
 

COHERENCE PROPERTIES OF SUPERCONTINUUM GENERATED IN 

HIGHLY NONLINEAR PHOTONIC CRYSTAL FIBERS  

A dissertation 
 

submitted by 

 
Yuji Zhang 

 
 

In partial fulfillment of the requirements 
 

for the degree of 

 
Doctor of Philosophy 

 
In 

 
Physics 

 
 
 

TUFTS UNIVERSITY 
 

February 2015 
 

ADVISOR: 
 

Prof. Fiorenzo G. Omenetto 
Tufts University, Department of Physics and Astronomy  

and Department of Biomedical Engineering 

 

RESEARCH COMMITTEE: 
 

Prof. Peggy Cebe  
Tufts University, Department of Physics and Astronomy 

Dr. Daniel J. Kane 
Mesa Photonics, LLC, Santa Fe, NM 

Prof. Anthony W. Mann 
Tufts University, Department of Physics and Astronomy 

Prof. Austin Napier 
Tufts University, Department of Physics and Astronomy 

Prof. Krzysztof Sliwa 
Tufts University, Department of Physics and Astronomy 

Prof. Roger G. Tobin 
Tufts University, Department of Physics and Astronomy 

 



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  3684584

Published by ProQuest LLC (2015).  Copyright in the Dissertation held by the Author.

UMI Number:  3684584



ii 
 

 

 

 

 

 

 

 

This page is intentionally left blank.  



iii 
 

ACKNOWLEDGEMENTS 

I would like to first of all thank my advisor Professor Fiorenzo Omenetto for his financial 

support, academic guidance, and also his help in experiment and in writing. Without 

those I would not have made my progress in research. He is so acute and fast in thinking, 

and discussing with him and listening to his discussion is the best part of the training I 

received in the graduate school. Looking at his bench work and his lab notebook, I saw a 

perfect example of a precise, careful, and neat style, which I have been trying to mimic.  

His influence on me has been more than just in research. He illustrates such a passionate 

and indulgent attitude in work, just like his words: “It’s not about here (pointing to his 

head) – it’s all about here (pointing to his heart).” It has been my privilege to work with 

him and learn science and beyond.  

I would like to thank my committee members. Dr. Daniel Kane has been so kind to share 

his expertise and insights. I call him every several weeks and always benefit from his 

advice. Professor Roger Tobin gave me lessons about writing, presentation, and also 

generally about research. He read my thesis draft in short time and gave revision and 

comments before my defense, so that I could improve my defense based on this feedback. 

Professor William Oliver and Professor Krzysztof Sliwa spent their time to listen to my 

trial defense and gave me advice on presentation, especially about how to make it 

interesting to broader audience. As my academic advisor, Professor Krzysztof Sliwa 

helped in my academic and personal life in my first a few years in the States. Professor 

William Oliver sent me to ESL class. In those early days in the States when I was not so 

comfortable and confident, their help was invaluable. Professor Anthony Mann is the 



iv 
 

person I always have casual talks with and learn from. Professor Peggy Cebe shared with 

me very useful tips about organizing and managing research. Professor Austin Napier 

revised my thesis so carefully and even found a missing paper in the reference. I feel 

lucky to have such smart and kind committee members who are willing to share and help. 

My labmates are fun to work with and also helpful. Dr. Jason Amsden was my mentor 

when I started working in the lab. He shared his techniques and experience to get me 

started. Without his help, it would have taken me longer to figure out the hands-on 

techniques he taught me. Late Dr. Peter Domachuk also shared with me his expertise and 

experience. Dr. Jessica Mondia and Mr. Jason Bressner gave me good suggestions about 

research and about personal life. Dr. Hu “Tiger” Tao and Ms. Miaomiao “Mia” Tao have 

deep understanding about research, and I often discussed with them about the stories of 

papers. Mr. Matthew Applegate helped me a lot in writing. Writing in second language 

English has been challenging for me. I always ask him for help in revision. He probably 

has read my journal papers ten times. Other labmates are also nice to discuss with and 

willing to help, including Dr. Giovanni Perotto, Dr. Sunghwan Kim, Dr. Jana 

Kainerstorfer, Dr. Benedetto Marelli, Dr. Konstantinos Tsioris, Dr. Elijah Shirman, Mr. 

Alex Mitropoulos, Mr. Mark Brenckle, Mr. Jonas Osorio, and Mr. Joshua Spitzberg. 

I also want to thank Professor David Kaplan and Dr. Guokui Qin in Department of 

Biomedical Engineering and Professor Subhas Kundu from Indian Institute of 

Technology Kharagpur for opportunities to collaborate, so that I could have chances to 

work with interesting rare materials and produce some publications. Dr. Martin Hunter in 

Department of Biomedical Engineering and my friends Dr. Robert Stegeman and Dr. 



v 
 

Guang-ming “Derek” Tao are experts in relevant fields. I often talk to them and benefit 

from the discussions. 

Staff are sometimes less visible than professors, but are really indispensible. Ms. Milva 

Ricci, Ms. Keleigh Sanford, and Ms. Carmen Preda in Department of Biomedical 

Engineering and Ms. Gayle Grant, Ms. Shannon Landis-Amerault, Ms. Jacqueline 

DiMichele, and Ms. Jean Intoppa in Department of Physics and Astronomy helped me 

with all kinds of support. Mr. Scott MacCorkle and Mr. Denis Dupuis in the machine 

shop made me gadgets that made experiments easy and fun.  

My parents Jianfa Zhang and Meifeng Fan Zhang always have so much love for me. 

They provided an atmosphere of study where I developed a will of pursuing more and 

deeper knowledge. And they have been so supportive during the years when I am away 

from them. My girlfriend Mengyi Liao is a pretty and smart girl. She has been supportive 

and also giving me good suggestions. I owe a lot of thanks and love to them. 

  



vi 
 

 

 

 

 

 

 

 

This page is intentionally left blank. 

  



vii 
 

ABSTRACT  

In this dissertation, experimentally measured spectral and coherence evolution of 

supercontinuum (SC) is presented. Highly nonlinear soft-glass photonic crystal fibers 

(PCF) were used for SC generation, including lead-silicate (Schott SF6) PCFs of a few 

different lengths: 10.5 cm, 4.7 mm, and 3.9 mm, and a tellurite PCF of 2.7 cm. The pump 

is an optical parametric oscillator (OPO) at 1550 nm with pulse energy in the order of 

nanojoule (nJ) and pulse duration of 105 femtosecond (fs). The coherence of SC was 

measured using the delayed-pulse method, where the interferometric signal was sent into 

an optical spectrum analyzer (OSA) and spectral fringes were recorded. By tuning the 

pump power, power-dependent evolution of spectrum and coherence was obtained. 

Numerical simulations based on the generalized nonlinear Schrödinger equation 

(GNLSE) were performed. To match the measured data, the simulated spectral evolution 

was optimized by iteratively tuning parameters and comparing features. To further match 

the simulated coherence evolution with the measurement, shot noise and pulse-to-pulse 

power fluctuation were added in the pump, and the standard deviation of the fluctuation 

was tuned. 

Good agreement was obtained between the simulated and the measured spectral 

evolution, in spite of the unavailability of some physical parameters for simulation. It is 

demonstrated in principle that, given a measured spectral evolution, the fiber length, and 

the average power of SC, all other parameters can be determined unambiguously, and the 

spectral evolution can be reproduced in the simulations. Most importantly, the soliton fission 

length can be simulated accurately. 



viii 
 

The spectral evolution using the 4.7- and the 3.9-mm SF6 PCFs shows a pattern 

dominated by self phase modulation (SPM). This indicates that, these fiber lengths are 

close to the soliton fission length at the maximum power. The spectral evolution using 

the 10.5-cm SF6 PCF and the 2.7-cm tellurite PCF shows a soliton-fission-dominated 

pattern, indicating these lengths are much longer than the soliton fission length at the 

maximum power. 

For the coherence evolution using the SF6 PCFs, the simulations and the measurements 

show qualitative agreement, confirming the association between coherence degradation 

and soliton fission. For the case of the tellurite PCF, nearly quantitative agreement is 

shown, and it is shown that the solitonic coherence degrades slower than the overall 

coherence. 

Fluctuation of coherence occurs at the regime where the coherence starts to degrade, in 

the measurement and the simulations of the SF6-PCF case. It is shown that the cause is 

the pulse-to-pulse power fluctuation in the pump.  

The pulse-to-pulse stability of spectral intensity is another characterization of SC 

stability, other than the coherence. It is shown by simulations that these two exhibit 

different dynamics, and have low correlation.  
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A.1  A systematic check of the simulations of SC and its coherence. (a) and (b) are 

results excerpted from [Dudley et al., 2006]. (c) and (d) are my results using the 

same parameters. 
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1. INTRODUCTION 

Supercontinuum (SC) generation is the process by which narrow-band incident light 

spectrally broadens to typically hundreds of nm (40-dB bandwidths). It is usually a 

complex interaction of several linear and nonlinear processes, e.g., self phase modulation 

(SPM), dispersions especially group velocity dispersion (GVD), modulation instability 

(MI), soliton fission, the Raman effect, dispersive wave (Cherenkov radiation) 

generation. In order to stimulate nonlinear effects, the incident light must be very intense. 

Ultrafast lasers are usually used as the pump because of their high instantaneous 

intensity. Photonic crystal fibers (PCF) are popular media for SC generation, primarily 

because of their high nonlinearity and engineerable dispersion. A review of SC 

generation in PCFs can be found in [Dudley et al., 2006; Genty et al., 2007]. 

Whether the pulse-to-pulse coherence of the ultrafast laser can be maintained in the 

complex process of SC generation is an interesting topic, and is important for many 

applications such as frequency comb [Udem et al., 2002; Cundiff and Ye, 2003] and 

pulse compression [Dudley and Coen, 2004; Schenkel et al., 2005; Heidt et al., 2011]. 

Numerical and experimental studies have been carried out on SC coherence. Simulations 

have shown that noise can be amplified in SC generation, causing pulse-to-pulse 

fluctuation in phase, thus coherence degradation. Coherence properties depending on 

various parameters have been discussed. Spectral and coherence evolution has been 

useful for visualization. They are contour plots of intensity/coherence vs. wavelength vs. 

a tuning variable such as the SC power or the propagation length. Spectral evolution 
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visualizes various processes in SC generation, and corresponding coherence evolution 

visualizes coherence dynamics.  

Most experimental research of SC coherence, however, has shown coherence measured 

under limited conditions (e.g., at several levels of SC power), which are unable to show 

evolving trends and some subtle features. This limits detailed discussion, for example, 

about the correspondence between coherence properties and broadening mechanisms. 

Discussions in a lot of previous experimental research are based on average coherence.   

In this dissertation, experimentally measured spectral and coherence evolution of SC is 

presented. Numerical simulations were performed to match the measured data. Rich 

features in the spectral evolution allow for detailed comparison between measurement 

and simulation. By iteratively tuning parameters and comparing features, the simulations 

can be optimized to match the measurement.  

PCFs of different lengths were used to investigate dependence of coherence on the fiber 

length. Previous simulations [Dudley at al., 2006] have shown that coherence degradation 

is associated with the process that the pulse splits into smaller pulses in time (soliton 

fission). This splitting process happens at a certain propagation length (soliton fission 

length). Using fibers shorter than this length, broadening is mainly based on SPM which 

is a coherence-maintaining process, hence coherent SC is produced.  

Two types of highly nonlinear soft-glass PCFs were used: a lead-silicate (Schott SF6) 

PCF and a tellurite PCF. Many soft glasses have much higher nonlinear refractive indices 

than the conventional material fused silica, and have been used for ultrabroad SC 

generation [Price et al., 2007; Tao et al., 2012]. For example, a SF6 PCF of different 
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microstructure than the ones used in my experiment [Omenetto et al., 2006] and the same 

tellurite PCF as used here [Domachuk et al., 2008] were used to generate SC as broad as 

~3000 nm and ~4000 nm, respectively. SC of smooth spectrum based mainly on SPM has 

been obtained using short fiber lengths [Omenetto et al., 2006; Moeser et al., 2007]. High 

coherence is expected in this SPM-dominating case, which would be tested in my 

experiment. 

This thesis is organized as follows: 

Ch 2 reviews the knowledge needed to understand this dissertation. It begins by 

introducing the PCF and its advantage in SC generation. Then modeling of SC generation 

is introduced, and various physical processes happening in SC generation are discussed. 

Lastly the fundamentals of coherence are reviewed. 

Ch 3 reviews previous research about SC coherence, and then introduces the motivation 

of my research. 

Ch 4 describes methods of experiment and simulation. 

Ch 5 presents results and analysis. Experimental data are presented first. Then 

simulations are optimized to match the experimental results. The physical meaning of the 

results is then discussed. 

Ch 6 concludes this dissertation and presents an outlook for future work.  
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2. SUPERCONTINUUM GENERATION AND COHERENCE 

SUMMARY 

This chapter refreshes the textbook knowledge needed for understanding the 

research in this dissertation.   

Section 2.1 introduces the photonic crystal fiber (PCF), a popular medium for 

supercontinuum (SC) generation. Compared to other media, the advantages of 

the PCF are its enhanced light confinement, controllable dispersion, and single 

mode profile. 

Section 2.2 introduces numerical modeling of SC generation using the 

generalized nonlinear Schrödinger equation (GNLSE). Derivation of this 

equation is briefly reviewed so that the physical meaning of each term is clear. 

Calculation of the dispersion term and the Raman term is discussed, because 

researchers usually need to calculate them for their specific fiber. Details of the 

implementation of numerical simulation are then introduced. 

Section 2.3 discusses major processes that happen in SC generation. SC 

generation is usually a mixture and interaction of a few nonlinear and linear 

processes. It is possible to isolate each of them, and associate them to features in 

the spectrum and the temporal profile of SC. 

Section 2.4 refreshes the theory and the experiments of coherence. 
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2.1 Photonic Crystal Fiber 

The PCF [Russell, 2003; Knight, 2003; Russell, 2006] is an optical fiber with an array of 

air holes, usually periodic, surrounding its core and running along its length. Here we 

focus on the solid-core PCF. The microstructure area can be considered a cladding of an 

effective refractive index much lower than the core. Light is guided in the core based on 

modified total internal reflection [Birks et al., 1997]. 

The PCF is regarded as the “driving force” for SC generation [Dudley and Taylor, 2010]. 

It has some advantages compared to other media such as bulk material [Alfano and 

Shapiro, 1970a and 1970b.] and tapered fibers [Birks et al., 2000] (Table 2.1).  

(1) It has enhanced light confinement and hence high nonlinearity. Bulk materials do not 

confine light tightly as fibers do. Self focusing is usually needed for SC generation in 

bulk materials, which requires high pulse energy usually in the order of mJ. Single mode 

fibers (SMF) confine light in a ~8–10 µm core. The cores of PCFs and the waists of 

tapered fibers are usually a few µm in diameter, yielding enhanced confinement. 

(2) Dispersion plays an important role in SC generation (see Section 2.2 and 2.3). 

Generally, if the pulse spreads out in time too quickly, it becomes less intense, and then 

nonlinear broadening is limited. To prevent that, the medium should have either a small 

dispersion or a dispersion that counterbalances the chirp caused by nonlinear effects. 

Bulk material and SMFs often have unwanted dispersion properties; whereas dispersion 

properties are controllable by engineering the microstructure of the PCF or by precisely 

controlling the tapering geometry of the tapered fiber. 
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(3) SC generation in bulk material often shows complicated filament forms; while SMFs, 

PCFs, and tapered fibers are usually single mode.  

                  Media 

Properties 
Bulk material 

Single mode fiber 

(SMF) 
Tapered fiber PCF 

(1) Light 

confinement 

Self-focusing 

required. 

~8–10 µm core, 

Small Δn, 

Small N.A.. 

Usually a few µm core, 

Large Δn, 

Large N.A.. 

(2) Dispersion Not controllable Controllable 

Controllable 
(more degrees of 

freedom than 
tapered fiber) 

(3) Mode Usually filaments Usually single mode 

Table 2.1 Comparisons of media for SC generation. Δn is the refractive index contrast 

between the core and the cladding. N.A. = numerical aperture. 

 

2.2 Modeling of Supercontinuum Generation 

2.2.1 The generalized nonlinear Schrödinger equation  

The axial propagation of light in fibers is described by the generalized nonlinear 

Schrödinger equation (GNLSE). The brief derivation procedure is in Table 2.2. This 

section is reorganized from textbooks [Dudley and Taylor, 2010; Agrawal, 2006]. 

We begin by defining the electric field in the time domain:  

                                           ( )0
ˆ( , ) ( , ) expE r t xE r t i tω= −

r r r
 (2.2.1), 

where ( , )E r t
r

is the slowly-varying complex amplitude. ẑ is the axis direction of the fiber 

and the propagation direction of light. x̂ is the polarization direction, which can be 

omitted in the following, because all fields are in x̂ direction under the scalar assumption. 
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The frequency domain representation is  

                      { } [ ]0 0( , ) ( , ) ( , ) exp ( )E r FT E r t E r t i t dtω ω ω ω
∞

−∞
− = = −∫

r r r%  (2.2.2). 

Variable separation can be performed: 

                        0 0 0 0( , ) ( , , ) ( , ) exp( )E r F x y A z i zω ω ω ω ω ω β− = − −r %%                       (2.2.3), 

where 0( , , )F x y ω ω−  is the transverse mode distribution, 0( , )A z ω ω−% is the axial 

propagation envelope, and 0β  is the wave number at 0ω . 

The time domain representation of  is 

              { } [ ]1
0 0 0

1
( , ) ( , ) ( , )exp ( )

2
A z t FT A z A z i t dω ω ω ω ω ω ω

π
∞−

−∞
= − = − − −∫% %  (2.2.4). 

Through the process in Table 2.2, the GNLSE in the time domain is obtained: 

  ( )1
2

2

1 ( , ) ( ) ( , )
2 !

k k

k shockk
k

A i A
A i i A z T R T A z T T dT

z k T T

α β γ τ
+ ∞

−∞
≥

∂ ∂ ∂  ′ ′ ′+ − = + − ∂ ∂ ∂ 
∑ ∫ (2.2.30). 

 

 

 

 

 

0( , )A z ω ω−%
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Electromagnetic field:                       the Maxwell’s equations 
For light: 

2 2

02 2 2

1 E P
E

c t t
µ∂ ∂∇×∇× = − −

∂ ∂

r r
r

 (2.2.5),   in which
2

0 0

1
c

µ ε
= (2.2.6) 

Linear polarization: 
under scalar assumption 
 
 

(1)
0( ) ( )P t E tε χ=     (2.2.7) 

 

Nonlinear polarization: 

( )(1) (2) (3)
0 : ...P E E E E E Eε χ χ χ= ⋅ + + +

ur ur urur ururur
M  (2.2.12) 

Under scalar assumption, only Kerr effect: 

 2(1) (3)
0 0

3
( ) ( ) ( ) ( )

4
xxxxP t E t E t E tε χ ε χ= + ⋅  

                                                 (2.2.13) 

further add delayed response (Raman): 
(1)

0

2(3)
0 1 1 1

( ) ( )

3
      ( ) ( ) ( )

4

t

xxxx

P t E t

E t R t t E t dt

ε χ

ε χ
−∞

=

+ ⋅ −∫
 

                                                  (2.2.26) 

Propagation equation: 

     
2

2

2

( )
( ) 0E E

c

ε ω ω ω∇ + =% %    (2.2.8) 

( )2(1)( ) 1 ( ) 2n i kε ω χ ω α= + = +%  
                                        (2.2.9A) 

2( ) ( )nε ω ω= for lossless 

                                            (2.2.9B) 

Propagate equation: 

Same as (2.2.8) 

2(1) (3)3
( ) 1 ( )

4
xxxx Eε ω χ ω χ= + +%  

                                            (2.2.14) 

      
2(3)3

4
NL xxxx

Eε χ= treated as a constant 

Propagate equation: 

Same as (2.2.8) 

(1)

2(3)
1 1 1

( ) 1 ( )

3
       ( ) ( )

4

t

xxxx R t t E t dt

ε ω χ ω

χ
−∞

= +

+ −∫

%

 

                                                (2.2.27) 

 
How to solve: 
Variable separation: 

0

0 0( , ) ( , ) ( , ) i z
E r F x y A z e

βω ω ω ω− = −%%  
Transverse: solve modes & get axial 
wave number 

2 2
2 2
02 2

( ) 0
F F

k F
x y

ε ω β∂ ∂
 + + − = ∂ ∂

%   

                                       (2.2.10) 
2( ) ( )nε ω ω=  for lossless 

β β=%  for fundamental mode 
 
 
Axial: 

2 2
0 02 ( ) 0

A
i A

z
β β β∂ + − =

∂

%
% %  

                                    (2.2.11) 

How to solve: 
Use the linear lossless solution (left 
column), and add Kerr effect and loss as 
perturbations. 
Consider fundamental mode. The mode 
does not change with the perturbations. 
     2 2( ) 2n n n n nε = + ∆ ≈ + ∆        (2.2.15) 

         
2

2

02

i
n n E

k

α∆ = +
%

      (2.2.16) 

      ( ) ( ) ( )β ω β ω β ω= + ∆%     (2.2.17) 

2
2

2 2

( ) ( , )( )
( )

( ) ( , )

n F x y dxdyn

c F x y dxdy

ωω ωβ ω
β ω

∞

−∞
∞

−∞

∆
∆ = ∫ ∫

∫ ∫
 

          2

2

i
Aα γ= + (loss + Kerr)   (2.2.18) 

    [ ]0( ) ( )
A

i A
z

β ω β ω β∂ = + ∆ −
∂

%
%   (2.2.19) 

meaning: phase shift depending on 
dispersion and nonlinearity.

[ ]{ }0( ) (0)exp ( ) ( )A z A i zβ ω β ω β= + ∆ −% %   

                                               (2.2.20) 

How to solve: 
Use the results in the middle column and 

add replace 
2

E  with 
2

1 1 1( ) ( )
t

R t t E t dt
−∞

−∫ . 

 
 
 
 
 
 
 
 
 
 
 
 
 

     

{ }2

1 1 1

( )
2

          ( ) ( ) ( )
t

i

FT R t t A t dt

β ω α

γ ω
−∞

∆ =

+ −∫
 

                                                         (2.2.28) 

 

Go back to time domain: 
Do inverse FT on propagation equation;  
Taylor expansion on ( )β ω , ( )β ω∆ ,α , γ .  

2 3
0 0 1 0 2 0 3

1 1( ) ( ) ( ) ( ) ...2! 3!β ω β ω ω β ω ω β ω ω β= + − + − + − +

                                                         (2.2.21) 

Go back to time domain: 
Same as left  
+ Add more terms of the Taylor series  
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iFT is equivalent to replacing 0( )ω ω−

with i
t

∂
∂

 

iFT:
2 3

0 1 2 32 3

1 1
 ... 

2! 3!
i i

t t t
β β β β∂ ∂ ∂

⇒ + − − +
∂ ∂ ∂

        

                                                         (2.2.22) 
same for ( )β ω∆ ,α and γ . 

 
2

1 2 02

1

2

A
i i A i A

z t t
β β β ∂ ∂ ∂= − + ∆ ∂ ∂ ∂ 

  

       ` 
                                                        (2.2.23). 
 
 
Change of variable  
                      1T t zβ= −       (2.2.24), 
and then 1 0β → , yielding 

2
2

222 2

A i
A A i A A

z t

αβ γ ∂ ∂= − − + ∂ ∂ 
  

       (for ps pulse)                            (2.2.25) 
 

 
 

( )

0 1

2 3

1 2 32 3

2

0 1 1 1 1

1

2

1
    ...

2! 3!

    ( ) ( )
t

A
i A

z t

i
i i A

t t t

i i A R t t A t dt
t

α α

β β β

γ γ
−∞

∂ ∂ = − + ∂ ∂ 

 ∂ ∂ ∂+ − − + ∂ ∂ ∂ 

∂ + + − ∂ 
∫

                                                          
                                                          (2.2.29)  
 

change of variable 1T t zβ= − , then 1 0β →
define 1 0~

shock
γ γ ω γτ= , and neglect 1α: 

( )

1

2

2

2 !

1

   ( , ) ( ) ( , )

k k

k k
k

shock

A i A
A

z k T

i i
T

A z T R T A z T T dT

α β

γ τ

+

≥

∞

−∞

∂ ∂+ −
∂ ∂

∂ = + ∂ 

′ ′ ′× −

∑

∫

 

                                                         (2.2.30). 
(for fs pulse. Good for pulses as short as a 
few optical cycles if enough higher-order 

k
β  included) 

Table 2.2 Brief derivation of the GNLSE. 

The definition of the variables and the parameters is in Table 2.3. 

The frequency domain GNLSE is 

               ( ) { }2ˆ( ) exp ( ) ( , ) ( ) ( , )
A

i L z FT A z T R T A z T T dT
z

γ ω ω
∞

−∞

′∂ ′ ′ ′= − −
∂ ∫
%

 (2.2.31). 

See Table 2.3 for definition of the variables and the parameters. Eq. 2.2.31 is equivalent 

to Eq. 2.2.30 through Fourier transform and changing of variables. 
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Variables and 
parameters in 

GNLSE 
Definition 

( , )A z T  Axial envelope of the electric field, in time domain. 

( , )A z T  
1

1 4

( , )
( , )

( )eff

A z
A z T FT

A

ω
ω

−   =  
  

%
. 

( , )A z ω%  Frequency-domain representation of ( , )A z T . { }( , ) ( , )A z FT A z Tω =% . 

( , )A z ω′%  ( , )A z ω% with the linear operator absorbed: ( )ˆ( , ) ( , ) exp ( )A z A z L zω ω ω′ = −% %  

( )effA ω  Effective mode area.
( )2

2

4

( , , )
( )

( , , )
eff

F x y dxdy

A
F x y dxdy

ω
ω

ω

∞

−∞
∞

−∞

=
∫

∫
. 

ˆ( )L ω  
Linear operator, including dispersion and loss.  

[ ]0 1 0 0
ˆ( ) ( ) ( ) ( )( ) ( ) 2L iω β ω β ω β ω ω ω α ω= − − − − . 

0n  Linear refractive index. 

2( )n ω  Nonlinear refractive index. 
2

0 2n n n E= + . { }(3)
2

3
Re

8
xxxx

n
n

χ= . 

( )effn ω  Mode effective refractive index. In the simulations ~ 0n .  

( )R t  Nonlinear response function: 2
( , ) ( , ) ( ) ( , )

NL
P r t E r t R t E r t t dt

∞

−∞
′ ′ ′∝ −∫

r r r
. 

α Loss: ( )( ) (0)exp 2A z A zα= . 

k
β  

Taylor expansion coefficient of wave number ( )β ω , representing dispersion 

2 3
0 0 1 0 2 0 3

1 1( ) ( ) ( ) ( ) ...2! 3!β ω β ω ω β ω ω β ω ω β= + − + − + − +  

Inverse FT to time domain
2 3

0 1 2 32 3

1 1
 ... 

2! 3!
i i

t t t
β β β β∂ ∂ ∂

⇒ + − − +
∂ ∂ ∂

 

shock
τ  01

shock
τ ω= .  

γ  Nonlinearity coefficient. 0 2 0

0

( )

( )eff

n

cA

ω ωγ
ω

= . 

( )γ ω  Frequency dependent nonlinearity coefficient: 2 0
1 4

( )
( ) ( )eff eff

n n

cn A

ωγ ω
ω ω

= . 

Table 2.3. Definition of the variables and the parameters in the GNLSE. 
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The physical meaning of the GNLSE is as follows. In the time domain equation (Eq. 

2.2.30), the term 
2

A
α+  shows the loss, and the term 

1

2 !

k k

k k
k

i A

k T
β

+

≥

∂−
∂∑  shows the 

dispersion expanded in Taylor series. At the right hand side, 1iγ ⋅  and shock

d
i i

dT
γ τ⋅  are 

the first and second terms of the Taylor expansion of ( )γ ω (see Eq. 2.2.29 in Table 2.2). 

The term ( )2
( , ) ( ) ( , )A z T R T A z T T dT

∞

−∞
′ ′ ′−∫  describes the nonlinear response, which is 

conceptually proportional to the cube of A.   

In the frequency domain GNLSE (Eq. 2.2.31), the dispersion and the loss are included in 

ˆ( )L ω , and the nonlinearity coefficient is ( )γ ω . These parameters are straightforwardly 

functions of the frequency. The nonlinear response term is still integrated in the time 

domain, and then transformed to the frequency domain. 

More physical interpretation is in Section 2.3. In the following (Section 2.2.2 and 3), 

specific calculation of some terms is introduced in a mathematical perspective.   

 

2.2.2 The dispersion term  

Consider wave number β(ω)  

                                             2 ( )
( )

( ) ( )p

n

v c

π ω ω ωβ ω
λ ω ω

≡ = =  (2.2.32), 

in which vp is the phase velocity. The unit of β(ω) is 1/m. 
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The Taylor expansion of β(ω) is 

2 3
0 0 1 0 0 2 0 0 3 0

1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2! 3!β ω β ω ω ω β ω ω ω β ω ω ω β ω= + − + − + −  

                    4
0 4 0

1 ( ) ( ) ...4! ω ω β ω+ − +  (2.2.33). 

The coefficients βk(ω0) are kth-order dispersions 

                                                   
0

0( )
k

k k

d

d ω

ββ ω
ω

= , k = 0, 1, 2, … (2.2.34). 

1β  is connected to the group velocity gv : 

                                                            
1

1
( )

( )gv
β ω

ω
=  (2.2.35). 

2β is the group velocity dispersion (GVD): 

                                               
2

2 2

( ) 1
( )

( )g

d d

d d v

β ωβ ω
ω ω ω

 
= =   

 
 (2.2.36). 

There is an alternative GVD parameter 

                                             22

2 1
( ) ( )

( )g

c d L
D

L d v

πω β ω
λ λ ω

 
= − =   

 
 (2.2.37). 

0 3
( )k k

β ω
≥ are usually referred to as higher-order dispersions in the SC context. 
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The dispersion coefficient in the GNLSE is 
1

0
2

( )
!

k k

k k
k

i

k T
β ω

+

≥

∂
∂∑ in the time domain (Eq. 

2.2.30) or equivalently
1

0 0 0 1 0 0
2

( )( ) ( ) ( ) ( )( )
!

k
k

k

k

i

k
β ω ω ω β ω β ω β ω ω ω

+

≥

− = − − −∑ in the 

frequency domain (see Eq. 2.2.31 and the definition of ˆ( )L ω in table 2.3). Here this term 

is notated as ( )B ω : 

       0 0 0 1 0( ) ( ) ( ) ( ) ( )B ω β ω β ω ω ω β ω= − − −      

                2 3 4
0 2 0 0 3 0 0 4 0

1 1 1( ) ( ) ( ) ( ) ( ) ( ) ...2! 3! 4!ω ω β ω ω ω β ω ω ω β ω= − + − + − +  (2.2.38). 

2 0( )β ω is the lowest order dispersion considered here. 1 0( )β ω  has been eliminated when 

using the time frame that travels at the group velocity (Eq. 2.2.24). 

There are two ways to calculate ( )B ω  based on 2( )β ω . 

(1) Considering   

                   
2

2 2

( )
( )

d

d

β ωβ ω
ω

=  (2.2.36) 

                             2
2 0 0 3 0 0 4 0

1( ) ( ) ( ) ( ) ( ) ...2!β ω ω ω β ω ω ω β ω= + − + − +  (2.2.39), 

0 3
( )k k

β ω
≥ can be obtained based on 2( )β ω , and then ( )B ω  can be calculated using Eq. 

2.2.38.  

(2) Considering  
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2

2 2

( )
( )

d

d

β ωβ ω
ω

=  (2.2.36) 

                                                                 
2

2

( )d B

d

ω
ω

=  (2.2.40), 

there is: 

                                                       2
2( ) ( )B dω β ω ω= ∫∫  (2.2.41). 

This indefinite integral needs to be zeroed. Considering Eq. 2.2.38, there are: 

                                                 
0

0
2( ) ( ) 0B dω ω

ω β ω ω′ = =∫  (2.2.42A) 

                                        
0

2 2( ) ( ) ( )B d d
ω

ω β ω ω β ω ω ′⇒ = −  ∫ ∫  (2.2.42B), 

and 

                                                              0( ) 0B ω =  (2.2.43A) 

                                         
0

( ) ( ) ( )B B d B d
ω

ω ω ω ω ω ′ ′⇒ = −  ∫ ∫  (2.2.43B). 

 

2.2.3 The Raman term 

When only the Kerr effect (see Section 2.3.1) is concerned, the polarization is 

                                      
2(1) (3)

0 0

3
( ) ( ) ( ) ( )

4
xxxxP t E t E t E tε χ ε χ= + ⋅  (2.2.13). 
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When the Kerr effect and the Raman effect (see Section 2.3.4) are considered, the 

polarization becomes 

                       
2(1) (3)

0 0 1 1 1

3
( ) ( ) ( ) ( ) ( )

4

t

xxxxP t E t E t R t t E t dtε χ ε χ
−∞

= + ⋅ −∫  (2.2.26) 

   
2 2(1) (3) (3)

0 0 0 1 1 1

3 3
( ) (1 ) ( ) ( ) ( ) ( ) ( )

4 4

t

R xxxx R xxxx RE t f E t E t f E t h t t E t dtε χ ε χ ε χ
−∞

= + − ⋅ + ⋅ −∫   

 (2.2.44), 

in which the response function 

                                                  ( ) (1 ) ( ) ( )
R R R

R t f t f h tδ= − +  (2.2.45). 

It is normalized as follows: 

                                                    ( ) 1
R

h t dt
∞

−∞
=∫  (2.2.46A), 

                                                    ( ) 1t dtδ
∞

−∞
=∫  (2.2.46B), 

and 

                                                    ( ) 1R t dt
∞

−∞
=∫  (2.2.46C). 

In Eq. 2.2.44 (compare with Eq. 2.2.13), the first term is the linear response, the 2nd term 

is the Kerr effect, which is electronic response considered instantaneous, and the 3rd term 

is the Raman effect, which is a delayed response.  

Consider Eq. 2.2.44 in the frequency domain and we can see more physical meaning: 
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2 2

(1) (3) (3)
0 0 0

3 3
( ) ( ) (1 ) ( ) ( ) ( ) ( ) ( )

4 4
R xxxx R xxxx RP E f E E f h E Eω ε χ ω ε χ ω ω ε χ ω ω ω= + − + %% % % % % %    

 (2.2.47), 

in which { }( ) ( )R Rh FT h tω =% , and the convolution 2

1 1 1( ) ( )
t

R
h t t E t dt

−∞
−∫ in Eq. 2.2.44 

has been transformed to 
2

( ) ( )Rh Eω ω% %  here. The 3rd term is the Raman term, which 

shows a complex susceptibility:  

      { } { }( )2 2
(3) (3) (3)3 3

( ) ( ) ( ) Re ( ) Im ( )
4 4

R xxxx R R xxxx R R xxxx Rf h E E f h f hχ ω ω ω χ ω χ ω= +% % %% %  (2.2.48). 

The real part is associated with the real refractive index, which will cause a phase delay 

in the solution field. The imaginary part is associated with the imaginary refractive index, 

which causes gain or loss. The Raman gain spectrum is 

                                            { }0 22
( ) Im ( )R R R

n
g f h

c

ωω ω= %   

                                                       { }2

0

4
Im ( )R R

n
f h

π ω
λ

= %   

                                                       { }1 Im ( )R Rc f h ω= ⋅ %  (2.2.49). 

In the last step 2

0

4
1

n
c

π
λ

=  is used for clarity. 

To obtain ( )Rh t or ( )Rh ω% , usually { }Re ( )Rh ω% and { }Im ( )Rh ω% are needed. The Raman gain 

spectrum ( )
R

g ω  can be measured experimentally, so that { }Im ( )Rh ω% can be calculated. 

But { }Re ( )Rh ω%  is hard to obtain, because it requires measuring the wavelength-
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dependent refractive index. There are two methods to calculate ( )Rh ω% based on ( )
R

g ω  

alone, without knowing { }Re ( )Rh ω% . 

(1) The Kramers-Kronig relation connects the real and the imaginary parts of 

susceptibility: 

                                       { } { }
2 20

Im ( )2
Re ( ) d

ω χ ω
χ ω ω

π ω ω
∞ ′

′=
′ −∫  (2.2.50). 

(3) ( )R xxxx Rf hχ ω% is proportional to the Raman-induced susceptibility:  

                                     { } { }(3) (3)Re ( ) Re ( )xxxx Raman R xxxx Rf hχ ω χ ω∝ %  (2.2.51A), 

                                     { } { }(3) (3)Im ( ) Im ( )xxxx Raman R xxxx Rf hχ ω χ ω∝ %  (2.2.51B). 

So { }Re ( )Rh ω% and { }Im ( )Rh ω% are connected through the Kramers-Kronig relation too. 

After calculating { }Im ( )Rh ω% based on ( )
R

g ω , { }Re ( )Rh ω% can be calculated based on

{ }Im ( )Rh ω% . And then ( )Rh ω% is obtained. 

(2) Since ( )
R

g ω is connected with only the imaginary part of ( )Rh ω% , the sine/cosine 

transforms can be used to replace the Fourier/inverse Fourier transforms. The sine/cosine 

transforms are defined as: 

                                    { }
0

( ) ( ) 2 ( ) sin( )
Sin

G ST g t g t t dtω ω
∞

= = ∫  (2.2.52A), 

                                    { }
0

( ) ( ) 2 ( ) cos( )
Cos

G CT g t g t t dtω ω
∞

= = ∫  (22.52B). 
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The inverse sine/cosine transforms have the same forms: 

                                   { }
0

( ) ( ) 2 ( ) sin( )
Sin Sin

g t ST G G t dω ω ω ω
∞

= = ∫  (2.2.53A), 

                                   { }
0

( ) ( ) 2 ( ) cos( )
Cos Cos

g t CT G G t dω ω ω ω
∞

= = ∫  (2.2.53B). 

Note sine/cosine transforms are defined on 0t ≥ and 0ω ≥ . 

Considering ( 0) 0
R

h t < = , the Fourier transform can be replaced by the sine/cosine 

transforms: 

                     { } { } { }1 1
( ) ( ) ( ) ( )

2 2
R R R Rh FT h t CT h t i ST h tω = = + ⋅%     ( 0t ≥ ) (2.2.54). 

And because ( )
R

h t is real, the imaginary part of the last equation is:  

                                           { } { }1
Im ( ) ( )

2
R Rh ST h tω =%     ( 0ω ≥ )  (2.2.55). 

Thus Eq. 2.2.49 becomes  

                                                  { }1
( ) 1 ( )

2
R R Rg c f ST h tω = ⋅ ⋅  (2.2.56). 

Using the inverse sine transform: 

                                             { }2
( ) ( )

1
R R

R

h t ST g
c f

ω=
⋅

 

                                                      { }{ }4
Im ( )

1
R

R

FT g
c f

ω=
⋅

 ( 0t ≥ , 0ω ≥ ) (2.2.57), 
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thus ( )Rh t is directly calculated based on ( )Rg ω . 

( )
R

h t should be normalized by definition (Eq. 2.2.46A). Given absolute-valued (not 

relative-magnitude) ( )
R

g ω , R
f is adjusted to guarantee that Eq. 2.2.57 holds. 

A popular simplification of the Raman gain spectrum ( )
R

g ω is modeling it as a 

Lorentzian curve: 

                                            
2

0 2 2
0

( 2)
( )

( ) ( 2)Rg g
ωω

ω ω ω
∆=

− + ∆
 (2.2.58), 

where 0ω is the frequency of the peak, ω∆  is the FWHM, and 0g is the peak magnitude. 

Under this approximation, the Raman response function ( )
R

h t is a damping oscillation 

(normalized): 

                                        

2 2
1 2

2
1 2 2 1

( ) exp sin ( )R

t t
h t t

τ τ
τ τ τ τ

   += − Θ   
   

 (2.2.59), 

where ( )tΘ is the Heaviside step function. Comparing Eq. 2.2.59 with the Fourier 

transform of Eq. 2.2.58, we see the oscillation period 1τ is associated with the frequency 

of the peak in the gain spectrum 

                                                  1

0 0 0

1 1 1

2 2f c
τ

ω π π β
= = =

⋅
 (2.2.60A), 

and the damping rate 2τ is associated with the width of the gain spectrum 
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                                                  2

1 1 1

2 f c
τ

ω π π β
= = =

∆ ⋅ ∆ ⋅ ∆
 (2.2.60B). 

0ω , 0f , and 0β are the angular frequency, frequency, and wave number of the peak, 

respectively; and ω∆ , f∆ , and β∆ are the FWHM of the gain spectrum in angular 

frequency, frequency, and wave number, respectively. 

The Heaviside step function ( )tΘ guarantees the causality relation that the induced 

nonlinearity at time T is caused by the field at time t T−∞ < < : 

                                         2
( , ) ( ) ( , )A z T T A z T T dT

∞

−∞
′ ′ ′Θ −∫  

                                        
0 2

( , ) ( , )A z T A z T T dT
−∞

′ ′= −∫  

                                       2
( , ) ( , )

T

A z T A z t dt
−∞

= ∫   (used t T T ′= − ) (2.2.61). 

The model of Eq. 2.2.58 and 59 is not very accurate, especially when ( )
R

g ω has multiple 

dominant peaks. Modeling ( )
R

g ω as a sum of multiple Lorentzian functions has been 

reported [Hollenbeck and Cantrell, 2002; Qin et al, 2007]. One can simply use the 

approximation-free form of ( )
R

h t calculated from the numerical curve of ( )
R

g ω when 

possible. 
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2.2.4 Implementation of numerical simulation 

Two popular methods to numerically solve the GNLSE are: (1) split-step Fourier method 

based on Eq. 2.2.30, and (2) direct integration based on Eq. 2.2.31 since it is an ordinary 

differential equation (ODE).  

The second method is used in my simulations. Ignoring the frequency dependence of 

2 ( )n ω , ( )effn ω , and ( )effA ω , Eq. 2.2.31 is simplified to 

                 ( ) { }2

0

ˆexp ( ) . . ( , ) ( ) ( , )
A

i L z F T A z T R T A z T T dT
z

ωγ ω
ω

∞

−∞

′∂ ′ ′ ′= − −
∂ ∫
%

 (2.2.62). 

Here ( , )A z T has been used to replace ( , )A z T  in Eq. 2.2.31. 
3 4( )effA ω−

has been factored 

out. And 3 4( ) ( )effAγ ω ω− is simplified to 
0

ωγ
ω

 under the approximation that 

2 2 0( ) ~ ( )n nω ω , 0( ) ~effn nω , and 0( ) ~ ( )
eff eff

A Aω ω . 

The pump is firstly modeled in the time domain as a Gaussian or sech2 pulse, and then 

transformed into the frequency domain.  

In the implementation of the numerical simulations, there are two requirements on the 

numerical grids. (1) The temporal grid must cover the whole time duration that the pulse 

will spread to. (2) The frequency grid must cover 2× the highest frequency of the 

radiation. 

The “ODE45” solver in MATLAB is used here to solve Eq. 2.2.62. The solver 

automatically finds optimal step lengths to satisfy user-specified precisions. The code 
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provided in [Dudley and Taylor, 2010] is used here, with some adjustment (see Appendix 

C).  

 

2.3 Major Physical Processes in Supercontinuum Generation 

2.3.1 Kerr effect and self phase modulation 

The Kerr effect is the change of refractive index depending on the applied electric field: 

                                                    
2

0 2 0 2n n n E n n I= + = +
r

 (2.3.1), 

where the nonlinear refractive index 2n is related to the 3rd order susceptibility 

                                                          ( )(3)
2

0

3
Re

8
xxxxn

n
χ=  (2.3.2), 

which can be derived from Eq. 2.2.9A and 2.2.13 under some approximation. 

The Kerr effect can cause self phase modulation (SPM), cross phase modulation (XPM), 

and some other phenomena. In SPM, the intensity-dependent refractive index and the 

temporal shape of the pulse cause phase shift, leading to frequency shift. New 

frequencies are generated continuously, and the spectrum is broadened.  

SPM can be calculated analytically as follows. Consider the phase propagation 

                                           0 0 0 0

0

2
t kx t nL

πφ ω φ ω φ
λ

= − + = − +  (2.3.3), 
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in which ω0 is the carrier frequency, k is the wave number, ϕ0 is the initial phase, λ0 is the 

carrier wavelength, and L is the propagation length. 

The frequency is related to the phase by 

                                                                     
d

dt

φω =  (2.3.4). 

Plugging Eq. 2.3.3 in Eq. 2.3.4 yields 

                                                    0

0

2 L dn

dt

πω ω
λ

= −  

plugging in Eq. 2.3.1: 

                                                        2
0

0

2 ( )n L dI t

dt

πω
λ

= −  (2.3.5), 

which means the frequency shift depends on 2n and the slope dI dt . For optical pulses, 

there is dI dt > 0 at the leading edge, yielding a red shift in frequency; at the trailing 

edge, there is dI dt < 0, yielding a blue shift.  

 

2.3.2 Dispersion 

Optical dispersion refers to the phenomenon that the velocity of light depends on its 

frequency. Usually, the dispersion refers to the frequency dependence of the phase 

velocity vp; and the group velocity dispersion (GVD) refers to the frequency dependence 

of the group velocity vg.  
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Dispersion is a linear effect, in which no new frequencies are generated, and no original 

frequencies are annihilated. It is a temporal redistribution of radiation of different 

frequencies, causing temporal broadening or compression and chirps.  

According to Eq. 2.2.30, β2(ω) is the lowest-order of dispersion considered in the SC 

generation context, also the dominant dispersion term in most cases. Along propagation, 

normal GVD (β2 > 0, D < 0) causes up-chirp, because red light travels faster, and the 

leading edge becomes redder and the trailing edge bluer. In the opposite case, anomalous 

GVD (β2 < 0, D > 0) causes down-chirp. The wavelength of zero GVD is called the zero 

dispersion wavelength (ZDW).  

Recall SPM causes up-chirp, namely red shift at the leading edge and blue shift at the 

trailing edge. When normal GVD is added to SPM, the red-shifted radiation at the leading 

edge travels faster than the main pulse (frequency not shifted), and the blue-shifted 

radiation at the trailing edge travels slower than the main pulse. This causes the pulse to 

become longer in time, and lowers the peak power, and thus limits further spectral 

broadening. 

When anomalous GVD is added to SPM, frequency-shifted radiation at the leading and 

the trailing edges tends to squeeze into the main pulse in time, making the pulse peak 

power higher. Generally speaking, the pulse tends to swing back and forth between 

spectrally-broader-temporally-shorter and spectrally-narrower-temporally-longer. This is 

the case of higher-order solitons introduced in the next section. Under certain 

circumstances, anomalous GVD and SPM perfectly balance each other, and the pulse 
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keep invariant in spectrum and in time. This is the case of a fundamental soliton as in the 

next section. 

 

Fig. 2.1 Spectral and temporal evolution when different GVD is added to SPM. (a) SPM 

+ normal GVD. The normal GVD limits the spectral broadening. (b) SPM + anomalous 

GVD. The pulse swings back and forth between spectrally-broader-temporally-shorter 

and spectrally-narrower-temporally-longer. This is a higher-order soliton propagating 

periodically (see Section 2.3.3). (c) SPM + a particular value of anomalous GVD such 

that they perfectly balance each other. In this case the pulse keeps invariant in spectrum 

and in temporal profile. This is a fundamental soliton (see Section 2.3.3).  
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2.3.3 Soliton and soliton fission 

An optical soliton is an optical pulse that is temporally unbroadened and undistorted 

during propagation [Hasegawa and Tappert, 1973; Mollenauer et al., 1980]. Consider the 

GNLSE including the Kerr effect and GVD: 

                                                  
2

22
22

dA A
i A A

dz T

β γ∂= −
∂

 (2.3.6). 

The variables can be normalized as follows: 

                                0U A P= ,       
Dz Lξ = ,       and 0T Tτ =  (2.3.7), 

yielding 

                                            
2

222
2

sgn( )

2

dU U
i N U U

d

β
ξ τ

∂= −
∂

 (2.3.8), 

in which N is defined as  

                                                      
2

2 0 0

2

D

NL

PTL
N

L

γ
β

= =  (2.3.9). 

N is called soliton number, the meaning of which will be shown in the following. LD and 

LNL are the characteristic dispersion length and nonlinear length, respectively, which 

quantify the length scale over which the dispersion or the nonlinear effect becomes 

significant: 

                                                         2
0 2DL T β=     (2.3.10A), 
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                                                         01NLL Pγ=   (2.3.10B). 

In the anomalous GVD regime where sgn(β2) = −1, Eq. 2.3.8 becomes 

                                                  
2

22

2

1

2

dU U
i N U U

dξ τ
∂= − −
∂

 (2.3.11). 

This can be further simplified to the standard form of NLS equation: 

                                                   
2

2

2

1
0

2

du u
i u u

dξ τ
∂+ + =
∂

 (2.3.12) 

by defining 

                                                     2
0 2u NU T Aγ β= =  (2.3.13). 

For N = 1, the solution of Eq. 2.3.12 is 

                                              2( , ) sech( ) exp( 2)u iξ τ η ητ η ξ=            (2.3.14). 

Choosing u(0,0) = 1, it becomes the canonical form: 

                                                   ( , ) sech ( ) exp( 2)u iξ τ τ ξ=  (2.3.15) . 

This is the fundamental (N = 1) soliton. Its spectrum and temporal profile do not change 

in propagation (see Fig. 2.1 (c)).  

For N ≥ 2, there is a subset of solutions with initial fields of 

                                                     ( 0, ) sech( )u Nξ τ τ= = ⋅       (2.3.16). 
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These are higher-order (Nth-order) solitons [Shabat and Zakharov, 1972]. They can 

evolve periodically along the propagation direction [Stolen et al., 1983]. Fig. 2.1 (b) 

shows an example of N = 3. 

If the initial pulse has a non-integer N% (Eq. 2.3.9), it will evolve to a soliton of the closest 

integer N. When 1 2N ≤% , no soliton will be formed. If the initial pulse is not a sech2 pulse 

(note it is called sech2 because u ∝ sech and I = u2 ∝ sech2), it will evolve to the sech2 

shape. In the evolution of changing N, changing temporal shape, or changing both, the 

pulse adjusts its temporal shape, including the peak power and the duration, and in the 

end becomes a soliton that satisfies Eq. 2.3.9. A part of the pulse energy might disperse 

away in this process. 

When more terms are added to Eq. 2.3.8, higher-order solitons may not propagate 

periodically, but instead break into N fundamental solitons [Kodama and Hasegawa, 

1987]. These fundamental solitons are ejected from the main pulse one by one. This is 

called soliton fission which is one dominant process in SC generation in the anomalous 

GVD regime. In typical SC generation using a fs pump, major causes of soliton fission 

are intrapulse Raman scattering or higher-order dispersion.  

Soliton fission length is the characteristic propagation distance at which soliton fission 

happens. It generally corresponds to where the higher-order soliton reaches its maximum 

bandwidth, or equivalently minimum temporal duration. A useful empirical expression of 

soliton fission length is [Dudley et al., 2006]: 
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2

0

2 0

~ D
fiss D NL

TL
L L L

N Pβ γ
= =  (2.3.17). 

The initialization of soliton fission is interpreted as a process of modulation instability 

(MI) [Islam et al., 1989]. MI is a process whereby nonlinearity and anomalous GVD 

yields a gain spectrum on amplitude perturbations, causing amplification of spectral 

sidebands, and yielding modulation on the temporal profile and eventually breakup of the 

temporal profile into a train of sub-pulses.  

 

2.3.4 Intrapulse Raman scattering  

Raman scattering is inelastic scattering of photons. A photon interacts with a molecule, 

and causes it to transit to another vibration mode. Energy transfer thus happens between 

the photon and the molecule. When the molecule transits to a higher-energy mode and the 

photon has a red shift in its frequency, it is called Stokes Raman scattering; the opposite 

case is called anti-Stokes Raman scattering.  

In the SC context, the specific mechanism based on the Raman effect is intrapulse Raman 

scattering [Gordon, 1986]. A pulse has a red shift, called Raman induced frequency shift 

(RIFS), because the blue edge of the pulse pumps the red edge. This can happen when the 

spectral bandwidth of the pulse is larger than 0 s
ω ω− of the material. 0ω is the pump 

frequency and s
ω is the Stokes frequency. Fig. 2.2 (a) shows typical soliton fission 

caused by the Raman effect. 
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If the pulse maintains a sech2 shape, the RIFS can be calculated analytically: 

                                                              
2

4
0

d

dz T

βΩ ∝  (2.3.18), 

in which Ω is the central frequency of the pulse, and T0 is its duration. If the pulse has 

temporal broadening during propagation, the frequency shift saturates quickly due to the 

4
0T −∝ dependence. Fundamental solitons usually have big shifts because they maintain 

short duration. In the case of higher-order solitons, each ejected fundamental soliton has 

its own red shift after soliton fission. In a typical spectral evolution of SC in the 

anomalous regime, red-shifting soliton trajectories are obvious signatures. The shift is 

important in defining the bandwidth of SC at the long-wavelength side.  

 

Fig. 2.2 (a) Adding the Raman term causes soliton fission. The spectral trajectory and 

temporal trajectory of a soliton are marked. The soliton fission length Lfiss = 0.48 cm is 

marked with white arrows. It can be seen this distance is where the pulse reaches the 
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maximum spectral width and the shortest duration before splitting, which is consistent 

with this empirical definition of soliton fission length. (b) Further adding 3rd-order 

dispersion causes dispersive wave (Cherenkov radiation) in addition to soliton fission. 

The dispersive wave is marked in spectral and temporal evolution.  

 

2.3.5 Dispersive wave (Cherenkov radiation) generation  

Under the perturbation of higher-order dispersions ( 3|
k k

β ≥ ), solitons can induce resonant 

radiation in the normal GVD regime. The resonant radiation, called dispersive wave, has 

spectrally-narrow peaks with long temporal durations [Akhmediev and Karlsson, 1995]. 

The mechanism of dispersive wave generation was found to be equivalent to Cherenkov 

radiation. Thus is it often so called. Fig. 2.2 (b) shows typical graphical features of 

Cherenkov radiation in evolution plots. 

The wavelength of the dispersive wave is determined by the phase-matching condition 

with the soliton. The dispersive wave defines the breadth of SC at the normal GVD 

side(s). In the soliton fission context, each ejected fundamental soliton has its own 

dispersive wave peak. If there are two ZDWs, which means two normal GVD regimes at 

both the red and the blue sides, each soliton can have two corresponding dispersive wave 

peaks in both of the normal GVD regimes [Skryabin et al., 2003]. 
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2.4 Measurement of Coherence 

2.4.1 Coherence of quasi-monochromatic light 

 

Fig. 2.3 Experiments of coherence measurement. (a) Young’s double slit experiment;  

(b) Michelson interferometry. Source: (a) <http://www.physicsoftheuniverse.com/topics 

_quantum_quanta.html>; (b) <http://en.wikipedia.org/wiki/Michelson_interferometer>. 

Coherence quantifies the phase correlation between two optical waves. Although SC is 

broadband, it is natural to start the discussion with the coherence of quasi-monochromatic 

light. This section is adopted and reorganized from textbooks [Alfano, 2005; Born and 

Wolf, 1999]. 

Young’s experiment (Fig. 2.3 (a)) concerns secondary waves from two points in the 

primary field. Michelson’s experiment (Fig. 2.3 (b)) considers the interference between a 

field and a delayed replica. 

Suppose stationary fields at the slits of the Young’s experiment are  

                                           [ ]{ }1 1 1( ) exp ( )E t E i t tω φ= − +    (2.4.1A),  
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                                           [ ]{ }2 2 2( ) exp ( )E t E i t tω φ= − +   (2.4.1B), 

where 1,2E are real amplitudes, ω  is the carrier frequency, and 1,2φ are initial phases. 

The fields at point Q on the screen are  

          [ ]{ }1 1 1 1 1 1 1( , , ) exp ( ) ( )E Q t L K E i t L c t L cω φ= − − + −    

  [ ]{ }1 1 1 1 1 1   ( , ) ( ) exp ( ) ( ) ( )E Q t E Q i t t E Q E t Eω φ′ ′ ′⇒ = − + = ⋅   (2.4.2A), 

          [ ]{ }2 2 2 2 2 2 2( , , ) exp ( ) ( )E Q t L K E i t L c t L cω φ= − − + −   

   [ ]{ }2 2 2 2 2 2   ( , , ) ( ) exp ( ) ( ) ( ) ( )E Q t E Q i t t E Q E t Eτ ω τ φ τ τ′ ′ ′⇒ = − − + − = ⋅ −  (2.4.2B), 

where 1L and 2L are the optical distances from S1 and S2 to Q, respectively. 1t t L c′ = − , 

and τ = (L2−L1)/c. K1 and K2 are constants containing the attenuation and the constant 

phase shift from the primary wave to the secondary waves. 

The intensity on the screen is independent of time t: 

[ ] [ ]*

12 1 2 1 2( , ) ( , ) ( , , ) ( , ) ( , , )
t

I Q E Q t E Q t E Q t E Q tτ τ τ= + +   

2 2 *
1 2 1 2( , ) ( , , ) ( , ) ( , , ) . .

tt t

E Q t E Q t E Q t E Q t c cτ τ= + + +  

[ ]{ }1 2 1 2 2 1( ) ( ) ( ) ( ) exp ( ) ( ) . .
t

I Q I Q E Q E Q i t t c cωτ φ τ φ′ ′= + + − − + − − +   

[ ]1 2 1 2 2 1( ) ( ) 2 ( ) ( ) cos ( ( ) ( ))
t

I Q I Q E Q E Q t tωτ φ τ φ′ ′= + + ⋅ − − −   (2.4.3). 

c.c. means the complex conjugate term. The time average with respect to t 
t
is added, 

because detectors are slow compared to the oscillation of the field. In the following the 

subscript t is omitted. 



34 
 

For coherent light, the difference in the initial phases 2 1( ) ( )t tφ τ φ′ ′− − is constant and 

can be removed, yielding a term of cosine fringes (the last term of Eq. 2.4.3). Changing

2 1( ) ( )t tφ τ φ′ ′− − causes the fringes to shift in the direction perpendicular to the fringes. 

Incoherent or partially coherent light has fast fluctuation of g 2 1( ) ( )t tφ τ φ′ ′− − , lowering 

the contrast of the fringes. In this case, the last term of Eq. 2.4.3 can be evaluated by 

introducing the mutual coherence function 

                         [ ]{ }*
12 1 2 12 12( ) ( ) ( ) (0) exp ( )E t E t iτ τ ωτ τ′ ′Γ = − = Γ + Ψ  (2.4.4), 

where [ ]12 12( ) arg ( )τ τΨ = Γ . Note E1,2 here are the fields at S1 and S2 as defined in Eq. 

2.4.1, not the fields at the screen E1,2(Q) as in Eq. 2.4.2. The intensity at Q is measured to 

infer the coherence of fields at S1 and S2. When subscript 1 = subscript 2, 

*
11 1 1( ) ( ) ( )E t E tτ τΓ = − is the autocorrelation function, or called self-coherence function. 

When subscript 1 = subscript 2 and 0τ = , *
11 1 1 1( 0) ( ) ( )E t E t IτΓ = = = is the intensity. 

Using the definition in Eq. 2.4.4, Eq. 2.4.3 becomes 

             [ ]1 2
12 1 2 12 12

1 2

( ) ( )
( , ) ( ) ( ) 2 ( ) cos ( )

E Q E Q
I Q I Q I Q

E E
τ τ ωτ τ= + + ⋅ Γ + Ψ    

                         [ ]1 2
1 2 12 12

1 2

( ) ( )
( ) ( ) 2 ( ) cos ( )

I Q I Q
I Q I Q

I I
τ ωτ τ= + + ⋅ Γ + Ψ   (2.4.5). 

The coherence function 12( )τΓ can be normalized by introducing 

                              
[ ]

12 12 12
12 1 2

1 2 1 211 22

( ) ( ) ( )
( )

(0) (0) E E I I

τ τ τγ τ Γ Γ Γ= = =
Γ Γ

 (2.4.6). 
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And Eq. 2.4.5 becomes 

                 [ ]12 1 2 1 2 12 12( , ) ( ) ( ) 2 ( ) ( ) ( ) cos ( )I Q I Q I Q I Q I Qτ γ τ ωτ τ= + + ⋅ + Ψ  (2.4.7). 

The term 1 2( ) ( )I Q I Q+ is the DC portion, and the last term is cosine fringes. The period of 

the fringes is 

                                                             2τ π ω∆ =  (2.4.8). 

The visibility/contrast of the fringes is 

                                     1 2m min
12

m min 1 2

2 ( ) ( )( )
( ) ( )

( ) ( ) ( )
ax

ax

I Q I QI I
V

I I I Q I Q
τ γ τ−= =

+ +
 (2.4.9). 

12( )γ τ only depends on the phase correlation. 1 2

1 2

2 ( ) ( )

( ) ( )

I Q I Q

I Q I Q+
is a factor representing the 

intensity imbalance, which equals 1 when 1 2( ) ( )I Q I Q= . These two factors together 

determine the fringe contrast. 

To apply the above discussion to Michelson interferometry, one just needs to replace 

subscript 2 with 1. 

   

2.4.2 Coherence of broadband light 

Broadband radiation can be expressed as a Fourier integral: 

                      [ ]{ }( ) ( ) 2 ( ) exp ( ) 2E t E d E i t dω ω π ω ω ϕ ω ω π= = − +∫ ∫%  (2.4.10). 

For interference of broadband radiation, the source fields E1,2(t) and the fields on the 

screen E1,2(Q, t) in Section 2.4.1 can all be expressed in this form. The interference signal 
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is thus the superposition of fringes of each frequency (Fig. 2.4 (a)). Because the 

overlapping fringes of each frequency have different periods: 2τ π ω∆ =  (Eq. 2.4.8), 

they become indistinguishable.  

We can spectrally resolve the signal in the direction parallel to the fringes, and obtain 2D 

I(x,ω), as in Fig. 2.4 (b). For fringes at each frequency, it is reduced to a monochromatic 

interference problem. Eq. 2.4.9 can be used to calculate the coherence 12( )γ τ for each 

frequency, and combine the results to obtain 12( , )γ τ ω . 

  

Fig. 2.4 Methods to measure frequency-dependent coherence for broadband light. (a) 

Interference of broadband light yields overlapped fringes of all frequencies. (b) Spectrally 

resolve the signal along the direction of fringes (here vertically) to obtain a 2D pattern. At 

horizontal line is the fringe of a frequency. (c) Spectrally resolve the fringes in the 

direction perpendicular to the fringes (here horizontally), resulting in a spectrum with 

fringes. Prisms are used to conceptually illustrate spectrally resolving the signal. 

Or one can spectrally resolve the fringes in the direction perpendicular to the fringes (Fig. 

2.4 (c)). The result can be described in the frequency domain:  
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        [ ]12 1 2 1 2 12 12( , ) ( , ) ( , ) 2 ( , ) ( , ) ( ) cos ( , )I Q I Q I Q I Q I Q gω ω ω ω ω ω ωτ δ ω τ= + + −   

 (2.4.11), 

in which 1,2 ( , )I Q ω are the spectra on the screen. And  

                                                
*
1 2

12

1 2

( ) ( )
( )

( ) ( )

E E
g

I I

ω ω
ω

ω ω
=

% %

   (2.4.12) 

is the spectral degree of coherence. Eq. 2.4.11 has a similar form as Eq. 2.4.8, and also it 

can be obtained by performing the Fourier transform on Eq. 2.4.8. 

In experiment, the interference signal is sent into a spectrometer, and a spectrum with 

fringes is shown. The fringe period is 

                                                                 2ω π τ∆ =  (2.4.13). 

And the visibility/contrast is 

                                1 2m min
12

m min 1 2

2 ( , ) ( , )( )
( ) ( )

( ) ( , ) ( , )
ax

ax

I Q I QI I
V g

I I I Q I Q

ω ω
ω ω

ω ω
−= =
+ +

 (2.4.14). 

12( )g ω involves only the phase correlation; and 1 2

1 2

2 ( , ) ( , )

( , ) ( , )

I Q I Q

I Q I Q

ω ω
ω ω+

represents the 

intensity imbalance. These two factors together determine the fringe contrast.  

 

2.4.3 Coherence of SC 

SC coherence usually refers to the pulse-to-pulse coherence, namely, 1( )E ω%  and 2( )E ω%  

in Eq. 2.4.12 refer to two independently generated SC pulses. A popular experimental 
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scheme is to use two successive pump pulses to generate two SC pulses in the same 

medium, and these SC pulses yield interference. In the simulations, two independently 

generated SC pulses are modeled by repeatedly solving the GNLSE with independent 

noise seeds.    

The pump for SC, usually a mode-locked laser, is coherent pulse-to-pulse. So the interest 

is: can this coherence be maintained during the SC generation process? Despite the 

complexity of SC generation, it has been shown that the coherence can be maintained in 

some circumstances. The mechanism of coherence degradation has been investigated by 

experiments and by simulations, as reviewed in Chapter 3.  



39 
 

3. BACKGROUND 

SUMMARY 

This chapter reviews previous research about supercontinuum (SC) coherence, 

and introduces the motivation for my research. 

3.1 reviews simulation research of SC coherence. Coherence properties 

depending on various parameters were shown. And a few theories were 

developed based on them, as compiled in Table 3.1. 

3.2 reviews experimental research of SC coherence (compiled in Table 3.2). 

Most of the experiments have shown coherence measured under a limited 

collection of conditions (e.g., at several levels of SC power), and are unable to 

show evolving trends and some subtle features. This limits detailed discussion 

about the coherence. Discussions in a lot of previous experimental research are 

based on spectrally-averaged coherence. 

3.3 introduces the motivation of my research. Evolution of the spectrum and the 

coherence was measured by continuously tuning the SC power. These data are 

expected to visualize the dynamics and allow for detailed comparison with 

simulations. The dependence of coherence on the propagation length was 

investigated by using different lengths of fibers.  
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3.1 Simulation Research of SC Coherence 

SC coherence can be modeled by repeatedly solving the GNLSE with independent noise 

seeds and then calculating the coherence using Eq. 2.4.12. Major noise sources include 

quantum-limited shot noise in the pump, spontaneous Raman noise along the 

propagation, and pulse-to-pulse fluctuation of the pump power (technical noise). 

The Dudley group [Dudley and Coen, 2000a and 2000b; Dudley et al., 2006] used 12g  

to quantify SC coherence. Quantum noise and Raman noise were added [Drummond and 

Corney, 2001]. Raman noise was found to have little impact on the coherence. Technical 

noise was not included.  

Contour plots of 12( , )g Lλ were shown, in which L is the propagation distance (Fig. 3.1 

(a) and (b)). These evolution data show changing trends of coherence along the 

propagation distance. Coherence evolution compared to corresponding spectral evolution 

can show connections between coherence properties and spectral behaviors. The 

dependence of coherence on pump pulse duration T0 and pump wavelength λ0 was 

investigated (Fig. 3.1 (c)).  
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Fig. 3.1 Simulation results of SC coherence, excerpted from [Dudley et al., 2006]. (a) and 

(b): Spectral and coherence evolution using a 100-fs and a 150-fs pump, respectively. 

The pump peak power is 10 kW. The ZDW of the PCF is 780 nm, and the pump 

wavelength is 835 nm (anomalous GVD pump). (c) Contour plot of average coherence as 

a function of the pump wavelength and the pump pulse duration. The pump peak power is 

fixed to be 4 kW. The ZDW of the PCF is 780 nm (marked with a dash line). (d) Average 

coherence vs. soliton number N, summarized from multiple simulations using various 
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parameter sets, in which the pump wavelength is ranged 790–900 nm, pump pulse 

duration is 30–200 nm, and pump peak power is 3–30 kW. 

The following dynamics were found from the results. (1) Shorter pump pulse duration 

produces higher coherence. This can be seen by comparing Fig. 3.1 (a) and (b). At a 

propagation distance L >> Lfiss, 50-fs pump yields SC of nearly perfect coherence using 

the parameter set they used (Fig. 3.1 (a)).  

(2) Soliton fission can cause dramatic coherence degradation, as in Fig. 3.1 (b).  

(3) Pumping in the normal GVD regime generates SC of nearly perfect coherence. 

Moving the pump wavelength into the anomalous GVD regime yields coherence 

degradation; however, moving the pump wavelength further into the anomalous GVD 

regime restores the coherence. This can be seen in Fig. 3.1 (c). 

These dynamics can be explained by a unified story. SPM is a coherence-maintaining 

process; while MI can amplify noise. In the normal GVD regime, MI is prohibited, and 

coherence is high. In the anomalous GVD regime, if MI is significant before the 

broadening spectrum covers the MI gain spectrum, MI amplifies the noise background, 

causing coherence degradation. If MI is significant after the pulse has broadened to cover 

the MI gain spectrum, MI amplifies coherent radiation, yielding coherent output. Because 

dramatic spectral broadening is associated with soliton fission, the criterion of coherence 

is based on comparing the characteristic length of MI (LMI) with the characteristic length 

of soliton fission (Lfiss). Coherence is high when LMI >> Lfiss, or equivalently the soliton 

number  

                                                                   N << 16  (3.1.1), 
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considering Lfiss ~ LD /N and LMI  ~ 16LNL. Soliton number thus is a criterion of coherence. 

Average coherence vs. soliton number is plotted in Fig. 3.1. (d) by compiling results 

using various parameter sets. Each parameter set includes pump wavelength, pump pulse 

duration, and pump peak power. 

Gu et al. (2003) simulated SC coherence to match with experiment. It was found that 

adding quantum noise alone causes almost no coherence degradation (because the short 

pump pulses used here TFWHM = 60 fs). Adding 2% pump power fluctuation yields the 

same average coherence degradation as measured.  

Türke et al. (2007) reported simulations of SC coherence using varying pump pulse 

duration T0 and pump peak power P0, and compared them with experimental results. A 

fixed propagation length L >> Lfiss and a pump in the anomalous GVD regime were used. 

The experimental and the simulated results are similar to that in [Dudley and Coen, 

2000a and 2000b; Dudley et al., 2006], if we replace the propagation distance L in Fig. 

3.1 (a) and (b) with the pump power. With a 148-fs pump, the coherence remains high 

when the SC almost reaches its maximum span; after that, coherence degradation occurs. 

With a 410-fs pump, the coherence degrades as soon as the spectrum is relatively broad.  

This paper [Türke et al., 2007] discussed the coherence of Cherenkov radiation, and 

argued that the coherence degradation of Cherenkov radiation is due to XPM with 

solitons. Specifically, although each Cherenkov peak is induced by one corresponding 

soliton, any Cherenkov peak interacts with the sum of all solitons through XPM. The 

parameters of the solitons vary pulse-to-pulse depending on noise, causing phase 

fluctuation in the Cherenkov radiation. Larger soliton number is associated with more 
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interference effect when adding solitons up. This explains why larger soliton numbers are 

associated with larger coherence degradation.  

The authors also explained why coherence degradation of Cherenkov radiation should not 

be explained by Dudley’s MI theory. In the 410-fs pump case in this paper (Fig. 3.2 (c)), 

the MI-induced sidebands are weak when soliton fission happens. The ejected solitons 

are coherent, but the corresponding Cherenkov radiation is incoherent. This needs to be 

explained by the XPM theory above. 

 

Fig. 3.2 Simulated SC and its coherence, excerpted from [Türke et al., 2007]. A 410-fs 

pump at 775 nm was used, and the pump peak powers are (a) 0.09 kW, (b) 0.9 kW, and 

(c) 5.9 kW. The fiber length is 9 cm. The authors argued that in the case of (c), the MI-

induced sidebands are weak when soliton fission happens, and the ejected solitons are 

coherent. 

I argue that this explanation needs more evidence. The solitons (radiation at the longer-

wavelength side of the pump) in Fig. 3.2 (c) and even (b) appear to be incoherent. Also, 

the fact that MI-induced sidebands are weak does not guarantee that the soliton fission is 

coherent. There has not been investigation about how large MI-induced sidebands need to 

be in order to cause incoherent soliton fission, as far as I know. 

Kobtsev et al. (2005) performed simulations to explain perfect soliton coherence and low 

non-solitonic coherence measured in their experiment. They argued low coherence is due 
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to fast spectral oscillations in the non-solitonic region. The simulations showed 

oscillation of periods Δω ~ 0.5–1 THz in the non-solitonic region of spectra, caused by 

interference between components of close frequencies in the SC. Fluctuation in the pump 

power causes these fine structures to shift, and the interference visibility/contrast is 

reduced when successive pulses have different intensities at a certain frequency. Note this 

intensity inequality cannot be factored out in the data processing (see Eq. 2.4.14), 

because the fast-changing fine structures are undetectable in the experiment, due to 

averaging. 

 [Dudley et al., 2006] [Türke, et al., 2007] [Kobtsev et al., 2005] 

Noise added 
- Shot noise 

- Raman noise 
- Shot noise 

- Pump power fluctuation 
- Shot noise 

- Pump power fluctuation 

Results 

(1) Shorter pump duration 
yields higher coherence. 

 
(2) Coherence degradation 
is associated with soliton 

fission. 
  

(3) Coherence is restored 
when pump wavelength 

moves deep into anomalous 
GVD regime. 

Solitons are coherent, and 
Cherenkov radiation has 

low coherence. 
(Their data did not 

explicitly demonstrate this.) 

Solitons have perfect 
coherence, while non-

solitonic region has low 
coherence 

Theory 

Coherence depends on 
whether MI is significant 

before soliton fission. 
A larger soliton number is 

associated with greater 
degradation of coherence. 

Cherenkov radiation has 
coherence degradation 

because it interacts with the 
sum of all solitons through 

XPM. 

Fine spectral structures 
cause coherence 

degradation in non-solitonic 
region.  

Table 3.1. Summation of previous simulation research and their theories. 

A summation of the simulation research and the theories is listed in Table 3.1. 

Besides these papers, many experiment-based papers performed simulations to match and 

to interpret experimental results, as introduced in the following section. Most of them 

used theories similar to Dudley’s. 
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3.2 Experimental Research of SC Coherence 

Experimental research using various parameter sets exists in the literature. Most authors 

used the Young’s or the Michelson interferometry set up (see Fig. 2.4). A brief summary 

is in Table 3.2. 

paper 
[Gu et al., 

2003] 
[Lu and 

Knox, 2004] 
[Kobtsev et 
al., 2005] 

[Zeylikovich 
et al., 2005] 

[Nicholson and 
Yan, 2004] 

[Türke, et al., 2007] 

λ0 (nm) 800 
780, 820, 
860, 920 

835, 795 1560 780 1550 800 

TFWHM (fs) 60 100 50 120 90 2000 188 148 410 

P0 (kW) 14.7 12.3 52.8 0.5 0.062 0.025 
0.093, 

4.7  

0.8, 2.5, 
5.9, 7.6, 

13 

0.3, 0.9, 
2.1, 2.7, 

5.5 

frep (MHz) 90 80 100 48 48 50 50 80 80 

Pave (mW) 90 112 300 3.3 0.3 2.8 
1, 
50 

11, 34,   
80, 102, 

175 

11, 34, 
78, 101, 

205 

Epulse (nJ) 1 1.4 3 0.068 0.0063 0.056 
0.02, 

1 

0.14, 0.42, 
1.0, 1.3, 

2.2 

0.14, 0.42, 
1.0, 1.3, 

2.6 

ZDW 
(nm) 

770 820 < 795 
Two ZDWs: 

740, 1700 

(anoma-
lous 

pump) 
- 730 

Lfiber 18 cm 
6 cm 

tapered fiber 
30 cm 1.5 m 1km 

6 m 
hybrid 

30 cm tapered fiber 

Average |g| 0.56 
High, lower, 

0.15, 0.7, 
Respectively 

1 at solitons 0.98 

High |g| 
only 

around 
λpump 

~0.1 ~0.9 

Changes 
from high 

to low 
when 
power 

increases 

becomes 
lower at 
lower 

powers 

Conclusion 

Simulations 
showed 

fluctuation in 
pump power 

is major 
source of 

noise 

Coherence 
recovery 

when 
moving 
pump 

wavelength 
deep into 

anomalous 
GVD 

Perfect 
coherence at 

solitons’ 
central 

wavelengths. 
(small soliton 
number N~3) 

Similar to [Lu 
and Knox, 
2004], with 

pumps of low 
peak powers 

Short pump 
pulses yield 

high coherence. 

Similar to [Nicholson 
and Yan, 2004]. 

 
Cherenkov radiation 
has low coherence. 

Table 3.2. Key facts of previous experimental research on SC coherence. 

Bellini and Hansch (2000) measured the coherence between two independent SC 

generated at two separate points in a bulk material, using the Young’s scheme. With a 
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grating, distinct fringes at all wavelengths were obtained (Fig. 2.4 (b)), qualitatively 

demonstrating the coherence of SC.  

Gu et al. (2003) measured coherence of SC in a PCF for the first time, and performed 

simulations to show the main cause of coherence degradation is the pulse-to-pulse 

fluctuation of the pump power. In the experiment, replica pump pulses were used to 

generate SC in two identical PCFs. Interference was performed in the Young’s scheme. 

Spectrally-resolved fringes were recorded (Fig. 2.4 (b)), and 12( , 0)g λ τ  was calculated. 

Using a pump of 60-fs duration, the average coherence was 0.56. Numerical simulations 

were performed to match the experimental results. Adding quantum noise resulted in 

almost perfect coherence; further adding 2% fluctuation of pump power reproduced the 

average coherence in experiment. This showed that coherence degradation is mainly 

caused by the fluctuation of the pump power. 

It is a limitation that the two-fiber scheme in [Gu et al., 2003] cannot guarantee identical 

1( )E λ% and 2 ( )E λ% up to a normalization constant. In the two-fiber scheme, a beam splitter 

was used to split the pump, and the replica beams are coupled into two PCFs that were 

carefully made identical. But a beam splitter usually cannot make an exact 50/50 split. 

Specifically in [Gu et al., 2003], there was a large difference in the power coupled into 

each PCF: 0.25 and 0.58 nJ. Also it is hard to ensure the same coupling efficiency in two 

PCFs, the same fiber orientation of the two PCFs, etc. As a result, the independently 

generated SC 1( )E λ% and 2 ( )E λ% have quite different spectra, making the discussion of 

coherence complicated. For example in Fig. 4, radiation at 930 nm is a soliton in 1( )E λ%
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but is not a soliton in 2 ( )E λ% , thus the physical meaning of |g12(λ=930 nm)| is complicated. 

I think the difference between 1( )E λ% and 2 ( )E λ% might be responsible for part of the 

coherence degradation.  

Lu and Knox (2004) showed the coherence recovery caused by moving the pump 

wavelength deep into the anomalous GVD regime. This result was later reproduced by 

simulations [Dudley et al., 2006]. In this experiment, a one-fiber scheme was used for SC 

generation. The pump was sent into a fiber for SC generation. Successive SC pulses 

1( )E λ%  and 2 ( )E λ%  interfere in a Michelson interferometer, and the signal was measured 

with an OSA. This scheme ensures that 1( )E λ%  and 2 ( )E λ%  are SC generated under exactly 

the same condition, except for different noise seeds. The unequal beam splitting in the 

interferometer only yields different normalization constants on 1( )E λ%  and 2 ( )E λ% , which 

can be factored out in the data processing. Most of later experiments used this 

configuration to measure SC coherence. 

Zeylikovich et al. (2005) showed similar results to [Lu and Knox, 2004], using a different 

parameter set. 

Kobtsev et al. (2005) measured the coherence at the central wavelengths of solitons and 

at second harmonic wavelengths of the solitons. Using a 50-fs pump, the soliton number 

is small N ~ 3. Nearly perfect coherence was measured at the central wavelengths of the 

solitons, which is as expected according to Eq. 3.1.1. The second harmonic wavelengths 

of the solitons are in the non-solitonic region. Considerable coherence degradation was 

shown at these wavelengths. The paper explained that this is due to the fast spectral 



49 
 

oscillation in the non-solitonic region, as introduced in Section 3.1. Simulations showed 

pump power fluctuation of ~0.5% was enough to reproduce the experimental coherence 

degradation in the non-solitonic region. 

[Nicholson and Yan, 2004] and [Nicholson et al., 2008] investigated the coherence of all-

fiber-based SC using doped fibers. The 2004 paper showed that SC generated by a fs 

pump has much higher coherence than SC by a ps pump. Fibers of different dispersion 

properties were spliced together for dispersion management. A piece of SMF of a proper 

length was used to compress the pump pulse before it is coupled into the fiber for SC 

generation. The 2008 paper investigated optimization of the pulse compression to 

generate high-coherence SC.  

Türke et al. (2007) measured the coherence of SC using two different pump pulse 

durations and selected pump powers. The shorter-duration pump produced higher 

coherence than the longer-duration pump, similar to [Nicholson and Yan, 2004]. 

A summary of the above experimental research is in Table 3.2. I think there are some 

limitations of these experiments. (1) The tuning of parameters is limited, due to practical 

difficulties. No gradually-changing evolution of the coherence was measured to compare 

with simulated evolution such as Fig. 3.1. (a) and (b). (2) No previous experiments 

investigated the effect of using different fiber lengths, especially short fibers approaching 

the soliton fission length. 
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3.3 My Research 

My research focuses on the undone things mentioned in the last paragraph.  

(1) Tune the SC power continuously to obtain evolution of spectra and of coherence. It is 

expected that the evolution visualize coherence dynamics and allow detailed comparisons 

with simulations. Detailed discussions about the coherence mechanisms are thus possible.  

(2) Investigate the coherence properties depending on the fiber length, with especial 

attention on short PCFs of Lfiber ~ Lfiss. Simulations have shown that coherence 

degradation is associated with soliton fission. Using fiber lengths close to the soliton 

fission length is expected to clearly show the coherence degradation process, and to show 

what fiber length can yield SC of high coherence. 
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4. METHODS 

SUMMARY 

4.1 describes the experimental procedure. Based on the setups in previous 

research, some improvement is made by using the Mach-Zehnder interferometer 

and using wedge beam splitters (Fig. 4.3).  

4.2 describes the methods of numerical simulation. Section 4.2.2 and 4.2.3 

introduce how to obtain the dispersion term and the Raman term, respectively. A 

summary of all parameters for simulation is listed in Section 4.2.4. Section 4.2.5 

introduces how to model noise and calculate coherence.   
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4.1 Experiment 

The PCFs in my experiment are: highly nonlinear SF6 PCFs of different lengths: 10.5 

cm, 4.7 mm, 3.9 mm, and 1.0 mm, and a highly nonlinear Tellurite PCF of 2.7 cm. 

 

Fig. 4.1. SEM picture of the cross section of the SF6 PCF. Inset is a close-up of the core. 

The core diameter is 3.6 µm. 

 

Fig. 4.2. Microstructure and the dispersion of the Tellurite PCF. (a) Cross section of the 

fiber under an optical microscope. (b) and (c) are closeups of the core under SEM and 

under an optical microscope, respectively. (d) is the dispersion curve. The ZDW is 1380 

nm. These figures are excerpted from [Domachuk et al., 2008]. 

Key information about these PCFs is compiled in Table 4.1, in comparison with two 

silica PCFs and another SF6 PCF. The microstructures and the dispersion curve are 

shown in Fig. 4.1 and 4.2. How to calculate the dispersion curve of the SF6 PCF is 
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introduced in Section 4.2.2. The tellurite PCF was previously reported in [Kumar et al., 

2003; Domachuk et al., 2008], where the dispersion curve was reported. 

 Silica PCF SF6 PCF SF6 PCF Tellurite PCF Equations 

Reported in 

[Dudley et al., 
2006;  

Ranka et al., 
2000] 

 

[Kumar et al., 
2002; 

Omenetto et al., 
2006; 

Moeser et al., 
2007] 

N.A. 

[Kumar et al., 
2003; 

Domachuk et 
al., 2008] 

 

dcore (µm) 
1.6 

(1.7 [Ranka]) 
2.6 3.6 2.5 

 

n2 (∙10−20 
m2/W) 

3 22 22 25 
 

γ ( /km∙W) 110 167.97 87.6 596 

2

0

2

eff

n

A

πγ
λ

=  

Aeff = core area of 
fiber 

ZDW (nm) 
780 

(767 [Ranka]) 
1300 ~1300 1380  

 

β2 (ps2 / 
km) 

−11.83 −73.9248 −48.39 −92.19 
 

β3 (ps3 / 
km) 

0.081 0.2434 0.305 0.6411 
 

λ0 (nm) 
835 

(790 [Ranka]) 
1550 

 

Pave (mW) 70 50  
P0 (kW) 7 5  

TFWHM (fs) 110 
T0 = TFWHM 

/1.763 

LNL (mm) 1.3 0.85 1.6 0.34  01
NL

L Pγ=  

LD (mm) 329 52.7 80.4 42.2 
2

0 2DL T β=  

N 15.9 7.9 7.02 11.2 D NL
N L L=  

Lfiss (mm) 20.7 6.7 11.5 3.8 
     

fiss D

D NL

L L N

L L

=

=
 

Lfiber (mm)  
5.7 
17 

1  
3.9  
4.7  
105 

27 

 

Lfiber/Lfiss  
0.85 
2.5 

0.087 
0.34 
0.41 
9.1 

7.1 

 

Table 4.1. Parameters of the PCFs and the pump used in the experiment, in comparison 

with a silica PCF and a SF6 PCF in literature. In the column of the silica PCF, the 

parameters are for the fiber used in [Dudley et al., 2006] if not otherwise noted.  
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Note these parameters may need correction when matching simulations to experimental 

results. 

 

Fig. 4.3. Experimental setup for the measurement of SC coherence. 

I used the delayed-pulse method to perform interference between successive SC pulses 

generated in one PCF, and measured the spectral fringes using an OSA. The setup (Fig. 

4.3) is similar to that in [Lu and Knox, 2004]. An OPO pumped by a mode-locked 

Ti:sapphire laser generates laser pulses at λ0 = 1550 nm, of duration TFWHM = 110 fs, at a 

repetition rate frep = 80 MHz, and with an average power of 250 mW. λ0 = 1550 nm is in 

the anomalous GVD regimes of the SF6 PCF and the tellurite PCF used in the 

experiment. 
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A combination of a half wave plate and a polarizer was used to continuously tune the 

laser power sent into the PCF. Another half wave plate was used to tune the polarization 

of the pump. A 60X aspherical lens was used to couple the laser into the PCF. And 

another 60X aspherical lens was used for collimation. The power efficiency of SC 

generation is ~30% for all fibers, when coupling loss and collimation loss are included. 

The fibers were hand cleaved. In a usual hand cleave, one presses the fiber onto the blade 

with a finger, scratches the fiber gently with a scriber, and bends the blade to break the 

fiber. It becomes challenging to cleave sub-cm fibers because fingers easily touch and 

might damage the facets. I used narrow strips of tape to “press” the fiber onto the blade, 

and scratched the fiber carefully while monitoring it under microscope. The tape also 

helped to handle the fiber. I was able to cleave fibers as short as ~1 mm. 

Sub-cm PCFs were mounted on customized stages of proper sizes; longer PCFs were 

mounted on commercial fiber clamps. Using tape to mount the sub-cm fiber onto the 

stage is usually better than using glue (Fig. 4.4). Glue usually dries fast and 

uncontrollably, while using tape allows fine adjustment of the position and especially the 

orientation of the fiber.  

 

Fig. 4.4. 1-mm SF6 PCF mounted on a customized stage using tape. 
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A Mach–Zehnder interferometer with a one-pulse delay (z = c/ frep ~ 3.75 m, with frep = 

80 MHz) was built. By using wedge beam splitters, instead of plate, cube, or pellicle 

beam splitters, ghosting was mitigated. The Mach–Zehnder design balances the 

dispersion in two arms - each beam penetrates the splitter once. The interferometer output 

was measured with an OSA (Yokogawa AQ6370B) with a range of 600–1700 nm.  

The interference signal 12( )I ω  shows fringes with a contrast/visibility as in Eq. 2.4.14. 

1( )I ω and 2( )I ω were measured by blocking one of the two arms. Note 12( )I ω , 1( )I ω , and

2( )I ω here are radiation at the detector, which was denoted with “Q” in Chapter 2. In the 

data processing, I identified peaks and valleys of the fringes, and calculated the fringe 

visibility/contrast, and then calculated 12( )g ω according to Eq. 2.4.14.  

The power-dependent coherence evolution 12 ( , )g Pω and spectral evolution 1( , )I Pω and 

2( , )I Pω were obtained by repeating the above steps with varying power coupled into the 

fiber. Note P is the average power of SC output. The short-arm spectrum evolution 

1( , )I Pω is used to represent the SC spectrum, because it has less divergence and higher 

intensity than the long-arm one. The spectrally averaged coherence 

                                            

(1)
12 1(1)

12

1

( , ) ( )
( )

( )

g P I
g P

I

ω ω
ω

⋅
=∑

∑
 (4.1.1) 

was calculated to represent the overall coherence. 
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4.2 Simulation 

4.2.1 Introduction 

SC generation is modeled using the frequency-domain GNLSE with approximation (Eq. 

2.2.64). It can be directly solved using ordinary differential equation (ODE) solvers. 

“ODE45” solver in MATLAB is used here. The solver automatically finds optimal step 

lengths to satisfy user-specified precisions. The code provided in [Dudley and Taylor, 

2010] is used, with some adjustment. This code does not include noise. How to model 

noise and calculate coherence is introduced in Section 4.2.5. 

The pump is sech2 pulses with an optional linear chirp: 

                                     
2

0 2
0 0

( 0, ) sech exp
2

t C t
A z t P i

T T

   
= = −   

   
 (4.2.1), 

in which P0 is the peak power of the pulses, T0 = TFWHM /1.763, and C represents a linear 

chirp. The frequency-domain representation is 

                                              { }( 0, ) ( 0, )A z FT A z tω= = =%  (4.2.2). 

This is the initial state of the GNLSE. Noise should be added when needed.  

Specific dispersion and Raman terms in the GNLSE can either be found in literature or be 

calculated as follows. 
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4.2.2 The dispersion term 

The theory about the dispersion term is introduced in Section 2.2.2. 

The dispersion curve of the SF6 PCF used in my experiment cannot be found in 

literature. It is thus estimated based on the dispersion curves of some other SF6 PCFs in 

[Kumar et al., 2002], and later corrected by comparing simulated SC spectra to 

experimental ones. The dispersion curve of the tellurite PCF used in my experiment was 

reported in [Kumar et al., 2003; and Domachuk et al., 2008] (Fig. 4.2 (b)). 

To convert GVD β2(ω) to the dispersion term B(ω) in the GNLSE, two methods were 

introduced in Section 2.2.2. Method (1) is used here, which is to calculate the expansion 

coefficients βk based on β2(ω), and then calculate B(ω). In this way the result B(ω) can be 

extended to any interested bandwidth. Using method (2) yields results only for the 

bandwidth that the original GVD curve covers. 

Specifically, GVD reported in those papers are in terms of D(λ), which is another 

representation of GVD other than β2(ω). The numerical data of D(λ) were extracted from 

the figure in the paper using an unofficial Matlab application “grabit” [Doke, 2007]. 

Using ω = 2πc/λ and 

                                                     22

2
( ) ( )

c
D

πω β ω
λ

= −  (2.2.37), 

D(λ) can be converted to β2(ω). Then considering 

                       2
2 2 0 0 3 0 0 4 0

1( ) ( ) ( ) ( ) ( ) ( ) ...2!β ω β ω ω ω β ω ω ω β ω= + − + − +  (2.2.39), 
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curve fitting is performed to obtain β2 and β3, and also higher-order dispersion if 

necessary.  

 

Fig. 4.5. Calculation of the dispersion of the SF6 PCF. (a) Calculating the dispersion 

curve of the 3.6-μm-core PCF based on the dispersion curves of a 2.6-μm and a 4-μm-

core SF6 PCFs, through linear interpolation. The 2.6-μm and the 4-μm-core curves are 

excerpted from [Kumar et al., 2002]. (b) Linear curve fitting of β2(ω−ω0)|3.6-μm. 

Model 
linear 

y = p1*x + p2 
quadratic 

y = p1*x^2 + p2*x + p3 
p1 0.305 0.0001266 
p2 -48.39 0.2784 
p3  -47.66 

SSE 37.24 8.949 
R-square 0.999 0.9998 

Table 4.2. Polynomial fitting of the β2(ω−ω0) curve for the 3.6-μm-core SF6 PCF. 

Fig. 4.5 shows the process to calculate β2 and β3 of the SF6 PCF. Fig. 4.5 (a) shows the 

D(λ) curve of the 2.6-μm-core and the 4-μm-core SF6 PCF reported in [Kumar et al., 

2002], and D(λ) curve of the 3.6-μm-core SF6 PCF calculated based on linear 

interpolation. Fig. 4.5 (b) shows the β2(ω−ω0) curve converted from the D(λ) curve. A 

linear curve fitting is chosen to reproduce the β2(ω−ω0) curve, yielding β2 = −48.39 

ps2/km and β3 = 0.305 ps3/km. The details of the curve fitting are in Table 4.2. Note the 

fibers of 2.6-µm-core and 4-μm-core in [Kumar et al., 2002] are SF6 PCFs of a different 
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micro pattern than the ones used in my experiment, so the validity of this calculated 

dispersion curve needs to be carefully tested by comparing simulations with experimental 

measurement. In fact, major modifications of the dispersion were made to match with 

experimental data (Section 5.1.2). 

For the tellurite PCF, the D(λ) curve (Fig. 4.2 (b)) was reported in [Domachuk et al., 

2008]. Using the same method, the results of curve fitting were obtained as in Table 4.3. 

In this case, the quadratic fitting is chosen, yielding β2 = −92.19 ps2/km, β3 = 0.6411 

ps3/km, and β4 = −0.59*10-3 ps4/km (β4 = 2*p1). This fitting curve was later found to be 

inaccurate for wavelengths longer than about 2 μm. Major modifications were made to 

match with experimental data (see Section 5.2.2). 

Model 
Linear 

y = p1*x + p2 
quadratic 

y = p1*x^2 + p2*x + p3 

cube 
y= p1*x^3 + p2*x^2 + 

p3*x + p4 
p1 0.4576 -0.000295 5.709e-07 
p2 -75.07 0.6411 -0.0008276 
p3  -92.19 0.767 
p4   -97 

SSE 1.136e+05 1.191e+04 547.8 
R-square 0.9858 0.9985 0.9999 

Table 4.3. Polynomial fitting of the β2(ω−ω0) curve for the tellurite PCF. 

  

4.2.3 The Raman term 

The theory about calculating the Raman function was introduced in Section 2.2.3. 

The Raman response function of SF6 has been reported [Heiman et al., 1979; Aber et al., 

2000; Kalashnikov et al., 2007; and Moeser et al., 2007]. Here the model in [Kalashnikov 
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et al., 2007] is used, where the Raman response function is modeled as Eq. 2.2.61, with 

1τ = 5.5 fs, 2τ = 32 fs, and R
f = 0.13 (Fig. 4.6). 

 

Fig. 4.6. Raman response function hR(t) of SF6. It is modeled as Eq. 2.2.61, with 1τ  = 5.5 

fs, 2τ = 32 fs, and fR = 0.13. 

The composition of my tellurite fiber is 75TeO2–12ZnO–5PbO–3PbF2–5Nb2O5. The 

Raman gain spectra of a few similar compositions have been reported. 77.1TeO2–

22.9ZnO was measured in [Plotnichenko et al., 2005], and the result is denoted here as 

Raman gain spectrum 1, 1R
g . Stegeman et al. (2006) used TeO2–TiO0.5–PbO, and Qin et 

al. (2007) used TeO2–Bi2O3–ZnO–Na2O, showing similar results of Raman gain spectra 

(denoted here as Raman gain spectrum 2, 2R
g ). 1R

g and 2R
g have similar shapes, but 

different magnitudes. 1R
g is ~2.3× higher than 2R

g , according to the ~735-cm-1 peak. As a 

result, 1R
g yields an invalid R

f = 1.37. 2R
g is used here, yielding fR= 0.55 and hR(t) as in 

Fig.4.7 (b). A comparison of these two cases is in Table 4.4.  
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Fig. 4.7. (a) Raman gain spectra gR(ω) of tellurite glasses. The green curve gR1 was 

reported in [Plotnichenko et al., 2005], and the blue curve gR2 was reported in [Stegeman 

et al., 2006; Qin et al., 2007; Yan et al., 2010]. Both are calibrated for pump wavelength 

λ0 = 514.5 nm. (b) Raman response function hR(t) calculated based on gR2, using Eq. 

2.2.57. 

 gR1 gR2 

Reported [Plotnichenko et al., 2005] 
[Stegeman et al., 2006; Qin et 

al., 2007; Yan et al., 2010] 

Composition 
77.1TeO2–22.9ZnO 

(material 1) 
TeO2–Bi2O3–ZnO–Na2O [Qin] 

(material 2) 

Pump 0λ (nm) 514.5 

632.8  
(converted to 514.5 using 

01
R

g λ∝ ) 

Major peak frequency (cm-1) 
~430,     ~660,     ~735 

( 1R
g and 2R

g have similar shapes) 

733-cm-1 peak value (10^-13 m/W) 

109  
(= 57*peak value  

of 2[SiO ]
R

g ) 

38.5 
(Converted to 47.2, which is 
25*peak value of 2[SiO ]

R
g ) 

( )
R

h t  Similar 

R
f  1.37 0.55 

Table 4.4. Comparison of two Raman gain spectra: gR1 reported in [Plotnichenko et al., 

2005] and gR2 reported in [Stegeman et al., 2006; Qin et al., 2007; Yan et al., 2010], and 

calculation of the Raman term. 
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4.2.4 Simulation parameters 

The parameter values for simulation are listed in Table 4.5. Note they might need to be 

optimized in order to match simulations to experimental measurement (see Ch. 5). 

Parameter SF6 PCF Tellurite PCF 

Pump wavelength 0λ (nm) 1550 

Pump pulse duration
FWHM

T (fs) 110 

Pump chirp 0 

Pump power fluctuation (%) 2 

Fiber length fiberL (mm) 105, 4.7, 3.9, 1 27 

Loss (dB/m) 4 

Dispersion 
2β = −48.39 ps2/km, 

3β = 0.305 ps3/km 

2β = −92.19 ps2/km, 

3β = 0.6411 ps3/km, 

4β = −0.59*10-3 ps4/km 

Nonlinearity γ (/km∙W) 87.6 596 

Raman fraction
R

f  0.13 0.55 

Raman response function ( )
R

h t  1τ = 5.5 fs, 2τ = 32 fs 

(Eq. 2.2.61) 

Numerical curve as in Fig.4.7 

(b) 

Table 4.5. Values of parameters for simulation (subject to change in the optimization 

process). 

The nonlinearity γ can be calculated based on the assumption that the effective mode area 

is just the area of the fiber core: 

                                              0 2 2 2
2 2

0 0

82

4eff core core

n n n

cA d d

ω πγ
λ π λ

= = =  (4.2.3). 

For our SF6 PCF, γ = (8*22*10−20 m2/W)/(1.55*10−6 m * (3.6*10−6 m)2) = 0.0876 /m·W 

= 87.6 /km·W.  

For our tellurite PCF, dcore = 2.5 µm was reported [Domachuk et al, 2008], so core area 

should be π·dcore
2/4 = 4.9 µm2. But an effective mode area of 1.7 µm2 was reported 
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[Domachuk et al, 2008]. Using this value, γ = (2π*25*10−20 m2/W)/(1.55*10−6 m * 

1.7*10−12 m2) = 0.596 /m·W = 596 /km·W.  

 

4.2.5 Modeling noise and coherence 

In the experiment, spectral interference fringes were measured, and then coherence was 

calculated using  

                               
[ ]1 2

1 2m min
12

m min 1 2

2 ( ) ( )( )
( ) ( )

( ) ( ) ( )
ax

ax

I II I
V g

I I I I

ω ω
ω ω

ω ω
−= =
+ +

 (2.4.14). 

In the simulations, coherence was calculated directly using its definition: 

                                               
*
1 2

12

1 2

( ) ( )
( )

( ) ( )

E E
g

I I

ω ω
ω

ω ω
=

% %

 (2.4.12). 

Considering 

                                0 0 0 0( , ) ( , , ) ( , )exp( )E r F x y A z i zω ω ω ω ω ω β− = − −r %%  (2.2.3), 

the modal distribution F can be ignored, and there is 

                                                
*
1 2

12

1 2

( ) ( )
( )

( ) ( )

A A
g

I I

ω ω
ω

ω ω
=

% %

 (4.2.4). 

Simulations using the GNLSE were repeated for N (here 20) times with independent 

noise to generate SC fields ( )mA ω% , m = 1, 2, …, N. The noise includes: (a) quantum-limit 

shot noise in the pump, and (b) pulse-to-pulse fluctuation of the pump power. 
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Spontaneous Raman noise was not included here, because it has been found to cause 

coherence degradation two orders of magnitude smaller than shot noise does [Corwin et 

al., 2003; Dudley et al., 2006]. 

Specifically, the shot noise is one photon of a random phase in each frequency grid: 

                                                  { }( ) ( ) expnoise noise RA A iω ω φ=%  (4.2.5). 

The random phase R
φ obeys a uniform distribution between 0 and 2π:  

                                                           (0,2 )
R

Uφ π∈  (4.2.6), 

where ( , )U a b is the uniform distribution between a and b. 

Considering the energy of the photon 

                                                    
2

( )noiseE A dfω ω= =h  (4.2.7), 

there is 

                                                      ( )noiseA dfω ω= h  (4.2.8), 

in which the frequency f = ω/2π, and df is the increment of the frequency grid. 

The pulse-to-pulse fluctuation of the pump power obeys a normal distribution with a 

certain standard deviation x% (e.g., x = 2). The peak power of a pulse is 

                                                                0 0 P
P P= ⋅∆  (4.2.9), 
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in which 

                                                       ( 1, %)
P

N xµ σ∆ ∈ = =  (4.2.10). 

( , )N µ σ is the normal distribution with a mean μ and a standard deviation σ. 

0P is the average peak power of pump pulses: 

                                                            0

0.88

rep FWHM

P
P

f T
=  (4.2.11), 

in which P is the average power of the laser, repf is the repetition rate, and FWHM
T is the 

duration of the pulse. 

Eq. 4.2.4 was calculated as follows. The ensemble average is the average of all non-

identical pairs: m n≠ , m, n = 1, 2, …, N. Writing the explicit form of in Eq. 4.2.4 

yields  

                                  

*

12 1 2
2 2
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( )

( ) ( )

m n
m n

m n
m n

A A
g

A A

ω ω
ω

ω ω

≠=
 
  

% %

% %

                                     

                                                   
[ ]*

2

( ) ( ) ( 1)

( )

m n

m n

m

m

A A N N

A N

ω ω

ω
≠

−
=
∑

∑

% %

%
 (4.2.12). 

In the denominator,  
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2

1 2( ) ( ) ( )m

m

I I A Nω ω ω= =∑ %  (4.2.13), 

because m and n are from the same pool: m, n = 1, 2, …, N. I1(ω) and I2(ω) are average 

spectra of the short/long arm, respectively.  

Eq. 4.2.12 and 4.2.13 are consistent with the practical experiment, where the photo 

detectors are slow. There is usually different attenuation in two arms of the 

interferometer. This intensity imbalance was factored out in the data processing (Eq. 

2.4.14), so it does not need to be included here. 

Suppose a fast detector is used and it can distinguish each pulse, and the single-shot 

coherence is 

          
[ ]

* **
1 2

12 single-shot 1 2 1 22 2
1 2

( ) ( ) ( ) ( )( ) ( )
( )

( ) ( )( ) ( ) ( ) ( )

m n m n

m n
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% %

 

                                ( ) ( ){ }exp arg ( ) arg ( )m ni A Aω ω = − − 
% %  (4.2.14), 

in which ( )arg  means the argument of a complex number: [ ]arg exp( )iφ φ= , 0 ≤ ϕ < 2π. 

In this case the averaged coherence (Eq. 4.2.4) becomes something that involves only the 

phase: 

                        12_ 12 single-shot( ) ( )PHASE m n
g gω ω

≠
=                                      

                                                    
12 single-shot( )

( 1)
m n

g

N N

ω
≠=

−

∑
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( ) ( ){ }exp arg ( ) arg ( )

( 1)

m n

m n

i A A

N N

ω ω
≠

 − −
 

=
−

∑ % %

 (4.2.15). 

Its physical meaning is, as mentioned above, a fast detector is used and it can distinguish 

each pulse. As a result, the coherence involves only the phase, and not the intensity.  

Eq. 4.2.12 is the practical experimental case where the intensity fluctuation in the 

spectrum and the phase correlation both contribute to the coherence. Eq. 4.2.15 involves 

only the phase. Some coherence degradation has been thought to be related to the 

intensity fluctuation of the SC spectrum, so these two definitions are used here to isolate 

the effects of the intensity fluctuation and the phase instability. 

The pulse-to-pulse stability of spectral intensity is:  

                      ( )2
( ) ( ) ( ) ( ) ( )v I m m m mC I I I Iω σ ω ω ω ω− = − = − −  (4.2.16), 

in which Cv is the coefficient of variation, σI is the standard deviation of spectral 

intensity, is the mean with respect to all pulses, and
2

( ) ( )m mI Aω ω= % . The negative 

sign is used such that higher values of –Cv correspond to higher stability. The maximum 

value of –Cv is 0, meaning no pulse-to-pulse fluctuation in spectral intensity. Evolution 

−Cv(λ,P) and spectrally-averaged curve –Cv(P) were obtained similarly as coherence 

evolution and averaged coherence. 

  



69 
 

5. RESULTS AND DISCUSSIONS 

SUMMARY 

This chapter presents experimental and simulated results followed by analysis 

and discussions about the physics of supercontinuum (SC) and its coherence. 

5.1 is about SC generated from different lengths of SF6 PCFs. In 5.1.1, 

measured spectral and coherence evolution is presented. In 5.1.2 and 5.1.3, 

simulation results are presented. Optimization of the simulations to match 

experimental measurements is demonstrated, and the physical meaning of the 

results is discussed. 5.1.4 concludes this section. 

5.2 is about the results using the tellurite PCF. It is organized similarly as 5.1. 
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5.1 Results Using SF6 PCFs  

5.1.1 Experimental results 

 

Fig. 5.1. Spectral evolution (a)–(c) and coherence evolution (d)–(f) of SC generated in 

three different lengths of SF6 PCFs (10.5-cm, 4.7-mm, and 3.9-mm). The red arrows in 

(a) mark soliton trajectories. The green arrow in (b) marks the Cherenkov peak. The 

spectral evolution is calibrated such that the maximum intensity is 0 dB. The lower limit 

of the color bar is set to −40 dB so that the 40-dB bandwidth is visualized in the 
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evolution; the upper limit is set for optimal visualization of features. (g)–(i) are line plots 

of representative spectra. 

Fig. 5.1 shows measured spectral and coherence evolution of SC generated in different 

lengths (10.5-cm, 4.7-mm, and 3.9-mm) of SF6 PCFs, plotted in contour maps. The y 

axes of the contour maps are the average power of SC. Line plots of representative 

spectra are also shown (Fig. 5.1 (g)–(i)). 

In the 10.5-cm-fiber case, the spectral evolution (Fig. 5.1 (a)) shows a soliton-fission-

dominated pattern. Three solitons are marked with red arrows. Ejection of the first soliton 

occurs at ~10 mW, accompanied with the emergence of the Cherenkov peak at ~1070 

nm. Solitons show Raman-induced red shift when the power increases. The coherence 

(Fig. 5.1 (d)) is high for only the initial stage of broadening, and degrades quickly after 

soliton fission.  

The SC from the 4.7-mm fiber (Fig. 5.1 (b)) has two symmetric spectral lobes at both 

sides of the pump wavelength for power less than ~45 mW, indicating a SPM-dominated 

regime. At ~45 mW, strong spectral broadening occurs, indicating strong temporal 

compression, and soliton fission is about to happen. Although no soliton trajectory was 

captured due to the limited wavelength range of measurements, the Cherenkov peak 

(marked with a green arrow) emerging at ~850 nm ~60 mW is the evidence of a 

corresponding soliton. The coherence properties (Fig. 5.1 (e)) show association with 

soliton fission. High coherence (~0.9) was maintained for power less than ~45 mW 

(before soliton fission). For power higher than ~45 mW (after soliton fission), coherence 

degradation occurs at most parts of the spectrum. 



72 
 

For the 3.9-mm case, the story is less apparent by looking at Fig. 5.1 (c) and (f) alone. 

Fig. 5.1 (c) and (f) (0–84 mW) can be associated to the 0–~50 mW part of Fig. 5.1 (b) 

and (e), respectively. In Fig. 5.1 (c), the SC reaches ~1000 nm at the power ~75 mW, 

similar to the situation when the power is ~50 mW in the 4.7-mm case (Fig. 5.1 (b)). This 

indicates strong temporal compression, and soliton fission is just going to happen. At the 

same time, coherence degradation starts to occur at wavelengths far from the pump (at P 

~75 mW in Fig. 5.1 (f)). If increasing the power above 84 mW, the consequent dynamics 

should be similar to what happen at powers greater than ~50 mW in the 4.7-mm case. 

Unfortunately, these dynamics were not measured, due to the limited power of the pump. 

The fluctuation of coherence at wavelengths below 1400 nm (Fig. 5.1 (f)) will be 

discussed later (Section 5.1.3). 

SC in the 1.0-mm SF6 PCF shows a pure SPM pattern. It reaches a 40-dB bandwidth of 

about 250 nm at the maximum power. Since we are mostly interested in broad SC, 

discussion about this SC will be in a separate paper. 

The above results show association between coherence degradation and soliton fission. 

Using a fiber slightly shorter than the soliton fission length, SC of almost perfect 

coherence can be generated with little sacrifice in bandwidth.  
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5.1.2 Simulated spectral evolution and discussions 

 

Fig. 5.2. (a)–(c) Experimentally measured spectral evolution using three different lengths 

of SF6 PCF, respectively. (d)–(f) Corresponding simulation results. The vertical black 

line at 1700 nm helps visually comparing with the experimental data. (g) and (h): 

Simulated spectral and temporal evolution depending on the propagation length. P = 77 

mW is used. It is shown graphically that soliton fission happens at ~9 mm. Analytically 

calculated soliton fission length is similar Lfiss = 10.2 mm. (i) GVD D(λ) of the fiber. The 

red lines mark the zero dispersion wavelength (ZDW) and the pump wavelength (1550 

nm). The ZDW is ~1370 nm. The GVD at the pump wavelength is ~38 ps/(nm∙km). 

Simulated spectral evolution is plotted in Fig. 5.2, in comparison with the experimental 

results. For the short fibers (4.7 and 3.9 mm), the simulations show much “slower” 

evolution, which can be quantified by the soliton fission length Lfiss or the power at which 
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soliton fission happens. Specifically, the simulations (Fig. 5.2 (g) and (h)) graphically 

show soliton fission at ~9 mm, when P = 77 mW (same as the maximum power in the 

4.7-mm-fiber case of the experiment). P is the average power of SC. Analytically 

calculated soliton fission length is close: Lfiss = 10.2 mm (using Eq. 2.3.17), when P = 77 

mW. In the measurements, soliton fission happens between 3.9 and 4.7 mm, when P = 77 

mW. 

To fix this mismatch in the soliton fission length, the simulated Lfiss needs to be shortened 

by about a half. Considering Lfiss = 2
0 2 0T Pβ γ  (Eq. 2.3.17), in which the duration of 

the pump pulses T0 = TFWHM /1.763, |β2| = |β2(ω0)|, and the peak power of the pump pulse 

P0 = 0.88∙P/(frep∙TFWHM), there is 

                                               3
20.6fiss FWHM repL T f Pβ γ=  (5.1.1). 

Tuning down TFWHM and tuning up P, γ, and |β2| in the simulations can help fixing the 

mismatch in Lfiss. Tuning the chirp of the pump C is also considered, because it affects the 

beginning stage of the evolution and the soliton fission length too.  

The simulations can be optimized by iteratively tuning parameters and manually 

comparing features with experiments. The parameters can be tuned in 3 steps: (1) 

duration of pump pulses TFWHM, (2) the average power of SC P, the nonlinearity of the 

fiber γ, and GVD of the fiber |β2|, (3) the chirp of the pump C. Tuning in this order allows 

for easier comparison of features. 
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Fig. 5.3. Optimization of the duration of the pump pulse TFWHM. Red curve: measured 

output spectrum at P = 2 mW and Lfiber = 3.9 mm. Black curves: simulated output 

spectrum using a pump of transform-limited sech2 pulses of TFWHM = 100, 110, and 120 

fs, respectively, also at P = 2 mW and Lfiber = 3.9 mm. 

The duration of the pump pulse TFWHM was optimized by inspecting the output 

bandwidth. TFWHM determines the pump bandwidth, which in turn affects the output 

bandwidth. It is ideal to inspect cases of low SC powers and short fibers, because there is 

little broadening, other parameters are less involved, and thus the output bandwidth is 

highly dependent on TFWHM in these cases. Here the case of P = 2 mW and Lfiber = 3.9 mm 

is investigated, and the measured output spectrum is between the simulated output spectra 

using transform-limited sech2 pulses of TFWHM = 110 fs and 100 fs as the pump (Fig. 5.3). 

So TFWHM was modified from 110 to 105 fs. In fact the simulations show no appreciable 

broadening from the pump to the output. Although it is more straightforward to 

experimentally measure the pump duration and the chirp, our goal is to determine as 

many parameters as possible and avoid experimentally measuring them. 
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Fig. 5.4. Optimization of the simulated spectral evolution. Each line includes four plots of 

spectral evolution: the beginning (low power) part of the 10.5-cm-fiber case, the 10.5-

cm-fiber case, the 4.7-mm-fiber case, and the 3.9-mm-fiber case. (a) Experimental data. 

(b) Simulations with TFWHM = 105 fs has been applied. (c) Simulations after further tuning 

P to 1.3*P and γ to 1.38*γ. (d) Simulations after further tuning β2(ω) to 2*β2(ω). 

The product of P∙γ can be considered as one parameter to tune. For any pair of positive 

coefficients a and b of a fixed product (a∙b = constant), tuning P to a∙P and γ to b∙γ yields 
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invariant SC spectrum, up to a calibration constant. This can be seen in the GNLSE (Eq. 

2.2.30 and 31) by considering
2

P A∝ . Tuning up P∙γ enhances SPM, and causes soliton 

fission to happen earlier. One major feature of the SPM-based broadening is the spectral 

lobes at both sides of the pump wavelength (e.g., see the changes from Fig. 5.4 (b) to (c), 

4.7- and 3.9-mm-fiber cases). 

Tuning |β2| (=|β2(ω0)|) was implemented by multiplying the whole curve of β2(ω) by a 

constant. For example, tuning β2(ω) to a*β2(ω) was applied when tuning |β2| to a*|β2| is 

needed; a is a real coefficient. The reason is that tuning |β2| alone will change the shape of 

the β2(ω) curve. For example, the ZDW will be changed. Multiplying β2(ω) by a constant 

avoids this issue. Simulations show tuning up |β2| has a small impact on the two spectral 

lobes at both sides of the pump wavelength, but causes soliton fission to happen earlier 

(see e.g., the changes from Fig. 5.4 (c) to (d), 4.7- and 3.9-mm-fiber cases).  

The above dynamics of tuning P∙γ and |β2| can be understood physically as follows. SPM 

is based on the nonlinear refractive index 0 2n n n I= + . Considering I ∝ P and n2 ∝ γ, 

tuning up P or γ similarly enhances SPM. On the other hand, soliton fission happens 

when the pulse evolves to the shortest duration, and this timing depends on both SPM and 

dispersion. As a result, the soliton fission length depends on P, γ, and |β2|. 

Tuning P∙γ to ~1.8*P∙γ optimizes the SPM-based broadening (Fig. 5.4 (c) to (d)). 

Assuming tuning P to 1.3*P, which indicates a 23% collimation loss in the experiment, γ 

should be tuned to 1.8/1.3*γ = 1.38*γ = 120.9/km∙W. Further tuning β2(ω) to ~2*β2(ω) 

yields similar soliton fission lengths as in the experiment (Fig. 5.4 (c) to (d)). 
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The effect of adding a linear chirp C in the pump is illustrated in Fig. 5.5, using the 4.7-

mm-fiber case. SPM induces positive chirps at the central parts of the spectrum. A 

positive initial chirp (C > 0) adds up with the SPM-induced chirp, and enhances spectral 

broadening. As a result, soliton fission happens earlier. In this case, there is a feature in 

the spectral evolution: the flattened central part of the spectrum. A negative initial chirp 

(C < 0) has opposite effects, causing soliton fission to happen later. The spectral features 

are enhanced oscillation structures, and narrowing or lack of broadening at the beginning 

of the spectral evolution. Fig. 5.5 shows the change in the soliton fission power 

(represented by the power where the Cherenkov radiation occurs) and in the features, 

depending on the initial chirp. 

 

Fig. 5.5. Simulated spectral evolution with varying initial chirps, in the case of the 4.7-

mm SF6 PCF. Adding positive or negative initial chirps causes features in the spectra, 

and changes the power at which soliton fission happens. Emergence of the Cherenkov 

peak is marked with red lines to represent the powers at which soliton fission happens.  
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Fig. 5.6. Comparison between (a) the measured spectral evolution and (b)–(d) 

corresponding simulations using varying initial chirps, for the case of the 3.9-mm SF6 

fiber. (a) shows gaps (marked with arrows) between the central peak and the spectral 

lobes. (b) and (c) also have these gaps, while in (d) a positive chirp (C = 0.1) flattens the 

central parts of the spectrum and causes the gaps to disappear. Spectra at P = 40 mW are 

stacked in (e) to show the features clearly. 

It is possible to determine the initial chirp C based on the soliton fission power (Fig. 5.5 

vs. Fig. 5.2 (b)). It was found that the features mentioned above are more subtle 

indicators. The case of the 3.9-mm fiber was investigated for this step, since the 

measured data using the 4.7-mm fiber is not ideal in resolution. In the measurements of 

the 3.9-mm-fiber case, there are gaps (marked with arrows in Fig. 5.6 (a)) between the 

central peak and the spectral lobes at both sides. Simulations with C = −0.1 and 0 have 

these gaps, while adding C = 0.1 flattens the central parts of the spectrum and causes the 

gaps to disappear. Spectra at P = 40 mW are stacked up in Fig. 5.6 (e) to better show 
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these features. Based on this, it can be decided that the pump has C < 0.1 in the 

experiment. 

The lower limit of the chirp C can be determined by investigating the broadening at the 

beginning (low SC power) part of the evolution. As in Fig. 5.7, the experiments do not 

show the lack of broadening as in the simulated case of C = −0.1. So the pump has C > 

−0.1 in the experiment. 

 

Fig. 5.7. Comparison of the broadening trends at the beginning (low SC power) part of 

the spectral evolution. The case of 3.9-mm SF6 PCF is used. Output spectra at P = 2, 4, 

6, 8, 10, 12, 14, 16, 18, and 20 mW are stacked in each plot. The simulations with initial 

chirp = −0.2 and −0.1 show narrowing or lack of broadening. This is not seen in the 

experiments. So the chirp in the experiment was > −0.1. 
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By now it has been shown that the pump has a small or no chirp (−0.1 < C < 0.1) in the 

experiment. C = 0 was chosen as the optimal. The uncertainty in the chirp yields a small 

uncertainty in the soliton fission length or power. The examples in Fig. 5.5 show a 

change of about 5% in the soliton fission power when tuning C from −0.1 to 0.1. 

The above steps (1)–(3) of parameter tuning should be repeated to approach optimal 

match. In the above case, repeating step (1) still shows TFWHM should be 105 fs. 

Repeating (2) and (3) still yields the same results. 

So Fig. 5.4 (d) shows the optimized simulations. Comparisons with the measurements 

(compare Fig. 5.4 (d) with (a)) show agreement in the broadening extents, in the soliton 

fission powers, and in the emergence of Cherenkov radiation. The analytically calculated 

Lfiss is now ~5.4 mm when P = 77 mW, matching the experimental results where Lfiss 

should be between 3.9 and 4.7 mm.  

There are some mismatches in the wavelengths of solitons (in the 10.5-cm case) and of 

the Cherenkov radiation (in the 10.5-cm and the 4.7-mm cases). The soliton wavelength 

is determined by the Raman-induced frequency shift 4
2 0z TβΩ ∝ , in which T0 is the 

duration of the soliton. In the 10.5-cm case, the experiments and the simulations show 

agreement in the trajectory of the first soliton, but some discrepancies in the trajectories 

of the second and the third ones. Tuning the dispersion curve should affect all solitons at 

the same time, and thus may not be the cure for these discrepancies. Inaccuracy in the 

soliton duration could be responsible for the mismatches, especially considering the 

inverse quartic dependence. Cherenkov radiation is phase matched with solitons, so 
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inaccuracy in the soliton wavelengths and in the dispersion should be both responsible for 

the mismatches in the wavelengths of the Cherenkov radiation.  

The above process demonstrates in principle that, given a spectral evolution, the fiber 

length, and the average power of SC, all other parameters can be determined 

unambiguously, and the spectral evolution can be reproduced in simulations. Most 

importantly, the soliton fission length or power was reproduced quantitatively. Such 

optimization allows parameters to be estimated, and avoids experimentally measuring 

them. 

In future research, a cost function should be developed to quantify the match of features. 

Then iterative optimization can be easily implemented by computer. More sophisticated 

tuning of parameters, for example tuning the shape of the dispersion curve, can be added 

for more subtle optimization. 

 

5.1.3 Simulated coherence and discussions 

After the above optimization, the pulse-to-pulse fluctuation of the pump power ΔP is the 

only parameter to tune in order to match the simulated and the measured coherence. 

Tuning ΔP could not match the coherence in the three fiber lengths at the same time. 5% 

fluctuation was chosen for optimal match in the 3.9-mm-fiber case. Simulated coherence 

is plotted in Fig. 5.8, in comparison with the experimental results. Fig. 5.8 (a)–(d) are 

power-dependent evolution, and (e) and (f) are spectrally-averaged coherence depending 

on the power.  
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Fig. 5.8. Simulated coherence of SC generated in three different lengths of SF6 PCFs, in 

comparison with the experimental results. Column (a): three plots of measured spectral 

evolution using different fiber lengths. Column (b): measured coherence evolution. 

Column (c): simulated spectral evolution. Column (d): simulated coherence evolution. 

The simulation plots have black lines at 1700 nm to help visual comparison with 

experiments. In the experiment, radiation of relative intensity lower than about −40 dB 

was not measurable due to the sensitivity limitation; and in the simulations this part of 

radiation was also ignored. (e) and (f): spectrally-averaged coherence as functions of the 

average SC power. In the simulations, shot noise and 5% pulse-to-pulse power 

fluctuation in the pump were added. In (a), the color bars for the 10.5-cm and the 4.7-mm 

cases are omitted for clarity, and can be found in Fig. 5.1. In (b)−(d), each color bar 

works for three plots in the column. 

The simulated and the experimental coherence show qualitative agreement which 

confirms the association between coherence degradation and soliton fission. There is 
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some discrepancy, primarily in the extent and rate of degradation. For the short-fiber (4.7 

and 3.9 mm) cases, the experiments show quicker degradation at soliton fission than the 

simulations. This can be seen in the average coherence (compare Fig. 5.8 (e) with (f) , the 

4.7- and 3.9-mm cases), and also in the evolution where the experiments show relatively 

abrupt drop of coherence starting at certain powers, whereas the simulations show 

coherence degradation starting earlier at the edges of bandwidth and gradually spreading 

to larger ranges of wavelength (compare Fig. 5.8 (b) with (d), the 4.7- and 3.9-mm cases). 

For the 10.5-cm-fiber case, the average coherence drops to below 0.2 after soliton fission 

in the experiments, while to 0.6–0.4 in the simulations (compare Fig. 5.8 (e) with (f), the 

10.5-cm cases). In the evolution (compare Fig. 5.8 (b) with (d), the 10.5-cm cases), the 

experiments shows surviving coherence at very limited wavelengths after soliton fission, 

while in the simulations some coherence is maintained in the non-solitonic region and 

along solitons. 

The pulse-to-pulse stability of spectral intensity (–Cv, defined in Eq. 4.2.16) and 

coherence (|g|) are both figures of merit of SC stability. They might be expected to show 

similar trends. –Cv is related to coherence, according to the definition of coherence (Eq. 

4.2.12). It has been shown that –Cv has minor contribution in determining coherence 

[Dudley et al., 2006]. Here following simulations show that –Cv has low correlation with 

coherence, and with the pulse-to-pulse stability of spectral phase (|gPHASE| defined in Eq. 

4.2.15). 



85 
 

 

Fig. 5.9. Comparison between pulse-to-pulse stability of spectral intensity (–Cv) and 

coherence. (a) Power-dependent evolution of –Cv, using the 4.7-mm SF6 PCF. This can 

be compared with the 4.7-mm coherence evolution in Fig. 5.8 (d). (b) The spectral 

evolution, (c) the evolution of coherence |g|, and (d) the evolution of –Cv depending on 

the propagation length, using a 5-cm SF6 PCF and an average power of 70 mW. (e) 

Averaged coherence |g| (blue), phase stability |gPHASE| (red), and –Cv (green) as functions 

of the propagation length. The soliton fission length (4.8 mm) is marked with a dashed 

line. (f) Distribution of SC radiation as a function of |g| and –Cv, where the radiation at 

all the lengths in (b) is included. (g) Distribution of SC radiation as a function of |gPHASE| 

and –Cv. (g) shows low correlation between –Cv and |gPHASE|. (f) shows similar trends 

except for a forbidden area to the right-bottom of the dash red curve, because –Cv is 

coupled in |g|. 
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Fig. 5.9 (a) is the power-dependent evolution of –Cv using the 4.7-mm SF6 PCF. 

Comparisons with the corresponding coherence evolution (Fig. 5.8 (d), 4.7-mm case) 

show that –Cv starts degrading earlier than coherence. Before soliton fission, high (nearly 

zero) –Cv is maintained only along the pump peak and along the peaks of the two spectral 

lobes when the pump peak splits into these lobes. This is similar to results in the 

picosecond regime [Wetzel et al, 2012]. Such difference between –Cv and coherence can 

also be seen in the evolution along the propagation length (Fig. 5.9 (c) vs. (d)), and in the 

average values depending on the propagation length (Fig. 5.9 (e)). Fig. 5.9 (e) also shows 

that –Cv becomes relatively stable after soliton fission, while coherence |g| and the phase 

stability |gPHASE| continue to degrade. The |g| and the |gPHASE| curves are nearly the same, 

confirming that –Cv plays a small role in determining coherence. 

Low correlation between –Cv and |g| or |gPHASE| can be directly seen in Fig. 5.9 (f) and 

(g). Fig. 5.9 (g) shows low correlation between –Cv and |gPHASE|. Fig. 5.9 (f) shows 

similar trends except for a forbidden area to the right-bottom of the dash red curve, 

because –Cv is coupled in |g|.  

There is fluctuation of coherence and –Cv in the regions where they start to degrade. In 

the experimental data, the fluctuation occurs along both the wavelength and the power 

axes (Fig. 5.8 (b), 3.9-mm case, below 1400 nm); in the simulations, it occurs along the 

power axis (Fig. 5.8 (d), 4.7- and 3.9-mm cases, and Fig. 5.9 (a)). The fact that it occurs 

in both experiments and simulations indicates that it is not due to experimental errors. 

Rather, it should be due to the randomness of the noise, which occurs both in experiments 

and in simulations. 
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Fig. 5.10 (a) Measured coherence evolution of the 3.9-mm-fiber case. (b) Simulated 

coherence with independent noise at each power, including shot noise and pump power 

fluctuation ΔP. (c) Simulation result by fixing shot noise (meaning using the same shot 

noise at each power). (d) and (e) are two runs of simulation by fixing ΔP (meaning using 

the same set of ΔP at each power). (d) and (e) use two random sets of ΔP (as in the 

histograms) and thus have different coherence. These results show that the randomness of 

ΔP is the cause of the coherence fluctuation.  

Specifically, in the simulations, each level of power uses a different set of noise seeds, 

including shot noise and pump power fluctuation ΔP. The effect of such configuration can 

be tested by “fixing” the noise, namely using the same set of noise for all powers. When 

shot noise is fixed (Fig. 5.10 (c)), there is still fluctuation of coherence. When the pump 

power fluctuation (ΔP) is fixed (Fig. 5.10 (d) and (e)), the coherence fluctuation 

disappears. Different sets of ΔP (shown in the histograms) yield different degradation of 

coherence. These results show that random ΔP is the cause of coherence fluctuation. 

In the experiment, measurements were taken at one power after another, and the OSA 

measured spectra by scanning through wavelengths. Thus each power and each 

wavelength sees a different set of ΔP, which causes coherence fluctuation along both the 
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power and the wavelength axes. If a grating plus a line CCD was used to measure the 

spectrum of all wavelengths at the same time, the coherence fluctuation along the 

wavelength axis should have disappeared. 

Fig. 5.10 (d) and (e) show that two different sets of ΔP yield different coherence, with a 

repetition of N = 20. When N is large, the set of N ΔP’s will approach a normal 

distribution. Thus any random sets of ΔP will be nearly the same, causing the coherence 

fluctuation to be negligible. In our experiment, for example, the integration time is 2 ms 

for each wavelength, yielding N = 2 ms / frep = 160,000, which means a sum of N = 

160,000 pulses was measured for each wavelength in the spectrum. This N is large 

enough so that random sets of ΔP are nearly the same. But coherence fluctuation still 

exists in our experimental results. This is because each pulse interferes only with the next 

one in the experiment: 

                                 
2

*
12 1exp 1,2,..., 1

( ) ( ) ( ) ( )m m m
m N

m

g A A Aω ω ω ω+ = −
= % % %  (5.1.2), 

unlike in the simulations where each pulse interferes with all others (Eq. 4.2.12). So the 

experimental coherence actually depends on the sequence of ΔP. This sequence is 

random, independent of how large N is, which causes the fluctuation of coherence in the 

experiments. 

The fluctuation of –Cv (Fig. 5.9 (a)) can be explained similarly. 
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5.1.4 Conclusions 

Experimentally measured spectral and coherence evolution of SC generated in different 

lengths of SF6 PCFs are presented. Numerical simulations were carried out to match the 

measurements. The following conclusions can be drawn. 

(1) Spectral evolution contains a wealth of data, allowing for detailed comparison 

between simulation and measurement. The simulations can be optimized to match 

measurements by iteratively tuning parameters and comparing features. It is 

demonstrated that, given a spectral evolution, the fiber length, and the average power of 

SC, all other parameters can be determined unambiguously, and the spectral evolution can be 

reproduced in simulations. The soliton fission length or power was used as the primary 

criterion, and was reproduced quantitatively. Such optimization allows parameters to be 

estimated, and avoids experimentally measuring them. 

(2) The simulated and the measured coherence show qualitative agreement, both 

confirming that coherence degradation is associated with soliton fission. There is some 

discrepancy, mostly in the extent and rate of degradation. 

Coherent SC was generated experimentally using fibers slightly shorter than the soliton 

fission length, with little sacrifice in the bandwidth. This is a relatively easy way to 

enhance coherence, compared to other ways, e.g., using shorter pump pulses, or 

redesigning dispersion properties [Chen et al., 2009; Hooper et al., 2011]. 

(3) Simulations show that the stability of spectral intensity has different dynamics than 

coherence. Being two figures of merit of SC stability, they have low correlation. 
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(4) The measurements and the simulations both show fluctuation of coherence and 

spectral intensity stability, in the regimes where they start to degrade. It is shown that this 

is caused by random pulse-to-pulse fluctuation of the pump power.  

 

5.2 Using Tellurite PCF 

5.2.1 Experimental data 

Fig. 5.11 (a) shows the measured spectral evolution of the SC generated in the 2.7-cm 

highly nonlinear tellurite PCF. It shows a soliton-fission-dominated pattern with Raman-

induced red shift of the solitons and Cherenkov radiation at the blue edge. As expected, it 

is similar to the 10.5-cm SF6 PCF case (Fig. 5.1 (a)), except for an earlier soliton fission.  

The coherence properties are shown in Fig. 5.11 (b) and (c). The overall coherence is 

high (> ~0.9) before soliton fission (~2 mW), and degrades quickly after that. In contrast, 

the solitonic region (> 1550 nm) has slow linear-like degradation of coherence, which is 

less sensitive to soliton fission. More details can be seen in Fig. 5.11 (d) and (e), where a 

longer temporal delay in the interferometer was used to yield shorter periods in the 

interferometric fringes (see Eq. 2.4.13), thus allowing higher resolutions in wavelength in 

the coherence evolution. Traces of high coherence can be seen to follow corresponding 

soliton trajectories (marked with arrows 1–7). Only small degradation of coherence 

occurs at the solitons when the power increases (along y axis). At around 32 mW of Fig. 

5.11 (d) and (e), the data have an interruption due to disturbance of the alignment in the 

experiment. But this does not affect the trends we discuss about. 
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Fig. 5.11. (a), (b): Measured spectral and coherence evolution of SC generated in a 2.7-

cm tellurite PCF. (c) Spectrally-averaged coherence of the whole measured spectrum 

(800−1700 nm, red curve) and of the solitonic region (1550−1700 nm, blue curve). (d), 

(e): Closeup spectral and coherence evolution for the solitonic region. Solitons and 

corresponding high-coherence traces are marked with arrows (1–7). Each pair of arrows 

is placed at the same places in the plots, showing the correspondence between the 

solitons and the high-coherence traces.  

 

5.2.2 Simulated spectral evolution and discussions 

The measured spectral evolution (Fig. 5.11 (a)) covers a wavelength range of ~900–1700 

nm. Since the reported dispersion curve covers only 1000–1600 nm [Domachuk et al., 
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2008], estimation of the dispersion over a broader bandwidth is needed. The dispersion 

curve for the whole SC span (about 900–5500 nm) can be estimated based on a complete 

SC spectrum (Fig. 5.12 (a)) generated in an 8-mm piece of the same tellurite PCF 

[Domachuk et al., 2008].  

As in Fig. 5.12 (b), the corner region of the dispersion curve (1600–2200 nm) was 

empirically estimated, and the remaining parts were modeled to be linear (λ < 1300 nm 

and > 2200 nm). Tuning the slopes of the linear parts causes wavelength shifting in some 

peaks in the spectrum (e.g., see red arrows in Fig. 5.12 (b) and (c)). The slopes were 

optimized (Fig. 5.12 (d)) by simply matching the reddest (~900 nm) and the bluest 

(~4700 nm) spectral peaks between simulation and experiment (Fig. 5.12 (e) red arrows). 

As a result, the simulated spectrum agrees with the measured one well in most features 

(e.g., see green arrows in Fig. 5.12 (e)). The simulated spectrum has deeper valleys than 

the measured one, because the measured one is an average and also has a lower resolution 

in wavelength. 

Using the dispersion curve above, the spectral evolution was simulated for the 2.7-cm 

tellurite PCF (Fig. 5.13). The average SC power P was tuned to 1.4*P to match the 

measured results, which indicates a collimation loss of 29% in the experiment. The 

simulations agree with the experimental results well, especially in the soliton fission 

power. Both show the first soliton occurring at about 3 mW, and Cherenkov radiation 

emerging at about 3 mW at about 1100 nm.  
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Fig. 5.12. Optimization of the simulated SC spectrum by tuning the dispersion. (a) 

Measured SC spectrum, excerpted from [Domachuk et al., 2008]. 8-mm tellurite PCF was 

used. (b) Tests with varying slopes in the dispersion curve. The red-color part of the 

curve was experimentally measured [Domachuk et al., 2008]. The green circles mark 

estimated corner part (1600–2200 nm). The remaining parts were assumed to be linear 

(green lines). (c) Simulated SC spectra using the dispersion curves in (b). Changing the 

slopes of the linear parts in the dispersion in (b) causes wavelength shift of some spectral 

peaks in (c) (see red arrows). (d) The dispersion curve for the optimized spectrum in (e). 

The dispersion at the pump wavelength is 76.2 ps/(nm∙km). ZDWs are 1382 and 2528 

nm. (e) Measured SC spectrum [Domachuk et al., 2008] vs. the optimized simulation 

using the dispersion curve in (d). The criterion of optimization is matching the reddest 

(~900 nm) and the bluest (~4700 nm) peaks between simulation and experiment, 

respectively. These two peaks are marked with red arrows. Green arrows mark some of 

the spectral features that match.     

At the maximum average power P = 51*1.4 mW, spectral and temporal evolution along 

the propagation length (not plotted here) shows a soliton fission length Lfiss = ~3 mm. 

Analytical calculation yields Lfiss = 3.6 mm and a soliton number N = 11. So to generate 

SC based on almost pure SPM (similar to the cases of 3.9- and 4.7-mm SF6 PCFs), a 3–

4-mm-long tellurite PCF should be used.   

There are some minor mismatches in the wavelengths of the solitons and the Cherenkov 

radiation. Considering the Raman-induced frequency shift of solitons Ω ∝ |β2|z/T0
4 in 

which T0 is the duration of solitons, inaccuracy in T0 should be the dominant source of 

error. The wavelength of Cherenkov radiation is determined by phase matching with 

solitons; therefore, errors in the soliton wavelengths and inaccuracy of the dispersion 

curve should be responsible for the mismatches in the Cherenkov radiation wavelengths. 

The measured spectral evolution has an overall slope in intensity vs. wavelength, where 

shorter wavelengths are in general brighter than longer wavelengths. This is potentially 

due to alignment errors. 
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Fig. 5.13. Comparison of (a), (c) measured and (b), (d) simulated spectral evolution using 

the 2.7-mm tellurite PCF. (c) and (d) are closeups of the beginning (low SC power) stage, 

showing the first a few solitons and the emergence of the Cherenkov radiation. The lower 

and the upper limits of the color bars are set for visualization of features. 

 

5.2.3 Simulated coherence evolution and discussions 

Simulated coherence evolution is plotted in Fig. 5.14. (f) and (h). Simulated spectral 

evolution and measured results are also plotted here for comparison. The simulated 

coherence (Fig. 5.14. (f)) shows similar trends as the measured (Fig. 5.14. (b)), that low 

coherence firstly occurs in the Cherenkov radiation and then spreads over the non-

solitonic region. In the solitonic region, the simulations (Fig. 5.14. (h)) also show high-

coherence traces following the soliton trajectories (Fig. 5.14. (g)) (marked with arrows 

A–E), as the measurements do (Fig. 5.14. (d)).  
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Fig. 5.14. (a)–(d) Measured and (e)–(h) simulated spectral and coherence evolution of SC 

generated in the 2.7-cm tellurite PCF. The plots in the second line ((c), (d), (g), and (h)) 

are closeups of the solitonic region (1550–1700 nm). The pump wavelength is marked 

with black lines. Arrow pairs 1–7 and A–E mark soliton trajectories (in (c) and (g)) and 

corresponding high-coherence traces (in (d) and (h)). (i) and (j) show spectrally-averaged 

coherence of the whole measured spectrum (800–1700 nm, red curves) and of the 

solitonic region (1550–1700 nm, blue curves). The dashed curves in (i) show average 

coherence based on the measured coherence and the simulated spectra. Shot noise and 

5% pulse-to-pulse power fluctuation in the pump were used in the simulations. 
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The solid curves in Fig. 5.14. (i) and (j) show measured and simulated spectrally-

averaged coherence, respectively. The measured and the simulated spectra have major 

difference in the energy fraction of the low-coherence Cherenkov radiation, which can 

cause difference in the average coherence, even if the coherence properties are the same 

between experiment and simulation. To rule out this factor, average coherence based on 

the measured coherence and the simulated spectra is used to quantify the measured 

coherence (dashed curves in Fig. 5.14. (i)). After this calibration, the dashed curves in 

Fig. 5.14. (i) show approximately linear degradation, similar to the simulations in Fig. 

5.14. (j). Comparisons between the solid and the dashed curves in Fig. 5.14. (i) show that 

the fast drop in the solid red curve at 0–20 mW is due to the bright Cherenkov radiation 

in the measured SC spectra.  

Standard deviation of the fluctuation in the pump power was tuned to control the 

coherence degradation in the simulations. Based on the criterion of matching the average 

coherence of the whole spectrum at the maximum power, 5% fluctuation was chosen 

such that the dashed red curve in Fig. 5.14. (i) and the red curve in (j) both arrive at ~0.3 

at the maximum power. 

Simulated coherence of the spectrum up to 5 μm is plotted in Fig. 5.15. The red-shifted 

Cherenkov radiation maintains some coherence, while the blue-shifted Cherenkov 

radiation completely loses its coherence. This is interesting, because the blue-shifted and 

the red-shifted Cherenkov radiation are generated based on the same mechanism. They 

are both phase-matched to the solitons, and are supposed to show same coherence 

properties. 
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Fig. 5.15. Simulated spectral and coherence evolution of SC generated in a 2.7-cm 

tellurite PCF. (a) is a reminder of the GVD. (b) and (c) are evolution depending on the 

SC power. (d) and (e) are evolution depending on the propagation length (P = 71.4 mW). 

Shot noise and 5% fluctuations of the pump power were added.  

There have been some studies of the coherence of the Cherenkov radiation (usually blue-

shifted). With shot noise alone, the Cherenkov radiation tends to maintain higher 

coherence than most parts of the spectrum [see Dudley et al., 2006, Fig. 20 (a)]. With 

shot noise and pump power fluctuation, it suffers coherence degradation immediately 

after soliton fission (e.g., see Fig. 5.15). [Kobtsev et al., 2005] explained that, there are 

fine spectral fringes (period Δω = 0.5–1 Hz) in the non-solitonic regime. These fringes 

shift depending on fluctuation of the pump power, and the lack of spectral overlapping 

causes coherence degradation. [Türke, et al., 2007] explained that each Cherenkov peak 

interacts with the sum of all solitons through XPM. The sum of all solitons has 
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interference which changes when the pump power fluctuates, causing coherence 

degradation in the Cherenkov radiation. 

These theories do not explain the results in Fig. 5.15, where the red-shifted Cherenkov 

radiation has higher coherence than the blue-shifted, although they are pumped by the 

same solitons. Investigation of the actual cause will be a subject of future work.    

 

5.2.4 Conclusions 

In summary, this section presents measured and simulated spectral and coherence 

evolution of SC generated in a 2.7-cm tellurite PCF. Major conclusions are as follows: 

(1) The measured spectral evolution shows a soliton-fission-dominated pattern. Raman-

induced red shift in the solitons and the generation of Cherenkov radiation are seen. The 

evolution has a very quick initial broadening and early soliton fission, due to the high 

nonlinearity of the fiber.  

After optimization, the simulated spectral evolution shows good agreement with the 

measurements. The unknown part of the dispersion curve was determined based on a SC 

spectrum generated in an 8-mm-long piece of the same Tellurite PCF [Domachuk et al., 

2006].  

(2) The measured and the simulated coherence show nearly quantitative agreement. The 

average coherence of the whole measured spectrum (800–1700 nm) has approximately 
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linear degradation as a function of the average power, whereas that of the solitonic region 

(1500–1700 nm) shows considerably shower degradation.  

The measured and the simulated coherence evolution show coherence degradation firstly 

occurring at the Cherenkov radiation and then spreading over the non-solitonic region. 

There are high-coherence traces following the soliton trajectories.  

(3) Simulations show that the red-shifted Cherenkov radiation is less vulnerable to 

coherence degradation than the blue-shifted Cherenkov radiation.  
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6. CONCLUSIONS AND OUTLOOK 

In this dissertation, experimentally measured spectral and coherence evolution of SC was 

presented, and numerical simulations based on the GNLSE were performed to match the 

experimental results. Highly nonlinear soft-glass PCFs were used for SC generation, 

including a lead-silicate (Schott SF6) PCF and a tellurite PCF. Different lengths of the 

SF6 PCF were used to investigate the dependence of coherence on the fiber length. The 

pump is at 1550 nm, with pulse energy in the order of nJ and duration of 105 fs. The 

coherence of SC was measured using the delayed-pulse method. 

Spectral evolution shows rich features which allow for detailed comparison between 

measurement and simulation. Simulated spectral evolution was optimized by iteratively 

tuning parameters and comparing features with experimental data. It was demonstrated in 

principle that, given a spectral evolution, the fiber length, and the average power of SC, 

all other parameters can be determined unambiguously through the optimization, and the 

spectral evolution can be reproduced in simulations. Most importantly, the soliton fission 

length or power was reproduced quantitatively. Such optimization allows avoiding 

experimental measurement of some parameters. 

For the coherence evolution of SC generated in different lengths of SF6 PCFs, the 

measurements and the simulations show qualitative agreement which confirms the 

association between coherence degradation and soliton fission. Using fibers slightly 

shorter than the soliton fission length, coherent SC was generated with little sacrifice in 

the bandwidth. This is a relatively easy way to enhance coherence, compared to others 
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such as using shorter pump pulses or redesigning the dispersion [Chen et al., 2009; 

Hooper et al., 2011].  

Besides coherence, the pulse-to-pulse stability of spectral intensity is another 

characterization of SC stability. It is shown by simulations that it has different dynamics 

than coherence, and has low correlation with the latter. 

Some fluctuation of coherence and the pulse-to-pulse stability of spectral intensity occurs 

in both the measurements and the simulations. It is shown to be a result of the pulse-to-

pulse power fluctuation in the pump. 

For the coherence of the SC generated in the tellurite PCF, the measurements and the 

simulations show nearly quantitative agreement. The average coherence of the whole 

measured spectrum (800–1700 nm) has approximately linear degradation as a function of 

the average power, whereas that of the solitonic region (1500–1700 nm) shows 

considerably shower degradation. The measured and the simulated coherence evolution 

show coherence degradation firstly occurring at the Cherenkov radiation and then 

spreading over the non-solitonic region. There are high-coherence traces following the 

soliton trajectories. 

Some interesting issues are not fully solved, and will be subjects of future research.  

(1) There are some discrepancies between measurement and simulation. In the spectral 

evolution of both the SF6- and the tellurite-PCF cases, there are discrepancies in the 

wavelengths of the Cherenkov radiation, and in the trajectories of solitons (see Fig. 5.8 

(a) vs. (c), and Fig. 5.13 (a) and (c) vs. (b) and (d)).  
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In the coherence results using the SF6 PCFs, the measurements typically show faster or 

greater degradation than the simulations for the 4.7-mm- and the 10.5-cm-fiber cases, 

whereas there is good agreement for the 3.9-mm-fiber case (see Fig. 5.8 (b) vs. (d) and (e) 

vs. (f)). Investigating the cause of these discrepancies and fixing them will be a future 

subject. 

(2) In the optimization of the simulated spectral evolution, manual comparison was 

implemented between measurement and simulation. In future research, a cost function 

should be developed to quantify the match of features, and then iterative optimization can 

be easily implemented by computer. Sophisticated tuning of parameters can be added, for 

example tuning the shape of the dispersion curve. This should help fixing some of the 

discrepancies in (1). 

(3) Simulations also show that the red-shifted Cherenkov radiation has different 

coherence properties than the blue-shifted Cherenkov radiation. Considering the blue-

shifted and the red-shifted Cherenkov radiation are generated based on the same 

mechanism, the cause of this difference is an interesting topic to investigate. To consider 

this question in broader view, I am interested in investigating how the specific coherence 

at each wavelength or in each component of SC is determined. 
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APPENDIX A. SYSTEMATIC CHECK OF NUMERICAL 

SIMULATIONS 

 

Fig. A.1 A systematic check of the simulations of SC and its coherence. (a) and (b) are 

results excerpted from [Dudley et al., 2006]. (c) and (d) are my results using the same 

parameters. 

Fig. A.1 shows a systematic check of my simulation methods. (a) and (b) are results 

excerpted from [Dudley et al., 2006]. (c) and (d) are my results using the same 

parameters. My results agree with those in the literature. 
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APPENDIX B. PARAMETERS FOR SIMULATIONS IN 

SECTION 2.3 

The following parameters are invariant for all the simulations in Section 2.3.  

The pump wavelength is λ0 = 1500 nm. The pump pulse duration is TFWHM = 105 fs. The 

average power of pump, which is also average output power because loss is not 

considered here: Pave = 70 mW. 

The nonlinearity of the fiber is γ = 100 /km∙W. The fiber length is Lfiber = 4.82 cm. This 

length was chosen so that Fig. 2.1 (b) shows two soliton periods. 

The parameters in the Raman response function are: 1τ = 5.5 fs, 2τ = 32 fs (see Eq. 

2.2.61). 

The parameters of different values in each simulation in Section 2.3 are listed in Table 

B.1. 

Fig. β2(ω0) 
(ps2/km) 

β3(ω0) 
(ps3/km) 

fR N 

2.1 (a) 100 0 0 N.A. 
2.1 (b) -289 0 0 3 
2.1 (c) -2601 0 0 1 
2.2 (a) -212 0 0.1 3.5 
2.2 (b) -212 0.3 0.1 3.5 

Table B.1 Parameter values for each simulation in Fig. 2.1 and 2.2. 
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APPENDIX C. COMPUTER CODE FOR DATA 

PROCESSING AND NUMERICAL SIMULATIONS 

The computer code for data processing and numerical simulations is written in Matlab. 

All code including 7 functions is combined in the pdf file attached, where the function 

names are at the header of each page.  

‘SC_sim_main.m’ simulates SC generation based on the generalized nonlinear 

Schrödinger equation, and then calculates its coherence. Most parameters are defined in 

this function, and then ‘SC_sim_calculate.m’ is called to perform calculation. These two 

files are modified from the original code by J. C. Travers, M. H. Frosz, and J. M. Dudley 

(2009) at www.scgbook.info. See Section 2.2 for details. 

‘plot_evolution_1.m’ and ‘plot_evolution_as_experiment.m’ plot spectral and coherence 

evolution. The latter one draws plots in a style the same as the experimental data. For 

example, the wavelength limit is set to be within 650 to 1700 nm which is the limit in my 

experiment, and the power is set to be same as in experimental data. 

‘Raman_calculation_main.m’ calculates the Raman response function ( )
R

h t and the 

Raman fraction R
f , based on the Raman gain spectrum ( )

R
g ω . ‘Raman_cal.m’ is called 

to perform the calculation. See Section 2.2.3 and 2.4.3 for details. 

‘SC_data_processing_get_coherence_evolution_n_spectral_evolution.m’ performs data 

processing. Spectral and coherence evolution was calculated based on short-arm 

spectrum, long-arm spectrum, and interferometric spectrum. See Section 4.1 for details. 




