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ABSTRACT

Organizations face Cyber attacks of increasing sophistication. However, detection mea-

sures have not kept up with the pace of advancement in attack design. Common detection

systems use detection rules or heuristics based on behaviors of known previous attacks and

often crafted manually. The result is a defensive system which is both too sensitive, result-

ing in many false positives, and not sensitive enough, missing detection of new attacks.

Building upon our work developing the Covertness Capability Calculus, we propose

Malware Vectors, a technique for the discovery of defense logic via remote probing. Mal-

ware Vectors proposes a technique for building malware by discovering obserables which

can be generated without triggering detection. Malware Vectors generates probes to estab-

lish a vector of acceptable observable values that the attack may generate without triggering

detection. We test attacks against an unknown defense logic and show that it is trivial to

discover a covert way to carry out an attack. We extend this simulation to randomly gener-

ated defense logics and find that without a change in underlying strategy defenders cannot

improve their position significantly. Further, we find that discovery of full logic can be

efficiently achieved using only Membership Queries in most cases. Finally, we propose

some techniques that a defender could implement to attempt to defend against the Malware

Vectors technique.
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Chapter 1

Introduction

As business processes and proprietary information migrate to networked computing sys-

tems and even offsite systems, the security of these systems is increasingly critical as the

increase in the value of these targets has not gone unnoticed. Today, organizations face in-

creasingly sophisticated Cyber attacks1. In response, defenders have turned to systems that

perform a task analogous to anti-virus systems - detecting behaviors that match signatures

of known bad behaviors.

In this thesis, we propose a technique we call “Malware Vectors” which performs a side-

channel2 attack on logical information leaked by defensive logic based detection systems.

We find that these defender systems tend to provide only a trivial amount of protection, at

the cost of significant false certainty and high false positive rates. We further find that if we

were able to establish a bound between the complexity of operations of “normal” behavior

and “illicit” behavior, it would be possible to craft a significantly more effective set of rules

that limit false positives.

We take as a given that there is a defender system which operates on a set of logic

programmed by the system operators. We propose that these systems can be modeled by a
1The use of information technology to infiltrate or disrupt computer systems [1].
2A side-channel attack is an attack on the security of a system which relies on a secondary effect of

behavior of the system to subvert the primary function of its security implementation [2]. Side-channel
attacks are most commonly discussed in cryptography contexts. For example, it is possible to recover the
encryption key of a DES cipher by observing how long the cipher takes to run [3].

1



boolean expression. We will examine how much learning can be done with respect to the

underlying logic without access to such logic in addition to how much learning we actually

need to do in order to evade such defender logics.

1.1 Outline

Chapter 1 will introduce you to the problem and the real world context in which it exists.

In Chapter 2, we will provide terminology information and examples for real world sce-

narios in greater depth. Additionally, we provide examples of real world defense logics as

logical expressions appropriate for our technique. We continue in Chapter 3 with some of

our earlier work in on similar problems in this field to provide some contextualization for

the work which laid the groundwork for this technique. Chapter 4 explores the analytic

underpinnings of this technique, which inform our simulated results. Finally, Chapter 5

contains the description of our simulations and simulated results in depth.

1.2 Landscape

This work was driven by group work on “Covertness Calculus”, a technique we developed

to quantify the covertness of a particular piece of malware with respect to a known set of

defensive systems. We define covertness of a particular piece of software as the probability

that the software will not cause the monitoring software of the system or network on which

it is running to issue an alert. Figure 1.1 provides a layout of how this technique works. To

quantify covertness we need a model for a defender’s alert logic, a model for the behavior

of the malware in question and finally a model to calculate covertness based on the two

parameters.

The Covertness Calculus, further discussed in Section 3.3, models a defender’s defen-

sive systems as a logical block diagram. In the diagram, each block represent’s a defender’s

2



Malware Models Adversary Models+

Covertness Calculus

Malware Covertness 

against a 

Specific Adversary

Figure 1.1: The capability calculus takes as input the defender model and the behavior
model of a malware sample and calculates a covertness score.

sensor which is probabilistically triggered based on observed behavior of a piece of soft-

ware. By first calculating the probability of each sensor triggering on the behavior of spec-

ified malware, and subsequently the reliability of the diagram as a whole, we can quantify

the covertness ot the malware.

Defenders can use the Covertness Calculus, as is, to test the capability of their systems

to detect known malware, and perhaps to test the efficacy against predicted future attacks.

Of course, given the capability calculus model, if an attacker were to possess a model

for the defense logic, they would be able to craft particularly covert malware. “Malware

Vectors” builds upon the Covertness Calculus by proposing such a technique to disover

defense logic for the purpose of covertness testing.

1.2.1 Modern Real World Framework

This section aims to place this work in context with current high-level discussions in the

networked computer security, or Cyber domain. In these discussions a few models are

used. In particular, we explore the “Cyber Kill Chain”, a technique for qualifying attacker

actions.

3



Figure 1.2: The Lockheed Martin Cyber Kill Chain [5].

Cyber Kill Chain

The Cyber Kill Chain is a qualitative categorization technique used for describing the gen-

eral path that attackers often take to compromise a network. A diagram of the original

Cyber Kill chain model as envisioned by Lockheed Martin can be seen in Figure 1.2 [4].

The technique is used to evaluate the responses available to a defender in order to stop the

attack. There are a number of different kill chains which have been developed, but most of

them are pretty much equivalent. Generally, they have steps similar to: “Reconnaissance”,

“Infiltration”, “Propogation”, “Exfiltration”.

The Cyber Kill Chain is used by organizations for two main purposes, first, to ana-

lyze weaknesses in existing defenses. Via this analysis, defenders are able to get some

qualification as well as quantification of how well their defenses can work against theoret-

ical attacks. This analysis can drive decisions about where to invest resources in order to

4



improve defenses. [6].

Secondly, organizations use the kill chain in triage planning when they suspect they

have been seriously compromised [7]. In triage, the use of the Kill Chain allows a defender

to quickly eliminate the options that won’t work3 and limit the options to those that attempt

to restrict the attacker from making a complete cycle to the exfiltration step4.

Malware Vectors logically operates primarily at the Reconnaissance level, gathering

information about a defender before the formal attack is launched, however, each probe

actually generates observables arbitrarily according to what the probe is designed to test.

Since each probe generates a set of chosen observables to test whether they are detected

by the defender’s logic, in fact the observed actions of these probes can span the whole

of the kill chain. Conversely, the most traditional Attacker Reconnaissance techniques are

network penetration testing and exploit testing against other systems on the network.

1.3 Real World Context

Historically, Cyber attacks have tended to be relatively unfocused. For example, the Con-

ficker worm, detected in 2008, spread to upwards of 9 million machines in 200 countries

[8]. The motivation for these attacks ranged from curiosity (in the case of worms), to finan-

cial motivations (in the cases of harddrive ransoms and spamnets) to political (in the case

of many DDOS attacks).

Recently though, Cyber attacks have become a highly effective component of economic

and nation-state espionage. This new generation of attacks is targeted and relatively precise.

One such attack is the Stuxnet virus. Discovered in 2010, Stuxnet was specially crafted

to attack specific centrifuges controlled by a specific model of centrifuge control system

running a specific version of firmware on an air-gapped5 intranet [10]. This attack has been

3For example: those that only affect steps on the Kill Chain that the attacker has already passed.
4This of course assumes that exfiltration is the objective of the attacker.
5A system or network not directly connected to the outside internet at any time [9].

5



widely considered to be a turning point for Cyber security incidents involving nation states

[11][12].

In a more recent example, Neiman Marcus, a luxury department store based in the

United States, experienced a compromise of its point of sale terminals over a period of three

and a half months. Over that period of time, Neiman Marcus’s Cyber security systems gen-

erated over 60,000 alerts relating to this attack. Regardless, system operators overlooked

these alerts, because they were being generated about an executable named similarly to the

standard point of sale system. Because of this oversight, attackers obtained a large quantity

of credit card details. It has further been reported that these 60,000 alerts comprised only

1% of the alerts generated in this time period by Neiman Marcus’s security systems [13]. It

often is the case that even when a system is able to detect a brazen attack, the rate of false

positives causes operators to not trust the output of the system in the first place. Rendering

it, perhaps, worse than useless.

1.4 State of the Art Defense Techniques

Given this reality, it would be reasonable to infer that current defense techniques are largely

ineffective. The current state-of-the-art in these defenses relies on a set of rule-based log-

ics crafted, often by hand, to detect activities similar to attacks that are already widely

known. These rules are implemented via an application such as ArcSight, Splunk or Fire-

Eye, which gather data from many different sensors6, evaluate the “Observables”7 in the

data and trigger alerts when rules based on event counts or statistical properties thereof are

violated.

Commonly used defensive systems are rule-based detection logic programs called an

“Intrusion Detection System” (IDS) or “Security Information and Event Management”

6A few examples of sensors: a network activity monitor, a disk usage monitor,
7An observable is a single data point. For example, accessing a file on a machine or sending a packet are

observables. When those actions are actually observed by a sensor we call them “events”.

6



alert icmp any any -> any any (msg:"ICMP Packet"; sid:1;)

Figure 1.3: Snort ICMP Packet Rule

(SIEM) system. Some examples of such systems are Snort [14], a NIDS or “Network

Intrusion Detection System” and ArcSight [15], a SIEM. These systems collate reports of

events occuring on network appliances or host systems and compare statistical properties

or raw counts of events to rules chosen by the system operator to generate alerts. These

alerts can be programmed to either take immediate action or to prompt a human operator

to review the alerts and take appropriate action. The rules are derived from vulnerabilities

and attacks that are already known. Adding new rules usually requires some measure of

manual configuration [16].

1.4.1 Configuration Example: Snort

When managing end-client machines, a network administrator may desire to monitor any

ICMP “pings”8 to that machine. Generally user machines do not need to allow any unso-

licited inbound traffic, and responding to pings thus provides information leakage about the

state of the machine, potentially leaving it more vulnerable. Figure 1.3 shows a Snort rule

which raises a passive alert9 whenever a ping packet is detected.

Explaining Figure 1.3 in more depth, this rule will trigger an “alert” whenever an

“icmp” (or ping) packet is sent from “any any” (anywhere) to “any any” (anywhere) and

print the message “ICMP Packet”. To add this rule, a defender would add the rule to the

Snort configuration file on their network monitoring machine, and then watch the log file

that would be generated for any alerts. We discuss more complex rule creation in Section

2.4.1.
8A “ping” is a message a computer can send to another computer to ask “Can you hear me?”. A response

to a ping affirmatively confirms that there is a machine at the address the ping was sent to.
9An operator would have to notice and respond to the alert.

7



1.5 State of the Art Attack Techniques

For the purposes of discussing an “Attacker” from hereon, we assume that we are dis-

cussing a relatively skilled adversary with non-negligible resources. Such an attacker will

be interested in systems that are actively monitored and reasonably modern in terms of their

security infrastructure.

Though it is relatively low-tech, the state of the art in machine compromise is spearphish-

ing. In a spearphishing attack an attacker will gather some general personal information

about a worker or group of workers in the organization whose systems they wish to compro-

mise. For example, they may gather the official title and full names of all of the secretaries.

The attacker will then craft an email or social media message that that employee is likely

to open, and attach a malicious executable to that email.

From the staging area on this first employee’s machine, the malware will attempt to

scout the network and then contact a central Command and Control Server. The next step in

such an attack would often be for the Command and Control server to send new instructions

to the software running inside the defender’s network instructing it on how to proceed with

the attack.

For this work we assume the ability to gain a foothold on some machine inside the de-

fender’s network, and thus we do not address the intial infection vector (such as phishing).

I

1.6 The “Malware Vectors” Technique

We propose the use of “Malware Vectors”, a technique to discover and evade defense logic

systems. In this technique, an attacker evaluates its set of priorities and based on those

priorities, enumerates “capabilities” that would allow it to realize its objectives. Each ca-

pability is comprised of a set of actions taken on a defender network. Each action generates

observables, the observables being assigned a value based on the range of possible values.

8



Each of these capabilities provides some utility to the attacker based on the aforementioned

sets of priorities. Through the use of probes that generate known observables and observa-

tion of when probes are detected, the attacker is able to simultaneously learn information

about the defense logic and thus discover a way to design a covert attack.

This probing technique remains covert, as the probes are designed not to reveal the

attacker’s actual objectives. Any alarms that are triggered appear to the defense to be

working as intended, and should not spur the defense to change its logic. Undetected

probes are by definition covert, as the defense logic does not detect them.

1.6.1 Real World Analogs

A kinetic analog to this technique is the ongoing defense testing performed by the United

States and Russia, beginning during the Cold War and continuing with regular frequency

to this day. Each country will, on occasion, probe the air defenses of the other by flying

military planes near the other’s airspace to observe the response they provoke. NORAD has

stated that in 2009 alone it detected and intercepted Russian bombers sixteen times [17].

Similar techniques have also been shown in popular culture. In the 2001 Film “Bandits”

[18], two men aim to rob a bank. In the planning stages of the robbery, they test the

bank’s defenses by intentionally triggering the alarm from outside. They then measure the

response time of the police, and know exactly how long they will have to rob the bank and

get away.

Antivirus definitions are very similar to modern cyber defense systems. Antivirus pro-

grams work by checking data on the user’s harddrive and applications in running memory

against a list of signatures of known bad activities.

9



1.7 Results

We find both analytic and empirical results in our exploration of this technique. First, in

our analytic analysis we find that for any Defense representable as a Monotone K-DNF10,

with M terms on N variables, an Attack representable as an A variable conjunction takes

at most

(
1 +

1(
A
K

))×M +
1(
A
K

) × ((N
K

)
−M

)
probes to discover the full defense logic. Additionally the expected number of probes to

find a single vulnerability (missed detected conjunction) of size A, given a K-DNF defense

logic with M terms is:

M(
A
K

)
Secondly, we find empirically in Chapter 5 that a carefully crafted Defense Logic

against a specific attack type is incapable of preventing an Attacker who uses 8 probes

to evade the defenses. Additionally, we find more broadly for a large number of generated

defenses that it is relatively trivial for an attacker to evade them. Even with up to 2000

Terms in a 3-DNF (which only has 4060 possible unique terms) the defender is unable to,

on average, ensure that the attacker must use 40 probes to find a vulnerability.

10A logical expression composes entirely of disjuncted conjunctions of no more than K variables which
are not negated.
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Chapter 2

Background

In this Chapter, we review past research efforts in modeling Cyber scenarios and introduce

the background material required to understand the contributions of this thesis. We begin

with an Overview of Logical Expressions.

Logical Expressions are used extensively in the main contribution of Chapter 4 and

5. We continue with a quick primer on Game Theory and Attack Graphs, important for

Chapter 3. We then discuss in further depth the background information on real world

cyber problems and the models currently used to express them. Finally, we will introduce

the more sophisticated techniques we build will upon in Chapters 4 and 5.

2.1 Overview of Logical Expressions

Logical Expressions consist of one of more Logical Operators and Logical Variables. Log-

ical Variables, and subsequently Logical Expressions, can only evaluate to values “True”

or “False”, represented by 1 or 0 respectively. Each Operator operates at most on the two

subexpressions adjacent to it. Logical expressions follow the order of operations rule with

respect to parentheses. Additionally, the NOT Operator has precedence over other Opera-

tors; Operators otherwise are evaluated left to right. In Table 2.1, we introduce the Logical

Operators we will use in this paper.
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Logical Operator Symbol Meaning
AND ∧ Evaluates to True ⇐⇒ both subexpressions are True.
OR ∨ Evaluates to True if either subexpression is True.

XOR ⊕ Evaluates to True ⇐⇒ exactly one subexpression is True.
NOT ¬ Negates the value of the subexpression to the right of the operator.

Table 2.1: The Logical Operators we will use in this paper.

There are a number of formal constructions of Logical Expressions that can allow for a

measure of simplification in analysis of those expressions. Commonly used is the Disjunc-

tive Normal Form (DNF). A DNF expression is a series of disjunctions (subexpressions

OR’d together) with each subexpression consisting only of conjunctions (variables AND’d

together). For example, this expression of the variables A,B,C and D is written in DNF:

(A ∧B) ∨ (C ∧D).

Formally, each conjunction of a DNF is a “term”. For example, the expression above

has two terms, A∧B and C∧D. We also use a shorthand notation for terms, which implies

conjunctions. For example, the above statement can also be written as:

AB ∨ CD

In Chapter 5 we use an additional shorthand for logical expressions where each variable

can take on additional values. For example, a4 would represent the variable a taking on

the value 4. This notation with lower case variables and a subscript is used to specify

observables generated by an attacker.

For this notation it is also important to know the value space in which the variables are

operating. We do this by considering the values to exist in a base, S. Thus, variables in

base S are restricted to the natural numbers between 0 and S − 1.

To allow for defender logic that sets a ceiling on “acceptable” values, and detects events

occuring with frequncy equaling or exceeding that ceiling, we use a shorthand consisting

of uppercase variables with a subscript. This shorthand is equivalent to an expression that

covers the range of values for the variables of a subexpression. Table 2.2 provides a few

examples of how to expand these shorthand expressions.

12



Shorthand Base Expansion
AV S av ∨ av+1... ∨ aS−1
A2 4 a2 ∨ a3

A3 ∧B2 5 (a3 ∧ b2) ∨ (a3 ∧ b3) ∨ (a3 ∧ b4)...(a4 ∧ b4)

Table 2.2: The expansion of shorthand defense expressions.

2.1.1 Implicants

An important concept for the work in Chapter 4 is that of the Implicant. A Logical Con-

junction Term B is an Implicant of another Expression F if B =⇒ F . Put another way,

B is an implicant of F if B is a “covering” term or a superset of F . For example, AB is an

implicant for A, B and AB, because if AB is true, all of those terms must also be true [19].

Generally we are not interested in the set of implicants containing the term itself, so the

set would be stated: AB =⇒ {A,B}. We introduce the term “capturing” for the reverse

property. In this case either A or B captures AB because AB =⇒ {A,B}.

For a more complex example we find the implicants for (A ∧B) ∨ (C ∧D ∧E). First

we split the expression into its conjunction terms, AB and CDE. Next we would find the

implicants for each term using Truth Tables. Since the implicants for AB are known, we

show those for CDE in 2.3.

Value of C Value of D Value of E Value of Term C ∧D ∧ E
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

Table 2.3: The Truth Table for the first term A ∧B.

From the Truth Table 2.3 we find that CDE is an implicant for {C,D,E}. Addi-

tionally, every combination of those 1 length implicants is also an implicant. Since the
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only implicant of length 3 will be the term itself we only need to consider implicants of

length 2. By counting there will be
(
3
2

)
= 3 additional implicants of length 2. These are:

{CD,CE,DE}. Thus, the full set of implicants is: CDE =⇒ {C,D,E,CD,CE,DE}.

Formally, only conjunction terms can have implicants, however, we can draw some

inferences about the nature of the set of implicants of the DNF expression based on its

value. Since the expression is in DNF form, if any of its terms is true, the overall expression

will also be true. Thus, if the full expression is true it must be the case that at least all of

the members of a set of implicants for one of its terms must be true.

2.1.2 Monotone Expressions

For much of the work in Chapters 4 and 5 we focus on Monotone DNF Expressions. A

Monotone expression is formally defined thusly: “[An expression] is monotonic if, for

every combination of inputs, switching one of the inputs from false to true can only cause

the output to switch from false to true and not from true to false” [20]. Put more simply, a

monotone expression is an expression that has no negations. For example,AB is monotone,

while (¬A) ∧ B is not because for the assignment of values A = False, B = True if we

switch A to True, the expression becomes False.

2.2 Overview of Game Theory

Game Theory is “the study of conflict and cooperation between intelligent rational decision-

makers” [21]. Game Theory provides a technique for modeling adversarial scenarios. In

this section we discuss the nature of information in games, and some basic background on

how players make decisions in the formalized structure of Game Theory.
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2.2.1 Nature of Information in Games

Game theoretic models provide various constraints on the information available to the play-

ers. Of particular interest is the contrast between imperfect and perfect information games

as well as complete and incomplete information games.

In a perfect information game players are aware of all information constructing the

current state of the game. Conversely in an imperfect information game, players may be

unaware of some information about the state of the game.

Similarly, but distinctly, in a game of complete information each player is aware of

the full structure of the game and the payoff functions of all players. In Chapter 3.1 we

discuss an incomplete information game (each player is not aware of the utility functions

of the other players), with hidden information (each player has a piece of secret informa-

tion, making this an imperfect information game). The analysis of this multi-player game

explores a technique for estimating future adversary actions based on an assumption of a

continuous use of a single utility function by the adversary, and on observations from play.

2.2.2 Utility Functions

Players in games are rational and thus must have an empirical process for decision making.

This process makes use of a function called a “Utility Function” which considers the costs

and outcomes of an action. Players in games will aim to always maximize their expected

utility. The utility of an action taken by a player is a function of the set of actions taken by

all players.

Utility Functions are derived from the actual outcomes received and the costs incurred

by the players, pursuant to adjustment via a “Risk Profile”, or a player’s attitude or tolerance

for risk. A “Risk Profile” is a function representing the appetite of a player to risk. A

“Risk Profile” transforms actual losses or gains to the perceived value of the loss or gain

experienced by the player.

The simplest “Risk Profile” is a linear one, in which all gains and losses are multiplied

15
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Figure 2.1: The Linear Utility Function

by the same constant C, as seen in Figure 2.1.

2.3 Overview of Attack Graphs

An attack graph is a finite graph in which directed edges represent steps in an attack on

a defender’s systems. The attacker wishes to traverse the graph from the start to their

objective. The graph is weighted, and the weight on each edge represents the cost to an

attacker to transition between two states. In Section 3.2, we discuss the analytical results

regarding attack graphs which preceded this work.
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Figure 2.2: An example of an attack graph.

Figure 2.2 is an example of an attack graph where an attacker wishes to gain root1

access to a system on the defender’s network. Each edge represents an action the attacker

can take, where its weight is the cost of traversing that edge. Each node represents a

state the attacker can be in. In this graph, the attacker wishes to traverse the graph from

“Start” to “Root Access”. The attacker can take a number of paths, by either exploiting

vulnerable software running on the system, compromising a user account, or performing

a physical compromise of the machine. An attacker interested in minimizing their cost to

compromise would take the path through the “Compromised User Account”. A defender

interested in increasing the difficulty of compromise could implement a password attempt

limiter to drastically increase the cost of such an attack.

1“Root” access, also called “administrator” or “superuser” access refers to unrestricted access on a system,
including the ability to change system files, executibles and configurations.
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2.4 Current State of Cyber - Real World

In real world environments, an actor, who we will call the Defender, wants to complete a

mission using the network and computing resources they own. In order to complete this

mission they will generally require that computer systems must be networked or connected

in some way.

Adversaries, who we will call Attackers, wish to use the resources of the Defender to

execute their own mission, without the knowledge of the Defender. Some possible mission

objectives include the exfiltration of proprietary information residing on the Defender’s

systems, or the use of the Defender’s system as a intermediary system to attack a third

party’s systems.

Defenders have a variety of techniques they use to protect their systems against the at-

tempts of Attackers to compromise them. These techniques span everything from auditing

the software running on each system on the network to scanning network traffic for suspi-

cious behaviors using an Intrusion Detection System or IDS. In particular this work focuses

primarily on the functions of IDS and other related systems.

2.4.1 IDS

An Intrustion Detection System is a system that collates logs from a number of sources and

compares events in those logs to numerical or statistical rules that trigger alerts when their

parameters are violated. Snort is an example of a Network IDS (NIDS), while ArcSight is

a Security Information and Event Management system, a more generic IDS.

IDS systems work by comparing their set of alert rules to properties of events on the

network or systems under observation. The funtionality of these systems is thus defined by

their alert rules. The vulnerabilities that exist in these systems are a function of shortcom-

ings of these rules. These rules are almost entirely based on previous, known, vulnerabili-

ties. In order to increase the efficacy of these retrospective rules, they are often written with
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rate_filter
gen_id 0, sig_id 1,
track by_src,
count 100, seconds 1,
new_action drop, timeout 10

Figure 2.3: This Snort filter will begin to drop all packets from an IP address when it has
detected 100 ping packets from that address in 1 second [24].

the objective to caputure the vulnerability, not the exploit[22]. For NIDS there are tech-

niques similar to Malware Vectors, such as in Vigna[23]. Vigna proposes using random

mutations exploits to widen a narrowly defined rule to attempt to capture the vulnerability

rather than the exploit. However, unlike Malware Vectors, Vigna’s “Mutant Exploits” are

generated randomly and do not attempt to address optimal actions an attacker may take.

Snort is open source, and comes with a set of default commonsense rules, which the com-

munity has deemed to be appropriate to detect known attacks.

Snort Examples

In this section we provide a few sample rules from Snort documentation, and show how they

can be represented by a Monotone DNF expression. In addition, we show the interface to

these two programs (Snort and ArcSight) in order to give a sense to which tools operators

crafting rules would have access to. We discuss some of the practical shortcomings of these

systems by using examples of times they have failed to provide the protection defenders

assumed they would provide.

In Figure 1.3, we showed a very simple Snort rule for detecting ICMP traffic. If we

were concerned about ping flood attacks, we could add a Snort “rate-filter” to detect any

case where in excess of 100 pings per second are detected, as shown in Figure 2.3.

This rate filter would drop all traffic from any IP that sent more than 100 pings in a

second. This could be represented by the trivial Monotone DNF, where Ai represents a

ping rate per second of 50 ∗ i and S ≥ 3: A2.

In a slightly more complex example, we assume the defender has a machine running a
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alert tcp any any <> 10.0.0.1 80 (pcre:"/4\d{3}(\s|-)?\d{4}(\zs|-)?\d
{4}(\s|-)?\d{4}/"; \

msg:"VISA card number detected in clear text";content:"visa";nocase;
sid:9000000;rev:1;)

}

Figure 2.4: This Snort rule will issue an alert message whenever it detects a network packet
headed to the server at 10.0.0.1 on port 80 (unencrypted HTTP) which contains a Visa card
number. The string following “pcre” is a Perl regular expression which captures a at least
all Visa card numbers [25].

website on the IP “10.0.0.1”. This website receives credit card numbers over HTTPS (port

443). In order for the defender to maintain their relationship with their credit card processor

they may be required to ensure that these credit card numbers are not transmitted over

unencrypted HTTP (port 80). The defender could use the rule in Figure 2.4, which detects

Visa card numbers sent in plaintext, to insure that their system is configured correctly.

ArcSight Examples

ArcSight is a proprietary software suite sold by HP. There are some public resources which

discuss creating ArcSight rules, but significantly less than that for Snort rules. ArcSight

Logger is a database baked application and provides two interfaces for checking queries

against the event databases. The first interface executes queries similar to a Structured

Query Language2 database queries and allows interactive viewing of results. These rules

are called “Searches”. A system operator can save Searches and run them again later, but

generally Searches are ephemeral. For example, Figure 2.5 contains a search which finds

DHCPACK3 events.

The second interface generates “Reports”. A Report is generated via the results of

an SQL query directly to the ArcSight database. This allows for more powerful queries

2SQL databases are perhaps the mainstay of the majority of most database systems on the web. Consistent
with their name, these databases have a structured language for queries, very similar to a programming
language.

3The DHCPACK packet is the final packet in the DHCP protocol for Dynamic IP assignment. The exis-
tence of this packet confirms that the server and client have agreed on an IP for the client - and contains the
duration that the client will have that IP for.
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applicationProtocol="DHCP" AND deviceAction="DHCPACK" AND
destinationAddress = "130.64.205.133"

Figure 2.5: This ArcSight Search will find all DHCP ACK packets sent to “130.64.205.133”
[26].

than the search. For example, the report in Figure 2.6 would return the frequency of login

attempts separated by failed and successful and grouped by the IP which sent them.

The results of Reports can be configured to show up as Alerts. Alerts can either perform

actions automatically (similar to the automatic IP blocking behavior for Snort we explored

in Figure 2.3) or prompt a human operator to review the alert and possibly take action.

Figure 2.8 is one of the ArcSight interfaces on which alerts can be viewed, as shown in

ArcSight’s marketing materials.

2.5 Cyber Security - Academic Literature

Cyber Security scenarios are often modeled as games. In particular these game theoretic

models may assume a priori payoffs and perfect information. We discuss the shortcomings

of many of these models in Section 3.1.

Recent work tends to focus on the potential vulnerabilities in “smart grid” network-

ing. The smart grid connects small computers called “meters” which measure electricity

consumption for households and businesses and relay that information either to one an-

other or directly to the electrical utility. Compromises of these systems could theoretically

spread rapidly, as the systems are largely homogenous. Additionally, compromises of these

systems can have real world consequences. The United States Department of Homeland

Security studied this problem and found that, at least under some conditions, it is possible

to remotely cause a power generator to self-destruct [29].

Ericsson [30] discusses techniques for designing secure system networks for the control
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1 SELECT
2 events.arc_sourceAddress,
3 events.arc_sourceHostName,
4 sum(IF (events.arc_categoryOutcome = ’/Failure’, 1, 0))

as totalFailures,
5 sum(IF (events.arc_categoryOutcome = ’/Success’, 1, 0))

as totalSuccess,
6 sum(IF (events.arc_categoryBehavior = ’/Authentication/

Verify’, 1, 0)) as totalAttempts,
7 count(DISTINCT events.arc_destinationAddress) as

totalTargets
8 FROM
9 events

10 WHERE
11 events.arc_categoryBehavior = ’/Authentication/Verify’
12 <%campusWhereSnippet%>
13 GROUP BY
14 events.arc_sourceAddress
15 ORDER BY
16 <%authResult%> DESC

Figure 2.6: This ArcSight Report [27], reports the total number of successful and unsuc-
cessful login attempts on a per source basis, as well as the number of machines which were
logged into. It is further restricted to IPs specified by the “campusWhereSnippet”, spec-
fied separately in the ArcSight Configuration. An example of such a snippet is included in
Figure 2.7.

1 AND (
2 events.arc_sourceAddress LIKE \’130.64.\%\’
3 OR events.arc_sourceAddress LIKE ’10.%’
4 OR events.arc_sourceAddress LIKE ’192.168.%’
5 OR events.arc_sourceAddress LIKE ’172.16.%’
6 OR events.arc_sourceAddress LIKE ’172.17.%’
7 OR events.arc_sourceAddress LIKE ’172.18.%’
8 )

Figure 2.7: This snippet provides an example of how you can specify multiple addresses to
restrict an ArcSight behavior to. The % symbols are a wildcard that will match any thing
as long as the first part matches [27].

22



Figure 2.8: This is an image provided by HP, the manufacturer’s of ArcSight, showing the
interface an operator would look at to actively manage alerts [28].

of the SCADA4 systems which control these “smart grid” components. The authors propose

that machines be logically separated by the tasks that they perform and the trustworthiness

of each component. The trustworthiness of a component is based on the portions of the

network that component is allowed to operate in. Figure 2.9 is the “Information Security

Domain Model” used by Ericsson to model risk of various components prior to deciding

how to monitor them.

2.6 Current State of Boolean Logic Discovery

2.6.1 Queries and Concept Learning

A common technique for discovering an unknown boolean function from iterated test vec-

tors is called “Querying”. The process of querying involves using a black box which knows

the Expresison under test, called an “Oracle” which gives you information about the rela-

tionship between the Query and the Expression based on the type of query performed.

There are multiple kinds of queries, of particular interest to this field of study are two

4SCADA stands for supervisory control and data acquisition. SCADA systems tend to consist of a cen-
tralized monitoring and control system which communicates with sensors and devices.
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terrelated. The domains described above may be different from
one electric utility to another, depending on the utility’s oper-
ation and tasks. The proposed domains in this paper are found
to be chosen in a natural way. It is of course up to each utility
to choose and implement its domains. The ideas presented here
are general and applicable to another set of security domains
and their interdependencies.

The security is treated within each domain, and there always
only one “authority” responsible for security within the domain.

Different interests and compliance with legislative and con-
tractual requirements could make it necessary to define a secu-
rity policy structure using different security domains inside the
power utility. Within one security domain, we shall rely on only
one security policy and only one authority responsible for the
security policy inside the domain. The authority should guar-
antee a minimum security level for the systems in the domain.
The security level of the individual systems must be classified
and may actually vary.

When communicating across power utilities, organizations,
and other companies, using communication networks, the secu-
rity domains should be recognized. For example, a power utility
could define a security domain and related policies and proce-
dures for its telecontrol activity to assure compliance with leg-
islative or regulatory requirements. If similar definitions, proce-
dures, policies, etc. were developed by other power utilities, it
would be easier to discuss and define common rules for the in-
formation exchange or the usage of common resources in a com-
munication network. However today, there are no common defi-
nitions including the terms “security,” and “critical asset.” Also,
there are no common control system security policies or proce-
dures, although groups such as IEC TC57 [50], ISA [53], and
NIST [57], are working on generic policies and procedures. The
reader is also recommended to refer to other valuable sources for
information and cyber security [30]–[61].

A power utility should also discuss and define the policy
structure depending on the topology and the importance of re-
sources in the telecontrol network itself. A power utility on a re-
gional level for example, must decide if all substations, all local
control centers, and the regional control centre should belong to
the same security domain or be split into several domains. This
is particularly true when the utility provides electric as well as
gas, or water products and services. This becomes more of an
issue when utilities share equipments, such as remote terminal
units (RTUs).

Furthermore in WG D2.22 [12], the information security do-
main model has been adopted and further used, in the context of
an information security framework.

An Electric Power Utility (EPU) representing one security au-
thority could define each domain according to the level of pro-
tection required by the organization. The domain model should
be defined based on the results of a risk assessment process
[14], [15]. Fig. 8 shows a model for different types of EPUs in-
cluding examples of interconnections that are elaborated [13].
Appropriate security controls must be assigned to the domains
and inter/intra connections. The EPU systems and data networks
supported by IT components, such as servers, client devices,
data communication infrastructure, access and network man-
agement devices, operating systems, and databases, must be

Fig. 8. Information security domain model.

mapped to the domain model, as well. This model is suited for
a “defense in depth” strategy against cyber risk.

Furthermore, an EPU needs to define its own selection of se-
curity controls for SCADA control systems, based on normative
sources, such as ISO 27002 [47], NIST SP800-53 [57], NERC
CIP [56], or ISA [53]. The controls must be appropriate for the
EPU’s regulatory regime and assessment of business risks.

The security controls need to be defined within each domain
and the information flows between the domains, based on the
agreed risk assessments. For example, the Corporate domain
and Business critical domain controls will depend on an intra-
business risk assessment, whereas the Operational critical do-
main controls are likely to require interdependent risk assess-
ments between other operators and possibly Government agen-
cies in addition to an intra-business risk assessment. Many types
of IT components are required to support EPU control systems
and lists of controls should be elaborated such as [13]:

• system architecture security controls;
• IT support user security control;
• user access security controls.

V. SMART GRIDS

During the last few years, the term “smart grid” [1]–[7] has
become a buzzword. It is not the author’s ambition to define
this here, rather he would like to stress that the development
of power communication systems is a key factor for actually
having a power grid that is “smart.” Due to the capabilities of
having broadband connections, “smart” meters at the household
premises, and RTUs with digital intelligence, together form a
perquisite for a having a grid that could be considered “smart.”
We will in the near future encounter similar information and IT
security considerations as described earlier in this paper.

A. Smart Meters

The broadband connections make it possible to transfer data
faster and of more “bulky” kind if needed. The utilities now use

Figure 2.9: An example of an Information Security Domain Model for Smart grids as en-
visioned by Ericsson [30]. The nodes represent different classes of systems. The systems
are segregated into different networks, signified by the concentric circles. There is also
a logical ordering on the nodes labeling what tasks they perform. For example the node
second from the bottom-left is a Operation Critical Generation node. One such system in
this class would be the control system for a nuclear power plant.

kinds, namely Membership and Equivalence queries.

Definition Let U be the set of all logical expressions of a known set of variables V . Let L

be the particular logical expression we wish to learn.

Membership: The input is an element x ∈ U and the output is yes if x ∈ L, and no if

x 6∈ L [31].

Equivalence: The input is a set l and the output is yes if L = l, and no if L = l. If the

answer is no, an element x ∈ L⊕ l5, is returned [31].

For our investigation, we are limited to only membership queries, since the attacker will

have no mechanism to test if their notion of the defender’s logic is equivalent to the actual

logic of the defender.

From Angluin [31] we find that the formulas we are using are a subset of DNF called

Monotone DNF formulas. Angluin proves theorem 2.6.1.
5Recall ⊕ is the logical operator XOR or Exclusive Or, defined in Table 2.1
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Theorem 2.6.1. There is an algorithm that exactly identifies every monotone DNF for-

mula φ∗ over n variables that uses equivalence and membership queries and runs in time

polynomial in n and the number of terms of φ∗.

Unfortunately, in this scenario we don’t have the luxury of running equivalence queries

and are restricted to only membership queries. The literature is more limited on techniques

which only deal with membership queries. Jackson [32] and Bergadano [33] each discuss a

membership-query only algorithm for Probably Approximately Correctly, or PAC, learning

DNFs. These papers do not address the topic of monotone DNF and thus the bound they

find (Jackson finds O(NM
8

ε12+c
) to a precision 1− ε) is significantly higher than even the naive

factorial algorithm (O(
(
N
K

)
)) for exactly learning monotone K-DNF which are of sizes

within the scope of these models. This is discussed in more detail in 4.1.2

Jackson, Lee et al. [34] discuss a PAC algorithm for learning monotone DNF with high

probability. This algorithm is excellent in the limited cases it addresses, but it requires that

for a K-DNF that there are approximately eK terms. It seems that the authors restrict the

number of terms in order to restrict the incidence of a single term being an implicant for

multiple queries. This is a similar concern that we discuss in Chapter 4. Here we are unable

to make the same assumptions.

2.7 Binary Integer Programming

We use Binary Integer Programming to validate that our search of the assignments to vari-

ables produces the optimal strategy in Chapter 5.

Linear programming in general is “the problem of maximizing or minimizing a linear

function subject to linear constraints” [35]. Binary Integer Programming is a special case

of Linear Programming in which variables can only be assigned the values 0 or 1. Whereas

Linear Programming finds results in the real numbers we are interested in finding only

assignments in {0, 1}.
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Formally, Binary Integer Programming solves the problem:

Maximize
n∑
j=1

cjxj,

subject to the constraints:

n∑
j=1

aijxj = bi, i ∈ {1...m}

xj ≥ 0, j ∈ {1...n}

xj, xj ∈ {0, 1}∀j

This technique accepts weights c on n variables x and given constraints on which of

those variables can be true finds the optimal set of variables to set to true.

For example, there is a common joke about college: You can have good grades, sleep,

or friends, but you must choose two. If we assign weights to each of these priorities, we

can use this technique to decide which two to choose.

Assume the variables are represented by x1, x2, x3 respectively, with the weights repre-

sented by the same indices. We can set our priorities:

c = [10, 6, 7]

We then need to incorporate the constraint “choose two”. To do so we set b1 = 2 and

ai,j = 1,∀j. We can then solve using Matlab’s “bintprog” function6.

bintprog([-10,-6,-7],[1,1,1],[2])

And we find:

ans = 1 0 1

By referring back to the order in which we assigned variables, we should disregard

6Note, this MATLAB function actually minimizes the function, so we must negate the values of the
objective function in order to find the maximum.
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sleep and acquire grades and friends.
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Chapter 3

Results

3.1 Previous Work: Exploiting Adversary’s Risk Profiles[36]

In 2012 we presented a paper titled “Exploiting Adversary’s Risk Profiles in Imperfect In-

formation Security Games” at the GameSec conference. This paper discussed a technique

for observing the behavior of adversaries and adapting our behavior to improve outcomes.

Specifially, we investigated a side-channel attack on information leaked by adversary ac-

tions to improve our estimate of the secret information they hold. We discovered that this

technique allows a player to dramatically improve their play, increasing their probability

to win seven-fold. This work was where we began investigating side-channel information

attacks in adversarial decision problem scenarios.

3.1.1 Abstract

At present much of the research which proposes to provide solutions to Imperfect Informa-

tion Non-Cooperative games provides superficial analysis that requires a priori knowledge

of the game to be played. We propose that High Card, a simple Multiplayer Imperfect

Information Adversarial game, provides a more robust model for such games, and further,

that these games may model situations of real world security and international interest. We
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have formulated two such real world models, and have created a modeling bot which, when

facing adversaries with equal or better performing risk profiles, achieves a 7-fold increase

in win performance.

3.1.2 Introduction

The field of research for imperfect information non-cooperative games can be said to com-

prise a number of areas of such research. To begin, we discuss two such areas - Poker

research, and normal form simultaneous move games, in order to lay the groundwork for

where our research fits into the field. Poker research, such as in Billings [37][38], Papp

[39], focuses on creating AI or bot programs which play a game of poker - generally Texas

Hold’em - based on some expert knowledge of the game of poker. These bots will some-

times perform in-depth opponent modeling, but generally their opponent models are rather

simple in nature. However, even in the strongest case, this research focuses solely on the

game of poker, and does not suggest that the results can be used as a model for other games

or real world scenarios, such as security or international interest applications.

The second pertinent area of research is research that involves studies of specific normal

form synchronous move games, such as Lye et al. [40] and Jiang et al. [41] [42], which

propose to solve a broader problem for which these games serve as a model. Unfortunately,

these normal form games results are only theoretical as they require that we know a priori

the payoffs for the game. The games are ‘solved’ to find the Nash Equilibrium. However,

often real world players don’t play according to “optimal” strategies as they are too difficult

to compute, even, in many cases, in a theoretical sense. In addition, these results do not

provide any additional knowledge about the nature of non-cooperative game theory as a

field.

We propose that High Card, a multi-player adaptation of von Neumann’s betting game

(similar to a single betting round in Poker) can serve as a model for security applications.

High Card does not require that we assume a priori knowledge of payoffs, and further, it
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allows for multiplayer play. We will show that we have created a bot that creates oppo-

nent models based on past opponent play in order to estimate the secret information that

adversaries have, and exploit those opponents to win additional resources.

3.1.3 High Card

Poker is a rather complex game to model. Much of the complexity of the game adds

significant requirement for expert knowledge, but does not provide a benefit for use in

modeling real world scenarios. As such, it is not uncommon to study a simplified version of

the poker game, which preserves the basic elements of the game. Borel and von Neumann

each simplify poker to a two-player zero-sum game, where instead of a hand of cards, each

player is dealt a hand X ∈ [1, S] [43]. High Card is essentially a multi-player adaptation of

such simplified poker models. In particular, the simplifications we have made to the poker

game are a subset of the simplifications made for the von Neumann poker model, namely

that this is a multiplayer, unlimited bet sequence game rather than a two-player limited bet

sequence game [44]. These simplifications drastically reduce the complexity. For example,

in a game of Texas Hold’em with n opponents there are H =
∏n

k=1

(
52−2k

2

)
÷ k! possible

starting hands. For 6 opponents, this works out to over 1 quadrillion combinations of

starting hands. In High Card, by contrast, for the same 6 opponent game there are only

13 billion starting hand combinations. In addition, Texas Hold’em has additional added

complexities by the nature of its multiple betting rounds, whereas High Card only has one.

Game Parameters

Upon starting the game, a player is selected at random to be the “Dealer” and each player

is issued a set, equal amount of chips. The player to the dealer’s right is the “Big Blind",

which also refers to the size of the ante the player in the Big Blind seat makes. The player

to the right of the Big Blind is the “Small Blind", and antes an amount of chips less than

or equal to the amount that the Big Blind wagers, traditionally half of the Big Blind wager.
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Any chips wagered are immediately added to the “Pot", which the winning player receives

in its entirety.

A Round of Play

At the beginning of each round the Blinds post their antes simultaneously. Betting then

begins with the Dealer and proceeds to the left. Play continues until onlyM players remain.

M is determined in advance.

Player take actions in turn, left around the table. When it is their turn a player may:

• Fold: abandon any claim to the Pot.

• Call: wager an amount of chips such that their total wager is equal to the largest

wager made thusfar.

• Raise: wager an amount of chips larger than the largest wager so far by at least the

Big Blind.

• Check: call a current additional wager of zero chips.

As a simple example, we have a game with a Big Blind of size 20, and a Small Blind of

size 10, and each player starting with 50 chips. Players A, B and C sit around a table, B to

A’s left, and C to B’s left. Player A puts in the Small Blind, Player B puts in the Big Blind.

Player C chooses to Call the current wager of size 20, as set by B’s Big Blind. Player A

then chooses to Raise the wager to 50, requiring that A put in 40 additional chips. Player

B decides to Call Player A’s wager of 50, putting in 30 additional chips. Player C folds.

There are now 120 chips in the Pot, and whichever of Player A or B has more chips will

receive all 120 chips. The other player will be left with 0, and C will remain with 30.

Sidepots

If a player wagers an amount of chips larger than the amount of chips possessed by any

other player who has not folded in the current round, a sidepot is created. If there are a
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number of players with chips smaller than the amount of chips wagered by a player, then

more than one sidepot may need to be created. Each player is automatically a party to any

sidepots which they are able to participate in. Once a sidepot is created, any raises will go

into that sidepot, or if a new sidepot is required, into the new sidepot.

For example, Player A has 70 chips, Player B 50 and Player C 20. Player A wagers 70

chips. This puts 20 chips - because C only has 20 chips - into the Main Pot which all players

are a party. 30 chips go into Side Pot 1 - because B only has 50 chips, 20 of which will go

into the Main Pot should B call - to which Players A and B are Parties. The remaining 20

chips into Side Pot 2 which only Player A is a party to, because no other player has enough

chips to participate in Side Pot 2. While it would not be realistic that A would wager chips

into a Pot that only A could win, it does not effect the results in any way, as A is guaranteed

to receive those chips back. Players must meet the bet in any sidepot to which they are a

party in order to not fold, and Players may only win chips from Pots to which they are a

party. Assume that then from the previous example, both B and C call Player A’s wager. If

Player A has a 30, Player B a 40 and Player C a 50, Player C will win 60 (20 + 20 + 20)

chips from the Main Pot, Player B will win 60 (30 + 30) chips from Side Pot 1 and Player

A will win (by default) his own 20 chips from Side Pot 2.

Round Resolution

When each player who has not folded, or caused the last raise or ante, has called or checked

in succession since the last raise or ante, the betting is over. At that point the player with

the best card wins the entirety of any pots to which they are a party. At the end of each

round the Dealer, Big Blind and Small Blind positions pass one player to the left. Note,

unlike in Poker where there are multiple rounds of betting in each hand, in High Card each

hand only has one round of betting.
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Rules in a Nutshell

At the start of each hand two players are forced to make an ante, and each player is dealt

a card. Betting proceeds until all players have matched the same bet or folded out of the

hand. The player with the highest card wins all the chips wagered. Which players are

forced to make the ante changes, and play continues with a new hand until a predetermined

number of players remain.

3.1.4 Examples

In this section in order to demonstrate the wider potential use of the model simulation, we

propose a number of possible situations that could feasibly be modeled by High Card.

Diplomacy

We find that there is existing literature in which Poker is used as a metaphor for diplomatic

relations. In particular, in Smith et al., no-limit poker in particular is used as a metaphor

for North Korean - United States relations [45] and in Freeman it is used as a metaphor for

Cold War nuclear disarmament discussions [46].

Such comparisons are apt because diplomatic relations constantly involve quarrels be-

tween countries often with outside actors intervening occasionally escalating to very high

stakes. Focusing on these quarrels in particular, we propose that these relations can be

modeled using a game of High Card. In particular, during such quarrels, it may be the case

that a number of countries which possess damaging information about the other countries

will be willing to risk some of their own credibility or resources in order to attempt to ex-

tract resources or credibility from the other countries. The end goal of course is that by

doing so they will increase their own power in future negotiations.

We propose there exists a model for diplomatic relations in which, at each time period

t two diplomatic adversaries have a small disagreement which forces them to risk some
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credibility. We assume that other actors may become involved in these diplomatic relations,

each in turn deciding if they want to wager some credibility. During each actor’s turn

they may take one of three actions - matching the amount of credibility wagered by an

opponent, withdrawing from the confrontation thus leaving behind any credibility that they

have wagered, or raising the stakes and so by wagering additional credibility.

At the end of wagering the agent with the best secret information is able to gain diplo-

matic leverage over the other agents and by doing so use that information to take the cred-

ibility that was wagered on the quarrel.

A particular example of an ongoing high stakes diplomatic quarrel is the interaction

between the United States and Pakistan. Though for many years the United States has been

using drones to bomb non-military targets in Pakistan, it generally did not send actual US

personnel into Pakistan. That changed with the assassination of Osama bin Laden. This

action has caused a diplomatic quarrel between the two countries, with other countries

intervening, and each country holding secret information about the other. It is suspected

that the United States holds damaging information about Pakistan related to Osama bin

Ladin’s undetected life in the suburbs [47], and Pakistan arrested five people who they

claim are CIA informants [48].

Even better, the 1960 U-2 incident between the United States and the Soviet Union

can be seen as a two-player betting game in action. In this example, the United States

triggers the diplomatic incident, sending a spy plane into Soviet airspace, the Soviets then

shoot the plane down. The United States, bets that it can win the confrontation, and puts

additional credibility on the line, stating that the plane is a NASA weather plane which

mistakenly drifted into Soviet airspace. Unbeknownst to the United States of course, the

Soviets had captured the plane mostly intact and the pilot alive. At this point they reveal

their secret information, and claim the credibility that the U.S. had staked upon the incident,

embarrassing President Eisenhower at multiparty talks with Great Britain and France [49].
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Computer Security

In a model of Computer Security as a game of High Card each play is akin to a country

competing against other countries to protect their own resources, and attempting to obtain

the opponent resources. Each hand is akin to the ‘big blind’ being the defender, and the

‘small blind’ launching an initial cyber attack against their systems. We assume then that

there is public information about these attacks, or that the attacks are frequent enough so

as to be constant, and thus the players always able to participate. This is a reasonable as-

sumption based on multiple statements from government officials, as well as actual security

incidents that cyber attacks are a real, constant, ongoing threat [50][51].

The game proceeds as a normal game of High Card with each player who is not the Big

Blind being presented the opportunity to participate in the attack. Whoever has the most

sophisticated attack (best secret information) is then able to obtain resources. If they are

defending, the resources they gain can be considered to be techniques that the attackers

can no longer use. For the attackers, the resources are information about attack techniques

the other attackers have used, as well as whatever resources (data, operational security) the

defender was attempting to protect.

3.1.5 Simulation

We created a simulation of a High Card game using bot players whose actions were deter-

mined by various utility functions. At the beginning of each round the players are allocated

an equal number of chips, here 1000, and seated at random positions around a table. The

Big Blind was set to 20, and the Small Blind 10. We ran simulations with M set to either 1

or 2, for 6 player games. Each round uses a shuffled complete 52 card deck drawn without

replacement.

35



Figure 3.1: A heatmap for probability of winning, given your card rank and the number
of players in the game. As shown, as N increases at a fixed C, the probability of winning
decreases, but your potential profit could still be increasing.

Probability of Winning

In High Card the probability of a player winning a game of equals the probability that every

other player at the table was dealt a card of a lower value than the card that the player was

dealt.

Pwin =

(
S−C
0

)(
C−1
N

)(
S
N

) =

(
C−1
N

)(
S
N

)
Given the total number of cards remaining, S, the rank of your card, C, and the number of

other players in the game, N , we propose that it is a reasonable assumption that the players

who have folded at the time a player is taking an action had cards of a rank lower than the

rank of that player’s card. Call the number of players who have folded F, thus:

Pwin =

(
C−1−F
N−F

)(
S−F
N−F

)
A plot of the probability of winning given the number of other players in the game, and the

card you have assuming F=0 can be seen in Fig. 3.1.

Utility Functions

We define Ui(P,B,W ) as the expected utility of player i betting on pot P with size of the

bet to be made B, and the estimated probability to win W .
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These bots use a number of different utility functions including:

• linear: U(P,B,W ) = W ∗P − (1−W )∗B This utility function is the most obvious

as there is no change value of a chip you expect to lose or a chip you expect to gain.

In short, with this utility function you would be willing to wager exactly 50 chips for

a 50% shot at 100 chips.

• superlinear: U(P,B,W ) = W ∗ P 1+ρ

1+ρ
− (1 −W ) ∗ B1+ρ

1+ρ
This utility function will

overvalue large payoffs and bets. Thus you should be willing to bet more than 50

chips for a 50% shot at 100 chips.

• sublinear: U(P,B,W ) = W ∗ P 1−ρ

1−ρ −(1−W )∗B1−ρ

1−ρ This utility function undervalues

large payoffs and bets. Thus you would only be willing to bet less than 50 chips for

a 50% shot at 100 chips.

• prospect [52]: U(P,B,W ) = (W∗P )1−ρa

1−ρa − ((1−W )∗B)1−ρb

1−ρb
Prospect Utility is a social

science theory which proposes that human actors will value possible gains differently

than potential losses. In particular they will be very adverse to losing large amounts

of money, whereas gains of large amounts of money are not that different than small

amounts of money.

• cumulative prospect [53]: U(P,B,W ) = (f(W )∗P )1−ρa

1−ρa − (f(1−W )∗B)1−ρb

1−ρb
Cumulative

Prospect is a modification to prospect theory to also account for the reality that hu-

mans will generally perform poorly when attempting to estimate the actual frequency

that events will occur at even when knowing the probability that those events should

occur at.

We determined that the Prospect Utility bot was the best choice for a number of reasons. In

particular, the prospect utility bot was desirable due to its background as a model for actual

human behavior as it relates to decision making under risk [52]. This is desirable in order

to demonstrate that our results can be applied to real world games, in particular for quickly
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creating models of opponent behavior based on samples of real world data, estimating their

risk curves, simulating possible outcomes, and in the process refining your own strategy.

In testing even weak versions of the prospect utility bot defeated the linear bot, as well

as the super and sublinear bots for many different ρ values. The results of simulating 5 bots

types against one another can be seen in Table 3.1.

Table 3.1: Win rates of the 5 Different bot Types 1-game Iterations with 5 players per game.
The ProspectUtility bot was by far the strongest.

BotName ρa ρb WinRateM=1

PBot 0.8 0.1 0.69749
ExpBot 0.2 0.01709
LogBot 0.4 0.02312

LinearBot 0.01910
CumulativePBot 0.8 0.1 0.24322

Prospect Theory Utility Tuning

After evaluating the alternative algorithms and selecting the prospect utility bot, we tested

different versions of the bot using various parameters varying from 0.1 to 0.9 for each ρa

and ρb. To prevent restricting the field of bots to only a single utility function we determined

that the top 10 bots had roughly 0.6 ≤ ρa ≤ 0.9 and 0.1 ≤ ρb ≤ 0.3 and at most a 20%

deviation in win percentages. We mitigated any restriction to too narrow a field of bots by

drawing the field of bot candidates uniformly on ρa and ρb over those ranges, in units of 0.1.

Fig. 3.2 shows an example of a prospect utility curve. It appears that being strongly risk

averse in specific is a strong strategy. That is undervaluing possible gains and overvaluing

possible losses, rather than just under or overvaluing gains or losses using the same function

as the super or sublinear utility functions do, provides a much stronger strategy in this game.

In particular, the no-limit nature leads the linear or superlinear bots to bet too aggres-

sively, thus allowing them to push around the more conservative players for small amounts,

ultimately causing them to be eliminated when a more conservative player gets the card

they were waiting for. Since the game is multiplayer and the players have finite resources
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Figure 3.2: The utility curve for potential gains (greater than zero) and losses (less than
zero) used by a prospect utility bot with parameters 0.6,0.3. As you can see the prospect
utility bots are highly risk-adverse.

winning the overall game is much more important than winning the hand. We find that this

too is applicable to real world scenarios. Actors in the games we have proposed would be

loathe to wager all of their resources and risk being unable to participate in future rounds

unless their success was all but guaranteed or they were on the verge of being eliminated

anyway.

Non-Modeling Bots

The bots that do not model behavior have their actions determined by a utility function

generated when the bots are added to the game at the start of the round . These bots choose

an action by maximizing the size of bet which returns positive utility based on their utility

function:

max
B

(U(P,B,W ) > 0)
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We choose to do this rather than simply maximizing the utility of the players because

simple maximization of utility would imply that the bots always wish to make the smallest

bet possible which would allow them to win the pot. However, since there are other players

in the game this is not a situation like a lottery, in which the player is presented with the

option to spend an amount, B, to be guaranteed the chance, W , to win the pot, P . Instead,

they must play against other players. Each bot, by maximizing the bet they will make are

able to force out other players who may be more risk averse, or, if other players choose to

match the larger bet, they are able to take more resources from those players should they

win. Since the expected utility in such situations is still positive, it should be preferable

in such a situation to actually make the largest bet for which the player expects a positive

utility, rather than the smallest. The desire of the bots to make these larger bets is tempered

by the fact that the bots are strongly risk averse, and they will rarely make huge bets. In this

case there will often be actual back and forth play, whereas when they are always trying

to minimize their bet, the game itself is not very interactive, with most bots very rarely

participating if they are at all risk averse. A strategy similar to this is used by professional

poker players called value-sizing [54] [55].

Modeling Bot

In order to compete against the fixed strategy prospect utility bots we created a bot that

would modify its approximation of the chances of winning a hand of High Card based on

observed past behaviors of the players which it is playing against. This bot began each

round with no information stored. As each hand was played, and a players hand was

revealed at the end of a round (due to competing for winning the round), the bot stored the

information of that player’s play, indexed on the parameters at the time the action was taken,

e.g. the pot size, required bet, number of players in the game, and the number of players

who folded, and the card that the player had when they played their action in response to

the action parameters.
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W =
N∏
i=0

P (Cmod > Ci)

P (Cmod > Ci) =



(Cmod−1
1 )

(S1)
if maxi = ∅

1 if Cmod = Ci or Cmod > maxi
Cmod−mini
maxi−mini−1 if Cmod < maxi and Cmod > mini

0 if Cmod < mini

Figure 3.3: Probability Estimation Function for the Modeling Bot

Our bot played with the suboptimal, but highly conservative Prospect Utility strategy

with parameters 0.6, 0.3. However, unlike the other bots who evaluate their chance of

winning based only on the hypergeometric estimate of their chance of winning based only

the card they possess; our modeling bot estimated its chance to win based on the historical

play data it had for players who had previously played the same action which they had

played this round.

The probability that the modeling bot (MB) will win is, as shown in Fig. 3.3, the product

of the estimated probability that MB will beat each opponent, assuming that its probability

of beating itself is 100%. If MB sees that there is an opponent who it has data for who

only has shown higher cards in the same situations, it has no chance of winning. If MB

has some information, MB estimates its probability as being a function of the range of

those cards, as if they were uniformly distributed. If MB has no information, MB uses an

approximation to the hypergeometric distribution for the remaining players. For example,

assuming that the bot has a card ranked 40 and that there are two players for whom MB had

no information for, MB would then use the equation in Fig. 3.4. It can treat these quantities

as equal because for the size of the sample set we are drawing from and the number of

items selected, selecting without replacement doesn’t strongly effect the probabilities.
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40
1

)(
51
1

))2

= 0.6151 ≈
(
40
2

)(
51
2

) = 0.6118

Figure 3.4: The hypergeometric can be approximated by calculating the hypergeometric
for selecting one item and raising it to the power of the number of items you wish to select.

Results

Our simulation results consist of 2 sets of 1000 1-game tournaments. In these tournaments

the modeling bot only has the information about hands played in the current game when

modeling opponents. As depicted in the results in Table 3.2, the modeling bot achieves

roughly a sevenfold increase in performance for both M=1 and M=2. The average number

of hands played per round was 289 with M=2 and 615 for M=1.

Table 3.2: Win rates of the 12 Different bot Types and our ModelBot, 1-game Iterations
with 6 players per game.

BotName ρa ρb WinRateM=2 WinRateM=1

ModelBot 0.6 0.3 0.39139 0.12510

PBot 0.6 0.1 0.22746 0.14930
PBot 0.6 0.2 0.13444 0.04859
PBot 0.6 0.3 0.05305 0.01813

PBot 0.7 0.1 0.52542 0.35881
PBot 0.7 0.2 0.30512 0.16637
PBot 0.7 0.3 0.16531 0.04928

PBot 0.8 0.1 0.63265 0.44704
PBot 0.8 0.2 0.43141 0.25092
PBot 0.8 0.3 0.20155 0.07869

PBot 0.9 0.1 0.34362 0.13656
PBot 0.9 0.2 0.17043 0.03340
PBot 0.9 0.3 0.03937 0.00511

3.1.6 Conclusions

Compared to the baseline Prospect Utility bot with ρa = 0.6, ρb = 0.3 our modeling bot

saw an improvement in play ranging from a factor of 6.9 to 7.5, while using a modeling
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scheme without heuristic inference, or attempting to wholesale recreate the risk curves of

opponents. These results are promising given that the bot had minimal observational inputs,

yet still performed quite well.

Additionally, we have proposed that there exists a set of games, which hold practical

interest for modeling real world scenarios. Further, we propose that no-limit High Card

presents a simple model that can be used to simulate these highly complex scenarios, al-

lowing for preloading of adversary information, in order to simulate possible outcomes

from previous observations.

3.2 Attack Graph Games and their Asymptotic Equilibria

In 2013 we worked on a project to analyze attack graphs. The content of this section is from

an as yet unpublished paper titled “Attack Graph Games and their Asymptotic Equilibria”,

authored by George Cybenko and Gabriel Stocco.

This section presents an attack graph optimization problem that is suitable for model-

ing certain adversarial cyber attack/defend scenarios. The problem formulation is based

on representing an attack as a finite directed graph in which the directed edges represent

transitions between states in an attack and edge weights represent the estimated cost to an

attacker for traversing the edge. An attacker strives to traverse the graph from a specified

start node to a specified end node using the shortest directed path between those nodes.

On the other hand, the defender seeks to allocate defensive measures in such a way as to

maximize the attacker’s minimal cost attack path. We study the role that minimal cut sets

play in hardening the attack graph and prove that minimal cut sets are optimal defensive

investments in the limit even though they may not play a role initially.
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3.2.1 Abstract

Computer networks face a number of threats. One particular threat is an adversary gaining

access to unauthorized resources by means of exploits. Attack graphs can be used both

by a defender to analyze the security of their networks such as in Wang, Noel and Jajodia

[56]. Automatic attack graph generation tools have been proposed and can be used by

both attackers and defenders, with techniques for creating such analysis tools described in

Sheyner et. al [57].

In our formalization of this adversarial situation, we assume that both the attacker and

defender, in this prsent case, have access to and knowlendge of the same weighted attack

graph. In addition to the actual structure of the graph, the costs to traverse edges must

be accurately estimated. This problem has a number of proposed solutions, such as the

QuERIES Methodology [58], designed for quantitation of security investment decisions on

computer networks.

Given a weighted attack graph, G = (V,E), with edge weights uj and
∑

j uj = T , an

attacker starting at the source s wishes to traverse the network from s to the target t using

the minimal cost path. The cost of a path is the sum of the edge weights along the path. The

defender has an investment budget R which is invested to increase the weights of edges. If

the defender invests xj in defending edge j, then the net increase in edge j’s weight is γjxj

so that the defender’s cost of traversing edge j is uj + gammajxj . The defender’s goal is

to maximize the minimum cost path subject to an overall investment budget,
∑

j xj ≤ R.

Israeli and Wood [59] have shown that when the decisions are binary (that is, invest

in an edge or not with fixed costs for the attacker and defender when the investment is

made) the resulting problem is NP-Hard. Fulkerson and Harding [60] have shown that

the problem of maximizing the minimal cost path can be reduced to a maxflow problem

when defender investments and attacker costs are linear and real-valued. Golden [61] uses

a similar approach to Fulkerson and Harding to model a scenario where a certain path’s

cost must be increased by a set amount by modeling the problem as a minimum cost flow
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problem. However, these previous works have not performed an asymptotic analysis of the

relationship between cut sets and the allocation solution.

We prove that as R becomes large, the maximal minimal path cost grows as R
|C| where

C is the minimum cut and |C| is the cardinality of the minimum cut.

To formulate this, let M be the path-edge incidence matrix so that mij = 1 if edge j is

on path i and mij = 0 otherwise. The matrix M has a row for every directed path between

the start node 1 and the end node n say. Let u be the vector of original weights on the edges

in G and γ be the vector of multipliers for defender investments in those edges. That is, for

a unit investment of defense in edge j, the resulting increase in cost for the attacker is γj .

The problem of maximizing the minimal cost path is the linear programming optimiza-

tion problem:

Max Min Path Problem (M2P2)

Maximize z

subject to

M(u+ Γx) ≥ z ≥ 0

1x =
∑
j

xj ≤ R

xj ≥ 0

where Γ is the diagonal matrix with the γj along the diagonal and 1 is the row vector of

1’s. Here R be the defender’s investment total.

3.2.2 Results

We first consider the case where all γj = 1 and then generalize. Let T = 1u be the existing

cost total for all edges before any investment and |C| be the cardinality of the minimum cut
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set.

Case I: γj = 1

Theorem: Let ẑ be the optimal value for the M2P2 problem above. As the defender’s

investment R→∞, the minimal maximal cost path, ẑ, for the attacker grows like a+ R
|C| ,

where α is a constant. (This means that, within a constant, the attacker’s minimal cost path

eventually grows like the defender’s investment budget divided by the cardinality of the

minimal cut set, |C|.

Proof: For an edge j, recall that uj is the initial cost of traversing that edge,

xj is the additional investment made by the defender and γj is the edge weight

(cost) multiplier.

Suppose that the cost of the max min path, ẑ, satisfies

ẑ ≥ R + T + ε

|C|
.

Menger’s Theorem [62, 63] states that the size of the minimum (unweighted)

cut between any two nodes X and Y is equal to the maximum number of pair-

wise edge-independent paths from X to Y. Edge-independent paths are defined

to be paths with no common edges.

Accordingly, there exist |C| independent paths between the start and end states

in G. On those |C| paths, the total weight is at least

|C| ∗ R + T + ε

|C|
= R + T + ε > R + T

because ẑ is the cost of the minimal path. But this is a contradiction because

R+T is the total weight of all the edges in the graph. Therefore, because ε > 0
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was arbitrary,

ẑ ≤ R + T

|C|
.

On the other hand, if the defender invests exactly R
|C| in each min cut edge then

the maximum minimal cost path must have cost z ≥ R
|C| because every path

from start to end must include at least one edge from the cut set. Therefore, for

any R,
R

|C|
≤ ẑ ≤ R + T + ε

|C|
=

R

|C|
+ α.

Because the feasible region for the linear program M2P2 is a finite polytope,

the optimal value will be achieved on an extreme point of the polytope and

therefore for large R max min path = R
|C| + α.

This proof can also be extended to integer and rational weights.

3.3 Covertness Calculus

The work covered by this chapter has been submitted as a book chapter in a book titled

“Cyber Warfare” to be published soon.

Quantification of the capabilities of kinetic weapons has long been of interest, with

techniques formalized for such assessment, for example the Joint Munitions Effectiveness

Manuals [64]. In the Cyber domain the stage has been set with qualitative assessment of the

important attributes of Cyber munitions [65], but little work has been done on quantification

of such attributes.

The Covertness Calculus is a technique for quantifying the covertness of a particu-

lar munition against a particular adversary. As discussed in Section 1.2, Figure 3.5 is an

overview of the components that are needed for this technique. Malware Vectors is a tech-

nique for modeling an adversary. In this section we will discuss the other two components,

the modeling of Malware, and the Calculus itself.
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Malware Models Adversary Models+

Covertness Calculus

Malware Covertness 

against a 

Specific Adversary

Figure 3.5: The overall concept takes models of malware and adversary behavior, and
produces a covertness measure against a specific adversary’s defense architecture.

3.3.1 Malware Modeling

We propose a methodology for modeling malware based on its observable attributes. Mal-

ware, like all software, produces measurable effects while it is runnning. For example, the

malware uses some portion of the CPU of the system it is running on as well as some por-

tion of RAM. Based on its purpose and the objectives of the creator it may also use space

on the disk or capacity of the network connection of the system. All of these activities are

observable using system or network monitoring utilities. The model of malware then is

numerical properties of the observables which the malware generates. To find these values,

it would generally be required to run the malware and measure its observable properties.

3.3.2 The Covertness Calculus Block Diagram Model

We model covertness as a capability calculus combining a model for the malware used by

the attacker and the detection capabilities of the defender. The covertness of a particular

piece of malware is the probability that it is not detected by the defender. We assume that

both the attacker and the defender are able to measure the observables generated by the

attacker’s malware.

The defender is aware of and able to modify their detector rules at will, however, given

the complexity of these systems and the great cost of downtime caused by false positives,

defenders will generally tune their systems to only catch egregious violations of the rules.
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Figure 3.6: A block diagram example with calculated probabilities for each logic node
being triggered.

As a result, we suggest that there is almost always a way for an attacker to accomplish their

operational objectives with a low probability of detection. More to the point, among all sets

of possible observables that an attacking piece of malware may exhibit when accomplishing

a mission, there is some combination of those observables that minimizes the probability

of detection. The key for the attacker, then, is to discover a way through the carefully

constructed house of cards that minimizes the probability of detection. The defender, for

his part, may realize that it will take automated techniques to model how an attacker would

avoid his ruleset in order to improve it.

The covertness calculus is implemented as a reliability block diagram of the adversary

logic which interacts with the observables generated by the malware. Each block’s proba-

bility of success is equal to the probability that the block is triggered by the malware under

test. Thus the probability of the circuit as a whole being reliable is the probability that the

malware is detected. The covertness of the malware, is then 1− Pdetect.

In the example presented in Figure 3.6, the malware is very likely to be detected (99%),

and thus is not covert. Given that this is the case, an intelligent attacker will tune the

observables generated by their malware so that it will be able to operate for a longer period

of time before being detected on the defender’s network.
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Start A B End

Figure 3.7: An example block diagram containing two elements in series.

Start

A

B

End

Figure 3.8: An example block diagram containing two elements in parallel.

Bounds on Covertness

In reliability theory the probability that two components,A andB, with reliabilities PAandPB

in series, such as in Figure 4.2, fail is 1− (PA ∗ PB). If either component fails the system

will fail. Alternately, components can be set up in parallel, where every component must

fail for the system as a whole to fail. For example, in Figure 3.8, both C and D would have

to fail. The probability of failure for the parallel system is (1− PA)(1− PB).

————-

These two scenarios provide bounds on the potential covertness of software against

defensive systems. If the defense logic is configured in serial, each rule must trigger in

order to trigger an alert. That being the case in order to remain covert against such a

system, an attack need only not trigger any one component. On the other hand, the lowest
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covertness is that of an attack against a fully parallelized defense logic. In such a scenario

if any sensor triggers an alert would be raised, and the attack would not be covert.

However, real world designs would clearly incorporate both these techniques. Compo-

nents in a series would reduce incidence of false positive, for example confirming that a

suspected attack has a second property of interest before issuing an alert. Parallel design

would be used as well, in order to increase the number of potential attack scenarios the

defender could defend against, and increase the true positive rate.
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Chapter 4

Analytic Analysis

The attacker has two objectives: the first of which is to find a single counter example to

the defender’s logic and the second is to fully cover the defender’s logic. We investigate

the effect that the properties of the defender’s rules have upon these two objectives, and

formulate how the attacker can efficiently accomplish them.

4.1 Assumptions

We assume that the defender’s logic is equivalent to a monotone K-DNF. This means that

the defender can have any number of logical terms in its detection logic, but each term must

be a conjunction of at most three variables.

Additionally, we assume that a 3-DNF represents a single unique capability to the at-

tacker; that is, the attacker would not design an attack with fewer than three observables.

We choose 3-DNF because 2-DNF was too simple and since the size of the problems grows

factorially we want the minimum value which allows us to extrapolate for other values.

Further, we assume that all capabilities are equally valuable to the attacker, and that the

attacker has a neutral appetite for risk.
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Definition Let A be the number of boolean variables in a monotone conjunction term un-

der test. Let N be the total number of boolean variables. Let K be the number of boolean

variables in each term of a monotone DNF expression for which we want to find coun-

terexamples. Unless otherwise stated, random selection means selection from a uniform

distribution.

Addressing the first objective, the attacker will want to maximize its utility function.

Remember that the attacker values all capabilities equally; thus, this utility function can be

expressed generally as

U(A) =

(
A

K

)
− C

The attacker’s cost will vary with the number of probes sent. We propose that the at-

tacker would desire to modulate this downside by looking not just at the utility gained from

a potentially undetected probe, but also the probability that a probe would go undetected

before it is sent. We work towards such an expression which we find in Lemma 4.1.2 to be

PM ≤
M−1∏
i=0

(1−
(
A
K

)(
N
K

)
− i

)

Using this expression we are able to simulate an attacker who varies the size of their

attack vectors based on a moving estimate of PM , seen in Chapter 5.

Lemma 4.1.1. The probability, P1, that a randomly selected A length conjunction of

boolean variables is not captured by a single randomly-selected K length conjunction is:

P1 = 1− (AK)
(NK)

where A ≤ K.

Proof. There are
(
A
K

)
ways to select any K items out of A items without replacement.

Thus, there are the same number terms of K variables which capture a term of A variables.

In the space of N variables there are
(
N
K

)
possible terms of K variables. It follows that the

probability that a randomly selected term of length A is covered by a term of length K is
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(
A
K

)(
N
K

)
Trivially, the probability of the negation is

P1 = 1−
(
A
K

)(
N
K

)

Lemma 4.1.2. The probability,PM , that a randomly selected term of A variables is not a

subset of an M term K-DNF expression is bounded by

PM ≤
M−1∏
i=0

(1−
(
A
K

)(
N
K

)
− i

)

Proof. From Lemma 4.1.1 the probability that any given term of A variables is not a cap-

tured by a random term of K variables is (AK)
(NK)

. Since we define the K-DNF expression to

be comprised of unique terms, we select without replacement from those terms. Thus the

probability Pm that the mth K variable term is not a superset, given that the previous m−1

terms were also not supersets is

1−
(
A
K

)(
N
K

)
−m− 1

Generally, the probability that M terms will not be a superset is bounded by

PM ≤
M−1∏
i=0

(1−
(
A
K

)(
N
K

)
− i

)

Given the expression from Lemma 4.1.2, the attacker can estimate the likelihood of an

expression of arbitrary length A being a subset of the defender logic given an estimate of

the number of rules (M̂ ) that the defender has. Given this estimate, N and K, the attacker
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can find the expected value of a probe of size A is the probability that that probes isn’t

detected multiplied by the value of that probe.

U(M) = PM ∗
(
A

K

)
The attacker does not know M . Further, recall that the attacker is interested in a single

counterexample to the defense logic and will stop immediately when a probe is not de-

tected. Further, recall that the attacker is concerned with finding an optimal solution as a

function of the number of probes required to converge as well as the actual utility provided

by that solution. In the interest of ensuring that the attacker converges on a solution quickly,

we can update the attacker’s estimate of M̂ to optimal size of the next probe.

This technique works regardless of the value of C, even if C varies with the number of

probes sent so long as C does not vary A. Specifically, at each iteration, the optimal action

taken by the attacker will be the largest expected utility action, without having to concern

ourselves with the actual value of C. We can additionally justify ignoring C by application

of the “Sunk Cost Fallacy” which states that at any time t one should never consider the

costs already spent and irretrievable, only the current costs which can be expended, and the

actions that can be taken.

We discuss using such a technique to modify the attacker estimate ofM , M̂ in our large

scale simulations in Section 5.4.

The attacker may also be interested in another bound on M : the fewest number of

expressions which would capture all terms of size A.

Lemma 4.1.3. Any
(
N
K

)
−
(
A
K

)
+ 1 term K-DNF expression is a superset of all A-DNF

expressions.

Proof. Taking PM from Lemma 4.1.2 and setting it to 0, we solve for i = M − 1

1 =

(
A
K

)(
N
K

)
− i
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i =

(
N

K

)
−
(
A

K

)
Thus any

(
N
K

)
−
(
A
K

)
+1 length,K-DNF of randomly selected unique terms is a superset

of all A-DNF expressions.

Finally, either party may be interested on the bound on the size of the optimal set of K-

DNFs which cover all A-DNFs. We were able to find empirically that this value is bounded

by:

⌈(
N
K

)
−
(
A
K

)
+ 1(

A−1
K−1

) ⌉
≤ length ≤

⌊(
N
K

)
−
(
A
K

)(
A−1
K−1

) ⌋
Lemma 4.1.4. The shortest lengthK-DNF that is a superset of allA variable conjunctions

is at most
⌈

(NK)−(AK)+1

(A−1
K−1)

⌉
terms and at least

⌊
(NK)−(AK)
(A−1
K−1)

⌋
terms.

Discussion

We calculated the minimum size fully covering set for a number of values 2 ≤ K ≤ 7, 3 ≤

A ≤ 8. We found that this pattern held for those values. To approach this problem from

another perspective, we can view this as a graph theory problem. Specifically, we looked

at the case K = 2, A = 3. Graph Theoretically this problem then becomes “What is the

fewest number of edges on a graph on degree N where no triangle can be created without

including one of those edges.”

For example Figure 4.1 is an optimal solution to N = 5, K = 2, A = 3.

Finding a solution to this problem is non-trivial.For example, we cannot reliably find

a solution using a greedy algorithm. For example for N = 5, K = 2, A = 3 a greedy

algorithm requires one additional edge to fully cover all triangles as shown in Figure 4.2.

Specifically for cases where K = 2, A = 3 we find a solution which is a lower bound

than upper bound found in Lemma 4.1.3. Specifically we divide theN nodes into 2 groups,

one of size 2 and one of size N − 2. We then fully connect each group. To form a triangle

one must naturally select three nodes. There are four options for ways to select nodes, but
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Figure 4.1: An optimal (minimal edge) solution for N = 5, K = 2, A = 3.
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Figure 4.2: A non-optimal solution for N = 5, K = 2, A = 3.
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because the first group only has two nodes, only three of the four are actually possible to

occur. In the first case, all three nodes are selected from the larger group. Since each of

these nodes are connected to the other, the triangle they form is certainly covered by the

chosen edges. In the second case, two are selected from the larger group and one from the

smaller. In this case, again, the two nodes from the larger group are connected, and thus

the triangle formed is covered by an edge. In the final possible case, we select one node

from the larger group and both of the nodes from the smaller. In this case, of course the

two nodes in the smaller are fully connected and thus the triangle is covered by an edge.

The converse problem, specifically for K = 2, A = 3 has been proven by Mantel’s

Theorem, which states that any n-vertex triangle free graph can have at most N2

4
edges

[66]. For example, for N = 5 as above, N2

4
= 25

4
= 6.25. Since we have a total number

of
(
N
K

)
=
(
5
2

)
= 10 possible edges, increasing to 7 edges would require creating a triangle,

and thus 10− 6 = 4 edges is the smallest set of edges which could be created which must

be included in any triangle.

Unfortunately we were unable to extend this technique to work on larger values ofK or

A, though a technique using a modification to Turan’s Theory[67] may be able to provide

insight. Turan’s Theory is a generalization of Mantel’s Theory for arbitrary A with K = 2.

While we do not examine that here, it could be a future extension of this work. However,

the values from graph theoretic analysis were consistent with the brute force testing derived

values we found. Those values can be seen in Table 4.1

4.1.1 Implications for Learning a Single Counterexample

We assume that our attacker has a tradeoff between the value of the counterexample they

have and the number of probes that it takes them to find such a counterexample. Further, we

made the assumption that our attacker values each expression linearly in the number of K-

DNF implicants it has. Recall from Lemma 4.1.2, we can calculate the expected probability

of an A-DNF term being captured by M K-DNF terms. Consequently, the attacker utility
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N K A Actual Min Hypothesis Max
6 1 1 6 6
6 1 2 5 5
6 1 3 4 4
6 1 4 3 3
6 1 5 2 2
6 1 6 1 1
6 2 2 15 15
6 2 3 6 7
6 2 4 3 4
6 2 5 2 2
6 2 6 1 1
6 3 3 20 20
6 3 4 6 6
6 3 5 2 2
6 3 6 1 1
6 4 4 15 15
6 4 5 3 3
6 4 6 1 1
6 5 5 6 6
6 5 6 1 1
6 6 6 1 1
7 2 3 9 10
7 2 4 5 6
7 2 5 3 3
7 2 6 2 2
7 2 7 1 1
7 3 4 * 11
7 3 5 5 5
7 3 6 2 2
7 3 7 1 1
7 4 5 7 8
7 4 6 2 3
7 4 7 1 1
7 5 6 4 4
7 5 7 1 1

Table 4.1: The actual minimal values discovered via brute force test and the hypothesized
ceiling on the size of the minimal set. This table continues in Table 4.2. Values marked with
a “*” were not computed due to runtime.
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N K A Actual Min Hypothesis Max
5 1 1 5 5
5 1 2 4 4
5 1 3 3 3
5 1 4 2 2
5 1 5 1 1
5 2 2 10 10
5 2 3 4 4
5 2 4 2 2
5 2 5 1 1
5 3 3 10 10
5 3 4 3 3
5 3 5 1 1
5 4 4 5 5
5 4 5 1 1
5 5 5 1 1

Table 4.2: The actual minimal values discovered via brute force test and the hypothesized
ceiling on the size of the minimal set. Continued from table 4.1

function is a function of the number of terms in the defender logic.

U(M) =

(
A

K

)
∗ P (M)

In this situation the attacker is unaware of the exact number of terms in the defender

logic, thus the attacker must have some estimate for ˆP (M). We discuss some techniques for

updating ˆP (M) to aid the attacker in quickly converging on a solution, and the implications

of various choices for ˆP (M) in Section 5.4.

4.1.2 Implications for learning the Full Logic

There is a significant body of work on learning K-DNF expressions using Membership

and Equivalence queries. Of particular interest, Jackson [32] finds that K-DNFs can be

learned in polynomial time, specificallyO(NM
8

ε12+c
) to a precision 1−ε using only membership

queries. Evaluating this for values that we are likely to encounter in the scope of this

project, N = 30,M = 1000, ε = 1
20

, we find the runtime to be 1.2 ∗ 1044. Unfortunately,
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while we could expect that this would grow polynomially in N , the base level at which it

starts is high enough to be untenable.

Alternately, since we examine only the subset of monotone K-DNF, we know that brute

force membership queries would give 100% accuracy and would be in all cases O(
(
N
K

)
),

simply enumerating the terms of size K, which for the same values would be 4,060.

We could improve the lower bound at the cost of the upper bound by sampling with

DNFs with more variables than K. Remember, for each A > K there are
(
A
K

)
K-DNFs

that are an implicant of the A length term. Thus if we test with (NK)
(AK)

A-DNFs each chosen

to not share any implicants with the others, whether or not those terms are members or

not informs us whether any of the implicants of the term are in the defender logic. For

any A length term that is a member, we would need to check the
(
A
K

)
potential K length

implicants. For the remaining A length terms we know that none of the implicants are in

the logic. This give us runtime in the number of membership queries

(
1 +

1(
A
K

))×M +
1(
A
K

) × ((N
K

)
−M

)
Note however that finding the set of such A-DNFs of minimal length can be computa-

tionally difficult.
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Chapter 5

A Real World Approximation of the

Vulnerability Discovery Algorithm

5.1 Description of the Problem

A defender has static defense logic comprised of rules in an IDS. These rules can be rep-

resented by a Monotone DNF expression. This expression covers a subset of all of the

possible logical expressions of combinations of observables. If we assume that these ex-

pressions are boolean functions with n variables, or distinct observables, there are 2n pos-

sible combinations of truth values. However, each of these combinations can be either true

or false at any particular assignment of values in our boolean function so there are in fact

22n possible boolean functions the defender could choose to detect1

We here attempt to find the optimal counter-example to the defender logic. Formally,

the assignment of values to variables that is not covered by the defender logic while pro-

viding the most utility to the attacker of any such assignments. Though this gives the

attacker a lower fidelity in learning the defender’s overall logic, it dramatically reduces the

complexity of the problem back down to 2n.

1Remember that the Defender cannot simply “detect” everything, since legitimate activity also occurs on
their network, so they must choose to detect some subset of the available assignments.
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5.2 Technique

The attacker identifies which capabilities they will require and sets priorities based on how

desirable each set of capabilities will be in terms of completing the mission. The attacker

will then choose the set of capabilities which are most likely to generate observables which

may be out of line with normal activity on the defender’s systems. These capabilities will

be the focus of the probe testing to come.

The attacker launches a series of probes to the defender’s network. Each probe is de-

signed only as an attempt to gauge the defenses of the defender. The probes contain no

proprietary logic or payload. They simply attempt to arrive on the defender’s systems and

execute, thus generating observables at a known level. The attacker then measures whether

the probe was able to execute or not, i.e. if it has been detected. If the probe was detected,

the attacker is able to add a logical expression covering the probe’s observables to the logic

that the attacker knows the defender’s network will detect.

Under the assumption that the defender has a static detection strategy, once the attacker

finds a probe combination that does not trigger the defender’s defensive logic, they have

found a covert way to carry out their mission.

5.3 Experiment

We were unable to find a set of rules used by an ArcSight installation. Instead, we instead

enlisted the help of Maj. Patrick Sweeney to develop a set of defender logics that we could

then attempt to compromise.

We first generated sets of observables from a system running regular network browsing

activity, and then from the same machine running DNS fluxing malware.

DNS fluxing is a technique employed by malware that uses a shared random seed on

the distributed malware and on the command and control server. Thus, whenever the bot

is not able to contact the command and control center, it will look to the random number
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Rank Metric Name Relevant
1 Free System Page Table Entries No
2 Connections Established Yes
3 System Driver Resident Bytes No
4 % Registry Quota in Use No
5 Working Set Peak Memory Usage Possible
6 Virtual Bytes Peak Possible
7 Process Count No
8 Disk Free Space No
9 Disk Free Megabytes No

10 Cache Bytes Yes

Table 5.1: Metrics found to have most dissimilar distributions in perfmon captures for web
browsing vs. domain fluxing.

generator to generate a new domain name. The bots will then send DNS requests for these

domain names and if the command and control infrastructure is still running, it will be

registering new domain names ahead of the bots.

5.3.1 Defender Logic Creation

The trouble is, of course, that these techniques are generally very noisy and look nothing

like normal web traffic. It is very unusual for a system to generate lots of DNS requests

and even more unusual for the ratio of DNS requests to HTTP traffic to be skewed toward

DNS requests.

With the data, described in 5.3, we used the Mann-Whitney test to find the data distribu-

tions that were most dissimilar. From these numbers we trimmed those that did not change

during the course of a single experiment (σ ≤ 10−4), and ranked them by dissimilarity,

selecting the top ten metrics which are listed in Table 5.1.

In addition to the metrics from PerfMon, a built-in Windows monitoring program, (see

Table 5.1) a number of metrics based on raw network traffic were developed.

We then developed a defender logic using the following metrics: Connections per Sec-

ond, DNS Queries per Second, DNS replies not found per second, Datagrams sent/received
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Metric Name
DNS Queries per Second

DNS replies “not found” per Second
σ of inter-DNS query timing

Table 5.2: Network Capture Metrics found to be most dissimilar in network captures for
web browsing vs. domain fluxing.

Logical Symbol Metric Name
A DNS Queries per TCP Connection
B DNS Replies “not found” per DNS Query
C DNS Packets per Packet
D 1

σ
of inter-DNS query timing

Table 5.3: Final Defender Design Metrics.

and standard deviation (σ) of inter-DNS timing. As a function of these 5 variable respec-

tively from A to E we developed the defender logic

ABDvACDvABEvACE

We simplified these five metrics to four more meaningful ones by removing B and

turning A and C into ratios. These 4 variables are listed in table 5.3

As a function of these four, the expression above becomes:

AC ∨ ABC ∨ AD ∨ ACD

Which simplifies to:

AC ∨ AD

We decided on a value range from zero to ten. Ten was considered to be similar to

the actual values of the domain fluxing malware. The defender values were then set as a

function of the range from zero (none) to ten (domain fluxing) slightly above where the
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web browsing activity fit in the range. Giving us:

A3C2 ∨ A3D4

5.3.2 Simulation

Given this defender logic, we ran two attack simulations against it. In the first, the attacker

does not consider the cost of producing probes and only bases his utility on the utility of

the derived covert malware.

In the second experiment the attacker considers the tradeoff between having to create

more probes and the potential payoff from a sucessful undetected probe by discounting the

potential utility from a set of capabilities by a function of their value. The logic here is that

the larger the value of the observables generated by a capability, the more likely they are to

be detected.

We first approached the problem by converting the attacker’s requirements to a binary

integer linear programming problem. To do so the attacker converts his integer constraints

to binary constraints by converting each variable into dlog2(S − 1)e binary variables.

Binary Integer Programming Example

For example, with S = 4 and variables {A,B}, we define the attacker’s utility profile:

Each rule implies all rules that capture it. So we subtract out the utilities of any of its

A Value B Value Utility
3 3 10
2 3 5
3 2 5
1 1 1

Table 5.4: Example Attacker Utility Profile for Binary Integer Programming Example.
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Implicants2

Now we have our vector of c = [1, 4, 4, 1]. Next we need our matrix for the coefficients

of the inequalities, Z3 We set our coefficients Zn,j = 2n−1∀j.

Finally, we add the attacker constraints based on their knowledge of the defense design

that the defender has. For example if we know that the defender has the rule A3B2 we add

the constraints: Z ∗ [1, 1, 1, 1, ] ≤ 3, Z ∗ [1, 1, 1, 0] ≤ 2 to ensure that we cannot make the

assignment of values A3B3 or A3B2 both of which would be covered by the defense logic

we already know. The optimal next probe here would then be A2B3 with a Utility of 5. The

attacker would send this probe and continue to iterate until a probe went undetected.

Brute Force

This problem can also be solved using a brute force method that generates all the possi-

ble values for the assignments of values and tests them against the defender logic. If an

assignment of values would not be detected we find the capabilities that are covered by

that assignment and the corresponding utility. Remember from Section 2.1 that a base

2 expression has 2n possible assignments of n values. Here, we have base 10, and thus

10n, or specfically 104 possible assignments of values. Since we have restricted that the

attacker must have all components in his attack, our total search space of is 104. This

approach dominates an approach considering all combinations of desires of the attacker,

2This requires the assumption Utility is monotonically increasing with increased capabilities.
3Normally this is denoted A but we already use A as a logical variable in this example.

A Value B Value Utility
3 3 1
2 3 4
3 2 4
1 1 1

Table 5.5: Example Attacker Utility Profile for Binary Integer Programming Example, Step
2.
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which would run in 2c where c is the number of capabilities specified in the attacker’s util-

ity function, keeping in mind that to represent the full expression using a binary program c

grows logarithmically with S.

5.3.3 Results

To run the simulation we had to establish priorities for the attacker. A naive implementation

may provide linear utility for each capability in its dimension, therefore, a value of ten

would provide ten utility, and a value of five would provide five utility. Thus: a5b4c3d2

would provide fourteen utility.

Using this technique, we found the solution: a2b9c9d9 which fulfilled the requirements

of having every element active and not being covered by the defense logic. Converging on

this solution took 103 probes.

Upon closer observation this solution belies an overlooked externality. The attacker

would have to keep a very minimal DNS per connection ratio (A) but would be able to

maximize the DNS requests per packet rate (C). This in effect means that C is contrained

by A. To reflect this, we allow the attacker to specify additional constraints on realized

utility. For example, the attacker could specify that:

axcy

provides 2 ∗min(x, y) utility, restricted to the smaller value provided by A or C. Given

this constraint, the above solution would actually have the value equivalent to:

a2b9c2d9

which is non-optimal if we consider the underlying realities. The next iteration reduces

the total number of utility values by pairing capabilities. So rather than forty potential

capabilities, we can reduce this to ten without significant meaningful loss in fidelity.

Looking at the four parameters under test here, it is clear that A and C are intrinsically

tied with respect to the objectives of the attacker.

Further we judge that the key component of DNS fluxing is to keep the fluxing DNS
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A B C D Utility
9 9 20
7 7 15
4 4 10
2 2 5
1 1 1

3 2 10
2 3 10
3 3 5
4 4 5

Table 5.6: Attacker utility values vs capabilities. Note that the utility for each capability is
also provided for any capability that dominates it. So a2c2 also provides the utility of a1c1.
An empty entry in a cell indicates that we don’t care about the value of that parameter.

request per time rate high enough to mantain availability. Common DOS attacks against

DNS fluxing involve offline evaluation of the algorithm that the malware uses and prereg-

istering the domains in order to hijack the command and control channel. As long as this

rate, which incorporates both B and D, is high enough, it should provide some financial

disincentive to such an attack. We judge that for bx and dy, x ∗ y ≥ 6, the rate of fluxing

DNS requests is high enough. Significantly higher rates do not provide much more utility;

thus, there is a drop off in marginal gain.

With these parameters, we find a solution of a2b4c2d4 with only eight iterations.

A further modification would consider the cost of creating probes or of having probes

detected. If we allow some relaxation of the assumption that the defender keeps their

detection strategy static, then it is conceivable that they could begin to modify their defenses

in reaction to a large number of detected probes. We theorize that as the sum of squares of

the levels of parameters increases, the probability of detection increases in a manner similar

to logarithmically toward the 100% asymptote.

In particular, we posit that this relationship approximates
√

(x/MAX) where MAX

is the maximum possible sum of squares, and x is the sum of squares of the particular

expression.
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With this modification we find the solution a3b2c3d2 with only two iterations. While

this solution has a slightly lower gross utility, depending on the cost of a probe the net

utility may yet be higher.

5.4 Simulation

Having validated our approach using the single handcrafted example above, we set out to

see how design decisions by a defender would effect the efficacy of these attacks. To do so,

we generated 1000 defenders each with M-term randomly generated 3-DNF expressions

on 30 variables, where M varied from 500 → 2000 in increments of 250. We investigated

in particular what the effect that the number of terms in the defender logic had on attacker

gain. We were also interested in how much the attacker could negate this effect, and varied

the value of M̂ on the same range.

5.4.1 Malware Vectors Algorithm

The Malware Vectors algorithm used for this experiment is provided below. This alb-

gorithm attempts to maximize the payoff to the attacker by keeping a continually updating

estimate that any particular probe will be captured, allowing for testing of optimally sized

probes.

• The utility for an attack of size A is
(
A
K

)
1. The attacker calculates PM with their estimate for M and each possible value

of K ≤ A ≤ N

2. The attacker chooses an A which provides the largest expected utility

3. The attacker generates random combinations of A variables until such a com-

bination isn’t captured by the known defense logic.

4. The attacker tests that against the defense logic.
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Figure 5.1: Number of Probes vs. Defender Logic Size vs. Estimate of Logic Size

5. If the attack is successful, we are done.

6. If not, increase our estimate for M by 1 and goto 1.

The runtime of this algorithm in the worse case is O(2
(
N
K

)
) in the worst case, when

the defender has nearly all logical statements and the attacker assumes they have 0. This

situation is unlikely however, as it would preclude the defender from obtaining any positive

utility on their network to triggers alarms based on all the activity. Further we are assuming

that the defender is using blacklists not whitelists, and thus the majority of the space will

be open, with only known bad areas triggering alerts. As such, in practice, the run time is

much better.

If the attacker underestimates M by a large margin, he will expend a large amount

of additional resources testing probes. However, a lower estimate for M also allows the

attacker more chances to test larger samples. Optimization of the technique used to modify
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Figure 5.2: Vulnerability Size vs. Defender Logic Size vs. Estimate of Logic Size.
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ˆPM could be performed based on the particular costs experienced by the attacker. In this

case, we attempted only to modify ˆPM when we gained actual knowledge that the estimate

for M must shift.

5.4.2 Relation to SAT Problem

The generation of random simulated K-DNF formula has been a topic of discussion with

respect to the satisfiability (SAT) problem. The SAT problem attempts to, given a boolean

formula, find an assignment of variables to that formula which satisfies the formula, or

simply to find if the formula is satisfiable or not. Mitchell et. al[68] discuss particular

sets of boolean functions which based upon their ratio of clauses to variables are easier or

harder to satisfy. In particular, the authors discover that at a ratio of slightly over 4 clauses

per variable the probability of a formula drops below 50% and begins to quickly approach

0%. In our work, we guarantee that the formulas are satisfiable since they are DNF and

Monotone. Consequently, we do not expect to experience the same relationship between

clause number and variable size. Malware Vectors could be described as trying to solve a

blind non-satisfiability problem, and we expect that as the number of unique DNF clauses

increases the probability of not being satisfied follows the statistical measures we establish

in Chapter 4.
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Chapter 6

Conclusion

We have shown that it is trivial to discover a counter-example to the defender’s logic, given

the assumption that the defender cares about false positves.

Further we prove that it is easy to find a bound on the number of statements that the de-

fender has in their defense expression, irrespective of the number of variables, the number

of terms that they have and the size of those terms given that the terms are of the same size

and that the size is known to the attacker.

Finally, we have found a bound on the number of expressions required to learn the

underlying expression in full. Under the assumption that the defender desires to avoid

false positives, this bound is always a smaller number of statements to test than the full

exploration of the factorial space of the K-DNFs.

This work demonstrates that the current model of security by obscurity vis a vis the

security of these rules is insufficient. A key problem that is not addressed in this field is

that what these defense systems attempt to do is derive intent from actions. Unfortunately,

that process is very difficult to carry out.

One stop-gap defense against this technique is to bring the model of moving target

defense to the defense logic used by a system. First, we must allow the assumption that

attacks that are detectable generally persist for a long enough time to be detectable at more
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than one moment. Given this assumption, we can devise a technique that would change

the detection rules used at any timepoint in a randomized manner. This being the case, it

would be possible to trick an adversary into believing that a probe is safe, when in fact it

is not. Any attacks that are more persistent than a probe would still be detected, since the

detection rule would come back periodically.

6.1 Potential Future Work

We forsee that there are a number of avenues for potential future work that builds upon

our findings. In terms of analytic work, there is room to validate our hypothesis about

the minimal size set of K-DNF terms. While the range we found experimentally is small,

there is certainly room to find the exact formula for such examples. The graph theoretic

approach seems to be promising here, particularly Turan’s theorem is a generalized version

of Mantel’s theorem for Kr+1 size clique free graphs. Mantel’s theorem validated our

experimental results for small values, and thus it is possible that the generalized Turan’s

theorem could provide the basis for an analytic solution. Additionally, while we do not

propose such an algorithm here, it should be possible to discover the actual optimal sets,

and not just calculate their sizes. Secondly, further analytic work could expand the full logic

learning algorithm which uses A length terms to accept terms of arbitrary length to allow

to contributions toward learning the full logic while using the Malware Vectors algorithm

with variable A.

On the experimental side, it would be interesting to see how the simulated results

worked with higher fidelity captures of real defense logic and attack objective functions. A

first step towards this may be to derive some logical expressions to represent real defense

systems based on an obtained set of rules. Attacker values could be derived via value elic-

itation or other methods. Finally, these experiments could be expanded to test a real world

dynamic malware generation algortihm competing against a maintained defensive system,
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to validate that the experimental results are indeed a model applicable to the real world

systems we modeled here.
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Appendix A

Licenses

A.1 Written Content License

Permission is hereby granted, free of charge, to any person ob-

taining a copy of this document (the “Dissertation”) to deal in

the Dissertation without restriction, including without limi-

tation the rights to use, copy, modify, merge, publish and dis-

tribute copies of the Dissertation, and to permit persons to whom

the Dissertation is furnished to do so, subject to the following

conditions:

The above copyright notice, this permission notice and the

"No Commercial Use" provision shall be included in all copies or

substantial portions of the Dissertation.

No Commercial Use: Any entity dealing in the Dissertation may

not charge a fee directly or indirectly for access to or a copy

of the Dissertation unless such a fee is equal to or less than

the actual cost of delivering the actual copy exclusive of any

amortized or fixed costs which the entity may otherwise incur
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generally.

Severability: No condition of this license is severable. Should

any condition be found to be invalid or unenforcable the license

is revoked.

A.2 Creative Commons Attribution NonCommercial Share-

Alike 4.0 International

This document is also released under the Creative Commons Attribution-NonCommercial-

ShareAlike 4.0 International license. A copy of the license is available here: https:

//creativecommons.org/licenses/by-nc-sa/4.0/

A.3 Software License

Permission is hereby granted, free of charge, to any person ob-

taining a copy of this software source code (the "Software"),

to deal in the Software without restriction, including without

limitation the rights to use, copy, modify, merge, publish, dis-

tribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, sub-

ject to the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY

KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WAR-

RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE

AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
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HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

OTHER DEALINGS IN THE SOFTWARE.
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Appendix B

Source Code

1 function [v1,design,iters] = mwDesignSim(MAXVAL,sets,vals,

defense)

2 %Max is the maximum value any entry can have. These are

integers. Min 0.

3 %Sets is the list of design criteria desired by the attacker

. One row per.

4 %Vals is the corresponding values for the attackers design

criteria.

5 %Defense is the defender’s actual detection logic.

6 n=size(sets,2);

7 t1 = ones(1,n)*(MAXVAL-1);

8 design = zeros(0,n);

9 iters = 1;

10 disj=isDisjunct(t1,defense);

11 if(disj)

12 v1=t1;
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13 %If the defender doesn’t detect an attack with

everything turned on

14 %We can just use that.

15 else

16 %We add the detected design to the logic matrix

17 design = [design;t1];

18 for i=1:(MAXVAL^n)

19 iters=iters+1;

20

21 t1 = generateMWBinaryProgram( design, sets, vals

, MAXVAL );

22 t1

23 if(isDisjunct(t1,defense))

24 v1=t1;

25 design;

26 return;

27 else

28 design = reducer([design;t1])

29 end

30 end

31 end

32 end

1 function [ret]=newcombnk(N,K)

2 %enumerate the combinations of N choose K.

3 %10x faster than the matlab builtin

4 cur=N(1:K);

5 mx=N(size(N,2));
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6 pos=K;

7 ret=zeros(nchoosek(N(size(N,2)),K),K);

8 ret(1,:)=cur;

9 for i=2:size(ret,1)

10 if(cur(pos)<(mx-(K-pos)))

11 cur(pos)=cur(pos)+1;

12 else

13 while(cur(pos)==(mx-(K-pos)))

14 pos=pos-1;

15 end

16 min=cur(pos);

17 start=pos;

18 for j=1:K-start+1

19 cur(pos)=min+j;

20 pos=pos+1;

21 end

22 pos=K;

23 end

24 ret(i,:)=cur;

25 end

1 function [ v1 ] = generateMWProbeConcious( design, sets,

vals, MAXVAL, requirements, cost)

2 %GENERATEMWPROBECONCIOUS Summary of this function goes here

3 % Detailed explanation goes here

4 bits=size(sets,1);

5 highVal=2^bits;

6 options = sparse(highVal,size(sets,2));
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7 values = sparse(highVal,1);

8 parfor i=1:2^bits-1

9 selected=decodeBits(i,2,bits);

10 options(i,:)=max(sets(selected>0,:),[],1);

11 if(isDisjunct(options(i,:),design) && (sum(options(i

,:)>=requirements) >= sum(requirements)))

12 for j=1:size(sets,1)

13 if(sum(options(i,:)>=sets(j,:))==size(sets

,2))

14 values(i)=values(i)+vals(j);

15 end

16 end

17 values(i)=values(i)/cost(options(i,:));

18 else

19 values(i)=0;

20 options(i,:)=0;

21 end

22 end

23

24 [~,I]=max(values);

25 v1=options(I,:);

26 end

1 function [ v1 ] = generateMWBinaryProgram( design, sets,

vals, MAXVAL )

2 %Generate the optimal boolean vector given the design

constraints
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3 %(prohibited) and the preferences (sets) which have values (

vals), where

4 %each value can have maximum value MAXVAL-1 (MAXVAL is

really number of

5 %possible values it can take on.

6 TwoPow = floor(log2(MAXVAL)+1);

7 VarEnd=size(sets,2)*TwoPow;

8 f=[zeros(1,VarEnd),-1*vals’];

9 A=zeros(0,VarEnd+size(sets,1));

10

11 %for each rule

12 for i=1:size(sets,1)

13 cur = sets(i,:);

14 %for each element of each rule

15 %Add a constraint for the value and every potential

value greater

16 %since they are represented in binary

17 for j=1:size(cur,2)

18 RowRep = decodeBits(cur(j),2,TwoPow);

19 firstOne = find(RowRep,1,’first’);

20 if(isempty(firstOne))

21 %Nothing to add here, all zeros

22 continue;

23 end

24 RowRep(1:firstOne)=1;

25 for k=1:size(RowRep,2)

26 NewRep(k)=-1*RowRep(k)*(2^(TwoPow-k));
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27 end

28 RowRep = NewRep;

29 MakingARow=[];

30 if(j>1)

31 MakingARow=[MakingARow,zeros(1,TwoPow*(j

-1))];

32 end

33 MakingARow=[MakingARow,RowRep];

34 if(j<size(cur,2))

35 MakingARow=[MakingARow,zeros(1,(size(cur

,2)-j)*TwoPow)];

36 end

37 if(i>1)

38 MakingARow=[MakingARow,zeros(1,i-1)];

39 end

40 if(max(abs(MakingARow))>0)

41 MakingARow=[MakingARow,cur(j)];

42 else

43 continue

44 end

45 if(i<size(sets,1))

46 MakingARow=[MakingARow,zeros(1,size(sets

,1)-i)];

47 end

48 A=[A;MakingARow];

49 end

50 end
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51 desStart=size(A,1);

52 %Start of design requirements

53 %For each design rule

54 %a better way to do this

55 %shouldnt go through every number, just every bit

greater than

56 %so like 3,4,8,16

57 powers=[];

58 for i=1:(TwoPow)

59 powers(TwoPow+1-i)=2^(i-1);

60 end

61 for i=1:size(design,1)

62 cur=design(i,:);

63 tmp=cur;

64 idxes = find(tmp);

65 %start at the end and work our way backwards

66 lastIdx = size(idxes,2);

67 done=0;

68 %add the first thing itself

69 toAdd = [];

70 for k=1:size(tmp,2)

71 toAdd=[toAdd,decodeBits(tmp(k),2,TwoPow).*powers

];

72 end

73 A=[A;toAdd,zeros(1,size(A,2)-size(toAdd,2))];

74 while(~done)

75 next=0;
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76 idx=lastIdx;

77 while(~next)

78 if(tmp(idxes(idx))<MAXVAL)

79 %increment the current index, if you

cant, set it to

80 %its value from cur, and continue to the

next index

81 %and so on for each index until you can

increment

82 %something, setting each previous to its

minimum from cur

83 if(mod(tmp(idxes(idx)),2)==0)

84 if(2*tmp(idxes(idx))<MAXVAL)

85 tmp(idxes(idx))=tmp(idxes(idx))

*2;

86 break;

87 end

88 end

89 tmp(idxes(idx))=tmp(idxes(idx))+1;

90 break;

91 else

92 if(idx==1)

93 done=1;

94 break;

95 end

96 tmp(idxes(idx))=cur(idxes(idx));

97 idx=idx-1;
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98 continue;

99 end

100 end

101 toAdd = [];

102 for k=1:size(tmp,2)

103 toAdd=[toAdd,decodeBits(tmp(k),2,TwoPow).*

powers];

104 end

105 A=[A;toAdd,zeros(1,size(A,2)-size(toAdd,2))];

106 end

107 end

108 b=[zeros(1,desStart),sum(A(desStart+1:size(A,1),:),2)

’-1];

109 %set the maximum values

110 for i=1:size(sets,2)

111 row=[];

112 if(i>1)

113 row=[zeros(1,size(sets,2)*i)];

114 end

115 row=[row,powers];

116 if(i<size(sets,2))

117 row=[row,zeros(1,size(sets,2)*(size(sets,2)-i))

];

118 end

119 row=[row,zeros(1,size(A,2)-size(row,2))];

120 A=[A;row];

121 end
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122 b=[b,MAXVAL.*ones(1,size(sets,2))];

123 [t,fval,exitflag,output]=bintprog(f,A,b)

124 v1=zeros(1,size(design,2));

125 %the variables in t are useless, instead use the set

values to see which priorities are

126 %active.

127 fvalSubSelect = t(size(sets,2)*TwoPow+1:size(t,1));

128 v1 = max(sets(fvalSubSelect>0,:),[],1);

129 end

1 function [ v1 ] = generateMW( design, sets, vals, MAXVAL )

2 %Generate the one step back most optimal malware based on

the priorities

3 % and the Values

4 included=ones(size(sets,1),1);

5 v1=max(sets(included>0,:),[],1)

6 for i=1:size(sets,1)

7 if(isDisjunct(v1,design))

8 included(i)=0;

9 end

10 end

11 end

1 function [ v1 ] = generateMW( design, sets, vals, MAXVAL )

2 %Generate the one step back most optimal malware based on

the priorities

3 % and the Values

4 included=ones(size(sets,1),1);
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5 v1=max(sets(included>0,:),[],1)

6 for i=1:size(sets,1)

7 if(isDisjunct(v1,design))

8 included(i)=0;

9 end

10 end

11 end

1 %Design Restrictions:

2 %can’t be captured by

3 % 1 1 1 1

4 % 1 1 1 0

5

6 %values [2;3;4] corresponding with abilities

7 %abilities 1 1 0 1

8 % 1 0 1 1

9 % 1 1 0 0

10

11 A =[-1 -1 0 -1 3 0 0;

12 -1 0 -1 -1 0 3 0;

13 -1 -1 0 0 0 0 2;

14 1 1 1 1 0 0 0;

15 1 1 1 0 0 0 0;];

16 f=[0 0 0 0 -2 -3 -4];

17 b=[0 0 0 3 2];

18

19 [t,fval,exitflag,output]=bintprog(f,A,b);

20
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21 %Design restrictions

22 %can’t be captured by

23 %1 1 1

24 %3 2 0

25

26 %values [20;50;10;5] corresponding with

27 % 0 3 3

28 % 2 2 2

29 % 1 1 0

30 % 0 1 1

31

32 A=[0 0 -2 -1 0 0 3 0

0 0;

33 0 0 0 0 -2 -1 3 0

0 0;

34 -2 0 0 0 0 0 0 2

0 0;

35 0 0 -2 0 0 0 0 2

0 0;

36 0 0 0 0 -2 0 0 2

0 0;

37 0 -1 0 0 0 0 0 0

1 0;

38 0 0 0 -1 0 0 0 0

1 0;

39 0 0 0 -1 0 0 0 0

0 1;
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40 0 0 0 0 0 -1 0 0

0 1;

41 1 0 1 0 1 0 0 0

0 0;

42 1 0 0 1 1 0 0 0

0 0;

43 1 0 0 1 0 1 0 0

0 0;

44 1 0 1 0 0 1 0 0

0 0;

45 0 1 1 0 1 0 0 0

0 0;

46 0 1 1 0 0 1 0 0

0 0;

47 0 1 0 1 1 0 0 0

0 0;

48 0 1 0 1 0 1 0 0

0 0;

49 1 1 1 0 0 0 0 0

0 0];

50

51 f=[0 0 0 0 0 0 -20 -50 -10 -5];

52 b=[0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2];

1 function [ P ] = convertCBDtoDNF( A )

2 %CONVERTCBDTODNF Converts a CBD matrix to DNF

3 % Converts a CBD formatted probability transition matrix

to Disjunctive
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4 % Normal Form.

5 A=ceil(A);%fix all probability values to connectivity

6 P = paths(1,[],A,size(A,2));%find all the paths

individually

7 P=P(:,2:size(P,2)-1);%chop off the start state and the

absorbing state

8 end

1 function bits = decodeBits(state,base,elements)

2 bits = zeros(1,elements);

3 if(state>(base^elements))

4 bits= -1*ones(1,elements);

5 return;

6 end

7 for j=elements-1:-1:0

8 bits(elements-j)=floor(state/(base^j));

9 state=mod(state,base^j);

10 end

11 end

1 function [ strategyIters ] = defenseGen( userBehaviors,

userValues, malwareBehaviors, malwareCosts, attackerTypes

, typeCosts)

2 %DEFENSEGEN Summary of this function goes here

3 % Detailed explanation goes here

4

5

6 end
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1 function val = encodeBits(state,S,n)

2 %Returns the value representing the state passed in the

space with base S

3 % and number of values n

4 val=0;

5 for j=n:-1:1

6 val=val+state(n-j+1)*S^(j-1);

7 end

8 end

1 function [ disjunct, rule ] = isDisjunct( A,B )

2 %returns 0 if the sets of DNF expressions are not disjunct,

1 if they are

3 %also can return the rule which captured an expression from

set A.

4 %Only will detect if B captures A, not if A captures B.

5

6 %find any expressions in B which are supersets of A, (i.

e. have no

7 %entries other than the entries in A)

8 I=find(sum(B(:,A==0),2)==0,1);

9 %If there are none, A is disjunct from B

10 disjunct=isempty(I);

11 %return the Rule in B that detected A

12 rule=I;

13

14 end
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1 function [ subset, rule ] = isAnySubset( A,B )

2 %returns 0 if the sets of DNF expressions are not disjunct,

1 if they are

3 %also can return the rule which captured an expression from

set A.

4 %Only will detect if B captures A, not if A captures B.

5

6 %Basically this is isDisjunct for A and B both matrices

7

8

9 %find any expressions in B which are supersets of A, (i.

e. have no

10 %entries other than the entries in A)

11 I=find(sum(B(:,A==0),2)==0,1);

12 %If there are none, A is disjunct from B

13 disjunct=isempty(I);

14 %return the Rule in B that detected A

15 rule=I;

16

17 end

1 function [ disjunct, rule ] = isDisjunct( A,B )

2 %returns 0 if the sets of DNF expressions are not disjunct,

1 if they are

3 %also can return the rule which captured an expression from

set A.

4 %Only will detect if B captures A, not if A captures B.

5 % disjunct=1;
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6 I=find(sum(B(:,A==0),2)==0,1);

7 disjunct=isempty(I);

8 rule=I;

9 % for j=1:size(B,1)

10 % for i=1:size(A,1)

11 % if(length(find(A(i,:)>=B(j,:)))==size(A,2))

12 % disjunct=0;

13 % rule=[A(i,:);B(j,:)];

14 % return

15 % end

16 % end

17 % end

18 end

1 function [ P ] = paths( next, built, A, target)

2 %PATHS Recursively find paths

3 % P is a list of singular paths which connect next to the

target of

4 % A, assuming that the last column of A is an absorbing

state.

5 cols = size(A,2);

6 if (isempty(built))

7 built = zeros(1,cols);

8 built(next)=1;

9 end

10 if (next == target)

11 P=built;

12 P(1,next)=1;
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13 else

14 [~,opts,~] = find(A(next,:))

15 P=zeros(0,cols);

16 for i = 1:size(opts,2)

17 if(built(opts(i))~=1 && next~=opts(i)) %no loops

18 built(next)=1;

19 P=[P;paths(opts(i),built,A,target)];

20 end

21 end

22 end

23 end

1 function [ canReduce,v3 ] = reduce( v1,v2 )

2 %REDUCE When possible, reduce two logical expressions to one

3 % reduce(v1,v2) simplifies two logical statements in

Dinjunctive Normal

4 % Form to a single statement when possible. The

statements must be

5 % enetered as row vectors of 1’s 0’s and -1’s. For

example:

6 % reduce([1 0 -1],[1 0 0]), would reduce to: [1 0 0], and

is equivilent

7 % to reducing (ac’) + (a) to (a).

8 %

9 % It returns [canReduce, v3], the boolean of if the

statements could be

10 % reduced, and if they could, the new logical statement.

11 canReduce=false;
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12 v3=[];

13 C=abs(v1+v2);

14 zers = length(find(v1==0));

15 if(isempty(find(C==1)))

16 if(length(find(C==0))==zers+1)

17 [~,j,~]=find(C==0);

18 v3=v1;

19 v3(j)=0;

20 canReduce=true;

21 end

22 else

23 %the places where one has a zero and the other has a

value

24 [~,j,~]=find(C==1);

25 if(v1(j(1))==0)

26 t1=v1;

27 else

28 t1=v2;

29 end

30 for i=2:length(j)

31 if(t1(j(i))~=0)

32 return;

33 end

34 end

35 v3=t1;

36 canReduce=true;

37 end
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38

39 end

1 function A = reducer(A)

2 while(true)

3 [x,y]=size(A);

4 B=zeros(0,y);

5 cant=ones(1,x);

6 for i=1:x

7 for j=i+1:x

8 if(i~=j)

9 [can,new] = nStateReduce(A(i,:),A(j,:));

10 if(can)

11 cant(i)=0;

12 cant(j)=0;

13 B=[B;new];

14 end

15 end

16 end

17 if(cant(i))

18 B=[B;A(i,:)];

19 end

20 end

21 if(sum(cant)==length(cant))

22 break;

23 end

24 A=unique(B,’rows’);

25 end
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26 end

1 function [ firstsArr,sizesArr ] = surfVals( samples,Range,N,

K)

2 %Runs advancedAttackSimulator with the appropriate

arguments and

3 %generates two arrays to be used with surf() to make a 3

D plot

4 firstsArr=zeros(size(Range,2));

5 sizesArr=zeros(size(Range,2));

6 for i=1:size(Range,2)

7 for j=1:size(Range,2)

8

9 [firsts,~,sizes,~]=advancedAttackSimulator(

samples,Range(i),N,K,Range(j),[]);

10 firstsArr(i,j)=mean(firsts);

11 sizesArr(i,j)=mean(sizes);

12 [i,j]

13 end

14 end

15 end

1 function [firsts,alls,sizes,eff]=advancedAttackSimulator(

trials,statements,sensors,K,Yestimate,doAlls)

2 %logic=rand(sensors,statements,K);

3 if(statements>nchoosek(sensors,K))

4 fprintf(’Error: defense statements > nchoosek(

sensors,K).’);
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5 firsts=-1;

6 alls=-1;

7 sizes=-1;

8 return

9 elseif(statements==nchoosek(sensors,K))

10 fprintf(’Error: Complete space coverage by defense.’

);

11 firsts=-1;

12 alls=-1;

13 sizes=-1;

14 return

15 end

16 firsts=zeros(1,trials);

17 alls=zeros(1,trials);

18 sizes=zeros(1,trials);

19 eff=zeros(1,trials);

20 % combs=combnk(1:sensors,K);

21 for j=1:trials

22 internalY=Yestimate;

23 defense=zeros(1,sensors);

24 defense(randperm(sensors,K))=1;

25 while(size(defense,1)<statements)

26 candidate=zeros(1,sensors);

27 candidate(randperm(sensors,K))=1;

28 while(~isDisjunct(candidate,defense))

29 candidate=zeros(1,sensors);

30 candidate(randperm(sensors,K))=1;
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31 end

32 defense=[defense;candidate];

33 end

34 % logics=combs(randperm(size(combs,1),statements),:)

;

35 % for i=1:statements

36 % defense(i,logics(i,:))=1;

37 % end

38 v1=ones(1,sensors);

39 design=[];

40 antiDesign=[];

41 capturedProbes=zeros(1,sensors);

42 firstVulnCount=0;

43 while(~isDisjunct(v1,defense))

44 firstVulnCount=firstVulnCount+1;

45 design=[design;v1];

46 capturedProbes(size(v1,2))=capturedProbes(size(

v1,2))+1;

47 [v1,internalY]=generateMWIterativeSim(design,

sensors,K,internalY,capturedProbes);

48 end

49 antiDesign=[antiDesign;v1];

50 detections=0;

51 TestsReq=1000;

52 N=sensors;

53 %not sure how to Optimize this based on the A’s

54 A=K;
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55 if(doAlls)

56 for i=1:TestsReq

57 %generate an A length permutation of the

numbers 1:N

58 row = zeros(1,N);

59 row(randperm(N,A))=1;

60 if(~isDisjunct(row,defense))

61 detections=detections+1;

62 design=[design;row];

63 else

64 antiDesign=[antiDesign;row];

65 end

66 end

67 design=reducer2State(design,K);

68 %calculate our mu for the binomial

69 %wald method

70 p=1-(detections)/(TestsReq);

71 pmax=min(p+2*sqrt(.25/TestsReq),1);

72 pmin=max(p-2*sqrt(.25/TestsReq),0);

73 testP=1;

74 yMin=0;

75

76 numer=nchoosek(A,K);

77 denomBase=nchoosek(N,K);

78 yMax=0;

79 yMid=0;

80 while(pmin<testP)
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81 denom=max(denomBase-yMid,numer);

82 testP=testP*(1-numer/denom);

83 %deceptively named, this is the Y associated

with the min P

84 yMin=yMin+1;

85 if(yMax==0 && pmax>testP)

86 yMax=yMin-1;

87 elseif(yMid==0 && p>testP)

88 yMid=yMin-1;

89 end

90 end

91 %make sure we have captured every part of the

design with a 3DNF

92 while(max(sum(design,2))>K && i<nchoosek(N,K))

93 I=find(sum(design,2)>K,1);

94 %replaces all the >3s with 3s

95

96 J=find(design(I,:));

97 idxes = randperm(sum(design(I,:),2),3);

98 row=zeros(1,N);

99 row(J(idxes))=1;

100 while(isDisjunct(row,defense))

101 antiDesign=[antiDesign;row];

102 i=i+1;

103 flag=0;
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104 while(~isDisjunct(row,[design;antiDesign

]) && size([design;antiDesign],1)<

nchoosek(N,K))

105 idxes = randperm(sum(design(I,:),2)

,3);

106 row=zeros(1,N);

107 row(J(idxes))=1;

108 flag=flag+1;

109 if(flag>500)

110 breakpoint

111 end

112 end

113 end

114 design(I,:)=0;

115 %see if this row captures any other rows

116 % [T,toRemove]=isDisjunct(row,design);

117 % while(~T)

118 % design(toRemove,:)=-1;

119 % [T,toRemove]=isDisjunct(row,design);

120 % end

121 toRemove=find(sum(design(:,row~=0),2)>=K);

122

123 design(I,:)=row;

124 design(toRemove,:)=[];

125 % added=added+1;

126 %remove all empty rows

127 i=i+1;
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128 %row=zeros(1,N);

129 %row(randperm(N,K))=1;

130 %generate new rows until we generate a

unique one, shouldn’t be

131 %many loops ever unless the number of

defense statements

132 %approaches the number of potential

statements, which it never

133 %should because of false positive concerns

134 %while(ismember(row,design,’rows’))

135 % row=zeros(1,N);

136 % row(randperm(N,K))=1;

137 %end

138 %if(~isDisjunct(row,defense))

139 %if(ismember(row,defense,’rows’))

140 % design=reducer([design;row]);

141 % added=added+1;

142 %end

143 %i=i+1;

144 end

145 added=size(design,1);

146 %add up to the small side of the confidence

interval

147 while(added<yMax && i<nchoosek(N,K))

148 row=zeros(1,N);

149 row(randperm(N,K))=1;
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150 %generate new rows until we generate a

unique one, shouldn’t be

151 %many loops ever

152 while(~isDisjunct(row,[design;antiDesign]))

153 row=zeros(1,N);

154 row(randperm(N,K))=1;

155 end

156 %if(~isDisjunct(row,defense))

157 %if we know they are KDNF

158 if(~isDisjunct(row,defense))

159 design=[design;row];

160 added=added+1;

161 else

162 antiDesign=[antiDesign;row];

163 end

164 i=i+1;

165 end

166 %design=reducer(design);

167 % size(design,1)

168 % size(defense,1)

169 alls(j)=i;

170 else

171 alls(j)=nchoosek(sensors,K);

172 end

173 firsts(j)=firstVulnCount;

174 sizes(j)=sum(v1);

175 eff(j)=alls(j)/nchoosek(N,K);

107



176 end

177 end
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