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Thermal remote sensing is a powerful tool for measuring the spatial variability of 

evapotranspiration due to the cooling effect of vaporization. The residual method is a 

popular technique which calculates evapotranspiration by subtracting sensible heat from 

available energy. Estimating sensible heat requires aerodynamic surface temperature 

which is difficult to retrieve accurately. Methods such as SEBAL/METRIC correct for 

this problem by calibrating the relationship between sensible heat and retrieved surface 

temperature.  Disadvantage of these calibrations are 1) user must manually identify 

extremely dry and wet pixels in image 2) each calibration is only applicable over limited 

spatial extent. Producing larger maps is operationally limited due to time required to 

manually calibrate multiple spatial extents over multiple days. This dissertation develops 

techniques which automatically detect dry and wet pixels. LANDSAT imagery is used 

because it resolves dry pixels. Calibrations using 1) only dry pixels and 2) including wet 

pixels are developed. Snapshots of retrieved evaporative fraction and actual 
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evapotranspiration are compared to eddy covariance measurements for five study areas in 

Florida: 1) Big Cypress 2) Disney Wilderness 3) Everglades 4) near Gainesville, FL. 5) 

Kennedy Space Center. The sensitivity of evaporative fraction to temperature, available 

energy, roughness length and wind speed is tested. A technique for temporally 

interpolating evapotranspiration by fusing LANDSAT and MODIS is developed and 

tested.  

The automated algorithm is successful at detecting wet and dry pixels (if they 

exist). Including wet pixels in calibration and assuming constant atmospheric 

conductance significantly improved results for all but Big Cypress and Gainesville. 

Evaporative fraction is not very sensitive to instantaneous available energy but it is 

sensitive to temperature when wet pixels are included because temperature is required for 

estimating wet pixel evapotranspiration. Data fusion techniques only slightly 

outperformed linear interpolation. Eddy covariance comparison and temporal 

interpolation produced acceptable bias error for most cases suggesting automated 

calibration and interpolation could be used to predict monthly or annual ET. Maps 

demonstrating spatial patterns of evapotranspiration at field scale were successfully 

produced, but only for limited spatial extents. A framework has been established for 

producing larger maps by creating a mosaic of smaller individual maps. 
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1. Introduction

 Precipitation reaching the surface of the earth can be divided into what can be 

called green water and blue water. Blue water is that which is leaked into the ground or 

runs off the surface. Green water is evapotranspiration (ET), or the combination of 

evaporation and transpiration of water vapor from plant leaves. The quantity of 

precipitation allocated between green and blue water has important implications for the 

well being of both the natural world and mankind (Fallenmark and Rockstrom, 2006). In 

terms of mass balance, evapotranspiration is very important to the hydrologic cycle. The 

amount of water evaporated and transpired over the US land surface accounts for 

approximately 2/3 of the rainfall (Spellman, 2009). In Florida, the ratio of 30 year 

averaged evapotranspiration to precipitation ranges from approximately 0.4 to 0.8 

(Sanford and Selnick, 2013). The cooling effect associated with evapotranspiration is also 

important to climatology. The global (ocean and land) latent heat of vaporization 

accounts for approximately half of the solar radiation absorbed by the surface (Kiehl and 

Trenberth, 1997). In addition, water vapor is an important greenhouse gas which could 

lead to a positive feedback to global warming. An increase in surface temperature would 

lead to an increase in evapotranspiration adding more water vapor to the atmosphere 

which would absorb more radiation (Held and Soden, 2000). Understanding the 

contribution of vegetation to evapotranspiration is an important part of understanding the 

earth system. On smaller scales evapotranspiration is a critical process for water resource 

management and agricultural/irrigation applications (Sinclair et al, 1984).  
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 The transport of water vapor from the earth surface is accomplished via 

turbulence. The wind creates eddies at the surface which transports moist surface air up 

and dry upper air down (Stull, 1988). The rate of this flux depends on the intensity of the 

vertical gradient of water vapor in the surface boundary layer along with the magnitude 

of the wind and the buoyancy of the air. The available energy, in the form of solar and 

thermal radiation, is vital as a fuel for maintaining the water vapor gradient because it 

heats the surface which increases the density of water vapor that is in equilibrium with 

liquid surface water. The top end of this gradient is located on the order of 100 meters 

above the surface. During the day, this top end is typically drier and colder than the 

surface which is the source of moisture and heat for the boundary layer (Foken, 2008). 

Availability of water is also a driving factor behind evapotranspiration. This can either be 

in the form of surface water that is directly evaporating, or deeper water that plants are 

consuming via their roots and releasing via the stomata on their leaves. Therefore, the 

availability of vegetation is an obvious requirement for transpiration (Rodriquez and 

Porporato, 2004).  The availability of water and quantity of vegetation typically vary 

more abruptly in space compared to atmospheric variables such as mean wind, humidity 

and temperature (at the top of the surface boundary layer). The variation of solar 

radiation only occurs over large scales unless there is the presence of clouds which 

produces heterogeneity of solar radiation reaching the surface. In addition, heterogeneity 

of surface albedo will result in the small scale variation solar radiation absorbed by the 

surface. In the end, the spatial extent and resolution of interest will determine which 

factors contribute to the spatial variability of evapotranspiration for the area of interest. 
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 Remote sensing of evapotranspiration has a lot of potential for creating maps of 

evapotranspiration (Courault et al, 2005; Gowda et al, 2008; Li and Lyons, 1999). Eddy 

covariance towers or weather station profile methods can measure evapotranspiration 

over a small footprint (on the order of 1 km), but it is difficult to use them to measure 

spatial variation in the landscape (Baldocci et al, 1988). It is impossible to perform a 

spatial interpolation between towers due to sudden changes in land cover. This 

heterogeneity is especially common in human dominated landscapes. In addition, the 

availability of evapotranspiration measurements is very limited. Remote sensing has a 

large potential for solving this problem because it is available over large spatial extents. 

One problem with remote sensing of evapotranspiration is that the atmospheric boundary 

layer is too thin to be directly measured using remote sensing. Fortunately, surface 

information (in conjunction with atmospheric forcing) can be used to determine the ET 

flux. Atmospheric forcing can be incorporated into the remote sensing via surface 

weather stations (Laymon and Quattrochi, 2004).  

Many remote sensing of evapotranspiration approaches use a surface energy 

balance approach. Figure 1.1 shows the important terms in the surface energy balance. A 

is the available energy of radiation which is equal to the net radiation absorbed by the 

surface (Rnet) minus the energy used to heat the surface (G). Rnet is equal to combination 

of the short-wave radiation from the sun (Rsolar) and the long-wave radiation from the 

atmosphere (Ratm) absorbed by the surface minus the long wave radiation lost from the 

earth (Rearth). The available energy A is divided between sensible heat (H) and latent heat 

fluxes (LE) as shown in Figure 1.1. Sensible heat (H) is the vertical convection of heat 

while latent heat (LE) is the cooling due to evapotranspiration. The remote sensing 
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problem is divided into two parts. The first part consists of determining the available 

energy from radiation that is available to sensible and latent heat fluxes. The second part 

consists of determining the fraction of that energy which is allocated to 

evapotranspiration. This fraction is commonly called the evaporative fraction (EF). Since 

remote sensing directly measures radiation, the first part is usually more straightforward 

in nature. For the second part, thermal remote sensing is used in order to leverage the 

cooling effect due to the phase change from liquid to vapor. Specifically, cool areas use a 

larger fraction of the energy for evapotranspiration compared to hot areas. At times this 

might be confusing since higher temperatures would seem to produce larger evaporation. 

While it is true that a warm body of water evaporates more than a cool body of water, 

only the potential for evaporation increases with temperature for surfaces other than open 

water. For land surfaces evapotranspiration is limited by the amount of water in the soil 

so that what really matters is the effect that evapotranspiration has on temperature. For a 

completely dry surface all of the energy goes to sensible heat. If this surface becomes 

wet, then some of the energy will go to evapotranspiration resulting in a net loss in 

energy at the surface resulting in cooling. Sensible heat will decrease with reducing 

surface temperature until surface energy budget is once again balanced. In the end, the 

relative temperature of dry areas versus wet areas is more predictive of the evaporative 

fraction compared to the absolute temperature. A higher absolute temperature means 

there is more potential for evapotranspiration, but the relative temperature reveals how 

much of that is realized.  This relative temperature is more representative of the 

variability of available water and quantity of vegetation. 
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Figure 1.1: Components of the Energy Balance 

A large problem in remote sensing of evapotranspiration is low temporal 

resolution (Junchang and Roy, 2008). Although geosynchronous satellite platforms such 

as GOES provide high temporal resolution, the spatial resolution is coarse (5-10km). 

Also, clear sky imagery is necessary for remotely sensing the earth’s surface but the high 

frequency of clouds in Florida (Choi, 2008) produces challenges for remote sensing of ET 

in terms of the temporal resolution of ET maps. In addition, these are just snapshots of ET 

and do not have the potential of measuring the daily variability of evapotranspiration. In 

order to determine daily ET, it is typically assumed that the evaporative fraction (EF) is 

constant throughout the day. Although this is a common practice, the evaporative fraction 

does not necessarily stay constant in the presence of clouds (Loehide and Gorelick, 

2005). Assuming EF is constant over the day, the daily evapotranspiration can be found 

by multiplying EF by estimates of daily available energy. When estimating the daily 

available energy, it is important account for the diurnal variability due to clouds . 

Atmospheric and cloud modeling applied to GOES satellite data has been used to 

determine radiation that reaches surface in the presence of clouds in south Florida 
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producing estimates of daily available energy (Mecikalski et al, 2011; Paech et al, 2009). 

One goal of this dissertation is to determine maps of EF to accompany these maps of 

available energy.  

1.1 Review of Various Techniques for Remote Sensing of Evapotranspiration 

 In this section, techniques used for remote sensing of evapotranspiration are 

divided into various types. The first division is between empirical based algorithms and 

physically based algorithms. Physically based algorithms use physics for the core of the 

model with model parameters derived from empirical equations. Purely empirical 

algorithms are less common. One example uses machine learning techniques to relate 

surface fluxes measured from eddy covariance towers to surface temperature, vegetation 

index, and solar radiation obtained from MODIS. A technique known as support vector 

machine (SVM) is used to perform the regression of this non-linear relationship. This 

relationship is then used to create ET maps for the continental United States (Yang et al, 

2006). Another approach is to find empirical relationship between ET or EF and 

vegetation indices (Yebra et al, 2013). In the same study ET was modeled using the 

Penman-Monteith (PM) equation where stomatal conductivity was determined by relating 

it to vegetation indices. The PM variation was only slightly better than EF regression but 

noticeably better than ET regression.  

 Physically based methods can be divided between “direct” methods which 

directly model ET and “residual” methods which find ET by modeling sensible heat and 

subtracting it from the available energy. One example of these “direct” methods is the 

PT-JPL algorithm (Fisher et al, 2008). This method calculates ET using a modified 

Priestly Taylor (PT) equation to determine soil evaporation, canopy transpiration, and 
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interception evaporation terms. The coefficients for the PT equation are adjusted due to 

greenness, temperature, plant moisture, and soil moisture constraints. These constraints 

are determined using spectral vegetation indices, air temperature and vapor pressure. 

Vegetation indices are calculated using optical remote sensing while temperature and 

vapor pressure is calculated using the meteorological reanalysis data set ISLSCP-II which 

provides monthly values at 1 degree spatial resolution. This algorithm was used to 

calculate global estimates of monthly ET values.  

 Another physically based “direct” method is the MODIS ET product (Mu et al, 

2011). This method uses the Penman-Monteith equation to directly calculate soil 

evaporation, canopy transpiration and interception evaporation. In addition to air 

temperature and vapor pressure, surface and atmospheric resistances need to be 

estimated. Each pixel is classified as one of eleven biomes which has a set of parameters 

assigned to it which can be used to compute surface resistance. The resistances are then 

calculated from a combination of biome parameters, vegetation indices, temperature and 

vapor pressure. Temperature and vapor pressure come from global meteorological 

reanalysis data set GMAO. GMAO is daily data at 1 degree resolution but it is spatially 

interpolated down to 1 km MODIS resolution. The algorithm is applied for estimating the 

8-day average 1 km resolution MODIS ET product. 

 The physically based “residual” method is a popular technique for remote sensing 

of ET in which the sensible heat is subtracted from available energy to find ET. For the 

“residual” method it is critical to remotely sense surface temperature because it is 

directed related to sensible heat: 

H = gab (Ts – Ta)         1.1.1) 
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where gab is the conductance of the combination of the atmospheric and molecular 

boundary, Ts is the surface temperature, and Ta is the temperature of the atmosphere. The 

most sophisticated variation of the “residual” method uses a two-source model. Two-

source models explicitly account for bare soil and vegetation as individual sources of 

flux. A very advanced algorithm which uses the two-source model is the ALEXI-

DISALEXI algorithm (Anderson et al, 1997; Anderson et al, 2004). The canopy and soil 

temperature averaged by weighting with their fractional coverage is set equal to the 

retrieved surface temperature. From this one equation the canopy and soil temperature 

cannot be found, therefore it is necessary for ALEXI to estimate the transpiration of the 

canopy using the Priestly Taylor equation. From this, the sensible heat of the canopy is 

found as the “reverse” residual of the energy balance. From canopy sensible heat, the 

canopy temperature can be found and used to find soil temperature. The sensible heat of 

soil can then be found allowing the evaporation of soil to be computed as the residual. 

The assumption in the model is that when the soil is evaporating, the transpiration of the 

canopy will be equal to the potential ET as calculated using the Priestly Taylor equation. 

This assumes the canopy will not be stressed unless the soil evaporation is equal to zero. 

If the model is run as described above and soil evaporation is less than zero, it means that 

canopy transpiration was overestimated and soil evaporation is really zero. In this case 

the stressed canopy transpiration can be found using the residual method. The sensible 

heat of soil is set equal to energy supplied to soil. Sensible heat of soil is used to find the 

temperature of soil which is used to find sensible heat of canopy. The transpiration of 

canopy is equal to the residual. It should also be noted that the temperature of the 

atmosphere at blending height is required for this algorithm. In the ALEXI model this is 
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done by modeling the temporal dynamics of the atmospheric boundary layer. This 

requires using the GOES satellite because it has the temporal resolution necessary to 

model this behavior. The DisALEXI model then uses the blending height temperature 

found with this process and supplies it to the ALEXI two-source model applied to 

LANDSAT or MODIS resolution imagery. A schematic of ALEXI/DisALEXI is shown 

in Figure 1.1.1. 

 

Figure 1.1.1: Schematic of ALEXI/DisALEXI Model 

 Often the “residual” method uses a one source model for the surface. An example 

of the one source model is SEBS (Su, 2002). In SEBS, equation 1.1.1 is used to find 

sensible heat. It requires knowledge of the temperature of the atmosphere and the 

conductance of the atmosphere. Determining the conductance of the atmosphere as it 

relates to satellite retrieved surface temperature can be problematic. Typically 

conductance is calculated with respect to aerodynamic temperature which is the 

temperature at the roughness length zo. Figure 1.1.2 shows the difference between the 

aerodynamic temperature and the radiometric surface temperature. In order to find gab 

from equation 1.1.1, it is necessary to model the molecular boundary layer interfacing 
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with the surface. SEBS accounts for this by using the inverse Stanton number to find the 

extra resistance due to the molecular boundary layer. A problem with this approach is 

that the remote sensing of surface temperature is not very reliable in the absolute sense. 

Due to atmospheric and emissivity effects, it is difficult to accurately retrieve surface 

temperature (Guzinkski et al, 2013; Zhengming and Dozier, 1989) and therefore it will 

not be consistent with the atmospheric temperature measured in-situ. ALEXI accounted 

for this by modeling the atmospheric temperature relative to retrieved temperatures.  

 

Figure 1.1.2: Difference between Aerodynamic and Radiometric Temperature 

 Although retrieved surface temperatures can be inaccurate in the absolute sense, 

they can still be useful in the relative sense. In this manner the temperature is used as an 

“index” where each scene is calibrated or trained using known values. A very simple 

example of this type of calibration is the triangle method (Carlson, 2007; Jiang and Islam, 

2001; Owen et al, 1998). Jiang et al (2009) used the triangle method to find ET in South 

Florida by multiplying available energy by evaporative fraction. In order to find EF they 

assumed: 



  11 

 EF = a + b Ts         1.1.2) 

The calibration procedure consists of finding cold (wet) and hot (dry) end members that 

which are used to find coefficients a and b using equation 1.1.2.The triangle method 

consists of plotting temperature vs. a vegetation index which results in a triangle shape. 

Figure 1.1.3 is an example of the triangle plot where T0 is the retrieved radiant surface 

temperature and NDVI is the retrieved normalized difference vegetation index. This 

figure reveals the hot and cold temperatures that are used in fitting equation 1.1.2. It is 

then necessary to determine the EF at these hot and cold limits. At the hot (dry) limit it is 

assumed that the EF=0. At the cold (wet) limit EF is found using the Priestly-Taylor 

equation.  

 

Figure 1.1.3: Example of Triangle Method (Reprinted from: Water Resources 

Research, Vol. 37(2), Jiang, L. and Islam, S., Estimation of Surface Evaporation Map 

Over Southern Great Plains Using Remote Sensing Data, 329-340, (2001), with 

permission from Wiley) 
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Evans (2013a) applied the triangle method to LANDSAT imagery near 

Gainesville, FL on April 22, 2008. Equation 1.1.2 was also fit using eddy covariance 

tower measurements for the wet end members and hot (dry) spots visually detected by 

user. Figure 1.1.4 shows a comparison of these two lines with the triangle method in blue 

and tower data calibration in red. The triangle method seems to over estimates the EF 

severely if one assumes the tower data is more reliable. An extension of the triangle 

method is the “trapezoid” method which accounts for the variation in temperature for 

high vegetation cover due to water stress (Long and Singh, 2012; Moran et al, 1994). 

Long and Singh (2012) developed a two-source patch model within the trapezoid method 

(TTME) which separates soil evaporation from vegetation transpiration. This model is a 

patch model in which soil and vegetation transmit fluxes independently in contrast to the 

previously described ALEXI two-source model in which soil and vegetation is coupled. 

TTME couples the vegetation and soil so that they dry at a similar rate. ALEXI decouples 

the surface and root zone moisture so that either the root zone is well watered or the 

surface is completely dry and vegetation is stressed. The surface soil moisture responsible 

for evaporation and the root zone soil moisture responsible for transpiration have been 

observed to dry at different rates which results in a decoupling between the two layers 

(Carlson et al, 2004).  Therefore the ALEXI decoupling, although somewhat simplified, 

should be more likely than the TTME coupling. 
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Figure 1.1.4: Comparison of Triangle Method to Eddy Covariance Calibration 

Very popular calibration based “residual” methods are SEBAL (Bastiaanssen et 

al,1998) and SEBAL-METRIC (Allen et al, 2011). In SEBAL, the problem demonstrated 

in Figure 1.1.3 is avoided by allowing the sensible heat to be proportional to the vertical 

temperature gradient of an arbitrary slice of the boundary layer (T). Using similarity 

theory it is further assumed that T is linearly related to the retrieved surface 

temperature:  

 H = ga  T         1.1.3) 

 T = a + b Ts         1.1.4) 

Figure 1.1.5 shows the variation of T with surface temperature for a local area 

where the blending height temperature Ta is approximately spatially uniform. It should be 

noted that an important assumption in using equation 1.1.4 is that the temperature at 

blending height is constant over the extent of the image. If this is not true then the 
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coefficient a is not constant. Timmermans et al (2008) demonstrated the variability of air 

temperature near blending height to be more affected by large scale temperature 

variations at the surface. This supports the assumption that the atmosphere will vary 

smoothly even though the surface may be varying abruptly. 

 

Figure 1.1.5: Variation of T with Ts 

Implementing equations 1.1.3 and 1.1.4 means it is no longer necessary to model 

the resistance due to the molecular boundary layer because the conductance of the 

atmosphere does not extend to the surface with regards to temperature. In addition, the 

problem of using a possibly inaccurate surface temperature is accounted for because the 

calibration process only requires temperature to be accurate in a relative sense. One 

criticism of this type of approach is that a and b are not constant in space and varies with 

surface resistance (Norman et al, 2006). From similarity theory the temperature gradients 

over different slices in the atmosphere are proportional to each other: 
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where Ta is the temperature of the atmosphere at the mixing height za, zs is the roughness 

length accounting for the excess resistance of the molecular boundary layer to radiant 

temperature, h is a correction accounting for instability of atmosphere, and T1 and T2 are 

the temperatures of atmosphere at the arbitrary heights z1 and z2 . T 1 – T 2 in equation 

1.1.5 is equal to T from equation 1.1.4. Other than Ts and T, the only parameter that 

cannot be assumed to be constant in space is zs which would result in the coefficients a 

and b varying in space. Unfortunately zs is very difficult to estimate. It is likely that the 

uncertainty in guessing zs could be greater than the reduction in error produced by 

allowing zs to vary. It is common to assume zs is constant and therefore a and b are 

constant in space. 

The SEBAL and METRIC algorithms requires the user to visually identify hot 

and cold pixels on the image. It is also possible to incorporate in-situ measurements of 

sensible heat into the calibration. Since flux towers are typically installed over vegetated 

surfaces, in-situ measurements usually only available for cold pixel information. In many 

cases ground measurements are not available and therefore it is necessary to identify both 

hot and cold pixels and estimate their sensible heat. For cold pixels, one approach is to 

use pixels over water and assume sensible heat equals zero which is not necessarily true. 

Figure 1.1.6 shows modeled EF vs. available energy (A) using Penman equation. In this 

model EF does not approach unity until A is low. It also demonstrates a variability of EF 

with temperature. The METRIC algorithm is an extension of SEBAL which uses a 

vegetation surface which is close to a reference crop as the cold pixel. The sensible heat 

is then estimated using the reference ET (RET) calculated from weather station 

information. RET is the ET of a hypothetical reference crop calculated using the Penman 
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Monteith equation. This is a practical solution since the weather station information does 

not require expensive instruments for measuring eddy flux, but only temperature, 

humidity, and wind. The method requires that the area of interest has a surface that 

behaves similar to the reference crop which typically means the area includes irrigated 

agriculture. METRIC has been used successfully in agricultural settings in the western 

United States (Allen et al, 2007). Instead of using the concept of evaporative fraction of 

available energy (EF), it uses evaporative fraction of reference ET (ETrF). It has been 

found that the ETrF works better in settings in which the advection of dry air into 

irrigated land from surrounding arid environment is a concern (Allen et al, 2007). For 

SEBAL and METRIC it is also necessary to find hot or dry pixels on the image. This can 

be a somewhat difficult practice at times. There are often many hot pixels on the image 

and choosing which to keep can be a somewhat subjective practice. For hot pixels it is 

typically assumed that they are totally dry and EF=0 which is not always the case. This 

assumption can be tested using a soil water balance model if soil texture and precipitation 

is known (Tasumi, 2003).  

Calibration makes it possible for less complex one source models to be useful, but 

it requires user intervention for the identification of calibration pixels. Inconsistencies can 

arise due to the variation in the manner in which different operators choose calibration 

pixels. Long and Singh (2013) performed a simple test of the variability of results due to 

differences in calibration pixels. In this study they found 3 hot and 3 cold pixels and used 

1 of each to create 9 sets of calibration coefficients. The resulting root mean squared 

(RMS) error of evaporative fraction between METRIC prediction and 12 flux tower 

observations ranged from 0.08 to 0.13. In practice the safest bet would be to use all 9 of 



  17 

the pixels in one calibration. In Nevada, Morton et al (2013) compared results from 

METRIC calibration performed by 5 different trained users. This study found a variation 

in the distribution of retrieved ETrF values.  

 

Figure 1.1.6: Modeled EF over Open Water 

The development of methods which automatically identifies calibration pixels 

would be valuable in terms of making the algorithm more operational. Allen et al (2013) 

developed a methodology for detecting hot and cold pixels using thresholds of NDVI, 

temperature and proximity. This is based on a complex set of rules and corrections that 

worked well in agricultural areas in Idaho. The threshold and correction values would 

probably need to be modified for different environments. Morton et al (2013) developed 

an automated algorithm that attempts to reproduce manual calibration by adjusting the 

automated calibration until it matches with statistics produced from manual calibrations. 

It first estimates ETrF with METRIC using the Allen et al (2013) method described above 
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for detecting calibration pixels. This is used to initialize a Monte Carlo simulation based 

on matching the size of tails of automatically produced ETrF distribution to the manually 

produced ETrF distribution. The Monte Carlo simulation works by randomly choosing 

target hot and cold tail sizes based on ETrF distribution generated from the manual 

calibrations. Next, an iterative process is performed which produces an ETrF retrieval 

which matches this target. This begins by finding the hot and cold thresholds for the 

initially retrieved ETrF distribution which produces the target tail sizes. The new hot and 

cold pixels are those which are closest to these ETrF thresholds. These new hot and cold 

pixels are then used to calibrate the model and a new ETrF retrieval is produced. The tail 

sizes from this distribution are compared to the target. If they do not match then the 

process is repeated by finding the new hot and cold threshold using the new retrieved 

ETrF distribution. This produces a different set of hot and cold pixels for each Monte-

Carlo simulation. The method seemed to work well when compared to ground 

measurements in Nevada. A key assumption of this method is that the tail sizes of ETrF 

are constant across image dates and study areas. This might be true for similar 

landscapes, but it would seem that different landscapes should have different distributions 

of ETrF. 

1.2 Dry Pixel Only Calibration 

 For this dissertation, the SEBAL-METRIC calibration based approach was 

chosen. This method was chosen because it was a compromise between simple and 

complex. The more complex models which directly calculate ET are useful at global and 

continental scales, but require an estimation of many parameters. Two-source models 

such as ALEXI-DisALEXI not only require estimation of more parameters than SEBAL-
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METRIC, but it also requires the execution of a model describing the diurnal evolution of 

the boundary layer. Subsequently, the SEBAL-METRIC approach is chosen because it is 

within reach of the average user.  

 In this dissertation an automated method for detecting dry pixels in SEBAL-

METRIC calibration is proposed. The basis of this method can be demonstrated by 

plotting available energy vs. temperature as shown in Figure 1.2.1. In Florida, dry pixels 

are typically brighter than wet pixels and therefore have less energy. These dry pixels 

form the lower boundary of the plot. As the dry pixels become darker, they absorb more 

energy and therefore the temperature increases. There comes a point that the surface 

becomes darker because either the vegetation is absorbing solar radiation for 

photosynthesis or the surface is wet. In these areas the temperature begins to decrease 

because the latent cooling of transpiring vegetation or evaporating water offsets the 

increase in available energy. Figure 1.2.1 clearly shows this transition point as a “peak” 

temperature in the scatter plot. The final result is a lower boundary extreme to the scatter 

plot which is made up of dry pixels where temperature increases with energy. 

 Although this method was originally intended for finding dry pixels in a scene, 

the range of temperatures in the dry pixels is wide enough to allow them to be used to 

calibrate equation 1.1.4 without the need of separate wet pixels. This is an advantage in 

natural areas that do not have surfaces that are similar to reference ET surfaces required 

by METRIC. Eddy covariance measurements at the surface could be used as wet pixels, 

but the availability of this type of data is limited. 
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Figure 1.2.1: Scatter Plot Used to Detect Dry Pixels 

Previously, S-SEBI (Roerink et al., 2000) used variations in available energy 

(actually albedo) in order to calibrate relationship between EF and T, but this method 

does not use only dry pixels in the calibration. S-SEBI plots T vs. albedo and finds a 

warm and cold boundary to the scatter plot (Figure 1.2.2). For each albedo, EF is 

assumed to vary linearly from 0 to 1 between the hot and cold limits for that particular 

albedo. The problem is that the cold boundary which supposedly represents vegetation is 

not clearly defined. The thick red line to the left is much more defined and representative 

of various quantity and quality of vegetation. Also, S-SEBI assumes EF = 1 at the cold 

boundary which is not necessarily true. In theory EF=1 where the temperature of the 

surface is equal to the temperature of atmosphere which should not increases with the 

reflectance of the surface but stay relatively constant over local extents. 
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Figure 1.2.2: Ts vs.  S-SEBI Method (Reprinted from: Physics and Chemistry of the 

Earth, Part B: Hydrology, Oceans and Atmosphere, Vol. 25(2), Roerink, G.J., Su, Z., and 

Menenti, M., S-SEBI: a Simple Remote Sensing Algorithm to Estimate the Surface 

Energy Balance, 147-157, (2000), with permission from Elsevier) 

1.3 Using Data Fusion to Account for Low Temporal Resolution of LANDSAT 

Imagery 

A large problem in remote sensing of evapotranspiration is the trade-off between 

spatial and temporal resolution. While LANDSAT has 120 m spatial resolution for 

thermal IR, it has a relatively long return period of 16 days. MODIS has a daily return 

period, but it has a coarser 1 km spatial resolution for thermal IR. A high frequency of 

cloud cover in Florida further limits the availability of LANDSAT imagery where the 

surface is visible. This means that MODIS imagery would probably be required for 

resolving ET at the monthly or seasonal time scale. For applications such as management 

of water use in agriculture where field scale resolution is required, it would be necessary 

to use LANDSAT imagery. In the arid Western U.S. where cloud cover is not as much of 

a problem, interpolation between scenes is possible (Allen et al, 2011). In Florida where 

cloud cover can result in large gaps between available images, simple interpolation of ET 
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will most likely not account for variability of ET. A solution to this problem is to “fuse” 

LANDSAT and MODIS data together in order to estimate ET maps which have 

LANDSAT spatial resolution and MODIS temporal resolution (Figure 1.3.1). For many 

hydrological applications the 1 km thermal resolution of MODIS would be adequate. But, 

the dry pixel calibration proposed in this dissertation will not work with MODIS spatial 

resolution because it is very rare to find 1 km square purely dry areas. It would be even 

rarer to find a set of them which has the wide range of albedo required for the calibration. 

Figure 1.3.1 demonstrates the inability of MODIS resolution to identify the dry pixels 

required by the calibration. The blue pixels were generated from LANDSAT pixels 

aggregated to 1 km thermal resolution and 250 m optical resolution. This figure is 

generated from a scene over Disney Wildlife preserve on May 5, 2004.  Due to the loss of 

dry pixels during aggregation, it will be necessary to fuse MODIS and LANDSAT data 

together in order to estimate 120 m thermal imagery from which dry pixels can be 

identified and used in the calibration.  

 
Figure 1.3.1: Energy vs. Ts for LANDSAT vs. MODIS resolution 
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1.4 Objectives 

 The objective of this dissertation is to propose a variation to the calibration used 

in the SEBAL/METRIC algorithm. This new calibration will produce maps 

independently of eddy covariance data. Eddy covariance data will be used to test the 

calibration method in Florida. The list of objectives follows: 

Develop dry pixel only calibration and compare to calibration that includes wet pixels.  

The dry pixel calibration algorithm described in section 1.2 will be developed and tested 

in Florida over five study areas described in the next chapter. A very simple method of 

determining wet pixels in Florida is also proposed so that the dry pixel only calibration 

can be compared to a method which includes wet pixels. First, these methods will be 

tested based on evaporative fraction. Secondly, the methods will be tested based on 

instantaneous actual evapotranspiration. Different methods of determining boundary in 

Figure 1.2.1 are proposed and tested. Also different assumptions regarding atmospheric 

conductance in equation 1.1.3 are tested. Different methods for finding wet pixels are 

explored and tested. The spatial extents of some of the study areas are altered and the 

results compared.  

Determine the sensitivity of the algorithm to various model inputs.  

Inputs for the retrieval are temperature, available energy, roughness length, and blending 

height wind speed. These parameters are varied and the corresponding change to 

resulting maps is analyzed. The wind speed at blending height is determined using eddy 

covariance towers. This is contrary to the objective of producing maps independent of 

eddy covariance data. Therefore wind speed is fixed at an annual average in retrievals 

and compared to results which use eddy covariance wind speeds. Roughness length is 
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also varied in the model and the resulting change analyzed. In another test, roughness 

length is assumed spatially constant while atmospheric stability is still allowed to 

influence atmospheric conductance. Finally temperature and available energy is altered to 

analyze their effect on evaporative fraction. It is obvious that available energy will have 

the largest effect on actual evapotranspiration, but it is useful to determine the effect 

available energy has on evaporative fraction. 

Determine the feasibility of applying data fusion to calibration algorithm 

Using the sequence of available images, estimates for each image in the series are 

produced based on neighboring information. This is performed using 6 different 

variations of data fusion with varying complexity and compared to 4 methods of simple 

interpolation. Actual retrieved imagery is compared to fused imagery at the image and 

pixel scale. This produces errors at the daily times scale as well as the time scale of the 

entire series. The spatial distribution of the errors is analyzed along with the temporal 

variability of errors. The final goal is to determine if there is a benefit to using data fusion 

over simple interpolation methods. 
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2. Study Areas and Data

2.1 Study Areas 

 The five study areas in Florida used in this dissertation are 1) Gainesville, 2) 

Kennedy Space Center 3) Disney Preserve 4) Big Cypress and 5) Everglades (Figure 

2.1.1). These study areas were chosen because they contain eddy covariance towers 

necessary for testing. They also represent a good slice of the different types of 

environments found in Florida. The next paragraph describes the individual study areas in 

more detail. 

 

Figure 2.1.1: All Study Areas 
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2.1.1 Gainesville 

This study area is actually located outside Gainesville, FL near the town of 

Waldo, FL. Three eddy flux towers are located over slash pine plantations experiencing 

different levels of regeneration. The flux stations are called Austin Cary, Donaldson, and 

Mize. The study area and tower locations are shown in Figure 2.1.2. This study area is 

important because 1) the close proximity of flux towers 2) the heterogeneous nature of 

the landscape in terms of cleared vs. vegetated surfaces will be a good testing ground for 

the dry pixel calibration 3) slash pine trees are rough surfaces and testing here should 

help determine the importance of roughness in the retrieval algorithm. The size of the 

study area is 14.2 km by 9.4 km.  

 

Figure 2.1.2: Gainesville Study Area 
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2.1.2 Kennedy Space Center 

 This study area is located near Kennedy Space Center. This study area is 

interesting because of the coastal environment. Also, the boundary layer over the ocean 

and land should be very different so this study area should represent a transition between 

the two. Two eddy flux towers are located in this study area. One tower is located over 

scrub oak while the other is located over slash pine. Kennedy Space Center study area 

was broken up into two spatial extents as shown in Figure 2.1.3 which will be called 

Kennedy Large and Kennedy. Kennedy Large is the full extent that includes both flux 

towers. Kennedy Large was reduced to a smaller extent because 1) It was necessary to 

test the effects of spatial extent on algorithm and 2) Slash pine flux tower data was only 

in service from 2002-2003 and therefore will not provide many test points. The size of 

Kennedy Large is 13.5 km × 27 km and Kennedy is 6.9 km × 6.3 km. 

 

Figure 2.1.3: Kennedy Space Center Study Area 
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2.1.3 Disney Wilderness Preserve 

 Disney Wilderness Preserve study area is about 30 miles south of Orlando, FL in 

Polk County. A single flux tower is located here which is over an area that is mainly 

grassland. Testing over grassland will be a good compliment to other test sites with trees 

and scrub. Disney is broken up into two extents called Disney and Disney Small as 

shown in Figure 2.1.4. The larger extent called Disney contains manmade surfaces to the 

west. The size of Disney is 14.8 km × 10.1 km and the size of Disney Small is 7.9 km × 

7.9 km. 

 

Figure 2.1.4: Disney Wilderness Preserve Study Area 
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2.1.4 Big Cypress 

The Big Cypress study area has 5 towers over a wide variety of plant communities 

which are Cypress Swamp, Dwarf Cypress Swamp, Pine Uplands, Wet Prairie, and 

Marsh (Figure 2.1.5). The Marsh site is far to the North, therefore only the first four sites 

named are used. The Big Cypress study area is 25.8 km × 33.4 km. It is an interesting 

study area because it will test the algorithm in a very warm, humid environment 

consisting of tall trees. It would seem there would be a lack of dry pixels available but the 

airport to the east should provide them.  

 

Figure 2.1.5: Big Cypress Study Area 
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2.1.5 Everglades 

The Everglades study area contains three flux tower stations located over 

Mangroves, Long Hydro-period Marsh and Short Hydro-period Marsh. The Everglades 

study area is broken up into 3 extents called Everglades, Mangroves and Homestead 

shown in Figure 2.1.6. The Everglades extent basically contains both of the smaller 

extents. The Mangroves extent is the western portion with the Mangrove flux towers and 

Homestead is the eastern portion near Homestead. These were broken up because the full 

extent is very large at 60.7 km × 27.6 km. Mangroves is 25.5 km × 27.2 km and 

Homestead is 30.2 km × 27.3 km. Homestead extent will be interesting due to the 

agricultural areas to the east because calibration methods have been commonly used to 

map ET in agricultural settings. 

 

Figure 2.1.6: Everglades Study Area 
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2.2 Data 

2.2.1 Eddy Covariance Data 

 The flux data used for testing the calibration algorithm proposed in this 

dissertation come from various towers with sensors which measure latent and sensible 

heat using the eddy covariance method. The eddy covariance method is performed by 

using sensors which are able to measure wind speed and other scalars such as temperature 

and humidity at very high frequencies. It finds the flux of some scalar by using Reynolds 

averaging which consists of taking the mean of the produce of vertical wind perturbations 

and perturbations of the scalar quantity of interest (Foken, 2008). The scalars of interest 

in this study are horizontal wind, temperature and humidity resulting in the fluxes called 

friction velocity, sensible heat, and latent heat.  

 The primary source of flux data comes from the Ameriflux network. Ameriflux is 

a network of flux towers being maintained by different operators in which the operators 

freely share data over the internet via the Ameriflux website at http://ameriflux.ornl.gov/. 

Ameriflux downloads provide horizontal wind speed, temperature, humidity, net 

radiation, ground heat flux, friction velocity, sensible heat, and latent heat every 30 

minutes. For Big Cypress and Disney Wilderness Preserve study areas the same type of 

data is provided by the United States Geological Survey.  

2.2.2 Satellite Imagery 

 The source of satellite imagery used in this dissertation is LANDSAT TM 5 

which can be downloaded from USGS earth explorer website at 

http://earthexplorer.usgs.gov/. LANDSAT TM 5 contains 7 bands including Blue, Green, 

Red, Near Infrared, Shortwave Infrared 1, Thermal Infrared, and Shortwave Infrared 2 

http://ameriflux.ornl.gov/
http://earthexplorer.usgs.gov/
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wavelengths. Each of these bands has 30 m spatial resolution except for the thermal band 

which has 120 m resolution. The return period for TM 5 is 16 days. The overpass time for 

LANDSAT is around 10:30 AM Eastern Standard Time. Eastern Standard Time is 

calculated by subtracting 5 hours from Greenwich Mean Time. The path, row and 

approximate overpass time for each study area is shown in Table 2.2.1.  

Table 2.2.1: LANDSAT Path, Row and Approximate Overpass Time for Study 

Areas 

 

2.2.3 Usable Clear Sky Days 

 For the purposes of remote sensing of surface properties, clear sky imagery is 

required. Due to the high frequency of clouds in Florida, the length of time between 

images will be much more than the 16 day LANDSAT return period. In addition, eddy 

covariance data is not available for every LANDSAT scene due to technical problems 

which result in gaps in the eddy flux data. Therefore a data set was created which 

contained clear sky LANDSAT image where flux measurements are also available. In 

this dissertation, these scenes will be called “usable” clear sky scenes. Table 2.2.2 lists 

the usable clear sky scenes. The total number of validation points from stations available 

for each year is shown in parenthesis. For Disney the number of validation points will be 

equal to the number of usable clear sky scenes because there is only one station. For Big 
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Cypress, since there are 4 stations, in 2009 there are 8 validation points for the 2 usable 

scenes because all stations were valid. Big Cypress and Everglades have the lowest 

average frequency of usable scenes because it is very cloudy. Even though it is cloudy, 

Kennedy has the highest frequency on average because LANDSAT returns twice over 

one 16 day return period as shown in Table 2.2.1. Gainesville has the most scenes in total 

because of the longer duration of eddy covariance data. It is also important to note that 

for study areas with multiple flux towers, only one flux towers needs to be operational to 

make the corresponding clear sky image considered “usable”. There are some instances 

where all the flux points in a study area were simultaneously available. For Gainesville 

study this occurred on 1/28/2001, 4/2/2001, 8/8/2001, 8/24/2001, 2/19/2003, 12/20/2003, 

1/23/2005 and 10/25/2006. For Everglades and Big Cypress this occurred on 10/3/2009 

and 10/19/2009. For Kennedy only 1/20/2003 had both. A full listing of dates and 

number of available stations for useable clear sky scenes of all study areas is included in 

Appendix A. The flux tower data for each station is also included in Appendix A.  

 It is useful to display the total number of scenes and the total number of validation 

points from stations available during each season. Because there is more than one eddy 

covariance station for some study areas, the total number of validation points will be 

greater than the total number of scenes. This is shown for each of the study areas in 

Figures 2.2.1 and 2.2.2. Figure 2.2.1 clearly shows that there are a small number of 

scenes available during the summer when clouds are more likely. Also it shows the small 

number of scenes available for Big Cypress and Everglades due to a high frequency of 

clouds. Figure 2.2.2 reveals the large number of validation points available in Gainesville 

due to 3 stations to pick from and a long period of record.  



  34 

Table 2.2.2: Summary of Usable Clear Sky Scenes. (Total Number of Validation 

Points from Stations for Each Year is in Parenthesis) 

 

  The EF data for each station collected between 1999 and 2011 (as reported in 

Appendix A) is plotted in Figure 2.2.3 in order to show the seasonal variation of the data 

for each study area. The lines are a Gaussian smoothing of the point data with a monthly 

bandwidth. The evaporative fraction is highest in the late summer/early fall and lowest in 

the winter. This would seem to reflect an increase in EF during the growing season when 

water is plentiful and leaf area index is peaking. 
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Figure 2.2.1: Number of Scenes Available During Each Season for Each Study Area 

 

Figure 2.2.2: Number of Available Validation Points During Each Season for Each 

Study Area 
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Figure 2.2.3: Monthly Variability of Evaporative Fraction for each Study Area 

In order to calculate the wind speed at blending height it was necessary to 

estimate the tower and vegetation heights. Tower height should be relatively accurate but 

vegetation height will vary. Estimates were made from information in metadata and 

references. Vegetation and tower heights for the Ameriflux sites are estimated using the 

metadata. For Big Cypress the vegetation and tower heights reported in Shoemaker et al 

(2011) are used. For Disney Preserve an estimate for typical vegetation height and tower 

height is included in supporting documents. Vegetation height for Everglades was 

estimated from Schedlbauer et al (2012). Table 2.2.3 shows tower and estimated 

vegetation height for all stations. 
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Table 2.2.3: Tower and Vegetation Height 
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3. Methodology

3.1 Data Preprocessing 

 The eddy covariance and LANDSAT data must be processed before it can be used 

for creating and testing maps of evapotranspiration. This was not a trivial task because of 

the large quantity of data being used. The process was made easier by using the Python 

scripting language and the numpy and arcpy modules. The numpy module is a set of 

functions useful for processing multi-dimensional arrays. The arcpy module provides a 

programmatic interface between python and ARC GIS procedures.  

3.1.1 Eddy Covariance Flux Data Preprocessing 

 Using the eddy covariance (EC) method, Ameriflux and USGS data contributors 

produced 30 minute average fluxes on the hour using EST time. In order to compare the 

satellite retrieved EF map to ground measurements, it is necessary to compute EF from 

the flux data. The eddy covariance method often produces sensible and latent head fluxes 

which do not match measurement of available energy (Lloyd, 1995). It is common for the 

EC method to underestimate instantaneous fluxes because the correlation is typically 

measured over small time intervals (30 minutes) where low frequency turbulence is not 

detected. Averaging over larger time intervals could allow the effect of low frequencies 

to be measured, but a “snap shot” of flux coinciding with satellite overpass is needed for 

validation (Foken, 2008). Typically it is assumed that although the absolute fluxes are 

underestimated, the Bowen ratio (), where  = H/LE, will be constant. The validity of 
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this assumption is currently unresolved, but will be adopted in this dissertation as the best 

current solution. Therefore evaporative fraction at the tower will be calculated as: 

 EFtower = LE / (H+LE)        3.1.1) 

where LE is the latent heat flux and H is the sensible heat flux measured using eddy 

covariance method.  

The EF maps created by the algorithm will be compared to the flux measurement 

at the time which is nearest to the satellite overpass time shown in Table 2.2.1. When 

data for the nearest time is unavailable, the next closest time is used. Only times which 

are within an hour of the overpass times are candidates. If all the data is missing within 

this window, then this LANDSAT scene will not be used. Another option would be to 

validate with the daily averaged evaporative fraction calculated using daily LE and H in 

equation 3.1.1.  

It is a common procedure to multiply EF retrieved from satellite by daily 

available energy to find daily ET because evaporative fraction is typically fairly constant 

during the day when the available energy is large. Figure 3.1.1 demonstrates the manner 

in which EF is mostly constant during the day. The problem with validating against daily 

EF is that there are so many gaps in the flux data which results in erroneous calculations 

for daily EF. It could be possible to fill the gaps with standard interpolation techniques, 

but the quantity and position of gaps in the data prohibit this in many cases. If only the 

useable clear sky scenes that were accompanied by gap free data were used, the already 

limited amount of useable clear sky scenes would be extremely reduced. Also, in order to 

test actual ET retrievals it is necessary to use EF at overpass time because information on 

daily available energy is not available from satellite.  
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Figure 3.1.1: Diurnal Variability of EF and Available Energy (Donaldson 

12/01/2002) 

An analysis was performed to study the effect of gaps on daily EF. This analysis 

consists of first determining scenes in which no gaps exist to use for testing. Next, the 

simple probability of gap occurrence was computed for each time interval in the flux data 

by simply dividing the number of gaps by the total number of measurements. This was 

used to choose the stations to use for investigating the effect of gaps. Based on the above, 

Gainesville-Donaldson station and Everglades-Short Hydro-Period Marsh stations were 

chosen for analysis. Simulations were conducted for estimating the effect of gaps on daily 

EF due to an increase in number of gaps. For one case the gaps were arranged in time 

completely randomly. For the second case the gaps were clustered so that they were all 

adjacent to each other. The clustered case has 48 different combinations of gaps due to 

the single cluster shifting the starting point. The random case has an enormous amount of 
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combinations which depends on the number of gaps being simulated.  The maximum 

combinations occur when the number of gaps is equal to 24 resulting in a number of 

combinations equal to 48! / 24!
2
 = 32.25 x 10

12
. This prohibits the simulation of all 

random combinations due to computer memory issues and therefore 10,000 combinations 

of gaps were created randomly. The number of gaps was varied from 1 to 47 and used to 

simulate daily EF when gaps are present for both cases. Next, the Bias and MAE with 

respect to gap free daily EF was calculated over all combinations of gaps. This was 

repeated for each of the gap free scenes to get a total Bias and MAE. Actual gaps will not 

necessarily follow either one of the above models, therefore the locations in time of 

actual gaps from the station flux data was used. These actual combinations of gaps were 

then applied to each of the gap free scenes to produce simulated daily EF for each 

combination of gaps. As described above, this was repeated for all gap free scenes to 

calculate a total bias and MAE with respect to gap free daily EF. For this simulation there 

is no need to alter the number of gaps since they are inherent in the data. The use of 

interpolation for reducing the effects of gaps on daily EF was also tested. This was done 

by linearly interpolating fluxes between the actual gaps described above and then 

calculating daily EF values which include the interpolated fluxes. From this the total Bias 

and MAE with respect to gap free daily EF was calculated which could be compared to 

results in which interpolation was not used. 

The average number of gaps and number of gap free days for each station using 

just the days with useable clear sky scenes was determined. This can be used with the 

results of the above simulation to get an idea about the effect that number of gaps has on 

daily EF calculations. Using the gap free useable clear sky scenes, the similarity of daily 
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EF and satellite overpass EF were compared using scatter plots and calculation of Bias 

and MAE. The above analysis was also completed using the EF averaged over a window 

between 10 AM to 11:30 AM compared to daily EF.  

There is a tendency for daily EF to be larger than satellite overpass EF. This can 

be explained by representing daily EF with the following equation: 

EFdaily = (EF+ A+ + EF- A-) / A daily      3.1.2) 

where A is available energy,+ denotes times when A  > 0 and – denotes times when A  < 

0. During the day when A  > 0 EF+ is fairly constant and can be approximated by 

overpass EF. During the night when A < 0 it can typically be assumed that EF- is close to 

zero. Substituting this information into equation 3.1.2 produces: 

EFdaily = EFoverpass A + / A daily       3.1.3) 

A + is greater than A daily because of loss of available energy at night and therefore daily 

EF is typically greater than satellite overpass EF. The ratio of A + to A daily was applied to 

overpass EF as a correction factor to produce a corrected EF which was compared to 

daily EF.  

 Another problem that can lead to differences in daily EF and overpass EF is that 

the energy balance closure problem is not necessarily consistent across every time step 

measured. Before now daily EF has been calculated by summing sensible heat and latent 

heat over the day and using these sums in equation 3.1.1. It would seem this approach 

works best because averaging over daily cycle should allow low frequency turbulence to 

be represented. But, energy balance closure can still be significant after daily averaging. 

Therefore it is possible that correcting the flux at each time step and then summing 

corrected fluxes before entering them in equation 3.1.1 could provide another estimate of 
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daily EF. The two types of flux corrections used are 1) ratio and 2) residual corrections. 

The ratio correction consists of applying equation 3.1.1 to find EF for each time step and 

then multiplying it by available energy of corresponding time step to get corrected latent 

heat. Subtracting this latent heat from available energy produces corrected sensible heat. 

The residual correction assumes that the difference between measured and true fluxes is 

the same for both latent heat and sensible heats. Based on this assumption it is possible to 

determine the residual or difference using: 

  = ( A – LE – H ) / 2        3.1.4) 

where  is the correction amount which is simply added to LE and H in order to get the 

new corrected fluxes. The residual correction is being introduced because it might be 

more applicable to instances at night when LE and H are different signs. At these times 

using the ratio correction can lead to the directions of the flux changing. Therefore, an 

alternate estimate of daily EF is proposed in which the residual method will be used 

when fluxes are different signs, and the ratio method will be used for all other instances. 

This new alternate estimate of daily EF was then compared to corrected overpass EF.  

  The disadvantage of using clear sky scenes for comparison is that the quantity of 

available days is limited. Using all the gap free data will produce more data, but it will 

also include cloudy days which should not produce as strong of a relationship between 

overpass EF and daily EF (Loheide and Gorelick, 2005). Therefore, all of Donaldson gap 

free data were also used to test the similarity of daily EF to satellite overpass EF and 

window EF. The Bias and MAE was calculated seasonally to observed seasonal 

relationships. This was compared to seasonal groupings of results for only useable clear 

sky scenes to investigate effect of clouds on daily vs. overpass EF relationship. It should 
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be noted that this analysis is limited because the size of useable clear sky scenes is much 

less than all gap free days.  

Eddy covariance method measures fluxes over a bell shaped footprint upwind of 

the tower as shown in Figure 3.1.2. This footprint depends on the direction of wind, 

height of measurement, and instability of the atmosphere. In order to compare tower flux 

data with remote sensing it is necessary to perform a weighted average of the remote 

sensing results over this footprint. If the flux tower is placed in an area with small 

variations in surface conditions over the footprint, variations in the footprint function 

should have less influence on the results. Testing in this dissertation assumes this and 

adopts a uniform footprint function centered on the tower. Table 3.1.1 shows the size of 

the uniform foot prints that are being used. The size of the footprints were determined 

from the same metadata and references used to find tower and vegetation heights along 

with the results of a simple footprint model which can determine the fetch distance at 

which a certain percentage of the flux is accounted for (Schuepp, 1990): 

fetch = -2 m xmax / ln(%flux)       3.1.5a) 

xmax = z’ (ln(z’/zo) - 1+ zo/z’) / (2 k
2
 (1- zo/ z’))    3.1.5b) 

m = [1 – 16 (z’/L)] 
0.25 

      3.1.5c) 

where z’ is height of tower minus the displacement height, %flux is the percentage of flux 

measured for distances less than fetch distance, xmax is the location where footprint source 

is maximum, zo is the roughness length, k
 
is the von karman constant, m is a factor due to 

instability and L is Monin-Obukhov length. The problem with using a uniform footprint 

is that it does not account for the changing wind direction and stability of the atmosphere. 
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A uniform footprint was adopted because it is difficult to obtain data required to model 

two dimensional footprint models whereas the Schuepp model is only one dimensional.  

 
Figure 3.1.2: Eddy Flux Source Function Footprint (Reprinted from: Agricultural and 

Forest Meteorology, Vol. 93(3), Schmid, H.P. and Lloyd, C.R., Spatial 

representativeness and the location bias of flux footprints over inhomogeneous areas, 

195-209, (1999), with permission from Elsevier) 

Table 3.1.1: Size of Uniform Footprints for Each Station 
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In addition to evaporative fraction, wind speed at blending height is derived from 

the data. It is assumed that the wind speed at blending height is constant over the spatial 

extent of the EF map. Therefore, the average wind speed at blending height for all of the 

stations in the study area will be used.  Sometimes the data necessary for calculating the 

evaporative fraction is available, but the necessary data for calculating wind speed at 

blending height is not available. Since average wind speed is being used, the scene will 

still be useable as long as wind speed at blending height was available for at least one of 

the stations.  

  The wind speed at blending height is approximated by extrapolating the wind 

speed measured at the tower using Monin-Obukhov similarity theory. Assuming the 

blending height is 200 m, the wind speed at blending height is calculated using:  

ublend = u200 = [u* [ln (200/z’) - m(200/ L) + m(z’/L)]  / k ] + z  3.1.6) 

where u* is the friction velocity measured by the flux tower, u is the wind speed, z’= z -d, 

z  is the height of the tower, d is the displacement height, L is the Monin-Obukhov length, 

and m is the stability correction function for momentum. The Monin-Obukhov length is 

calculated with: 

 L = (- Cp u*
3
 T) / (k g H)       3. 1.7) 

where  is density of air, Cp is specific heat capacity of air, u* is the friction velocity 

measured using eddy covariance method, T is temperature measured by flux tower, k = 

0.41 is the Von Karman constant, g is acceleration due to gravity, and H is the sensible 

heat flux measured using eddy covariance method.  For stable boundary layers L is 

greater than zero while for unstable boundary layers L is less than zero. For neutral 
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conditions, L approaches positive or negative infinity. The form of the stability functions 

for momentum and heat changes depending on the sign of L: 

   = z/L                   3.1.8a) 

For L < 0 

 M () = 2 ln[(1+x())/2] + ln[(1+x
2
())/2] – 2 atan[x()] + /2            3. 1.8b) 

 H () = 2 ln[(1+x
2
())/2]                 3. 1.8c) 

 x() = [1 – 16 ()]
0.25

                   3. 1.8d) 

For L > 0 

 M, H () = -5                   3. 1.8e) 

For L = +/- ∞ 

 M, H () = 0                   3. 1.8f) 

The displacement height d is estimated using (Allen et al, 1998): 

d = 2/3 h                    3. 1.9) 

where h is the average height of obstacles (see Table 2.2.3).   

3.1.2 Processing Satellite Imagery  

 For this dissertation it was necessary to collect clear sky LANDSAT images. This 

was performed using the USGS earth explorer website. This web site allows the user to 

search for LANDSAT scenes with less than 10% cloud cover. Although this filtering 

process produced a good start, it is still necessary for the user to look through resulting 

images and remove cloudy scenes that made it through cloud filtering algorithm. These 

clear sky scene dates were then intersected with dates in which eddy covariance flux near 

overpass time was available in order to determine “useable” clear sky scenes as described 
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in above sections. These “useable” clear sky scenes were then downloaded from the 

USGS website. 

 The next step in processing the satellite imagery was to determine the spatial 

extent to be used for testing the ET mapping algorithm. For Gainesville, Big Cypress and 

Everglades study areas the limits of the spatial extents were mostly determined by the 

location of eddy covariance stations. Disney and Kennedy only have 1 station each. For 

these study areas small and large extents was chosen in order to test the effect of the size 

of the extent on ET mapping algorithm. The extent boundaries were then used to clip the 

full LANDSAT scenes into smaller study area subsets as well as stack the multiple band 

files into one ERDAS Imagine file for convenience. For a listing of all useable clear sky 

scenes see Appendix A.  

3.2 Evapotranspiration Mapping 

3.2.1 Overview of Residual Method Used in ET Mapping 

 The ET mapping algorithm uses LANDSAT thermal band 6 for finding 

temperature and reflectance bands 1-5 and 7 for finding albedo and NDVI. A surface 

energy balance residual method approach based on SEBAL is used. In the residual 

method the latent heat flux (LE) is found by subtracting the sensible heat flux (H) from 

the available energy from radiation (A): 

 LE = A – H         3.2.1) 

 A = Rnet,SW + Rnet,LW – G       3.2.2) 

where A is the sum of the net longwave radiation (Rnet,LW), net shortwave radiation 

(Rnet,SW), and fluxes into the surface (G). The net longwave radiation is the difference 

between the radiation emitted from the atmosphere (RDown,LW), and the radiation emitted 
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from the earth (RUp,LW). The net shortwave radiation is the difference between the solar 

radiation incident on the surface (RDown,SW) and the solar radiation reflected from the 

surface: 

 Rnet,SW = (1-) RDown,SW       3.2.3)  

where  is the albedo of the surface. These radiation fluxes are ultimately derived from 

radiation measured at the satellite sensor. The satellite sensor cannot detect the sensible 

heat flux because it occurs over a relatively thin surface boundary layer on the order of 

100 m. In order to determine H, the relationship between aerodynamic surface 

temperature (TAERO) and H is utilized: 

 H = gA T = gA (TA – TAERO)       3.2.4) 

where gA is the atmospheric conductance describing how turbulence in atmosphere 

transfers sensible heat and TA is the temperature of the atmosphere. H cannot be directly 

computed using this equation since 1) the surface boundary layer is too thin to determine 

the temperature in the boundary layer and 2) gA depends on the roughness of the surface, 

wind speed, and the stability of the boundary layer. In addition, surface temperature used 

in equation 3.2.4 is the aerodynamic temperature (that of air directly above the surface), 

but the satellite detects the radiant temperature (that of emitting surface). The SEBAL 

algorithm handles this and problem 1) above by assuming that the vertical temperature 

gradient (T) over some arbitrary layer is linearly related to radiant surface temperature 

(TS): 

 T = a + b Ts         3.2.5)  
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In SEBAL gA is calculated using Monin-Obukhov Similarity Theory (MOST) which is 

based on logarithmic wind and temperature profiles and assumes a constant flux in 

surface boundary layer:  

 ga =  Cp u*/ [ln (z2/z1) - h(z2/L) + h(z1/L)]     3.2.6) 

 u* = ublend k / [ln (zblend/zo) - m(zblend/L) + m(zo/L)]    3.2.7) 

where   is density of air, Cp is specific heat capacity of air, u* is the friction velocity, 

ublend is the wind speed at blending height, k is the von karman constant = 0.41, L is the 

Monin-Obukhov length, m is a correction related to stability of boundary layer with 

respect to momentum and h is a correction related to stability of boundary layer with 

respect to heat at height zi. It is important to note that the choice of heights making up the 

gradient T is somewhat arbitrary in theory. It does not necessarily have to be between 

the top of the boundary layer and the surface due to scalability in MOST. In SEBAL z2 is 

typically set to 2 m and z1 is set to 0.1 m which is also followed in this methodology.  

zblend is the height at which it is assumed that the effects on the wind due to irregularities 

in the surface have blended so that the wind at this height is due to larger scale 

atmospheric processes. As with SEBAL, a value of zblend = 200 m is used. zo is the 

roughness length which depends on the roughness of the surface. Because zo can vary 

abruptly in space, determining the spatial variation of zo is important in the residual 

method.  

 In order to find H it is necessary to 1) determine wind speed ublend 2) determine 

the roughness length zo for pixels in the image to be mapped and 3) determine the 

coefficients a and b used by equation 3.2.5. Once H is calculated it must be subtracted 

from available energy A to get LE. Detailed methodology for using LANDSAT imagery 
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to estimate A is in the next section. The determination of the wind speed ublend=u200 is 

discussed in section 3.1.1.  Tasks 2 and 3 from above are in upcoming sections.   

3.2.2 Estimating Temperature and Available Energy from Satellite Imagery 

 Satellites cannot directly measure the temperature of the earth’s surface, but they 

can measure the radiation that is being emitted from the surface. The peak wavelength of 

energy emitted from an object decreases with temperature. Therefore hot bodies like the 

sun emit short wavelengths of radiation while relatively cool bodies such as the earth 

emit long wavelengths of radiation. Satellite measurements of these long wavelengths of 

energy being emitted can be inverted to find the radiating temperature of the source. For 

LANDSAT this can be performed by inverting the Planck function in the following from 

(Kosa, 2011): 

 Ts = 1282.71 / ln(1 + 666.09/L ) / ϵ 
0.25

     3.2.8) 

where Ts is the radiant surface temperature (K), L is the radiance detected by LANDSAT 

sensor for band 6 (W/m
2
/ster), and ϵ is the broadband emissivity of the surface. 

Realistically the spectral emissivity of band 6 should be divided by L6 to produce 

(Schmugge et al, 1998): 

 Ts = 1282.71 / ln(1 + 666.09 ϵ6 / L )      3.2.9) 

where ϵ6 is the spectral emissivity for band 6. Even if the spectral emissivity is constant 

equation 3.2.8 is not valid for smaller emissivity values.  Figure 3.2.1 demonstrates the 

difference between Ts retrieved using 3.2.8 and 3.2.9 assuming constant spectral 

emissivity and various actual Ts.  This is because equation 3.2.8 assumes that broad band 

black body temperature would be the same as spectral black body temperature. In reality, 

spectral black body temperature varies with wavelength even for constant spectral 
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emissivity. Figure 3.2.2 shows how the spectral black body temperature increases with 

decreasing wavelength and emissivity. Therefore, it is not necessarily equal to broad band 

blackbody temperature (dashed line). 

Unfortunately, it is very difficult to estimate broadband emissivity of the surface 

let alone spectral emissivity. In fact, the remote sensing of surface temperature is an “ill-

posed” problem because there is a lack of information (Li et al, 2013). If only a single 

band is available, there is only one equation but two unknowns (temperature and spectral 

emissivity). If an additional band is added then there are now two equations but three 

unknowns because of the introduction of the spectral emissivity of the new band.  

Complex techniques exist to work around this problem, but typically users use empirical 

relationships between satellite reflectance values and emissivity while assuming that the 

spectral emissivity of the surface over LANDSAT band 6 is equal to the broadband 

emissivity of the surface. Attempts to use relationships between NDVI and ϵ in this 

dissertation produced erratic results in some areas. In light of this, emissivity was 

assumed to be a constant value of ϵ = 0.97 (Mecikalski et al, 2010). This is an emissivity 

typical for vegetation and similar to water which should work for study areas being used. 

If all temperatures are off by the same amount, the calibration should account for it. 

However, the spatial variation of emissivity could possibly alter retrieved temperature in 

a relative sense which would introduce errors into EF retrieval.  
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Figure 3.2.1: Difference between T retrieved using eqn. 3.2.8 vs. 3.2.9 

 

Figure 3.2.2: Difference between Spectral vs. Broadband blackbody T 
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In order to calculate available energy the following equations were used (Kosa, 2011): 

 A = Rn ( 1 – G/Rn)        3.2.10)  

 Rn = (1-) RDown,SW  + ϵ RDown,LW + ϵ  TS
4
      3.2.11) 

 G/Rn = (TS – 273.15) /1000 (3.8 – 7.4 ) (1 – 0.98 NDVI
4
 )   3.2.12) 

 NDVI = (4-3)/(4+3)       3.2.13) 

 i =  L i / ( ESUNi cos  dr )       3.2.14) 

dr = 1 / [1 + 0.033 cos(DOY 2 / 365) ]
0.5

     3.2.15) 

where Rn is the net radiation,  is the Stefan-Boltzman constant, ϵ is broad band 

emissivity of the surface, NDVI is the normalized difference vegetation index, i is the 

planetary reflectance for band i, Li is the top of atmosphere radiance measured by 

LANDSAT for band i, ESUNi is the mean exoatmospheric irradiance for band i,  is the 

solar zenith angle, dr is the earth sun distance, and DOY is the day of year.  It is better to 

use surface reflectance instead of planetary reflectance in order to calculated NDVI, but 

only broadband surface reflectance or albedo was determined in this algorithm. The 

effect of this on G using equation 3.2.12 should not be large. A bigger problem is that 

equation 3.2.12 should be fit to local conditions. In addition it is meant to be used over 

land, therefore in wetland environments it could break down due to large amounts of 

energy going into the water column at the surface. In that case it would be necessary to 

model the effect the depth of the water column has on Rn/G. In the absence of this 

information inaccuracies due to this will have to be accepted. 

Downwelling solar radiation is calculated using the following equation: 

RDown SW = Gsc cos dr sw         3.2.16) 
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where Gsc is solar constant = 1367 W/m
2
 and sw  is the transmissivity of the atmosphere 

to solar radiation. The broadband albedo of the surface is determined by using the 

broadband albedo at the top of the atmosphere: 

 TOA - PATH) / sw
2
       3.2.17) 

where TOA is the top of the atmosphere albedo and PATH is representative the albedo of 

the atmosphere alone in a simple first order scattering model. The top of atmosphere 

albedo is calculated using the planetary reflectance (calculated using equation 3.2.14) of 

all LANDSAT bands except for bands 6: 

 TOA =  i i         3.2.18) 

 i = ESUNi /  ESUNi        3.2.19) 

where i is weighting coefficient for band i.  

In the absence of clouds, down welling long wave radiation should depend on the 

temperature of the atmosphere above the surface boundary layer which should be fairly 

constant for the extents of study areas used. Down welling long wave radiation measured 

at weather stations could therefore be applied to the entire study area, but unfortunately 

these measurements are not very common.  Down welling long wave radiation for each 

study area will be estimated using (Kosa et al, 2011): 

 RLW DOWN = ϵA  TA
4
          3.2.20) 

 ϵA = 0.85 (-ln sw)
0.09        

3.2.21) 

where ϵA is the effective emissivity of the atmosphere and TA is the effective temperature 

of the atmosphere. Realistically the manner in which the atmosphere emits radiance is 

highly dependent on atmospheric water vapor, but this value is difficult to estimate from 
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LANDSAT only. Weather station data could be used along with an empirical relationship 

between ϵA and vapor pressure, but it is the intention to determine available energy 

independent of ground data. Determining TA is problematic. Assuming that the coldest 

temperatures in the scene are reflective of the atmospheric temperature at blending 

height, TA is found using: 

 TA = T s – 2 Ts        3.2.22) 

where T s is the mean temperature in the image and Ts is the standard deviation of 

temperatures in the image. Although this might be a crude estimate of the radiating 

temperature of the atmosphere, it is used due to the absence of other information.  

 Both net long wave and short wave radiation can be calculated in order to 

compute available energy. There are many assumptions that went into calculating 

available energy, and therefore it will be necessary to estimate the sensitivity of resulting 

EF maps to available energy. In addition it will be necessary to compare available energy 

calculated by satellite to available energy measured at flux towers.  

3.2.3 Estimating Roughness Length 

 Determining the roughness length of the surface is a very difficult process. A 

simple way to estimate roughness length is to assume (Allen et al, 1998): 

 zo = h/8         3.2.23) 

In reality, the representative roughness length of an area also depends on the variability 

of the height of the obstacles. For example, a heterogeneous environment such as 

savannah would be rougher than a close canopy forest of uniform height. Also factors 

such as canopy shape and Leaf Area Index (LAI) will affect roughness. Quantifying these 
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relationships can be difficult while measuring the parameters needed to describe the 

relationships can be even more difficult (Schaudt and Dickinson, 2000).  

 SEBAL and METRIC typically find zo by 1) using a land cover map and 

associating zo to particular land use, and 2) developing a local relationship between zo and 

NDVI / by finding pixels of known zo. Finding pixels of known roughness length can be 

difficult if the state of the vegetation is unknown or the scene is urbanized. Another 

approach would be to use LIDAR remote sensing in order to estimate average height of 

obstacles (h) that could be used in equation 3.2.8 to find zo. Unfortunately, LIDAR data 

are not freely available for most of the study areas and could not be obtained. The 

methodology used in this dissertation to calculate zo consists of using the relationship 

between zo and which was fit using data collected worldwide. The following empirical 

equation relating roughness length to LANDSAT derived surface albedo is adopted (Cho 

et al, 2012): 

 log(zo) = -16.8 + 1.87       3.2.24) 

Although this simple relationship may be inaccurate in some locations, it is a necessary 

compromise when considering the limited availability of data. A possible advantage of 

this method is that albedo is related to both vegetation height and leaf area index (LAI) 

and therefore the zo calculated using equation 3.2.24 would seem to be related to LAI as 

well as height. Incorporating the structure and heterogeneity of environment in addition 

to height using LIDAR would require additional ground data.   

 It is important to state that the zo vs. relationship will not be valid in urban 

settings or over open water. In urban settings, the zo of buildings with bright surfaces will 

typically be underestimated. The study areas typically do not contain many urbanized 
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areas. On the other hand, the zo of open water will be overestimated because it is a very 

dark surface. In order to account for this zo was set equal to 0.0001 for open water. This 

was accomplished by performing an unsupervised ISODATA classification using all 7 

LANDSAT bands based on 10-15 classes. Typically the first class returned was water. In 

some cases the second or third class was water and in other cases more than 1 class was 

determined to be water by visual inspection. Looking at the albedo and NDVI of each 

class helped in determining if the first class was water because it should have the lowest 

albedo and NDVI. In order to make the algorithm more operational, an automated method 

for masking water would be highly desirable. Existing land cover maps could be used but 

these might not reflect changes in the location of open water. 

3.2.4 Description of Sensible Heat Models Tested 

 Three different variation of the model described in section 3.2.1 will be used. The 

difference in the models is the different assumptions used for calculating ga in equation 

3.2.4. The most complex method to be used assumes that ga varies in space and is a 

function of atmospheric instability. In this method ga is calculated using equations 3.2.6 

and 3.2.7. This requires calculation of m and h which depends on the Monin-Obukhov 

length (L), but calculating L using equation 3.1.7 requires the friction velocity and 

sensible heat. The solution of this set of equations depends on whether the model is being 

used during the calibration of equation 3.2.5 or during the application of equation 3.2.5 

for producing an ET map. In the calibration case sensible heat is known and T is 

unknown. Therefore the calculation of L (equation 3.1.7) only requires u* while the 

calculation of u* (equation 3.2.7) only requires L. u* is initially calculated for neutral 

conditions which can then be used to find initial L. This L is then used to find a new u* 
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after which the process is iterated until the solution converges. Once L and u* are 

determined they are used to calculated ga. T required for calibration can be determined 

by simply dividing the known sensible heat by the ga just calculated. When the calibrated 

equation 3.2.5 is being used to make an ET map, the sensible heat is unknown but T is 

known because it only depends on surface temperature. ga from equation 3.2.6 and T 

from 3.2.5 can be substituted into equation 3.2.4 to find H.  This produces a system of 

three equations (3.2.4, 3.2.7 and 3.1.7) and three unknowns (H, u* and L). Now both u* 

and H are initially calculated using neutral conditions. These initial u* and H can then be 

used to find initial L. This L is then used to find u* and H after which the process is 

iterated until solution converges.  

 A simplification of this first model will be to assume neutral conditions when 

calculating ga. ga will be calculated using equations 3.2.6 and 3.27 where m and h = 0 

which means the complicated iteration procedure described above is not necessary. All 

that is required is roughness length and wind speed at blending height which has been 

calculated as described above.  

The simplest method used assumes that ga is constant in space. Therefore ga can 

simply be multiplied by both sides of equation 3.2.5 to produce sensible heat (H) as a 

function of Ts: 

 H = ah + bh Ts         3.2.25) 

where ah and bh are coefficients that are fit using only H and Ts which does not require ga 

to be calculated. This method requires the least amount of information because wind 

speed and roughness length are not required. All that is required is sensible heat for 

calibration and available energy and temperature.  
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 These models will be referred to as 1) T vs. T 2) T vs. T neutral, and 3) H vs. T 

3.2.5 Dry Pixel Calibration 

In order to determine the coefficients in equations 3.2.5 and 3.2.25, a calibration 

must be performed. Typically this consists of finding hot and cold pixels on the image 

where H is known and Ts is determined from the thermal image. If one of the T vs. T 

models is going to be used, then T is calculated as described in section 3.2.4. As 

discussed in section 1.2, this dissertation is proposing a calibration in which only dry 

pixels are used. This is possible because of a variation in albedo of dry pixels resulting in 

a variation in temperature. By plotting available energy (or T) vs. Ts, one can detect the 

dry pixels as shown in Figure 1.2.1. In order to calculate T during calibration as 

described in section 3.2.4 requires sensible heat. Because the calibration is only 

concerned with dry pixels, the T used for calibration is set to that which would be 

achieved for a dry pixel where all of the available energy is being used by sensible heat: 

Tdry = A / ga         3.2.26) 

where Tdry is the T that would be achieved if the pixel actually was entirely dry. For 

those pixels that actually are dry, T = Tdry and therefore equation 3.2.5 can be fit. For 

pixels which are not dry their true T will be less than Tdry because the H<A. This is 

good because it ensures that Tdry for wet pixels will not be mistakenly pulled down into 

the lower dry boundary. Instead the wet pixels will be pulled up away from the dry 

boundary when plotted on Tdry vs. T graph. Another issue is the effect that roughness 

length has on Tdry. As discussed in section 3.2.3., buildings with bright surfaces will be 

mistaken as something with a lower than actual roughness length. Fortunately this means 

that the predicted ga will be less than actual which will result in a larger than actual Tdry. 
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Therefore this dry pixel will be removed from the lower dry boundary, but it should not 

disturb the results other than the loss of a calibration point. On the other hand, a low dark 

smooth surface could be mistaken as rough vegetation. This would bring Tdry below the 

dry boundary line corrupting the results. Because of uncertainties in estimating roughness 

length, a method is proposed which uses a constant zo for use in calculating Tdry. In a 

previous study, using fixed zo was compared to using variable zo. Using fixed zo produced 

results which were at least as good, if not better, than using variable zo (Evans, 2013b). 

Fixed zo = 0.001 m was chosen because it is close to reference values for bare soil. Figure 

3.2.3 shows little difference in Tdry near the dry boundary between zo Bare = 0.001 m 

and zo Bare = 0.01 m because ga is more sensitive to stability/buoyancy than zo for 

smooth/low zo surfaces. By using a fixed zo, the problem of smooth dark dry surfaces 

being mistaken as rougher vegetation is eliminated. For dry rough surfaces such as 

buildings, the fixed zo approach will just move these points up away from the dry 

boundary. Open water pixels will only move below the dry boundary if ga,water/ga,bare is 

less than 1 – EFwater which is very unlikely. Detected open water pixels can be excluded 

from dry pixel consideration. In this dissertation a fixed zo = 0.001 m will be used for dry 

pixel calibration. The constant zo approach will work as long as dry surfaces with zo close 

to 0.0001 m exist in the image. It is important to note that the fixed zo is only used in 

calibration, but the actual spatially variable zo will be used when the calibration is applied 

to make ET maps.  

In order to automate the algorithm, it is necessary to automate the manner in 

which the lower boundary of Figure 1.2.1 is produced. It does not matter whether the 

dependant variable is energy or T. The technique will be described using T, but it is 
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basically the same for both. The method used for this will be to separate pixels into bins 

of T and then find the pixel with the maximum temperature in each bin. This will 

produce the points which make up the upper and lower boundary of the scatter plot. The 

pixels will be divided into bins using 3 different methods which will be called 1) Even 

Bins 2) Min-Max Bins and 3) Hybrid. The Even Bins method is the simplest. It simply 

sets the T bins at a fixed size. The bin sizes used in this study were determined visually 

as described in Appendix B. The bin size used for T vs. T model is 0.1 K, for T vs. T 

neutral model it is 1.0 K and for H vs. T model it is 10 W/m
2
. Having to supply the bin 

size parameter is one disadvantage of this method.  

  

Figure 3.2.3: Variation of Tdry Due to Change in zo Bare 

The Min-Max Bins method finds the boundary points by keeping only the points 

with maximum and minimum energy in each temperature bin. Because LANDSAT data 

stores radiance with a maximum bit depth of 8 bits (256 integers), the temperature values 
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retrieved from LANDSAT are inherently already divided into temperature bins. The 

problem with this method is that it keeps points on the left side of the scatter plot which 

do not make up the upper or lower boundary. It is necessary to filter these points out. 

This is done by using T bins and comparing the Min Max points to the original full data 

set. If the Min Max point does not have the maximum energy in the T bin, then it is 

assumed to be to the left and filtered out. Originally these T bins were of uneven size 

and created automatically by making each Min Max point delineate the edge of the bin. 

Since the Min Max point was on the cusp of two bins, it was defined to only be a member 

of the bin below it. This method has the advantage of not requiring the selection of bin 

size, but it is not very successful at removing necessary points. The Hybrid method uses 

the Min Max method but performs this final filtering using Even Bins described above 

instead of the automatic bins.  

Once the points that make up the boundary are located, it is necessary to use them 

to find the coefficients in the T vs. T equation. This was performed using two methods 

which will be called 1) Extreme and 2) Threshold Fit. The Extreme method positions the 

line so that all of the boundary points are above the line. It then alters the slope and 

intercept of the line until the MAE between the points and the line is minimized (Note: 

MAE and Bias are same since all points are on one side of line). RMS is not used because 

it is too sensitive to outliers. Threshold Fit divides the data between the upper and lower 

boundary points based on whether they are greater than or less than some threshold T. 

Least squares regression is then performed on both sets of points to produce a line for the 

upper boundary and a lower boundary. The total RMS score of all of the points with 

respect to their associated lines is used as a criterion for determining the optimal 
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threshold T. The threshold T is varied until the point with the minimum RMS score is 

determined.  

To summarize, there are two procedures for performing the calibration. The first 

is to identify the boundary pixels, and the second is to fit the boundary pixels to a line. 

These procedures were combined to form 3 different variations of the calibration called 

the Boundary Variations. These variations are called 1) Extreme 2) Min-Max Threshold 

Fit, and 3) Even Bins Threshold Fit. The Extreme variation uses the Automatic Min-Max 

Bins method to find the boundary points and the Extreme method to fit the line. The Min-

Max Threshold Fit uses the Hybrid Min-Max Bins method to find the boundary points 

and the Threshold Fit method to fit the line. The Even Bins Threshold Fit uses the Even 

Bins method to find the boundary points and the Threshold Fit Method to fit the line. 

Sample executions of the three Boundary Variations are shown in Figure 3.2.4-3.2.6. 

 
Figure 3.2.4: Example Plot for Extreme Boundary Variation 
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Figure 3.2.5: Example Plot for Min-Max Bins Threshold Fit Boundary Variation 

 

Figure 3.2.6: Example Plot for Even Bins Threshold Fit Boundary Variation 
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 Another modification to the process of determining boundary pixels is to filter out 

certain pixels before identifying the boundary. The two types of filtering applied are 1) 

Cloud Filtering and 2) Albedo Filtering. Although care was taken to find clear sky 

scenes, often a small amount of cloud cover exists on an image. In order to removes these 

pixels from the calibration data, pixels were filtered by removing pixels which are cooler 

than a threshold temperature. The threshold temperature is equal to the study area’s mean 

temperature minus two times the study area’s standard deviation. For some study areas, 

very bright surfaces resulted in values in which the energy was very low, but the 

temperature was larger than expected for such a low energy. This could possibly be due 

to advection of heat from surrounding areas. This is probably not because of errors due to 

lower emissivity of manmade surfaces. That would mean actual temperature would be 

greater than the retrieved temperature. This problem typically only occurred for a small 

number of pixels in the image, but it could have serious consequence on the resulting 

coefficients produced for equations 3.2.5 and/or 3.2.10. In order to account for this, all 

pixels were filtered by removing those which were brighter than a threshold albedo of 

0.5.  

3.2.6 Validation of Evaporative Fraction Produced by Algorithm 

 This section describes the manner in which the EF produced by the algorithm is 

validated against the eddy covariance data described in section 2. A future section will 

describe the extension of this to comparing actual evapotranspiration. The eddy 

covariance tower measures latent and sensible heat over a footprint as described in 

section 3.1.1 In order to calculate a retrieved EF that can be compared with the EF 

measured by flux tower, the retrieved fluxes must be averaged over a flux tower footprint 
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such as that shown earlier in Figure 3.1.2. The following equation can be used to 

calculate the footprint averaged value of some flux F measured on a grid: 

F   =  wij Fij        3.2.27) 

where F  is the flux averaged over the footprint, wij is the weight of the source function 

at grid cell i,j and Fij is the flux value at cell i,j. As described in section 3.1.1, a uniform 

footprint is assumed for this dissertation and therefore inside the footprint wij = constant = 

1/N and outside the footprint wij =0. N is the total number of cells in the uniform 

footprint.  

 The energy balance equation 3.2.1 can be averaged over the footprint and divided 

by the averaged available energy to produce the footprint averaged EF for comparison 

with tower: 

 EFretrieved = 1 – H  retrieved / A  retrieved      3.2.28) 

where EFretrieved is the estimate for EF which can be compared to tower estimated EF, 

H  retrieved is the sensible heat produced by ET mapping algorithm, and A  retrieved is the 

available energy produced by ET mapping algorithm.  

It is beneficial to be able to visualize the validation points on scatter plot of 

available energy (or Tdry) vs Ts. For available energy vs. Ts plots the validation sensible 

heat will be plotted against the retrieved temperature. The validation sensible heat H will 

be calculated using: 

Htower = (1-EFtower) A  retrieved       3.2.29) 

where Htower represents the validation sensible heat measured by the tower and EFtower is 

the evaporative fraction calculated for the tower as described in section 3.1.1. It should be 
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noted that the difference between actual and retrieved available energy is not accounted 

for in this equation. In essence this equation is only representing the effect of differences 

in EF on H but not the differences in actual and retrieved available energy. Description of 

the analysis between the differences between actual and retrieved available energy and its 

effect on retrieved fluxes is included in a future section. In closing, the use of retrieved 

energy is adopted in order to visualize the ability of the calibration to predict EF. 

 It is also necessary to average the retrieved temperature over the footprint when 

plotting the validation point. This is because the averaged retrieved sensible heat is equal 

to: 

 H  retrieved = a + b T  retrieved       3.2.30) 

where a and b are the calibration coefficients and T  retrieved is the footprint averaged 

retrieved surface temperature. Therefore the line produced by equation 3.2.15 can be 

compared to the point created using Htower and T  retrieved. In order to visualize validation 

points on T vs. Ts plot it is necessary to also average over ga. The following equation is 

produced by multiplying ga by the retrieved T and averaging over footprint: 

 H  retrieved = a ga   + b T ga        3.2.31) 

where ga  is ga averaged over footprint, and T ga  is the product of retrieved surface 

temperature and ga averaged over the footprint. Then H  retrieved and H  tower can be 

divided by ga   to produce a T values which can be compared on plot: 
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ΔT  tower = H  tower  / ga         3.2.32) 

 ΔT  retrieved = a  + b T ga  / ga        3.2.33) 

Therefore ΔT for the validation point will equal validation sensible heat calculated using 

equation 3.2.29 divided by the footprint averaged ga and the temperature used for the 

validation point will equal the footprint averaged temperature weighted by ga.  

 The above method is just for visualization. To quantitatively analyze the model, 

EFtower and EFretrieved is compared. The Bias and MAE error will be computed using: 

 BIASEF = 1/ Nobs Σ (EFtower -EFretrieved)      3.2.34) 

 MAEEF = 1/ Nobs Σ | EFtower -EFretrieved |      3.2.35) 

where the summation is over all available observations from stations among all “useable” 

scenes for particular study area and Nobs is the total number of observations. MAE is used 

instead of RMS to reduce the effect of outliers. RMS is often used in regression situations 

in which maximum likelihood between observed and predicted is sought after. It can also 

be used to estimate percentiles of the residuals. In this study, MAE is used because the 

aim is to determine the error that is produced. Determining percentiles of the absolute 

residuals is done easily using a non parametric cumulative distribution function. 

3.2.7 Using Wet Pixels in Calibration 

 In order to test the performance of the dry pixel calibration, it will be beneficial to 

compare it to a calibration that also includes wet pixels. A simple method for 

incorporating wet pixels into the calibration is proposed here. The method consists of 

finding wet pixels via an automated process, and then averaging the T (or A) and Ts of 

these wet pixels to produce a wet “end member” value. A dry “end member” value is 

produced by using the results of the dry pixel only calibration. This consists of finding 
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the point where the upper and lower boundary intersect after the boundary lines are 

produced using the Threshold Fit method. The straight line that connects these end 

members represent the calibrated relationship between T (or A) and Ts.  Figure 3.2.7 

shows an example of the wet pixel calibration for Disney. In this example using only dry 

pixels severely overestimated T and adding wet pixels (in blue) improved the results. 

Worthy of mention is that the validation T for the dry pixel calibration (in red) is 

different than that for the wet pixel calibration (in orange) because ga changed due to 

instability. The predicted T is used to calculate the ga used to calculate the validation 

T.  The wet pixel calibration shown in Figure 3.2.7 decreased the predicted T which 

decreased the buoyancy/instability which in turn decreased ga leading to increase in the 

validation T. 

 

Figure 3.2.7: Example of Wet Pixel Calibration 
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 Producing the wet “end member” involves first finding wet pixels and then 

estimating the sensible heat (or T) for these wet pixels. The value used as the wet “end 

member” is simply the average H (or T) and Ts for these pixels. Three methods for 

finding wet pixels are used 1) Above NDVI Threshold 2) Below NDVI Threshold, and 3) 

Unsupervised Classification. The Above NDVI Threshold method aims to find well 

watered vegetation pixels. This method assumes that the top pabove percent of NDVI 

values in the image are made up of well watered vegetation pixels. Once a value for pabove 

is chosen, the (1- pabove )-th percentile of NDVI is determined as a threshold NDVI.  The 

wet pixels are then found by choosing all pixels with NDVI greater than the threshold 

NDVI. The Below NDVI method is similar to the previous method, but it aims to find 

pixels made up of open water. It assumes that the bottom pbelow percent of NDVI values in 

the image are made up of open water pixels. Similar to before, a value for pbelow is chosen 

and the pbelow-th percentile of NDVI is determined as the threshold NDVI. The wet pixels 

are then found by selecting all pixels with NDVI less than the threshold NDVI. The third 

method uses an unsupervised classification to find open water pixels. The classification 

method used could be any type of classification but the unsupervised method is used 

because it was already performed when masking out water during roughness length 

calculations.  

The Below NDVI Threshold method and Unsupervised Classification method 

have the same goal of detecting water pixels. The advantage of the Below NDVI 

Threshold method is that it is much simpler to execute, but the disadvantage of the 

method is pbelow must be provided. The same problem exists for the Above NDVI 

Threshold method. Therefore, it is necessary to analyze the sensitivity of the algorithm to 
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pabove and pbelow parameters. Bias and MAE error of the algorithm using p values varying 

from 0 to 100% were calculated and compared for each study area. Another option that is 

tested is using absolute values of NDVI for a threshold to detect water. This option was 

not used for Above NDVI because NDVI of healthy vegetation can be highly variable 

across study areas.  

The second part of finding the wet “end member” is to find the sensible heat of 

the wet pixels found using one of the methods above. Estimating the sensible heat of the 

wet pixels is limited because of a lack of weather data and surface parameters. In Florida 

the Priestly Taylor equation was found to perform as well or better than the more 

complex Penman-Monteith equation over a variety of land cover types (Douglas et al. 

2009). Therefore, the Priestly Taylor approach is adopted because it only requires 

temperature. Sensible heat is determined by subtracting the ET calculated using the 

Priestly-Taylor equation (Priestley and Taylor 1972) from the available energy: 

Hwet = Aretrieved (1- PT       3.2.36) 

where Hwet is the sensible heat for the wet pixels, PT is the Priestly-Taylor coefficient,  

is the rate of change of saturation vapor pressure with respect to temperature for the 

current temperature and  is the psychrometric constant.  and (both in units of kPa/K) 

are calculated using: 

 = desat / dT = 4283.58 / (Ts - 30.11)
2
 esat     3.2.37) 

esat = 0.6109 e 
-17.625 (Ts -273.15) / (Ts – 30.11)

     3.2.38) 

 = Cp P / v / MWratio        3.2.39) 

where Ts is the satellite retrieved surface temperature in K, esat is the saturation vapor 

pressure (Alduchov and Eskridge, 1996), Cp is the specific heat capacity of air, P is the 
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pressure of the air, v is the latent heat of vaporization and MWratio is the ratio of the 

molecular weight of water vapor to dry air. Although Cp, P and v are not strictly 

constant, it is typically assumed that   is constant for a given elevation. For the study 

areas in this dissertation it is assumed that =0.07 kPa/K. Although air temperature is 

usually used in the Priestly-Taylor equation, for open water or well watered vegetation it 

could be assumed that surface temperature is close to air temperature. 

 The difficulty in using equation 3.2.36 is deciding which value of PT to use. The 

standard value for PT is 1.26. It was necessary to analyze the range of values in our 

actual study areas. PT was calculated for all available stations for each study area using: 

 PT = EFtower (        

From this the mean and standard deviation of PT was determined for each month. This 

provided an idea about the range of PT that could exist. It also provided an idea about 

PT over vegetation of varying soil moisture conditions since stations were situated over 

rain-fed vegetation. It was also necessary to examine the range of PT that would exist for 

open water. To achieve this, ET was simulated using the Penman-Monteith equation 

(Penman 1948, Monteith 1965) in order to simulate flux tower ET: 

 ET = ((Ta)simulated + ga (esat(Ta) - e)(Ta)    

wheree is the actual vapor pressure, esat(Ta) and (Ta) are saturated vapor pressure and 

derivative of esat with respect to temperature calculated using air temperature Ta, and 

simulated is the simulated clear sky available energy. It is necessary to simulate the clear 

sky available energy over water since the flux tower measurements were not necessarily 

cloud free. simulated was simulated using equations 3.2.10 and 3.2.11. Down-welling clear 
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sky solar radiation was calculated using equation 3.2.16 with zenith angle calculated 

based on latitude, day of year and local solar time (Wolf, 1968;Allen et al, 1998): 

 hour = 15 (LST – 12)        3.2.42) 

  = 23.43 sin(360/365*DOY-79.64)      3.2.43) 

 cos
-1

[sin(latitude) sin() + cos(hour) cos(latitude) cos()]   3.2.44) 

where hour is hour angle in degress, LST is the local solar time in hours (0-24 hours),  is 

the solar declination, latitude is the latitude in degrees, DOY is the day of year, and 

the solar zenith angle.  was assumed to be equal to 0.05 where the effect of low angle of 

incidence on albedo is neglected. Net long wave radiation was calculated using 

(Mecikalski, 2010): 

 Rnet,LW =  Ta
4
 (.34 - .14 e

.5
)       3.2.45) 

where Ta is air temperature measured by weather station. G/Rn was assumed to be 0.10 

which is a very rough estimate since this value can be highly variable for open water 

compared to land. In equation  ga was calculated using a zo = 0.0001 m. Finding ga 

requires a solution which alters the Monin-Obukhov length L until the L produced from 

resulting u* and H matches the guess.  

 Simulated PT values for water were created using available station data for all 

study areas. The resulting mean and standard deviation of PT was determined for each 

month. This provided an idea of the range of PT that could exist. 

3.2.8 Validation of Actual Evapotranspiration 

 In addition to validating the algorithm with respect to evaporative fraction, it is 

also important to validate with respect to actual instantaneous evapotranspiration. 

Instantaneous ET at time of satellite overpass is used in validation instead of daily value 
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because LANDSAT alone does not provide information about daily available energy. 

Producing actual evapotranspiration from the model is as simple as multiplying the 

retrieved EF by the retrieved available energy. Determining the actual instantaneous 

evapotranspiration measured by the tower that can be compared to the satellite is not 

totally straight forward. As explained above, flux measurements using the eddy 

covariance method can have a lot of errors. Therefore it is necessary to correct the ET 

measurements by multiplying the available energy by the EF as described in section 

3.1.1. In addition to the error inherent in assuming that the ratio of fluxes is accurate, 

there are other problems with using the tower available energy for estimating the tower 

ET. The available energy that is multiplied by EF must be that which is averaged over the 

eddy covariance footprint, but the footprint of radiometer measuring radiation is much 

smaller than the eddy covariance footprint. Figure 3.2.8 shows the footprint function 

which describes the source of radiation measured by the radiometer of the flux towers. 

This footprint function is based on a simple model in which the weight decreases away 

from the radiometer proportional to cosine of the angle (r) between the vertical and the 

line of sight from radiometer to source area (Schmid, 1997): 

 wo,i = cos r, i
 4
 = 1/(z

2
+xi

2
)
2
                3.2.46a) 

 
wi = wo,i /  wo,i                 3.2.46b) 

where wi is the weight function for cell i, z is the height of tower, and xi is the distance to 

the base of the tower. Two of the cosine factors are a result of the source and target being 

angled to the line of sight while the other two cosine factors area a result of the spreading 

of the radiation away from the source. The resulting footprints based on the heights of 

stations used in this study are typically not much bigger than one LANDSAT pixel. 
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Figure 3.2.8: Radiometer Footprint Modeled for Big Cypress 

 In order to estimate the available energy averaged over the eddy covariance 

footprint, the satellite retrieved available energy will be corrected using the tower 

available energy. A very basic correction will be applied which assumes that the 

difference in energy between tower and the satellite measurement does not change when 

it scaled up from radiometer footprint to the eddy covariance footprint: 

 A  tower,EC  = A  retrieved,EC  + A  tower,RAD  - A  retrieved,RAD     3.2.47) 

where the subscript “retrieved” represents the energy estimated using satellite image, the 

subscript “tower” represents the energy measured by the tower (or what it is simulated to 

be over a larger footprint), the subscript EC means the energy is averaged over the eddy 

covariance footprint, and the subscript RAD means the energy is measured over the 

radiometer footprint. This correction produces a ground based energy which produces an 

ET which can be compared to the satellite retrieved ET.  

 The tower and retrieved energy averaged over radiometer footprint were 

compared for each study area. For most study areas there were day to day differences in 
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scatter due to different conditions opposed to a systematic offset or scale. Therefore, the 

simple correction explained above was used instead of performing a regression between 

RAD scale tower and retrieved energy over multiple days. The available energy 

calculated using equation 3.2.47 was multiplied by the tower based EF to produce tower 

based ET which was compared to the retrieved ET. The same criteria used in Section 

3.2.6 for comparing evaporative fraction is used for comparing ET also. In addition, 

retrieved energy is multiplied by tower EF in order to look at the effect that the 

relationship between EF errors and energy have on ET errors. For example, if EF errors 

are large when energy is small, the resulting ET error will be minimized compared to the 

same EF error when energy is larger. This metric does not account for manner in which 

errors in retrieving available energy affect ET errors. 

3.2.9 A Note On Heterogeneity and Similarity Theory 

 Monin-Obukhov similarity theory was derived for homogenous environments, yet 

the nature of our evaportranspiration environment relies on hetergenous environments. 

ET mapping would not be necessary if the environment was a homogenous environment 

in the first place. It is possible to test the implication of this contradiction using 

techniques such as large eddy simulations which are considered suitiable for modeling 

boundary layer fluxes over heterogeneous terrain (Avisar et al, 1998; Avissar & Schmidt, 

1998; Bohrer, 2009; Albertson & Parlange, 1999; Albertson et al, 2001). Efforts have 

been made to incorporate large eddy simulations in to the remote sensing of ET 

(Albertson et al, 2001), but their implemation is not within the scope of this dissertation. 

Applications of SEBAL and METRIC have been shown to produce acceptable results 
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(Allen et al, 2007; Bastiaanssen et al, 2005; Gowda et al, 2008) and this dissertation 

follows them while realizing the above. 

3.3 Sensitivity Testing 

3.3.1 Determining the Effect of Wind Speed 

 For testing the algorithm so far the wind speed at blending height, ublend or u200, 

was supplied to the algorithm from the eddy covariance data. Since the goal of the 

satellite retrieval is to operate independently of the flux tower data, the effect of not 

knowing the wind speed must be analyzed. The equation for calculating sensible heat can 

be rewritten: 

 H = u200 CH T         3.3.1) 

where CH is the bulk aerodynamic coefficient for heat which is equal to ga / u200. Now 

instead of using T as the dependent value in the calibration, the value u200 T can be 

used which can be determined by calculating H/ CH (instead of H/ga). This leads to an 

alternate equation to calibrate: 

u200 T = ac + bc TS        3.3.2) 

This is the same thing as multiplying the original calibration equation by u200. Since u200 

is spatially constant it is absorbed by the calibration coefficients. Therefore, the 

calibration process has the ability to detect information about wind speed which is 

embedded in the slope of the line representing calibrated sensible heat. In fact, splitting ga 

into u200 and CH was only done for demonstration purposes.  When calculating Tdry, 

energy was divided by ga and therefore divided by a constant u200. Therefore coefficients 

a and b will carry the value of u200 in their denominators. When the calibrated equation is 

multiplied by ga again to find ET, the u200 in the ga in the numerator will cancel the u200 in 
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the denominator. If the value of u200 guessed for the scene is wrong, it will just cancel out 

in the end. The information about the actual wind speed is still embedded in the 

coefficients. But this is only true for neutral conditions. When conditions are unstable, the 

stability corrections  and H must be used. m and h are functions of Monin-

Obhukov length L which is a function of the friction velocity u* which is a function of 

wind speed u200. Since CH and ga depend on m and h in a nonlinear fashion (and 

therefore u200 in a nonlinear fashion), u200 will not cancel out when it comes to non-

neutral conditions. Therefore testing the effect of uncertainty in wind speed is basically 

due to the effect that wind speed has on instability.  

 A simple approach is taken in which u200 is assumed to be equal to the average 

value for each study area. u200 is averaged on a monthly basis first to see if there are any 

strong seasonal variations. If seasonal variability is not a large factor then annually 

averaged u200 is used. A more complex approach would be to use an outside data source 

for the wind such as the Florida Automated Weather Network (FAWN). These data are 

available in an operational sense, but it turned out that it did not seem necessary to 

incorporate them at this time. 

3.3.2 Testing Sensitivity to Temperature, Energy and Roughness 

 The sensitivity of the algorithm due to perturbations in temperature and available 

energy were calculated. In contrast to the validation procedures which compared 

retrieved values to individual stations on the ground, these sensitivity tests will compare 

entire maps produced using unperturbed inputs to maps produced using perturbed inputs. 

In this manner the sensitivity of the algorithm can be determined for the majority of the 

study area where eddy covariance stations are unavailable. The sensitivity tests are 



  80 

performed separately for temperature and energy. The temperature is perturbed by some 

uniform amount across the entire study area. This new temperature map is then used to 

calibrate the model and produce a new EF and/or ET map from this new calibration and 

perturbed temperature map. The perturbed map is then compared to original map at the 

image and pixel level. To compare the maps at the image level the Bias error between the 

maps is used. To compare at the pixel level the MAE error is used: 

Bias =  EFperturbed,i – EForiginal,i      3.3.3) 

MAE =  | EFperturbed,i – EForiginal,i |      3.3.4) 

where EFperturbed,i is EF in cell i for the map created using perturbed values and 

EForiginal,i is EF in cell i for the map created using original values. Bias is considered 

“image” level because it represents the difference between the averages of the images. 

The MAE is considered “pixel” level because it represents the deviation that an individual 

pixel experiences on average. Typically the terminology Bias and MAE are used when 

comparing a prediction to observations. Here the original map is thought to be the 

observation while the perturbed map is the prediction due to some error in a parameter. 

The situation has been idealized such that the originally retrieved map is considered the 

truth while the map that would actually be retrieved or predicted is assumed to be altered 

solely due to some uncertainty in temperature or energy. At each perturbation level, the 

Bias and MAE error for each useable scene in the study area was determined. The Bias 

and MAE values of all useable scenes in the study area was then used to calculate a mean 

and standard deviation of both Bias and MAE at each perturbation level: 
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Bias   =  Biasi / n        3.3.5a) 

bias =  (Biasi  - Bias  )
2
/ n      3.3.5b) 

          MAE   =  MAEi / n        3.3.6a) 

MAE =  (MAEi  - MAE  )
2
/ n      3.3.7b) 

where Biasi is the bias for scene i in the study area for the current perturbation level, and 

MAEi is the MAE for scene i in the study area for the current perturbation level. 

This process was repeated for temperature perturbations ranging from -10 K to 

+10 K. In the available energy case, two types of perturbations were used. The first type 

was a uniform perturbation as was done for temperature and the second type was a 

perturbation equal to a constant fraction of the current value. The fractional perturbation 

was repeated in the range of -50% to +50% and the uniform perturbation was repeated in 

the range of -200 to +200 W/m
2
. The sensitivity of ET to energy was also produced in the 

same manner.  

The sensitivity of the algorithm to roughness length was also determined. This is 

an important effect to analyze because roughness length is one of the more difficult 

variables to estimate in the algorithm. The same basic methodology used for temperature 

and energy as described above was used. The roughness length was given a uniform 

perturbation ranging from -1 m to +1 m. The perturbation in the negative direction was 

forced to result in a minimum roughness length of 0.0001. Another test was conducted 

which forced the roughness length to be a constant value across the map instead of 

making the perturbation value constant across the map. During the validation process a 

model variation was tested in which atmospheric conditions were considered neutral but 
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roughness length varied. This case assumes that roughness is constant but instability of 

atmosphere is allowed to vary. In effect it is testing whether roughness length can be 

ignored as long as instability is included in the model. This is different than assuming that 

conductance of the atmosphere is constant allowing sensible heat to be proportional to 

temperature alone.  

3.4 Data Fusion of LANDSAT and MODIS resolution imagery 

 Since the objective of this research was to test the effect of resolution and not the 

effect of sensor differences, MODIS resolution imagery was simulated by aggregating 

120 m LANDSAT thermal resolution into 1 km blocks. Fused thermal images were 

created for every image in the series of available images based on neighboring images. It 

is also necessary to find available energy for the fused day which requires albedo () and 

ground heat flux fraction (%G). It was assumed that these values changed more smoothly 

in time than temperature so they were linearly interpolated between neighboring scenes. 

For finding wet pixels, the minimum NDVI method was used. NDVI was linearly 

interpolated between neighboring scenes based on the assumption that it changes 

smoothly in time for wet areas. An ET map was then created for each fused scene and 

compared to the ET map retrieved using actual thermal image. The fusion methods tested 

and error analysis used to evaluate them is described below. 

3.4.1 Data Fusion Techniques 

 Six data fusion algorithms 1) Simple Interval 2) Simple Ratio 3) Double Sided 

Proportion 4) Similar Temperature 5) Similar ET 6) Similar EF and four interpolation 

methods 1) Nearest Neighbor ET 2) Linear ET 3) Nearest EF 4) Linear EF were used to 

produce ET maps. Figure 3.4.1 defines the various scenes used in the fusion process. LC 
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is the target LANDSAT resolution scene that is being estimated which simulates a 

“missing” day. The other five scenes are sources of information that can be combined in 

order to estimate LC. M refers to the simulated MODIS resolution. These coarse MODIS 

resolution pixels will often be referred to as “blocks” in the future.  

 

Figure 3.4.1: Diagram Defining Scenes in Data Fusion Process 

 1) Simple Interval: The Simple Interval method is the simplest method used for 

fusing temperature. It is the starting point for all of the other methods. It is a single sided 

technique in which only the data from the neighboring scene which is nearest in time is 

used. Depending on which side is closer the following equations are used: 

 LC = LL + (MC - ML) = LR - (MR – MC)     3.4.1) 

This technique can often lead to “blockiness” because every LANDSAT pixel in the 

same block will experience the same change. 

 2) Simple Ratio: The Simple Ratio is the same as Simple Interval except instead 

of adding an interval to initial value, a ratio is multiplied by initial value: 

 LC = LL MC/ML = LR MC/MR       3.4.2) 

 3) Double Sided Proportion: This method uses all five pieces of data in the fusion 

process. It is based on the assumption that the ratio of the change from L =>C to the 

change from L=> R for MODIS and LANDSAT is proportional to each other. This 

proportionality can be rewritten as: 

 LC = LL + (LR - LL) (MC - ML) / (MR - ML)     3.4.3) 
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The advantage of this technique is that it allows the individual pixels in the same block to 

change differently. Basically the block change from L=>C for each pixel is now weighted 

by the LANDSAT change from L=>R. If the resulting change from L=>C for each pixel 

is aggregated over the entire block, it must equal the block change from L=>C. This is 

accomplished by normalizing the LANDSAT change by block change from L =>R. This 

method works if the pixels in the same block do not change directions at different times. 

An example situation in which this method would break down follows. Assume one pixel 

is over water and the other is over land. If the change is from late fall to winter to spring, 

land will get colder and warmer while water will continue to be cool due to cold reservoir 

of water stored in lake. If equation 3.3.3 is to hold, then the ratio of the change in the 1
st
 

period to change in both periods must be constant for both surfaces. But this will not 

occur because although the 1
st
 period for both might be similar, the total of both periods 

are much different because net changes over land will be much less or in different 

direction compared to water. Another problem with Double Side Proportion occurs when 

MR - ML is small which can lead to unrealistically large or small temperatures. In order to 

solve this problem, the temperature is forced to fall within the minimum or maximum 

coarse scale temperature for day of interest (using all MC blocks in image).  

 4) Similar Temperature: This method searches all neighboring blocks in order to 

find that which is the most similar in temperature. The criteria used for similarity is  

S = | LL - ML | = | LR – MR |       3.4.4) 

where S is the similarity criteria. It uses the right vs. left side depending on whichever is 

closer in time to center. Once the block is found in which s is minimum for the 

LANDSAT pixel of interest LL, (MC - ML) from that block is added to the LL via equation 



  85 

3.3.1. This technique does not produce the “blockiness” of Simple Interval because each 

pixel has its own change from an area which is similar to that pixel. Figure 3.4.2 is useful 

for understanding the concept. In this example the background white area is changing 

from white to gray while black is remaining constant. The pixel of interest is in a block 

which is a mixture of black and white. Therefore if the change of this block is used, it 

will produce less change because black is remaining constant. In the Similar Temperature 

method, the change of the pure white block near the pixel of interest is used because it 

will reflect the true change from white to gray.  

 

Figure 3.4.2: Diagram Explaining Similar Neighbor Method 

A possible problem with the similarity approach can occur if the LL is close to ML, 

but ML is not a homogenous block. In this case, only the mean state of the block is similar 

to LL. Therefore, the change of this block might not reflect the change of a “pure” pixel. 

To account for this, homogeneity of the block should be included along with similarity of 

the block. This can be accomplished by representing the purity of the block with the 

mean absolute deviation: 
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MAD = | LL - ML |          3.4.5) 

This can be used to produce a new criterion based on similarity and homogeneity: 

 SH = S + w MAD        3.4.6) 

where S is the similarity criterion from equation 3.4.4 and w is a weight which determines 

the importance of homogeneity relative to similarity. If w is 0 then only similarity matters 

and as w becomes very large only homogeneity matters. Since both similarity and 

homogeneity are important, w should be some intermediate value. Determining the 

optimal weight value is not a trivial exercise. A universal weight value almost surely does 

not exist. The optimal weight value under different scenarios with respect to different 

type of errors is examined by varying the weight value and performing the Similarity and 

Homogeneity data fusion. 

 A problem with using temperature to find areas of similar change is that surfaces 

with similar temperature are not necessarily similar surfaces. For example, dry pixels can 

be cool because of a high albedo, while wet pixels could be the same temperature due to 

evaporative cooling. These two surfaces could change differently as time evolves.  

 5) Similar ET: This method attempts to solve the problem just discussed by 

finding areas of similar ET instead of temperature. Surfaces with similar ET should 

change similarly as time evolves. This method should more accurately find similar 

surfaces than using similar temperatures. It should be noted that once the similar block is 

found based on ET, the change in temperature is used for that block. This is because the 

change in ET is not known. ET is just used to locate the block to use for change. 

 6) Similar EF: This method is just a slight variation of Similar ET which uses 

evaporative fraction for similarity instead of ET.  
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 In addition to data fusion techniques, simple interpolations are also used 1) 

Nearest Neighbor ET 2) Linear Interpolation of ET 3) Nearest Neighbor EF 4) Linear 

Interpolation of EF.  

1) Nearest Neighbor ET: ET map which is nearest in time to the desired day is 

substituted for that day. This is the most simple method of all and used as a type of 

“sanity” check. 

2) Linear Interpolation of ET: ET maps are linearly interpolated in time between 

the neighboring ET maps. 

3) Nearest Neighbor EF: First, EF for desired day is determined from the nearest 

neighbor in time. EF is then multiplied by available energy of the desired day to find ET. 

The available energy for desired day is determined the same way as before with the 

fusion techniques except the temperature required for determining upwelling long wave 

is not fused. Instead, the temperature is simply linearly interpolated in time.  

4) Linear Interpolation of EF: EF is linearly interpolated between neighboring EF 

maps and then multiplied by the available energy as with Nearest EF.  

These methods are much simpler than any of the data fusion methods because 

they do not require an additional ET retrieval. They are included to determine the value of 

the more complicated fusion efforts which require additional higher temporal resolution 

data.  

3.3.2 Evaluating Performance of Data Fusion Techniques 

 The data fusion techniques described above will be evaluated at two different 

scales 1) Image Scale and 2) Pixel Scale. For larger scale hydrological applications, the 
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Image Scale results will be of interests. For agricultural applications where individual 

fields are of interest, Pixel Scale results will be more pertinent.  

 1) Image Scale: This consists of finding the mean of the actual image retrieved 

and the mean of the fused image. These mean values will then be compared over time. 

The Image Scale Bias is defined as the difference between the mean ET of the images 

averaged over a time series of images. This represents the error in estimating ET at the 

image scale over longer time scales. Image Scale MAE is the absolute value of this 

difference averaged over a time series. This represents the error in estimating ET for the 

entire image at the daily time scale.  

 2) Pixel Scale: This refers to comparing ET for each individual pixel in the image 

in order to produce a map of Bias and MAE error. This is performed by averaging over 

the time series for each individual pixel. These maps can be aggregated in space in order 

to find the Average Pixel Scale Bias and the Average Pixel Scale MAE. The Average 

Pixel Scale Bias is the absolute value of each individual pixel’s Bias averaged over the 

entire image. It should be noted that is necessary to use absolute value of the Bias or else 

the result would be identical to the Image Scale Bias. This is because the order of 

temporal vs. spatial aggregation does not matter. By taking the absolute value, the 

direction of the Bias is lost, but it still retains information about the average magnitude of 

an individual pixel’s Bias. This represents the average error in estimating ET for an 

individual pixel over longer time scales. The Average Pixel Scale MAE is the individual 

pixel’s MAE averaged over the entire image. This represents the average error in 

estimating ET for an individual pixel over daily time scales.  
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 It is important not to include neighboring ET maps in the aggregations in time 

discussed above.  If neighboring ET maps are included it will produce overly optimistic 

results. For example if the first map is created from change between first and second map 

and second map is created from change between second and first map, they will cancel 

when aggregated together to produce zero Pixel Scale Bias. This mutuality does not 

always occur but it will still happen enough to make the results appear to be too good. In 

order to produce more conservative results, sequences are created in which every other 

ET map in the time series is included. The result is two sequences in which the first 

begins with the first image and the second begins with the second image.  

 The temporal variability of data fusion errors was also investigated. Fused ET 

maps were compared to actual ET maps as a function of time. Also, the difference 

between the mean of ET maps was analyzed as a function of the time between the 

estimated map and the nearest neighbor (tmin). The spatial variability of the errors was 

also investigated by producing Pixel Scale Bias and MAE maps. The effect of these errors 

was realized by comparing ET map actually retrieved to fused ET maps. 
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4. Results and Discussion

4.1. Data Preprocessing 

4.1.1 Analysis of Effects of Gaps on Calculation of Daily Averaged EF 

 Table 4.1 shows the average number of gaps along with the number of gap free 

days among useable clear sky scenes for each of the eddy covariance flux stations. The 

Disney and Big Cypress stations do not have any days that were gap free. Analysis of 

Disney hourly data shows that gaps systematically appear during non-daylight hours. 

This leaves Everglades, Gainesville and Kennedy for use in the analysis of the effect of 

gaps on daily EF. Donaldson station was chosen for further analysis because of the large 

number of gap free days and low average number of gaps. Everglades Short Hydro-

period Marsh was chosen because it exhibited gaps in a different pattern than Donaldson 

as shown in Figure 4.1.1. The Short Hydro Marsh has more gaps during non-daylight 

hours. Figure 4.1.1 shows the probability of a gap occurring as a function of time for all 

of the flux data (not just useable clear sky scenes). For testing effect of gaps on daily EF, 

flux data from all days is used because it increases the number of gap free days compared 

to Table 4.1.1. Figure 4.1.2 shows the effect that increasing the number of gaps has on 

the computation of daily EF. This plot shows the Bias and MAE between daily EF 

calculated from fluxes with simulated gaps applied to gap free days and the actual daily 

EF for those gap free days. The manner in which the gaps are positioned is very 

important. This is shown by comparing the errors due to clustered gaps (green) with 

errors due to random gaps (blue). Random gaps do not significantly affect the results 
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until many gaps are added to the data while the clustered gaps produce large errors for a 

small number of gaps. These simulations of ideal conditions can be used to describe the 

nature of the actual gaps. The errors calculated using actual gaps from the data applied to 

gap free days is shown in red. The plot shows that the errors using actual gaps locations 

are somewhere between clustered and random for Short Marsh, but closer to clustered for 

Donaldson. Also the plots shows the average number of gaps for Short Marsh to be 

around 30 while average number of gaps for Donaldson to be around 15. This is 

interesting because when using actual gaps (red line), both scenarios have similar MAE at 

about 0.1. A possible explanation to this is that Donaldson has more clustered gaps. If 

Donaldson was more in between clustered and random the MAE would be about 0.05. 
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Table 4.1.1: Average Number of Gaps and Gap Free Days among Useable Scenes 

 

 

Figure 4.1.1: Probability of Gap Occurrence as Function of Time 
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Figure 4.1.2: Effect of Gaps on EFdaily from Simulations for Everglades, Short 

Marsh 

 

Figure 4.1.3: Effect of Gaps on EFdaily from Simulations for Gainesville, Donaldson 

 4.1.2 Analysis of Relationship between Daily EF and Satellite Overpass EF 
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 The relationship between daily EF and satellite overpass EF was analyzed using 

flux data from only useable clear sky scenes and flux data from all measurement days. 

This could help in comparing the effect of cloudiness on the relationship. This 

comparison is somewhat limiting though due to the low availability of useable clear sky 

scenes. The relationship between daily EF and EF averaged over a window around 

satellite overpass was also analyzed in order to test whether window averaged EF could 

be used as proxy for daily EF. This could be useful because window averaged EF would 

have less of a chance of having gaps and could therefore be used to represent daily EF for 

comparison with satellite retrieved EF.  

 Table 4.1.2 shows the errors produced when comparing daily EF to overpass EF 

and window EF for gap free days among useable clear sky scenes. This shows significant 

Bias for both overpass and window EF. This means that using overpass or window EF as 

a proxy for daily EF would significantly underestimate daily EF. This does not seem to 

support the use of satellite retrieved EF as an estimate for daily EF. Figures 4.1.4 and 

4.1.5 show scatter plots of daily EF vs. overpass and window EF for each study area in 

Table 4.1.2. These plots show that for all study areas a significant amount of variation 

exists among the difference between daily EF and overpass or window EF. Therefore it is 

not just a simple calibration between the two which could allow for correction. In order to 

further investigate why daily EF is so much larger than overpass EF, an extreme case 

which occurred on Nov 11, 2003 at Kennedy Scrub Oak was analyzed. In that case the 

daily EF = 0.85 while the overpass EF= 0.36. The reason the daily EF was so large was 

because a large amount of sensible heat was being supplied into the surface at night. The 

sensible heat that was lost to atmosphere during the day was equal to 1565 W/m
2
 while 
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the amount of heat gained by the atmosphere during the night was equal to 1358 W/m
2
. 

During the day the latent heat consumed by surface was 1152 resulting in only a 

moderate EF during the day equal to 0.42. During the night the latent heat at the surface 

is quite small and available energy lost by the surface is being resupplied by sensible heat 

from atmosphere. The reason the daily EF is so large is because the extra energy supplied 

at night via sensible heat from atmosphere nearly cancels that which is lost in the day. 

Therefore, most of the available radiation energy supplied to surface over the 24 hour 

cycle is being consumed by latent heat. 

 In order to correct for the problem just described, the correction using equation 

3.1.3 was used to find a corrected overpass EF. As shown in Table 4.1.2, this correction 

cut the Bias and MAE in half for Everglades. For Gainesville and Kennedy it was more 

effective in reducing bias but only reduced MAE minimally. Figure 4.1.6 shows a scatter 

plot of the improvements due to the correction. Also reported in Table 4.1.2 are 

reductions in Bias and MAE when the corrected overpass EF was now being compared to 

the daily EF calculated using the alternate method consisting of correcting fluxes using 

equation 3.1.1 at each time step before summing. Everglades was not affected by this 

modification, but Gainesville and Kennedy were affected. This change is reflected in 

scatter plot shown in Figure 4.1.7. The effect of the differences in daily and overpass EF 

would have on the resulting actual daily ET in mm is also shown in Table 4.1.2. Figure 

4.1.8 shows daily ET vs. overpass ET and 4.1.9 shows alternate daily ET vs. corrected 

overpass ET. In these figures the reduction in scatter using the alternate daily ET and 

corrected overpass EF is very evident. These results would suggest that correcting the 

overpass EF would increase the ability for overpass EF to estimate daily ET. It was not 
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intended that the inclusion of the alternate daily EF and ET calculation would determine 

whether it was a better estimate. It was included in order to demonstrate that some of the 

difference between overpass and original daily EF is due to problems with calculating 

daily EF due to energy balance closure problems. 

Table 4.1.2: Bias and MAE Errors between Daily EF and Overpass or Window EF 

For Gap Free Days among Useable Clear Sky Scene 
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Figure 4.1.4: Study Area Plot of EFdaily vs. EFoverpass on Gap Free Useable Clear Sky 

Days 

 

Figure 4.1.5: Study Area Plot of EFdaily vs. EFwindow on Gap Free Useable Clear Sky 

Days 
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Figure 4.1.6: Study Area Plot of EFdaily vs. EFcorrected on Gap Free Useable Clear Sky 

Days 

 

Figure 4.1.7: Alternate EFdaily vs. EFcorrected on Gap Free Useable Clear Sky Days 
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Figure 4.1.8: Study Area Plot of ETdaily vs. EToverpass on Gap Free Useable Clear Sky 

Days 

 

Figure 4.1.9: Alternate ETdaily vs. ETcorrected on Gap Free Useable Clear Sky Days 
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 Next the relationship between daily EF and overpass EF or window EF is 

analyzed using all available flux measurements. Because only 6 gap free days existed for 

Short Marsh Everglades, only the results for Donaldson are reported.  Table 4.1.3 shows 

the Bias and MAE errors broken up seasonally. This shows that summer and spring seem 

to produce the best relationships. In this case spring looks even a bit better than summer 

which could be due to the increased presence of clouds in summer which should limit the 

relationship. Figure 4.1.10 shows a scatter plot of daily EF to overpass EF grouped by 

season for Donaldson. These figures show lots of scatter for all seasons although winter 

and fall seem to have more extreme cases. The total Bias = 0.161 and MAE = 0.236 for 

daily EF vs. overpass EF. This is much larger than the Bias = 0.115 and MAE = 0.127 for 

Gainesville during useable clear sky days. Figure 4.1.11 show the scatter plots of the 

daily EF to overpass EF of all useable clear sky scenes which are colored by season. This 

plot seems to suggest that there is a better relationship between daily EF and overpass EF 

during the summer but spring is fairly close also. This comparison is not very robust 

though due to the limited amount of summer data points.  

Table 4.1.3: Seasonal Bias and MAE Errors between EFdaily and EFoverpass or 

EFwindow For Gap Free Days among All Available Donaldson Flux Measurements  
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Figure 4.1.10: Seasonal EFdaily vs. EFoverpass on All Gap Free Days for Donaldson 

 

Figure 4.1.11: Seasonal EFdaily vs. EFoverpass on All Gap Free Useable Clear Sky Days  
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This comparison was intended to be used to test the effect of cloudy skies on the 

errors. This could possibly support the idea that more clouds would decrease the 

relationship between daily EF and overpass EF. On the other hand the sample of cloud 

free days is small and more cloud free days would need to be collected in order to 

produce more robust results. Similar to the clear sky data, this data also does not support 

the use of window EF or satellite retrieved EF as a proxy for daily EF. A better solution 

would be to apply satellite retrieved EF to the period when available energy is positive 

during the day, and then set ET equal to zero during the night when calculating a daily ET 

value. 

4.2 Validation of Dry Pixel Calibration 

 Bias and MAE produced from comparing retrieved EF to eddy covariance EF is 

shown in Figure 4.2.1. The Bias and MAE errors for every study area are shown as a 

function of model and boundary variation. The T vs. T model performed the best based 

for all study areas except Big Cypress. For Big Cypress the H vs. T model worked the 

best. Based on MAE, the Disney study area appears to work similar for T vs. T 

regardless of whether neutral conditions are assumed, but neutral conditions actually 

produce a negative correlation between observed and predicted. It is also interesting to 

note that while Disney has the second lowest MAE it has a very low correlation. The 

Even Bins Threshold Fit boundary variation is generally the best method for all model 

variations. For the optimal model variation of each study area Even Bins Threshold Fit is 

the best method for all study areas. It should also be noted that cloud filtering was applied 

to all cases and albedo filtering was applied to the Kennedy and Everglades study areas.  

Table 4.2.1 reports the optimal model and boundary variation and associated statistics for 



  103 

each study area. The results for the Homestead and Mangroves study areas which are 

inside the Everglades study area are also shown. A detailed analysis of the results for 

each study area follows. 

 

Figure 4.2.1: EF Bias and MAE vs. Model and Boundary Variations for each Study 

Areas 

Table 4.2.1: Optimal Model and Boundary Variations for each Study Area 
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4.2.1 Big Cypress Dry Pixel Validation 

 Figure 4.2.2 shows the relationship between EF retrieved from satellite and tower 

EF for the optimal variation from Table 4.2.1 consisting of H vs. T model and Even Bins 

boundary variation. Excluding the minimum and maximum EF tower points, the range of 

retrieved EF is about 0.2 while the range of tower EF is about 0.4. Figure 4.2.3 shows the 

results for the T vs. T model and Even Bin Threshold Fit. This model is capable of 

producing more of a range in EF retrieved values, but it also severely underestimates EF 

at times. This leads to a higher MAE and Bias error compared to H vs. T model. Figure 

4.2.4 shows the variation of the difference between retrieved EF and tower EF vs. time. 9 

out of the 14 validation points are within +/- 0.1 EF. The 2 largest residual are on Feb 8, 

2010 at the Pine Upland station when EF was abnormally small and Oct 19, 2009 at the 

Dwarf Cypress station when EF was abnormally high. On Oct 19, 2009 the Cypress 

Swamp EF measurement drastically reduced by -0.25 EF compared to Oct 3, 2009. The 

scene with the lowest errors on average was April 23, 2008 in which all of the residuals 

were within +/- 0.1 EF.  The scene with the highest errors on average was Oct 19, 2009. 

Figure 4.2.5 shows the plot of available energy vs. temperature for the best case scenario 

on April 23, 2008 using Even Bins Threshold Fit. This plot demonstrates the method for 

detecting the dry pixel calibration points which are shown as the black points on the 

bottom boundary. The red points are the validation sensible heat values from towers 

which come close to the fit of the sensible heat vs. temperature relationship determined 

from calibration points. The geographical location of the calibration points within the 

study area is shown on Figure 4.2.7. The majority of the points are located at the airport 

but there are also points at areas that were determined to be cleared out using Google 
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Maps. Figure 4.2.7 shows the plot of available energy vs. temperature for the worst case 

scenario on October 19, 2009. The reason the algorithm does so poorly on this day could 

be because of the large range of sensible heat and EF values. It is very possible that this 

range of values could be due to problems with the eddy covariance measurements on this 

day.  

 

Figure 4.2.2: EF retrieved vs. EF tower for Big Cypress Optimal Variation 
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Figure 4.2.3: EF retrieved vs. EF tower for Big Cypress T vs. T Model 

 

Figure 4.2.4: EF residual and EF tower vs. Year for Big Cypress Optimal Variation 
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Figure 4.2.5: Available Energy vs. Temperature for Big Cypress on April 23, 2008 

 

Figure 4.2.6: Automatically Detected Calibration Points on April 23, 2008 
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Figure 4.2.7: Available Energy vs. Temperature for Big Cypress on October 19, 

2009 
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4.2.2 Disney Wilderness Preserve Dry Pixel Validation 

 Figure 4.2.8 shows the relationship between retrieved EF from satellite and tower 

EF for optimal variation in Table 4.2.1. When tower EF is less than 0.3 the algorithm 

overestimates EF but when tower EF is more than 0.6 the algorithm underestimates EF. 

As noted earlier when examining Figure 4.2.1, the T vs. T neutral case appeared to have 

errors similar to the optimal case. Figure 4.2.9 demonstrates that this result is misleading 

due to the negative correlation (R=-0.551) between retrieved EF and tower EF. Figure 

4.2.9 shows the residuals of EF vs. time along with tower EF for each season. 9 out of the 

21 validation points have an EF residual greater than +/- 0.1. Winter, spring and fall 

scenes produced 1/2, 3/8 and 1/3 of their residuals outside of the +/- 0.1 window 

respectively. Because of the small number of validation points it is difficult to judge any 

one season to be any better than any other. 

 

Figure 4.2.8: EF retrieved vs. EF tower for Disney Optimal Variation 
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Figure 4.2.9: EF retrieved vs. EF tower for Disney T vs. T neutral 

 

Figure 4.2.10: EF residual and EF tower vs. Year for Disney Optimal Variation 
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 For the Disney study area, two variations of the extent were considered. The first 

extent was much smaller and did not include the developed area to the west. The second 

extent was larger and included the developed area. The increase in the size of the extent 

and inclusion of the developed area had a large impact on the calibration results. Figure 

4.2.11 and 4.2.12 shows plots of Tdry vs. T for both extents on April 30, 2008. For the 

small extent there are apparently not any dry pixels available because Tdry vs. T lower 

boundary was much larger than the validation point shown on Figure 4.2.11. If the lower 

boundary pixels are not dry then Tdry is not equal to actual T as assumed in the 

algorithm. The true dry lower boundary would be 1-EF time the predicted boundary. 

Figure 4.2.12 shows the results for the larger extent where dry pixels exist. Now the 

validation point agrees with the predicted boundary because of the introduction of the 

developed area to the west which apparently contains dry pixels. Figure 4.2.13 shows the 

geographical location of the automatically detected calibration points for both extents. It 

shows that none of the points considered dry when using the small extent were 

considered dry when using the large extent. Most of the actual dry pixels on the image 

were located in the developed area in the western part of study area. For the remainder of 

the analysis the Disney study area is chosen to be that with the larger extent.  
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 Figure 4.2.11: Tdry vs. Temperature for Small Extent Disney on April 30, 

2008  

 

Figure 4.2.12: Tdry vs. Temperature for Large Extent Disney on April 30, 2008 
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Figure 4.2.13: Automatically Detected Calibration Points for Disney on April 30, 

2008 

4.2.3 Everglades Dry Pixel Validation 

Figure 4.2.14 shows the results of Everglades study area when the entire 

Everglades extent is used for calibration. In this case the optimal variation was T vs. T 

with Even Bin Threshold Fit and albedo filtering. Filtering albedo improved Bias/MAE 

from 0.227/0.231 to 0.132/0.154. Figure 4.2.15 shows the difference between retrieved 

and tower EF vs. year in which 6 out of 10 scenes have error within +/- 0.1 EF. The 

reason for the increase in accuracy after filtering albedo is shown in Figures 4.2.16 and 

4.2.17. When large albedo surfaces are allowed it results in very low Tdry lower 

boundary values which underestimates sensible heat with respect to validation points in 

red. Figure 4.2.17 demonstrates the manner in which the removal of the high albedo 

surfaces alters the lower boundary.  
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Figure 4.2.14: Optimal EF retrieved vs. EF tower for Everglades Full Extent  

 

Figure 4.2.15: EF residual and EF tower vs. Year for Everglades Optimal Variation 
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Figure 4.2.16: Tdry vs. Temperature for Everglades, April 23, 2008 Without 

Filtering   

  

Figure 4.2.17: Tdry vs. Temperature for Everglades, April 23, 2008 With Filtering 

 
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Figure 4.2.18 shows the results when algorithm was performed on the Mangroves 

and Homestead extents separately. Processing extents separately increased MAE only 

slightly from 0.154 to 0.176, but the Bias was greatly reduced from 0.132 to 0.023. Using 

the Mangroves extent separately leads to an underestimation of EF. The MAE calculated 

using only Mangrove points increases slightly from 0.212 to 0.218 when using Mangrove 

extent instead of full extent. The dry calibration points automatically detected for both 

study areas on April 23, 2008 is shown in Figure 4.2.19. It would have seemed initially 

that using the full extent would have performed better because the Mangroves extent did 

not include truly dry pixels as shown in Figure 4.2.20 for October 3, 2009. The lower 

boundary has very high Tdry for correspondingly low temperatures which indicates the 

absence of dry pixels resulting in a severe overestimation of sensible heat evident in the 

corresponding underestimation of EF. Surprisingly, using the full extent did not improve 

the results much because now sensible heat was being under estimated as shown in 

Figure 4.2.21. It is interesting to note that as the predicted sensible heat decreases, the 

validation T increases. This is because buoyancy decreases with sensible heat which 

decreases conductivity of the atmosphere which increases validation T.  The algorithm 

can be very sensitive to the effect of sensible heat on atmospheric conductivity. Figure 

4.2.21 also shows better agreement for Long Marsh than Mangroves. This could possibly 

be because Long Marsh is closer to the dry calibration points found in Homestead area. 

This could suggest that the problem with using full extent for retrieving Mangrove EF is 

because Mangroves are too far from Homestead dry pixels.  
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Figure 4.2.18: Optimal EF retrieved vs. EF tower for Homestead/Mangroves 

Extents 

 

Figure 4.2.19: Automatically Detected Calibration Points for Everglades on April 

23, 2008 
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Figure 4.2.20: Tdry vs. T for Everglades on Oct 3, 2009 using Mangroves Extent 

 

Figure 4.2.21: Tdry vs. T for Everglades on Oct 3, 2009 using Full Extent 



  119 

4.2.4 Gainesville Dry Pixel Validation  

Figures 4.2.22 and 4.2.23 show the comparison of retrieved vs. tower EF for 

Gainesville study area classified by station and season respectively. The optimal variation 

is T vs. T with Even Bin Threshold Fit. A large number of validation points were 

available due to the large number of useable scenes combined with 3 available stations. 

Figure 4.2.24 shows the variation of error and tower EF with time. Based on the tower, 

EF is lowest for winter and highest for summer while spring and fall produce EF in the 

0.4 to 0.6 range. A high degree of error between retrieved and tower EF is produced for 

the Gainesville study area. Only 21 of the 65 validation points have an error within +/- 

0.1 EF and 35 of the 65 validation points produced an error within +/- 0.2 EF. Table 4.2.1 

reports errors for the optimal variation grouped by station and season. When broken up 

by station Bias and MAE are fairly similar except for Mize is less biased and Austin 

Carey has a little less MAE. Donaldson only has about 25% of validation points within 

+/- 0.1 EF while Austin Carey has about 40%. When broken up by season, more 

interesting patterns emerge. The MAE produced for summer is considerable less than it is 

for other seasons. The Bias for spring is much larger than the other seasons and fairly low 

for both summer and fall. The Bias in winter is nearly zero, but the MAE is large.  



  120 

 

Figure 4.2.22: Optimal EF retrieved vs. EF tower for Gainesville by Station 

 

Figure 4.2.23: Optimal EF retrieved vs. EF tower for Gainesville by Season 
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Figure 4.2.24: Optimal EF residual and EF tower vs. Year for Gainesville 

 

Table 4.2.2: Errors for Optimal Gainesville Variation Grouped by Station and 

Season  
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Figure 4.2.25 and 4.2.26 show the effect of not accounting for the variation of 

atmospheric conductivity (ga) in the algorithm. The black lower boundary line in Figure 

4.2.25 represents the calibrated relationship for H vs. T where H = ga (Ts – Ta). This line 

describes the relationship between H and T for a relatively small ga which is associated 

with a smooth bare surface. The red validation points are associated with rough slash pine 

surface with a large ga. The red dashed line represents the relationship between H and T if 

the slope of the line ga was increased to reflect that which is appropriate for slash pine. 

This results in a much better agreement between model and tower measurements. A 

unique relationship between H and T does not exist, but the slope of the relationship 

varies depending on ga. Figure 4.2.26 shows the T vs. T model which accounts for ga 

because T = H / ga . Now that ga is accounted for there is a better agreement between 

retrieved H and tower H. This would suggest that determining the roughness length in 

order to calculate ga is important in situations in which roughness is variable.  

Figure 4.2.27 and 4.2.28 shows the variation in the land cover of the Gainesville 

study area between March 14, 2000 and April 21, 2008. Between these dates some areas 

have been cleared of vegetation while in other areas vegetation was allowed to grow 

back. The position of the automatically detected calibration points are also shown on 

these figures. The figures demonstrate the manner in which the position of the dry pixels 

appears to successfully reflect changes in the landscape.  
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Figure 4.2.25:  vs. T for Gainesville on April 21, 2008  

 

Figure 4.2.26: Tdry vs. T for Gainesville on April 21, 2008  
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Figure 4.2.27: Automatically Detected Calibration Points for Gainesville on April 

21, 2008 

 

 Figure 4.2.28: Automatically Detected Calibration Points for Gainesville on 

March 14, 2000 
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4.2.5 Kennedy Space Center Dry Pixel Validation  

Figure 4.2.29 shows the comparison of retrieved vs. tower EF for Kennedy study 

area grouped by season for the optimal variation. This optimal variation is T vs. T, Even 

Bin Threshold Fit, with albedo filtering applied to the default smaller extent. Figure 

4.2.30 shows the variation of error and tower EF with time. Based on the tower, EF is 

quite similar across seasons but this could be misleading because the number of available 

points is small. Among the 24 available scenes there are 10 scenes which have an error 

within +/- 0.1 EF. The algorithm was applied to both the large and small extent with and 

without albedo filtering. For all cases T vs. T model and Even Bin Threshold Fit 

boundary was used. The best case scenario is shown in Figure 4.2.29 and 4.2.30 while the 

worst case scenario is shown in Figure 4.2.31. This shows that the algorithm severely 

under estimates sensible heat and over estimates EF over the large extent when albedo is 

not filtered. Many times the EF was forced to be one because the calibration resulted in 

negative sensible heat values at the validation sites. The optimal case also over estimated 

sensible heat more often on average but not as severely. Table 4.2.3 summarizes the 

errors for the four different variations of extent and albedo filtering. This shows that the 

cases when albedo was filtered produced the best results and the smaller extent produced 

better results than the large extent. 
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Figure 4.2.29: Optimal EF retrieved vs. EF tower for Kennedy by Season 

 

Figure 4.2.30: Optimal EF residual and EF tower vs. Year for Kennedy 
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Figure 4.2.31: Optimal EF retrieved vs. EF tower for Kennedy Large Extent 

Table 4.2.3: Errors for Kennedy with Varying Extents and Filtering 

 

Figure 4.2.32 and 4.2.33 show the effect of filtering albedo on the calibration. 

Figure 4.2.32 did not filter albedo which led to an under estimation of sensible heat 

compared to the validation point. When filtering of albedo was applied in Figure 4.2.33, 

it increased the sensible heat so that better agreement with the validation point was 

produced. Figure 4.2.34 shows the calibration points used when filtering was and was not 

performed. The red calibration points were detected in both cases, the green calibration 
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points were detected in the non-filtered case, and the magenta calibration points were 

detected in the filtered case. A large amount of overlap is noticeable in the image along 

the runway. The points unique to the non-filtered case consisted of some high albedo man 

made surfaces to the south which appeared to be white roofs after inspection via Google 

Maps. The points unique to the filtered case were found in the north and were made up of 

natural non vegetation surfaces which looked recently dried out. These points were the 

darkest and hottest of the dry surfaces. Figure 4.2.35 demonstrates the inability of the 

algorithm to produce an accurate sensible heat when the large extent was used. In this 

case, even though filtering of albedo was used the larger extent affected the results in a 

negative way. Some warmer surfaces shifted the sensible heat down which led to an 

underestimation of sensible heat. This could probably be due to a tendency for the 

atmosphere to vary more near the coast where the boundary layer is changing from 

marine conditions to terrestrial conditions. Figure 4.2.36 shows the calibration points 

detected for both small extents (red points) and large extents (green points) while filtering 

albedo for both. The calibration points used with the large extent were in different 

locations to the south. The yellow box defines the small default extent. It would have 

been helpful to compare the predicted EF using large extent calibration to the Slash Pine 

station but the flux tower only produced two useable points as shown in Figure 4.2.31. 

This analysis demonstrates the sensitivity of the algorithm to the extent. If the small 

extent was increased just enough to bring the large manmade surface to the south into the 

extent, the results could be greatly altered.  
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Figure 4.2.32: Tdry vs. T for Kennedy with No Filter on April 1, 2003  

 

Figure 4.2.33: Tdry vs. T for Kennedy with Filter on April 1, 2003  



  130 

 

Figure 4.2.34: Calibration Points Detected for Kennedy Small Extent on April 1, 

2003 

 

Figure 4.2.35: Tdry vs. T for Kennedy Large with Filter on April 1, 2003  
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 Figure 4.2.36: Calibration Points Detected for Kennedy Large and Small on 

April 1, 2003 
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4.3 Incorporating Wet Pixels into Calibration 

4.3.1 Investigation of Priestly Taylor Coefficient 

 The Priestly Taylor coefficient pt was analyzed using all flux tower data and also 

using the Penman-Monteith model over water as described in methodology section. Big 

Cypress was not included in the analysis because only flux tower data for day of satellite 

overpass was available. Figure 4.3.1 shows the variability of pt for each month and each 

study area. It shows the mean value along with the mean plus two standard deviations. 

The mean pt has seasonal variability peaking in fall and reaching minimum in spring. 

The standard deviation ofpt is the largest in the winter. The mean pt remains below 1.0 

for all study areas, but mean plus two standard deviations can reach as high as 1.5 for 

Gainesville. The mean pt plus two standard deviations remains fairly constant at around 

1.25 for Everglades and is below 1.2 for Disney and Kennedy. Because the flux towers 

are measuring vegetation, this information was used to estimate pt needed to estimate 

the sensible heat of the wet pixels. Originally the standard value of pt = 1.26 was used 

but this severely overestimated latent heat and underestimated sensible heat. The top 

NDVI values used to find wet pixels should represent well watered vegetation and 

therefore the mean values were not used because they included all vegetation states in 

their calculation. It would be better to use an intermediate value between the highest 

values and the mean values. A value of pt = 1 was assumed based on the assumption that 

the energy term would be greater than the aerodynamic term for wet conditions. This is 

not necessarily true as shown in Figure 4.3.1. It would have been possible to estimate a 

pt value specific to study area and time of year for use in the algorithm, but the aim of 
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the algorithm is to operate independently of the flux towers. Investigation of pt based on 

flux towers was a check to determine the possible range of pt.  

 Figure 4.3.2 shows the variation of pt based on values simulated for water as 

described in methodology section. In this case there is a lot less variation of pt with pt 

varying from 1.03 for smallest mean value and 1.15 for largest mean plus two standard 

deviations. For vegetation the mean state did not necessarily reflect well watered 

vegetation. Open water doesn’t have this problem so the mean state should reflect the 

mean evaporation. The mean pt varies from about 1.03 to about 1.07. A value of 1.05 

could have been applied in calibration based on simulation, but pt = 1 was adopted as 

before. This assumes that the energy term would be much greater than the aerodynamic 

term over water.  

 

Figure 4.3.1: Monthly Variation of pt from flux towers  
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Figure 4.3.2: Monthly Variation of pt from Simulation over Water  

4.3.2 Validation of Calibration Which Includes Wet Pixels 

Wet pixels were introduced to the calibration and the method in which wet pixels 

were detected was varied.  The method used for finding the boundary in the dry pixel part 

of the calibration was Even Bin Threshold Fit. This was chosen because the dry pixel 

validation determined that it was the best method for all study areas. Albedo filtering was 

used for Kennedy and Everglades as with optimal dry pixel only calibration. The three 

methods of detecting wet pixels are unsupervised classification, keeping pixels below 

NDVI threshold and above NDVI threshold. The threshold value is the proportion of the 

total pixels that will be considered wet pixels. The calibration was performed on 

threshold value ranging from 0 to 100%. The resulting errors produced from these 

optimal thresholds are plotted in Figure 4.3.3. The unsupervised classification did not 

require a threshold value. It should be noted that the best case scenarios shown in Figure 
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4.3.3 can be difficult to achieve because it requires knowledge of the optimal threshold. 

For example, the neutral case with above NDVI threshold appears to produce decent 

results, but Figure 4.3.4 reveals the large variation in optimal threshold value among 

study areas. For the threshold approach to be useful, it would be necessary for the errors 

to be minimized over a larger range that could be estimated before running calibration. 

For example, it would seem that some range of low values would all contain well watered 

vegetation and some small value could be uniformly applied. In reality this isn’t the case 

as shown for Kennedy and Disney which produce minimum errors for arbitrary threshold 

values. A simple approach would be to only include the wet pixel with the absolute 

maximum NDVI. For Big Cypress this produced the smallest error in Figure 4.3.4 and 

could be a valid approach. Another case in which the best case scenario offers 

unattainable results is for T vs. T with below NDVI threshold as shown in Figure 4.3.5. 

In that case Disney and Everglades produce good results, but once again the optimal 

threshold value is not stable and would be hard to predict beforehand. For Gainesville the 

approach is feasible if the wet pixel was assumed to be that with absolute minimum 

NDVI value. Another simple approach is to assume that the maximum NDVI of wet 

pixels is equal to zero. This should do a decent job of finding a good sample of open 

water pixels. The calibration was performed using the H vs. T model and setting the 

maximum NDVI threshold directly instead of using a percentile value. The threshold 

NDVI value was varied from -0.5 to 0.5. Figure 4.3.6 shows that minimum values exist 

over a wide range of NDVI thresholds less than zero making zero a good choice of 

threshold. This behaves similar to using the unsupervised classification and demonstrates 

the ability of the threshold to find open water wet pixels.  
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Figure 4.3.3: Bias and MAE Error of All Models and Wet Pixel Type for Each Study 

Area 

 

Figure 4.3.4: Variation of Errors for T vs. T Neutral and Above NDVI Threshold 
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Figure 4.3.5: Variation of Errors for T vs. T Model and Below NDVI Threshold 

 

Figure 4.3.6: Variation of Errors for  vs. T Model and Absolute NDVI Threshold 
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Since threshold values would be difficult to determine, NDVImin and NDVImax 

were used instead. The optimal variations shown in Table 4.3.1 were determined using 

these extreme thresholds. The errors reported in Table 4.3.1 demonstrate an increase in 

performance due to the introduction of wet pixels into the calibration for some cases. The 

Big Cypress and Gainesville study areas did not see much of an enhancement due to the 

addition of wet pixels. Disney, Everglades and Kennedy did see a big change. Kennedy 

Space Center experienced the largest change in both Bias and MAE. The optimal 

variation for these three study areas is H vs. T using unsupervised classification to find 

wet pixels. It should be noted that using Unsupervised and NDVI=0 as thresholds 

produced very similar results for these three study areas. The simplest way to incorporate 

wet pixels into the calibration would be to use NDVI=0 in order to avoid performing an 

unsupervised classification. In this dissertation the unsupervised classification was 

already performed in order to mask out water when determining roughness length, but in 

practice the NDVI =0 threshold method would be simpler. In regards to Big Cypress and 

Gainesville, introducing wet pixels into the calibration did not matter very much.  

Table 4.3.1: Optimal Variations after Including Wet Pixels in Calibration 
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Figures 4.3.7-4.3.11 shows scatter plots of retrieved EF to tower EF for all five study 

areas using optimal variation after wet pixels were added to the calibration. A very good 

relationship was produced for Disney, Everglades and Kennedy. Big Cypress produced a 

fairly good fit. Although the Bias and MAE did not change much from dry pixel alone, a 

larger range of retrieved EF was produced. The Gainesville results still produced a large 

amount of error even after the wet pixels were added.  

 

Figure 4.3.7: Optimal EF Retrieved vs. EF Tower for Big Cypress by Season 
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Figure 4.3.8: Optimal EF Retrieved vs. EF Tower for Disney by Season 

 

Figure 4.3.9: Optimal EF Retrieved vs. EF Tower for Everglades by Season 
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 Figure 4.3.10: Optimal EF Retrieved vs. EF Tower for Gainesville by Season 

 

Figure 4.3.11: Optimal EF Retrieved vs. EF Tower for Kennedy by Season 
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4.3.3 Comparison of Dry Only Calibration to Calibration Including Wet 

Pixels 

The results for optimal variations of both dry only calibration and that which 

includes wet pixels is shown in Figure 4.3.12. The figure shows very little difference for 

Big Cypress and Gainesville in terms of Bias and MAE. Big Cypress experienced a slight 

decrease in Bias when wet pixels were introduced and slight increase in MAE while 

Gainesville experienced a slight decreases in MAE. Disney, Kennedy and Everglades 

were affected strongly by the introduction of wet pixels into the algorithm. The Kennedy 

study area experienced the greatest reduction in both Bias and MAE. The introduction of 

wet pixels for Disney resulted in a very low Bias and MAE less than 0.1. The Everglades 

was also improved except the Bias is still a significantly positive number while the MAE 

is similar to Disney and Kennedy. The low bias error for most of the study areas is a good 

sign in terms of aggregating ET over monthly or seasonal periods. Although there might 

be significant errors at the daily time scale as described by MAE, the daily errors should 

sum to acceptable values as shown by small Bias errors. It should be noted that the scenes 

in this study are skewed toward the dry season. Therefore, higher temporal resolution 

imagery such as MODIS would need to be fused with LANDSAT in order to investigate 

the performance of the algorithm at monthly or seasonal time scales.  
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Figure 4.3.12: Comparison of Dry Pixel Only to Including Wet Pixels in Calibration 

4.4 Mapping Spatial Variability of Evaporative Fraction 

 Maps of EF were produced for the optimal variations reported earlier. For Big 

Cypress and Gainesville the optimal dry pixel only calibrations shown in Table 4.2.1 

were used. For Disney, Everglades and Kennedy the optimal dry with wet pixel 

calibrations shown in Table 4.3.1 were used. The EF maps from all of the useable days 

were averaged to produce a mean EF map for each study. The absolute deviation with 

respect to the mean map was averaged to produce a mean absolute deviation (MAD) map 

for each study area. These maps are shown in Figures 4.4.1 – 4.4.10. It should be noted 

that these average maps do not represent a climatological average for the study area 

because the sample of satellites scenes is small. Also the scenes only represent clear sky 

days so that some seasons are represented more heavily than other seasons. These maps 
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are shown in order to demonstrate the ability of the algorithm to measure the spatial 

variability of EF in the landscape. The mean maps say something about spatial variability 

of EF while the MAD maps say something about the manner in which the temporal 

variability of EF varies in space.  
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Figure 4.4.1: Mean EF for Big Cypress Using Optimal Dry Pixel Calibration 

 

Figure 4.4.2: MAD EF for Big Cypress Using Optimal Dry Pixel Calibration 
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Figure 4.4.3: Mean EF for Disney Using Optimal Dry and Wet Pixel Calibration 

 

Figure 4.4.4: MAD EF for Disney Using Optimal Dry and Wet Pixel Calibration 
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Figure 4.4.5: Mean EF for Everglades Using Optimal Dry and Wet Pixel 

Calibration 

 

Figure 4.4.6: MAD EF for Everglades Using Optimal Dry and Wet Pixel Calibration 
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Figure 4.4.7: Mean EF for Gainesville Using Optimal Dry Pixel Calibration 

 

Figure 4.4.8: MAD EF for Gainesville Using Optimal Dry Pixel Calibration 
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Figure 4.4.9: Mean EF for Kennedy Using Optimal Dry and Wet Pixel Calibration 

 

Figure 4.4.10: MAD EF for Kennedy Using Optimal Dry and Wet Pixel Calibration 
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The spatial variability of Big Cypress as shown in Figure 4.4.1 is not very large. 

EF ranges from 0.4 to 0.6 except for the airport and other dry areas. The temporal 

variability of EF produced is less than 0.05 for most of the study area. The Cypress 

swamp area is experiencing the highest temporal variability based on the limited number 

of scenes available for Big Cypress. Disney has a high degree of spatial variability 

because of the developed area to the west which is very dry and the lake which has a high 

EF. The flux station is located in an area of intermediate EF. The temporal variability EF 

for the Disney study area varies spatially from 0.025 to 0.15. The lake has the least 

temporal variability while the dry areas have larger temporal variability. It would seem 

that the dry areas would have a low variability in EF because EF should be close to zero 

in dry areas. This could be an indication of the algorithm to overestimate EF in dry areas 

or possibly these areas are not completely dry. The Everglades study area contains large 

EF values with low spatial variability other than the agricultural area to the east. The 

temporal variability is largest in the east in dry parts of agricultural area. It should be 

noted that since there is a small number of scenes available for Big Cypress and 

Everglades, these maps do not represent the actual variability of EF. For Gainesville, 

features such as the lake, runoff areas, and chronically disturbed areas are distinguished 

from the areas of typical vegetation shown in yellow. For the majority of the scene, the 

average EF is fairly smooth because of the long time period of scenes that were used. 

However, the land surface is constantly changing as timber is cleared but over the time 

period used the vegetation in these areas grow back and the disturbance is not very 

evident on the mean EF map. Some of this variability of the land surface conditions 

should be reflected in the high temporal variability of EF observed, but a portion is also 
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due to changes in the atmospheric conditions. Since the lake is not experiencing any 

change in surface type, the temporal variability is only made up of change in atmospheric 

conditions. The higher temporal variability of vegetation compared to the lake is due to 

change of vegetation conditions in the landscape. The Kennedy Space Center study area 

shows a large degree of spatial variability. The runway and open water feature clearly 

distinguish themselves. Also there is a disturbed area with low EF near the middle of the 

scene. The temporal variability is similar to Disney in that the dry areas have more 

variability than the vegetated areas. This would make sense for the disturbed areas which 

are impervious and could be experience variability in moisture content, but for the 

runway it is probably due to errors in the algorithm.  

Figure 4.4.11 demonstrates the spatial and temporal variability of the EF maps 

produced for Gainesville study area using the optimal dry pixel only calibration method. 

Figure 4.4.7 and 4.4.8 shows maps of the EF and absolute deviation of EF averaged over 

time. Figure 4.4.11 shows the EF and the absolute deviation of EF which has been 

spatially averaged instead. The blue points represent the average EF of each scene and 

the red points measure the mean absolute deviation of EF for each scene. The blue line is 

the average of all the blue points while the red line is the average of all the red points. 

The variability of the blue points represents the temporal variability of the mean state of 

each scene. This variability can be quantified by taken the mean absolute deviation of the 

blue points producing the constant value shown in green. The red points represent the 

spatial variability of EF for each scene and the red line represent the average spatial 

variability. The green and red line can be used to compare the spatial and temporal 

variability of EF for the useable clear sky scenes. For the Gainesville case shown in 
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Figure 4.4.11, the temporal variability is more than twice the spatial variability. Figure 

4.4.12 shows the temporal and spatial variability values for all study areas from maps 

produced using optimal variation. The largest temporal variability is for Gainesville while 

the lowest is for Big Cypress and Everglades. For Big Cypress the spatial and temporal 

variability are very similar. For all other cases except Gainesville the spatial variability is 

greater than the temporal variability. Figure 4.4.13 shows this type of spatial and 

temporal variability but for instantaneous actual ET at time of satellite overpass. This 

shows that temporal variability has increased relative to spatial variability. It would seem 

that when available energy was multiplied by EF the spatial variability of actual ET 

would be accentuated because darker areas (more energy) should be wetter (more EF) 

than lighter areas (less energy). Figure 4.4.13 implies that this effect is counteracted by 

the manner in which the temporal variability of available energy is more than the spatial 

variability of available energy. 

 

Figure 4.4.11: Spatial and Temporal Variability of Gainesville Optimal Variation 



  153 

 

Figure 4.4.12: Spatial and Temporal Variability of Study Area’s Optimal Variations 

 

Figure 4.4.13: Spatial and Temporal Variability of Study Area’s Optimal Variations 
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Figure 4.4.14a shows the mean EF map for the Mangrove extent when the 

calibration points came only from the Mangrove extent. Figure 4.4.14b shows the mean 

EF map for the Mangrove extent when the calibration points only came from the full 

Everglades extent. The full extent variation was optimized considering all Everglades 

validation points while the Mangrove extent variation was optimized only considering 

Mangroves. The optimal Everglades variation is the same as used in EF map above and 

the optimal Mangroves variation is T vs. T, Even Bins, with NDVImin wet pixel. The EF 

error for the Mangrove stations when using full extent is Bias=MAE=0.096 and the EF 

error when using Mangrove extent is Bias=-0.03 and MAE=0.104. The extreme 

difference in maps between the two cases reveals the problem of judging the success of 

mapping algorithm using flux towers. Although the map in which calibration points only 

came from Mangrove extent seemed to fit the Mangrove stations better, the map that was 

produced does not seem likely. Figure 4.4.14a has a large portion of the landscape with 

very low EF which does not seem sensible for such a wet environment. This problem is 

most likely due to the absence of dry calibration points in the Mangroves extent.  

 
Figure 4.4.14: Difference in Mean EF Maps for Mangroves Extent When 

Calibration Points Chosen from Different Extents 
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4.5 Validation using Instantaneous Actual Evapotranspiration 

4.5.1 Comparison of Satellite Available Energy to Tower Available Energy 

Figures 4.4.1-4.4.5 compare the available energy estimated by the radiometer at 

the eddy flux station to the available energy estimated using the satellite imagery 

averaged over the radiometer footprint. As discussed previously in methodology section, 

the radiometer footprint is not much larger than size of LANDSAT pixel. The satellite 

consistently overestimates energy for Big Cypress as shown in Figure 4.4.1. There does 

not seem to be a pattern based on a particular station, but wet prairie seems to have the 

most agreement. No seasonal pattern is obvious other than the error increasing as the 

available energy is reduced. The most likely reason for the overestimation of available 

energy by the satellite is because the algorithm did not account for the energy being 

stored in the water. The amount of energy stored in standing water that exists in Big 

Cypress can result in a substantial reduction in available energy. The measurements of 

available energy for the tower accounted for this process (Shoemaker et al, 2011). There 

is a very good agreement between satellite and tower for Disney as shown in Figure 

4.4.2. There is a small tendency for the satellite to underestimate the energy as available 

energy increases. A similar pattern occurs for Kennedy as shown in Figure 4.4.3 except 

the underestimation is more extreme. All of the spring measurements are significantly 

underestimated by the satellite. The underestimation for Kennedy could possibly be due 

to an underestimation of down welling long wave radiation by the satellite. The satellite 

algorithm did not take into account the increase in precipitable water that should occur 

near the coast. For the Everglades, Figure 4.4.4 shows different patterns depending on 

station. The energy at the Mangroves stations are consistently overestimated, while the 
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Long and Short Marsh are underestimated most of the time. The winter points have small 

error while the underestimation of the other Marsh points intensifies as available energy 

increases. For Gainesville the energy is both over estimated and underestimated as shown 

in Figure 4.4.5. There is no clear difference between stations except Austin Carey seems 

to show the most agreement. Summer and fall produce less error than winter and spring. 

Table 4.5.1 shows a summary of the errors for each study area. Disney and Kennedy 

show significant Bias, but small variability around this bias. The MAE for Kennedy is 

much larger than MAE for Disney. Gainesville produced an acceptable MAE and small 

Bias. Big Cypress and Everglades produced a large MAE but Everglades have very little 

Bias compared to the Bias for Big Cypress. These errors should have a significant effect 

on the actual ET calculation, but the intent of the algorithm was to produce evaporative 

fraction EF which could be multiplied by sources of daily available energy which would 

be more accurate. LANDSAT only offers snapshots of available energy which are 

required for calculating EF. In a future section the sensitivity of the estimation of EF to 

available energy is investigated. Still, it was important to look at the results of actual ET 

because of the correlation and interaction of EF and Energy could lead to different 

optimal retrieval variations. 
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Figure 4.5.1: Big Cypress Available EnergySatellite vs. Available EnergyTower  
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Figure 4.5.2: Disney Available EnergySatellite vs. Available EnergyTower  

 

Figure 4.5.3: Kennedy Available EnergySatellite vs. Available EnergyTower  
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Figure 4.5.4: Everglades Available EnergySatellite vs. Available EnergyTower 
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Figure 4.5.5: Gainesville Available EnergySatellite vs. Available EnergyTower 
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Table 4.5.1: Errors between Satellite and Tower Available Energy for All Study 

Areas 

 

4.5.2 Comparison of Satellite Instantaneous ET to Tower Instantaneous ET 

 The goal of the retrieval algorithm in this dissertation was to retrieve EF values 

which could be multiplied by external sources of daily averaged available energy. 

Because actual ET is the desired result for most users, it should be used as the criteria for 

comparing calibration variations. This can lead to different results because of 1) 

correlation between the errors in EF and available energy 2) errors in available energy 

itself. The comparison of ET retrieved from satellite to that measured by the flux tower 

was done using the instantaneous ET retrieved at the time of the satellite overpass. Daily 

averaged ET would be more useful to most parties, but converting the snapshot of ET 

produced by satellite imagery to daily ET would produce additional error. Therefore, 

instantaneous ET is used so that the error due to the various calibration techniques can be 

isolated from the errors due to extrapolating to daily ET.  

 Figure 4.5.6 shows the variation of the Bias and MAE errors in instantaneous ET 

when the dry pixel only calibration was used. For each study area, the results for all 

model and boundary variations are shown. The T vs. T model variation is the best for 

almost all study areas. There is little variation in MAE with respect to the boundary type 

for T vs. T, while a bit more variation exists for the Bias error. The best variation all 
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around would be T vs. T with Even Bins. Table 4.5.2 shows the optimal results using 

the dry pixel only calibration. For Big Cypress and Gainesville the Min Max boundary 

was better than Even Bins, but the difference wasn’t large. Optimizing with respect to ET 

instead of EF resulted in the model variation changing from H vs. T to T vs. T for Big 

Cypress. Both models had similar MAE but Bias is 50.5 W/m
2
 for H vs. T compared to -

14.9 W/m
2
 for T vs. T. For Kennedy and Disney the neutral model had low errors but 

the  values were much less than T vs. T. 

 

          Figure 4.5.6: Bias and MAE ET Error of All Models and Boundary Types 
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Table 4.5.2: Optimal Variations of Dry Pixel Only Calibration Based on Actual ET 

 

Figure 4.5.7 shows the variation of the Bias and MAE errors in instantaneous ET 

when wet pixels were introduced to the calibration. The results seem to vary among study 

areas more in this case. For Disney and Kennedy the H vs. T model is better for most 

variations.  For Kennedy, T vs. T and NDVIAbove is similar for MAE but Bias is 23.4 

W/m
2
 for T vs. T compared to -4.6 W/m

2
 for H vs. T.  For Everglades H vs. T with 

Unsupervised or NDVIBelow is very similar to T vs. T with NDVIBelow except Bias is a bit 

lower and MAE a bit higher for T vs. T. Gainesville is clearly the best using T vs. T 

with NDVIBelow. It turns out that for Big Cypress the neutral model with NDVIAbove 

produced the best result. It was comparable to other models for MAE but Bias is 48.4 

W/m
2
 for neutral compared to 55.4 W/m

2
 for T vs. T. 
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    Figure 4.5.7: Bias and MAE ET Errors of All Models and Wet Pixel Types 

Table 4.5.3: Optimal Variations after Including Wet Pixels Based on Actual ET 

 

 Figure 4.5.8 compares the optimal variations based on actual ET of the dry pixel 

only calibration to the calibration which includes wet pixels. For Disney, Kennedy and 

Everglades both Bias and MAE errors were reduced. Even after adding the wet pixels, the 

algorithm is still significantly biased towards overestimating ET for Everglades. For Big 

Cypress and Gainesville, including wet pixels increases the Bias error significantly but 
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only increases MAE by a small amount. Table 4.5.4 lists the dry pixels only or wet pixels 

included algorithm which produced the final optimal variation. It also shows the Bias and 

MAE errors as a fraction of the average tower ET. For Disney and Kennedy the Bias as a 

fraction is less than about 2%, but for MAE the fraction is rather large. For the other 3 

study areas the MAE becomes very large and the Bias becomes as large as 13% for 

Everglades. Although the MAE errors are larger, it is encouraging that the Bias error is 

low for many of the cases. The MAE reflects the manner in which the algorithm can 

predict ET for a specific day, but the Bias reflects the ability of algorithm to predict ET 

averaged over longer periods. A low Bias error would suggest that the algorithm could 

perform decently at producing daily or possibly seasonally averaged ET. Based on this, 

the algorithm would have potential for estimating long term ET for Disney and Kennedy. 

For Big Cypress and Gainesville it would underestimate long term ET and considerably 

overestimate ET for the Everglades. It should be noted that the sample of data used to test 

the algorithm was uneven in time and therefore the Bias measured might not be as 

representative of long term ET error as desired. Also, the quantity of data when divided 

by season is not large enough to get an accurate value of seasonal ET error. Figures 4.5.9-

4.5.13 show scatter plots of retrieved ET vs. tower ET for each of the study areas. For Big 

Cypress the results are plagued by 4 outlying instances of error. For Everglades, the 

overestimation of ET by algorithm can be clearly seen. For Disney and Kennedy low 

errors can be seen, but for Gainesville a large amount of error is evident. For Gainesville 

the error is fairly unbiased except for summer in which the algorithm underestimates ET.  
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Figure 4.5.8: Comparison of Dry Only To Including Wet Pixels in Calibration for 

ET 

Table 4.5.4: Optimal Variations for ET and ET Errors Relative to Mean Tower ET  
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Figure 4.5.9: Optimal ET Retrieved vs. ET Tower for Big Cypress by Season 

 

Figure 4.5.10: Optimal ET Retrieved vs. ET Tower for Disney by Season 
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Figure 4.5.11: Optimal ET Retrieved vs. ET Tower for Everglades by Season 

 

 Figure 4.5.12: Optimal ET Retrieved vs. ET Tower for Gainesville by Season 
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Figure 4.5.13: Optimal ET Retrieved vs. ET Tower for Kennedy by Season 

4.5.3 Investigation of the Effect of Errors in Available Energy on Actual ET 

Some interesting results were produced when the effect that errors in retrieving 

available energy had on ET were analyzed. To estimate ET at the tower, available energy 

was multiplied by evaporative fraction. In order to analyze the effect of errors in 

available energy on ET, the available energy at the tower was calculated in two ways. In 

the first case, the available energy from satellite was used to get ET. In the second case, 

the available energy from the tower was used to get ET. The subsequent errors calculated 

using the first tower ET would not include errors in retrieving available energy while the 

errors using the second tower ET would include errors in retrieving available energy. The 

difference between the errors would demonstrate the effect of errors in retrieving 

available energy on retrieving ET. Figure 4.5.14 shows the change in the absolute value 
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of the Bias and MAE errors for all variations in each study area. A positive change means 

the ET error is increased due to energy errors while negative means ET error actually 

decreases ET error.  It would seem that the errors due to retrieving available energy 

algorithm would always increase the resulting errors for retrieving ET but this is not 

always the case. This effect is more pronounced for the Bias error but it even occurs for 

MAE.  

Figure 4.5.15 examines this effect in more detail using Kennedy Space Center as 

an example with H vs. T, Even Bins and NDVImin wet pixels variation. This figure shows 

the difference between errors produced when tower energy is used minus when satellite 

energy is used for each validation point. The error in energy for some points moves in an 

opposite direction of the errors in evaporative fraction which leads to a reduction in the 

absolute value of the error. It is possible for the errors in ET to be divided into a 

component due to evaporative fraction errors and another component due to available 

energy errors: 

ET = EF Asatellite + A EFtower     4.5.1) 

where ET is the difference between retrieved and tower ET, EF is the difference 

between retrieved and tower EF,  A is the difference between the retrieved and tower 

available energy, EFtower is the EF measured by flux tower, and Asatellite is the available 

energy retrieved by satellite. This analysis is based on the simple correction which 

assumes that the difference between Asatellite and Atower over the eddy covariance footprint 

is same as that over the tower radiometer footprint. Figure 4.5.16 allows the visualization 

of this effect even better. When these components are of opposite signs, they will have 

the potential to counteract each other. The gray area on the figure shows the region in 
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which the errors in energy counteract the errors in EF in such a way that the absolute 

value of the resulting error is decreased. The gray area does not encompass an entire 

quadrant because if the error in energy is too large the EF error is counteracted so much 

that the error is increased in the opposite direction. In the Figure 4.5.16 it is obvious that 

many of the errors are producing a decrease in the absolute value of the error in the lower 

right quadrant. The result is a dampening of the effect of errors in energy on ET or even a 

decrease in the final Bias or MAE error. Figure 4.5.17 shows this dampening effect for 

the optimal variations listed in Table 4.5.4. The blue line show the Bias and MAE error if 

only errors in evaporative fraction are considered (ie. satellite energy used to calculated 

tower ET). The red line shows the Bias and MAE error if only errors in available energy 

are considered (ie. tower EF used to calculate satellite ET). The green line is the actual 

Bias and MAE error found when both effects are considered. For Big Cypress and 

Kennedy the ET error was actually reduced due to the effect of errors in available energy. 

For Disney the Bias error was reduced. The reduction in Bias error is because the errors 

due to energy are in the opposite direction of the errors due to EF. Only for the 

Everglades was the MAE noticeably increased due to the effect of energy errors.  For Big 

Cypress errors in energy were similar to Everglades but they produced a decrease in ET 

error. For the other study areas a considerable amount of error due to energy is present 

but the effect on errors in ET is not large.  
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Figure 4.5.14: Effect of Errors in Energy on Errors in ET among Variations 

 

Figure 4.5.15: Effect of Energy Errors on ET Error for Kennedy, H vs. T, NDVImin 
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Figure 4.5.16: Counteracting EF and Energy Errors for Kennedy, H vs. T, NDVImin 

 

Figure 4.5.17: ET Errors for Optimal Variation with Counteracting EF and Energy 

Errors 
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4.6 Comparison of Calibration to Other Methods 

4.6.1 Comparing Automated Calibration to Manual Calibration 

 A manual calibration was performed for the Kennedy study area using one dry 

and one wet pixel. The dry pixel was chosen to be on the air strip found in the image and 

the wet pixel was chosen to be in open water. These points were then used to calibrate the 

model using the same method that includes wet pixels. A comparison of the manual 

calibration to the optimal automated calibration is reported in Table 4.6.1. The automated 

calibration performs at least as well as the manual calibration. For the T vs. T model the 

automated method performs much better. For the H vs. T model the MAE errors is only 

slightly less for the automated method, but the manual method is much more biased. It 

was not necessarily the goal of this dissertation to produce an automated calibration that 

was more accurate than the manual calibration. Instead, the goal is to produce an 

automated method that is similar in accuracy to the manual method. The value in 

developing the automated algorithm is that it is more operational and saves time. 

Table 4.6.1: Comparison of Manual to Automated Calibration ET Error for 

Kennedy 

 

4.6.2 Comparison to Other Studies in Florida 

 (Bhattarai et al, 2012) used a modified SEBAL method with LANDSAT data to 

retrieve daily and monthly ET values in Florida and validated it against USGS eddy 

covariance flux towers. The method used is very similar to that which is used in this 
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dissertation except manually identification of wet and dry pixels was used. Also, daily ET 

was determined by multiplying instantaneous ET by the ratio of daily RET to 

instantaneous RET calculated using FAWN weather station data. Another difference is 

that all of the scenes were during the growing season from mid May to mid September. In 

this study the Disney Preserve study areas was evaluated for 7/8/2004 and 7/24/2004. In 

this dissertation these scenes were not used because on 7/8/2004 the flux tower had gaps 

in the data while 7/24 had light clouds. Because this study used daily ET and this 

dissertation uses instantaneous ET, the relative error between studies is the only useful 

metric. The relative MAE error for 7/8/2004 and 7/24/2004 was around 5% and 30% 

respectively. This would be around 17% error on average compared to 22% for this 

dissertation. This is not a very robust comparison since only two Disney scenes were 

used in the Bhattarai et al. study. The Bhattarai et al. study used 3 other flux towers in 

Florida. The relative MAE error averaged over all four study areas was about 7% which is 

much better than this dissertation. It is difficult to determine whether this difference is 

due to using FAWN weather stations to get RET, using a manual calibration, or 

performing analysis with scenes only in the growing season.  

 The PT-JPL method was used to estimate monthly latent heat values and 

compared to the Mize eddy covariance station from the Gainesville study area. It should 

also be noted that the PT-JPL was used on MODIS data. An RMS and Bias error over a 

period between 2000 and 2003 was found to be about 25 and 3 W/m
2
 respectively (Fisher 

et al, 2008, Mallick et al., 2013). The optimal error for instantaneous ET for method used 

in this dissertation for Gainesville is MAE=90 W/m
2
 and Bias=-13 W/m

2
. The low Bias 

suggests that if the method used in this dissertation was aggregated over the month, the 
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errors could be something closer to Fischer et al. 8 day ET estimated using the MODIS 

ET product was validated over Donaldson which produced a MAE equal to about 0.5 

mm/day (Mu et al, 2011). The average 8 day ET observed was about 2.7 mm/day 

resulting in a 19% error. The relative MAE error in this dissertation for Gainesville was 

about twice this at 43%, but the Bias error was only 6%. Aggregating over 8 days would 

most likely reduce MAE error closer to Bias error. 

 Monthly estimates of ET using the SEBop method was compared to the Austin 

Carey flux tower (Senay et al, 2013). This method produced RMS error equal to 62 mm. 

In July, the tower measured latent heat due to ET was equal to about 90 W/m
2
 while that 

predicted by SEBop was about 190 W/m
2
. In November, December and January the error 

was very small. (Jiang et al, 2009) compared EF estimated using the triangle method with 

AVHRR to four flux stations over sawgrass in South Florida. This produced a Bias error 

equal to 0.05 and an MAE error equal to 0.16 compared to Bias=0.08 and MAE=0.11 for 

optimal Everglades variation. In terms of daily ET, Jiang et al produced relative Bias 

error equal to -21% and a relative MAE error equal to 31%. When estimating 

instantaneous ET using the optimal Everglades variation, relative Bias error was equal to 

13% and relative MAE error was equal to 31%. It should be noted that Jiang et al. used 

the same surface based energy measurements in calculating both validation ET and 

retrieved ET. 

4.7 Investigation of the Effect of Wind 

 The effect of wind speed was investigated by setting the wind speed to a constant 

value equal to the mean wind speed from the flux tower data. H vs. T does not depend on 

wind speed so only T vs. T model variation must be analyzed. Because the optimal 
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model variation for Gainesville study area was T vs. T when tested against EF and ET, it 

was chosen for analysis. Also, the dry pixel only calibration was chosen for analysis 

because it was the optimal type for Gainesville with respect to ET. It was necessary to 

determine whether there was a large seasonal variability of wind speed at blending height 

(ublend). Figure 4.7.1 shows the mean and standard deviation of ublend for each month. All 

of the flux data available was used opposed to only using just the dates in which a clear 

sky image was available. The seasonal variability was not large enough to warrant using 

a monthly value for mean ublend. Instead, the mean value over all months ublend = 3.57 m/s 

was used.  

 

Figure 4.7.1: Mean and Standard Deviation of ublend for Gainesville by Month 

 The results of using the mean ublend in the dry pixel only calibration for 

Gainesville are summarized in Table 4.7.1. The original results using the actual ublend 

from the day of the image is also shown for comparison. When mean ublend is used the 
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Bias and MAE are actually reduced in some cases. Originally the optimal boundary 

variation was Even Bins. When mean ublend is used the optimal boundary variation is now 

Min Max with a lower Bias and MAE for both EF and ET (highlighted in yellow). But, 

when using mean ublend the correlation between retrieved and tower is reduced. For EF 

the correlation when using mean ublend is very poor.  

Table 4.7.1: Comparison of EF and ET errors if using actual ublend vs. mean ublend 

 

 Figures 4.7.2-4.7.3 shows scatter plots of the retrieved EF vs. tower EF when 

using actual ublend with Even Bins and mean ublend with Min Max Bins respectively. A 

difference between the distributions of the errors is evident. For spring and fall the errors 

are reduced while for summer the errors are increased with a bias towards 

underestimation. The winter errors become more clustered where before they were more 

spread out. The Bias towards underestimation when using mean ublend can be clearly seen 

on Figure 4.7.2. Also the range of EF that is retrieved when using ublend is reduced from 

about 0.0-0.9 to 0.2-0.7. Therefore the performance when using ublend is reduced 

negatively when EF is low or high. Since the validation data contains many intermediate 

values, using mean ublend does not affect the results very drastically, but if more low and 

high EF was present in validation data it would have increased the total error 

considerably. Therefore, the actual reduction in Bias and MAE when using mean ublend 
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does not mean it is better than using actual ublend. A similar conclusion can be made based 

on using instantaneous ET shown in Figures 4.7.4-4.7.5. The retrieved ET seems to 

correlate to tower ET a bit better than using EF, but there is still a reduction in range of 

retrieved ET. The results for spring and fall are very good possibly because the range of 

observed ET is small for these seasons. For winter low ET is being overestimated while 

high ET is being underestimated. The failure of using mean ublend in summer results in 

retrieved ET in summer being less than spring. Although tower ET ranges from 300 to 

500 W/m
2
, retrieved ET is consistently around 200 W/m

2
. These could have severe 

implications because summer is the peak growing season.  

 Figures 4.7.6-4.7.7 show the variation in the residuals between retrieved and 

tower EF vs. ublend when using actual ublend with Even Bins and mean ublend with Min Max 

Bins. A change in the relationship between the residuals and ublend can be seen. When 

using the actual ublend, a relationship between the error and wind is evident. For small 

winds there is a tendency for the algorithm to overestimate EF, while for larger winds 

there is a tendency for underestimation. When using mean ublend, the relationship between 

error and wind disappears. The error for low wind becomes more negative while the error 

for high wind becomes less negative. The final results is that the errors using mean ublend 

become similar to the errors produced when using actual ublend for days when ublend is 

close to mean ublend. It is necessary to determine why this is occurring. When using mean 

ublend, ublend is being overestimated on days in which actual ublend is small and 

underestimated when actual ublend is large. Therefore, it is necessary to determine the 

effect that changes in wind speed have on retrieved EF. To do this it is convenient to look 

at the change in sensible heat (H) and its’ component ga and T. The effect of wind on ET 



  180 

was looked at for Donaldson on January 28, 2001 when ublend=1.6 m/s. On this day the 

EF was overestimated by about 0.6 using actual ublend, but this was reduced to about 0.4 

when using mean ublend. Therefore, by increasing ublend from 1.6 m/s to the mean value of 

3.7 m/s the sensible heat retrieved by algorithm increased. Further analysis showed that 

ga increased from 46 to 69 W/m
2
/KwhileT found using retrieved temperature 

increased from 3.1 to 3.7 K. T changed because the relationship between T and T 

changed when wind speed changed. In finding the relationship between T and T, it was 

assumed that T=Tdry where Tdry is equal to the T over bare ground where all of the 

available energy is being used as sensible heat. In order to find Tdry, the available energy 

is divided by the ga found over bare ground. Since T increased with ublend, it means that 

ga must have decreased with ublend since energy is constant. This seems a bit counter 

intuitive since ga actually increased with ublend over the Donaldson surface. This is 

occurring because ga depends not only on wind speed, but also on the instability of the 

atmosphere. Figure 4.7.8-4.7.9 shows the relationship between ga and ublend for bare 

ground and Donaldson on 1/28/2001. In both of these figures, ga decreases with ublend for 

small ublend and increases with ublend for large ublend. The threshold ublend where ga reaches 

a minimum value varies depending on the roughness of the surface. Over Donaldson, the 

threshold is much smaller than over bare ground. Therefore Donaldson ga responded to 

ublend differently than bare ground on 1/28/2001 because it is on a different side of the 

threshold when ublend is between 1.6 to 3.7 m/s. By looking at the variation of friction 

velocity (u*) and Obukhov length (L), the variation of the threshold ublend with roughness 

can be explained. Donaldson is over slash pine which is a rough surfaces that results in a 

large u*. A large u* results in very large L meaning that instability/buoyancy of the 

https://www.google.com/search?es_sm=122&q=Obukhov&spell=1&sa=X&ei=_X5VU-yOB7DKsQSotILwBg&ved=0CCUQBSgA
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atmosphere is not very important. Therefore, an increase in ublend directly increases ga. 

Once the wind speed becomes very small, u* becomes small enough that the instability of 

the atmosphere becomes important (L becoming closer to zero). An increase in the 

instability of the atmosphere results in an increase in ga. Therefore, as ublend continues to 

decrease, the atmosphere becomes more instable, and ga begins to increase. Over bare 

ground the threshold ublend is larger because the buoyancy/instability effect is achieved at 

larger ublend. This is because u* is less for bare ground than for trees with the same ublend. 

For both surfaces the buoyancy effect becomes important around u*=0.2 which 

corresponds to ublend < 1 m/s for Donaldson but ublend=4 m/s for bare ground. In 

conclusion, this difference in the response of ga to ublend produces a change in EF in 

negative direction for low actual ublend but a change in EF in negative direction for high 

actual ublend.  
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Figure 4.7.2: Retrieved EF vs. Tower EF using Actual Ublend and Even Bins for 

Gainesville 

 

Figure 4.7.3: Retrieved EF vs. Tower EF using Mean Ublend and Min Max for 

Gainesville 
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Figure 4.7.4: Retrieved ET vs. Tower ET using Actual ublend and Even Bins for 

Gainesville 

 

Figure 4.7.5: Retrieved ET vs. Tower ET using Mean ublend and Min Max for 

Gainesville 
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Figure 4.7.6: Relationship Between EF Error and ublend using Actual ublend for 

Gainesville 

 

Figure 4.7.7: Relationship Between EF Error and ublend Using Mean ublend for 

Gainesville 
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Figure 4.7.8: Effect of ublend on ga, u* and L for Gainesville 1/28/2001 over Bare 

Ground 

 

Figure 4.7.9: Effect of ublend on ga, u* and L for Gainesville 1/28/2001 over 

Donaldson 
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4.8 Sensitivity Analysis for ET Remote Sensing Algorithm 

4.8.1 Sensitivity to Temperature and Available Energy 

 The Disney study area was chosen to analyze sensitivity to temperature and 

available energy because it produced good results. Since the sensitivity analysis was 

testing the change in the entire retrieved ET map, it seemed appropriate to choose a study 

area which performed well. First the dry pixel only calibration using the H vs. T model 

was used to test the sensitivity of EF to temperature and available energy. The Bias and 

MAE of the difference between the original map and perturbed map was produced for 

each day. The mean and standard deviation of the Bias and MAE was then calculated for 

various perturbations. Because the temperature acts like an “index” in the calibration, 

perturbing the temperature of every pixel evenly did not produce a change in EF.  When 

this simulation was conducted the MAE for EF change was less than 0.006 due to 

numerical precision issues. The perturbation of energy did produce a change in EF. 

Figure 4.8.1 shows the Bias and MAE of EF differences averaged over all scenes when 

the energy was perturbed by a percentage amount. It should be noted that the MAE should 

always be positive, but it was assigned the same sign as the Bias for visualization 

purposes. In addition, the standard deviation of the Bias and MAE for all scenes was 

added to and subtracted from Bias and MAE. Ideally EF should not be sensitive to 

changes in energy because the change in sensible heat relationship is proportional to 

changes in energy and therefore EF does not change. In other words, the energy used in 

the dry pixel calibration has changed by the same percentage as the energy which is 

divided by sensible heat to get EF. Figure 4.8.2 demonstrates why this ideal case does not 

occur. The actual perturbed case was created by increasing the energy of all of the 
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original pixels by 50%. These pixels were then used to find the boundary points (blue 

points). In the ideal case (green points), the energy of the original boundary points (red 

points) are increased by 50% instead. This produces a different set of boundary points 

and resulting relationship for sensible heat vs. temperature. Essentially when all of the 

data was stretched by 50%, it effectively reduced the bin size relative to the range of data 

which allowed more pixels into the boundary. This changed the nature of the relationship 

resulting in a difference in sensible heat of about 25 W/m
2
. The EF of the actual 

perturbed case was reduced due to the increase in sensible heat relative to the ideal 

perturbation case.  

 
Figure 4.8.1: Sensitivity of EF to Available Energy Percent Change for Disney – Dry 

Only 
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Figure 4.8.2: Sensitivity of EF to Available Energy Percent Change for Disney – Dry 

Only 

 A sensitivity analysis for the calibration which included wet pixels using the H vs. 

T model for Disney was also conducted. The boundary variation was Even Bins and the 

classification variation for wet pixels was NDVImin. In contrast to the dry pixel only 

calibration, EF was now quite sensitive to temperature as shown in Figure 4.8.3. Once 

again MAE was given the same sign as the Bias error for visualization. This sensitivity is 

a result of the temperature dependence of the Priestly-Taylor equation used to calculate 

EF for the wet pixels. This means that an increase in temperature leads to an increase in 

EF compared to the unperturbed situation. This is an important result because retrieving 

surface temperatures are not very accurate. If the temperature was retrieved with an error 

of +/-5 K, it could lead to an error of +/-0.05 EF. Therefore an increase in accuracy of 

surface temperature retrieved by using platforms such as LANDSAT 8 with dual thermal 
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channels or ASTER with multiple thermal channels would have more of an effect on the 

calibration that included wet pixels than it would on one using dry pixels only.  

 

Figure 4.8.3: Sensitivity of EF to Temperature for Disney after Including Wet Pixels 

Ideally, EF should not be sensitive to percent changes in available energy 

following the argument made above for the dry pixel only calibration. This is because 

both the wet and dry end members making up the numerator are changing by the same 

proportion as the available energy making up the denominator of the EF calculation. 

When the sensitivity analysis was performed, the difference in EF due to percent changes 

in available energy is negligible with an error less than 0.005. For the dry pixel 

calibration, the ideal case was not realized. When the wet pixels were included, the wet 

and dry end member scaled similar to each other so that the ideal case was realized. The 

binning issue which produced the different H vs. T relationships for the dry pixel 

calibration does not affect the resulting dry end member. This can be seen in Figure 4.8.2 
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where the ideal and actual perturbed cases are different but the dry end members are 

nearly identical. Once again MAE was given the same sign as the Bias error for 

visualization. When absolute perturbations in available energy are used instead of percent 

changes, EF becomes sensitive to available energy as shown in Figure 4.8.4. In this case 

a change in energy in either direction can actually result in both positive and negative 

changes. The average change in EF for positive changes in energy is positive and vice 

versa. EF is also more sensitive to negative changes in energy. This can be explained 

using a simple analysis for the change in EF due to change in energy (A). Using the 

linear relationship between sensible heat and temperature the following equation can be 

derived: 

EFi = A/(Ai+A) (wi EFwet – EFi)      4.8.1) 

where i represents the ith pixel in the image, EF is the difference between original and 

perturbed image, A is the perturbation in available energy, A is the original available 

energy, EF is the original evaporative fraction, EFwet is the evaporative fraction of wet 

end member using Priestly Taylor, and w is a weight linearly related to temperature so 

that it is zero at the dry end member temperature and 1 at the wet end member 

temperature. From this equation, it can be seen that the sign of the EF for a given A 

can be either positive or negative depending on the relationship between EF, T and EFwet. 

It turns out that wi EFwet is greater than EFi on average. This equation also explains why 

the response for negative A is more than positive A. For example, EF=1/2(w EFwet – 

EF) when A equal to A in the positive direction, but only a A equal to A/3 in the 

negative direction is required to achieve the same EF. This implies that the 

underestimation of energy would have more serious consequences than overestimation. 
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In many cases the energy was overestimated because the storage into the water column 

was not accounted for. In the case of Kennedy, energy was underestimated instead. In 

either direction the EF errors should be less than around 0.05 for a = 200 W/m
2
 and 

less than 0.02 for = 100 W/m
2
. 

 

Figure 4.8.4: Sensitivity of EF to Energy for Disney after Including Wet Pixels 

 In regards to errors in available energy, the effect on actual ET is of more concern 

because it is directly related to available energy. Therefore it was important to also 

conduct a sensitivity analysis of actual ET to temperature and energy. This was done 

using the calibration which included wet pixels for Disney with Even Bins and H vs. T. 

The sensitivity of ET to temperature is mostly due to changes in EF while the sensitivity 

of ET to energy is mostly due to changes in energy since ET=EF A. Figure 4.8.5 shows 

the response of ET to changes in temperature where MAE has once again taken the sign 
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of the Bias error. It can be seen that the error is proportional to the EF error multiplied by 

something like the mean available energy for the scene. For example the mean Bias/MAE 

for T=10 K is about equal to 40 W/m
2
. This is equal to EF=0.1 from earlier multiplied 

by mean energy of 400 W/m
2
. Since the sensitivity of EF was larger to T in the negative 

direction, sensitivity of ET was also larger in negative direction. For changes in energy, 

the sensitivity of EF was due to both changes in EF and energy but changes in energy 

dominated. Figure 4.8.6 shows sensitivity of ET to energy where MAE once again has 

taken the sign of Bias. For A=+/- 200 W/m
2
, EF was on order of 0.03 which after 

multiplying this by mean energy of about 400 W/m
2
 would produce a contribution of 

ET=12 W/m
2
 due to change in EF. The remaining 100 W/m

2
 is due to the change in 

energy itself which is equal to EF A with EF=0.5. 

 

Figure 4.8.5: Sensitivity of ET to Temperature for Disney after Including Wet Pixels 
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Figure 4.8.6: Sensitivity of ET to Energy for Disney after Including Wet Pixels 

4.8.2 Sensitivity to Roughness Length 

A sensitivity analysis for EF vs. roughness length was performed for the 

Gainesville study area. Gainesville was chosen because the T vs. T method seemed to 

work the best for this study area and there are also a large number of useable scenes 

available for the study area. Even Bins was used along with the calibration which 

included wet pixels found using NDVImin. The roughness length (zo) was adjusted by +/- 1 

m while forcing zo to be at least 0.0001 m for perturbations in the negative direction. 

Figure 4.8.7 shows the EF errors for the difference between original and perturbation 

cases. MAE has taken the sign of the Bias error for visualization purposes. As zo 

increases, EF decreases because estimated sensible heat increases with roughness. As zo 

decreases the mean MAE and Bias for EF increases, but there are some scenes in which 

the EF actually decreases. Because of this the Bias is less than MAE. This can be 
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explained by looking at Figure 4.8.8 which shows the variation in sensible heat with zo 

for bare ground on 3/28/1999. It is possible for the sensible heat to increase with 

decreasing zo because the increasing instability of boundary layer (|L| decreasing) 

increases turbulence more than the decreasing friction velocity (u*) reduces turbulence. It 

would seem that the original zo for most pixels is similar to or greater than the zo that 

produces minimum sensible heat. Therefore an increase in zo will not result in a change in 

direction of the response of sensible heat to zo. When zo is reduced on the other hand, 

some of the pixels will cross this area of minimum sensible heat.  

A back of the envelope calculation was performed to estimate the EF error 

produced due to errors in zo in which zo was estimated from vegetation height (h) using 

zo=h/10. If it was assumed that LIDAR could detect vegetation height with an accuracy of 

about 1m, then the error in zo would be on the order of 0.1 m. Figure 4.8.9 shows 

sensitivity of EF to zo using a linear x axis. It shows that the error in EF would be 

somewhere around 0.02. If the roughness length was completely unknown on the other 

hand, very large errors could occur. Figure 4.810 shows a simulation using the same 

calibration variation as before, except the roughness length was assumed to be a constant 

value for the entire scene instead of incrementing each pixel. This can lead to large errors 

depending on the constant zo which is used. If a small zo is assumed then error in EF can 

be around 0.15, but assuming a large zo will result in smaller errors within 0.05. This is 

occurring because most of the study area is made up of tress with large zo so that the best 

guess would be something close to the majority zo. Figure 4.8.11 shows the distribution 

of zo in the landscape with the corresponding mode near zo=1 m. It should be noted that 
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assuming constant roughness length is not the same as assuming constant ga because of 

the effect of instability on ga is still accounted for. 

 

Figure 4.8.7: Sensitivity of EF to zo for Gainesville 
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Figure 4.8.8: Effect of zo on H, u* and L for Gainesville 3/28/1999 over Bare Ground 

 

Figure 4.8.9: Sensitivity of EF to zo for Gainesville Linear Scale 
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Figure 4.8.10: Effect of Using Constant zo EF for Gainesville 

 

Figure 4.8.11: Distribution of zo for Mean of All Scenes for Gainesville 
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4.9 Data Fusion of LANDSAT Imagery with Simulated MODIS Imagery 

 Six data fusion algorithms 1) Simple Interval 2) Simple Ratio 3) Double Sided 

Proportion 4) Similar Temperature 5) Similar ET 6) Similar EF and four interpolation 

methods 1) Nearest ET Neighbor Interpolation 2) Linear ET Interpolation 3) Nearest EF 

Neighbor Interpolation 4) Linear EF Interpolation were used to produce ET maps. Coarse 

scale imagery such as that produced from MODIS was simulated by aggregating 120 m 

LANDSAT thermal resolution into 960 m blocks. Fused images were created for every 

other image in the series of available images based on neighboring images which 

produced two sequences of images. The simulations were performed for Disney Preserve 

and Kennedy Space Center study areas using Even Bin Threshold Fit boundary variation 

in the calibration which included wet pixels detected using NDVImin. Albedo values less 

than 0.5 were filtered out for Kennedy. Instantaneous ET was used for comparison 

between the fused and originally retrieved maps. Figures 4.9.1 and 4.9.2 show the image 

scale aggregate errors as a function of fusion/interpolation type for each study area and 

sequence. Image scale refers to comparing mean ET for the entire image. Image scale 

bias is the difference between the mean ET of the images averaged over the entire 

sequence. This represents the error in estimating ET for the entire image over long time 

scales. Image scale MAE is the absolute value of the difference between mean ET of the 

images averaged over the entire sequence. This represents the error in estimating ET for 

the entire image at the daily time scale.  

Figure 4.9.1 shows a large variability in image scale Bias depending on whether 

the first run or second run of the sequence was processed. For Disney, the method which 

produced lowest image scale Bias for both runs was Similar ET, and surprisingly Linear 
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ET was also a close second. Nearest EF and Linear EF was the best for the first run. The 

worst methods were Nearest Neighbor and Double Sided Proportion.  For Kennedy, the 

methods that used similar blocks for change did not work very well with respect to image 

scale Bias except for Similar EF on the first run. Double Sided Proportion performed the 

best for both runs and Nearest ET and Linear ET worked nearly as well. Nearest EF and 

Linear EF did well on the first run. Figure 4.9.2 shows the image scale MAE which has a 

more consistent pattern between runs compared to image scale Bias. For Disney, Similar 

ET and ET are the best for both runs, but Simple Interval and Ratio both work nearly as 

well. For Kennedy, Similar ET, Similar Temperature, Simple Interval, Simple Ratio and 

Linear EF performed the best on average.  

 

Figure 4.9.1: Image Scale Bias for Different Fusion Types 
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Figure 4.9.2: Image Scale MAE for Different Fusion Types 

Figures 4.9.3 and 4.9.4 show the pixel scale aggregate errors as a function of 

fusion/interpolation type for each study area and sequence. Pixel scale refers to 

comparing ET over time for each individual pixel in the image in order to produce a map 

of Bias and MAE error. Average pixel scale Bias is the absolute value of each individual 

pixel’s bias averaged over the entire image. This represents the average error in 

estimating ET for an individual pixel over long time scales. The average pixel scale MAE 

is the average of each individual pixel’s MAE over the entire image. This represents the 

error in estimating ET for an individual pixel at the daily time scale. Figure 4.9.3 shows a 

more consistent pattern between the first and second run for pixel scale Bias compared to 

image scale Bias. For Disney, the method which produced the lowest pixel scale Bias 

consistently was Similar ET, but Nearest EF was the best for First Run. The worst 

methods were Nearest ET and Double Sided Proportion. This outcome was similar to the 
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image scale Bias, except there is a larger magnitude of error.  For Kennedy, all of the 

methods performed very similarly on average. Linear ET and Similar Temperature are the 

most consistent while Interval and Ratio varied the most. Figure 4.9.4 shows the pixel 

scale MAE which has a pattern similar to the image scale MAE. For Disney, Similar EF 

and ET are the best for both runs, but Simple Interval and Ratio both work nearly as well. 

For Kennedy, Similar ET, Similar Temperature, Simple Interval, Simple Ratio and Linear 

EF dif the best on average.  

For both study areas and both sequences, Nearest ET clearly performed the worst 

with respect to MAE. While Linear ET and Double Sided Proportion had a wide range of 

results among study area and sequences, they did not perform as well on average 

compared to the other techniques with respect to MAE. A very interesting result is that 

Linear Interpolation proved to be as useful as more complicated fusion techniques. Linear 

EF had low MAE and Linear ET had low Bias. These methods could be useful depending 

on application, but the method which performed the most consistently across all study 

areas and sequences for both bias and MAE was Similar ET. Other methods worked better 

in certain instances, but the results for Similar ET did not vary much while having an 

acceptable amount of error. Table 4.9.1 shows the results for Similar ET next to the 

optimal variation for each study area and sequence. For each error type the minimum 

error was subtracted from error for each fusion type. This residual was summed over each 

error type for each fusion type to produce the optimizing criteria. The largest individual 

difference between Similar ET and optimal variation was within 2% and 5% for Disney 

and Kennedy respectively. Similar ET wasn’t absolute best in all cases, but it was the 

most reliable. 
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Figure 4.9.3: Average Pixel Scale Bias for Different Fusion Types 

 

Figure 4.9.4: Average Pixel Scale MAE for Different Fusion Types 
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 Table 4.9.1: Optimal Methods for Study Area and Run Combinations with 

Errors 

 

4.9.1 Finding Similar and Homogenous Coarse Pixels for Data Fusion 

 Homogenity was included in addition to similarity as a criteria for finding blocks 

(coarse pixels) which contain the amount of change to be used for a target pixel. This 

requires a weight to determine the importance of homogeneity over similarity. Figure 

4.9.5 shows the results of all error types and sequences as a function of this weight when 

ET was used in the search at Disney. A larger weight means homogeneity has more of an 

influcence on choosing the block than similarity. A weight of zero returns the same 

results as Similar ET. As the weight becomes large, the change from the most 

homogenous block in the image is used for all pixels. For all of the simulations except for 

both bias types of the second run there is some intermediate weight which minmizes the 

error. The errors for both bias types of the second run are minimum for a weight equal to 

zero (ie. not including homogeneity). For the first run, both of the bias are at a minimum 

at a weight equal to about 1.25. For MAE the error is minium at a wieght equal to about 

0.25.  For most of the cases, including homogeniety only has the potential to reduce the 

errror by about 5 W/m
2
, but it also has the potential to increase the error by more than 10 

W/m
2
. If homogeneity was to be included, a weight=0.25 would probably be the best 
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choice because at this point the negative effects on Bias has not been experienced yet, but 

the positve effects on MAE have been achieved.  

 

Figure 4.9.5: Variation of Errors with Homogeneity Weight for Disney Similar ET 

4.9.2 Examination of the Temporal Variability of Data Fusion Errors 

 It is useful to examine the time series of differences between the actual ET map 

retrieved and the map produced using data fusion or simple interpolation. Figure 4.9.6 

and 4.9.7 shows a time seires of the mean ET of the entire image for actual ET retreived, 

Linear EF and Similar ET fusion for Disney and Kennedy respectively. This represents 

differences at the image scale since mean ET of entire image is used. Similar ET and 

Linear EF are both able to reproduce peaks and valley of ET most of the time, but Similar 

ET is mabye a bit more consistent. Linear EF might not reproduce peaks and valleys of 

EF, but since energy for target day is accurate the resulting ET works. For Disney, the 

Similar ET fusion is better except for 2 or 3 days. For some days, Similar ET produced 

erratic values such as the 2 days in mid 2005. For Kennedy,  Linear EF is even more 

sucessful, but Similar ET still reporoduces the time series a bit better except for 2 days. 
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Linear EF possible works better for Kennedy because the return period of LANDSAT is 

8 days vs the standard 16 days because Kennedy is located where two scenes overlap. 

Figure 4.9.8 shows the frequency distribution of the minimum time (tmin) between the 

scene being estimated and the nearest neighbor for Disney and Kennedy. For Kennedy 

the mean value is aboue 25 days while for Disney it is about 50 days. Also Disney has 

much more variance in this tmin but Kennedy does have a large outlier at around 250 

days. 

 

Figure 4.9.6: Mean ET vs. Time for Actual, Linear and Similar ET in Disney 
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Figure 4.9.7: Mean ET vs. Time for Actual, Linear and Similar ET in Kennedy 

 

Figure 4.9.8: Frequency Distribution of tmin for Disney and Kennedy 
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Figures 4.9.9 and 4.9.10 show the Bias and MAE error between the actual and 

Similar ET fused ET maps as a function of tmin for Disney and Kennedy. It would seem 

that the error should increase as tmin increases. For Disney, there is some evidence for 

this once tmin reaches around 100 days. This conclusion is not very robust though 

because there are only about 3 scenes with tmin this large. It is interesting to see that Bias 

and MAE are somewhat constant for tmin less than 100 days. For Kennedy, there is a 

wide range of error even for scenes with a very small tmin. Once again there are not 

many days with large tmin (only about 3 greater than 40 days), but all of them are on the 

large end of the error range. It would be interesting to run simulation in which neighbors 

were chosen so that tmin was greater than 100 for Disney and greater than 50 for 

Kennedy. It would seem that larger tmin would result in larger errors on average but the 

evidence for this did not robustly appear in the current analysis. In the end, the 

acceptability of the error on a seasonal time scale for Disney and monthly time scale for 

Kennedy is very encouraging.  
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Figure 4.9.9: ET Error vs. tmin using Similar ET Fusion for Disney 

 

Figure 4.9.10: ET Error vs. tmin using Similar ET Fusion for Kennedy 
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4.9.3 Examination of Spatial Variability of Data Fusion Errors 

It is useful to look at maps of Bias and MAE errors which shows the aggregation 

of error over time for individual pixels. This allows one to determine whether certain 

areas of the image are more susceptible to errors. It is interesting to compare the spatial 

distribution of errors using the Simple Interval method to the Similar ET method. Figures 

4.9.11 and 4.9.12 show maps of the ET Bias error from the 1
st
 run for Simple Interval 

Fusion and Similar ET Fusion respectively. The first thing to notice is that Simple 

Interval produces much more “blocky” pattern of errors than Similar ET. This is because 

the change for an entire block or coarse pixel is the same for Simple Interval, but Similar 

ET searches for the change among all blocks which most fits each individual pixel. For 

Similar ET, the errors seem to coincide with the features in the landscape more readily 

and the Bias is more balanced between over and under estimation compared to Simple 

Interval. For example, ET is understimated for the lake area but overestimated for the 

areas of vegetation. The dry areas to the west have no clear pattern of error. Figures 

4.9.13 and 4.9.14 show the same maps of ET Bias excpet for Kennedy. For Kennedy the 

blocky pattern also appears for Simple Interveal but the error is a bit more balance 

between over and under estimation. For Similar ET the error pattern is once again 

smoother showing overestimation for dry areas and underestimation for the wet areas.  

The effect of the blockiness of the Simple Interval fusion is shown in Figure 

4.9.15 which shows the mean ET map for Disney over the 2
nd

 run sequence. Most of the 

blockiness is located over the lake and it is intersting how smooth the results are 

elsewhere. This is because the range of the errors are much smaller than the range of the 

actual ET values so that the errors are not so evident in the final product. Figure 4.9.16 
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demonstrates the ability of Similar ET fusion to produce a smooth ET map, but for the 

most part both methods produce similar looking results in terms of mean ET over the 

time series. Figure 4.9.17 and 4.9.18 show the mean ET for the 2
nd

 run in Disney for the 

actual retrieved ET and Similar ET fusion respectively. Figure 4.9.18 and 4.9.16 are the 

same except 4.9.18 is classified so that ET values can be more easily translated from the 

map. A comparison of Figure 4.9.17 and 4.9.18 shows that Similar ET fusion does a good 

job of determining the pattern of ET in the landscape. Figures 4.9.19-4.9.22 shows the 

results of the same analysis explained above but for Kennedy. It is interesting that the 

blocky pattern does not appear for Simple Interval fusion in Kennedy because the Bias 

map was very blocky. The small range of errors once again blend into the larger 

variability of mean ET. Also Figures 4.9.21 and 4.9.22 show that Similar ET fusion is 

succesful at reporeducing the pattern of ET in the landscape. 
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Figure 4.9.11: Map of ET Bias using Simple Interval Fusion for Disney 1
st
 Run 

 

Figure 4.9.12: Map of ET Bias using Similar ET Fusion for Disney 1
st
 Run 



  212 

 

Figure 4.9.13: Map of ET Bias using Simple Interval Fusion for Kennedy 1
st
 Run 

 

Figure 4.9.14: Map of ET Bias using Similar ET Fusion for Kennedy 1
st
 Run 
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Figure 4.9.15: Continuous Mean ET Map using Simple Interval Fusion for Disney 

2nd Run 

 

Figure 4.9.16: Continuous Mean ET Map using Similar ET Fusion for Disney 2nd 

Run 
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Figure 4.9.17: Classified Map of Original Mean ET for Disney 2nd Run 

 

Figure 4.9.18: Classified Map of Mean ET using Similar ET Fusion for Disney 2nd 

Run 
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Figure 4.9.19: Continuous Map of Mean ET using Simple Interval Fusion for 

Kennedy 2nd Run 

 

Figure 4.9.20: Continuous Map of Mean ET using Similar ET Fusion for Kennedy 

2nd Run 



  216 

 

Figure 4.9.21: Classified Map of Original Mean ET for Kennedy 2nd Run 

 

Figure 4.9.22: Classified Map of Mean ET using Similar ET Fusion for Kennedy 2nd 

Run 
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5. Conclusions and Future Work

 With respect to measuring instantaneous ET, the automated calibration which 

included only dry pixels slightly outperformed the calibration which also included wet 

pixels for Big Cypress and Gainesville. For Disney, Everglades and Kennedy the 

calibration which included wet pixels was significantly better. In addition, the T vs. T 

model was the best for the optimal Big Cypress and Gainesville cases, but H vs. T model 

was the best for the optimal Disney, Everglades and Kennedy cases. The reason for this 

could be because the vegetation heights for Big Cypress and Gainesville are taller than 

the other study areas. The algorithm developed here was very successful for the 

identification of dry pixels when they existed in the landscape. The development of an 

automated identification of wet pixels was not pursued as exhaustively as dry pixel 

identification. It turns out that wet pixels could be identified sufficiently using an 

absolute maximum NDVI threshold of 0. The difficulty in using wet pixels is estimating 

their sensible heat. This dissertation would suggest that these automatically detected wet 

and dry pixels were able to calibrate the ET retrieval algorithm with acceptable results. 

Although the MAE was large for some applications, the Bias was low. For Kennedy and 

Disney the Bias error was only about 2% of mean ET. The large MAE might indicate 

inaccurate estimates at the daily time scale, but the small Bias error would suggest that 

the algorithm has the potential to accurately describe ET at monthly or seasonal time 

scales. This offers the possibility for ET retrieval algorithms which rely on internal 
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calibration to become more operational. This would not only save time for the user, but it 

would also reduce the subjectivity inherent in manual calibration. 

 The dry pixel calibration developed here could be considered an extension of the 

S-SEBI concept (Roernik et al, 2000). An important modification is the use of available 

energy or T in place of surface reflectance which allows for the ability to account for 

surface roughness. Often it is considered an advantage that surface roughness is not 

required in a model, but this is only true if the uncertainty in surface roughness increases 

error more than accounting for the surface roughness reduces error. The dry pixel 

calibration does not require a prediction of a “cold” line where EF=1 that is used in S-

SEBI. This “cold” line is often difficult to find on the image because the EF does not 

reach one. During this study for Florida, the EF over the eddy covariance towers for the 

useable clear sky days never reached one. Possibly in a more arid environment over water 

the EF would reach one. In theory, it is not necessary to determine this cold line in the 

first place. This cold line should not vary with surface reflectance, but remain equal to the 

temperature of the atmosphere. This information is already available by extrapolating the 

dry pixels to a point where the available energy equals zero. In practice, it was found that 

the dry pixels are not always so reliable for determining the dependence of H or T vs. 

temperature. However, the dry pixels do seem very useful for determining a dry end 

member which could be used in conjunction with a wet end member for finding an H or 

T vs. temperature relationship. 

  The author is not aware of any studies for Florida using LANDSAT data that 

have analyzed as many ET maps as was done in this dissertation. A total of 81 scenes 

were processed and validated over 5 study areas during a period of over 10 years. The 
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location of these 5 study areas varied from North to South and from coastal to inland. 

Because some study areas consisted of more than one eddy covariance station, 138 in-situ 

measurements were compared to snapshots of retrieved ET maps. However, a major 

criticism of the imagery used is that it consisted mostly of scenes from the dry season. 

This problem is somewhat unavoidable with LANDSAT in Florida because of the high 

frequency of cloud cover. The study area that was able to produce the most data for all 

seasons was Gainesville, but the algorithm was found to have the most difficulty in this 

study area. However, the algorithm produced a low Bias error overall for Gainesville, 

except for the summer in which it tended to underestimate instantaneous ET.  

 Another criticism of this study might be the manner in which eddy covariance 

towers were used for validation. These towers only represent a very small area of the 

landscape being mapped. A low error with respect to the towers doesn’t describe how 

well the algorithm performs in other areas of the image. A successful result might only 

mean the algorithm works well over the type of surface located at flux towers. Possibly 

the calibration data could come from a surface which is similar to the validation data. For 

example, a reference crop surface is used to calibrate the model, but the validation data 

also comes from a similar well watered agricultural surface. Under these circumstances 

the results will be a bit misleading. By using calibration data which consists of surfaces 

types which are not similar to the surfaces at the eddy covariance towers, a more 

conservative estimate is produced. Estimates from mass balance could be compared over 

long terms, but this study produced mainly snapshots of ET. Another possible source of 

validation could be transects measured by airborne missions, but these are very costly. 

Another technique which is increasing in popularity is scintillometry which works by 
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transmitting a laser beam to a receiver and measuring the changes in the received light. 

Since turbulent heat fluxes affect the passage of light through the atmosphere, 

micrometerological theory can be used to convert changes in received light to sensible 

heat. This technique has been used to validate remote sensing of sensible heat (Brunsell 

et al, 2011; Kleissl et al, 2009). The advantage of this approach is that it measures fluxes 

over a long transect instead of a relatively small footprint. The disadvantage is that it 

typically requires modeling the physics of the atmosphere. Currently the author is not 

aware of any airborne or scintollometer data available for Florida.  

Sensitivity tests are a way to evaluate the algorithm over the entire landscape. 

Although it does not provide a means in which to validate the entire map, it does provide 

a way to determine the effect of the uncertainty in the inputs over the entire map 

assuming the model physics are acceptable. Of course uncertainties in available energy 

would directly affect the resulting ET, but it turns out that uncertainties in available 

energy do not affect evaporative fraction very strongly. If accurate estimates of available 

energy are available at the daily time scale, then the error would depend on EF. That is 

why it was important to test sensitivity of EF to instantaneous energy. For example, 

uncertainties in ground or water heat flux that would add error to estimates of 

instantaneous available energy would not have such a large effect on the snapshot EF.  

Therefore, daily available energy at 2 km resolution calculated using GOES could be 

combined with EF calculated from LANDSAT temperature and energy necessary for 

calibration. When using only dry pixels, the calibration is insensitive to temperature 

which is the point of the calibration. When wet pixels are included, sensitivity to 

temperature becomes important. This is due to the sensitivity of Priestly Taylor equation 
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to temperature. Since temperature retrievals are inherently poor using LANDSAT, this 

could be an issue. A possible solution to this problem could be the introduction of FAWN 

sites to be used for wet pixels. At these sites the vertical temperature gradient is often 

measured allowing the estimation of sensible heat. These estimates might not be 

consistent with calibration data produced using pure satellite data though. EF has the 

capability to be very sensitive to roughness length in a non-linear fashion. Once errors in 

roughness length reach around 0.1 m, errors in EF are noticeable. Using a first order 

approximation, this means that the height of the vegetation should be known within 1 m. 

This sensitivity to roughness length could possibly explain problems with large MAE for 

Gainesville ET. A very surprising result in regards to the sensitivity of the algorithm to 

wind speed was found. When a constant mean wind speed was used for all days, a 

decrease in both MAE and Bias error was produced. However, a visualization of the 

errors revealed this did not mean using constant mean wind speed was better, but 

possibly acceptable. 

The results of the data fusion simulations performed determined that data fusion 

can be used to predict missing LANDSAT scenes. It was also found that simple linear 

interpolation of EF also predicted missing LANDSAT scenes fairly well in terms of Bias 

error. Relative to MAE errors, data fusion out performed interpolation to an even larger 

degree though. This would suggest that data fusion would predict time scales between 

very long and daily (such as monthly or seasonally) with more accuracy. Data fusion 

using Similar ET also performed the most consistently among various study areas and 

time series tested. The Similar and Homogenous ET method developed here could be a 

practical application of data fusion. Other more complex methods such as the STARFM 
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method (Gao, 2006) have been used successful, but it requires the estimation of many 

parameters. In addition, it is more computationally intensive than the methods tested in 

this dissertation. An advantage of the Similar and Homogeneous ET method is that it only 

requires one parameter (homogeneity weight) while being computationally rather simple. 

If only similarity is used then no parameters are required and the algorithm still produces 

smooth patterns of change. If similarity is assumed to infer homogeneity, then Similar ET 

can be performed without parameter estimation. Future work would involve the 

comparison of STARFM to Similar and Homogenous ET. This work was outside the 

scope of this dissertation because it would involve the optimization of the parameters 

used in STARFM. In practice knowing these parameters in advance of theirapplication 

would be difficult. Therefore the Similar ET algorithm developed here could be a good 

practical alternative. 

Based on the work conducted in this dissertation, it is foreseeable that the 

automated calibration could be used to map evaporative fraction for the entire state of 

Florida. EF maps could be combined with the 2 km USGS product for daily PET, RET 

and solar insolation maps to produce daily actual ET. To produce an EF map for the 

entire state of Florida would require merging many maps each calibrated over much 

smaller extents. One of the major challenges for this effort would be to determine the 

allowable spatial extent that could be used. This dissertation demonstrated the effects of 

having an extent that is both too large and too small. Future work systematically testing 

the effect that the size of the extent has on the calibration would be very beneficial to this 

effort. Another problem would be to determine when surface roughness should be 

accounted for or ignored. LIDAR data could be useful for producing a better estimate of 



  223 

surface roughness, but it has limited availability. One option would be to produce a 

relationship between albedo and surface roughness which was calibrated for Florida in 

areas in which LIDAR was available. The development of methods for improving the 

estimate of wet pixel sensible heat is also warranted. The automatic detection of wet 

reference surfaces would allow the inclusion of RET measurements into the calibration. 

Another source of wet pixels could come from sensible heat measurements estimated 

from vertical temperature profiles at FAWN stations. This dissertation did not 

conclusively show that one model was universally better than the other. It would be 

beneficial to determine a method for estimating the error in applying just one model to 

the entire state (eg. Dry Pixels Only with T vs. T or Include Wet Pixels with H vs. T). 

The development of a decision fusion model for determining the optimal variation for a 

specific area would also be very useful.  

This dissertation produced mainly small contributions born from the common 

goal of producing maps of evaporative fraction for entire state of Florida which could be 

combined with current maps of available energy to produce maps of actual 

evapotranspiration. 1) The quantity of data that was analyzed in this dissertation was 

large in terms of number of scenes analyzed. 2) An automated calibration was developed 

which is necessary if a calibration method is to be used to produce a map for the entire 

state. 3) Sensitivity analysis showed that snapshots of available energy produced at 

LANDSAT resolution should not be too restrictive towards the production of EF maps. 

4) Data fusion or even possibly linear interpolation could be a feasible alternative for 

producing estimates of EF on days in which clear sky LANDSAT imagery is not 

available. Even though the desired final product might not be LANDSAT resolution ET 
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maps, the automated calibration designed here requires the heterogeneity of LANDSAT 

imagery. This calibration could then be used to produce ET maps at a 2 km resolution. 

There are also plans to integrate the python scripts consisting of the ET mapping and 

calibration algorithm into ARC GIS toolboxes. These toolboxes can then be distributed to 

the ET mapping community for collaboration and comparison. An important step in the 

future of ET mapping is comparing available techniques against the same available data. 

There are many small variations within the standard techniques that can change results 

for specific instances. Therefore it is necessary for researchers to be able to reproduce 

each other’s results. Many excellent results exist in the literature, but it is also necessary 

to determine where and when techniques do not work and why. In the future, a 

community effort allowing researchers to share exact methodologies (including computer 

code) and data sets would concentrate individual research into an entity more powerful 

than the individual parts.
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APPENDICES 

Appendix A – Usable Clear Sky Scenes a7nd Flux Station Validation Data

 Appendix A contains the data used in validation. Tables A.1-6 show the usable 

clear sky scenes from LANDSAT and the corresponding number of stations where 

evaporative fraction (NEF) was available and the number of stations where wind speed at 

blending height (NU200) was available. In addition the tables show the mean wind speed at 

blending height for the scene ( u 200) used in retrieval. Tables A.7-.13 show the flux 

tower data for each station. These tables report the evaporative fraction (EF), Available 

Energy (A) and the wind speed at blending height (u200). 

Table A.1: Usable Clear Sky Scenes for Big Cypress 

 

Table A.2: Usable Clear Sky Scenes for Everglades 
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Table A.3: Usable Clear Sky Scenes for Disney Preserve 
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Table A.4: Usable Clear Sky Scenes for Gainesville (Part 1) 
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Table A.5: Usable Clear Sky Scenes for Gainesville (Part 2) 
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Table A.6: Usable Clear Sky Scenes for Kennedy Space Center 

 

 



  230 

Table A.7: Flux Station Data for Big Cypress 
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Table A.8: Flux Station Data for Disney 
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Table A.9: Flux Station Data for Everglades 
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Table A.10: Flux Station Data for Gainesville (Part 1) 
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Table A.11: Flux Station Data for Gainesville (Part 2) 
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Table A.12: Flux Station Data for Gainesville (Part 3) 
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Table A.13: Flux Station Data for Kennedy Space Center 
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Appendix B – Bin Size Selection

 Determining the bin sizes to be used was done mostly visually from plots of T 

vs. T. The RMS error between points and predicted upper and lower boundary lines was 

also used as criteria. This criterion was not robust though because as the bin size 

increased, the number of points in boundary decreased which reduced the error. On visual 

inspection this lower error was misleading because the points did not successfully 

describe the boundary. An analysis was done using T vs. T method for Gainesville study 

area on April 23, 2008. The variation of RMS with bins size is shown in Figures B.1a and 

B.1b. Once the bin size becomes greater than about T=0.1 the RMS becomes erratic. 

Figure B.2 shows the actual boundary points chosen for the bin sizes varying from 0.01 

to 1.0 K. The position of the lower boundary is fairly down to a bin size of about 0.1 K 

but after that the position of the lower boundary line begins to change. For practical 

purposes a very large number of points did not seem feasible. Therefore a bin size = 0.1 

K for the T vs. T method was chosen. A similar exercise was performed for the H vs. T 

method where a bin size = 10 W/m
2
 was chosen. When using T vs. T method assuming 

neutral conditions much larger T values were produced. This resulted in bin size = 1 K 

being used.  
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Figure B.1: Variation of RMS Error with Bin Size for T vs. T Calibration 
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Figure B.2: T vs. T Boundary for Various Bin Sizes 
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