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Abstract of the Dissertation 

Significant distinct branches of hierarchical trees: 

A framework for statistical analysis and applications to biological data 

by 

Guoli Sun 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2014 

 

One of the most common goals of hierarchical clustering is finding those branches 

of a tree that form quantifiably distinct data subtypes. Achieving this goal in a 

statistically meaningful way requires (a) a measure of distinctness of a branch and (b) a 

test to determine the significance of the observed measure, applicable to all branches and 

across multiple scales of dissimilarity. 

We formulate a method termed Tree Branches Evaluated Statistically for 

Tightness (TBEST) for identifying significantly distinct tree branches in hierarchical 

clusters. For each branch of the tree a measure of distinctness, or tightness, is defined as a 

rational function of heights, both of the branch and of its parent. A statistical procedure is 

then developed to determine the significance of the observed values of tightness. We test 

TBEST as a tool for tree-based data partitioning by applying it to five benchmark 

datasets, one of them synthetic and the other four each from a different area of biology. 

With each of the five datasets, there is a well-defined partition of the data into classes. In 

all test cases TBEST performs on par with or better than the existing techniques.  

One dataset uses Cores Of Recurrent Events (CORE) to select features. CORE 

was developed with my participation in the course of this work. An R language 
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implementation of the method is available from the Comprehensive R Archive Network: 

cran.r-project.org/web/packages/CORE/index.html .	  	  

Based on our benchmark analysis, TBEST is a tool of choice for detection of 

significantly distinct branches in hierarchical trees grown from biological data. An R 

language implementation of the method is available from the Comprehensive R Archive 

Network: cran.r-project.org/web/packages/TBEST/index.html .	  	  
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Chapter 1  Introduction  
 

 

 

 

 

 

This dissertation presents a method for identifying distinct substructures of data 

based on hierarchical clustering. Hierarchical clustering, as the name suggests, builds a 

hierarchy of clusters, i.e. groups of observations. Hierarchical clustering has a number of 

useful properties. First of all, hierarchical structure with N-1 clusters is derived from N 

observations. It does not need a number of clusters specified in advance and provides a 

tree-like organization of the data. Each cluster is combined with, or split from the rest of 

the tree based on a quantitative measure called dissimilarity. Secondly, hierarchical 

clustering lends itself easily to visualization of a hierarchical tree with labels for 

observations.   

Taking advantage of the second property, most commonly, application of 

hierarchical clustering consists of visual examination, and intuitive identification of sub-

trees that appear clearly distinct from the rest of the tree. Obviously, results of such 

qualitative analysis and conclusions from it can be observer-dependent. Quantifying the 

interpretation of hierarchical trees and introducing mathematically and statistically well-

defined criteria for distinctness of sub-trees would therefore be highly beneficial and is 

the focus of this work.  

A method was designed in the course of this work for identifying statistically 

distinct subsets of hierarchically clustered data. Termed Tree Branches Evaluated 

Statistically for Tightness, or TBEST in the following, the performance of the method 

was thoroughly studied in comparison with existing methods for the same or similar 

purposes, and found to be superior in its ability to reproduce known meaningful partitions 

of biological data. The detailed description of TBEST in the following is an expansion of 

its briefer description given in our recent publication (Sun and Krasnitz 2014). 
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One of the data sets used to evaluate TBEST was generated using a novel 

statistical tool for the analysis of interval data. The tool, termed Cores Of Recurrent 

Events (CORE), was developed with my participation in the course of this work. Its brief 

description here follows our publication (Krasnitz, Sun et al. 2013). 

This dissertation has the following structure. Introductory Chapter 1 provides 

background on clustering analysis (1.1), existing methods designed to find distinct 

branches (1.2) and measures to evaluate clustering (1.3). Chapter 2 addresses data 

preprocessing techniques and discusses several options of preparing data before 

clustering. In Chapter 3, we introduce the method TBEST. The performance of this 

method is studied in comparison to existing methods on data sets from a variety of 

biological various origins in Chapter 4. Implementation of TBEST is discussed in 

Chapter 5. Chapter 6 is devoted to discussion and conclusions. 

Appendix includes: A time complexity and performance analysis, Figure S1, 

Figure S2 and Table S1. Brief introduction of content in these four materials: 1) a 

comparison of time complexity and performance for TBEST, SC, SLB and DTC, 2) 

Figure S1, an 11-panel figure illustrating null distribution of tightness, 3) Figure S2, a 

comparison of empirical p-value estimates for tightness to EVT-based estimates and 4) 

Table S1, detailing the properties of the Simulated6 dataset. 

1.1 Clustering analysis 
Clustering is otherwise known as unsupervised learning. Division of learning 

methods into supervised and unsupervised ones is based on the availability and existence 

of response variables, also called class labels.  

To distinguish clustering from classification, a general problem of classification is 

posed as follows: Given the predictor variables/features X, and a categorical response 

variable Y, what is the relationship between X and Y? A simple binary classification 

example is, knowing which patients have heart disease (1) or not (0), and this is the 

response variable Y, fit a model δ(Y|X) that predicts the occurrence of heart disease for 

variables/features X such as blood pressure, age, etc. Examples of δ(Y|X) include logit in 

logistic regression or majority vote for K-nearest neighbors (KNN) (Altman 1992). This 

set of problems belongs to supervised learning. 
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Clustering, on the other hand, finds subsets of data based on similarities between 

observations in the absence of known class labels Y. Quantitative measures of similarity 

among observations depend on their properties X and are discussed in the following. 

Subsets generated by this procedure are called clusters. Clustering often helps to learn 

meaningful class labels from the data. For example, to be discussed in greater detail in 

the following, similarities among patterns of somatic mutations in the genomes of 

individual cells can be used to discover the clonal structure of the population from which 

the sample of cells is drawn. Another example is segmentation of online customer pool 

according to the similarity among patterns X of the customer online These clusters can be 

used to predict behavior of future customers.  

The most common clustering approaches are centroid based clustering (1.1.1) and 

hierarchical clustering (1.1.2). Instead of similarity among observations, centroid based 

clustering use similarity between observation and the so-called “centroid”, defined in 

1.1.1. 

1.1.1 Centroid based clustering 
For these clustering method the number of clusters needs to be specified in 

advance. The algorithms then seek a partition into clusters that maximizes the within-

cluster similarity. Two representative examples of this set of algorithms are K-means and 

Partition Around Medoids (PAM). These can be briefly described as follows.  

In K-means method, given n observations X = {X1, X2, … Xn}, each of p real-

valued variables, a partition S of X with given number of K parts, S = {S1, S2, …SK} is 

found by minimizing the objective function 

F = 𝑋! − 𝜇! !
!

!!∈!!

!

!!!

 

where µi is the mean vector of observations in Si, with dimension p. Note mean vector µi 

is centroid, and Euclidean norm measures similarity between observation and centroid. In 

the commonly used Lloyd’s iterative algorithm the K centroids are found for the given 

cluster assignments, followed by reassignment of each observation to the nearest 

centroid. The procedure is repeated until the assignment no longer changes (Lloyd 2006). 

There is no guarantee that the absolute minimum of F will be found, and K-means may 
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fail, for example, by choosing a centroid at the middle point between two obvious 

clusters. 

PAM, or K-medoids (Kaufman 1990), is designed as a more robust centroid based 

clustering algorithm. Instead of choosing mean as the centroid of a cluster 𝜇!, PAM 

chooses median among the observations. This choice is known as a medoid. To make the 

optimal choice of medoids, PAM compares the objective function for the current medoids 

with that for randomly selected non-medoids. In each iteration, PAM has a trade-off of 

computing time. It exhaustively compares current medoid with non-medoids in 

𝑂(𝑛(𝑛 − 𝐾)𝐾), while K-means only uses 𝑂(𝑛𝐾). 

Although there are other variations of K-means, such as K-medians (Jain 1988, 

Bradley 1997), and Sparse K-means (Witten 2010), the requirement to specify the 

number K in advance remains an inevitable limitation of centroid based clustering 

algorithms. 

1.1.2 Hierarchical clustering 
Hierarchical clustering builds a hierarchy of groups of data based on quantitative 

similarity measurements. The measure that hierarchical clustering uses is namely 

Dissimilarity and Linkage (1.1.2.1). Unlike centroid based clustering, there is no need to 

specify the number of clusters. A hierarchical structure is built while samples are merged 

or split into clusters: 

Agglomerative: A bottom-up approach. All individual observations are listed on 

the bottom. The first cluster contains the pair of individual observations that has 

least dissimilarity. One more pair of observations is merged at each step until 

every observation is combined into one cluster at top.   

Divisive: A top-down approach. All individual observations are listed in one 

cluster at the beginning. Splits are performed recursively until every observation 

is in its singleton cluster at bottom.  

Agglomerative hierarchical clustering is more widely used and is more time 

efficient then divisive hierarchical clustering. We focus on agglomerative hierarchical 

clustering, and refer to it as HC in short from now on. 
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1.1.2.1 Agglomerative Rule 
Unlike centroid-based methods, HC does not require the number of clusters to be 

pre-specified. Another advantage of HC is it generates a hierarchical tree structure. This 

agglomerative hierarchical tree, also known as dendrogram, grows from the bottom-up 

with chosen dissimilarity measures. The dendrogram provides visual picture of how items 

are merged into clusters. This section provides the definition and example of HC 

dissimilarity measures, and how to use a connectivity matrix/dissimilarity matrix to grow 

a hierarchical tree.  

Dissimilarity:  

Definition: The dissimilarity metric, or dissimilarity is defined between any two 

observations Xi and Xj, i≠j, i,j∈[1,n]. Commonly used choices are: 

Euclidean distance  𝑋! − 𝑋! !
 

Manhattan distance 𝑋! − 𝑋! !
   

maximum distance  𝑋! − 𝑋! !
 

cosine dissimilarity (1-uncentered Pearson’s Correlation) 1− !!,!!
!! ! !! !

 

1 – Pearson’s Correlation 1− (!!"!!!)(!!"!!!)
!
!!!

(!!"!!!)!
!
!!! (!!"!!!)!

!
!!!

 

There are many other dissimilarity metrics, such as 1 – Kendall’s Correlation, 1 – 

Spearman’s Correlation. Measurements of correlation coefficient have range from -1 to 1, 

the correlation-based dissimilarity metrics therefore have range from 0 to 2.  

Dissimilarity metric defined in HC need not be a distance function. Correlation-

based dissimilarity metric may violate the triangle inequality, i.e. g(x, y) + g(y, z) ≥+ g(y, 

z where x, y and z are observations with p dimensions. 

An example is given below using Kendall’s correlation. The dissimilarity metric 

is 1 – Kendall’s Correlation,  

𝜏 = 1− 𝑇𝑎𝑢!                  𝑛𝑜  𝑡𝑖𝑒𝑠
1− 𝑇𝑎𝑢!      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑇𝑎𝑢! =
𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡  𝑝𝑎𝑖𝑟𝑠 − 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡  𝑝𝑎𝑖𝑟𝑠

1
2𝑛(𝑛 − 1)
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𝑇𝑎𝑢! =
𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡  𝑝𝑎𝑖𝑟𝑠 − 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡  𝑝𝑎𝑖𝑟𝑠

[12𝑛 𝑛 − 1 − 𝑛!][
1
2𝑛 𝑛 − 1 − 𝑛!]

 

A concordant pair of observations means the order of inequality is consistent 

through p dimensions. Otherwise, the pair is discordant. While in Taub, 𝑛! and 𝑛! are 

numbers of pairs tied in each observation. Given three observations with rankings, O = 

(1, 1, 1, 2, 3), P = (2, 2, 2, 1, 1), Q = (1, 2, 1, 2, 3). 𝜏 𝑃𝑄 = 1.722, 𝜏 𝑂𝑄 = 0.198, 

𝜏 𝑂𝑃 = 1.926,  

𝜏 𝑃𝑄 + 𝜏 𝑂𝑄 < 𝜏(𝑂𝑃) 

This dissimilarity metric is not a distance function as it fails to satisfy the triangle 

inequality.  

Linkage:  

Definition: Linkage is defined as dissimilarity measure between an individual 

observation and a cluster, or a pair of clusters. Let two clusters, C and S, each contain 

individual observations, indexed, respectively by c and s. With this notation, commonly 

used choices of linkage are: 

complete linkage (furthest neighbor) max 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠, 𝑐 :∀  𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶  

single linkage (nearest neighbor) min 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠, 𝑐 :∀  𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶  

average linkage    !!""!#!$%&!'((!,!)!∈!!∈!
#  !"  !"#$%&'  !"  !  ∗  #  !"  !"#$%&'  !"  !

 

Ward’s linkage (minimal variance)(Ward 1963) 

cost(C∪S)-cost(C)-cost(S) 

Cost function cost(S) is 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠,𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑!)!∈! . This is the variance if 

using square of Euclidean distance as dissimilarity metric and arithmetic mean as 

centroid. Ward’s linkage is used to find the cluster with minimal merged cost along the 

hierarchy.  

centroid linkage    𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑! − 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑!  

Centroid here means the center of a cluster, which has been introduced in 1.1.1. 

The mean vector (1.1.1) of observations in a cluster is the most popular choice of 

centroid.  

median linkage    𝑀𝑒𝑑𝑖𝑎𝑛! −𝑀𝑒𝑑𝑖𝑎𝑛!  
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Instead of using arithmetic mean of a cluster in centroid linkage, it uses median of 

observations in corresponding cluster. 

Agglomeration:  

With chosen dissimilarity, one n by n connectivity matrix, or dissimilarity matrix 

D is generated, n being the number of observations. Item 𝐷!" is the dissimilarity value 

between a pair of ith and jth individual objects. The following algorithm explains how D 

is updated each step a cluster is merged. 

Algorithm: 

Compute dissimilarity matrix for the initial n(n-1)/2 pairs of observations 

ith step along the hierarchy, i=1,2,…n-1, 

1. While dimension of dissimilarity matrix D >1, search the pair of 

objects which have smallest value in D, and this pair is merged to cluster i  

2. With ith cluster and other n-1-i objects, dissimilarity values 

between ith cluster and other n-1-i objects are computed, and dissimilarity 

Matrix D is updated with dimension n-i by n-i 

Repeat step 1 and 2 until n-1th cluster is classified, i.e. all observations are 

clustered into one cluster 

With agglomeration rule in mind, here we provide some tips on choosing 

dissimilarity measures. Monotonically increasing dissimilarity is not guaranteed in 

centroid method, and median linkage. Inversions may be observed. Therefore we do not 

recommend using linkage (centroid linkage, median linkage) that brings on inversions, as 

it spoils the hierarchical structure. We recommend average linkage, complete linkage and 

Ward’s linkage. Ward’s linkage is used to find the cluster with minimal merged cost 

along the hierarchy. 

Dendrogram:  

Dendrogram provides a visual rendition of HC as a binary tree. Each leaf corresponds to 

an individual observation, and the tree structure is dictated by the agglomeration 

algorithm (1.1.2.1). Specifically, each internal node of the tree corresponds to a merger of 

two objects and is displayed at a value of the vertical coordinate equal to the dissimilarity 

of the two objects being merged.  This value is known as height. By convention, all 

leaves are displayed at zero height and in the horizontal order that makes a planar display 
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of the tree possible. Figure 1 below shows a dendrogram grown from Golub’s Leukemia 

dataset (Golub, Slonim et al. 1999). 

	  

 
Figure 1	  Dendrogram of HC, using 38 samples from Golub’s Leukemia dataset.  
This dendrogram is grown using Ward’s linkage and Euclidean dissimilarity. The first cluster is merged by 
“sample 6” and “sample 17” with smallest non-zero height. ith cluster has monotonically increasing height.  
 
1.2 Existing methods for finding distinct branches 

So far we have introduced Clustering Analysis (1.1). Without prior knowledge of 

class labels, HC groups observations based on given dissimilarity and linkage, and 

produce dendrogram i.e. a visualization of hierarchy of clusters, such as Figure 2. HC is 

now widely used in partitioning data and finding distinct cluster of data. Given a 

hierarchical tree produced by HC, a method needs to be designed to serve two purposes:  

1). Determine whether a branch is distinct from others 

2). Check if candidate distinct branches form a partition of the data 
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Figure 2	  A comparison of two dendrograms. 
Dendrograms are grown from HC with Leukemia data set. A). This dendrogram is based on real leukemia 
expression data. B). This dendrogram is based on randomized leukemia expression data. Both hierarchical 
trees are grown with Euclidean dissimilarity and Ward’s linkage.  
 
 
 

Identification of distinct branches of hierarchical trees by practitioners in 

biological sciences is predominantly qualitative and intuitive and rarely goes beyond 

visual inspection of the dendrogram, sometimes along with the image of the data matrix. 

Such identification is observer-dependent, and any two biologists may disagree on the 

result. For example, in Figure 2 A), the leftmost cluster containing nine observations is 

distinct from the rest of the tree, so is the middle cluster with four observations, “sample 
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3”, “sample 4”, “sample 2” and “sample 16”.  

With a second look in Figure 2 B), the leftmost cluster containing six observations 

also appears distinct from others. However, this is actually a branch from randomized 

data. This reveals the importance of examining if a distinct branch is really useful, or 

rather, not spurious. Statistical tests can be used to test if a branch is clustered by chance, 

with statistics defined on distinctness. Here we reformulate properties of a suitable 

method: 

1). A measurement of distinctness of branches 

2). A statistical test to find statistically meaningful branches 

3). Ability to find a partition of data into distinct branches 

Next we present existing methods. These methods fall into two categories, 

heuristic methods and statistically supported methods, following key property 3). 

Whether other two properties are satisfied is illustrated in each method. Generalization of 

properties of existing methods is given in 1.2.3. 

1.2.1  Heuristic methods 
Two existing methods fall into a heuristic category, tree-cut and dynamic tree cut. 

They neither have a quantitative measurement of distinctness of branches, nor perform a 

statistical test on truly usefulness of branches. However, they guarantee a partition of data 

when obtaining clusters with setting up certain parameters. The parameters, such as 

cutting height, number of clusters or minimal cluster size, that the results depend on, 

make the detection of distinct clusters less trustworthy.    

1.2.1.1 Tree-cut 
Tree-cut, as the name suggests, it takes advantage of the hierarchical structure in a 

dendrogram, cutting from certain height will leave a partition of clusters. For example, a 

cut-off at height 100000 results in a partition of three clusters in Figure 1. Instead of 

height, one can ask for a partition with certain number of clusters. However, the Tree-cut 

method alone has no evaluation of distinctness of the partition it produced. This makes 

choosing a height or a number of clusters without confidence. There are cases it performs 

even worse than intuitive observation. Being a classical approach to get a partition, we 

still acknowledge it to be a candidate of compared methods in Chapter 4. The function 

“cutree” in R is the tool we used in analysis. We call this method TC, in the following. 
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1.2.1.2 Dynamic Tree Cut 
Dynamic Tree Cut (Langfelder, Zhang et al. 2008), or DTC in the following, is a 

more sophisticated recipe wherein the tree is generally partitioned into branches of 

unequal heights. The approach we are using is called “Dynamic Hybrid”.	  

This is a bottom-up algorithm relying on dendrogram and dissimilarity matrix. It 

is called “hybrid” because it finds a partition of clusters with a combination of HC and 

PAM.  

Algorithm of DTC, bottom up assignment: 

Step 1. Detection of clusters 

This step needs user-specified minimum cluster size N0, together with the 

other three parameters ℎ!"#, 𝑔!"# and 𝑑!"#. Among the n-1 clusters in given 

dendrogram, a cluster is considered qualified if it satisfies all four criteria: 1). 

contains at least N0 individual objects 2). joining height is at most ℎ!"# 3). gap, 

defined as the difference between joining height and mean of pairwise 

dissimilarity within cluster, is at least 𝑔!"# 4). mean of pairwise dissimilarity 

within cluster is at most 𝑑!"#.  

Step 2. Assignment of unlabeled objects to nearest clusters 

Here “unlabeled objects” refer to those objects within clusters that fail to 

pass criterion 2), 3) and 4). Unlabeled objects are assigned to clusters that are 

qualified in Step 1, based on PAM-like method. Note that objects in clusters 

which fail to meet criterion 1) will not be examined. 

With PAM (1.1.1)-like procedure, Dynamic Hybrid improves detection of 

outlying members of clusters. The method provides built-in mechanisms to select optimal 

parameters, except user-supplied minimum cluster size. This is problematic because 

various settings of this cluster size may result in different partitions, which will be shown 

in the method validation session of Chapter 4. In addition, the results are sensitive to the 

choice of minimal cluster size. 

1.2.2  Statistically supported methods 
There are two existing methods that fall into this category, sigclust and sum of the 

branch lengths below. Methods have been developed, using statistical approaches to 

evaluate distinctness of clusters. These methods do not only satisfy property 1) and 
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property 2), but also satisfy property 3), since they examine branches from top down. 

However, top-down methods may not be able to detect nested statistically significant 

branches, as explained in the following. 

1.2.2.1 SigClust 
Statistical Significance of Clustering (SigClust), or SC in the following, is a 

parametric method designed to assess the significance of a binary partition of data. The 

method is valid for High Dimension Low Sample Size (HDLSS) data (Liu, Hayes et al. 

2008). A measure of separation between the two parts is quantified as 2-means cluster 

index (CI). 

𝐶𝐼! ≡
𝑋! − 𝑋!!

!
!∈!! + 𝑋! − 𝑋!!

!
!∈!!

𝑋! − 𝑋
!

!∈!

 

Here X is a set of observations, labeled by index j. Each observation can be 

formulated as a data point from a Euclidean space of dimension p, i.e. number of 

variables. k is the set of indices of observations X, which is split into two disjoint subsets 

of indices k1 and k2. 𝑋!!,  𝑋!! and 𝑋 are the mean vectors (recall K-means in 1.1.1) of the 

two subsets and of the entire set of observations, respectively. CI, then, is the ratio of the 

sum of the two within-part variances to the variance of the entire set. The larger the CI is, 

the more evident a binary partition is within X. With CI as a test statistic, a null 

hypothesis is tested that X is sampled from a single multivariate normal distribution. 

Under the null hypothesis, a multivariate normal distribution is simulated, with each 

variable from a normal distribution of mean zero and standard deviation equaling to 

singular values of X itself. To test the null hypothesis, a number of random samples, each 

with same number of observations as X, are drawn from simulated normal distribution. CI 

is computed for each of these random samples, and forms an empirical distribution. P-

value can be calculated from probability of obtaining test statistic CIk at least as likely as 

observed in empirical distribution of CI under null hypothesis. The null hypothesis is 

rejected if p-value is less than some given significant level. 

SC can be used in combination with many clustering methods, by testing 2-means 

assignment of one cluster at a time. In application to HC, SC is used in a top-down 

fashion. It starts with examining the split at the root node, and proceeds from a parent 

cluster to its children clusters, only if the two-way split at the parent cluster has been 
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found significant, i.e. when null hypothesis has been rejected. This top-down algorithm 

would not be able to detect significant clusters whose ancestor in the hierarchy is not 

significant. More importantly, SC compares clusters to samples from a single 

multivariate normal distribution and therefore is inherently parametric. Further, an 

underlying assumption of SC is that data items are points in a Euclidean space. 

1.2.2.2 SLB 
Unlike SC, Munneke et al (Munneke, Schlauch et al. 2005) proposed a measure of 

statistical distinctness of clusters, without making model assumptions about data 

distribution. This method is designed specifically for hierarchical structure produced by 

HC. The test statistic of a two-way split is defined as sum of the branch lengths below, or 

SLB in the following. Given a parent cluster with height 𝐷!, and its child cluster 1 with 

height 𝐷! and child cluster 2 with height 𝐷!, SLB computes the sum of difference of 

dissimilarity between child cluster and the last join.  

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3	  Illustration of definition on branch lengths 
For each cluster, a left child cluster and a right child cluster exist. 𝐷!, 𝐷! and 𝐷! are the corresponding 
dissimilarity value, i.e. height of cluster on dendrogram. 

 

 

According to Figure 3, 𝑆𝐿𝐵 ≡ 𝐷! − 𝐷! + (𝐷! − 𝐷!). This statistic utilizes the distance 

of parent to children clusters as its measurement of distinctness. SLB depends linearly on 

height of parent cluster, and those of two children clusters. Cluster with very large SLB, 

i.e. children far away, is more likely to contain distinct subgroup structures; a cluster with 

very small SLB, is not likely to be separated from children, and less likely to have a 

𝐷! 

𝐷!	  

𝐷!	  

Parent Cluster 

Child Cluster 1 

Child Cluster 2 



	  

	  
	  

14 

hidden distinct subgroup. Randomized data sets are generated without parametric 

assumptions, and are used to obtain a null distribution of SLB. The null hypothesis 

assumes a random permutation represents an outcome that is as likely to have been 

observed as the original data. Empirical p-value can be calculated from probability of 

obtaining SLB from original branch at least as likely as observed in null distribution of 

SLB. Null hypothesis is rejected if SLB from original set is predominantly large, and 

statistically speaking, the obtained empirical p-value is smaller than some chosen 

significance level. Like SC, hypothesis testing is performed in a top-down fashion. 

Hypothesis testing starts from the root node, and proceeds from a parent cluster to its 

children clusters, only if the two-way split at the parent cluster has been found 

significant, i.e. when null hypothesis has been rejected. This examination stops when null 

hypothesis cannot be rejected.   

Although SLB has a big advantage over SC because it gets rid of parametric 

assumptions, it is still implemented as a top-down algorithm, and the definition of 

statistic, the linear relationship with difference of node height, can be further improved. 

1.2.3  Summary of existing methods  
The key properties of all four published methods are summarized in Table 1. 

Although SC and SLB are more advanced than TC and DTC in employing statistical tests 

in determining branch distinctness, they suffer from limitations of top-down examination 

and SC is inherently parametric. This summary makes it clear that there is an unmet need 

for a statistically supported, non-parametric statistical method for assessing the 

distinctness of all internal branches in a tree. The performance of DTC, SC and SLB is 

further discussed in Chapter 4. 

 
Table 1 Properties of four existing methods 

Method Order of examining the tree  Non-parametric Significance estimated 

TC one-time horizontal cut - No 

DTC bottom up - No 

SC top down No Yes 
SLB top down Yes Yes 
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1.3 Measures of quality of partitions  
To assess the performance of identified distinct braches, a partition composed of 

these candidate branches is compared to a reference, which is a pre-determined partition 

of class labels, also called a “truth” partition. Measures known as external cluster 

evaluation tools are used to quantify how close a computed partition is to the truth 

partition. These measures include Rand Index, Purity and Entropy, F-measure and V-

measure. 

1.3.1  Rand Index (RI)  
Rand index, or RI (Rand	   1971), in the following, quantifies the quality of 

partition by computing the proportion of correctly assigned pairs of objects. Given a 

computed partition and the truth partition, there are two types of correct decisions:  a). A 

pair of individual objects found in one cluster also comes from same cluster in truth 

partition b). A pair of individual objects found in different clusters also comes from 

different clusters in truth partition. The pair of observations is denoted as 𝛾!", while i and 

j are indices of corresponding observations, and there are n observations in total.	  

𝑅𝐼 = 𝛾!"!
!!! / !

! , where  𝛾!" =
1  𝑐𝑜𝑟𝑟𝑒𝑐𝑡  𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛
0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

RI is the ratio of number of pairs which meet correct decisions. It is between 0 

and 1. Large RI suggests clustering results not far from truth. 

1.3.1.1 corrected-for-chance Rand Index (cRI)  
When we evaluate performance of clustering, we would expect it performs at least 

better than random assignment. One problem with RI is it lacks a comparison with 

expected score from random partitions.  

Hubert and Arabie (Hubert and Arabie 1985) proposed corrected-for-chance Rand 

Index, or cRI in the following, because of the way expected index is calculated. We 

generalize the problem as comparing two partitions of data, the truth partition 𝑈 =

𝑈!,… ,𝑈!  with R classes and a computed partition 𝑉 = 𝑉!,… ,𝑉!  with K clusters. An 

R by K contingency table can be built based on the agreement with assignment of objects.  
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Table 2 The contingency table formed by two partitions 

U/V V1 V2 ⋯ VK Sums 

U1 n11
* n12 ⋯ n1K a1 

U2 n21 n22 ⋯ n2K a2 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

UR nR1 nR2 ⋯ nRK aR 

Sums b1 b2 ⋯ bK n 

*nij denotes the number of objects that are in both Ui and Vj. ai and bj denote marginal sums of nij. 
 

 

According to the above contingency table, cRI is defined as: 

𝑐𝑅𝐼 =
!!"
!!" − !!

!!
!!
!! / !

!
1
2

!!
!! + !!

!! − !!
!!

!!
!! / !

!

 

, where the numerator is the difference between the number of common pairs and the 

expected index from model of random selection, under the assumption of generalized 

hypergeometric distribution. Unlike RI, cRI can be negative. Positive cRI suggests a 

better quality of clustering results over clustering by chance. cRI is also bounded above 

by 1, and the higher the better.  

1.3.2  Purity and Entropy 
Two commonly used external evaluation measures are Purity and Entropy(Zhao 

2001). Suppose we use the same notation of U, V, R, K and a as in Table 2, 𝑛!" is the 

number of observations in cluster k that belong to class r. Purity and Entropy of partition 

V are defined as: 

𝑃𝑢𝑟𝑖𝑡𝑦 =
1
𝑛 max

!
(𝑛!")

!

!!!
 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =
𝑎!
𝑛 (−

1
log𝑅

𝑛!"
𝑎!

log
𝑛!"
𝑎!

!

!!!
)

!

!!!
 

This method evaluates whether all elements in cluster k come from class r, but 

does not evaluates whether all members of class r are gathered into cluster k. An extreme 

example is K>>R, but each cluster is pure, i.e. with items from one single class. 
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1.3.3  F-measure 
Another frequently used measure is F-measure(Rijsbergen 1979). It evaluates 

accuracy of clustering based on Precision (P) and Recall (R). Suppose we use the same 

notation of U, V, R, K, a and b as in Table 2, 𝑛!" is the number of observations in cluster 

k that belong to class r. For a given class r, and a cluster k, 

𝑃 𝑟, 𝑘 =
𝑛!"
𝑏!

 

𝑅 𝑟, 𝑘 =
𝑛!"
𝑎!

 

Traditional F-measure is defined as, 

𝐹 𝑟, 𝑘 =
2 ∗ 𝑅 𝑟, 𝑘 ∗ 𝑃(𝑟, 𝑘)
𝑅 𝑟, 𝑘 + 𝑃(𝑟, 𝑘)  

A more generalized form is a weighted form 𝐹!, where 𝛽 is a nonnegative real 

value, 

𝐹! 𝑟, 𝑘 =
(1+ 𝛽!) ∗ 𝑅 𝑟, 𝑘 ∗ 𝑃(𝑟, 𝑘)
𝑅 𝑟, 𝑘 + 𝛽! ∗ 𝑃(𝑟, 𝑘)  

The traditional F-measure according to this weighted formula is also called F-1 

score. Above statistics are used to evaluate specified cluster. The overall F-measure for 

partition V is (Fung 2003), 
𝑎!
𝑛 max! 𝐹 𝑟, 𝑘

!

 

F-measure relies on the assignment of each cluster to a class.  

1.3.4  V-measure 
Rosenberg (Rosenberg 2007) introduced two quality criteria for a partition: 

homogeneity and completeness. To check homogeneity, examine class distribution within 

each cluster, determine how close it is to a single class. To check completeness, examine 

cluster assignment within each class, determine how close it is to a single cluster. 

Clustering with high homogeneity, tends to have low completeness, and may be far from 

truth partition.  

According to Rosenberg (Rosenberg 2007), small “unmatched” clusters are not 

measured at all in the calculation of F-measure. He proposed V-measure to improve this 

drawback, and maintain a higher accuracy. Suppose we use the same notation of U, V, R, 
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K, a and b as in Table 2, 𝑛!" is the number of observations in cluster k that belong to 

class r. 

Homogeneity (h) 

ℎ = 1− !(!|!)
!(!)

,   

𝐻 𝑈 𝑉   is 0 with perfect homogeneity, members in each cluster come from a 

single class.  

𝐻 𝑈 𝑉 = −
𝑛!"
𝑛 log

𝑛!"
𝑛!!!

!!!

!

!!!

!

!!!

 

𝐻 𝑈 = −
𝑛!"!

!!!

𝑛 log
𝑛!"!

!!!

𝑛

!

!!!

 

Completeness (c)  

𝑐 = 1− ! !|!
! !

,  

𝐻 𝑉|𝑈  is 0 with perfect completeness, members of each class are gathered in 

one cluster. 

𝐻 𝑉 𝑈 = −
𝑛!!
𝑛 log

𝑛!"
𝑛!"!

!!!

!

!!!

!

!!!

 

𝐻 𝑉 = −
𝑛!"!

!!!

𝑛 log
𝑛!"!

!!!

𝑛

!

!!!

 

Similar to 𝐹! , V-measure also has a generalized weighted form, 𝛽 is a non-

negative real value, 

𝑉! =
!!! ∗!∗!
!∗! !!

.  

With   𝛽 > 1 , completeness is weighted more; with   𝛽 < 1 , homogeneity is 

weighted more.   

1.4  Summary of Chapter 1 
In chapter 1, we provide a general introduction on  

• Clustering analysis, agglomeration rule of hierarchical clustering 

• Terms such as dissimilarity, linkage and dendrogram in 

agglomerative hierarchical clustering 
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• Existing methods of finding a partition with distinct clusters, DTC, 

SC and SLB 

• Measures of quality of partitions, cRI and V-measure 

Given this background, a nonparametric statistical method designed to assess 

distinctness of all internal branches within a hierarchical tree is in high demand. 

Performance of this method can be further validated, 1) with a comparison of existing 

methods, 2) and estimated by measures such as cRI and V-measure, using datasets with 

known truth partitions. 
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Chapter 2  Dataset Overview 
	  
	  
	  
	  
	  
	  

There are five benchmark datasets used for validation in this dissertation. One is 

synthetic named Simulated6 (2.1), generated to simulate a set of gene expression profiles. 

The remaining four datasets, namely Leukemia, T10, Organelles and Chondrosarcoma 

(2.2-2.5) share two common features: they originate in biological experiments and in 

each case there is an independently known, biologically meaningful partition of 

observations into types. We call this known partition “truth”, and the corresponding types 

the true types, henceforth. Data origin and assignment of true types in each dataset can be 

found in the corresponding sections. 

This chapter also discusses how variables in each dataset are prepared from real-

world raw data. Preprocessing methods including feature selection using our original 

method CORE (2.3.1-2.3.2) and normalization (2.4). We also include methods on 

handling missing data in 2.6.  

2.1  Synthetic dataset Simulated6 
This synthetic data set is named Simulated6. It has 60 observations, and 600 

variables in simulation of gene expressions (Monti, Tamayo et al. 2003). The true 

partition of the data is into six subtypes (namely class 1, class 2, class 3, class 4, class 5 

and class 6), with the sizes of 8, 12, 10, 15, 5, and 10. Each subtype is marked with 50 

simulated unique up-regulated genes. Each of these first 300 genes has highest 

differential expression and lowest variation within its own subtype. The next 300 genes 

are simulated as background genes, sampled from same distribution across all 

observations.  

Simulated expression levels of observations within each unique class are shown in 

Figure 4. Boundaries of unique up-regulated genes for each true type are marked by 

dashed vertical lines. Each true type has varying expression magnitudes. One observation 

belonging to class 1 (up left graph in Figure 4) shares up-regulated genes for both class 1 

and class 2. Genes with indices 51 to 100 have higher expressions than the first 50 genes. 
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Identification of this observation and clusters detected on this data set are further 

discussed in 4.1. 

 

 
Figure 4	  Scatter plot of simulated gene expressions in each ground truth subtype. 
Each subtype has unique 50 most up-regulated genes. Last 300 genes are treated as noisy background 
genes. 
 
 
 

Technically, distribution of each block of 50 variables over 60 observations is 

simulated from a normal distribution. While values of variables “up-regulated” for certain 
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class are represented by a significant positive shift. The last added 300 variables are 

coming from a normal distribution, consistent for all 60 observations. Properties of 

simulated gene expressions can be found in Table S1 of Appendix. 

2.2  Leukemia dataset  
This data set has been used to plot Figure 1 and Figure 2 in Chapter 1. It comes 

from a well-known cancer class discovery and prediction paper published by Golub 

(Golub, Slonim et al. 1999). There were 38 bone marrow samples obtained from acute 

leukemia patients at the time of diagnosis. The truth is a partition of patient cases into 

those of acute myeloid leukemia (AML, 11 cases) and of acute lymphoblastic leukemia 

(ALL), and a further partition of the ALL subset into the B-cell lineage (ALL_B, 19 

cases) and the T-cell lineage (ALL_T, 8 cases) types. These are most important known 

distinctions in acute leukemia, in terms of both biology and clinical treatment. Microarray 

data was produced by Affymetrix, which contained probes of 6817 genes. The Leukemia 

dataset we are using is published by Monti (Monti, Tamayo et al. 2003). The 999 most 

up-regulated genes are chosen. Altogether this dataset has 38 observations/rows and 999 

variables/columns, with each data entry as a numeric expression value. 

2.3  T10 dataset and CORE 
This data set tumor T10, contains 100 single cells that came from a primary breast 

tumor (Navin, Kendall et al. 2011). The true partition in this case is four-way, with the 

subsets differing from each other by ploidy as determined by cell sorting. Among 100 

individual cells, specifically, there are 47 cases with Diploid and Pseudo-diploid (D+P), 

24 cases with Hypo-diploid (H), 25 cases with Aneuploid A (AA) and 4 cases with 

Aneuploid B (AB). 

Raw data has a large number of genomic interval events covering the entire 

genome. We have developed a feature selection method to select a small set of recurrent 

gain or loss fundamental genomic intervals. Next we introduce our original feature 

selection method, Cores Of Recurrent Events, also known as CORE (Krasnitz, Sun et al. 

2013). Description of CORE in 2.3.1 and 2.3.2 follows our publication. 

2.3.1  Methodology of CORE 
DNA copy number analysis yields a set of copy number profiles, one per sample, 

describing the amplifications and deletions within the genome of the tumor of each 
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patient. CORE algorithm is the solution to finding regions of the genome that are 

significantly recurrent in large collections of copy number profiles.  

Example of the problem 

Copy number profiles presumably arise rather randomly throughout the genome 

of an unstable cell, but are selected for retention in the successful tumor clones at least in 

part by the presence of cancer genes, oncogenes in the amplified regions, and tumor 

suppressors in the deleted regions. The profiles can be further reduced to a set of 

intervals, regions of the genome where the amplifications or deletions took place. We 

refer to this data-reduction step as “slicing”. Some of the intervals may contain the 

oncogenes and tumor suppressors that provided selective advantage, and some intervals 

are present by chance. Intervals of the first class will, in some sense, share recurrent 

elements, and intervals of the second class will not. Sets of genomic intervals that explain 

many of the observed intervals, for example because they contain cancer genes, are what 

we call cores. There are various types of explanation. A putative core might explain an 

interval if the interval contains the core. Alternatively, a core might explain an interval if 

they significantly overlap. Any number of quantitative relations between core and 

interval can be postulated to accommodate a variety of biological notions. In the end, one 

wishes to have a minimal set of cores that “best” explain the data, and that can be subject 

to some form of statistical testing for significance. We refer to this process as CORE. 

Formulation of the general case	  
The input into CORE is a set of N intervals dj, j = 1, … , N of a given type (for 

example, amplification or deletion events) derived from the observations. The domain Δ 

in which these observed intervals reside depends on the origin of the data. For data 

originating from genome-wide analysis, Δ consists of multiple disjoint intervals of the 

real line, each representing a chromosome. The objective of CORE is to find an optimal 

explanation of the intervals, the solution of a problem formulated as follows. 

For an observed interval dj and an explanatory interval s in Δ, we define an 

“explanation” of dj by s as a function E(dj, s) with values in [0,1]. The specific functional 

form of E(dj, s) is dictated by biological considerations. For example, a useful form of 

E(dj, s) that reflects the degree of overlap of the two intervals is the Jaccard index: 

𝐸 𝑑! , 𝑠 = !!∩!
!!∪!

 (2.1) 
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In this case, s explains dj completely if and only if the two coincide and not at all 

if the two are disjoint. However, a specific form for E is not required for a general 

formulation of the method. We also refer to E(dj, s) as an association measure. In the 

following, we use P(dj, s) ≡ 1 – E(dj, s), the portion of dj that s leaves unexplained. 

Next, to generalize this concept to a set of explanatory intervals 𝑆 =

{𝑠!, 𝑠!,… , 𝑠!}, we define the portion P(dj, s) of dj left unexplained by S as:  

𝑃 𝑑! , 𝑆 = 𝑃(𝑑! , 𝑠!)!
!!!  (2.2) 

Finally, to generalize even further, we write the unexplained portion of the entire 

observed interval sets 𝐷 = {𝑑!,𝑑!,… ,𝑑!}, the equation above can be further generalized 

by summation over all events， 

𝑃 𝐷, 𝑆 = 𝑃(𝑑! , 𝑆)!
!!! = 𝑃(𝑑! , 𝑠!)!

!!!
!
!!!  (2.3) 

For a fixed number of explanatory intervals K, we seek to minimize P(D, S) over 

all possible sets S of K explaining intervals. Any such solution set of explaining intervals, 

𝐶! = {𝑐!, 𝑐!,… , 𝑐!} will be called “optimal” and the individual elements cores. Note that 

we have not so far specified the appropriate number K of cores to be sought. This 

question is addressed later when we consider the statistical assessment of cores. 

Forms of explanation 

The computational complexity of the minimization problem depends on the form 

of explanation. From now on, we consider important restricted cases of explanation in 

which P(D, S) cannot attain a minimum unless each boundary of the cores 𝑠! coincides 

with that of one of the observed intervals. With this proviso, minimization of P(D, S) 

requires considering only a finite set of explaining intervals, namely those bound by 

O(N2) pair-wise combinations of the boundaries of the N events. Consequently, the 

quantities 𝑃!" = 𝑃(𝑑! , 𝑠!) form a finite matrix of N rows and O(N2) columns, and the 

problem amounts to a choice of K columns such that P(D, S) is minimized—that is, the 

minimizaton becomes a combinatorial problem. 

To permit such minimization by a finite search, it is sufficient for P(D, S) to be 

concave or linear as a function of either boundary position of 𝑠! for all k, in any interval 

between adjacent event boundaries in D. In particular, this condition is satisfied for the 

following three special forms of association measures, E(d, s): (first) E(d, s) = 1 if s⊆d 
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and otherwise E(d, s) = 0; (second) the Jaccard index J(d, s) raised to a power P ≥ 1; 

(third) E(d, s) = f(|s|/|d|), where f is any strictly convex or linear function on the interval 

[0,1] with a range contained in [0,1] when s⊆d and otherwise E(d, s) = 0. 

These three forms of explanation capture different aspects of recurrence. The first 

form is especially simple and is designed to seek the genomic positions with the highest 

possible combined event count. However, this form of explanation ignores the degree of 

overlap among events explained by a given s and emphasizes regions where events 

overlap. The ability to detect clustering of broad events is thus reduced, especially when 

the broad events contain regions of narrow events that can be recurrent. On the other 

hand, the second and third explanation forms favor explanatory intervals at the 

intersection of multiple events with approximately coincident boundaries. Each core will 

therefore tend to be representative of a large number of similar genomic lesions.  

Minimization of the unexplained portion 

The minimization problem defined by the first form of explanation as defined 

above is an instance of the p-coverage location problem, exactly solvable by dynamic 

programming in O(KN2) time, making this form of explanation computationally 

advantageous. To our knowledge, however, no general algorithm with execution time 

polynomial in K has been found for the exact minimization problem as posed in Eq. 2.3, 

even if P(D, S) permits combinatorial minimization. In the absence of such a solution, we 

offer an iterative greedy procedure for finding cores that has a polynomial time 

complexity. 

We initialize at i = 0 by setting 𝑐! = ∅,𝑃 𝑑! , 𝑐! = 1 for all j. Then, at the i-th 

iteration, 𝑐! = 𝑎𝑟𝑔𝑚𝑖𝑛! 𝑃(𝑑! , 𝑐!!!)𝑃(𝑑! , 𝑠)!  is found, and 𝐶!   is formed by adding 𝑐! to 

𝐶!!!. To continue the iteration efficiently, P(dj, Ci) is stored for each j, computed as in 

Eq. 2.1 above: 𝑃 𝑑! ,𝐶! = 𝑃 𝑑! ,𝐶!!! 𝑃(𝑑! , 𝑐!). The execution time of an individual 

iteration is independent of i, and the total execution time is proportional to K. Moreover, 

with any of the three explanatory forms, only a finite number of explanatory intervals 

need be searched at each iteration, and the greedy solution must search no more than 

O(N2) candidate explaining intervals. As the unexplained portion is a sum over N terms, 

the execution time is not greater than O(KN3). We will consider only greedy solutions for 

the remainder of this work. 
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Note that the Eqs. 2.2 and 2.3 can be generalized by the inclusion of weights for 

each event. In particular, the i-th minimization step of the greedy procedure may be 

interpreted as finding a single optimal core for the observed interval set D, but with each 

event dj of D assigned a weight 𝑊!,!!! = 𝑃(𝑑! ,𝐶!!!), namely the portion of dj left 

unexplained by previous cores. We view the set of intervals with their weights 

𝑃(𝑑! ,𝐶!!!) as the remaining unexplained data after the i-th iteration. This interpretation 

is used next in assessing the statistical significance of a new core. 

Statistical criteria for depth 

We tackle now a way to determine the depth of analysis, the lowest number of 

intervals that give a sufficient explanation of the data. Such a determination is made by 

seeking the lowest value for K such that the remaining unexplained data no longer display 

an unexpected amount of recurrence—that is, there is no new interval with a surprising 

amount of explanatory power. To determine this, we use a score, the amount of 

explanation gained from unexplained data by adding a new core, and compare this score 

to the scores obtained after the randomization of the unexplained data. 

The total explanation provided by the core set 𝐶!   is 𝑁 − 𝑃(𝐷,𝐶!). The gain in 

explanation from the K-th core is then 𝐺! = 𝑃(𝐷,𝐶!!!)− 𝑃(𝐷,𝐶!) . For an exact 

solution of the problem, it is generally not true that 𝐶! is obtained by adding one core to 

𝐶!!!. However, this is an intrinsic property for our greedy solution to the problem, so for 

the greedy case we can define the score of the optimal interval, 𝑐!, as: 

𝐺! = 𝑊!,!!!𝐸 𝑑! , 𝑐!! = max! 𝑊!,!!!𝐸(𝑑! , 𝑠)!  (2.4) 

We seek to evaluate the statistical significance of this score, judging thereby the 

significance of the core itself. Significance is determined by testing the null hypothesis 

that the K-th observed score is not improbably high in the set of weighted events with the 

event randomly placed in the genome. 

More specifically, we sample from the null distribution of the score. After m 

iterations of CORE, we generate multiple independent trials. In each trial, each event 𝑑! 

is transformed into an event 𝑑!! by a random placement, while its weight 𝑊!,!!! is left 

unchanged. We then estimate the probability of a value 𝐺! or larger would be drawn 

from the distribution of 𝐺!! = max! 𝑊!,!!!𝐸(𝑑!!, 𝑠)!  generated from the multiple trials. 
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Typically we perform 1,000 trials. If M + 1 is the smallest m for which the null 

hypothesis cannot be rejected, the first M cores are retained.  

Because events occur on chromosomes, and the events can themselves be large, 

on the order of the size of chromosomes, we must modify the above random translation 

scheme. The human chromosomes have broadly varying lengths, and a large event on 

chromosome 1, for example, cannot be translated to chromosome 21, restricting 

drastically our ability to randomize its placement. Therefore, when the observed interval 

data are randomly placed onto human chromosomes, we consider not the absolute length 

of an event but its length relative to the length of the chromosome on which it occurs. 

2.3.2  Quantitative analysis using CORE 
Breast Cancer Data 

For analysis of individual tumor subpopulations, we use single-cell copy number 

data we previously described for human breast cancer tumors T10. The data consist of 

bin counts of sequence reads, segmented, and then converted to integer copy number 

segments. A total of 50,009 bins cover the entire genome, laid out in the usual order of 

chromosomes: 1, … , 22, X, Y. 

Processing Breast Cancer Data 

To use CORE, we must first extract interval events from segmented copy number 

profiles. The method of transforming each profile into a set of intervals differs for single-

cell data and for mixed-cell population data. In both cases, we use a process we call 

slicing. We then find the significant cores, and create an incidence table. 

To slice profiles from single cells, we determine the median ploidy for each cell, 

defined as the median of integer copy numbers for all bins. Segments above the median 

ploidy are considered amplified, and those below deleted. There is no restriction on the 

segment lengths, and these range from the shortest detectable by the segmentation 

algorithm to an entire chromosome. For each integer value of copy number except the 

median ploidy, we determine a unique set of largest intervals that can be placed without 

disruption into the profile. In essence, this procedure is a simplified version of the 

ziggurat deconstruction algorithm. Note that the information about the degree of copy 

number change caused by an amplification or a deletion event is lost in this 
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transformation. The input into CORE, separately for amplifications and deletions, is 

formed by pooling the intervals, with start and end positions specified as bin numbers. 

Incidence Table for Profiles and Cores 

In the case of DNA copy number analysis discussed in the following, the input set 

of intervals is formed by copy number events (gains or losses), each originating in one of 

multiple copy number profiles. Each profile represents a biological entity such as a tissue 

sample or a cell. Having derived K cores from this joint input set, we construct an 

incidence table T that quantifies how well each core performs in each profile. The 

incidence table is thus an L×K matrix, L being the number of profiles and K the number 

of cores. Each of its matrix elements, Tlk, is computed as the maximum over all of the 

intervals in profile l of the explanations by core k. In other words, Tlk is the explanation of 

the best fit of core k to profile l. It follows from this definition that all matrix elements of 

T are in the [0, 1] range. 

Availability of Software 

An implementation of CORE as an R package is available upon request and 

includes tools for computing core positions and scores and for assessing the statistical 

significance of scores, with a choice among measures of association as described here. In 

addition, R software is available for the analysis of integer copy number data, both 

upstream and downstream of CORE, including the slicing procedure and the derivation of 

the incidence table that we used to examine the subpopulation structure of breast tumors. 

R code for generating a simulated event configuration for arbitrary R, I, Λ, NR, σ, NB 

will also be provided upon request. More details in CORE analysis can be found in our 

corresponding publication (Krasnitz, Sun et al. 2013).  

CORE analysis of this set yields 354 cores, 172 amplification cores and 182 

deletion cores at P = 0.05 level of significance. T10 dataset uses incidence table 

computed from CORE analysis. As we mentioned above, each of its matrix elements is 

computed as the maximum over all of the intervals in a cell of the explanations by a core, 

with range [0, 1]. T10 data matrix has 100 rows and 354 columns. Rows of the data 

matrix correspond each to a cell, the columns correspond each to a core, specified by the 

sign of variation (amplification or deletion). An additional array has the endpoint 

chromosome positions of the region.  
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2.4  Organelles dataset and normalization  
Organs and organelles represent core biological systems in mammals. In a global 

survey of organelle protein expression in mouse, protein content of four major organellar 

compartments was examined (Kislinger, Cox et al. 2006). A comprehensive proteomic 

profiling was done on assessing organellar enrichment. Data collected is protein 

expression of four subcellular compartments (true types), Nuclei, Cytosol, Microsomes 

and Mitochondria, independently on healthy laboratory adult mouse brain, heart, kidney, 

liver, lung and embryonic placenta. Altogether, there are 24 observations, each with 4768 

proteins expressions. The expression levels used are cumulative spectral counts of 

proteins in each organelle.  

Cluster 3.0 (Eisen 1998) was used to preprocess data and obtain a hierarchical tree 

structure in Kislinger’s paper. Although the authors provide no detailed description of 

how the data were prepared, the following two-step normalization allows us to reproduce 

the original hierarchical tree.  

1). Log-transformation of all data.  This step comes before normalization. Log-

transformation is widely used in processing DNA microarray data, because results of 

such experiments come out as fluorescent ratios. Preprocessing of expression levels in 

this case uses log base 2. 

 2). Normalization on proteins. This step changes magnitude of data within each 

protein, by multiplying a factor, so that sum of the squares of expression levels within 

each protein is one. All values are greater than 0 and less than one after this 

normalization. 

Unlike CORE in 2.3.1, this two-step normalization does not reduce dimension of 

predictor variables. It makes sure that 4768 protein expression levels are on the same 

scale, which is a prerequisite of growing a reasonable hierarchical tree structure. With log 

transformation, any cumulative spectral counts with values zero become missing values, 

and pairwise deletion is used when computing dissimilarity of a pair of proteins.  

2.5  Chondrosarcoma dataset  
This data set comes from a study on using flow cytometry data to classify 

conventional central chondrosarcoma (Diaz-Romero, Romeo et al. 2010). It contains 34 

cells, collecting from four types of chondrosarcoma. All cells were cultured in monolayer 
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under the same conditions and analyzed by flow cytometry for the level of expression, 

based on mean fluorescence intensity (MFI) ratios, of 11 surface markers. The truth is a 

four-way partition, with three parts corresponding each to a different tissue of origin and 

the fourth part formed by cells from tumor cell lines. Specifically, these cells are 10 

human articular chondrocytes (HAC), 10 mesenchymal stem cells (MSC), 6 fibroblasts 

(FIB), and 8 tumor cell lines (TCL). Prior to clustering, observations/cells were 

examined, and two cells, one from HAC and one from MSC were removed using 

multivariate outlier detection(Marchette DJ 2003). In summary, Chondrosarcoma dataset 

has 32 cells/rows and 11 surface markers/columns.  

2.6  Handling missing values  
Observations with missing features are common. This section talks about how to 

deal with missing data before clustering. With existence of missing data, the first thing is 

to determine whether the occurrences are at random, and will not distort the observed 

data. Detailed exploration of missing data can be found in Little and Rubin’s book (Little 

2002). Denote Xobs as observed entries (without missing data) in predictor matrix X. R is 

formed as an indicator matrix with ij-th value as 1 when Xij is missing and 0 otherwise. 

Data is missing at random (MAR) if distribution of R depends on Z only through 

Zobs:  𝑃 𝑅 𝑋,𝜃 = 𝑃(𝑅|𝑋!"#,𝜃). Here 𝜃 are any parameters in the distribution of R. This 

is equally meaning missing data indicators can be explained by observations with full 

information. “At random” here suggests occurrence of missing data is conditional on 

observed data. It is not strictly the definition of random event. Also equality of 

probability is difficult to be validated with an unsupervised predictor matrix. 

Data is missing completely at random (MCAR) if distribution of R doesn’t 

depend on missing or observed data: 𝑃 𝑅 𝑋,𝜃 = 𝑃(𝑅|𝜃). This is a stronger assumption. 

Most methods dealing with missing data rely on assumption of MCAR. 

Approach to cleaning missing data: 1). Discard observations with any missing 

values. 2). Rely on learning algorithm if its input has tolerance on missing data. 3). 

Impute all missing data. 

The first approach (list-wise deletion) is okay if sample size is large and 

proportion of missing data is small. The second approach depends on the algorithm. For 

example, implementation of some dissimilarity functions allow missing values, certain 
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dimension containing missing values are omitted (pair-wise deletion) when computing 

pairwise dissimilarity. HC can tolerate missing values using pair-wise deletion, meaning 

if there are p features in a pair of observations, and altogether q dimensions out of p have 

missing values, dissimilarity can be calculated on p - q dimensions with chosen 

dissimilarity. 

The third approach, imputation is popular, not limited by assumption or algorithm. 

Most common imputation is substituting missing values with mean or median with 

nonzero values for that feature. Of course there are more advanced and sophisticated 

imputation methods, such as Soft-Impute (Mazumder 2010). 

2.7  Summary of Chapter 2   
This chapter provides overview on five datasets, with their biological origins, 

their observations, variables and true subtypes. The essential properties of these datasets 

are summarized in Table 3. These datasets are further used in Chapter 4 as benchmark 

cases. Partition of true types in each data set is deemed as ground truth, and later 

employed as reference of optimal partition in validation of performance. 

 

 
Table 3 Properties of five benchmark datasets 

 

 

All five datasets are public and are available with their corresponding 

publications. All except Organelles can be directly used for clustering. Organelles dataset 

needs to be normalized using the two-step procedure mentioned in its corresponding part 

2.4. 

This chapter also introduces our published method CORE as feature selection 

Dataset Origin Number of 
leaves 

Number of 
variables 

True number 
of classes 

Simulated6 Simulation of gene expression 60 600 6 
Leukemia mRNA levels from microarray analysis 38 999 3 
T10 DNA copy number analysis, sequencing 100 354 4 
Organelles Proteomic analysis, using mass spectrometry 24 4768 4 
Chondrosarco
ma 

Flow cytometry analysis of surface markers 
from fluorescence intensity 

32 11 4 
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approach for dataset T10. Summary of CORE follows our publication. CORE is a general 

approach to inference from interval data. Given a collection of observed events and a 

geometric association measure between events and explanatory intervals, CORE finds a 

given number of explanatory cores that maximizes the explanation. When the association 

measure is drawn from three broad varieties outlined in the text, for example the Jaccard 

index, we find a greedy solution with algorithmic complexity O(KN3), where N is the 

number of events and K is the number of cores. We believe our formulation of the 

problem is “natural” in the sense that it captures the manner in which a human observer 

seeks to find fundamental intervals behind a set of recurrent events in the presence of 

noisy events and boundaries. 
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Chapter 3  Methodology  
	  
	  
	  
	  
	  
	  

Nowadays, hierarchical clustering is more widely used as a method of partitioning 

data and of identifying meaningful data subsets. Quantifying the interpretation of 

hierarchical trees and introducing mathematically and statistically well-defined criteria 

for distinctness of sub-trees would therefore be highly beneficial and is the focus of this 

thesis. This chapter presents methodology of Tree Branches Evaluated Statistically for 

Tightness, or TBEST in the following (Sun and Krasnitz 2014). In 3.1, we use a simple 

example to motivate the proposed measure of distinctness of branches/clusters. In 3.2, a 

sampling procedure is discussed for examining randomizations and null distributions. In 

3.3, statistical tests are employed to examine tightness of branches, and p-value 

estimation can be calculated using two approaches, empirical and EVT-based.   

Consider a set of objects with pair-wise relations given by a dissimilarity matrix. 

With a linkage rule, a hierarchical tree can be grown for the set. We will only consider 

inversion-free linkage rules here. The tree is specified, in addition to its branching 

structure, by the heights of its nodes. The height of the node quantifies the dissimilarity 

within the data subset defined by the node. We wish to construct, for each node of the 

tree, a measure of how distinct the data subset corresponding to the node is from the 

remainder of the data set. Next a one-dimensional example is given to explain how 

statistic S(n) measures tightness of branches. 

3.1  A simple example  
The special case of the objects being points in a Euclidean space, with the 

dissimilarities defined as distances between the points, may be used for guidance in this 

construction. The node height then quantifies the linear extent of the data subset defined 

by the node. Accordingly, it has been proposed (Munneke, Schlauch et al. 2005) to make 

the measure of distinctness of a node n linear in the difference in heights between a 

parent P(n) of n and that of n itself. 
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Figure 5	  Illustration of the definition of tightness. 
The data consist of 280 points in one dimension, drawn from a normal mixture with the components 
N(0.5,0.42) (blue), N(11,12) (green) and N(5,22); (black). A) A histogram of the input data. B) A 
hierarchical tree of the input data, grown using the absolute difference of the data values as the dissimilarity 
measure, and single linkage. Thus, the node heights shown in (B) are equal to the corresponding gaps in the 
data, as indicated in (A). Nodes n1 and n2 are approximately equally tight. 
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An example of a one-dimensional dataset, tabulated in Supplemental File and 

shown in Figure 5, illustrates a difficulty with such construction. Both the subsets shown 

in blue and in green are clearly distinct from the rest of the data, but the difference in 

heights between the blue node and its parent is not as great as that between the green 

node and its parent. Thus, based on the parent to child difference in heights, one would 

conclude, counter-intuitively, that the blue subset is not nearly as distinct as the green 

subset. A measure in better agreement with intuition is the relative difference of heights: 

 𝑆(𝑛) ≡ ! ! ! !!(!)
!(!(!))

 (3.1) 

, where h(n) is the height of node n. In the following we refer to S(n) as the tightness of 

node n. In the absence of inversions, the tightness of any node is a number between 0 and 

1. In particular, S(n) = 1 identically if n is a leaf.  

The two subsets highlighted in Figure 5 are nearly equally tight by this measure, 

despite the disparity in their heights.	  

3.2  Randomizations and null distribution  
To enable statistical analysis of tightness, a null distribution of S(n) is required, 

for making comparisons with the observed S(n). This null distribution is obtained by 

randomizing the dataset from which trees are grown.  

How such randomization is to be performed depends on the type of the data and 

on the broader context of the study and cannot be specified in general. For example, if the 

data matrix represents gene expression, with genes as rows and observations as columns, 

it may be appropriate to randomize the data by permuting values independently within 

each row. However, in other situations a more restrictive randomization should be 

adopted. For example, the elements of a binary data matrix may represent the mutation 

status at a set of genomic positions (rows) in a collection of genomes (columns). The 

investigator may wish to randomize the data while preserving both the site mutation 

frequencies (row sums) and the overall mutation burden within each genome (column 

sums).  

Randomization methods, or data permutation methods on synthetic data and four 

real-world benchmark cases are listed in Table 4 below. Simulated6 is the synthetic data 

set. It was introduced in 2.2 and is used, together with four real-world cases, to validate 

performance of TBEST. Note that in Table 4 randomization of T10 data is different from 
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other three. Besides cores detected using the CORE algorithm (2.1.2), this data set also 

includes chromosome information of each core. There are multiple instances of strong 

geometric overlap between cores. As a result, the corresponding columns in the data 

matrix exhibit strong pairwise correlations, positive for cores of equal sign (both gains or 

both losses), and negative for cores of opposite signs. Consistent with these geometric 

constraints, the null distribution in this case is generated as follows: the data matrix is 

divided into sub-matrices by the chromosome number (1,2,...,22,X), and rows are 

permuted independently within each sub-matrix. 

 
Table 4 Data permutation methods for benchmark cases 

Dataset Data permutation Method 

Simulated6 Independently for each coordinate (column) 

Leukemia 
Independently for each gene (column) 

T10 Independently for each chromosome; identically for all cores (columns) in a 
chromosome 

Organelles Independently for each protein (column) 

Chondrosarcoma Independently for each surface marker (column) 

	  
	  

3.2.1  Distribution of tightness  
As Figure 6 and Appendix Figure S1 illustrate, the shapes of these distributions 

generally depend on the number of leaves and, in most cases examined, the peak of the 

distribution occurs at higher tightness for smaller number of leaves. The identity S(n) = 1 

for single-leaf nodes is consistent with this observation. We therefore conclude that, for a 

given observed value of tightness, the appropriate null distribution should be sampled by 

repeated randomization of the data, growing a tree for each randomization, selecting 

among its nodes the ones with the numbers of leaves matching the observation, and 

determining the tightness of these nodes.  
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Figure 6	  Null distribution of tightness. 
The null distribution of node tightness S depends on the number of leaves. The empirical probability 
density distributions for the Simulated6 set with (1 - Pearson correlation) dissimilarity – average linkage 
combination (A) and for the Organelles set with (1 - Pearson correlation) dissimilarity – Ward linkage 
combination (B) are shown, for three different values of the number of leaves in each case. Each plot is 
based on 5000 randomizations of the respective data set.  
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So far, with a hierarchical tree structure, S(n) can be calculated for all the internal 

nodes, excluding the root, since the latter has no parent. With a number of trees grown 

from randomized data, null distribution of S(n) is obtained.  

However, it is not guaranteed that, in any tree grown from randomized data, there 

will be a unique node with a number of leaves exactly equal to that of the observed node. 

To resolve this difficulty conservatively, we adopt the following procedure. If, for a given 

data randomization, the tree contains nodes with the number of leaves exactly as 

observed, the highest S(n) computed for these nodes is added to the sample. Otherwise 

we consider all the nodes with the number of leaves nearest the observed one from above 

and all those with the number of leaves nearest the observed one from below, and add to 

the sample the highest S(n) of any of these nodes. Note that, since S(n) = 1 for all single 

leaves, the latter can never be found significantly tight, and the analysis as described is 

only valid for internal nodes.  

3.3  Compute statistical significance  
With the sampling procedure specified, tests for statistical significance of 

tightness can be conducted for all the internal nodes of the observed tree excluding the 

root. The number of tests is therefore two less than the number of leaves. Due to this 

multiplicity of tests, higher levels of significance are required for rejection of the null 

hypotheses for trees with larger numbers of leaves. A straightforward way to handle this 

requirement would be to increase the size of the sample from the null distribution by 

performing more randomizations. In this thesis, largest number of leaves among five 

benchmark cases is 100, and validation in Chapter 4 is done with conservative empirical 

approach. However, for trees with large numbers of leaves this simple-minded approach 

may be rendered impractical by computational cost. Therefore, we offer an alternative 

approach to improve time efficiency. 

3.3.1  Extreme value theory based estimation  
Instead of a purely empirical approach, higher levels of significance may be 

assessed by using extreme-value theory (EVT) to approximate the tail of the null 

distribution, thereby permitting considerable economy of computational effort 

(Knijnenburg, Wessels et al. 2009). To estimate the p-value, a test statistic of one branch 

S(n) and a number of null statistics, represented as set S0, from randomized data are 
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needed. Unlike the empirical approach, number of randomizations does not rely on total 

number of observations, and can therefore be much less than that of empirical approach. 

The set of extreme (very large or very small) null statistics that forms the tail of null 

distribution can be modeled with Generalized Pareto Distribution (Pickands 1975). 

Algorithm of estimating p-values simply builds on the condition that S(n) is in the tail of 

distribution or not. The number of null statistics inside set S0 that are greater than or equal 

to S(n) is M. M0 is a threshold suggesting number of null statistics in the tail.  

Algorithm: 

if M ≥ M0,  

estimate p-value using empirical cumulative distribution function 

else, 

 estimate p-value using Generalized Pareto Distribution 

Parameters estimations in Generalized Pareto Distribution are obtained by 

maximum likelihood or methods of moments. Goodness of fit is tested, and p-value is 

calculated from approximated tail distribution. 

We have used this EVT-based method alongside the more costly purely empirical 

computation of significance in our benchmark studies reported in Chapter 4, and found 

the two approaches to be in good agreement, as shown in Appendix: Figure S2. 

3.3.2  Correction for multiple hypotheses testing   
Computing the probability of test statistic of one branch among null distribution 

of statistic gives one p-value. Test statistic of this branch is not likely to appear in null 

distribution of statistic when p-value is less then given significance level, and this branch 

is statistically significant. Computing the probability of test statistic of all internal 

branches simultaneously among null distribution of statistic falls into the field of multiple 

hypotheses. Family wise error rate (FWER) is the probability of making at least one Type 

I error when performing multiple hypothesis tests. Here we perform FWER correction 

equivalently for each empirical p-value. The p-values displayed in the following were 

computed by applying a multiple-hypotheses correction of the form p = 1 – (1 – pe)N-2, 

where pe is the empirical p-value and N is the number of leaves. Note that the number of 

hypotheses tested is 𝑁 − 2, i.e. the number of internal nodes.  
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The false discovery rate (FDR) is designed to control false positives among the 

set of rejected hypothesis. q-value of an individual hypothesis test is the minimum FDR 

at which the test may be called significant. One approach is to directly estimate q-values 

rather than fixing a level at which to control the FDR. FDR correction of empirical p-

values is implemented in R package.  

We use TBEST in the following way to identify most detailed significant 

partitions of the data into branches of a given hierarchical tree. We define a partition to 

be significant with a threshold α if (a) every part is a branch and (b) if for every part at 

least one of the children of its parent node is tight with the p-value p<α. Among the 

significant partitions with a threshold α we find the most detailed, i.e., the one with the 

highest number of parts. In case of a nested distinct branch with its parent node and 

counterpart of its parent node being non-significant, TBEST can identify this branch as a 

statistically tight branch. But there may not exist a most detailed significant partition 

judged by criteria a) and b).  
3.4  Comparison of TBEST and existing methods 

Our method TBEST shares features with the existing approaches. Recall 1.2, here 

we compare TBEST with DTC, SC and SLB.  

Like SC and SLB, TBEST employs statistical analysis to identify significantly 

distinct branches of a hierarchical tree. Similarly to DTC and SLB, it uses tree node 

heights to assess the distinctness of a tree branch. At the same time, TBEST differs from 

the existing designs in several aspects, two of which are critical.  

• First, unlike DTC, SC and SLB, it examines all the tree nodes 

simultaneously for distinctness.  

• Secondly, unlike SLB, it combines node heights non-linearly to construct 

a statistic for distinctness that is better able to handle a tree in which 

distinct branches of approximately equal numbers of leaves occur at 

different heights.  

The key properties of all four methods are summarized in Table 5. The third 

column suggests whether the algorithm needs extra criterion to detect tight branches, 

given the dataset and its hierarchical tree structure. Recall from 1.2 that results of DTC 

depend on minimal node size and SC relies on assumption of normal distribution. 
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Table 5 Properties of TBEST and three existing methods 

 

3.5  Summary of Chapter 3 
 This chapter presents methodology of TBEST. In this chapter, we have reviewed,  

• Statistic of tightness in Eq. 3.1, which computes relative difference of 

height. A simple example shows this definition is in better agreement with 

intuition.  

• Appropriate null distribution should be sampled by repeated 

randomization of the data, growing a tree for each randomization, 

selecting among its nodes the ones with the numbers of leaves matching 

the observation, and determining the tightness of these nodes.  

• Two approaches to estimate statistical significance: empirical approach 

and EVT-based approach. Empirical p-values are corrected by multiple 

hypothesis correction. 

	    

Method Order of examining the tree  Non-parametric Significance estimated 

TBEST all internal nodes in parallel Yes Yes 

DTC bottom up No No 

SC top down No Yes 

SLB top down Yes Yes 
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Chapter 4  Validation 
	  
	  
	  
	  
	  
	  

With the methodology of TBEST presented in Chapter 3, this chapter discusses 

the performance of TBEST, with a comparison to the three existing methods, DTC, SC 

and SLB (1.2). Detection of distinct branches in five benchmark datasets is examined and 

validated in 4.1-4.5.  

To better judge the performance of TBEST in comparison to the other three 

algorithms, we considered, for each dataset, more than one combination of dissimilarity 

and linkage methods used for hierarchical clustering. These combinations, together with 

permutation methods are shown in Table 6. With the exception of the third benchmark 

case, randomization of the input data, as required for both TBEST and SLB, consisted of 

randomly permuting the observed values, independently for each variable. Reasoning for 

this is mentioned in 3.2.  

 
Table 6 Combinations of datasets, dissimilarity, linkage and randomization methods, used for testing 
TBEST  

Dataset Dissimilarity Linkage Randomization Method 

Simulated6 Euclidean complete Independently for each coordinate (column) 
(1 - Pearson 
correlation) 

average 

Leukemia Euclidean  Ward  Independently for each gene (column) 
(1 - Pearson 
correlation) 

average 

T10 Euclidean  Ward Independently for each chromosome; identically for 
all cores (columns) in a chromosome (1 - Pearson 

correlation) 
average 

Organelles (1 - Pearson 
correlation) 

Ward Independently for each protein (column) 

(1 - Pearson 
correlation) 

average 

Chondrosarcoma (1 - Spearman 
correlation) 

Ward Independently for each surface marker (column) 

(1 - Kendall  
correlation) 

average 

Manhattan Ward 
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The degree of agreement between a computed partition of the data and the truth is 

quantified in terms of the corrected-for-chance Rand index, or cRI (1.3.1.1). It should be 

noted that the subsets of the data identified as distinct by TBEST and the other three 

techniques by necessity correspond each to a branch of a tree. This, however, is not 

necessarily the case for the true types, some of which do not correspond to a single 

branch. As a result, a perfect match between any computed partition and the truth may 

not be possible, and the maximal attainable value of cRI may be below 1. For this reason, 

to evaluate the performance of TBEST and the published methods across benchmark 

datasets, we also identify, for each tree considered, a partition into branches that best 

matches the truth and determine cRI between that partition and the computed partitions 

for each of the methods. 

In each of the cases in the following we studied how the most detailed significant 

partition found by TBEST, and its correspondence to the truth, vary with the significance 

threshold α. In an analogous fashion, we analyzed the detailed partitions generated by 

SLB and SC. For DTC, which is not a statistically supported method, we examined the 

properties of the most detailed partition as a function of the minimal allowed number of 

leaves in each part.	  

4.1  Simulated6 
The data are a sample of size 60 in 600 dimensions (Monti, Tamayo et al. 2003). 

The true partition of the data is into six subtypes. Each of the 600 variables represents a 

simulation of a gene expression. Properties of this dataset are summarized in more detail 

in Table S1 of Appendix.  

The comparison between the four algorithms is displayed graphically in Figure 7. 

For both combinations of dissimilarity and linkage only TBEST and DTC match the truth 

exactly, while the other two methods either fail to partition the set or do so incompletely. 

We note that the Euclidean dissimilarity – complete linkage combination results in a 

particularly challenging tree (A in Figure 7), which cannot be partitioned correctly by a 

static cut.  

The most left color bars in Figure 7 represent assignment of leaves. With class 1 

in blue, and class 2 in red, the exceptional observation is obvious in the top color bar 

“Truth” of A and D in Figure 7. This observation is combined with observations from 
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class 2, using HC of both dissimilarity linkage combinations. TBEST has the broadest 

range of significance levels that matches ground-truth, with any α	 ≥ 0.016 in the first 

case (A, B, C in Figure 7), and any α	 ≥ 0.001 in the second case (D, E, F in Figure7). 

While in the first case, if significance level is set less than 0.016, a partition of five 

branches are found, corresponding to red, blue, green, yellow and the rest branches in A, 

and results in cRI around 0.78 in B. Given more extreme significance level, none of 

orange branch, purple branch and their parent branch are considered statistically tight.   

Table 7 records scores of clustering quality compared to the partition best matches 

true subtypes. cRI and V measure are both calculated for partitions found at a given level 

of significance (0.001 and 0.05). For both dissimilarity linkage combinations, TBEST 

outperforms SC and SLB, with the highest clustering scores of finding a partition equal 

or closest to the optimal partition. 
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Figure 7 TBEST compared to published methods for Simulated6 
Performance comparison of TBEST and the three published methods in Simulated6 dataset for the 
Euclidean dissimilarity – complete linkage combination (top) and for the (1 - Pearson correlation) 
dissimilarity – average linkage (bottom). For each combination the left portion (A or D) shows the 
corresponding dendrogram, under which then true partition and the partition best matching the truth for 
each of the methods are shown as color bars. In the middle portion (B or E), the relative cRI of the 
computed partition is plotted against the required level of significance α for each of the significance-based 
methods. The customary α = 0.05 threshold of significance is shown by a dashed vertical. In the right 
portion (C or F), the relative cRI of the computed partition is plotted against the minimal allowed number 
of leaves for DTC.  
 

 
 
 
 
 
	  
 
 
 
 
 
 
	  
 
 
 
 
 
	  
 
 
 
 
 
 
	  
 
 
 

	  
Table 7 Quality of partition in Simulated6* 

* Values of α in second column are significance levels.	  Quality of partitions is recorded as cRI (V 
measure), from column three to column five. 
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4.2  Leukemia 

The original Leukemia dataset (Golub, Slonim et al. 1999) contained mRNA level 

values for 6817 genes; this number was reduced to 999 by feature selection (Monti, 

Tamayo et al. 2003). Performance of TBEST is compared with that of the other three 

methods in Figure 8. For the Ward linkage, two of the significance-based methods, SC 

and TBEST, attain the highest possible value of the cRI. However, SC only does so with 

low significance (α > 0.33), while TBEST achieves it best performance with high 

significance (α ≈ 2×10-3) and maintains performance close to optimal in a wide range of 

p-values. The performance of SLB in this case is similar to that of TBEST, but SLB does 

not attain the optimum. With the average linkage, TBEST outperforms both SC and SLB 

throughout the entire range of thresholds considered and attains optimal performance at 

high significance.  

In both cases the performance of DTC is highly sensitive to the minimal allowed 

size of a branch, especially so for the Ward linkage, where this algorithm attains top 

performance for sizes between 6 and 10, but performs substantially below the optimum 

outside this range. 

To show quality of partitions found by significance-based methods, cRI and V 

measure are both used at given significance level (0.001 and 0.05) in Table 8 below. 

From this table, TBEST outperforms SC and SLB, with the highest clustering scores of 

finding a partition equal or closest to the optimal partition. In both Ward and average 

linkages, with a lower significance (0.05), the close-to-optimal partition is found with a 

further split of AML subtype (branch with green bar in dendrograms, Figure 8). This 

suggests interesting substructures. Given a lower significance level, a statistically tight 

branch with observations labeled “AML_14”,  “AML_16”, “AML_3” and “AML_7” is 

detected with both dissimilarity linkage combinations. 
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Figure 8	  TBEST compared to published methods for Leukemia. 
Performance comparison of TBEST and the three published methods in Leukemia dataset for the Euclidean 
dissimilarity – Ward linkage combination (top) and for the (1 - Pearson correlation) dissimilarity – average 
linkage (bottom). For each combination the left portion (A or D) shows the corresponding dendrogram, 
under which then true partition and the partition best matching the truth for each of the methods are shown 
as color bars. In the middle portion (B or E), the relative cRI of the computed partition is plotted against the 
required level of significance α for each of the significance-based methods. The customary α = 0.05 
threshold of significance is shown by a dashed vertical. In the right portion (C or F), the relative cRI of the 
computed partition is plotted against the minimal allowed number of leaves for DTC. 
 
 
 
Table 8 Quality of partition in Leukemia* 

* Values of α in second column are significance levels.	  Quality of partitions is recorded as cRI (V 
measure), from column three to column five. 
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4.3  T10 
The third benchmark dataset originates from DNA copy number analysis of 100 

individual cells harvested from a breast tumor (Navin, Kendall et al. 2011). The true 

partition in this case is four-way, with the subsets differing from each other by ploidy as 

determined by cell sorting. Randomization method of this dataset is introduced in 3.1.2, it 

is done independently for each chromosome because strong geometric overlap between 

cores.  

The results are illustrated in Figure 9. For the Euclidean dissimilarity - Ward 

linkage combination only TBEST and SLB identify the true partition, with TBEST 

succeeding in a broader range of significance level α. For the (1 – Pearson correlation) 

dissimilarity - average linkage combination TBEST outperforms the other two 

significance-based algorithms and matches the truth perfectly in a broad range of 

significance level α. Table 9 presents cRI and V measure estimated at significance level 

α = 0.001 and α = 0.05. Results of findings with TBEST obtain the highest scores with 

both dissimilarity and linkage cases, matching a partition of four subtypes exactly. 
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Figure 9	  TBEST compared to published methods for T10. 
Performance comparison of TBEST and the three published methods in T10 dataset for the Euclidean 
dissimilarity – Ward linkage combination (top) and for the (1 - Pearson correlation) dissimilarity – average 
linkage (bottom). For each combination the left portion (A or D) shows the corresponding dendrogram, 
under which then true partition and the partition best matching the truth for each of the methods are shown 
as color bars. In the middle portion (B or E), the relative cRI of the computed partition is plotted against the 
required level of significance α for each of the significance-based methods. The customary α = 0.05 
threshold of significance is shown by a dashed vertical. In the right portion (C or F), the relative cRI of the 
computed partition is plotted against the minimal allowed number of leaves for DTC. 
 

	  
Table 9 Quality of partition in T10* 

*	  Values	  of	  α	  in	  second	  column	  are	  significance	  levels.	  Quality of partitions is recorded as cRI (V 
measure), from column three to column five. 
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4.4  Organelles 
Next, we consider a dataset derived from proteomic analysis of the content of four 

cellular compartments in each of six mouse tissues. The analysis is based on 4768 protein 

level readings (Kislinger, Cox et al. 2006).  

The true partition of the data is by the cellular compartment, and the two 

hierarchical clustering methods considered here both have the branch structure organized 

by the compartment label, to a good approximation. Of the three significance-based 

methods compared, only TBEST reproduces the truth to the maximal extent possible for 

both combinations of dissimilarity and linkage, and it does so stably in the broadest range 

of the levels of significance (Figure 10).   

DTC achieves top performance for the (1 - Pearson correlation) dissimilarity – 

Ward linkage combination if its minimal allowed number of leaves does not exceed that 

of the smallest compartment-associated branch of the tree. However, this property is lost 

for the (1 - Pearson correlation) dissimilarity – average combination where an additional 

cluster with two leaves is identified by DTC if the minimal number of leaves is set at or 

below 2. 

B and E in Figure 10 are plots of cRI on computed partition with various 

significance levels α. Table 10 provides cRI and V measure of computed partition on 

significance-based methods, at significance level 0.001 and 0.05. Findings of clustering 

with TBEST obtain the highest scores with both dissimilarity and linkage cases.  
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Figure 10	  TBEST compared to published methods for Organelles. 
Performance comparison of TBEST and the three published methods in Organelles dataset for the (1 - 
Pearson correlation) dissimilarity – Ward linkage combination (top) and for the (1 - Pearson correlation) 
dissimilarity – average linkage (bottom). For each combination the left portion (A or D) shows the 
corresponding dendrogram, under which then true partition and the partition best matching the truth for 
each of the methods are shown as color bars. In the middle portion (B or E), the relative cRI of the 
computed partition is plotted against the required level of significance α for each of the significance-based 
methods. The customary α = 0.05 threshold of significance is shown by a dashed vertical. In the right 
portion (C or F), the relative cRI of the computed partition is plotted against the minimal allowed number 
of leaves for DTC. 
	  
	  
Table 10 Quality of partition in Organelles* 

* Values of α in second column are significance levels.	  Quality of partitions is recorded as cRI (V 
measure), from column three to column five. 
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4.5  Chondrosarcoma 
Finally, we discuss the performance of the four methods on a dataset generated by 

flow cytometry analysis of cells harvested from human tissues and cell lines. Among 34 

samples, two samples were identified as multivariate outliers and removed before 

clustering (Diaz-Romero, Romeo et al. 2010). The truth is a four-way partition, with 

three parts corresponding each to a different tissue of origin and the fourth part formed by 

cells from tumor cell lines.  

We have identified three combinations of dissimilarity and linkage for which the 

tree structure is fully consistent with the true partition and performed comparative 

analysis for all three, as shown in Figure 11. For two of these combinations ((1 - 

Spearman correlation) dissimilarity – Ward linkage and (1 - Kendall correlation) 

dissimilarity – average linkage) partition by TBEST matches the truth in a range of 

acceptable levels of significance. SLB does so for the first and, in a narrow range of 

significance thresholds, for the third combination. SC fails to match the truth. Note the 

data dimension in this case is 11, and it is smaller than 32, the number of observations. 

This dataset is therefore outside the range of applicability of SC. For Manhattan 

dissimilarity – Ward linkage TBEST also matches the truth, albeit at low significance (α 

= 0.1). DTC performs well for the first and third combinations, but only matches the truth 

in a restricted range of numbers of leaves in the second case. 

cRI and V measure of computed partition in significance-based methods are listed 

in Table 11. In the third dissimilarity and linkage combination, although TBEST does not 

find a most detailed partition composed from significant branches, neither SC nor SLB 

finds the optimal partition at significance level 0.001 and 0.05. 
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Figure 11	  TBEST compared to published methods for Chondrosarcoma. 
Performance comparison of TBEST and the three published methods in Chondrosarcoma dataset for the (1 
- Spearman correlation) dissimilarity – Ward linkage combination (top), (1 - Kendall correlation) 
dissimilarity – average linkage combination (middle), and Manhattan dissimilarity – Ward linkage 
(bottom). For each combination the left portion (A, D or G) shows the corresponding dendrogram, under 
which then true partition and the partition best matching the truth for each of the methods are shown as 
color bars. In the middle portion (B, E or H), the relative cRI of the computed partition is plotted against 
the required level of significance α for each of the significance-based methods. The customary α = 0.05 
threshold of significance is shown by a dashed vertical. In the right portion (C, F or I), the relative cRI of 
the computed partition is plotted against the minimal allowed number of leaves for DTC. 
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Table 11 Quality of partition in Chondrosarcoma* 

*	  Values of α in second column are significance levels.	  Quality of partitions is recorded as cRI (V 
measure), from column three to column five. 
 

4.6  Summary of Chapter 4 
In this chapter, performance of TBEST is validated in comparison with existing 

methods SC, SLB and DTC on five benchmark datasets (one synthetic and others from 

various biological origins), based on at least two combinations of dissimilarity and 

linkage. Furthermore, quality of partition found by TBEST and other significance-base 

methods is evaluated across a broad range of significance levels, using cRI and V 

measure. Validation result from each dataset is associated with one figure panel and one 

table.	  

There are eleven combinations of dissimilarity and linkage in total. Being a 

heuristic method, DTC is limited from its dependence on minimal number of leaves in a 

branch. It fails to find the optimal partition in the first combination of dataset T10, and it 

has unstable performance over four out of the other ten combinations. Each significance-

based method is compared with TBEST at a broad range of significance levels. With any 

significance level less than or equal to 0.05, TBEST performs on par with or better than 

other significance-based methods in ten out of eleven combinations.	  

	  
	   	  

Dissimilarity and linkage α TBEST SC SLB 
(1 - Spearman correlation) 
dissimilarity 
Ward linkage 

0.001 0(-) 0(-) 0(-) 
0.05 1(1) 0.76(0.88) 1(1) 

(1 - Kendall correlation) dissimilarity 
average linkage 

0.001 0(-) 0(-) 0(-) 
0.05 1(1) 0.76(0.88) 0.48(0.67) 

Manhattan dissimilarity 
Ward linkage 

0.001 0(-) 0(-) 0.32(0.58) 
0.05 0(-) 0.82(0.89) 0.89(0.94) 
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Chapter 5  Implementation 
	  
	  
	  
	  
	  
	  

TBEST has been implemented, and published with open-source availability, in an 

R package named “TBEST” on CRAN website (Sun and Krasnitz 2013). If interested, 

users can simply install it and try TBEST out. The package website has link to manuals, 

including details on how to use functions, what results can be expected. This chapter 

offers an introduction and walk-through tutorial of using TBEST as a pipeline to detect 

tight branches, and find a most detailed partition.  

5.1  Introduction to R package “TBEST” 
This R package implements the methodology of Tree Branches Evaluated 

Statistically for Tightness (TBEST). Foreseeing the time-consuming issue of 

randomizations, randomizations are run in paralleled scripts. More user-friendly features 

in this package are: 

1. Input of customized dissimilarity and randomization function 

2. Two approaches to choose in p-value estimation 

3. Visualization of tight branches and partition if exists 

Functions used in TBEST pipeline are SigTree, PartitionTree, plot.best and 

LeafContent. SigTree estimats the tightness of branches, using randomizations and 

hypothesis testing. This is the main function that implements TBEST. It outputs statistics 

and p-values of branches. PartitionTree uses the output of SigTree, by examining 

tightness of branches, to search for the existence of a partition of candidate branches. 

plot.best is a visualization function that provides dendrogram with statistical significance 

on candidate branches, with annotated branch number. Interesting branches can be further 

studied by LeafContent, as it lists labels of observations within certain branch. 

To run data through the above pipeline, all users need to do is to prepare data as a 

data matrix, or dataframe, with row corresponding to observations and column 

corresponding to variables. Techniques mentioned in Chapter 2 can be applied to ensure 

data quality before clustering. 
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An example of using TBEST is given in 5.2. Running time of TBEST is recorded 

in supplementary report of Appendix.   

5.2  Example of using TBEST in R 
In this section, we use a subset of benchmark data set, Leukemia, to give a tutorial 

over TBEST pipeline. More details can be found at the package website (Sun and 

Krasnitz 2013). After TBEST package in your R is installed, and loaded, users can 

simply type the same code in R console to reproduce this pipeline. 

5.2.1  SigTree 
This is the main function, and should be used in the first place to obtain estimates 

of tightness on branches. Instructions of functions in R, can always be shown with typing 

a question mark before the name of function, such as “?SigTree”.  

 

 
Figure 12	  Usage of function SigTree 
 

This tutorial uses a subset of Leukemia data set as input data, which has been 

included in the package. Usage of “SigTree” is shown from second to fourth command 

lines. Statistic of tightness addressed in Chapter 3 is named “fldc”, there are alternative 

statistics can be chosen, see 5.1 and package website for more details. Combination of 

linkage and dissimilarity in HC is chosen within “mymethod” and “mymetric”, 

correspondingly. With randomization function “rand.fun” equaling to “shuffle.column”, 

randomization in this case is done by sampling expressions independently for each gene 

(column). Distributed computing option “distrib” is set to multi-core processing as 

“Rparallel”, and “njobs” suggesting the number of workers. Ptail is an argument of 

logical values. If Ptail is TRUE (default), the Generalized Pareto Distribution is used to 

approximate the tail of the null distribution for each of the chosen measures (3.3.1). 

Otherwise, empirical p-values are computed directly from the corresponding samples. 

Output of this function is an object of class “best”. Details on values inside this 
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object can also be acquired by “?best”. There are three items inside object “mytable”, 

shown above. The third one “indextable” is a matrix containing hierarchical structures, 

number of leaves under branches, and estimates of tightness on branches, i.e. p-values on 

branches, the main objective of TBEST. 

5.2.2  PartitionTree 
This function finds the most detailed partition of a hierarchical tree into tight 

branches, given a level of significance for tightness.  

 

 
Figure 13	  Usage of function PartitionTree 

 

While the first argument “x” being the object of class “best”, produced by 

function “SigTree”, arguments also include significance level “siglevel”, i.e. threshold of 

significance for tightness of branches, the measure of tightness “statname”, and how 

significance level should be interpreted “sigtype”. Here “raw” means significance level 

used in hypothesis testing is directly 0.001, other options are “corrected” as correction of 

multiple hypothesis testing (3.2.2) and “fdr” as threshold of false discovery rate.  

Output of this function is an object of class “partition”. Details on values inside 

this object can also be acquired by “?partition”. There are four items inside object 

“mypartition”, shown above. The fourth one “partition” is a matrix containing two 

columns, labels of observations and which part, in terms of branch number among 1 to n-

1, this observation belongs to. From this, we can further obtain number of parts and plot 

these using function below. 
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5.2.3  plot.best 
This is a visualization function. It plots dendrogram and provides significance 

estimates of tight branches, or those that form a most detailed partition.  

 

 
Figure 14	  Usage of function plot.best 

 

“plot.best” is a method for class “best”, it can be used as “plot” in short with input 

from class “best”. First usage of this function is to visualize all tight branches, given a 

significance level. Second usage is to visualize a partition if exists. There are extra 

graphical arguments, such as logical values of showing labels of observations, logical 

values of showing number of branches, from 1 to n-1. P-values on branches are shown by 

multiplying a scale of 100, because of limitations on visualizing multi-digits. Exact 

estimates of tightness can be obtained from object “best”. 

Figure 15 corresponds to the second line of codes in Figure 14. This visualization 

needs only the output of SigTree. It shows that only branch 33, 34 and 7 are statistically 

tight, with p-values less than 0.001. Argument “hang” here is used to organize all leaves 

at height zero. 
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Figure 15	  Visualization of statistically significant branches, produced by function plot.best 

 
 

Figure 16 corresponds to the third line of codes in Figure 14. This visualization 

needs both the output of SigTree and the output of PartitionTree. It shows that branch 33, 

34 and 35 form a most detailed partition of data. Note that branch 35 is not statistically 

significant, shown in Figure 15. However, branch 33 and 34 are statistically significant, 

tight in themselves, and far away from the rest branch. Relatively, we consider 

observations under branch 35 are also far away from those in the other two branches. 

More details on obtaining a partition are in 3.3.2. Therefore, a partition of three parts 

exists and their p-values (multiplying by 100) are shown on branches. 
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Figure 16	  Visualization of three-part partition, and estimates of tightness on each part, produced by 
function plot.best. 

 
5.2.4  LeafContent 

As the name suggests, this function finds names of leaves belonging to given 

branches of a hierarchical tree. With a large number of observations, labels of leaves in 

Figure 15 and Figure 16 may not be able to be recognized, or to be shown by user’s 

choice. Therefore a function to list labels of observations under interesting branches is 

designed. Input “myinput” is not restricted to object of class “best” or “partition”, but 
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also class “hclust”, hierarchical structure produced by HC.  “mynode” is an integer vector 

of the numbers of branches whose leaf content is desired. 

 

 
Figure 17	  Usage of function LeafContent. 
 
 

In above example, labels of observations under branch 1 and 28 are listed. The 

branch number is always positive, between 1 and 28. A singleton, however, is always a 

negative number, represented in R. If we use “mynode = c(-1, -28)” instead, this outputs 

label of the first individual observation and that of the 28th individual observation. 

5.3  Summary of Chapter 5 
This chapter serves as an introduction and also a tutorial on how to use TBEST. 

As a maintainer of this open-source package, I am responsible for keeping TBEST 

updated. Knijnenburg (Knijnenburg, Wessels et al. 2009) generously provided Matlab 

codes on their EVT-based p-value estimation. The most updated version of TBEST will 

include implementation of SLB as a test statistic and Bootstrapping as a test of cluster 

stability. More detailed and updated manuals can always be found at the package website. 

	  
	    



	  

	  
	  

62 

Chapter 6  Discussion and Conclusion 
	  
	  
	  
	  
	  
	  

As our test results demonstrate, the performance of TBEST as a tool for data 

partitioning is equal or superior to that of similar published methods in a variety of 

biology-related settings. This is true in particular for datasets with underlying tree-like 

organization, such as sets of genomic profiles of individual cancer cells, of the same type 

as our third benchmark case above. In a work presently in progress we are applying 

TBEST systematically to a number of datasets of a similar nature. But TBEST also 

performs well on datasets with no underlying hierarchical structure, such as Simulated6 

or Leukemia above. In total, TBEST was able to recover the true partition of the data on 

par with or better than the published methods in ten out of eleven test cases considered 

here. We further note that in all but one case considered the optimal partition of the data 

by TBEST also was the most significant nontrivial partition. This was not the case for the 

other significance-based methods included in the comparison.  

Now let us have a look at the three properties we mentioned in 1.2. There are no 

doubts that TBEST satisfies property 1) and 2). Statistic S(n) is exactly a measurement on 

tightness of branch n. Statistical tests are conducted to find statistically significant 

branches, with distribution of null statistics obtained from randomized data. However, 

TBEST cannot guarantee that a partition into tight branches exists. The last paragraph in 

3.2.3 suggests a partition to be significant with a threshold α if (a) every part is a branch 

and (b) if for every part at least one of the children of its parent node is tight with the p-

value p <α. In case of a nested distinct branch with its parent node and counterpart of its 

parent node being non-significant, TBEST can identify this branch as a statistically tight 

branch. But there may not exist a most detailed significant partition judged by criteria a) 

and b).  

TBEST can both be applied and formulated more broadly. The applicability of 

TBEST is not limited to data partitioning that has been our focus here. TBEST can be 



	  

	  
	  

63 

used for finding all significantly distinct branches of a hierarchical tree, regardless of 

whether these form a full partition.  

6.1  Alternative statistics 
Further, alternatives to the test statistic of Equation 1 can easily be devised, For 

example, for any non-leaf node n we can introduce  

        𝜎!(𝑛) ≡
! ! !!! ! !! ! !!(!!(!))

!(!)
       (2)                            

, where c1(n), c2(n) are the two children of n.  

Similarly, we can design alternative statistic for any non-leaf node n 

                  𝜎!(𝑛) ≡
! !(!) !!! ! ! !!!(!)

!(!)
        (3)                            

, where ℎ!(𝑛) is the height of node n’s sibling node. 

These alternative statistics share the property that tightness of any non-leaf node 

is a number between 0 and 1. While this dissertation focused on validation of better or on 

par performance of TBEST using statistic proposed in Chapter 3, an implementation of 

TBEST as an R language package provides a number of these alternative options, both 

for the definition of tightness and for annotation of significantly distinct branches (Sun 

and Krasnitz 2013). 

6.2  Cluster stability 
  Finally, we note that tightness of tree branches is complementary to another 

important notion in clustering, namely, cluster stability under re-sampling of the input 

data. The latter property can be analyzed in a number of ways, such as bootstrap analysis 

of trees (Felsenstein 1985, Efron, Halloran et al. 1996, Shimodaira 2002) or methods not 

directly related to trees (Dudoit and Fridlyand 2002, Monti, Tamayo et al. 2003). Existing 

work provides examples where both distinctness and stability under resampling are 

prerequisites of a meaningful partition (Cancer Genome Atlas Research Network 2011).  

Previously in Chapter 4, most detailed significant partitions found by TBEST are 

validated composed of biological meaningful subtypes. Stability of these branches is 

examined, with bootstrapping sampling. The algorithm is straightforward, 

1. For a tight cluster detected by TBEST, obtain the labels of observations in it, 

as set C. 
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2. Generate M bootstrapping samples, and grow hierarchical tree on each 

bootstrapping sample. Note that each sample is generated by sampling 

variables with replacement.  

3. In each hierarchical tree, find the cluster 𝐶∗  with similar size and most same 

labels of observations. Calculate stability score  

𝐵∗＝  size  of  𝐶 ∩ 𝐶∗   𝑠𝑖𝑧𝑒  𝑜𝑓  𝐶 

4. Compute the average stability score over M bootstrapping samples 

𝐵 =
1
𝑀 𝐵∗ 

This score measures how likely occurrence of this cluster is in a number of 

bootstrapping samples, which in this sense suggests cluster stability. Each table below 

lists stability score of statistically significant branches. Score is computed with M = 1000 

bootstrapping samples. An additional parameter r shown in the table has two values 0.5 

and 1.0. It represents the proportion of variables sampled in each bootstrapping sample. 

We see, from the tables, cluster stability is higher in bootstrapping samples with original 

size of variables (r = 1) and those with half size of variables (r = 0.5). On the other 

aspects, changing the size of variables reveals meaningful distribution of variables and 

examines existence of dominant redundant variables. 

  

 
Table 12 Cluster stability in Simulated6* 

 Euclidean dissimilarity, complete 
linkage 

(1 - Pearson correlation) dissimilarity, average 
linkage 

r = 0.5 r = 1.0 r = 0.5 r = 1.0 

cluster (class 1) 0.99 0.99 0.99 0.99 

cluster (class 2) 0.98 0.98 0.99 0.99 

cluster (class 3) 0.92 0.99 0.98 0.99 

cluster (class 4) 0.95 0.99 0.99 0.99 

cluster (class 5) 0.97 0.99 0.99 0.99 

cluster (class 6) 0.96 0.99 0.99 0.99 

* Label of dominant true subtype is shown in parentheses with corresponding cluster 
 



	  

	  
	  

65 

 

 
Table 13 Cluster stability in Leukemia* 

 Euclidean dissimilarity, Ward 
linkage 

(1 - Pearson correlation) dissimilarity, average 
linkage 

r = 0.5 r = 1.0 r = 0.5 r = 1.0 

cluster (ALLT) 0.90 0.94 0.94 0.95 

cluster (ALLB) 0.85 0.88 0.91 0.94 

cluster (AML) 0.69 0.72 0.80 0.83 

* Label of dominant true subtype is shown in parentheses with corresponding cluster 
 

 

 

 

 
Table 14 Cluster stability in T10* 

 Euclidean dissimilarity, Ward 
linkage 

(1 - Pearson correlation) dissimilarity, average 
linkage 

r = 0.5 r = 1.0 r = 0.5 r = 1.0 

cluster (D+P) 0.99 0.99 0.99 1 

cluster (H) 0.99 0.99 1 1 

cluster (AA) 0.99 1 1 1 

cluster (AB) 1 1 1 1 

* Label of dominant true subtype is shown in parentheses with corresponding cluster 
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Table 15 Cluster stability in Organelles* 

 (1 - Pearson correlation) 
dissimilarity, Ward linkage 

(1 - Pearson correlation) dissimilarity, 
average linkage 

r = 0.5 r = 1.0 r = 0.5 r = 1.0 

cluster (Nuclei) 0.99 0.99 0.95 0.96 

cluster (Cytosol) 0.98 0.99 0.99 0.99 

cluster (Microsomes) 0.89 0.94 0.94 0.98 

cluster (Mitochondria) 0.88 0.92 0.87 0.90 

* Label of dominant true subtype is shown in parentheses with corresponding cluster 
 
 
 
 
 
 
 
 
 

 
Table 16 Cluster stability in Chondrosarcoma* 

 (1 - Spearman correlation) 
dissimilarity, Ward linkage 

(1 - Kendall correlation) 
dissimilarity, average 
linkage 

Manhattan dissimilarity, 
Ward linkage 

r = 0.5 r = 1.0 r = 0.5 r = 1.0 r = 0.5 r = 1.0 

cluster (FIB) 0.60 0.76 0.61 0.76 0.63 0.75 

cluster (HAC) 0.65 0.78 0.67 0.80 0.62 0.71 

cluster (MSC) 0.60 0.72 0.60 0.73 0.65 0.70 

cluster (TCL) 0.66 0.82 0.66 0.82 0.68 0.78 

* Label of dominant true subtype is shown in parentheses with corresponding cluster 
	  

	  

Most stability scores in Table 12 to Table 15 are well above 0.9, except cluster 

with AML subtype, last row in Table 13. This is consistent with interesting findings by 
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TBEST on benchmark case Leukemia (4.2), where substructures of AML subtype are 

revealed with lower significance. Clusters in Chondrosarcoma dataset have less stability 

(Table 16). The reason for this may be the number of variables is one third of the number 

of observations. Cluster is less stable when constructing hierarchical structures with 

variables that insufficiently explain observations. On the other hand, with r = 1, clusters 

under last combination in Table 16 appear most unstable, and this is the exact case when 

TBEST discovers the optimal partition with lowest significance.  

6.3  Summary of Chapter 6 
In this dissertation, our method TBEST performs equal to or superior to similar 

published methods in finding meaningful partition on a variety of biology-related 

settings. It has a broad application not only on finding partitions of datasets but also on 

detecting statistical significance on internal branches. We have further discussed 

alternative statistics and cluster stability. Alternative statistics have been implemented in 

R package with a number of options (Sun and Krasnitz 2013). Comparison of 

performance within this statistic family among various datasets is beyond the scope of 

this work, but should be an interesting aspect to look into in the future. Cluster stability 

has been incorporated to latest TBEST implementation (Sun and Krasnitz 2013). Cluster 

stability, together with statistical evaluation on tightness of cluster, provides more 

insights on significance of internal branches in a hierarchical tree, and thus can detect 

biologically meaningful partition and clusters with more confidence. 
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Appendix 
	  
	  
Comparative  analysis of time complexity and performance 
	  

1. Time Complexity  
 
Time complexities of TBEST and of the three existing methods are listed in Table S1.1. 
These depend on the number of randomizations m, number of observations n and number 
of variables d. For the two top-down methods, SC and SLB, the complexities as stated 
correspond to the worst-case scenario wherein all internal nodes of the tree are examined.  
 
 

TBEST O(mn2d) + O(mn3) 
SC O(mn2d) + O(n3d) 
SLB O(mn3d) + O(mn4) 
DTC O(n2d)  

 
 
TBEST requires, for each randomization, to compute a dissimilarity matrix at a cost 
O(n2d) and to grow a hierarchical tree at a cost O(n3). Other computational costs, such as 
computing the tightness, are sub-dominant to these two.  
 
The complexity of SC was computed under the worst-case assumption that one of the 
daughters at each internal node of the tree is a single leaf. With this assumption, 
computing statistic on n-1 hierarchies with each simulation, from 1 to m, needs O(mn2d). 
For each branch, from 1 to n-1, SC computes variance-covariance matrix [2], which takes 
O(n3d) in total. Other computational costs, such as computing the eigenvalues of the 
variance-covariance matrix, are sub-dominant to these two.  
 
SLB performs randomization for each internal node being examined and requires 
computation of dissimilarity matrix and hierarchical clustering for each such 
randomization [3]. The necessity of performing these operations separately for each 
internal node explains the additional factor of n in the complexity of SLB compared to 
that of TBEST.  
 
DTC does not perform statistical assessment of partitions, and its complexity is 
independent of m. The complexity as stated refers to the worst-case scenario, wherein the 
minimal allowed number of leaves on a branch is one. The dominant term in the 
complexity estimate comes from executing step 2 of the dynamic hybrid algorithm [1].  
 
 
	   	  

Table S1.1 Time complexities of TBEST and of the published methods 
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2. Performance  
 
Here we report execution times of TBEST and of the other three methods for all 
combinations of datasets, dissimilarities and linkages studied in this work. These are 
reported in five tables, one per dataset. 
 
The following computing resource was used: 
 
MacBook Air 
Processor Name: Intel Core i5 
Processor Speed: 1.3 GHz 
Number of Processors: 1 
Total Number of Cores: 2 
L2 Cache (per Core): 256 KB 
L3 Cache: 3 MB 
Memory: 4 GB 
 
For TBEST, SC and SLB, 5000 randomizations were performed. For SC and DTC the 
packages  sigclust and dynamicTreeCut were used, respectively [4-5]. For TBEST and 
SLB the R language package TBEST was invoked [6]. All these packages are publicly 
available from the Comprehensive R Archive Network (CRAN). The TBEST package 
facilitates parallel execution, and both cores of the processor were employed.  
 
 
Table S2.1  Simulated6 
Method / Combination Euclidean dissimilarity 

complete linkage 
(1 - Pearson correlation) dissimilarity 
average linkage 

TBEST 74.00s 123.00s 
SC 78.10s 78.10s 
SLB 232.83s 122.76s 
DTC 0.05s 0.04s 
 
Table S2.2  Leukemia 
Method / Combination Euclidean dissimilarity 

Ward linkage 
(1 - Pearson correlation) dissimilarity 
average linkage 

TBEST 92.36s 118.83s 
SC 92.47s 92.47s 
SLB 400.42s 129.02s 
DTC 0.03s 0.02s 
 
Table S2.3  T10 
Method / Combination Euclidean dissimilarity 

Ward linkage 
(1 - Pearson correlation) dissimilarity 
average linkage 

TBEST 376.92s 446.75s 
SC 297.65s 265.15s 
SLB 1063.80s 448.84s 
DTC 0.07s 0.06s 
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Table S2.4  Organelles 
Method / Combination (1 - Pearson correlation) 

dissimilarity 
Ward linkage 

(1 - Pearson correlation) 
dissimilarity 
average linkage 

TBEST 320.38s 320.22s  
SC 2135.00s 2125.91s 
SLB 1382.38s 326.29s 
DTC 0.01s 0.01s 

 
Table S2.5  Chondrosarcoma 
Method / 
Combination 

(1 - Spearman correlation) 
dissimilarity 
Ward linkage 

(1 - Kendall correlation) 
dissimilarity 
average linkage 

Manhattan dissimilarity 
Ward linkage 

TBEST 117.84s 121.13s 5.50s 
SC 30.01s 17.09s 54.99s 
SLB 232.01s 194.40s 24.30s 
DTC 0.03s 0.04s 0.02s 
 
	  
References 

1. Langfelder P, Zhang B, Horvath S: Defining clusters from a hierarchical 
cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 2008, 
24(5):719-720. 
 

2. Liu Y, Hayes DN, Nobel A, Marron JS: Statistical Significance of Clustering 
for High-Dimension, Low-Sample Size Data. Journal of the American 
Statistical Association 2008, 103(483):1281-1293. 

 
3. Munneke B, Schlauch KA, Simonsen KL, Beavis WD, Doerge RW: Adding 

confidence to gene expression clustering. Genetics 2005, 170(4):2003-2011. 
 
4.	   Langfelder P, Zhang B, Horvath S: dynamicTreeCut: Methods for detection of 

clusters in hierarchical clustering dendrograms. The Comprehensive R Archive 
Network:	  http://cran.r-project.org/web/packages/dynamicTreeCut/index.html. 

 
5. Huang H, Liu Y, Marron JS: sigclust: Statistical Significance of Clustering. The 

Comprehensive R Archive Network: http://cran.r-
project.org/web/packages/sigclust/index.html. 

 
6. Sun G, Krasnitz A: TBEST: Tree branches evaluated statistically for 

tightness. The Comprehensive R Archive Network: http://cran.r-
project.org/web/packages/TBEST/index.html.  



	  

	  
	  

74 

Figure S1  
The null distribution of node tightness S depends on the number of leaves. 
This dependence is illustrated for all the benchmarks and dissimilarity – linkage 
combinations analyzed. In each case the distributions of S are shown for nodes with 2, 5 
and 20 leaves. Each plot is based on 5000 randomizations of the respective data set. 	  
	  
	  

A: Simulated6 	  
Euclidean dissimilarity – complete linkage combination 
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B: Simulated6  
(1 - Pearson correlation) dissimilarity – average linkage combination 

	  

C: Leukemia  
Euclidean dissimilarity – Ward linkage combination 
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D: Leukemia  
(1 - Pearson correlation) dissimilarity – average linkage combination 

	  
	  

E: T10  
Euclidean dissimilarity – Ward linkage combination 
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F: T10  
(1 - Pearson correlation) dissimilarity – average linkage combination 

	  

G: Organelles  
(1 - Pearson correlation) dissimilarity – Ward linkage combination 
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H: Organelles  
(1 - Pearson correlation) dissimilarity – average linkage combination 

	  

I: Chondrosarcoma  
(1 - Spearman correlation) dissimilarity – Ward linkage combination 
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J: Chondrosarcoma  
(1 - Kendall correlation) dissimilarity – average linkage combination 

	  

K: Chondrosarcoma  
Manhattan dissimilarity – Ward linkage combination 
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Figure S2  
Empirical p-value estimates for tightness compared to EVT-based estimates.  
Combined results for all tree nodes in all benchmark studies are shown. For each 
benchmark the combinations of dissimilarity and linkage are enumerated in the same 
order as they appear in Table 2. Displayed are the values corrected for hypothesis 
multiplicity (cf the Methods section). Empirical estimates are based on 1000×N 
randomizations each, N being the number of leaves. EVT estimates are based on 1000 
randomizations each. If the empirical p-value estimate based on these 1000 
randomization is large, the EVT algorithm defaults to this estimate. The corresponding 
points are shown by empty symbols of the appropriate shape and color. The diagonal 
dashed line indicates the identity. The vertical dashed line indicates the minimal 
multiplicity-corected empirical p-value [1 – (1 – pe)N-2] / (nr + 2), where N is the number 
of leaves and nr is the number of randomizatons. 
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Table S1   
genes 1-50 51-100 101-150 151-200 201-250 251-300 301-600 

observations with up-regulated 
genes 

1-8 9-20 21-30 31-45 46-50 51-60  

mean of up-regulated 
expressions 

594 699 296 296 401 344  

regular mean 40 69 40 39 37 39 38 

standard deviation 50 75 100 101 200 203 200 

* Among the first 300 genes, each block of 50 genes comes from a normal distribution with parameters as 
tabulated, except for those observations within the class that these genes are up-regulated. Within each 
block the regular and the up-regulated distributions differ in the mean but have equal standard deviations. 
The values for the last 300 genes are drawn from the same  normal distribution for all observations.  
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