious 

entailments emphasis of the final concept study session Evan’s realizations for the array 

model and student development was significantly different: 

Evan: But I think taking them [students] through the arrays has its values. [Day 5: 

Line 465] […] I was … just think of all those kids [his students] from the last 10 

years. I don’t know … I just think some of them might respond to the dots. [Day 

5: Line 467] 

Evan’s development towards the array model for multiplication was the most dramatic of 

the participants. The environments co-produced with the other participants only had this 

type of impact on Evan, despite these co-participants creating the environments that 

initiated this change for Evan. 

4.7.2.5 CaL: Common Patterns of Interaction 

It is difficult to do more than infer about Evan’s understanding of the lived 

curriculum with students, without having the opportunity to observe his classroom 

environments with students directly. Fractions are not well regarded by the students who 

co-create his classrooms: 

Evan: It’s [fractions] the F word in math. [Day 3: Line 236] 

This realization seems linked to Evan’s realizations students’ previous mathematics 

education prior to coming to the middle school level: 
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Evan: I swear there’s a conspiracy with some of our elementary teachers; they 

don’t like fractions so they teach the kids that fraction bar means divide so put it 

as a decimal. Because it’s so much better as a decimal than it is a fraction 

[sarcasm]. [Day 1: Line 967] 

No further evidence emerged to make claims about the development of this realization 

for the lived curriculum in Evan’s classroom. 

4.7.3 Classroom Collectivity of Fraction Multiplication 

4.7.3.1 Collective Mathematics with Students 

Similar to the constraints for making claims about Evan’s understanding of the 

lived curriculum with students, it is difficult to make more than inferences about the 

nature of Evan’s M4T of collectivity with students. Evan’s realizations for mathematical 

collectivity with students orients mathematical activity as an individual activity where 

associations, skills, and components of skills are acquired: 

Evan: Where we have had to multiply and add the fractions in the same problem, 

it was more beneficial for them to reduce their product before adding so that they 

could make nicer simpler common or nicer common denominators from the 

product ... because without that, we had some kids just turn it off. [Day 7: Line 

162] 

This is a behaviorist conception of collectivity and student cognition of mathematics. 

Evan’s classroom is designed to facilitate the repetitive practice of mathematical 

techniques. Implicit in this notion though is the understanding that models of students’ 

cognition can be built, similar to Charlotte’s blended notions of collectivity. Evan valued 
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different types of mathematical knowledge, but privileged one over the other for the 

teaching of middle school mathematics. What mathematics was privileged as part of 

Evan’s realizations for collectivity with students developed significantly from his 

participation in the concept study environments:  

Evan: Just kind of showing it [mathematics] a little more conceptually, you know, 

like where things came from, how things were derived, and not just saying: “Here 

is the formula; just plug it in.” Um … you know, beyond just showing them the 

procedure. [Day 8: Line 107] 

No further evidence emerged to make claims about this development for Evan’s 

realizations of collective with students. 

4.7.3.2 Participation of Collectivity in the Concept Study 

4.7.3.2.1 Internal Diversity 

Evan’s presence in the collective added to the intelligence of the collective. His 

coherence-maintaining mechanism for the system was essential as he often pursued 

propositions by others to make sure that they were mathematically viable: 

Evan: I’d need to check and see if it works [non-traditional algorithm]. [Day 7: 

Line 567] 

This thoughtful pursuance of diversity often allowed the concept study collective time to 

fully consider the propositions brought forth to the mathematical environments. 

4.7.3.2.2 Internal Redundancy 

Evan’s participation in the diverse mathematical environments of the collective 

around the topic of fraction multiplication also provided key redundancies for the 
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coherence of the system. He often brought the group back together when the diversity 

was to strong for internal coherence: 

Evan: And, so I, I think I’m kinda torn. I’m kinda like David and Charlotte where 

I think if it is unique enough and it might stand out enough where I would be like, 

“Ooh,” and I’m going to work it out and make sure it works. [Day 8: Line 707] 

4.7.3.2.3 Decentralized Control 

Evan was integral in the constant evolution of the locus of power in the collective. 

His contributions were different from others as he did not commandeer power, nor did he 

distribute power to others. This sort of passive participation does seem to evolve the 

aggregate locus of power. 

4.7.3.2.4 Organized Randomness 

Evan was a key component of the collective for setting boundaries for the 

collective and then leaving the innovation to the others in the co-created mathematical 

environments. For example, the concept study environment was interrogating the use of 

the word “representation” as a synonym for “variable,” during a blends emphases for 

realizations of number and fraction. Evan aided this discussion by providing a boundary 

for the word usage and then freed up the innovation that could exist within that boundary: 

Evan: I don’t mean whole new, but ya know, just look in the dictionary. It’s got 

one, two, three, four, five different meanings. It’s because words stand for 

different things. [Day 2: Line 550] 
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Evan’s realizations set the boundaries that then subsequently allowed for innovation 

around the topic of discussion. This boundary-setting was a frequent occurrence for Evan 

as a coherence maintaining mechanism for the unique collective.   

4.7.3.2.5 Neighbor Interactions 

Evan’s low participation warrants the claim that he was not always a full 

participant in the collision of ideas within the collective. This should not be construed as 

downgrading his importance to the collective dynamic, as it is true that when he did 

contribute to the collective his actions were thoughtful and influential.   

4.7.4 Subjective Understanding of Fraction Multiplication 

4.7.4.1 Realizations of Fractions 

Evan’s realizations for fraction emerged during the entailments emphases for 

number. The following mathematical utterance compilation provides evidence for the 

development of this entailments of number for Evan:  

Evan: Yeah, like she said, when a kid said it’s a symbol that represents a 

measured amount for a quantity [Day 2: Line 289] […] I mean beyond that I don’t 

know what else to give it [definition of number]. [Day 2: Line 295] […] Zero is a 

number [Day 2: Line 192] […] They [variables] represent a value, so yeah [they 

are a number]. [Day 2: Line 502] 

After the entailments emphasis for number, Evan’s realizations for fraction emerged as 

an “operation” and as a “part of a whole”: 

Evan: Yeah, it’s both [fraction is a number and a division question]. [Day 1: Line 

953] […] It’s part of a whole [what a fraction is]. [Day 1: Line 955] […] We 
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teach it as a number, like it’s two thirds, it’s two out of … if we had a group of 

three it’s two out of three. [Day 1: Line 967] […] It [fractions] is a quantity; you 

can put it on a number line [Day 1: Line 967]  […] It [fractions] could have 

variables. [Day 2: Line 502] 

No further evidence emerged to discuss the development of Evan’s realizations for 

fraction. 

4.7.4.2 Realizations of Multiplication 

Evan’s realizations of multiplication emerged as repeated: 

Evan: I mean, you could use repeated addition. The arithmetic is for patterns and 

shows multiplication. [Day 3: Line 1205] 

The entailments emphasis for the realization of repeated addition developed Evan’s 

realizations for multiplication significantly. The following mathematical utterance 

compilation provides evidence to support this claim:  

Evan: Not when it’s fractions, it’s not [response to repeated addition making 

larger]. [Day 1: Line 690] […] Sidetrack, but look at that first one we put up 

there, it depends on how you want to look at the three; yes, it gets smaller. But if 

you’re looking at the 1/2, yes it gets bigger. [Day 1: Line 694] […] No, because 

they all should just keep getting bigger [response to the question whether a user 

chooses which number gets bigger in whole number multiplication]. [Day 1: Line 

699] […] That’s what I was thinking. You’re something smaller than one being 

multiplied by something smaller than one; you’re going to have it come out even 

smaller than it already is. [Day 5: Line 218] 
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Similar to other participants, the entailments of the operation of multiplication provided 

development in Evan’s realization for multiplication. Evan was able to distinguish 

between tools, uses, and definitions of multiplication as a part of his realizations for the 

operation:  

Evan: Yeah [tools should be defined as uses of multiplication]. [Day 3: Line 

1244] […] Is that just a technique of how to find it [area], or is it just actually 

defining multiplication? [Day 3: Line 1143] […] I don’t think a formula is 

defining [multiplication]. I think they just use it. [Day 4: Line 275] […] I’m 

thinking that’s why we brought up counting [models involve the counting of parts 

to evaluate the solution]. [Day 2: Line 578] 

No further evidence emerged to make claims about the development of Evan’s 

realizations for the operation of multiplication. 

4.7.4.3 Realizations of Fraction Multiplication 

Evidence emerged that differentiated Evan’s realizations for fraction 

multiplication from others in the collective. Part of Evan’s realization for fraction 

multiplication is related to probability tasks: 

Evan:  ×   could mean in one drawer that you have two black socks out of five 

black socks and in the other drawer you have three black socks out of seven black 

socks—so you have 6/35 probability of getting matching socks. [Day 7: Line 646] 

Correctness and inclusiveness are not of importance in the process of realizations and 

entailments co-created by the concept study collective. Interestingly, none of Evan’s 

peers challenged the mathematical validity of this realization for fraction multiplication. 
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The array model was a realization for fraction multiplication that emerged for Evan in the 

blends emphasis of the concept study environments:  

Evan:  I mean, if you were worried about making an array for that [fraction 

multiplication task]: the bottom tells you how many rows and columns you need, 

the top tells you how many you should have at the end. Count the dots. [Day 4: 

Line 949] […] Like, if the first fraction tells me columns and the second fraction 

is telling me rows … so I would draw three columns across and four rows down 

and fill in all my rows or my dots and then the two tells me ... okay eliminate it 

down to two columns. [Day 4: Line 952] 

Evan’s realization for arrays and fraction multiplication developed significantly while 

participating in the entailments emphasis of the array realization. The following 

compilation of mathematical utterances provides evidence of this development: 

Evan: So we have to start always with the big fraction? [Day 4: Line 1096] […] 

No, because I can’t use nine [response to peer proposition that multiples of three 

are valid unit sizes to model the task]. [Day 4: Line 952] […] I tried, but I 

couldn’t come up with it [another unit number other than 12]. [Day 4: Line 828] 

[…] So I went three across … so I said, “Here’s my two of three”—so it 

happened to be there’s four in there. I’m just going to circle three of them. [Day 4: 

Line 818 […] Right, we are kinda doing the common denominator thing of three 

times four, which will make the common one of twelfths; but I guess my wheels 

are still spinning on why the numerators give you the number of pieces, I guess. 

[Day 7: Line 543] […] Does it have something to do with prime factorization? 

[Day 7: Line 697] […] I’m stuck on this [hands up in the air]. [Day 7: Line 722] 

 



174 

Evan privileged the area model over the array model for fraction multiplication. Little 

evidence emerged to explain the preference. No further evidence emerged of 

development of Evan’s realizations for fraction multiplication. 

4.7.4.4 Student Cognition of Fraction Multiplication 

Evan is able to build models of his students’ cognition, a clearly constructivist 

realization of student cognition: 

Evan: They could’ve … on one of our questions today I suppose it said 75% of 

the box was filled with this … but our kids are going to look at 75% and they’re 

going to think not 3/4ths; they’re going to think point 75. [Day 5: Line 506] 

Similar to other realizations for cognition, Evan’s realization of student cognition for 

fraction multiplication developed iteratively between a constructivist and a behaviorist 

mentality: 

Evan: Honestly, as long as they [students] know how to punch it [fraction 

numbers] into a calculator they don’t care. [Day 5: Line 601] […] Shortcut 

[students prefer shortcut to understanding what they are doing]. [Day 5: Line 

1067] […] Simpler common or nicer common denominators from the product ... 

because we had some kids just turn it off [if concept is too difficult]. [Day 7: Line 

130] 

Similar to previous findings, Evan seems to reduce the complexity of his realizations for 

cognition and mathematics when moving between discussions of mathematics and 

mathematics in the middle school classroom.  
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4.8 Individual Case 6: Bailey 

Currently in her eighth year of her middle school mathematics teaching career 

with experience at all middle school grade levels, Bailey teaches in the middle school 

mathematics department of the suburban Indiana school used for the site of this research 

study.  

4.8.1 Mathematical Objects of Fraction Multiplication 

4.8.1.1 Orientation to Mathematics 

Bailey’s realizations for mathematics emerged in the pre-formalist stage where 

mathematics is regarded to be outside of the mathematical knower:  

Bailey: And if it’s created, then I agree that it’s invented. Inside of me I can’t 

agree though …[Day 1: Line 1278] 

Bailey’s orientation to mathematics was significantly different from the others who co-

created the environments of the concept study with her. She seemed intimately connected 

to the mathematical content. Her realizations for mathematics developed significantly 

through the entailments emphasis of the realizations for mathematics.  

Bailey: Oh, I like that statement: that’s like gold right there [math can be an 

intellectual pursuit rather than a description of the physical world] [Day 2: Line 

847] […] Because you were talking about intellectual versus physical. [Day 2: 

Line 854]  […] That’s kind of how I saw it: intellectual world versus physical 

world, but our physical world is translated through our intellect. [Day 2: Line 

856] 

 



176 

The level of sophistication that can be categorized in the above statements is as dynamic 

as the statements themselves. Bailey’s realizations for mathematics developed quickly 

between complex orientations and much less sophisticated realizations seemingly without 

provocation.  

4.8.1.2 Historical Development of Fraction Multiplication 

Bailey’s actions in the concept study sessions prevented the ability to make claims 

about her knowledge of the historical development of fraction multiplication. 

4.8.1.3 Advanced and Horizonal Knowledge 

Bailey’s realizations for advanced mathematical study emerged referencing levels 

such as linear algebra, chaos theory, calculus, and statistical analysis. The following 

mathematical utterance compilation provides evidence for these advanced topic 

realizations: 

Bailey: That’s a linear algebra thing; I do know that [arrays]. [Day 1: Line 588] 

[…] Because it’s chaos theory. It’s chaotic. [Day 4: Line 4] […] I was stuck on 

the whole statistic thing; I don’t trust statistics anyway. Because … I mean, you 

can find any statistic to back you up. [Day 4: Line 282] […] It is calculus. [Day 1: 

Line 990] 

Bailey used her calculus training, at least arbitrarily, to help her investigate the 

pedagogical problem-solving of having a zero in the denominator of a fraction: 

Bailey: Well, I just remember learning in calculus you can’t do a derivative of 

zero divided by zero or infinity divided by infinity; it’s the same idea. [Day 2: 

Line 814]  […] Does  as x approaches infinity equal zero? [Day 1: Line 988] 
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Bailey’s horizonal knowledge was activated during her realization for fractions that 

involved her advanced mathematical training in calculus. The following mathematical 

utterance compilation provides evidence to support this claim:  

Bailey: I feel like in 7th grade that this is the end for them, but we know that 

where, you know, like calculus and that sort of thing. Since we know where the 

end is we can kind of bring them along and say that we know that: “This isn’t the 

end for you, but we know what the end looks like.” We know here’s the next step 

to review. Maybe. That’s why we [teachers] have to learn these upper levels: 

because that is the end of the mathematics for them. I mean some of these regular 

7th graders are never going to see Calculus four, but I could make some 

connection. [Day 2: Line 1757]  […] And I feel like if we can do the upper levels, 

then we’re challenging ourselves on that level so that we should be able to do, ya 

know, the 7th through 12th grade. Now, I feel like I can’t teach that 12th grade 

math trigonometry and calculus ’cause I’m not at that level and some of these 

students will jump way above me. Um … and, I feel like they are better at math 

and they are able to think at that level and I’m not. So I wouldn’t teach 12th grade 

probably. [Day 1: Line 401] 

These mathematical actions were significant, as Bailey was the only participant to 

articulate sentiments of the interconnectivity of mathematical study and the direct 

usefulness of advanced mathematical study for her work as a middle school teacher.  
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4.8.2 Curriculum Structures of Fraction Multiplication 

4.8.2.1 CaP: Interference or Reorganization 

Bailey’s actions in the concept study sessions prevented the ability to make claims 

about her knowledge of the planned middle school curriculum and its design. 

4.8.2.2 CaP: Remediation 

Bailey’s actions in the concept study sessions prevented the ability to make claims 

about her knowledge of the planned middle school curriculum and its place in terms of 

remediation. 

4.8.2.3 CaP: Textbook as Curriculum 

Bailey’s actions in the concept study sessions prevented the ability to make claims 

about her knowledge of the historical development of fraction multiplication. 

4.8.2.4 CaL: Realizations and Student Development 

Bailey’s actions in the concept study sessions prevented the ability to make claims about 

her knowledge of the appropriateness of realizations for fraction multiplication and for 

student development. 

4.8.2.5 CaL: Common Patterns of Interaction 

Students react negatively in Bailey’s classroom environments to operations on 

fractions, or any other substantial shift in the curriculum that is more computationally 

difficult than the operations on whole numbers: 

Bailey: And I think that sometimes the students are like, “Why can’t we just do 

adding and subtracting and multiplying and dividing? ’Cause that’s what I 
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[students] know how to do.”… and it’s when we [teachers] … when I’m 

challenging a student to do that harder thing that’s new to them and they’re not 

used to it yet, that’s when they’re [students] like, “Why are we having to do this?” 

[Day 1: Line 134] 

Bailey’s actions also warrant the claim that mathematical study is not highly regarded by 

her students: 

Bailey: Yeah, like I was playing a game from there [mathisfun.com] and the kids 

were like, “Math is not fun.” [Day 8: Line 939] 

No further evidence emerged to make claims about the common interaction patterns 

around realizations for fraction multiplication in Bailey’s classroom. 

4.8.3 Classroom Collectivity of Fraction Multiplication 

4.8.3.1 Collective Mathematics with Students 

Without observing Bailey’s actions in the co-created mathematical environments 

of her classroom with students, it is difficult to do more than infer about her collective 

mathematical knowledge of these environments. She orients mathematical learning as an 

individual activity in which associations, skills, and components of skills are acquired 

and in direct relation to the teacher’s ability to transfer knowledge: 

Bailey: Especially trying to learn math by yourself. I was in high school and my 

teacher was horrible, and I can remember crying over my textbooks trying to learn 

math. I think that’s probably why I wasn’t as strong. The teacher didn’t even help 

me. All I knew is what I learned and what I could figure out because trying to 

learn math is different, trying to teach yourself in math is different than trying to 
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teach yourself English or history or science, which is a little bit like math. You 

have to try and figure out what did they do from this step to this step, and you 

have to read between the lines a lot more in math than you have to do in language 

or history. [Day 1: Line 452] 

These realizations suggest a behaviorist realization for collectivity with students in 

Bailey’s classroom. This conception developed as Bailey related that she piloted the 

collectivity from the concept study environments in her classroom with students: 

Bailey: That kinda thing, you know … so I or it didn’t take long, and it kinda took 

it [conversation about fractions], and then I took it and I ran with it in two 

different directions at the same time, based on what the students were giving 

me—and I was like, “Okay, this is how we are going to do it.” So it was kinda 

cool to, you know, think that way. [Day 8: Line 123] 

This development represents a realization closer to an enactivist realization for 

collectivity with students. This continued to develop, as later Bailey continued to 

represent her class as a collective cognizing agents: 

Bailey: Yeah, it depends on kind of how they go about doing things ... I mean 

each class is different. I can think of several examples recently where one class 

can take me in a completely different direction and I’m thinking in my head, 

“Man I kinda want to reteach that other class because I like how this class is 

thinking.” [Day 7: Line 190] 

Bailey’s perspective of the classroom as a single collective learner developed to include 

subsystems of collective learners based on her models for their mathematical abilities. 

This perspective is a blend of constructivism and enactivism, similar to the multi-leveled 
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blend inherent in the M4T model. However, despite these complex conceptions of 

collectivity in the classroom Bailey’s realizations for students learning mathematics 

seemed to always return to a  transitional-type environments where students should learn 

through repetition.  

4.8.3.2 Participation of Collectivity in the Concept Study 

4.8.3.2.1 Internal Diversity 

Bailey’s was in direct opposition to other participants and was even subjected to 

ridicule for her realizations of number and fraction. Her conception of fractions as 

division rather than fractions as number brought significant diversity to many of the 

concept study environments:   

Bailey: I agree with it, but I don’t.  There’s still ...when we get into the debate of 

fractions that doesn’t fit there.  I think of it as the integers system. You know, 

when you think of your integers, your integers are all whole values. So, yes, I can 

agree with those words describing numbers, but I still [not with fractions] …[Day 

2: Line 390] 

Bailey’s mathematical knowledge added diversity and intelligence to the group. At times, 

her concept-specific high levels of diversity prevented the collaborative coaction of the 

collective and the emergence of the collective learner. 

4.8.3.2.2 Internal Redundancy 

Redundancies emerged through Bailey’s participation in the diverse mathematical 

environments of the collective around the topic of fraction multiplication. For example, 
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she was able to internalize others’ conceptions during investigations of pedagogical 

problem-solving and to agree with them: 

Bailey: Because it is the unit, I think, in our idea of factor, 1 is the unit—so if we 

throw the possibility of fractions out there your unit could be anything. But if we 

establish the unit as one, then a factor, a prime number, one is the unit itself. It’s 

the definition of … it’s in the definition, so it can’t be defined by it. [Day 8: Line 

964] […] Yes, according to that definition. [Day 8: Line 960] 

This statement is notable, as embedded systems that often add continuous diversity can 

also aid in the coherence maintenance by occasionally providing needed redundancy. 

4.8.3.2.3 Decentralized Control 

Bailey was integral in the constant evolution of the locus of power in the 

collective. At times she, like other participants, shifted the power to me, preventing the 

necessary pre-condition for complexity: 

Bailey: Dr. Math hasn’t told us [what a number is]. [Day 4: Line 103] 

Her active participation in the decentralized control pre-condition developed though, as at 

other times she shifted the locus of power to herself by directly questioning the viability 

of the actions of others: 

Bailey: You’re gonna use the word “multiply” in your definition of 

multiplication? [Day 3: Line 1259] 

Also, Bailey was equally as likely to shift the power to others through question-

prompting when she was unable to find viable action on her own: 

Bailey: How would you represent 11 as an array? Would you use a five and six? 

 



183 

The locus of power seemed to shift when the redundancies and diversities were in high 

volume for Bailey. This is of interest as her flexibility for shifting power potentially aided 

in her contributions to coherence mechanism for complexity of the collective. 

4.8.3.2.4 Organized Randomness 

Bailey’s engagement in the emphasis of pedagogical problem solving is an 

example of how she crafted boundaries within which innovation could occur: 

Bailey: Because it is the unit, I think.  In our idea of factor, one is the unit so if we 

throw the possibility of fractions out there, your unit could be anything. But if we 

establish the unit as one then a factor, a prime number one is the unit itself—it’s 

the definition of … it’s in the definition so it can’t be defined by it. [Day 8: Line 

964] 

4.8.3.2.5 Neighbor Interactions 

Bailey was also integral in the collision of ideas. Her importance is evident in the 

previously established embedded pre-conditions for complexity. She was able to add 

diversity, redundancy, and organized randomness through her interactions and collective 

activity with her peers as the interpreted realization, entailments, and blends of fraction 

multiplication. 

4.8.4 Subjective Understanding of Fraction Multiplication 

4.8.4.1 Realizations of Fractions 

Bailey’s participation in the entailments emphasis for the realization of number 

was where her realization of fractions first emerged. The following mathematical 

utterance compilation provides evidence of her realizations for number: 
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Bailey: It gives us a number value or amount … That’s what I’m saying. I’m 

saying the whole numbers are the numbers; that’s what I see it as. [Day 1: Line 

1374] […] I explained it to my students yesterday about we have all of the 

numbers, debatably including fractions, that go closer and closer and closer to 

zero … we never, we never … well, we approach zero, but we never actually 

obtain zero. So I explain to them that it is the transition. [Day 2: Line 182] […]  I 

don’t know if it [zero] is a number necessarily, but I say that it is the transition 

between positive and negative numbers. [Day 2: Line 184] […] But zero has its 

own rules where all the other numbers have their rules. [Day 2: Line 884] 

The entailments for realizations of number was tedious for Bailey, resulting in frustration 

and considerable development for her realization of number: 

 Bailey: I don’t know what a number is! ... Do we know what a number is yet? 

Once a realization of number was rendered viable, the blends emphasis rendered her 

realization for fraction as problematic: 

Bailey: I agree with it, but I don’t. [Day 2: Line 390] […] There’s still ... when we 

get into the debate of fractions that doesn’t fit there.  I think of it as the integers 

system; you know, when you think of your integers, your integers are all whole 

values. So, yes, I can agree with those words describing numbers, but I still [don’t 

know about fractions]. [Day 2: Line 397] […]That’s a fraction … a part of the 

whole. [Day 8: Line 626] […] A decimal is a fraction. [Day 1: Line 960] […] A 

fraction is a ratio of two integers. [Day 1: Line 966] 

Further blends emphasis for number and fraction developed Bailey’s realizations for 

both:  
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Bailey: ’Cause fraction is division because there is division in the fraction. That 

line [the fraction bar] is division. [Day 1: Line 949] […] They are a division 

problem. Because it’s a ratio of integers. That’s what the definition of a fraction 

is. [Day 1: Line 957] […] It’s a division problem. It’s always been a division 

problem because we use division to get rid of fractions. [Day 1: Line 1136] […] I 

don’t think fractions are numbers. [Day 1: Line 1073] […] You just said that you 

have to do something to find the half. Meaning that half is not a number. [Day 2: 

Line 1291] […] No, it’s not a number. Why? If you have to do something to find 

a half, then it’s not a number. [Day 2: Line 1295] 

Bailey’s realizations for fraction remained relatively consistent, while her realization of 

number and the blend with the realization of fraction was highly dynamic throughout the 

concept study.  

4.8.4.2 Realizations of Multiplication 

Bailey’s realization for multiplication involved “grouping”, “repeated addition”, 

“of,” and the “distributive property”: 

Bailey: I think of grouping. [Day 1: Line 577] […] So counting and repeated 

addition. [Day 1: Line 638] […] Multiplication of two digits is FOIL. [Day 1: 

Line 895] […] Yes [FOIL is the distributive property]. [Day 1: Line 897] […] 

Groups of? It [the word “of”] translates to multiplication.  [Day 1: Line 726] 

Bailey’s participation in the entailments emphasis for realizations of multiplication 

developed her realizations of multiplication to distinguish between  what defined 

multiplication and the uses of multiplication:  
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Bailey: We use multiplication in area. I don’t think that’s what multiplication 

actually is. I think we use it in area so we associate them. But I don’t think that’s 

what multiplication is. I think that multiplication is the first two [on the list]. 

Through the blends emphasis for realizations of multiplication, Bailey was able to 

collapse all realizations for multiplication into “repeated addition” or “grouping”: 

Bailey: I personally think that everything [all realizations of multiplication] can 

be put into repeated addition and grouping. [Day 1: Line 716] 

No further evidence of development emerged of Bailey’s realization of multiplication. 

4.8.4.3 Realizations of Fraction Multiplication 

Bailey’s realizations for multiplication as repeated addition emerged with her 

realizations of fraction multiplication: 

Bailey: Fractions can be repeated addition, somehow. [Day 1: Line 663] […] 

Parts of parts, so you are adding parts. [Day 1: Line 665] […] I still think it’s 

repeated addition. [Day 1: Line 931] […] Division is multiplying by a fraction. 

[Day 1: Line 767 […] Division is just multiplication of a fraction. [Day 1: Line 

770] […] Yeah [you are dividing first and then adding up the parts]. [Day 1: Line 

668] 

This developed during a blends emphasis for fraction multiplication. Bailey defended her 

realization of fraction multiplication as getting smaller by blending her realizations of 

fraction multiplication as division:  

Bailey: Yeah, there’s more division because there’s two division problems in that 

one, 2/3rds by 3/4ths; there’s two divisions and there’s only one multiplication. 
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So, division outranks the multiplication. [Day 5: Line 202] […] Yeah [the 

computation isn't really a multiplication question, it is a whole bunch of divisions 

with one multiplication computation]. [Day 5: Line 202] […] Fraction 

multiplication is two divisions with one multiplication. [Day 1: Line 638] 

Bailey’s realizations for fraction multiplication included the area and array model. 

Bailey had difficulty finding viable action with the area model during blending emphasis 

of realization for fraction multiplication: 

Bailey: I was never presented with this [arrays]. First time I ever saw this [arrays] 

was when I was taking a masters class like three years ago. That was the first time 

that I ever saw fraction multiplication presented pictorially [Day 4: Line 653] […] 

How would you represent 11 as an array? Would you do five and six? […] 

Because 11 is a prime number. [Day 4: Line 650] […] No it’s not 11 [the unit 

required]. I’m just saying … could I do a pyramid as an array? [Day 4: Line 660] 

[…] If I divide the dots I can [model 11 with an array]. [Day 4: Line 699] […] 

What is the definition of a dot? [in an array]. [Day 4: Line 704] […] You have to 

pick your arrays [unit] strategically apparently. [Day 4: Line 834] […] We can’t 

divide up dots, so we have to make sure we have enough dots. [Day 5: Line 415] 

[…] I mean I can do it with 35 dots, but that’s because I know five times seven is 

35. [Day 4: Line 1064] 

The area model as a realization for fraction multiplication emerged as a much more 

viable realization than the array model: 

Bailey: When I first started doing these, that is how I did it. I did vertically one 

fraction and then horizontally the other fraction. [Day 7: Line 490] […] When I 
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first started figuring out multiplication of fractions that is how I did it. [Day 7: 

Line 499] […] Vertical is one fraction of the whole, and then horizontal was the 

other fraction, and then you have the overlap. I then started focusing on the 

overlap. [Day 7: Line 501] […] That is kinda how I see it … yeah, because a fifth 

of the whole and 2/3rds of the whole and then fifth done horizontally and 2/3rds 

done vertically. [Day 7: Line 484] 

Entailments of the realization of the area model proved difficult and tedious for Bailey as 

she was asked to substruct her understanding of the overlap as part of the realization:  

Bailey: You’re overlapping, you’re grouping the areas … they are overlapping 

right here. They are overlapping so they are grouped together. [Day 7: Line 1067] 

[…] Hmmm yeah [agreeing that the overlap of the area model is the same as the 

Venn diagram]. [Day 7: Line 1064] […] No, if I didn’t see, like, that this was cut 

into four pieces and I was selecting three out of those four. I mean, that is really 

what I’m doing over here—without the overlap I’m just, you know, if this is cut 

into four pieces I’m picking three out of those four and then I’m going to 

duplicate it. That is easier for me to see than to look at the whole and then to look 

at just that part. [Day 7: Line 1067] […] If I would have seen this for the first time 

and I didn’t see the fraction that you guys were talking about, I would have been 

lost. [Day 7: Line 1094] 

No further evidence emerged of development of Bailey’s realizations for fraction 

multiplication. 
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4.8.4.4 Student Cognition of Fraction Multiplication 

To Bailey individual knowers are unique entities, encapsulating their own unique 

understandings of the mathematics curriculum: 

Bailey: I’m gonna object to this … object to learning this because it’s not easy, 

like, adding and subtracting, multiplying and dividing. I just wanna stay where 

I’m at. And we’re challenging them to go that one step further to learn more to 

challenge their minds. [Day 3: Line 725] 

This realization for student cognition is a behaviorist orientation, where learning 

mathematics is a characteristic of the learner. This develops to a constructivist orientation 

where Bailey’s actions warrant the claim that she can build models of her students’ 

cognition. These models, to Bailey, are then used to adapt her teaching of the 

mathematical concepts to meet the needs of her students: 

Bailey: Depending on their level—I mean the lower level kids are just gonna be 

out there.  You know, they’re gonna listen to that high level kid because it’s the 

high level kids and they’re like … well, the kids all know in each class who gets 

the good grades and who understands the material.  They all know that. They are 

gonna perk up a little bit, but when it goes over their head they just kinda zone out 

so they might not be able to participate, I think, in that conversation [defining 

what is number]. [Day 2: Line 364] […] So I’ve actually taught it that way before: 

it only makes sense to about 3/4 of the class. ’Cause then I teach the shortcut and 

they’re like, “Aahh yes!” [Day 3: Line 1222] […] Girls do “is over of”; The guys 

do equations. [Day 1: Line 737] 
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The blend of the constructivist and behaviorist realizations for student cognition 

continued to develop throughout the remainder of the concept study sessions. This was 

similar to the other participants of the concept study. 
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CHAPTER 5. COLLECTIVE CASE 

The six emphases of a concept study—here a vehicle for activating teacher’s 

potentially tacit or unconscious M4T knowledge of fraction multiplication— (Davis, 

2011, 2012; Davis & Renert, 2009, 2013, 2014) emerged by design and by participant 

action. What follows is use of the emphases as a frame for presenting evidence to support 

the claim that M4T knowledge of fraction multiplication is a distributed collective 

knowledge.  This is followed by a discussion of evidence to support the claim that M4T 

knowledge of fraction multiplication is dually collective. 

5.1 Emphasis 1: Realizations 

The initial realizations emphasis was described to explicitly focus the collective’s 

effort on the generation of realizations for multiplication. Davis (2012) stated that well-

rehearsed or automated realizations can often impede other interpretive potentialities.  

This was consistent with the realization for multiplication as “repeated addition” in this 

concept study. Interestingly, a realization chart exercise multiplication sparked the 

generation of realizations for both number and fraction by the collective. These collective 

moments occurred several times during the spontaneous emergence of the collective 

learner. The following realizations chart for multiplication, fraction, and number in 
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Figure 4.1 emerged after considerable debate. I chose the model in Figure 4.1 to illustrate 

the collective’s portrayal of realizations for the three concepts. As evidenced in the 

actions of the collective, the realizations for number and fraction have implications and 

are embedded with the realizations for multiplication. This list is similar to lists generated 

in other concept study literature (Davis, 2012; Davis & Renert, 2009, 2014; Davis & 

Simmt, 2006).

Figure 5.1 Teacher Realizations of the Concepts of Multiplication, Number, and Fraction. 

The collective persisted in spontaneous episodes of blending realizations for 

multiplication, looking for a coherent blend of all realizations.  After exhausting their 

inputs, the participants began to ask questions like “What do others say?” and “Is there 

something missing from the list that you want us to say?” It should be noted that this 

mentality hampered the necessary pre-condition of decentralized power, often acting as a 

mechanism that dissolved the coherence of the collective learner. 

Multiplication

Number

Fraction

• Of
• Numberline jumping/hopping
• Repeated addition
• Grouping
• Arrays: rows by columns
• Area
• Counting
• Opposite/inverse of division
• Foil/distributive property

• Value 
• Quantity
• Amount

• Part of a whole
• Number/not number
• Division operation
• Grouping inside of grouping
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5.2 Emphasis 2: Landscapes 

The landscapes emphasis emerged as a planned intervention for the collective 

during the third concept study session. The collective was asked to interrogate their 

middle school curriculum and build a landscape for the realizations of multiplication that 

were in the middle school mathematics curriculum they teach. Figure 4.2 below 

represents the landscape for multiplication created by the collective as part of this 

emphasis activity. There is no specific order to this visual, it is meant to be a broad 

landscape, for the concept of multiplication that emerged from the unique collective of 

this concept study. 

 

Figure 5.2 Teacher Landscapes for Tools and Uses of Multiplication

The landscape-building for the realizations of multiplication and the spontaneous 

emergence of the collective learner produced a new collective realizations chart for

multiplication that appears below in Figure 5.3. There was no hierarchy to the chart; 

rather it is simply a listing of collectively agreed-upon realizations. 
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Figure 5.3 Refined Realizations Chart for Multiplication 

5.3 Emphasis 3: Entailments

The emphasis on entailments first emerged as a spontaneous co-production of the 

collective during the second concept study session. The emergence of the collective 

learner paralleled the emergence of the entailments emphasis for the realizations of 

“fractions as numbers” and “fractions as an operation of division.” The entailments chart 

in Figure 5.4 below diagrams the substructuring of the two separate realizations for 

fractions by both individuals and the collective learner.  There is no sequential movement 

in Figure 5.4, but rather the model is built to show how the entailments of a realization is 

a tedious activity of prying apart collapsed structures of mathematical concepts. 
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Figure 5.4 Entailments Chart Mapping the Fractions as Numbers Debate

Similar to other concept study research (Davis & Renert, 2014) the entailments emphasis 

was very “tedious and frustrating” for the unique collective of this concept study (p. 67) 

and was the contentious environment of this concept study sessions. This debate sparked 

so much controversy within the collective that the mathematical ability and maturity of 

some of the concept study participants were brought into question by other participants. 

The volatility of these environments both hampered and encouraged the emergence of the 

collective learner. 

5.4 Emphasis 4: Blends 

The collective participation and creation of the first three emphases was 

frustrating for the collective. This is not surprising as the teachers were asked to 

interrogate their professional expertise about the topics they teach. The blends emphasis 

was less frustrating and emerged spontaneously throughout the concept study sessions as 

the collective sought coherence for the concepts under study. The emergent collective 

goal was to collapse the realizations of multiplication into one realization that remained 
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viable across the landscape of the middle school mathematics curriculum. The list in 

Figure 5.5 represents the most condensed realizations list for multiplication produced by 

the collective. 

 

Figure 5.5 Blends of Realizations for Multiplication 

While the emphasis on blends was less troubling for the collective, the collective 

outcome of the blends was the most troubling of all collective action as the collective was 

unable to find a viable realization for multiplication that blended all of their realizations 

for the mathematical concept. Widespread, distributed concern stemmed from the 

perceived pedagogical consequences of mathematical concepts behaving differently in 

different contexts. The participants wondered aloud about the possibilities of alleviating 

common misconceptions of fractions and operations on fractions if multiplication is 

presented to students as a synergistic realization rather than as disjointed realizations. 

5.5 Emphasis 5: Participation 

The blends emphasis spontaneously created an environment wherein the collective 

participated in cultural creation of mathematics. There were also explicit researcher-

planned emphasis of participation in order to provide mathematical contexts where the 

collective scrutinized the nature of mathematics as a discipline. The explicit introduction 

of the emphasis of participation resulted in an ongoing collective interrogation of answers 
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to the questions: “What is mathematics?” and “Is mathematics invented or discovered?”  

This research-generated emphasis of participation resulted in the emergence of the 

collective learner through an iterative entailments discussion. The realizations for the 

discipline of mathematics as invented or as discovered were given equal consideration by 

the collective. Figure 5.6, below, models how the argument pulled apart the realizations 

for mathematics, scrutinizing the very nature of the discipline.  

        

Figure 5.6 Participation of Culturally-created Mathematics through Entailments 

5.6 Emphasis 6: Pedagogical Problem Solving 

Pedagogical problem-solving “aims to capitalize on the interpretive potentials that 

arise on the collective level when individual expertise is drawn together around 

perplexing problems” of teaching mathematics to middle school students (Davis, 2012, p. 

15). For this study, the emergence of pedagogical problem-solving came as co-production 

of the collective rather than as a planned intervention. One participant, Charlotte–for 

reasons discussed in her individual case–found the entailments emphasis of a concept 

study particularly tedious and frustrating. She, in her words, “want[s] to have some 
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closure” on evolving realizations before shifting focus. The pedagogical problem-solving 

questions she generated for collective elaboration are listed below in Figure 5.7. 

Figure 5.7 Pedagogical Problem-solving questions from Charlotte

The concept study participants dedicated the remainder of that two-hour session to the 

collective answering of Charlotte’s pedagogical problem-solving questions, during which 

time the collective learner emerged several times.  

These six emphases provide evidence that M4T knowledge of fraction 

multiplication is better understood as a dually collective and distributed knowledge. This 

knowledge is highly dynamic while also simultaneously shared and at times 

individualized. This finding correlates with findings that M4T knowledge is “more than a 

set of fundamentals that can be identified, catalogued, transmitted, and tested” (Davis & 

Renert, 2014, p. 119). 

What follows now is a further discussion of the collective level of M4T 

knowledge of fraction multiplication and its development. My discussion begins with the 

distinguishing characteristics between moments of interaction and coaction and is 

followed by a discussion of the collective learner and what the development of M4T 

knowledge of fraction multiplication entails for the collective cognitive unity. 
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5.7 Finding the Collective Learner 

For the purposes of this study, I define the collective learner as moments of coaction 

and the emergence of complexity. Moments of high collaboration were isolated in the 

data by searching for collective moments that exhibited the entanglement of ideas around 

the concept of fraction multiplication. What follows is a discussion of the distinguishing 

characteristics between moments of coaction and the emergence of the collective learner 

versus moments of interaction and collective collaboration. 

5.7.1 Collective Interaction 

Collective interaction is defined as collective action that lacks the entanglement of 

ideas that would allow a higher order cognitive system (collective learner) to arise. What 

follows is a description of the distinguishing characteristics for moments of interaction. 

5.7.1.1 Lacking Pre-conditions for Complexity 

Maintaining the pre-conditions for complexity is ultimately the coherence-

maintaining mechanism of the collective. The collective decision as to what to do with 

mathematical innovations offered to the mathematical environment is directly related to 

the emergence of interaction instead of coaction. For example, notice in the following 

moment of interaction how the collective chooses to accept innovations offered to the 

environment as they respond to the task of representing 12 and 10 as division operations:  

 Researcher: Okay what did we use? 

Faith: 36 divided by three, bring down the multiplication sign, and then 100 

divided by 10. 

Researcher: Evan, did you use something similar? 
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Evan: I used 36 divided by 3 and 20 divided by 2. 

Bailey: I used 36 divided by 3, then I used 30 divided by 3. 

David: 24 divided by 2 and 30 divided by 3. 

Charlotte: 24 divided by 2 and 100 divided by 10.  

For reasons not fully understood, the collective chose to investigate this task 

independently, without attempting to collectively scrutinize individual contributions. 

There were many such moments. I claim that this type of interaction provides evidence 

that the necessary preconditions for complexity are a key indicator for distinguishing 

coaction from interaction. For example, looking again at the above excerpt, there is an 

obvious balance issue for the redundancy and diversity of the collective. The cause is 

unclear, but it may be related to the ease of the task or the way the task was introduced to 

the collective—which was in a manner that decentralized the control to the researcher. It 

is also clear in the above excerpt that there are no neighboring interactions as the ideas 

presented by individuals do not necessary collide. There were many instances similar to 

this excerpt wherein the preconditions for complexity were lacking and so there was no 

emergence of the collective learner. It should be noted that there is still potential for 

development of M4T knowledge of fraction multiplication in these interactions, just not 

on the collective level. 

5.7.1.2 Interaction without Coaction 

Lacking the pre-conditions for complexity was not the only distinguishing 

characteristic between interaction and coaction evidenced in this research study. 

Evidence supports Martin and Towers’ (2009a) claim that collaborative learning 
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(interaction) can occur without the emergence of mutual joint action (coaction). For 

example, look at the following emphasis on blends in which the collective attempted to 

blend realizations of fraction as number, fraction as multiplication, and fraction as 

division through collective action:  

Evan: Didn’t we just say a fraction is number and dividing all in one? 

Researcher: And multiplication, you said. 

Bailey: I don’t think fractions are numbers. 

Researcher: You don’t think they are numbers? 

Bailey: They are a division problem. Because it’s a ratio of integers. That’s what 

the definition of a fractions is. 

Researcher: What do you guys think about that? Is a fraction a number? 

David: It doesn’t have to be …  

Evan: It could have variables.  

Researcher: Is it a number? 

Faith: It’s a number, it’s not a whole number. 

This moment of interaction provides evidence of “reciprocal, complementary 

collaboration without the requirement to be mutually building on the just offered action” 

(Martin & Towers, 2009a, p. 633). This example supports the claim that M4T knowledge 

of fraction multiplication can develop at the collective level, as shared distributive 

insights, without the emergence of a collective learner. This type of collective-level 

development is related to the collective decision-making for how to accept mathematical 

innovations offered to the collective. Martin and Towers (2009a) had similar findings, 
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claiming that the potential for coaction is in part dependent upon the collective’s ability 

to accept and interpret a mathematical innovation 

5.7.2 Collective Coaction 

If reciprocal, complementary collaboration and M4T knowledge of fraction 

multiplication development is possible without coaction, what is it that makes coaction 

possible? Martin and Towers (2009a) claimed that a particular type of synergy from the 

collective aided the acceptance of an individual mathematical innovation and the 

emergence of coaction on that innovation. Sawyer (2000) described this acceptance in the 

context of improvisational performance as a group accepting an innovation and “working 

with it, building on it, making it their own” (p. 92). Martin and Towers (2009a) 

transferred this notion to coaction in mathematical contexts. In the language offered by 

complexity science, coaction is dependent upon the preconditions for complexity, or the 

intelligence of the collective, that support how much flexibility the collective has for 

managing a new mathematical innovation. The following excerpt is an example of 

coaction that took place while the collective built a realizations chart for multiplication 

during the second concept study session. It illustrates that the innovation of “grouping” 

and the collective’s readiness to accept the innovation of “grouping” was key to how the 

innovation became part of the emerging performance. This example also provides an 

example where I myself was part of the synergistic movement consistently re-distributing 

the locus of power to the collective: 

Charlotte: So I said my first answer, to David, if you ask me, is repeated addition. 

Researcher: Ok, so can we write that down as a first level [on realizations list]? 
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Charlotte: Now, if you’re multiplying by a fraction, I know that that is different. 

But basic multiplication I decided was repeated addition. 

Researcher: Ok, so repeated addition is something we could start with. What’s 

other—I’m talking when do you see it in your curriculum? What does it do? 

What’s a definition of it [multiplication]? What can you tell students? Is there one 

definition that works for all numbers? I want to generate a list that we can be 

comfortable with as far as what you see and what you think multiplication is. 

Bailey: I think of grouping. 

Researcher: Ok, so any words that we would associate with it, like grouping, I 

think we should put up there. 

Faith: Group, set—would that be the same as grouping? 

Researcher: Depends on what her interpretation of grouping is. 

Bailey: Groups of? 

Faith: I wouldn’t have thought of grouping in my level, but I tutor a third 

grader— 

Charlotte: Grouping, isn’t that repeated addition though? 

The realization of “grouping” emerged and was quickly accepted and acted upon by the 

collective. This acceptance represents coaction and the emergence of the collective 

learner. What is significant is that the collective level image of grouping, as analyzed by 

an observer, is not necessarily the realization for each individual contribution. The 

collective learner realization, and the subsequent distributed realization for grouping, is 

not attributable to any one individual. It is a higher order cognitive unity, a nested 
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distributed insight, with much more potential for subsequent action than the individual 

realizations of grouping. 

 The next excerpt of coaction illustrates how coaction can also be driven by the 

collective, without prompting from myself:  

Faith: Well because then you are going to have to have the kid that says 2/8ths is 

2/8ths of 2/3rds 

Charlotte: Well I understand how they are going to misread it, I’m just saying 

how to we teach it so that the part that you haven’t  

David: Right, because you aren’t taking 1/5th of the entire thing you are taking 

1/5ths of the 2/3rds. Yeah, sorry 

Charlotte: Do you understand what I’m asking? Why would we tell the kids to 

divide up that bottom box? Cause we are finding 1/5th of the 2/3rds not 1/5th of the 

original whole 

Faith: You are shading 1/5th of 2/3rds but you are separating it into parts to make 

it easier to shade is the way that I see it 

Bailey: Why am I not taking the 1/5th of the whole? Like I understand that 

multiplication means of, but if I were to switch them around I would be taking 

1/5ths of the whole and then? 

Charlotte: and then taking 2/3rds of the 1/5 right? 

Bailey: Yeah, that is right. 

Charlotte: So it would be the same thing, you would have a 5th of the box 

empty… if it was switched around. 
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Researcher: Charlotte do you want to draw that? Not Charlotte I mean Bailey 

since you are closest to the board.  

Bailey: So… let’s see [drawing on board]  

Evan: You are saying the 1/5th first and then using the 2/3rds second 

Bailey: Yeah like this.  

Researcher: The argument is that you will still have some blank space that you 

really don’t have to talk about necessarily correct?  

Similar to the first excerpt, the collective learner realization for modeling fraction 

multiplication as area, is not attributable to any one individual. It is a higher order 

cognitive unity, a nested distributed insight, with much more potential for subsequent 

action than the individual realizations of the area model. 

5.8 Collective Level Development: Collective Learner 

What follows is a discussion of the types of M4T of fraction multiplication 

development that were found during moments of coaction and the emergence of the 

collective learner.  

5.8.1 Adapting Phenomena 

The collective learner’s M4T of fraction multiplication development is defined as 

change.  One finding was that during moments of coaction the collective learner emerged 

as different combinations of the individuals participating in the mathematical 

environments of the concept study. Table 5.1 below shows the differing combinations of 

the collective learner for all 20 phenomena coded as coaction from this concept study: 
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Table 5.1 Collective Learner Composition 
Collective Learner Composition 

Collective Learner Co-Creators % of Total Coactions 
{All Participants} 5% 
{B,C,D,E,F,K} 65% 
{B,C,D,F,K} 25% 
{B,D,E,F,K} 5% 

 

In complexity science language, this finding provides evidence that the collective learner 

adapted its physical structure in relation to the mathematical environment that it was co-

creating. The collective learner, due to its embedded systems as pre-conditions for 

complexity, was flexible enough to engage with mathematical tasks of the concept study 

differently. During moments of coaction, the collective learner balanced its inherent 

intelligence and limitations towards working on differing mathematical tasks.  

Focusing on the 11 instances of coaction that involved the active participation of 

all participants (with the exception of Annie) revealed new insights for how the collective 

learner developed its physical structure. Moments of coaction modeled completely 

different self-regulative structures despite the outward appearance of consistency in its 

physical structure. I attribute this variance in structure to the fluctuating levels of 

mathematical expertise, motivation, redundancy, and diversity that enabled and restrained 

the decision-making of the collective. In complexity terms, this variance transfers well to 

the understanding that “nested forms have many intermediate layers of organization, all 

of which influence (both enabling and constraining) one another” (Davis & Simmt, 2006, 

p. 296). To conclude, the development of the collective learner is a self-regulative 

process, one that is complex in nature. The system is coupled to its environment, and the 
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collective learner developed its structure to accept innovations towards successfully 

completing the mathematical tasks of the concept study.  

5.8.2 Collective Learner M4T Development 

Coaction and the emergence of a collective learner as defined in this research 

study, has been shown to emerge in mathematical environments with both students 

(Martin & Towers, 2009a; Martin, Towers & Pirie, 2006) and teachers (Davis & Simmt, 

2003, 2006). Analyzing this literature supports the claim that the focus of the 

mathematical tasks of that environment link to the types of mathematical knowledge 

developed during the moments of coaction. For example, the following excerpt from 

Martin and Towers (2009a, p. 5-6) is of students’ coaction around the mathematical topic 

of triangle definitions:  

 S: It’s all coming back to me 

 H: I don’t remember scalene or isosceles 

 S: Isosceles is this, okay? (drawing) where two are equal? 

 M: Yeah 

 S: Equilateral is when they’re all equal? 

 H: Hm hm 

 S: And scalene is? 

M: They’re all wonky? 

H? This must be scalene 

S: OK 

H: When it has one, one SSS … (pause) 

M: One longer? 
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S: Isos., eq. and scale. So the scale none of them are equal?  

Analyzing this except using the techniques of this study concludes that the students are 

only drawing upon subjective knowledge of triangles. This example supports the claim 

that students are users of mathematics (Ball & Bass, 2003) while investigating 

mathematical tasks. This is different from teachers’ use of mathematics since teachers 

must unpack and substruct mathematical concepts for the teaching of these concepts 

(Ball, Thames, & Phelps, 2008; Ma, 1999; Davis & Renert, 2014). The following excerpt 

is an example of a moment of coaction where teachers utilize different types of M4T of 

fraction multiplication knowledge. The excerpt begins as coaction develops to enable the 

collective learner to compare the area and array models for multiplication of fractions: 

David: But area is a way of explaining it too. 

Evan: David’s point is, though, aren’t arrays and area … aren’t they the same or 

about the same? 

Faith: No, because you know it goes back to this 3rd grader I had because … okay 

she does her dots, but she can’t memorize it. So she does dots all the time and so I 

wanted to do this and it complicates it because I want to go from my arrays—

connect my arrays—and I have area but it’s not.. uh no. Because an array is our 

area rows by columns. 

David: Don’t you have area in boxes? 

Faith: Yeah, but when you connect you’re short. I only have one box when I 

connect. 

Evan: Well you’re not connecting the dots in an array … 

Faith: See that [pointing to the drawing by Bailey]?! 
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Evan: Yeah, how are those different?  

Faith: Oh, because in the top one my vertices are on corners. See the difference? 

Evan: Six boxes.  

Bailey: You still have six square units. Six dots in the squares.  

Faith: Yeah, again I’m trying to take it back to where the kids think, the kids … 

Evan: She’s thinking when I connect the dots you don’t connect the dots.  

Charlotte: Why would you connect the array dots?  

Faith: That’s why I’m saying they’re different. We gotta keep array. 

The teachers in the excerpt enacted both knowledge-produced and knowledge-producing 

systems towards completing the emergent mathematical tasks of the concept study. This 

coaction involved the utilization of the collective learner’s joint subjective understanding, 

knowledge of student cognition, and classroom collectivity knowledge about realizations 

for multiplication. It provides evidence that teachers’ mathematical knowledge is 

intimately tied to their teaching of that knowledge. The following moment of coaction 

provides further evidence of this claim and supports the claim that the mathematical task 

does not have to be teaching related to invoke knowledge about teaching: 

Faith: Are all those parts? Yeah, I thought so … all those parts, they’re numbers. 

Bailey: There’s your repeated addition and we’re getting into multiplication 

again. If you’re adding up parts, the sum of the parts … 

David: The parts are numbers. 

Bailey: I would say a fraction is a part and that’s division because you’re dividing 

into parts. 
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Charlotte: I can see what Bailey is saying and I see what everybody else is saying, 

and I’m on this side. But it all depends on what you call a number, what you call 

whole. 

David: Yeah a fraction is not a whole number, but it’s a number 

Faith: Above and below a whole? Should that be figured in? I mean, think about 

how students think about these things. 

Researcher: This is your … 

David: Real numbers. 

Evan: Using the gas tank example: nobody speaks when they’re driving, oh I’ve 

got 4 gallons of gas. Unless their car has been physically changed on the visual 

monitor, it saying you have 4 gallons of gas remaining. Most people it’s that little 

gauge and we split it with the little lines and we call it halves and fourths and 

eighths. You can guess in between … 

Bailey: You split it you divide it. I still … 

Notice how Faith introduces student cognition as a mechanism for formulating her 

mathematical innovation for the task. The investigation of this concept did not involve 

considering the classroom teaching of the concept, yet it emerged in the mathematical 

environment as part of the collective’s M4T knowledge. These findings support research 

(Ball & Bass, 2003; Davis, 2011; Davis & Simmt, 2006; Ma, 1999) that teachers need a 

different type of understanding of mathematics in order to understand, substruct, unpack, 

and develop their mathematical knowledge for teaching.  
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CHAPTER 6. LINKING INDIVIDUAL AND COLLECTIVE DEVELOPMENT 

I define the collective learner decisions, later described, as the link between the 

collective learner development and the individual teacher participants’ M4T development. 

Sawyer (2003) suggested, in the context of an improvisational performance, that when an 

innovation is offered to a collective there are three possible decisions for action: (a) 

accepting the innovation and building upon it, (b) rejecting the innovation and continuing 

as if it did not occur, and (c) partially accepting the innovation to build on only one 

aspect. Martin and Towers (2009a) identified these same decision-making options in 

mathematical contexts with students. This research study adds to these claims, finding 

that in moments of coaction the collective decision types are most closely related to (a) 

and (c) as discussed by Sawyer (2003). As I will describe below, the collective learner’s 

decision mechanism is claimed as a link between the collective and the individual 

development of M4T knowledge of fraction multiplication. What follows are definitions 

of these two collective learner decisions as they emerged from the data analysis of the 

moments of coaction and a defense of these decisions as the links between individual and 

collective learner development.
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6.1 Collective Decision: Recursive Elaboration of Realizations 

The first decision—defined here as recursive elaboration–describes a collective decision 

action in which partial fragments of realizations produced by individuals are elaborated 

into a more flexible and adaptable collective realization. Previous research provides 

language for describing this type of decision-making in both the individual and collective 

learner contexts. For example, Pirie and Kieren (1994) described individual’s 

mathematical development as the mechanism of the interweaving of fragments of images. 

Martin and Towers (2009a) applied individual mathematical development to moments of 

coaction, where the collective takes differing fragments from individuals and coalesces 

them into a collective realization. My research takes this notion further, defining this 

moment as a link between individual and collective M4T knowledge of fraction 

multiplication development. 

 Prior to offering a sample of this collective decision making mechanism as a link 

between individual and collective M4T development I will defend my choice to name it 

recursive elaboration. Previous research uses the conceptual metaphor (Lakoff & 

Johnson, 1980) of interweaving to describe the collective production of an image that 

“may not be attributable as originating from any particular individual” (Stahl, 2006, p. 

349). This metaphor characterizes collective output as a combined image produced 

through collective action. As has already been shown in the collective case, the collective 

image is a transcendent output of the collective learner, but should not be construed as the 

image that all individuals share. In an effort to overcome this language barrier for the 

metaphor of interweaving, I offer recursive elaboration as an alternative metaphor. This 

term, borrowed as a metaphor from fractal geometry, defines the collective output as a 
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“successive iteration of an idea” (Davis & Simmt, 2006, p. 308). The decision-making 

mechanism of the collective operating on individual contributions then is an expansion of 

the realm of what is possible for individual realizations during collective coaction, not a 

transcendent shared realization.  

The following moment of coaction illustrates recursive elaboration as a link 

between collective and individual M4T knowledge of fraction multiplication 

development. This moment of coaction came during the pedagogical problem-solving 

emphasis investigating the utility of the area model teaching fraction multiplication: 

Charlotte: I don’t understand how to teach what you are saying. So I see 2/3rds 

and I see thirds and we select the top two. Basically we are finding 2/3rds of one 

whole. Now we have to find 1/5th of 2/3rds, so if we are finding 1/5th of 2/3rds 

why are we even going to find or put anything in that bottom blank box [of the 

area model unit division]? 

Faith: Well because then you are going to have to have the kid that says 2/8ths is 

2/8ths of 2/3rds. 

Charlotte: Well I understand how they are going to misread it … I’m just saying 

how do we teach it so that the part that you haven’t used is … 

David: Right, because you aren’t taking 1/5th of the entire thing you are taking 

1/5th of the 2/3rds. Yeah, sorry. 

Charlotte: Do you understand what I’m asking? Why would we tell the kids to 

divide up that bottom box? ’Cause we are finding 1/5th of the 2/3rds not 1/5th of 

the original whole? 
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Faith: You are shading 1/5th of 2/3rds, but you are separating it into parts to make 

it easier to shade is the way that I see it.  

Bailey: Why am I not taking the 1/5th of the whole? Like, I understand that 

multiplication means , of but if I were to switch them around I would be taking 

1/5th of the whole and then … 

Charlotte: … and then taking 2/3rds of the 1/5th.  

Bailey: Yeah. 

Recursive elaboration is defined to signify the expanding potentialities of the realization 

for the mathematical concept produced during the moment of coaction. In the moment 

above, the collective learner realization for the area model is not a combined image for all 

participants; rather it is a collective image that co-creates part of the environment that 

each individual is coupled with. The collective learner realization above does not imply a 

coalescing or an interweaving, but rather an increase in the intellectual capacity of the 

collective learner through the heightening of the redundancies and diversities of the 

individuals. 

6.1.1.1 Recursive Elaboration as a Link 

The emergence of a collective learner illustrates a co-dependence on the 

individual innovations offered to the collective and the collective learner’s decision-

making mechanism for what to do with those innovations. Evidence supports the 

conclusion that this action is a type of complex interplay, a link, between individual and 

collective M4T cognition. To further illustrate recursive elaboration as a link between 
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individual and collective M4T development I will use Faith’s individual case and the 

already provided excerpt of coaction.  

Faith’s M4T knowledge of the area model for fraction multiplication was 

activated through her co-production of the mathematical environments of the concept 

study. What emerged were Faith’s developing realizations of area for modeling the 

computation of fraction multiplication. As described in Faith’s individual case, her M4T 

knowledge of the area model developed throughout the concept study sessions. The 

coaction above shows one moment of her individual development, a link between 

individual and collective development. Prior to this coaction, there is no evidence of 

Faith interrogating the viability of the area model. After the coaction, Faith’s actions 

show that area was now considered as a confusing representation that might prohibit 

student development of fraction multiplication understanding. Her confusion 

developed—or was activated—as she took part in the coaction of the collective learner. 

The moment of coaction provided a mathematical environment that afforded the 

opportunity for individuals, like Faith, to develop their own realizations for fractions and 

subsequently their M4T knowledge of fraction multiplication. The realization in the 

moment of coaction is a recursive elaboration, rather than one shared, collective image. 

The recursive elaboration of the collective learner realization expanded the realm of 

potentialities for both Faith and the collective learner. This was done by exposing new 

potentialities for the same image, or a mathematical environment that offered refinement 

capabilities. This expansion is one link between collective M4T development of fraction 

multiplication and individual M4T development of fraction multiplication. 
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6.2 Collective Decision: Synergistic Realization 

A second decision—defined here as synergistic realization—describes a collective 

decision action in which all previous realizations are abandoned for one innovation. 

Previous research provides language for describing this type of decision-making for a 

collective as the collective building of the better idea (Martin & Towers, 2009a; Martin 

& Towers, 2009b; Martin & Towers, 2010). This decision-making is done through the 

collective “being responsive to tiny cues from other players” and when an individual 

offers an innovation, “everyone else drops their own ideas and immediately joins in 

working on the better idea” (Martin & Towers, 2009a, p. 15). My analysis of the 

collective learner provided evidence that, during some moments of coaction, realizations 

offered by individuals replicate this action. Towers and Martin (2009b) referred to this 

collective action as an occasion in which the better idea can “occasion the growth of 

collective understanding” or the development of M4T of the collective learner (p. 45).  

My research takes this notion further, defining this moment as a link between individual 

and collective M4T knowledge of fraction multiplication development. 

 Prior to offering a sample of this collective decision-making mechanism as a link 

between individual and collective M4T development I defend my choice for naming it as 

a synergistic realization. Previous research (Martin & Towers, 2009a; Martin & Towers, 

2009b; Martin & Towers, 2010) frames the “better idea” collective decision-making 

mechanism as a mechanism for collective development. The “better idea” notion though 

is incomplete, as evidence from the recursive elaboration data suggests that individuals 

coacting on the “better idea” can actually interpret the realization as the “better idea” very 

differently. Similar to the recursive elaboration, this collective decision is an expansion of 
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the possibilities for individual realizations. The expansion is nuanced though, as it is of 

one concept focused realization. Defining the collective decision making mechanism as a 

synergistic realization would better characterize this type of collective decision. In the 

language of complexity science, the synergistic realization acts as a serious limiter for the 

organized randomness in the system. The word realization was chosen to signify focus on 

one concept realization, as it is interpreted by the individuals comprising the collective 

learner.  

The following moment of coaction illustrates a synergistic realization as a link 

between collective and individual M4T knowledge of fraction multiplication 

development. This moment of coaction came during a realization emphasis where 

participants were investigating multiplication as repeated addition. The number line 

model had not previously been considered. It was immediately adopted as the innovation 

of choice by the collective learner to model the expression 3 ×  . This excerpt picks up 

just after the synergistic realization decision to pursue the number line model as a valid 

realization for fraction multiplication as repeated addition. This excerpt also provides 

evidence of how my role can influence a moment of coaction: 

Charlotte: Now, your three one-half times … I need to see it as a number line. 

David: Find the midpoint of the hop. 

Charlotte: Yep, okay … I think I got it. 

Faith: One-half of the hop. 

Bailey: So you do [drawing on the board]  

Faith: Yes, zero, one, two, three … 

Bailey: I need to see it, sorry [continues drawing following Faith’s cues].  
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Researcher: Don’t apologize. If you need to see something at any particular 

moment just ask. 

Faith: Ok, so start at zero [directing Bailey to draw]. 

Bailey: Start at zero and hop? 

Faith: No. He [David] said a half of a hop of three. Half of three. 

Researcher: So show me how you can physically add three one-half times 

repeatedly. 

Faith: Add … jump all the way to three, that’s one half of three: dot, dot, dot, half 

of it. 

Bailey: Half of it? So you’re talking parabolas there? 

Faith: Oh sure I guess … 

Synergistic realization encapsulates the moment-to-moment collective decision to pursue 

one type of realization by the collective learner to successfully complete a mathematical 

task. The initiation of the synergistic realization by Faith activated the collective learner 

to investigate number-line hopping as a model for the multiplication of fractions as 

repeated addition. Each individual began to talk about, take up and operate on the 

synergistic realization of number-line hopping. Bailey’s interpretation of hopping on the 

number line was very different from others as her actions warrant the claim that she was 

interpreting parabolas as part of the model in some way. Faith’s original proposition of 

number line hopping co-evolved with the developing environment and was subsequently 

shared but in no way should be misconstrued as the exact same realization. 
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6.2.1.1 Synergistic Realization as a Link 

The emergence of a collective learner illustrates a co-dependence on the 

individual innovations offered to the collective and the collective learner’s decision-

making mechanism for what to do with those innovations. This action is a type of 

complex interplay, a link, between individual and collective M4T cognition. To further 

illustrate a synergistic realization as a link between individual and collective M4T 

development-- I utilize Bailey’s individual case and the already-provided excerpt of 

coaction.  

What emerged as crucial in this case was the recognition that the synergistic 

realization as an innovation seemed to activate individuals’ M4T knowledge in different 

ways. This activation emerged as expanding the realm of potentialities for each 

individual. The synergistic realization in no way signifies that all of the individuals in the 

collective acted similarly in this mathematical environment. In fact, their actions were 

significantly different based upon their own unique interpretations of the synergistic 

realization. The following illustrates Bailey’s actions in this moment of coaction acting 

on the synergistic realization differently by mentioning parabolas as part of her 

realization: 

Faith: Add … jump all the way to three, that’s one half of three: dot, dot, dot, half 

of it. 

Bailey: Half of it? So you’re talking parabolas there? 

Faith: Oh sure I guess … 

Bailey’s introduction of diversity developed the opportunity for intelligence of the 

collective learner and subsequently the collective learner expanded the potentialities for 
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the realization that Bailey was exposed to. This is a link between collective M4T 

development of fraction multiplication and individual M4T development of fraction 

multiplication. 
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CHAPTER 7. RESULTS, IMPLICATIONS, AND CONCLUSIONS 

7.1 Individual M4T and its Development 

This study has added to existing research of teacher knowledge by extending the 

understanding of how middle school teachers’ M4T of fraction multiplication develops 

while collaboratively engaging in a concept study focused on multiplication.  What 

follows is a discussion of patterns of development that emerged across the individual 

M4T knowledge of fraction multiplication cases.  

7.1.1 Knowledge-Produced Systems 

7.1.1.1 Mathematical Objects 

The differing timescales for how the mathematical objects knowledge develops is 

one finding of this research report. The stability of an individual’s knowledge of 

mathematical objects, as represented in the individual cases, is as dynamic as their 

knowledge of other M4T knowledge of fraction multiplication systems.  Evidence to 

support this claim is that mathematical utterances can be coded as evidence for different 

systems of knowledge from the M4T knowledge of fraction multiplication model. To 

illustrate, consider Evan’s statement: 
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Evan: And I think we throw things in [to the curriculum] ’cause it’s one, it’s a 

logical process, with math it seems like it’s a logical process to build up to the 

other stuff. The excerpt, now coded for the four systems of the M4T model, 

illustrates this claim: 

Evan: And I think we throw things in [to the curriculum] [CS, CC] ’cause it’s one, 

it’s a logical process [MO], with math it seems like it’s a logical process to build 

up to the other stuff [SU, CS]. 

How could the M4T systems change on different time scales, if the mathematical action is 

nested across systems? To move beyond this question, we can consider the difference 

between knowledge and knowing implicit in the theory of learning the grounds the M4T 

model. Davis and Renert (2014) describe knowledge and knowing as “inseparable, co-

implicated phenomena” (p. 90). The M4T model allows for tracking the two co-

implicated phenomena by providing the relative time-scale as part of the model. 

Mathematical objects knowledge is a collective knowledge, one that is distributed and co-

created by humanity over the course of the last 5000 or more years. This was represented 

in the individual cases as the “mathematics discipline” discussed as an entity having a 

history of development and discovery. Mathematical objects knowing, was represented in 

the individual cases, as the highly volatile knowing of the collective mathematical objects 

knowledge. This is a finding for this research study as it provides empirical evidence to 

support the embedded system modeling of teacher knowledge on differing time scales. 

The second finding for mathematical objects development of the individual 

middle school teachers’ M4T knowledge of fraction multiplication were the patterns of 

emergence of mathematical utterances for the nested systems of mathematical objects. 
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For example, the individual’s knowing about the historical knowledge of fraction 

multiplication lacked any form of sophistication. The only historical knowing data 

emerged as anecdotal utterances and could not be included as evidence in the individual 

cases. To illustrate, consider Charlotte’s f mathematical utterance: 

Charlotte: I embellish my story and I tell them about Pythagoras and I tell them 

that he was a Greek dude that use to sit around his house where, you know they 

didn’t have social media back then so... I was like, you know, and what did they 

talk about? I’m like oh stars, and religion, and math… so in every class period it 

embellishes just a little bit more, what they talk about when the sit around this 

little square. 

There was no evidence of development of this type of mathematical objects knowledge 

by any of the participants. Similarly little evidence emerged to make conjectures about 

the depth and development of the individual participant’s advanced mathematical 

knowledge or horizonal knowledge. This allows me to conclude that this unique concept 

study seemed to be unreliable for developing the middle school teachers’ historical and 

horizonal knowledge. 

The teachers’ realizations for mathematics as a discipline, a part of their 

mathematical objects system, developed significantly different from the other facets of 

MO. At the onset of the concept study, most of the individual teachers were observed to 

have a formalist conception of mathematics. This is unsurprising as previous concept 

study literature (Davis & Renert, 2009, 2014; Davis & Simmt, 2006) has found that 

initial responses to the emphasis of realizations is often automatized and “so well-

rehearsed that they may eclipse other interpretive possibilities” (Davis & Renert, 2013, p. 
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253). To illustrate a formalist, automatized conception, consider David’s mathematical 

utterance that took place on the first day of the concept study:  

David: It might not be a math problem that you’re dealing with, but it’s 

[mathematics] the thinking. It’s the, “Here are my options, here’s what I can do, 

here’s what I can’t do, here’s how I’m going to solve this problem.” 

When the teachers were co-creating mathematical environments, specifically about the 

mathematics that they teach, their mathematical utterances often remained at the formalist 

or pre-formalist stages of mathematics. This was despite evidence suggesting that the 

teachers had more sophisticated realizations for mathematics. To illustrate, we return to 

David’s later utterances about the mathematics that he teaches: 

David: I usually kinda take a … I guess maybe a cop-out easy way out of … you 

know, this [mathematics] is logical system of problem-solving, of the rules that 

you have. 

Which contrasts with his more sophisticated understanding of research mathematics as 

intellectual pondering later described: 

David: Math PhDs think about things when you don’t need them. […] Yeah 

[imaginary numbers are intellectual pondering]. 

 The development of realizations for mathematics as a discipline was a non-linear 

evolution between differing levels of sophistication for all participants.  

7.1.1.2 Curricular Structures 

Limited evidence was collected of this knowledge structure likely due to the 

limited data collected about student interactions with teacher, curriculum, and classroom 
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collective. This is posited to be due to the design and structure of a concept study 

mathematical environment. The only generalizations possible were that individual 

teacher’s utterances and actions were consistent with the interference hypothesis for 

fraction multiplication curriculum structure. Little development of this was evident in the 

individual teacher cases. 

7.1.2 Knowledge-Producing Systems 

7.1.2.1 Classroom Collectivity 

The classroom collectivity system was static in terms of development across the 

individual cases. Again, limited evidence of this system could be collected since student 

interactions with teacher and content are not part of the concept study design. For 

example, Bailey’s mathematical utterance illustrates the type of data that I could analyze 

for classroom collectivity:  

Bailey: The teacher didn’t even help me. All I knew is what I learned and what I 

could figure out because trying to learn math is different, trying to teach yourself 

in math is different than trying to teach yourself English or history or science, 

which is a little bit like math.  

Notice that this is Bailey’s memory of her own mathematical learning experiences that 

that substructures her knowledge of her own teaching and learning of mathematics. These 

are facets of her classroom collectivity knowledge, but the concept study environment 

does not provide mathematical contexts that would readily influence the development of 

this type of conception.  
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The data collected about the contributions of each individual to the collective 

environments of the concept study was much more informative for making conclusions 

about the development of this knowledge. The language of complexity science is useful 

for describing the developmental patterns that emerged. The mathematical environments 

of this concept study supported the evolution of contributions of the individual 

participants towards the balance of the pre-conditions for complexity. For example, in 

some mathematical environments Charlotte provided internal redundancy as part of the 

collective often when discussing classroom collectivity: 

Charlotte: Yes, there is designated homework time at the end of class […] Yep, 

the rest of time is spent on practice problems […] Yes, I agree, especially when it 

is the second class, I can say: you know, the other class thought about it this way. 

However, in other collective environments Charlotte contributed significant amounts of 

diversity when discussing classroom collectivity with students: 

Charlotte: I mean I totally understand why it is equal, but no because of what we 

[middle school teachers] have been telling them up till this point […] No, I think 

that’s something that I try to teach the kids, but others probably don’t [connecting 

curriculum to other classes]. 

The concept study collective was highly dynamic in its collectivity structure, changing 

moment-to-moment while the teachers collectively engaged with mathematical tasks. 

Differing levels of mathematical expertise, as well as environmental dependent 

pedagogical expertise were both causes for developments in the individual teacher’s 

contributions to the collectivity of the concept study. These can be characterized as 
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shifting socio-mathematical norms of the collective. To illustrate this, consider David’s 

utterance:  

David: I feel like if you are saying that half is not a number then you are like in 

second grade. That is honestly what is going on in my head right now. 

The other cause was non-mathematically specific social norms. These norms played a 

part in the developing collectivity while the teachers were engaged with mathematics as 

well as other non-mathematical topics.   

7.1.2.2 Subjective Understanding 

The knowledge producing system of subjective understanding was the most 

dynamic system of the individual M4T knowledge of fraction multiplication. This is 

posited to be attributable to the design of the six emphases of the concept study. Each of 

the participants’ subjective understanding developed. Some participants demonstrated 

profound shifts in their understanding of the operator multiplication and its application to 

various number sets. For example, Bailey’s realizations of multiplication were initially: 

Bailey: I think of grouping. […] So counting and repeated addition. […] 

Multiplication of two digits is FOIL. […] Yes [FOIL is the distributive property]. 

[…] Groups of? It [the word “of”] translates to multiplication.   

These realizations for multiplication iterated in complexity, developing to include other 

realizations such as area, but also condensing through the emphasis of entailments:  

Bailey: We use multiplication in area […] I don’t think that’s [area] what 

multiplication actually is. I think we use it in area so we associate them. But I 

don’t think that’s what multiplication is. I think that multiplication is the first two 
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[on the list] […] I personally think that everything [all realizations of 

multiplication] can be put into repeated addition and grouping.  

This then developed further when considering fractions and the operation of 

multiplication on fractions: 

Bailey: Fractions can be repeated addition, somehow. […] Parts of parts, so you 

are adding parts. […] I still think its repeated addition. […] Division is 

multiplying by a fraction. […] Division is just multiplication of a fraction. […] 

Yeah [you are dividing first and then adding up the parts]. 

This type of evolution was not unique to Bailey’s subjective understanding of fraction 

multiplication, as represented in the individual cases.  

What also emerged from the data was the obvious evolving complexity of 

realizations for fraction multiplication and the embeddedness of M4T knowledge of 

fraction multiplication. The emphasis of entailments provided mathematical 

environments where realizations that appeared early in a teacher’s individual case 

evolved to mean something significantly different in later sessions. This is related to the 

collapsing of realizations explicit in the emphasis of entailments and blends. For 

example, Bailey’s utterances above show that grouping became some significantly 

different, evolving to encompass all of the other realizations for fraction multiplication: 

Bailey: I personally think that everything [all realizations of multiplication] can 

be put into repeated addition and grouping.  
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7.2 Individual M4T Development Implication and Conclusions 

The individual case studies of this research document highlight the complex, 

embedded, and highly dynamic nature of an individual’s M4T knowledge. The volatile 

nature of the teacher participants’ knowledge was due, in part, to the concept study 

environment, which was designed specifically to activate teachers’ unconscious and 

explicit knowledge. Through collective action, the teachers were able to develop their 

M4T knowledge of fraction multiplication. The claim is not that the development was a 

movement beyond their teachers’ current understandings. Rather the claim is that 

development is a change in their mathematical actions around fraction multiplication 

resulting from a collective engagement around fraction multiplication.  

This research is evidence for arguing that contemporary measures that examine 

only explicit teacher knowledge are potentially inadequate for fully assessing teacher’s 

M4T knowledge. The deficit model utilized by contemporary mathematics education 

literature depicts teacher’s M4T of fraction multiplication as lackluster when engaged in 

mathematical environments that involve various realizations of fraction multiplication. 

My research illustrates that teachers knowledge of fraction multiplication varies as they 

engage in differing mathematical situations. However, this description seems entirely 

inadequate as a means to describe fully what teachers know about fraction multiplication. 

The evidence of the diverse realizations produced during the concept study sessions, as 

described in the individual M4T cases, shows a much more complex and sophisticated 

teacher knowledge. Teachers M4T knowledge for fraction multiplication is better defined 

as an emergent representation of knowledge of fraction multiplication by the individual 

teachers instead of an explicit knowledge representation. 
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Evidence of this research study provides the means to claim a further distinction 

from explicit-objective research and tacit-emergent research on teachers’ mathematical 

knowledge for teaching. Davis and Renert (2014) stated that Ball’s MKT work (Ball, 

Thames, & Phelps, 2008) and Davis’ M4T work (Davis & Simmt, 20066; Davis & 

Renert, 2014) as congruous in certain respects. For example, Davis and Renert (2014) 

stated that “we see our categories of knowledge (mathematical objects and curricular 

structures) as paralleling their [Ball’s] subject matter knowledge and our categories of 

knowing (subjective understanding and classroom collectivity) as paralleling their 

pedagogical content knowledge. The distinction between the two can be reaffirmed 

through the use of the results of this research report. Knowing and knowledge should be 

considered as inseparable emergent phenomena and part of a teachers mathematical 

knowledge for teaching. For example, mathematical objects knowledge is evolving at a 

much slower pace than mathematical objects knowing can evolve on the personal level. 

Yet, the knowledge and knowing are both being activated in a classroom while the 

teacher is teaching. A teacher must not only harmonize this type of knowledge and 

knowing within themselves, but they must also harmonize that within all of the others 

(students) with whom they share a mathematical environment with. Professional 

categories of knowledge and knowing then “are perhaps better portrayed as nested 

phenomena than as neighboring regions” like Ball and colleagues MKT work (Davis & 

Renert, 2014, p. 92).  

 Concept studies have anecdotally been shown in the past to have a profound 

impact on developing teachers’ M4T knowledge. Evidence from my research report 

suggests that the concept study design to investigate multiplication and fraction 
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multiplication provides a context for profound developments in M4T knowledge of 

middle school teachers. The emphases of the concept study design are a viable vehicle for 

co-constructing mathematical environments where development of M4T is possible. More 

research is needed to better understand the emphases as vehicles that can be explicitly 

applied rather than as an implicit environmental construction in M4T developmental 

contexts.  

7.3 Collective Level M4T and its Development 

Two facets of M4T of fraction multiplication can be considered at the collective 

level. M4T of fraction multiplication can be considered as distributed collective 

knowledge, and M4T of fraction multiplication emerges as part of a higher order 

cognitive unity defined as a collective learner. Understanding the collective level of M4T 

of fraction multiplication as dually collective, has implications for discussing what 

development was evidenced in the concept study of this research. What follows is a 

discussion of the two levels of collectivity of M4T of fraction multiplication followed by 

the implications and conclusions for considering the development of collective M4T in 

this way. 

7.3.1 Collectively Distributed Knowledge 

In the collective case I provided evidence that supports Davis and colleagues’ 

claim that M4T knowledge is more than a static set of insights that can be identified, 

assessed, and transmitted (Davis & Renert, 2014; Davis & Simmt, 2006). For example, in 

the moments of coaction and interaction shared in the collective case, the M4T of fraction 

multiplication that emerged was necessarily coupled to the environment. Realizations 
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such as “number-line hopping” for fraction multiplication, or “grouping” for 

multiplication emerged in the same mathematical contexts but were not interpreted 

similarly by the teachers. The insight was distributed, but the individual, collective, and 

the mathematical environment had an impact on the realization. Here M4T of fraction 

multiplication is distributed rather than concentrated in individual teachers. 

7.3.2 Collective Learner as a Complex System 

This research extends the notion of coaction and the emergence of a collective 

learner as a higher order cognitive unity. Previous research defined coaction as “the 

notion of acting with the ideas and actions of others in a mutual joint way” (Towers & 

Martin, 2009a, p. 44). This research claims that coaction is the emergence of complexity 

in the form of a higher order cognitive unity called a collective learner.  A collective 

learner as a complex system has implications for how to study, assess, and utilize the 

conception of a collective learner for mathematics education research and teaching. The 

implications for defining a collective learner as a complex system that emerged from this 

research study are described below. 

7.4 Collective Level M4T Development Implications and Conclusions 

M4T has been modeled as nested complex systems of knowledge produced and 

knowledge producing systems. Davis and Renert (2014) state that the knowledge 

produced systems parallel, in some ways, the subject matter knowledge of Ball’s work 

(Ball, Thames, & Phelps, 2008) while the knowledge producing systems parallel, in some 

ways, to the pedagogical content knowledge in Ball’s work. The major difference offered 

by Davis and Renert (2014) is the theoretical difference between the ways the two 
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research agendas define knowledge and knowing. As I have already discussed, Ball’s 

work defines knowledge as a possession of an individual knower, while Davis and 

colleagues work defines knowledge and knowing as action and a structural coupling 

between the individual knower and the environment that is co-created by that knower. 

The results of this research study take this distinction one-step further. As Davis and 

Renert (2014) state, M4T knowledge is concerned with the “myriad of ways that humans 

engage with mathematics” (p. 93), which  includes the “individual, social, institutional, 

and cultural dimensions of the generation of mathematical meanings” (p. 93). M4T 

knowledge of fraction multiplication as a shared, distributed professional teacher 

knowledge is very different from a group of teachers’ knowledge of a set of unchanging 

mathematical facts. The teacher’s M4T knowledge of fraction multiplication is a complex 

interplay between knowledge produced and knowledge producing systems coupled with 

the environment in which it is produced. It is also a complex interplay between 

knowledge of mathematics and knowledge of how that mathematics is produced in a 

mathematical learning environment.  

To consider a collective learner as a complex system has implications for the 

development of M4T knowledge. In terms of practicality, it may be most productive to 

consider broader learning systems beyond the individual when concerned with 

developing M4T knowledge.  Davis and colleagues have claimed that focusing on grander 

learning systems beyond the individual can be done by focusing on the establishment of a 

classroom collective (Davis & Simmt, 2006; Davis & Renert, 2014; Davis, Sumara, & 

Luce-Kapler, 2000). This claim is similar to Towers and colleagues’ claims that thinking 

about a classroom is a collective process (Towers & Martin, 2009a; Towers & Martin, 
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2009b). This research study takes these claims one-step further and suggests that certain 

pre-conditions of the environment can promote the emergence of a collective learner and 

have significant developmental potential for individual and collective M4T knowledge of 

fraction multiplication. Further research can investigate how the emphases of a concept 

study environment can influence the emergence of a collective learner. 

7.5 Linking Collective and Individual M4T Development 

This research suggests that there are two decision-making mechanisms of the 

collective that have been defined as links between the collective learner and individual 

development of M4T knowledge of fraction multiplication. This suggests that there are 

links that exist between the collective and individual teachers' M4T of fraction 

multiplication. What follows is a discussion of the implications and conclusions possible 

from this research report for the defined links-- synergistic realization and recursive 

elaboration links. 

7.5.1 Implications for Recursive Elaboration 

Recursive elaboration is defined as a decision-making mechanism of the 

collective that expands individual and collective M4T knowledge of fraction 

multiplication development. Recursive elaboration describes a collective decision action 

in which partial fragments of realizations produced by individuals are elaborated into a 

more flexible and adaptable collective emergent realization. Moreover, findings from this 

research support the claim that M4T is a collective level, distributed knowledge much too 

vast and complex to be possessed by any one individual. Recursive elaboration could be a 

mechanism that supports individual access to the distributed body of M4T knowledge. 
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Further research could provide insights into how to foster collective activity that support 

recursive elaborations of individual realizations. The emphases of a concept study may be 

of use here. Further research can also provide insight for how much control a researcher 

or teacher can have over the emergence of recursive elaborations by the collective 

learner. 

7.5.2 Implications for Synergistic Realization 

Synergistic realization is defined as a decision-making mechanism of the collective that 

expands individual and collective M4T knowledge of fraction multiplication 

development. Realizations singularity is the collective decision action in which all 

previous realizations are abandoned for one innovation. Similar to recursive elaboration, 

synergistic realization is a mechanism that supports individual access to the distributed 

body of M4T knowledge. The realizations singularity is a collective coaction where one 

M4T realization is taken up and distributed widely to the nested individual systems of the 

collective learner. Unlike recursive elaboration, the synergistic realization can come from 

one individual. This finding is useful for professional development and classroom 

teaching of mathematics as it suggests that a resident expert could introduce the 

singularity.  Further research should be done to better understand the synergistic 

realization and whether it can be introduced intentionally by a resident expert without 

upsetting the decentralized control pre-condition. 

7.6 Conclusions 

Mathematics education research has better answers now than ever before for what 

it means to be a knowledgeable and effective mathematics teachers. There is widespread 
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agreement that teachers must have a sophisticated content knowledge of mathematics, 

knowledge of effective pedagogical techniques for mathematics, and also knowledge of 

the cognition of mathematics. There is still much work to be done for understanding the 

nuances of this knowledge. Parallel to this research agenda is the need for researchers to 

consider how best to influence the development of our understanding of the teacher 

specific knowledge domain. Concept studies have proven to be an effective mathematical 

environment for influencing the development of both individual and collective M4T 

knowledge of fraction multiplication. The results of the research add to these 

understandings, providing insights for how individual and collective notions of M4T 

develops independently and collectively in a concept study environment. Significant 

questions remain for this work. Can recursive elaboration and synergistic realizations, as 

links between individual and collective cognition, be influenced by researchers? Are 

there particular emphases of the concept study that are especially impactful for individual 

or collective M4T development? These questions and more remain as the field co-creates 

parallel research agendas for further understanding mathematical teacher knowledge and 

expertise and then understanding how to help develop these types of teacher expertise.  
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Appendix A Quick Reference Tables for Coding Scheme I 

 

 

 

 

 

Table A 1 Mathematical Objects Coding Scheme I 
Mathematical Objects: Knowledge Produced Coding Scheme I  
Historical 
Development of: 

5. Fraction Concept 
6. Number Concept 
7. Operation of Multiplication 
8. Historical References 

Orientation of 
Mathematics: 
[oral, pre-formalist, 
formalist, hyper-
formalist, post-
formalist] 

5. What is mathematics? 
6. Invented, discovered, or created? 
7. Is mathematics a static or dynamic discipline? 
8. Connection to natural world 

Advanced 
Mathematical 
Knowledge 

3. References to advanced mathematical study 
4. Use of advanced mathematical techniques for 

understanding multiplication and fraction 
multiplication 

Horizonal Knowledge 2. Connections of middle school mathematical 
curriculum to the other Pre-K–16 curriculum 

Table A 2 Curricular Structures Coding Scheme I 
Curricular Structures: Knowledge Produced Coding Scheme I  
Curriculum-as-
Planned 

1. Intended mathematics curriculum for fraction 
multiplication 

a. Textbook 
b. Design of curriculum to teach fraction 

Curriculum-as-Lived 1. Enacted mathematics curriculum for fraction 
multiplication 

a. Collectivity with students 
b. Appropriateness of curriculum 

Table A 3 Classroom Collectivity Coding Scheme I 
Classroom Collectivity Knowledge Producing Coding Scheme I  
Collectivity with 
Students 

1. Social Norms 
2. Socio-mathematical norms 

Collectivity in 
Concept Study 

1. Social Norms 
2. Socio-mathematical norms 
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Subjective Understanding Knowledge Producing Coding Scheme I  
Realizations for 
fraction 
multiplication 

1. Realizations for number 
2. Realizations for multiplication 
3. Realizations for fraction multiplication 

Students realizations 
for fraction 
multiplication 

1. Realizations for number 
2. Realizations for multiplication 
3. Realizations for fraction multiplication 

Table A 4 Subjective Understanding Coding Scheme I 
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Appendix B Quick Reference Coding Scheme II 

 

Table B 1 Condensed reference chart for Coding Scheme II 

Coding Scheme II Reference Chart 
Mathematical 
Objects of Fraction 
Multiplication 

5. Historical Development 
a. Name concept 

6. Orientation to Mathematics 
a. Define mathematics 
b. Invented, discovered, or created 
c. Static or dynamic 
d. Natural world connection 

7. Advanced Knowledge 
a. Name area of study 

8. Horizonal Knowledge 
a. Concept connection 

Classroom 
Collectivity of 
Fraction 
Multiplication 

 Collective 
mathematics 
with students 

 Collective 
mathematics 
in concept 
study 

Social Norms : 
1. Systems of rights and obligations  
2. Criteria of value 
3. Explanations and justification solutions 
4. Sense making of other’s solutions 
5. Agreement and disagreement 
6. Actions for resolving conflict 

Socio-mathematical Norms: 
1. Types of mathematical solutions 

a. Different 
b. Sophisticated 
c. Acceptable 
d. Efficient 

2. Mathematical Practices of the collective 
3. Accepted without justification 

Curricular 
Structures of 
Fraction 
Multiplication 

Curriculum-as-lived (CaL) Enacted Curriculum: 
1. Interaction Patterns (student, teacher, fraction 

multiplication) 
2. Appropriateness for images, analogies, metaphors 

that interconnect and animate 
Curriculum-as-planned (CaP) Intended Curriculum: 

1. Interference/Reorganization 
2. Concept Remediation 
3. Other learning trajectory of fraction multiplication 
4. Textbook as curriculum 

 



260 

 
 
 
 
 

Subjective 
Understanding of 
Fraction 
Multiplication 

1. Orientation to mathematical cognition 
2. Conceptual blends of topics, images, metaphors of 

FM 
3. Realizations 

a. Fractions 
b. Multiplication 
c. Fraction Multiplication 
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Appendix C Quick Reference Coding Scheme III 

 

 

Coding Scheme III Reference Chart 
Knowledge-Produced Categorizations 
Mathematical 
Objects of 
Fraction 
Multiplication 

1. Historical Development 
a. Name concept 

 

2. Advanced Knowledge 
a. Broad field 

3. Orientation to Mathematics 
a. Oral Stage 
b. Pre-formalist 
c. Formalist  
d. Hyper-formalist 
e. Post-formalist 

4. Horizonal Knowledge 
a. Concept 

connection 

Curricular 
Structures of 
Fraction 
Multiplication 

Curriculum-as-lived (CaL) Enacted Curriculum: 
1. Interaction Patterns (student, teacher, fraction multiplication) 
2. Appropriateness for images, analogies, metaphors that interconnect 

and animate 
Curriculum-as-planned (CaP) Intended Curriculum: 

1.   Interference/Reorganization 
2.   Concept Remediation 
3. Other learning trajectory of fraction multiplication 
4. Textbook as curriculum 

Knowledge-Producing Systems 
Classroom 
Collectivity of 
Fraction 
Multiplication 
 

Collective Mathematics with Students : 
1. Behaviorism 
2. Basic Constructivism 
3. Enactivism 

Collective Mathematics in Concept Study (Pre-conditions of 
complexity): 

1. Internal Diversity 
2. Internal Redundancy 
3. Decentralized Control 
4. Organized Randomness 
5. Neighbor Interactions 

Subjective 
Understanding 
of Fraction 
Multiplication 

1. Realizations 
a. Fractions 
b. Multiplication  
c. Fraction Multiplication 

 

2. Knowledge of Student 
Cognition 

a. Behaviorism 
b. Basic Constructivism 
c. Enactivism 

Table C 1 Condensed reference chart for Coding Scheme III 
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