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The perception of visual motion is an integral aspect of many organisms’ en-

gagement with the world. In this dissertation, a theory for the perception of vi-

sual object-motion is developed. Object-motion perception is distinguished from

objectless-motion perception both experimentally and theoretically. A continuous-

time dynamical neural model is developed in order to generalize the findings and pro-

vide a theoretical framework for continued refinement of a theory for object-motion

perception. Theoretical implications as well as testable predictions of the model are

discussed.
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Chapter 1

Introduction

1.1 THE PERCEPTION OF OBJECT- AND OBJECTLESS-MOTION

Man sieht eine Bewegung: ein Gegenstand bewegte sich von einer Lage
in eine andere. [One sees motion: an object has moved from one location
to another.] - Max Wertheimer, 1912

Not all motion percepts are qualitatively the same, nor do they carry the same

kind of information. Think of a flowing river. We can typically perceive the direction

of the current, yet it is difficult to say precisely where any piece of the river has

moved from or to over time. The motion of the water that we perceive seems to be

unattached to any particular thing. It is rather perceived just as we imagine the river

to be, a fluid flow with a general direction but without a sense of which piece of the

river went where. Now imagine a fallen leaf floating on top of the water on the river.

The leaf changes location over time, yet as it does we say it is the same leaf that was

once upriver that has changed its location in space over time and is now downriver.

There is a perceptual identity associated with the leaf; it is an object whose position is

changing, but whose underlying thingness remains unchanged. The flow of the water

and the changing position of the leaf express unique perceptual qualities from one

another and imply different opportunities for interaction for the perceiving organism.

J.J. Gibson is famous, in part, for stressing the importance of what he termed

optic flow patterns for judging one’s direction of self-motion (Gibson, 1986). While
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working with Army pilots, he recognized that their success in landing depended on

their ability stabilize the focus-of-expansion of an optic flow pattern. Much like the

flow of the river, optic flow patterns are distributed over space and time, and sharp

boundaries are not easily delineated. Like Gibson’s pilots, organisms can use optic

flow patterns as global estimates of heading direction without the need to differentiate

or represent the particular items which are causing the flow (e.g. Kim et al., 1996).

This is an objectless motion perception; the detailed correspondences of the features of

the environment that generate the flow pattern are irrelevant. The moving organism

gains ecologically vital information about its movement in relation to its environment

by detecting this flow.

While the detailed spatiotemporal correspondences of visual features are unnec-

essary to inform the behavior afforded by global optic flow patterns, other kinds of

behavior necessitate the ability to keep track of one or many visual features and where

they have moved from and to over time. Detecting and tracking the changing location

of the deer in the forest might be the difference between dinner and none. The visual

perception of object motion entails the assignment of an invariant identity to certain

subsets of visual features as they change in space and time. You not only see the

motion of the deer, but you perceive that it is the same deer that was a moment ago

over there, and now is somewhere else. The stimulus patterns that elicit the percept

of a moving object that retains some invariant perceptual identity over successive

locations are necessarily different than the global stimulus patterns which give esti-

mates of heading and gross environmental features. In this manuscript, it is argued

that the detection of counterchange underlies the perception of object motion across

the retina. Further, a dynamical neural network is proposed to account for both the

generation and (competitive) selection of motion signals. This network frames the

perception of object motion as a (hierarchical) pattern-forming process, out of which

2



emerges a global percept.

1.2 THE COUNTERCHANGE MOTION DETECTION PRINCIPLE

The principle of counterchange follows from the basic observation that when an envi-

ronmental object moves, it is both not where it was, and is now somewhere else. This

may appear self-evident1, but this is an ecological fact that most models of motion

detection don’t take into account.2

The counterchange motion detection principle then suggests a mechanism that

mirrors this ecological fact. To put it in concrete terms, a counterchange detector

is sensitive to the motion of a pattern x from location a to location b by virtue of

detecting the (approximate) temporal coincidence of a decrease in the detection of

pattern x at location a and an increase in the detection of pattern x at location b. In

other words, a decrease in the presence of x where it was combined with an increase

in the presence of x where it is.

A motion detection mechanism premised on this principle was first proposed in

Hock et al. (2002), and the first computational model of this mechanism was pub-

lished in Hock et al. (2009). A dynamical neural field version of the counterchange

model was also developed in Berger et al. (2012) in order to show the viability of a

counterchange detector instantiated as a temporally and spatially continuous neural

model, and to probe its behavior in response to continuous motion of a single edge.

This dissertation elaborates on these earlier models in several ways, including spec-

ifying several constraints that make the model robust in response to dense patterns

of moving random-dots, as well as proposing a multi-scale arrangement of collections

1Although the modern understanding of quantum physics suggests this is not necessarily a phys-
ical truth at all scales of reality.

2In fact, other common motion detector models (e.g. Barlow and Levick, 1965; van Santen and
Sperling, 1984, 1985; Adelson and Bergen, 1985) take either one or the other into account, but not
both.
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of motion detectors and specifying their cooperative and competitive interactions.

1.2.1 Change detection in sensory systems

The counterchange principle is grounded in the notion of detecting local stimulus

change (decreases and increases in local activation), so it is important that the

medium of perception, the nervous system, has the potential to embody the prin-

ciple if it is to be viable. It has been repeatedly observed that many sensory neurons

do not simply respond to the state of their impinging stimulus, but to rates of change

of that stimulus. That is, they act as differentiators. This is reflected in the existence

of so-called phasic neurons, which respond transiently to changes in stimulation, but

return to baseline when input is static. Phasic neurons co-exist alongside so-called

tonic neurons, which typically continue firing above baseline for the duration of the

stimulus to which they are sensitive (see, e.g., Arutyunyan-Kozak and kimyan, 1985).

However, even tonic neurons often show their greatest activity shortly after the initial

presentation of a stimulus, with activity decreasing in response to a static stimulus.

This process of decreasing activity in response to static input is commonly referred to

as neural adaptation. For this reason, some authors refer to phasic and tonic neurons

as fast and slow adapters, respectively. However, there is a potentially important dis-

tinction between a true differentiator which returns to baseline when input is static,

and a tonic response which is somewhat attenuated over time but does not return to

baseline until input is removed. Likely, there exist a range of timescales that both

(adapting) tonic neurons and phasic neurons operate over.

1.2.2 Local, Global, and Bi-local Patterns

In Section 1.1, a distinction above was drawn between the functional role of (and,

therefore, detection of) global optic flow patterns and object motion patterns specified
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by counterchange. So, if optic flow patterns are ‘global’, does that imply counter-

change patterns are ‘local’? Commonly used detectors (ERD, ME, gradient) are

conceived of as local motion detectors, whose component receptive fields are largely

overlapping. They measure stimuli over a well defined portion of the visual filed, one

that could be circumscribed by a single boundary. However, in much of the work de-

veloped here, component receptive fields are largely non-overlapping. In other words,

a counterchange detector can perceive a visual item jump from one location to an-

other, non-adjacent location. In this sense, a counterchange detector could be said to

be, not global or local, but bi-local, meaningfully connecting two (potentially) non-

adjacent locations. These are the location where the motion of a visual item begins

and the location where it arrives.

1.3 THE DUAL ROLE OF PERCEPTUAL SYSTEMS

Perceptual systems serve to inform an organism about the ongoing set of possible

engagements with the environment. As such, they must remain in correspondence

with at least some actionable features of the environment in order to be functionally

meaningful. It is important, then, for a perceptual system to be able to rapidly take

in potentially unexpected information, enabling situational adaptability.

At the same time, the rate at which the stimulus patterns on the sensory surface

change is much faster than the duration over which goal directed actions take place.

Presumably, then, for a meaningful mapping to be generated between the timescale

of stimulus changes and the timescale of goal-directed behavior, certain aspects of

perception must be stabilized, and meaningful spatiotemporal mappings must be

generated that can inform the ongoing interaction between the organism and its

environment. A perceptual system must be responsive to changing input, yet be able
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to stabilize action-relevant information about transient sensory events.

The human brain is an immensely complex system. Due to the dense intercon-

nection of the billions of component neurons, it displays a wide range of not-well-

understood intrinsic dynamics. In other words, many of the activities of the nervous

system are behaviors which emerge out of the endogenous structure and dynamics

of the nervous system itself. But the nervous system is also coupled to the envi-

ronment, so it is subject to a host of external perturbations (as well as generating

self-perturbations through the environment). In this view, perception can be seen as

the perturbation of the ongoing emergent dynamics of the nervous system. A balance

between flexibility and internal stability must be struck. If perception is dominated

by the endogenous dynamics of the brain, meaningful behavioral correspondence will

cease between the organism and its environment, and the organism could be said to

be hallucinating.3 If the intrinsic dynamics do not play a strong enough role, mean-

ingful spatiotemporal correspondences will fail to maintain stability over timescales

long enough to inform complex behavior. In this case, the perception would probably

be something like William James’s description of awareness as a ‘blooming, buzzing,

confusion’ for the human infant (James, 1890).4

Marrying these dual, seemingly opposed necessities of rapid response to change

and internal stability is a challenge, yet it is one that must be overcome to understand

the processes leading to flexible and adaptive behavior that nevertheless maintains

functional significance over multiple timescales. This dissertation is an attempt at

3In fact, Bressloff et al. (2002) have hypothesized that the geometric hallucinations often re-
ported by those under the influence of hallucinogens such as LSD or psilocybin are a direct result
of generalized disinhibition of visual cortex leading to the over-expression of its intrinsic dynamics.
Additionally, Charles Bonnet syndrome is a well-known condition in which complex and vivid visual
hallucinations occur after total or partial vision loss (Vukicevic M and Fitzmaurice K, 2008).

4In fact, there have been cases of congenitally blind individuals who gained sight relatively late
in life due to medical advances, but found the newly-acquired source of optical stimulation so over-
whelming and confusing as to cause depression, and often reversion back to a ’blind’ lifestyle (e.g.
Ackroyd et al., 1974).
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fleshing out a simple theory of one microcosm of the interplay of change and stability

in perception.

1.4 PHILOSOPHY OF PSYCHOPHYSICAL EXPERIMENTS

The motion stimuli used in the psychophysical experiments are, by and large, discrete

in nature, both spatially and temporally. Displays generally consist of a few or very

many discrete visual elements of various sizes, displayed for discrete time intervals,

and are typically perceived as objects quickly ‘jumping’ from place to place across

frame changes.

It might be (fairly) asked if these conditions adequately recreate the conditions

of ecological viewing, and if not whether they can reveal anything important about

visual perception. It is often assumed that discrete ’apparent’ motion stimuli are

somewhat unrealistic, and don’t sufficiently reproduce the smooth, continuous mo-

tions of the real world. After all, things in nature (at the scales with which are

familiar) don’t simply ‘teleport’ from one place to the next without passing through

the intervening space. So, the logic goes, a stimulus that does not traverse the space

between two locations it sequentially occupies must not be like ’real’ motion. Despite

these concerns, there are at least several reasons to continue to explore stimuli of this

nature in order to gain a deeper understanding of visual perception.

For animals with perceptual systems, one of the most relevant features of the

environment is other organisms. Being able to detect and perceive other creatures

may be crucial for hunting, evading predators, and realizing mating opportunities,

for example. Many organisms move about the environment in a manner known as in-

termittent locomotion, a pattern in which movements are interspersed with pauses in

which the organism remains essentially still (Kramer and McLaughlin, 2001). Thus,
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it is not always the case that movements generated in nature are smooth and contin-

uous. It might even be the case that smooth, continuous-velocity motions that last

for any significant duration are exceedingly rare to observe in nature. Ecologically,

the organism and its environment often interact in an event-like manner, such that

the visual motion caused by an event occurs in essentially discrete chunks.

Ecological settings are also often quite dense and noisy. There may be moments

during perception where the stimulation corresponding to a percept is temporarily

unavailable. Occluders or other causes of poor viewing conditions can make an object

of interest difficult to detect in certain portions of the visual field as it moves about.

A jumping spider on the table may move on a timescale too fast to be detected by

the visual system while it is between locations. It seems reasonable that evolution

would favor perceptual systems that are robust against such momentary lapses in

direct stimulation, regardless of their cause.

Furthermore, when one takes the macro-view of human activities on Earth, it can

be seen that the psychophysical laboratory itself is an ecological setting. The em-

bodied participant, typically sitting in front of a computer display, makes perceptual

decisions based on generated stimuli and uses them to take environmental action (e.g.

responding with a keystroke). Any complete theory of perception must be able to ac-

count for the reliable perceptual decisions and responses generated by psychophysical

observers, not only those percepts deemed by the scientist to be ’ecologically valid’.

Finally, and perhaps most importantly for answering the questions pertaining to

the maintenance of dynamical stability in perception, ambiguous stimuli highlight the

self-organizational properties of the visual system. Minimizing the structure of stimuli

allows for the possibility of ’multiple interpretations’, or said in the language of dy-

namical systems, generates regimes of multistability, where identical stimulus presen-

tations can give rise to multiple different percepts. While these same self-organizing
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principles likely underly perception under more complicated natural viewing condi-

tions as well, they may be more difficult to detect and study due to the enormous

amount of optical information reaching the retina at any given moment, continuously

interplaying with these internal tendencies. Removing a significant amount of this

dense source of stimulation allows the internal dynamical tendencies to come to the

fore.

1.5 ON THE MODELING

1.5.1 Aims

Models are essential to the scientific process. Models aim to distill a variety of obser-

vations or phenomena in terms of some underlying form or process. That is, a model

should uncover some invariance underlying multiple instances of a system of interest.

As such a model can take many forms; for example, an informal conceptual scheme

or diagram aimed to organize a set of related ideas, a formalized model designed to

reproduce a set of input-output relations while abstracting away the mechanisms of

the system, or a simulation designed to both reproduce the behavior of the system

while also capturing some of the details of the actual process from which the behavior

emerges.

An information-theoretic analysis of the job of the scientist developed by Bar-Yam

(2013) details the way in which the number of states a system can take on explodes

exponentially as the number of relevant parameters (or experimental conditions) in-

creases. What this implies is that it is infeasible, if not impossible, to experimentally

probe a complex system under all possible conditions.5 In this case, a model must be

developed to characterize the system in states that are not directly observed. Em-

5This fact has implications not only for scientific inquiry, but for the engineering of large scale
systems as well. See, e.g., Norman and Kuras (2006).
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pirical (phenomenological) methods, Bar-Yam argues, are not sufficient on their own

to capture the behavior of complex systems. The space of possibilities is simply too

vast. This dissertation serves as an example of this approach. The models function

to externally represent a large number of interacting elements that would be difficult

to observe empirically or to reason about analytically.

Externalizing the representation of a system of interest into a formalized model

also enables one to check the soundness of one’s concepts. This is an important step

in assessing the validity of a concept or theory in its explanatory power. Even the

most gifted human minds can only consider a small number of parts of a system and

their interactions at a time. This mental myopia often leads one to see only some

aspects and consequences of one’s conceptual models, while masking others. Complex

systems composed of many interacting parts often display emergent properties that

are difficult to predict from the properties of their components. These emergent

properties may reveal themselves when a model of the system and its interactions are

instantiated and simulated. These collective properties are often pathological in the

sense that they cause the system to behave counter to the intentions of the model-

builder. These failed attempts to scale a concept to a formal model provide important

scientific information. A failure of this sort implies that, 1) the concepts are not

sufficient in that they entail consequences not anticipated in their original formulation

and run counter to empirical observations, or 2) the formalism employed is not rich

enough to capture the essence of the conceptual model. Both of these scenarios present

an opportunity for scientific progress. In the first case, one is given the opportunity to

reflect on the consequences of the concepts, and perhaps reformulate them to develop

a better model. In the second case, one can ask what it is about the formalism that

is not rich enough, and what a model would need to have in order for it to sufficiently

embody the conceptual model out of which it was born. When fortune strikes, some
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emergent property may reveal a real aspect of the system of interest. In this case one

can show how a system-level property emerges out of the interactions of the system’s

components.

A model is also a way of asking questions of a theoretical approach. For instance,

one can ask, “If the visual system functions according to this theory, how to we expect

it to behave under this set of conditions?”. The answer to this question becomes an

empirical prediction, which may either be supported or refuted by subsequent experi-

ments. In either case, information is gained. Perhaps, as according to the philosophy

of Nassim Nicholas Taleb (2013), the failed predictions provide even more informa-

tion about the system of interest than do successful predictions. This informational

asymmetry stems from the fact that a successful prediction can only tell you that a

theory might be correct, whereas a failed prediction tells you the theory is certainly

not correct (under the given conditions).

To summarize, the aims of the modeling in this dissertation are to 1) character-

ize a complex system in states that are difficult to observe empirically, 2) assess the

soundness of conceptual models, 3) hypothesize about the processes leading to ob-

served phenomena, and 4) make predictions that can be empirically tested in order

to refresh the scientific cycle.

1.5.2 Scope

In this work, what is meant by motion perception is motion relative to the retina. It

might be said that when we track a moving object with smooth-pursuit eye movement

we are perceiving an object in motion, but in that case the sensorimotor system works

to stabilize the image on the retina such that there is minimal motion relative to it.

Pursuing the interrelationship between motion relative to the retina and the initiation

and termination of eye movements is an extremely important step in developing a full
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account of visual perception. However, it is beyond the scope of the current work, and

the discussion will have to be bracketed for the time being. As such, the timescales

of interest for the current work are in the range from tens of milliseconds to several

seconds, the temporal range over which eye fixations typically last.

Additionally, the models developed herein propose a structure on which dynamic

interactions can take place between various detectors and levels of processing (de-

scribed in detail in the text), out of which the percept may emerge in response to a

stimulus. What is not explored in this work is the genesis of such a structure. That

is, nervous systems with perceptual abilities do not materialize all at once, but are

a product of formative processes at multiple timescales; namely, evolution, develop-

ment, and learning. To the extent that the structure remains a viable theoretical

entity, future work should seek to uncover the processes of generation that allow such

a system to emerge in the world in a way that provides utility and functionality to

an organism. This is an area in which little is understood scientifically at present,

as the study of self-organizing systems typically focuses on spontaneous processes in

systems where the parts are given and there is no clear functional role for the system

to fulfill. Biological systems are distinct in that the parts are not simply given, but

also emerge out of the same process that the parts ultimately serve; i.e. they are

autopoietic (Varela et al., 1974). As such, the self-organization of functional biolog-

ical structures have to be able to, in some sense, be constrained and pre-specified

such that they become heritable and can be operated on by natural selection.6. That

is, the functional structure of the nervous system is undoubtedly formed through

self-organizing processes, but in order for a function to (reliably) emerge out of a

self-organizing process, appropriate constraints must contextualize the formation of

6For a thorough treatment of this issue and attempt to begin a research program to better
understand this process, see (Doursat et al., 2012)
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the system which are presumably heritable.

1.5.3 Principles

The modeling in what is to follow obeys several principles that are not necessarily

true of all modeling approaches, and so are worth specifying explicitly. The models

presented are aimed to maintain a reasonable degree of biological plausibility. It is

widely presumed (with good reason) that it is the nervous system that underlies our

ability to perceive. As such, the models in this manuscript attempt to respect known

features of neural tissues. For instance, most neurons couple their activity through

chemical synapses. Action potentials facilitate the release of neurotransmitters at

synapses, which by definition can not be negative. Therefore, all of the coupling

between neural elements in the models are mediated by an interaction function that

only passes greater-than-zero values. This feature of the nervous system and some its

implications were explored by the cybernetician Manfred Clynes in the late 1950s and

early 1960s who noted that, for example, the organization of the early visual system

into complementary ON and OFF pathways for carrying information about luminance

increments and decrements, respectively, was a direct result of this physiological fact.7

Some of the implications of this inherent asymmetry in the context of motion detection

are discussed in detail in Chapter 3.

While the dissertation aims to develop models that are biologically plausible and

respect known features of the nervous system, it is necessary to specify a level of

7Clynes generalized this concept into what he termed rein control to capture the ubiquity of
this organizational principle in which two parallel channels are formed in order to carry information
about opposite polarities or directionalities in the nervous system; especially emphasized was mea-
suring rates of change of opposite sign. In many ways, Clynes’s rein control concept foreshadowed
the development of the counterchange detector, which depends on simultaneous oppositely-signed
derivatives. Whereas Clynes emphasized, for example, the complementary ON and OFF pathways
in the visual system, it will be seen in Chapter 3 that a viable and robust counterchange detector es-
sentially depends on rein control within a polarity channel. This could be thought of as second-order
rein control.
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granularity and abstract away from the details below this level. In a practical sense,

including all the known details of the physical substrate of the nervous system (e.g.

the atoms it is made of) is infeasible. In a theoretical sense, including only a certain

subset of underlying physical details is a way of forming a hypothesis about what the

relevant details are. As systems show qualitatively different behaviors at different

levels of analysis, a functional property at a given system-level may leverage the

emergent properties at a level below without the more micro-level details of the system

coming in to play. Such a condition could be verified by replacing some component

of the system with an alternative component that preserves the relevant emergent

property of the system while having a differing underlying structure, enabling the

system to function normally. Through careful analysis, it might be shown that some of

the excluded details do in fact matter to the macro behavior of the system. However,

even if this is the case, rigorously showing this would include demonstrating the

insufficiency of models excluding said detail. Additionally, limiting the number of

details makes the behavior exhibited by the model tractable. If a model (impossibly)

contained all the details of reality, the behavior of the model would be as mysterious

as the behavior of the real system, and no deeper understanding of the system could

be gleaned.

In this dissertation, neural elements are treated in an abstracted fashion. A neural

element may be conceived as a single neuron or a collection of neurons with similar

receptive fields and response properties.8 Neural elements have an internal activation

state which represents the degree of current excitation/inhibition of that element.

Individual action potentials are not modeled. Instead, the internal activation state of

a neuron passes through a threshold function in order to have an effect on projected-to

8Throughout the text, when referring to models, the terms neural element and neuron are used
interchangeably. This is not meant to imply that a neuron necessarily represents a single cell in
nervous tissue.
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neurons. This threshold function nonetheless respects the inherently positive value of

action potentials. Details of ion channels and other small-scale physiological functions

are not modeled. Instead, neurons are assumed to have an intrinsic stability that can

be modeled as an fixed-point attractor. These are some of the abstractions inherent

in the current approach, whether they are the appropriate ones to make remains to

be determined.

1.6 STRUCTURE OF THE DISSERTATION

In what follows, a theory for the visual perception of object motion is developed.

This theory emphasizes the aspect of motion perception that induces the invariance

of identity over changes in location. In other words, it focuses on the role that visual

information plays in determining what moved where. Remarkably, such perception

does not depend on the correspondence of the detailed features of two visual items

(e.g. a red square might be seen to move and become a blue circle, yet the underlying

identity of the thing that has moved is perceived as stable). It is argued that the

counterchange principle underlies the perception of object motion, as opposed to other

forms of motion perception.

First, a brief review and history of the study of motion perception is presented.

This is intended to contextualize the current work relative to both early motivating

questions in the study of perception and more recent computational and mathematical

approaches to understanding the visual perception of motion. In particular, the

conceptualization of motion perception as the detection of motion energy (energy in

the spatiotemporal Fourier domain of the stimulus) is introduced, which has served as

a common theoretical basis for much of the modern work on understanding low-level

motion detection processes.
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The first study motivates the use of counterchange detection as a basis for the

detection of object motion. Minimal mathematical models and computational sim-

ulations compare the implications of counterchange detection with commonly used

‘motion energy detection’ mechanisms (the elaborated Reichardt detector serves as a

representative), and compares these results with human responses. This study serves

two important theoretical purposes. 1) The random-dot cinematogram used presents

a challenge to any motion detection scheme and therefore successful detection shows

robustness and viability of the detection scheme to non-trivial stimuli. 2) The lack

of fit between the human responses and the predictions of motion energy detection

cast doubt on the explanatory sufficiency of such schemes.

The second study builds on the first in two important ways. Firstly, it extends

the minimal mathematical model of the first study into the framework of dynamical

neural modeling. This allows the model to apply to a much larger (less constrained)

class of stimuli and to ask questions about the dynamical aspects of object motion

perception (e.g. perceptual stability, switching behaviors, history dependence and

hysteresis). Secondly, it proposes a perceptual principle to account for the nature

of the perceived correspondence between visual elements in ambiguous stimuli and

embodies that principle in a neural network architecture.

Finally, summaries and concluding remarks are presented. Limitations of the

current approach as well as future directions of research are discussed.
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Chapter 2

A Brief History of the Study of Motion

Perception

2.1 GESTALTISTS AND APPARENT MOTION

The scientific study of motion perception arose as a coevolutionary complement to

the technological achievements leading up to and culminating in motion pictures.1

As is well-known, motion pictures present a sequence of static images that create

the impression of motion with no literal physical motion present. As early as 1875,

Sigmund Exner had published work detailing this so-called ’apparent motion’ (AM),

where sequences of changes in static lights or images elicit a motion percept in hu-

man observers. It was Max Wertheimer, one of the founders of the famous Gestalt

Psychology movement, who saw AM as an opportunity to develop a new kind of psy-

chological theory. His 1912 manuscript, Experimentelle Studien über das Sehen von

Bewegung [Experimental Studies on Seeing Motion], carefully explored many variants

of the AM stimuli and discussed theoretical implications of the experiments.

In his manuscript, Wertheimer began to hint at what would become the mantra

of Gestalt Psychology, later articulated by Kurt Koffka as “the whole is different than

the sum of its parts”. In the context of AM, this implies that the two static images,

1For a wonderful overview of various domains in which technological progress preceded theoretical
understanding see Taleb (2013).
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presented in sequence, elicit a percept that is over and above a simple combination

of the two images; namely that motion is a property that does not belong to either

of the static entities, but is an emergent percept that cannot be reduced beyond the

entire spatiotemporal pattern involving both images and their relative timing. In

other words, one image (or flash of light) does not elicit half of a motion percept,

but together the two images make a whole motion percept. This theoretical insight

opened up a world of inquiry surrounding the nature of the relationship between

parts and wholes. The exploration of this relationship continues to be one of the

most exciting and challenging aspects of science, both within perceptual psychology,

and in the broader context of complex systems science where one might ask how parts

and wholes relate in all types of systems.

The current work presented here can be seen as a clear descendent of the Gestalt

movement. This manuscript seeks to uncover the relationship between certain kinds

of stimulus patterns and the percepts associated with them, and to explore how the

local interactions of many parts can give rise to global percepts that are not simply the

sum of those parts. All of the stimuli used are essentially elaborations on the simple

AM stimulus. Even the simple AM stimuli used in the earliest experiments high-

light points of theoretical controversy and uncertainty. There is no universally agreed

upon mechanism underlying the perception of apparent motion. Several models of

directionally-selective detectors are briefly discussed below, including the counter-

change motion detector which is elaborated throughout this manuscript.
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2.2 MODELS OF MOTION DETECTION

2.2.1 Spatiotemporal Correlators

In 1958, Bernhard Hassenstein and Werner Reichardt founded the first institute to

explicitly connect the studies of physics and biology, the Max-Planck Institute for

Cybernetics in Tübingen, Germany. They famously developed a mathematical model

of the optomotor response of a beetle subjected to various spatiotemporal patterns

of light. Essentially, the model consisted of a motion detector that received input

from two spatially-separated light detectors. In order to detect motion, one input

was delayed and compared to the instantaneous response of the other input via mul-

tiplication. If the signs (polarity) of the inputs were the same, a positive product

would be produced and the detector would signal motion in the direction from the

delayed input to the non-delayed one. If the signs of the inputs were different, a

negative product signified motion in the opposite direction, from the non-delayed

to the delayed input. This basic delay-and-compare architecture has served as the

basis of several models to follow, and in general is known as a spatiotemporal cor-

relator model, where positive correlations are associated with ’forward’ motion, and

negative correlations as ‘reverse’ motion. For examples of this class of model, see

(Reichardt, 1961; van Santen and Sperling, 1984, 1985; Adelson and Bergen, 1985,

Watson and Ahumada, 1985). Some of the theoretically critical implications of this

class of detectors are explored in detail in Chapter 3 (in which they are referred to

as spatiotemporal comparators).

2.2.2 Gradient Detectors

Gradient detectors (e.g., Marr and Ullman, 1981) detect local motion by measuring

the local temporal derivative and dividing it by the spatial derivative of luminance.

19



Although this model is not explored in detail in this manuscript, typical gradient-

detectors that make measurements at zero-crossing of the image suffer from some

of the same shortcomings of spatiotemporal correlators. Namely, they express a

symmetry with respect to polarity-inverted stimuli that is not evident in human

perception. Again, this is discussed at length in Chapter 3.

2.2.3 Barlow-Levick Detectors

The Barlow-Levick model of motion detection (Barlow and Levick, 1965) depends

on veto-inhibition in the non-preferred motion direction. When a stimulus is moved

across the detector’s receptive field in the non-preferred direction, an inhibitory signal

is propagated from the initially-stimulated region to the rest of the receptive field,

such that any further stimulus across the receptive field does not elicit an excita-

tory response. When a stimulus moves in the preferred direction, inhibition is not

propagated forward and continuous excitation of the detector is achieved. One of the

consequences of this scheme is that stationary stimuli will result in excitation of the

detector. Thus, although it is directionally selective in the sense of giving a differ-

ential response to motions in opposite directions, it is not sensitive only to motion,

but also to static stimuli. For this reason, and a lack of elaboration with respect to a

front-end (i.e. spatial filtering), the Barlow-Levick detector is not explored in depth

in this dissertation.

2.2.4 Counterchange Detectors

As discussed briefly above, the concept of a counterchange mechanism was first pro-

posed by Hock et al. (2002) in order to account for single element apparent motion,

where only one visual element is seen to move. Again, a counterchange detector mea-

sures the (approximate) temporal coincidence of a decrease and increase in activation
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at a pair of locations, with motion being signified from the location of decrease to the

location of increase.

Hock et al. (1997) introduced the concept of generalized apparent motion (GAM),

where two visual elements are simultaneously visible during each frame of the stim-

ulus. In GAM, three luminance values are relevant for defining a stimulus, the lu-

minance of the background, and the two luminances that are exchanged between the

two visual elements on each frame change.2 In GAM, a luminance change of a visual

element toward the background luminance is presumed to elicit a decrease in local

detector activation, and a move away from the background to elicit an increase n

local detector activation.

Hock et al. (2002) developed a metric, the background relative luminance contrast

(BRLC) which they found to be a strong predictor of human perception. The BRLC

is calculated as the difference in the two element luminance levels (L1 − L2) divided

by the difference between the average luminance level of the two elements (Lm) and

the luminance of the background (Lb): BRLC = (L1 − L2)/(Lm − Lb). In this

framework, standard apparent motion (SAM) is considered a special case where L2

(the lower luminance level of the elements) is equal to Lb; in other words, when only

one visual element is visible at a time. In this case, BRLC = 2.0, and motion is

typically perceived. When BRLC is low (i.e. when the frame-to-frame luminance

change of the elements is small), motion is typically not perceived.

Several experiments by Hock et al. (2002) also showed strong evidence that coun-

terchange is the informational basis underlying the perception of apparent motion.

They explicitly showed that the sequential order of changes in luminance did not de-

termine the direction of perceived motion. That is, although motion is perceived from

2This distinction between GAM and standard apparent motion (SAM), where only one visual
element is visible at a time is especially relevant with respect to the concept of token-tracking, which
is discussed in context of the motion correspondence problem in Chapter 5.
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the location of decreasing activation to the location of increasing activation, decreas-

ing activation did not necessarily have to precede increasing activation. This calls into

question accounts of motion perception that appeal to sequential changes at different

locations in visual space as being the basis for the perception of motion. They also

showed that certain conditions, for example the simultaneous asymmetrical increases

in activation at two locations, did not elicit motion percepts, while spatiotempo-

ral correlator models of motion perception (e.g. the elaborated Reichardt-detector)

predicted that motion would be perceived.

While this formulation is useful in the case of single element AM, in some instances

it is difficult to say a priori what ought to count as foreground and background. For

example, drifting sine gratings, an extremely common stimulus in psychophysical

studies of motion perception, are composed of (luminance) peaks and valleys, but

it is not clear that there are any perceptual boundaries between background and

foreground. Hock et al. (2009) nonetheless showed that the counterchange detector

is able to detect motion in these conditions.

This problem of defining a background is also evident when it comes to dense

random dot displays, where every pixel of the display is filled with either a white or

black dot with a probability of 0.5, and there is no obvious figure-ground relation.

This problem is addressed in Chapter 3, in which it is shown that it is sufficient to

measure increases and decreases in the responses of half-wave rectified spatial filters

in order to reliably detect counterchange, and no explicit figure-ground segregation

is necessary a priori.

More detailed formulations of a minimal mathematical counterchange detector

can be found in Appendix A, and continuous-time dynamical version is instantiated

in the neural network described in Chapter 5 and Appendix C.

22



2.3 OPTIC FLOW AND MOTION ENERGY

As mentioned above, Gibson’s work with military pilots allowed him to recognize the

importance of global optic flow patterns for guiding locomotion. What Gibson did

not propose was a mechanism to account for this perceptual capacity. Thinking of

motion perception as patterns of optic flow emphasized the need for low-level motion

detectors tiling the visual field, whereas the perception of AM as in Wertheimer’s

experiments could potentially be accounted for by a capacity-limited system that is

able to track only a small number of features over time.

Following on Campbell and Robson’s (1968) work which introduced the concept

of Fourier decomposition into visual perception of static images, several authors (e.g.

Adelson and Bergen, 1985; van Santen and Sperling 1984, 1985; Watson and Ahu-

mada, 1985) have contributed to the conception of motion perception as a process

that can be understood in terms of motion energy extraction. To calculate the motion

energy of a stimulus, one simply transforms the stimulus from the spatiotemporal do-

main to the frequency domain. In the presence of motion, the distribution of Fourier

energy will be biased to certain regions of the space, and the direction (and velocity)

can be estimated. However, motion energy by itself cannot explain perception, as it

is not clear how the nervous system would accomplish the extraction of this infor-

mation. Although several models have been constrained by this theoretical framing

(e.g. the elaborated Reichardt-detctor, van Santen and Sperling, 1985), at best they

are only approximating the local Fourier energy and do not correspond to it in a

one-to-one mapping.3 As such, the usefulness of the motion energy concept is not

evident in the current effort. Instead, emphasis is laid on models of the processes of

motion detection, rather than any abstract mathematical transformations of the raw

3This is shown explicitly in Appendix B for an elaborated Reichardt detector in response to
two-frame polarity-inverted AM stimuli.
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stimulus.

2.4 CONCLUSION

The study of motion perception has a rich history in perceptual psychology and

continues to be an exciting area of inquiry. Modern technology has opened the door

to both probe empirically into the neural tissue that supports perceptual processes in

unprecedented ways, as well as build and test computational models whose complexity

is beyond the scope of analytic techniques. Research on perception will continue to

capture the imagination, as perception is intimately related to what it means to be a

conscious agent in the mysterious world we find ourselves in.
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Chapter 3

Contrasting Accounts of Short-range

Motion: Direction and Shape Perception

in a Random-dot Cinematogram

This chapter is adapted from an article originally published as Norman, J., Hock,

H., & Schöner, G. (2014). Contrasting accounts of direction and shape perception in

short-range motion: Counterchange compared with motion energy detection. Atten-

tion, Perception, & Psychophysics, 1-21.

3.1 INTRODUCTION

In an ecological context, many organisms benefit from minimizing their visual profile

via camouflage in order to remain undetected (Stevens and Merilaita, 2009). As a

coevolutionary complement, organisms have been selected with visual systems that

are, at least in some cases, able to overcome the challenges in detecting and segregat-

ing entities whose static visual cues are obscured by camouflage. One basis for the

perceptual ‘breaking’ of camouflage entails the detection of coherent motion, which

provides the opportunity to group portions of the visual field into connected wholes

(as in the Gestalt principle of common fate) and to thereby segregate a moving entity
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from its background in order to determine its shape1from its motion. The short-

range motion paradigm (Braddick, 1974), in which portions of a random field of ele-

ments are coherently displaced, provides a means for studying this ability to detect

and segregate entities from their surrounding environment by virtue of their motion

alone.

In the original 2-frame short-range motion paradigm (Figure 1), each square ele-

ment of a random checkerboard has a 0.5 chance of being white (or black). A segment

of the random checkerboard that is presented during the first frame is rigidly displaced

and re-presented during the second frame (the coherent figure) while the surround-

ing elements are independently re-generated (the incoherent ground). Because the

figure and background portions are generated in the same manner, the displaced ran-

dom, incoherently moving background elements, and thereby determine its shape.

As the size of the frame-to-frame displacement of the figure is increased, perceptual

judgments become less consistent, with subjects reporting a loss in coherence of the

moving figure (Braddick, 1974; Sato 1989).2In this article, psychophysical experiments

and computational simulations investigate the motion mechanisms that are the ba-

sis, in the two-frame short-range motion paradigm, for the perception of motion, the

conditions under which it is coherent enough to segregate a moving figure from its

background, and the perception of the figure’s shape from the coherent motion.

Short-range motion perception has been considered a paradigmatic case for mo-

tion energy detection3(Cavanagh and Mather, 1989; van Santen and Sperling, 1985;

1By shape we mean the ability to discriminate the orientation of the displaced figure. Although
this does not put an explicit emphasis on the boundaries of the figure, they can be perceived at
small displacements.

2The focus of this article is on the differential effects of figure displacement for same- vs. inverted-
polarity conditions. Dmax, a measure of the maximum displacement for which motion is perceived,
is not determined.

3Rather than focusing on the features of the spacetime Fourier transform of the stimulus per
se, our emphasis is on mechanisms proposed to detect Fourier-based motion energy, specifically the
elaborated Reichardt detector.
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Adelson and Bergen 1985; Marr and Ullman, 1981). A major feature of models of

Fourier- based motion energy detection (Adelson and Bergen, 1985; van Santen and

Sperling, 1985) is that they predict reverse-phi motion (Anstis, 1970). As shown in

Appendix B, motion is predicted in the direction opposite to that of the displacement

when the luminance polarity of the visual elements composing a stimulus is inverted

displacement

Fr
am

e 
1

Fr
am

e 
2

Background (incoherent)

Figure
(coherent)

Background (incoherent)

Figure
(coherent)

FigureBackground Background
Frame 1

Frame 2

(a)

(b)

Figure 3.1: A sketch of the two-frame short-range motion stimulus. The
figure region is coherently displaced (either left or right) from Frame 1
to Frame 2 while the incoherent dynamic background is updated ran-
domly. (a) shows the layout of the 2-dimensional experimental stimulus,
(b) shows a 1-dimensional slice of the random dot cinematogram (with
fewer dots than in the experiment). The stimulus used for the simulations
below is also of the 1-dimensional form depicted in (b).
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between successive frames (i.e. white elements become black and black elements be-

come white). The strength of this reverse-phi motion is identical to the strength of

motion in the direction of displacement when luminance polarity remains the same.

Consequently, empirical evidence for asymmetry in motion and shape perception be-

tween the same- and inverted-polarity stimuli would indicate that motion perception

was not determined solely by motion energy detection.

Experimental results relevant to this determination have been reported by Sato

(1989) who tested both direction of motion and shape discrimination with both same-

and inverted-polarity versions of the short-range motion stimulus. Although he re-

ported that direction discrimination was similar for the same- and inverted polarity

stimuli, this symmetry was not consistently obtained in all his experiments. When-

ever performance was below ceiling, direction discrimination was poorer for inverted-

polarity stimuli.

Moreover, shape discrimination was severely deteriorated for the inverted-polarity

stimuli, regardless of the size of the displacement. If these asymmetries were empiri-

cally confirmed, it would provide evidence that motion perception and the perception

of shape from motion in the short-range paradigm is not primarily determined by

1st-order motion energy detectors. Instead, or in addition, an alternative motion

detection mechanism that is sensitive to the difference between same- and inverted-

polarity stimuli would be implicated. The alternative mechanism that is evaluated

here entails the detection of counterchange; i.e., oppositely signed changes in activa-

tion for pairs of spatial filters at different spatial locations (Hock, Gilroy and Harnett,

2002; Hock, Schöner and Gilroy, 2009).

Because the symmetry, or lack thereof, of motion and shape perception in same-

and inverted-polarity conditions is theoretically critical, the current study begins

with a psychophysical experiment that re-evaluates and extends Sato’s (1989) re-
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sults. Computational simulations then determine how well the results obtained in

the experiment are accounted for by Fourier-based 1st-order motion energy detection

(van Santen and Sperling’s [1985] elaborated Reichardt detector, which is based on

Reichardt’s [1961] motion detection model) compared with the non-Fourier detection

of counterchange (Hock et al., 2009). For both models, investigating shape judgments

in addition to motion direction judgments requires addressing the spatial arrangement

of motion detectors in addition to their internal structure.

3.2 EXPERIMENT

The results of Sato’s (1989) third experiment came closest to providing evidence for

symmetry in direction discrimination for standard (same-polarity) and reverse-phi

(inverted-polarity) motion. The possibility that this was due to ceiling effects for

highly practiced observers was suggested by the lack of symmetry in his first two

experiments, which used the same, though presumably less practiced observers. In

addition, in Sato’s second experiment, the advantage in direction discrimination for

standard motion compared with reverse-phi motion became more pronounced when

reducing the size of the elements lowered discrimination performance from ceiling.

The experiment closely resembles Sato’s (1989) third experiment, in which par-

ticipants indicated both the direction of motion and the shape of the displaced. In

order to reduce the possibility of ceiling effects, testing was done primarily with naive

participants who received minimal practice at the task and no feedback regarding the

accuracy of their discriminations.
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3.2.1 Method

Stimuli

The dynamic random checkerboard stimuli, which were generated with a Mac Mini

computer, were centered in a Mitsubishi Diamond Pro 930SG monitor and viewed in

a dimly lit room from a distance of 58 cm (maintained by a chin rest). As in Sato

(1989), the stimuli were composed of two frames, each with a random checkerboard

composed of 120x120 square elements that was presented against a black background.

Each square element composing the checkerboards subtended a visual angle of 2x2

min (one pixel per check), and the entire checkerboard subtended a visual angle of

4x4 deg. The luminance of the white elements was 76.6 cd/m2 and that of the black

elements was 0.0 cd/m2.

The first frame of each 2-frame trial was generated by independently assigning

each square element of the checkerboard to be either white or black with a 0.5 chance

of each. During the second frame, a region (the figure) was selected from the center

of the first frame and displaced by either 2, 4, 6, 8, 10, 12, 14 or 16 element-units

(4 to 32 min) to the right or left. The rest of the checkerboard (the background)

was randomly re- generated, again with a 0.5 probability of each element being white

or black. The figure was either a vertically oriented rectangle (60x30 element-units;

120x60 min) or a horizontally oriented rectangle (30x60 element-units; 60x120 min).

In the same-polarity condition, the luminance of the square elements composing the

displaced figure was the same during both frames. In the inverted-polarity condition,

the luminance of the square elements composing the displaced figure was inverted

during the second frame; white elements became black and vice versa.
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Procedure

To familiarize participants with the task, a version of the random checkerboard stim-

ulus was shown in which all but the left-most and right-most two columns of elements

from the entire 120x120 field of elements constituted the figure, which was displaced

rightward or leftward by two element-widths (i.e. there was not an incoherent back-

ground from which coherent motion had to be segregated). In order to maintain the

size of the field for the second frame, the two columns at the leading edge of the

figure were removed rather than displaced, and the trailing two columns were ran-

domly re-generated. This was done for both same- and inverted-polarity versions.

Participants viewed these demos without feedback for approximately 5 min, until

they indicated that they were able to perceive both leftward and rightward motions.

Shape discrimination was then explained by means of drawings of the tall-thin and

short-wide rectangles, and a demo stimulus composed of ten 138 msec frames, with

2-element displacements during each frame (without polarity change). The figure

shapes were easily discernible for this demo. A similar shape demo was not provided

for the inverted- polarity condition as it did not make the shapes discriminable and

so did not aid in describing the task. Participants other than the first author received

no practice with what would become the test stimuli.

As in Sato (1989), each test trial began with the participant fixating in the center

of a 8x8 min square arrangement of four 2x2 min white dots, which was presented

for 0.5 sec against a black background. This was followed by a blank black screen for

0.5 sec, then the two stimulus frames were presented for 138 msec each, and finally,

another blank black screen. After each trial, the participant made two two-alternative

forced- choice responses by pressing keys on the computer keyboard to indicate: 1)

the direction in which the figure was displaced (either right or left), and 2) the shape
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of the displaced figure (either a vertically or horizontally oriented rectangle). There

was no feedback.

Design

Blocks of 128 test trials were generated by the orthogonal combination of 2 displace-

ment directions, 8 displacement distances, 2 figure orientations, and 4 repetitions.

Order was randomized within sub-blocks of 32 trials. The same- and inverted-polarity

stimuli were tested in alternating blocks of trials. Each participant was tested for 7

blocks of trials for each polarity condition for a total of 14 blocks of trials.Participants.

In addition to the first author, three students from Florida Atlantic University volun-

tarily participated in this experiment. They were naive with respect to its purpose.

All participants had normal or corrected-to-normal vision.

3.2.2 Results

The results for each of the four participants are presented in Figure 2. Direction

discrimination is graphed with respect to the actual figure displacement, regardless of

the polarity condition. Thus, reverse-phi perception is indicated by responses which

are systematically in the opposite direction of the displacement, and therefore below

chance level (i.e. below 0.5). As in Sato (1989), both direction and shape discrimi-

nation decreased with increasing displacement of the rectangular figure, with shape

discrimination falling to chance at smaller displacements compared with direction dis-

crimination. Most importantly, the results for each of the four participants indicated

a clear asymmetry in both direction and shape discrimination between the same- and

inverted-polarity conditions; both were superior in the same-polarity condition.

A two-way repeated measures ANOVA performed on the arcsine transformed pro-

portion data indicated that the effects on direction discrimination of displacement

32



size, F (7, 21) = 55.74, p < .001, luminance polarity (same or inverted), F (1, 3) =

29.25, p < .05, and the interaction between polarity and displacement size, F (7, 21) =

14.37, p < .01 all were statistically significant. (In the inverted-polarity condition, re-

sponses in the reverse phi direction were treated as correct, so the complements of the

proportion correct responses were used in the ANOVA.) For shape discrimination, the

effect of displacement size, F (7, 21) = 11.93, p < .001, and the interaction of polarity

with displacement size was statistically significant, F (7, 21) = 5.85, p < .01. For each

participant, shape discrimination was better in the same- than the inverted-polarity

condition for the small displacements, but because of floor effects and the small sample

size, the effect of polarity fell short of statistical significance, F (1, 3) = 7.77, p = .069.

Because there was a consistent trend of shape discrimination being better in the

same-polarity condition for all participants, especially evident at the smallest displace-

ment of 2-elements, a log-likelihood ratio test was performed for each participant as

well as their pooled scores to evaluate the null hypothesis that the probability correct

was identical in the two contrast conditions. That is, let pS (pD) be the proportion

correct in the same-polarity (inverted-polarity) condition and p be the pooled pro-

portion correct across both conditions, then the null hypothesis is pS = pD = p. If

kS(kD) is the number of correct responses in the same- (inverted-) contrast condition

and nS(nD) is the number of incorrect responses in the same- (inverted-) polarity

condition, then the likelihood for the unconstrained model can be expressed

LogLU = kSlog(pS) + nSlog(1− pS) + kDlog(pD) + nDlog(1− pD) (3.1)

and the constrained model as

LogLC = (kS + kD)log(p) + (nS + nD)log(1− p). (3.2)

Then under the null hypothesis pS = pD = p the test statistic

X = 2(LogLU − LogLC) (3.3)
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Figure 3.2: Mean experimental results for individuals for (a) direction
judgments (left or right) and (b) shape judgments (wide or tall rectan-
gle). Proportion of correct responses are plotted as a function of figure
displacement in dot-units. Solid lines indicate the ‘same-polarity’ condi-
tion, and dashed lines indicate ‘inverted-polarity’ condition. Data points
in (a) that are below chance (0.5) indicate a systematic bias to see motion
in the direction opposite to displacement (reverse-phi).
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is asymptotically distributed as chi-square with df = 1 (degrees of freedom determined

by the number of free parameters in the constrained models subtracted from the num-

ber of free parameters in the unconstrained model). For each individual and for the

pooled scores, the constrained (null) model was rejected in favor of the unconstrained

model with p < .001 (with the greatest individual p-value = 4.4728 × 10−6; individ-

ual chi-square values = 56.69, 57.28, 71.86, 21.05; pooled chi-square value = 123.39).

These results suggest that the probability of a correct response in the same-polarity

condition was significantly different than the probability of a correct response in the

inverted- polarity condition at the displacement of 2-elements, for each participant

individually and for their pooled responses.

If the effects on direction and shape discrimination were symmetrical, there would

have been neither differences between the same- and inverted-polarity conditions nor

significant interactions with the size of the figure displacement. Further, the likelihood

ratio test would have indicated no difference between the probability of a correct shape

response in the same- and inverted-polarity conditions. The results indicate that this

was not the case.

3.3 COMPUTATIONAL SIMULATIONS

Computational implementations of van Santen and Sperling’s (1985) elaborated Re-

ichardt detector (ERD) and Hock, Schner and Gilroy’s (2009) counterchange detec-

tor, which are detailed in Appendix A, were compared with respect to their ability

to simulate the results of the experiment described above. For the purpose of these

simulations, the two-dimensional random checkerboard stimuli were reduced to one-

dimensional vertical bars whose luminance, white or black, was randomly determined,

as was done by van Santen and Sperling (1985), Adelson and Bergen (1985), and Sato
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(1989). Consistent with the stimuli in the experiment described above, a portion of

the random-bar stimulus was rigidly translated from the first frame to the second (the

‘figure’) while the rest of the stimulus (the ‘background’) was randomly generated in

both the first and second frames. The stimulus was 240 bars long in the simulations.

There were two figure lengths, analogous to the two figure shapes in Experiment 1: a

figure that was 60 bars long represented the thin-tall rectangle, and a figure that was

120 bars long represented the wide-short rectangle. In the inverted-polarity condi-

tion, bars within the figure that were white during the first frame were black during

the second frame and vice versa. The figure was displaced by 2, 4, 6, 8, 10, 12, 14,

or 16 bar-widths, the same displacements that were probed in the experiment. The

‘random bars’ provided the input stimulus to the motion detector ensembles.

Coincidence detection and directional selectivity

Both models use the multiplication of activity patterns in pairs of spatially separated,

one-dimensionalized edge filters (an excitatory zone and an adjacent inhibitory zone)

to establish a correspondence between them4. However, the nature of the patterns

whose coincidence is detected is different in the two models.

The ERD is sensitive to sequential changes in edge-filter activation; i.e., instanta-

neous edge-filter outputs are compared at different points in time. This is achieved

by delaying the output of one edge filter in order to temporally align activation that

occurs at its location at one moment in time with the pattern of activation at a paired

location at a later moment in time so that the patterns can be compared. At the level

of the subunits where multiplication occurs (before the difference between the two

subunits is taken), positive products signal motion from the location of the edge filter

4The scale of the edge filters for the ERD was determined by the quadrature constraint of the
model. The edge filters for the counterchange model were selected to be most responsive to the size
of the checks in the checkerboard stimulus.
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whose activity has been delayed to the location of the edge filter whose activation

has not been delayed, while negative products signal motion in the direction from the

location of the non-delayed edge filter to the delayed one. 5

Although temporal coincidence is also central to the counterchange motion detec-

tor, a temporal delay is not required in order for it to be directionally selective. This

is because the counterchange detector is sensitive to a particular pattern of simulta-

neous changes in edge filter activation: a decrease in the activation of one edge filter

and a simultaneous increase in the activation of a paired edge filter. Rather than

deriving a directional asymmetry from sequentiality, as in the ERD, an asymmetry in

the direction of activational change in local spatial filters is established, with motion

beginning from a location of a decrease in spatial filter activation and ending at a

location of an increase in spatial filter activation. This is irrespective of the sequen-

tial order of the stimulus events producing the decreases and increases in activation

(Gilroy and Hock, 2009; Hock et al., 2009).

Edge filter polarity

In the ERD model, the multiplication of instantaneous outputs of the paired edge

filters occurs irrespective of whether they are positive (excited) or negative (inhibited).

On this basis, it is sufficient to have only one edge filter polarity for the ERD model

(e.g., excitatory zone on the left, inhibitory zone to its right) as the entire range

of positive and negative edge filter outputs take part in motion computation. In

other words, both edge-types are represented, one by positive values and the other

by negative values. For example, if more white elements fall in the positive lobe

5Typically, Reichardt-type detectors are described as detecting motion in the direction from
the delayed input toward the non-delayed input. This, however, is not strictly true in the ERD
formulation, as each subunit may carry information about two (opposite) motion directions (Adelson
and Bergen, 1985; Lu and Sperling, 2001).
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than in the negative lobe of an edge filter during Frame 1 (positive response), and

more white elements also fall in the positive lobe of a paired edge filter during Frame

2 (another positive response), the product of the two positive responses is positive.

Further, if more white elements fall in the negative lobe than the positive lobe of

the same edge detector during Frame 1 (negative response), and more white elements

fall in the negative lobe of the edge filter with which it is paired during Frame 2

(another negative response), the product of the negative responses is also positive

for the ERD. Thus, nothing would be added to the computations by including edge

filters with reversed positive/negative polarity. It also is noteworthy that if a negative

edge-filter response in Frame 1 is multiplied with a positive response in Frame 2 (or

vice versa), a negative response is elicited, indicating motion in the opposite direction

than that of a positive response. Importantly, this is the basis for the ERD model

signifying motion in the reverse-phi direction (although negative-valued products are

also produced with non-inverted- polarity stimuli). These edge-filter products occur

at the level of the ERD subunits, from which the difference is taken to determine the

final motion-detector output.In contrast, in the counterchange model the activation

values of edge filters are half-wave rectified, so only positive outputs are subject to the

subsequent change- detection that leads to motion detection. This is in line with the

principle of counterchange motion pairing ‘like’ edges, detecting their disappearance

at one location and appearance at another location (this is discussed in more detail

in the discussion). For this reason, the model includes two edge-filter polarities. The

filter with its excitatory zone on its left side captures inputs in which there are more

white elements falling on the filter’s left side, whereas the filter with the excitatory

zone on the right captures inputs in which there are more white elements falling on

the filter’s right side. The two edge-filter polarities compute motion in parallel.
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Opponency

The ERD is an opponent system; it takes a difference between its two component

subunits for its final output. Each subunit can carry information about both leftward

and rightward motion because they each can have negative or positive values. Taking

the difference between the subunits gives the final motion output. Net positive out-

puts signal motion in one direction (i.e. rightward) and net negative outputs in the

opposite direction (i.e. leftward). Furthermore, opponency is necessary to prevent the

ERD from signaling motion in response to stationary patterns. For purposes of com-

paring the two models, the counterchange model was arranged in a similar opponent

fashion with leftward motion signals being subtracted from rightward signals. This

is not a necessity for the counterchange model because unlike the ERD, leftward and

rightward motion signals are separable, and motion cannot be signaled for stationary

stimuli. Therefore, by convention, rightward motion is represented in both models

by positive values and leftward motion by negative values at each location along the

detector arrays.

Spatial arrangement of motion detector arrays

For both ERD and counterchange motion detectors, the distance between the centers

of the pair of edge filters that provide input to each motion detector is referred to

as that detector’s span. (This is illustrated in Figure 3, which shows the general

layout of both the ERD and counterchange detectors.) Both models included arrays

of detectors with spans of 2, 4, 6 and 8 bar-widths. Within each array, the detectors

densely covered the entire stimulus. Edge filters that served as input to the motion

detectors were located every 1
4
of a bar width across both the displaced figure and its

background. Following van Santen and Sperling’s (1985), there were multiple layers
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of motion detectors, each layer corresponding to a particular span. In the current

simulations this meant that there were four layers.Direction-discrimination. In order

to simulate the direction discrimination task, for each trial all motion signals were

summed across space and across layers and the sign of the sum indicated the motion

direction decision (as rightward motions were positive and leftward motions were

negative). Within each layer, responses were summed across all motion detectors

covering the 240 random bars constituting the entire stimulus (not just the 60 or 120

random bars corresponding to the displaced figure). Summing activation over the

entire field of random bars was significant because it meant that motion direction

Span

Input

Motion
Detection

Scale (width) 
of Edge Filters

Output

Figure 3.3: General layout of both motion detectors. A pair of edge
filters separated in space serve as inputs to subsequent motion detection,
the distance between the center of their receptive fields is referred to as the
detector’s span. For the ERD, the size of the span and the scale (width)
of the edge filter co-vary in order to maintain an approximate quadrature
relationship (i.e. so there is approximately a 90-degree phase shift with
respect to their preferred spatial frequency). The counterchange detector
has no such constraint, and in the current model, the scale of the edge
filters is held constant over a range of spans. For both models, detectors
are arranged in layers, and each layer corresponds to a specific span.
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was being discriminated by the models without pre- determination of the shape of

the figure. That is, figure segregation was not considered a prerequisite for direction

detection. This is consistent with the shape of the figure being derived from the

motion rather than vice versa. Motion detector responses were also summed across all

layers (spans). That is, all spans contributed equally to the determination of motion

direction. This implies that direction discrimination does not depend on motion

signals being concentrated at a particular span or in a particular image location.

For each trial, therefore, a positive sum (the positive component is greater than the

negative component) signifies rightward motion perception, whereas a negative sum

signifies leftward motion perception. In this way, both models make the same kind of

forced-choice responses as the participants in the actual experiments. The proportion

of trials that motion perception was signified in the direction of the displacement

was determined for 224 repetitions (matching the aggregated number of experimental

trials for the four participants in the experiment). Proportions in the direction of

the displacement that were less than 0.5 indicated that a majority of the simulated

responses were in the so-called reverse-phi direction.

Shape-discrimination. The ability of participants in the experiment to discrim-

inate the shape of the displaced figure indicates that the detected motion could be

used to segregate the figure from its background and determine its shape. This was

simulated for both the ERD and counterchange models with templates that corre-

sponded to the width of the two figures. The two templates functioned as filters

whose inputs were the spatial distribution of motion signals along the stimulus array.

The simulations for the experiment were based on two principles of coherent mo-

tion supporting the perception of shape-from-motion. Accordingly, coherent motion

arises from regions of activated motion detectors that: 1) are in the same direction,

and 2) are of the same span. A high density of such signals within a template’s
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positive area compared with its negatively weighted flanking regions would result

in a positive template output. The same-span constraint on motion coherence was

consistent with the two-dimensional percepts elicited by the rigidly translating fig-

ures in the experiment. (The possibility of relaxing this constraint to account for

recovery of depth information is addressed in the discussion.) One template was

composed of a positive interior region matching the relatively short one-dimensional

size of one figure (60 bar-widths) and another template was composed of a positive

interior region matching the relatively long one-dimensional size of the other figure

(120 bar-widths). All the detected motions within the figure region were summed

with equal positive weight. Negative regions flanking the positive interior regions

extended to the boundaries of the random-bar stimulus, which was 240 bar widths

in length. All detected motions within the flanking regions were summed with equal

negative weight. The templates were normalized such that their positive interior re-

gion integrated to 1 and their negative exterior regions integrated to -1. For each

trial, the output of each template was determined for each direction (leftward and

rightward) and for each of the four spans. The figure size (either long or short) with

the greatest template response was taken as the shape decision for a trial. (As in the

experiment, shape-discrimination required forced-choice decisions by the models.)

3.3.1 Simulations Based on the Elaborated Reichardt Detector

A diagram of the ERD can be seen in Figure 4a. As in van Santen and Sperling’s

(1985) ERD model, the edge filters in its current implementation model are band-

pass. Space-time filters in the Fourier domain are approximated by establishing a

quadrature relationship between pairs of filters constituting a motion detector. Thus,

pairs of edgefilters, implemented as one-dimensional real-valued Gabor filters, are

modulated by sine waves that are 90-degrees out of phase with on another. Larger
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spatial filters are therefore required to approximate the quadrature relationship among

motion detectors whose component receptive-field centers are further apart (i.e., have

larger spans).

Results

Single trial simulations. As indicated above, rightward motion was signified by pos-

itive values and leftward motion by negative values. In the single trials presented in

Figure 5, the displacement of the figure is to the right. When the figure’s displacement

is small (e.g. 2 bar-units rightward, Figure 5a), much of the activity is concentrated

within the figure at the span that corresponds to the actual displacement, with most

motion signals in the correct direction (rightward). In the background regions there is

also a fair amount of activity, though weaker on average and directionally incoherent,

as would be expected for responses that are driven by noise. At larger spans, direc-

tional responses are generally consistent with the actual displacement direction within

the figure region, but are spread across several spans for all displacement sizes, with

d/dt -d/dt d/dt-d/dt

x x

∑
- +

Edge Filters

Half-wave Rectification

Change Detectors

Leftward and Rightward

Motion Signals

Opponent Motion

Half-wave Rectification

τ

x x

τ

∑- +

Edge Filters

Temporal Delay

Half-Opponent Energy

Opponent Motion

Counterchange DetectorElaborated Reichardt 
Detector

(a) (b)

Figure 3.4: Block diagrams of the (a) elaborated Reichardt detector
and (b) counterchange detector. Only one polarity channel of the coun-
terchange detector is shown here, the other one operates in parallel.
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the average strength of the response decreasing with greater spans. This weakening

of the response is a consequence of the larger spatial filters required by larger-span

detectors due to the ERD’s quadrature constraint. When the figure’s displacement

is larger (e.g. 6 bar-units, Figure 5b), the span corresponding to the displacement

shows a directionally consistent but relatively weakresponse within the figure region.

The responses of nearby spans also are directionally consistent within the figure, and

with similar strength. Therefore the directional motion information for the figure

region is again spread across several spans for all displacement sizes. Furthermore,

small-span detectors that are driven almost entirely by noise respond strongly due to

their filters responding more strongly to the spatial structure of the stimulus.

Regardless of the size of the displacement, symmetrically opposite results were

indicated for the inverted-polarity conditions when the second frame is the exact

inverse of the second frame in the same-polarity condition. Motion was most often

signaled in the leftward, reverse-phi direction within the figure, with the same strength

and spatial distribution across all locations and spans, both within the figure and the

background, as in the same-polarity condition (Figure 5a, dashed curve).

Simulation of experimental results. ERD-determined simulations of direction and

shape discrimination in the short-range motion paradigm are presented in Figures 6a

and 6b, along with the averaged results for the four participants in the experiment.

It can be seen that the ERD successfully simulated the effect of displacement size;

direction and shape discrimination were poorer for the larger displacements.

The ERD also simulates the perception of reverse-phi motion in the inverted-

polarity condition, but incorrectly predicts that it is quantitatively equal to motion

in the direction of the displacement in the same-polarity condition; in the experiment,

both direction discrimination and shape discrimination were significantly poorer for

motion in the reverse-phi direction. It could be concluded, because of its inherent
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Figure 3.5: Figure 5 - Single trial simulation outputs of the ERD (a
& b) and counterchange detector (c & d). (a & c) show a rightward
displacement of the figure by 2 bar-units, and (b &d) show a rightward
displacement of 6 bar-units. Solid curves represent the local motion de-
tector output across space for each of 4 layers of motion detectors with
various spans. Activations above 0 signal rightward motion, and acti-
vations below 0 signal leftward motion. The figure occupies the region
between the dashed vertical lines, and the flanking background regions
fall outside of it. The dashed curve in the first detection-layer in pan-
els (a & c) depicts the response to the inverted-polarity version of the
same stimulus. Note the ERD’s symmetry around 0 with respect to the
same-polarity stimulus (reverse-phi). Although not depicted, the same
symmetry is obtained for all the span layers of the ERD. Also noteworthy
is the indication that ERD activation is spread across span layers rather
than being concentrated at the span corresponding to the displacement,
particularly for larger displacements. In contrast, the inverted-polarity
condition does not elicit a symmetrical response from the counterchange
detector. This is true at all span-layers, despite the dashed curve only
being shown for the smallest span-layer in (c).
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symmetry with respect to the same- and inverted-polarity stimuli, that the detection

of 1st-order motion energy by the ERD is not sufficient in order to account for short-

range motion perception.
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Figure 3.6: Results from the experimental simulations alongside the
empirical means for (a) the direction discrimination task (left or right),
and (b) the shape discrimination task (wide or tall rectangle). Solid
curves represent mean scores from the same-polarity conditions, dashed
curves represent mean scores from the inverted-polarity condition. Be-
cause of symmetry in its response to the same- and inverted-polarity stim-
uli, the ERD overestimates performance in the inverted-polarity condition
for both direction judgments (corresponding to reverse-phi percepts) and
shape judgments. The Counterchange detector is very similar to the em-
pirical data both qualitatively and quantitatively. The empirical asym-
metry between same- and inverted-polarity percepts as evidenced in both
direction and shape judgments is clearly evident in the counterchange
simulation.
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Second-order motion energy

Also considered was the possibility that the perception of motion and shape entails

2nd-order motion energy extraction (Lu and Sperling, 2001). Full-wave rectification of

the edge filters’ activation in the 2nd-order system would make all negative activation

values positive, so inverting luminance-polarity would result in the output of the edge

filters being the same as in the same- polarity condition. The simulation of 2nd-order

motion energy therefore would result in motion perception being signified in the

direction of the displacement, regardless of whether or not the luminance polarity of

the elements is inverted during the second frame of the two-frame trials. Reverse-phi

motion percepts would not be predicted.

The effect of contrast

van Santen and Sperling (1984, 1985) have reported that their experimental support

for the ERD as the basis for motion perception was obtained only for low contrast

gratings. They argued that the perceptual invariance of suprathreshold motion is

evidence of motion detectors’ early saturation. It might be argued, therefore, that

our empirical evidence, which was contrary to the predictions of the ERD, might

have been due to testing short-range motion perception with high contrast (black

and white) elements. An experiment was therefore conducted in order to determine

whether the ERD’s prediction of symmetry with respect to the effect of same- vs.

inverted-polarity would be obtained at very low (barely visible) contrast levels. The

results, which are presented in Figure 7a, are very similar to those obtained in the

primary experiment. That is, both better direction and shape discrimination were

obtained for the same-polarity than the inverted-polarity stimuli. A likelihood ratio

test of the same form used to analyze the results of shape discrimination in the
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primary experiment was here used to test the significance of the difference in both

direction and shape perception at the smallest displacement of 2 dot-units. For the

direction discrimination task, the chi-square value was 90.18, p < .001; for the shape

discrimination task, the chi-square value was 319.81, p < .001. Symmetry with respect

to luminance polarity was not obtained for low contrast short-range motion stimuli,

which might have been expected on the basis of van Santen and Sperling’s (1984,

1985) evidence that the ERD functions properly only for low contrast motion stimuli.

The effect of frame-rate

Another possibility is that the ERD functions properly only for fast frame rates

that more closely approximate continuous motion, so the lack of symmetry found

in the main experiment may have been due to the relatively slow frame rate of the

stimulus (138 ms/frame). A variant of the experiment was run with much faster

frame rates (35 ms/frame). The same likelihood ratio test as in the low-contrast

variant above was again run. For the direction discrimination task, the chi-square

value was 69.29, p < .001; for the shape discrimination task, the chi-square value was

483.28, p < .001. Again, asymmetry with respect to polarity-inversion was found for

both direction and shape discriminations (Figure 7b).

3.3.2 Simulations Based on the Counterchange Motion Detector

A diagram of the counterchange detector can be seen in Figure 4b. The counterchange

motion detector is sensitive to simultaneous and oppositely-signed changes in activa-

tion for pairs of spatial filters at separate locations (Hock et al. 2009), motion being

signaled from the location of the decrease to the location of the increase in activation.

Decrease subunits respond with excitation to decreases in their activational input

and increase subunits respond with excitation to increases in their activational input.
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Counterchange-determined motion is indicated when the product of the ‘decrease’

and ‘increase’ excitation is greater than zero.

Although the perception of short-range motion has typically been attributed to the

detection of motion energy (e.g. Adelson and Bergen, 1985; van Santen and Sperling,

1985; Cavanagh and Mather, 1989), it was shown by Hock et al. (2009) that it could

plausibly be accounted for by the detection of counterchanging activation. Their

account, which is recapitulated below, was based on the distribution of excitatory

and inhibitory effects on spatial filters by the randomly arranged white and black

0.1

0.3

0.5

0.7

0.9

0.1

0.3

0.5

0.7

0.9

Same-polarity
Inverted-polarity

Low-Contrast Variant

vs vs

Fast Frame-Rate Variant

vs vs

Size of Displacement

(dot-units)
4 8 12 16 20 24 28 32(mins)
2 4 6 8 10 12 14 16

(a)

(b)

Size of Displacement

(dot-units)
4 8 12 16 20 24 28 32(mins)
2 4 6 8 10 12 14 16

4 8 12 16 20 24 28 32
2 4 6 8 10 12 14 16

4 8 12 16 20 24 28 32
2 4 6 8 10 12 14 16

Pr
op

or
tio

n 
Co

rr
ec

t 
Pr

op
or

tio
n 

Co
rr

ec
t 

JN

JN

Same-polarity
Inverted-polarity

JN

JN

Figure 3.7: Two variants of the experiment in order to test the effects of
(a) low-contrast and (b) fast frame-rates (35 ms) on the empirical asym-
metry. Both conditions show the same asymmetry as the main experiment
in both direction and shape judgments.
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elements constituting the short- range motion stimulus (Figure 8).

Among the many edge filters that are stimulated by the figural portion of a random

checkerboard, there are some that are (by chance) positively activated during the

first frame of each two-frame trial (Figure 8b). When the figure is displaced to

a new location during Frame 2, the filters that were excited during Frame 1 will be

stimulated by a distribution of elements that is more likely to produce a decrease than

an increase in activation. (It is illustrated in Figure 8a that there is a greater range

of possible excitation and inhibition levels that would lead to decreases compared

with increases in activation.) At the same time, the elements of the figure that had

produced an excitatory effect on an edge filter during Frame 1 are exactly displaced

to a new location during Frame 2, where they will produce similar activation of

another, paired edge filter with the same excitatory/inhibitory polarity. It is likely

that this filter was more weakly activated during Frame 1, so its activation is likely to

increase. A counterchange motion detector spanning these two locations within the

figure will be activated by the multiplicative combination of decreased activation at

one edge filter location and increased activation at another edge filter location. There

is no constraint for the non-Fourier counterchange model that requires a quadrature

relationship between the sizes of the edge filters and their span, so the size of the edge

filters was the same for all spans. As indicated earlier, the outputs of the edge filters

are half-wave rectified, so only positive activation levels are passed forward. Likewise,

the outputs of the decrease and increase detectors are half-wave rectified before they

are multiplied to yield a directionally-selective motion computation. The reasons

for the inclusion of half-wave rectification after each stage of processing are twofold:

for reasons of neural plausibility and for conceptual soundness of the counterchange

principle. These issues are addressed in more detail in the discussion.

In order to detect the motion of both white-black and black-white edges, two
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channels detect counterchange motion in parallel. One channel is responsible for edge

filters with their excitatory zone on the left and the other channel for those with their

excitatory zone on the right. The motion computations for the two channels are then

combined and the leftward signals subtracted from the rightward to yield a single

array of motion responses6 .

Finally, the counterchange model assumes that any decrease in edge filter activa-

tion can contribute to only one motion signal. Shorter-path motions beginning at the

location of the activational decrease are preferred over longer-path motions, and in

the case of conflicting directions of the same span, the stronger motion is preferred (in

the case of equal strength, one motion or the other is chosen with an equal chance).

Results

Single trial simulations. For small displacements (e.g. 2 bar-units rightward) in the

same-polarity condition, rightward motions (in the direction of the displacement) were

most strongly activated within the figure for the span corresponding to the size of

the displacement (i.e. the motion signals were coherent; Figure 5c). Responses in the

background regions were sparser than in the figure, with inconsistent directionality.

For larger displacements (e.g. 6 bar-units, Figure 5d), there was still activity

within the figure region at the span corresponding to the displacement. However it

was less consistent than for the small displacements, with the distribution of mo-

tion responses spread across other, especially shorter, spans. Again, the background

regions are sparsely activated and directionally incoherent.

In the inverted-polarity condition, motion signals were generally very sparse, both

6Although we used both polarity channels in the current simulation, virtually identical results
are obtained when only one polarity channel is employed. However, because the ERD utilizes both
edge polarities, a more direct comparison was achieved by including both channels. Additionally,
including both channels shows they do not interfere with one another.
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within and outside of the figure. At the span corresponding to the displacement, there

are no motion signals generated within the figure in the displacement direction, and

a small number in the reverse direction. The latter skews the response distribution

in favor of a leftward total response. This is indicated in Figures 8c and 8d and

addressed in the General Discussion.

Simulation of experimental results. The counterchange model does a very good job

of simulating the averaged experimental results for direction and shape discrimination

(Figures 6a and 6b). It successfully simulates the effect of displacement size (both

direction and shape discrimination were poorer for the larger figure displacements),

and also simulates the weaker direction and shape discrimination obtained in the

inverted-polarity condition.

These results contradict the general view that short-range motion is perceived via

motion energy detection, and that the perception of reverse-phi motion in particular

is necessarily the result of motion energy detection. They show that a much different,

non- Fourier model entailing the detection of counterchanging activation can fully

account for both the perception of short-range motion as well as motion in the reverse-

phi direction.

Spatial pre-filtering

Whereas the scale of the edge filters for the ERD model were determined by the

quadrature constraint of the model, the edge filters for the counterchange model

were the same for all spans and selected to be responsive to the intrinsic scale of

the checkerboard stimulus. The filters for the counterchange model therefore were

relatively small. Morgan (1992), however, has argued for a stage of spatial low-pass

filtering prior to motion processing in order to account for how effects of displacement

size vary with the size of the elements and the spatial frequency content of the image.
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Implementing this low-pass pre-filtering did not produce major deviations from the

simulation results obtained with the counterchange model without pre-filtering. (This

also was the case for the ERD model.)

3.4 GENERAL DISCUSSION

Any mechanism that yields symmetrical responses to same- and inverted-polarity

two-frame stimuli cannot, by itself, account for asymmetrical data in either motion

or shape discrimination for the short-range motion paradigm. In order for a mo-

tion detector to potentially account for the observed asymmetry, its polarity channels

must either function in a completely segregated manner or contain a parameter that

enables between-polarity interactions to be weighted differently than within-polarity

interactions. The ERD, which in this article served as a representative model for

the detection of first- order motion energy, does not segregate its polarity channels,

nor does it contain a parameter which could weight the interactions of the polarity

channels differently, and therefore necessarily gives symmetrical responses to same-

and inverted-polarity conditions. Moreover, symmetry with respect to polarity in-

version is not unique to the ERD. It is intrinsic as well to Adelson and Bergen’s

(1985) motion energy detector, which replaces the multiplication scheme of the ERD

by a sum-or-difference-then- square scheme. Despite such internal differences, it is

formally equivalent on output to the ERD.

Both the ERD and the motion energy detector are comparator-type detectors that

call for a quadrature arrangement of filters in order to approximate a region in the

spatiotemporal Fourier domain. However, this quadrature arrangement is not a nec-

essary condition for obtaining symmetrical responses to same- and inverted-polarity

stimuli. Rather, the symmetry that these detectors exhibit results from treating both
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positive and negative spatial filter responses in the same manner; that is, the out-

put values of spatial filters are treated arithmetically (e.g. multiplying negatives to

get a positive response), rather than as representing a biophysical quantity in the

nervous system. Consequently, when luminance polarity is inverted, the sign of the

spatial filter response is also inverted, but retains the same magnitude. Regardless of

whether one uses the multiplication scheme of van Santen and Sperling’s (1985) ERD

or the sum-or- difference-then-square scheme of Adelson and Bergen’s (1985) motion

energy detector, this inversion of the local spatial filter responses on the second frame

results in a change in the sign (direction) but not the magnitude (strength) of the

final motion detection output, leading to reverse-phi motion of equal magnitude to

the same-polarity condition. Moreover, the symmetry that results from this multi-

plicative interaction is not unique to comparator-type detectors. Gradient detectors

that evaluate motion at zero- crossings (Marr and Ullman, 1981) exhibit symmetry

for the same reason. That is, inverting polarity on the second frame changes the sign

of the temporal derivative, consequently inverting the sign of local motion signals

while preserving their magnitude and spatial distribution (Sato, 1989). The contri-

bution and interaction of negative values in comparator-type (and gradient) detectors

raises questions with respect to their biological plausibility. Neural systems generally

communicate via action potentials, where only positive activation is transmitted to

post-synaptic units (Heeger, 1993). Inhibition of a neuron reduces the amount of out-

put, but chemical synapses cannot transmit less-than-zero values. The less-than-zero

contributions entailed in the ERD (and other models) makes a one-to-one mapping

from the model to the nervous system doubtful, as negative values are not treated as

inhibitory. In contrast, the counterchange detector, which successfully accounts for

the asymmetrical effect of luminance polarity on direction and shape discriminations,

is neurally plausible as only positive activation values contribute to motion-detection
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computations.

3.4.1 Source of asymmetry and reverse-phi in counterchange model

The half-wave rectification of edge filter outputs also is responsible for motion be-

ing asymmetric in the same- and inverted-polarity conditions. Because motion is

computed within polarity channels and not between them, stimuli that would have

signaled motion in the same-polarity condition in most cases have their motions nulled

rather than reversed in the inverted-polarity condition. An example in Figure 8 is

restricted to one polarity channel for simplicity. In the same-polarity condition (Fig-

ure 8b), a pattern of elements that is positively stimulating edge filter A in Frame

1 is shifted to edge filter B in Frame 2. This shift causes a decrease in response in

A and an increase in response in B, signaling motion in that polarity channel from

A to B. In the inverted-polarity condition (Figures 8c and 8d), the response of B in

Frame 2 is necessarily of the opposite polarity. Its response is therefore negative, and

the half- wave rectification leads to an output of zero. A zero output during Frame 2

implies that over the course of the two frames at B, the only possible responses are

a decrease or no response (i.e. there cannot be an increase to zero, as it is the lowest

possible value for a half-wave rectified signal).In the inverted-polarity condition, some

arrangements of stimulus elements lead to counterchange detection in the direction

opposite to displacement (reverse-phi motion). Figure 8d shows an example of such

an arrangement. In Frame 1, a near-zero response is elicited in an edge filter at Lo-

cation A and a stronger positive response is elicited in an edge filter at Location B.

In Frame 2, the near-zero response from Location A has shifted to Location B and

been inverted, causing a decrease in activation (the inverted response of a near-zero

output is also near-zero), while new elements are shifted into Location A that hap-

pen to cause an increase in that polarity channel, eliciting a (reverse) counterchange
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response. This reverse-phi signaling is rare compared to counterchange detection in

the same-polarity condition in the direction of displacement as most responses are

zeroed and don’t lead to a reverse-phi signal. This leads to the observed asymmetry

between same- and inverted-polarity counterchange detection.

3.4.2 Half-Wave Rectification in the Counterchange Model

Half-wave rectification at each stage of processing (only positive activation levels are

passed forward) is an essential feature of the counterchange model. In addition to

its previously discussed biological plausibility (a given neuron can transmit more or

fewer action potentials, but never less-than-zero), half-wave rectification ensures that

inhibitory activation states have no role in signaling the presence of counterchange,

which entails a motion event that is detected by virtue of the (effectively) simultane-

ous decrease in a feature at one location and increase in that same feature at another

location. In the current case, the features are white-black (and black-white) edges

that are formed by chance within a random cinematogram: motion is signaled from

thelocation of a decrease in edge filter activation to the location of an increase in

edge filter activation. Such features can be (more or less strongly) present, or not

present, but not negatively present.Moreover, if half-wave rectification were removed

prior to the detection of decreases and increases in spatial filter activation, the re-

sulting negative values would introduce ambiguities into the conceptual framework

of counterchange. For example, the response of a BW filter would be positive to a

black-white (BW) edge, negative to a white-black (WB) edge, zero to a black-black

(BB) non-edge, and zero to a white-white (WW) non-edge. If the BW edge filter is

exposed to a two-frame sequence in which it is stimulated first by a WB edge followed

by a WW non-edge, its activation will have gone from a negative value to zero, so it

would have increased (assuming no rectification). However, in order to conform to
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the principle of counterchange, this event is more appropriately registered as a de-

crease in the presence of a feature (WB edge), rather than as an increase in a feature

(BW edge). Introducing half-wave rectification eliminates this ambiguity, treating

the increase of a BW edge as non-symmetrical with respect to the decrease of a WB

edge (and vice versa). In other words, the increase in one feature does not imply an

equivalent decrease in its polar opposite feature. By including separate channels for

each of the polar opposite edge filters, what would be a negative value for one chan-

nel (without rectification) constitutes positive values for the other channel.Removing

rectification before the outputs of the increase and decrease subunits of the counter-

change detector are multiplied also leads to violations of the counterchange principle,

eliminating directional selectivity. That is, instead of motion occurring exclusively

from the location of a positive response for a decrease subunit to the location of a

positive response for an increase detector, the opposite motion could also be signaled

from the location of the activation increase because the negative output from a de-

crease detector (indicative of an increase in activation) can be multiplied by a negative

output from an increase detector (indicative of a decrease in activation) yielding a

positive motion detector output, erroneously signaling motion from an increase to a

decrease in local activation.7

3.4.3 Dual Motion Pathways

It is well known that the nervous system is segregated into two parallel pathways that

respond with excitation to opposite luminance-contrast polarities. The so-called ON

7It would be feasible to remove one of the rectifiers after change-detection as long as the other was
still present and achieve reasonable behavior from the detector; as long as the negative outputs of
the motion detector were ignored and only positive outputs signal motion (if one channel can never
go below zero a positive product cannot result from multiplying two negative values). However,
the motion-opponency scheme employed here to evaluate the final motion detection output would
demand half-wave rectification on output of the motion detector, effectively displacing a rectifier,
but not eliminating it.
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and OFF channels respond to luminance increments and decrements, respectively.

Here we use the terms ON and OFF pathways to refer to two parallel channels op-

posite luminance polarity sensitivity, and do not intend to imply a specific type of

spatial filter (e.g. center-surround, edge-detector, etc.). The two segregated polarity

channels in the counterchange model can be interpreted as corresponding to these

two pathways, each computing motion independently. Our simulations show that

these two segregated counterchange channels (or either one by itself) are sufficient

to account for both the standard and reverse-phi percepts in the current stimulus.

Further, other studies have shown evidence for the independence of these channels in

computing motion bydemonstrating similar asymmetries (e.g. Edwards and Badcock,

1994; Wehrhahn and Rapf, 1992; Sato, 1989; Dosher et al., 1989). In contrast, Bours

et al. (2009), using a sparse random-dot display in which individual motion signals

were spatially and temporally uncorrelated, aimed to show that motion detection

thresholds were symmetrical for same- and inverted-polarity dot-pairs. They argued

that this suggests that motion is computed by correlating (with equal weighting)

signals both within and between the ON and OFF polarity channels, with between-

channel correlations signaling reverse-phi motion. Such an architecture could account

for the symmetry observed in the ERD without appealing to the interaction of neg-

ative activation values (an example of such a detector can be seen in Eichner et al.

[2011]).8

Although most of the parameter space probed in Bours et al.’s (2009) experiments

8Eichner et al. (2011) have also presented a ‘2-quadrant’ Reichardt detector model in which only
ON-ON and OFF-OFF spatial filter pairings are established to account for physiological findings in
the visual system of the fly. This model showed weakened responses to inverted-polarity as compared
to same-polarity stimuli. However, it included front-end elaborations whose introduction is not
currently justified for the human visual system. Nonetheless, it would be valuable for future studies to
compare the response characteristics of this Reichardt-variant detector to the counterchange detector
under conditions which could clearly distinguish the models (i.e., stimuli in which no counterchange
information is present but a clear autocorrelation is not, and vice versa).
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was not indicative of symmetry (detection thresholds were higher for inverted-polarity

stimuli), symmetry with respect to luminance inversion was consistently obtained for

brief frame durations and small displacements. Because they also are the spatial and

temporal conditions that are optimal for the perception of two-frame short- range

motion (Braddick, 1978), it is worth considering the implication of these results for

motion detection. That is, they indicate that for fast motions over short distances, di-

rection discrimination is based on a motion mechanism that correlates within- as well

as between-polarity channels, which is implied by motion energy models. Further,

the spatially and temporally uncorrelated nature of the motion signals generated by

Bours et al.’s (2009) stimuli implies that the integration of motion signals does not de-

pend on their being simultaneous or spatially contiguous. In contrast, the short-range

motion paradigm studied in the current article constrains coherent motion signals to

occur simultaneously and within a spatially defined region (i.e. the displaced rectan-

gle) where all dots undergo the same frame-to-frame translation. These conform to

natural constraints of a rigidly translating surface, where motion signals are neces-

sarily generated simultaneously and are in close proximity to one another by virtue

of physical connectedness. Under these constraints, there is convergent evidence that

spatial structure is not recoverable when luminance polarity is inverted, while it is

recoverable when polarity is held constant. Evidence obtained in the current study,

Sato’s (1989) and Dosher et al.’s (1989) are consistent in indicating that same-polarity

motion correspondences are essential for the perception of shape from motion.

Overall, these results are consistent with the existence of dual pathways, one

entailing within-polarity counterchange mechanisms for the perception of motion for

displaced objects, surfaces, and shapes, and the other entailing within- and between-

polarity motion energy mechanisms for the perception of objectless global motion,

without the individuation of particular objects, surfaces and shapes.
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The distinction between these two kinds of motion pathways has its origin in

Wertheimer’s (1912) distinction between beta (object) and phi (objectless) apparent

motion. More recently, Sperling and Lu (1998) asserted that object motion entails

the detection of motion via their 3rd-order, salience-based motion system, whereas

objectless motion is perceived when motion is signaled only by 1st- or 2nd-order mo-

tion energy systems. Further evidence for dual pathways has come from Azzopardi

and Hock (2011), who found that motion direction can be discriminated in the cor-

tically blind hemifield of an individual with unilaterally damaged visual cortex (and

thus no object or shape perception) on the basis of detected motion energy, whereas

motion direction was discriminated on the basis of changes in shape in the unimpaired

hemifield. Finally, Hock and Nichols (2013) and Seifert and Hock (submitted) have

provided evidence linking the perception of a surface’s motion with the detection of

counterchange and the detection of changes in luminance (without the perception of

surface motion) to the detection of motion energy.

It is likely that these two motion systems, sensitive to different stimulus patterns,

subserve different behavioral functionalities; e.g. the counterchange pathway to per-

ceive changes in position of objects and the motion energy pathway to perhaps detect

optic flow patterns that guide locomotion (Pelah et al., submitted). The motion en-

ergy pathway, which leverages both within- and between polarity-channel correlations,

subserves ‘global’ motion perception, while the counterchange pathway, detecting only

same-polarity patterns, subserves ‘form/motion’ perception, which can include the

derivation of a figure’s shape from the spatial relationships among counterchange-

determined motion signals (Figure 9). Further empirical work to identify the spatial

and temporal limits for the perception of spatial structure in the counterchange path-

way and to determine what, if any, spatial localization is possible in the motion energy

pathway would help to further distinguish these two systems.
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Figure 3.9: A conceptual model of a dual pathway motion system. ON
and OFF here designate two channels with opposite luminance polarity
sensitivity and do not necessarily imply a particular type of spatial filter.
Both within- and between-polarity interactions subserve a motion energy
(ME) system that detects global motion. Only within-polarity interac-
tions subserve a counterchange (CC) system in which spatial relations of
motion detectors are preserved allowing for recovery of form from motion.

To summarize, several speculative conclusions can be drawn from the relevant

literature:

1. Although asymmetry in motion direction discrimination between same- and

inverted-polarity stimuli is observed under most experimental conditions, evi-

dence for symmetry is obtained for very fast motions over small distances in

Bours et al. (2009). This parameter range is typically associated with the

short-range paradigm, suggesting that the presence of spatial structure among

motion signals, which is absent in Bours et al.’s paradigm but present in Brad-

dick’s short-range paradigm, can affect motion detection. The evidence for

symmetry obtained by Bours et al. (2009) is consistent with motion energy as

the basis for motion direction discrimination in the absence of spatial structure.

62



2. The presence of temporal simultaneity and spatial contiguity among motion sig-

nals is not necessary to obtain asymmetry with respect to luminance inversion;

e.g. Bours et al. (2009) have obtained evidence for asymmetry with a stimulus

for which motion signals are spatially and temporally uncorrelated (this was the

case for slow motions over relatively long distances). However, when simultane-

ity and spatial contiguity are present, as in the short-range motion paradigm,

asymmetry with respect to luminance inversion is obtained (as in the present

study) even when fast motions are perceived over small distances (see Figure

6b).

3. Spatial structure and form, including depth structure, is recoverable only in

same-polarity conditions (likely through the detection of counterchange) and is

decimated in inverted-polarity conditions (Figure 2 in the current study; Sato,

1989; Dosher et al. 1989).

4. To the extent that ON and OFF channels (or other opposite-polarity channels)

are correlated in motion detection, local spatial relationships are lost, and the

motion percept could be called ‘global’. Spatial and temporal pooling in the

motion energy pathway could be responsible for this loss (as suggested by the

nature of the Bours et al. [2009] stimulus).

3.4.4 The Source of Shape from Coherent Motion

The dual pathways dichotomy described above proposes that the detection of coun-

terchange is basis for the derivation of shape from coherent motion which has been

defined as occurring when multiple motion detector responses agree in direction and

span. When there is a high density of coherent motion signals within some region

of the moving image, that portion of the image is perceived as moving together as a
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continuous ‘surface’. In order to segregate the moving surface from the background,

coherent motion signals must be relatively dense within the figure, and relatively

sparse and/or incoherent outside the figure. This difference in coherence and density

between the moving figure and the background is essential for successful segregation

and the recovery of shape, as it is the only cue to the boundary of the figure.

This definition of coherence is at odds with how coherence is typically framed

in terms of motion energy (Simoncelli and Heeger, 1998; Sato, 1989). The general

motion energy approach entails taking local velocity estimates of oriented sinusoid

components across a dynamic image. The output of a given motion detector is then

considered a time-varying velocity estimate at a given location, where the sign of the

output signifies the direction of motion, and the magnitude signifies the speed. In

this view, multiple motion signals across some area of the image would be considered

coherent if their direction and speed were sufficiently similar (Yuille and Grzywacz,

1998). In other words, among motion detectors of the same scale and directional

selectivity, a low variance across the response magnitudes (speeds) would constitute

evidence of coherent motion. This presents a challenge for the ERD account of shape-

from-motion for short- range motion stimuli. For small displacements, single trial

simulations for ERD detectors

(Figure 5a) indicate strong directional agreement, but with a high degree of vari-

ance in terms of magnitude (and therefore speed).9The current approach using the

counterchange detector assumes a different role of motion detector responses. Rather

than the magnitude of the response representing a velocity estimate, detector re-

sponses are conceived of as providing evidence for a given displacement (corresponding

to the span of the detector). While the phase- invariant responses of motion energy

detectors signal luminance-defined motion at a single location, counterchange detec-

tors signal motion of an image feature (e.g., an edge) from one location to another.
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A strong motion detector response indicates strong evidence for a given displacement

corresponding to the detector’s span. Weaker responses, which could occur for multi-

ple reasons (pattern details, smaller contrast change, etc.), are not indicative of slower

speeds, but instead as reduced evidence of motion between two locations. There are

two consequences of this approach: 1) counterchange-determined motion marks spa-

tial distances, providing a direct basis for the recovery of shape from motion, and

2) rather than a homogenous (i.e. low variance) response magnitude across a given

direction and span, a sufficient density of responses for a given span is required for

coherence within an image region.

While the interpretation of the outputs of ERD and counterchange detectors differ

in general, in the current article they both simulate shape judgments with the same

template-matching scheme. This scheme does not take into account the variance

of motion detector magnitudes and the criterion for coherence is the same for both

models.

3.4.5 Theoretical Framework for the Recovery of Depth from Counter-

change Motion

Although the definition discussed above limits motion coherence to motions of the

same direction and span, this restriction can be relaxed to account for coherent motion

patterns that give rise to the impression of depth structure in moving images. The

framework follows from the idea that motion direction and shape discrimination entail

patterns of activation within and across layers of motion detectors with the same

directional selectivity, with each layer composed of a spatially distributed, densely

packed array of motion detectors. The defining feature for each layer is that the same

span separates the pairs of edge filters that compose its constituent detectors.

When the directionally-consistent motion detector activation within a displaced
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surface is concentrated in a particular span-layer, it indicates that the detected mo-

tions all are in the same depth plane, as must be the case for two-dimensional surfaces

oriented perpendicular with respect to one’s line-of-sight. However, if motion signals

within some local neighborhood occur at different, but similar, span-layers, these mo-

tions may be interpreted as belonging to a single surface that is non-uniform in depth.

For example, if a one-dimensional slice were taken along the direction of motion from

the front face of a rotating cylinder composed of moving dots, all the dots would be

moving in the same direction, but would stimulate different span-layers depending on

the speeds of the dots (the speeds are constrained by the three-dimensional structure

of the cylinder). Dots near the outer edges of the cylinder would be moving relatively

slowly, therefore activating small-span detectors. Towards the center of the cylinder

the speed of the moving dots would increase, leading to the activation of larger-span

detectors, with a maximum span reached at the center. With a sufficient density of

dots, this cross-layer activation pattern would be smooth, with neighboring detectors

differing only minimally in span. Templates similar to the ones used in the current

simulations for single-depth motion could respond to sufficiently smooth patterns

across span-layers, signaling depth structure in the moving image.

The single trial simulations in Figure 5, which were the basis for the discrimination

of motion direction and shape in the short-range motion paradigm, made it possible

for the counterchange model and the ERD motion energy model to be compared

with respect to their compatibility with this theoretical framework for deriving depth

structure from image motion. Two features of the simulations are relevant: 1) the

extent to which motion detector activation for displaced surfaces is concentrated

within the same span-layer, and 2) the spatial resolution of the activation patterns.
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Concentration of activation within a span

It can be seen for the ERD simulations in Figure 5 that directionally-consistent motion

is most strongly concentrated within the displaced surface for the detector span that

corresponds to the surface’s displacement. However, directionally consistent activa-

tion is evident for other spans. The latter occurs because the ERDs are Fourier-based,

so their edge-filters are constrained to maintain a quadrature relation between filter

size and span. As a result, the detectors composing different span-layers overlap

significantly in terms of their spatiotemporal frequency response. Thus, a motion

detection response in a given layer is likely to be accompanied by similar responses

in layers with similar spatiotemporal frequency sensitivities (i.e. with similar spans).

Because of the Fourier character of motion energy detectors like the ERD, this sort

of diffusion across multiple span-layers is unavoidable for most displaced objects.

This ‘muddling’ of span-layer activation for the ERD does not occur for the coun-

terchange model because directionally-consistent motions are concentrated within the

displaced surface only for the detector-span that corresponds to the surface’s displace-

ment (particularly for small displacements). Because the counterchange model does

not require a quadrature relationship between the span and size of the edge filters

composing the motion detectors, detectors have the same size edge filter for every

span. The consequence is that the spatiotemporal stimulus patterns that a detector

is sensitive to are more dissimilar across span-layers than for the Fourier-based ERD.

Because the edge filters for each span respond to the same stimulus information, the

detectors whose span corresponds to the actual figure displacement will generally

signal more strongly and more often than displacement-inconsistent spans. In addi-

tion to this, the shortest-path selection constraint in the counterchange simulation

minimized further the incidences of multiple motion-signals occurring across multiple
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span-layers at a given location.

Spatial resolution

It also can be seen in Figure 5 that essentially all ERD detectors composing a span-

layer are activated for virtually every location across the short-range motion stimulus,

regardless of whether the detectors’ edge filters are responding to changes in element

luminance occurring within the displaced figure or within the background. In contrast

with this spatially continuous distribution of activation,the distribution of counter-

change detector activations within the figure is dense but discontinuous, and outside

the figure responses are very sparse (Figure 5c). This is due to the counterchange

detectors being much more selective than the ERD motion energy detectors (and not

to the difference in spatial filter inputs to the two models). That is, counterchange

detectors are responsive to a much smaller number of random dot patterns than are

motion energy/comparator models like the ERD. This is because counterchange de-

tectors are activated only when their edge filters are affected by changes in element

luminance that result in decreases in edge filter activation at one location and in-

creases in edge filter activation at another location, whereas nearly any change in

edge filter response will result in a motion signal for the ERD. A discontinuous but

dense distribution of activated motion detectors is important for the spatial resolution

of the shapes that are derived from detected motion, especially when such a pattern

indicates depth-structure. That is, recovering depth would be exceedingly difficult

if it were unclear which span-layer was optimally stimulated at a given location, as

the relation between neighboring motion signals at different spans would need to be

differentiated in order to discern differences in depth.
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3.4.6 Conclusion

In this article we have demonstrated the insufficiency of comparator-type motion en-

ergy detectors such as the ERD in accounting for motion direction perception and

shape-from-motion segregation in the short-range motion paradigm. As an alterna-

tive, we have shown the plausibility of a counterchange-based mechanism in account-

ing for these experimental results. It is argued that the detection of counterchange-

determined motions mark spatial distances, providing a direct basis for the perception

of spatial shape from motion. In addition, we have suggested how counterchange de-

tection could be extended to account for the recovery of depth from motion. Finally,

non-Fourier counterchange detection can potentially account for other phenomena

(e.g. the correspondence problem) that do not conform well to motion-energy for-

mulations without necessitating high-level token-trackers or centralized cost-function

calculations (Dawson, 1991; Morgan, 1992).
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Chapter 4

Dynamical Preliminaries

4.1 STABLE FIXED-POINT MODEL OF A SIMPLE NEURON WITH

INPUT

Neurons are coupled to one another via synapses. Synapses release neurotransmitter

under the influence of action potentials. When a neuron receives excitatory (in-

hibitory) input from other neurons, it becomes depolarized (hyperpolarized). Under

no synaptic input, many neurons return to a baseline ’resting level’ around which

they fluctuate within a limited range.1 Many physiological and biochemical processes

are responsible for the maintenance of a neuron’s resting level (e.g. ion channels, lo-

cal chemical gradients). However for the purposes of modeling perceptual processes,

these details are (arguably) irrelevant.

Below, a brief overview of modeling perceptual systems as continuous-time dy-

namical neural models is presented. For more on the potential role of dynamical

stability in the formation and stabilization of percepts in general, see Hock et al.

(1993) and Hock et al. (2003).

1Of course, there are multiple neuron types that may behave differently; for example, bursting
neurons may continue to oscillate continuously under no synaptic input.
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4.1.1 Stable fixed-point

What is relevant is the emergent property of the neuron’s resting level. This property

is captured and modeled as a simple dynamical system with negative feedback; that

is, a system with a single stable fixed-point.

τ u̇ = −u

The variable u is used to represent the activation state of the neuron. Roughly,

the activation can be mapped onto the membrane potential of the neural unit. The

activation state is a continuous real variable that can take on both positive and

negative values. Because the neural element is modeled as a stable fixed point, the

system returns to the fixed point when it is perturbed away from it (i.e. the system

forms a single stable attractor). The parameter τ establishes the timescale of the

dynamical evolution of the equation (in milliseconds by convention).

It is easy to see why this behavior emerges. When the system is in a positive

state (u > 0), the change in the system state is negative (u̇ < 0), and the state of the

system is lowered. In a symmetrical fashion, when the system takes a negative state,

the change of the state is positive, and the state of the system is increased. Thus,

the system tends to return to 0.

4.1.2 Resting Level

One can offset the location of this stable fixed-point simply by adding a constant (h)

to the equation.

τ u̇ = −u+ h

Setting u̇ = 0 it is easy to see that the fixed point is now at u = h. Henceforth,

h will be referred to as the resting level of a neural element (Hock et al., 2003). In

the models, h will typically take a negative value. This is an arbitrary convention, as
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what actually has an effect on the evolution of the neural network is the relationship

between the resting level and the threshold for interaction (defined by the interaction

function), which will be discussed later. The resting level of a neuron is generally

below the interaction threshold.
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Figure 4.1: Relaxation to stable resting level h = −10 from various
initial conditions

4.1.3 Neuron with simple input

Neurons receive input, both from stimulus and other neurons. In general an input

can be modeled as another additive term, here denoted as S, which moves the stable

attractor to u = h+ S.

τ u̇ = −u+ h+ S

In the simulations to follow, stimuli will typically be represented as spatiotemporal

functions of the form S(x, t) where x is space and t is time. Input from other neurons
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Figure 4.2: Neuron response to simple time-varying input

take a more specific form.

4.1.4 Stochastic fluctuations

In addition to the deterministic dynamics of the fixed-point neuron, a stochastic noise

term ξ can be added to the equation. In this dissertation, the noise-term is normally

distributed with a mean 0. Adding the noise term serves two purposes: 1) including

random fluctuations helps to validate the stability of the obtained solutions and ro-

bustness of the model, showing the results are not highly-dependent on the details

of the numerical integration, and 2) as will be shown in the next chapter, random

fluctuations can promote and induce perceptual switches in multi-stable stimuli.

The stable fixed-point dynamic of the model neurons reduced the noise-induced

variance of the neuron’s activation state. Figure 4.3 compares the behavior of a simple
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stochastic system with negative feedback τ u̇ = −u + ξ(t)with a random-walk (with

no feedback) τ u̇ = ξ(t) generated with the same pseudorandom noise vector. With-

out stabilizing feedback, the system may wander arbitrarily far away from its initial

condition, whereas the stabilizing feedback keeps the random fluctuations within a

small range around zero.
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Figure 4.3: A random-walk vs. a neuron stabilized with negative feed-
back

4.2 CHANGE DETECTION NEURONS

The counterchange motion detection principle is based on local oppositely-signed

changes in spatial filter activation. Therefore, it is important to be able to (separately)

measure local increases and decreases in a neural-dynamic fashion. For this purpose

an elaborated version of the fixed-point neuron model is developed into both an

increase and decrease detection neuron variant. Equations of this form for local
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change detection were originally presented by Berger et al. (200x). First, an increase

detector variant is considered.
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Figure 4.4: Increase and decrease detector responses to simple time-
varying input

4.2.1 Increase detection

An increase detector is defined by the following two-equation system:

τfastu̇ = −u+ h− v + S
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τslowv̇ = −v + S.

The elaborated change detection neuron functions by having two state variables

that operate on different timescales. Both variables are impinged on by the same

stimulus (input) S. A state variable v represents a slower antagonistic dynamic

component of the faster state variable u (τslow > τfast). For simplicity, assume h = 0.

When a stimulus is first presented to an increase detector (e.g. S increases from zero to

a greater-than-zero value), both state variables begin to evolve toward a newly formed

attractor. Momentarily, v ≈ 0, and therefore both u and v begin to evolve towards

the stable fixed-point u = v = S. The activation variable u evolves more quickly

than does v due to its faster intrinsic timescale, and thus its activation begins to rise

above resting level. After a sufficient amount of time, v > 0 and the (transient) stable

fixed-point for the activation variable u lowers to the value u = −v + S. Eventually,

v evolves to the stable fixed-point value v = S, and therefore u evolves toward the

attractor u = −v+S = −S+S = 0. Until a further change in input, u will remain at

the stable fixed-point at 0. More generally, when h �= 0, the system evolves towards

the attractor u = −S + S + h = h.

4.2.2 Decrease detection

A decrease detector takes a similar form to the increase detector, except that the sign

of the stimulus input is inverted.

τf u̇ = −u+ h− v − S

τsv̇ = −v − S

Consider a (temporarily) stationary positive-valued input S = 10. For the same

reason as for the increase detector, after a sufficient amount of time the activation

variable u evolves towards the resting level. Now consider what happens when the

input S is removed, i.e. decreases in value from 10 to 0. When the stimulus is removed,
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the slow variable v that had previously evolved to v = −S has an excitatory effect on

the fast variable u. This is because the value v is negative, and the term containing v in

the equation for u is negative. Thus the sign is inverted to become a positive influence

on the evolution of u. In the short-term u therefore grows, exhibiting excitation in

response to the decreased input. Eventually, v evolves back towards v = −S = 0,

and therefore u = −V − S = 0. Again, in general when h �= 0 the system evolves

towards u = h.

4.2.3 Biphasic inhibition

It should also be noted that the change detection neurons are not only excited by

their preferred stimulus, but are also inhibited by their non-preferred stimulus. That

is, increase detectors are inhibited by decreases in input, and decrease detectors are

inhibited by increases in input. This is referred to as biphasic inhibition and it has

been previously shown to account for classic effects of inter-stimulus-intervals on the

perception of standard apparent motion. Here, the implications of biphasic inhibition

are not explored in detail. For a thorough discussion, please see Hock, Schöner &

Gilroy (2009) and Gilroy & Hock (2009).

4.3 NEURAL INTERACTION

Neurons are not isolated entities but exist in networks, and as such neurons receive

synaptic input from one another. As mentioned above, neurons typically interact

via chemical synapses at which neurotransmitters are released in response to action

potentials traveling down the axon of a neuron. Firing rates of action potentials are,

by definition, positive. While a neuron is in an inhibitory state, it may fire few or

no action potentials, in an excited state it may fire many in a short period of time.
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Therefore, a neuron in an inhibitory state can’t influence a neuron it projects to,

while an excited neuron can. This inherent neural asymmetry is expressed in the

model as a sigmoidal interaction function (i.e. a soft-threshold).

f(u) = 1
1+e−u
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Figure 4.5: Sigmoidal Interaction Function

The output of this threshold function is always between 0 and 1 (0 < f(u) < 1).

That is, it is a non-negative saturating function. Each neuron-to-neuron coupling

term is of the form w · f(u) where w is the synaptic strength, which can take on

positive (excitatory) or negative (inhibitory) values.

Consider the following system of equations:

τ u̇1 = −u1 + h+ S

τu̇2 = −u2 + h+ w12 · f(u1)

These equations represent two individual neural elements, with subscripted indices
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1, 2. Neuron 1 has a stimulus input S. Neuron 2 does not have a stimulus input, but

instead has a synaptic input from neuron 1. The synaptic weight w12 is multiplied

by the thresholded activation state of neuron 1, f(u1). Because the function f(u) is

bounded between 0 and 1, the (absolute) maximum effective input from neuron 1 to

neuron 2 is w12.

Here, an example is shown in which the input, S = 30, is turned on at 100 ms,

before which it is zero. The resting level for both neurons is set to h = −10. The

synaptic coupling from neuron 1 to neuron to is set to w12 = 20.
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Figure 4.6: A simple two-neuron feedforward network demonstrates neu-
ral interaction through a sigmoidal function. A neuron u1 receives stim-
ulus input and forms an excitatory synaptic connection with a second
neuron u2 to which it passes on activation.

As can be see in in Figure 4.6, up until the input is switched on at 100 ms, both

neurons sit at their resting levels. When the input is turned on, neuron 1 begins to

evolve towards its newly-formed attractor at u1 = h+S = 20. As the activation state

79



rises, neuron 2 begins to receive effective input from neuron 1 through the interaction

function f(u1).

Because the stimulus input is strong enough for neuron 1 to essentially saturate

(i.e. f(u1) ≈ 1), the effective input to neuron 2 becomes w12 · f(u1) ≈ 20. This

implies that a attractor is formed for neuron 2 at u2 = 10, which it can be seen to be

approaching asymptotically in the figure.

This example shows a single connection from one neuron to another with a simple

static input turned on at 100 ms. Some possible patterns of coupling, not shown

here, include multiple inputs/outputs to/from a single neuron, feedback (reciprocal

connectivity) between neurons, and self-excitation. However, the basic premise, that

neurons couple through (asymmetrical) synapses via a sigmoidal interaction function,

is invariant throughout the remainder of the dissertation.

4.3.1 Additive and Multiplicative Synapses

Typically, neural networks are modeled with additive synapses. That is, each pro-

jection from one neuron to another is an additive term which contains a synaptic

weight w multiplied by the output of the projecting neuron f(u). So, if a single

neuron receives inputs from multiple neurons, the terms are added together, e.g.

w1 · f(u1) + w2 · f(u2). However, neural interactions can also be modeled as multi-

plicative. That is, rather than summing the (weighted) output of multiple projecting

neurons, they could be multiplied, e.g. w · f(u1) · f(u2) (a single synaptic weight is

used for simplicity). There is substantial physiological (e.g. Gabbiane et al., 2002)

and psychophysical (e.g. Gilroy and Hock, 2004) evidence that cortical responses

can display multiplicative-like behavior, although the mechanism for this behavior

remains unclear.

Multiplication also serves as a natural mathematical mapping for concepts in

80



which multiple conditions must be true for some induced condition to be met. In

the case when there are two conditions which must be true, multiplication essentially

functions as a logical AND gate. In the next chapter a neural network for solving the

motion correspondence problem is developed in which multiplicative synapses play

two roles, both of which correspond to a logical AND in the conceptual schema. The

first is the detection of counterchange motion itself (the co-detection of an increase

and a decrease), the second is the (cooperative) competition among motion signals

that constrains the subset of motion paths that are perceived. It is shown that an

additive inhibitory alternative is not sufficient to account for all classes of patterns

presented to the model. Both of these functions, particularly the latter, will be

described in detail in the following chapter.

In order to illustrate some of the dynamical advantages of multiplicative synapses

in a simple pattern detection task, consider the following neural network defined by

the set of equations 4.1 and diagrammed in Figure X. Two pattern-detection neurons

x and y both receive input from two sub-pattern-detection neurons p and q, where the

projections from p and q terminate in an additive synapses at x and a multiplicative

synapse at y. Each synapse has a weight associated with it denoted as wadd for each

of the additive synapses on x and wmulti for the multiplicative synapse on y. Assume

the function of pattern-detectors x and y is to detect the coincidence of detection of

sub-patterns p and q; and further that it is a false alarm if a pattern-detector shows

significant activation when either p or q are not active. Let the (arbitrary) absolute

perceptual threshold α = 0 be the value that over which the percept associated with

the detector is formed, and let α∗, the effective perceptual threshold, be the difference

between the resting level and the perceptual threshold. Thus, when α = 0, α∗ = −h.

The maximum effective input (assuming positive synaptic weights) to additive

neuron x is 2 ∗wadd and to multiplicative neuron y is wmult. To make comparisons as
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direct as possible the simulations below will be constrained by the relation 2 ·wadd =

wmult except where otherwise noted.

Input 1 Input 2

p q

x y

×
wmult

wadd

wadd

A)

resting level (h)

perceptual threshold (α)

α*

2wadd

wmult
or

Evolution of a 
pattern detector 
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subunit inputs
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Figure 4.7: A) A wiring schematic for a small network to compare
the dynamical consequences of additive and multiplicative synapses on
pattern detection. Sub-pattern neural elements p and q synapse in an
additive and multiplicative fashion to pattern-detector x and y, respec-
tively. B) Diagram of symbols used in the discussion of the relationship
between synaptic strength and pattern-detector response.

Consider the system of equations 4.1

τ u̇p = −up + h+ S1 (4.1)

τ u̇q = −uq + h+ S2

τ u̇x = −ux + h+ wadd · f(up) + wadd · f(uq)

= −ux + h+ wadd · (f(up) + f(uq))

τ u̇y = −uy + h+ wmult · f(up) · f(uq)

In the case where both subunits p and q receive input, both the additive and
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multiplicative pattern-detectors are also activated. Assuming all neurons essentially

saturate, and that 2wadd, wmult > α∗, both of the neurons successfully detect the

pattern (Figure 4.9).
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Figure 4.8: Additive and multiplicative pattern-detectors responding
correctly to input. Both inputs are turned on at 100 ms. Subunits p and q
are driven to saturation. When they cross the interaction threshold, both
the additive and multiplicative pattern detectors, x and y respectively,
are driven above perceptual threshold.

Using the same synaptic weights, when only the subunit q receives input, the

additive neuron reaches only half of its previous activation. In this case, wadd < α∗,

so the additive neuron x does not signal that a pattern has been detected. The

multiplicative neuron remains essentially at its resting-level. This is because the

output of neuron p is so close to zero that the synaptic product is also very close to

zero. In this case, both pattern-detectors correctly produce a ‘no-detection’ response.

Increasing (e.g. doubling) the synaptic weights produces some notable effects.

When both inputs are on, both the pattern-detection neurons correctly show activa-
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Figure 4.9: Additive and multiplicative pattern-detectors correctly de-
tecting no pattern when only one input is present. The additive neuron
receives effective activation from one of its subunits, but relaxes below
the perceptual threshold. The multiplicative neuron remains at resting
level.

tion values above α. Additionally, relative to the trial with smaller synaptic weights,

the latency of the response (the time from when the stimulus turns on until the pat-

tern detectors cross the perceptual threshold α) is shortened for both the additive and

multiplicative neurons. This is a result of the newly formed attractor being further

from the resting-level, and therefore inducing a faster dynamical change.

With these same synaptic weights, removing input to one of the sub-pattern de-

tectors p highlights a fundamental difference between the additive and multiplicative

pattern-detectors. Because wx > α∗, the single additive input is enough for activation

of x to rise above α. This is considered a false-positive, as only one of the two neces-

sary pattern components is present. The multiplicative neuron y once again remains

essentially at resting-level.
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Figure 4.10: Additive and multiplicative neurons with increase synaptic
weights. Latency of response after the subunits cross the interaction
threshold is reduced in both pattern detectors as compared to the lower
synaptic weights used in the simulations above. As will be shown in
the next simulation, the additive neuron’s synaptic weight causes false
positives when only one subunit is active.

Thus, we can say that for a functional pattern-detector comprised of two sub-

patterns, the synaptic weight w must be less than α∗ so that a single subunit input is

not enough to drive the pattern detector over its perceptual threshold. Additionally,

wadd must be greater than 1
2
α∗ so that together the sub-patterns provide enough

feedforward activation to drive the pattern-detector above α. Therefore, we can say

that for an additive pattern-detector with two sub-pattern inputs, 1
2
α∗ < wadd < α∗.

In contrast, the only logical constraint on the multiplicative synaptic weight is

that it must be large enough to cross the perceptual threshold, thus wmult > α∗.

The fact that wmult can be (much) larger than wadd confers a potential dynamical

advantage to the multiplicative synapse with a large weight. Consider the case that

is no longer constrained by the relation 2·wadd = wmult. If we set wadd to its maximum
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functional value, and wmulti to some arbitrary value greater than wadd, it can be seen

that the latency of the multiplicative neuron y is much less than the latency of the

additive neuron x.
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Figure 4.11: With increased synaptic weights, when only one subunit is
active, the additive neuron incorrectly crosses the perceptual threshold.
The multiplicative neuron remains at resting level.

Multiplicative synapses confer several advantages for the purposes of the present

modeling. Large synaptic weights increase the rate of change of the neural dynamics,

an extremely desirable characteristic for perceptual systems. The maximum synaptic

weight for pattern detectors with additive sub-pattern inputs is bounded at a rel-

atively low value. Multiplicative synapses can have large synaptic weights without

causing false alarms when an insufficient number of sub-patterns are stimulated to

constitute perceiving a pattern. For the same reason, the range of (synaptic) pa-

rameter values for which the dynamical behavior is qualitatively the same is much

larger. In other words, the model needs less tuning. Finally, in what follows it is
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Figure 4.12: Setting the additive neuron to its maximum functional
synaptic strength (i.e. the value at which any increase in synaptic
strength would result in false positives) and the multiplicative neuron
at an arbitrary value greater than two times the additive weight shows
the difference in latency for the two (functional) pattern detectors.

shown that employing an additive inhibition scheme analogous to the multiplicative

one employed in the main model is not sufficient to account for all of the motion

patterns presented to the model.
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Figure 4.13: Removing one of the inputs verifies that both neurons
remain functional and do not elicit false positives. Again, the additive
neuron is effectively activated by its lone input (below perceptual thresh-
old), and the multiplicative neuron remains at resting level.
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Chapter 5

A Dynamical Neural Network for Solving

the Correspondence Problem

5.1 INTRODUCTION

The motion correspondence problem is a general problem the visual system faces

whenever ambiguities occur in the changing location of visual features over time,

whether these ambiguities are due to noise, to features being discretely displaced via

an artificial display, to their occlusion, or to any other visual anomaly. In addition

to disruption of the continuous availability of optical information, spatiotemporal

context might lead to one perceptual interpretation being preferred over another (i.e.

previously induced percepts can influence current ones). In other words, the visual

system must solve the problem of ‘what moved where’ in the face of uncertainty.

The correspondence problem is intimately related to the coherent motion perceived

in the random-dot cinematograms in the Chapter 3. In terms of paradigms, they differ

in that ‘correspondence problems’ typically 1) contain fewer and larger visual elements

with a sparser distribution, 2) are not embedded in noise, and 3) may induce more

intricate motion percepts (e.g. splitting and fusing of elements). However, there is

no principled dividing line between the two, and the term is often used loosely. In

random dot cinematograms, coherent motion (that is, motion of the same direction
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and span) of many elements is necessary to disambiguate the signal from the noise,

as the number of potential mismatches is overwhelming. Because of this, theoretical

analyses of random-dot stimuli generally approach the correspondence problem from

a statistical point of view (e.g., Read, 2002). That is, rather than evaluating whether

specific motion paths are perceived or not between individual visual elements, it is

generally sufficient to show that there is a statistical reliability in the perception

of motion direction; in other words that the majority of generated motion signals

correspond to the veridical displacement. This is evident in the treatment of the

short-range motion paradigm in the context of counterchange detection in Chapter

3. In this chapter, we are more interested in the specific element-to-element motion

paths that are perceived when a (relatively) small number of visual elements are

present on each frame. Reducing the necessity of strong coherence for motion signals

to be reliably generated and disambiguated from noise allows a more nuanced look

at the class of typically perceived correspondence patterns.

A classical correspondence display consists of two discrete frames that contain

some salient visual elements whose location and possibly number differ on frames 1

and 2. Assuming there are n visual elements on frame 1 and m visual elements on

frame 2, there are a possible n × m correspondence matches, and if each possible

correspondence match can either be perceived (1) or not (0), there are a total of 2n×m

possible global solutions.

This classical two-frame approach presents some limitations when it comes to

characterizing how correspondence matches are formed in typical perception. For ex-

ample, Ramachandran and Anstis (1987) showed an effect they termed visual inertia

in which the first frame-change in a three-frame sequence strongly constrained the

percept induced by the second-frame change. Namely, the motions perceived in the

latter frame-change were typically the ones that were collinear with the perceived mo-
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tions in the first frame-change. In this dissertation, both classical two-frame stimuli

as well as displays with three or more frames (including but not limited to the visual

inertia display) will be explored in relation to the model.

The rest of this chapter is structured as follows. First, a brief review of the most

well-known and successful previous approaches to the problem will be presented. The

limitations of these earlier approaches will be highlighted and compared with the cur-

rent approach. Second, a perceptual principle, the unique split/fusion principle, will

be proposed and described. Third, two versions of a dynamical neural network model

for solving the correspondence problem will be developed and explored. The first

is a simplified version of the model that only accounts for one-dimensional motion

patterns, for which all stimuli fall on a line. The second model generalizes the first in

order to account for two-dimensional motion patterns. The neural networks’ response

to both novel and benchmark correspondence displays will be discussed in order to

evaluate the degree of agreement between the model and human perception, as well

as to identify which aspects of the model are responsible for the emergent percepts

formed under various conditions (i.e. human-like responses to some displays neces-

sitate all the features of the model, while other displays highlight only a subset of

the features). Finally, a discussion of the relation to other models as well as testable

predictions are discussed.

5.2 BRIEF REVIEW

5.2.1 Ullman’s Minimal Mapping Theory

The most well-known treatment of the motion correspondence problem is proba-

bly Ullman’s (1979) minimal mapping theory. Ullman formulated the problem in

terms of minimizing a cost function associated with forming competing correspon-
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dence matches. The cost function applied two constraints to the problem: the near-

est neighbor principle and the good cover principle. The nearest neighbor principle

assigns larger costs to longer-range motions (such that shorter-range motions are pre-

ferred), and the good cover principle requires that each element on each frame has

at least one correspondence match associated with it (this prevented the otherwise

degenerate minimal-cost solution of no motion paths).

Ullman’s model accounted for a set of simple correspondence displays, but quickly

fails when the complexity of the stimulus increases. This is especially evident in ‘group

motion’, when multiple elements move together in an invariant formation. The failure

occurs because each motion path is treated independently when minimizing the cost

function. For a more detailed overview of the model’s shortcomings in response to

specific correspondence displays, see Dawson (1991).

Additionally, the model did not propose a neural process by which the cost-

function is minimized, nor did it specify the process by which visual elements are

extracted from the stimulus and their locations measured continuously. This is a

general problem with the concept of token-tracking, which is discussed in more detail

below.

5.2.2 Dawson’s Hopfield Network

Dawson (1991) developed a neural network model (a Hopfield network; Hopfield, 1982;

Hopfield and Tank, 1985) in order to overcome some of the limitations of Ullman’s

minimal mapping theory. In Dawson’s model, three constraints were simultaneously

applied via synaptic weights: the nearest neighbor principle, the relative velocity

principle, and the element integrity principle. In the Hopfield network, each neuron

represents a motion path, and there is all-to-all connectivity between every neuron.

The strength of the synaptic connectivity between any pair of neurons is a com-
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bination of the three principles, where parameters can vary the weighting of each

constraint (i.e. how influential it is on the evolution of the system). For each corre-

spondence display, the network is initialized with all potential motion paths set above

threshold (by the system operator). The network then evolves according to a discrete

dynamical updating rule, and eventually a stable solution is reached (guaranteed by

the symmetrical connectivity inherent in the Hopfield net). After a sufficient number

of iterations, the state of the network determines the particular solution to a given

classical correspondence problem.

In many ways, the model developed here shares similarities with Dawson’s (1991)

correspondence network. Firstly, his was the first thorough treatment of the motion

correspondence problem in terms of a neural network solution. This is a step towards

biological plausibility from the abstract cost-minimization approach of Ullman. Ad-

ditionally, his three constraints have significant conceptual overlap with the current

model which specify 1) a constraint on the extent of splitting and fusing, 2) a tendency

for shorter-path motions with all other things being equal, and 3) a collective effect

of group motion when multiple visual elements can be interpreted as being translated

rigidly.

There are, however, several notable theoretical advances in the current formula-

tion. Whereas Dawson’s solution to the problem necessitated that a new network

be instantiated for each problem, the present model is formulated as a general solu-

tion, new networks are not needed for each problem. Furthermore, no front-end was

specified in Dawson’s model, which takes for granted the existence of ‘token-trackers’

that can extract and track the locations of figural elements over time (this is dis-

cussed in more detail below). A front-end is fully-specified in the current model along

with the mechanism for detecting motions from the dynamic stimulus array. Another

consequence of Dawson’s formulation is that his model must be re-set for each cor-
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respondence display, even if the stimulus is the same. This is because the network

evolves to a stationary solution, and remains there indefinitely until it is externally

modified. In the model below, solutions are transient events that are not stabilized

indefinitely, but persist on the timescale of hundreds of milliseconds. This means that

the model can address cases in which multiple motion-events (i.e. frame-changes) are

presented in sequence without running into conceptual predicaments.

5.2.3 Token-tracking

Both Ullman (1979) and Dawson (1991) make use of the notion of token-tracking in

order to explain the generation of the set of potential motion signals out of which

the perceived motions are a subset. Essentially, the idea is that at each ‘moment’

the visual system is segregating a set of figures from their background, and isolated

figures are treated as tokens, whose locations are cognitively ‘tagged’, continuously

monitored, and updated. When a token appears at a new location, it is (under

appropriate conditions) perceived as sharing an identity with a token at a previously

occupied location, and a motion percept from one token to the other is formed. There

are several shortcomings to this approach.

In this view, a stationary visual token must have its location continuously reaf-

firmed in order to be perceived as stationary. At each moment, a token takes place

in a correspondence calculation and, under appropriate conditions, it is measured to

identify with itself. This is not necessarily a problem, but it must be noted that it

would be a rather costly process when viewing a stationary image.

Further, token-tracking approaches do not specify how visual tokens are to be

extracted and tracked; they take these processes for granted. This manifests as a

theoretical disconnect between token-tracking and what is typically considered low-

level motion detection.
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The concept also breaks down when one considers the case of generalized apparent

motion (GAM). In GAM, two visual elements are simultaneously visible on each

frame, yet motion is seen to originate from one element location and end on another

under conditions of counterchange (Johansson, 1950; Hock, Kogan & Espinoza, 1997).

It has been demonstrated by Hock, Gilroy and Harnett (2002) that other simple

low-level feature tracking mechanisms cannot account for the perception of motion

in GAM, for example keeping track of the element with higher absolute contrast.

Motion is perceived even if the location of maximum contrast does not change during

counterchange. Thus, GAM presents a considerable challenge to accounts reliant on

token tracking.

5.2.4 Hard and soft constraints

Most approaches to the correspondence problem have sought solutions by applying

constraints to a set of potential motion paths, but how these constraints are imposed

varies from model to model. When applying constraints to search for a solution to a

problem, a distinction is often made between hard and soft constraints. Hard con-

straints describe those conditions which must be met by the system of interest (i.e.

given absolute priority) while soft constraints describe conditions which are preferred,

but are not always met and will yield to the demands of hard(er) constraints. Soft

constraints are more like tendencies or biases of a system, rather than rules which are

always obeyed. A soft constraint will always be violated in the interest of conforming

to a hard constraint. They allow malleability in the kinds of solutions reached com-

pared with hard constraints, and are more plausible in the face of counterexamples.

A single counterexample calls into question the viability of a hard-constraint. In the

visual domain, a hard-constraint would correspond to something never seen. Evalu-

ating hard-constraints puts an emphasis not only on what percepts tend to be seen
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when exposed to a given stimulus, but also what set of percepts are possible (even if

infrequent) and, importantly, seemingly impossible for that stimulus.

Three constraints were instantiated in the present model. There are two soft

constraints: a bias for nearest neighbor matchings and mutual enhancement motion

signals with the same span (where span in two dimensions refers to both the distance

and direction of a motion path), and one hard constraint: the unique split/fusion

principle. The unique split/fuse principle is described conceptually below, and the

implementations of all three constraints are discussed in detail in the modeling section.

The unique split/fusion principle

In this chapter, a hard-constraint is proposed in the context of ambiguous motion per-

ception: the unique split/fusion principle. Solutions to a number of correspondence

problems are found that are in agreement with human perception when coupling this

constraint with other empirically-supported tendencies (soft constraints).

Some terminology will be introduced in order to aid in the description of the

principle. As discussed, a counterchange motion signal is (potentially) generated from

the location of a decrease in (spatial filter) activation to the location of an increase

in (spatial filter) activation. It is assumed that multiple motion detectors may share

a change-detection subunit; i.e. multiple counterchange motion paths may originate

or terminate at a common location. When multiple (perceived) motion paths share a

decrease subunit (i.e. they originate at the same location) it is referred to as splitting.

When they share an increase subunit (i.e. they terminate at the same location) it

is referred to as fusing. Two motion paths are said to be independent if they share

neither a decrease nor an increase subunit, and conversely are said to be dependent if

they do share a change detection subunit.1 The unique split/fusion principle asserts

1This is not to be confused with statistical dependency. Here, we refer to hierarchical dependency,
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A) Independent motion paths B) Dependent motion paths

Not Perceived Perceived

C) Effective (cooperative) inhibition

Not Perceived
Perceived

Split or fusion event

Location of element on frame 1

Location of element on frame 2

D) No (cooperative) inhibition

Figure 5.1: Some local motion patterns and examples of the split/fusion
principle. Panel A) shows two independent motion paths; they share no
subunit (increase- or decrease-detector). Panel B) shows two pairs of
dependent motion paths. The two on the left (right) share a decrease
(increase) subunit, resulting in a split (fusion) event. Panel C) shows
two patterns that invoke the unique split/fusion constraint. The solid
arrows represent perceived motion paths. The dashed arrow represents
an unperceived motion path that, if it were perceived, would result in a
splitting event in the lower right and a fusion event in the upper left, both
circled in red. The example below it is arranged differently but follows
the same logic. Panel D) shows variants of panel C) with a single element
removed on frame one. No motion path connects a split and a fusion,
circled in red, and thus all paths are perceived.

that no perceived motion path can both originate from a location of splitting and

terminate at a location of fusion (for a single motion event). A motion path may

where two (pattern detection) elements are considered to be independent if they do not depend on
common subunits.
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be seen to take part in splitting or fusing during each motion event, but not both.

In other words, no motion perceived path connects a splitting event with a fusing

event, making splitting and fusing events unique. Figures 5.1 and 5.2 help to describe

this principle. The potential functionalities of such a constraint are explored in the

discussion at the end of this chapter where it is argued that the perceptual exclusivity

between approaching and retreating objects may provide ecological benefit.

A B

C D

AB

CD

AD

CB

×

A B

C D

AB

CD

AD

CB

×

Effective (cooperative) inhibition No inhibition

Figure 5.2: Diagram of cooperative inhibition in a simple correspon-
dence problem. On the lefthand panel, independent motion paths AB
and CD cooperatively inhibit motion paths AD and CB, each of which
is mutually dependent with the pair AB and CD. The righthand panel
shows a case where no cooperative inhibition is invoked. The thick solid
arrows represent active counterchange motion paths, the dashed arrows
represent inhibited paths where there would otherwise be counterchange
motion. Motion paths in light grey are inactive.

This is an abstract principle, and requires further specification as a mechanism

if it is to be embodied in a model. A general mechanism is proposed to account for

the principle: two independent motion paths cooperatively inhibit mutually-dependent

motion paths with which they each share a subunit. Here, cooperative inhibition

implies that there is only effective inhibition when both independent motion paths

are sufficiently stimulated.2

2The concept of cooperative inhibition does not appear to be widely considered in neuroscience.

98



A given motion path is said to be mutually-dependent with a pair of independent

motion paths if it shares a subunit with each of them. By definition, two independent

paths cannot share a subunit. Therefore, because the motion detector for each path

is fed by two subunits, the mutually-dependent path shares one of its subunits (e.g.

the decrease detector) with one of the pair of independent motions and the other

subunit (e.g. the increase detector) with the other.

In other words, a motion path that is mutually-dependent with two independent

motion paths originates at the same location as one of the independent paths and

terminates at the same location of another. It logically follows from this that each pair

of independent motion paths (potentially) inhibits exactly two (mutually-dependent)

motion paths: from the decrease-detector of one (independent) path to the increase-

detector of the other, and vice versa.

The left panel of Figure 5.2 shows an example of the unique split/fusion constraint

in the context of a relatively simple motion correspondence problem. Two decrease

events occur at locations A and C, and two increase events occur at locations B and

D. Potential counterchange motions therefore exist from A to B (AB), C to D (CD), A

to D (AD), and C to B (CB). AB and CD are independent from one another because

they do not share any subunits, and AD and CB are independent from on another

as well. The pair of paths AB and AD are dependent because they share a decrease

subunit (split), as do the pair CD and CB. Additionally, the pair AB and CB and the

pair AD and CD each share a location of increase, and are therefore dependent pairs

(fusion). The independent paths AB and CD (potentially) cooperatively inhibit the

mutually dependent paths AD and CB, and complementarily, AD and CB have the

potential to cooperatively inhibit AB and CD. Assuming some competitive advantage

However, it has been observed and conceptualized in physiological research; see, for example,
Cardiello et al., (1998); Cloutier, (1999); Murakami et al. (2003).
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is conferred to AB and CD (e.g. a shorter-path advantage), the pair of motion paths

AD and CB (each of which is mutually dependent with AB and CD) will both be

cooperatively inhibited.

The right panel of Figure 5.2 shows a case with no effective (cooperative) inhi-

bition. It shows a variant of the same stimulus without a decrease event at A (i.e.

a decrease at C and two increases at B and D). The cooperative inhibitory circuit

would not have any significant causal influence and motion paths CB and CD would

both remain activated.

The implementation of this cooperative inhibitory mechanism is detailed in the

section describing the modeling below and in Appendix C. Importantly, the scheme

is general and it is not necessary to pre identify where pattern elements and potential

motion paths might occur a priori. Cooperative inhibition emerges where appropriate

out of the architecture of the network.

5.3 THE MODEL

The neural network is composed of four interconnected sub-network components, the

two change-detection arrays, the motion detection array, and the biasing array (Fig-

ure 5.3). The input to the network consists of a spatially-filtered dynamic gray-scale

image. The input feeds into parallel pathways, one pathway feeding-forward to an

array of decrease detectors, and the other pathway feeding-forward to an array of

increase detectors. These two arrays feed-forward to the motion-detection network

where counterchange motion signals are both generated and undergo competitive se-

lection (entailed by the unique split/fusion principle). The motion-detection network

is reciprocally connected to a network that integrates global information about the

distribution of (potential) motion signals, and biases the generation of the motion
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Figure 5.3: A wiring schematic of the correspondence network. A dy-
namic stimulus is spatially filtered and fed in parallel to increase- and
decrease-detection arrays. These arrays are combined into a counter-
change motion-detection network where motion signals are generated and
competitive selection takes place. The motion-detection network is recip-
rocally connected to a biasing network. Each class of motion-detector
(defined by their direction and magnitude, ie. ‘span’) converges on a de-
tector that feeds excitation back to all the motion-detectors of that class
that biases selection in their favor.

signals on the motion-detection network, referred to as the biasing array. The bias-

ing array also undergoes a process of competitive selection. It is internally structured

as a soft winner-take-all network where each neuron inhibits all others in the biasing
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array sub-network3. Excitatory feedback to the motion-detection array is therefore

limited to the ‘winners’ of this competition. Each of these components will be de-

scribed in more detail below along with illustrative examples. Their interaction and

emergent behavior will be discussed on a case-by-case basis, highlighting theoretically

critical aspects. Except where otherwise noted, all model parameter values are held

constant for each simulation (listed in Appendix C). For some simulations, certain

components and interactions will be deactivated in order to address the necessity of

each component, it will be stated explicitly when this is the case.

Two versions of the dynamical model are presented below. Mathematically, they

take almost exactly the same form, with the major difference being whether one-

or two-dimensional motion correspondences can be computed. The one-dimensional

motion model is presented first as it is easier to conceptualize and visualize and

therefore instructive of the behavior of the model in general. Several one-dimensional

stimuli will be discussed on a case-by-case basis, highlighting relevant features of

the model where appropriate. The model will then be formulated for the case of

two-dimensional motion, and again several cases will be discussed.

5.3.1 One-dimensional correspondence network

Stimuli

The dynamic image input I(x, t) consists of N locations (pixels) x = [x1, x2, ..., xN ]

whose local intensity can vary from 0 (i.e. black) to 1 (i.e. white) and T time samples

t = [t1, t2, ..., tT ] (each time sample representing one millisecond). Spatial intensity

patterns remain static for multiple time samples before undergoing a discrete change

to a different pattern, generating correspondence ambiguities and potentially eliciting

3The winner take-all network is said to be soft because it is not guaranteed that only one neuron
will stabilize above the interaction threshold, as can be seen in some of the example cases below.
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apparent motion percepts. In the following simulations all display ‘frames’ last for

200 time-samples. The input pattern I(x, t) is convolved with a simple 1-dimensional

center-surround spatial filter c(x) = [−.5 1 − .5] and scaled by a factor ε, which

produces the time-dependent spatial function S(x, t) = ε(I(x, t) ∗ c(x)) (in all of the

simulations, the result of the convolution is truncated in order to maintain the number

of locations N in the original input vector I(x, t)).

Change-detection arrays

The detection of motion is achieved via a counterchange mechanism that detects

motion from locations of decreasing spatial filter activation to locations of increasing

spatial filter activation. The spatially-filtered stimulus is passed in parallel to two

neural arrays, one which responds with excitation to decreases in activation, and the

other which responds with excitation to increases in activation. They evolve according

to the systems of equations 5.1 and 5.2, respectively.

τ u̇dec
m = −udec

m + hdec − vdecm − S(m, t) + ξdec(m, t) (5.1)

τslowv̇
dec
m = −vdecm − S(m, t)

τ u̇inc
n = −uinc

n + hinc − vincn + S(n, t) + ξinc(n, t) (5.2)

τslowv̇
inc
n = −vincn + S(n, t)

Where each location indexed by subscripted variables m and n on each array,

respectively, receives input from the corresponding location x along the spatially-

filtered stimulus array S(x, t). For example, the increase detection unit uinc
4 receives

input from S(4, t) for all t. The superscripted indices dec and inc refer to the decrease

and increase sub-network components.
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Feedforward counterchange detection

The two 1-dimensional change-detection arrays project feed-forward connections to

the 2-dimensional motion-detection array. Each decrease detection element is paired

with each increase detection element, delivering input via a multiplicative synapse to

a motion-detection element. The motion-detection lattice is indexed such that the

motion detector umot
m,n receives input from udec

m and uinc
n where the superscripted index

mot denotes the motion-detection sub-network. In other words, the decrease detection

array projects its synaptic outputs across each row of the motion-detection lattice, and

the increase-detection array projects its synaptic outputs across each column of the

motion-detection lattice. For example, the decrease detector udec
2 projects synaptic

input to umot
2,n ∀ n and the increase detector uinc

3 projects input to umot
m,3 ∀ m. If both

of these change-detectors are active their synaptic projections will coincide at the

motion-detector umot
2,3 . Figure 5.4 shows this example in graphical form. Equation 5.3

describes the motion-detetion network with only feedforward connections (and a noise

term ξ) scaled by the synaptic weight A which is the same for all motion detectors.

τ u̇mot
m,n = −umot

m,n + hmot (5.3)

+A · f(udec
m ) · f(uinc

n )

+ξmot(m,n, t)

Because of the multiplicative nature of the synapses, effective input is only deliv-

ered to a motion-detector unit if it is receiving input from both of its subunit inputs.

In the example above (Figure 5.4), umot
2,4 would not receive effective input because

although it is receiving input from udec
2 , it receives no input from uinc

4 . The parameter

A sets the feedforward synaptic weight for all counterchange motion-detectors.

The two-dimensional motion-detection lattice can be thought of as a neural prod-
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Figure 5.4: Feedforward architecture with some connections shown. The
spatially-filtered image is fed-forward in parallel to the decrease and in-
crease detection arrays. Each motion detector receives input from one
decrease and increase detector which are multiplied, computing motion
from the location of its decrease detector input to its increase detector
input. In the example illustrated in the diagram, the blue nodes represent
motion detectors receiving input from a decrease detector but no increase
detector, and the yellow nodes represent motion detectors receiving input
from an increase detector but no decrease detector, and therefore there
is no effective input. The green motion detector (umot

2,3 ) is the only ac-

tive node as it receives input from both a decrease (udec2 ) and an increase
detector (uinc3 ).

uct space of the two one-dimensional change-detection spaces. Each motion-detector

umot
m,n associates a decrease at location m and an increase at location n; in other words,

a counterchange motion from m to n. In this sense, the motion-detection lattice could

be conceived as embodying a space-code, where a neuron’s location within the lattice

signals its perceptual interpretation.

When only one decrease and one increase are detected at a time, a single counter-

change motion signal is generated. When there is transient activation in more than

one decrease or increase detector at a time, multiple counterchange detection sig-

nals are generated, from each decrease detection location to each increase detection

location (assuming there is sufficient activation). Typically, only a subset of these
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motion paths are perceived. The correspondence problem makes itself evident here:

a counterchange motion is detected from each motion-detection neuron where a row

intersects with a column that are each receiving inputs from their corresponding de-

crease and increase detection subunits, respectively. A selection process is therefore

needed for the model to reflect human perception.

Competitive selection via cooperative inhibition

In order to select among motion signals, a competitive scheme is instantiated that

embodies the unique split/fusion principle described in Section 5.2.4. Recall that each

row of the motion-detection lattice receives input from a single decrease detector, and

each column from a single increase detector. This implies that motion-detectors in the

same row are related to one another by virtue of the fact that they share a common

decrease-detection subunit, and similarly motion-detectors in the same column are

related by their common increase-detection subunit.

Recall that two motion paths are said to be dependent if they share a subunit and

independent if they do not. Thus, a synaptic neighborhood is established for each

motion-detection neuron based on its shared subunits. A given motion-detector’s

neighborhood is the collection of all motion paths with which it is dependent and

is therefore composed of two sub-neighborhoods: all the motion-detectors it shares

a decrease-detector with (i.e. all elements in the same row) and all the motion-

detectors it shares an increase detector with (i.e. all elements in the same column).

In complement, all of the neurons not within a neuron’s neighborhood represent

motion paths that are independent from the given neuron’s motion path.

Recall further that according to the unique split/fusion principle, a given motion

path is co-inhibited by two independent motion paths, both of which it is dependent

with. In other words, two independent motion paths co-inhibit motion paths that
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Figure 5.5: A motion detector’s neighborhood is composed of all of
the motion-detectors that it shares an increase or decrease subunit with.
It is further subdivided into its increase- and decrease-detection sub-
neighborhoods.

are mutually-dependent. In terms of counterchange this implies that a motion path

from a given decrease-location to a given increase-location will be inhibited by the

coincidence of two separate motion paths, one of which shares the location of decrease

(origination), and the other the location of increase (termination).

This scheme also implies that sets of dependent motion paths do not inhibit one

another by themselves. In the motion-detection lattice space, this means that for a

neuron to be effectively inhibited, it must sit at the intersection of the neighborhoods

of two active, independent motion-detectors. For this to be the case, it must receive

synaptic input from at least one neuron in both the same row and the same column.

This will be shown to be an essential feature of the model.

This interaction is embodied in the network by a term in the equation that is

the product of two sums, each sum representing a sub-neighborhood of a neuron

(Equation 5.4). The first sum represents all the summed interaction state of all the
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neurons that share a decrease detector with the neuron of interest (i.e. all the neurons

in its row except for itself); the second sum, all the neurons that share an increase

detector subunit (i.e. all the neurons in its column except for itself). These sums are

multiplied with one another and scaled with a negative (inhibitory) synaptic weight

B < 0. If either is close to zero the product is also close to zero and the inhibition

is not effective. Additionally, because the inhibitory interactions take place through

the sigmoidal activation function f(u), it is only when they are supra threshold that

competitive interactions can take place. This fact will be shown to be important

for achieving the desired dynamics on the network and is related to the application

of the unique split/fusion principle as a hard constraint. Equation 5.4 shows the

(feedforward) motion-detection network with the cooperative inhibition term added.

τ u̇mot
m,n = −umot

m,n + hmot (5.4)

+A · f(udec
m ) · f(uinc

n )

+B ·
∑
p �=m

f(umot
p,n ) ·

∑
q �=n

f(umot
m,q )

+ξmot(m,n, t)

Biasing Array

By itself, the unique split/fusion principle can account for some motion displays,

however it lacks two critical aspects that are evident in motion perception: 1) a

preference, all else being equal, for shorter-path over longer-path motions, and 2) a

tendency to see group motion when an interpretation allows for a rigid translation

of several elements (i.e. multiple counterchange motions of the same direction and

span), even if the shortest motion paths are not entailed. The biasing array, which

is reciprocally connected to the motion-detection array, integrates activation from
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Figure 5.6: An example of the effect of cooperative inhibition. The
decrease detectors udec2 and udec4 are active along with the increase detec-
tors uinc3 and uinc5 combining to form four (potential) motion paths. In
this example, the pair of motion detectors umot

2,3 and umot
4,5 , by virtue of

some bias, cooperatively inhibit motion detectors umot
2,5 and umot

4,3 . Under
different circumstances, the alternate pair might win out.

motion detectors across the stimulus array and, after undergoing an internal soft

winner-take-all competition sends excitation to subsets of motion detectors that gives

them a competitive advantage compared to their non-biased counterparts.

The biasing array is organized such that all motion-detectors of a given span

(where span refers to both direction and euclidean distance of a motion path) send

convergent projections to a single neuron in the biasing array which represents the

global activation of motion detectors of that span. The span of a detector is referred

to as δx, which neurons on the biasing array are indexed according to (ubias
δx

; Equa-

tion 5.5).The superscripted index bias denotes the biasing array sub-network. δx can

take on both positive and negative values where, by convention, positive values refer

to detectors of rightward motions and negative values to detectors of leftward mo-

tions. In general, δx = n−m where m is the index corresponding to the location of

decreasing activation and n is the index corresponding to the location of increasing
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activation. Thus, a given neuron in the biasing array has its (additive) inputs defined

by the term D ·∑n−m=δx
g(umot

m,n) where the function g(u) is again a sigmoidal activa-

tion function, differing from f(u) only by its inflection point.4 Projections from the

motion-detection array to the biasing array can be visualized as a synaptic projec-

tion along the diagonals of the lattice (i.e. the lines parallel to m = n), where each

diagonal projects convergent input to a single neuron on the one-dimensional biasing

array.

The nature of the summed input means that those neurons receiving multiple

concurrent inputs from activated motion-detectors of the same span will gain a dy-

namical advantage as the activation begins to rise compared with those neurons with

fewer activated inputs. This is due to the induced attractor being further away from

the resting level for those neurons with a greater total input, and thus the rate of

change is greater. Because of the winner-take-all dynamics (defined by the term

E ·∑r �=δx
f(ubias

r ), where E is the parameter that sets the strength of the competitive

interaction), those with an activation advantage have a better chance of crossing the

interaction threshold and providing feedback to motion detectors.

The same-motion detectors that feed into each biasing neuron are the ones that

receive excitatory feedback from it (i.e. all motion-detectors of the same span). This

is defined in the equation for the motion-detector array by the term C · f(ubias
n−m).

The maximum amount of feedback to any individual motion detector is therefore

equal to C. Crucially, this value must be below the value of the effective input

needed to induce a motion percept, as the biasing array functions only to, as implied

by its namesake, bias potential motion signals such that they gain some advantage

during competitive selection. The biasing array should never, by itself, be able to

4Namely, the interaction threshold for the projections from the motion-detection array to the
biasing array are lower than the other interaction thresholds in the network. This is a necessary
feature of the model to achieve proper functioning, which will be discussed in more detail below.
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induce a motion percept without corresponding bottom-up evidence originating at

the stimulus (i.e., it should not hallucinate). This fact is also one of the reasons that

the biasing of same-span motions necessitates a separate subnetwork to mediate the

interactions between same-span motion detectors. If there were direct facilitation

between motion detectors on the motion detection array, the synaptic weighting of

each connection would have to be very small to ensure that self-stabilizing excitation

does not form in the network when a handful of motion signals become activated. The

saturation of the interaction function eliminates this problem by limiting the amount

of facilitation between same-span motion detectors to well-below their interaction

threshold, regardless of how many motion detectors are simultaneously active.

τ u̇bias
δx = −ubias

δx + hbias(δx) (5.5)

+D ·
∑

n−m=δx

g(umot
m,n)

+E ·
∑
r �=δx

f(ubias
r )

+ξbias(δx, t)

The biasing array also embodies the nearest neighbor principle.5 Simply, the rest-

ing levels of each neuron is a function of the euclidean distance of the corresponding

motion span such that longer-path motions are further from their interaction thresh-

old at resting levels. This is described by the function hbias(δx) = β + γ||δx|| where
β (negative) represents a global offset and γ (negative) represents the rate at which

the resting level decreases as the euclidean distance of the corresponding motion

paths which can be measured as the vector norm ||δx||.6 The consequence of this is

5This essentially local shortest-path bias could also be expressed directly in the motion-detection
network. However the current approach cleanly separates the biases from the processes of detection
and selection. Future work should look at the implications of organizing this otherwise.

6In the one-dimensional case presented here, ||δx|| = |δx|, but this is not true in the two-
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that, when all else is equal, biasing neurons that integrate activity from shorter-path

motion-detectors have a slight competitive advantage over their longer-path coun-

terparts. As will be shown, this bias is often outweighed by the advantage gained

by biasing neurons that receive a greater number of activated inputs during a given

stimulus presentation.

Adding a term to the motion-detection network to represent the input of the

biasing array leads to an equation of the form:

τ u̇mot
m,n = −umot

m,n + hmot (5.6)

+A · f(udec
m ) · f(uinc

n )

+B ·
∑
p �=m

f(umot
p,n ) ·

∑
q �=n

f(umot
m,q )

+C · f(ubias
(n−m))

+ξmot(m,n, t)

Typical network operation

When all the subnetworks are connected, as described above, many seemingly dis-

parate motion percepts can be accounted for. For some correspondence problems, all

of the aspects of the network play a role in determining the emergent solution. For

others, only some of the dynamics are crucially relevant. Here, a typical sequence of

events is described that lead to the network forming a solution.

1. When the (spatially-filtered) stimulus is first presented to the network, the

initial set of elements elicits excitation of increase-detection subunits at the

corresponding locations. There are only stimulus onsets, so only increases in

dimensional case, so the distinction is necessary.
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spatial filter activation, thus no counterchange motion is detected. Given a

sufficient amount of time, all detectors return to their resting levels.

2. The stimulus then changes discretely to a new pattern of elements. Some

stimulus elements are eliminated and new elements are presented. A set of

decrease-detections and increase-detections feed activation forward into the

motion-detection array. Assuming sufficient stimulation, the activation of motion-

detectors representing paths from each decrease location to each increase loca-

tion is initiated. Initially, the only bias for a given motion detector is by virtue

of noisy fluctuations.

3. When the stimulated motion-detection neurons cross the bias threshold g(u)

that feeds excitation from the motion-detection array to the biasing array, the

global biasing neurons begin to integrate input from active neurons of their

corresponding span. The biasing neurons undergo an internal competition, and

the winners that emerge begin to feed back excitation to the motion-detectors

of their corresponding span.

4. The motion-detectors receiving feedback from the biasing array gain a com-

petitive advantage over the motion-detectors receiving no feedback. Finally,

the motion-detectors that are now potentially receiving both feedforward and

feedback activation cross the interaction threshold f(u), and the first subset of

signals that satisfy the unique split/fusion principle (i.e. that cooperatively in-

hibit other potential motion signals) cross the perceptual threshold and become

the global percept.

5. If more frames follow with sufficient temporal proximity (i.e., if too much time

does not pass allowing all neurons to return to baseline), the feedback from the
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biasing array may continue to bias following percepts. Importantly, because

of the inhibition of the unperceived motion signals, the biasing array tends to

stabilize previously perceived patterns by virtue of ‘future-shaping interactions’,

which will be discussed below.

5.3.2 One-dimensional Cases

Except where otherwise noted, simulations were run a minimum of ten times. This

is because the equations are stochastic, so not every trial is the same, and often

multiple solutions exist to a single stimulus. Where multiple solutions are found to

exist, the proportion of time each solution was reached is shown. When not explicitly

discussed, it can be safely assumed that the same solution was reached for each

individual simulation.7

Single Element Apparent Motion

Single element apparent motion is essentially a degenerate case for the network, as

no selection of motion signals is entailed (i.e. there is no difficult correspondence

problem. Regardless, it is worthwhile to ensure the network works as anticipated,

especially for cases that are not necessarily trivial for other proposed solutions to the

correspondence problem.

Standard apparent motion. For the network to perceive SAM, only the feedforward

pathway is necessary. A decrease at one location occurs when the element turns to the

background color (by definition in SAM), a decrease is detected. At the same time,

an increase is detected at the location where the element turns from the background

7Because the detector responses are transient in nature, an explicit criterion must be used to
establish what counts as a ’solution’. In all of the following simulations, a motion path is considered
to be part of the network’s solution if its activity is at least 80% of the maximum interaction output
(i.e. f(umot

m,n) > 0.8) for at least 20 ms during the interval after the most recent frame-change and
before the following one.
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Figure 5.7: Time courses of sub-networks for a single trial of standard
apparent motion. An increase-detection at location 4 coincides with an
increase-detection at location 2, combining to form a counterchange mo-
tion, signaled from location 4 to location 2 (and therefore with a span of
-2). The biasing element corresponding to the span of the activated de-
tector feeds back and pre-activates all of the motion detectors with that
span, which can be seen rising above the resting level of the of the other
motion detectors.

color (black) to a luminance with high-contrast with the background (white). Given

sufficient change in local increase and decrease activation and sufficient time for the

neural dynamics to unfold, a motion from the decrease to the increase is always

perceived. Despite its irrelevance to the present solution, it is worthwhile to note that
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the biasing neuron corresponding to the motion-detectors span δx becomes activated

and inhibits the other neurons in the biasing array. This activation feeds back and

biases the motion-detectors with the same span as the perceived motion; this can be

seen in Figure 5.7 where a subset of neurons that do not correspond to any perceived

or stimulated motion-detectors sitting above their initial resting level. Given sufficient

time after any frame change, all neurons on all the subnetworks will return to resting

level.

Generalized apparent motion. In GAM, both elements are visible during both

frames, but change their contrast with the background (in opposite directions) during

frame changes. The network treats GAM in essentially the same fashion as SAM; as

long as their is enough of a change in contrast to elicit sufficient excitation, motion

is perceived. The results look nearly identical to the network’s response to SAM in

Figure 5.7.

Correlational motion

In this display, a stationary high-contrast element is visible on both frames and does

not change contrast, during the second frame, a new high-contrast element appears at

a remote location (Figure 5.8). It is referred to here as correlational motion because

this case (further) differentiates the counterchange detector from spatiotemporal cor-

relators. Because there is an element during Frame 1 at Location A and an element

during Frame 2 at location B, the correlational detector will perceive there to be

motion from A to B. In contrast, because there is no decrease in activation elicited by

a decrease in contrast at Location A, no counterchange motion is specified. Further-

more, depending on the parameters chosen, Dawson’s network as well as Ullman’s

minimal mapping solution will sometimes predict motion to be perceived form the

stationary element to the appearing one. Typically in perception, if the elements are
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not contiguous, no motion is perceived to originate from a stationary feature. How-

ever, Dawson (1991) did note that if the appearing elements were placed very close to

the stationary ones, motion could be perceived. This is accounted for in the following

subsection on the line motion illusion.
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Figure 5.8: Time courses of sub-networks for a single trial for corre-
lational motion. Because there is no decrease in spatial filter activation
at the location of the stationary element, no counterchange motion is
entailed.
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Line Motion Illusion

The line motion illusion (LMI) occurs when a stationary element has its shape altered,

typically such that the perceived shape of the element is altered (e.g. stretched). In

other words, an element of the same luminance as the stationary element is adjoined

to it, with essentially no intervening space between the two. This stimulus typically

induces a percept of motion from the stationary surface to the edge of the newly-

formed surface that is furthest away from the stationary element.

It has previously been argued that the LMI can be accounted for by counter-

change detection (Hock & Nichols, 2010). Here the model demonstrates this account

computationally. When the element on Frame 2 appears in the adjacent location to

the element on Frame 1, the center-surround filter at the location of the stationary

element is somewhat inhibited by the appearance of the new element in its surround-

field (Figure 5.9). This inhibition causes an excitatory response in its corresponding

decrease-detector, while the newly-appearing element causes an excitatory response

in its local increase-detector. The two responses combine to form a counterchange

motion signal from the stationary to the newly-appearing element.

Splitting and fusing

When one element is present on Frame 1, and two elements are presented in new

locations on Frame 2, counterchange motion is generated from the location of the

element on Frame 1, to both of the elements on Frame 2 (Figure ??). Because the

two motions are dependent, the unique/split fusion principle does not come in to play,

and no (cooperative) inhibition suppresses either motion signal; a splitting motion is

perceived.

One example of a splitting motion is an expanding motion, in which two motion
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Figure 5.10: Time courses of sub-networks for a single trial of an ex-
pansive splitting motion

A simple group motion display

In this two-frame display, both frames contain two visible elements (Figure 5.11).

The first frame’s elements are at Locations 3 and 7 and the second frame’s elements

are at locations at Locations 1 and 5. Note that, if the element at Location 7 on

the first frame were never displayed, the same splitting solution would be reached as

described above. During the initial phase of the trial, sub-threshold counterchange

motion signals begin to be generated representing paths from Location 3 to Location

1 and 5, as well as from Location 7 to Location 1 and 5. As the motion-detectors

cross the bias threshold, excitation is delivered to the biasing array. The motion

detectors umot
3,1 and umot

7,5 are both relatively short-path motions and are of the same

span(δx = −2; note that no other two motion paths share the same potential span

in this display). Their activity is integrated by the biasing element ubias
−2 which,

by virtue of its relatively high resting-level, and the fact that it is the only biasing

element receiving multiple activated motion-detector inputs, tends to win the internal

competition on the biasing array. It feeds back excitation to the same two motion
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detectors. As they cross the internal interaction threshold on the motion detection

network, umot
3,1 and umot

7,5 cooperatively inhibit motto detectors umot
3,5 and umot

7,1 , which are

the other two potential motion signals generated from the stimulus and corresponding

change-detection. The biases in this case are strong enough that the same solution

emerges for each presentation of this stimulus.
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Figure 5.11: Time courses of sub-networks for a single trial one dimen-
sional group-motion with two elements.

As opposed to the previous cases above, this display demonstrates the unique

split/fusion principle in action. Combined with the the activity of the biasing array,

the two-element group-motion solution emerges over and over. It can be seen that

adding any motion path to the solution results in a violation of the principle. If the

biasing array is removed, no motion signals are given an inherent advantage before

the cooperative interaction takes effect; any differences in activation are due to noise.

In this case, the network resolves in the previous solution half of the time, and the
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solution entailing the other two motion paths the other half of the time. This is not in

agreement with typical human perception, demonstrating the necessity of the biasing

array.

5.3.3 Two-dimensional correspondence network

The correspondence network that is capable of handling the more general two-dimensional

motion cases is almost exactly the same in from to the network described above for

one-dimensional motion. Here, the main differences are described, which mostly

consists of extending the dimensionality of each component and does not affect the

conceptual scheme of the network.

Stimuli

In the two dimensional version, the dynamic input image I(x, t) is three-dimensional

function, with two spatial and one temporal dimension. Spatially, the image consists

of N ×N locations. To keep the notation consistent, let x be the duple x = (x1, x2).

Each frame of the image is convolved with the two-dimensional center-surround spatial

filter (again truncating the result to maintain the stimulus size),

c(x) =

( −1/8 −1/8 −1/8
−1/8 1 −1/8
−1/8 −1/8 −1/8

)

producing the spatially filtered stimulus S(x, t).

Change-detection arrays

The change detection arrays also now take a two-dimensional form, corresponding to

the two-dimensional stimulus. For the decrease detectors which are indexed by m, let

m = (m1,m2); likewise for the increase detectors indexed by m, let n = (n1, n2). In

order to keep the indexing consistent with the row and column format of the arrays,
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let m1 and n1 stand for the vertical location (distance from the uppermost vertical

position, i.e. row number) and m2 and n2 stand for the horizontal location (distance

from the leftmost position, i.e. column number).

Feedforward counterchange detection

In a similar fashion to the one-dimensional motion network, the two change detection

arrays combine to form a kind of neural product space. For each pair of locations

to form a corresponding counterchange detector, a four-dimensional motion-detection

lattice is entailed. The motion detectors are again indexed by m and n which here

represents the quadruple (m,n) = ((m1,m2, ), (n1, n2)), where a motion detector umot
m,n

detects motion from m to n. For example, the detector umot
2,3,4,4 represents a motion

path beginning at location (2, 3) and ending at location (4, 4).

Competitive selection via cooperative inhibition

In the one-dimensional network, a motion-detector’s neighborhood was defined by

all the other detectors which share an increase or decrease subunit with the detec-

tor, which happened to be all the neurons in its row and its column by virtue of

the indexing scheme (with a sub-neighborhood defined as the subset that just share

one change-detection subunit or the other, i.e. the detector’s row or column only).

It was easy to see in this case that two independent detectors’ complementary sub-

neighborhoods (i.e. the row of one and the column of the other) would intersect at

a single location, where cooperative inhibition would occur given sufficient activation

of the relevant motion detectors. The other two sub-neighborhoods of the two inde-

pendent detectors also intersect at a single location. Thus each pair of independent

detectors potentially co-inhibit two motion detectors: the one sharing the decrease

location with one motion path and the increase location with the other, and vice
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versa.

For the two-dimensional motion correspondence network (with a four-dimensional

motion-detection lattice), the sub neighborhoods are defined the same way conceptu-

ally, but rather than each sub-neighborhood spanning an essentially one-dimensional

space (i.e. a row or column), sub-neighborhoods span a two-dimensional subspace of

the lattice, defined by all the motion-detectors that share a given subunit. For exam-

ple, the motion detector umot
2,3,4,4 has one sub-neighborhood defined by umot

2,3,p,q ∀ (p, q) �=
(4, 4) and the other by umot

j,k,4,4 ∀ (j, k) �= (2, 3) (i.e. all the other detectors sharing

the decrease subunit udec
2,3 , and all other detectors sharing the increase subunit udec

4,4 ,

respectively).

Although it is not as obvious, each sub-neighborhood of two independent detectors

intersect at a single point, as in the one-dimensional correspondence network (and

therefore each pair of independent detectors potentially co-inhibit two other motion

detectors as they each have two sub-neighborhoods that both intersect at a single

location). As an example, if we consider the decrease sub-neighborhood of the detec-

tor umot
2,3,4,4 and the increase sub-neighborhood of umot

1,5,2,7, one can see that their only

intersection lies at the location of detector umot
1,5,4,4 (with their complementary sub-

neighborhoods intersecting at the detector umot
2,3,2,7). Thus, the cooperative inhibition

scheme that embodies the unique split/fusion principle is conceptually the same as

in the one-dimensional case.

Biasing array

Recall that the biasing array is indexed by δx. For the two-dimensional motion case,

let δx = (δx1 , δx2) = n−m. Thus, the biasing array in this case is a two-dimensional

lattice, where each neuron integrates activity from all same-span motion detectors as

in the one-dimensional case, where span implies both the magnitude and direction of
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a motion path. Again, by the nature of the formula, δx can contain negative values.

5.3.4 Two-dimensional cases

In order to verify the results of the previous one-dimensional cases, each one was run

also on the two-dimensional correspondence network. All of the solutions were found

to agree with the previous incarnation of the network.

Expanding and contracting

In this stimulus, the first frame has only one visible element, while the second frame

contains four elements, positioned above, below, to the left, and to the right of the ini-

tial element (Figure 5.12). Therefore, four counterchange motion paths are possible,

each originating from the location of the element on the first frame and extending out

in the four cardinal directions to the locations of the elements in the second frame.

Because the four paths all share the same decrease-detection subunit, they are by

definition a set of dependent motion paths. Recall that the mechanism which embod-

ies the unique split/fusion constraint necessitates two independent motion paths to

cooperatively inhibit a (mutually dependent) third, thus the conditions are not met.

The contracting stimulus is the same as the expanding stimulus, with the frame

order reversed. For the same reasons as above, all four motion paths are seen to

converge on a single location.

Another kind of expanding and contracting motion can be seen that is similar to

the looming of a physical object as it it approaches a perceiver (Figure 5.13). When

an object moves closer to the retina the visual angle it subtends increases, resulting in

an expansive motion. This can be approximated with a two-frame stimulus in which a

central visual element is present on both frames, with all of the surrounding elements

becoming visible on the second frame. In a similar fashion to the one-dimensional
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Figure 5.12: Expanding and Contracting Motion

line motion illusion presented above, the central spatial filter undergoes a decrease

in activation because of the visual elements occupying its inhibitory surround region

during the second frame. The surrounding locations also elicit increases in spatial

filter activation at their respective locations, signaling counterchange motions from

the central location to all of the surrounding locations. Because all of the signals that

are generated share a (decrease) subunit, no cooperative inhibition is entailed.

The inverse contractive stimulus corresponds to a receding rather than approach-

ing object. When all of the elements surrounding the central element are made invis-

ible, decreases in spatial filter activation occur at all of the surround locations, and

in increase in activation is elicited by the central element by virtue of the removal of

inhibition. Again, all of the motion signals share a (increase) subunit, and therefore

there is no competition between them.
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Figure 5.13: Looming and receding motion

Motion Quartet

The motion quartet is a well-studied motion stimulus that exemplifies perceptual

bistability. In the standard version (i.e. BRLC = 2), each frame has two visible

elements that are located in opposite corners of an invisible box (Figure 5.14). When

the frame changes, the two visible elements are set to background level (i.e. disap-

pear), and two new elements become visible at the previously unoccupied corners of

the (invisible) box. The display may switch between these two frames for an arbi-

trary number of display cycles. On a given frame-change, human observers report
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seeing either the two vertical motion paths (i.e. the ‘upward’ and ‘downward’ motion

path) or the two horizontal motion paths (i.e. the ‘leftward’ and ‘rightward’ motion

paths), but never any other combination of paths, although they seem to be logically

possible. When the aspect ratio of the arrangement is set appropriately, observers

will have a 50% chance of seeing vertical or horizontal motion. When the aspect ratio

is changed, vertical or horizontal motion may be biased by virtue of the spatial prox-

imity of elements, with closer visual elements being biased to elicit the perception of

motion between them; in other words, there is a shorter-path tendency.8

Vertical Motion Horizontal Motion Not perceived

Vertical Motion Biased Horizontal Motion Biased

Figure 5.14: Diagram of the motion quartet stimulus

8There is evidence that the aspect ratio that elicits perception of vertical and horizontal each
50% of the time is typically not 1:1, with vertical motion biased with such an arrangement. There
are also individual differences in the optimal ratio for eliciting 50/50 perception. Here, a simplifying
assumption sets the optimal aspect ratio to 1:1.
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In addition to each frame-change eliciting perceptual bistability (i.e. either vertical

or horizontal motion is perceived in a mutually-exclusive manner), two other dynamic

effects are noteworthy in trials that last for several display-cycles: 1) the originally

formed percept tends to continue to be perceived on the following frames (e.g. if

vertical motion is perceived on the fist display-cycle, it will likely also be seen on the

next display-cycle), and 2) after a number of display-cycles, perceptual switches from

once percept the other typically occur, and the newly-formed percept also displays

some persistence over the following-frames.

While many accounts of perceptual switching appeal to neural adaptation, Hock,

Schöner and Voss (1997) have shown empirical evidence that adaptation is neither

necessary nor sufficient to account for perceptual switches in the motion quartet

paradigm. Instead, they argued that stochastic fluctuations are likely responsible for

perceptual switches, and any effects of neural adaptation simply reduce the amplitude

of a fluctuation necessary to induce a perceptual switch.

Additionally, the persistence of the vertical and horizontal motion percepts are not

accounted for in most proposed explanations of the phenomenon9, with the exception

of Hock, Schöner, Brownlow, & Taler (2011) who propose a specialized network in

which ‘future-shaping interactions’ lead to perceptual persistence by explicitly inhibit-

ing orthogonal motion paths that begin at the location of termination of a perceived

motion path.

Here, both persistence of perceived patterns and switching due to stochastic fluc-

tuations are shown to emerge from the network in response to a motion quartet

display, although for different reasons than previous models. In order to understand

how the network functions as a whole, multiple incarnations will be discussed to show

9In fact, motion models that depend on opponency of opposite-direction motions would predict
quite the opposite: a reverse motion path should be inhibited by its perceived forward counterpart.
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the influence of each aspect of the network.

Bistability in a two-frame motion quartet. If only the feedforward pathway is

enabled, the network’s solution entails all possible motion paths. This is clearly in-

sufficient to account for human perception, in which this solution is never perceived.

Re-instantiating the competitive dynamics leads to the desired bistability; the so-

called vertical and horizontal solutions are perceived on independent trials with an

approximately 50% probability (Figure 5.15). This behavior can be intuitively under-

stood by recognizing that including any additional (potential) motion path to either

the vertical or horizontal solution results in a violation of the unique split/fusion

principle.
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Figure 5.15: Bistability in two-frame motion quartet with no biasing
array

However, two shortcomings should be noted: 1) changing the aspect-ratio of the

display has no effect on the percept (the longer-path motions are just as likely to be

perceived as shorter-path ones), and 2) when presented with additional display cycles,
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each frame-change behaves essentially independently such that vertical and horizontal

motion percepts do not tend to persist for multiple frame-cycles (i.e. perceptual

switching happens 50% of the time, counter to human perception; Figure 5.16).
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Figure 5.16: Bistability in motion quartet with no biasing array. Notice
there is no long-term stability to vertical (red) or horizontal (blue) motion
percepts; each frame-change is essentially independent

Biasing of percept via aspect ratio

Changing the aspect ratio by increasing either the vertical or horizontal distance

between visual elements biases the likelihood of the network reporting either vertical

or horizontal motion. Shorter-path motions have a resting-level advantage on the

biasing array, and so in the case of the motion quartet it is one of the biasing elements

corresponding to one of the shorter motion paths that tends to become the winner of

the competition among biasing elements. The feedback to motion-detectors makes it

more likely that the solution entailing the two shorter motion paths will be selected

after competition on the motion-detection array.

Persistence and switching of percept for multi-frame display. Including the biasing

array into the dynamical interactions leads to longer perceptual ‘runs’ of vertical and

horizontal motion on the network (Figure 5.17; comprehensive results for all motion
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quartet trials can be found in Appendix D). This occurs as a consequence of the

distributed feedback projecting from the biasing array to the motion-detection array.

When a percept is initially formed on the first frame-change, either the two vertical

(‘upward’ and ‘downward’) or two horizontal (‘leftward’ and ‘rightward’) motion paths

are perceived. Out of the two perceived paths, one of the corresponding biasing

elements wins the internal competition on the biasing network which sends excitation

to all of the motion-detectors with the same span.

For example, if vertical motion is perceived, and the ‘upward’ non-local biasing

element wins the competition on the biasing array, all ‘upward’ motion-detectors of

the same span receive excitatory input from the biasing element, regardless of their

location relative to the stimulus array; motion-detectors whose corresponding biasing

element do not win their competition receive no such feedback. Therefore, keeping

with the example, on the following frame-change the ‘upward’ motion-detector on the

other side of the motion quartet has a dynamical advantage over the other potential

motion paths. In this context, this feedback is termed a future-shaping interaction,

because what is presently perceived has an effect on future percepts that are yet to

be formed.

The situation described above makes it likely that the pair of motion-detectors

comprising the stable vertical percept will cross the interaction threshold before the

pair of detectors comprising the horizontal percept, leading to cooperative inhibition

of the ‘leftward’ and ‘rightward’ motion paths. On occasion, the noisy fluctuations of

the motion detectors will cause the pair of detectors comprising the horizontal percept

to reach the interaction threshold before both of the vertical motions do. Because of

the nature of the cooperative inhibition, the percept that is ultimately formed is a

result of the pair of motion detectors which first cross the interaction threshold, thus

the advantage conferred to the single detector via biasing feedback is not sufficient to
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stifle a perceptual switch.
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Figure 5.17: Motion quartet with future-shaping interactions and noise-
induced perceptual switching

Without noisy fluctuations, the feedback to the single (class of) motion-detector

is sufficient to maintain stability of the initially-formed percept indefinitely (Figure

5.18). This is because with all else being equal, the pair of motion-paths that contains

a pre-activated motion-detector will always have a competitive advantage over the pair

of paths with no such pre-activation.

The motion triplet. The motion triplet is like the motion quartet, except that

one of the two frames (in this car, the first) contains only one of the two elements

that are normally present in the quartet. Typically, splitting and fusing motion

is perceived on alternating frames. Like the expanding and contracting stimuli, the

unique split/fusion principle is not invoked in such a display, and therefore there is no

effective inhibition between the motion signals. The magnitude of the motion paths

in Figure 5.19 are the same, but this is not a necessary condition for the perception
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Figure 5.18: Motion quartet with future-shaping interactions without
noise

of splitting and fusing in the motion triplet.
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Figure 5.19: Motion triplet simulation

Coupling of two motion quartets. When more than one copy of a multi-stable

stimulus is presented to the visual system simultaneously, all of the copies typically

conform to the same perceptual interpretation. Static examples of this effect can be

seen in e.g. the Necker Cube figure. This effect is also present in dynamic displays

such as the motion quartet (Ramachandran & Anstis, 1983).

There are (at least) two problems to solve with respect to the coupling of multiple

quartets. The first is obvious: how the multiple quartets ‘transmit’ their perceptual
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state to one another in order to become coordinated into a common interpretation.

The second is more subtle but equally important: how the quartets themselves are

perceived as visual ‘items’ to be coupled. That is, why motion is not perceived

to occur between quartets, but only within them. Models of coupling often take the

latter for granted, and assume well-insulated stimuli whose states can then be couples.

Here this simplification is not made and, as will be seen, this can have an effect on

the formation of the percept.

Presenting a stimulus with two quartets highlights some interesting aspects of the

neural network. In the following examples, the distances between elements within a

quartet are slightly smaller than the distances between elements between quartets.

In general, in agreement with human perception, the network reaches one of two

stable perceptual states (Figure 5.20). Like the single motion quartet either vertical

or horizontal motion is perceived, but in this case it is for both quartets. On some

trials, the network finds either the vertical or horizontal solution on the first frame-

change and then stabilizes around it, on other trials it takes several display-cycles of

incoherent percepts to ‘search for’ and find either the vertical or horizontal solution

which is then stabilized. When the percept takes several-cycles to stabilize, motion

paths between quartets may be observed; this shows that the problem of ‘encapsulat-

ing’ each individual quartet is not given a priori, but must be a result of the emergent

solution of the network. That perceptual organization may take multiple display-

cycles before a stable percept is formed has been noted in the relevant literature (see,

e.g., Hock et al. [2011]) and is in line with the author’s personal experience with

ambiguous displays.

When the vertical or horizontal solution is found, there is a qualitative shift in

the dynamics of the network. In all of the previous examples, the competition within

the biasing array had produced one winner that delivered feedback to its correspond-
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ing motion-detectors. However, in this case two winners emerge from the biasing

array competition; namely, the two biasing elements corresponding to the spans of

the two constituent vertical (‘upward’ and ‘downward’) or horizontal (‘leftward’ and

‘rightward’) motions. The shift from one to two winners on the biasing array can be

understood if one considers the inputs the array is receiving. In the case of two mo-

tion quartets, on each frame-change there is the potential for two motion signals for

each span (e.g. two ‘upward’ motions). This doubles the (potential) effective input

to a motion-detector’s corresponding biasing element which, in this case, is enough

to overcome the competitive inhibition delivered by the other winner on the biasing

array. The combined inhibition from both of these biasing-elements is enough to keep

all the other biasing elements below threshold. Besides the four spans that corre-

spond to the vertical and horizontal solutions (i.e. ‘upward’, ‘downward’, ‘leftward’,

and ‘rightward’), no other biasing element in the display can receive more than one

motion-detector input during a given frame-change.
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When the horizontal or vertical solution is not (globally) reached on the first

display-cycle, only one biasing element wins the competition on the biasing array;

typically, a span corresponding to one of the constituent motions of the vertical or

horizontal solution. Because there is not input from more than one detector to any

other biasing element during this time, pre-activation is only delivered to one of the

classes of motion-paths that contribute to either the horizontal or vertical percept.

Eventually the local activations happen to favor the complementary class of motion-

paths to the ones receiving pre-activation from the biasing array (e.g. for the vertical

solution, ‘upward’ and ‘downward’ paths complement to form the global percept).

When this occurs, there is enough input to the two relevant biasing elements for

them to both ‘win’ and remain (transiently) above the interaction threshold. In

this situation, the two complementary motion-detector classes (i.e. ‘upward’ and

‘downward’ or ‘leftward and ‘rightward’) are both receive pre-activation from the

biasing array and therefor are given a strong advantage in the ensuing competition

on the motion-detection array. In fact, the stability conferred to this motion pattern

seems to prevent perceptual switching between vertical and horizontal percepts. It

would therefore be very useful to look at the relative stability of vertical and horizontal

percepts between stimuli containing single or multiple motion quartets to see if this

prediction is accurate. As perceptual switches do occur in displays with multiple

quartets, it would also be worthwhile to examine if, perhaps, adaptation is necessary

for perceptual switches when more than one quartet is present. If not, it may be

that the degree of noise in the current formulation is simply not sufficient to induce

a switch.

Coupling of four motion quartets. More than two quartets can also become per-

ceptually coupled in the same way (Figure 5.21). For four quartets, the dynamics are

essentially the same. When either the vertical or horizontal solution is reached glob-
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ally, two biasing elements ‘win’ the competition on the biasing array. Even though on

a given frame-change there are potentially more activated motion-detectors converg-

ing on a single biasing element (four rather than two), the combined inhibition of the

two winners on the other biasing elements is sufficient to keep them below threshold.

When the global vertical or horizontal solution is not found on the first frame-change,

multiple display-cycles might be needed to discover and stabilize those solutions.

Visual Inertia

Anstis and Ramachandran (1987) presented a variant of the motion quartet in which

an apparent motion percept preceding the typical two-frame motion quartet stimulus

strongly constrained the interpretation of the bistable motion quartet stimulus. In

their display, two apparent motion paths that are collinear and spatially contiguous

with either the horizontal or vertical motion paths typically induced by the motion

quartet stimulus immediately precede the two-frame quartet display (Figure ??).

Human observers tend to see the motion paths that can be perceived as continuation

of the initially induced percept.

The network’s response is usually in line with human perception, although some

trials show atypical responses. In a typical trial, the first two motions are selected by

virtue of the feedback from the biasing array to one or the other of the shortest-path

motions. Because of shorter-path motions’ resting-level advantage on the biasing

array, one of the shortest-path motions tends to win. Additionally, because there

are few concurrent inputs, the the biasing array has only a single winner, and pre-

activation is delivered only to one of the relevant short-path motion detectors (and not

the other moving in the opposite direction). On the next frame-change, the motion

path that that is pre-activated by the biasing array (by virtue of being of the same

span as the previous motion path which induced the biasing array winner), tends to
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Figure 5.21: Simulations with four motion quartets. On some trials, the
percept immediately organizes into the stable ‘vertical’ or ‘horizontal’ so-
lution. On other trials, the network forms a short series of non-stabilizing
incoherent percepts before arriving at a stable solution. Below the time
series of the example trials, each rectangle represents the transient so-
lution for a given frame-change (i.e. motion event) with the number in
the upper standing for the frame change number, with 7 frame-changes
total (i.e. 8 frames). Ellipsis represent a qualitatively invariant solution
between the frame-changes indicated.
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Figure 5.22: Visual Inertia. The number inside each element (box)
indicates the frame it is visible on. When the network is primed with
the two short-path motions on the first-frame change it constrains the
percept of the next frame-change and biases it toward motion paths that
‘continue’ the previous paths; this solute was obtained a majority of the
time (p = 0.7). On a minority of the trials (p = 0.3) the initially perceived
motions were the two longer-path motions, and thus no priming effect is
seen.

constrain the solution to the motion paths that continue in the same direction as the

previous ones.

On atypical trials, the first two motion paths are not the shortest-path ones, but

their longer-path alternatives. There are two parameters that might be implicated in

what is essentially a wrong answer. The first is the parameter that sets the degree

of resting-level falloff on the biasing array. It might be that the longer-path motions,

by virtue of a noisy-fluctuation, could win the competition on the biasing array,

feeding-back to a longer-path motion. In practice it is difficult to dissociate the

causal influence of a winner on the biasing subnetwork on local motion detectors, and

motion-signals winning by cooperative competition on the motion-detection network

and causing one of the corresponding elements on the biasing array to win, as they

will be in agreement when the system (transiently) stabilizes, and before that they

are both influencing one another in a reciprocal manner.
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Another possibility is that increasing the feedforward synaptic weight from the

motion-detection array to the biasing array could allow the biasing subnetwork to

function in the two-winner regime displayed when more motion signals are present.

This may be important for preventing the typically not-perceived longer-path mo-

tions from ultimately being selected for via a noise-induced cooperative (inhibitory)

advantage.

Although the atypical trials did not correspond to typical percepts, it is anecdo-

tally reported that with sufficient attentional effort, the atypical perceptual solutions

can be stabilized. A rigorous psychophysical study would need to be performed to

confirm this report.

Finally, the way the network solves the problem on typical trials suggests a testable

prediction. The motion paths on the second frame-change that are seen to be con-

tinuous with the motion paths on the first are pre-activated by virtue of a non-local

same-span biasing element. This implies that it is not necessary for the motion paths

that induce the future-shaping interactions that constrain the solution to the second

frame-change to be spatially contiguous with them, they simply have to be of the

same span.

Group Motion

When multiple visual elements move in an invariant (i.e. rigid) formation, motion

paths are often perceived that do not correspond to the shortest motion paths. This

display presents a challenging problem to correspondence solvers because, in addition

to the typically perceived group motion, one of the possible (incorrect) solutions also

contains group motion. In the display, three vertically-stacked but spatially separated

visual elements are visible on the first frame. On the second frame the stack has

shifted to the right and down such that the topmost element on the second frame is
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Figure 5.23: Group Motion

in a position directly to the right of where the middle element was on the first frame

(Figure 5.23). This implies that two of the elements’ shortest path solutions agree

with one another (group motion).

The typical percept is reported as the three visual elements moving rigidly down

and to the right. That is, three parallel motion paths of the same magnitude, and

with their locations of origin and termination vertically aligned. One can see that

there is no other potential set of counterchange motions with three (or more) same-

span motion paths. The three corresponding motion-detectors converge on a single

biasing unit, which typically wins the competition on the biasing array. The feedback

to the three motion detectors that correspond to the group motion percept gain a

competitive advantage and become the preferred solution.

On one out of the ten total simulations performed on this stimulus, an alternate

global solution was obtained. Interestingly, it is the same solution given by Ullman’s
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minimal mapping theory to this stimulus. In this solution, the two shortest-path

motions are elected for, and a fusion as well as a split account for the remainder of the

correspondences. This solution is also found consistently in the current formulation if

the biasing threshold and the cooperative inhibition threshold are made too similar,

not giving enough time for the soft constraints to bias the network before the hard

split/fusion constraint is applied.

Sliding and splitting

The final example case consists of a two-frame display in which there are three visible

elements on the first frame and four on the second frame (Figure 5.24). The three

elements on the first frame are arranged in a vertical stack as in the previous group-

motion case. The four elements on the second frame are also vertically stacked, with

their vertical locations occupying positions just above and below and to the right of

the locations of each element on the first frame. Because the number of elements on

frame two is greater than the number of elements on frame one, a splitting motion is

likely entailed in the network’s solution.

This display presented a challenge for Dawson’s (1991) model, in which he had

to change the parameters from the ones used for most of his simulations in order

to obtain a reasonable response from the network. Interestingly, the solution his

network reached using his ‘typical’ parameter values is not consistent with the unique

split/fusion principle as it entails motion paths which take part in both a split and

fusion.

Here, three alternative solutions are found by the network in response to the dis-

play; one of which matched Dawson’s ‘correct’ solution (which required modification

of his parameters), while the other two are novel. Unfortunately, no systematic psy-

chophysical study of this display has been performed to the best of this author’s
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Figure 5.24: Sliding and splitting

knowledge. However, anecdotally, all three solutions of the network are easily per-

ceived (on different trials) by human observers.

The solution that corresponds to Dawson’s ‘correct’ solution entails the topmost

element being perceived as moving up and to the right, the bottommost as moving

down and to the right, and the middle element splitting and moving to the right and

both upward and downward. This solution contains two pairs of same-span motions,
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and as such the biasing array reaches a two-winner solution corresponding to those

two spans.

The other two solutions are essentially mirror images of one another. In these

trials, group motion of three elements is seen (to the right and either up or down),

with either the topmost or bottommost element being seen to split, accounting for

the additional element on the second frame. The biasing element that corresponds

to the span of the three element group motion is the sole winner on the biasing array

for these trials.

5.4 GENERAL DISCUSSION

The model presented above is a generalized architecture with homogenous patterns of

connectivity out of which solutions to difficult correspondence problems are obtained.

The example cases are not exhaustive of the ‘correct’ solutions the model may obtain,

but are meant to allow observation of the features of the model under various cir-

cumstances. The solutions emerge out of the dynamics on the network, and specific

connections between various detectors do not have to be established individually for

each case as in previous models.

The stimulus input is given directly to the model with no intervening stages of

operator intervention (i.e. motion signals are not pre-labeled or pre-identified, but

are detected directly from the dynamic stimulus array). The parameters of the model

were held constant for all simulations; specialized parameter values were not used to

solve specific problems. It is likely that a more suitable set of parameter values could

be implemented and future work should seek to probe the parameter space of the

model systematically.
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5.4.1 The necessity of cooperative inhibition

An alternative model could be formulated in which competitive interaction between

motion detectors that share subunits are additive rather than multiplicative. In

other words rather than the cooperative-inhibition entailed by the unique split-fusion

principle, dependent motion signals could inhibit one another directly. However, this

scheme is insufficient to account for the expanding and contracting motions that are

obtained in the simulations above. Here it is shown why this is the case.

In order to develop a standard by which to calibrate a model entailing direct

inhibition between dependent motion-detectors, the model is constrained to account

of two known perceptual regularities: 1) the bistability of the two-frame motion

quartet, and 2) the perception of splitting-motion in the motion triplet. Logically, for

these two percepts to be accounted for, 1) the degree of combined inhibition from two

motion detectors convergent on a third must be sufficient to drive it below perceptual

threshold, and 2) the degree of inhibition from one motion detector to another must be

insufficient to drive it below perceptual threshold. This is formalized in the following.

Consider a set of four motion detectors that correspond to the four potential

motion paths perceived in a two-frame motion quartet display. For simplicity, assume

that neurons receive enough excitatory input to be driven to saturation. Let h be the

resting level, α be the perceptual threshold, α∗ = α − h be the effective perceptual

threshold, wexc be the synaptic strength of input to the motion detectors, winh be

the inhibitory synaptic strength between each pair of motion detectors that share a

subunit, and β = wexc−α∗ be the excess activation, which is the amount that a motion

detector is driven above the perceptual threshold when it is excited by fully-saturated

subunit inputs and not inhibited by any other motion detectors (Figure 5.25). The

amount of inhibition required to drive a given motion detector which is receiving
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Figure 5.25: Diagram of symbols denoting various degrees of activation
for a perceptual neuron

maximum feedforward excitation from its component subunits below the perceptual

threshold is equal to β. Therefore, for the model to meet the standard of displaying

both bistability of horizontal and vertical percepts in response to the motion quartet

and splitting motion in response to the motion triplet, the constraint −β < winh <

−0.5β must be met. If winh > −0.5β, there will not be sufficient inhibition to drive

the unperceived motion signals below perceptual threshold in response to the motion

quartet, and if winh < −β, there will be too much inhibition in response to the motion

triplet, preventing splitting motion from being perceived.

If we choose a value for winh that satisfies these constraints, both the bistable

motion quartet and the splitting motion triplet are perceived by the model. However,

when additional motion paths are entailed from or to a common location, as in the
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expanding and contracting stimuli, the degree of inhibition is too great to allow all

motion detectors to reach perceptual threshold and produce the expanding motion

percept.

Consider the case of two-frame expanding motion when one central element is

visible on frame one and four elements on frame two (to the left, right, above, and

below the original central element). In this case, when at least two detectors are

driven to saturation, the effective inhibition on the others equals 2winh. Because winh

is constrained to be less than half the excess activation (< −0.5β), a motion detector

receiving inhibitory input from two other detectors will be driven below perceptual

threshold (2winh < −β). This implies that the detectors receiving this inhibition

will be pushed below perceptual threshold, and thus expanding motion will not be

perceived.
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Figure 5.26: Simulations for network with additive inhibition
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This has been confirmed in simulations in which the correspondence network was

implemented with additive rather than multiplicative inhibitory synapses between

motion detectors. When the degree of inhibition is set appropriately to achieve bista-

bility for the motion quartet and splitting for the motion triplet, expanding motion

is not found as a solution (Figure 5.26). Additionally, this analysis also pertains to

models in which only perpendicularly oriented pairs of motion signals that share a

subunit inhibited one another (i.e. cross-direction inhibition) as has been employed

in previous models.

5.4.2 The role of the biasing array

The reciprocal interaction between the motion-detection and biasing subnetworks

displays an interesting dynamic. In the signal generation phase of a typical trial,

(potential) motion signals that are above the bias threshold but below the internal

interaction threshold cause activation on the biasing array, which feeds back addi-

tional activation to a subset of the motion signals that are being generated. When

the motion signals cross the threshold for competitive selection, a subset may be in-

hibited. When inhibited, the activity of these neural elements is driven below both

the selection and biasing thresholds (by virtue of the selected parameters); thus, the

activity on the biasing array is being driven solely by the subset of motion signals

that are perceived. In other words, the activity on the biasing array is driven by

both perceived and unperceived motion signals, where the degree of influence of both

sources of input varies as a function of the state of the whole network. In other

words, at some moments the activity on the biasing array is being driven by mostly

unperceived motion signals, at other times mostly by perceived motion signals, and

at other times it is a mix of the two.

That the biasing array is mainly driven by perceived motion signals after com-
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petitive selection is conceptually critical. For apparent motion percepts that display

long-term stability to stimuli with more than two-frames, it is the initially established

percept that evidently plays a dominant role on following perceptual judgments, as

in the sustained vertical or horizontal motion percepts in the motion quartet. If the

biasing array are driven equally by both perceived and unperceived motion signals

after competitive selection, there would be no advantage for the initially perceived

motion in constraining ensuing percepts.

However, of critical importance is also that the biasing array is effected by unper-

ceived motion signals prior to competitive selection. This is necessary for the biasing

array to integrate evidence for potential motion signals globally such that collective

effects as seen in, for instance, group motion can effectively bias the appropriate

subset of motion signals.

The biasing array also has an internal competitive dynamic. The role of this

competition is to effectively bias only some motion signals, and not others. If there

were no internal competition on the biasing array, all potential motion signals would

be pre-activated by essentially the same amount, eliminating the functionality of the

biasing array.

The stabilizing role of the biasing array

The stabilizing role of the biasing array is made most clear in the case of multiple

motion quartets, especially when a stable solution is not immediately found. When

a collection of motion detectors representing paths with the same direction and mag-

nitude are activated simultaneously their convergent input on a common biasing el-

ement makes it likely that those detectors will receive excitatory feedback, giving

them a competitive advantage. The ‘vertical’ and ‘horizontal’ solutions to displays

with multiple motion quartets represent the solutions with the greatest number of
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such convergent signals. In other words, they represent the solutions with the most

global coherence. (Recall the importance of coherent motion patterns for the short-

range motion paradigm in Chapter 3.)

Importantly, there is no pre-specified templates or pattern detectors specifically

for (for example) the ‘vertical’ or ‘horizontal’ perception of coupled motion quartets.

The stable percepts entailed in such solutions is an emergent collective dynamic of

the total network. In the cases when one of these two stable solutions is not reached

on the first frame-change, an interesting succession of incoherent motion patterns

may follow. The network will then ‘search’ for a stable solution over the next (few)

frame-changes, eventually arriving at either the ‘vertical’ or ‘horizontal’ solution and

remaining there for the remainder of the trial. Prior to this, motion is often seen

between elements of what are considered different quartets. This highlights the fact

that a motion quartet is not an encapsulated entity a priori, but must be actively

identified to be treated as an ‘item’ by the visual system.

It can be seen in the comprehensive motion quartet results in Appendix D that

when a solution is initially incoherent, coherence of motion signals develops over the

following frame-changes. Motion paths that correspond to the most coherent solutions

(again, ‘vertical’ and ‘horizontal’) are ‘recruited’ via excitatory feedback, which in

turn increases the likelihood of their corresponding biasing element to continue to

win in the internal biasing competition and continue to provide an advantage to

its motion-detectors. When a stable solution is reached, the maximum number of

coherent motion signals are perceived for the display.

Other sources of biasing

While excitatory biasing of the motion-detection network was only specified through

the so-called biasing array in the current model, there is no conceptual limitation
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that prevents other sources of competitive advantage of motion signals through pre-

activation.

An intriguing connection is the potential interplay between stationary and dy-

namic features in the formation of motion percepts. For example, a simple corre-

spondence display that is composed of two vertically stacked elements on frame 1 and

the same stack shifted to the right on frame 2. Coherent, group motion is almost

always perceived in such a display. However, if two lines connect the elements that

correspond to the typically unperceived (potential) motion paths, the two crossing

motions may be perceived rather than the coherent group motion.

It is conceivable that these stationary features bias the motion paths associated

with their endpoints, giving them a competitive advantage. The interaction between

stationary and dynamic features of a stimulus during visual perception is an extremely

important and challenging problem. This suggests one potential functional interplay

between the two: the biasing of motion signals based on static cues. Importantly, the

‘crossing’ solution found when the stationary lines are present does not violate the

hard constraint of the unique split-fusion principle.

5.4.3 The Dynamic Application of Constraints

The model makes use of two thresholds which are essentially outputs from the mo-

tion detection network. The lower threshold (the bias threshold) determines at what

activation values motion-detection elements exert causal influence on the biasing ar-

ray. The higher threshold (the selection threshold), determines the activation at

which motion detectors begin to participate in competitive selection. This modeling

choice was driven by the need to apply the soft-constraints prior to the hard ones.

This is a logical necessity, as by definition soft-constraints are flexible while hard-

constraints are non-negotiable. Therefore, if the hard-constraints are applied first,
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the soft-constraints have no impact on the eventual solution.

It should be possible to look into neural tissue to look for analogs of this orga-

nization. For instance, one could check whether all axons projecting from a given

neuron transmit action potentials at the same threshold potential, and if so if it is

a function of where the axon projects to. Or, perhaps if not at the level of the sin-

gle neuron, layers of cortex could have distinctly different thresholds while receiving

similar inputs, with one layer’s threshold being systematically lower than the others.

Again, if this was the case, it would be instructive if the locations of projection were

also distinct (e.g. short- vs. long-range).

Additionally, There may be other means of achieving the appropriate application

of constraints without necessitating an entity with multiple output thresholds. It has

been noted by Hock et al. (2011) that in cortex, axons that make long-range con-

nections between brain areas are typically myelinated, while axons within brain areas

are generally non-myelinated. Because myelinated axons transmit action potentials

at a much greater speed, transmission between brain areas may in some cases have

less latency than transmission within a brain area (especially when the myelinated

connections are relatively close, e.g. within the visual cortex). Given this ‘verti-

cal’ over ‘horizontal’ speed advantage, one could imagine the interaction between the

motion-detection array and the biasing array to occur faster than the lateral compet-

itive interactions on the motion-detection array, achieving the appropriate order of

constraint application. Transmission times were not explicitly modeled in the present

work (a simplifying assumption), but the sufficiency of this concept could be tested

for in future models in place of multiple thresholds.
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5.4.4 Relation to neural field models

Neural Fields

The connectivity of the sub-neighborhoods defined in the motion-detection array as

well as the connectivity among the neural elements on the biasing array are essen-

tially discrete analogs of connectivity kernels in neural field models (e.g. Amari, 1977;

Schöner, 2008). In a neural field, each location integrates neural activity over the con-

tinuous neural space as input according to the connectivity kernel which is commonly

a mexican-hat-like function entailing local excitation and long-range inhibition.10

Aside from the discreteness, the lateral connectivity on the motion-detection net-

work differs in two (related) ways from typical field models’ connectivity kernels.

First, in a field model the connectivity kernel is usually of the same dimension as the

neural space it is embedded in. For example, a two-dimensional field typically entails

a two-dimensional connectivity kernel. On the motion-detection network, lateral in-

teractions occur in what are essentially subspaces of the neural space. For instance,

on the two-dimensional motion detection lattice (for one-dimensional correspondence

problems), lateral interaction takes places in rows and columns, each of which can be

thought of as one-dimensional subspaces embedded in two-dimensional neural space.

Second, embedding multiple such low-dimensional connectivity patterns in the

same space places an important role on their intersection. Having multiple low-

dimensional connectivity patterns means that a given neural element can exist, in a

sense, in multiple neural spaces simultaneously. In the case of the motion-detection

network, one such subspace is defined by its vertical, columnar membership and the

other by its horizontal, row-like membership. These subspaces influence each other

10The current model has no analog for the local self-excitation inherent in many field models.
In the appropriate parameter ranges such excitation can lead to self-stabilized peaks of activity in
the field, and/or detection instabilities in response to input. Future work should investigate the
consequences of introducing self-excitation to the current model.
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directly only through their shared elements (at their intersection). This conceptual

scheme does not demand the multiplicative interaction employed above, but the in-

tersections of these synaptic subspaces are certainly brought to the fore when their

effective combination is multiplicative.

Giese’s neural field motion detection model

Giese (1998) has developed a neural field model that shares some characteristics with

the present work. In his four-dimensional field model, each location represented a

motion vector’s two-dimensional (retinal) location, radial direction, and magnitude

(in contrast to representing a counterchange motion’s two-dimensional location of

origination and termination). Interactions between motion detectors were mediated

by the field’s connectivity kernel, causing facilitation between similar motion vectors

and competition among dissimilar ones; no mediating sub-networks for biasing were

used as in the model developed here. Giese (1998) also derived his elementary motion

vectors from a field of Reichardt detectors, all with the same optimal displacement

(i.e. magnitude of the span). Here the motion-detection scheme entails detectors that

can detect motion optimally and displacements even octaves apart.

Berger’s counterchange neural field model

A counterchange-based neural field model for motion detection has also been devel-

oped by Berger et al. (2012). This model tested the sufficiency of the countercharge

concept in the context of continuous motion. However, it was limited in the same

way as the Giese (1998) model by only having one displacement over which all mo-

tion detectors operate. This presents a challenge in accounting for apparent motion

where displacements sufficient to induce a motion percept may vary substantially.

Additionally, no interaction among motion detectors is entailed, and thus it cannot
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account for correspondence problems.

5.4.5 Natural Constraints

Approaching problems of visual perception in terms of constraints raises a question:

where do the constraints come from? Constraints are related to regularities in the

environment that can be leveraged to reduce uncertainty. When things move they

often move together as one, implying that group motion might be more viable than

an alternative percept entailing shorter-paths. Presumably, the correspondence be-

tween the the constraints imposed by the nervous system and the ones inherent in

the Newtonian ecological scale we inhabit have been gained through evolutionary,

developmental, and learning processes. They are the constraints that have worked,

and that’s why they are our constraints. Constraints are as much about what what

is not as what is; but in constraining functionality is gained.

Expansion and contraction are ecologically meaningful patterns. In addition to

providing information about direction and heading in optic flow patterns, they can

signal meaningful transformations in local objects e.g. ‘looming’ when an object ap-

proaches (withdraws) and its retinal projection expands (contracts). In most contexts,

expansion and contraction are mutually exclusive; they signify opposite directions of

both locomotion and object motion. This is perhaps the ecological ‘logic’ of the unique

split/fusion constraint. It is not likely to encounter a meaningful pattern in an ecolog-

ical context that combines the both expansion and contraction as sub-patterns into

a single object or event, while both expansion and contraction by themselves may

carry valuable information.
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5.4.6 Limitations

Spatial filtering

Group motion has been defined conceptually here as elements that are perceived to

have parallel counterchange motion paths of the same magnitude. For many problems

this is sensible, and perhaps necessary. However, the well-known Ternus display

presents a challenge. The Ternus display is composed of two frames each with three

visible elements aligned in a row. Two elements are stationary across the two frames,

while an element is visible at one end of the row in the first frame and the other end

in the second frame. For some parameter ranges, motion of a single element tends to

be seen from the location where the element disappears on frame 1 to where the new

element appears on frame 2 while the two stationary elements are not seen to move.

This single-element motion case is accounted for in a straightforward manner by

the counterchange network here. However, under other conditions, observers tend to

report seeing the whole group of three elements moving together; thus the ‘stationary’

elements are seen to shift over and occupy their neighbor’s former location. In this

case, there is no counterchange motion at the scale of the individual elements as the

stationary elements can not cause a decrease nor increase in their respective detectors.

However, a larger spatial filter could detect counterchange motion of the group as a

whole.

Only one scale of spatial filtering is used in the model above. This is a simplifying-

assumption, as it is well known that multiple parallel channels tuned to different

spatial frequencies are evident in the visual system of humans and other animals. The

question then is, would incorporating multi-scale spatial sampling into the model be

able to account for all cases of group motion?

The dense random-dot cinematogram studied in Chapter 3 would seem to suggest
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not. As the moving figure in those displays is composed over eighteen-hundred indi-

vidual elements, it is difficult to imagine that a spatial filter at the scale of the figure

would be sufficient to detect the motion while being embedded in noise. In other

words, the spatial filters that correspond to the scale of the moving figure would give

very little response by virtue of the fact that the visual (random) elements are so

well-mixed at that scale. Therefore, it is likely that the visual system does indeed

leverage multiple parallel motion paths as evidence for collective motion.

While it may not be sufficient to account for all cases of group motion, multi-

scale sampling will likely be necessary for a full account of human visual perception.

Future work should look to dissociate ‘true’ collective effects of elementary motion

pathways from low-level grouping as when multiple distinct visual elements excite a

single spatial filter.

Higher-level patterns

The highest level of the perceptual hierarchy in the model is the biasing array, in which

each neural element represents a given class of motion-path, invariant with respect to

the location of the path. This represents a simple perceptual pattern that could be

termed global coherence. Regardless of their locations, motion detectors representing

paths of the same direction and magnitude facilitate one another and tend to form

patterns of group motion. While this is sufficient in accounting for the typical coupling

of multiple motion quartets, for example, it is unable to account for more nuanced

motion patterns composed of multiple elementary motion signals. For example, Hock

et al. (2011) have developed a display referred to as the diamond quartet. The

diamond quartet is composed of four motion quartets arranged in a diamond pattern

whose motion can be perceived as either the globally coherent ‘vertical’ or ‘horizontal’

solutions found here or as a global ‘rocking’ rotation. The rocking percept entails the
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‘horizontal’ solution for the top and bottom quartet and a ‘vertical’ solution for the

left and right quartet. Thus, this higher-level pattern is capable of stabilizing a

solution that implies a more specific and nuanced structure among a collection of

elementary motion detectors than simply their coherence with respect to direction

and magnitude. The set and source of these higher-level patterns remains an open

question, and future work should address the generation and maintenance of such

patterns (of patterns).

Spatial discreteness

Additional limitations stem from the discreteness of the model. For example, only

motions with precisely the same span facilitate on another via a common biasing ele-

ment. If two motion-detectors have similar-but-different spans, they do not facilitate

one another (and their collective biasing elements actively compete). In reality, there

is likely a range over which motion detectors that are ‘similar enough’ facilitate one

another. A field formulation of the model would allow for specification of such a

nuance.

Resource limitations

Resource and time limitations also made it infeasible to study random-dot displays

in sufficient detail. Future work should evaluate the model’s response in the context

of dense random-dot displays like those used in Chapter 3 as well as sparser variants

as commonly used in, for instance, structure-from-motion displays.

5.4.7 Viability as a real-time computer vision system

Because of its front-end specification and formulation as a continuous-time dynamical

system able to cope with a stream of dynamic input, the model presents the possibility
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of being developed into a real-time computer vision system. However, some additional

development would be necessary for this to be realized.

Testing of the model was limited by computational resources. The implementa-

tion of the model is inherently processing intensive. At each time-step every neuron

must integrate all of its inputs and calculate its future state; including neurons that

are essentially inactive (i.e. below the interaction threshold). A more lightweight

alternative would be to adopt an event-based approach as advocated in, e.g., the

neuromorphic approach (e.g., Benosman et al., 2014). In an event-based approach,

explicit calculations take place only when there is interaction among elements. That

is, a computation is triggered by an event. In the nervous system, action potentials

serve as events, and downstream computations only need to be realized when these

events trigger them.

In addition to minimizing its inherent processing demands through implementing

an event-based algorithm, the processing that will still be necessary can be enhanced

through optimizing hardware-software interface. For example, there has recently been

a surge in using computers’ graphical processors (GPU) to accomplish computation-

ally expensive processes more quickly by parallelizing distributed computations (see

Sanders & Kandrot, 2010).

5.4.8 Hierarchical pattern formation

Since the Gestalt movement of the early twentieth century, there has been consider-

able interest in understanding the relationship between parts and wholes in percep-

tion. For instance, is a face merely a collection of face parts (e.g. eyes, nose, mouth,

etc.), or is it something over and above such a collection? Can what is otherwise

perceived simply as a circle be perceived as an eye within the context of a face? More

generally, do parts determine wholes or do wholes determine parts (or is it both or
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neither)?

Here perceptual patterns occur at several levels of description. Local changes in

spatial filter activation may combine into counterchange patterns. Counterchange

patterns carry perceptual meaning that is not partially present in either a decrease or

increase in local spatial filter activation, but emerges out of their combination. One

could say that a pair of increase and decrease detections entail a counterchange mo-

tion, while a counterchange motion accounts for the pair of oppositely-signed change-

detections.

Perception is arguably a process of sense-making. That is, a functional percep-

tual system transforms dynamic sensory events that underdetermine the state of the

environment into meaningful signals that provide the perceiving organism with an

understanding of ongoing environmental events and opportunities. In this sense, the

role of ‘high-level’ perceptual modules would be to provide concise signals that are

able to account for a large number of ‘low-level’ neural events. In other words, a small

number of high-level patterns can potentially account for larger number of low-level

patterns. In the case of counterchange motion, a motion signal is able to account for

exactly two events at the preceding level of patterns; namely an increase and decrease

in local spatial filter activation.

When a stimulus induces a number of decrease- and increase-detection events, each

local change-detection can potentially be accounted for by multiple counterchange

motion signals (this is simply a reframing of the correspondence problem). However,

for the perceiver to make sense of the deluge of sensory events, not all of the higher-

level patterns that are potentially entailed by the combinations of low-level patterns

are necessary. When low-level events are sufficiently accounted for, additional high-

level patterns are unnecessary for sense-making. The unique split/fusion constraint

ensures that no motion path accounts for both an increase and decrease event that

162



are already accounted for by other motion patterns. This does not imply that a

low-level event is never multiply accounted for (i.e. take part in multiple higher-level

patterns, as in splitting and fusing), but that if it is so it is only to account for a

separate low-level event that is not otherwise accounted for. Therefore, the unique

split/fusion constraint tends to minimize the number of high-level patterns that are

able to account for low-level patterns (although a global minimum is not guaranteed).

Not only do local change-detections combine into counterchange motion patterns,

but multiple counterchange motion patterns also combine into higher-level patterns

such as the spatially invariant biasing elements that represent a class of motion paths

rather than a specific instance of that class. As can be seen most clearly in the sim-

ulations of coupled motion quartets, the reciprocal excitation between local motions

and collective biasing elements results in global stability when there is agreement be-

tween high- and low-level patterns. The greater the number of counterchange motion

signals a biasing element is able to account for, the more likely it is for it to remain

stabilized against alternative percepts (by virtue of its competitive advantage in the

biasing array competition). When a biasing element only accounts for one or two

lower-level signals, it does not tend to stabilize the system to the same degree, and

the network tends to display a somewhat chaotic dynamic. Thus the system tends to

stabilize solutions that maximize the number of low-level patterns accounted for by

the minimum number of high-level patterns.

A general organizational principle may be gleaned by approaching the problem in

this manner. In the perceptual hierarchy entailed by the model, it may be observed

that vertical connections (connections between subnetwork components) that exist

between congruent low- and high-level patterns interact cooperatively, while horizon-

tal connections (connections within a cub network component) interact competitively.

Here, congruent is meant to imply a lack of contradiction between two levels of de-
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scription. For instance, a counterchange motion pattern is congruent with a pair

of local increase- and decrease-detections, and vice versa. This scheme allows each

hierarchical level to self-organize according to its own internal logic of congruency

(e.g. the unique split/fusion constraint for counterchange motion signals) while being

biased to achieve congruence with patterns of activation at both higher and lower

levels. Such a principle is speculative at present, but is potentially testable.

5.4.9 Neural Correlates

While assigning specific brain areas to the components proposed in the model is

speculative, the scheme does fit in well with known anatomy and functional physiology

of the primate visual system. The visual cortex is understood to be arranged in a

more or less hierarchical fashion. Areas closer to the sensory surface have receptive

fields responsive to spatially localized and highly general image features (e.g. oriented

edges), with ‘higher’ areas responding to more complex patterns, and often displaying

some degree of invariance over spatial translation (i.e. larger receptive fields; Fuster,

2003).

The components in the model are arranged in a clear hierarchical fashion, be-

ginning with localized spatiotemporal filtering combining to form the more complex

counterchange motion pattern. Spatial and temporal filtering begin at the retinal

surface, and receptive fields remain retinotopically localized through the lateral genic-

ulate nucleus up to at least the primary visual cortex, so all of these areas could fulfill

the functional role implicated by the front end of the model.

The extrastriate area referred to as MT is believed to play a crucial role in visual

motion processing. This is a likely candidate for the motion pattern detectors, as well

as a medium for their interaction. The local motion signals converge in the biasing

array, on which neural elements respond invariantly to their preferred class of motion
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pattern (i.e. span), and could correspond to an area in parietal cortex, for instance.

Elements on the motion-detection and biasing arrays are reciprocally connected to

one another, a well-documented feature of primate cortex. The model then gives a

hypothetical role to these observed patterns of connectivity; one of mutual biasing

across hierarchical levels.

While the local change detectors and motion detectors clearly have a perceptual

flavor, the biasing array straddles the line between perception and cognition. Its

elements don’t represent a specific motion path, but a ‘class’ or ‘category’ of motion

paths. Because of the competitive dynamics, in response to stimuli that generate

many individual motion signals, still only one or two biasing units will remain active,

acting as global decision units.

When a person participates in a psychophysical experiment and must respond

with a keystroke or two to a complex spatiotemporal transformation of the optic array

across the retina, they must make a very low-dimensional decision from a high number

of incoming signals. In other words, one must abstract from the sensory stimulation

invariances that can be used for meaningful action. The biasing array embodies such

a low-dimensional dynamic, and could be functional as a decision-making process.
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Chapter 6

Closing Remarks and Future Work

It has been argued here that a theory of the perception of object-motion is necessary as

distinct from other motion perception processes. Chapter 3 presented strong evidence

that commonly used spatiotemporal correlational models of motion detection do not

account for human perception in a dense random-dot display, and showed that instead,

an account based on counterchange detection showed many of the hallmarks of human

perception, for both direction and shape discrimination. Chapter 5 extended this

work by proposing a continuous-time dynamical system capable of both generating

and selecting counterchange motion signals from a dynamic stimulus.

This work lays down a basic theoretical framework, based on the counterchange

motion detection principle, for the continued development of a theory of object-motion

perception. The long-term viability of the theory is an open scientific question, and

further work will have to be done to support or refute it. Both where it succeeds and

fails will deepen the scientific understanding of the problems at hand. Some future

directions and implications of the current work are discussed briefly below, followed

by a few short closing remarks.
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6.1 CHANGE AND STABILITY

It was said in Section 1.3 that perception had to play a dual role of providing sta-

bility while remaining flexible to change. The continuous-time dynamical network in

Chapter 5 showed an example of how such a process can be achieved. The patterns

stabilized by the network in many of the cases showed lifetimes much longer than the

change of the stimulus itself. This is perhaps most evident in the motion quartet ex-

amples where stable vertical and horizontal solutions lasted for many display-cycles.

However these stable regimes are entirely dependent on continuous stimulus input.

Without dynamic input, all nodes on the network return to resting level and no in-

teresting dynamics take place. This allows the network to remain very responsive to

the changing input even while promoting stability. Future work should address the

interplay of such a stimulus-driven network with self-stabilizing networks that don’t

necessitate input to maintain non-trivial dynamics.

6.2 PERCEPTION AND INTENTIONALITY

This dissertation has presented visual perception as an essentially passive process.

That is, stimulation comes from the optic array, feeds into the neural networks where

motion is detected and selection takes place, and ultimately a percept is formed. No

role is given to the perceiving agent in which such a perceptual system is presum-

ably embedded. This is clearly a simplifying assumption. Perceptual systems we

find in the natural world are for something; organisms use perception to accomplish

meaningful behavior. Self-interested agents move about the world meaningfully, they

have intentions that govern the selection of behavior. How the intention of an agent

results in causal efficacy in the physical world is a philosophical problem at the heart

of perceptual science.
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Despite the nature of this philosophical mystery, there is evidence that intentions

not only select action, but perception to some degree as well. Experiments have

shown that having intentions of either promoting perceptual stability or, conversely,

perceptual switching of multi-stable stimuli leads to significant effects in switching

rates as compared to conditions of ‘passive’ viewing, where an observer attempts to

simply observe (see, e.g. Kohler, Haddad, Singer, & Muckli, 2008). That intentions

can affect percepts suggests a complex interplay between the ‘highest’ levels of cogni-

tion and ‘low’ level perception. The degree and limits of influence that intention can

have on perception should be an area of continued investigation.

Anecdotal evidence as well as (internal) unpublished pilot data suggest that within

an appropriate parameter range, perceptual switching can be intentionally induced

on every frame-change of the bistable motion quartet stimulus. If this finding is

confirmed, it goes beyond giving intentionality the role of merely affecting the rates

of switching of a bistable stimulus. Rather, having such ‘continuous control’ over

the interpretation of a visual stimulus suggests the existence of perceptual know-how

that bears a strong resemblance to the kind of sensorimotor know-how employed

when a skilled agent performs coordinated, functional motor behaviors. Also of note

is the anecdotal evidence that there are individual differences evident in the degree

to which a multi-stable percept can be intentionally controlled. Likely, spending

considerable time with a particular class of stimulus improves the ability to control

the interpretation of that stimulus. This acquisition process of perceptual know-how

is also of extreme scientific interest, and studying this could provide clues about the

nature of learning to control oneself in general.

The role of know-how in cognition has been emphasized most explicitly in so-called

embodied theories of cognition. Without going into the details and differences between

various incarnations of embodied approaches to cognition, in general they argue that
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ongoing motor engagement is not only a product of perception and cognition, but

an integral part of their essential character. Visual displays like the ones used in

this manuscript present a challenge to such a framing. The apparent motion stimuli

described here induce the most compelling motion percepts when the eye remains

fixated during frame-changes. While this does not rule out a role for micro-saccades,

it does make it difficult to assign a role to overt motor behavior in the formation of

these motion percepts. However, if we take a subtler stance on embodiment, such as

that of Sandamirskaya, Zibner, Schneegans, & Schöner (2013), we can see that the

neural dynamics themselves have the potential to embody action, where action can

be understood in the broad sense of functional biological behavior (such as the firing

of action potentials).

6.3 INTERPLAY BETWEEN RETINAL MOTION AND

EYE-MOVEMENTS

This dissertation addressed motion percepts relative to the retina as signified by

counterchange motion. Of course, in addition to fixations, eye movements play an

integral part in active perception, especially in the context of perceiving moving

objects. Future work should address the interplay of these two complementary aspects

of visual perception in the context of dynamic stimuli.

There are already some hints about a possible connection between counterchange

motion perception and saccades. Schütz (2013) in a free-viewing experiment (i.e. no

task) showed a strong tendency for gaze to be repelled by decreases in the contrast of

a visual element and attracted by increases in contrast. While counterchange motion

perception is typically studied under conditions of fixation, this presents the intriguing

possibility that the counterchange pattern may also play a role in motor behavior.
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Furthermore, it is conceivable that the perception of counterchange under conditions

of fixation could be related to an active inhibition of motor behavior.

6.4 CONCLUSION

Studying perception means studying life. Perception is how we make sense of our

world. Even when we act, it is through perception that we feel our actions. Thus,

solving the problem of perception is, in a sense, to solve all problems. Even the

entirety of the scientific enterprise is established and maintained solely through the

perception of purposeful agents acting in the world. Not only embedded in the mys-

tery, but composed of it.

There are, no doubt, mechanisms that enable our perceptual capacities, such as

the ones theorized about in this dissertation. However, it remains an open question as

to whether mechanism is the source of perception or merely the medium of it. How do

we come to consciously know our world and our selves? What is our relationship to the

world? And why are we aware at all? These are the seemingly bottomless questions,

always lurking under and behind our abstracted description of the real thing. A

science of life and a science mind may indeed be inseparable, and both must come to

understand the nature of agency and autonomy. Perception will almost certainly be

at the heart of such an understanding, if such an understanding is possible.
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APPENDIX A

COMPUTATIONAL SIMULATIONS FOR CHAPTER 3

A.1 STIMULUS

The stimuli each consisting spatially of 240 bars and temporally of two frames, are

defined as S(x, t) at all locations along the stimulus array x = [1960]. Each random

bar is composed of 4 pixels, with each location taking on the value 0 (representing

black) or 1 (representing white) and t = 1, 2 (representing frames 1 and 2). A central

figure region (either 60 or 120 bars long) is translated to the right by 2, 4, 6, 8, 10,

12, 14, or 16 bar-widths from frame 1 to frame 2, while the background regions are

independently and randomly generated for each frame.

A.2 EDGE FILTERS

One-dimensional real-valued Gabor functions (a Gaussian window modulated by a

sine function) are used for all spatial filtering in both the ERD and counterchange

detectors. The function is centered around zero, and uses a 0-phase sine-wave modula-

tor so that it serves as a balanced receptive field by virtue of it being anti- symmetrical

around zero. The filter is described by the equation g(x) below. Parameter σ sets

the standard deviation of the Gaussian window, and parameter p sets the period of

the sine wave modulator (in dot units). The ratio between the two parameters is the

same in all edge filter instantiations, regardless of scale (p/σ = 5). Finally, edge-

filters are normalized such that their positive lobes always are integrated to 1, and
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their negative lobes to -1.

g(x) = w(x, σ)c(x, p)

w(x) = e−
x2

2σ2

c(x) = sin(2π · 1
p
· x)

A.3 IMPLEMENTATION OF THE ERD (FIGURE 3.4, PANEL A)

Four scales of edge-filters are used for the ERD simulation. This is necessary in order

to approximate quadrature for motion detectors with differing spans (i.e. distance

between the center of the receptive fields that serve as inputs to a motion detector).

Parameter values are listed below, with subscripts indicating layer numbers with

layers 1, 2, 3, and 4 corresponding to motion detectors with spans of 2, 4, 6, and 8

bars, respectively.

p1 = 8; p2 = 16; p3 = 24; p4 = 32

σ1 = 1.6; σ2 = 3.2; σ3 = 4.8; σ4 = 6.4

For each motion detector layer, the entire one-dimensional stimulus is convolved

with the corresponding edge-filter kernel (convolution being notated by *) for both

frames (here notated with the index i). The result is truncated at both ends to

maintain the original stimulus size.

ri(x) = g(x) ∗ S(x, i)

For each location along the detector array a motion signal m(x) is calculated by

m(x) = r1(x)r2(x+ x′)− r1(x+ x′)r2(x)

where ri(x) is the edge-filter response at location x for frame i and x′ is the magnitude

of the detector span corresponding to a given motion detection layer. The resulting
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array is padded with zeros in order to maintain the one-to-one correspondence between

the motion detector array and the stimulus.

A.4 IMPLEMENTATION OF THE COUNTERCHANGE DETECTOR

(FIGURE 3.4, PANEL B)

Only one scale of edge-filter was used for the counterchange detector, regardless of

the span. The parameters were

p = 2; σ = 0.4.

Both frames of the stimulus are convolved with the edge filter. In a computational

shortcut, two polarity channels are derived from the filter response by half-wave

rectifying the filter responses to form channel 1 and inverting and half-wave rectifying

the responses to form channel 2.

Half-wave rectification:

h(x) =

⎧⎪⎪⎨
⎪⎪⎩
x, if x > 0

0, otherwise

Channel 1 responses for frames i = [1, 2]:

r1i(x) = h(ri(x))

Channel 2 responses for frames i = [1, 2]:

r2i(x) = h(−ri(x))

The frame-to-frame change in filter response is calculated as:

cc(x) = rc2(x)− rc1(x)

173



Where subscript c stands for channel c = [1, 2] and the second subscript refers to the

frame index.

Decrease and increase responses for each channel are calculated by taking the half-

wave rectified change-values for the increase response, and inverting and half-wave

rectifying for the decrease responses.

ic(x) = h(cc(x))

dc(x) = h(−cc(x))

For each location along the detector array of a given span, motion is computed

for both channels and summed into a single motion vector.

m(x) =
∑

c=1,2 dc(x) · ic(x+ x′)− dc(x+ x′) · ic(x)

x’ equals the span of a given layer. Motion response arrays are padded with zeros in

order to maintain correspondence with the stimulus. Finally, motion responses over

a threshold (.2 in the reported simulations) inhibit longer range motions originating

from the same decrease locations (i.e. the inhibited motions are set to 0). If two

motions sharing a decrease location are of the same span but opposite directions, the

stronger response is taken and the other set to 0, or else for equal strength motions

one is selected with a 0.5 probability and the other set to 0. Thresholding prevents

near-zero responses from contributing to inhibitory interactions, but the exact size of

this threshold did not have much effect as individual counterchange responses tended

to be very vigorous or very weak (i.e. well above or well below threshold). These

interactions serve as a weak shortest-path assumption in the counterchange model

(weak because splitting motions are prevented, but converging motions are not).
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A.5 DIRECTION DECISIONS

After each trial, for each of the two detector arrays (ERD and counterchange), the

motion responses are summed across all locations and spans. Rightward motion was

signified by positive values, and leftward motion by negative values.

A.6 SHAPE DECISIONS

Two templates that corresponded to the two one-dimensional figures are used to make

a shape decision, long vs. short line, after each trial. The templates consist of an

interior positive region that corresponds to the figure sizes (60 and 120 bars), and

flanking negative regions that extended to the edge of the stimulus. The value is

homogenous across the interior region (i.e. the same at all locations) and likewise

is homogenous across the flanking regions. The interior regions were normalized

such that they integrated to a value of 1, and the flanking regions are normalized

to integrate to a value of -1. After a trial, rightward and leftward motions for each

detection layer are separated in order to assess their template response independently

(leftward motions were made positive so that only positive responses were considered

as template matches). Each span-layer (separated by direction) is correlated with

both templates. The corresponding figure of the maximum template response is

taken as the shape decision for a given trial.
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APPENDIX B

SYMMETRY OF ELABORATED REICHARDT DETECTOR TO

TWO-FRAME SAME- AND INVERTED-POLARITY STIMULI FOR

CHAPTER 3

Consider a 2-frame stimulus J in which frame 1 is some spatial function f(x) and

frame 2 is some other spatial function g(x). A ’point-delay’ Reichardt detector ex-

posed to stimulus I can then be described as

Rx1,x2,δt [I](t) = I(x1, t− δt)I(x2, t)− I(x1, t)I(x2, t− δt)

where x1 and x2 are the two points in space which the detector is sensitive to and δt

is the delay used to detect motion across the two points. In response to the 2-frame

stimulus J , Rx1,x2,δt [J ](t) will be zero except for those t during frame 2 for which

frame 1 was on at time t− δt. For all such t,

Rx1,x2,δt [J ](t) = f(x1)g(x2)− f(x2)g(x1).

Now consider the inverted-polarity version of the same stimulus K with the same

first frame f(x) but in which spatial function of the second frame h(x) is the opposite

of g(x).

h(x) = −g(x)

Rx1,x2,δt [K](t) = f(x1)h(x2)− f(x2)h(x1)

= f(x1)(−g(x2))− f(x2)(−g(x1))

= −(f(x1)g(x2)− f(x2)g(x1))
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Thus,

Rx1,x2,δt [K](t) = −Rx1,x2,δt [J ](t).

Further, Chubb and Sperling (1988) proved that the response of any Reichardt

detector with arbitrary spatial and temporal filters can be expressed as a linear com-

bination of point-delay Reichardt detector responses. This implies that the response

of any given Reichardt detector, regardless of its spatial or temporal sampling charac-

teristics, is the negative of the detector?s response to an otherwise identical 2-frame

stimulus in which the luminance polarity of the second frame is inverted. This is

true regardless of whether or not the two frames represent a spatiotemporally shifted

pattern (i.e. motion) or not (i.e. noise).
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APPENDIX C

IMPLEMENTATION, PARAMETERS, AND VARIABLES FOR

CHAPTER 5

C.1 EQUATIONS

Decrease detector array:

τ u̇dec
m = −udec

m + hdec − vdecm − S(m, t) + ξdec(m, t) (C.1)

τ slowv̇decm = −vdecm − S(m, t)

Increase detector array:

τ u̇inc
n = −uinc

n + hinc − vincn + S(n, t) + ξinc(n, t) (C.2)

τ slowv̇incn = −vincn + S(n, t)

Motion detector array:

τ u̇mot
m,n = −umot

m,n + hmot (C.3)

+A · f(udec
m ) · f(uinc

n )

+B ·
∑
p �=m

f(umot
p,n ) ·

∑
q �=n

f(umot
m,q )

+C · f(ubias
(n−m))

+ξmot(m,n, t)
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Biasing array:

τ u̇bias
δx = −ubias

δx + hbias(δx) (C.4)

+D ·
∑

n−m=δx

g(umot
m,n)

+E ·
∑
r �=δx

f(ubias
r )

+ξbias(δx, t)

C.2 PARAMETER AND VARIABLE DEFINITIONS AND VALUES

C.2.1 Time constants

τ = 30 : time constant of dynamics

τslow = 60 :slower time-constant of antagonistic dynamic in change-detection neurons

C.2.2 Neuron state variables

umot
m,n : activation variable of a neural element

udec
m : activation variable of a decrease detector

vdecm : antagonistic component of decrease detection neuron

uinc
n : activation variable of an increase detector

vincn : antagonistic component of increase detection neuron

ubias
δx

: activation variable of a biasing element

C.2.3 Indices

m : Indexes the decrease-detector array and motion-detector array with respect to

decrease-detection input. For the two-dimensional motion network, m = (m1,m2).

n : Indexes the increase-detector array and motion-detector array with respect to

increase-detection input. For the two-dimensional motion network, n = (n1, n2).
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δx = n − m : Indexes the biasing array. For the two-dimensional motion network,

δx = (δx1 , δx2).

C.2.4 Resting levels

hdec = −10 : resting level of decrease detectors

hinc = −10 : resting level of increase detectors

hmot = −50 : resting level of motion detectors

hbias
δx

= β + γ||δx||
β = −15 : global offset of biasing array resting levels

γ = 2 : rate of biasing array resting level drop-off

C.2.5 Noise terms

ξ : normally distributed with mean 0 standard deviation 10. Each noise term is

independent with superscripted index referring to each sub-network array and is a

function of the neural element (referred to by its corresponding index) and time.

C.2.6 Interaction functions

f(u) : sigmoidal interaction function of neural element’s state variable u

g(u) : sigmoidal interaction function of neural element’s state variable u

f(u) = 1
1+e−u

g(u) = 1
1+e(−u+20)

C.2.7 Stimulus input

I(x, t) : dynamic motion stimulus where x = (x1, x2) for the two-dimensional corre-

spondence network.

c(x) = [−1
2
, 1,−1

2
] : 1-dimensional spatial filter
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c(x) =

⎡
⎢⎢⎢⎢⎣
−1

8
−1

8
−1

8

−1
8

1 −1
8

−1
8

−1
8

−1
8

⎤
⎥⎥⎥⎥⎦ : 2-dimensional spatial filter

ε = 80 : scaling factor of filtered stimulus

S(x, t) = ε(I(x, t) ∗ c(x)) ∀ t : spatially filtered and scaled motion signal

C.2.8 Synaptic weights

A = 80 : synaptic weight for excitatory feedforward motion detection

B = −120 : synaptic weight for inhibitory competitive dynamics

C = 20 : synaptic weight for feedback from biasing array array

D = 80 : synaptic weight from the motion-detection network to the biasing array

E = −100 : synaptic weight of winner take all inhibition on collective biasing array

C.3 IMPLEMENTATION OF ADDITIVE INHIBITION NETWORK

FOR SECTION 5.4.1

τ u̇mot
m,n = −umot

m,n + hmot (C.5)

+A · f(udec
m ) · f(uinc

n )

+B ·
∑
p �=m

f(umot
p,n ) + B ·

∑
q �=n

f(umot
m,q )

+ξmot(m,n, t)

Where B = −20, and all other parameters are the same as above. Note, in this

formulation there is no biasing array. This has no effect on the qualitative results of

the corresponding simulations.
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APPENDIX D

COMPREHENSIVE RESULTS FOR MOTION QUARTET

SIMULATIONS IN CHAPTER 5

D.1 SINGLE MOTION QUARTET
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Trial 3
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Trial 6
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Trial 9
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D.2 TWO QUARTETS
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Trial 3
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Trial 4
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Trial 5
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Trial 6
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Trial 7
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Trial 8
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Trial 9
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Trial 10
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D.3 FOUR QUARTETS
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Trial 5
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Trial 7
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Trial 9
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Trial 10
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