
ABSTRACT

SCHENDEL, ERIC RICHARD. Preconditioner-based In Situ Data Reduction for End-to-End
Throughput Optimization. (Under the direction of Dr. Nagiza F. Samatova.)

Efficient handling of large volumes of data is a necessity for future extreme-scale scientific
applications and database systems. To address the growing storage and throughput imbalance
between the data production on such systems and their I/O subsystems, reduction of the handled
data volume by compression is a reasonable approach. However, quite often many scientific data
sets compress poorly, referred to as hard-to-compress datasets, due to the negative impact of
highly entropic information represented within the data. Lossless compression efforts on such
datasets typically do not yield more than a 20% reduction in size when exact reproduction of the
original data is required. Moreover, modern applications of compression for hard-to-compress
scientific datasets hinder end-to-end throughput performance due to overhead timing costs of
data analysis, compression, and reorganization. When overhead costs of applying compression
are greater than end-to-end performance gains obtained by the data reduction, utilization of a
compressor has no practical benefit for scientific systems.

A difficult problem in lossless compression for improving scientific data reduction efficiency
and throughput performance is to identify the hard-to-compress information and subsequently
optimize the compression techniques. To address this challenge, we introduce the In Situ
Orthogonal Byte Aggregate Reduction Compression (ISOBAR-compress) methodology as a
preconditioner of lossless compression to identify and optimize the compression efficiency and
throughput of hard-to-compress datasets. Out of 24 scientific datasets from both the public
domain and peta-scale simulations, ISOBAR-compress accurately identified the 19 that were
hard-to-compress. Additionally, ISOBAR-compress improved data reduction by an average of
19% and increased compression and decompression throughput by an average speedup of 24.1
and 33.6, respectively.

Additionally, dataset preconditioning for lossless compression is a promising approach for
reducing disk and network I/O activity to address the problem of limited I/O bandwidth in
current analytic frameworks. Hence, we also introduce a hybrid compression-I/O methodology for
interleaving I/O activity with data compression to improve end-to-end throughput performance
along with the reduced dataset size. We evaluate several interleaving strategies, present theoretical
models, and evaluate the efficiency and scalability of the approach through comparative analysis.
The hybrid method when applied to 19 hard-to-compress scientific datasets demonstrates a
12% to 46% increase in end-to-end throughput. At the reported peak bandwidth of 60 GB/s of
uncompressed data for a current, leadership-class parallel I/O system, this translates into an
effective gain of 7 to 28 GB/s in aggregate throughput.

Lastly, it is important that scientific applications further streamline their end-to-end through-
put performance beyond only preconditioning datasets for compression. The concept of applying
a preconditioner is generalizable for other techniques that allow optimizing performance by data
analysis and reorganization. For example in present-day scientific simulations, there is a drive to
optimize in situ processing performance by inspecting the layout structure of a generated dataset
and then restructuring the content. Typically, these simulations interleave dataset variables in
memory during their calculation phase to improve computational performance, but deinterleave
the data for subsequent storage and analysis. As a result, an efficient preconditioner for data
deinterleaving is critical since common deinterleaving methods provide inefficient throughput
and energy performance. To address this problem, we present a deinterleaving method that
is high performance, energy efficient, and generic to any data type. When evaluated against
conventional deinterleaving methods on 105 STREAM standard micro-benchmarks, our method
always improved throughput and throughput/watt. In the best case, our deinterleaving method
improved throughput up to 26.2x and throughput/watt up to 7.8x.

© Copyright 2014 by Eric Richard Schendel

All Rights Reserved

Preconditioner-based In Situ Data Reduction for End-to-End Throughput Optimization

by
Eric Richard Schendel

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina

2014

APPROVED BY:

Dr. Rada Y. Chirkova Dr. Christopher G. Healey

Dr. Frank Mueller Dr. Nagiza F. Samatova
Chair of Advisory Committee

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3647579
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3647579

DEDICATION

To my loving wife, Bushra Iftikhar Schendel,
whose inspirations and enduring sacrifices are beyond measure.

ii

BIOGRAPHY

Eric R. Schendel began his Doctor of Philosophy in Computer Science at North Carolina State
University in fall of 2010 with Dr. Nagiza Samatova as his advisor. He earned a Bachelor of
Science degree in Computer Engineering, Electrical Engineering track, with Mathematics minor
from Texas A&M University, College Station, TX in 2001. In addition, he received a Master of
Science in Computer Science from Texas A&M University at Corpus Christi in 2010. Prior to
starting his doctorate program, Eric had extensive industry experience as a software architect
and engineer working at companies such as Advanced Micro Devices, Hewlett Packard, and
IBM. Moreover, he had a research aide appointment at Argonne National Laboratory during his
doctoral study.

iii

ACKNOWLEDGEMENTS

Completing this dissertation is realizable due to the support of many people and institutions.
Foremost, I am forever thankful to my advisor Dr. Nagiza Samatova for mentoring my academic,
professional, and personal growth. Her wisdom, intellect, and caring nature have been awe-
inspiring and motivation to reach a potential of myself beyond initial awareness.

In addition, I am grateful to my PhD committee members for their support and constructive
criticisms during the course of my work: Professors Rada Chirkova, Frank Mueller, Christopher
Healey, Xiaosong Ma, and Peng Ning. I am further thankful to Dr. Douglas Reeves and Andrew
Sleeth for their advice and wisdom necessary to complete the PhD program at North Carolina
State University.

During the course of completing this dissertation, I was fortunate enough to collaborate
with exceptional people at notable research institutions. I am grateful to Venkat Vishwanath,
Michael Papka, Robert Ross, and Robert Latham for their invaluable insights and allocation of
leadership-class computing resources at Argonne National Laboratory. In addition, leadership-
class computing resources at Oak Ridge National Laboratory were made available during
research collaboration with Scott Klasky. I am also thankful to Qing Lu at Oak Ridge National
Laboratory, Jackie Chen and Hemanth Kolla at Sandia National Laboratory, C.S Chang and
Stephane Ethier at Princeton Plasma Physics Laboratory, and Seung-Hoe Ku at New York
University for collaborative access to their profound expert knowledge.

There are many other people I interacted with during the course of my PhD program, and I
now call them life-long friends. If it was not for them, my continuous growth and sanity would
have not been possible: John Jenkin, David (Drew) Boyuka, Saurabh Pendse, Neil Shah, Steven
Harenberg, Ye Jin, Kanchana Padmanabhan, Sriram Lakshminarasimhan, Xiaocheng Zou, Isha
Arkatkar, Ramona Seay, Zhenhuan Gong, Houjun Tang, and Terry Rogers.

The work within this dissertation was funded by the U.S. Department of Energy, Office
of Science (SciDAC SDM Center), and the U.S. National Science Foundation (Expeditions in
Computing and EAGER programs).

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

Chapter 1 Introduction . 1
1.1 Hypothesis . 1
1.2 Proposed Approaches . 2

1.2.1 ISOBAR Preconditioner of Lossless Compression 2
1.2.2 ISOBAR Hybrid Compression-I/O Interleaving Method 3
1.2.3 High-performance Deinterleaving Method for Scientific Data 5

Chapter 2 ISOBAR Preconditioner for Effective and High-throughput Lossless
Data Compression . 7

2.1 Introduction . 7
2.2 Method . 9

2.2.1 ISOBAR-analyzer . 12
2.2.2 ISOBAR-partitioner . 14
2.2.3 EUPA-selector . 15
2.2.4 Input Array Chunking and Output Merging 16

2.3 Performance Evaluation . 17
2.3.1 Datasets . 18
2.3.2 Overall Performance of Identification and Improvement 20
2.3.3 Effect of ISOBAR-analyzer . 22
2.3.4 Optimization with EUPA-selector . 23
2.3.5 Single-Precision Data Compression . 23
2.3.6 Consistent Improvement over the Entire Simulation 23
2.3.7 Robustness with Different Data Linearization 26
2.3.8 Faster Decompression Throughput . 27

2.4 Related Work . 29
2.5 Conclusion . 31

Chapter 3 ISOBAR Hybrid Compression Interleaving for Large-scale Parallel
I/O Optimization . 32

3.1 Introduction . 32
3.2 Background . 34

3.2.1 ISOBAR Compression . 34
3.2.2 ADIOS . 35

3.3 Hybrid Compression-I/O for Data Staging Architectures 35
3.3.1 Method . 35
3.3.2 ISOBAR Analysis . 39
3.3.3 Data Layout in ADIOS . 41

3.4 Performance Modeling . 43
3.4.1 Model Preliminaries . 43

v

3.4.2 Base Case: No Compression . 46
3.4.3 I/O Node Compression Case . 46
3.4.4 Compute Node Compression Case . 49

3.5 Experiments and Results . 53
3.5.1 Experimental Setup . 54
3.5.2 Write Performance . 55
3.5.3 Read Performance . 55
3.5.4 Performance Modeling . 58

3.6 Related Work . 59
3.7 Conclusion . 60

Chapter 4 Generic High-performance Method for Deinterleaving Scientific
Data . 61

4.1 Introduction . 61
4.2 Background . 62
4.3 Method . 63

4.3.1 Cache Prefetching on Blocks of Data . 63
4.3.2 Using the Registers as a Vector Transposition Buffer 64
4.3.3 Optimizing for Full Cache Line Writes . 66
4.3.4 A Simple Example of Our Deinterleaving Method 66

4.4 Performance Evaluation . 67
4.4.1 Experimental Setup . 67
4.4.2 Deinterleaving Throughput Performance 68
4.4.3 Deinterleaving Energy Performance . 70

4.5 Related Work . 71
4.6 Conclusion . 72

Chapter 5 Conclusion . 73
5.1 Future Work . 73

5.1.1 In-place Deinterleaving Future Work . 74
5.1.2 In-place Lossless Compression Future Work 75

References . 76

Appendix . 83
Appendix A Dataset Descriptions . 84

vi

LIST OF TABLES

Table 2.1 Characteristics of Simulation Output Datasets from Seven Applications 8
Table 2.2 ISOBAR-compress Performance Summary . 9
Table 2.3 Statistical Information about Test Datasets . 19
Table 2.4 ISOBAR-analyzer’s Predictions . 20
Table 2.5 Performance Comparison . 21
Table 2.6 Improvement of ISOBAR-Sp Preference . 24
Table 2.7 Improvement of ISOBAR-CR Preference . 25
Table 2.8 Performance on Single-precision Datasets . 25
Table 2.9 Decompression Throughput Comparison . 28
Table 2.10 Comparison among ISOBAR-compress, FPC, and fpzip 29

Table 3.1 Average Metadata Overhead for Different Interleaving Strategies 43
Table 3.2 Input Symbols for the Performance Models . 44
Table 3.3 Output Symbols for the Performance Models 45
Table 3.4 Dataset Evaluations for the Best Strategy of Interleaving at Compute Nodes . 58

Table 4.1 Instruction Set Architecture for Deinterleaving Methods 70

vii

LIST OF FIGURES

Figure 2.1 Bit frequencies of 4 representative datasets; x-axis represents bit position
(1 to 64), y-axis represents the probability distribution ranging from 0.5 to
1.0 of the more common bit values at that position (0 or 1) 10

Figure 2.2 ISOBAR-compress preconditioner workflow 11
Figure 2.3 Element and byte-level representation of an input array 12
Figure 2.4 Byte-column reduction selection example . 13
Figure 2.5 Example of ISOBAR-partitioner operation . 15
Figure 2.6 Chunking a dataset (array of input elements) 17
Figure 2.7 ISOBAR-compress merged output . 18
Figure 2.8 Chunking size for settled compression ratios 22
Figure 2.9 Compression ratio improvement (ΔCR(%), Eq. 2.2) for multiple datasets

with different linearization schemes: original order, Hilbert-linearized order,
and random order . 26

Figure 2.10 Compression speed-up (Sp) for multiple datasets with different linearization
schemes: original order, Hilbert-linearized order, and random order 27

Figure 3.1 A peta-scale computing system with staging environment 36
Figure 3.2 The hybrid compression-I/O method; interleaved compression may occur at

the compute nodes or the I/O nodes . 37
Figure 3.3 Possible scenarios for compression and incompressible data write times.

tcompress is time to compress the compressible byte stream and tincomp_write

is time to write the incompressible byte stream to disk 38
Figure 3.4 Relationship between entropy H(X) and probability P (X = 1) of bit value

within set X is 1 . 39
Figure 3.5 Calculated entropy of a zion double-precision floating-point variable dataset

from a GTS simulation run at bit and byte-column granularity 40
Figure 3.6 Relative frequency of each byte value from a sample set of byte-columns . . . 41
Figure 3.7 Data layout (with associated metadata) for a single timestep 42
Figure 3.8 Compute-I/O interleaving strategy with compression at the I/O nodes 47
Figure 3.9 Task dependencies for the I/O node compression case 48
Figure 3.10 Compute-I/O interleaving strategy with compression at the compute nodes . 50
Figure 3.11 Task dependencies for the compute node compression case 51
Figure 3.12 Model and empirical end-to-end write throughput versus number of compute

nodes (weak scaling) . 56
Figure 3.13 Model and empirical end-to-end read throughput versus number of compute

nodes (weak scaling) . 57

Figure 4.1 FLASH data in interleaved and deinterleaved layouts; each ρf , Pf , and Tf

for f = 0 to m refers to the value of ρ, P, and T of the simulation at the f th

matrix row . 62
Figure 4.2 Matrix A being partitioned into M blocks of size mb × n 64
Figure 4.3 Each block of matrix A partitioned into n column vectors 65

viii

Figure 4.4 The partition and transposition steps of our deinterleaving method performed
on a simple 8 × 3 matrix of 8-byte elements optimized for cache line writes of
32 bytes . 67

Figure 4.5 Throughput performance applying STREAM micro-benchmarks when dein-
terleaving single-precision, double-precision floating-point (FP), and byte
variables on the AMD Opteron system utilizing all 16 cores 69

Figure 4.6 Throughput performance applying STREAM micro-benchmarks when dein-
terleaving single-precision, double-precision floating-point, and byte variables
with 16-variable interleaved data on the Intel i7 system utilizing all cores . . 69

Figure 4.7 Normalized energy performance measurements (throughput/watt) collected
with power meter during STREAM throughput benchmarks on Intel system . 71

ix

Chapter 1

Introduction

As exascale computing comes closer to becoming reality and more powerful High Performance
Computing (HPC) systems become available, the complexity of scientific simulations and analyses
has grown commensurately. Unfortunately, the data I/O subsystems offered by these systems
have not kept up, which is leading to a serious data bottleneck in read and write throughput
performance of HPC applications.

Utilization of I/O staging, optimized analytic frameworks, and compression is becoming
commonplace to help cope with the growing gap between computing power and I/O bandwidth
in current petascale HPC environments. While providing increased and more consistent com-
putational performance, the sheer scale of the data necessitates data reduction methodologies.
This prompts the technical challenge of identifying effective and low-overhead data reduction
methods for boosting I/O throughput performance for large-scale systems.

In this thesis, we investigate the challenges and introduce methods for improving end-to-end
data throughput required for the future of exascale computing. Traditionally, compression is
inappropriate for improving I/O throughput of data generated by HPC simulations due to
timing costs added that negatively affect overall throughput performance. However, we argue
that the goals of reducing the data size footprint and improving end-to-end throughput for both
storage and analytics can in fact be complementary.

1.1 Hypothesis

By our motivation to have compression and I/O performance work in concert, we present the
following hypothesis to support our thesis:

Application of preconditioners for lossless compression and layout reorganization optimizes
data reduction without loss of fidelity and improves end-to-end throughput for data storage,
retrieval, and analysis.

1

1.2 Proposed Approaches

1.2.1 ISOBAR Preconditioner of Lossless Compression

In the last ten years of High Performance Computing (HPC), there has been an increasing
imbalance between the amount of data being produced by high-speed processors and the file
system bandwidth [58, 74]. This imbalance necessitates the need to reduce the data before it is
written to the file system; but due to the increasing complexity of the scientific data from many
simulations, standard lossy and lossless compression techniques often become limited in their
usefulness [25]. Improving the identification of difficult to compress content within scientific
data can help optimize general lossless compression techniques.

Problems and Challenges

Scientific datasets typically comprise of single- and double-precision floating-point values. Com-
pression of these scientific datasets is complicated by the fact that scientists cannot sacrifice
simulation fidelity, especially when saving simulation checkpoints. This excludes the possibility
of using lossy compression as a viable data reduction method for simulations. On the other hand,
lossless compression techniques typically offer no more than 20% reduction on many single- and
double-precision floating-point scientific datasets [12].

There are a number of technical challenges in utilizing lossless compression in the scientific
computing environment. Scientific datasets are typically considered hard-to-compress due to the
minute gains obtained from the use of lossless compression processes to reduce the data size.
Also, these techniques do not alleviate the constraints on file system bandwidth. For example,
FPC and bzip2 [11, 75] do not provide enough compression throughput to justify the data
reduction, while techniques such as zlib and RCFile [29, 38] improve compression throughput
but sacrifice the compression ratio. Moreover, the low throughput of data compression and
decompression makes these techniques hardly suitable for in situ processing (in place processing
of the data during a simulation run), which is required for applications such as those with
simulation checkpoint and restart data.

Approach and Results

To bridge the gap between data size reduction and compression throughput performance, we
introduce a novel method that enables fast, effective, and high-throughput reduction of single-
and double-precision floating-point scientific data. The intuition behind this method arises from
the use of preconditioners for improving the convergence rate of iterative solvers in linear algebra,
such as Algebraic Multigrid (AMG) [23], Quasi-Minimal Residual (QMR) [26], LDL solver [7],
and others. Although preconditioners are widely used by applications including aeronautics and

2

fluid dynamics, preconditioning techniques to optimize input for solvers have not been used in
the lossless data-compression realm to our knowledge.

The lossless compression preconditioner we introduce is called In Situ Orthogonal Byte
Aggregate Reduction Compression (ISOBAR-compress). ISOBAR-compress allows fast analysis
of data and is capable of identifying characteristics that result in poor compression ratio and
compression/decompression throughput. The preconditioner analyzes the compressibility of
the data and creates the appropriate pipelines for compression. Specifically, it decides how to
partition data into compressible and incompressible segments, how to linearize multi-dimensional
data, and which compressor should be used to optimize compression performance. This enhances
the compression efficiency in terms of the compression throughput as well as the compression
ratio.

ISOBAR-compress was evaluated against 24 scientific datasets generated by real-world
simulations and those available from the public for evaluating compression technologies. These
scientific datasets are from various disciplines including combustion, physics, and astrophysics.
Through empirical evaluations by applying various compression techniques [12, 53], 19 of the
24 were determined to be hard-to-compress. ISOBAR-compress was able to accurately identify
all 19 of these hard-to-compress datasets along with isolate the segments to be considered
incompressible. Furthermore, after ISOBAR-compress preconditioned the dataset based on its
findings, it improved data reduction by an average of 18.6% and increased compression and
decompression throughput by an average speedup of 24.1 and 33.6, respectively.

1.2.2 ISOBAR Hybrid Compression-I/O Interleaving Method

Using preconditioners of lossless compression to reduce the amount of data placed on the file
systems only partially solves the problem of the growing gap between computing power and
I/O bandwidth in current peta-scale HPC environments. Limitations on disk I/O performance
of HPC systems have lead to a serious bottleneck in read and write performance in scientific
applications [9, 64]. In addition, increasing frequency of checkpoint operations performed by
scientific applications further adds to the I/O overload [82]. Ideally, the solution to the I/O
bottleneck will involve both data reduction and parallel I/O access pattern optimization.

Problems and Challenges

The prevailing strategy to improve I/O performance in current peta-scale systems is to offload
the burden of I/O transactions to dedicated I/O nodes in the system [3]. This data staging
architecture allows minimal idle time on the compute nodes while the I/O nodes handle the
rate-limiting disk writes and reads collectively. However, given the trend of ever-increasing
simulation data sizes, combined with the need to checkpoint simulation state to minimize data

3

loss in the face of node failure, the I/O offloading approach alone cannot keep up with the
computational throughput available [57].

Unfortunately, data compression and parallel I/O performance optimization strategies have
traditionally been in conflict. State-of-the-art I/O middleware solutions, such as ADIOS [55],
HDF5 [83], and PnetCDF [52], have no native support for write compression in a parallel context.
This is due to the complexity of handling the compressed, non-uniform data, which requires
synchronization between all nodes performing shared-file I/O. Additionally, we observed that
addressing the integration of compression with I/O strategies still leaves the technical challenge
of absorbing the costs of compression and overhead in parallel I/O performance.

Approach and Results

By applying ISOBAR preconditioner techniques to a data staging architecture and incor-
porating the popular ADIOS I/O framework as the I/O backend, we present the ISOBAR
Hybrid Compression-I/O methodology for data reduction and I/O optimization. This is a novel
compression-I/O interleaving strategy for effective parallel compression with state-of-the-art
I/O performance.

The ISOBAR Hybrid Compression-I/O strategy simultaneously processes the compressible
and incompressible components of the data as identified by the ISOBAR preconditioner. The
input data is partitioned into two streams: compressible and incompressible data. The compress-
ible stream is compressed and then written to disk, while the incompressible stream can be
immediately written to disk. There is no dependency between the two streams, so operations on
the streams are independent. Thus, the hybrid method first issues an asynchronous write of the
incompressible stream, and then it begins compressing the compressible stream. This enables
immediate asynchronous transfer and writing of incompressible data while compression is applied
concurrently to the remainder before it is written. This technique hides the compression costs
and fully utilizes all compute, network, and I/O resources of the data staging architecture.

By applying the ISOBAR hybrid compression-I/O methodology against 19 real-world hard-
to-compress scientific datasets, it exhibited read and write performance gains proportional to
the degree of data reduction, which ranges as high as 46% on scientific datasets. This would
translate into an effective increase of 28 GB/s bandwidth over the peak aggregate throughput
of 60 GB/s of uncompressed data offered by the leadership-class Lustre parallel filesystem at
Oak Ridge National Labs [57]. Even under worst-case conditions, where the dataset is highly
entropic and difficult to compress, we show that our system still maintains a gain in throughput
over the state-of-the-art.

Since it is impossible to evaluate the performance gains of this methodology on every possible
cluster configuration, it is also desirable to have an analytical performance model. A performance

4

model allows prediction of performance characteristics on new hardware and software, and aids
application developers in configuration choices. Therefore,we developed a performance model
for this methodology, which demonstrates a high degree of accuracy through validation against
empirical data.

1.2.3 High-performance Deinterleaving Method for Scientific Data

Currently, a major restriction placed on the effectiveness of high-performance compression
methods is the cost of data reorganization and multi-pass operations, which is against the
spirit of in situ processing. Even in present-day scientific simulations, there is a similar drive to
improve in situ performance due to lack of effective data management operations especially when
transitioning between their calculation and subsequent analysis and storage phases. In our thesis,
we explored these challenges and provide a generic method for improving throughput performance
and reducing energy utilization of start-of-the-art compression and analysis methodologies
leveraged by modern HPC systems.

Problems and Challenges

Compression, analysis, and indexing methods within the HPC community typically require
reorganization of scientific data at varying data type granularities [8, 41], such as bytes, single-
and double-precision floating-points, etc. A common data reorganization technique utilized
by scientific simulations for improving analysis performance is the deinterleaving of data.
Deinterleaving is the transformation of interleaved variables generated during the calculation
phase of a simulation into a grouping of individual variables to be contiguous in memory
and storage. After deinterleaving data at the byte level, compression, precision-level layout
operations, and compression-based indexing technologies are more effective in terms of throughput
performance and space reduction.

Commonly applied deinterleaving methods for compression and analysis in the scientific
community were found to be ineffective for in situ processing due to poor processor cache
efficiency and energy performance since they were geared more towards post-processing analysis.
Alternative and better performing deinterleaving methods were identified but unfortunately
were found to be overly specialized (such as square matrices of size 2n × 2n) and not fitting for
general application on modern systems.

Approach and Results

To address the challenge of improving state-of-the-art compression and analysis performance for
in situ processing, our focus was on creating an out-of-place deinterleaving method (OPD) that
is high performance, energy efficient, and generic to any variable data type. We created such

5

a deinterleaving method that inherently exploits hardware cache prefetching, reduces memory
accesses, and optimizes use of complete cache line reads and writes.

For evaluation, we use the accepted STREAM benchmark, which is useful for evaluating
memory throughput performance of single- and multi-core I/O-intensive functions that are
sensitive to system architecture characteristics. We collect throughput performance metrics on
105 STREAM micro-benchmarks and test across both AMD and Intel systems. We deinterleave
combinations of multiple data types (bytes, single-precision, double-precision), columns (up
to 16 variables), and input buffer sizes. In addition, we compare the performance against
general deinterleaving methods such as standard (column-based) and strided (row-based). OPD
always out performs the general deinterleaving methods and when compared to the next best
deinterleaving method, our method demonstrates a performance improvement in throughput up
to 26.2x and energy effectiveness (throughput/watt) up to 7.8x.

6

Chapter 2

ISOBAR Preconditioner for
Effective and High-throughput
Lossless Data Compression

2.1 Introduction

In the last ten years of High Performance Computing (HPC), we have seen an increasing
imbalance between the high speed processors of the machine and the file system bandwidth.
This imbalance necessitates the need to reduce the data before it is written to the file system;
but due to the increasing complexity of the data from many simulations, standard compression
techniques often become limited in their usefulness. Lossless compression techniques offer no
more than 20% reduction on many single and double-precision floating-point scientific datasets
that we have tested on. These datasets are considered hard-to-compress due to the minute gains
obtained from the use of such compression processes to reduce the data size. Moreover, the low
throughput of data compression and decompression makes these techniques hardly suitable for
in situ processing (in place processing of the data during simulation run), which is required for
applications, such as those with simulation checkpoint and restart data.

To bridge this gap, we introduce a strategy that enables fast, effective, and high-throughput
reduction of single- and double-precision floating-point scientific data. The intuition behind
this method arises from the use of preconditioners for improving the convergence rate of
iterative solvers in linear algebra, such as Algebraic Multigrid (AMG) [23], Quasi-Minimal
Residual (QMR) [26], LDL solver [7], and others. Other preconditioning processes such as matrix
factorization (e.g., QR factorization) are widely used by applications including aeronautics and
fluid dynamics. To the best of our knowledge, such preconditioning techniques optimizing input
for solvers have not been used in the lossless data-compression realm.

7

Table 2.1: Characteristics of Simulation Output Datasets from Seven Applications

Applications Research Area Variable(s) Data Type Reference
GTS Fusion Plasma Core density, potential double [78]
XGC Fusion Plasma Edge igid, iphase double, integer [46]
S3D Combustion temperature, vmagnitude float [16]
FLASH Astrophysics velocity double [28]
MSG NAS Parallel Benchmark (NPB) and ASCI Purple bt, lu, sp, sppm, sweep3d double [11]
NUM Numeric Simulations brain, comet, control, plasma double [13, 67]
OBS Measurements of Satellite error, info, spitzer, temp double [12]

The lossless compression preconditioner introduced in this paper is called In Situ Orthog-
onal Byte Aggregate Reduction Compression (ISOBAR-compress). ISOBAR-compress allows
fast analysis of data and is capable of identifying characteristics in data that result in poor
compression ratio and compression/decompression throughput. Our preconditioner analyzes
the compressibility of data and creates the appropriate pipelines for compression of various
datasets. Specifically, it decides how to partition data into compressible and incompressible
segments, how to linearize multi-dimensional data, and also which compressor should be used
to optimize compression performance in terms of storage or speed (user-specified). ISOBAR-
compress essentially circumvents the additional complexities presented by multi-dimensional
data by performing roughly the same for original data linearized in different means. Upon testing
ISOBAR-compress on 24 scientific datasets of 7 applications summarized in Table 2.1 (see
Appendix A for more details), we found that 19 of them were identified as ISOBAR-compress
improvable hard-to-compress datasets. On these datasets, ISOBAR-compress provided both
higher throughput (varying from 100MB to 450MB per second) and improved compression ratios
than those obtained without its use; 2 datasets had about 40% increase in compression ratio
(ΔCR, Eq. 2.2), 13 of 19 had at least a 20% increase in the same, and the other 6 datasets
experienced compression enhancements in the range of [5%, 10%]. In addition, ISOBAR offered
a multi-fold increase in compression and decompression throughputs. [See Table 2.2 for some
examples of ISOBAR-compress performance and Results section for details.]

CR = Original Data Size

Compressed Data Size
(2.1)

ΔCR = (CRISOBAR

CRStandard
− 1) × 100% (2.2)

Sp = Throughput of ISOBAR-compress

Throughput of Standard (De-)Compressor
(2.3)

We aim to optimize the solver (i.e., compressor) portion of the data reduction pipeline by

8

Table 2.2: ISOBAR-compress Performance Summary

Dataset Δ CR (%)1 TPC
2 SpC

3 TPD
4 SpD

5

GTS 10.15 111.7 8.05 551.90 5.01
XGC 14.09 76.83 21.17 388.87 51.92
S3D 32.56 104.73 31.45 424.79 63.12
FLASH 17.52 455.83 35.89 1617.02 14.19
1 Δ CR (%): Percentage improvement of compression ratio (see

Equation 2.2) comparing to the best alternative
2 TPC: Compression throughput in MB (megabyte) per second
3 SpC: Speed-up of compression (see Equation 2.3)
4 TPD: Decompression throughput in MB per second
5 SpD: Speed-up of decompression (see Equation 2.3)

enabling our preconditioner to function with any type of general-purpose compressors. Thus, a
user can specify a preference in compressor to use with little to no change to our preconditioning
method. We commonly use zlib and bzlib2 as solvers, but could just as easily use fpzip,
FPC, and various other tools (each may provide a different tradeoff in terms of throughput and
compression ratio).

2.2 Method

To understand what makes datasets hard-to-compress, we analyzed several double-precision
floating-point datasets (64-bit) at the bit-level for their probability distributions (see Figure
2.1). When a bit position has a probability distribution of 1.0, it means that there is an absolute
guarantee that the bit position value will be either 0 or 1 for all the values in the entire
dataset. On the other hand, a probability distribution of 0.5 means the bit value for a given
bit position has an equal probability of either being 0 or 1 for all the values. Based on this
observation and experimentation, xgc_igid, gts_zeon, and flash_gamc (see Figure 2.1) are
considered hard-to-compress datasets, whereas msg_sppm is not. Often, the first two bytes have
high probabilities due to the representation of double-precision values as exponent and mantissa
segments. Exponent values are often close together due to locality of data. Mantissa bytes can,
in some cases have high probability based on degree of approximation and amount of precision
needed, but are typically not predictable. The assumption is that the 0.5 probability distribution
bits made the dataset hard-to-compress due to lack of predictability; this lack of predictability,
or presence of randomness can be considered as noise in the data. In signal processing, filtering
or denoising methods are widely used to improve the compression efficiency (a compressor’s
applied performance on a dataset) of a signal by discarding the noise [62]. Inspired by this idea,

9

Figure 2.2: ISOBAR-compress preconditioner workflow

11

2.2.2 ISOBAR-partitioner

Once the ISOBAR-analyzer identifies all compressible byte-columns for reduction, the next step
is to determine whether the input of elements qualifies as a candidate for lossless compression
improvements. These improvements are readily available through the ISOBAR-compress work-
flow’s remaining processes. Identification types for compressibility improvement for the entire
dataset fall under two categories: improvable, or undetermined. This determination is handled
by the ISOBAR-partitioner process. If none or all of the columns are selected for reduction,
then the input dataset is considered undetermined, where the entire dataset is then passed to
the compressor process. If the dataset is identified as improvable, then the ISOBAR-analysis
selected byte-columns are compressed, while the remaining byte-columns are not. Algorithm 1
provides the operational data flow combining the ISOBAR-analysis and ISOBAR-partitioner
processes.

Algorithm 1: ISOBAR-compress
Input:
X—Set of input elements to be compressed
E—End user’s preference: throughput or ratio
Output:
X ′—Compressed array
Data:
S—ISOBAR-analyzer output array
C—Compressible bytes of input elements
C ′—Compressed compressible bytes of input elements
I—Incompressible bytes of input elements
M—Metadata

1 S← ISOBAR-analyzer(X)
2 if S = {0, 0, . . . , 0} or S = {1, 1, . . . , 1} then
3 X ′ ← compressor(X, E)

4 else
5 {C, I, M} ← ISOBAR-partitioner(S, X)
6 C ′ ← compressor(C, E)
7 X ′ ← {C ′, I, M}
8 return X ′

14

of performance is the most desired by the end-user?” While some users may only want to save
disk space and hence desire the highest compression ratio rather than compression throughput,
most others, including scientists running peta-scale simulation codes (XGC, GTS, etc.), would
desire a technique that provides the highest compression throughput with reasonably acceptable
(but perhaps not the best) compression ratio. To preserve end-user flexibility in regards to these
choices, we designed the End User’s Preference Adaptive Selector (EUPA-selector).

The EUPA-selector is a deterministic process that selects the most suitable lossless compres-
sion framework for applying to all the compressible bytes selected by ISOBAR-analysis during
the compression process of the workflow. The selector makes a decision based on the evaluation
of an input training sample acquired from the input dataset, end-user criterion, and lossless
compressor evaluations.

For the purpose of this paper, the ISOBAR-compress workflow will be utilized as a black
box solution where the most commonly known compression algorithms (zlib and bzlib2) are
applied by the EUPA-selector. The selector is designed to make a decision on which standard
compression method and byte-level linearization will provide the best performance for the
end-user’s preference. For example, although the EUPA-selector inherently chooses the technique
that provides the best compression ratio, the user can instruct the selector to choose a faster
method as long as the compression ratio is above a certain, specified threshold. The selector
is implemented by first testing each combination of the standard compression method and
linearization strategy on sample sets of random elements from the input dataset. Based on
the results from the corresponding combinations, the EUPA-selector will make a decision to
use either bzlib2 or zlib as the standard compression method and apply either row-based
or column-based linearization. Regardless of whether an input dataset to ISOBAR-analysis is
identified as improvable or not, the EUPA-selector will choose the optimal standard compression
method (zlib or bzlib2) and linearization strategy for end-users. Based on our experimentations,
datasets identified as improvable will have a better compression ratio whether zlib or bzlib2
is used as the standard compression method.

2.2.4 Input Array Chunking and Output Merging

Scientific information generated from extreme-scale simulations can easily expand beyond
terabytes of archival data, which is impractical for a lossless compressor to handle at a post-
processing stage. Compressing an extreme-scale generated dataset as a single input array of
elements is problematic due to a single-pass timing cost along with system memory limits.
Therefore, it is practical for a lossless compressor to segment an input array into chunks (see
Figure 2.6) of manageable data for pipelining to an in situ process of a workflow.

A minimum chunk size is required by the ISOBAR-compress workflow in order for the

16

Table 2.3: Statistical Information about Test Datasets

Dataset Data Type
Set Size Number of Unique Value Shannon Randomness
(MB) Elements (millions) (percent) Entropy (percent)

gts_phi_l double 42 5.5 99.9 12.05 99.9
gts_phi_nl double 42 5.5 99.9 12.05 99.9
gts_chkp_zeon double 18 2.4 99.9 14.68 99.9
gts_chkp_zion double 18 2.4 99.9 15.12 99.9
xgc_igid 64-bit integer 146 19.2 22.6 13.81 100.0
xgc_iphase 8 doubles 1170 153.4 7.7 12.32 76.4
s3d_temp single 77 20.2 45.9 12.21 95.4
s3d_vmag single 77 20.2 49.9 12.81 99.9
flash_velx double 520 68.1 100 24.34 100
flash_vely double 520 68.1 100 25.74 100
flash_gamc double 520 68.1 100 11.26 100
msg_bt double 254 33.3 92.9 23.67 94.7
msg_lu double 185 24.2 99.2 24.47 99.7
msg_sp double 276 36.2 98.9 25.03 99.7
msg_sppm double 266 34.8 10.2 11.24 44.9
msg_sweep3d double 119 15.7 89.8 23.41 97.9
num_brain double 135 17.7 94.9 23.97 99.5
num_comet double 102 13.4 88.9 22.04 93.1
num_control double 152 19.9 98.5 24.14 99.6
num_plasma double 33 4.4 0.3 13.65 61.9
obs_error double 59 7.7 18.0 17.80 77.8
obs_info double 18 2.3 23.9 18.07 85.3
obs_spitzer double 189 24.7 5.7 17.36 70.7
obs_temp double 38 4.9 100.0 22.25 100.0

19

Table 2.4: ISOBAR-analyzer’s Predictions

Dataset HTC†? HTC Bytes(%) Improvable?
gts_chkp_zeon Yes 75% Yes
gts_chkp_zion Yes 75% Yes
gts_phi_l Yes 75% Yes
gts_phi_nl Yes 75% Yes
xgc_igid Yes 37.5% Yes
xgc_iphase Yes 75% Yes
s3d_temp Yes 25% Yes
s3d_vmag Yes 50% Yes
flash_gamc Yes 62.5% Yes
flash_velx Yes 75% Yes
flash_vely Yes 75% Yes
msg_bt No 0% No
msg_lu Yes 75% Yes
msg_sp Yes 62.5% Yes
msg_sppm No 0% No
msg_sweep3d Yes 50% Yes
num_brain Yes 75% Yes
num_comet Yes 37.5% Yes
num_control Yes 75% Yes
num_plasma No 0% No
obs_error No 0% No
obs_info Yes 75% Yes
obs_spitzer No 0% No
obs_temp Yes 75% Yes
† Hard-to-compress dataset

2.3.2 Overall Performance of Identification and Improvement

Table 2.4 and 2.5 show that 19 out of 24 (79%) datasets were classified as hard-to-compress, 19
of the 19 (100%) were identified by ISOBAR-compress as improvable, and all datasets showed
improvement of both compression ratio and compression/decompression throughput (speed)
with ISOBAR-compress.

One such example is the flash_velx dataset. While using standard compression methods
such as zlib and bzlib2 to reduce this data, we achieved compression ratios (CRs) of 1.113 with

20

Table 2.5: Performance Comparison

Dataset
zlib bzlib2 TPA

3 ISOBAR-CR Preference ISOBAR-Sp Preference
CR1 TPC (MB/s)2 CR TPC (MB/s) (MB/s) CR TPC (MB/s) CR TPC (MB/s)

gts_chkp_zeon 1.040 14.10 1.022 3.55 500.40 1.182 24.35 1.140 104.99
gts_chkp_zion 1.044 13.87 1.027 3.57 501.60 1.187 24.60 1.150 111.66
gts_phi_l 1.041 14.20 1.020 3.55 501.83 1.186 14.92 1.160 66.36
gts_phi_nl 1.045 14.11 1.018 3.57 501.26 1.180 15.41 1.157 65.65
xgc_igid 3.003 1.12 3.120 5.99 505.33 3.368 5.34 2.962 100.91
xgc_iphase 1.362 6.71 1.377 3.63 501.79 1.589 4.21 1.571 76.83
s3d_temp† 1.336 7.25 1.452 3.25 513.15 2.063 8.95 1.831 53.14
s3d_vmag† 1.190 11.12 1.210 3.33 516.75 1.774 8.50 1.604 104.73
flash_gamc 1.289 19.50 1.281 3.87 503.05 1.557 16.40 1.532 245.19
flash_velx 1.113 12.70 1.084 3.61 501.34 1.319 17.30 1.308 455.83
flash_vely 1.135 12.01 1.091 3.62 501.57 1.319 60.12 1.307 444.75
msg_bt 1.131 13.54 1.102 3.79 495.98 NI* NI NI NI

msg_lu 1.057 14.52 1.021 3.55 499.92 1.298 20.19 1.246 235.21
msg_sp 1.112 17.52 1.075 3.66 502.61 1.330 5.16 1.304 106.65
msg_sppm 7.436 9.14 6.932 1.35 495.02 NI NI NI NI

msg_sweep3d 1.093 13.46 1.277 3.21 501.72 1.344 6.61 1.287 78.86
num_brain 1.064 14.01 1.042 3.13 503.51 1.276 10.08 1.238 226.51
num_comet 1.160 13.78 1.172 3.66 496.75 1.236 4.83 1.215 21.13
num_control 1.057 14.78 1.029 3.11 501.90 1.143 12.52 1.126 65.10
num_plasma 1.608 19.50 5.789 0.48 503.44 NI NI NI NI

obs_error 1.448 8.79 1.338 3.58 502.51 NI NI NI NI

obs_info 1.157 15.42 1.213 3.41 503.47 1.292 5.28 1.249 228.91
obs_spitzer 1.228 10.42 1.721 4.14 503.25 NI NI NI NI

obs_temp 1.035 14.70 1.024 3.03 502.95 1.142 22.89 1.125 96.62
† Single-precision floating-point dataset
* NI: Not Identified—the dataset is identified as non-improvable by ISOBAR-compress
1 CR: Compression Ratio (see Equation 2.1)
2 TPC (MB/s): Compression throughput in MB (megabyte) per second
3 TPA (MB/s): ISOBAR-analysis throughput in MB per second

21

2.3.4 Optimization with EUPA-selector

As shown in Table 2.6 with the speed preference chosen and Table 2.7 with the CR preference
chosen, combining ISOBAR-compress with general-purpose lossless compression such as zlib
and bzlib2 will improve the compression efficiency yielded by using these standard compres-
sors as standalone utilities. Since the EUPA-selector boasts superb flexibility of use, despite
inconsistencies in the relative performances of bzlib2 and zlib, end-users will be able to get
the performance of a (relatively) speedy compression routine with a satisfactory compression
ratio. For example, if an end user wishes to compress the msg_lu dataset, prioritizing the
compression/decompression throughput (speed) above a higher compression ratio will cause
EUPA-selector to choose zlib with byte-level column-linearization (the fastest technique, while
still offering a compression ratio superior to standard compression). In the worst case scenario,
if the dataset to be compressed is not identified as improvable, the EUPA-selector will offer the
optimal choice of the standard compression method and linearization scheme. To extend to the
user complete flexibility of use, explicit specification of input parameters (fixing the compression
method and the linearization strategy) is also permitted by EUPA-selector.

2.3.5 Single-Precision Data Compression

Although scientific simulations often produce double-precision floating-point data (8-byte el-
ements), for archival and community sharing purposes, the datasets often get converted to
single-precision (4-byte elements) format similar to the “s3d" datasets in our experiments.
Moreover, in some research activities, such as hurricane prediction in climate studies, original
raw datasets for analysis only consist of single-precision floating-point values.

To support our claim that ISOBAR-compress can be used for data other than double-precision
floating-point values, we tested our methodology on 2 single-precision data sets (see Table 2.8).
Both data sets were identified as improvable by ISOBAR-compress. As shown in Table 2.8,
both compression ratio and compression/decompression throughput (speed) were enhanced
via ISOBAR-compress. For example, while using ISOBAR-compress with CR (compression
ratio) preference compressing for the “s3d" temperature dataset, compared to the compressor
with better compression ratio, ΔCR = 42.08%, and compression speed-up (Sp = 2.758). If
ISOBAR-Sp is chosen, compared to the better compression throughput compressor, for the same
“s3d” dataset, ΔCR = 37.05% and Sp = 7.329.

2.3.6 Consistent Improvement over the Entire Simulation

Typically, scientific simulations generate many intermediate datasets to allow trend analysis and
prediction. For example, a single run of the GTS simulation [78] will generate spatial data for
approximately 300, 000 time steps. To show that both the EUPA-selector and ISOBAR-analyzer

23

Table 2.6: Improvement of ISOBAR-Sp Preference

Dataset* LS1 ΔCR(%)2 Sp3

gts_chkp_zeon Row 9.62 7.447
gts_chkp_zion Row 10.15 8.050
gts_phi_l Row 11.43 4.673
gts_phi_nl Row 10.72 4.653
xgc_iphase Column 15.35 11.450
flash_gamc Row 18.85 12.576
flash_velx Row 17.52 35.899
flash_vely Row 15.15 37.032
msg_lu Column 17.88 16.199
msg_sp Column 17.267 6.087
msg_sweep3d Column 17.75 5.859
num_brain Row 16.35 16.168
num_comet Row 4.74 1.533
num_control Row 6.53 4.405
obs_info Row 7.95 14.845
obs_temp Row 8.70 6.573
1 LS: Linearization Strategy
2 ΔCR(%): Percentage improvement of compression

ratio (Eq. 2.2) compared to the alternative with the
highest compression throughput

3 Sp: Compression speed-up (Eq. 2.3)
* EUPA-selector selected zlib as the better lossless

compression technique for all datasets above

24

Table 2.7: Improvement of ISOBAR-CR Preference

Dataset* LS1 ΔCR(%)2 Sp3

gts_chkp_zeon Row 13.65 1.727
gts_chkp_zion Row 13.69 1.774
gts_phi_l Row 13.93 1.051
gts_phi_nl Row 12.92 1.092
xgc_iphase Column 15.39 1.160
flash_gamc Row 20.79 0.841
flash_velx Row 18.51 1.362
flash_vely Row 16.21 5.006
msg_lu Column 22.80 1.390
msg_sp Column 19.60 0.295
msg_sweep3d Column 5.24 1.410
num_brain Row 19.92 0.719
num_comet Row 5.46 1.319
num_control Row 8.13 0.847
obs_info Row 6.512 1.548
obs_temp Row 10.34 1.557
1 LS: Linearization Strategy
2 ΔCR(%): Percentage improvement of compression

ratio (Eq. 2.2) compared to the alternative with
the best compression ratio

3 Sp: Compression speed-up (Eq. 2.3)
* EUPA-selector selected bzlib2 as the better lossless

compression technique for all datasets above

Table 2.8: Performance on Single-precision Datasets

Dataset* LS3 ΔCR (%) Sp

ISOBAR-CR1 s3d_temp Column 42.08 2.758
s3d_vmag Row 46.67 2.552

ISOBAR-Sp2 s3d_temp Column 37.05 7.329
s3d_vmag Row 34.79 9.418

1 Performance of ISOBAR-CR preference
2 Performance of ISOBAR-Sp preference
3 LS: Linearization Strategy selected by EUPA-selector
* EUPA-selector selected bzlib2 for ISOBAR-CR and zlib for

ISOBAR-Sp as the better lossless compression technique

25

Table 2.9: Decompression Throughput Comparison

Dataset
zlib bzlib2 ISOBAR1

Sp2
(MB/s) (MB/s) (MB/s)

gts_chkp_zeon 115.22 10.48 517.89 4.5
gts_chkp_zion 110.38 10.57 551.90 5.0
gts_phi_l 114.41 10.00 366.25 3.2
gts_phi_nl 117.97 9.90 358.21 3.0
xgc_igid 177.69 21.08 341.50 1.9
xgc_iphase 138.99 7.49 388.87 2.8
s3d_temp† 113.80 6.26 250.46 2.2
s3d_vmag† 103.69 6.73 424.79 4.1
flash_velx 113.95 10.51 1617.02 14.2
flash_vely 112.03 10.53 1538.98 13.7
flash_gamc 113.41 12.02 940.91 8.3
msg_lu 112.51 10.51 866.21 7.7
msg_sp 106.77 10.68 527.18 4.9
msg_sweep3d 114.43 6.89 446.49 3.9
num_brain 114.47 6.55 908.65 7.9
num_comet 123.08 7.69 145.73 1.2
num_control 122.13 7.28 373.63 3.1
obs_info 118.61 7.27 910.12 7.7
obs_temp 114.10 6.59 511.98 4.5
† Single-precision floating-point dataset
1 ISOBAR: Decompression throughput using ISOBAR-

compress with speed preference
2 Sp: Decompression speed-up comparing ISOBAR throughput

to the faster alternative of either bzlib2 or zlib

28

Table 2.10: Comparison among ISOBAR-compress, FPC, and fpzip

Data Set
ISOBAR-Sp FPC fpzip

CR1 TPC
2 TPD

3 CR TPC TPD CR TPC TPD

gts_chkp_zeon 1.140 104.99 517.89 1.018 38.22 39.24 1.096 35.80 29.48
gts_chkp_zion 1.150 111.66 551.90 1.025 38.42 38.98 1.100 36.47 30.20
gts_phi_l 1.160 66.36 366.25 1.077 24.06 23.93 1.182 38.66 31.44
gts_phi_nl 1.157 65.65 358.21 1.072 24.10 24.06 1.177 38.38 31.23
xgc_igid 2.962 100.91 341.50 1.960 87.84 87.85 2.736 13.63 12.84
xgc_iphase 1.571 76.83 388.87 1.360 17.66 17.43 1.535 44.89 36.12
flash_gamc 1.532 245.19 940.91 1.416 91.64 90.06 1.620 38.70 31.72
flash_velx 1.308 455.83 1617.02 1.265 49.61 49.70 1.342 36.77 31.39
flash_vely 1.307 444.75 1538.98 1.294 53.80 53.37 1.435 38.47 32.11
mean 1.476 185.80 735.73 1.276 47.26 47.18 1.469 35.75 29.61
1 CR: Compression Ratio (see Equation 2.1)
2 TPC: Compression throughput tested on Lens system (MB per second)
3 TPD: Decompression throughput tested on Lens system (MB per second)

2.4 Related Work

While the idea of preconditioning data for standard compression routines is relatively unexplored
(as far as we know), there are many instances in which lossless compression is required in the
information storage and retrieval community. For this reason, there is a wealth of related work
on the development of other lossless reduction tools. In this section, we acknowledge and address
the relevance and comparative performance (in terms of compression ratio and throughput) of
these standalone utilities to those obtained via the ISOBAR-compress workflow.

One such tool is PFOR [85], which aims to reduce the I/O bottleneck in the compression
routine by extracting maximum instructions per cycle from modern CPUs. PFOR [85] (and some
similar variants including PDICT [85] and PFOR-DELTA [85]) are specifically designed with
the aim of eliminating if-then-else constructs and value dependencies in prediction and encoding
of data. This strategy makes the data being compressed or decompressed fully loop-pipelineable
by modern compilers and allows for out-of-order execution on modern CPUs while achieving
high Instructions Per Cycle efficiency. Based on the experimental results provided in the paper,
PFOR performs approximately 4 times faster than zlib and bzlib2 for most data sets tested,
though its compression ratios hardly beat those obtained with zlib and bzlib2 (in some cases,
the ratio is even 3 times worse). ISOBAR-compress was designed to improve both compression
efficiency and throughput for general purpose lossless compression techniques, such as zlib
and bzlib2. In the results section, we showed that ISOBAR-compress’s performance almost

29

universally surpassed the performance of these compressors in terms of compression ratio and
compression/decompression throughput.

General purpose lossless compression tools are also used with MapReduce techniques. For
example, RCFile [38] is another reduction utility focusing on efficient storage of data produced
from Hadoop MapReduce [18] based applications. RCFile compresses data tables sequentially
column-wise, but uses no intelligent technique to determine how the input data should be
optimally compressed, defaulting to zlib for all data columns. For this reason, compression
yielded with RCFile varies in effectiveness, because it does not consider data-type of columns and
blindly relies on zlib compression and a particular linearization, whereas other combinations of
these two factors may be more fruitful in compression ratio and throughput. ISOBAR-compress’s
EUPA-selector takes care of this problem, and the workflow involves applying general-purpose
lossless compression techniques, particularly after the ISOBAR-analyzer phase because of the
varying sizes of values in the data columns (for example, a column storing numerical data may
occupy 3 bytes per element in a MySQL database, whereas some string type columns may
require approximately 100 bytes per element).

Tools, such as fpzip [53] and FPC [12] are also widely used in scientific database compression
applications. Although fpzip and FPC are tools designed only for compression of 32 (fpzip)
or 64 (fpzip and FPC) bit floating point data, their performance is also competitive (when
compared to other lossless compression techniques) on other types of variously-sized scientific
data. Hence, it is worthwhile introducing and comparing these utilities with ISOBAR-compress.
Both fpzip and FPC are based on context modeling and prediction. Fpzip traverses data in a
coherent order and then uses the corresponding n-dimensional (where n is the dimensionality of
the data) Lorenzo predictor [39] to predict the subsequent values. It next maps the predicted
values and actual values to their integer representations, and encodes the XORd́ residual between
these values. Similarly, FPC first predicts values sequentially using two predictors (fcm [84] and
dfcm [33]), and subsequently selects the closer predicted value to the actual. Lastly, FPC XORs
the selected predicted value with the actual value, and compresses the leading-zero result. We
compared the performance of ISOBAR-compress, fpzip, and FPC on identified scientific datasets
in Table 2.10.

It is briefly worth addressing that there has also been a wealth of research done on the lossy
compression front. Methods using DCT (Discrete Cosine Transform) [79] and wavelets [14] have
been actively researched over the last few decades in the lossy compression realm. These works
have primarily been applied in the context of visualization and geometric modeling applications.
Lakshminarasimhan et al. explored the use of B-spline modeling to exploit monotonic properties
in sorted data and reduce size by as much as 85% of the original [48]. Multi-dimensional histogram
binning has also been used in the lossy reduction of simulation data. However, these techniques
are not applicable in the reduction of certain types of simulation data and checkpoint/restart

30

data as inaccuracies in these values can completely throw off a simulation run and yield incorrect
results.

2.5 Conclusion

In this paper, we proposed a new technique called ISOBAR-compress, which is a preconditioner
to identify hard-to-compress datasets and improve compression efficiency for all general-purpose
lossless compression solvers.

Given a dataset requiring lossless compression, our system first applies the ISOBAR-analyzer
to determine whether ISOBAR-compress will improve the performance of lossless compression
algorithms such as zlib. If performance can be improved, then the ISOBAR-partitioner will
segment the dataset into two pieces: compressible and incompressible data. EUPA-selector will
choose the optimal combination of standard lossless compression methods and proper multi-
dimensional data linearization to meet the end-user’s preference in terms of better compression
ratio vs. much higher compression speed. Finally, ISOBAR-compress will merge the metadata,
compressed data, and incompressible data into an output file. When tested on 24 scientific
datasets, ISOBAR demonstrated high compression and decompression throughput as well as an
improved compression ratio upon standard compressors.

31

Chapter 3

ISOBAR Hybrid Compression
Interleaving for Large-scale Parallel
I/O Optimization

3.1 Introduction

As exascale computing comes closer to becoming reality and more powerful High Performance
Computing (HPC) systems become available, the complexity of scientific simulations and analyses
has grown commensurately. Unfortunately, the level of disk I/O performance offered by these
systems has not kept up, leading to a serious bottleneck in read and write performance in these
applications. This problem is exacerbated by the increasing frequency of checkpoint operations
performed by such computations due to their increasing vulnerability to node failures at this
scale, which further adds to the I/O overload.

Ideally, the solution to the I/O bottleneck will involve both data reduction and parallel I/O
access pattern optimization. Unfortunately, these two optimization methods have traditionally
been in conflict. State-of-the-art I/O middleware solutions, such as ADIOS [55], HDF5 [83],
and PnetCDF [52], have no native support for write compression in a parallel context, due
to the complexity of handling the resultant non-uniform data, which requires synchronization
between all nodes performing shared-file I/O. Further constraining the problem is the fact that
scientists cannot sacrifice simulation fidelity, especially at checkpoints, which rules out lossy
compression as a viable data reduction method. And yet, typical lossless compression techniques
are ineffective on hard-to-compress floating-point data generally produced by such simulations.

However, we argue that these goals can in fact be complementary. Our key insight is that,
by dynamically identifying a subset of highly-compressible data to process while asynchronously
writing the remainder to storage, we can effectively hide the cost of compression and I/O synchro-

32

nization behind this transfer, thus rendering parallel write compression viable. This interleaving
method is a natural fit for data staging architectures, where various data transformations can
occur while data is “in transit” or in situ, from compute nodes to disk. Traditionally, staging has
been used to compute statistical analyses or perform indexing operations [1, 2]. With interleaved
compression and I/O, however, we can augment this functionality by performing compression as
an in-situ transfer and storage optimization, as well.

The problem of identifying a highly-compressible subset of the original data is itself quite
difficult, as scientific data is usually hard-to-compress with typical compression libraries. We
argue that this is because I/O libraries optimized for scientific applications tend to view multi-
byte data elements, such as floating-point values, as atomic units of data. Instead, by relaxing
this notion and utilizing byte-level analysis of the scientific data, better results can be obtained.
ISOBAR, or In Situ Orthogonal Byte Aggregate Reduction, enables exactly this sort of analysis
for lossless compression, and has been shown to be effective on such datasets [70]. By modifying
ISOBAR’s analysis methods to partition the data into compressible and incompressible byte
streams, we form an effective basis for interleaving the usage of computing resources. By
transmitting the incompressible data over the network immediately, we can hide the cost of
compressing the remainder and synchronizing for non-uniform I/O to write it to disk.

Therefore, we present a hybrid compression-I/O methodology for data reduction and I/O op-
timization. By employing ISOBAR analysis within a data staging architecture and incorporating
the popular ADIOS I/O framework as our I/O backend, we implement effective parallel com-
pression with state-of-the-art I/O performance. Furthermore, we develop a resource interleaving
strategy to process the compressible and incompressible components of the data simultaneously,
as identified by ISOBAR analysis. This enables immediate asynchronous transfer and writing of
incompressible data while compression is applied concurrently to the remainder. Additionally,
we develop a performance model for our methodology, which we demonstrate to have a high
degree of accuracy through validation against empirical data.

Our system exhibits read and write performance gains proportional to the degree of data
reduction, which ranges as high as 46% on scientific datasets. This would translate into an
effective increase of 28 GB/s bandwidth over the peak aggregate throughput of 60 GB/s of
uncompressed data offered by the leadership-class Lustre parallel filesystem at Oak Ridge
National Labs [57]. Even under worst-case conditions, where the dataset is highly entropic and
difficult to compress, we show that our system still maintains a gain in throughput over the
state-of-the-art.

Although we demonstrate performance gains when using our methodology in a leadership-class
HPC system (the Cray XK6 Titan cluster), the constantly changing architectural characteristics
as well as the diversity of configurations of current and future HPC systems make it impossible
to evaluate our methodology on every possible cluster configuration. Hence, it is critically

33

important to provide an analytical performance model, which would allow both robust prediction
of performance characteristics on new hardware and aid in configuration choices for application
developers. Our model predicts system performance on the Titan cluster within an average
0.53% error on the read/decompress side and 0.97% error on the write/compress side.

Our methodology and related components are organized as follows. First, precursory informa-
tion on ISOBAR compression, the compression system for which we base our interleaving method
on, as well as ADIOS, the parallel I/O middleware used for evaluation, are discussed in Sec-
tion 3.2. Our hybrid compression-I/O method is discussed in earnest in Section 3.3: Section 3.3.1
describes the general interleaving strategy, Section 3.3.2 describes the ISOBAR analysis method
as well as deduction of key ISOBAR parameters using information-theoretic analysis (as opposed
to empirical bootstrapping used in previous work [70]), and Section 3.3.3 discusses integration
of ISOBAR, ADIOS, and the interleaving methodology. Given the components in Section 3.3,
we present the analytical performance model in Section 3.4. Finally, a detailed evaluation of our
methodology and performance model for numerous real-world datasets are shown in Section 3.5,
followed by related work and concluding remarks in Sections 3.6 and 3.7, respectively.

3.2 Background

3.2.1 ISOBAR Compression

ISOBAR is a lossless compression method that we built specifically for data that varies in
compressibility on a byte-by-byte basis [70]. An ubiquitous example of such data is scientific
floating-point data, where the exponent bits can be highly similar while the significand bits
are highly entropic. To this end, ISOBAR first performs a preconditioner on the linearized
input data, selecting data to compress based on its expected degree of compressibility. This is
performed by the ISOBAR-analyzer. The analyzer’s objective is to identify high-entropic content
within a dataset that negatively impacts the compression efficiency and reduces the burden on
the compressor from processing the components with low compression potential. This enhances
the compression algorithm in both the compression throughput and the compression ratio.

The input data is considered as a matrix of bytes, where each row is an input value (e.g., a
double-precision floating-point) and each column is an individual byte of the input value. The
preconditioner counts the frequency of each byte on a column basis and marks that column as
compressible if the distribution appears to be non-random. Once these columns are identified,
any general purpose compressor may be used, but ISOBAR automatically chooses the best one
by user preference (compression ratio vs. speed).

In the previous chapter, the threshold for determining compressibility was determined using
empirical analysis based on dataset subsampling, placing the burden on the user. Section 3.3.2

34

describes a more robust analytical deduction of the threshold.

3.2.2 ADIOS

High-performance computing applications increasingly leverage I/O libraries, such as HDF5
(Hierarchical Data Format), ADIOS (Adaptable I/O System), and PnetCDF (Parallel Network
Common Data Form), that allow scientists to easily describe the data to be written out and
analyzed. These I/O libraries provide a high-performance I/O abstraction, efficiently handling
collective I/O operations, synchronization and meta-data generation during shared-file writes.
We choose to utilize ADIOS, since it has been shown to deliver performance improvements of
up to 300% at scale [57, 66] on the Cray Jaguar leadership-class computing facilities at ORNL.

ADIOS provides an efficient componentization of the HPC I/O stack. Through an XML file,
it provides the option to describe the data, and to choose optimal transport methods such as
POSIX and MPI-IO, without the need to recompile the application codes. The data written
using ADIOS is in the form of a native Binary Packed (BP) file, comprising of process groups –
sets of variables described in XML configuration, typically tagged according to their functionality.
For example, checkpoint and restart data is written under a single process group, as is analysis
data.

3.3 Hybrid Compression-I/O for Data Staging Architectures

The prevailing I/O strategy in current peta-scale systems is to offload the burden of I/O to
dedicated staging nodes, as shown in Figure 3.1. This allows minimal idle time on the compute
nodes allocated for the simulation, as the I/O nodes handle the rate-limiting disk writes and
reads collectively and network bandwidth is an order of magnitude faster than disk bandwidth.
However, given the trend of ever-increasing simulation data sizes, combined with the need to
checkpoint simulation state to minimize data loss in the face of node failure, the I/O offloading
approach alone cannot keep up with the computational throughput available.

3.3.1 Method

A promising approach to aid in mitigating rate-limiting I/O is to write compressed data to
the disk [82]. The aggregate reduction of data has the potential of partially alleviating the
I/O bottleneck. However, there are a number of technical challenges in utilizing compression
in the scientific computing environment. Most state-of-the-art compression algorithms do not
provide enough compression throughput to justify the data reduction, and those that do
sacrifice the compression ratio. Moreover, the target simulation data is notoriously “hard-
to-compress;” traditional compression algorithms provide meager compression ratios [70]. In

35

Figure 3.1: A peta-scale computing system with staging environment

36

Figure 3.2: The hybrid compression-I/O method; interleaved compression may occur at the
compute nodes or the I/O nodes

addition, compression introduces the non-trivial issue of managing the I/O of variable-sized
chunks of data. This mandates devising a strategy to efficiently handle parallel I/O coordination,
taking into account data organization and writer node synchronization while also keeping the
overhead imposed by the associated metadata in check.

Current state-of-the art I/O frameworks such as ADIOS and HDF5 have no capability to
compress and store simulation data when performing parallel filesystem writes. In this work, we
utilize the data staging model, based on the ISOBAR technology, to write and simultaneously
compress simulation data. In addition to using the data staging paradigm, interleaving compres-
sion and I/O can also be directly integrated into I/O frameworks. Especially important to our
interleaving methodology is the fact that we can use ISOBAR to produce multiple streams of
data that, once defined by the analysis portion of ISOBAR, can be operated on independently.
This presents the perfect opportunity to hide the compression costs by asynchronously writing
streams (the incompressible byte streams) while operating on the remaining streams (compress-
ing the compressible byte streams). We call this the hybrid compression-I/O approach. The
interleaving of compression and I/O helps to hide the compression costs, while the reduction in
data size reduces disk costs.

Figure 3.2 illustrates our generic hybrid approach. ISOBAR analysis categorizes the data into
two streams: compressible and incompressible bytes, and incorporates a small, constant-sized
metadata block to each (containing the buffer size and the analysis array, a bitfield marking
compressible byte columns). The compressible stream is compressed and then written to disk,

37

(a) Compression is the rate limiting factor. (b) Compression interleaving results in free time us-
able for the analysis of the next chunk.

Figure 3.3: Possible scenarios for compression and incompressible data write times. tcompress

is time to compress the compressible byte stream and tincomp_write is time to write the incom-
pressible byte stream to disk

while the incompressible stream can be immediately written to disk. There is no dependency
between the two streams, so we may choose to order the operations to our advantage. Thus,
we compress the compressible stream while asynchronously writing the incompressible stream,
followed by writing the compressible stream. This strategy has numerous benefits: we maximize
resource utilization by performing network and I/O operations while compressing, and since
ISOBAR compression throughput tends to be much higher than I/O bandwidth, it is possible
to eliminate the compression costs entirely.

Two performance scenarios of interleaving arise based on the individual performance of
compression and file writing, which are shown in Figure 3.3. The first scenario, shown in
Figure 3.3a occurs when the uncompressed data is written before the remainder of the data is
compressed. In this scenario, the compression time is the bottleneck, and so is only partially
hidden by the writing of the incompressible data to disk. However, this case generally occurs
when most of the data is deemed compressible, in which case the increased compression cost
directly translates into substantial data reduction; thus, overall time-to-disk may still be reduced
due to a higher compression ratio.

The second scenario, shown in Figure 3.3b, occurs if data compression finishes before the
incompressible data has been fully written, and must wait to write the compressed data stream.
In this scenario, compression time is completely hidden, and can be considered a “free” operation
with respect to time. Also, the idle time can be used for other activities, such as running ISOBAR
analysis on another chunk if available. A related scenario to this is when data compression and
incompressible data writing finish at approximately the same time resulting in full utilization of
all resources. This case also completely hides the compression costs.

38

3.3.2 ISOBAR Analysis

The viability of the hybrid compression-I/O approach is based on the ISOBAR analysis process,
which identifies and divides compressible and incompressible byte streams. As mentioned in
Section 3.2, the threshold parameter involved in identifying a byte-column as compressible is
crucial for the compression methodology to work. Hence, we provide an in-depth discussion
behind the ISOBAR analysis technique, its effectiveness with hard-to-compress datasets, and an
analytic methodology for determining entropy-based compressibility within our method.

Lossless compression of hard-to-compress datasets is burdened by its highly entropic content
embedded within. In information theory, Shannon entropy is a measure of information uncertainty,
given by

H(X) = −
n∑

i=1
p(xi)logbp(xi), (3.1)

where X is a discrete random variable with the possible values {x1, . . . , xn} and p(X) is the
probability mass function. Let X be a set of bits, so the corresponding base b is two. Figure 3.4
illustrates the probability that the bit value within the set is 1 with its corresponding entropy
value; entropy is maximized for equal outcome probabilities (H(X) = 1.0 when p(X = 1) is 50%)
and minimized for fixed outcome probabilities (H(X) = 0.0 when p(X = 1) is 0% or 100%).

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

P (X = 1)

H
(X

)

Figure 3.4: Relationship between entropy H(X) and probability P (X = 1) of bit value within
set X is 1

Figure 3.5a shows the evaluation of entropy at each significant bit for the double-precision
floating-point zion variable of a GTS simulation dataset, which is considered hard to compress.

39

0 8 16 24 32 40 48 56

0.6

0.7

0.8

0.9

1.0

63
0.0

mantissa bit segment [12-63]

Bit position

H
(X

)

(a) Bit position entropy.

0 1 2 3 4 5 6 7
0.0

2.0

4.0

6.0

8.0

Byte-column

H
(X

)

(b) Byte-column entropy.

Figure 3.5: Calculated entropy of a zion double-precision floating-point variable dataset from a
GTS simulation run at bit and byte-column granularity

Significant bit positions 18 to 60 of this variable, representing all but nine bits of the mantissa
component of the floating-point number, have an entropy of 0.9999 ± 10−4. Without a priori
dataset knowledge, these bit positions can be considered random, with nearly maximal entropy.
If we move to the significant byte level (byte-column), which is the granularity of most lossless
compressors, we see similar patterns, as shown in Figure 3.5b (since there are 28 = 256 possible
values, the maximum entropy is 8).

Given that general lossless compressors work at the byte level and ineffectively perform on
high-entropy ingress data, while scientific data (especially floating-point) has the characteristic
of byte-column regularity rather than adjacent-byte regularity, ISOBAR analysis performs
entropy evaluation at the byte-column level to determine compressibility. To do so efficiently, the
relative frequency, or probability, is calculated for each byte-column. Then, the maximal relative
frequency is compared against a threshold to determine compressibility. For example the relative
frequency of each byte value is 0.39% for a uniform distribution (100%/256). In Figure 3.6,
the maximum relative frequencies of byte-columns 1 and 2 of the GTS zion dataset are 1.47%
and 0.41%, respectively. Entropy encoders work well for the non-uniform byte probabilities for
byte-column 1, but not for the near-uniform byte probabilities for byte-column 2.

Thresholding is used to determine at what maximal relative frequency the byte-column
is determined compressible. To determine a proper frequency threshold, we evaluate entropy
encoders based on codebooks, which assign small-sized code words to variables with high-frequency
and large-sized code words to variables with low-frequency. An example of such encoder is the
Huffman prefix-free encoder, the most efficient of this type of encoder [81]. Since the probability
mass function must be equal to 1, any relative frequency increase of x% for a given byte value

40

0 32 64 96 128 160 192 224
0.0%

0.5%

1.0%

1.5%

255

Threshold
0.527%

Byte value

R
el
a
ti
v
e
fr
eq

u
en

cy
o
f
b
y
te

va
lu
e byte-column 1

byte-column 2

uniform distribution

Figure 3.6: Relative frequency of each byte value from a sample set of byte-columns

must be offset by an accumulative relative frequency decrease of x% for the remaining byte
values. Thus, by examining the span for half of the byte value’s relative frequencies, we calculated
that the relative frequency of 1.35/256 (0.527%) causes codebooks to begin assigning 7-bit code
words to some of the higher frequency values, rather than 8. Therefore, we apply the threshold
of 1.35 for ISOBAR analysis to determine byte-column compressibility.

3.3.3 Data Layout in ADIOS

The layout of our compressed and uncompressed data on disk is managed by ADIOS’s self-
describing file format (.bp), which is specifically designed to attain scalable high performance
I/O, to support delayed consistency and data characterization, and to maintain compatibility
with standard file formats. Also, since this file format is log-based [66], new data can be appended
without incurring any additional overhead, irrespective of the number of processes or timesteps.
As a result, the performance improvements we report using our hybrid framework over a single
timestep can be maintained over multiple timesteps.

For our system, we define two ADIOS groups (or “data containers”): one for the compressed
data, and one for the uncompressed data. Every writing process submits data to each of the two
groups. Depending on the transport method chosen in the configuration file, ADIOS can store
data from all the writing processes into a single shared file using collective MPI-IO or multiple
files using POSIX I/O with a separate file handle for each writing process. Fast access to data
for a specific process or timestep is supported via footer indexes that avoid the known limitation
of header-based formats [68], where any change to the length of the file data requires moving
the index.

41

Figure 3.7: Data layout (with associated metadata) for a single timestep

Figure 3.7 shows the ADIOS data layout specific to our application for a single timestep.
ADIOS handles the data organization among groups via local group headers and indexes. The
ISOBAR metadata is stored first within each group, followed by the payload data. The metadata
size is dependent on the ADIOS system configuration, the chunk size, and the compute-I/O
node ratio. The relative ordering of groups is arbitrary, dependent on the order in which the
processes submit data and on synchronization among them (via a coordination token) [56]. The
global footer indexes shown are used for query-driven data retrieval (accessing a specific timestep
or process output). In this work, we confine our focus to data layout for the write-all/read-all
paradigm, which is ubiquitous in HPC computing, especially in checkpoint and restart operations.
From the standpoint of future work, however, our framework can be adapted for the WORM
paradigm by leveraging previous work [35] to optimize the data layout on disk. In addition,
support for compression schemes [48, 47, 43] which offer up to 7 times reduction in datasizes
can be extended. Together, these possibilities provide avenues for increasing throughput gains
whilst maintaining read performance.

The metadata required to support this format is very small, requiring less than 0.01%
overhead in the worst case, as summarized in Table 3.1. If applied to 1 GB of data, this
translates into less than 100 KB of overhead. As shown in the table, the metadata can be split
into two categories: that maintained specifically for ISOBAR, and that required by ADIOS. The
exact amount of metadata is dependent on the transport method used (POSIX or MPI-IO) as
well as the location of the compressor (compute node or I/O node). The overhead is minimal in

42

Table 3.1: Average Metadata Overhead for Different Interleaving Strategies

Test Case
Average Metadata Overhead (%)

ISOBAR ADIOS
POSIX MPI POSIX MPI

Base 0.00002 0.00002 0.00321 0.00148
ISOBAR at I/O nodes 0.00004 0.00004 0.00902 0.00417

ISOBAR at compute nodes 0.00007 0.00007 0.00978 0.00471

Serial ISOBAR 0.00004 0.00004 0.00806 0.00358

the base case (no compression), as expected, and maximal when compressing at the compute
nodes, which generates the most individual streams of data. The metadata cost is also higher
for the POSIX transport method, since this allocates one file per writing process, as opposed to
the single shared file maintained by MPI-IO.

3.4 Performance Modeling

While we demonstrate that our hybrid compression-I/O methodology provides improved I/O
performance in one testing environment, there are many supercomputing systems, each with
widely-varying performance characteristics. Since our optimization algorithms exhibit a strong
dependence on hardware parameters, it is important to devise an accurate performance model,
so that we can generalize the results collected in Section 3.5 to other systems. This will enable
application designers to estimate the benefit of compression given their particular hardware
configuration, problem characteristics, etc. We therefore develop such a performance model,
which we then validate against empirical data, as reported in Section 3.5.4.

3.4.1 Model Preliminaries

Given our target cluster architecture, we make some underlying assumptions in our model.
We assume a fixed compute node to I/O node ratio, ρ, consistent with the majority of I/O
staging frameworks currently in use. Furthermore, on each compute node, we assume fixed-size
input chunks of size (C), which are all written following the bulk-synchronous parallel I/O
model. This is a common mode of operation when writing checkpoint and restart data, which
synchronously flushes the simulation state to file, then continues with the simulation. We also
assume that the I/O staging framework (e.g., ADIOS) and the network architecture provide
a relatively consistent I/O and transfer rate, respectively. As shown in numerous experiments

43

Table 3.2: Input Symbols for the Performance Models

Input
Symbol

Description

C The chunk size
ρ Compute to I/O node ratio

θ
Throughput of the collective network
between the compute and I/O nodes

δ Size of the metadata
μr Throughput of the disk reads
μw Throughput of the disk writes
α Fraction of the chunk that is compressible
σ Compression ratio (compressed vs original)

Tprec

Throughput of the ISOBAR
preconditioner

Tcomp Compression throughput (orig. size / time)

Tdecomp

Decompression throughput
(compressed size / time)

with ADIOS [55, 56], this is a reasonable assumption to make. Finally, we require some a priori
information about the compression performance in order to accurately predict overall system
performance. Fortunately, this can be gathered easily by running the ISOBAR analysis stage on
a small, representative set of data to predict overall performance [70].

To provide a complete model, there are three cases of writing from compute nodes to disk
that we wish to consider for comparative purposes. The first is when no compression is performed,
and data is written directly to disk (through the I/O nodes). This forms our base case to compare
the other compression methods against, and allows us to check the sanity of our model before
looking at the more complex compression models. The remaining cases use ISOBAR hybrid
compression-I/O method, but in different locations. The second case compresses at the compute-
node level. If time-to-disk is our sole optimization metric, then we expect the second method
of compute-node compression to perform best, exhibiting the greatest aggregate compression
throughput due to the large number of compute cores utilized (by constrast, compressing at
the I/O nodes yields less aggregate compression throughput by a factor of ρ, which is 8 in our
experiments, but can be much higher). Our third and final case is compressing at the I/O-node
level. This case is important as future staging architectures shift toward dedicating compute
nodes strictly to simulation work [54], relying on asynchronous RDMA to offload data to I/O
nodes and prevent simulation stalls.

In this work, we refer to the I/O node as a staging node on the system that receives the

44

Table 3.3: Output Symbols for the Performance Models

Output
Symbol

Description

tprec

Time to run the ISOBAR
preconditioner on the data

tcompress

Time to compress the data
(algorithm dependent)

ttransfer Total transfer time 1

tcomp_transfer Transfer time for compressible data 1

tincomp_transfer Transfer time for incompressible data 1

twrite Time to write data to the disk

tcomp_write
Time to write compressible data to
the disk

tincomp_write
Time to write incompressible data to
the disk

twrite_depend

Time for all the dependencies to
complete before writing the
compressible byte stream

tdecompress

Time to decompress the data
(algorithm dependent)

tincomp_read
Time to read the incompressible
data from the disk

tcomp_read
Time to read the compressible data
from the disk

tcombine

Time to reconstruct data from
compressible and incompressible
portions

tcombine_depend

Time until all data is ready to be
recombined into the original chunk

tcomp_ion

Intermediate processing time for
handling compressible data at I/O
nodes

tincomp_cn

Intermediate processing time for
handling incompressible data at
compute nodes

ttotal Total end-to-end data transfer time
τ Aggregate throughput

1Interpretation of transfer direction based on context of
usage i.e., compute to I/O for writes and I/O to compute for reads.

45

data from the compute nodes and sends it to the OSS (Object Storage Servers), which manage
writing of the data to the Lustre File System. We do not operate at these file system nodes.

We will build the models in increasing order of complexity: the base case of no compression,
compression at the I/O nodes, and compression at the compute nodes. Tables 3.2 and 3.3
summarize the symbols for parameters and output variables used in the model. In all scenarios,
the aggregate I/O node throughput τ is given by

τ = ρ · C

ttotal
, (3.2)

where ρ is the number of compute nodes and C is the chunk size.

3.4.2 Base Case: No Compression

In this scenario, we simply transfer the simulation data from the compute nodes to the I/O nodes
(ttransfer), followed by writing the data to file (twrite), in a synchronous manner. The end-to-end
transfer time for a chunk of data from the compute nodes to the disk (ttotal = ttransfer + twrite)
is similarly simple, given our assumptions on aggregate network and disk bandwidths:

ttransfer = C

θ
+ C

θ
ρ (3.3)

twrite = C·
μw

ρ (3.4)

ttotal = C

θ
(1 + ρ) + C

μw
ρ (3.5)

To reload the data from disk, the same operations occur in reverse, except with read
throughputs instead of write throughputs.

3.4.3 I/O Node Compression Case

An overview of the compression-I/O workflow is shown in Figure 3.8. The I/O nodes implement
the ISOBAR preconditioning analysis and interleave the disk writes of the incompressible
byte-columns with compression.

The compute nodes merely forward the raw data to the I/O nodes. In our design, we issue the
I/O operation for the incompressible bytes asynchronously, allowing us to concurrently perform
compression. Thus, the writing of the compressed data waits (if necessary) on the incompressible
stream writing to complete. This can be captured more intuitively with the task dependency
graph shown in Figure 3.9. Each vertex represents a task and directed edges represent task
dependencies. If each edge is weighted to be the completion time of the originating task, then
the longest path from the head vertex to the tail vertex, also known as the critical path, gives

46

Figure 3.8: Compute-I/O interleaving strategy with compression at the I/O nodes

47

Figure 3.9: Task dependencies for the I/O node compression case

the overall run time of the interleaved process. Using this diagram, we can capture the overall
runtime in a single equation. First, we define the cost of each individual task.

The total preconditioning time in this case is ρ times the preconditioning time of a single
chunk. Moreover, the partitioning has to be handled by the I/O node. The partitioning throughput
is approximately equal to the preconditioner throughput. Thus, the total preconditioning time
is given by:

tprec = 2
(

ρC

Tprec

)
(3.6)

The transfer time is the same as for the base case. Since the compression takes place at the
I/O node, the total amount of compressed data is ρ times the compressible part of the chunk
from every compute node:

tcompress = αC

Tcomp
ρ (3.7)

By the same logic, the total compressible and incompressible write times are given by:

tincomp_write = (1 − α)C
μw

ρ (3.8)

tcomp_write = (ασC + δ)
μw

ρ (3.9)

Looking at Figure 3.9, we see that incompressible write (tincomp_write) and compression

48

(tcompress) are interleaved. Thus, the length of the critical path, and therefore the overall writing
time, can be calculated as

ttotal = ttransfer + tprec

+ max(tcompress, tincomp_write)

+ tcomp_write. (3.10)

The reading stage of restoring the chunks into memory from disk requires the dependency
graph to be inverted (that is, each directed edge reversed). This maintains the interleaving
property of decompression and reading of incompressible byte-columns. The preconditioner
task is replaced with reconstruction, which reorders the decompressed byte streams and the
incompressible byte stream to their original locations in memory. This is captured in the following
model:

tcomp_read = (ασC + δ)
μr

ρ (3.11)

tincomp_read = (1 − α)C
μr

ρ (3.12)

tdecompress = ασC

Tdecomp
(3.13)

ttransfer = (1 + ρ)C
θ

(3.14)

The overall reading time, assuming constant chunk combination time (tcombine) for fixed
sized chunks can be calculated as

ttotal = tcomp_read

+ max(tdecompress, tincomp_read)

+ tcombine + ttransfer. (3.15)

The equations 3.10 and 3.15 allow us to model the end-to-end times for the write and the
read scenarios respectively for the I/O node compression case.

3.4.4 Compute Node Compression Case

The integration of the ISOBAR hybrid compression-I/O method into the compute nodes is a
more nuanced task. Figure 3.10 shows the general workflow of the interleaved compression and
network-I/O, and Figure 3.11 shows the corresponding task-dependency graph for this scenario.

After ISOBAR analysis preconditioning, the incompressible byte-columns are sent asyn-

49

Figure 3.10: Compute-I/O interleaving strategy with compression at the compute nodes

50

Figure 3.11: Task dependencies for the compute node compression case

chronously while the remaining byte-columns are compressed. Once the incompressible byte-
columns are sent, the I/O nodes may immediately issue its asynchronous writing operation. Once
the compression is complete, the compressed stream must wait for the incompressible network
transfer to complete (if necessary) to transfer its results. Finally, once the incompressible bytes
are written to disk, the compressed stream may be written.

The preconditioning and compression operations take place locally at every compute node,
and these are given by:

tprec = C

Tprec
(3.16)

tcompress = αC

Tcomp
(3.17)

The transfer times of the compressible and incompressible parts of each chunk are given by:

tincomp_transfer = (1 − α)C
θ

(1 + ρ) (3.18)

tcomp_transfer = (ασC + δ)
θ

(1 + ρ) (3.19)

Once the compressible and incompressible parts are aggregated at the I/O node, the disk

51

write times are given by:

tincomp_write = (1 − α)C
μw

ρ (3.20)

tcomp_write = (ασC + δ)
μw

ρ (3.21)

As discussed in Section 3.3 and seen in the dependency graph in Figure 3.11, interleaving
is achieved through the compression and transfer/writing of network data. Additionally, there
may be interleaving of the transfer of compressed byte-columns and the incompressible byte
writing. Given the structure of the graph and the residence of the tasks on different nodes, we
may define the critical path using the following two quantities:

tcomp_ion = max(tcompress, tincomp_transfer)

+ tcomp_transfer (3.22)

twrite_depend = max(tcomp_ion,

tincomp_transfer + tincomp_write), (3.23)

where tcomp_ion represents the time taken to compress and send the compressible byte-columns
to the I/O nodes, accounting for stalls caused by a longer incompressible byte-column transfer.
Furthermore, twrite_depend represents the time taken for all dependencies to clear before writing
the compressible byte stream, including possible stalls at the second network-I/O interleaving
level. Adding in the preconditioner and the compressible byte-column writing, the total time-to-
disk can be defined as

ttotal = tprec + twrite_depend + tcomp_write. (3.24)

Once again, the reading of hybrid-compressed data chunks causes an inversion of the
dependency graph, except that write operations are replaced with read operations, the transfers
are reversed, the compressed byte-columns are decompressed, and the preconditioner task is
replaced with the reconstruction task. In fact, in this particular instance, the inverted task
graph is isomorphic to the original task graph, thus simplifying building the read model. The
compressible byte-columns are read and then asynchronously sent to the compute nodes while
the incompressible byte-columns are read. Afterwards, the incompressible byte-columns are
transferred asynchronously while the decompression process begins. Finally, the compressible

52

and incompressible columns are recombined. This is captured in the following model:

tcomp_read = (ασC + δ)
μr

ρ (3.25)

tcomp_transfer = ασC + δ

θ
(3.26)

tdecompress = ασC

Tdecomp
(3.27)

tincomp_read = (1 − α)C
μr

ρ (3.28)

tincomp_transfer = (1 − α)C
θ

(3.29)

The reconstruction time is assumed to be constant for fixed sized data chunks. Similar to the
write case, the critical paths are defined as follows:

tincomp_cn = max(tincomp_read, tcomp_transfer)

+ tincomp_transfer (3.30)

tcombine_depend = max(tincomp_cn,

tcomp_transfer + tdecompress), (3.31)

where tincomp_cn represents the time taken for the incompressible byte stream to reach the
compute nodes, taking into account stalls as a result of the compressible byte stream being sent
first, and tcombine_depend represents the time until all data is ready to be recombined into the
original chunk of data. Thus, the total time to restore the data to its original state is

ttotal = tcomp_read + tcombine_depend + tcombine. (3.32)

The equations 3.24 and 3.32 allow us to model the end-to-end times for the write and read
scenarios respectively for the compute node compression case.

3.5 Experiments and Results

In this section, we present the empirical evaluations of our framework via a set of micro-
benchmarks to evaluate the throughput performance for the writes as well as the reads. We
report the percentage improvement in performance obtained using the hybrid compression-I/O
framework (at the compute as well as the I/O nodes) over the base case without compression.
We also report theoretical evaluations for the interleaving strategies discussed in Section 3.4 via
performance model simulations. Lastly, we specify the parameters used for the simulations and

53

present a comparison between the predicted and actual system performance.

3.5.1 Experimental Setup

Our experiments were conducted on the Cray XK6 Titan cluster at the Oak Ridge Leadership
Computing Facility (OCLF). It consists of 18, 688 compute systems, each containing a 16-core
2.2 GHz AMD Opteron 6724 processor and 32 GB of RAM. It uses the Lustre [72] file system for
parallel I/O and a high performance Gemini interconnect for communication. The compute-I/O
node ratio for all experiments is kept fixed at 8 : 1. The definitive choice of a single optimal ratio
is non-trivial, since it depends on the size of the data being moved, the degree of inter-node
communication, as well as the memory requirement of the staging nodes. The study in this
realm is the subject of future work.

We evaluated the system characteristics using a set of micro-benchmarks to measure the
network and disk I/O throughputs. The aggregate network throughput for our experiment cases
was measured to be 530 MB/s on average, while the I/O read and write throughputs were
measured to be 62.6 MB/s and 15.6 MB/s per node, respectively. It should be noted that for all
our experiments, we refer to the term “node” as a processing core on the Titan system.

We use the s3d_temp, flash_velx, msg_sweep3d, and gts_chkp_zion datasets discussed in
[16, 28, 70, 78, 11] for our analyses. The datasets are chosen to reflect the entire compressibility
spectrum across a range of scientific datasets.

The S3D dataset consists of about 20.2 million double precision values of the temperature
variable with 46% unique values. It is relatively less hard-to-compress in comparision with the
other datasets.

The FLASH dataset, on the other hand, consists of about 68.1 million double precision
values of the velocity variable with entirely unique values. It is hard-to-compress and exhibits
compressibility characteristics similar to most scientific datasets discussed in [70]. Therefore, it
is a good representative for a large number of scientific datasets under consideration.

The MSG dataset consists of about 15.7 million double precision values of numeric messages
sent by a node in a parallel system running the NAS Parallel Benchmark (NPB) and ASCI
Purple applications with 90% unique values. It exhibits compressibility characteristics similar to
the FLASH dataset.

The GTS dataset consists of about 2.4 million double precision values of the zion variable’s
checkpoint and restart data for each 10th timestep of the GTS simulation. It consists of entirely
unique values. It has a high degree of apparent randomness and is one of the most “hard-to-
compress” scientific dataset. Note that this is only apparent randomness; in reality, the dataset
contains patterns that are non-trivial to isolate, preventing general-purpose compressors from
leveraging them.

54

The ISOBAR framework supports the use of any general purpose byte-level compression
algorithm. However, for our evaluations, we use zlib [29], designed by Jean-loup Gailly and Mark
Adler. It is a lossless compression /decompression algorithm that uses an LZ77 algorithm variant
to compress the data in a block sequence. In addition to scoring high marks in general-purpose
compression rate and compression throughput, the memory usage of zlib is independent of any
input data.

In addition to the three interleaving strategies discussed in Section 3.4, we also include a
serial compression case for completeness sake, wherein we apply ISOBAR compression serially,
i.e., we do not interleave compressible and incompressible data processing. This is essentially an
extension of the base case, allowing us to directly evaluate the impact of interleaving.

3.5.2 Write Performance

Figure 3.12 shows the results gathered from write micro-benchmarks. For each dataset, the
results are reported in terms of the percent improvement in the write throughput relative to the
base case, measured for each of the four scenarios (i.e. the base case, interleaving at compute
nodes, and interleaving at I/O nodes, and the serial compression), versus the number of compute
nodes.

We observe that both interleaved approaches (compute node and I/O node compression)
yield an improvement in performance over state-of-the-art I/O middleware framework without
compression (the base case). As expected, interleaving using compute node compression results
in the highest performance gain, from around 12% over the base case for the GTS dataset and
to as high as 46% over the base case for the S3D dataset. Improvements for the FLASH and
MSG datasets are about 31% over the base case. On the other hand, interleaving using I/O
node compression yields improvements in the range of about 8% for the GTS dataset, 37% for
the S3D dataset, and 25% for the FLASH and MSG dataset. Using ISOBAR serially yields
a modest 1% (GTS) to 16% (S3D) gain in throughput performance. Note that for the MSG
dataset, using ISOBAR serially results in a 4% reduction in performance over the base case.
These results clearly suggest that a significant portion of the performance boost comes from our
compression-I/O interleaving strategy, affirming the efficacy of this approach.

The experiments are conducted with weak scaling up to 2048 nodes on the Titan system.
The stability of the results over a varying number of cores suggests that the framework is, indeed,
scalable.

3.5.3 Read Performance

We carried out equivalent read micro-benchmark tests on the disk data, evaluating the base case
(without decompression) and each of the two interleaved decompression strategies (decompression

55

8 32 128 512 2048

10%

20%

30%

40%

50%

S3D

8 32 128 512 2048

5%

15%

25%

35%

FLASH

8 32 128 512 2048

−5%

5%

15%

25%

35%

MSG

8 32 128 512 2048

0%

5%

10%

15%

GTS

Number of compute nodes (8 per I/O node)

In
cr
ea
se

in
I/
O

th
ro
u
g
h
p
u
t
re
la
ti
v
e
to

B
a
se

C
a
se

(n
o
co
m
p
re
ss
io
n
)

Compute Node (Model) I/O Node (Model) Compress then Write

Compute Node (Empirical) I/O Node (Empirical)

Figure 3.12: Model and empirical end-to-end write throughput versus number of compute nodes
(weak scaling)

56

8 32 128 512 2048

30%

40%

50%

S3D

8 32 128 512 2048

15%

20%

25%

30%

35%

FLASH

8 32 128 512 2048

10%

15%

20%

25%

30%

35%

MSG

8 32 128 512 2048

0%

5%

10%

15%

GTS

Number of compute nodes (8 per I/O node)

In
cr
ea
se

in
I/
O

th
ro
u
g
h
p
u
t
re
la
ti
v
e
to

B
a
se

C
a
se

(n
o
co
m
p
re
ss
io
n
)

Compute Node (Model) I/O Node (Model) Read then Decompress

Compute Node (Empirical) I/O Node (Empirical)

Figure 3.13: Model and empirical end-to-end read throughput versus number of compute nodes
(weak scaling)

at the compute nodes and at the I/O nodes).
The experimentation results of the read micro-benchmarks are shown in Figure 3.13 in the

form of percent improvements over the base case (i.e., direct reads without decompression). Both
the interleaved approaches for the reads exhibit performance gains of the same order as reported
for the writes for all the datasets. This suggests that the hybrid framework is symmetric with
respect to reads as well as writes.

In order to support asynchronous processing of the compressible and incompressible portions
of the data for the interleaved scenarios, we used a separate file per ADIOS group. The reason for
this is that ADIOS currently reads data from all the groups upfront when using a single file and
this operation is inherently blocking, i.e., a request for the read of only the compressed buffer

57

Table 3.4: Dataset Evaluations for the Best Strategy of Interleaving at Compute Nodes

Application α σ Tcomp Tdecomp Avg. write
gain (%)∗

Avg. read
gain (%)∗

GTS † 0.25 0.527 90 414 11.26 13.40
FLASH † 0.25 0.019 149 127 30.87 32.53
S3D † 0.375 0.152 186 457 45.43 46.64
MSG † 0.375 0.361 140 560 31.61 31.84
OBS 0.25 0.203 43 172 24.55 24.99
NUM 0.25 0.231 163 652 23.51 23.93

†Validated by experimental results. *Adjusted for model bias.

requires the entire data to be read. The two-file-approach does not affect the write performance.

3.5.4 Performance Modeling

The performance models for evaluation were setup to use the following parameter values. The
compute-I/O node ratio was chosen as ρ = 8 : 1. Compression efficiency is sensitive to the chunk
size for most lossless compression techniques that adapt based on calculated statistics of the
subject data [81, 38]. We chose a chunk size C = 3 MB taking into account the sensitivity of
most lossless compression techniques to the input chunk size [81]. The ISOBAR preconditioner
operates at an approximate throughput of Tprec = 500 MB/s. Other ISOBAR specific parameters
were chosen based on the statistical analyses of 24 different scientific datasets [70], 19 of which
were “hard-to-compress.” The average values of these parameters based on the application type
(i.e., α, σ, Tcomp, Tdecomp from Table 3.2) are shown in Table 3.4.

The predicted performance for the data writes and reads for all the test scenarios and
evaluation datasets are shown in Figure 3.12 and 3.13, respectively. It is evident that the
theoretical performance improvements are generally consistent with the empirical results. Though
some small overestimating bias is visible, it is itself relatively consistent, and can therefore be
readily factored out (as has been done in Table 3.4). Additionally, the fact that the trends
exhibited by the model predictions are equivalent to those of the measured results points to a
mismeasured system parameter as the likely culprit for the minor discrepency that exists. Thus,
the performance model can be used to closely approximate the true behavior of the system.

In addition, we also performed theoretical evaluations of our framework on other scientific
datasets from various application domains. These include the OBS [12], and NUM [13, 67]
simulations, both of which normally produce a reasonable amount of data per process. The
results for the best strategy (interleaving at the compute nodes) for reads as well as writes are

58

shown in the Table 3.4.
We observe that the expected theoretical performance gains for these more typical datasets

are as high as 25%, even after accounting for the observed model bias. This shows that our
framework improves significantly on less harder to compress datasets and that the performance
gains are directly proportional to the compression ratio of datasets.

3.6 Related Work

The ISOBAR hybrid compression framework utilizes the I/O forwarding paradigm [3], which
is a common technique for alleviating the I/O bottleneck in super-computing environments,
and is the subject of active research. The multithreaded ZOID architecture [40], developed
under the ZeptoOS [5] project on the IBM BlueGene/P, is a state-of-the-art data staging
system. LambdaRAM [77] is an asynchronous data staging system which mitigates WAN latency
via dedicated staging nodes. IODC [64] is a portable MPI-IO layer implementing a caching
framework wherein certain tasks, such as file caching, consistency control, and collective I/O
optimization, are delegated to a small set of I/O delegate nodes. Recent work in ADIOS includes
the DataStager component [2], which focuses on I/O performance through data staging via
network rate limiting and I/O phase prediction, and JITStaging [1], which provides a framework
for placing data filter, analysis and organization code in the data pipeline to reduce overall
time-to-data.

SCR [9] and PLFS [6] are well-known middleware approaches designed specifically for single
(N-N) and shared (N-1) checkpointing, respectively. While SCR provides efficient checkpoints
and improves system reliability by shifting checkpoint I/O workload to hardware better suited
for the job, it is not suitable for applications that need process-global access to checkpoint files.
Moreover, hardware and file system support is required to cache checkpoint files. PLFS, on the
other hand, transparently rearranges shared checkpoint patterns into single patterns, thereby
decreasing the checkpoint time by taking advantage of the increased bandwidth. However,
this requires managing the overwhelming pressure resulting from the simultaneous creation of
thousands of files within a single directory. Also, since PLFS is specifically a checkpoint file
system and not a general purpose file system, certain usage patterns may suffer a significant
performance hit [6].

Our approach differs in that we focus on optimizing data staging I/O throughput via
compression and resource interleaving. Some recent work has examined compression in a data
staging context [82]; however, only traditional compression algorithms are explored, which do
not function well on the hard-to-compress scientific data we consider, and resource interleaving
is not used to hide the compression and I/O synchronization costs.

Previous work on data deduplication can also be considered a form of compression, detecting

59

and eliminating duplication in data with a goal to improving disk utilization. State-of-the-art
deduplication systems include HYDRAstor [21], MAD2 [80], and others [37]. Deduplication
can operate at either sub-file or whole-file scale; the relative merits of these aproaches have
been explored [60]. Although these systems are scalable, provide a good deduplication efficiency,
and attain near-optimal throughput for common filesystem data, they are unfortunately less
effective when dealing with peta-scale scientific data. Unlike typical file system data, scientific
data exhibits very few duplicate non-contiguous patterns, nullifying much of the effectiveness of
the deduplication approach. Furthermore, the possibility of running compression in situ remains
desirable for performance reasons, which is not possible with filesystem-bound algorithms such
as deduplication.

3.7 Conclusion

The I/O staging paradigm has arisen to cope with the growing gap between computing power
and I/O bandwidth in current peta-scale HPC environments. While providing increased and
more consistent performance, the sheer scale of the data necessitates lossless compression as a
data reduction methodology, leaving the technical challenge of absorbing the costs of compression
and overhead in parallel I/O performance on nonuniform chunk sizes.

To meet these challenges, we presented the ISOBAR hybrid compression-I/O framework. The
ISOBAR preconditioner allows us to separate the high-entropy components of the data from the
low-entropy components, forming independent streams that may be interleaved. The high-entropy
components are sent across the network and to disk asynchronously while the low-entropy data
is compressed, hiding the compression costs and fully utilizing all compute, network, and I/O
resources. Placement of the compression routine itself is an important issue, so we implement a
hybrid approach where the compression phase may be placed either on the compute nodes or the
I/O nodes, trading off between aggregate compression throughput and leaving the compute nodes
free to run the application at hand. Finally, each of the implementations are accurately modeled
by a set of performance metrics, allowing a generalization of our methodology’s performance
past the experimental environment.

We demonstrated the efficiency of compression-I/O interleaving, improving end-to-end
I/O throughput by predicted values ranging from 12 to 46% on datasets that are considered
particularly hard-to-compress. We therefore believe that data compression can be used effectively
within an HPC environment to help bridge the computational and I/O performance gap.

60

Chapter 4

Generic High-performance Method
for Deinterleaving Scientific Data

4.1 Introduction

Emerging extreme-scale high performance computing (HPC) systems enable high fidelity scientific
simulations that generate data at an increasing rate [58]. Yet, these HPC systems and data-
intensive applications they support consume energy at an ever-increasing amount [50, 74].
Thus, the need for performance and energy efficient data management applications is of utmost
importance to maximize throughput/watt while achieving improved scalability and sustainability
[32].

To improve performance during scientific data analysis, which is critical for gaining insights
from the simulations, simulations often have to deinterleave data variables. Upon deinterleaving,
the data set for each variable of the simulation is contiguous in memory and storage. This
deinterleaved layout is beneficial since most data analyses span multiple time steps of a particular
variable [49]. In contrast, most simulations perform calculations using instances of many variables
from a current/previous time step. Hence, an interleaved layout in memory provides better data
locality during simulation runs by keeping each group of variables together in memory for the
active time steps, see Figure 4.1.

Deinterleaving data is frequently necessary after the completion of a simulation step before
data analysis and storage. For example, simulations such as FLASH [28], S3D [16] and Nek5000
[24] have variables that are interleaved in memory while most storage and analysis, such as data
compression [70, 71] and variable precision analytics [42], are performed using a deinterleaved
layout. Through performing numerous micro-benchmarks, we found that common deinterleaving
methods have poor throughput and energy performance.

To address this problem, we propose a deinterleaving method that is high performance,

61

ρ0 P0 T0 ρ1 P1 T1 ... ρm Pm Tm

(a) variables interleaved in memory

ρ0 ρ1 ... ρm P0 P1 ... Pm T0 T1 ... Tm

(b) variables deinterleaved in memory

ρ0 P0 T0

ρ1 P1 T1
...

...
...

ρm Pm Tm

(c) interleaved matrix format

Figure 4.1: FLASH data in interleaved and deinterleaved layouts; each ρf , Pf , and Tf for f = 0
to m refers to the value of ρ, P, and T of the simulation at the f th matrix row

energy efficient, and generic to any variable data type. To the best of our knowledge, this is the
first deinterleaving method that 1) exploits data cache prefetching, 2) reduces memory accesses,
and 3) optimizes the use of complete cache line writes. As a result, our method increases the
throughput performance, reduces memory latency, and improves energy utilization.

Specifically, we compare the throughput performance and energy utilization of our dein-
terleaving method to two common deinterleaving methods. We assessed our method with 105
STREAM standard micro-benchmarks including 84 throughput and 21 energy performance test
cases of varying input sizes and data types. In all cases tested, our method achieved better
throughput and energy performance than the other two methods. In the best case, our method
improved throughput up to 26.2x and throughput/watt up to 7.8x, when compared to the next
best deinterleaving method.

4.2 Background

Simulations such as FLASH, S3D, and Nek5000 have variables that are interleaved in memory.
These interleaved variables can be thought of as a matrix of data stored in row major format
where each column corresponds to a particular variable. For multidimensional variables, each
dimension has a separate column. Consider an example of FLASH simulation data with a
sample of three variables ρ, P, and T corresponding to gas density, pressure, and temperature,
respectively. The interleaved layout of these variables in memory can be seen in Figure 4.1a.
Representing this data in matrix form would give an m × 3 matrix where the three columns
correspond to the three variables and the rows correspond to different steps of the simulation,
see Figure 4.1c. With this interpretation, deinterleaving the data is equivalent to performing a
matrix transposition, which would change the layout of the variables in memory, see Figure 4.1b.

There are two common techniques for deinterleaving data by performing an out-of-place
matrix transposition. We refer to these techniques as standard transposition and strided trans-
position. These two techniques, along with our proposed method in the following section, are
considered out-of-place due to the use of an output memory space equal to the size of the

62

original matrix where the elements are copied. In contrast, in-place transposition methods use
a bounded amount of memory space and, in some cases, can slightly outperform out-of-place
methods. However, in-place methods are often complex and can be performance constraining for
simulations requiring variable interleaving, such as FLASH, S3D and Nek5000, to continue from
where it left off in the calculation phase.

The standard and strided out-of-place transposition methods differ from each other in how
they copy elements into an output memory buffer. The standard transposition method uses two
loops to iterate row-wise and writes out the elements in a strided manner [27]. Alternatively, the
strided transposition method uses two loops to iterate column-wise and writes out the elements
contiguously.

4.3 Method

Our deinterleaving method performs an out-of-place transposition to transform a matrix of data
stored in row major format to one stored in column major format. During the transposition
process, our method combines the strength of both the standard transposition and strided
transposition techniques.

In this section, we describe our deinterleaving method in detail. The method section is
divided into three subsections corresponding to the three major components of our method: 1)
cache prefetching on blocks of data, 2) using the registers as a vector transposition buffer, and
3) optimizing for full cache line writes. In addition, we provide a simple example for clarity.

4.3.1 Cache Prefetching on Blocks of Data

The benefit of cache prefetching is to hide latency time sinks associated with accessing main
memory [30]. The standard transposition method, as discussed in Section 4.2, is able to take
advantage of these benefits due to the sequential data reads inherent in its method. In contrast,
the major weakness of the strided transposition method is that cache prefetching is not guaranteed
and its effectiveness is dependent on the input buffer size. The cache prefetching benefits of
the standard transposition method were the motivation for performing cache prefetching in our
method.

Given an m × n (m rows and n columns) matrix of elements, A, stored in row major format,
the first step of our deinterleaving method is to partition A into a block matrix where the blocks
correspond to submatrices of A that will be consecutively prefetched into cache. As illustrated
in Figure 4.2, matrix A is partitioned as an M × 1 block matrix where each block is of size
mb × n. Partitioning A in this manner creates M blocks each of which we label as Bk for k = 1
to M . The number of rows in each block, denoted mb, is chosen so a block column can fill the

63

A =

e1,1 e1,2 · · · e1,n
e2,1 e2,2 · · · e2,n
...

...
. . .

...
emb,1 emb,2 · · · emb,n

e(mb+1),1 e(mb+1),2 · · · e(mb+1),n

e(mb+2),1 e(mb+2),2 · · · e(mb+2),n
...

...
. . .

...
e2mb,1 e2mb,2 · · · e2mb,n

...
...

. . .
...

e(M−1)mb+1,1 e(M−1)mb+1,2 · · · e(M−1)mb+1,n

e(M−1)mb+2,1 e(M−1)mb+2,2 · · · e(M−1)mb+2,n
...

...
. . .

...
eMmb,1 eMmb,2 · · · eMmb,n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

⎞
⎟⎠

⎛
⎜⎜⎝

⎞
⎟⎟⎠

⎛
⎜⎜⎝

⎞
⎟⎟⎠

=

B1

B2
...

BM

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

Figure 4.2: Matrix A being partitioned into M blocks of size mb × n

entire cache line, discussed in Section 4.3.3.
For example, suppose the cache line is size of C bytes, which on most modern architectures is

64 or 128 bytes [17]. Suppose the elements of matrix A are each β bytes. Then, for mb elements
to fill the cache line as full as possible we want mbβ = C, and therefore make mb = �C/β�. It is
plausible that the last block will have fewer elements than the other blocks because mb may
not evenly divide the m elements. In this case, M = �m/mb�. To process the smaller block, the
matrix can be padded with values that will be disregarded [19].

The blocks, Bk for k = 1 to M , correspond to the submatrices of A that will be consecutively
prefetched into the cache. Block of data Bk+1 will be prefetched into cache while the block Bk

is being further processed, as described in the following subsections. By prefetching blocks of
elements in this manner, our method can reduce memory latency associated with loading blocks
from memory.

4.3.2 Using the Registers as a Vector Transposition Buffer

Each block Bk can further be partitioned into submatrices using the columns as dividers, making
Bk into a 1 × n block matrix, referred to as a column vector, as seen in Figure 4.3a. With both
partitions applied, matrix A can be viewed as a matrix of column vectors as shown in Figure
4.3b. Each column vector of Bk, which we denote as V c

k,j for j = 1 to n, consists of elements
that are currently non-contiguous in memory due to the row major storage format of A.

The goal of our deinterleaving method is the elements of the column vectors to be contiguous
in memory or, equivalently, the elements to belong to the same row in the matrix. To make the

64

Bk =

e(k−1)mb+1,1 e(k−1)mb+1,2 · · · e(k−1)mb+1,n

e(k−1)mb+2,1 e(k−1)mb+2,2 · · · e(k−1)mb+2,n

...
...

. . .
...

ekmb,1 ekmb,2 · · · ekmb,n

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

V
C

k,1 V
C

k,2 · · · V
C

k,n

()
=

(a) Partitioning of block Bk into column vectors V C
k,j for j = 1 to n

B1

B2
...

BM

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠A = =

V
C

1,1 V
C

1,2 · · · V
C

1,n

V
C

2,1 V
C

2,2 · · · V
C

2,n

...
...

. . .
...

V
C

M,1 V
C

M,2 · · · V
C

M,n

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(b) Matrix A partitioned into submatrices of column vectors

Figure 4.3: Each block of matrix A partitioned into n column vectors

elements contiguous, each column vector gets transposed and temporarily stored in CPU registers
until it is written out to a full cache line. The general notation for each transposed column
vector, referred to as a row vector, is denoted: V R

k,j = [e(k−1)mb+1,j , e(k−1)mb+2,j , · · · , ekmb,j].
For clarity, consider a specific example. Suppose block B1 is currently being partitioned into

n column vectors, namely V c
1,j for j = 1 to n. The elements of a column vector V c

1,j consist of the
elements e1,j , e2,j , ..., emb,j from A as seen in Figure 4.3a. Starting with the first column vector
(j = 1), the elements must be loaded into a buffer of registers and in the next step written into
the extra memory space that was created for the transposition matrix. Using CPU registers as a
buffer to store these elements constitutes a transposition of the column vector as the elements
will now be contiguous instead of strided.

The motivation for using the registers as a temporary buffer is that each column vector must
be transposed into some storage location in order to achieve full cache line writes, which is the
strength of the strided transposition method. The registers provide the most efficient location to
store the row vectors due to their minimal CPU cycles per operation [31]. In addition, using
a buffer of registers in this manner is a viable option since typically a CPU provides enough
hardware registers where the buffer size is at least equal to the cache line size.

65

4.3.3 Optimizing for Full Cache Line Writes

Once the elements of a row vector are loaded into the register buffer, our method then writes
out this data into the memory space that was created for the deinterleaved output. During
the write process, our method utilizes the full cache line due to the row vector containing mb

elements, where mb was chosen to fill the cache line. By utilizing full cache line writes, our
method emulates the strength of the strided transposition method [20], while avoiding the
inefficient write process of the standard transposition method.

During the write process, our method must leave enough room for m elements of A (an
entire column) between the start of each column vector, meaning there will be a stride of m

between the memory storage offset of each column vector. So, for a given row vector V R
k,j , the

elements get mapped consecutively into the new memory storage location offset starting at
(k − 1)mb + (j − 1)m.

After this process is completed and all the row vectors have been written, the process is
repeated. The next block, which should already reside in cache, is partitioned into column
vectors that are consecutively loaded into the register buffer and written out. The entire process
is completed for each block Bk for k = 1 to M . Once every block has gone through this process,
the output location will contain the transpose of matrix A. The entire deinterleaving process is
illustrated by the example given in the following section.

4.3.4 A Simple Example of Our Deinterleaving Method

For clarity, consider a simple example of 24 data elements consisting of three different variables
interleaved in memory. Figure 4.4a shows the matrix representation of these interleaved variables,
with each column of the matrix storing data corresponding to a particular variable. For the sake
of this example, suppose the elements are 8-byte doubles (common in simulation data) and the
cache line size of the system is 32 bytes. The elements of the matrix are initially stored in row
major format, meaning the elements are ordered as e1, e2, e3, e4, ..., e24 in memory. The goal of
our deinterleaving method is to obtain the transpose of the matrix, illustrated in Figure 4.4e, so
that the elements of each column will be contiguous in memory and thus deinterleaved.

The initial step of our deinterleaving method is to create a new output memory space to
hold the transposed matrix. Next, the matrix is partitioned into two 4 × 3 block matrices, B1

and B2 consisting of elements e1 through e12 and e13 through e24, respectively. The number of
rows in each block was chosen as mb = 4 so that each column within a block will entirely fill the
cache line, as four 8-byte doubles is exactly the cache line size of the system.

With the matrix partitioned into two blocks, the next step is to load B1 into the cache. The
block itself is then partitioned into the three column vectors V C

1 , V C
2 , and V C

3 , as depicted in
Figure 4.4b. After this partition, the first column vector of B1, meaning the elements e1, e4, e7,

66

e1 e2 e3

e4 e5 e6

e7 e8 e9

e10 e11 e12

e13 e14 e15

e16 e17 e18

e19 e20 e21

e22 e23 e24

V
C

1 V
C

2 V
C

3

V
C

4 V
C

5 V
C

6

V
R

1 V
R

2 V
R

3

V
R

4 V
R

5 V
R

6

V
R

1

V
R

2

V
R

3

V
R

4

V
R

5

V
R

6

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

e15

e16

e17

e18

e19

e20

e21

e22

e23

e24

(a) (b) (c)

(d) (e)

Figure 4.4: The partition and transposition steps of our deinterleaving method performed on a
simple 8 × 3 matrix of 8-byte elements optimized for cache line writes of 32 bytes

and e10, is transposed into a row vector and temporarily stored in the register buffer, see Figure
4.4c. The full cache line is then utilized to write out the elements of the row vector into the
output memory space that was created for the transposed matrix, see Figure 4.4d. This process
is repeated on the remaining column vectors of B1 until all of them have been written into the
output memory space.

After B1 has finished transposing and writing each of its column vectors, the same process is
repeated on the second block, B2. This block would have been prefetched into cache during the
time B1 was being processed, thus saving the time of retrieving B2 from memory. After B2 is
processed, the matrix will be transposed and the variables deinterleaved, as illustrated in Figure
4.4e.

4.4 Performance Evaluation

In this section, we present the empirical evaluations of our deinterleaving method via a set of
micro-benchmarks to evaluate throughput and energy performance. We compare the results
of our deinterleaving method against those of the standard and strided transposition methods.
For brevity, we will refer to our Out-of-Place Deinterleaving method as OPD method in the
remainder of the paper.

4.4.1 Experimental Setup

Performance measurements were collected on the Lens Linux cluster at Oak Ridge National
Laboratory and on a dedicated Intel server. The Lens cluster is primarily used for data analysis
and high-end visualization. Each cluster node consists of four quad-core 2.3 GHz AMD Opteron
processors and 128GB of memory. Each processor has three cache levels: L1 cache is 64KB, L2

67

cache is 512KB, and the shared last level cache (LLC) is 5118KB. The Intel server consists of a
quad-core i7 2.93 GHz processor and 16GB of memory running CentOS-6.3. The Intel processor
has three cache levels: L1 is 32KB, L2 is 256KB, and LLC is 8MB. All multi-core evaluations
for both the throughput and energy experiments were done utilizing all available processors and
computational cores.

For collecting performance metrics, we added micro-benchmarks of all deinterleaving methods
into the STREAM [59] framework, compiled with GNU Compiler Collection (GCC) version
4.7.1. STREAM is useful for evaluating memory throughput performance of single- and multi-
core I/O-intensive functions that are sensitive to system architecture characteristics [36]. We
compared the throughput performance metrics collected from 105 STREAM micro-benchmarks
tested across the AMD and Intel systems. The test cases spanned a diverse set of data including
multiple data types, column sizes, and input buffer sizes. Specifically, the data types evaluated
were bytes, single-precision floating-points, and double-precision floating-points. For each data
type, the variables interleaved (columns) were 2, 4, 8, and 16. The input buffer sizes ranged from
64, 128, · · · , 4096 kilobytes per core. To obtain the performance measurements seen in Figure
4.5 and Figure 4.6, each micro-benchmark was run 100 times for each deinterleaving method.
The highest throughput of the 100 runs was recorded.

For our set of micro-benchmarks, we restricted our input buffer size between 64KB and
4096KB. The reason this lower bound was chosen is due to the precision of the timer used
in the STREAM benchmark, which states at what point the clock measurement becomes
unreliable. For input sizes less than 64KB, our deinterleaving technique ran too fast for a reliable
throughput measurement. However, at sizes of 64KB and higher, the throughput could be
measured accurately. The upper bound of 4096KB was chosen to represent an input size that
was beyond the size of the LLC for multi-core evaluations.

4.4.2 Deinterleaving Throughput Performance

In all multi-core evaluations, our deinterleaving method performed better than the standard and
strided transposition methods, see Figure 4.5 and Figure 4.6. In the best case, our deinterleaving
method performed at a 26.2x faster throughput, when compared to the next best method.
In addition, our method consistently reported gains of over 40GB/s on smaller input sizes
(corresponding to lower cache levels). The performance gains of our deinterleaving method were
more pronounced on smaller input buffer sizes because memory latency starts to become a
significant factor on larger buffer sizes.

Another characteristic seen in our results is that neither the standard transposition nor
the strided transposition was consistently better than the other. In some cases, the standard
transposition would significantly outperform the strided transposition and vice versa, irrespective

68

64 12
8
25
6
51
2
10
24
20
48
40
96

0

60

120

180

Column Size 2,
Double-Precision FP

64 12
8
25
6
51
2
10
24
20
48
40
96

0
30
60
90

120
150

Column Size 4,
Double-Precision FP

64 12
8
25
6
51
2
10
24
20
48
40
96

0
30
60
90

120
150

Column Size 8,
Double-Precision FP

64 12
8
25
6
51
2
10
24
20
48
40
96

0
30
60
90

120
150

Column Size 16,
Double-Precision FP

64 12
8
25
6
51
2
10
24
20
48
40
96

0

60

120

180

Column Size 2,
Single-Precision FP

64 12
8
25
6
51
2
10
24
20
48
40
96

0

30

60

90

120

Column Size 4,
Single-Precision FP

64 12
8
25
6
51
2
10
24
20
48
40
96

0
20
40
60
80

100

Column Size 8,
Single-Precision FP

64 12
8
25
6
51
2
10
24
20
48
40
96

0
20
40
60
80

100

Column Size 16,
Single-Precision FP

64 12
8
25
6
51
2
10
24
20
48
40
96

0

60

120

180

Column Size 2,
Byte

64 12
8
25
6
51
2
10
24
20
48
40
96

0

30

60

90

Column Size 4,
Byte

64 12
8
25
6
51
2
10
24
20
48
40
96

0

30

60

90

Column Size 8,
Byte

64 12
8
25
6
51
2
10
24
20
48
40
96

0

20

40

60

Column Size 16,
Byte

Input Buffer Size (Kilobytes) per Core

T
h
ro

u
g
h
p
u
t
(G

ig
a
b
y
te

s/
S
e
c
o
n
d
)

OPD Method Standard Transposition Strided Transposition

Figure 4.5: Throughput performance applying STREAM micro-benchmarks when deinterleaving
single-precision, double-precision floating-point (FP), and byte variables on the AMD Opteron
system utilizing all 16 cores

64 12
8

25
6

51
2

10
24

20
48

40
96

0

20

40

60

80
Double-precision Floating-point

64 12
8

25
6

51
2

10
24

20
48

40
96

0

15

30

45

60

75
Single-precision Floating-point

64 12
8

25
6

51
2

10
24

20
48

40
96

0

15

30

45

60

75
Byte

Input Buffer Size (Kilobytes) per Core

T
h
ro

u
g
h
p
u
t

(G
ig
a
b
y
te

s/
S
e
c
o
n
d
)

OPD Method Standard Transposition Strided Transposition

Figure 4.6: Throughput performance applying STREAM micro-benchmarks when deinterleaving
single-precision, double-precision floating-point, and byte variables with 16-variable interleaved
data on the Intel i7 system utilizing all cores

69

Table 4.1: Instruction Set Architecture for Deinterleaving Methods

Data Type Method
Column Size

2 4 8 16

Double
Standard SSE2 x86_64 x86_64 x86_64
Strided x86_64 x86_64 x86_64 x86_64

Float
Standard SSE SSE SSE SSE
Strided SSE x86_64 x86_64 x86_64

Byte
Standard SSE2 SSE2 SSE2 SSE2
Strided x86_64 x86_64 x86_64 x86_64

of the instruction set architecture being used, see Table 4.1. The performance inconsistency
of these two techniques is another strength of our deinterleaving method, as ours consistently
outperformed the other two methods.

Although not depicted in throughput performance figures, our method was also compared
against the other methods when all were utilizing only a single core of the system. In this case,
our method reported similar, but scaled down trends to those seen in multi-core evaluations.
Even in this case, our method always had better throughput performance than the other two
methods.

4.4.3 Deinterleaving Energy Performance

The energy performance measurements were performed on a dedicated Intel server connected to
a Watts Up Pro meter, which provides a recording of power measurements (watts) per second
during the collection of throughput metrics. The power was measured for each deinterleaving
method on 21 micro-benchmarks of 16-variable interleaved data of varying input sizes and data
types. Energy performance normalization was done for the deinterleaving methods by calculating
gigabytes per joule (throughput/watt) for each test case.

In all cases tested, our deinterleaving had better energy utilization than the other methods,
with throughput/watt improvements up to 7.8x, when compared to the next best method. The
results of our energy experiments can be seen in Figure 4.7. The improved energy performance of
our method is attributed to the increased throughput (Figure 4.6), the effective cache utilization
similar to the standard transposition method, and the optimized cache line writes like the strided
transposition method.

70

64 12
8

25
6

51
2

10
24

20
48

40
96

0

0.1

0.2

0.3

0.4

0.5
Double-precision Floating-point

64 12
8

25
6

51
2

10
24

20
48

40
96

0

0.1

0.2

0.3

0.4
Single-precision Floating-point

64 12
8

25
6

51
2

10
24

20
48

40
96

0

0.1

0.2

0.3

0.4
Byte

Input Buffer Size (Kilobytes) per Core

T
h
ro

u
g
h
p
u
t
p
e
r
W

a
tt

(G
ig
a
b
y
te

s/
J
o
u
le
)

OPD Method Standard Transposition Strided Transposition

Figure 4.7: Normalized energy performance measurements (throughput/watt) collected with
power meter during STREAM throughput benchmarks on Intel system

4.5 Related Work

Out-of-place matrix transpositions have been studied extensively in the past. Majority of these
transposition algorithms, initially proposed decades ago, focus on methodologies for optimizing
use of secondary storage (tapes, disks, etc.). Although these algorithms are not well suited
for modern computer systems due to processor cache inefficiency, we still use these techniques
for references since secondary storage of the past is analogous to RAM in modern systems.
A fast matrix transposing method was given in [22] where the algorithm was specifically
designed for 2n × 2n square matrices and it is compared with many other matrix transposition
algorithms. Another algorithm called single radix algorithm was proposed in [44], and shows
better performance in disk seeks and accesses. For transposing a large arbitrary matrix, PRIM
was introduced in [34].

In-place matrix transpositions can be used as an alternative to out-of-place methods; however,
in-place methods are often complex and can be performance inefficient for simulations requiring
interleaved variables to continue with the calculation phase. Furthermore, in-place methods
commonly have constraints on row and column sizes making them unusable as a generic method
for deinterleaving scientific data. Six algorithms are investigated in [15] for transposing a large
square matrix in-place. They use 32-bit single-precision floating-point numbers and have the
length of both the row and column equal to 2n. In their experiments, the non-linear array layout
algorithm outperforms other algorithms as it uses “Morton ordering” [61]. This algorithm also
uses recursion to divide the problem into smaller subproblems, as in [27], but terminates at an
architecture-specific tile size. Even by using a “blocking” and “tiling” technique, a higher cache
efficiency might not be achieved as claimed in [31]; instead, they proposed a buffer must be used
in order to be cache efficient.

71

Although much attention has been paid to matrix transposition, very few of the studies focus
on the utilization of cache in a specific domain requiring deinterleaving of variables. Our method
applies to any data type and utilizes full cache line writes to be throughput and energy efficient
when deinterleaving data. Blocking, shuffling, and compression library, Blosc, was introduced
in [4], which uses a high-performance byte deinterleaving technique to reduce activity on the
memory bus. Our approach differs from this technique in that we support not just byte-level but
float- and double-level as well. Moreover, Blosc currently utilizes 16-byte SSE2 register writes
instead of full cache line writes compared to our deinterleaving method.

4.6 Conclusion

We proposed a deinterleaving method that is high performance, energy efficient, and generic to
any data type. Our method has increased throughput and energy performance by utilizing the
system architecture in three ways: 1) improving data cache prefetching, 2) reducing memory
accesses, and 3) optimizing the use of full cache line writes.

Our method results in better throughput and energy performance when compared against two
common deinterleaving methods during 105 STREAM standard micro-benchmarks evaluations,
which includes 84 throughput and 21 energy performance test cases. When compared to the
next best case, our method improved throughput up to 26.2x and throughput/watt up to 7.8x.

72

Chapter 5

Conclusion

Our thesis introduced realizable preconditioner-base methods for optimizing end-to-end through-
put by applying lossless compression and layout reorganization towards modern-day HPC and
next generation systems for storage, retrieval, and analysis. Our future work focuses on advancing
this research of utilizing preconditioners to further minimize the disparity between the ever-
increasing amounts of data being generated by these systems and their predicted data handling
limitations. In particular, application of preconditioner-base compression and deinterleaving can
provide the foundation for supporting in-place techniques to reduce system memory utilization
and optimize cache awareness of the architecture.

5.1 Future Work

As HPC systems scale towards exascale computing, data storage, retrieval, and analytic frame-
works suffer more from limited in-core memory performance and capacity available. In particular,
HPC systems will offer less Random Access Memory (RAM) available per computational core,
RAM I/O bandwidth does not scale proportionally to computational performance, and energy
cost is increasing due to poor utilization of data caching mechanisms. Furthermore, the level of
network and disk I/O performance offered by these systems has not kept up with computational
needs, leading to a serious bottleneck when reading and writing data out-of-core. These issues
become apparent during data movement operations that are commonly associated with in-transit
and in situ processing. Using in-place preconditioning methods to reduce the amount of RAM,
network, and disk I/O activity is a promising approach to further address these challenges and
will work alongside of the preconditioner techniques already presented in our thesis.

Our thesis has presented methods that are shown to improve overall end-to-end throughput
performance but currently require extra memory especially when handling lossless compression.
Unfortunately, a downside to all known lossless compression methods is that they require

73

extraneous use of RAM during the compression process. Lossless compression is a necessary
technique for addressing the challenges of improving the performance of data movement without
sacrificing data fidelity. On the other hand, overutilization of RAM during compression can
negatively affect application viability and performance.

Movement of compressed data, especially between in situ processing stages, needs to be
innocuous when it comes to memory utilization. Effective lossless compression without the need
for extra memory, called in-place lossless compression, is a difficult problem to address due to
reasons discussed in the next subsections. Furthermore, traditional compression methodologies,
unlike in-place compression, have a deleterious effect on hardware caches available within HPC
processors. In-place compression reduces the possibility of cache thrashing for applications that
are already cache aware but require the use of compression. This improves overall computational
performance and energy consumption.

To address the HPC challenges of limited in-core memory bottlenecks, I propose an effective
in-place and cache-aware lossless compression methodology stemming from the previously
presented ISOBAR and deinterleaving work. The primary approach for supporting in-place
lossless compression lies within supporting in-place deinterleaving of a matrix of bytes that can
represent an array of data types. The data types can be of any given size including complex
data types such as those containing multiple instances of doubles.

5.1.1 In-place Deinterleaving Future Work

Utilizing in-place deinterleaving for a set of bytes is an unexplored area of compression with
several complexities. The most difficult aspects of an effective in-place deinterleaving method
for an array of data elements are transposing a non-square matrix and accessing memory at
a byte-level granularity [69]. The matrix is non-square when dimensions are not the same.
There has been recent research towards in-place transposition but they do not provide effective
throughput for transposing at the byte level.

On the other hand, out-of-place transposition of bytes has been used as part of a byte
transposition process, also called byte shuffling, to improve compression efficiency. Byte shuffling
is typically a specialization of the deinterleaving preconditioner presented in this thesis. The
reason that an out-of-place shuffling process is commonly ignored during a compression workflow
is due to requirement of a temporary RAM buffer that is the same size of the input dataset
being compressed.

A future in-place transposition process can build on the prior out-of-place deinterleaving
work to support disparate cache-aware hardware architectures, such as Cray and Blue Gene
systems. In addition, the process can begin immediately within 64 or 128-byte cache-line chunks
as data is being generated. Furthermore, it should not cause cache thrashing which is a major

74

concern for the future of HPC energy consumption and RDMA utilization.

5.1.2 In-place Lossless Compression Future Work

An in-place compression methodology requires approaches beyond efficient in-place byte shuffling.
In our proposed future work, the in-place shuffling process combined with a novel improvement
on the latest ISOBAR hybrid compression-I/O interleaving optimization is expected to result in
a first to exist in-place compression technique.

In-place compression is possible due to the transposition process allowing a single pass of
ISOBAR analysis and ISOBAR partitioning without the need for extraneous memory. Addition-
ally, contiguous memory regions become immediately available for next stage of the compression
process once the transposition has been applied. The immediate availability of contiguous
memory regions allows pipelining of compression without the need of extra memory allocation
and without introducing extra timing overhead due to lags in synchronization and multiple data
passes.

The following is a consolidated list of several major areas of expected impact for in-place
lossless compression:

• To the best of my knowledge and research, this will be the first in-place lossless compression
methodology to be utilized for HPC I/O performance gains.

• This will be the second known in-place decompression technique I could find, after LZO
decompression. However, a negative against LZO is it requires special non-contiguous
segmentation of the compressed input buffer. This is the responsibility of the invoking
application and not the decompressor itself.

• The compression/decompression methodology will not adversely affect data movement
of buffers that are already optimized for cache utilization. A common example is when
applications generate data to fit specifically within L2 cache for optimizing Remote Direct
Memory Access (RDMA) operations.

• The in-place transposition algorithm should be effective at the byte level or any other
larger granularity. Current published work focuses on only in-place matrix transposition
techniques assuming the matrix contains elements of byte size 4 or 8.

• A highly beneficial byproduct of an in-place cache aware lossless compression methodology
is that it will be energy efficient by reducing operations to RAM. Accessing RAM instead
of cache is very expensive in terms of energy cost.

75

REFERENCES

[1] H. Abbasi, G. Eisenhauer, M. Wolf, K. Schwan, and S. Klasky. Just in time: Adding value
to the IO pipelines of high performance applications with JITStaging. In Proceedings of the
20th International Symposium on High Performance Distributed Computing, HPDC ’11,
pages 27–36. ACM, 2011.

[2] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng. DataStager:
Scalable data staging services for petascale applications. In Proceedings of the 18th Inter-
national Symposium on High Performance Distributed Computing, HPDC ’09, pages 39–48.
ACM, 2009.

[3] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross, L. Ward, and P. Sa-
dayappan. Scalable I/O forwarding framework for high-performance computing systems.
In International Conference on Cluster Computing and Workshops, CLUSTER ’09, pages
1–10. IEEE, 2009.

[4] F. Alted. Why modern CPUs are starving and what can be done about it. Computing in
Science and Engineering, 12(2):68–71, 2010.

[5] P. Beckman, K. Iskra, K. Yoshii, and H. Naik. The ZeptoOS project.
http://www.zeptoos.org/.

[6] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez, M. Polte, and
M. Wingate. PLFS: A checkpoint filesystem for parallel applications. In Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis, SC ’09,
pages 21:1–21:12. ACM, 2009.

[7] M. Benzi. Preconditioning techniques for large linear systems: A survey. Journal of
Computational Physics, 182:418–477, 2002.

[8] D. A. Boyuka, S. Lakshminarasimham, X. Zou, Z. Gong, J. Jenkins, E. R. Schendel, N. Pod-
horszki, Q. Liu, S. Klasky, and N. F. Samatova. Transparent in situ data transformations
in ADIOS. In Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM
International Symposium on, pages 256–266. IEEE, 2014.

[9] G. Bronevetsky and A. Moody. Scalable I/O systems via node-local storage: Approaching 1
TB/sec file I/O. Technical report, Lawrence Livermore National Laboratory, 2009.

[10] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. HP
Labs Technical Reports, 1994.

[11] M. Burtscher and P. Ratanaworabhan. High throughput compression of double-precision
floating-point data. In IEEE Data Compression Conference, pages 293–302, 2007.

[12] M. Burtscher and P. Ratanaworabhan. FPC: A high-speed compressor for double-precision
floating-point data. IEEE Transactions on Computers, 58:18–31, 2009.

76

[13] M. Burtscher and I. Szczyrba. Numerical modeling of brain dynamics in traumatic situations
- Impulsive Translations. In Conference on Mathematics and Engineering Techniques in
Medicine and Biological Sciences, pages 205–211, 2005.

[14] C. Chang and B. Girod. Direction-adaptive discrete wavelet transform for image compression.
IEEE Transactions on Image Processing, 16(5):1289 –1302, May 2007.

[15] S. Chatterjee and S. Sen. Cache-efficient matrix transposition. In Sixth International
Symposium on High-Performance Computer Architecture, pages 195–205. IEEE, 2000.

[16] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes, S. Klasky, W. K.
Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorszki, R. Sankaran, S. Shende, and C. S. Yoo.
Terascale direct numerical simulations of turbulent combustion using S3D. Computational
Science and Discovery, 2(1):015001, 2009.

[17] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes. Cache hierarchy
and memory subsystem of the AMD Opteron processor. IEEE Micro, 30(2):16–29, 2010.

[18] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.
Communications of the ACM, 51:107–113, Jan. 2008.

[19] M. Dow. Transposing a matrix on a vector computer. Parallel Computing, 21(12):1997–2005,
1995.

[20] U. Drepper. What every programmer should know about memory. Tech. Rep., Red Hat,
Inc, 2007.

[21] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian, P. Strzelczak, J. Szczepkowski,
C. Ungureanu, and M. Welnicki. HYDRAstor: A scalable secondary storage. In Proccedings
of the 7th Conference on File and Storage Technologies, pages 197–210. USENIX Association,
2009.

[22] J.O. Eklundh. Efficient matrix transposition. Two-Dimensional Digital Signal Prcessing II,
pages 9–35, 1981.

[23] R. D. Falgout. An introduction to Algebraic Multigrid. Computing in Science and
Engineering, 8:24–33, Nov. 2006.

[24] P. F. Fischer, J. W. Lottes, and S. G. Kerkemeier, 2008. http://nek5000.mcs.anl.gov/.

[25] N. Fout and K.-L. Ma. An adaptive prediction-based approach to lossless compression of
floating-point volume data. IEEE Transactions on Visualization and Computer Graphics,
18:2295–2304, 2012.

[26] R. W. Freund and N. M. Nachtigal. QMR: A quasi-minimal residual method for non-
Hermitian linear systems. Numerische Mathematik, 60:315–339, 1991.

[27] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms.
In Symposium on Foundations of Computer Science, pages 285–297. IEEE, 1999.

77

[28] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice,
R. Rosner, J. W. Truran, and H. Tufo. FLASH: An adaptive mesh hydrodynamics code
for modeling astrophysical thermonuclear flashes. The Astrophysical Journal Supplement
Series, 131:273–334, November 2000.

[29] J. Gailly and M. Adler. Zlib general purpose compression library. http://zlib.net/, Jan.
2012.

[30] O. Gamoudi, N. Drach, and K. Heydemann. Using runtime activity to dynamically filter
out inefficient data prefetches. Euro-Par Parallel Processing, pages 338–350, 2011.

[31] K.S. Gatlin and L. Carter. Memory hierarchy considerations for fast transpose and bit-
reversals. In Proceedings of Fifth International Symposium High-Performance on Computer
Architecture, pages 33–42. IEEE, 1999.

[32] R. Ge, X. Feng, and X.H. Sun. SERA-IO: Integrating energy consciousness into parallel I/O
middleware. In Proceedings of the 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pages 204–211, 2012.

[33] B. Goeman, H. Vandierendonck, and K. D. Bosschere. Differential FCM: Increasing value
prediction accuracy by improving table usage efficiency. In Seventh International Symposium
on High Performance Computer Architecture, pages 207–216, 2001.

[34] G.C. Goldbogen. PRIM: A fast matrix transpose method. IEEE Transactions on Software
Engineering, (2):255–257, 1981.

[35] Z. Gong, S. Lakshminarasimhan, J. Jenkins, H. Kolla, S. Ethier, J. Chen, R. Ross, S. Klasky,
and N. F. Samatova. Multi-level layout optimization for efficient spatio-temporal queries
on ISABELA-compressed data. In Proceedings of the 26th IEEE International Parallel and
Distributed Processing Symposium, IPDPS ’12, 2012.

[36] P. Gschwandtner, T. Fahringer, and R. Prodan. Performance analysis and benchmarking
of the Intel SCC. In Proceedings of International Conference on Cluster Computing, pages
139–149. IEEE, 2011.

[37] F. Guo and P. Efstathopoulos. Building a high-performance deduplication system. In
Proceedings of the 2011 USENIX Annual Technical Conference, 2011.

[38] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu. RCFile: a fast and space-
efficient data placement structure in MapReduce-based warehouse systems. In Proceedings
of the 27th IEEE International Conference on Data Engineering, ICDE ’11, pages 1199–1208,
2011.

[39] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak. Out-of-core compression and
decompression of large n-dimensional scalar fields. Computer Graphics Forum, 22:343–348,
2003.

[40] K. Iskra, J. M. Romein, K. Yoshii, and P. Beckman. ZOID: I/O-forwarding infrastructure
for petascale architectures. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 153–162, 2008.

78

[41] J. Jenkins, I. Arkatkar, S. Lakshminarasimhan, D. A. Boyuka II, E. R. Schendel, N. Shah,
S. Ethier, C.-S. Chang, J. Chen, H. Kolla, S. Klasky, R. Ross, and N. F. Samatova.
ALACRITY: Analytics-driven lossless data compression for rapid in-situ indexing, storing,
and querying. Transactions on Large-Scale Data-and Knowledge-Centered Systems X,
8220:95–114, 2013.

[42] J. Jenkins, E. R. Schendel, S. Lakshminarasimhan, D. A. Boyuka II, T. Rogers, S. Ethier,
R. Ross, S. Klasky, and N. F. Samatova. Byte-precision level of detail processing for
variable precision analysis. In ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis, page 48, 2012.

[43] Y. Jin, S. Lakshminarasimhan, N. Shah, Z. Gong, C.S. Chang, J. Chen, S. Ethier, H. Kolla, S-
H. Ku, S. Klasky, R. Latham, R. Ross, K. Schuchardt, and N. F. Samatova. S-preconditioner
for multi-fold data reduction with guaranteed user-controlled accuracy. In Proceedings of
the IEEE 11th International Conference on Data Mining, ICDM ’11, pages 290–299, 2011.

[44] S.D. Kaushik, C.H. Huang, J.R. Johnson, R.W. Johnson, and P. Sadayappan. Efficient
transposition algorithms for large matrices. In Proceedings of Supercomputing’93, pages
656–665. IEEE, 1993.

[45] K. Konstantinides and K. B. Natarajan. An architecture for non-linear noise filtering via
piecewise linear compression. HP Labs Technical Reports, 1994.

[46] S. Ku, C.S. Chang, and P.H. Diamond. Full-f gyrokinetic particle simulation of centrally
heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic Tokamak
geometry. Nuclear Fusion, 49(11):115021, 2009.

[47] S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, H. Kolla, S-H Ku, S. Ethier,
J. Chen, C.S. Chang, S. Klasky, R. Latham, R. Ross, and N. F. Samatova. ISABELA-QA:
Query-driven data analytics over ISABELA-compressed scientific data. In Proceedings of
the 2011 International Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’11, pages 31:1–31:11. ACM, 2011.

[48] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham, R. Ross, and N. Samatova.
Compressing the incompressible with ISABELA: In-situ reduction of spatio-temporal data.
In Proceedings of the 17th International European Conference on Parallel and Distributed
Computing, Euro-Par ’11, pages 366–379, 2011.

[49] R. Latham, C. Daley, W. Liao, K. Gao, R. Ross, A. Dubey, and A. Choudhary. A case
study for scientific I/O: Improving the FLASH astrophysics code. Computational Science
& Discovery, 5(1):015001, 2012.

[50] M. Laurenzano, M. Meswani, L. Carrington, A. Snavely, M. Tikir, and S. Poole. Reducing
energy usage with memory and computation-aware dynamic frequency scaling. Euro-Par
Parallel Processing, pages 79–90, 2011.

[51] J. K. Lawder and P. J. H. King. Querying multi-dimensional data indexed using the Hilbert
Space-Filling Curve. SIGMOD Record, 30:2001, 2001.

79

[52] J. Li, W-K. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel,
B. Gallagher, and M. Zingale. Parallel netCDF: A high-performance scientific I/O interface.
In Proceedings of the 2003 ACM/IEEE Conference on Supercomputing, SC ’03, page 39.
ACM, 2003.

[53] P. Lindstrom and M. Isenburg. Fast and efficient compression of floating-point data. IEEE
Transactions on Visualization and Computer Graphics, 12:1245–1250, 2006.

[54] J. Liu, J. Wu, and D. Panda. High performance RDMA-based MPI implementation over
InfiniBand. International Journal of Parallel Programming, 32:167–198, 2004.

[55] J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin. Flexible IO and integration
for scientific codes through the adaptable IO system (ADIOS). In Proceedings of the 6th
International Workshop on Challenges of Large Applications in Distributed Environments,
CLADE ’08, pages 15–24. ACM, 2008.

[56] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable, metadata rich IO methods for
portable high performance IO. In Proceedings of the 2009 IEEE International Symposium
on Parallel and Distributed Processing, IPDPS ’09, pages 1–10, 2009.

[57] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock, K. Schwan, and
M. Wolf. Managing variability in the IO performance of petascale storage systems. In Pro-
ceedings of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–12, 2010.

[58] K.L. Ma. In situ visualization at extreme scale: Challenges and opportunities. Computer
Graphics and Applications, IEEE, 29(6):14–19, 2009.

[59] J. D. McCalpin. STREAM: Sustainable memory bandwidth in high performance computers,
2000. http://www.cs.virginia.edu/stream/.

[60] D. T. Meyer and W. J. Bolosky. A study of practical deduplication. ACM Transactions on
Storage, 7(4):1–20, Feb. 2012.

[61] G. M. Morton. A Computer Oriented Geodetic Database and a New Technique in File
Sequencing. IBM, Ltd, 1966.

[62] B. K. Natarajan. Filtering random noise via data compression. Data Compression Confer-
ence, pages 60–69, 1993.

[63] B. K. Natarajan. Occam’s razor for functions. In Proceedings of the Sixth Annual Conference
on Computational Learning Theory, COLT ’93, pages 370–376. ACM, 1993.

[64] A. Nisar, W-K. Liao, and A. Choudhary. Scaling parallel I/O performance through I/O
delegate and caching system. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’08, pages 1–12, 2008.

[65] W. D. Pence, R. Seaman, and R. L. White. Lossless astronomical image compression and
the effects of noise. Publications of the Astronomical Society of the Pacific, 121:414–427,
Apr. 2009.

80

[66] M. Polte, J. Lofstead, J. Bent, G. Gibson, S. Klasky, Q. Liu, M. Parashar, N. Podhorszki,
K. Schwan, M. Wingate, and M. Wolf. ...and eat it too: high read performance in write-
optimized HPC I/O middleware file formats. In Proceedings of the 4th Annual Workshop
on Petascale Data Storage, PDSW ’09, pages 21–25. ACM, 2009.

[67] J. M. Prusa, P. K. Smolarkiewicz, and A. A. Wyszogrodzki. Simulations of gravity wave
induced turbulence using 512 PE CRAY T3E. International Journal of Applied Mathematics
and Computational Science, 11(4):883–898, 2001.

[68] R. Rew and G. Davis. NetCDF: an interface for scientific data access. IEEE Computer
Graphics and Applications, 10(4):76–82, Jul. 1990.

[69] E. R. Schendel, S. Harenberg, H. Tang, V. Vishwanath, M. E. Papka, and N. F. Samatova.
A generic high-performance method for deinterleaving scientific data. In Euro-Par 2013
Parallel Processing, pages 571–582. Springer, 2013.

[70] E. R. Schendel, Y. Jin, N. Shah, J. Chen, C.S. Chang, S-H. Ku, S. Ethier, S. Klasky,
R. Latham, R. Ross, and N. F. Samatova. ISOBAR preconditioner for effective and high-
throughput lossless data compression. In Proceedings of the 28th International Conference
on Data Engineering, ICDE ’12, pages 138–149. IEEE, 2012.

[71] E. R. Schendel, S. V. Pendse, J. Jenkins, D. A. Boyuka II, Z. Gong, S. Lakshminarasimhan,
Q. Liu, H. Kolla, J. Chen, S. Klasky, R. Ross, and N. F. Samatova. ISOBAR hybrid
compression-I/O interleaving for large-scale parallel I/O optimization. In Proceedings of the
21st International Symposium on High-Performance Parallel and Distributed Computing,
pages 61–72. ACM, 2012.

[72] P. Schwan. Lustre: Building a file system for 1000-node clusters. In Proceedings of the 2003
Linux Symposium, pages 400–407, Jul. 2003.

[73] Y. Sehoon and W. A. Pearlman. Critical encoding rate in combined denoising and compres-
sion. In IEEE International Conference on Image Processing, volume 3, pages III – 341–4,
Sep. 2005.

[74] R. Sevens, A. White, S. Dosanjh, A. Geist, B. Gorda, K. Yelick, J. Morrison, H. Simon,
J. Shalf, J. Nichols, and M. Seager. Scientific grand challenges: Architectures and technologies
for extreme scale computing. Tech. Rep., DOE, 2009.

[75] J. Seward. The bzip2 and libbzip2 official home page. http://bzip.org, 2000.

[76] C. E. Shannon. Prediction and entropy of printed English. Bell Systems Technical Journal,
30:50–64, 1951.

[77] V. Vishwanath, R. Burns, J. Leigh, and M. Seablom. Accelerating tropical cyclone analysis
using LambdaRAM, a distributed data cache over wide-area ultra-fast networks. Future
Generation Computer Systems, 25(2):184–191, 2009.

[78] W. X. Wang, Z. Lin, W. M. Tang, W. W. Lee, S. Ethier, J. L. V. Lewandowski, G. Rewoldt,
T. S. Hahm, and J. Manickam. Gyro-kinetic simulation of global turbulent transport
properties in Tokamak experiments. Physics of Plasmas, 13(9):092505, 2006.

81

[79] A. B. Watson. Image compression using the discrete cosine transform. Mathematica Journal,
4:81–88, 1994.

[80] J. Wei, H. Jiang, K. Zhou, and D. Feng. MAD2: A scalable high-throughput exact
deduplication approach for network backup services. In Proceedings of the IEEE 26th
Symposium on Mass Storage Systems and Technologies, MSST ’10, pages 1–14, 2010.

[81] T. A. Welch. A technique for high-performance data compression. Computer, 17(6):8–19,
June 1984.

[82] B. Welton, D. Kimpe, J. Cope, C.M. Patrick, K. Iskra, and R. Ross. Improving I/O
forwarding throughput with data compression. In International Conference on Cluster
Computing, CLUSTER ’11, pages 438–445. IEEE, 2011.

[83] M. Yang, R. E. McGrath, and M. Folk. HDF5 - a high performance data format for earth
science. In 21st International Conference on Interactive Information Processing Systems
(IIPS) for Meteorology, Oceanography and Hydrology, 2005.

[84] S. Yiannakis and J. E. Smith. The predictability of data values. In Proceedings of the
30th Annual ACM/IEEE International Symposium on Microarchitecture, MICRO 30, pages
248–258, 1997.

[85] M. Zukowski, S. Heman, N. Nes, and P. A. Boncz. Super-scalar RAM-CPU cache compres-
sion. In Proceedings of the International Conference of Data Engineering, page 59. IEEE,
2006.

82

APPENDIX

83

Appendix A

Dataset Descriptions

Datasets with the prefix “gts" and “xgc" in name are generated from the scientific applications:
Gyrokinetic Tokamak Simulation (GTS) [78] and full-function X-point included Gyrokinetic
Code (XGC) [46].

1. gts_phi_l: linear potential fluctuation variable values of particle-based simulations of
fusion plasmas to study plasma micro-turbulence in reactor core and edge.

2. gts_phi_l: nonlinear potential fluctuation variable values of the same simulations of fusion
plasmas.

3. gts_chkp_zeon: values for zeon variable’s checkpoint restart data for each 10th time-step
of GTS simulation.

4. gts_chkp_zion: values for zion variable’s checkpoint restart data for each 10th time-step
of GTS simulation.

5. xgc_igid: ID number of each particle on the fusion plasma edge during XGC simulation.

6. xgc_iphase: indicates 8 phase variables of each ion during XGC simulation.

In the application of velocity in the field of astrophysics, there are three datasets for 3
variables respectively generated by code development at the Flash Center: flash_velx, flash_vely
and flash_gamc [28]. Here is the brief illustration of the three datasets.

1. flash_velx: fluid velocity x variable values for FLASH.

2. flash_vely: fluid velocity y variable values for FLASH.

3. flash_gamc: fluid velocity gamc variable values for FLASH.

84

Two single floating-point datasets s3d_temp and s3d_vmag are generated by the three-
dimensional solver application (S3D) [16] used for direct numerical simulations of turbulent
combustion.

1. s3d_temp: temperature values of S3D simulation.

2. s3d_vmag: magnitude of vectors sensed by the toroidal devices.

These dataset names starting with “obs" [12] and “num" [11] comprise measurements from
scientific observational instruments and numeric simulations:

1. obs_error : data values specifying brightness temperature errors of a weather satellite.

2. obs_info: latitude and longitude information of the observation points of a weather satellite.

3. obs_spitzer : data from the Spitzer Space Telescope showing a slight darkening as an
extra-solar planet disappears behinds its star.

4. obs_temp: data from a weather satellite denoting how much the observed temperature
differs from the actual contiguous analysis temperature field.

5. num_brain: simulation of the velocity field of a human brain during a head impact.

6. num_comet: simulation of the comet Shoemaker-Levy 9 entering Jupiter atmosphere.

7. num_control: control vector output between two minimization steps in weather-satellite
data assimilation.

8. num_plasma: simulated plasma temperature evolution of a wire array z-pinch.

Parallel messages datasets have the prefix “msg" [12]. These 5 datasets contain the numeric
messages sent by a node in a parallel system running NAS Parallel Benchmark (NPB) and ASCI
Purple applications:

1. msg_bt: NPB computational fluid dynamics pseudo-application bt.

2. msg_lu: NPB computational fluid dynamics pseudo-application lu.

3. msg_sp: NPB computational fluid dynamics pseudo-application sp.

4. msg_sppm: ASCI Purple solver sppm.

5. msg_sweep3d: ASCI Purple solver sweep3d.

85

