UNITED STATES SPORTS ACADEMY

EXAMINING EXTRINSIC REWARDS AND PARTICIPATION MOTIVATION IN MALE YOUTH SOCCER

A dissertation submitted to the faculty of the United States Sports Academy in partial fulfillment of the requirements for the degree of

Doctor of Education

In

Sport Management

by

Jude A. Niba

Chair: Dr. Arthur Ogden

Daphne, Alabama

January 2015

UMI Number: 3582358

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI 3582358

Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

UNITED STATES SPORTS ACADEMY

Approval of a dissertation submitted by

Jude A. Niba

Joshu Golgle
Arthur G. Øgden, Ph. D.
Chair, Dissertation Committee

Date 7011

Fred J. Comartie, Ed. D. Member, Dissertation Committee

Tim Foley, Ed. D. Member, Dissertation Committee Date

Stepl Blutte Stephen L. Butler, Ed. D. Dean of Academic Affairs

DEDICATION

This dissertation is dedicated to my friends and family who have supported me through my endeavors, including this work.

ACKNOWLEDGEMENTS

Despite all the hurdles and challenges I have had through these years in undertaking a career in sports, the Academy has been a significant influence in facilitating my goal by giving me the opportunity to pursue this advance degree. I extent my appreciation to Dr. Arthur Ogden, Dr. Fred Cromartie, Dr. William Steffen and Dr. Tim Foley who have continuously supported and inspired me in fulfilling all requirements for completion. In addition, my parents John and Margaret Niba have guided me thoroughly through all the years pursuing this doctorate program and supported me with knowledge and feedback on the dissertation. My entire family has also been helpful by exercising patience and providing financial assistance to advance my studies until completion. I hope this dissertation will provide new knowledge on participation motivation in sports and open up more avenues for future research.

TABLE OF CONTENTS

		Page
	ENTS	
	ENT	
ABSTRACT	•••••••••••••••••••••••••••••••••••••••	viii
CHAPTER		
I. INTRODU	JCTION	1
	Statement of the Problem	4
	Research Questions	6
	Definition of Terms	7
	Scope of the Study	15
	Delimitations	16
	Limitations	17
	Assumptions	19
	Significance of the Study	20
II. REVIEW	OF LITERATURE	22
	Introduction	22
	Motivation Orientations	23
	Extrinsic Motivation in Sports	26
	Extrinsic Rewards, P M and Success in Sport	28
	Conflicting Research	
	Summary	30
III. METHO	DS	32
	Research Method and Design Appropriateness	32
	Research Questions and Hypothesis	
	Population	33
	Sampling Design/Participant Selection	
	Instrumentation	
	Procedure	
	Data Analysis	
IV. RESULT	rs	39
	Descriptive Statistics	39

Survey Reliability	
ANOVA	49
Multivariate Regressions	53
V. CONCLUSION, DISCUSSION, RECOMMENDATION	56
Conclusions	56
Discussion	59
Recommendation	61
REFERENCES	62
APPENDICES	68
Appendix A: Written Consent	69
Appendix B: Practice Questionnaire	70
Appendix C: Thank You Note	71
Appendix D: USSA IRB Approval	72
Appendix E: Participation Motivation Questionnaire (PMQ)	73
Appendix F: Online Registration	75

LIST OF TABLES

3.1	Mean, Variance & SD for P M Items in the Modified PMQ	38
4.1	Frequency Tables for Ability and Participation	39
4.2	Inter-Item Correlation Matrix for all Subscales	45
4.3	Rotated Component Matrix for all Subscales	46
4.4	Nonparametric Correlations	47
4.5	Estimated Marginal Means for Participation Motivation (P M)	48
4.6	E M Means adjusted for Age, Grade Participation and Ability	49
4.7	One Way ANOVA by Ability and Participation	50
4.8	One Way ANOVA for Participation, Age and Grade level	52
4.9	Regression Analysis	54

LIST OF FIGURES

4.1	Histogram Scholarship	40
4.2	Histogram Exposure Opportunities	41
4.3	Histogram Fame	41
4.4	Histogram Money	42
4.5	Histogram Trophies	42
4.6	Histogram Travel	43
4.7	Histogram Grade	43
4.8	Histogram Age	44
4.9	Histogram Ability	44
4.10	Multivariate Regressions according to Ability	55
5.1	G Graph Showing Extrinsic Rewards According to Importance	59

ABSTRACT

Jude A. Niba, Doctor of Education in Sport Management, Emphasis Coaching, United States Sports Academy, Daphne January 2015. *Examining Extrinsic Rewards and Participation Motivation in Male Youth Soccer Chair*: Dr. Arthur Ogden.

This study purposely examined the types of extrinsic rewards in male youth soccer programs and measures those that are most preferred by players to influence their participation motivation. It also checked if young soccer players skew towards programs that provide more reward opportunities. For this reason, 1000 teenage soccer players were randomized in an online survey administered by a community-based organization. 800 chose programs that provided extrinsic rewards and identified fame, trophies, travel, scholarship, exposure opportunities and money as the six main rewards that influenced their decision to join soccer programs.

A Participation Motivation Questionnaire (PMQ) was then modified using the identified factors and issued to 400 participants between ages 14-18 years, randomly selected from 20 Las Vegas soccer clubs in another survey to rank extrinsic rewards according to importance. Data was collected and entered into the SPSS 17.0 software for analysis. Descriptive statistics were used to calculate frequencies, percentages, mean, and standard deviation. Cronbach alpha was applied to measure internal consistencies based on the demographics and attitudes towards participation motivation. One way ANOVA sought to determine the extent to which the identified extrinsic rewards affected participation motivation, and regression analysis examined the relationships across all factors.

Results from data analysis revealed that, exposure opportunities constituted the most important extrinsic reward that influenced young male soccer players' decision to join soccer programs. Scholarship, travel, fame, money and trophies followed suit. One-way ANOVA showed that race had a significant effect on scholarship, exposure opportunities, and fame. Multivariate regressions revealed that young players that are more motivated by scholarship, fame and travel tended to have higher ability levels. These effects were held even after adjusting for grade and age.

Results from the online survey also concluded that more young players tend to be attracted to soccer programs that provide extrinsic reward opportunities. Thus, extrinsic rewards should be considered and included in programs to enhance motivation.

CHAPTER I

INTRODUCTION

In the United States, approximately 41 million youngsters are actively involved in agency-sponsored youth sport programs (e.g., Little League Baseball) and another 6–7 million participate in interscholastic athletics Ewing and Seefeldt, (2002). The sport environment is developmentally significant because it provides relevant socialization opportunities and places adaptive demands on participants that parallel those in other important life settings Larson 2000; Ryan and Deci 2000; Scanlan, (2002). Sports participation that includes active involvement, retention and commitment are determined by intrinsic and extrinsic motives, creating opportunities for recreation, skill development and achievement. In addition, situational and environmental factors, including parents and coaches predispose young players to enter particular goal states which over time mature into ego and mastery orientations. These motivational orientations create highly competitive environments that affect teenage soccer players' decisions such as playing for reward or for fun.

Research on sport participation and retention has not been carried out by many independent social scientists as well as organizations such as Sport Participation Research Initiative (SPRI) in Canada, the Australian Sports Commission (ASC), Sport England, US Soccer, National Soccer Coaching Association of America (NSCAA) and College Athletic Associations in the US. Most of these studies focus mostly on intrinsic motivational orientations and the influence on participation. Prior research in sports participation maintains that younger athletes join soccer programs for fun, challenge,

fitness, friendship, recreation and for mastery purposes contrary to achievement orientations such as extrinsic rewards. However, examining the effects of extrinsic rewards per se on participation motivation is lacking in empirical studies.

In reality, every soccer program provides some form of extrinsic motivation ranging from awards, travel, scholarship opportunities, agency representation, endorsements, to employment contracts that attract and encourage participation. Although young players are intrinsically motivated, they tend to skew towards programs that provide more extrinsic reward opportunities. For instance, in 2005, Community Youth Inter Alia, a non-profit youth organization, offered a soccer program for teenage players of ages 14 -18 years in the Las Vegas Metropolitan area. The program was divided into two sections. The first was Project Alpha, which consisted of a year-long recreational program for players to play for fun, fitness, skill development, challenge and friendship. The second was Project Omega, a competitive league that provided opportunities to advance players' careers and offered opportunities such as try-outs, scouting, scholarships, marketing opportunities and agency representation. Interested participants were to register online for a free recruitment clinic to recruit 100 qualified candidates. Numbers showed that out of the 1000 players that registered online, only 200 chose Project Alpha (recreation). Although their reasons were not measured, they were recorded. The 800 players that chose project Omega (competition) were asked to state their reasons for preferring extrinsic rewarding programs in a sentence prior to submitting their online forms. Most of their statements were categorized under travel, exposure opportunity, money, fame, scholarship, and trophies. These factors coincided with the items listed in the Participation Motivation Questionnaire which was later modified to

measure and rank their reasons according to importance. Notwithstanding, 80% of the sample population felt they needed to compete under the premise of some form of tangible and intangible reward, making it evident they preferred programs that provided extrinsic motivation.

In substance, effective sports programs provide both intrinsic and extrinsic motivation to accommodate participants. Thus, extrinsic rewards reinforce intrinsic motivation (Gill & Williams, 2008). With extrinsic motives being a strong predictive index of soccer participation, younger soccer players from 14-18 years tend to be attracted to programs that provide more extrinsic reward opportunities. For example, during the 2009 season of the Las Vegas recreational adult soccer league, two competing teams Citala FC and Africa United FC were recruiting players at the same time. Citala FC had sponsorship and guaranteed game bonuses, travel and monetary opportunities for their players. Africa United FC au contraire was sponsored by the players with no financial incentive or reward opportunities. As a result, most players left Africa United FC to play for Citala FC. Although their reasons were not assessed, it was evident that those players were motivated by the opportunities provided by Citala FC. It can be argued that Citala FC played to compete while Africa United FC played for fun, but the league was designed by the City of Las Vegas to compete for a trophy and prize. The above examples reinforce the need to measure the determinants of extrinsic rewards such as trophies, scholarships, employment contracts, endorsements, travel etc. in order to understand, quantify and categorize the reasons why young players skew towards extrinsically rewarding programs.

In this study, 400 (n=400) participants will be selected from 20 soccer programs randomly sample within the Las Vegas area. Subjects shall comprise of males of all races between ages of 14-18 years. Participation Motivation Questionnaire will be issued to measure extrinsic factors that influence their motivation to participate in soccer according to importance. Internal consistencies will be checked using with the Cronbach Alpha. One-way ANOVA computations will be applied to test hypothesis and regression analysis to examine the difference in ranking across all factors using the SPSS 17.0 program.

Statement of the Problem

Initially, younger soccer players (6 to 10 years) are intrinsically motivated but become extrinsically motivated as they grow older (Topley, 2010). Mesmerized by the fame, fortune, endorsements and the huge income streams of players who win trophies, and sign lucrative professional contracts, success is seen behind such prisms. In most cases, the tipping point becomes either to achieve success or to look for other attractive alternatives. At this adolescent stage, intrinsically motivated soccer players start pursuing extrinsic rewards and opportunities by joining organizations such as the Olympic Development Program (ODP) for exposure, high school programs for scholarship, as well as sports marketing agencies for sponsorship and employment contracts. This behavioral pattern becomes trendier as they move from one ability level to another. Their intrinsic motivation may waver insignificantly depending on several other variables but the value for extrinsic rewards increases exponentially.

Furthermore, parents and coaching create achievement-oriented motivational climates that define success down the corridors of rewards and accomplishments. Such

climates reinforce the motivational patterns of the players by establishing standards of competence based on a winning and an achievement mentality. Behavioral patterns of this sort are also fortified by the lifestyles and careers of soccer icons such as David Beckham, Samuel Eto'o, Lionel Messi and Cristiano Ronaldo, who have achieved greatness, money and clout following a similar route. For example, Cristiano Ronaldo from Portugal makes \$44 million with \$23 million in salary and \$21 million in endorsements. David Beckham from England makes \$47.2 million, \$5.2 million in salary and \$42 million in endorsements. Lionel Messi from Argentina makes \$41.3 million in total earnings, with \$20.3 million in salary and \$21 million in endorsements. Finally, Samuel Eto'o from Cameroon earns \$16.4 million with \$13.4 million in salary and \$3 million in endorsements Budenhausen, (2013). These icons have created a trend where young soccer players put more emphasis in achieving similar successes. Although this behavior stems from a combination of situational and environmental factors, teenage athletes are getting more and more motivated to getting some type of tangible reward from playing soccer. Their incentive value of success, competence and accomplishments is often measured in terms of rewards such as the amount of money in contracts, endorsements, social recognition, and trophies won. With increasing age, participation, commitment and retention become synonymous, as young athletes' motivational orientations may change from intrinsic to extrinsic patterns in search for the accompanying rewards for involving in soccer.

Another issue is that some young talented players resolve to discontinue or drop out because of lack of the necessary extrinsic motivational incentives such as agency representation, scholarship opportunity, endorsement, etc. to move from one level to another. In spite of their talents, some drop out because they do not see the essence of putting dire effort unto physically risky and time-consuming activities for recreational purposes only. For instance, some parents prefer their children to pursue educational careers instead of playing soccer because of the risk involved and the low chances of succeeding. Their decisions become final, especially when the child incurs an injury that affects his or her daily activities. However, such decisions may change if there is a clear career plan for success and also when some tangible rewards exist.

In this sequence, extrinsic rewards become a vital requisite for participation motivation in youth soccer. Thus, it is necessary to examine the determinants and categorize them according to importance. Information from this study is aimed at supporting the participation research by helping sports marketing researchers understand the importance of extrinsic rewards and strongly consider their impact when designing sports programs. It also provide information to governing bodies to understand the expectations, realities and demands of young players from the grassroots so they can vector resources to target for their needs.

Research Questions

The research questions for the study were:

Investigating the reasons for achievement-motivated behaviors may be obvious, but what aspects of these rewards do young soccer players value most? For instance, are they more interested in the fame, travel, trophy, scholarship, money and/or exposure opportunity? Are young players more motivated to joining soccer programs that are extrinsically rewarding? Or should soccer programs be designed with emphasis on

extrinsic rewards in order to ensure higher participation and retention rates? Assuming that young soccer players are attracted to programs offering more extrinsic reward this study purposely examines the types of extrinsic rewards and measures those that are most preferred by teenage male soccer players to influence their participation motivation.

Definition of Terms

The following terms were operationally and expertly defined for the purposes of this study:

The terms considered intricate to this study were operationally defined in an alphabetical attempt. These definitions were supported by references that validate the viewpoints of the research. For instance, the term ego orientation motivation was addressed and examined in relation to youth decision making. Extrinsic rewards including all variables such as exposure opportunities, fame, travel, trophies, money and scholarship explained vis a vis their effect on youth participation motivation in soccer. Intrinsic reward and all its attributes were contextually examined in relation to participation motivation in youth soccer. Motivational orientation as well as participation motivation was defined in relation to the dependent variable. Finally, success and how young players perceive success was analyzed.

Ego Orientation

Ego orientation is a motivational goal that involves participation in a sporting activity for competition. On the other hand, task oriented goals are geared towards mastery. The primary motivation for action in pursuing ego oriented goals is to be better than others. The ego oriented goal functions as an extrinsic motivational force to achieve

desired outcomes Ego orientation motivation in this study relates an individual player's achievement goals, set in comparison with those of others and how he perceives success. For instance, young players may see success in terms financial accomplishments, fame, trophies, scholarship, exposure opportunities and travel. But the driving force is to demonstrate a superior and higher ability compared to others rather than demonstrating one's ability irrespective of how it compares to others (Steinberg, Grieve, & Glass, 2001). The Task and Ego Orientation in Sport Questionnaire (TEOSQ) (Duda 1989) is a reliable tool used to measure if a player's definition of success in a sporting context falls under task or ego goal orientation.

Extrinsic Rewards

Extrinsic rewards are the tangible and non-tangible benefits of involving in sports. Examples of extrinsic rewards include fame (social recognition), scholarships, money (employment contracts, endorsements, match bonuses, appearances), travel, trophies (prizes), selection to play at higher levels (exposure, scouting opportunities, agency representation) etc. Extrinsic rewards are the outcome of extrinsic motivation which is the drive, desire or decision to participate in an activity with the expectations of gaining some external benefits. For instance when an athlete comes to practice because of practice bonuses, his motivation is said to be externally regulated. Meaning that, he works with the intention of obtaining the desired benefit. As a consequence, his level of motivation is regulated by the reward and how badly he wants it (Gagne & Deci, 2005).

Exposure opportunities

Exposure opportunities according to the Participation Motivation Questionnaire represent the resolve to play sports at higher levels. That is, to be scouted or selected into the Olympic Development Program (ODP), College teams, national team, soccer academies etc. For instance, the ODP was initiated 1977 to scout youth players in various age groups to represent the National team in international competition. The program also provides high-level training to benefit and develop players at all ability levels. National Camps and Interregional events are organized throughout the year at various locations in the United States and supervised by the National Team Coach or a National Staff to observe, train, and scout players.

According to US Soccer, about 100,000 players between the ages of 13 and 18 participate in ODP every year for exposure opportunities. At these events college coaches, professional scouts and soccer agents attend to recruit players into soccer academies, colleges and clubs. This study assumes that exposure opportunities or the drive to play at higher levels represent a strong motive for participation and that programs such as the ODP and other scouting events have been created to satisfy that motivation.

Money

Money has always been used as a tangible motivational tool used to encourage participation, retention and commitment. As an extrinsic reward, it comes in various forms such as employment contracts, endorsements, game bonuses, appearances etc. Employment contracts, for example, include but not limited to agency representation, negotiating professional contracts, officially affiliating with a team and players union,

receiving financial compensation for services, buyouts, and retirement bonuses. Endorsements are monies or payments received when a player uses his fame to help a company sell or enhance the image of the company, products, or brands (Mullin, Hardy, & Sutton, 2007). This includes but not limited to public speeches and commercials. Match and training bonuses are financial incentives give to players when they participate in training or a match. Money is considered a powerful tangible motivational tool among adolescent players because it does not only improve their livelihood but also act as a measure of success. Considering the trend where individual success is measured according to their dollar net worth, money stands out as a strong external regulator that affect participation motivation in youth soccer. More so, money is used as a measure of individual talent in the sense that the highest paid players are considered the best. This stigma encourages young soccer players to go for the money in order to be labeled the best.

Fame

Fame (status) is the social recognition, and the respect earned from playing soccer. According to Jay Jessup, "Fame is very big and very visible professional success. It is the key to the good side of life's velvet ropes. For those who win it, society will grant them wealth, power, access, recognition, and other tools to live an extraordinary life." Illustrated in this study as a non-tangible reward with tangible aspects as well, fame significantly influences young players' drive to get involved. Among adolescents, being famous in middle and high school is highly attractive, and playing soccer can easily get one into the desired status. More so, star players such as David Beckham, Cristiano Ronaldo, Lionel Messi and Samuel Eto'o enjoy privileges that influence motivation

orientation of youth players. They tend to join soccer programs that can take them to such social heights.

Travel

Travel is the experience, and places visited when playing soccer. It offers the advantage for young players to see the world outside their community and socioeconomic class. For example Arsenal football academy in England organizes annual summer camps where young players from all over the world can participate. These camps primarily aim at scouting players and also encourage the travel aspect in soccer. However, players whose parents cannot afford the international travels can participate in local and national tournaments and camps organized seasonally by US Youth Soccer. "Travelling with a team provides an opportunity to engage with other people from other places," says Margaret MacNeill, a professor in the Faculty of Physical Education and Health at the University of Toronto. Travel is used as a categorical variable to measure of participation motivation because it represents an extrinsic reward that comes with involvement. Presumably, young soccer players would prefer joining teams that have opportunities for travel. In addition, parents also encourage travel programs for their children if they can afford it. In substance, per the PMQ, travel is a highly recognized item that influences participation motivation in sports.

Trophies

Trophies are awards, prizes or evidence of merit gained from a specific achievement. It is a tangible reward that satisfies a player's achievement. In soccer trophies can come in form of medals, such as the Olympic Medal, Cups (World Cup), personal statues, paintings, golden boots, golden ball, including awards such as best

player, highest goal scorer, best goalkeeper etc. Trophies are powerful determinants of participation motivation because the serve as living proof of achievement, identity and has priceless value. A strong reason for young players to continue playing soccer is to win trophies and some aim at winning the World Cup. Winning trophies is a powerful motivation source for youth participation in soccer and constitutes an important extrinsic reward.

Scholarship

Scholarship is a facet of exposure because it involves selection/scouting to play in a college team. It constitutes grants or payments earned to support a soccer player's college education, awarded based on playing achievement and ability. In this study, it is separated from exposure opportunities because young players target this aspect as their primary source of motivation. Although researchers such as Medic, N., Mack, D., Wilson, P & Starkes, J. (2007) found a negative effect of athletic scholarship on motivation, scholarship significantly influences young players' motivation to participation in soccer. Considering the high cost of education, low incomes and other fringe benefits, young players are motivated to play soccer because they want to gain free access to expensive universities and reduce or eliminate tuition costs. It was also used as an independent variable in this study because it is represented on the PMQ as a powerful extrinsic reward.

Intrinsic Rewards

Intrinsic rewards refers to the satisfaction gained to participate in soccer for fun, challenge, satisfaction, mastery, fitness, friendship and other benefits that are non-tangible. Intrinsic motivation is the drive to play soccer for reasons that are not extrinsic.

According to Deci, L., Koestner, R., & Ryan, M (1999) meta analyses of the effect of extrinsic rewards on intrinsic motivation, both can be used interchangeably to reinforce the other. Notwithstanding, most researchers have concluded that there is a negative effect of extrinsic rewards on intrinsic motivation Hatch, S., Thomsen, D., Waldron, J (2013). However, this study assumes that every teenage soccer player has some level of intrinsic motivation gained from years of experience. As teenagers they become influenced by the ego motivational climate created by parents, coaches and peers, as well as the materialist sports trends to start seeking for tangible benefits from participation Kavussanu, M., & Roberts, C. (1996). These extrinsic benefits are expected to be accomplished while maintaining their intrinsic motivation to participate in the sport. In essence, in order to measure the importance of extrinsic rewards on participation motivation it is vital to understand the value intrinsic rewards.

Motivational Orientation

Motive is a psychological phenomenon generated as a result of interest, need or desire of an individual. Motivation is the direction and intensity of behavior, which may be influenced by both personal characteristics and environmental factors. Motivational orientation defines the source of the drive for an individual to participate in soccer. Mastery and ego motivation orientations are two principal constructs that characterize a player's goal state. This study agrees with Ommundsen, Y., & Pedersen, H. (1999) study on the role of achievement goal orientations and perceived ability upon somatic and cognitive indices of sport competition trait anxiety that, mastery climates increases mastery goal orientations and vice versa. According to Aiden Topley's (2010) study on participation motivation in male and female soccer players, motivation orientation is

unstable and changes from mastery to ego as young athletes advance into late adolescence ages. This study also recognizes the age differences in participation motivation and seeks to understand its significance.

Participation Motivation

Participation motivation refers to the extrinsic and intrinsic reasons that attract young players to join soccer programs. Although their motives fall under mastery and ego orientations, their goals are dependent on a combination of personal and situational factors. Some teenage players play for recreation and others for competition. Some play for fitness and others to earn a college scholarship. Their goals are also influenced by current situations as well as motivational climates created by, trends, their parents, peers and coaches. A player from a low income family might be encouraged to plays for the money, scholarship. In order to understand and quantify their motives according to importance, the Participation Motivation Questionnaire (PMQ) created by Gill, Gross, and Huddleston (1983) was modified to measure only extrinsic motivation.

Success

Every player strives for success despite their motivation orientation. However, success is perceived by young athletes differently, so it is necessary to analyze and understand what it means in the eyes of the participants of this study. Success according to this study is considered achievement, compensation, recognition and reward earned as a result of playing soccer. Walling, D., & Duda, L. (1995) in their study of goals and their beliefs about success in and perceptions of the purpose of physical activity revealed that high mastery or task oriented players identified success with intrinsic interest and vice

versa. Success in an ego oriented motivational climate is based on achieving extrinsic rewards which constitutes the main theme of this research.

Scope of the Study

This study will examine extrinsic rewards and the impact on participation motivation among male youth soccer players within the Las Vegas Metropolitan area. Subjects will consist of 400 players between the ages of 14-18 years old (N=16) were selected by randomly sampling 20 male intramural soccer programs. A sample size of 400 was chosen because it gives a statistical accuracy of ±5% or 0.05 precision levels is which very cost effective. In addition, all subjects must attend high school and participate in club soccer programs. The demographic data prescribed for this study must coincide with that used by US Youth Soccer Region VI to categorize competitive ages. That is, U -14 and U-18s. More so, subjects must attend high school in order to be qualified to complete a questionnaire and answer questions with sound mind. Subjects' confidentiality and permission are highly considered from parents, coaches or guardians prior to involvement. They must as well qualify as human subjects by the Institutional Review Board (IRB) in compliance with 45CFR46 or the Belmont agreement.

The Participation Motivation Questionnaire is the survey instrument to be used to collect data. However, it would be modified to solicit response for extrinsic motives for participation only, using three-point Likert-type questions. Validity of the questionnaire will be established through a pretest pilot work conducted with ten young players randomly sampled from two club soccer teams. The staff used to conduct the survey shall consist of the club coaches who are certified soccer under US Soccer Federation or an

equivalent organization with at least National D coaching license and must comply with the rules and regulations of US Youth Soccer. The pilot work will be conducted by the research coordinator and the coaches of the teams. The research crew shall meet in advance to plan how to administer the questionnaires and supervise their completion. All investigators must be approved by the Institutional Review Board and participants must qualify as human subjects under Code of Federal Regulations (45 CFR 46).

Delimitations

The delimitations for the study were:

Existing research explains that extrinsic rewards can strengthen or weaken the intrinsic motivation of an athlete. This study, however, examines only the decision or motive to participate or join soccer programs and not the effects on intrinsic motivation. Most importantly, only male soccer players were probed because findings from Sirard, Pfeiffer, and Pate's (2006) study of motivational factors associated with sport participation in over 1600 middle school children indicated that participation motivation for females are different from that of males. Girls tend to be more socially oriented in their motives while boys are more competitive.

The construct was limited to 6 items (Money, fame, exposure, travel, trophies and scholarship). Sport equipment is an important extrinsic reward according to Furam-Mandic, Kondic, Tasak, Rausavljevic and Kondri in their 2012 study on Sports Students' Motivation for Participating in Table Tennis. This item was not included because it is not present in the PMQ and for the fact that sport equipment accompanies participation for both intrinsic and extrinsic reasons.

The race and ability attributes on participation motivation were measured because significant effects might contaminate results. The effect of age and grade level on motivation orientation was also crossed examined in order to strengthen the construct. According to Kim, Williams, and Gill (2003), U.S. middle school students are more intrinsically motivated than their Korean counterparts. It was also suggested that participants from Asian countries were more interdependent whereas North Americans were independent-oriented. Yan and McCullagh (2004) also found that American youth were motivated primarily by competition and the need to improve; Chinese youth were more involved for social affiliation and wellness; and Chinese American youth participated because of travel, equipment use, and having fun. However, nationality and race issues constituted some delimitation but remain presumably insignificant to distort findings.

The sample population may not represent other youth populations such as those that play intramural or recreational soccer. However, the outcome will be generalized across all populations irrespective of those who fall under the recreation category.

Limitations

The limitations for the study were:

This study identifies both extrinsic and intrinsic rewards as motivators for participation in intramural soccer. And the prime factors of extrinsic rewards are categorized under fame, travel, trophies, scholarships, exposure opportunities and money. Measuring the impact of extrinsic reward on participation motivation is not without limitations. Subjects whose participation orientations fall between extrinsic and intrinsic

motives are underscored for the purposes of internal consistencies. Although extrinsic participation motives for individual players may be numerous or vary, they can all be categorized under the six variables and ranked according to importance. This is why the investigation considers measures to reduce possible limitations that arise as a result of faulty procedures.

The study will be geographically limited to the Las Vegas Metropolitan area, which constitute less than 10% of the youth soccer population within US Soccer Region IV.

The impact of extrinsic rewards on participation motivation on aspects of culture and sexual orientation was not examined in this study. It was assumed that although there might be some differences in participation motivation across several demographics and psychographics, the standard of deviation would be so insignificance to distort validity and reliability of results.

Subjects considering their age and grade level are unfamiliar with participating in this type of survey which might lead to faulty procedures such as dishonest responses, answering without thinking, hurrying to finish etc. These types of responses are often unavoidable and can significantly distort results especially when the degree to which subjects understand the questions is difficult to measure.

Assumptions

The assumptions for the study were:

In investigating the impact of extrinsic rewards on sports participation motivation among youth male soccer athletes all players are presumably intrinsically motivated due to their playing experiences. According to this study, young soccer players are assumedly attracted to programs offering more extrinsic rewards and seek to understand the components they are most and least attracted to. This is why the pilot work will be conducted during soccer practice sessions. Success in sports according to this study is regarded in form of achievements such as fame, fortune, selections, trophies, employment and endorsements.

Furthermore, the survey instrumentation which is the Participation Motivation Questionnaire is assumed to be the most valid, and reliable tool to achieve accurate measurement. It is also assumed that all subjects are in compliance with the rules and regulations of US Soccer Federation and abide with all instructions as well as terms and conditions of the survey. These modalities will help instructors to guarantee internal validity in their measurements and provide accurate and reliable results.

Subjects were qualified soccer players who could read and understand the content of the questionnaire and responded in an open and honest manner. In addition, all secondary data sources and past research literature was considered reliable and valid; and the sample population was considered a representative of a larger population.

Significance of the Study

In an assessment of the causative factors that motivate players towards participation in sports activities, Khan, M., Salahuddin, K., & Muhamed, S. (2011) found that children participate in sports and physical activities for clearly identifiable reasons, including skill acquisition and mastery, achievement and status, competition, energy release, enjoyment, challenge, friendship or affiliation, and physical fitness. Evaluating these motives is necessary to enhance the volume of participation, retention, as well as commitment, making sports programs more interesting and productive. Adults, on the other hand, include skill development, achievement, social recognition, success and economic benefits to the reasons for participation. Intrinsic benefits are fundamental to individual motivation to participate in any sporting activity. However, extrinsic benefits are strong motivational indices that can ensure retention and commitment. Without something tangible or of value a lot of sport participants would not see the essence to deploy maximum and continuous effort. He or she will lag off with the reasoning that after all there is nothing at stake or to lose. The phrase "no money, no football" has become common among young players who watch their age mates competing at elite levels such as the World Cup and the Olympics, bringing home trophies, money and fame. Retention becomes critical when the sport participants play in order to earn a living or uses soccer as the way out of poverty. In less developed countries such as Chile says Sotto Christobal, a UEFA Licensed Coach in the Irish Football Association, if you ask teenagers why they play football (soccer), their responses are "I WANT TO FEED MY FAMILY". This implies that participation motivation among youths across cultures may be different with many seeking financial opportunities.

In this bid, sports organizers must understand these motives and arrange programs that promptly serve the need, interest, desire and choices of participants. In addition, this research aims at providing information to governing bodies to broaden their understanding of extrinsic participation motivation for adolescents so they can deploy resources to target their interests and needs. For example, the Olympic Development Program (ODP) has become popular among young athletes because of the accompanying benefits such as travel, trophies, and exposure opportunities.

CHAPTER II

REVIEW OF LITERATURE

Introduction

Understanding participation motivation in youth soccer has been widely researched by social scientists who have laid much emphasis on intrinsic motives. Many others have empirically compared intrinsic to extrinsic participation motivation in soccer in youth, adults, males and females but under minded extrinsic rewards per se. This research gathers existing literature from journal articles, theories and thesis on participation motivation and extrinsic rewards to understand the effects among male youth soccer athletes. Attributes such as motivation, motivational orientations, participation motivation, as well as extrinsic rewards are examined separately in relation to youth soccer. Research that contradicts the hypothesis of this study will equally be examined, while literature on extrinsic rewards and participation motivation is extracted. Motivation in Sport

Motivation is the intensity and direction of behavior determined by both personal and environmental factors. Ng, R (2011) is their research on understanding sport participation motivation and barriers in adolescents 11-17 concluded that youth motives across sports, age and gender emphasize that environmental factors significantly influence participation motivation in some physical activities. Operant behavioral approaches to understanding motivation also established that reinforcement is a key to behavior change. According to Marlot & Suarez, (2004), reinforcement is any stimulus, event or condition whose presentation immediately follows a response and increase the frequency of that response. There are tangible reinforcing incentives such as trophies,

certificates, scholarships, employment contracts, endorsements, etc. as well as non-tangible rewards such as praise from coaches and peers, and cheers from crowds and teammates. This study focuses on the tangible rewards, claiming that behaviors change in response to reinforcement.

Motivational Orientations

Extending the work of Murray (1939), Atkinson's theory of Achievement Motivation is an interaction model that takes a behavioral approach laying emphasis on personality and situational factors in defining the need to achieve. In (1964, 1974), Atkinson used two personality constructs to categorized achievement motivation behavior. These consist of the motive to achieve success and the motive to avoid failure. Soccer players with elevated motivation to achieve success without worrying about failure are high achievers and their incentive value of success is strong. Therefore, their participation motivation is to achieve success. These athletes are more likely to be extrinsically motivated to participate in soccer and attracted to programs that offer extrinsic rewards. Atkinson also emphasizes that situational factors such as task difficulty or the probability to achieve success, and the incentive value for success affects players' motivation. In most instances, coaches, parents, fans and the media create motivational climates that prioritize success. These climates sustain environments where incentive value of success is high and based on extrinsic rewards such as money, fame, travel, etc. As a result, young soccer players view success through the prism of extrinsic rewards and become motivated to achieve success by engaging in programs that offer those opportunities.

Nicholl's Achievement Goal Theory (1989) is another behavioral approach to the motivation orientation literature. According to this theory, athletes are categorized under task and ego motivational orientation. Task –oriented individuals perform behaviors for mastery purposes, while ego-involved players are driven to outperform others (Nicholls, 1989). In youth soccer, a task-oriented player is motivated to play because of the desire to learn and master the sport and will most likely join teams that offer more playing time. On the other hand, an ego-involved player participates as long as he is winning or consistently outperforming others. These categories of players tend to be more extrinsically motivated and are interested in achieving success by skewing towards teams or programs that encourage dominance, competition, as well as achievement.

Competitive and individualistic reward structures also influence motivational orientations. Competitive reward structures encourage people to compare their performance with that of others, fostering ego involvement which over time promotes an ego orientation. On the other hand, individualistic reward structures lay emphasis on personal improvement and learning through effort leading towards task goal orientation (Ames, 1984; Nicholls, 1989). Therefore, players with mastery motivational climates are rewarded for effort, learning and improvement, while those within performance-based environment reward people for winning and outperforming others. Performance-based players play for success and are more likely to join teams that offer extrinsic rewards.

The Cognitive Evaluation Theory by Deci & Ryan (1985) is a cognitive approach to understanding motivation based on the Self-determination theory (2000). The cognitive evaluation theory postulates that the psychological need to feel autonomous,

socially related and competent makes people to be intrinsically motivated to participate in sports (Deci & Ryan, 1985). These needs facilitate the adoption of behaviors and activities that provide for their fulfillment. Deci & Ryan also believed that participation motivation falls under intrinsic and extrinsic motives. In their distinction, intrinsic motivation is the main source of energy that drives human behavior, and its presence facilitates behavioral participation.

In contrast, motives that are based on extrinsic factors and rewards create a condition that may or may not facilitate adherence depending on the situation. Sporting activities such as soccer that have both informational and control rewarding aspects affect motivational orientations. Extrinsic motivation is mostly intentional, controlled by external forces and highly valued and internalized among youth soccer players. This means that the controlling reward aspect of soccer is dominant, trendy and has a significant impact on motivational orientations. In essence, highly salient controlling aspect of tangible rewards in soccer (money, fame, travel) strongly impacts players' participation. Thus, those rewards become the predictive index for self-determination. This perception relates to the hypothesis of the study in the reasoning that because rewards for participation (trophies, money, fame, travel, endorsements) are highly controlling, young soccer players develop extrinsic motivational tendencies that vectors their attraction towards programs offering reward opportunities.

Extrinsic Motivation in Sport

People are extrinsically motivated when they perform an activity in order to obtain some external reward. When coaches or parents make reinforcements contingent

on winning and outperforming others, they create an ego-oriented motivational climate which is a consonant of extrinsic motivation. The Self-determination Theory (SDT; Deci & Ryan, 2002) posits that extrinsic motivation is intentional and controlled by external forces, but its strength varies relative to the degree to which the external force is valued or internalized. This is why the research on extrinsic motivation was extended by separating it into external regulation, introjected regulation, identified regulation and integrated regulation (Gill & Williams, 2008).

External regulation is a classic sense of extrinsic motivation where behavior is performed to satisfy an external demand or controlled by external forces such as rewards. For example, a player might go for training to get training bonus or his scholarship depends on it. Introjected regulation constitutes an internalized contingency where a player feels compelled to participate. This form of motivation is ego-oriented and stems from pride, self-representation or guilt avoidance. To illustrate, a player might participate in a game to avoid the guilt of losing. Identified regulation is the extrinsic motivation whereby a player participates out of choice but also as a means to an end. For example, a player chooses to partake in every pre-season practice game in order to be physically and mentally prepared for the season (William, 2010). Finally, the integration regulation component internalizes and assimilates intrinsic motivation onto extrinsic motivation in a bid to achieving goals that are extrinsic in nature. For example, elite players must maintain high levels of intrinsic motivation in order to successfully meet up with the challenges, expectations and rewards. In the sport participation literature, the various forms of extrinsic motivation examined above have been used to quantify data.

Although most of these studies measure the effects of extrinsic rewards on intrinsic motivation in 2010, Aiden Topley specifically probed participation motivation of young male and female soccer players. He hypothesized that participation motivation changes from intrinsic to extrinsic with increasing age. In addition, rewards are central to competitive sports; athletes receive publicity, awards, and money, among other things, and college-level athletes obtain scholarships for their talents. Extrinsic rewards, when used correctly, can be beneficial to athletes. However, athletes in highly competitive levels of sport may experience decreases in their intrinsic motivation because of the increasing use of extrinsic rewards instigated by the media, coaches, and parents (Hatch, S., Thomsen D. & Waldron, J. 2013).

In the sports world, competitive athletics from youth onward is dominated by extrinsic reinforcements. These reinforcements or rewards are either tangible (money, contracts, endorsements, scholarships, trophies, travel), and intangible (praise, fame, recognition, status). The incentive value of success is highly placed on extrinsic rewards. In 2011, Mladenovic & Marjanovic explored some differences between sport motivation among young football (soccer) players in Russia and Montenegro by testing extrinsic rewards by identification, introjection and external relation. Their research included 178 young football players aged 12 to 15 years using the Sport Motivation Scale. The main purpose was to determine if there are any development-related differences in the level of internalization of extrinsic motivation in young athletes of different ages. Results indicated that adolescent football players are primarily influenced by their coaches and parents. The players aged 14 are more mature about the duties to football and on the value of extrinsic rewards than the 13 year olds. In addition, Russian players are more

cautious of the value of extrinsic rewards than their Serbian counterparts. This means that the value of extrinsic rewards among soccer players change with age, confirming Aiden Topley's conclusion.

Extrinsic Rewards, Participation Motivation and Success in Sport

Participation motivation seeks to understand the reasons why athletes get involved in sports that are intrinsic, extrinsic or both. Using the Participation Motivation Questionnaire (PMQ), Gill, Gross, and Huddleston (1983) found that the most important reasons why young people participate in sports were to improve skills, have fun, learn new skills, be challenged, and be physically fit (Gill & Williams (2004). On the other hand, teenage athletes are becoming more oriented towards rewards such as travel, trophies, money, fame, contracts and endorsements. In 2012, Mueller's Recreational Sport Participation Scale postulated that sport promoters continuously seek to create recreational programs that meet needs of participants in order increasing mass participation. Although these events generate economic activities, participants must be motivated intrinsically and/or extrinsically in order to fully engage. In 1998, White, Duda, & Keller also studied the relationship between goal orientation and perceived purposes of sport among 102 youth sport participants with mean ages of 11.5 years. They assumed that examining the perceived consequences of sport would enhance social attitudes, values and young athletes' views on involvement. Results indicated that task oriented athletes are more likely to be intrinsically motivated while the ego-involved skew towards extrinsic motivation. Findings also posited that a task-oriented youth

athlete would be more likely to derive enjoyment from sport participation and less likely to drop out.

Van-Yperen & Duda, in 1999 defined success in their research on goal orientations, beliefs about success, and performance improvement among youth elite Dutch soccer Players with mean ages of 16.5 years. The study hypothesized that athletes' definition of success in relation to achievement motivation is classified under task and ego orientations. Within the context of some Dutch elite soccer players, task orientation is linked to the belief that effort, team play, and parental support contribute to achievement in soccer, while ego-oriented players believe that innate ability is the determinant for success and competence. Thus, the ego-involved players believe that innate ability determines success and deserves more extrinsic rewards.

In sum, our study intentionally eliminated female soccer players because their participation motivation was assumed to be different than males. In 2006, Beaudoin, C. confirmed this assertion when he measured competitive orientations and sport motivation of 118 professional women's football players of ages 18 to 45 in an Internet Survey. Findings showed higher extrinsic motivation among younger female players, although the professional players were more intrinsically motivated. This conclusion correlates with Aiden Topley's 2010 research on participation motivation between young men and women's soccer players. He concluded that teenage male soccer players are more extrinsically motivated with age than females, meaning that their participation motivation differs across gender as they mature.

Conflicting Research

Notwithstanding, many researchers have found that extrinsic rewards have little or no impact on participation motivation. In a meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation, it was found that tangible rewards tended to be more detrimental for children than college students, and verbal rewards tended to be less enhancing for children than college students (Deci, Koestner & Ryan, 1999). Anderson, D., & Lorenz, F. (1988) in the longitudinal analysis study on the prediction of contemporary participation from children's gender, past participation, and attitudes claimed that children at the ages of 7 and 8 years old perceived extrinsic rewards for task performance as bribery, leading to declining intrinsic motivation in accomplishing tasks. The study found that sex, past participation, and the interactions of past intrinsic satisfaction with extrinsic rewards constituted predictive indices of present-day participation in team sports but show no differences between males and females. Khan, Salahuddin, & Muhamed in 2011 also assessed the causative factors that motivated 225 student players towards participation in cricket, football, volleyball and tennis in six male colleges. Findings revealed that the athletes were more intrinsically motivated with health and fitness, fun, and relief of mental tension being the main motivating factors for participation.

Summary

Behavioral approaches such as Atkinson's theory of Achievement Motivation, the Nicholl's Achievement Goal Theory, as well as cognitive models like the Cognitive Evaluation Theory by Deci & Ryan and the Self-determination Theory constitute

compounding empirical works that form the basis of understanding participation motivation in sports. Although these concepts can be applied across all demographics and psychographics, many studies have revealed findings that vary. Other theories akin to participation motivation include the Sport Commitment Model, the Theory of Planned Behavior, the Theory of Reasoned Action, Harter's Competence Motivation Theory and White's Effectance Motivation Theory of 1959 are not examined in this study but provide vital information to support this construct.

CHAPTER III

METHODS

Research Method and Design Appropriateness

This study implemented a descriptive correlation study with a sample of adolescent club soccer players. All subjects completed a Participation Motivation Questionnaire (PMQ) to measure the components of extrinsic motivation such as fame, trophies, travel, scholarship, exposure (scouting opportunities in ODP, soccer academies, colleges, and the national team), and money (game bonuses, pay to play stipends, employment contracts and endorsements). A modified questionnaire was created by extracting questions from the PMQ that pertains only to extrinsic motivation.

Research Questions and Hypothesis

It was hypothesized that fame, travel, trophies, scholarship, exposure opportunities, and money constituted the most important extrinsic factors that drive participation orientations among adolescent soccer players. This study also claimed that young players were more motivated to join soccer programs that are extrinsically rewarding. Notwithstanding, the most significant extrinsic determining factor according to importance is exposure opportunities. This conclusion, including the results from the online survey reinforces the claim that teenage soccer players are more likely to be attracted to programs that offer opportunities to be selected or scouted to play at higher levels such as the national team, college team as well as renowned soccer academies. Statistical test will be performed to see if the null hypothesis can be retained.

Population

Participants consisted of 400 soccer players from ages 14-18 years of all races, playing intramural soccer in the Clark County Las Vegas. According to Clark County School District student Data Services report in 2013, the total number of students enrolled was 311,429. 33% are Caucasians, 44% Hispanics, 13% Blacks, 9% Asians and 1% Indians. In order to qualify for the study, all subject must attend middle or high school and be enlisted in a soccer club or program. They must as well qualify as human subjects under the 45 CFR 46 of the Institutional Review Board also known as the Belmont Report. The effects of ability, grade level and age will be considered and measured to see their effect on participation motivation variables. Grade level is also important because participants must understand the language of the survey and answer all questions without influence from their parents or coaches. Participants will be excluded from the research if they do not meet the above eligibility criteria.

Sampling Design/Participant Selection

Participants were selected (N=400) from 20 active soccer programs, which were randomly sampled in the Las Vegas Metropolitan area. All races (Caucasians, Blacks, Hispanics, Asians and Indians), were represented. The Taro Yamane method was used to calculate sample size. A sample size of 400 with a 95% confidence level means that if the survey is reissued 100 times, the answer to any question would not vary more or less than +/- 4.9 % in 95 of the 100 cases. This method however has a 95% confidence level and .05 precision levels.

 $n = \underline{N}$ 1+N (e)2 N = 13,999 n = N/1+13,999 (.05)2 n = 13,999/1+13,999 (.05)2

n = 400

Participants' mean age is 16 years, intermediate ability level, and between 6th and 12th grade. Each club will be issued by the research administrator 20 surveys to be completed by qualified subjects 30 minutes before practice. 400 PMQs will be handed to the 20 clubs on separate occasions. At the beginning of the questionnaire, demographic information will be required for each player including, age, race, ability level and grade level. Each of these categories will be a self-reported measure for the player except for length of playing time which is considered insignificant to affect results.

Instrumentation

A modified version of the Gill, Gross & Huddleston's (1983) Participation Motivation Questionnaire (PMQ) will be issued to each player to assess the extrinsic rewards preferences that influence their participation motivation according to importance. The extrinsic reward items included fame, travel, trophies, scholarship, exposure opportunities, and money. These items will be selected partly from the extrinsic motivation factors in the PMQ, and to a larger extent from the results of the CYI online survey, and treated to suit the purpose of this study. For example, item 23 of the PMQ "want to go to a higher level," will be changed to exposure (scouting) opportunities,

which include the selection into ODP, soccer academy, national team, college team, professional team, etc. See appendix F. These sub-variables will not be tested because their effect was assumed to be insignificant to influence or contaminate results. The items will be ranked on a three-point Likert-scale based on "very important," "somewhat important" and "not at all important." Cronbach alpha will be applied to demonstrate internal consistency of the modified items of each construct. Internal validity and reliability values for these constructs will be examined using the inter-item correlation matrix. One-way ANOVAs and pairwise comparisons will measure differences in responses. And regressions will check the relationship among variables.

Procedure

One week prior to administering the survey, a pretest with ten young players handpicked from both club and non-club soccer was conducted to test the validity of the measurement. Out of the ten subjects, 2 were white 4 Hispanics, 2 blacks, 1 Asian and 1 native Indian. There was one elite player, 7 intermediate and 2 beginners. 80% attended high school and 20% were in middle school. The aim was to see if the administrators could successfully administer the survey and subjects understood the language of the survey and could successfully administer the PMQs within 30 minutes before practice. The practice was successful but results were not analyzed.

During the actual process, the following procedure was followed:

i. The coaches and the research coordinator scheduled a meeting one hour prior to and plan on how to distribute the handouts. The questionnaires were designed in hard copies. The 20 clubs received 20 questionnaires each to be completed

- 30 minutes before practice. The entire process took five days because four teams were visited per day.
- ii. Written permission was granted by the coach or by the parents of players of the surveying team if present after being approved by the Internal Review Board (IRB) with all the subjects' terms and conditions met before questionnaires were issued. All participants were qualified as human subjects under Code of Federal Regulations (45 CFR 46).
- iii. Coaches of the surveying teams selected players at random during training sessions and administered the test. The survey administrator used 10 minutes to illustrate and explain to the selected participants the instructions on how the questionnaires should be completed. The questionnaires were completed and handed in 20 minutes.
- iv. Data collected was handed to the researcher and coded for entry into the SPSS 17.0 program. Descriptive statistics were used to assess the differences between variables. Chi square testing was performed to analyze correlations between variables. Reliability was measured using the Cronbach Alpha test. Finally, one-way ANOVA analysis was carried out to test the differences among subjects. Regression analyses were carried out to measure the relationship values among variables.

Data Analysis

This study examines the extrinsic reward preferences on participation motivation among male soccer players between the ages of 14 -18 years old. Fame, travel, trophies, scholarship, exposure opportunities, and money were identified as important types of extrinsic rewards. It was hypothesized that exposure opportunities constituted the strongest factor and that young players are likely to skew towards programs that provide these opportunities. Following this claim, in 2013, 1000 young soccer players from 14 to 18 years registered online to join either a recreational (Project Alpha) or a competitive soccer (Project Omega) program in Las Vegas, Nevada. See appendix G. Although their reasons were not quantified they fell under six categories (Scholarships, exposure opportunities, fame, money, travel and trophies) which corresponded with items on the Participation Motivation Questionnaire (PMQ).

Furthermore, 400 participants were surveyed using a modified PMQ measure the above items. Based on 100% response rate, data was collected and analyzed using the SPSS 17.0. Descriptive statistical analyses were conducted for all variables showing means, variances, standard deviations, frequencies and percentages to compare the demographics and attitudes towards participation motivation in youth soccer. Histograms illustrated the frequencies for scholarship, exposure opportunities, fame, travel, money and trophies in relation to age, grade, ability and race.

Table 3.1: Modified PMQ Showing all Items and Frequencies of Responses.

Items	Very Important (3)	Somewhat Important (2)	Not at all Important (1)
Fame	200	100	100
Travel	80	100	220
Trophies	20	100	280
Scholarship	220	100	80
Exposure op	250	100	50
Money	150	100	150

The survey reliability was also checked using the Cronbach's alpha. A factor analysis with varimax rotation was conducted to test whether the items fell neatly on one scale. Alpha values were maintained at p < .05 and Inter-Item Correlation Matrix showed the different values. Correlations were measured using non-parametric testing (Kendall Tau) because data is ordinal and did not show bivariate normality. Multivariate ANOVA compared the different motivations to see if responses were insignificantly different from each other, while taking into account shared variance within individuals. Differences in responses called for post hoc pairwise comparisons from a multivariate ANOVA. A one-way ANOVA adjusted for age, race, ability and grade level. Finally, multivariate regressions were conducted using ability to see if any of the variables were associated with ability.

CHAPTER IV

RESULTS

Descriptive Statistics

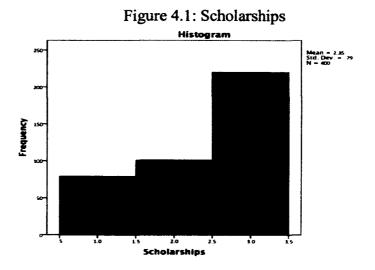
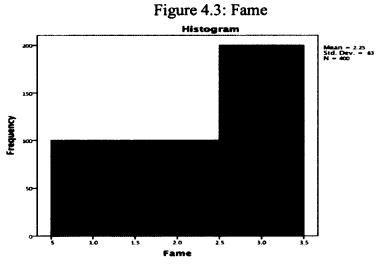

A total of 400 subjects participated in the survey. 35.5% were Caucasians, 26.7% Hispanics, 20% Blacks, 14.5% Asians and 2.8% Indians. Age and grade level frequencies shown in the histograms reported M=3.45; SD = 1.13 and grade level M=9.38; SD = 1.76. This tells us that the majority of players was 16 years old and fell between 9th and 11th grades. Table 4.1 and figures 4.8-4.9 show that within the population, 10% were beginners, 80% intermediate and 9.7% advance with M=2.1 and SD=.30.

Table 4.1 Frequency Tables Showing Descriptive Data for Ability and Participation

		,	Ability	7	
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Beginner	40	10.0	10.0	10.0
	Intermediate	321	80.0	80.3	90.3
	Advanced	39	9.7	9.8	100.0
	Total	400	99.8	100.0	
Missing	System	1	.2		
Total		401	100.0		
			Race		· · · · · · · · · · · · · · · · · · ·
		Frequency	Percent	Valid Percent	Cumulative Percent
	Caucasian	143	35.7	35.8	35.8
	Hispanics	107	26.7	26.8	62.5
 Valid	Blacks	81	20.2	20.3	82.8
V allu	Asians	58	14.5	14.5	97.3
	Indians	11	2.7	2.8	100.0
	Total	400	99.8	100.0	
Missing	System	1	.2		
Total		401	100.0		

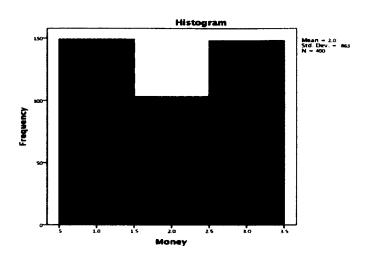
Descriptive statistics for dependent variables was calculated with a 95% confidence interval and explained using histograms. Frequencies for participants show a mean value M = 2.22; SD = 1.16, indicating a valid representation of 35.7% for Caucasians, 26.7% for Hispanics, 20.3% for Blacks, 14.5% for Asians, and 2.7% for Indians, per table 4.1. This shows that Caucasians were the most represented in the survey. Descriptive figures for scholarship were M=2.35; SD .79; exposure opportunities M=2.49; SD=.70; fame M= 2.25; SD = .83; money M = 1.99; SD = .86; trophies M = 1.27; SD = .45; travel M = 2.35; SD = .79, grade M = 9.3; SD = 1.8; age M = 3.45; SD = 1.13, and ability M= 2.11; SD=.305. See figures 4.1-4.9.

Looking at the histogram for scholarship frequencies, one can see that out of 400 participants 220 thought scholarships was the most important extrinsic reward that motivated youth soccer players. 100 subjects reported somewhat important and 80 said not at all important. See figure 4.1


The histogram for exposure opportunities indicated that with M = 2.5; SD = .708, 250 participants out of 400 checked exposure opportunities as the main motivation for playing soccer. 100 saw it as somewhat important and 50 said it was not at all important.

This explains why the distribution is asymmetrical or highly skewed to the left, indicating asymmetry. See figure 4.2

Histogram **ExposureOpportunities**


Figure 4.2: Exposure Opportunities

With fame, distribution was slightly skewed to the left. The mean value M = 2.25; SD = .83 explains that 200 subjects saw fame as very important, 100 somewhat and 100 said not important. This is illustrated in figure 4.3 below.

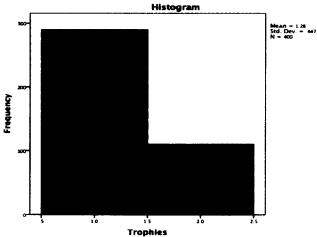

Money, with M=2.0; SD=.86, show a bimodal distribution. This means that 150 players claimed money as very important, 100 said somewhat and 150 said not at all important as shown in figure 4.4

Figure 4.4: Money

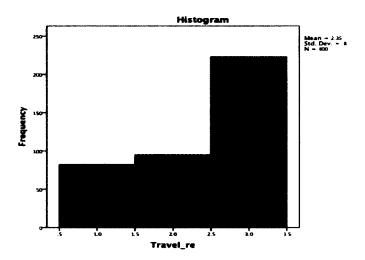

Trophies had a mean M = 1.28; SD = .45 showing a distribution skewing to the right. As seen in the histogram below, 280 players reported trophies as not all important and 100 thought that it was somewhat important.

Figure 4.4: Trophies

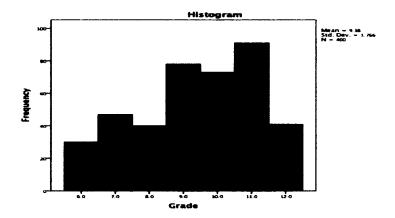
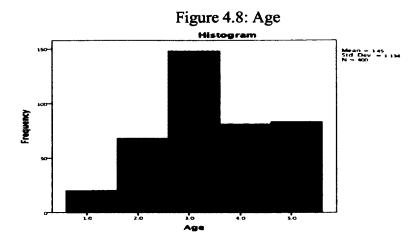
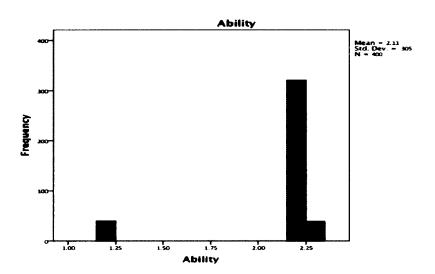

Travel had a mean value M = 2.35; SD = .8 and distribution skewed to the left showing that 80 players said it was very important, 100 somewhat, and 220 not at all important. See figure 4.6

Figure 4.6: Travel



Histogram for grade showed a multimodal distribution with mean values M=9.8; SD=1.77 indicating that a majority of players were in 9^{th} and 11^{th} grades.

Figure 4.7: Grade



Frequencies for age showed that the vast majority of players were of median age 16 years. This can be seen in the age histogram below.

Ability frequencies show no distribution, as majority 80% were intermediate leveled, 10% were beginners and 10% advance.

Figure 4.9: Ability

Survey Reliability

Prior to analyzing data, each subscale of the PMQ was tested for reliability using the Cronbach's alpha method. According to Nunnaly (1978), α level of more than .70 is acceptable. Using the means, standard deviations, total sample population (N) and the total number of items (6), the Cronbach's alpha value was .11 which is below the

required standard (.70). The Inter-Item Correlation Matrix was then applied to see if all the items of the modified PMQ measured the same construct. These results showed that items cannot be group in one scale but can be treated individually or in smaller groups. For instance scholarship is strongly correlated (α =1.000) but very weak with all the other items. Alpha values for exposure opportunities show α = .049, fame α = .098, money α =.012, trophies α =.020 and travel α =.053. This pattern of correlation is consistent with all the other items in the scale with weighted mean n=12.725, variance V = 3.734 and SD 1.93 for all 6 items.

Table 4.2: Inter-Item Correlation Matrix for all Subscales

Inter-Item Correlation Matrix								
	Scholarships	Exposure Opp	Fame	Money	Trophies	Travel		
Scholarships	1.000	.049	.098	.012	.002	.053		
Exposure Opp	.049	1.000	007	.059	.018	.035		
Fame	.098	007	1.000	080	030	.120		
Money	.012	.059	080	1.000	011	013		
Trophies	.002	.018	030	011	1.000	061		
Travel	.053	.035	.120	013	061	1.000		

In essence, scholarship, travel and fame can be grouped, exposure opportunities and money are also correlated but trophies stand alone. The caveat is that subscales grouped together could be more reliable. The exact values are illustrated in table 4.3 in the rotated component matrix section.

Table 4.3: Rotated Component Matrix for Subscales

		Component	
	1	2	3
Scholarships	.595		
Exposure Opportunities		.674	
Fame	.683		
Money		.706	
Trophies			.873
Travel	.518		418
Extraction Method: Principal Componen Rotation Method: Varimax with Kaiser N			

Based on this criterion, all sub scales of the PMQ demonstrated low internal consistency ($\alpha = .11$) requiring a set of bivariate nonparametric correlations to test the strength and dependence between variables. Non-parametric correlations were applied to measure the correlation coefficients between variables using the Kendall Tau test because the data is ordinal, showing no bivariate normality. Correlations were significant at the 0.05 and 0.01 level (2-tailed). There was a small negative correlation between travel and fame r = .012; and a small positive correlation between scholarship and fame r = .095. See table 4.4.

Table 4.4: Nonparametric Correlations

			Cor	relations						
				ExposOp			Trophie			
			Scholarships	p	Fame	Money	s	Travel	Grade	Age
Kendall'	Scholarships	CorrelationCoef	1.000	.038	.095*	.012	.014	.066	.000	00
s tau_b		Sig. (2-tailed)		.405	.036	.787	.774	.147	.992	.83
		N	400	400	400	400	400	400	400	40
	Exposure	CorrelationCoef	.038	1.000	002	.041	.023	.035	.058	08
	Орр	Sig. (2-tailed)	.405	•	.973	.364	.634	.441	.174	.06
		N	400	400	400	400	400	400	400	40
	Fame	CorrelationCoef	.095	002	1.000	066	025	.114°	.050	.04
		Sig. (2-tailed)	.036	.973	•	.139	.598	.012	.232	.31
		Ν	400	400	400	400	400	400	400	40
	Money	CorrelationCoef	.012	.041	066	1.000	011	005	.008	04
		Sig. (2-tailed)	.787	.364	.139		.823	.906	.853	.35
		N	400	400	400	400	400	400	400	4(
	Trophies	CorrelationCoef	.014	.023	025	011	1.000	059	079	05
		Sig. (2-tailed)	.774	.634	.598	.823		.214	.072	.20
		N	400	400	400	400	400	400	400	40
٠	Travel	CorrelationCoef	.066	.035	.114*	005	059	1.000	018	.02
		Sig. (2-tailed)	.147	.441	.012	.906	.214	•	.666	.60
		N	400	400	400	400	400	400	400	40
	Grade	CorrelationCoef	.000	.058	.050	.008	079	018	1.000	.163
		Sig. (2-tailed)	.992	.174	.232	.853	.072	.666	•	.00
		N	400	400	400	400	400	400	400	40
	Age	CorrelationCoef	009	081	.044	040	058	.023	.163**	1.00
		Sig. (2-tailed)	.838	.066	.312	.354	.203	.604	.000	
		N	400	400	400	400	400	400	400	40

^{*.} Correlation is significant at the 0.05 level (2-tailed).

^{**.} Correlation is significant at the 0.01 level (2-tailed).

Repeated measure ANOVA was used to compare the different motivations to see if responses were related to each other. It checked for any differences in motivations, taking into account shared variance (errors) per question within individual responses. In table 4.4, showing test within subjects, *P* value of less than 0.05 indicates that there is a difference between at least one of the two types of motivation. As a result, pairwise comparisons were conducted to test the mean difference between motivations. Looking at the estimated marginal means illustrated in table 4.5, the overall means for each category are scholarship M= 2.35; exposure opportunities M=2.49; fame M=2.25; money M=1.99, travel M=2.35; and trophies M=1.27. Table 4.5 also shows that non-overlapping confidence intervals in the lower and upper bound values indicate a significant difference between variables.

Table 4.5: Estimated Marginal Means for Participation Motivation

	Estimates							
Measure : MEASURE_1								
			95% Confide	ence Interval				
Motivation	Mean	Std. Error	Lower Bound	Upper Bound				
1Scholarship	2.353	.040	2.275	2.430				
2Exposure	2.498	.035	2.428	2.567				
3Fame	2.250	.042	2.168	2.332				
4Money	1.998	.043	1.913	2.082				
5Travel	2.353	.040	2.274	2.431				
6Trophies	1.275	.022	1.231	1.319				

When mean values were adjusted for all the other variables such as age grade, race and ability, *P* value for exposure opportunities remained the highest (2.478), while *P* values for scholarship was 2.079; fame, 2.141, money, 1.989, travel, 2.300; and trophies, 1.355. This supports the hypothesis that exposure opportunities are the most important

extrinsic rewards that influence participation motivation in young soccer players. See table 4.6

Table 4.6: Estimated Marginal Means Adjusted for Age, Grade, Participation and Ability

Estimates								
ASURE_1								
		95% Confide	nce Interval					
Mean	Std. Error	Lower Bound	Upper Bound					
2.079 ^{a,b}	.083	1.917	2.242					
2.478 ^{a,b}	.078	2.325	2.630					
2.141 ^{a,b}	.092	1.961	2.322					
1.989 ^{a,b}	.097	1.799	2.178					
2.300 ^{a,b}	.088	2.127	2.472					
1.355 ^{a,b}	.049	1.257	1.452					
	Mean 2.079 ^{a,b} 2.478 ^{a,b} 2.141 ^{a,b} 1.989 ^{a,b} 2.300 ^{a,b}	Mean Std. Error 2.079 ^{a,b} .083 2.478 ^{a,b} .078 2.141 ^{a,b} .092 1.989 ^{a,b} .097 2.300 ^{a,b} .088	Mean Std. Error Lower Bound 2.079 ^{a,b} .083 1.917 2.478 ^{a,b} .078 2.325 2.141 ^{a,b} .092 1.961 1.989 ^{a,b} .097 1.799 2.300 ^{a,b} .088 2.127					

a. Covariates appearing in the model are evaluated at the following values: Age = 3.448, Grade = 9.385.

ANOVA

One-way ANOVAs were used to test the effect of ability and race on each participation motivation variable. This was achieved by using descriptive statistics to calculating the means and standard deviations for each ability level and for each participant according to race shown in table 4.8. For ability there are some significant differences looking at the *P*-values as illustrated in table 4.7.

b. Based on modified population marginal mean.

Table 4.7: One Way ANOVA by Ability

		ANOVA				
	·	Sum of	df	Mean	F	Sig.
		Squares		Square		J
Scholarships	Between	6.426	2	3.213	5.252	.006
	Groups					
	Within	242.871	397	.612		
	Groups					
	Total	249.298	399			
ExposureOpportuni	Between	1.398	2	.699	1.398	.248
ties	Groups					
	Within	198.599	397	.500		
	Groups					
	Total	199.998	399			
Fame	Between	4.109	2	2.055	3.011	.050
	Groups					
	Within	270.891	397	.682		
	Groups					
	Total	275.000	399			<u>-</u>
Money	Between	1.375	2	.687	.923	.398
-	Groups					
	Within	295.623	397	.745		
	Groups					
	Total	296.998	399			
Trophies	Between	.955	2	.477	2.405	.092
	Groups					
	Within	78.795	397	.198		
	Groups					
	Total	79.750	399			
Travel_re	Between	4.514	2	2.257	3.573	.029
_	Groups					
	Within	250.784	397	.632		
	Groups					
	Total	255.297	399			
Age	Between	1.758	2	.879	.683	.506
_	Groups					
	Within	510.940	397	1.287		
	Groups					
	Total	512.697	399			
Grade	Between	.603	2	.302	.096	.908
	Groups					
	Within	1244.107	397	3.134		
	Groups					
	Total	1244.710	399			

Hence, P value less than .05 means that the variable is statistically significant indicating that there is a significant effect of ability on that variable. For example, looking at the above table, the P-value for scholarship (0.006) indicates that scholarship is significantly related to ability. Therefore ability has a significant effect on scholarship (0.006), fame (0.50) and travel (0.29).

Post hoc tests on multiple comparisons were also conducted to compare all three ability levels on each variable. That is, for scholarship, beginners were compared to intermediate and advance. The *P*-value for beginners and intermediate was .006, beginners and advance 0.556. Intermediate was compared with beginners and advance. The *P* value for intermediate /beginners was 0.006; and intermediate/advanced equaled 0.056. When advance was compared with beginners and intermediate, *P* value for advance/beginners was .556, and advance/intermediate 0.050. Multiple comparisons were conducted for each variable across the board to see the significance of each ability level on the others as illustrated in table 4.7. Ability had a significant effect on scholarship, fame, and travel with *P* values of .006, .050, and .029 respectively.

One-way ANOVA for the effect of race and also showed some significant differences looking at the P values as shown in table 4.8 below.

Table 4.8: One Way ANOVA by Participation

		ANOVA				
		Sum of Squares	df	Mean Square	F	Sig.
Scholarships	Between Groups	26.457	4	6.614	11.724	.000
	Within Groups	222.841	395	.564		
	Total	249.297	399			
ExposureOpportunities	Between Groups	7.012	4	1.753	3.588	.007
	Within Groups	192.986	395	.489		
	Total	199.997	399			
Fame	Between Groups	8.393	4	2.098	3.109	.015
	Within Groups	266.607	395	.675		
	Total	275.000	399			
Money	Between Groups	3.954	4	.989	1.333	.257
	Within Groups	293.043	395	.742		
	Total	296.998	399			
Trophies	Between Groups	1.006	4	.251	1.261	.285
	Within Groups	78.744	395	.199		
Property and the second	Total	79.750	399			
Travel_re	Between Groups	5.499	4	1.375	2.174	.071
	Within Groups	249.799	395	.632		
	Total	255.297	399			
Age	Between Groups	26.773	4	6.693	5.441	.000
	Within Groups	485.924	395	1.230		
	Total	512.697	399			
Grade	Between Groups	41.825	4	10.456	3.434	.009
	Within Groups	1202.885	395	3.045		
	Total	1244.710	399			

The mean difference is significant below the 0.05 level. *P* values for race and scholarship = .000, exposure opportunities= .007, fame= .015, money=.257, trophies= .285, travel=.071, age=.000, and grade = .009. This indicates that race had a significant effect on all variables except for money, trophies and travel.

Post hoc multiple comparisons figures compared all races with each variable. With this test, each race was compared to all other participants to see the level of significance for each variable. For example Caucasians were compared to Hispanics, Black, Asians and Indians to see the effect on scholarship, exposure opportunities, fame, travel, trophies and money. When Caucasians were compared to Hispanics for their effect on scholarships, the level of significance was .210. Caucasians/blacks: P value=0.001, Caucasian/Asians: P value=.000, Caucasians/Indians; P value=.96. These computations were conducted for each variable for participants all across the board. Results showed that race had a significant effect on scholarships, exposure opportunities, and fame, with P values of 0.000, .007, and .015 respectively.

Multivariate Regressions

Multivariate regressions were conducted using ability to see the degree to which variables were associated with ability. One-way ANOVAs were used to test the effect of ability on participation motivation. Using descriptive statistics illustrated in table 4.9, ability had a significant effect on scholarship, fame, and travel with P value .002. This means that beginners were less likely to be motivated by scholarships, fame, and travel compared to intermediate or advanced players. I also found that, P value .007 shows that players who were more motivated by scholarship, fame and travel tended to have higher levels of ability, and stayed the same even after adjusting for the effects of grade and age.

Table 4.9: Regression Analysis

Descriptive Statistics						
Mean Std. Deviation N						
Scholarships	2.353	.7904	400			
ExposureOpportunities	2.498	.7080	400			
Fame	2.250	.8302	400			
Money	1.997	.8628	400			
Travel_re	2.352	.7999	400			
Trophies	1.275	.4471	400			

Table 4.9 shows the highest mean values ascribed for all items in the construct before adjusting for age, grade, and ability. The descriptive statistics were used to calculate the analysis of variance for all variables.

ANOVA ^c									
Model		Sum of Df Squares		Mean Square	F	Sig.			
1	Regression	1.885	6	.314	3.503	.002ª			
	Residual	35.247	393	.090					
	Total	37.132	399						
2	Regression	1.941	8	.243	2.696	.007 ^b			
	Residual	35.191	391	.090					
	Total	37.132	399						

a. Predictors: (Constant), Travel_re, Money, Scholarships, Trophies, ExposureOpportunities, Fame

b. Predictors: (Constant), Travel_re, Money, Scholarships, Trophies, ExposureOpportunities, Fame, Age, Grade

c. Dependent Variable: Ability

Figure 4.10 below further explains regressions for ability levels in association with other variables. Looking at the chart, scholarship bar show that there were more players with intermediate ability than advanced and beginners. The same goes with

exposure opportunities except that beginners were more represented than advance leveled players. For fame, money, trophies and travel, advance leveled players were more represented, followed by intermediate and beginners. This reinforces the fact that beginners were less likely to be motivated by scholarships, fame, and travel compared to intermediate or advanced players.

Ability
Begnner
Intermedate
Advanced

2.0

Scholarships

Error Bars: 95% CI

Figure 4.10: Multivariate regressions according to ability levels

CHAPTER IV

CONCLUSIONS, DISCUSSION AND RECOMMENDATIONS

Conclusions

In the greatest extent, results from the surveys were consistent with the problem statement, literature review and findings. The online survey served as some sort of randomization as it helped sample participants, making sure that the study targeted the desired population. It also substantiates the findings of the claim that young soccer players tend to skew towards programs that offer extrinsic reward opportunities with figures showing that 800 out 1000 participants favored project Omega (competition). The literature review presented previous research and theories that are consistent with findings. However, there were too many contractor studies adding to the fact that a wide majority of scholarly work concentrated on relationships between intrinsic and extrinsic rewards.

As predicted by the null hypothesis, the estimated mean values for all variables adjusted for age, grade, participation and ability show that exposure opportunities, travel, scholarship, fame, money and trophies were the most preferred extrinsic rewards according to importance. Notwithstanding, frequencies for race showed that more Caucasians were represented in the survey than were actually enrolled as compared to Hispanics. However, actual student enrolment population distribution in Clark County School District at the time the survey was conducted (2013) was 33% Caucasians, 44% Hispanics, 13% Blacks, 9% Asians and 1% Indians. It may be due to the fact that not all participants were enrolled as students in the Clark County School District.

Survey reliability was checked and Cronbach's alpha was .11 which too low according to the required standard value of .70. This was blamed on the fact that the survey was modified, data was ordinal and the items did not fall neatly under one scale. Exploratory factor analysis suggested three factors: One with scholarship travel and fame; a second with exposure opportunities and money; and a third with trophies. A set of bivariate nonparametric correlations were conducted to see if the items measured the same construct. Findings revealed a small negative correlation between travel and fame, and a small positive correlation between scholarships and fame. Pairwise comparisons from a multivariate ANOVA showed that exposure opportunities was the strongest motivation for playing soccer, even after adjust for age, participation, ability and grades. After testing the effect of participation on motivation, it was found that race had a significant effect on scholarships, exposure opportunities, and fame. Blacks were more likely to be motivated by scholarship than all of the other participants. Asians were significantly less motivated by scholarship than all of the other participants (except Indians). Hispanics were more motivated by exposure opportunities than Caucasians and Asians. Asians were less motivated by exposure opportunities than Hispanics and Blacks. Indians were less motivated by fame than all of the other participants except for Asians. Asians were less likely to be motivated by fame than Blacks.

However, validity of measurement procedures in this investigation subjected it to some limitations with the reasoning that, if the participants retook the survey, different results could be obtained. In addition, the survey was completed on separate occasions and was not checked for similarities in measurement procedures. However, had all

participants came together and completed the survey at the same time this issue would not be contemplated. Furthermore, there were some measurement issues

Considering the modification of the PMQ items, some participants did not understand the meaning of exposure opportunities. According to the original PMO, it means "wanting to play at higher levels" but operationally, it was translated as scouting into ODP, college, soccer academies and national team selection. There were quandaries concerning the money item where questions came up on the operational definition. Some participants assumed that money constituted game incentives such as match bonuses or pay to play stipends. The research coordinator, however, operationally defined money to include game bonuses, pay to play stipends, employment contracts, and endorsements. Furam-Mandic, G., Kondric, M., Tusak, M. & Kondric, L. (2010), in their study on motivations mentioned equipment, which is also an important extrinsic reward item that was not included in the modified PMQ. The analysis of response frequency to particular levels on the Likert scale, as well as the average results and standard deviations of the questionnaire items, supported the hypothesis that, among the extrinsic motives for engaging in soccer, the highest mean values were ascribed to exposure opportunities as the main predictive index of extrinsic rewards in participation motivation as seen in table 4.6 above. Furthermore, results from the online survey reinforce the claim that young soccer players tend to skew towards programs that provide more extrinsic rewards opportunities.

Discussion

Using the PMQ, this study found that exposure opportunities constituted the most important extrinsic reward item that affected young male soccer players' participation motivation followed by travel, scholarship, fame, money and trophies.

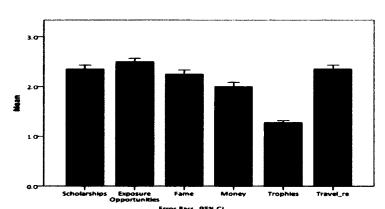


Figure 5.1: G Graph Showing Extrinsic Rewards According to Importance

It was also discovered from the online survey that male players between the ages of 14-18 preferred soccer programs that provided more extrinsic reward opportunities. Deci, L., Koestner, R., & Ryan, M, (1999), Ryan, E. L., & Deci, R. M. (2000,) including many other researchers focus on the effects extrinsic rewards on intrinsic motivation. However, results suggest important differences in the participation motivation literature, creating the need for more research beyond the youth population. According to Topley (2010, participation motivation of young male soccer players can become more extrinsic as they grow older. On the other hand, Hatch, S., Thomsen, D., Waldron, J (2013), found that extrinsic rewards do not guarantee intrinsic motivation.

Notwithstanding, this research sees extrinsic rewards as reinforcement, which can be included into programs in address a myriad issues. Firstly, providing extrinsic reward opportunities can enhance and sustain participation rates. This is because the need for exposure becomes quintessential for continuous participation. Secondly, extrinsic rewards opportunities may encourage commitment in sports. Garcia-Mas (2010) found a clear pattern of the influence of motivation in sport enjoyment and commitment by outlining the positive contributions of intrinsic and extrinsic motivation to enjoyment and commitment. He posits that extrinsic motivation has higher contribution to enjoyment whereas intrinsic motivation contributes to commitment. However, these motivations can be used interchangeably to enhance sports commitment in the sense that enjoyment leads to commitment and vice versa.

Finally, the rewards especially exposure opportunities and money dictate the essence of participation and create a clear career path to success for young athletes. Exposure opportunities are often accompanied by marketing opportunities as well selection into clubs and academies. Young players are attracted to these benefits as a guarantee of career and proof of success in life. This success-oriented sports environment is maintained by fans, parents, and coaches and glamorized by the media. In addition, the careers and biographies of successful soccer icons encourage adolescent players to see success in form of rewards. For example, top soccer athletes such as David Beckham, Samuel Etoo, Lionel Messi and Cristiano Ronaldo who started from humble beginnings to end up as multi-millionaires by passing through sports programs at prestigious soccer academies that helped defined a clear career path for their success. For teenage players, soccer academies constitute an incentive value of success in life and career and would prefer participating in programs that provide similar advantages.

Recommendations

In sum, findings from this study can be used by researchers and sports marketers to look further into the value of extrinsic rewards on participation motivation. More so, it is necessary for academy managers and program directors to know when and how to optimally utilize this form of motivation to meet the needs of their clients. It is true that extrinsic rewards do not guarantee intrinsic motivation according to Hatch, S., Thomsen, D., Waldron, J (2013), but according to this study, the effect is significant. Thus, the conclusion calls for further research on how to systematically apply extrinsic rewards to improve overall motivation in sports.

Furthermore, sports involvement has become achievement-oriented with money and clout attached to it. This trend has been underscored by researchers who focus more on intrinsic reasons to justify participation motivation. In reality, extrinsic rewards have a very strong psychological effect of young soccer players' drive as they tend to seek success down these avenues. In substance, this study maintains that, besides intrinsic motives, marketing forces such as money, fame, travel, trophies, scholarships and exposure opportunities also dictate young male soccer players' decision to engage in soccer. Examining the extrinsic motives for participation gives researchers and sport marketers insight when developing soccer programs. In response, they should consider exploring the extrinsic motivating factors and systematically balance them up with intrinsic components to design programs that are congruent with the trends and meet up with the expectations and values of young soccer players.

REFERENCES

- Anderman, L., & Anderman, E. (1999). Social predictors of changes in children's achievement goal orientations. *Contemporary Educational Psychology*, 24 (1), 21–37.
- Budenhausen, K (2013) Tiger Woods is back on top of the world's highest-paid athletes.

 Forbes. Retrieved March 21, 2014 from

 http://www.forbes.com/pictures/mli45mmlg/98-brandon-roy-5/
- Carpenter, P. & Scanlan, T. (1998). Changes Over Time in the Determinants of Sport

 Commitment. Pediatric Exercise Science, 10, 356-365. Retrieved February 13,

 2014 from

 http://journals.humankinetics.com/AcuCustom/Sitename/Documents/DocumentItem/12481.pdf
- Carr, S. (2006). An examination of multiple goals in children's physical education:

 Motivational effects of goal profiles and the role of perceived climate in multiple
 goal development. *Journal of Sports Sciences*, 24 (3), 281–297.
- Chi, L. (2004). Achievement goal theory. Sport psychology: Theory, applications, and issues (2nd ed.), Milton, Australia: Wiley. PP. 152-174
- Clark County School District Student Data Services Report (2013).

 http://ccsd.net/district/open-book/pdf/fast-facts.pdf
- Conroy, E., Elliot, J., & Hofer, M. (2003). A 2 X 2 achievement goals questionnaire for sport: Evidence for factorial invariance, temporal stability, and external validity.

 *Journal of Sport & Exercise Psychology, 25 (4), 456–476.

- Conroy, E., Kaye, P., & Coatsworth, D. (2006). Coaching climates and the destructive effects of mastery-avoidance achievement goals on situational motivation.

 Journal of Sport & Exercise Psychology, 28 (1), 69–92.
- Csikszentmihalyi, M., & Larson, W. (1984). Being adolescent. New York: Basic Books.
- Cumming, P., Smith, E., Smoll, L., Standage, M., & Grossbard, R. (2008). Development and validation of the achievement goal scale for youth sports. *Psychology of Sport and Exercise*, 9 (5), 686–703.
- Cumming, P., Smoll, L., Smith, E., & Grossbard, R. (2007). Is winning everything? The relative contributions of motivational climate and won-lost percentage in youth sports. *Journal of Applied Sport Psychology*, 19 (3), 322–336.
- Deci, L., Koestner, R., & Ryan, M (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. *Psychological Bulletin*, 125(6), 627-668
- Duda, L. (1989). Relationship between task and ego orientation and the perceived purpose of sport among high school athletes. *Journal of Sport & Exercise Psychology*, 11 (3), 318–335.
- Duda, L., & Whitehead, J. (1998). Measurement of goal perspectives in the physical domain. Advances in sport and exercise psychology measurement. Morgantown,
 WV: Fitness Information Technology. pp. 21–48.
- Dwyer, J (1992). Internal structure of Participation Motivation Questionnaire completed by undergraduates. *Psychological Reports*, 70, 283-290.
- Elliot, J., & McGregor, A. (2001). A 2 X 2 achievement goal framework. *Journal of Personality and Social Psychology*, 80 (3), 501-519.

- Ewing, E., & Seefeldt, V. (2002). Patterns of participation in American agencysponsored youth sports. Dubuque, IA: Kendall/Hunt.
- Frankl, D. (2007). Cash for goals in youth soccer: Adults gone wild. California State

 University, Los Angeles. Retrieved May 6, 2014 from

 http://www.kidsfirstsoccer.com/PDF/Youth-Soccer-Cash-4-Goals-1-7-2010.pdf
- Fry, D., & Duda, L. (1997). A developmental examination of children's understanding of effort and ability in the physical and academic domains. *Research Quarterly for Exercise and Sport*, 68 (4), 331–344.
- Furam-Mandic, G., Kondric, M., Tusak, M. & Kondric Lija. (2010). Sports students' motivation for participating in table tennis. *International Journal of Table Tennis Sciences*, 6, 44-47.
- Gagne', M., & Deci, E. L. (2005). Self-determination theory and work motivation.

 Journal of Organizational Behavior, 26, 331–362
- Gill, D., Gross, B., & Huddleston, S. (1983). Participation motivation in youth sports.

 International Journal of Sport Psychology 14, 1-14
- Gill, D & Williams, L. (2008). Psychological dynamics of sport and exercise, 3rd ed.

 Champagne, IL: Human Kinetics. P 133
- Grolnick, W. (2003). *The psychology of parental control*. New York, NY: Laurence Erlbaum Associate Inc. P 134-137
- Harackiewicz, J., Barron, K., Pintrich, P., Elliot, A., & Thrash, T. (2002). Revision of achievement goal theory: Necessary and illuminating. *Journal of Educational Psychology*, 94 (3), 638–645.

- Harwood, C., & Swain, A. (2002). The development and activation of achievement goals within tennis: II. A player, parent, and coach intervention. *The Sport Psychologist*, 16 (2), 111–137.
- Hatch, S., Thomsen, D., Waldron, J (2013). Extrinsic Rewards and motivation. University of Northern Iowa, Cedar Falls, IA

 http://www.appliedsportpsych.org/resource-center/resources-for-coaches/extrinsic-rewards-and-motivation/
- Heyman, D., Gee, L., & Giles, W. (2003). Preschool children's reasoning about ability.

 Child Development, 74 (2), 516-534.
- Jones, G., Mackay, S. & Peters, D. (2006). Participation motivation in martial artists in the west midlands of England. *Journal of Sports Science and Medicine*, 5, 28-34
- Kaplan, A. & Maehr, L. (2007). The contributions and prospects of goal orientation theory. *Educational Psychology Review*, 19, 141–184.
- Kavussanu, M., & Roberts, C. (1996). Motivation in physical activity contexts: The relationship of perceived motivational climate to intrinsic motivation and self-efficacy. *Journal of Sport & Exercise Psychology*, 18 (3), 264–280.
- Larson, W. (2000). Toward a psychology of positive youth development. *The American Psychologist*, 55(1), 170–183
- Medic, N., Mack, D., Wilson, P & Starkes, J. (2007). The effects of athletic scholarship on motivation. *Journal of Sport Behavior*, 30 (2), 292-305
- Mladenovic, M., & Marjanovic, A. (2011). Some differences in sport motivation of young football players from Russia, Serbia and Montenegro. *Sportlogia*, 7(2), 246-260.

- Morgan, K., Sproule, J., Weigand, D., & Carpenter, P. (2005). A computer-based observational assessment of the teaching behaviours that influence motivational climate in physical education. *Physical Education and Sport Psychology*, 10 (1), 83-105.
- Motiv, E. (2009). 33:173–183 123 sport questionnaire-2 in a sample of female athletes. *Journal of Sports Sciences*, 18, 275–290.
- Mullin, B., Hardy, S. & Sutton, W. (2007). Sport Marketing. 3rd ed. Chelsea, MI: Sheridan Books, P 246.
- Ng, R. (2011). Understanding sport participation motivation and barriers in adolescent 11-17: An introduction of rowing activity in schools. *Asian Journal of Physical Education & Recreation*, 17(2), 66-74. Retrieved October 15, 2013 from http://proxy.ussa.edu:2063/ehost/pdfviewer/pdfviewer/sid=85a15c96-107c-421a-8fe6-d548b3fe8042%40sessionmgr114&vid=4&hid=122
- Nicholls, G. (1978). The development of the concepts of effort and ability, perception of academic attainment, and the understanding that difficulty tasks require more ability. *Child Development*, 49(3), 800–814.
- Nicholls, G., & Miller, T. (1983). The differentiation of concepts of difficulty and ability.

 Child Development, 54 (4), 951–959.
- Nunnaly, J. (1978). Psychometric theory. New York, NY: McGraw-Hill
- Ommundsen, Y., & Pedersen, H. (1999). The role of achievement goal orientations and perceived ability upon somatic and cognitive indices of sport competition trait anxiety: A study of young athletes. *Scandinavian Journal of Medicine and Science in Sports*, 9(6), 333–343.

- Papaioannou, A., Marsh, H. W., & Theodorakis, Y. (2004). A multilevel approach to motivational climate in physical education and sport settings: An individual or a group level construct? *Journal of Sport & Exercise Psychology*, 26(1), 90–118.
- Pintrich, P. R. (2000). Multiple goals, multiple pathways: The role of goal orientation in learning and achievement. *Journal of Educational Psychology*, 92 (3), 544–555.
- Reel, S (2009). Examining Sport Commitment and Intentions to Participate in Intramural Sports: Application of the Sport Commitment Model and the Theory of Planned Behaviour in a Campus Recreational Sport Setting. Retrieved March 13, 2014 from
 - https://dr.library.brocku.ca/bitstream/handle/10464/2855/Brock_Jess_Sarah_2009.pdf?sequence=1
- Roberts, C., Treasure, C., & Balague, G. (1998). Achievement goals in sport: The development and validation of the perception of success questionnaire. *Journal of Sports Sciences*, 16(4), 337–347.
- Ryan, E. L., & Deci, R. M. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. *The American Psychologist*, 55 (1), 68–78.
- Seifriz, J., Duda, L., & Chi, L. (1992). The relationship of perceived motivational climate to intrinsic motivation and beliefs about success in basketball. *Journal of Sport & Exercise Psychology*, 14, 375–391.
- Singer, D., & Willett, B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. New York: Oxford University Press.

- Smith, E., Cumming, P., & Smoll, L. (2008). Development and validation of the Motivational Climate Scale for Youth Sports. *Journal of Applied Sport Psychology*, 20 (1), 116–136.
- Smith, E., Smoll, L., & Cumming, S. P. (2007). Effects of a motivational climate intervention for coaches on young athletes' sport performance anxiety. *Journal of Sport & Exercise Psychology*, 29(1), 39-59.
- Smith, E., Smoll, L., Cumming, P., & Grossbard, R. (2006). Measurement of multidimensional sport performance anxiety in children and adults: The Sport Anxiety Scale-2. *Journal of Sport & Exercise Psychology*, 28, 479-501.
- Solomon, A. & Boone, J. (1993). The impact of student goal orientation in physical education classes. *Research Quarterly for Exercise and Sport*, 64(4), 418–424.
- Spray, M. (2000). Predicting participation in non-compulsory physical education: Do goal perspectives matter? *Perceptual and Motor Skills*, 90 (3), 1207–1215.
- Tenenbaum, G. & Eklund, R (2007). *Handbook of sport psychology* (3rd ed). Hoboken, NJ: Wiley. PP.3-30
- Steinberg, G., Grieve, G., & Glass, B. (2001). Achievement goals across the lifespan.

 Journal of Sport Behavior, 24 (3), 298-306.

- Vealey, S., & Campbell, J. L. (1988). Achievement goals of adolescent figure skaters:

 Impact on self-confidence, anxiety, and performance. *Journal of Adolescent Research*, 3 (2), 227–243.
- Walling, D., & Duda, L. (1995). Goals and their associations to beliefs about success in and perceptions of the purpose of physical education. *Journal of Teaching in Physical Education*, 14 (2), 140–156.
- White, A., & Zellner, S. (1996). The relationship between goal orientation, beliefs about the causes of sport success, and trait anxiety among high school, intercollegiate, and recreational sport participants. *The Sport Psychologist*, 10 (1), 58–72

APPENDICES

Appendix A: Written Consent

Dear Practitioner or Administrator:

I am a graduate student seeking a doctoral degree from the United States Sports Academy (USSA). My specific area of concentration is in Sports Coaching.

The purpose of this electronic survey is to gather information about the demographic characteristics of medical offices that provide sports medicine services, as well as information about the informatics needs of such practices. Practices throughout the United States have been solicited for participation. The survey and associated research have been approved by the Institutional Review Board of the USSA.

Your practice has been selected to participate in a two part, test/retest survey that assesses the reliability of the instrument. 1 to 2 weeks after completing the first survey, if you oblige, we will e-mail a link to a second survey.

The survey will take approximately 15 minutes to complete. All of your responses will be kept confidential. Electronic submission of this survey indicates voluntary consent to participate. If someone else in your organization is better suited to respond, please forward accordingly. Additionally, if you know others who you believe could contribute valuable information to this effort, please do not hesitate to forward this survey link:

Appendix B: Practice Questionnaire (Modified PMQ)

Instructions: Participation Motivation Questionnaire (PMQ): The PMQ is a useful psychometric instrument to measure individual's reasons or motivations for participating in sporting activities. It was modified in this context to measure only extrinsic motivation by extracting all the intrinsic motivation items such as fun, challenge etc. and replaced with six variables (fame, travel, Trophies, Scholarship, exposure opportunities and money). The answer will help the researcher to know the most and least important factors that motivate young soccer players to participate in the soccer. The result will be used to help design programs that suit players' needs. To complete, please ask them to circle the answer they believe best applies to them.

Check One: 1- Very Important 2- Somewhat Important and 3- Not at all Important

	Gener	al Information	
Name:	Age: Abil	ity Level: Da	ate:
School:	Grade	Level:	
Items (Reasons)	Very Important (3)	Somewhat Important (2)	Not at all Important (1)
Fame			
Travel			
Trophies			
Scholarship			
Exposure			
Opportunities			
Money	****		

Appendix C: Thank You Note

Respondents, thank you for taking the time to respond to this survey. Your participation is greatly appreciated and the information will serve only the intended purpose. Sincerely,

Jude Niba

Janiba@students.ussa.edu

THE UNITED STATES SPORTS ACADEMY ENVIRONMENTAL HEALTH AND SAFETY COMMITTEE INSTITUTIONAL REVIEW BOARD HUMAN SUBJECTS/PARTICIPANTS RESEARCH

APPLICATION FOR IRB AS HUMAN SUBJECTS/PARTICIPATION RESEARCH

-	Upda	ated 11/2010	
Part A. Contact Inform	ation, agreements and	signatures	
Date: June 23 2014			
Title of Study:			
Name/Credentials of P	rincipal Investigator:	Print	
Principal Investigator	Signature:		Date:
Address:			
Phone:	Cell:		
Fax: Email:			
Name of Faculty Advis	sor of Dissertation/The	sis Committee Chair:	
Institution:			
Department:	Position:		
Tel: Fax:			
Email:			
List all project personn subjects/participants or			se who has contact with
Name: Name:		Email:	

Part B. Checklist of items to include with your submission

Applications must provide all information requested, i.e., complete answers must be contained in the application, along with all signatures. Attach all referenced documents and support material with application.

Include the following items with your submission where applicable.

Check all relevant items below and include one copy of al checked items.

Check Item

- 1. This application
- 2. Application must have original PI signature
- 3. Consent and assent forms, fact or information sheets; include phone and verbal consent scripts. HIPAA authorization addendum to consent form.
- 4. All recruitment materials including scripts, flyers, and advertising, letters, emails, focus group, scripts used to guide phone or in-person interviews etc.
- 5. Complete copy of Methods with complete copy of List of Equipment utilized. Questionnaire & Survey
- 6. Document of reviews from any other committees (e.g. Research Dissertation Committee of Thesis Committee or local review committees in Academic Affairs).
- 7. Complete copy of Research Design/Dissertation/Thesis Proposal. Chapters I, II, and III with all Appendices as it is applicable.
- 8. Copy of Approval Sheet with Committee Signature & Comment

NOTE: Applications will be returned if these instructions are not followed.

Primary Investigator: I will personally conduct or supervise this research study. I will ensure that this research study is performed in compliance with all applicable laws, regulations and institutions/University policies regarding human subject's research. I will obtain IRB approval before making any changes or additions to this project. I will inform the IRB of any other changes in the information provided in this application. I will provide progress report to the IRB at least annually or as requested. I will report promptly to the IRB all unanticipated problems or serious adverse events involving risks to human subjects. I will follow the IRB approved consent process for human subjects. I will ensure that all collaborators, students and employees assisting in this research are informed about these obligations. All information given in this form is accurate and complete.

Principal Investigator's Sign	ature
-------------------------------	-------

-	•		4	
- 18		a	•	_

Appendix E: Participation Motivation Questionnaire (PMQ)

REASONS	Very	Somewhat	Not at all
I want to improve my skills	Important 1	Important 2	Important 3
I want to be with my friends	1	2	3
I like to win	1	2	3
I want to get rid of energy	1	2	3
I like to travel	1	2	3
I want to stay in shape	1	2	3
I like the excitement	1	2	3
I like the teamwork	1	2	3
My parents or close friends want me to play	1	2	3
I want to learn new skills	1	2	3
I like to meet new friends	1	2	3
I like to do something I'm good at	1	2	3
I want to release tension	1	2	3
I like the rewards	1	2	3
I like to get exercise	1	2	3
I like to have something to do	1	2	3
I like the action	1	2	3
I like the team spirit	1	2	3
i like to get out of the house	1	2	3
I like to compete	1	2	3
I like to feel important	1	2	3
I like being on a team	1	2	3
I want to go on to a higher level	1	2	3
I want to be physically fit	1	2	3
I want to be popular	1	2	3
I like the challenge	1	2	3
I like the coaches or instructors	1	2	3
I want to gain status or recognition	1	2	3
I like to have fun	1	2	3
I like to use the equipment or facilities	1	2	3

(Adapted from Gill, D.L., Gross, J.B., and Huddleston, S. 1983)

Appendix F: CYI Online Registration Form

Project Alpha

Community Youth Inter Alia Youth Soccer 2013

www.cinteralia.org/forms

Project Alpha

Recreational Participants Only

NB* Please read carefully before completing form

This registration is for young players between the ages of 14 and 18 years who want to join the program. Activities are limited to playing for fun, challenge, satisfaction, mastery, fitness, friendship. Parents are allowed to assist with completion but must allow the player to choose preferred program. Players must select one program only

Project Omega Competitive Participants Only

This registration is for participants between the ages of 14 and 18 years who want to join the program. Activities include but not limited to travel, scouting opportunities (agency representation), scholarships, bonuses, stipends and contracts, endorsements, tournaments, and sundry.

Venue: Desert Breeze Community Center 8275 Spring Mountain Rd., Las Vegas, NV 89117 Spring Mountain & Durango MAP (702) 455-8334, CCParks@ClarkCountyNV.gov . Program schedule will be sent through email.

Please check one

Project Omega

Select			Select	
	C		C	
	Registrati	ion Information		
Name: First:	Middle:	Last:		Address
	Apt/Suite:	City:		Sta
e: Zip: Zip:		Email		
Birth: (Day/Month/Year)	Age:			
Health Physical Required				
Doctor's Name:		Phone #:	Health Insura	nce
Agency:				

ARBITRATION: Any dispute concerning the interpretation of this agreement or arising from this program and report, except one for fee payment, shall be resolved informally between the parties or by arbitration conducted in accordance with the rules of a recognized arbitration association except that the parties shall select an arbitrator who is family with this industry. The arbitrator shall conduct summary judgment motions and enforce full discovery rights as a court would as provided in civil proceedings by legal code.

CONFIDENTIAL REPORT: Reports are solely for member's own information, and no third party shall benefit directly or indirectly from the information except authorized by

CONFIDENTIAL REPORT: Reports are solely for member or quartian.

ATTORNEYS FEES: The prevailing party in any dispute arising out of this agreement, the member shall be awarded all attorneys' fees, arbitrator fees and other costs.

SEVERABILITY: Members agree that should a Court of Competence Jurisdiction determine and declare that any portion of this agreement is void, voidable or unenforceable, the remaining provisions and portions shall remain in full force and effect.

DISPUTE: Members understands and agrees that any claim for injuries, shall be borne by the member who shall be responsible for their own health insurance coverage.

Members further agrees that, with the exception of emergency conditions, all injuries and complains should be reported within 24 hours but compensation or health care shall not be borne by the organization.

SCOPE OF SERVICE: The scope of this service and report is limited to training, counseling and managing as stated above. Any additional service shall be at members own

costs and membership can be cancelled at any time.

The organization's employee's liability for mistakes or omissions based on training, counseling and management reports is limited to a refund of the fee paid for entire service for that month. This liability limitation is binding on members and member's spouses, heirs, principals, assigns and anyone else who may otherwise claim through member. However, CYI is not compelled to retain memberships and shall turn down or cancel membership as deemed necessary. Members shall assume the risk of all losses greater than the fee paid for the programs. This agreement is binding under the Nevada State Laws.

By signing below, you acknowledge that you have read and agreed to the scope of this service and agreed to all the terms and conditions of this contract. You also agree to pay the fees listed above.

Submit Form Reset Form

TABLES

TABLE 2.1: DESCRIPTIVE STATISTICS FOR PARTICIPATION MOTIVATION ITEMS IN THE MODIFIED PMQ

	Desc	riptive		
			Statistic	Std. Error
Scholarships	Mean		2.353	.0395
_	95% Confidence	Lower	2.275	
	Interval for Mean	Bound		
		Upper	2.430	
		Bound		
	5% Trimmed Mean		2.392	
	Median		3.000	
	Variance		.625	
	Std. Deviation		.7904	
	Minimum		1.0	
	Maximum		3.0	
	Range		2.0	
	Interquartile Range		1.0	
	Skewness		715	.122
	Kurtosis		-1.038	.243
ExposureOpportu	nities Mean		2.498	.0354
	95% Confidence	Lower	2.428	
Interval for Mean	Bound			
		Upper Bound	2.567	
	5% Trimmed Mean		2.553	
	Median		3.000	
	Variance		.501	
	Std. Deviation		.7080	
	Minimum	(1.0	
	Maximum		3.0	
	Range		2.0	
	Interquartile Range		1.0	
	Skewness		-1.056	.122
	Kurtosis		253	.243
Fame	Mean		2.250	.0415
	95% Confidence Interval for Mean	Lower Bound	2.168	
		Upper Bound	2.332	
	5% Trimmed Mean		2.278	

	Median		2.500	
	Variance	.689		
	Std. Deviation		.8302	<u> </u>
	Minimum		1.0	
	Maximum		3.0	
	Range	· · · · · · · · · · · · · · · · · · ·	2.0	
	Interquartile Range		1.8	
	Skewness		495	.122
	Kurtosis		-1.374	.243
Money	Mean		1.998	.0431
	95% Confidence	Lower	1.913	
	Interval for Mean	Bound		
		Upper	2.082	· · · · · · · · · · · · · · · · · · ·
		Bound		
	5% Trimmed Mean	1	1.997	
	Median		2.000	
	Variance	.744		
	Std. Deviation	.8628	· · · · · · · · · · · · · · · · · · ·	
	Minimum	1.0		
	Maximum	3.0		
	Range	2.0		
	Interquartile Range	2.0	·····	
	Skewness	.005	.122	
	Kurtosis	-1.659	.243	
Trophies	Mean		1.275	.0224
riopines	95% Confidence	Lower	1.231	
	Interval for Mean	Bound	1.231	
		Upper	1.319	
		Bound	1.515	
	5% Trimmed Mean		1.250	······································
	Median	1.000	_	
	Variance		.200	
	Std. Deviation		.4471	
	Minimum		1.0	
	Maximum		2.0	
	Range		1.0	
	Interquartile Range		1.0	<u> </u>
	Skewness		1.012	.122
	Kurtosis		982	.243
Travel re	Mean		2.353	.0400
	95% Confidence	Lower	2.274	.0100
	Interval for Mean	Bound	2.21	
i .	1111-04 T GA A DA AVIOGIA			
		Upper	2.431	

			<u></u>
	5% Trimmed Mean	2.392	·
	Median	3.000	
	Variance	.640	
	Std. Deviation	.7999	
	Minimum	1.0	
	Maximum	3.0	
	Range	2.0	
	Interquartile Range	1.0	
	Skewness	721	.122
	Kurtosis	-1.065	.243
Grade	Mean	9.385	.0883
	95% Confidence Lov	wer 9.211	
	Interval for Mean Box	und	
	Up	per 9.559	
		und	
	5% Trimmed Mean	9.428	
	Median	10.000	
	Variance	3.120	
	Std. Deviation	1.7662	
	Minimum	6.0	
j	Maximum	12.0	
	Range	6.0	
	Interquartile Range	3.0	
	Skewness	356	.122
	Kurtosis	891	.243
Age	Mean	3.448	.0567
	95% Confidence Lov	wer 3.336	
	Interval for Mean Box	und	
	Up	per 3.559	,,
		und	
	5% Trimmed Mean	3.486	
	Median	3.100	
	Variance	1.285	
	Std. Deviation	1.1336	
	Minimum	1.1	
	Maximum	5.1	
	Range	4.0	
	Interquartile Range	1.0	· · · · · · · · · · · · · · · · · · ·
	Skewness	059	.122
	Kurtosis	762	.243

TABLE 2.2: PARTICIPATION FREQUENCIES AND PERCENTAGES FOR ALL DEPENDENT VARIABLES

Percentiles								
		Percentiles						
		5	10	25	50	75	90	95
Weighted	Scholarships	1.000	1.000	2.000	3.000	3.000	3.000	3.000
Average(Definition	ExposureOpportunities	1.000	1.000	2.000	3.000	3.000	3.000	3.000
1)	Fame	1.000	1.000	1.250	2.500	3.000	3.000	3.000
	Money	1.000	1.000	1.000	2.000	3.000	3.000	3.000
	Trophies	1.000	1.000	1.000	1.000	2.000	2.000	2.000
	Travel_re	1.000	1.000	2.000	3.000	3.000	3.000	3.000
	Grade	6.000	7.000	8.000	10.000	11.000	12.000	12.000
	Age	1.150	2.100	3.100	3.100	4.100	5.100	5.100
Tukey's Hinges	Scholarships			2.000	3.000	3.000		
	ExposureOpportunities			2.000	3.000	3.000		
.	Fame			1.500	2.500	3.000		
	Money			1.000	2.000	3.000		
	Trophies			1.000	1.000	2.000		
	Travel_re			2.000	3.000	3.000		
	Grade			8.000	10.000	11.000		
	Age			3.100	3.100	4.100		

TABLE 4.1: FREQUENCY SHOWING DESCRIPTIVE DATA FOR ABILITY AND PARTICIPANTION

Ability						
		Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Beginner	40	10.0	10.0	10.0	
	Intermediate	321	80.0	80.3	90.3	
	Advanced	39	9.7	9.8	100.0	
	Total	400	99.8	100.0		
Missin	g System	1	.2			
Total	-	401	100.0	Ò		

Race						
		Frequency	Percent	Valid Percent	Cumulative Percent	
	Caucasian	143	35.7	35.8	35.8	
	Hispanics	107	26.7	26.8	62.5	
Valid	Blacks	81	20.2	20.3	82.8	
vand	Asians	58	14.5	14.5	97.3	
	Indians	11	2.7	2.8	100.0	
	Total	400	99.8	100.0		
Missing	System	1	.2			
Total		401	100.0			

TABLE 4.2: INTER-ITEM CORRELATION MATRIX FOR ALL SUBSCALES

Case Processing Summary								
			N		%			
Cases	Vali	d	400		99	.8		
	Excl	udeda	1			.2		
	Tota	1	401		100	0.0		
the pro	cedur	e.			··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··			
		Relial	oility Statis	tics				
Cronb	ach's		ich's Alpha		N of			
Alp			andardized		Items			
	.107			.090		6		

		Item Statistics					
		Mean	Std. Deviation		on	N	
Scholarships		2.353		.7	904	400	
ExposureOpportunities	3	2.498		.7	080	400	
Fame		2.250		.8	302	400	
Money		1.998		.8	628	400	
Trophies		1.275		.4	471	400	
Travel_re	2.353		.7	999	9 400		
	Inter-l	tem Correlation Ma	rix				
	Scholarship	ExposureOpportunition	Fam	Mone	Trophie	Travel_r	
	S	S	e	у	S	e	
Scholarships	1.000	.049	.098	.012	.002	.053	
ExposureOpportunitie s	.049	1.000	007	.059	.018	.035	
Fame	.098	00	1.00	080	030	.120	
Money	.012	.059	080	1.000	011	013	
Trophies	.002	.013	030	011	1.000	061	
Travel re	.053	.03:	.120	013	061	1.000	

Scale Statistics								
Mean	Mean Variance Std. Deviation N of Items							
12.725	3.734	1.9323	6					

TABLE 4.3: ROTATED COMPONENT MATRIX FOR ALL SUBSCALES

u.		Coı	mmunalitie	S							
			Initia	1	Ext	rac	tion				
Scholarship			1.0	000				.462			
ExposureO ₁	pportu	nities	1.0	000				.520			
Fame				000				.534			
			000				.594				
Trophies			1.0	000				.763			
			000				.447				
Extraction l	Metho	d: Princip									
			Total		nce Ex						
				ı	ctractio					Rotation S	•
	In	itial Eige	nvalues	S	quared	_	oadin	gs	S	quared L	oadings
		% of			%0					% of	
			Cumulativ			nc		ulativ		1	Cumulativ
Component				Total				%	Total	4	e %
1	1.212	20.196	20.196	1.21	20.1	96	7	20.196	1.19	19.882	19.882
	1 000	10.100		2	101				3	15.15.	2001
2	1.088	18.129	38.325	1.08 8	18.1	29	•	38.325	1.08	18.134	38.016
3	1.020	17.004	55.329	1.02	17.0	04		55.329	1.03	17.313	55.329
4	.938	15.628	70.957			\dashv					
5	.900								<u> </u>		
6	.843					寸				\	
Extraction l	Metho	d: Princip			nalysi	s.		_			<u> </u>
			mponent M								
					•••	om	pone	ent			
					1		2	3	;		
Scholarship	s				.481		.3:	37 .	341		
Exposure O	pporti	unities					.70	01			
Fame			"		.690		., .				
Money							.60	63	321		
Trophies								Τ.	834		
Travel re					.615						
Extraction l	Metho	d: Princip	oal Compon	ent A	nalysi	s.					
a. 3 compor	nents e	extracted.			· · · · · · · · · · · · · · · · · · ·		<u> </u>				
		Rotated	Componen	t Mat	rixa				T		
		 				mpo	onen	t	٦		
				1	J	2		3			
Scholarship	s			.5	595			·····			
ExposureO	pportu	nities					.674				
				1 .	:02				\neg		

.683

Fame

Money		.706	
Trophies		-	.873
Travel re	.518		418

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 6 iterations.

Component Transformation Matrix								
Component	1	2	3					
1	.947	083	309					
2	.108	.992	.063					
3	.301	093	.949					

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser

Normalization.

TABLE 4.7: ONE WAY ANOVA BY PARTICIPATION AND ABILITY

	4	ANOVA				
		Sum of		Mean		
		Squares	df	Square	F	Sig.
Scholarships	Between	26.457	4	6.614	11.724	
	Groups					
	Within	222.841	395	.564		
	Groups					
	Total	249.297	399			
ExposureOpportu	nitiesBetween	7.012	4	1.753	3.588	.007
ı	Groups					
	Within	192.986	395	.489		
	Groups					
	Total	199.997	399			
Fame	Between	8.393	4	2.098	3.109	.015
	Groups					
	Within	266.607	395	.675		
	Groups					
	Total	275.000	399			
Money	Between	3.954	4	.989	1.333	.257
	Groups					
	Within	293.043	395	.742		
	Groups					
	Total	296.998	399			
Trophies	Between	1.006	4	.251	1.261	.285
	Groups					
	Within	78.744	395	.199		
	Groups					
	Total	79.750				
Travel_re	Between	5.499	4	1.375	2.174	.071
	Groups					
	Within	249.799	395	.632		
	Groups					
	Total	255.297	399			
Age	Between	26.773	4	6.693	5.441	.000
	Groups					
	Within	485.924	395	1.230		
	Groups					
	Total	512.697	399			
Grade	Between	41.825	4	10.456	3.434	.009
	Groups					
	Within	1202.885	395	3.045		
	Groups					

_	 				
- 1	 	1 4 4 4 4 4 4 4 4	امما		 1
- 1	[[Cotal	1 1744 71413	Rool I	: 1	 i
	11 Utai	12.77./10[3	<i>יו וככי</i>		

TABLE 4.8: ONE WAY ANOVA DESCRIPTIVES BY PARTICIPATION, AGE, AND GRADE LEVEL

· · · · · · · · · · · · · · · · · · ·		Multiple (Comparisons				
LSD	· ····································						
			Mean			95% Cor Inte	
			Difference (I-	Std.		Lower	Upper
Dependent Variable	(I) Race	(J) Race	J)	Error		Bound	Bound
Scholarships	Caucasian	Hispanics	.1206	.0960	.210	068	.309
		Blacks	3615*		_	567	156
		Asians	.4778*	.1169			.708
		Indians	.3916	.2350	.096	070	.854
	Hispanics	Caucasian	1206	.0960	.210	309	.068
		Blacks	4821 [*]	.1106	.000	700	265
		Asians	.3572*	.1225	.004	.116	.598
		Indians	.2710	.2378	.255	197	.739
	Blacks	Caucasian	.3615*	.1045	.001	.156	.567
		Hispanics	.4821*	.1106	.000	.265	.700
		Asians	.8393*	.1292	.000	.585	1.093
		Indians	.7531*	.2414	.002	.279	1.228
		Caucasian	4778*	.1169	.000	708	248
		Hispanics	3572 [*]	.1225	.004	598	116
		Blacks	8393*	.1292	.000	-1.093	585
		Indians	0862	.2470	.727	572	.399
	Indians	Caucasian	3916	.2350	.096	854	.070
		Hispanics	2710	.2378	.255	739	.197
		Blacks	7531*	.2414	.002	-1.228	279
		Asians	.0862	.2470	.727	399	.572
ExposureOpportunitie	sCaucasian	Hispanics	2089*	.0893	.020	385	033
		Blacks	1660	.0972	.088	357	.025
		Asians	.1680	.1088	.124	046	.382
		Indians	2098		.338	640	.220
	Hispanics	Caucasian	.2089*	.0893	.020	.033	.385
		Blacks	.0429			159	.245
		Asians	.3769*	.1140	.001	.153	.601
		Indians	0008	.2213	.997	436	.434
	Blacks	Caucasian	.1660				
		Hispanics	0429			245	.159
		Asians	.3340*	.1202			
		Indians	0438				.398
	Asians	Caucasian			-		.046

		Hispanics	3769*	.1140.001	601	153
		Blacks	3340 [*]	.1202.006	570	098
		Indians	3777	.2299.101	830	.074
	Indians	Caucasian	.2098	.2187.338	220	.640
		Hispanics	.0008	.2213.997		
	į.	Blacks	.0438	.2246.846		
		Asians	.3777	.2299.101	074	
Fame	Caucasia	nHispanics	1430	.1050.174		
	:	Blacks	1923	.1142.093		.032
		Asians	.0993	.1279.438		
		Indians	.5664*	.2571.028		1.072
	Hispanic	s Caucasian	.1430	.1050.174		
	1	Blacks	0493	.1210.684		.189
		Asians	.2423		021	.506
	ŀ	Indians	.7094	.2601.007		
	Blacks	Caucasian	.1923			.417
		Hispanics	.0493			
		Asians	.2916	.1413.040		.569
		Indians	.7587*	.2640.004		
	Asians	Caucasian	0993	.1279.438		.152
		Hispanics	2423			
		Blacks	2916*	.1413.040	\	
		Indians	.4671	.2702.085		
	Indians	Caucasian	5664*	.2571.028		
		Hispanics	7094*	.2601.007	-1.221	198
		Blacks	7587*	.2640.004		
		Asians	4671	.2702.085		
Money	Caucasia	nHispanics	2311*	.1101.036		
		Blacks	0292	.1198.808		
		Asians	0909	.1341.498		
		Indians	2727			
	Hispanic	s Caucasian	.2311*	.1101.036		
	_	Blacks	.2019	.1269.112	047	
		Asians	.1402			
		Indians	0416	.2727.879		
	Blacks	Caucasian		.1198.808		
		Hispanics	2019	.1269.112		.047
		Asians	0617			.230
		Indians	2435			
	Asians	Caucasian	.0909			
		Hispanics	1402	.1404.319		.136
		Blacks	.0617	.1482.677	230	.353
	l	DIACKS !				
		Indians	1818			

		Hispanics	.0416	.2727.879	495	.578
		Blacks	.2435			
		Asians	.1818			
Trophies	Causasian		.1616	.0571.444	375	
ropines	Caucasian					
		Blacks	.0028	.0621.965		<u> </u>
		Asians	.0453	.0695.515		
		Indians	2587	.1397.065		
	Hispanics			.0571.444	<u> </u>	
		Blacks	0410	.0658.534		
		Asians	.0016	.0728.982		·
		Indians	3025*	.1414.033		
	Blacks	Caucasian			1	
		Hispanics	.0410	.0658.534	<u> </u>	
		Asians	.0426	.0768.580		
		Indians	2615	.1435.069		
	Asians	Caucasian	0453	.0695.515	182	.091
		Hispanics	0016	.0728.982	145	.142
		Blacks	0426	.0768.580	194	.108
		Indians	3041*	.1468.039	593	015
	Indians	Caucasian		.1397.065	016	.533
		Hispanics	.3025*	.1414.033	.025	.580
		Blacks	.2615	.1435.069	021	.544
		Asians	.3041*	.1468.039	.015	.593
Travel_re	Caucasian	Hispanics	1711	.1016.093	371	.029
		Blacks	3124*	.1106.005	530	095
		Asians	0796	.1238.521	323	
		Indians	0420	.2488.866		
	Hispanics	Caucasian	.1711	.1016.093	029	
	_	Blacks	1413	.1171.228		
		Asians	.0915	.1297.481		
		Indians	.1291	.2518.608		.624
	Blacks	Caucasian		.1106.005		
		Hispanics	.1413		}	
		Asians	.2329			
		Indians	.2705			
		Caucasian	·····	.1238.521	164	
	1	Hispanics	0915		346	
	1	Blacks	2329	.1368.089		
	1	Indians	.0376		<u> </u>	
		Caucasian				
	l l	Hispanics	1291	.2518.608		
		Blacks	2705			
Aga	Carrania	Asians	0376	·····		···
Age	Caucasian	Hispanics	1684	.1418.236	447	.110

		Blacks	5828*	.1542.000	886	280
		Asians	6230 [*]	.1727.000	962	284
		Indians	3706	.3470.286	-1.053	.312
	Hispanics	Caucasian	.1684	.1418.236	110	.447
		Blacks	4143*	.1634.012	735	093
		Asians	4546*	.1809.012	810	099
		Indians	2022	.3512.565	893	.488
	Blacks	Caucasian	.5828*	.1542.000	.280	.886
		Hispanics	.4143*		.093	.735
		Asians	0402	.1908.833	415	.335
		Indians	.2121	.3564.552	489	.913
	Asians	Caucasian	.6230*	.1727.000	.284	.962
		Hispanics	.4546*	.1809.012	.099	.810
		Blacks	.0402	.1908.833	335	.415
		Indians	.2524	.3648.489	465	.969
	Indians	Caucasian	.3706	.3470.286	312	1.053
		Hispanics	.2022	.3512.565	488	.893
		Blacks	2121	.3564.552	913	.489
		Asians	2524	.3648.489	969	.465
Grade	Caucasian	Hispanics	7032 [*]	.2231.002	-1.142	265
		Blacks	6753*	.2427.006	-1.152	198
		Asians	5555 [*]	.2717.042	-1.090	021
		Indians	0210	.5460.969	-1.094	1.052
	Hispanics	Caucasian	.7032*	.2231.002	.265	1.142
		Blacks	.0279	.2570.914	477	.533
		Asians	.1478	.2845.604	412	.707
		Indians	.6822	.5525.218	404	1.769
	Blacks	Caucasian	.6753*	.2427.006	.198	1.152
		Hispanics	0279	.2570.914	533	.477
ĺ		Asians	.1198	.3002.690	470	.710
		Indians	.6543	.5607.244	448	1.757
	Asians	Caucasian		.2717.042	.021	1.090
		Hispanics	1478	.2845.604	707	.412
İ		Blacks	1198	.3002.690	710	.470
		Indians	.5345	.5739.352	594	1.663
	Indians	Caucasian	.0210	.5460.969	-1.052	1.094
		Hispanics	6822	.5525.218	-1.769	.404
		Blacks	6543		-1.757	.448
		Asians	5345		-1.663	.594
*. The mean dif	fference is signific	ant at the	0.05 level.			

TABLE 4.4: NONPARAMETRIC CORRELATIONS

				orrelations						
				ExposureOpport	1	•		Travel		
			hips	unities	me	_	ies	re		Age
	Scholarships	Correla	1.000	.038			.014	.066	.000	
ll's		tion	1		5*					.00
tau_b		Coeffic								9
ŀ		ient				L				
		Sig. (2-	 -	.405	.03	.787	.774	.147	.992	.83
		tailed)			6					8
		N	400		400				400	
	ExposureOpport		.038	1.000	1	.041	.023	.035	.058	1 1
	unities	tion			.00	1				.08
		Coeffic			2					1
		ient								
		Sig. (2-	.405		.97	.364	.634	.441	.174	.06
		tailed)			3				L	6
		N	400		400	_			400	
1	Fame	Correla	.095	002	l .		025	.114*	.050	.04
		tion			00	.066				4
		Coeffic								
		ient			L					
		Sig. (2-	.036	.973		.139	.598	.012	.232	.31
		tailed)	<u>.</u>							2
l		N	400	400	400	400	400	400	400	400
	Money	Correla	.012	.041	-	1.00	011	005	.008	_
		tion			.06	0			1	.04
		Coeffic			6					0
		ient								
		Sig. (2-	.787	.364	.13		.823	.906	.853	.35
		tailed)			9					4
		N	400	400	400	400	400	400	400	400
	Trophies	Correla	.014	.023	-	-	1.000	059	_	_
	_	tion			.02	.011			.079	.05
		Coeffic			5					8
		ient								
		Sig. (2-	.774	.634	.59	.823	•	.214	.072	.20
		tailed)			8					3
		N	400	400	400	400	400	400	400	400
	Travel re	Correla	.066	· · · · · · · · · · · · · · · · · · ·		_	059			.02
	-	tion			4*	.005			.018	
		Coeffic	İ							
		ient								
		Sig. (2-	.147	.441	.01	.906	.214		666	.60

	ta	iled)			2					4
	N		400	400	400	400	400	400	400	400
Gra	tio Co	orrela on oeffic nt	.000	.058	.05	.008	079	018	1.00 0	.16 3**
	Si	ig. (2- iled)	.992	.174	_2	.853				.00
ļ <u>.</u>	N		400	400					400	
Ag	tic Co	orrela on oeffic nt	009	081	.04 4	.040	058	.023	.163	1.0
		g. (2- iled)	.838	.066	.31 2	.354	.203	.604	.000	•
	N		400	400	400	400	400	400	400	400

^{*.} Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

TABLE 2.9: GENERAL LINEAR MODELS

Within-Subjects Factors							
Measure : l	MEASURE_1						
Motivation	Dependent Variable						
1	Scholarships						
2	ExposureOpportunities						
2 3	Fame						
4	Money						
5 6	Travel_re						
6	Trophies						

Multivariate Tests ^b										
Effect		Value	F	Hypothesis df	Error df	Sig.				
Motivation	Pillai's Trace	.765	257.371°	5.000	395.000	.000				
	Wilks' Lambda	.235	257.371 ^a	5.000	395.000	.000				
	Hotelling's Trace	3.258	257.371ª	5.000	395.000	.000				
	Roy's Largest Root	3.258	257.371ª	5.000	395.000	.000				

a. Exact statistic

b. Design: Intercept

Within Subjects Design: Motivation

	Mauchly's Test of Sphericity ^b									
Measure: MEASURE_1										
					Epsilon ^a					
Within Subjects	Mauchly's	Approx. Chi-			Greenhouse-	Huynh-	Lower-			
Effect	\mathbf{w}	Square		Sig.	Geisser	Feldt	bound			
Motivation	.772	102.618	14	.000	.918	.930	.200			

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. Design: Intercept

Within Subjects Design: Motivation

	Tests	of Within-Subjects Eff	fects			
Measure: ME	ASURE_1					
Source		Type III Sum of Squares	df	Mean Square	F	Sig.
Motivation	Sphericity Assumed	398.618	5	79.724	143.540	.000
	Greenhouse- Geisser	398.618	4.592	86.816	143.540	.000
	Huynh-Feldt	398.618	4.652	85.696	143.540	.000

	Lower-bound	398.618	1.000	398.618	143.540	.000
Error(Motivation)	Sphericity Assumed	1108.048	1995	.555		
	Greenhouse- Geisser	1108.048	1832.016	.605		
	Huynh-Feldt	1108.048	1855.965	.597		
	Lower-bound	1108.048	399.000	2.777		

	Te	sts of Within-Subjects Co	ontra	sts						
Measure: MEASURE_1										
Source	Motivation	Type III Sum of Squares	df	Mean Square	F	Sig.				
Motivation	Linear	210.889	1	210.889	477.873	.000				
	Quadratic	65.279	1	65.279	133.671	.000				
	Cubic	25.125	1	25.125	49.195	.000				
	Order 4	84.182	1	84.182	152.431	.000				
	Order 5	13.143	1	13.143	16.755	.000				
Error(Motivation)	Linear	176.082	399	.441						
	Quadratic	194.852	399	.488						
	Cubic	203.780	399	.511						
	Order 4	220.353	399	.552						
	Order 5	312.980	399	.784						

	Tests of Between-Subjects Effects									
Measure: MEASURE_1 Transformed Variable: Average										
Source	Type III Sum of Squares	df	Mean Square	F	Sig.					
Intercept	10795.042	1	10795.042	17347.427	.000					
Error	248.292	399	.622							

TABLE 4.5: ESTIMATED MARGINAL MEANS FOR PARTICIPATION MOTIVATION

	Estimates										
Measure: MEASURE_1											
			95% Confidence Interval								
Motivation	Mean	Std. Error	Lower Bound	Upper Bound							
1Scholarship	2.353	.040	2.275	2.430							
2Exposure	2.498	.035	2.428	2.567							
3Fame	2.250	.042	2.168	2.332							
4Money	1.998	.043	1.913	2.082							
5Travel	2.353	.040	2.274	2.431							
6Trophies	1.275	.022	1.231	1.319							

		Pairwise C	Compari	sons			
Measure: M	EASURE_1						
		Mean			95% Confid	ence Interval	
(I)	(J)	Difference (I-	Std.		for Diff		
Motivation	Motivation		Error		Lower Bound	Upper Bound	
1 Scholarship	2	145*	.052	.005	247	043	
	3	.103	.054	.060	005	.210	
	4	.355*	.058	.000	.241	.469	
	5	.000	.055	1.000	108	.108	
	6	1.078*	.045	.000	.988	1.167	
2Exposure	1	.145*	.052		.043	.247	
	3	.248*	.055	.000	.140	.355	
	4	.500*	.054	.000	.394	.606	
	5	.145*	.052	.006	.042	.248	
	6	1.223*	.042	.000	1.141	1.304	
3Fame	1	103	.054	.060	210	.005	
	2	248*	.055	.000	355	140	
	4	.252*	.062	.000	.130	.375	
	5	103	.054	.059	209	.004	
	6	.975*	.048	.000	.881	1.069	
4Money	1	355*	.058	.000	469	241	
	2	500 [*]	.054	.000	606	394	
	3	252 [*]	.062	.000	375	130	
	5	355*	.059	.000	471	239	
	6	.722*	.049	.000	.627	.818	
5Travel	1	.000	.055	1.000	108	.108	
	2	145*	.052	.006	248	042	
	3	.103	.054	.059	004	.209	
	4	.355*	.059		.239	.471	
	6	1.078*	.047		.985	1.170	

6Trophies	1	-1.078*	.045	.000	-1.167	988
	2	-1.223*	.042	.000	-1.304	-1.141
	3	975*	.048	.000	-1.069	881
	4	722 [*]	.049	.000	818	627
	5	-1.078*	.047	.000	-1.170	985

Based on estimated marginal means

- *. The mean difference is significant at the a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Multivariate Tests									
	Value	F	Hypothesis df	Error df	Sig.				
Pillai's trace	.765	257.371°	5.000	395.000	.000				
Wilks' lambda	.235	257.371 ^a	5.000	395.000	.000				
Hotelling's trace	3.258	257.371°	5.000	395.000	.000				
Roy's largest root	3.258	257.371°	5.000	395.000	.000				

Each F tests the multivariate effect of Motivation. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.

a. Exact statistic

TABLE 3.4: GENERAL LINEAR MODEL FOR SCHOLARSHIP, EXPOSURE OPPORTUNITIES, FAME, MONEY, TRAVEL AND TROPHIES BY PARTICIPATION, ABILITY, AGE AND GRADE LEVEL

***************************************		ptive Statistics	T.,	0.15	
	Race	Ability	Mean	Std. Deviation	N
Scholarships	Caucasian	Beginner	2.174		23
		Intermediate	2.467		
		Advanced	2.200		
		Total	2.392		
	Hispanics	Intermediate	2.286		105
		Advanced	1.500	.7071	2
		Total	2.271	.8531	107
	Blacks	Beginner	2.667	.5774	
		Intermediate	2.800	.4932	
		Advanced	1.667	1.1547	(7)
		Total	2.753	.5597	81
	Asians	Beginner	1.833	.8348	12
		Intermediate	1.774	.6688	31
		Advanced	2.267	.7988	15
		Total	1.914	.7559	58
	Indians	Beginner	1.000	.0000	2
		Intermediate	2.200	.4472	5
		Advanced	2.250	.9574	4
		Total	2.000	.7746	11
	Total	Beginner	2.050	.8458	40
		Intermediate	2.414	.7663	321
		Advanced	2.154	.8441	39
		Total	2.353	.7904	400
ExposureOpportunities	Caucasian	Beginner	2.609	.5830	23
		Intermediate	2.419	.7568	105
		Advanced	2.200	.7746	15
	İ	Total	2.427	.7363	143
	Hispanics	Intermediate	2.629	.6241	105
	1 -	Advanced	3.000	.0000	2
		Total	2.636		
	Blacks	Beginner	2.333		
		Intermediate	2.627		
		Advanced	2.000		
		Total	2.593		81
	Asians	Beginner	1.917		
		Intermediate	2.290	.7391	31
		Advanced	2.467		
		Total	2.259		

	Indians	Beginner	3.000	.0000	2
		Intermediate	2.600	.5477	5
		Advanced	2.500	.5774	4
		Total	2.636	.5045	11
	Total	Beginner	2.400	.7779	40
		Intermediate	2.526	.6893	321
		Advanced	2.359	.7776	39
		Total	2.498	.7080	400
Fame	Caucasian	Beginner	1.913	.7332	23
	Cuacasian	Intermediate	2.238	.8381	105
		Advanced	2.400	.6325	15
		Total	2.203	.8098	
	Hispanics	Intermediate	2.343	.8066	105
	inspanies	Advanced	2.500	.7071	2
		Total	2.346	.8022	$\frac{2}{107}$
	Blacks	Beginner	2.333	1.1547	3
	Diacks	Intermediate	2.373	.7845	75
		Advanced	3.000	.0000	7.3
		Total	2.395	.7855	81
	Asians	Beginner	2.083	.9003	12
	Asialis	Intermediate	2.000	.8944	31
		Advanced	2.333	.9759	15
		Total	2.333	.9117	58
	Indians		1.000	.0000	2
	indians	Beginner Intermediate	2.000	1.0000	5
		Advanced	1.500	1.0000	<u>3</u>
		Total			11
	Total	_	1.636	.9244	
	lotai	Beginner	1.950	.8149 .8260	<u>40</u>
		Intermediate	2.277		321
		Advanced	2.333	.8377	39
		Total	2.250	.8302	400
Money	Caucasian	Beginner	1.870	.8689	23
		Intermediate	1.914	.8999	
		Advanced	1.933	.8837	15
	***	Total	1.909	.8874	143
	Hispanics	Intermediate	2.133	.8887	105
		Advanced	2.500	.7071	2
		Total	2.140	.8843	107
	Blacks	Beginner	1.667	1.1547	3
		Intermediate	1.947	.7866	75
		Advanced	2.000	1.0000	3
	<u> </u>	Total	1.938	.7960	81
	Asians	Beginner	1.917	.7930	12
		Intermediate	1.968	.8750	31

					
		Advanced	2.133	.7432	15
		Total	2.000	.8165	
	Indians	Beginner	1.000	.0000	2
		Intermediate	2.800	.4472	5
		Advanced	2.000	1.1547	4
		Total	2.182	.9816	11
	Total	Beginner	1.825	.8439	40
		Intermediate	2.012	.8695	321
		Advanced	2.051	.8255	39
		Total	1.997	.8628	400
Travel_re	Caucasian	Beginner	1.826	.6503	23
_		Intermediate	2.248	.8410	105
		Advanced	2.733	.4577	15
		Total	2.231	.8109	143
	Hispanics	Intermediate	2.410	.8168	105
		Advanced	2.000	1.4142	2
		Total	2.402	.8226	107
	Blacks	Beginner	2.000	1.0000	3
		Intermediate	2.547	.7406	75
		Advanced	3.000	.0000	3
		Total	2.543	.7425	81
	Asians	Beginner	2.583	.7930	12
		Intermediate	2.290	.7829	31
		Advanced	2.133	.7432	15
		Total	2.310	.7770	58
	Indians	Beginner	1.500	.7071	
		Intermediate	2.200	.8367	2 5
		Advanced	2.750	.5000	4
		Total	2.273	.7862	11
	Total	Beginner	2.050	.7828	40
		Intermediate	2.374	.8084	321
		Advanced	2.487	.6833	39
		Total	2.352	.7999	400
Trophies	Caucasian	Beginner	1.261	.4490	23
pm	Caucusian	Intermediate	1.257	.4392	105
		Advanced	1.533	.5164	15
		Total	1.287	.4538	143
	Hispanics	Intermediate	1.238	.4280	105
	µ HSPailleS	Advanced	1.500	.7071	103
		Total	1.243	.4309	$\frac{2}{107}$
	Blacks				3
	Diacks	Beginner	1.333	.5774	
		Intermediate	1.280	.4520	75 3
		Advanced	1.333	.5774	81
		Total	1.284	.4537	91

Asians	Beginner	1.000	.0000	12
	Intermediate	1.355	.4864	31
	Advanced	1.200	.4140	15
	Total	1.241	.4317	58
Indians	Beginner	1.500	.7071	2
	Intermediate	1.400	.5477	5
	Advanced	1.750	.5000	4
	Total	1.545	.5222	11
Total	Beginner	1.200	.4051	40
	Intermediate	1.268	.4436	321
	Advanced	1.410	.4983	39
	Total	1.275	.4471	400

· ·	Multivari	ate Tes	ts ^c			
				Hypothesis		
Effect		Value	F	df	Error df	Sig.
	Pillai's Trace	.035	2.773°	5.000	380.000	.018
	Wilks' Lambda	.965	2.773 ^a	5.000	380.000	.018
Motivation	Hotelling's Trace	.036	2.773°	5.000	380.000	.018
	Roy's Largest Root	.036	2.773ª	5.000	380.000	.018
	Pillai's Trace	.010	.785°	5.000	380.000	.561
	Wilks' Lambda	.990	.785°	5.000	380.000	.561
Motivation * Age	Hotelling's Trace	.010	.785ª	5.000	380.000	.561
	Roy's Largest Root	.010	.785ª	5.000	380.000	.561
	Pillai's Trace	.014	1.040 ^a	5.000	380.000	.393
	Wilks' Lambda	.986	1.040 ^a	5.000	380.000	.393
Motivation * Grade	Hotelling's Trace	.014	1.040 ^a	5.000	380.000	.393
	Roy's Largest Root	.014	1.040ª	5.000	380.000	.393
	Pillai's Trace	.076	1.492	20.000	1532.000	.074
	Wilks' Lambda	.925	1.496	20.000	1261.267	.074
Motivation * Race	Hotelling's Trace	.079	1.497	20.000	1514.000	.073
	Roy's Largest Root	.048	3.671 ^b	5.000	383.000	.003
	Pillai's Trace	.038	1.473	10.000	762.000	.145
	Wilks' Lambda	.962	1.469ª	10.000	760.000	.146
Motivation * Ability	Hotelling's Trace	.039	1.465	10.000	758.000	.148
	Roy's Largest Root	.020	1.509 ^b	5.000	381.000	.186
Motivation * Race *	Pillai's Trace	.154	1.739		1920.000	
Ability	Wilks' Lambda	.854	1.749	35.000	1600.945	.005
L	Hotelling's Trace	.162	1.754	35.000	1892.000	.004

į	Davida I assast		i		<u> </u>		ľ
	Roy's Largest	.073	4.015 ^b	7.000	384.000	.000	
	Root		1		i		i

a. Exact statistic

b. The statistic is an upper bound on F that yields a lower bound on the significance level.

c. Design: Intercept + Age + Grade + Race + Ability + Race * Ability

Within Subjects Design: Motivation

Mauchly's Test of Sphericity ^b								
Measure: MEAS	SURE_1							
Epsilon ^a								
Within Subjects	Mauchly's	Approx. Chi-			Greenhouse-	Huynh-	Lower-	
Effect	W	Square	df	Sig.	Geisser	Feldt	bound	
Motivation	.752	108.805	14	.000	.910	.958	.200	

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

 May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

b. Design: Intercept + Age + Grade + Race + Ability + Race * Ability Within Subjects Design: Motivation

Omnibus Test to follow up for differences in significance and esposure and then pairwise comparisons for follow up.

	Tests of V	Within-Subjects Effect	ets			······································
Measure: MEASUR	E_1					***************************************
		Type III Sum of		Mean		
Source		Squares	df	Square	F	Sig.
Motivation	Sphericity Assumed	5.043	5	1.009	1.868	.097
	Greenhouse- Geisser	5.043	4.551	1.108	1.868	.104
	Huynh-Feldt	5.043	4.792	1.052	1.868	.100
	Lower-bound	5.043	1.000	5.043	1.868	.172
Motivation * Age	Sphericity Assumed	2.460	5	.492	.911	.473
	Greenhouse- Geisser	2.460	4.551	.541	.911	.466
	Huynh-Feldt	2.460	4.792	.513	.911	.469
	Lower-bound	2.460	1.000	2.460	.911	.340
Motivation * Grade	Sphericity Assumed	1.845	5	.369	.684	.636
	Greenhouse- Geisser	1.845	4.551	.405	.684	.622
	Huynh-Feldt	1.845	4.792	.385	.684	.630

	Lower-bound	1.845	1.000	1.845	.684	.409
Motivation * Race	Sphericity Assumed	16.629	20	.831	1.540	.059
	Greenhouse- Geisser	16.629	18.202	.914	1.540	.067
	Huynh-Feldt	16.629	19.167	.868	1.540	.063
	Lower-bound	16.629	4.000	4.157	1.540	.190
Motivation * Ability	Sphericity Assumed	6.956	10	.696	1.289	.231
	Greenhouse- Geisser	6.956	9.101	.764	1.289	.237
	Huynh-Feldt	6.956	9.583	.726	1.289	.234
	Lower-bound	6.956	2.000	3.478	1.289	.277
Motivation * Race * Ability	Sphericity Assumed	30.655	35	.876	1.622	.012
-	Greenhouse- Geisser	30.655	31.854	.962	1.622	.016
	Huynh-Feldt	30.655	33.542	.914	1.622	.014
	Lower-bound	30.655	7.000	4.379	1.622	.127
Error(Motivation)	Sphericity Assumed	1036.456	1920	.540		
	Greenhouse- Geisser	1036.456	1747.415	.593		
	Huynh-Feldt	1036.456	1840.029	.563		
	Lower-bound	1036.456	384.000	2.699		

	Tests of V	Within-Subjects Contra	sts			
Measure: MEASURE	_1					
		Type III Sum of				
Source	Motivation	Squares	df	Mean Square	F	Sig.
Motivation	Linear	.692	1	.692	1.754	
	Quadratic	.696	1	.696	1.478	.225
	Cubic	.264	1	.264	.527	.468
	Order 4	3.232	1	3.232	5.761	.017
	Order 5	.158	1	.158	.205	.651
Motivation * Age	Linear	.111	1	.111	.282	.596
	Quadratic	.045	1	.045	.096	.757
	Cubic	.212	1	.212	.424	.515
	Order 4	.129	1	.129	.229	.632
	Order 5	1.962	1	1.962	2.543	.112
Motivation * Grade	Linear	1.263	1	1.263	3.200	.074
	Quadratic	.315	1	.315	.669	.414
	Cubic	.252	1	.252	.503	.478
	Order 4	.002	1	.002	.003	.955

	Order 5	.013	1	.013	.017	.898
Motivation * Race	Linear	1.889			1.196	
	Quadratic	3.317	4		1.762	
	Cubic	3.074	4		1.534	
	Order 4	1.496	4	.374		.616
	Order 5	6.854	4	1.713	2.220	
Motivation * Ability	Linear	2.304	2		2.918	
	Quadratic	.835	2	.418		.413
	Cubic	2.601	2	1.301	2.596	.076
	Order 4	.451	2	.225	.402	.669
	Order 5	.765	2	.383	.496	.609
Motivation * Race *	Linear	9.280	7	1.326	3.358	.002
Ability	Quadratic	4.208	7	.601	1.277	.260
	Cubic	8.089	7	1.156	2.307	.026
	Order 4	3.125	7	.446	.796	.591
	Order 5	5.952	7	.850	1.102	.361
Error(Motivation)	Linear	151.599	384	.395		
	Quadratic	180.729	384	.471		
	Cubic	192.346	384	.501		
	Order 4	215.439	384	.561		
	Order 5	296.342	384	.772		

	Tests of Between Subjects Effects -								
Measure: MEA	Measure: MEASURE 1 Transformed Variable: Average								
Source Type III Sum of Squares df Mean Square F									
Intercept	256.395	1	256.395	453.466	.000				
Age Grade	.692	1	.692	1.224	.269				
Grade	.019	1	.019	.034	.854				
Race	2.861	4	.715	1.265	.283				
Ability	6.294	2	3.147	5.566	.004				
Race * Ability	3.818	7	.545	.965	.457				
Error	217.118	384	.565						

TABLE 4.6: ESTIMATED MARGINAL MEANS ADJUSTED FOR AGE, GRADE, PARTICIPATION, AND ABILITY

Estimates							
Measure: MEASURE_1							
95% Confidence Interval							
Mean		Lower Bound	Upper Bound				
2.079 ^{a,b}	.083	1.917	2.242				
2.478 ^{a,b}	.078	2.325	2.630				
2.141 ^{a,b}	.092	1.961	2.322				
4Money 1.989 ^{a,b} .097 1.799 2.17							
		2.127	2.472				
1.355 ^{a,b}	.049	1.257	1.452				
	Mean 2.079 ^{a,b} 2.478 ^{a,b} 2.141 ^{a,b} 1.989 ^{a,b} 2.300 ^{a,b}	Mean Std. Error 2.079 ^{a,b} .083 2.478 ^{a,b} .078 2.141 ^{a,b} .092 1.989 ^{a,b} .097 2.300 ^{a,b} .088	Mean Std. Error Lower Bound 2.079 ^{a,b} .083 1.917 2.478 ^{a,b} .078 2.325 2.141 ^{a,b} .092 1.961 1.989 ^{a,b} .097 1.799 2.300 ^{a,b} .088 2.127				

a. Covariates appearing in the model are evaluated at the following values: Age = 3.448, Grade = 9.385.

b. Based on modified population marginal mean.

	Pairwise Comparisons							
Measu	re : MEASURE	_1						
(I)	(J)	Mean	95% Confidence In Std. Difference					
		Difference (I-J)		Sig.b	Lower Bound			
1	2	399*,a		.000				
	3	062ª		.604				
	4	.091		.472				
	5	220ª		.064				
	6	.724*,a		.000		<u> </u>		
2	1	.399*,a	.113	.000	\$.621		
	3	.336*,	.121	.006	<u> </u>	<u> </u>		
	4	.489*,	.121	.000	.251			
	5	.178ª		.119	046			
	6	1.123*,2	.091	.000	.943	1.303		
3	1	.062ª		.604	173	.298		
	2	336 ^{*,a}	.121	.006	574	099		
	4	.153ª	.139	.274	121	.427		
	5	158ª	.121	.192	396	.080		
	6	.787*,a	.105	.000	.580	.993		
4	1	091ª		.472	338	.157		
	2	489 ^{*,a}	.121	.000	727	251		
	3	153ª		.274	427	.121		
	5	311*,a	.132	.019	570	052		
	6	.634*,	.109	.000	.420	.848		
5	1	.220ª	.119	.064	013	.454		
	2	178ª	.114	.119	402	.046		

	3	.158ª	.121	.192	080	.396
	4	.311*,2	.132	.019	.052	.570
	6	.945*,a	.104	.000	.741	1.149
6	1	724 ^{*,a}	.096	.000	913	536
	2	-1.123*,a	.091	.000	-1.303	943
	3	787*,a	.105	.000	993	580
	4	634*,a	.109	.000	848	420
	5	945*,ª	.104	.000	-1.149	741

Based on estimated marginal means

- *. The mean difference is significant at the
- a. Based on modified population marginal mean.
- b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Multivariate Tests							
	Value	F	Hypothesis df	Error df	Sig.		
Pillai's trace	.3412	39.378 ^b	5.000	380.000	.000		
Wilks' lambda	.659ª	39.378 ^b	5.000	380.000	.000		
Hotelling's trace	.518	39.378 ^b	5.000	380.000	.000		
Roy's largest root	.518ª	39.378 ^b	5.000	380.000	.000		

Each F tests the multivariate effect of Motivation. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.

- a. Based on modified population marginal mean.
- b. Exact statistic

TABLE 4.9: REGRESSION ANALYSIS

Model	Variables Entered	Variables Removed	
	Travel_re, Money, Scholarships, Trophies, ExposureOpportunities, Fame		Enter
2	Age, Grade ^a		Enter

Model Summary							
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate			
1	.225°	.051	.036	.29948			
2	229b	052	033	30000			

- a. Predictors: (Constant), Travel_re, Money, Scholarships, Trophies, ExposureOpportunities, Fame
- b. Predictors: (Constant), Travel_re, Money, Scholarships, Trophies, ExposureOpportunities, Fame, Age, Grade

		ANO	VAc			
M	odel	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1.885	6	.314	3.503	.002°
	Residual	35.247	393	.090		
	Total	37.132	399			
2	Regression	1.941	8	.243	2.696	.007 ^t
	Residual	35.191	391	.090		
	Total	37.132	399			-

- a. Predictors: (Constant), Travel_re, Money, Scholarships, Trophies, ExposureOpportunities, Fame
- b. Predictors: (Constant), Travel_re, Money, Scholarships, Trophies, ExposureOpportunities, Fame, Age, Grade
- c. Dependent Variable: Ability

			Coefficients ^a	***************************************		
		Unstandardized Coefficients		Standardized Coefficients		
N	1odel [В	Std. Error	Beta	t	Sig.
1	(Constant)	1.681	.104		16.211	.000
	Scholarships	.038	.019	.09	9 1.996	.047
	ExposureOpportunities	.011	.021	.02	5 .508	.612

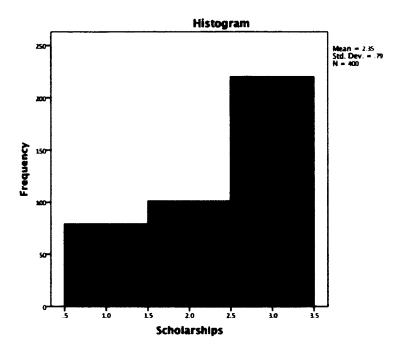

Fame	.039	.018	.107	2.141	.033
Money	.027	.017	.076	1.536	.125
Trophies	.051	.034	.075	1.532	.126
Travel_re	.044	.019	.116	2.345	.020
2 (Constant)	1.672	.136		12.275	.000
Scholarships	.038	.019	.098	1.973	.049
ExposureOpportunities	.009	.021	.021	.421	.674
Fame	.039	.018	.106	2.118	.035
Money	.026	.018	.074	1.496	.135
Trophies	.052	.034	.076	1.536	.125
Travel_re	.045	.019	.118	2.375	.018
Grade	.005	.009	.028	.549	.583
Age	009	.014	034	667	.505
a. Dependent Variable: A	bility				

TABLE 3.1: MODIFIED PMQ SHOWING ALL ITEMS AND FREQUENCIES OF RESPONSES

Items	Very	Somewhat	Not at all
	Important (3)	Important (2)	Important (1)
Fame	200	100	100
Travel	80	100	220
Trophies	20	100	280
Scholarship	220	100	80
Exposure	250	100	50
Opportunities			
Money	150	100	150

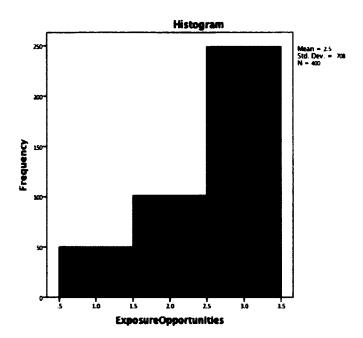

LIST OF FIGURES

FIGURE 4.1: SCHOLARSHIPS

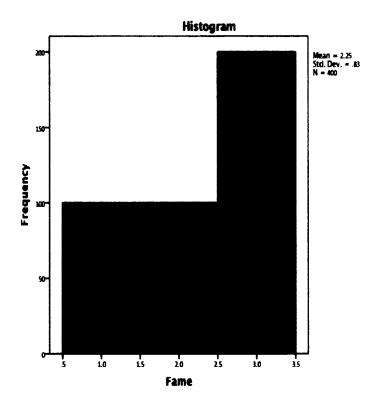

Descriptive figures for scholarship showed M=2.35; SD .79. 220 participants said scholarship was most important, 100 subjects reported somewhat important and 80 said not at all important.

FIGURE 4.2: EXPOSURE OPPORTUNITIES

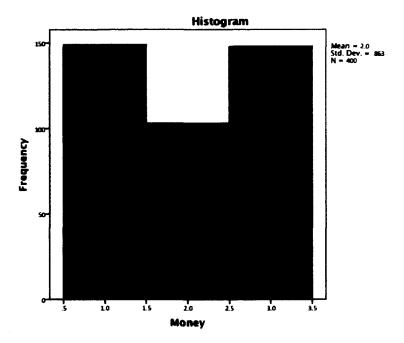

For exposure opportunities, M = 2.5; SD = .708 That is, 250 subjects checked most important, 100, somewhat important and 50 not at all important, skewing the distribution to the left, showing asymmetry

FIGURE 4.3: FAME

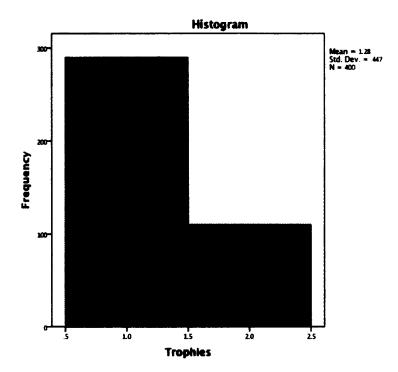

With fame, distribution was slightly skewed to the left. The mean value M = 2.25; SD = .83 explains that 200 subjects saw fame as very important, 100 somewhat and 100 said not important

FIGURE 4.4: MONEY

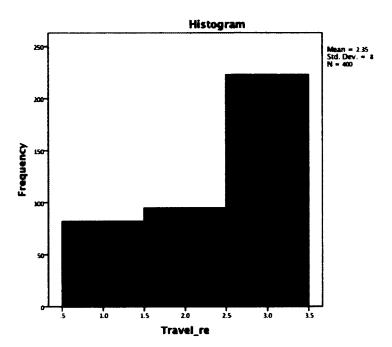

Money, M=2.0; SD=.86, show a bi-modal distribution. This means that 150 players claim that money is very important, 100 said somewhat and 150 said not at all important.

FIGURE 4.5: TROPHIES

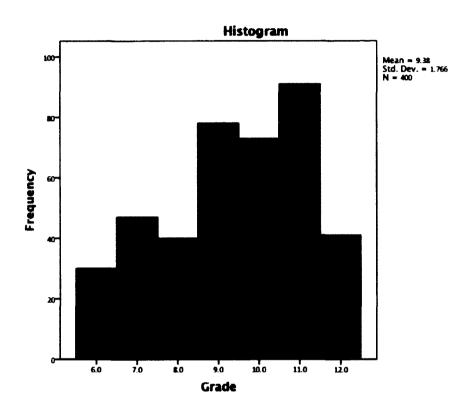

Trophies had a mean M = 1.28; SD = .45 showing a distribution skewing to the right. As seen in the histogram, 280 players deemed trophies as not all important and 100 thought that it was somewhat important

FIGURE 4.6: TRAVEL

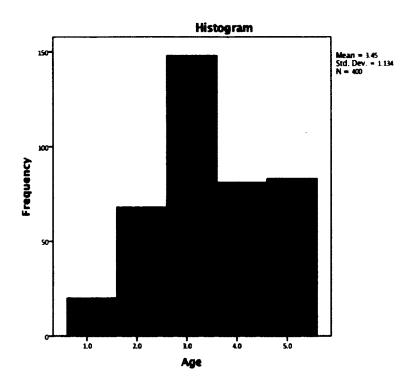

Travel had a mean value M = 2.35; SD = .8 and distribution skewed to the left showing that 80 players said it was very important, 100 somewhat, and 220 not at all important

FIGURE 4.7: GRADE

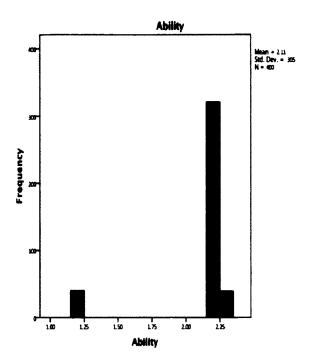

Histogram for grade showed a multimodal distribution with mean values M=9.8; SD=1.77 indicating that a majority of players were in 9^{th} and 11^{th} grades

FIGURE 4.8: AGE

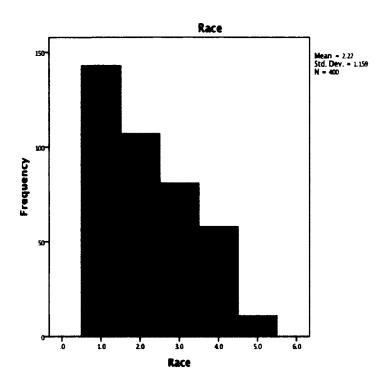

Frequencies for age showed that the vast majority of players were of median age 16 years

FIGURE 4.9: ABILITY

Ability frequencies show no distribution, as majority 80% were intermediate leveled, 10% were beginners and 10% advance

FIGURE 4.10: PARTICIPATION

Frequencies for race show a mean value M = 2.22; SD = 1.16, indicating a valid representation of 35.7% for Caucasians, 26.7% for Hispanics, 20.3% for Blacks, 14.5% for Asians, and 2.7% for Indians. This shows that Caucasians were the most represented in the survey although Hispanics are more enrolled in the school district.

FIGURE 3.0: PILOT PLOT FOR ESTMATED MARGINAL MEANS AND PARTICIPATION MOTIVATION

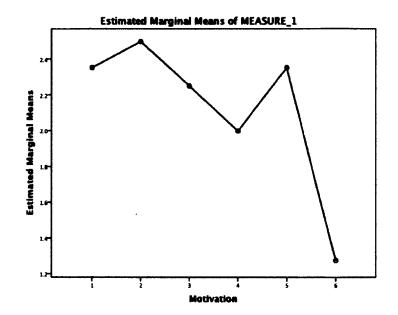
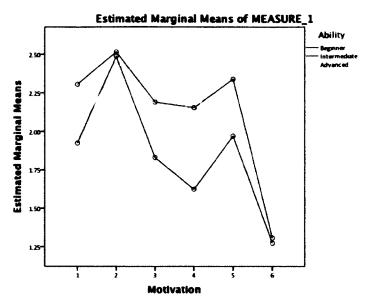
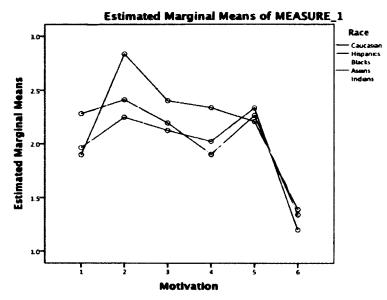




FIGURE 3.1: PILOT PLOT FOR ESTIMATED MARGINAL MEANS FOR ABILITY AND PARTICIPATION MOTIVATION

Covariates appearing in the model are evaluated at the following values: Age \pm 3.448, Grade \pm 9.385

FIGURE 3.2: PILOT PLOT FOR ESTIMATED MARGINAL MEANS FOR PARTICIPANTS AND PARTICIPATION MOTIVATION

Covariates appearing in the model are evaluated at the following values: Age = 3.448, Grade = 9.385

FIGURE 5.1: G GRAPH SHOWING EXTRINSIC REWARDS ACCORDING TO IMPORTANCE

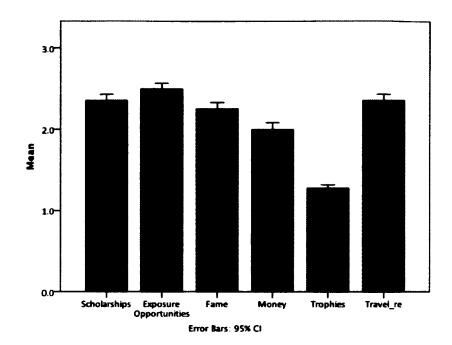
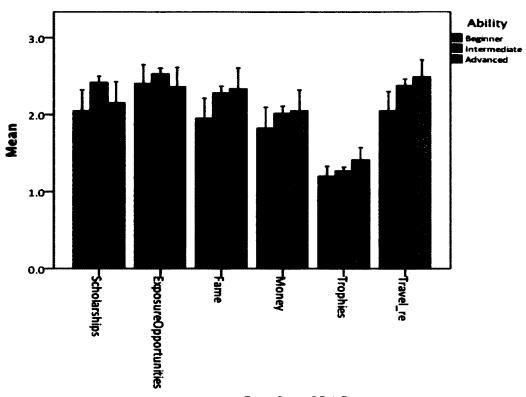



FIGURE 4.11: MULTIVARIATE REGRESSIONS ACCORDING TO ABILITY LEVELS

Error Bars: 95% CI