
	

Significant distinct branches of hierarchical trees:

A framework for statistical analysis and applications to biological data

A Dissertation Presented

by

Guoli Sun

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

December 2014

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3685086

Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

UMI Number: 3685086

 ii

Stony Brook University

The Graduate School

Guoli Sun

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Alexander Krasnitz – Dissertation Advisor
Assistant Professor, Simons Center for Quantitative Biology,

Cold Spring Harbor Laboratory

Stephen Finch - Chairperson of Defense
Professor, Department of Applied Mathematics and Statistics,

Stony Brook University

Wei Zhu – Dissertation Co-Advisor
Professor, Department of Applied Mathematics and Statistics,

Stony Brook University

Seungtai Yoon – Committee Member
Research Assistant Professor,

Cold Spring Harbor Laboratory

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

	

	
	

iii

Abstract of the Dissertation

Significant distinct branches of hierarchical trees:

A framework for statistical analysis and applications to biological data

by

Guoli Sun

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2014

One of the most common goals of hierarchical clustering is finding those branches

of a tree that form quantifiably distinct data subtypes. Achieving this goal in a

statistically meaningful way requires (a) a measure of distinctness of a branch and (b) a

test to determine the significance of the observed measure, applicable to all branches and

across multiple scales of dissimilarity.

We formulate a method termed Tree Branches Evaluated Statistically for

Tightness (TBEST) for identifying significantly distinct tree branches in hierarchical

clusters. For each branch of the tree a measure of distinctness, or tightness, is defined as a

rational function of heights, both of the branch and of its parent. A statistical procedure is

then developed to determine the significance of the observed values of tightness. We test

TBEST as a tool for tree-based data partitioning by applying it to five benchmark

datasets, one of them synthetic and the other four each from a different area of biology.

With each of the five datasets, there is a well-defined partition of the data into classes. In

all test cases TBEST performs on par with or better than the existing techniques.

One dataset uses Cores Of Recurrent Events (CORE) to select features. CORE

was developed with my participation in the course of this work. An R language

	

	
	

iv

implementation of the method is available from the Comprehensive R Archive Network:

cran.r-project.org/web/packages/CORE/index.html .	 	

Based on our benchmark analysis, TBEST is a tool of choice for detection of

significantly distinct branches in hierarchical trees grown from biological data. An R

language implementation of the method is available from the Comprehensive R Archive

Network: cran.r-project.org/web/packages/TBEST/index.html .	 	

	

	
	

v

	

Table of Contents

List of Figures ... viii

List of Tables .. ix

Acknowledgments ... x

Chapter 1 Introduction .. 1

1.1 Clustering analysis ... 2

1.1.1 Centroid based clustering .. 3

1.1.2 Hierarchical clustering .. 4

1.2 Existing methods for finding distinct branches .. 8

1.2.1 Heuristic methods ... 10

1.2.2 Statistically supported methods .. 11

1.2.3 Summary of existing methods .. 14

1.3 Measures of quality of partitions .. 15

1.3.1 Rand Index (RI) .. 15

1.3.2 Purity and Entropy .. 16

1.3.3 F-measure ... 17

1.3.4 V-measure ... 17

1.4 Summary of Chapter 1 ... 18

Chapter 2 Dataset Overview ... 20

2.1 Synthetic dataset Simulated6 ... 20

2.2 Leukemia dataset .. 22

2.3 T10 dataset and CORE ... 22

2.3.1 Methodology of CORE ... 22

2.3.2 Quantitative analysis using CORE ... 27

2.4 Organelles dataset and normalization .. 29

2.5 Chondrosarcoma dataset .. 29

2.6 Handling missing values ... 30

2.7 Summary of Chapter 2 ... 31

Chapter 3 Methodology ... 33

	

	
	

vi

3.1 A simple example .. 33

3.2 Randomizations and null distribution .. 35

3.2.1 Distribution of tightness ... 36

3.3 Compute statistical significance ... 38

3.3.1 Extreme value theory based estimation .. 38

3.3.2 Correction for multiple hypotheses testing ... 39

3.4 Comparison of TBEST and existing methods .. 40

3.5 Summary of Chapter 3 ... 41

Chapter 4 Validation .. 42

4.1 Simulated6 ... 43

4.2 Leukemia ... 46

4.3 T10 .. 48

4.4 Organelles .. 50

4.5 Chondrosarcoma ... 52

4.6 Summary of Chapter 4 ... 54

Chapter 5 Implementation .. 55

5.1 Introduction to R package “TBEST” .. 55

5.2 Example of using TBEST in R ... 56

5.2.1 SigTree ... 56

5.2.2 PartitionTree ... 57

5.2.3 plot.best .. 58

5.2.4 LeafContent .. 60

5.3 Summary of Chapter 5 ... 61

Chapter 6 Discussion and Conclusion .. 62

6.1 Alternative statistics .. 63

6.2 Cluster stability ... 63

6.3 Summary of Chapter 6 ... 67

Bibliography .. 68

Appendix .. 71

Comparative analysis of time complexity and performance 71

	

	
	

vii

1. Time Complexity .. 71

2. Performance .. 72

Figure S1 .. 74

A: Simulated6 ... 74

B: Simulated6.. 75

C: Leukemia .. 75

D: Leukemia .. 76

E: T10 .. 76

F: T10 .. 77

G: Organelles .. 77

H: Organelles .. 78

I: Chondrosarcoma .. 78

J: Chondrosarcoma .. 79

K: Chondrosarcoma .. 79

Figure S2 .. 80

Table S1 ... 81

	

	
	

viii

List of Figures

Figure 1 Dendrogram of HC, using 38 samples from Golub’s Leukemia dataset. 8

Figure 2 A comparison of two dendrograms. ... 9

Figure 3 Illustration of definition on branch lengths .. 13

Figure 4 Scatter plot of simulated gene expressions in each ground truth subtype. 21

Figure 5 Illustration of the definition of tightness. ... 34

Figure 6 Null distribution of tightness. ... 37

Figure 7 TBEST compared to published methods for Simulated6 ... 45

Figure 8 TBEST compared to published methods for Leukemia. .. 47

Figure 9 TBEST compared to published methods for T10. .. 49

Figure 10 TBEST compared to published methods for Organelles. ... 51

Figure 11 TBEST compared to published methods for Chondrosarcoma. 53

Figure 12 Usage of function SigTree .. 56

Figure 13 Usage of function PartitionTree ... 57

Figure 14 Usage of function plot.best ... 58

Figure 15 Visualization of statistically significant branches, produced by function

plot.best ... 59

Figure 16 Visualization of three-part partition, and estimates of tightness on each part,

produced by function plot.best. ... 60

Figure 17 Usage of function LeafContent. ... 61

	

	
	

ix

List of Tables
	
Table 1 Properties of four existing methods ... 14

Table 2 The contingency table formed by two partitions ... 16

Table 3 Properties of five benchmark datasets ... 31

Table 4 Data permutation methods for benchmark cases ... 36

Table 5 Properties of TBEST and three existing methods .. 41

Table 6 Combinations of datasets, dissimilarity, linkage and randomization methods,

used for testing TBEST ... 42

Table 7 Quality of partition in Simulated6* ... 45

Table 8 Quality of partition in Leukemia* ... 47

Table 9 Quality of partition in T10* ... 49

Table 10 Quality of partition in Organelles* .. 51

Table 11 Quality of partition in Chondrosarcoma* .. 54

Table 12 Cluster stability in Simulated6* ... 64

Table 13 Cluster stability in Leukemia* ... 65

Table 14 Cluster stability in T10* .. 65

Table 15 Cluster stability in Organelles* .. 66

Table 16 Cluster stability in Chondrosarcoma* .. 66

	

	
	

x

	

Acknowledgments

I would like to express my deepest thanks to my advisor, Professor Alexander

Krasnitz, for supporting me during these past five years. I am grateful to Alex for his

support and encouragement, and also his extensive knowledge in cancer genomics,

computer science, physics and statistics. He provides very useful guidance and keen

insights whenever I have difficulties during my research. Also, thanks to him, I can have

the opportunity to perform statistical analysis in the cutting-edge quantitative biology lab.

It is my great honor to work at his lab in Cold Spring Harbor Laboratory. With regards to

my research at Cold Spring Harbor Laboratory, I also thank Professor Michael Wigler for

discussions on research work at early stages, Peter Andrews and Todd Heywood who

helped me on technical issues in implementation, and all other staffs from Wigler Lab. I

would like to take this opportunity to thank Martin Akerman, Joan Alexander, Timour

Baslan for generously sharing their data with us, and to Theo A. Knijnenburg for

generously providing software. This work was supported by the National Institutes of

Health grantNIH/1UO1CA168409-01 and by grant 125217 from the Simons Foundation.

I would like to thank Professor Stephen Finch, Professor Wei Zhu, and Professor

Seungtai Yoon for being on my dissertation committee.

 Last but not least, I would like to express my gratitude to my beloved family, for

their unconditional support. 	

	
	
	

	

	
	

1

	

Chapter 1 Introduction

This dissertation presents a method for identifying distinct substructures of data

based on hierarchical clustering. Hierarchical clustering, as the name suggests, builds a

hierarchy of clusters, i.e. groups of observations. Hierarchical clustering has a number of

useful properties. First of all, hierarchical structure with N-1 clusters is derived from N

observations. It does not need a number of clusters specified in advance and provides a

tree-like organization of the data. Each cluster is combined with, or split from the rest of

the tree based on a quantitative measure called dissimilarity. Secondly, hierarchical

clustering lends itself easily to visualization of a hierarchical tree with labels for

observations.

Taking advantage of the second property, most commonly, application of

hierarchical clustering consists of visual examination, and intuitive identification of sub-

trees that appear clearly distinct from the rest of the tree. Obviously, results of such

qualitative analysis and conclusions from it can be observer-dependent. Quantifying the

interpretation of hierarchical trees and introducing mathematically and statistically well-

defined criteria for distinctness of sub-trees would therefore be highly beneficial and is

the focus of this work.

A method was designed in the course of this work for identifying statistically

distinct subsets of hierarchically clustered data. Termed Tree Branches Evaluated

Statistically for Tightness, or TBEST in the following, the performance of the method

was thoroughly studied in comparison with existing methods for the same or similar

purposes, and found to be superior in its ability to reproduce known meaningful partitions

of biological data. The detailed description of TBEST in the following is an expansion of

its briefer description given in our recent publication (Sun and Krasnitz 2014).

	

	
	

2

	

One of the data sets used to evaluate TBEST was generated using a novel

statistical tool for the analysis of interval data. The tool, termed Cores Of Recurrent

Events (CORE), was developed with my participation in the course of this work. Its brief

description here follows our publication (Krasnitz, Sun et al. 2013).

This dissertation has the following structure. Introductory Chapter 1 provides

background on clustering analysis (1.1), existing methods designed to find distinct

branches (1.2) and measures to evaluate clustering (1.3). Chapter 2 addresses data

preprocessing techniques and discusses several options of preparing data before

clustering. In Chapter 3, we introduce the method TBEST. The performance of this

method is studied in comparison to existing methods on data sets from a variety of

biological various origins in Chapter 4. Implementation of TBEST is discussed in

Chapter 5. Chapter 6 is devoted to discussion and conclusions.

Appendix includes: A time complexity and performance analysis, Figure S1,

Figure S2 and Table S1. Brief introduction of content in these four materials: 1) a

comparison of time complexity and performance for TBEST, SC, SLB and DTC, 2)

Figure S1, an 11-panel figure illustrating null distribution of tightness, 3) Figure S2, a

comparison of empirical p-value estimates for tightness to EVT-based estimates and 4)

Table S1, detailing the properties of the Simulated6 dataset.

1.1 Clustering analysis
Clustering is otherwise known as unsupervised learning. Division of learning

methods into supervised and unsupervised ones is based on the availability and existence

of response variables, also called class labels.

To distinguish clustering from classification, a general problem of classification is

posed as follows: Given the predictor variables/features X, and a categorical response

variable Y, what is the relationship between X and Y? A simple binary classification

example is, knowing which patients have heart disease (1) or not (0), and this is the

response variable Y, fit a model δ(Y|X) that predicts the occurrence of heart disease for

variables/features X such as blood pressure, age, etc. Examples of δ(Y|X) include logit in

logistic regression or majority vote for K-nearest neighbors (KNN) (Altman 1992). This

set of problems belongs to supervised learning.

	

	
	

3

	

Clustering, on the other hand, finds subsets of data based on similarities between

observations in the absence of known class labels Y. Quantitative measures of similarity

among observations depend on their properties X and are discussed in the following.

Subsets generated by this procedure are called clusters. Clustering often helps to learn

meaningful class labels from the data. For example, to be discussed in greater detail in

the following, similarities among patterns of somatic mutations in the genomes of

individual cells can be used to discover the clonal structure of the population from which

the sample of cells is drawn. Another example is segmentation of online customer pool

according to the similarity among patterns X of the customer online These clusters can be

used to predict behavior of future customers.

The most common clustering approaches are centroid based clustering (1.1.1) and

hierarchical clustering (1.1.2). Instead of similarity among observations, centroid based

clustering use similarity between observation and the so-called “centroid”, defined in

1.1.1.

1.1.1 Centroid based clustering
For these clustering method the number of clusters needs to be specified in

advance. The algorithms then seek a partition into clusters that maximizes the within-

cluster similarity. Two representative examples of this set of algorithms are K-means and

Partition Around Medoids (PAM). These can be briefly described as follows.

In K-means method, given n observations X = {X1, X2, … Xn}, each of p real-

valued variables, a partition S of X with given number of K parts, S = {S1, S2, …SK} is

found by minimizing the objective function

F = 𝑋! − 𝜇! !
!

!!∈!!

!

!!!

where µi is the mean vector of observations in Si, with dimension p. Note mean vector µi

is centroid, and Euclidean norm measures similarity between observation and centroid. In

the commonly used Lloyd’s iterative algorithm the K centroids are found for the given

cluster assignments, followed by reassignment of each observation to the nearest

centroid. The procedure is repeated until the assignment no longer changes (Lloyd 2006).

There is no guarantee that the absolute minimum of F will be found, and K-means may

	

	
	

4

	

fail, for example, by choosing a centroid at the middle point between two obvious

clusters.

PAM, or K-medoids (Kaufman 1990), is designed as a more robust centroid based

clustering algorithm. Instead of choosing mean as the centroid of a cluster 𝜇!, PAM

chooses median among the observations. This choice is known as a medoid. To make the

optimal choice of medoids, PAM compares the objective function for the current medoids

with that for randomly selected non-medoids. In each iteration, PAM has a trade-off of

computing time. It exhaustively compares current medoid with non-medoids in

𝑂(𝑛(𝑛 − 𝐾)𝐾), while K-means only uses 𝑂(𝑛𝐾).

Although there are other variations of K-means, such as K-medians (Jain 1988,

Bradley 1997), and Sparse K-means (Witten 2010), the requirement to specify the

number K in advance remains an inevitable limitation of centroid based clustering

algorithms.

1.1.2 Hierarchical clustering
Hierarchical clustering builds a hierarchy of groups of data based on quantitative

similarity measurements. The measure that hierarchical clustering uses is namely

Dissimilarity and Linkage (1.1.2.1). Unlike centroid based clustering, there is no need to

specify the number of clusters. A hierarchical structure is built while samples are merged

or split into clusters:

Agglomerative: A bottom-up approach. All individual observations are listed on

the bottom. The first cluster contains the pair of individual observations that has

least dissimilarity. One more pair of observations is merged at each step until

every observation is combined into one cluster at top.

Divisive: A top-down approach. All individual observations are listed in one

cluster at the beginning. Splits are performed recursively until every observation

is in its singleton cluster at bottom.

Agglomerative hierarchical clustering is more widely used and is more time

efficient then divisive hierarchical clustering. We focus on agglomerative hierarchical

clustering, and refer to it as HC in short from now on.

	

	
	

5

	

1.1.2.1 Agglomerative Rule
Unlike centroid-based methods, HC does not require the number of clusters to be

pre-specified. Another advantage of HC is it generates a hierarchical tree structure. This

agglomerative hierarchical tree, also known as dendrogram, grows from the bottom-up

with chosen dissimilarity measures. The dendrogram provides visual picture of how items

are merged into clusters. This section provides the definition and example of HC

dissimilarity measures, and how to use a connectivity matrix/dissimilarity matrix to grow

a hierarchical tree.

Dissimilarity:

Definition: The dissimilarity metric, or dissimilarity is defined between any two

observations Xi and Xj, i≠j, i,j∈[1,n]. Commonly used choices are:

Euclidean distance 𝑋! − 𝑋! !

Manhattan distance 𝑋! − 𝑋! !

maximum distance 𝑋! − 𝑋! !

cosine dissimilarity (1-uncentered Pearson’s Correlation) 1− !!,!!
!! ! !! !

1 – Pearson’s Correlation 1− (!!"!!!)(!!"!!!)
!
!!!

(!!"!!!)!
!
!!! (!!"!!!)!

!
!!!

There are many other dissimilarity metrics, such as 1 – Kendall’s Correlation, 1 –

Spearman’s Correlation. Measurements of correlation coefficient have range from -1 to 1,

the correlation-based dissimilarity metrics therefore have range from 0 to 2.

Dissimilarity metric defined in HC need not be a distance function. Correlation-

based dissimilarity metric may violate the triangle inequality, i.e. g(x, y) + g(y, z) ≥+ g(y,

z where x, y and z are observations with p dimensions.

An example is given below using Kendall’s correlation. The dissimilarity metric

is 1 – Kendall’s Correlation,

𝜏 = 1− 𝑇𝑎𝑢! 𝑛𝑜 𝑡𝑖𝑒𝑠
1− 𝑇𝑎𝑢! 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑇𝑎𝑢! =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠

1
2𝑛(𝑛 − 1)

	

	
	

6

	

𝑇𝑎𝑢! =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠

[12𝑛 𝑛 − 1 − 𝑛!][
1
2𝑛 𝑛 − 1 − 𝑛!]

A concordant pair of observations means the order of inequality is consistent

through p dimensions. Otherwise, the pair is discordant. While in Taub, 𝑛! and 𝑛! are

numbers of pairs tied in each observation. Given three observations with rankings, O =

(1, 1, 1, 2, 3), P = (2, 2, 2, 1, 1), Q = (1, 2, 1, 2, 3). 𝜏 𝑃𝑄 = 1.722, 𝜏 𝑂𝑄 = 0.198,

𝜏 𝑂𝑃 = 1.926,

𝜏 𝑃𝑄 + 𝜏 𝑂𝑄 < 𝜏(𝑂𝑃)

This dissimilarity metric is not a distance function as it fails to satisfy the triangle

inequality.

Linkage:

Definition: Linkage is defined as dissimilarity measure between an individual

observation and a cluster, or a pair of clusters. Let two clusters, C and S, each contain

individual observations, indexed, respectively by c and s. With this notation, commonly

used choices of linkage are:

complete linkage (furthest neighbor) max 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠, 𝑐 :∀ 𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶

single linkage (nearest neighbor) min 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠, 𝑐 :∀ 𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶

average linkage !!""!#!$%&!'((!,!)!∈!!∈!
!" !"#$%&' !" ! ∗ # !" !"#$%&' !" !

Ward’s linkage (minimal variance)(Ward 1963)

cost(C∪S)-cost(C)-cost(S)

Cost function cost(S) is 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑠,𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑!)!∈! . This is the variance if

using square of Euclidean distance as dissimilarity metric and arithmetic mean as

centroid. Ward’s linkage is used to find the cluster with minimal merged cost along the

hierarchy.

centroid linkage 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑! − 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑!

Centroid here means the center of a cluster, which has been introduced in 1.1.1.

The mean vector (1.1.1) of observations in a cluster is the most popular choice of

centroid.

median linkage 𝑀𝑒𝑑𝑖𝑎𝑛! −𝑀𝑒𝑑𝑖𝑎𝑛!

	

	
	

7

	

Instead of using arithmetic mean of a cluster in centroid linkage, it uses median of

observations in corresponding cluster.

Agglomeration:

With chosen dissimilarity, one n by n connectivity matrix, or dissimilarity matrix

D is generated, n being the number of observations. Item 𝐷!" is the dissimilarity value

between a pair of ith and jth individual objects. The following algorithm explains how D

is updated each step a cluster is merged.

Algorithm:

Compute dissimilarity matrix for the initial n(n-1)/2 pairs of observations

ith step along the hierarchy, i=1,2,…n-1,

1. While dimension of dissimilarity matrix D >1, search the pair of

objects which have smallest value in D, and this pair is merged to cluster i

2. With ith cluster and other n-1-i objects, dissimilarity values

between ith cluster and other n-1-i objects are computed, and dissimilarity

Matrix D is updated with dimension n-i by n-i

Repeat step 1 and 2 until n-1th cluster is classified, i.e. all observations are

clustered into one cluster

With agglomeration rule in mind, here we provide some tips on choosing

dissimilarity measures. Monotonically increasing dissimilarity is not guaranteed in

centroid method, and median linkage. Inversions may be observed. Therefore we do not

recommend using linkage (centroid linkage, median linkage) that brings on inversions, as

it spoils the hierarchical structure. We recommend average linkage, complete linkage and

Ward’s linkage. Ward’s linkage is used to find the cluster with minimal merged cost

along the hierarchy.

Dendrogram:

Dendrogram provides a visual rendition of HC as a binary tree. Each leaf corresponds to

an individual observation, and the tree structure is dictated by the agglomeration

algorithm (1.1.2.1). Specifically, each internal node of the tree corresponds to a merger of

two objects and is displayed at a value of the vertical coordinate equal to the dissimilarity

of the two objects being merged. This value is known as height. By convention, all

leaves are displayed at zero height and in the horizontal order that makes a planar display

	

	
	

8

	

of the tree possible. Figure 1 below shows a dendrogram grown from Golub’s Leukemia

dataset (Golub, Slonim et al. 1999).

	

Figure 1	 Dendrogram of HC, using 38 samples from Golub’s Leukemia dataset.
This dendrogram is grown using Ward’s linkage and Euclidean dissimilarity. The first cluster is merged by
“sample 6” and “sample 17” with smallest non-zero height. ith cluster has monotonically increasing height.

1.2 Existing methods for finding distinct branches

So far we have introduced Clustering Analysis (1.1). Without prior knowledge of

class labels, HC groups observations based on given dissimilarity and linkage, and

produce dendrogram i.e. a visualization of hierarchy of clusters, such as Figure 2. HC is

now widely used in partitioning data and finding distinct cluster of data. Given a

hierarchical tree produced by HC, a method needs to be designed to serve two purposes:

1). Determine whether a branch is distinct from others

2). Check if candidate distinct branches form a partition of the data

sa
mp

le
10

sa
mp

le
20

sa
mp

le
26

sa
mp

le
21

sa
mp

le
23

sa
mp

le
24

sa
mp

le
25

sa
mp

le
22

sa
mp

le
27

sa
mp

le
13

sa
mp

le
1

sa
mp

le
8

sa
mp

le
5

sa
mp

le
18

sa
mp

le
11

sa
mp

le
7

sa
mp

le
12

sa
mp

le
9

sa
mp

le
4

sa
mp

le
16

sa
mp

le
2

sa
mp

le
3

sa
mp

le
19

sa
mp

le
29

sa
mp

le
6

sa
mp

le
17

sa
mp

le
14

sa
mp

le
15

sa
mp

le
30

sa
mp

le
31

sa
mp

le
38

sa
mp

le
32

sa
mp

le
28

sa
mp

le
34

sa
mp

le
35

sa
mp

le
33

sa
mp

le
36

sa
mp

le
37

0
50

00
0

10
00

00
15

00
00

20
00

00

Cluster Dendrogram

hclust (*, "ward")
dist(leukemia)

He
igh

t

	

	
	

9

	

Figure 2	 A comparison of two dendrograms.
Dendrograms are grown from HC with Leukemia data set. A). This dendrogram is based on real leukemia
expression data. B). This dendrogram is based on randomized leukemia expression data. Both hierarchical
trees are grown with Euclidean dissimilarity and Ward’s linkage.

Identification of distinct branches of hierarchical trees by practitioners in

biological sciences is predominantly qualitative and intuitive and rarely goes beyond

visual inspection of the dendrogram, sometimes along with the image of the data matrix.

Such identification is observer-dependent, and any two biologists may disagree on the

result. For example, in Figure 2 A), the leftmost cluster containing nine observations is

distinct from the rest of the tree, so is the middle cluster with four observations, “sample

A

sa
m

pl
e

10
sa

m
pl

e
20

sa
m

pl
e

26
sa

m
pl

e
21

sa
m

pl
e

23
sa

m
pl

e
22

sa
m

pl
e

27
sa

m
pl

e
24

sa
m

pl
e

25
sa

m
pl

e
13

sa
m

pl
e

1
sa

m
pl

e
18

sa
m

pl
e

7
sa

m
pl

e
8

sa
m

pl
e

3
sa

m
pl

e
4

sa
m

pl
e

2
sa

m
pl

e
16

sa
m

pl
e

14
sa

m
pl

e
6

sa
m

pl
e

17
sa

m
pl

e
11

sa
m

pl
e

29
sa

m
pl

e
9

sa
m

pl
e

12
sa

m
pl

e
15

sa
m

pl
e

5
sa

m
pl

e
19

sa
m

pl
e

33
sa

m
pl

e
36

sa
m

pl
e

37
sa

m
pl

e
32

sa
m

pl
e

28
sa

m
pl

e
34

sa
m

pl
e

31
sa

m
pl

e
38

sa
m

pl
e

30
sa

m
pl

e
35

B

sa
m

pl
e

5
sa

m
pl

e
15

sa
m

pl
e

10
sa

m
pl

e
4

sa
m

pl
e

24
sa

m
pl

e
36

sa
m

pl
e

18
sa

m
pl

e
11

sa
m

pl
e

32
sa

m
pl

e
16

sa
m

pl
e

33
sa

m
pl

e
38

sa
m

pl
e

17
sa

m
pl

e
19

sa
m

pl
e

22
sa

m
pl

e
30

sa
m

pl
e

9
sa

m
pl

e
23

sa
m

pl
e

20
sa

m
pl

e
12

sa
m

pl
e

25
sa

m
pl

e
14

sa
m

pl
e

29
sa

m
pl

e
27

sa
m

pl
e

31
sa

m
pl

e
3

sa
m

pl
e

28
sa

m
pl

e
7

sa
m

pl
e

13
sa

m
pl

e
35

sa
m

pl
e

26
sa

m
pl

e
1

sa
m

pl
e

37
sa

m
pl

e
8

sa
m

pl
e

34
sa

m
pl

e
2

sa
m

pl
e

6
sa

m
pl

e
21

	

	
	

10

3”, “sample 4”, “sample 2” and “sample 16”.

With a second look in Figure 2 B), the leftmost cluster containing six observations

also appears distinct from others. However, this is actually a branch from randomized

data. This reveals the importance of examining if a distinct branch is really useful, or

rather, not spurious. Statistical tests can be used to test if a branch is clustered by chance,

with statistics defined on distinctness. Here we reformulate properties of a suitable

method:

1). A measurement of distinctness of branches

2). A statistical test to find statistically meaningful branches

3). Ability to find a partition of data into distinct branches

Next we present existing methods. These methods fall into two categories,

heuristic methods and statistically supported methods, following key property 3).

Whether other two properties are satisfied is illustrated in each method. Generalization of

properties of existing methods is given in 1.2.3.

1.2.1 Heuristic methods
Two existing methods fall into a heuristic category, tree-cut and dynamic tree cut.

They neither have a quantitative measurement of distinctness of branches, nor perform a

statistical test on truly usefulness of branches. However, they guarantee a partition of data

when obtaining clusters with setting up certain parameters. The parameters, such as

cutting height, number of clusters or minimal cluster size, that the results depend on,

make the detection of distinct clusters less trustworthy.

1.2.1.1 Tree-cut
Tree-cut, as the name suggests, it takes advantage of the hierarchical structure in a

dendrogram, cutting from certain height will leave a partition of clusters. For example, a

cut-off at height 100000 results in a partition of three clusters in Figure 1. Instead of

height, one can ask for a partition with certain number of clusters. However, the Tree-cut

method alone has no evaluation of distinctness of the partition it produced. This makes

choosing a height or a number of clusters without confidence. There are cases it performs

even worse than intuitive observation. Being a classical approach to get a partition, we

still acknowledge it to be a candidate of compared methods in Chapter 4. The function

“cutree” in R is the tool we used in analysis. We call this method TC, in the following.

	

	
	

11

1.2.1.2 Dynamic Tree Cut
Dynamic Tree Cut (Langfelder, Zhang et al. 2008), or DTC in the following, is a

more sophisticated recipe wherein the tree is generally partitioned into branches of

unequal heights. The approach we are using is called “Dynamic Hybrid”.	

This is a bottom-up algorithm relying on dendrogram and dissimilarity matrix. It

is called “hybrid” because it finds a partition of clusters with a combination of HC and

PAM.

Algorithm of DTC, bottom up assignment:

Step 1. Detection of clusters

This step needs user-specified minimum cluster size N0, together with the

other three parameters ℎ!"#, 𝑔!"# and 𝑑!"#. Among the n-1 clusters in given

dendrogram, a cluster is considered qualified if it satisfies all four criteria: 1).

contains at least N0 individual objects 2). joining height is at most ℎ!"# 3). gap,

defined as the difference between joining height and mean of pairwise

dissimilarity within cluster, is at least 𝑔!"# 4). mean of pairwise dissimilarity

within cluster is at most 𝑑!"#.

Step 2. Assignment of unlabeled objects to nearest clusters

Here “unlabeled objects” refer to those objects within clusters that fail to

pass criterion 2), 3) and 4). Unlabeled objects are assigned to clusters that are

qualified in Step 1, based on PAM-like method. Note that objects in clusters

which fail to meet criterion 1) will not be examined.

With PAM (1.1.1)-like procedure, Dynamic Hybrid improves detection of

outlying members of clusters. The method provides built-in mechanisms to select optimal

parameters, except user-supplied minimum cluster size. This is problematic because

various settings of this cluster size may result in different partitions, which will be shown

in the method validation session of Chapter 4. In addition, the results are sensitive to the

choice of minimal cluster size.

1.2.2 Statistically supported methods
There are two existing methods that fall into this category, sigclust and sum of the

branch lengths below. Methods have been developed, using statistical approaches to

evaluate distinctness of clusters. These methods do not only satisfy property 1) and

	

	
	

12

property 2), but also satisfy property 3), since they examine branches from top down.

However, top-down methods may not be able to detect nested statistically significant

branches, as explained in the following.

1.2.2.1 SigClust
Statistical Significance of Clustering (SigClust), or SC in the following, is a

parametric method designed to assess the significance of a binary partition of data. The

method is valid for High Dimension Low Sample Size (HDLSS) data (Liu, Hayes et al.

2008). A measure of separation between the two parts is quantified as 2-means cluster

index (CI).

𝐶𝐼! ≡
𝑋! − 𝑋!!

!
!∈!! + 𝑋! − 𝑋!!

!
!∈!!

𝑋! − 𝑋
!

!∈!

Here X is a set of observations, labeled by index j. Each observation can be

formulated as a data point from a Euclidean space of dimension p, i.e. number of

variables. k is the set of indices of observations X, which is split into two disjoint subsets

of indices k1 and k2. 𝑋!!, 𝑋!! and 𝑋 are the mean vectors (recall K-means in 1.1.1) of the

two subsets and of the entire set of observations, respectively. CI, then, is the ratio of the

sum of the two within-part variances to the variance of the entire set. The larger the CI is,

the more evident a binary partition is within X. With CI as a test statistic, a null

hypothesis is tested that X is sampled from a single multivariate normal distribution.

Under the null hypothesis, a multivariate normal distribution is simulated, with each

variable from a normal distribution of mean zero and standard deviation equaling to

singular values of X itself. To test the null hypothesis, a number of random samples, each

with same number of observations as X, are drawn from simulated normal distribution. CI

is computed for each of these random samples, and forms an empirical distribution. P-

value can be calculated from probability of obtaining test statistic CIk at least as likely as

observed in empirical distribution of CI under null hypothesis. The null hypothesis is

rejected if p-value is less than some given significant level.

SC can be used in combination with many clustering methods, by testing 2-means

assignment of one cluster at a time. In application to HC, SC is used in a top-down

fashion. It starts with examining the split at the root node, and proceeds from a parent

cluster to its children clusters, only if the two-way split at the parent cluster has been

	

	
	

13

found significant, i.e. when null hypothesis has been rejected. This top-down algorithm

would not be able to detect significant clusters whose ancestor in the hierarchy is not

significant. More importantly, SC compares clusters to samples from a single

multivariate normal distribution and therefore is inherently parametric. Further, an

underlying assumption of SC is that data items are points in a Euclidean space.

1.2.2.2 SLB
Unlike SC, Munneke et al (Munneke, Schlauch et al. 2005) proposed a measure of

statistical distinctness of clusters, without making model assumptions about data

distribution. This method is designed specifically for hierarchical structure produced by

HC. The test statistic of a two-way split is defined as sum of the branch lengths below, or

SLB in the following. Given a parent cluster with height 𝐷!, and its child cluster 1 with

height 𝐷! and child cluster 2 with height 𝐷!, SLB computes the sum of difference of

dissimilarity between child cluster and the last join.

Figure 3	 Illustration of definition on branch lengths
For each cluster, a left child cluster and a right child cluster exist. 𝐷!, 𝐷! and 𝐷! are the corresponding
dissimilarity value, i.e. height of cluster on dendrogram.

According to Figure 3, 𝑆𝐿𝐵 ≡ 𝐷! − 𝐷! + (𝐷! − 𝐷!). This statistic utilizes the distance

of parent to children clusters as its measurement of distinctness. SLB depends linearly on

height of parent cluster, and those of two children clusters. Cluster with very large SLB,

i.e. children far away, is more likely to contain distinct subgroup structures; a cluster with

very small SLB, is not likely to be separated from children, and less likely to have a

𝐷!

𝐷!	

𝐷!	

Parent Cluster

Child Cluster 1

Child Cluster 2

	

	
	

14

hidden distinct subgroup. Randomized data sets are generated without parametric

assumptions, and are used to obtain a null distribution of SLB. The null hypothesis

assumes a random permutation represents an outcome that is as likely to have been

observed as the original data. Empirical p-value can be calculated from probability of

obtaining SLB from original branch at least as likely as observed in null distribution of

SLB. Null hypothesis is rejected if SLB from original set is predominantly large, and

statistically speaking, the obtained empirical p-value is smaller than some chosen

significance level. Like SC, hypothesis testing is performed in a top-down fashion.

Hypothesis testing starts from the root node, and proceeds from a parent cluster to its

children clusters, only if the two-way split at the parent cluster has been found

significant, i.e. when null hypothesis has been rejected. This examination stops when null

hypothesis cannot be rejected.

Although SLB has a big advantage over SC because it gets rid of parametric

assumptions, it is still implemented as a top-down algorithm, and the definition of

statistic, the linear relationship with difference of node height, can be further improved.

1.2.3 Summary of existing methods
The key properties of all four published methods are summarized in Table 1.

Although SC and SLB are more advanced than TC and DTC in employing statistical tests

in determining branch distinctness, they suffer from limitations of top-down examination

and SC is inherently parametric. This summary makes it clear that there is an unmet need

for a statistically supported, non-parametric statistical method for assessing the

distinctness of all internal branches in a tree. The performance of DTC, SC and SLB is

further discussed in Chapter 4.

Table 1 Properties of four existing methods

Method Order of examining the tree Non-parametric Significance estimated

TC one-time horizontal cut - No

DTC bottom up - No

SC top down No Yes
SLB top down Yes Yes

	

	
	

15

1.3 Measures of quality of partitions
To assess the performance of identified distinct braches, a partition composed of

these candidate branches is compared to a reference, which is a pre-determined partition

of class labels, also called a “truth” partition. Measures known as external cluster

evaluation tools are used to quantify how close a computed partition is to the truth

partition. These measures include Rand Index, Purity and Entropy, F-measure and V-

measure.

1.3.1 Rand Index (RI)
Rand index, or RI (Rand	 1971), in the following, quantifies the quality of

partition by computing the proportion of correctly assigned pairs of objects. Given a

computed partition and the truth partition, there are two types of correct decisions: a). A

pair of individual objects found in one cluster also comes from same cluster in truth

partition b). A pair of individual objects found in different clusters also comes from

different clusters in truth partition. The pair of observations is denoted as 𝛾!", while i and

j are indices of corresponding observations, and there are n observations in total.	

𝑅𝐼 = 𝛾!"!
!!! / !

! , where 𝛾!" =
1 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

RI is the ratio of number of pairs which meet correct decisions. It is between 0

and 1. Large RI suggests clustering results not far from truth.

1.3.1.1 corrected-for-chance Rand Index (cRI)
When we evaluate performance of clustering, we would expect it performs at least

better than random assignment. One problem with RI is it lacks a comparison with

expected score from random partitions.

Hubert and Arabie (Hubert and Arabie 1985) proposed corrected-for-chance Rand

Index, or cRI in the following, because of the way expected index is calculated. We

generalize the problem as comparing two partitions of data, the truth partition 𝑈 =

𝑈!,… ,𝑈! with R classes and a computed partition 𝑉 = 𝑉!,… ,𝑉! with K clusters. An

R by K contingency table can be built based on the agreement with assignment of objects.

	

	
	

16

Table 2 The contingency table formed by two partitions

U/V V1 V2 ⋯ VK Sums

U1 n11
* n12 ⋯ n1K a1

U2 n21 n22 ⋯ n2K a2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

UR nR1 nR2 ⋯ nRK aR

Sums b1 b2 ⋯ bK n

*nij denotes the number of objects that are in both Ui and Vj. ai and bj denote marginal sums of nij.

According to the above contingency table, cRI is defined as:

𝑐𝑅𝐼 =
!!"
!!" − !!

!!
!!
!! / !

!
1
2

!!
!! + !!

!! − !!
!!

!!
!! / !

!

, where the numerator is the difference between the number of common pairs and the

expected index from model of random selection, under the assumption of generalized

hypergeometric distribution. Unlike RI, cRI can be negative. Positive cRI suggests a

better quality of clustering results over clustering by chance. cRI is also bounded above

by 1, and the higher the better.

1.3.2 Purity and Entropy
Two commonly used external evaluation measures are Purity and Entropy(Zhao

2001). Suppose we use the same notation of U, V, R, K and a as in Table 2, 𝑛!" is the

number of observations in cluster k that belong to class r. Purity and Entropy of partition

V are defined as:

𝑃𝑢𝑟𝑖𝑡𝑦 =
1
𝑛 max

!
(𝑛!")

!

!!!

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =
𝑎!
𝑛 (−

1
log𝑅

𝑛!"
𝑎!

log
𝑛!"
𝑎!

!

!!!
)

!

!!!

This method evaluates whether all elements in cluster k come from class r, but

does not evaluates whether all members of class r are gathered into cluster k. An extreme

example is K>>R, but each cluster is pure, i.e. with items from one single class.

	

	
	

17

1.3.3 F-measure
Another frequently used measure is F-measure(Rijsbergen 1979). It evaluates

accuracy of clustering based on Precision (P) and Recall (R). Suppose we use the same

notation of U, V, R, K, a and b as in Table 2, 𝑛!" is the number of observations in cluster

k that belong to class r. For a given class r, and a cluster k,

𝑃 𝑟, 𝑘 =
𝑛!"
𝑏!

𝑅 𝑟, 𝑘 =
𝑛!"
𝑎!

Traditional F-measure is defined as,

𝐹 𝑟, 𝑘 =
2 ∗ 𝑅 𝑟, 𝑘 ∗ 𝑃(𝑟, 𝑘)
𝑅 𝑟, 𝑘 + 𝑃(𝑟, 𝑘)

A more generalized form is a weighted form 𝐹!, where 𝛽 is a nonnegative real

value,

𝐹! 𝑟, 𝑘 =
(1+ 𝛽!) ∗ 𝑅 𝑟, 𝑘 ∗ 𝑃(𝑟, 𝑘)
𝑅 𝑟, 𝑘 + 𝛽! ∗ 𝑃(𝑟, 𝑘)

The traditional F-measure according to this weighted formula is also called F-1

score. Above statistics are used to evaluate specified cluster. The overall F-measure for

partition V is (Fung 2003),
𝑎!
𝑛 max! 𝐹 𝑟, 𝑘

!

F-measure relies on the assignment of each cluster to a class.

1.3.4 V-measure
Rosenberg (Rosenberg 2007) introduced two quality criteria for a partition:

homogeneity and completeness. To check homogeneity, examine class distribution within

each cluster, determine how close it is to a single class. To check completeness, examine

cluster assignment within each class, determine how close it is to a single cluster.

Clustering with high homogeneity, tends to have low completeness, and may be far from

truth partition.

According to Rosenberg (Rosenberg 2007), small “unmatched” clusters are not

measured at all in the calculation of F-measure. He proposed V-measure to improve this

drawback, and maintain a higher accuracy. Suppose we use the same notation of U, V, R,

	

	
	

18

K, a and b as in Table 2, 𝑛!" is the number of observations in cluster k that belong to

class r.

Homogeneity (h)

ℎ = 1− !(!|!)
!(!)

,

𝐻 𝑈 𝑉 is 0 with perfect homogeneity, members in each cluster come from a

single class.

𝐻 𝑈 𝑉 = −
𝑛!"
𝑛 log

𝑛!"
𝑛!!!

!!!

!

!!!

!

!!!

𝐻 𝑈 = −
𝑛!"!

!!!

𝑛 log
𝑛!"!

!!!

𝑛

!

!!!

Completeness (c)

𝑐 = 1− ! !|!
! !

,

𝐻 𝑉|𝑈 is 0 with perfect completeness, members of each class are gathered in

one cluster.

𝐻 𝑉 𝑈 = −
𝑛!!
𝑛 log

𝑛!"
𝑛!"!

!!!

!

!!!

!

!!!

𝐻 𝑉 = −
𝑛!"!

!!!

𝑛 log
𝑛!"!

!!!

𝑛

!

!!!

Similar to 𝐹! , V-measure also has a generalized weighted form, 𝛽 is a non-

negative real value,

𝑉! =
!!! ∗!∗!
!∗! !!

.

With 𝛽 > 1 , completeness is weighted more; with 𝛽 < 1 , homogeneity is

weighted more.

1.4 Summary of Chapter 1
In chapter 1, we provide a general introduction on

• Clustering analysis, agglomeration rule of hierarchical clustering

• Terms such as dissimilarity, linkage and dendrogram in

agglomerative hierarchical clustering

	

	
	

19

• Existing methods of finding a partition with distinct clusters, DTC,

SC and SLB

• Measures of quality of partitions, cRI and V-measure

Given this background, a nonparametric statistical method designed to assess

distinctness of all internal branches within a hierarchical tree is in high demand.

Performance of this method can be further validated, 1) with a comparison of existing

methods, 2) and estimated by measures such as cRI and V-measure, using datasets with

known truth partitions.

	

	
	

20

Chapter 2 Dataset Overview
	
	
	
	
	
	

There are five benchmark datasets used for validation in this dissertation. One is

synthetic named Simulated6 (2.1), generated to simulate a set of gene expression profiles.

The remaining four datasets, namely Leukemia, T10, Organelles and Chondrosarcoma

(2.2-2.5) share two common features: they originate in biological experiments and in

each case there is an independently known, biologically meaningful partition of

observations into types. We call this known partition “truth”, and the corresponding types

the true types, henceforth. Data origin and assignment of true types in each dataset can be

found in the corresponding sections.

This chapter also discusses how variables in each dataset are prepared from real-

world raw data. Preprocessing methods including feature selection using our original

method CORE (2.3.1-2.3.2) and normalization (2.4). We also include methods on

handling missing data in 2.6.

2.1 Synthetic dataset Simulated6
This synthetic data set is named Simulated6. It has 60 observations, and 600

variables in simulation of gene expressions (Monti, Tamayo et al. 2003). The true

partition of the data is into six subtypes (namely class 1, class 2, class 3, class 4, class 5

and class 6), with the sizes of 8, 12, 10, 15, 5, and 10. Each subtype is marked with 50

simulated unique up-regulated genes. Each of these first 300 genes has highest

differential expression and lowest variation within its own subtype. The next 300 genes

are simulated as background genes, sampled from same distribution across all

observations.

Simulated expression levels of observations within each unique class are shown in

Figure 4. Boundaries of unique up-regulated genes for each true type are marked by

dashed vertical lines. Each true type has varying expression magnitudes. One observation

belonging to class 1 (up left graph in Figure 4) shares up-regulated genes for both class 1

and class 2. Genes with indices 51 to 100 have higher expressions than the first 50 genes.

	

	
	

21

Identification of this observation and clusters detected on this data set are further

discussed in 4.1.

Figure 4	 Scatter plot of simulated gene expressions in each ground truth subtype.
Each subtype has unique 50 most up-regulated genes. Last 300 genes are treated as noisy background
genes.

Technically, distribution of each block of 50 variables over 60 observations is

simulated from a normal distribution. While values of variables “up-regulated” for certain

0 100 200 300 400 500 600

−1
00

0
0

50
0

class 1

gene index

ex
pr

es
si

on

●
●
●

●
●
●

●

●

●●●●
●
●●
●●

●
●●
●

●
●●●●
●
●

●
●●●
●

●
●

●●

●
●
●

●●●
●
●●●
●

●
●

●

●●

●
●
●
●

●

●
●
●
●

●

●
●●

●

●

●
●
●
●

●

●

●
●

●

●●

●

●
●
●
●●
●

●
●

●

●

●
●●
●●

●
●
●●

●●

●●

●
●●

●
●

●

●
●
●
●
●

●●●

●

●

●

●

●●

●

●
●●●

●

●
●

●

●●

●

●●●
●●●

●

●

●
●
●●

●

●
●●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●
●

●

●●
●

●

●

●

●

●
●●
●
●●

●

●

●
●●

●

●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●
●●
●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●●●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●●
●
●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●
●

●
●

●

●

●

●

●●

●

●●

●

●
●
●●
●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●
●

●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●
●
●●
●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●

●

●
●●●●
●

●
●●
●
●

●
●●●●
●
●
●
●●

●●
●

●●●
●●
●
●
●
●●●●●●●●

●

●
●●●

●

●

●
●
●●
●

●●

●

●
●●
●●

●
●
●
●
●

●
●●

●
●

●

●

●
●

●

●

●

●
●

●

●●●
●●●

●●●
●

●
●●

●●
●
●

●

●

●●

●

●
●●
●
●

●

●

●

●
●

●

●
●
●

●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●

●

●

●
●
●●
●
●
●

●

●

●
●
●

●

●

●

●

●●

●
●
●

●

●●
●
●

●●
●
●
●
●
●

●
●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●●
●
●●
●
●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●
●●
●●●
●
●
●
●●

●●●●●
●

●

●
●

●
●●
●
●
●●

●

●
●●●
●

●
●●

●
●
●●

●

●
●●

●
●
●

●

●
●
●

●

●●
●
●

●

●
●
●

●●
●
●
●●

●●
●

●

●

●●●
●●●

●

●●●
●

●
●

●●●●
●
●

●●
●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●

●

●
●
●

●●

●

●

●

●
●●

●
●
●●●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●●

●●

●
●●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●●●
●
●

●●

●
●
●●●
●

●

●
●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●
●
●

●

●
●●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●

●
●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●●

●

●

●

●

●●

●
●●●

●

●●●
●
●●●
●●
●●●●●
●
●●
●
●●
●●●
●
●

●
●●●●
●
●●

●

●
●●●
●●

●●
●

●

●

●
●

●

●

●

●●
●
●
●●

●
●

●

●

●

●

●

●●

●
●
●
●

●
●●●

●●
●●

●

●●
●
●

●

●●
●
●

●

●
●

●●
●

●●

●
●

●

●

●

●

●
●●

●

●

●●●
●
●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●●●

●
●

●
●●

●

●
●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●
●
●
●

●●

●
●●
●

●●

●

●●●●
●●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●●

●●
●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●●

●

●

●
●●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●
●●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●
●

●●●

●
●
●
●●

●

●●

●
●
●

●

●●●●
●●
●

●

●
●

●

●

●●
●
●●
●
●●
●

●

●

●

●●●
●●

●
●●●

●
●

●
●
●
●

●

●

●

●

●●
●●

●

●
●●

●

●

●

●●

●●●
●

●●

●

●

●●

●
●

●●

●

●

●
●
●
●

●●
●

●

●
●●
●
●
●

●
●
●

●

●●

●

●●
●
●
●

●
●

●
●

●●

●
●

●

●
●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●
●

●

●●

●
●

●

●

●
●
●

●●

●
●
●

●
●

●

●

●
●
●
●

●

●
●●

●
●

●

●

●

●

●
●

●●
●

●

●●
●

●●●
●
●

●
●

●
●

●
●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●
●

●

●

●

●
●
●

●
●●
●●●●
●●

●

●
●
●

●

●●

●

●
●
●●
●
●
●

●●●
●●●

●
●●●

●
●●
●

●
●●●

●●●

●
●

●

●

●

●
●●

●
●
●

●●

●

●

●
●●●
●
●●

●
●
●

●●

●●
●
●●
●

●●

●

●
●

●

●●
●
●●
●

●

●

●

●
●
●●●●

●

●

●

●
●●●

●

●

●

●

●
●
●●
●

●

●

●
●●
●

●●●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●
●
●

●
●

●
●●

●

●

●

●

●
●

●●

●
●

●

●●

●

●
●●

●

●●

●

●
●●
●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●●
●●●●

●

●

●

●

●●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●
●●

●●

●

●

●
●

●●

●
●
●●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●●

●●

●

●●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●

●
●
●
●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●
●●●

●
●
●●●●
●

●

●●
●
●
●
●
●●
●
●
●
●●

●

●
●●●●

●

●

●

●

●●●

●

●
●

●
●●●●●
●

●

●●
●

●

●
●●
●●
●

●
●●●●

●

●●
●●●

●

●

●
●●
●●
●

●●
●
●●●
●●
●

●

●●●

●
●
●●●●

●

●

●

●●●

●
●
●

●●●

●

●

●●

●

●

●
●●●●

●

●
●
●●
●
●

●
●

●●●
●
●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●
●
●
●

●

●

●
●
●●

●

●
●●
●
●

●

●●

●

●
●

●

●
●

●●

●

●

●

●

●●
●
●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●●

●●

●

●

●

●
●●●

●●●

●

●

●

●●
●●
●

●
●●●●

●
●●

●

●
●
●●●●

●
●
●
●
●

●

●
●

●

●●

●
●●●
●●●●

●

●

●
●●
●

●●

●

●
●

●
●●
●

●
●

●
●
●
●
●●
●
●●●

●

●

●●●
●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●●

●
●
●●
●

●

●

●●●
●
●
●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●●
●
●
●

●●

●

●
●

●

●
●

●

●

●
●

●●
●
●
●

●
●●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●
●
●
●
●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●●●

●

●●

●
●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

0 100 200 300 400 500 600

−1
00

0
0

50
0

class 2

gene index

ex
pr

es
si

on

●
●

●

●

●●●●
●●
●

●●

●
●
●

●
●

●●●●●

●
●
●
●●
●●
●●

●
●●●

●

●
●●●

●
●

●

●

●

●

●
●●

●●
●
●

●
●

●
●
●

●

●

●

●

●●●●●

●●
●
●

●

●

●●

●●●

●●

●●
●
●

●

●

●
●●●●●●

●

●
●

●

●

●

●

●

●
●

●
●●
●

●

●

●●
●
●

●

●

●
●

●●●
●

●
●
●●●

●●

●

●

●
●

●

●●

●

●

●
●●●
●

●

●●●

●

●

●●

●
●●
●

●

●

●

●

●

●
●●

●

●

●●●

●

●

●

●

●

●

●
●

●

●●

●

●
●
●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●
●
●

●

●
●●
●
●●
●

●
●
●●
●●●●●●
●
●

●

●
●
●●
●●
●●
●●
●●●
●●●

●●
●

●

●
●

●●●

●
●●

●

●●
●

●●

●
●

●

●

●

●
●●
●
●

●
●
●●

●

●

●●
●

●

●

●●
●
●
●

●●●●
●●
●
●

●

●●●

●

●

●●
●
●

●

●

●

●

●●

●
●●

●

●●

●

●

●

●
●●

●
●

●

●

●
●●

●

●

●
●●
●●
●
●
●

●

●

●

●

●●

●

●

●

●●

●

●

●
●
●

●

●

●

●●
●

●

●
●●

●

●

●●
●
●

●

●
●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●●●
●

●●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●
●

●
●

●

●

●
●

●●

●●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●
●
●
●●

●
●●

●

●

●
●
●

●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●●●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●
●

●●

●

●●

●

●

●

●

●●
●

●●●●●
●●
●●
●●●●●

●

●●

●
●

●
●

●
●●●
●
●
●●
●

●●
●

●
●●
●

●
●●●

●

●●
●
●

●

●

●

●
●

●
●
●

●●

●

●●●●
●

●

●●
●●

●●

●

●
●

●

●
●●

●
●

●

●

●●

●

●●

●●

●

●

●
●●
●
●
●●
●

●

●

●
●

●

●●
●

●

●
●

●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●
●●
●
●

●
●

●

●
●

●
●

●●
●●

●

●
●

●

●

●

●
●

●
●
●

●
●
●

●

●●

●

●

●

●

●

●●
●
●●

●

●
●
●

●

●

●●

●

●
●
●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●
●
●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●
●

●
●

●

●●

●

●
●

●

●

●●●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●
●

●

●
●

●
●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●
●

●
●●
●

●●
●●●●●

●●●
●●
●●●

●●

●

●
●
●●

●

●●
●
●
●

●
●
●●

●

●
●
●●

●
●
●

●

●
●
●

●
●●
●

●

●

●

●
●
●

●

●●●

●
●●●●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●
●

●

●
●
●

●●●
●

●

●

●●
●

●
●

●

●
●●
●●

●

●

●
●●●

●

●

●

●
●
●
●

●

●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●●
●
●

●●

●

●

●

●●

●●
●

●

●●
●
●●●
●

●●●

●

●

●●

●

●

●
●
●
●

●
●
●

●●

●●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●
●
●●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●●

●
●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●

●●
●

●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●●●
●

●

●●
●●
●●●

●●
●
●

●●●
●
●●●●

●
●●●

●●

●●
●●●
●●●●

●

●●●●
●●●
●
●
●

●●

●●●●●

●●

●●

●●

●

●
●
●

●
●

●

●●●
●

●

●●●
●

●

●

●

●

●
●
●

●

●
●

●

●
●●

●
●
●
●

●●●

●
●
●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●●

●
●●
●●●●

●
●●●

●

●

●

●
●
●●

●

●●
●

●
●

●

●

●

●
●●
●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●●●
●
●
●
●

●●
●●

●

●●●

●●

●
●
●●●●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●
●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●
●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●
●●●

●

●●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●
●

●
●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●
●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●●
●

●

●●
●
●●
●

●●●●●●●

●

●
●

●

●
●

●
●●
●
●

●

●●
●●
●

●
●
●

●
●

●

●

●
●●●●●●
●

●

●
●

●

●
●
●

●
●
●●
●
●

●
●

●
●●
●

●

●●
●●

●

●
●
●

●
●
●
●●

●
●

●
●
●●
●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●●●

●

●

●

●
●●

●

●

●

●
●●●

●

●

●

●
●
●
●
●
●●

●

●
●●
●●

●

●●●
●

●
●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●
●
●

●

●
●●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●●
●
●

●

●
●
●

●

●
●●●
●

●

●
●●●

●
●
●

●

●

●●

●

●

●
●
●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●
●
●

●

●

●
●

●

●
●
●

●●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●
●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●●
●

●

●●

●●●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●
●
●
●
●

●
●
●
●●●
●●

●

●●
●●

●

●
●

●●
●●
●

●
●●
●●

●
●●●●●
●
●●
●

●

●●
●

●

●

●

●

●
●●
●

●
●

●

●

●
●

●

●

●

●
●
●

●●
●●

●

●●

●

●
●●
●
●
●

●

●

●

●●
●
●
●
●

●
●●●

●

●●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●●●●●

●
●

●
●
●●

●

●

●

●

●

●

●
●

●

●●●●

●

●●

●
●
●

●

●

●

●●●

●

●

●●
●

●
●
●

●

●

●

●

●

●

●

●
●
●●

●
●

●
●
●

●

●

●

●●
●
●

●

●

●

●
●

●

●

●●
●
●●
●●

●

●
●

●
●

●●●

●
●

●

●

●

●

●●●

●

●
●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●
●

●

●
●

●

●
●●
●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●●

●
●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●
●

●
●
●
●
●●

●
●

●

●

●

●

●
●

●

●

●●●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●
●●

●

●

●

●

●

●

●

●●●●
●

●
●
●

●

●●●●

●●
●

●●

●
●
●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●●●●
●

●●●
●

●
●
●

●

●

●

●
●●
●●●

●
●

●●

●

●●●●
●●
●●

●

●
●●●
●●
●
●
●

●
●
●

●

●

●
●
●
●●

●
●
●
●
●●

●
●

●
●●
●●

●

●

●●

●

●●

●

●

●
●

●
●
●●

●
●

●

●●

●

●

●●

●
●●
●

●

●

●

●

●●

●●

●

●
●●●

●

●

●

●

●●●

●
●

●

●

●

●

●●

●
●

●

●

●

●●

●●

●

●

●
●●●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●●
●●
●

●

●

●
●●

●●
●●
●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●
●

●

●

●

●
●
●

●●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●●

●
●

●●

●
●

●

●●
●

●
●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●●

●

●●

●●●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●●

●●●
●●

●

●

●

●●
●

●

●●
●
●●●●●●●●
●●●
●●
●
●

●
●
●●●
●●●
●●
●●●

●

●●
●
●●●

●

●
●
●●

●
●●

●
●
●●

●

●
●
●
●●●
●

●

●

●●
●
●
●
●
●
●

●
●●●
●●
●●

●

●
●●
●

●
●●

●

●
●
●

●
●
●●

●●
●●

●

●

●●
●

●
●
●

●●

●

●

●

●
●
●
●●

●

●
●

●●

●

●

●
●●

●

●
●

●
●

●

●

●
●

●
●

●

●

●●
●

●
●

●

●●
●
●
●

●

●

●

●

●●●

●

●
●
●
●

●●

●

●●

●

●

●

●

●
●
●
●●

●
●

●

●
●

●
●

●

●
●

●●

●
●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●●

●●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●
●●
●

●
●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●
●
●●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●
●●
●

●●●

●
●
●

●●
●●
●

●

●●●●●

●

●
●
●
●●●
●

●
●●●

●●
●
●
●●

●●●
●

●
●●●
●

●
●●
●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●●
●

●

●
●
●
●

●●

●

●
●
●
●

●

●
●

●●

●
●

●
●

●

●
●
●

●
●

●

●
●
●

●

●

●

●

●●●
●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●●
●
●●●
●
●

●

●●
●
●

●

●●
●
●

●

●

●

●●
●●
●

●

●●

●

●
●

●

●●

●●

●

●●
●
●
●●

●

●●
●●

●
●

●

●

●

●
●
●

●
●

●●●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●●
●
●
●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●
●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●
●●●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●
●●
●

●

●

●
●

●

●

●

●
●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●●●

●

●●

●●●

●●●
●●
●
●

●
●
●
●●
●

●●
●
●
●
●●
●

●

●
●

●●

●
●●

●●●●

●
●●
●
●●

●
●

●
●

●

●●

●

●●
●
●●●●
●
●

●

●

●●
●●●
●

●
●

●
●
●●●
●

●
●
●

●

●●
●
●
●
●

●
●

●

●

●
●
●

●
●

●

●

●

●●

●●●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●●

●
●
●
●
●●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●●

●
●

●

●

●
●
●

●

●●
●
●
●

●

●
●
●

●

●●

●

●
●
●

●
●

●

●●●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●
●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●
●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●

●●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●
●

●

●

●
●

●

●●
●
●

●

●●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●●

●
●
●

●
●
●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●
●

●

●
●

●●
●●
●●●

●

●●
●

●

●
●
●
●
●●
●
●●●●

●

●
●
●●
●
●

●
●
●
●●
●●
●
●●

●
●●
●
●

●

●

●●
●
●

●●
●

●●●

●

●
●●

●
●

●

●

●
●●
●

●

●

●
●●

●

●

●

●●

●

●

●●
●

●

●

●
●●
●

●

●●●●

●

●

●

●

●●●

●
●

●

●
●

●
●
●

●

●
●
●●
●
●●

●●

●

●●

●●

●

●●

●●

●
●●

●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●
●

●●
●●
●

●

●

●●

●●●

●

●●●
●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●
●●

●
●
●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●●

●●●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●

●
●

●
●
●

●

●

●
●
●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●●

●

●

●

●

●

●●

●

●●
●●

●

●
●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●
●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

0 100 200 300 400 500 600

−1
00

0
0

50
0

class 3

gene index

ex
pr

es
si

on

●●
●
●

●●
●

●●●

●
●●
●●
●
●

●

●
●●●●●

●

●●

●
●

●
●●●●●●
●●

●
●●
●

●

●
●
●
●●●
●

●

●

●
●●
●

●

●●
●●●
●

●

●

●
●●

●

●
●
●
●●

●

●

●
●
●
●

●

●
●
●

●
●●

●●

●●

●
●●

●

●●
●

●

●

●
●

●
●

●

●●
●

●

●●
●
●●
●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●●●

●

●●

●●
●
●

●

●
●

●●
●●

●●
●

●

●

●

●

●

●

●●

●●●
●

●
●

●

●

●

●
●

●

●
●●
●●●
●
●

●

●
●

●

●●●

●
●

●
●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●
●
●
●

●●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●●
●
●

●●
●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●●

●
●

●

●

●●

●

●
●
●

●

●
●

●●
●

●●●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●●

●●
●

●●

●
●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●
●●
●●
●
●

●
●

●●

●
●●
●
●
●
●●●●

●

●

●
●
●

●

●

●
●
●●●
●●
●●●
●
●●●
●
●
●

●
●

●●●

●

●
●
●
●
●

●

●●

●

●
●
●
●

●

●

●
●
●●
●

●●
●
●

●
●

●

●

●●●●
●

●

●

●

●●

●
●
●
●●
●●
●

●●
●

●●
●

●

●

●

●

●●

●●
●

●

●●
●●
●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●●

●●●

●
●

●

●●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●●

●

●

●●●
●

●●
●

●●
●

●
●

●●
●●

●
●

●
●
●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●

●●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●●

●●
●

●

●

●●

●

●●
●

●●

●
●

●

●●

●●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●●
●

●

●

●●

●

●

●

●

●
●●

●
●

●
●
●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●●
●
●

●

●
●●●
●
●
●
●●●

●

●

●

●●
●●
●

●
●
●
●
●
●
●
●
●●●●●●●
●

●

●

●
●●
●

●●
●
●

●

●

●

●

●

●

●●

●
●
●

●●
●
●

●●
●●

●

●●●
●
●

●

●
●
●●
●●
●●

●

●●
●

●

●

●
●
●

●

●
●
●●●

●

●
●

●

●

●●

●
●●●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●
●
●

●

●●

●

●
●

●●

●

●
●●
●

●

●

●●
●●
●

●
●
●

●

●

●●
●

●

●●●

●

●
●

●

●
●

●

●

●

●●●
●
●

●

●●●●

●

●
●

●

●●●
●
●

●
●●

●

●
●

●
●
●

●

●

●●
●●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●
●

●

●

●

●●

●

●

●
●
●

●

●●●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●●

●

●

●

●●
●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●●
●
●●●
●
●

●●
●
●●
●●●●
●
●
●●●
●

●
●
●●
●●

●●

●

●

●

●
●●
●
●●

●

●
●●●
●
●

●

●
●

●

●
●
●

●

●

●

●
●●●

●

●
●●
●●

●
●

●
●●●●
●

●
●●

●
●

●

●

●

●

●
●
●

●●

●
●

●
●●
●
●

●●

●

●●
●●

●

●
●

●

●

●

●

●

●●●

●

●
●

●
●

●

●
●

●●

●
●●

●
●●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●●●●
●

●●

●●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●
●

●●

●

●●

●

●
●

●

●

●

●●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●●

●

●

●

●

●
●

●●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●
●

●●

●●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●●●
●●

●●
●

●

●●●
●

●

●
●
●
●●●
●●●
●

●●
●●
●●
●

●

●

●

●

●
●

●

●●

●
●
●

●
●
●●●

●
●●

●

●

●
●

●
●

●●●●●●

●

●

●

●
●

●●
●
●●●●●●
●
●

●

●

●
●
●●●
●●●

●

●

●

●
●●
●

●

●
●

●

●
●

●●

●
●

●

●

●
●

●

●
●
●●●
●●
●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●●
●

●
●
●●

●

●

●●

●●

●

●

●

●
●

●

●
●
●

●

●

●
●
●

●

●
●

●

●●
●●

●
●
●

●

●
●

●

●

●●
●
●

●

●
●●

●
●●●●

●

●

●●
●
●
●

●
●

●

●

●

●●

●●
●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●●
●

●

●

●

●●
●●

●

●
●●

●

●

●
●

●●
●

●

●
●
●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●●●●

●

●
●

●
●
●
●
●●
●
●
●●

●

●●

●●

●
●●

●

●
●●
●
●●●

●
●●
●
●
●
●●
●
●●

●

●●
●

●

●

●●

●

●
●
●

●
●

●●

●●●●

●

●
●
●
●

●

●
●
●●
●
●
●
●
●

●

●

●
●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●●
●
●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●
●●

●

●

●●●
●

●

●

●
●

●
●
●
●

●

●

●

●

●●●●

●
●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●●●
●

●
●●●

●

●●

●

●●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●●
●

●
●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●●●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

●

●
●
●●
●●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●
●
●
●
●

●

●

●

●

●●

●
●

●

●

●
●

●●

●●
●

●
●

●

●
●

●

●

●

●●

●
●
●

●

●●●●●
●●
●

●
●●

●
●

●
●
●
●●
●
●●
●●●●●
●●●
●
●●
●

●
●●
●
●
●●
●●

●●●

●
●
●

●●

●
●

●

●
●
●●
●●●●

●

●

●

●
●
●
●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●●●
●

●

●●

●

●
●●●

●

●

●
●

●

●●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●
●●
●

●

●
●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●●

●

●
●

●

●
●
●●●
●

●

●

●
●●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●
●
●

●

●●

●●

●

●●

●

●●
●●●●
●●●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●●●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●
●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●●
●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●●
●

●●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●
●●●●●
●
●
●●●●

●
●

●

●
●●
●●

●●

●
●

●

●●●●

●
●●

●
●
●
●

●●

●●

●
●●●●●
●
●

●
●

●
●

●

●
●
●
●

●

●

●
●
●

●

●●

●

●
●

●

●
●●

●

●

●
●

●●
●

●
●
●●
●

●
●

●●
●
●
●
●●

●

●●●

●
●

●
●

●

●●
●
●

●●●

●●

●

●

●

●
●
●

●

●
●

●
●
●
●
●

●

●

●
●
●●

●

●●

●

●
●●
●

●

●
●
●

●

●

●
●●

●

●●

●

●

●

●
●
●

●●

●●
●

●

●

●
●●●●
●
●

●
●
●
●
●●●●
●

●

●

●

●

●
●
●●
●
●
●

●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●
●
●

●
●

●
●

●

●

●●●●

●●
●

●
●

●

●

●

●●

●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●●
●

●●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●
●

●

●
●
●

●

●

●
●
●
●

●●
●
●●

●

●

●

●
●

●

●

●

●●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●●
●

●●
●

●
●
●

●●
●
●
●

●●●
●

●
●
●●●●●●
●●●
●
●

●●
●●●●●

●
●

●
●

●
●
●●
●
●
●●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●
●●

●●
●

●●

●

●●
●

●

●

●
●●●

●
●

●

●
●
●

●●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●
●●
●

●●

●

●

●
●
●

●
●
●
●

●●
●
●

●

●

●

●

●

●

●

●
●

●●

●●●
●

●

●
●

●

●

●
●

●

●●●
●
●

●
●

●
●

●

●
●
●●

●
●●

●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●
●

●

●

●
●
●
●
●

●

●●

●

●
●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●

●
●●

●
●

●

●

●

●
●
●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●
●
●
●

●

●

●
●

●

●●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●
●●

●

●

●

●
●

●

●
●
●

●●
●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●●●
●●●
●

●
●
●

●

●
●●
●
●
●
●●
●●●
●
●
●●
●

●●●●●●
●●
●
●
●

●●●
●
●●●
●●●
●

●

●
●●●

●

●
●
●

●●

●

●
●

●

●●●●
●

●●

●

●●
●

●

●●●●

●
●●

●

●
●
●
●

●

●

●
●

●●
●
●
●

●

●

●
●

●

●

●●

●

●

●

●
●
●●
●●●●

●

●

●●●
●

●

●●
●

●

●

●

●

●

●●

●

●●

●
●
●
●●
●

●

●

●

●
●●

●●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●●
●●
●●

●

●

●

●

●

●

●

●

●
●

●●●●

●
●

●

●

●
●

●
●●●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●
●
●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●

●

●

●
●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●●

0 100 200 300 400 500 600

−1
00

0
0

50
0

class 4

gene index

ex
pr

es
si

on

●●
●●
●
●●●
●

●

●
●
●●●●
●
●
●●
●
●●●
●
●
●
●
●
●
●

●

●

●

●●●

●

●
●
●
●●●
●

●●
●

●

●

●

●

●

●●
●
●
●

●●●

●
●●●●
●
●

●

●

●●●
●
●

●●
●
●

●

●●

●

●●
●

●

●●
●●●●
●
●
●●●●

●

●

●

●
●●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●
●
●●

●

●

●
●

●

●●

●

●
●●

●●

●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●
●

●●●●
●

●

●

●

●

●

●
●
●●

●●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●

●

●●

●

●

●

●
●

●

●●

●
●

●●

●

●

●●

●

●●
●
●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●
●

●
●●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●●
●

●
●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●●

●●

●

●
●

●●

●

●
●
●

●

●

●

●
●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●●
●●

●

●●
●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●●●●

●

●

●
●
●

●

●
●
●
●
●
●
●

●
●

●

●●

●

●
●●
●
●
●

●

●

●●
●●●●
●●
●●

●

●●●

●●
●
●
●●

●

●
●

●●
●●

●
●

●

●
●

●

●

●●
●
●
●
●
●
●

●

●
●
●●
●

●●

●●●
●●●

●

●

●

●
●●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●●
●●●●

●●

●

●
●
●●
●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●
●●

●●

●
●

●

●

●

●

●●

●
●

●●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●
●
●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●
●
●
●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●
●●
●
●
●●
●●
●
●
●

●
●●
●
●●●
●
●

●●
●●
●

●
●
●●●●●●
●

●

●

●

●
●
●
●
●

●
●
●●
●

●
●
●
●
●

●
●
●
●
●
●

●●
●●

●

●

●
●●●

●

●

●

●●●

●
●

●

●

●
●●
●●●

●●
●●

●

●
●
●
●

●●
●
●
●
●

●●●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●
●
●

●
●
●

●

●
●

●
●●

●

●●●

●

●

●

●

●

●

●
●●●

●

●
●
●

●

●

●

●

●

●●

●

●●

●
●
●
●

●●●●●

●
●

●

●

●●●

●

●

●
●
●●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●●
●

●

●●
●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●
●●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●
●●

●●
●●
●
●●
●●

●
●
●
●
●●
●
●●
●●●
●

●
●
●
●●●
●
●
●
●●●

●●
●
●●●●
●

●●
●

●●

●
●
●●

●

●

●
●●

●
●

●●
●

●
●●●
●
●
●
●●
●●

●

●●

●
●
●●●
●
●

●

●●
●

●

●

●

●●●
●

●

●
●●●●
●

●

●

●

●●

●●
●
●●

●

●
●
●

●

●
●
●

●
●●

●

●
●
●

●

●●

●

●

●

●

●
●●

●

●

●

●
●
●

●
●

●
●

●

●

●●

●

●

●

●●●

●

●
●

●
●

●●
●
●●
●●
●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●
●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●
●●
●

●●●

●

●●

●●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●●

●

●
●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●
●

●
●
●

●

●●
●
●●●

●

●●●
●●●●
●

●●

●
●
●

●

●●

●
●

●

●

●
●●●●●

●●
●
●
●

●

●

●

●●
●

●
●●
●
●●

●
●

●●●

●●
●
●●●

●

●

●
●

●

●●

●●●

●

●

●

●
●●

●

●

●●●

●

●●
●
●●
●
●
●●
●

●●

●

●
●
●

●
●

●

●

●

●
●

●

●
●●
●

●

●
●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●
●
●
●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●
●

●

●
●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●
●

●
●
●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●
●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●●

●

●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●
●●

●
●●

●●●
●

●
●
●
●

●●

●

●
●
●
●
●
●

●
●
●

●

●●●●
●●
●

●

●

●

●
●
●
●●
●●●
●
●●

●

●
●●
●

●

●

●●
●●

●

●
●

●●
●●
●
●
●●

●

●

●●

●

●

●

●

●
●
●●

●
●
●

●●
●
●
●
●

●

●

●●
●
●

●

●
●

●

●

●

●
●●●
●
●

●●

●

●●
●
●
●
●
●

●

●

●
●

●
●
●

●●

●
●

●

●

●

●

●

●

●

●●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●●

●
●

●●

●

●

●

●
●
●

●

●

●

●

●●
●

●●

●
●
●

●
●

●

●

●

●●
●
●●

●
●
●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●●

●

●

●
●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●
●

●

●●

●

●

●
●
●
●

●

●

●

●●

●

●

●●

●

●

●●

●

●
●
●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●
●
●

●

●

●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●●●●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●
●
●●●
●
●
●
●
●●●●●●
●●●

●
●
●●
●●
●

●
●
●●●
●
●
●

●●●

●
●●
●●

●●
●
●

●

●

●

●

●

●

●

●●

●●●
●

●●●●

●
●
●

●●
●

●
●
●●●

●

●●
●

●●
●
●

●
●●●
●
●●●
●●

●
●

●
●
●
●
●●●
●

●

●

●
●

●

●●●

●
●●

●

●
●

●

●
●
●
●

●
●

●

●

●

●

●

●●●
●●

●
●

●

●

●
●●

●

●

●
●
●
●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●
●
●
●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●
●
●

●
●

●

●●
●

●

●

●
●
●

●●

●

●
●

●

●
●

●
●●
●

●

●
●
●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●●
●●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●

●

●

●
●
●
●

●
●
●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●●
●●●●●●
●
●●●●●

●●

●
●

●

●

●

●
●

●

●●
●

●●●
●

●●●
●
●●
●

●●●

●

●
●
●
●●●
●

●

●

●●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●
●●
●

●

●●

●

●●
●●
●

●
●
●
●●

●

●
●●

●

●●

●

●

●
●●
●

●

●●●

●
●
●

●

●

●

●
●●●

●
●●
●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●●●
●

●●
●●

●

●
●●
●
●

●

●
●
●

●

●

●
●
●

●

●
●

●●●

●

●

●●

●

●
●

●

●

●

●

●
●
●
●

●
●
●●

●

●
●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●●

●

●

●

●●
●
●

●
●

●

●●●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●●

●●
●

●

●
●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●●

●

●
●●
●

●

●
●●●
●
●●●
●
●●●●
●●
●
●
●●

●

●●
●●
●
●
●
●●
●●●
●
●
●

●

●●
●
●●

●
●

●●●
●
●
●
●

●

●
●

●

●
●

●●●

●

●

●

●
●●●●

●

●
●●
●
●

●
●●
●

●

●●

●

●●●

●

●

●

●

●●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●●●
●
●

●

●

●●

●

●

●●

●

●

●

●

●
●
●

●

●●

●●

●●

●
●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●●●
●
●●●

●

●

●

●●
●

●
●

●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●●●

●

●
●

●

●
●

●

●
●
●
●

●

●
●

●
●

●●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●
●

●

●
●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●
●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●●

●

●
●●
●
●

●

●

●
●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●●

●
●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●●
●
●
●●
●
●
●●

●
●●

●

●

●

●●●●
●
●●●●●

●

●
●●●●●
●●●
●
●

●

●●
●

●
●

●●

●

●

●●

●

●
●

●
●●
●

●
●

●

●
●

●

●

●

●
●

●

●

●
●
●

●●●
●

●●●

●

●

●●

●

●
●

●

●
●
●

●

●
●

●

●●●

●●

●●
●

●

●

●

●

●
●●
●
●●●
●●●●●
●
●

●●

●
●●

●
●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●
●
●

●

●●
●●●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●●●

●
●
●

●●
●
●

●

●
●
●

●●
●
●
●
●

●

●

●
●●
●

●●●

●
●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●
●●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●
●

●

●

●●

●

●
●●

●

●
●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●
●
●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●

●

●

●

●

●
●
●

●

●

●

●
●
●

●
●

●

●
●

●

●●●
●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●
●●

●

●●
●
●
●
●

●
●●●
●

●
●
●
●●●
●

●

●
●
●●●

●
●
●
●
●
●●●

●

●

●

●
●●
●

●

●

●●
●

●
●

●●
●
●●●

●

●
●

●
●

●
●

●

●

●●

●
●
●
●●

●

●

●

●
●
●
●
●

●

●●

●

●
●●

●

●
●
●
●

●
●
●

●

●

●

●●
●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●
●

●●

●●

●

●●
●

●●●
●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●
●
●●

●

●

●

●
●
●
●

●

●
●
●

●

●
●

●
●●

●

●

●

●

●
●
●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●●●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

●●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●

●●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●●

●
●

●

●

●●

●

●●

●
●

●

●

●

●

●
●●

●●

●

●

●

●
●

●

●●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●●●
●

●

●

●
●

●

●

●

●
●

●

●
●

●
●
●

●

●●
●
●●
●●●●

●
●
●
●
●●
●
●

●

●
●
●●
●
●
●●●

●

●

●

●●●
●
●
●●
●●
●

●

●●

●

●
●●

●

●
●

●

●●

●
●
●
●
●
●
●
●
●

●

●
●

●

●

●

●

●
●●

●
●
●●

●●
●

●●

●

●

●●

●

●

●●

●

●●●

●

●
●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●
●
●●
●

●

●

●
●

●
●●

●
●
●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●
●●

●
●

●

●

●
●
●

●
●

●

●

●

●
●●

●

●●

●

●
●●●
●

●

●
●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●●

●

●

●
●
●
●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●

●●

●●

●
●
●

●

●

●

●

●

●●

●●

●
●
●

●

●
●
●●

●

●

●

●
●
●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●
●

●

●

●●

●
●
●

●

●●

●
●
●●

●

●

●

●

●

●●

●●
●
●

●
●●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●●
●
●
●●

●●
●
●
●●●
●

●
●

●●
●●●
●
●

●

●
●

●●
●●●●
●●●●
●
●

●
●
●
●

●●●●
●
●●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●●●

●

●●
●●
●
●●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●
●

●

●●
●

●

●

●●

●
●

●●
●

●●●●

●

●

●●●
●

●

●

●

●
●

●

●
●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●●●

●●

●
●

●

●

●

●●●

●

●

●

●

●●
●●●

●
●

●

●

●

●

●

●

●

●

●
●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●●

●●

●●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●
●

●

●

●●

●
●

●

●

●●●

●

●

●
●

●
●

●

●

●

●●

●

●

●●

●●

●

●

●
●

●●

●
●●
●

●●
●

●●●●
●

●
●
●
●●
●●
●
●
●

●
●
●●
●●●●
●
●●
●●●●●●●●●

●●●

●●

●

●
●●
●

●
●●●
●
●

●●

●●●

●●
●
●
●●

●
●

●

●
●●

●

●●
●
●

●●
●

●●
●
●●●●

●

●

●

●●●
●
●
●
●
●●
●●
●

●

●
●

●●

●●

●
●●●

●

●

●

●

●●

●

●

●
●●
●●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●
●

●●●

●
●
●

●●●

●

●●
●
●

●●

●●

●

●
●

●●

●

●
●
●
●●
●
●

●

●●●●

●●
●●●●
●●

●

●

●

●
●●

●

●

●

●

●●

●

●
●
●
●

●

●

●

●
●

●

●
●

●
●
●●

●

●
●

●
●

●

●●●

●

●

●

●

●●
●

●●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●
●
●
●●●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●●

●
●
●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●●●●
●
●●●●●
●

●
●
●●●
●●●●●

●●
●●●●●
●●●
●●

●●

●

●●●●●
●
●
●●●●●
●●
●

●
●
●

●●
●●
●

●●

●●●
●

●

●
●●
●

●
●

●●

●

●

●
●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●
●●●

●

●

●

●
●
●

●

●
●●
●
●

●
●

●

●●

●●
●

●
●●

●

●

●
●

●
●

●
●
●●

●

●
●
●

●●

●

●

●
●

●

●●
●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

●
●●

●
●
●

●●●
●
●

●
●

●

●●
●●

●

●
●●
●

●●
●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●
●●

●

●

●

●

●
●
●
●●

●

●

●
●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●
●
●

●

●

●

●●●

●

●

●

●●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●●
●
●

●●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●●

●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400 500 600

−1
00

0
0

50
0

class 5

gene index

ex
pr

es
si

on

●
●
●
●
●

●

●

●

●
●●

●

●
●
●

●

●
●
●
●
●
●

●

●●
●
●
●
●●●●

●●

●
●
●●
●
●●
●
●
●
●
●
●●
●
●●●●
●

●●

●
●

●
●
●

●
●●●
●
●
●
●
●

●
●●
●
●●
●●
●

●

●

●

●

●
●

●
●●

●●

●

●

●

●

●
●●

●●

●
●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●●

●●●

●

●●●

●●

●
●

●●

●●●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●●●
●

●●

●
●
●

●
●●
●

●●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●●

●

●●●
●
●●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●
●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●●

●●●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●●

●●●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●

●
●●●
●
●

●

●

●
●●●
●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●
●●
●
●
●
●
●●
●●
●

●
●●

●●●●●●●
●
●●

●●
●●●●
●
●
●●
●●●●
●

●

●

●
●

●

●
●

●●●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●●●●●
●●
●

●

●

●
●●●
●

●

●

●

●

●

●●

●

●

●

●●●

●

●
●●

●

●

●
●
●

●●●
●●
●
●●
●

●

●●

●
●

●

●●

●

●

●
●

●

●
●●
●

●●
●●
●

●
●●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●
●
●

●
●
●

●●

●●

●
●

●

●

●
●
●

●

●
●●●

●●
●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●●
●

●●●

●
●●

●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●●

●

●

●
●

●●

●
●

●

●●

●

●

●

●

●●

●●

●

●●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●
●●

●●

●●
●
●●●●

●
●
●

●

●

●●●
●
●●●●
●●●
●
●●●●

●●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●
●●●
●
●

●

●

●●●●●
●
●

●

●●
●

●●
●

●

●

●

●
●

●

●

●
●
●●
●

●
●

●

●
●
●

●

●●
●●
●

●

●
●

●

●
●

●
●
●●
●●
●
●

●●

●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●●

●

●
●

●
●
●

●

●
●
●●

●●●
●
●

●

●
●●

●

●
●●

●
●

●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●
●

●
●

●
●●

●
●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●
●●

●

●
●
●

●

●

●

●●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●
●●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●●●

●
●
●●●●
●
●
●

●
●
●
●

●
●
●
●●
●

●

●●●
●
●
●●
●
●
●
●●●

●

●●●
●●
●
●
●

●

●

●

●

●

●

●

●●

●
●●●●

●

●

●

●●

●●

●

●

●

●
●
●●
●

●

●
●
●
●
●

●●

●
●

●
●

●

●●

●

●●
●●●
●
●
●
●●
●●●●
●

●

●

●
●

●

●●

●

●
●●●
●

●

●

●

●●●●

●

●●
●
●●
●

●
●

●●

●
●

●
●
●
●
●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●
●

●

●
●
●

●●
●

●

●
●

●●●

●●

●

●

●●

●

●

●

●

●●●●

●

●
●

●
●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●●●●

●

●

●
●

●
●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●
●

●●●●●

●●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●
●
●

●

●●●●●
●●●●
●

●
●●
●

●●
●●●●
●●
●●
●

●●●
●

●

●●

●

●●
●

●●●●
●
●
●●
●
●●
●
●
●

●

●●
●●

●

●
●

●
●●
●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●●
●

●●●●●
●

●

●●
●

●

●

●

●
●●
●
●

●

●●

●

●
●
●

●
●

●

●●
●

●

●●

●

●
●
●

●●

●

●

●

●

●●
●

●

●●
●

●

●
●

●
●
●

●
●

●

●●
●
●

●

●●
●

●

●

●

●
●

●

●

●

●
●
●
●
●
●

●

●
●
●
●

●
●
●

●
●●●

●
●

●

●
●
●
●●

●

●●
●
●●

●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

●

●
●
●
●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●●

●
●
●
●
●●

●

●

●

●●●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●●

●

●

●

●
●
●

●●

●

●
●

●●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

0 100 200 300 400 500 600

−1
00

0
0

50
0

class 6

gene index

ex
pr

es
si

on

●
●●

●

●
●●●●
●●

●
●

●

●
●
●●●
●

●
●●
●●
●●
●
●

●

●●
●
●

●

●

●●●●
●

●
●●●
●
●●

●
●●
●●●

●

●●●
●
●
●
●

●

●

●
●

●

●●
●●
●

●
●●
●

●

●
●
●
●

●

●
●●

●

●
●

●

●
●

●
●
●

●

●

●●

●
●●
●

●

●
●●

●

●
●

●

●
●
●

●●●

●

●

●

●

●●

●

●

●
●●

●
●●
●●
●

●

●

●
●●●

●

●

●●

●

●
●

●●●
●

●

●●
●●
●

●

●

●
●●

●

●

●

●●●

●

●
●

●
●

●●
●●
●
●●

●

●

●

●

●
●

●●
●
●
●
●
●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●●

●

●

●●

●●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●●

●●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●
●
●

●

●●

●

●
●

●

●

●

●

●

●●●
●
●

●

●

●

●
●

●
●
●

●

●

●

●
●
●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●●
●
●●●
●

●●
●●

●●●

●
●
●●

●

●
●●

●
●

●●
●●

●

●
●

●
●●
●●●
●●

●
●●●
●●

●

●

●
●
●●●●

●●

●

●●●
●●

●
●
●
●●
●●
●

●
●
●

●

●●●
●
●
●
●

●

●
●
●
●

●
●●
●
●
●
●●

●●●

●

●

●

●
●
●
●

●

●●

●

●

●

●
●●●

●

●●●
●
●
●

●

●●●

●

●
●

●

●
●

●●●

●

●
●

●

●
●
●

●

●●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●●
●●

●
●
●
●

●
●

●●

●

●

●

●

●

●
●
●

●

●

●
●●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●
●

●●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●●

●●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●●●

●

●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●●
●
●
●

●
●●
●

●
●
●●
●

●
●

●●●
●●●
●
●
●
●

●
●
●●

●●
●●
●●●

●●
●

●

●
●
●●●●●

●●
●●

●

●
●

●
●
●

●

●●●

●

●
●
●
●

●

●

●

●●

●

●
●

●
●
●

●
●
●
●
●●
●

●

●●
●●●
●

●

●●●

●●

●
●

●
●
●

●

●
●
●
●
●

●
●

●
●

●

●
●●

●●

●

●●

●

●

●
●

●

●
●
●

●

●●
●●

●

●
●
●

●

●

●

●

●
●
●
●

●
●
●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●
●
●

●

●
●●

●
●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●●

●

●●
●
●

●
●

●●
●

●
●
●

●●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●

●
●

●●

●●
●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●
●
●

●
●
●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●●

●

●

●

●

●●●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●
●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●●

●●
●●
●
●
●

●

●

●
●●
●
●
●●●
●

●●
●

●●●
●
●●
●

●

●
●
●

●
●
●●
●
●

●
●
●●●●
●
●

●●

●
●
●●

●
●
●

●
●

●

●
●
●

●
●

●
●
●
●●

●
●
●

●

●●

●

●

●

●

●●

●

●
●

●●

●
●
●●
●
●●

●●
●
●

●
●

●●

●
●●●
●
●
●

●

●
●●
●

●

●●●●●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●●●

●

●
●

●

●

●●

●
●
●●
●

●
●●

●●

●

●
●

●
●

●

●

●●
●

●

●

●
●

●●●
●

●
●

●

●

●
●

●
●●

●
●

●●
●

●

●

●

●

●
●

●
●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●●
●
●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●●●

●

●
●●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●
●
●●
●
●
●
●●

●

●

●

●

●
●
●

●●

●
●
●
●
●
●

●

●●

●

●
●●●●●●
●

●●

●●●

●
●
●●●●

●●

●

●

●
●
●
●●
●
●

●

●

●

●●
●

●
●

●
●●●
●

●

●

●

●
●

●
●
●

●

●
●
●

●
●
●●

●

●

●

●
●

●

●●●

●

●●●

●●

●

●

●
●●●
●

●●

●

●

●
●

●
●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●●

●●

●●
●

●

●●
●
●
●

●

●●
●

●

●

●●

●
●

●

●

●
●●
●
●

●

●

●

●

●

●
●●

●●
●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●
●

●

●

●
●

●

●
●

●

●●

●

●●
●

●

●

●●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●
●

●

●●
●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●
●

●●●
●

●

●●
●●
●●
●
●
●

●
●

●
●●
●●
●●

●

●

●
●
●
●●
●
●

●●●●●
●
●●●

●

●●
●●
●
●●
●

●
●●●●

●
●

●
●
●
●

●

●
●

●●
●
●

●

●
●●
●

●

●

●
●
●

●●

●

●●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●●
●
●
●

●

●
●

●
●●

●

●●●
●

●●
●●

●

●●●
●

●

●

●

●●

●●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

●●
●
●

●

●●

●

●●
●●

●

●

●
●

●●●

●●

●●
●●

●
●

●●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●●●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●●
●
●

●

●

●

●
●
●
●●●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●
●

●
●
●●
●
●
●
●●

●●●●●

●●
●
●
●●
●

●
●
●
●●●
●
●
●
●
●

●
●
●●

●●
●

●

●
●
●

●

●
●
●●●

●
●
●
●
●

●
●
●
●
●

●

●

●
●

●

●
●

●

●

●

●

●
●●●●

●
●
●

●
●

●●
●●
●

●
●
●
●
●●●
●

●

●
●
●
●
●

●●
●●

●●

●●

●

●
●
●
●
●
●
●●

●
●

●

●

●

●

●
●
●

●

●
●
●

●●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●●
●

●

●

●

●
●

●●

●

●

●
●●

●●

●
●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●●
●

●

●

●

●
●
●

●

●

●
●
●●

●

●

●●
●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●
●
●
●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●●●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●
●
●●
●
●
●
●

●

●
●
●

●●

●

●
●●●

●

●
●

●
●
●●
●
●

●

●●
●
●●

●

●
●
●

●●●●●●

●

●●

●●
●

●
●
●
●●
●

●

●●

●
●
●
●
●

●
●

●

●●
●
●

●●
●●

●
●●●

●

●
●
●

●

●
●

●

●●

●

●
●●
●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●●●
●

●

●
●
●

●

●●

●

●

●

●

●

●
●
●

●
●

●●
●
●

●●

●

●●

●
●
●
●

●
●
●

●
●●

●
●

●●

●

●

●●

●●
●

●

●

●

●

●●

●

●

●●
●

●●●

●

●

●
●
●

●

●
●
●●

●

●
●
●

●
●
●

●
●
●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●
●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●●●

●●

●

●●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●●●

●

●

●●●
●●●

●

●
●
●

●

●
●●

●
●●
●

●
●
●
●●
●
●●●●
●
●
●●

●●

●●
●

●●●●
●
●

●●
●

●

●
●

●

●
●

●

●●●

●

●

●
●●
●

●●

●●

●
●
●
●

●

●●
●●●

●

●

●

●●

●●
●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●
●
●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●●

●●
●

●

●

●●

●

●

●

●●
●

●

●
●
●

●

●●●●

●●

●

●

●

●●

●

●
●
●

●

●

●

●

●●

●

●

●

●
●

●

●●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●
●
●
●●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●
●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●
●●
●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●
●

●

●

●●●

●

●

●
●●

●

●

●

●●

●

●
●●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●●
●●
●●

●●●

●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●
●●●●
●
●
●
●●●
●●
●●●●
●
●
●
●
●●

●
●
●
●

●●●●

●●
●

●
●

●

●

●
●●

●

●

●
●

●

●
●
●

●

●
●●
●
●●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●●
●

●●
●

●

●
●●
●

●
●
●

●
●●●
●●
●
●

●
●
●
●
●
●●●
●

●

●

●

●●
●●●

●

●

●

●

●
●
●

●
●●

●
●
●

●

●

●

●

●●

●●

●●●

●●
●

●

●

●

●

●

●

●
●

●

●
●
●

●
●
●

●

●
●

●

●

●

●

●●

●

●

●
●
●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●
●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●
●●
●

●

●

●
●

●

●●

●

●
●
●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●
●

●
●

●

●

●
●

●●

●

●
●
●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

	

	
	

22

class are represented by a significant positive shift. The last added 300 variables are

coming from a normal distribution, consistent for all 60 observations. Properties of

simulated gene expressions can be found in Table S1 of Appendix.

2.2 Leukemia dataset
This data set has been used to plot Figure 1 and Figure 2 in Chapter 1. It comes

from a well-known cancer class discovery and prediction paper published by Golub

(Golub, Slonim et al. 1999). There were 38 bone marrow samples obtained from acute

leukemia patients at the time of diagnosis. The truth is a partition of patient cases into

those of acute myeloid leukemia (AML, 11 cases) and of acute lymphoblastic leukemia

(ALL), and a further partition of the ALL subset into the B-cell lineage (ALL_B, 19

cases) and the T-cell lineage (ALL_T, 8 cases) types. These are most important known

distinctions in acute leukemia, in terms of both biology and clinical treatment. Microarray

data was produced by Affymetrix, which contained probes of 6817 genes. The Leukemia

dataset we are using is published by Monti (Monti, Tamayo et al. 2003). The 999 most

up-regulated genes are chosen. Altogether this dataset has 38 observations/rows and 999

variables/columns, with each data entry as a numeric expression value.

2.3 T10 dataset and CORE
This data set tumor T10, contains 100 single cells that came from a primary breast

tumor (Navin, Kendall et al. 2011). The true partition in this case is four-way, with the

subsets differing from each other by ploidy as determined by cell sorting. Among 100

individual cells, specifically, there are 47 cases with Diploid and Pseudo-diploid (D+P),

24 cases with Hypo-diploid (H), 25 cases with Aneuploid A (AA) and 4 cases with

Aneuploid B (AB).

Raw data has a large number of genomic interval events covering the entire

genome. We have developed a feature selection method to select a small set of recurrent

gain or loss fundamental genomic intervals. Next we introduce our original feature

selection method, Cores Of Recurrent Events, also known as CORE (Krasnitz, Sun et al.

2013). Description of CORE in 2.3.1 and 2.3.2 follows our publication.

2.3.1 Methodology of CORE
DNA copy number analysis yields a set of copy number profiles, one per sample,

describing the amplifications and deletions within the genome of the tumor of each

	

	
	

23

patient. CORE algorithm is the solution to finding regions of the genome that are

significantly recurrent in large collections of copy number profiles.

Example of the problem

Copy number profiles presumably arise rather randomly throughout the genome

of an unstable cell, but are selected for retention in the successful tumor clones at least in

part by the presence of cancer genes, oncogenes in the amplified regions, and tumor

suppressors in the deleted regions. The profiles can be further reduced to a set of

intervals, regions of the genome where the amplifications or deletions took place. We

refer to this data-reduction step as “slicing”. Some of the intervals may contain the

oncogenes and tumor suppressors that provided selective advantage, and some intervals

are present by chance. Intervals of the first class will, in some sense, share recurrent

elements, and intervals of the second class will not. Sets of genomic intervals that explain

many of the observed intervals, for example because they contain cancer genes, are what

we call cores. There are various types of explanation. A putative core might explain an

interval if the interval contains the core. Alternatively, a core might explain an interval if

they significantly overlap. Any number of quantitative relations between core and

interval can be postulated to accommodate a variety of biological notions. In the end, one

wishes to have a minimal set of cores that “best” explain the data, and that can be subject

to some form of statistical testing for significance. We refer to this process as CORE.

Formulation of the general case	
The input into CORE is a set of N intervals dj, j = 1, … , N of a given type (for

example, amplification or deletion events) derived from the observations. The domain Δ

in which these observed intervals reside depends on the origin of the data. For data

originating from genome-wide analysis, Δ consists of multiple disjoint intervals of the

real line, each representing a chromosome. The objective of CORE is to find an optimal

explanation of the intervals, the solution of a problem formulated as follows.

For an observed interval dj and an explanatory interval s in Δ, we define an

“explanation” of dj by s as a function E(dj, s) with values in [0,1]. The specific functional

form of E(dj, s) is dictated by biological considerations. For example, a useful form of

E(dj, s) that reflects the degree of overlap of the two intervals is the Jaccard index:

𝐸 𝑑! , 𝑠 = !!∩!
!!∪!

 (2.1)

	

	
	

24

In this case, s explains dj completely if and only if the two coincide and not at all

if the two are disjoint. However, a specific form for E is not required for a general

formulation of the method. We also refer to E(dj, s) as an association measure. In the

following, we use P(dj, s) ≡ 1 – E(dj, s), the portion of dj that s leaves unexplained.

Next, to generalize this concept to a set of explanatory intervals 𝑆 =

{𝑠!, 𝑠!,… , 𝑠!}, we define the portion P(dj, s) of dj left unexplained by S as:

𝑃 𝑑! , 𝑆 = 𝑃(𝑑! , 𝑠!)!
!!! (2.2)

Finally, to generalize even further, we write the unexplained portion of the entire

observed interval sets 𝐷 = {𝑑!,𝑑!,… ,𝑑!}, the equation above can be further generalized

by summation over all events，

𝑃 𝐷, 𝑆 = 𝑃(𝑑! , 𝑆)!
!!! = 𝑃(𝑑! , 𝑠!)!

!!!
!
!!! (2.3)

For a fixed number of explanatory intervals K, we seek to minimize P(D, S) over

all possible sets S of K explaining intervals. Any such solution set of explaining intervals,

𝐶! = {𝑐!, 𝑐!,… , 𝑐!} will be called “optimal” and the individual elements cores. Note that

we have not so far specified the appropriate number K of cores to be sought. This

question is addressed later when we consider the statistical assessment of cores.

Forms of explanation

The computational complexity of the minimization problem depends on the form

of explanation. From now on, we consider important restricted cases of explanation in

which P(D, S) cannot attain a minimum unless each boundary of the cores 𝑠! coincides

with that of one of the observed intervals. With this proviso, minimization of P(D, S)

requires considering only a finite set of explaining intervals, namely those bound by

O(N2) pair-wise combinations of the boundaries of the N events. Consequently, the

quantities 𝑃!" = 𝑃(𝑑! , 𝑠!) form a finite matrix of N rows and O(N2) columns, and the

problem amounts to a choice of K columns such that P(D, S) is minimized—that is, the

minimizaton becomes a combinatorial problem.

To permit such minimization by a finite search, it is sufficient for P(D, S) to be

concave or linear as a function of either boundary position of 𝑠! for all k, in any interval

between adjacent event boundaries in D. In particular, this condition is satisfied for the

following three special forms of association measures, E(d, s): (first) E(d, s) = 1 if s⊆d

	

	
	

25

and otherwise E(d, s) = 0; (second) the Jaccard index J(d, s) raised to a power P ≥ 1;

(third) E(d, s) = f(|s|/|d|), where f is any strictly convex or linear function on the interval

[0,1] with a range contained in [0,1] when s⊆d and otherwise E(d, s) = 0.

These three forms of explanation capture different aspects of recurrence. The first

form is especially simple and is designed to seek the genomic positions with the highest

possible combined event count. However, this form of explanation ignores the degree of

overlap among events explained by a given s and emphasizes regions where events

overlap. The ability to detect clustering of broad events is thus reduced, especially when

the broad events contain regions of narrow events that can be recurrent. On the other

hand, the second and third explanation forms favor explanatory intervals at the

intersection of multiple events with approximately coincident boundaries. Each core will

therefore tend to be representative of a large number of similar genomic lesions.

Minimization of the unexplained portion

The minimization problem defined by the first form of explanation as defined

above is an instance of the p-coverage location problem, exactly solvable by dynamic

programming in O(KN2) time, making this form of explanation computationally

advantageous. To our knowledge, however, no general algorithm with execution time

polynomial in K has been found for the exact minimization problem as posed in Eq. 2.3,

even if P(D, S) permits combinatorial minimization. In the absence of such a solution, we

offer an iterative greedy procedure for finding cores that has a polynomial time

complexity.

We initialize at i = 0 by setting 𝑐! = ∅,𝑃 𝑑! , 𝑐! = 1 for all j. Then, at the i-th

iteration, 𝑐! = 𝑎𝑟𝑔𝑚𝑖𝑛! 𝑃(𝑑! , 𝑐!!!)𝑃(𝑑! , 𝑠)! is found, and 𝐶! is formed by adding 𝑐! to

𝐶!!!. To continue the iteration efficiently, P(dj, Ci) is stored for each j, computed as in

Eq. 2.1 above: 𝑃 𝑑! ,𝐶! = 𝑃 𝑑! ,𝐶!!! 𝑃(𝑑! , 𝑐!). The execution time of an individual

iteration is independent of i, and the total execution time is proportional to K. Moreover,

with any of the three explanatory forms, only a finite number of explanatory intervals

need be searched at each iteration, and the greedy solution must search no more than

O(N2) candidate explaining intervals. As the unexplained portion is a sum over N terms,

the execution time is not greater than O(KN3). We will consider only greedy solutions for

the remainder of this work.

	

	
	

26

Note that the Eqs. 2.2 and 2.3 can be generalized by the inclusion of weights for

each event. In particular, the i-th minimization step of the greedy procedure may be

interpreted as finding a single optimal core for the observed interval set D, but with each

event dj of D assigned a weight 𝑊!,!!! = 𝑃(𝑑! ,𝐶!!!), namely the portion of dj left

unexplained by previous cores. We view the set of intervals with their weights

𝑃(𝑑! ,𝐶!!!) as the remaining unexplained data after the i-th iteration. This interpretation

is used next in assessing the statistical significance of a new core.

Statistical criteria for depth

We tackle now a way to determine the depth of analysis, the lowest number of

intervals that give a sufficient explanation of the data. Such a determination is made by

seeking the lowest value for K such that the remaining unexplained data no longer display

an unexpected amount of recurrence—that is, there is no new interval with a surprising

amount of explanatory power. To determine this, we use a score, the amount of

explanation gained from unexplained data by adding a new core, and compare this score

to the scores obtained after the randomization of the unexplained data.

The total explanation provided by the core set 𝐶! is 𝑁 − 𝑃(𝐷,𝐶!). The gain in

explanation from the K-th core is then 𝐺! = 𝑃(𝐷,𝐶!!!)− 𝑃(𝐷,𝐶!) . For an exact

solution of the problem, it is generally not true that 𝐶! is obtained by adding one core to

𝐶!!!. However, this is an intrinsic property for our greedy solution to the problem, so for

the greedy case we can define the score of the optimal interval, 𝑐!, as:

𝐺! = 𝑊!,!!!𝐸 𝑑! , 𝑐!! = max! 𝑊!,!!!𝐸(𝑑! , 𝑠)! (2.4)

We seek to evaluate the statistical significance of this score, judging thereby the

significance of the core itself. Significance is determined by testing the null hypothesis

that the K-th observed score is not improbably high in the set of weighted events with the

event randomly placed in the genome.

More specifically, we sample from the null distribution of the score. After m

iterations of CORE, we generate multiple independent trials. In each trial, each event 𝑑!

is transformed into an event 𝑑!! by a random placement, while its weight 𝑊!,!!! is left

unchanged. We then estimate the probability of a value 𝐺! or larger would be drawn

from the distribution of 𝐺!! = max! 𝑊!,!!!𝐸(𝑑!!, 𝑠)! generated from the multiple trials.

	

	
	

27

Typically we perform 1,000 trials. If M + 1 is the smallest m for which the null

hypothesis cannot be rejected, the first M cores are retained.

Because events occur on chromosomes, and the events can themselves be large,

on the order of the size of chromosomes, we must modify the above random translation

scheme. The human chromosomes have broadly varying lengths, and a large event on

chromosome 1, for example, cannot be translated to chromosome 21, restricting

drastically our ability to randomize its placement. Therefore, when the observed interval

data are randomly placed onto human chromosomes, we consider not the absolute length

of an event but its length relative to the length of the chromosome on which it occurs.

2.3.2 Quantitative analysis using CORE
Breast Cancer Data

For analysis of individual tumor subpopulations, we use single-cell copy number

data we previously described for human breast cancer tumors T10. The data consist of

bin counts of sequence reads, segmented, and then converted to integer copy number

segments. A total of 50,009 bins cover the entire genome, laid out in the usual order of

chromosomes: 1, … , 22, X, Y.

Processing Breast Cancer Data

To use CORE, we must first extract interval events from segmented copy number

profiles. The method of transforming each profile into a set of intervals differs for single-

cell data and for mixed-cell population data. In both cases, we use a process we call

slicing. We then find the significant cores, and create an incidence table.

To slice profiles from single cells, we determine the median ploidy for each cell,

defined as the median of integer copy numbers for all bins. Segments above the median

ploidy are considered amplified, and those below deleted. There is no restriction on the

segment lengths, and these range from the shortest detectable by the segmentation

algorithm to an entire chromosome. For each integer value of copy number except the

median ploidy, we determine a unique set of largest intervals that can be placed without

disruption into the profile. In essence, this procedure is a simplified version of the

ziggurat deconstruction algorithm. Note that the information about the degree of copy

number change caused by an amplification or a deletion event is lost in this

	

	
	

28

transformation. The input into CORE, separately for amplifications and deletions, is

formed by pooling the intervals, with start and end positions specified as bin numbers.

Incidence Table for Profiles and Cores

In the case of DNA copy number analysis discussed in the following, the input set

of intervals is formed by copy number events (gains or losses), each originating in one of

multiple copy number profiles. Each profile represents a biological entity such as a tissue

sample or a cell. Having derived K cores from this joint input set, we construct an

incidence table T that quantifies how well each core performs in each profile. The

incidence table is thus an L×K matrix, L being the number of profiles and K the number

of cores. Each of its matrix elements, Tlk, is computed as the maximum over all of the

intervals in profile l of the explanations by core k. In other words, Tlk is the explanation of

the best fit of core k to profile l. It follows from this definition that all matrix elements of

T are in the [0, 1] range.

Availability of Software

An implementation of CORE as an R package is available upon request and

includes tools for computing core positions and scores and for assessing the statistical

significance of scores, with a choice among measures of association as described here. In

addition, R software is available for the analysis of integer copy number data, both

upstream and downstream of CORE, including the slicing procedure and the derivation of

the incidence table that we used to examine the subpopulation structure of breast tumors.

R code for generating a simulated event configuration for arbitrary R, I, Λ, NR, σ, NB

will also be provided upon request. More details in CORE analysis can be found in our

corresponding publication (Krasnitz, Sun et al. 2013).

CORE analysis of this set yields 354 cores, 172 amplification cores and 182

deletion cores at P = 0.05 level of significance. T10 dataset uses incidence table

computed from CORE analysis. As we mentioned above, each of its matrix elements is

computed as the maximum over all of the intervals in a cell of the explanations by a core,

with range [0, 1]. T10 data matrix has 100 rows and 354 columns. Rows of the data

matrix correspond each to a cell, the columns correspond each to a core, specified by the

sign of variation (amplification or deletion). An additional array has the endpoint

chromosome positions of the region.

	

	
	

29

2.4 Organelles dataset and normalization
Organs and organelles represent core biological systems in mammals. In a global

survey of organelle protein expression in mouse, protein content of four major organellar

compartments was examined (Kislinger, Cox et al. 2006). A comprehensive proteomic

profiling was done on assessing organellar enrichment. Data collected is protein

expression of four subcellular compartments (true types), Nuclei, Cytosol, Microsomes

and Mitochondria, independently on healthy laboratory adult mouse brain, heart, kidney,

liver, lung and embryonic placenta. Altogether, there are 24 observations, each with 4768

proteins expressions. The expression levels used are cumulative spectral counts of

proteins in each organelle.

Cluster 3.0 (Eisen 1998) was used to preprocess data and obtain a hierarchical tree

structure in Kislinger’s paper. Although the authors provide no detailed description of

how the data were prepared, the following two-step normalization allows us to reproduce

the original hierarchical tree.

1). Log-transformation of all data. This step comes before normalization. Log-

transformation is widely used in processing DNA microarray data, because results of

such experiments come out as fluorescent ratios. Preprocessing of expression levels in

this case uses log base 2.

 2). Normalization on proteins. This step changes magnitude of data within each

protein, by multiplying a factor, so that sum of the squares of expression levels within

each protein is one. All values are greater than 0 and less than one after this

normalization.

Unlike CORE in 2.3.1, this two-step normalization does not reduce dimension of

predictor variables. It makes sure that 4768 protein expression levels are on the same

scale, which is a prerequisite of growing a reasonable hierarchical tree structure. With log

transformation, any cumulative spectral counts with values zero become missing values,

and pairwise deletion is used when computing dissimilarity of a pair of proteins.

2.5 Chondrosarcoma dataset
This data set comes from a study on using flow cytometry data to classify

conventional central chondrosarcoma (Diaz-Romero, Romeo et al. 2010). It contains 34

cells, collecting from four types of chondrosarcoma. All cells were cultured in monolayer

	

	
	

30

under the same conditions and analyzed by flow cytometry for the level of expression,

based on mean fluorescence intensity (MFI) ratios, of 11 surface markers. The truth is a

four-way partition, with three parts corresponding each to a different tissue of origin and

the fourth part formed by cells from tumor cell lines. Specifically, these cells are 10

human articular chondrocytes (HAC), 10 mesenchymal stem cells (MSC), 6 fibroblasts

(FIB), and 8 tumor cell lines (TCL). Prior to clustering, observations/cells were

examined, and two cells, one from HAC and one from MSC were removed using

multivariate outlier detection(Marchette DJ 2003). In summary, Chondrosarcoma dataset

has 32 cells/rows and 11 surface markers/columns.

2.6 Handling missing values
Observations with missing features are common. This section talks about how to

deal with missing data before clustering. With existence of missing data, the first thing is

to determine whether the occurrences are at random, and will not distort the observed

data. Detailed exploration of missing data can be found in Little and Rubin’s book (Little

2002). Denote Xobs as observed entries (without missing data) in predictor matrix X. R is

formed as an indicator matrix with ij-th value as 1 when Xij is missing and 0 otherwise.

Data is missing at random (MAR) if distribution of R depends on Z only through

Zobs: 𝑃 𝑅 𝑋,𝜃 = 𝑃(𝑅|𝑋!"#,𝜃). Here 𝜃 are any parameters in the distribution of R. This

is equally meaning missing data indicators can be explained by observations with full

information. “At random” here suggests occurrence of missing data is conditional on

observed data. It is not strictly the definition of random event. Also equality of

probability is difficult to be validated with an unsupervised predictor matrix.

Data is missing completely at random (MCAR) if distribution of R doesn’t

depend on missing or observed data: 𝑃 𝑅 𝑋,𝜃 = 𝑃(𝑅|𝜃). This is a stronger assumption.

Most methods dealing with missing data rely on assumption of MCAR.

Approach to cleaning missing data: 1). Discard observations with any missing

values. 2). Rely on learning algorithm if its input has tolerance on missing data. 3).

Impute all missing data.

The first approach (list-wise deletion) is okay if sample size is large and

proportion of missing data is small. The second approach depends on the algorithm. For

example, implementation of some dissimilarity functions allow missing values, certain

	

	
	

31

dimension containing missing values are omitted (pair-wise deletion) when computing

pairwise dissimilarity. HC can tolerate missing values using pair-wise deletion, meaning

if there are p features in a pair of observations, and altogether q dimensions out of p have

missing values, dissimilarity can be calculated on p - q dimensions with chosen

dissimilarity.

The third approach, imputation is popular, not limited by assumption or algorithm.

Most common imputation is substituting missing values with mean or median with

nonzero values for that feature. Of course there are more advanced and sophisticated

imputation methods, such as Soft-Impute (Mazumder 2010).

2.7 Summary of Chapter 2
This chapter provides overview on five datasets, with their biological origins,

their observations, variables and true subtypes. The essential properties of these datasets

are summarized in Table 3. These datasets are further used in Chapter 4 as benchmark

cases. Partition of true types in each data set is deemed as ground truth, and later

employed as reference of optimal partition in validation of performance.

Table 3 Properties of five benchmark datasets

All five datasets are public and are available with their corresponding

publications. All except Organelles can be directly used for clustering. Organelles dataset

needs to be normalized using the two-step procedure mentioned in its corresponding part

2.4.

This chapter also introduces our published method CORE as feature selection

Dataset Origin Number of
leaves

Number of
variables

True number
of classes

Simulated6 Simulation of gene expression 60 600 6
Leukemia mRNA levels from microarray analysis 38 999 3
T10 DNA copy number analysis, sequencing 100 354 4
Organelles Proteomic analysis, using mass spectrometry 24 4768 4
Chondrosarco
ma

Flow cytometry analysis of surface markers
from fluorescence intensity

32 11 4

	

	
	

32

approach for dataset T10. Summary of CORE follows our publication. CORE is a general

approach to inference from interval data. Given a collection of observed events and a

geometric association measure between events and explanatory intervals, CORE finds a

given number of explanatory cores that maximizes the explanation. When the association

measure is drawn from three broad varieties outlined in the text, for example the Jaccard

index, we find a greedy solution with algorithmic complexity O(KN3), where N is the

number of events and K is the number of cores. We believe our formulation of the

problem is “natural” in the sense that it captures the manner in which a human observer

seeks to find fundamental intervals behind a set of recurrent events in the presence of

noisy events and boundaries.

	

	
	

33

Chapter 3 Methodology
	
	
	
	
	
	

Nowadays, hierarchical clustering is more widely used as a method of partitioning

data and of identifying meaningful data subsets. Quantifying the interpretation of

hierarchical trees and introducing mathematically and statistically well-defined criteria

for distinctness of sub-trees would therefore be highly beneficial and is the focus of this

thesis. This chapter presents methodology of Tree Branches Evaluated Statistically for

Tightness, or TBEST in the following (Sun and Krasnitz 2014). In 3.1, we use a simple

example to motivate the proposed measure of distinctness of branches/clusters. In 3.2, a

sampling procedure is discussed for examining randomizations and null distributions. In

3.3, statistical tests are employed to examine tightness of branches, and p-value

estimation can be calculated using two approaches, empirical and EVT-based.

Consider a set of objects with pair-wise relations given by a dissimilarity matrix.

With a linkage rule, a hierarchical tree can be grown for the set. We will only consider

inversion-free linkage rules here. The tree is specified, in addition to its branching

structure, by the heights of its nodes. The height of the node quantifies the dissimilarity

within the data subset defined by the node. We wish to construct, for each node of the

tree, a measure of how distinct the data subset corresponding to the node is from the

remainder of the data set. Next a one-dimensional example is given to explain how

statistic S(n) measures tightness of branches.

3.1 A simple example
The special case of the objects being points in a Euclidean space, with the

dissimilarities defined as distances between the points, may be used for guidance in this

construction. The node height then quantifies the linear extent of the data subset defined

by the node. Accordingly, it has been proposed (Munneke, Schlauch et al. 2005) to make

the measure of distinctness of a node n linear in the difference in heights between a

parent P(n) of n and that of n itself.

	

	
	

34

Figure 5	 Illustration of the definition of tightness.
The data consist of 280 points in one dimension, drawn from a normal mixture with the components
N(0.5,0.42) (blue), N(11,12) (green) and N(5,22); (black). A) A histogram of the input data. B) A
hierarchical tree of the input data, grown using the absolute difference of the data values as the dissimilarity
measure, and single linkage. Thus, the node heights shown in (B) are equal to the corresponding gaps in the
data, as indicated in (A). Nodes n1 and n2 are approximately equally tight.

A

x

0
2

4
6

8
10

12
C
ou
nt

h(P(n1))

h(P(n2)) h(n2)

h(n1)

B

0h(n1)

h(n2)

h(P(n1))

h(P(n2))

n1

n2

P(n1)

P(n2)

	

	
	

35

An example of a one-dimensional dataset, tabulated in Supplemental File and

shown in Figure 5, illustrates a difficulty with such construction. Both the subsets shown

in blue and in green are clearly distinct from the rest of the data, but the difference in

heights between the blue node and its parent is not as great as that between the green

node and its parent. Thus, based on the parent to child difference in heights, one would

conclude, counter-intuitively, that the blue subset is not nearly as distinct as the green

subset. A measure in better agreement with intuition is the relative difference of heights:

 𝑆(𝑛) ≡ ! ! ! !!(!)
!(!(!))

 (3.1)

, where h(n) is the height of node n. In the following we refer to S(n) as the tightness of

node n. In the absence of inversions, the tightness of any node is a number between 0 and

1. In particular, S(n) = 1 identically if n is a leaf.

The two subsets highlighted in Figure 5 are nearly equally tight by this measure,

despite the disparity in their heights.	

3.2 Randomizations and null distribution
To enable statistical analysis of tightness, a null distribution of S(n) is required,

for making comparisons with the observed S(n). This null distribution is obtained by

randomizing the dataset from which trees are grown.

How such randomization is to be performed depends on the type of the data and

on the broader context of the study and cannot be specified in general. For example, if the

data matrix represents gene expression, with genes as rows and observations as columns,

it may be appropriate to randomize the data by permuting values independently within

each row. However, in other situations a more restrictive randomization should be

adopted. For example, the elements of a binary data matrix may represent the mutation

status at a set of genomic positions (rows) in a collection of genomes (columns). The

investigator may wish to randomize the data while preserving both the site mutation

frequencies (row sums) and the overall mutation burden within each genome (column

sums).

Randomization methods, or data permutation methods on synthetic data and four

real-world benchmark cases are listed in Table 4 below. Simulated6 is the synthetic data

set. It was introduced in 2.2 and is used, together with four real-world cases, to validate

performance of TBEST. Note that in Table 4 randomization of T10 data is different from

	

	
	

36

other three. Besides cores detected using the CORE algorithm (2.1.2), this data set also

includes chromosome information of each core. There are multiple instances of strong

geometric overlap between cores. As a result, the corresponding columns in the data

matrix exhibit strong pairwise correlations, positive for cores of equal sign (both gains or

both losses), and negative for cores of opposite signs. Consistent with these geometric

constraints, the null distribution in this case is generated as follows: the data matrix is

divided into sub-matrices by the chromosome number (1,2,...,22,X), and rows are

permuted independently within each sub-matrix.

Table 4 Data permutation methods for benchmark cases

Dataset Data permutation Method

Simulated6 Independently for each coordinate (column)

Leukemia
Independently for each gene (column)

T10 Independently for each chromosome; identically for all cores (columns) in a
chromosome

Organelles Independently for each protein (column)

Chondrosarcoma Independently for each surface marker (column)

	
	

3.2.1 Distribution of tightness
As Figure 6 and Appendix Figure S1 illustrate, the shapes of these distributions

generally depend on the number of leaves and, in most cases examined, the peak of the

distribution occurs at higher tightness for smaller number of leaves. The identity S(n) = 1

for single-leaf nodes is consistent with this observation. We therefore conclude that, for a

given observed value of tightness, the appropriate null distribution should be sampled by

repeated randomization of the data, growing a tree for each randomization, selecting

among its nodes the ones with the numbers of leaves matching the observation, and

determining the tightness of these nodes.

	

	
	

37

	
Figure 6	 Null distribution of tightness.
The null distribution of node tightness S depends on the number of leaves. The empirical probability
density distributions for the Simulated6 set with (1 - Pearson correlation) dissimilarity – average linkage
combination (A) and for the Organelles set with (1 - Pearson correlation) dissimilarity – Ward linkage
combination (B) are shown, for three different values of the number of leaves in each case. Each plot is
based on 5000 randomizations of the respective data set.

	
	
	
	
	
	 	

0.00 0.05 0.10 0.15 0.20

0
50

10
0

15
0

A

S

nu
ll

pr
ob

ab
ilit

y
de

ns
ity

cluster of size 2
cluster of size 5
cluster of size 20

0.0 0.1 0.2 0.3 0.4 0.5

0
5

10
15

B

S

nu
ll

pr
ob

ab
ilit

y
de

ns
ity

cluster of size 2
cluster of size 5
cluster of size 20

	

	
	

38

So far, with a hierarchical tree structure, S(n) can be calculated for all the internal

nodes, excluding the root, since the latter has no parent. With a number of trees grown

from randomized data, null distribution of S(n) is obtained.

However, it is not guaranteed that, in any tree grown from randomized data, there

will be a unique node with a number of leaves exactly equal to that of the observed node.

To resolve this difficulty conservatively, we adopt the following procedure. If, for a given

data randomization, the tree contains nodes with the number of leaves exactly as

observed, the highest S(n) computed for these nodes is added to the sample. Otherwise

we consider all the nodes with the number of leaves nearest the observed one from above

and all those with the number of leaves nearest the observed one from below, and add to

the sample the highest S(n) of any of these nodes. Note that, since S(n) = 1 for all single

leaves, the latter can never be found significantly tight, and the analysis as described is

only valid for internal nodes.

3.3 Compute statistical significance
With the sampling procedure specified, tests for statistical significance of

tightness can be conducted for all the internal nodes of the observed tree excluding the

root. The number of tests is therefore two less than the number of leaves. Due to this

multiplicity of tests, higher levels of significance are required for rejection of the null

hypotheses for trees with larger numbers of leaves. A straightforward way to handle this

requirement would be to increase the size of the sample from the null distribution by

performing more randomizations. In this thesis, largest number of leaves among five

benchmark cases is 100, and validation in Chapter 4 is done with conservative empirical

approach. However, for trees with large numbers of leaves this simple-minded approach

may be rendered impractical by computational cost. Therefore, we offer an alternative

approach to improve time efficiency.

3.3.1 Extreme value theory based estimation
Instead of a purely empirical approach, higher levels of significance may be

assessed by using extreme-value theory (EVT) to approximate the tail of the null

distribution, thereby permitting considerable economy of computational effort

(Knijnenburg, Wessels et al. 2009). To estimate the p-value, a test statistic of one branch

S(n) and a number of null statistics, represented as set S0, from randomized data are

	

	
	

39

needed. Unlike the empirical approach, number of randomizations does not rely on total

number of observations, and can therefore be much less than that of empirical approach.

The set of extreme (very large or very small) null statistics that forms the tail of null

distribution can be modeled with Generalized Pareto Distribution (Pickands 1975).

Algorithm of estimating p-values simply builds on the condition that S(n) is in the tail of

distribution or not. The number of null statistics inside set S0 that are greater than or equal

to S(n) is M. M0 is a threshold suggesting number of null statistics in the tail.

Algorithm:

if M ≥ M0,

estimate p-value using empirical cumulative distribution function

else,

 estimate p-value using Generalized Pareto Distribution

Parameters estimations in Generalized Pareto Distribution are obtained by

maximum likelihood or methods of moments. Goodness of fit is tested, and p-value is

calculated from approximated tail distribution.

We have used this EVT-based method alongside the more costly purely empirical

computation of significance in our benchmark studies reported in Chapter 4, and found

the two approaches to be in good agreement, as shown in Appendix: Figure S2.

3.3.2 Correction for multiple hypotheses testing
Computing the probability of test statistic of one branch among null distribution

of statistic gives one p-value. Test statistic of this branch is not likely to appear in null

distribution of statistic when p-value is less then given significance level, and this branch

is statistically significant. Computing the probability of test statistic of all internal

branches simultaneously among null distribution of statistic falls into the field of multiple

hypotheses. Family wise error rate (FWER) is the probability of making at least one Type

I error when performing multiple hypothesis tests. Here we perform FWER correction

equivalently for each empirical p-value. The p-values displayed in the following were

computed by applying a multiple-hypotheses correction of the form p = 1 – (1 – pe)N-2,

where pe is the empirical p-value and N is the number of leaves. Note that the number of

hypotheses tested is 𝑁 − 2, i.e. the number of internal nodes.

	

	
	

40

The false discovery rate (FDR) is designed to control false positives among the

set of rejected hypothesis. q-value of an individual hypothesis test is the minimum FDR

at which the test may be called significant. One approach is to directly estimate q-values

rather than fixing a level at which to control the FDR. FDR correction of empirical p-

values is implemented in R package.

We use TBEST in the following way to identify most detailed significant

partitions of the data into branches of a given hierarchical tree. We define a partition to

be significant with a threshold α if (a) every part is a branch and (b) if for every part at

least one of the children of its parent node is tight with the p-value p<α. Among the

significant partitions with a threshold α we find the most detailed, i.e., the one with the

highest number of parts. In case of a nested distinct branch with its parent node and

counterpart of its parent node being non-significant, TBEST can identify this branch as a

statistically tight branch. But there may not exist a most detailed significant partition

judged by criteria a) and b).
3.4 Comparison of TBEST and existing methods

Our method TBEST shares features with the existing approaches. Recall 1.2, here

we compare TBEST with DTC, SC and SLB.

Like SC and SLB, TBEST employs statistical analysis to identify significantly

distinct branches of a hierarchical tree. Similarly to DTC and SLB, it uses tree node

heights to assess the distinctness of a tree branch. At the same time, TBEST differs from

the existing designs in several aspects, two of which are critical.

• First, unlike DTC, SC and SLB, it examines all the tree nodes

simultaneously for distinctness.

• Secondly, unlike SLB, it combines node heights non-linearly to construct

a statistic for distinctness that is better able to handle a tree in which

distinct branches of approximately equal numbers of leaves occur at

different heights.

The key properties of all four methods are summarized in Table 5. The third

column suggests whether the algorithm needs extra criterion to detect tight branches,

given the dataset and its hierarchical tree structure. Recall from 1.2 that results of DTC

depend on minimal node size and SC relies on assumption of normal distribution.

	

	
	

41

Table 5 Properties of TBEST and three existing methods

3.5 Summary of Chapter 3
 This chapter presents methodology of TBEST. In this chapter, we have reviewed,

• Statistic of tightness in Eq. 3.1, which computes relative difference of

height. A simple example shows this definition is in better agreement with

intuition.

• Appropriate null distribution should be sampled by repeated

randomization of the data, growing a tree for each randomization,

selecting among its nodes the ones with the numbers of leaves matching

the observation, and determining the tightness of these nodes.

• Two approaches to estimate statistical significance: empirical approach

and EVT-based approach. Empirical p-values are corrected by multiple

hypothesis correction.

	

Method Order of examining the tree Non-parametric Significance estimated

TBEST all internal nodes in parallel Yes Yes

DTC bottom up No No

SC top down No Yes

SLB top down Yes Yes

	

	
	

42

Chapter 4 Validation
	
	
	
	
	
	

With the methodology of TBEST presented in Chapter 3, this chapter discusses

the performance of TBEST, with a comparison to the three existing methods, DTC, SC

and SLB (1.2). Detection of distinct branches in five benchmark datasets is examined and

validated in 4.1-4.5.

To better judge the performance of TBEST in comparison to the other three

algorithms, we considered, for each dataset, more than one combination of dissimilarity

and linkage methods used for hierarchical clustering. These combinations, together with

permutation methods are shown in Table 6. With the exception of the third benchmark

case, randomization of the input data, as required for both TBEST and SLB, consisted of

randomly permuting the observed values, independently for each variable. Reasoning for

this is mentioned in 3.2.

Table 6 Combinations of datasets, dissimilarity, linkage and randomization methods, used for testing
TBEST

Dataset Dissimilarity Linkage Randomization Method

Simulated6 Euclidean complete Independently for each coordinate (column)
(1 - Pearson
correlation)

average

Leukemia Euclidean Ward Independently for each gene (column)
(1 - Pearson
correlation)

average

T10 Euclidean Ward Independently for each chromosome; identically for
all cores (columns) in a chromosome (1 - Pearson

correlation)
average

Organelles (1 - Pearson
correlation)

Ward Independently for each protein (column)

(1 - Pearson
correlation)

average

Chondrosarcoma (1 - Spearman
correlation)

Ward Independently for each surface marker (column)

(1 - Kendall
correlation)

average

Manhattan Ward

	

	
	

43

The degree of agreement between a computed partition of the data and the truth is

quantified in terms of the corrected-for-chance Rand index, or cRI (1.3.1.1). It should be

noted that the subsets of the data identified as distinct by TBEST and the other three

techniques by necessity correspond each to a branch of a tree. This, however, is not

necessarily the case for the true types, some of which do not correspond to a single

branch. As a result, a perfect match between any computed partition and the truth may

not be possible, and the maximal attainable value of cRI may be below 1. For this reason,

to evaluate the performance of TBEST and the published methods across benchmark

datasets, we also identify, for each tree considered, a partition into branches that best

matches the truth and determine cRI between that partition and the computed partitions

for each of the methods.

In each of the cases in the following we studied how the most detailed significant

partition found by TBEST, and its correspondence to the truth, vary with the significance

threshold α. In an analogous fashion, we analyzed the detailed partitions generated by

SLB and SC. For DTC, which is not a statistically supported method, we examined the

properties of the most detailed partition as a function of the minimal allowed number of

leaves in each part.	

4.1 Simulated6
The data are a sample of size 60 in 600 dimensions (Monti, Tamayo et al. 2003).

The true partition of the data is into six subtypes. Each of the 600 variables represents a

simulation of a gene expression. Properties of this dataset are summarized in more detail

in Table S1 of Appendix.

The comparison between the four algorithms is displayed graphically in Figure 7.

For both combinations of dissimilarity and linkage only TBEST and DTC match the truth

exactly, while the other two methods either fail to partition the set or do so incompletely.

We note that the Euclidean dissimilarity – complete linkage combination results in a

particularly challenging tree (A in Figure 7), which cannot be partitioned correctly by a

static cut.

The most left color bars in Figure 7 represent assignment of leaves. With class 1

in blue, and class 2 in red, the exceptional observation is obvious in the top color bar

“Truth” of A and D in Figure 7. This observation is combined with observations from

	

	
	

44

class 2, using HC of both dissimilarity linkage combinations. TBEST has the broadest

range of significance levels that matches ground-truth, with any α	 ≥ 0.016 in the first

case (A, B, C in Figure 7), and any α	 ≥ 0.001 in the second case (D, E, F in Figure7).

While in the first case, if significance level is set less than 0.016, a partition of five

branches are found, corresponding to red, blue, green, yellow and the rest branches in A,

and results in cRI around 0.78 in B. Given more extreme significance level, none of

orange branch, purple branch and their parent branch are considered statistically tight.

Table 7 records scores of clustering quality compared to the partition best matches

true subtypes. cRI and V measure are both calculated for partitions found at a given level

of significance (0.001 and 0.05). For both dissimilarity linkage combinations, TBEST

outperforms SC and SLB, with the highest clustering scores of finding a partition equal

or closest to the optimal partition.

	

	

	

	

	

	

	
	

45

Figure 7 TBEST compared to published methods for Simulated6
Performance comparison of TBEST and the three published methods in Simulated6 dataset for the
Euclidean dissimilarity – complete linkage combination (top) and for the (1 - Pearson correlation)
dissimilarity – average linkage (bottom). For each combination the left portion (A or D) shows the
corresponding dendrogram, under which then true partition and the partition best matching the truth for
each of the methods are shown as color bars. In the middle portion (B or E), the relative cRI of the
computed partition is plotted against the required level of significance α for each of the significance-based
methods. The customary α = 0.05 threshold of significance is shown by a dashed vertical. In the right
portion (C or F), the relative cRI of the computed partition is plotted against the minimal allowed number
of leaves for DTC.

	

	

	

	

	
Table 7 Quality of partition in Simulated6*

* Values of α in second column are significance levels.	 Quality of partitions is recorded as cRI (V
measure), from column three to column five.
	
	
	
	
	 	

A

0

0

0

Truth
TBEST

SC
SLB
DTC

0
0

0.016 ≤ α ≤ 0.90

0.049 ≤ α ≤ 0.055
0 ≤ n ≤ 5

P

R
I

B

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I

TBEST
SC
SLB

P

R
I

E

0 0.001 0.01 0.05 1α

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I

TBEST
SC
SLB

D

0

0

0

Truth
TBEST

SC
SLB
DTC

0

0

0.001 ≤ α ≤ 0.90

0 ≤ n ≤ 5

0.0003 ≤ α ≤ 0.12

size

c(
w

R
I[−

1]
, 0

)

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I DTC

size

c(
aR

I[−
1]

, 0
)

F

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I DTC

0 5 10 60
minimal number of leaves

0

0

Dissimilarity and linkage α TBEST SC SLB
Euclidean dissimilarity
complete linkage

0.001 0.75(0.91) 0(-) 0(-)
0.05 1(1) 0(-) 0.35(0.66)

(1 - Pearson correlation) dissimilarity
average linkage

0.001 1(1) 0(-) 0(-)
0.05 1(1) 0(-) 0(-)

	

	
	

46

	
4.2 Leukemia

The original Leukemia dataset (Golub, Slonim et al. 1999) contained mRNA level

values for 6817 genes; this number was reduced to 999 by feature selection (Monti,

Tamayo et al. 2003). Performance of TBEST is compared with that of the other three

methods in Figure 8. For the Ward linkage, two of the significance-based methods, SC

and TBEST, attain the highest possible value of the cRI. However, SC only does so with

low significance (α > 0.33), while TBEST achieves it best performance with high

significance (α ≈ 2×10-3) and maintains performance close to optimal in a wide range of

p-values. The performance of SLB in this case is similar to that of TBEST, but SLB does

not attain the optimum. With the average linkage, TBEST outperforms both SC and SLB

throughout the entire range of thresholds considered and attains optimal performance at

high significance.

In both cases the performance of DTC is highly sensitive to the minimal allowed

size of a branch, especially so for the Ward linkage, where this algorithm attains top

performance for sizes between 6 and 10, but performs substantially below the optimum

outside this range.

To show quality of partitions found by significance-based methods, cRI and V

measure are both used at given significance level (0.001 and 0.05) in Table 8 below.

From this table, TBEST outperforms SC and SLB, with the highest clustering scores of

finding a partition equal or closest to the optimal partition. In both Ward and average

linkages, with a lower significance (0.05), the close-to-optimal partition is found with a

further split of AML subtype (branch with green bar in dendrograms, Figure 8). This

suggests interesting substructures. Given a lower significance level, a statistically tight

branch with observations labeled “AML_14”, “AML_16”, “AML_3” and “AML_7” is

detected with both dissimilarity linkage combinations.

	

	
	

47

Figure 8	 TBEST compared to published methods for Leukemia.
Performance comparison of TBEST and the three published methods in Leukemia dataset for the Euclidean
dissimilarity – Ward linkage combination (top) and for the (1 - Pearson correlation) dissimilarity – average
linkage (bottom). For each combination the left portion (A or D) shows the corresponding dendrogram,
under which then true partition and the partition best matching the truth for each of the methods are shown
as color bars. In the middle portion (B or E), the relative cRI of the computed partition is plotted against the
required level of significance α for each of the significance-based methods. The customary α = 0.05
threshold of significance is shown by a dashed vertical. In the right portion (C or F), the relative cRI of the
computed partition is plotted against the minimal allowed number of leaves for DTC.

Table 8 Quality of partition in Leukemia*

* Values of α in second column are significance levels.	 Quality of partitions is recorded as cRI (V
measure), from column three to column five.

A

0

0

0

Truth
TBEST

SC
SLB
DTC

0

0

0.001 ≤ α ≤ 0.003

6 ≤ n ≤ 10
0.001 ≤ α ≤ 0.14

α

R
I

B

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I

TBEST
SC
SLB

α

R
I

E

0 0.001 0.01 0.05 1α

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I

TBEST
SC
SLB

D

0

0

0

Truth
TBEST

SC
SLB
DTC

0

0

0.001 ≤ α ≤ 0.006

5 ≤ n ≤ 9

size

cR
I

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I

DTC

size

c(
aR

I[−
1]

, 0
)

F

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I

DTC

0 5 10 38
minimal number of leaves

0

0

Dissimilarity and linkage α TBEST SC SLB
Euclidean dissimilarity
Ward linkage

0.001 1(1) 0(-) 0.91(0.92)
0.05 0.92(0.92) 0(-) 0.91(0.92)

(1 - Pearson correlation) dissimilarity
average linkage

0.001 1(1) 0(-) 0(-)
0.05 0.83(0.86) 0(-) 0(-)

	

	
	

48

4.3 T10
The third benchmark dataset originates from DNA copy number analysis of 100

individual cells harvested from a breast tumor (Navin, Kendall et al. 2011). The true

partition in this case is four-way, with the subsets differing from each other by ploidy as

determined by cell sorting. Randomization method of this dataset is introduced in 3.1.2, it

is done independently for each chromosome because strong geometric overlap between

cores.

The results are illustrated in Figure 9. For the Euclidean dissimilarity - Ward

linkage combination only TBEST and SLB identify the true partition, with TBEST

succeeding in a broader range of significance level α. For the (1 – Pearson correlation)

dissimilarity - average linkage combination TBEST outperforms the other two

significance-based algorithms and matches the truth perfectly in a broad range of

significance level α. Table 9 presents cRI and V measure estimated at significance level

α = 0.001 and α = 0.05. Results of findings with TBEST obtain the highest scores with

both dissimilarity and linkage cases, matching a partition of four subtypes exactly.

	

	
	

49

Figure 9	 TBEST compared to published methods for T10.
Performance comparison of TBEST and the three published methods in T10 dataset for the Euclidean
dissimilarity – Ward linkage combination (top) and for the (1 - Pearson correlation) dissimilarity – average
linkage (bottom). For each combination the left portion (A or D) shows the corresponding dendrogram,
under which then true partition and the partition best matching the truth for each of the methods are shown
as color bars. In the middle portion (B or E), the relative cRI of the computed partition is plotted against the
required level of significance α for each of the significance-based methods. The customary α = 0.05
threshold of significance is shown by a dashed vertical. In the right portion (C or F), the relative cRI of the
computed partition is plotted against the minimal allowed number of leaves for DTC.

	
Table 9 Quality of partition in T10*

*	 Values	 of	 α	 in	 second	 column	 are	 significance	 levels.	 Quality of partitions is recorded as cRI (V
measure), from column three to column five.

A

0

0

0

Truth
TBEST

SC
SLB
DTC

0
0

0.001 ≤ α ≤ 0.90

0 ≤ n ≤ 24

0.001 ≤ α ≤ 0.82
0.001 ≤ α ≤ 0.006

α

R
I

B

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I

TBEST
SC
SLB

α

R
I

E

0 0.001 0.01 0.05 1α

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I

TBEST
SC
SLB

D

0

0

0

Truth
TBEST

SC
SLB
DTC

0

0

0.001 ≤ α ≤ 0.90

0 ≤ n ≤ 4

0.001 ≤ α ≤ 0.82

size

cR
I

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I

DTC

size

c(
aR

I[−
1]

, 0
)

F

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I

DTC

0 24 100
minimal number of leaves

0

0

Dissimilarity and linkage α TBEST SC SLB
Euclidean dissimilarity
Ward linkage

0.001 1(1) 0.93(0.93) 1(1)
0.05 1(1) 0.93(0.93) 0.96(0.95)

(1 - Pearson correlation) dissimilarity
average linkage

0.001 1(1) 0.96(0.95) 0(-)
0.05 1(1) 0.96(0.95) 0(-)

	

	
	

50

4.4 Organelles
Next, we consider a dataset derived from proteomic analysis of the content of four

cellular compartments in each of six mouse tissues. The analysis is based on 4768 protein

level readings (Kislinger, Cox et al. 2006).

The true partition of the data is by the cellular compartment, and the two

hierarchical clustering methods considered here both have the branch structure organized

by the compartment label, to a good approximation. Of the three significance-based

methods compared, only TBEST reproduces the truth to the maximal extent possible for

both combinations of dissimilarity and linkage, and it does so stably in the broadest range

of the levels of significance (Figure 10).

DTC achieves top performance for the (1 - Pearson correlation) dissimilarity –

Ward linkage combination if its minimal allowed number of leaves does not exceed that

of the smallest compartment-associated branch of the tree. However, this property is lost

for the (1 - Pearson correlation) dissimilarity – average combination where an additional

cluster with two leaves is identified by DTC if the minimal number of leaves is set at or

below 2.

B and E in Figure 10 are plots of cRI on computed partition with various

significance levels α. Table 10 provides cRI and V measure of computed partition on

significance-based methods, at significance level 0.001 and 0.05. Findings of clustering

with TBEST obtain the highest scores with both dissimilarity and linkage cases.

	

	
	

51

	
Figure 10	 TBEST compared to published methods for Organelles.
Performance comparison of TBEST and the three published methods in Organelles dataset for the (1 -
Pearson correlation) dissimilarity – Ward linkage combination (top) and for the (1 - Pearson correlation)
dissimilarity – average linkage (bottom). For each combination the left portion (A or D) shows the
corresponding dendrogram, under which then true partition and the partition best matching the truth for
each of the methods are shown as color bars. In the middle portion (B or E), the relative cRI of the
computed partition is plotted against the required level of significance α for each of the significance-based
methods. The customary α = 0.05 threshold of significance is shown by a dashed vertical. In the right
portion (C or F), the relative cRI of the computed partition is plotted against the minimal allowed number
of leaves for DTC.
	
	
Table 10 Quality of partition in Organelles*

* Values of α in second column are significance levels.	 Quality of partitions is recorded as cRI (V
measure), from column three to column five.

A

0

0

0

Truth
TBEST

SC
SLB
DTC

0
0

0.001 ≤ α ≤ 0.16

0 ≤ n ≤ 5

0.0003 ≤ α ≤ 0.009
0.001 ≤ α ≤ 0.03

α

R
I

B

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I

TBEST
SC
SLB

α

R
I

E

0 0.001 0.01 0.05 1α

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I

TBEST
SC
SLB

D

0

0

0

Truth
TBEST

SC
SLB
DTC

0

0

0.001 ≤ α ≤ 0.90

2 ≤ n ≤ 5

0.0003 ≤ α ≤ 0.009

size

cR
I

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I

DTC

s[, 1]

s[
, 2

]

F

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I

DTC

0 2 5 24
minimal number of leaves

0

0

Dissimilarity and linkage α TBEST SC SLB
(1 - Pearson correlation) dissimilarity
Ward linkage

0.001 1(1) 0.71(0.87) 1(1)
0.05 1(1) 0.63(0.84) 0.83(0.93)

(1 - Pearson correlation) dissimilarity
average linkage

0.001 1(1) 0.96(0.96) 0(-)
0.05 1(1) 0.55(0.80) 0(-)

	

	
	

52

4.5 Chondrosarcoma
Finally, we discuss the performance of the four methods on a dataset generated by

flow cytometry analysis of cells harvested from human tissues and cell lines. Among 34

samples, two samples were identified as multivariate outliers and removed before

clustering (Diaz-Romero, Romeo et al. 2010). The truth is a four-way partition, with

three parts corresponding each to a different tissue of origin and the fourth part formed by

cells from tumor cell lines.

We have identified three combinations of dissimilarity and linkage for which the

tree structure is fully consistent with the true partition and performed comparative

analysis for all three, as shown in Figure 11. For two of these combinations ((1 -

Spearman correlation) dissimilarity – Ward linkage and (1 - Kendall correlation)

dissimilarity – average linkage) partition by TBEST matches the truth in a range of

acceptable levels of significance. SLB does so for the first and, in a narrow range of

significance thresholds, for the third combination. SC fails to match the truth. Note the

data dimension in this case is 11, and it is smaller than 32, the number of observations.

This dataset is therefore outside the range of applicability of SC. For Manhattan

dissimilarity – Ward linkage TBEST also matches the truth, albeit at low significance (α

= 0.1). DTC performs well for the first and third combinations, but only matches the truth

in a restricted range of numbers of leaves in the second case.

cRI and V measure of computed partition in significance-based methods are listed

in Table 11. In the third dissimilarity and linkage combination, although TBEST does not

find a most detailed partition composed from significant branches, neither SC nor SLB

finds the optimal partition at significance level 0.001 and 0.05.

	

	
	

53

	
	
Figure 11	 TBEST compared to published methods for Chondrosarcoma.
Performance comparison of TBEST and the three published methods in Chondrosarcoma dataset for the (1
- Spearman correlation) dissimilarity – Ward linkage combination (top), (1 - Kendall correlation)
dissimilarity – average linkage combination (middle), and Manhattan dissimilarity – Ward linkage
(bottom). For each combination the left portion (A, D or G) shows the corresponding dendrogram, under
which then true partition and the partition best matching the truth for each of the methods are shown as
color bars. In the middle portion (B, E or H), the relative cRI of the computed partition is plotted against
the required level of significance α for each of the significance-based methods. The customary α = 0.05
threshold of significance is shown by a dashed vertical. In the right portion (C, F or I), the relative cRI of
the computed partition is plotted against the minimal allowed number of leaves for DTC.

	
	
	
	

A

0

0

0

Truth
TBEST

SC
SLB
DTC

0

0

0.003 ≤ α ≤ 0.74

0 ≤ n ≤ 6

0.03 ≤ α ≤ 0.05
0.005 ≤ α ≤ 0.90

α

R
I

B

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I TBEST

SC
SLB

α

R
I

E

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I TBEST

SC
SLB

D

0

0

0

Truth
TBEST

SC
SLB
DTC

0

0

0.018 ≤ α ≤ 0.111

4 ≤ n ≤ 6

0.03 ≤ α ≤ 0.05
0.018 ≤ α ≤ 0.156

G

0

0

0

Truth
TBEST

SC
SLB
DTC

0

0

0 ≤ n ≤ 6

0.04 ≤ α ≤ 0.06
0.01 ≤ α ≤ 0.03

α

R
I

H

0 0.001 0.01 0.05 1α

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I TBEST

SC
SLB

size

cR
I

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I

DTC

size

cR
I

F

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I

DTC

size
c(

m
R

I[−
1]

, 0
)

I

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cR
I

DTC

0 4 6 32
minimal number of leaves

0

0

0

	

	
	

54

Table 11 Quality of partition in Chondrosarcoma*

*	 Values of α in second column are significance levels.	 Quality of partitions is recorded as cRI (V
measure), from column three to column five.

4.6 Summary of Chapter 4
In this chapter, performance of TBEST is validated in comparison with existing

methods SC, SLB and DTC on five benchmark datasets (one synthetic and others from

various biological origins), based on at least two combinations of dissimilarity and

linkage. Furthermore, quality of partition found by TBEST and other significance-base

methods is evaluated across a broad range of significance levels, using cRI and V

measure. Validation result from each dataset is associated with one figure panel and one

table.	

There are eleven combinations of dissimilarity and linkage in total. Being a

heuristic method, DTC is limited from its dependence on minimal number of leaves in a

branch. It fails to find the optimal partition in the first combination of dataset T10, and it

has unstable performance over four out of the other ten combinations. Each significance-

based method is compared with TBEST at a broad range of significance levels. With any

significance level less than or equal to 0.05, TBEST performs on par with or better than

other significance-based methods in ten out of eleven combinations.	

	
	 	

Dissimilarity and linkage α TBEST SC SLB
(1 - Spearman correlation)
dissimilarity
Ward linkage

0.001 0(-) 0(-) 0(-)
0.05 1(1) 0.76(0.88) 1(1)

(1 - Kendall correlation) dissimilarity
average linkage

0.001 0(-) 0(-) 0(-)
0.05 1(1) 0.76(0.88) 0.48(0.67)

Manhattan dissimilarity
Ward linkage

0.001 0(-) 0(-) 0.32(0.58)
0.05 0(-) 0.82(0.89) 0.89(0.94)

	

	
	

55

Chapter 5 Implementation
	
	
	
	
	
	

TBEST has been implemented, and published with open-source availability, in an

R package named “TBEST” on CRAN website (Sun and Krasnitz 2013). If interested,

users can simply install it and try TBEST out. The package website has link to manuals,

including details on how to use functions, what results can be expected. This chapter

offers an introduction and walk-through tutorial of using TBEST as a pipeline to detect

tight branches, and find a most detailed partition.

5.1 Introduction to R package “TBEST”
This R package implements the methodology of Tree Branches Evaluated

Statistically for Tightness (TBEST). Foreseeing the time-consuming issue of

randomizations, randomizations are run in paralleled scripts. More user-friendly features

in this package are:

1. Input of customized dissimilarity and randomization function

2. Two approaches to choose in p-value estimation

3. Visualization of tight branches and partition if exists

Functions used in TBEST pipeline are SigTree, PartitionTree, plot.best and

LeafContent. SigTree estimats the tightness of branches, using randomizations and

hypothesis testing. This is the main function that implements TBEST. It outputs statistics

and p-values of branches. PartitionTree uses the output of SigTree, by examining

tightness of branches, to search for the existence of a partition of candidate branches.

plot.best is a visualization function that provides dendrogram with statistical significance

on candidate branches, with annotated branch number. Interesting branches can be further

studied by LeafContent, as it lists labels of observations within certain branch.

To run data through the above pipeline, all users need to do is to prepare data as a

data matrix, or dataframe, with row corresponding to observations and column

corresponding to variables. Techniques mentioned in Chapter 2 can be applied to ensure

data quality before clustering.

	

	
	

56

An example of using TBEST is given in 5.2. Running time of TBEST is recorded

in supplementary report of Appendix.

5.2 Example of using TBEST in R
In this section, we use a subset of benchmark data set, Leukemia, to give a tutorial

over TBEST pipeline. More details can be found at the package website (Sun and

Krasnitz 2013). After TBEST package in your R is installed, and loaded, users can

simply type the same code in R console to reproduce this pipeline.

5.2.1 SigTree
This is the main function, and should be used in the first place to obtain estimates

of tightness on branches. Instructions of functions in R, can always be shown with typing

a question mark before the name of function, such as “?SigTree”.

Figure 12	 Usage of function SigTree

This tutorial uses a subset of Leukemia data set as input data, which has been

included in the package. Usage of “SigTree” is shown from second to fourth command

lines. Statistic of tightness addressed in Chapter 3 is named “fldc”, there are alternative

statistics can be chosen, see 5.1 and package website for more details. Combination of

linkage and dissimilarity in HC is chosen within “mymethod” and “mymetric”,

correspondingly. With randomization function “rand.fun” equaling to “shuffle.column”,

randomization in this case is done by sampling expressions independently for each gene

(column). Distributed computing option “distrib” is set to multi-core processing as

“Rparallel”, and “njobs” suggesting the number of workers. Ptail is an argument of

logical values. If Ptail is TRUE (default), the Generalized Pareto Distribution is used to

approximate the tail of the null distribution for each of the chosen measures (3.3.1).

Otherwise, empirical p-values are computed directly from the corresponding samples.

Output of this function is an object of class “best”. Details on values inside this

	

	
	

57

object can also be acquired by “?best”. There are three items inside object “mytable”,

shown above. The third one “indextable” is a matrix containing hierarchical structures,

number of leaves under branches, and estimates of tightness on branches, i.e. p-values on

branches, the main objective of TBEST.

5.2.2 PartitionTree
This function finds the most detailed partition of a hierarchical tree into tight

branches, given a level of significance for tightness.

Figure 13	 Usage of function PartitionTree

While the first argument “x” being the object of class “best”, produced by

function “SigTree”, arguments also include significance level “siglevel”, i.e. threshold of

significance for tightness of branches, the measure of tightness “statname”, and how

significance level should be interpreted “sigtype”. Here “raw” means significance level

used in hypothesis testing is directly 0.001, other options are “corrected” as correction of

multiple hypothesis testing (3.2.2) and “fdr” as threshold of false discovery rate.

Output of this function is an object of class “partition”. Details on values inside

this object can also be acquired by “?partition”. There are four items inside object

“mypartition”, shown above. The fourth one “partition” is a matrix containing two

columns, labels of observations and which part, in terms of branch number among 1 to n-

1, this observation belongs to. From this, we can further obtain number of parts and plot

these using function below.

	

	
	

58

5.2.3 plot.best
This is a visualization function. It plots dendrogram and provides significance

estimates of tight branches, or those that form a most detailed partition.

Figure 14	 Usage of function plot.best

“plot.best” is a method for class “best”, it can be used as “plot” in short with input

from class “best”. First usage of this function is to visualize all tight branches, given a

significance level. Second usage is to visualize a partition if exists. There are extra

graphical arguments, such as logical values of showing labels of observations, logical

values of showing number of branches, from 1 to n-1. P-values on branches are shown by

multiplying a scale of 100, because of limitations on visualizing multi-digits. Exact

estimates of tightness can be obtained from object “best”.

Figure 15 corresponds to the second line of codes in Figure 14. This visualization

needs only the output of SigTree. It shows that only branch 33, 34 and 7 are statistically

tight, with p-values less than 0.001. Argument “hang” here is used to organize all leaves

at height zero.

	

	
	

59

Figure 15	 Visualization of statistically significant branches, produced by function plot.best

Figure 16 corresponds to the third line of codes in Figure 14. This visualization

needs both the output of SigTree and the output of PartitionTree. It shows that branch 33,

34 and 35 form a most detailed partition of data. Note that branch 35 is not statistically

significant, shown in Figure 15. However, branch 33 and 34 are statistically significant,

tight in themselves, and far away from the rest branch. Relatively, we consider

observations under branch 35 are also far away from those in the other two branches.

More details on obtaining a partition are in 3.3.2. Therefore, a partition of three parts

exists and their p-values (multiplying by 100) are shown on branches.

AL
L_

21
30

2_
B.

ce
ll

AL
L_

16
41

5_
T.

ce
ll

AL
L_

17
63

8_
T.

ce
ll

AL
L_

19
88

1_
T.

ce
ll

AL
L_

97
23

_T
.c

el
l

AL
L_

17
26

9_
T.

ce
ll

AL
L_

14
40

2_
T.

ce
ll

AL
L_

91
86

_T
.c

el
l

AL
L_

22
47

4_
T.

ce
ll

AL
L_

20
18

5_
B.

ce
ll

AL
L_

19
76

9_
B.

ce
ll

AL
L_

19
18

3_
B.

ce
ll

AL
L_

96
92

_B
.c

el
l

AL
L_

R
11

_B
.c

el
l

AL
L_

54
9_

B.
ce

ll
AL

L_
17

28
1_

B.
ce

ll
AL

L_
17

92
9_

B.
ce

ll
AL

L_
20

41
4_

B.
ce

ll
AL

L_
93

35
_B

.c
el

l
AL

L_
59

82
_B

.c
el

l
AL

L_
23

95
3_

B.
ce

ll
AL

L_
28

37
3_

B.
ce

ll
AL

L_
R

23
_B

.c
el

l
AM

L_
13

AL
L_

14
74

9_
B.

ce
ll

AL
L_

70
92

_B
.c

el
l

AL
L_

11
10

3_
B.

ce
ll

AL
L_

18
23

9_
B.

ce
ll

AM
L_

14
AM

L_
16

AM
L_

7
AM

L_
20

AM
L_

12
AM

L_
2

AM
L_

3
AM

L_
1

AM
L_

5
AM

L_
6

0
50

00
0

10
00

00
15

00
00

20
00

00

Dendrogram with P−values

Cluster method: ward
Distance: euclidean

H
ei

gh
t

0

0

0

pvalue*100

12 34 5 6789 10 111213 14 15 1617 181920 2122 2324 252627 282930 313233

34

35

36

edge #

	

	
	

60

Figure 16	 Visualization of three-part partition, and estimates of tightness on each part, produced by
function plot.best.

5.2.4 LeafContent

As the name suggests, this function finds names of leaves belonging to given

branches of a hierarchical tree. With a large number of observations, labels of leaves in

Figure 15 and Figure 16 may not be able to be recognized, or to be shown by user’s

choice. Therefore a function to list labels of observations under interesting branches is

designed. Input “myinput” is not restricted to object of class “best” or “partition”, but

AL
L_

21
30

2_
B.

ce
ll

AL
L_

16
41

5_
T.

ce
ll

AL
L_

17
63

8_
T.

ce
ll

AL
L_

19
88

1_
T.

ce
ll

AL
L_

97
23

_T
.c

el
l

AL
L_

17
26

9_
T.

ce
ll

AL
L_

14
40

2_
T.

ce
ll

AL
L_

91
86

_T
.c

el
l

AL
L_

22
47

4_
T.

ce
ll

AL
L_

20
18

5_
B.

ce
ll

AL
L_

19
76

9_
B.

ce
ll

AL
L_

19
18

3_
B.

ce
ll

AL
L_

96
92

_B
.c

el
l

AL
L_

R
11

_B
.c

el
l

AL
L_

54
9_

B.
ce

ll
AL

L_
17

28
1_

B.
ce

ll
AL

L_
17

92
9_

B.
ce

ll
AL

L_
20

41
4_

B.
ce

ll
AL

L_
93

35
_B

.c
el

l
AL

L_
59

82
_B

.c
el

l
AL

L_
23

95
3_

B.
ce

ll
AL

L_
28

37
3_

B.
ce

ll
AL

L_
R

23
_B

.c
el

l
AM

L_
13

AL
L_

14
74

9_
B.

ce
ll

AL
L_

70
92

_B
.c

el
l

AL
L_

11
10

3_
B.

ce
ll

AL
L_

18
23

9_
B.

ce
ll

AM
L_

14
AM

L_
16

AM
L_

7
AM

L_
20

AM
L_

12
AM

L_
2

AM
L_

3
AM

L_
1

AM
L_

5
AM

L_
6

0
50

00
0

10
00

00
15

00
00

20
00

00

Dendrogram with P−values

Cluster method: ward
Distance: euclidean

H
ei

gh
t

0

0

0

pvalue*100

12 34 5 6789 10 111213 14 15 1617 181920 2122 2324 252627 282930 313233

34

35

36

edge #

	

	
	

61

also class “hclust”, hierarchical structure produced by HC. “mynode” is an integer vector

of the numbers of branches whose leaf content is desired.

Figure 17	 Usage of function LeafContent.

In above example, labels of observations under branch 1 and 28 are listed. The

branch number is always positive, between 1 and 28. A singleton, however, is always a

negative number, represented in R. If we use “mynode = c(-1, -28)” instead, this outputs

label of the first individual observation and that of the 28th individual observation.

5.3 Summary of Chapter 5
This chapter serves as an introduction and also a tutorial on how to use TBEST.

As a maintainer of this open-source package, I am responsible for keeping TBEST

updated. Knijnenburg (Knijnenburg, Wessels et al. 2009) generously provided Matlab

codes on their EVT-based p-value estimation. The most updated version of TBEST will

include implementation of SLB as a test statistic and Bootstrapping as a test of cluster

stability. More detailed and updated manuals can always be found at the package website.

	
	

	

	
	

62

Chapter 6 Discussion and Conclusion
	
	
	
	
	
	

As our test results demonstrate, the performance of TBEST as a tool for data

partitioning is equal or superior to that of similar published methods in a variety of

biology-related settings. This is true in particular for datasets with underlying tree-like

organization, such as sets of genomic profiles of individual cancer cells, of the same type

as our third benchmark case above. In a work presently in progress we are applying

TBEST systematically to a number of datasets of a similar nature. But TBEST also

performs well on datasets with no underlying hierarchical structure, such as Simulated6

or Leukemia above. In total, TBEST was able to recover the true partition of the data on

par with or better than the published methods in ten out of eleven test cases considered

here. We further note that in all but one case considered the optimal partition of the data

by TBEST also was the most significant nontrivial partition. This was not the case for the

other significance-based methods included in the comparison.

Now let us have a look at the three properties we mentioned in 1.2. There are no

doubts that TBEST satisfies property 1) and 2). Statistic S(n) is exactly a measurement on

tightness of branch n. Statistical tests are conducted to find statistically significant

branches, with distribution of null statistics obtained from randomized data. However,

TBEST cannot guarantee that a partition into tight branches exists. The last paragraph in

3.2.3 suggests a partition to be significant with a threshold α if (a) every part is a branch

and (b) if for every part at least one of the children of its parent node is tight with the p-

value p <α. In case of a nested distinct branch with its parent node and counterpart of its

parent node being non-significant, TBEST can identify this branch as a statistically tight

branch. But there may not exist a most detailed significant partition judged by criteria a)

and b).

TBEST can both be applied and formulated more broadly. The applicability of

TBEST is not limited to data partitioning that has been our focus here. TBEST can be

	

	
	

63

used for finding all significantly distinct branches of a hierarchical tree, regardless of

whether these form a full partition.

6.1 Alternative statistics
Further, alternatives to the test statistic of Equation 1 can easily be devised, For

example, for any non-leaf node n we can introduce

 𝜎!(𝑛) ≡
! ! !!! ! !! ! !!(!!(!))

!(!)
 (2)

, where c1(n), c2(n) are the two children of n.

Similarly, we can design alternative statistic for any non-leaf node n

 𝜎!(𝑛) ≡
! !(!) !!! ! ! !!!(!)

!(!)
 (3)

, where ℎ!(𝑛) is the height of node n’s sibling node.

These alternative statistics share the property that tightness of any non-leaf node

is a number between 0 and 1. While this dissertation focused on validation of better or on

par performance of TBEST using statistic proposed in Chapter 3, an implementation of

TBEST as an R language package provides a number of these alternative options, both

for the definition of tightness and for annotation of significantly distinct branches (Sun

and Krasnitz 2013).

6.2 Cluster stability
 Finally, we note that tightness of tree branches is complementary to another

important notion in clustering, namely, cluster stability under re-sampling of the input

data. The latter property can be analyzed in a number of ways, such as bootstrap analysis

of trees (Felsenstein 1985, Efron, Halloran et al. 1996, Shimodaira 2002) or methods not

directly related to trees (Dudoit and Fridlyand 2002, Monti, Tamayo et al. 2003). Existing

work provides examples where both distinctness and stability under resampling are

prerequisites of a meaningful partition (Cancer Genome Atlas Research Network 2011).

Previously in Chapter 4, most detailed significant partitions found by TBEST are

validated composed of biological meaningful subtypes. Stability of these branches is

examined, with bootstrapping sampling. The algorithm is straightforward,

1. For a tight cluster detected by TBEST, obtain the labels of observations in it,

as set C.

	

	
	

64

2. Generate M bootstrapping samples, and grow hierarchical tree on each

bootstrapping sample. Note that each sample is generated by sampling

variables with replacement.

3. In each hierarchical tree, find the cluster 𝐶∗ with similar size and most same

labels of observations. Calculate stability score

𝐵∗＝ size of 𝐶 ∩ 𝐶∗ 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐶

4. Compute the average stability score over M bootstrapping samples

𝐵 =
1
𝑀 𝐵∗

This score measures how likely occurrence of this cluster is in a number of

bootstrapping samples, which in this sense suggests cluster stability. Each table below

lists stability score of statistically significant branches. Score is computed with M = 1000

bootstrapping samples. An additional parameter r shown in the table has two values 0.5

and 1.0. It represents the proportion of variables sampled in each bootstrapping sample.

We see, from the tables, cluster stability is higher in bootstrapping samples with original

size of variables (r = 1) and those with half size of variables (r = 0.5). On the other

aspects, changing the size of variables reveals meaningful distribution of variables and

examines existence of dominant redundant variables.

Table 12 Cluster stability in Simulated6*

 Euclidean dissimilarity, complete
linkage

(1 - Pearson correlation) dissimilarity, average
linkage

r = 0.5 r = 1.0 r = 0.5 r = 1.0

cluster (class 1) 0.99 0.99 0.99 0.99

cluster (class 2) 0.98 0.98 0.99 0.99

cluster (class 3) 0.92 0.99 0.98 0.99

cluster (class 4) 0.95 0.99 0.99 0.99

cluster (class 5) 0.97 0.99 0.99 0.99

cluster (class 6) 0.96 0.99 0.99 0.99

* Label of dominant true subtype is shown in parentheses with corresponding cluster

	

	
	

65

Table 13 Cluster stability in Leukemia*

 Euclidean dissimilarity, Ward
linkage

(1 - Pearson correlation) dissimilarity, average
linkage

r = 0.5 r = 1.0 r = 0.5 r = 1.0

cluster (ALLT) 0.90 0.94 0.94 0.95

cluster (ALLB) 0.85 0.88 0.91 0.94

cluster (AML) 0.69 0.72 0.80 0.83

* Label of dominant true subtype is shown in parentheses with corresponding cluster

Table 14 Cluster stability in T10*

 Euclidean dissimilarity, Ward
linkage

(1 - Pearson correlation) dissimilarity, average
linkage

r = 0.5 r = 1.0 r = 0.5 r = 1.0

cluster (D+P) 0.99 0.99 0.99 1

cluster (H) 0.99 0.99 1 1

cluster (AA) 0.99 1 1 1

cluster (AB) 1 1 1 1

* Label of dominant true subtype is shown in parentheses with corresponding cluster

	

	
	

66

Table 15 Cluster stability in Organelles*

 (1 - Pearson correlation)
dissimilarity, Ward linkage

(1 - Pearson correlation) dissimilarity,
average linkage

r = 0.5 r = 1.0 r = 0.5 r = 1.0

cluster (Nuclei) 0.99 0.99 0.95 0.96

cluster (Cytosol) 0.98 0.99 0.99 0.99

cluster (Microsomes) 0.89 0.94 0.94 0.98

cluster (Mitochondria) 0.88 0.92 0.87 0.90

* Label of dominant true subtype is shown in parentheses with corresponding cluster

Table 16 Cluster stability in Chondrosarcoma*

 (1 - Spearman correlation)
dissimilarity, Ward linkage

(1 - Kendall correlation)
dissimilarity, average
linkage

Manhattan dissimilarity,
Ward linkage

r = 0.5 r = 1.0 r = 0.5 r = 1.0 r = 0.5 r = 1.0

cluster (FIB) 0.60 0.76 0.61 0.76 0.63 0.75

cluster (HAC) 0.65 0.78 0.67 0.80 0.62 0.71

cluster (MSC) 0.60 0.72 0.60 0.73 0.65 0.70

cluster (TCL) 0.66 0.82 0.66 0.82 0.68 0.78

* Label of dominant true subtype is shown in parentheses with corresponding cluster
	

	

Most stability scores in Table 12 to Table 15 are well above 0.9, except cluster

with AML subtype, last row in Table 13. This is consistent with interesting findings by

	

	
	

67

TBEST on benchmark case Leukemia (4.2), where substructures of AML subtype are

revealed with lower significance. Clusters in Chondrosarcoma dataset have less stability

(Table 16). The reason for this may be the number of variables is one third of the number

of observations. Cluster is less stable when constructing hierarchical structures with

variables that insufficiently explain observations. On the other hand, with r = 1, clusters

under last combination in Table 16 appear most unstable, and this is the exact case when

TBEST discovers the optimal partition with lowest significance.

6.3 Summary of Chapter 6
In this dissertation, our method TBEST performs equal to or superior to similar

published methods in finding meaningful partition on a variety of biology-related

settings. It has a broad application not only on finding partitions of datasets but also on

detecting statistical significance on internal branches. We have further discussed

alternative statistics and cluster stability. Alternative statistics have been implemented in

R package with a number of options (Sun and Krasnitz 2013). Comparison of

performance within this statistic family among various datasets is beyond the scope of

this work, but should be an interesting aspect to look into in the future. Cluster stability

has been incorporated to latest TBEST implementation (Sun and Krasnitz 2013). Cluster

stability, together with statistical evaluation on tightness of cluster, provides more

insights on significance of internal branches in a hierarchical tree, and thus can detect

biologically meaningful partition and clusters with more confidence.

	

	
	

68

Bibliography

Altman, N. S. (1992). "An Introduction to Kernel and Nearest-Neighbor Nonparametric
Regression." The American Statistician 46(3): 175-185.

Bradley, P. S. (1997). "Clustering via Concave Minimization."

Cancer Genome Atlas Research Network (2011). "Integrated genomic analyses of
ovarian carcinoma." Nature 474(7353): 609-615.

Diaz-Romero, J., S. Romeo, J. V. Bovee, P. C. Hogendoorn, P. F. Heini and P. Mainil-
Varlet (2010). "Hierarchical clustering of flow cytometry data for the study of
conventional central chondrosarcoma." J Cell Physiol 225(2): 601-611.

Dudoit, S. and J. Fridlyand (2002). "A prediction-based resampling method for
estimating the number of clusters in a dataset." Genome Biol 3(7): RESEARCH0036.

Efron, B., E. Halloran and S. Holmes (1996). "Bootstrap confidence levels for
phylogenetic trees." Proc Natl Acad Sci U S A 93(14): 7085-7090.

Eisen, M. B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998). "Cluster analysis and
display of genome-wide expression patterns." Proc. Natl. Acad. Sci. 95(25): 14863-
14868.

Felsenstein, J. (1985). "Confidence limits on phylogenies: An approach using the
bootstrap." Society for the Study of Evolution 39: 783-791.

Fung, B. C.M., K. Wang and M. Ester (2003). Hierarchical Document Clustering Using
Frequent Itemsets. N PROC. SIAM INTERNATIONAL CONFERENCE ON DATA
MINING

Golub, T. R., D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H.
Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield and E. S. Lander
(1999). "Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring." Science 286(5439): 531-537.

Hubert, L. and P. Arabie (1985). "Comparing Partitions." Journal of Classification 2(2-3):
193-218.

Jain, A. K. (1988). Algorithms for Clustering Data, Prentice-Hall, Inc.

Kaufman, L. and P. J. Rousseeuw (1990). Finding Groups in Data: An Introduction to
Cluster Analysis, John Wiley and Sons.

Kislinger, T., B. Cox, A. Kannan, C. Chung, P. Hu, A. Ignatchenko, M. S. Scott, A. O.
Gramolini, Q. Morris, M. T. Hallett, J. Rossant, T. R. Hughes, B. Frey and A. Emili

	

	
	

69

(2006). "Global survey of organ and organelle protein expression in mouse: combined
proteomic and transcriptomic profiling." Cell 125(1): 173-186.

Knijnenburg, T. A., L. F. A. Wessels, M. J. T. Reinders and I. Shmulevich (2009).
"Fewer permutations, more accurate P-values." Bioinformatics 25(12): I161-I168.

Krasnitz, A., G. Sun, P. Andrews and M. Wigler (2013). "Target inference from
collections of genomic intervals." Proc Natl Acad Sci U S A 110(25): E2271-2278.

Langfelder, P., B. Zhang and S. Horvath (2008). "Defining clusters from a hierarchical
cluster tree: the Dynamic Tree Cut package for R." Bioinformatics 24(5): 719-720.

Little, R. J. A. and D. B. Rubin (2002). Statistical Analysis with Missing Data.

Liu, Y., D. N. Hayes, A. Nobel and J. S. Marron (2008). "Statistical Significance of
Clustering for High-Dimension, Low-Sample Size Data." Journal of the American
Statistical Association 103(483): 1281-1293.

Lloyd, S. (2006). "Least squares quantization in PCM." IEEE Trans. Inf. Theor. 28(2):
129-137.

Marchette DJ, S. J. (2003). "Using data images for outlier detection." Comput Stat Data
Anal 43(4): 541-552.

Mazumder, R., T. Hastie and R. Tibshirani (2010). "Spectral Regularization Algorithms
for Learning Large Incomplete Matrices." The Journal of Machine Learning Research 11:
2287-2322.

Monti, S., P. Tamayo, J. Mesirov and T. Golub (2003). "Consensus clustering: A
resampling-based method for class discovery and visualization of gene expression
microarray data." Machine Learning 52(1-2): 91-118.

Munneke, B., K. A. Schlauch, K. L. Simonsen, W. D. Beavis and R. W. Doerge (2005).
"Adding confidence to gene expression clustering." Genetics 170(4): 2003-2011.

Navin, N., J. Kendall, J. Troge, P. Andrews, L. Rodgers, J. McIndoo, K. Cook, A.
Stepansky, D. Levy, D. Esposito, L. Muthuswamy, A. Krasnitz, W. R. McCombie, J.
Hicks and M. Wigler (2011). "Tumour evolution inferred by single-cell sequencing."
Nature 472(7341): 90-94.

Pickands, J. (1975). "Statistical-Inference Using Extreme Order Statistics." Annals of
Statistics 3(1): 119-131.

Rand, W. M. (1971). "Objective Criteria for Evaluation of Clustering Methods." Journal
of the American Statistical Association 66(336): 846-&.

	

	
	

70

Rijsbergen, C. J. V. (1979). Information Retrieval, Butterworth-Heinemann.

Rosenberg, A. and J. Hirschberg (2007). V-Measure: A Conditional Entropy-Based
External Cluster Evaluation Measure. Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning.

Shimodaira, H. (2002). "An approximately unbiased test of phylogenetic tree selection."
Syst Biol 51(3): 492-508.

Sun, G. and A. Krasnitz (2013). "TBEST: Tree branches evaluated statistically for
tightness." The Comprehensive R Archive Network: http://cran.r-
project.org/web/packages/TBEST/index.html.

Sun, G. and A. Krasnitz (2014). "Significant distinct branches of hierarchical trees: a
framework for statistical analysis and applications to biological data." BMC Genomics
15: 1000.

Ward, J. H., Jr. (1963). "Hierarchical Grouping to Optimize an Objective Function."
Journal of the American Statistical Association 58(301): 236-244.

Witten, D. M. and R. Tibshirani (2010). "A framework for feature selection in
clustering." Journal of the American Statistical Association 105(490): 713-726.

Zhao, Y and G. Karypis (2001). Criterion functions for document clustering: experiments
and analysis University of Minnesota.

	

	
	

71

Appendix
	
	
Comparative analysis of time complexity and performance
	

1. Time Complexity

Time complexities of TBEST and of the three existing methods are listed in Table S1.1.
These depend on the number of randomizations m, number of observations n and number
of variables d. For the two top-down methods, SC and SLB, the complexities as stated
correspond to the worst-case scenario wherein all internal nodes of the tree are examined.

TBEST O(mn2d) + O(mn3)
SC O(mn2d) + O(n3d)
SLB O(mn3d) + O(mn4)
DTC O(n2d)

TBEST requires, for each randomization, to compute a dissimilarity matrix at a cost
O(n2d) and to grow a hierarchical tree at a cost O(n3). Other computational costs, such as
computing the tightness, are sub-dominant to these two.

The complexity of SC was computed under the worst-case assumption that one of the
daughters at each internal node of the tree is a single leaf. With this assumption,
computing statistic on n-1 hierarchies with each simulation, from 1 to m, needs O(mn2d).
For each branch, from 1 to n-1, SC computes variance-covariance matrix [2], which takes
O(n3d) in total. Other computational costs, such as computing the eigenvalues of the
variance-covariance matrix, are sub-dominant to these two.

SLB performs randomization for each internal node being examined and requires
computation of dissimilarity matrix and hierarchical clustering for each such
randomization [3]. The necessity of performing these operations separately for each
internal node explains the additional factor of n in the complexity of SLB compared to
that of TBEST.

DTC does not perform statistical assessment of partitions, and its complexity is
independent of m. The complexity as stated refers to the worst-case scenario, wherein the
minimal allowed number of leaves on a branch is one. The dominant term in the
complexity estimate comes from executing step 2 of the dynamic hybrid algorithm [1].

	 	

Table S1.1 Time complexities of TBEST and of the published methods

	

	
	

72

2. Performance

Here we report execution times of TBEST and of the other three methods for all
combinations of datasets, dissimilarities and linkages studied in this work. These are
reported in five tables, one per dataset.

The following computing resource was used:

MacBook Air
Processor Name: Intel Core i5
Processor Speed: 1.3 GHz
Number of Processors: 1
Total Number of Cores: 2
L2 Cache (per Core): 256 KB
L3 Cache: 3 MB
Memory: 4 GB

For TBEST, SC and SLB, 5000 randomizations were performed. For SC and DTC the
packages sigclust and dynamicTreeCut were used, respectively [4-5]. For TBEST and
SLB the R language package TBEST was invoked [6]. All these packages are publicly
available from the Comprehensive R Archive Network (CRAN). The TBEST package
facilitates parallel execution, and both cores of the processor were employed.

Table S2.1 Simulated6
Method / Combination Euclidean dissimilarity

complete linkage
(1 - Pearson correlation) dissimilarity
average linkage

TBEST 74.00s 123.00s
SC 78.10s 78.10s
SLB 232.83s 122.76s
DTC 0.05s 0.04s

Table S2.2 Leukemia
Method / Combination Euclidean dissimilarity

Ward linkage
(1 - Pearson correlation) dissimilarity
average linkage

TBEST 92.36s 118.83s
SC 92.47s 92.47s
SLB 400.42s 129.02s
DTC 0.03s 0.02s

Table S2.3 T10
Method / Combination Euclidean dissimilarity

Ward linkage
(1 - Pearson correlation) dissimilarity
average linkage

TBEST 376.92s 446.75s
SC 297.65s 265.15s
SLB 1063.80s 448.84s
DTC 0.07s 0.06s

	

	
	

73

Table S2.4 Organelles
Method / Combination (1 - Pearson correlation)

dissimilarity
Ward linkage

(1 - Pearson correlation)
dissimilarity
average linkage

TBEST 320.38s 320.22s
SC 2135.00s 2125.91s
SLB 1382.38s 326.29s
DTC 0.01s 0.01s

Table S2.5 Chondrosarcoma
Method /
Combination

(1 - Spearman correlation)
dissimilarity
Ward linkage

(1 - Kendall correlation)
dissimilarity
average linkage

Manhattan dissimilarity
Ward linkage

TBEST 117.84s 121.13s 5.50s
SC 30.01s 17.09s 54.99s
SLB 232.01s 194.40s 24.30s
DTC 0.03s 0.04s 0.02s

	
References

1. Langfelder P, Zhang B, Horvath S: Defining clusters from a hierarchical
cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 2008,
24(5):719-720.

2. Liu Y, Hayes DN, Nobel A, Marron JS: Statistical Significance of Clustering
for High-Dimension, Low-Sample Size Data. Journal of the American
Statistical Association 2008, 103(483):1281-1293.

3. Munneke B, Schlauch KA, Simonsen KL, Beavis WD, Doerge RW: Adding

confidence to gene expression clustering. Genetics 2005, 170(4):2003-2011.

4.	 Langfelder P, Zhang B, Horvath S: dynamicTreeCut: Methods for detection of

clusters in hierarchical clustering dendrograms. The Comprehensive R Archive
Network:	 http://cran.r-project.org/web/packages/dynamicTreeCut/index.html.

5. Huang H, Liu Y, Marron JS: sigclust: Statistical Significance of Clustering. The

Comprehensive R Archive Network: http://cran.r-
project.org/web/packages/sigclust/index.html.

6. Sun G, Krasnitz A: TBEST: Tree branches evaluated statistically for

tightness. The Comprehensive R Archive Network: http://cran.r-
project.org/web/packages/TBEST/index.html.

	

	
	

74

Figure S1
The null distribution of node tightness S depends on the number of leaves.
This dependence is illustrated for all the benchmarks and dissimilarity – linkage
combinations analyzed. In each case the distributions of S are shown for nodes with 2, 5
and 20 leaves. Each plot is based on 5000 randomizations of the respective data set. 	
	
	

A: Simulated6 	
Euclidean dissimilarity – complete linkage combination

	
	

0.00 0.05 0.10 0.15 0.20

0
10

20
30

40

B

S

nu
ll

pr
ob

ab
ilit

y
de

ns
ity

cluster of size 2
cluster of size 5
cluster of size 20

	

	
	

75

B: Simulated6
(1 - Pearson correlation) dissimilarity – average linkage combination

	

C: Leukemia
Euclidean dissimilarity – Ward linkage combination

	

0.00 0.05 0.10 0.15 0.20

0
50

10
0

15
0

B

S

nu
ll

pr
ob

ab
ilit

y
de

ns
ity

cluster of size 2
cluster of size 5
cluster of size 20

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
2

4
6

8

B

S

nu
ll

pr
ob

ab
ilit

y
de

ns
ity

cluster of size 2
cluster of size 5
cluster of size 20

	

	
	

76

D: Leukemia
(1 - Pearson correlation) dissimilarity – average linkage combination

	
	

E: T10
Euclidean dissimilarity – Ward linkage combination

	

0.0 0.1 0.2 0.3 0.4 0.5

0
5

10
15

20
25

30

B

S

nu
ll

pr
ob

ab
ilit

y
de

ns
ity

cluster of size 2
cluster of size 5
cluster of size 20

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
1

2
3

4
5

6

B

S

nu
ll

pr
ob

ab
ilit

y
de

ns
ity

cluster of size 2
cluster of size 5
cluster of size 20

	

	
	

77

F: T10
(1 - Pearson correlation) dissimilarity – average linkage combination

	

G: Organelles
(1 - Pearson correlation) dissimilarity – Ward linkage combination

	

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
5

10
15

20

B

S

nu
ll

pr
ob

ab
ilit

y
de

ns
ity

cluster of size 2
cluster of size 5
cluster of size 20

0.0 0.1 0.2 0.3 0.4 0.5

0
5

10
15

B

S

nu
ll

pr
ob

ab
ilit

y
de

ns
ity

cluster of size 2
cluster of size 5
cluster of size 20

	

	
	

78

H: Organelles
(1 - Pearson correlation) dissimilarity – average linkage combination

	

I: Chondrosarcoma
(1 - Spearman correlation) dissimilarity – Ward linkage combination

	

0.0 0.1 0.2 0.3 0.4

0
20

40
60

80

B

S

nu
ll

pr
ob

ab
ilit

y
de

ns
ity

cluster of size 2
cluster of size 5
cluster of size 20

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

B

S

nu
ll

pr
ob

ab
ilit

y
de

ns
ity

cluster of size 2
cluster of size 5
cluster of size 20

	

	
	

79

J: Chondrosarcoma
(1 - Kendall correlation) dissimilarity – average linkage combination

	

K: Chondrosarcoma
Manhattan dissimilarity – Ward linkage combination

	

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

B

S

nu
ll

pr
ob

ab
ilit

y
de

ns
ity

cluster of size 2
cluster of size 5
cluster of size 20

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

B

S

nu
ll

pr
ob

ab
ilit

y
de

ns
ity

cluster of size 2
cluster of size 5
cluster of size 20

	

	
	

80

Figure S2
Empirical p-value estimates for tightness compared to EVT-based estimates.
Combined results for all tree nodes in all benchmark studies are shown. For each
benchmark the combinations of dissimilarity and linkage are enumerated in the same
order as they appear in Table 2. Displayed are the values corrected for hypothesis
multiplicity (cf the Methods section). Empirical estimates are based on 1000×N
randomizations each, N being the number of leaves. EVT estimates are based on 1000
randomizations each. If the empirical p-value estimate based on these 1000
randomization is large, the EVT algorithm defaults to this estimate. The corresponding
points are shown by empty symbols of the appropriate shape and color. The diagonal
dashed line indicates the identity. The vertical dashed line indicates the minimal
multiplicity-corected empirical p-value [1 – (1 – pe)N-2] / (nr + 2), where N is the number
of leaves and nr is the number of randomizatons.
	
	
	

	 	

●

●
●
●

●
●

●

● ●

●
●●●

1e−04 1e−03 1e−02 1e−01 1e+00

1e
−1
6

1e
−1
2

1e
−0
8

1e
−0
4

1e
+0
0

p

p E
VT

●●●●●●●●●●●●●●●●●● ●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●

●

●

●

●●

●

●

Simulated6−1
Simulated6−2
Leukemia−1
Leukemia−2
T10−1
T10−2
Organelles−1
Organelles−2
Chondrosarcoma−1
Chondrosarcoma−2
Chondrosarcoma−3

	

	
	

81

Table S1
genes 1-50 51-100 101-150 151-200 201-250 251-300 301-600

observations with up-regulated
genes

1-8 9-20 21-30 31-45 46-50 51-60

mean of up-regulated
expressions

594 699 296 296 401 344

regular mean 40 69 40 39 37 39 38

standard deviation 50 75 100 101 200 203 200

* Among the first 300 genes, each block of 50 genes comes from a normal distribution with parameters as
tabulated, except for those observations within the class that these genes are up-regulated. Within each
block the regular and the up-regulated distributions differ in the mean but have equal standard deviations.
The values for the last 300 genes are drawn from the same normal distribution for all observations.
	
	
	
	
	
	
	
	
	
	
	
	 	
	
	
	
	
	

Properties of Simulated6 dataset*
	

