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Abstract

We study quantum theory as an example of entropic inference. Our goal is to remove

conceptual difficulties that arise in quantum mechanics. Since probability is a com-

mon feature of quantum theory and of any inference problem, we briefly introduce

probability theory and the entropic methods to update probabilities when new infor-

mation becomes available. Nelson’s stochastic mechanics and Caticha’s derivation of

quantum theory are discussed in the subsequent chapters.

Our first goal is to understand momentum and angular momentum within an

entropic dynamics framework and to derive the corresponding uncertainty relations.

In this framework momentum is an epistemic concept – it is not an attribute of the

particle but of the probability distributions. We also show that the Heisenberg’s

uncertainty relation is an osmotic effect. Next we explore the entropic analog of

angular momentum. Just like linear momentum, angular momentum is also expressed

in purely informational terms.

We then extend entropic dynamics to curved spaces. An important new feature

is that the displacement of a particle does not transform like a vector. It involves
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second order terms that account for the effects of curvature . This leads to a modified

Schrödinger equation for curved spaces that also take into account the curvature

effects. We also derive Schrödinger equation for a charged particle interacting with

external electromagnetic field on general Riemannian manifolds.

Finally we develop the entropic dynamics of a particle of spin 1/2. The particle is

modeled as a rigid point rotator interacting with an external EM field. The configu-

ration space of such a rotator is R3 × S3 (S3 is the 3-sphere). The model describes

the regular representation of SU(2) which includes all the irreducible representations

(spin 0, 1/2, 1, 3/2,. . . ) including spin 1/2.
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Chapter 1

Introduction

General relativity and quantum mechanics are two foundational pillars of modern

physics. The mathematical frameworks of both theories are well-established. In con-

trast to general relativity quantum mechanics lacks a conceptual foundational princi-

ple. Although quantum mechanics describes the properties of microscopic particles to

a high level of accuracy, its formalism is very abstract and non-intuitive. The funda-

mental object in quantum mechanics is the wave function. Whether the wave function

corresponds to some physical wave has been the subject of debate since the beginning

of the theory in the 1930’s. Several interpretations of quantum mechanics have been

proposed, mainly the orthodox Copenhagen interpretation [1], the causal interpre-

tation [2], the statistical interpretation [3], the many-worlds interpretation [4], the

transactional interpretation [5], the consistent history interpretation [6], and many

more.

Although the interpretational difficulties need not affect the main conclusions of

a theory, the lack of conceptual understanding can give rise to paradoxes and con-

troversies. Take for example the interpretation of special relativity. Some relativistic
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equations appearing in special relativity such as Lorentz contraction were already

known before Einstein, and were controversial. Once Einstein established the theory

based on two simple postulates the interpretational problems were resolved. A similar

treatment is needed for quantum mechanics.

Since quantum mechanics involves probabilities in a fundamental way its concep-

tual foundation may lie in the theory of inference. Recently A. Caticha [7,8] derived

quantum mechanics as an example of entropic inference. In this approach QM is

a dynamics driven by entropy — it is therefore called Entropic Dynamics (ED). In

the original formulation the basic assumption was that in addition to the particles

of interest the world contains other ‘extra’ variables whose entropy depends on the

positions of the particles. In ED, not only the amplitude but also the phase of the

wave function receives a statistical interpretation: the phase keeps track of the en-

tropy of those extra variables. In a more recent formulation [9] this assumption has

been dropped.

Entropic dynamics is a formulation that is much broader than QM. Depending on

the choice of microstates or variables, and the choice of constraints we can represent

forms of dynamics that have quantum properties, or deterministic classical properties,

or stochastic classical properties. The goal of this thesis is to explore some particular

versions of ED in order to eventually attain a deeper understanding of QM.

Entropic dynamics has close formal similarities with Nelson’s stochastic mechan-

ics. Both theories are modeled in configuration space and Brownian motion is their
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common feature. But there is an important difference. Brownian motion is merely

postulated in Nelson’s theory while it is derived in entropic dynamics. Also Nel-

son’s theory operates at an ontological level, while ED operates completely at the

epistemological level.

Entropic dynamics differs from other information-based approaches to quantum

theory in that the position observable assumes a privileged role: particles have well-

defined, albeit unknown positions. This opens the possibility of explaining all other

observables in purely informational terms. In this thesis one of our goals is to identify

what concepts, within entropic framework, play the role of momentum, and angular

momentum. Another goal is to generalize ED formalism to curved spaces.

This thesis is organized as follows. In chapter 2 we introduce probability theory.

Special focus is given to the comparative study of Kolmogorov and Cox frameworks of

probability. The Kolmogorov framework (KF) heavily rests on measure theory while

Cox framework (CF) makes use of Boolean logic to derive the rules of probability.

The mathematical structure of probability theory remains the same but the meaning

of probability changes while going from KF to CF framework.

In chapter 3 we review the methods to update probabilities when new information

becomes available. Information either comes in the form of data or constraints. One

normally uses Bayes’ rule to update probabilities when information is available in the

form of data and when information comes in the form of constraints, one uses the

method of maximum entropy (MaxEnt) originally designed by E. T. Jaynes [10, 11].
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In this chapter we review the extended method of maximum entropy (ME) due to A.

Caticha [12]. It is shown that both Bayes’ rule and MaxEnt are special cases of ME.

Chapter 4 is devoted to Nelson’s theory of stochastic mechanics. In 1966, E.

Nelson derived Schrödinger equation from an entirely classical notion of Brownian

motion [13–15]. In this chapter we define Brownian motion and then review Nelson’s

formalism of quantum theory.

Chapter 5 deals with Caticha’s derivation of quantum theory. Specifying the

relevant statistical manifold and choosing the appropriate constraints, and then us-

ing the method of maximum entropy, the transition probability is derived for short

steps which leads to Brownian motion. Finally requiring that the diffusion be non-

dissipative – that there exists a conserved energy – the Schrödinger equation is de-

rived.

The new contributions of this thesis are contained in chapters 6 through 9. Chap-

ter 6 deals with the concept of linear momentum within the framework of entropic

dynamics. We also review the concept of momentum within classical and quantum

mechanics. Next we define momentum within the entropic framework. We note that

since the particle follows a non-differentiable trajectory it is clear that the classical

momentum, md~x/dt, along the trajectory cannot be defined. Nevertheless three dif-

ferent notions of momentum can be usefully defined. They are the drift, osmotic and

current momenta. It turns out that these momenta are not associated with the parti-

cles but to the probability distributions. The drift momentum reflects probability flow
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along the entropy gradient, the osmotic momentum indicates diffusion of probability

flow, while the current momentum reflects the flow of total probability. It is shown

that these momenta share properties with the quantum momentum ~pq = −ih̄~∇, and

in the appropriate classical limit the drift and current momenta converge to the clas-

sical momentum, m~v, while the osmotic momentum tends to zero. Finally we derive

the uncertainty relations for all momenta that appear in entropic dynamics. In the

same chapter we also explore a special case of entropic dynamics that involves hybrid

classical-quantum features. It obeys the classical Hamilton-Jacobi equation and also

the usual uncertainty principle.

Another important concept in physics is angular momentum. In chapter 7 we de-

velop the entropic analog of angular momentum. Just like linear momentum, angular

momentum is also statistical in nature—angular momentum is an attribute of the

probability distributions. We introduce four different notions of angular momenta.

They are the drift angular momentum, osmotic angular momentum, current angular

momentum and the standard quantum angular momentum operator. We show that

the current/drift angular momentum represents the entropic analog of angular mo-

mentum. The expected values of current/drift angular momentum is the same as the

expectation of quantum angular momentum while osmotic momentum has vanishing

expectation. Having defined angular momenta, we also establish their uncertainty

relations.

In chapter 8 we extend entropic dynamics to curved spaces. An important new
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feature is that the displacement of a particle does not transform like a vector. It

involves second order terms that account for the curvature effects. This leads to a

modified Schrödinger equation for curved spaces that take into account the curvature

effects. In the same chapter, we also derive Schrödinger equation for a charged particle

interacting with external electromagnetic field on general Riemannian manifolds.

Chapter 9 is an application of the theory developed in chapter 8. We develop

entropic analog of the models of spin developed by Dankel [16]; and Dohrn, Guerra

and Ruggiero [17] in connection with Nelson’s stochastic mechanics. Consider a single

particle, we assume that the particle has the usual spatial coordinates as well as some

internal degree of freedom. The configuration space is enlarged from R3 to R3 × S3,

where R3 corresponds to the usual three dimensional Euclidean space that accounts

for the translational degrees of freedom while S3 is the 3-sphere that takes into account

the rotational degrees of freedom. We also discuss the possible shortcomings of the

rotator models of Dankel [16]; and Dohrn, Guerra and Ruggiero [17]. These models

reproduce the regular Pauli equation that corresponds to the regular representation

of SU(2) which includes the irreducible spinor representation.

In chapter 10 we collect our conclusions.
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Chapter 2

Probability Theory

2.1 Introduction

The mathematical theory of probability arose from correspondence between Blaise

Pascal (1623-1662) and Pierre Fermat (1601-1665) to solve some problems in the

games of chance. The earlier notion of probability was intuitive and only in twentieth

century A. N. Kolmogorov [18] provided the axiomatic foundation of probability.

The Kolmogorov’s framework rests heavily on measure theory of sets, it does not

address the question of interpretation of probability. A meaningful interpretation of

probability as a tool for inference was provided by Richard T. Cox [19,20] and others.

This chapter is devoted to the comparative study of the two frameworks.

2.2 Kolmogorov’s Framework

The axiomatic development makes it possible to encompass the totality of the objects

studied by a given mathematical theory [21]. Like any other mathematical theory

such as geometry and algebra, probability theory can also be developed from certain
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axioms. Here we state the axioms of Kolmogorov in connection with probability and

briefly describe them. The axioms or definitions stated here are given in modern

terms, see for example [22,23].

Definition 1. (Borel Sigma-Field) Let Ω be a set and F be a collection of subsets

of Ω. Then F is called a Borel sigma-field or Borel sigma-algebra if the following

conditions are met:

1. The empty set ϕ ∈ F

2. If A ∈ F , then the complement Ac ∈ F

3. If Ai ∈ F for all i = 1, 2, . . ., then
⋃∞
i=1Ai ∈ F

The set Ω is called a sample space, the elements of Ω are called outcomes and the

elements A of F are called events. It is clear that Borel sigma-field is closed under

the operation of complement and countable union of its members.

Definition 2. (Probability Measure) A set function P : F → [0, 1] is said to be

a probability measure if the following conditions hold:

1. P (Ω) = 1

2. P (A) ≥ 0, A ∈ F

3. P (
⋃∞
i=1Ai) =

∞∑
i=1

P (Ai), Ai ∈ F , Ai ∩ Aj = φ, i 6= j

Here the set function P assigns real values in the unit interval [0, 1] to the events in F .

We say that A ⊆ Ω is measurable if A ∈ F . One can observe that probability measure
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is finitely additive, that is, if A1 and A2 are disjoint then P (A1∪A2) = P (A1)+P (A2).

Moreover it is also monotonic whenever A ⊆ B then P (A) ≤ P (B) for any A,B in

F . Finally the triple (Ω,F , P ) is called a probability space.

Definition 3. (Conditional Probability) Let (Ω,F , P ) be a probability space.

Then the conditional probability of the event A given that the event B has occurred,

denoted by P (A|B) is defined as

P (A|B) =
P (A ∩B)

P (B)
, P (B) > 0 . (2.1)

The basic idea of conditioning is that whenever it is given that an event say B has

occurred then the original probability space (Ω,F , P ) becomes irrelevant. A new

probability space (B,FB, PB) takes over the original space. Here B ⊆ Ω, FB =

{A ∩ B : A ∈ F}, and PB
def
= P (A|B). The space (B,FB, PB) is called a conditional

probability space or simply subprobability space [24]. The events A and B are said

to be independent if P (A|B) = P (A), that is the probability of A has not affected

when the event B is observed.

Definition 4. (Random Variables) Let ω ∈ Ω. Let B ⊆ R∗ = [−∞,∞]. Then the

real-valued function X : Ω → R∗ is called random variable if the image of B under

the inverse mapping

X−1(B) = {ω : X(ω) ∈ B} ∈ F , (2.2)

where F is a sigma-field on Ω.
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One might think that a random variable is just a ‘variable’ but this is misleading.

As evident from the definition just stated X is not a variable but a function. Here

the inverse mapping X−1(B) is very crucial. Consider a collection G of all those

subsets B of R∗ for which X−1(B) ∈ F . Since inverse mapping preserves unions,

intersections and differences of sets, if F happens to be a sigma-field then G is also a

sigma-field. The proof is trivial, see for example, [25]. A random variable induces a

probability measure on G. If (Ω,F , P ) is a probability space, then the triple (R∗,G, µ)

is also a probability space, defined by, µ(B) = P (X−1(B)). Computationally this

correspondence is very useful because the element ω is not necessarily a number but

X(ω) is a real number.

These are the basic elements of Kolmogorov’s framework of probability theory.

The Kolmogorov formulation does not address the issue of the meaning of probability.

Its great virtue is mathematical rigour.

2.3 Cox’s Framework

The meaning of probability is central to Cox framework. It is worth noting that

several interpretations of probability exist even today. The frequency interpretation

and the Bayesian interpretation are the two major interpretations of probability.

According to frequency theory the probability of a random event is defined as the

limiting frequency with which that event occurs in a sufficiently large number of

identical and independent trials.
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The Bayesian interpretation is further classified into subjective and objective the-

ories. According to subjective view probability is identified with the degree of belief

of a particular individual and so different individuals may have different degrees of

belief in the truth of the same proposition. This is sometimes called the personalistic

view. At the other end of the spectrum, in the objective view, probability is identified

with the degree of belief of an ideally rational agent. It is assumed that all rational

agents reasoning on the basis of the same information will arrive at the same degree

of belief about the truth of a proposition. The objective view places probability as

an extension of logic.

Richard Cox [19] made use of the objective view of probability to derive the sum

and product rules of probability. The advantage of this approach is that degrees

belief can be quantified. The idea is that beliefs can be compared with respect to

the intensity with which they are held. This means that degrees of belief can be

represented by real numbers. But first some notation is in order.

Let a, b, c, . . . represent statements or propositions that obey Boolean logic. The

negation not-a of a proposition a, is denoted by a′. If a is true, then a′ is false and vice

versa. The logical product or conjunction is represented by ab. The conjunction ab is

true when both a and b are true. The logical sum or disjunction is represented by a+b.

The disjunction a + b is true when either a or b or both are true. The propositions

a, b, c, . . . do not represent real numbers, however, they can be quantified using the

following two requirements [19,26,27]:
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1. The degree to which we believe that proposition a is true when proposition b is

known to be true, is represented by a real number.

2. The assignment of degrees of belief must be consistent.

Mathematically the first condition will be written as P (a|b) which will be later related

with the probability measure. However at the present moment we shall simply call it

plausibility. We seek the degree of plausibility of a proposition a given a proposition

b. The second requirement, called the consistency condition, is very crucial. For if

the plausibility of a can be found in two different ways, then the two ways should

agree.

Our goal is to show that after suitable regraduation, a change of scale, plausibility

turns out to be probability. This must be the case if we are able to show that our

function P satisfies the following criteria:

1. If 0 ≤ P ≤ 1

2. If P satisfies probability sum rule.

3. If P satisfies probability product rule.

Cox derived sum and product rules of probability by focusing on negation and con-

junction properties of Boolean logic. Here are his axioms [19,26,27]:

Axiom 1. The plausibility of negation a′ is monotonic function of the plausibility of

a,

P (a′|b) = f (P (a|b)) . (2.3)
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The function f just relates the plausibility of a′ with the plausibility of a.

Axiom 2. The plausibility P (a1a2|b) of a conjunction a1a2, is a function of plausi-

bility of P (a1|b) of a1, and P (a2|a1b) of a2 given a1,

P (a1a2|b) = g (P (a1|b) , P (a2|a1b)) (2.4)

where g is some function.

The functions f and g are not specified.

2.3.1 Product Rule

To find the functions f and g we first obtain a constraint that follows from the

associativity of the Boolean algebra, abc = (ab)c = a(bc). Treating ab and bc as single

statements, then

P ((ab)c|d) = P (a(bc)|d) . (2.5)

Applying eq. (2.4) repeatedly, we arrive at

g [g [P (a|d), P (b|ad)] , P (c|abd)] = g [P (a|d), g [P (b|ad), P (c|bad)]] . (2.6)

This equation is called ‘the associativity equation’ which has a unique solution. The

general solution is given by [19]

G[P (ab|c)] = G[P (a|b)]G[P (b|ac)] , (2.7)

where G is another function. Originally our goal was to find the function P . But there

is nothing special about P . If P (a|b) is a plausibility, then any monotonic function
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of P (a|b) is also an acceptable degree or measure of plausibility. It is just a matter

of rescaling. Therefore G[P (a|b)] is also a plausibility. It is convenient to regraduate

P (a|b) to a new set of positive numbers G[P (a|b)],

p(a|c) def
= G[P (a|b)], p(b|ac) def

= G[P (b|ac)], . . . (2.8)

we thus arrive at the product rule of probability,

p(ab|c) = p(a|c)p(b|ac) (2.9)

For now we shall still continue to call it ‘plausibility’ instead of ‘probability’. Let us

derive the other two conditions—namely 0 ≤ p ≤ 1, and the sum rule.

2.3.2 The range of plausibility

To find the range of p, set a = b in eq. (2.9)

p(aa|c) = p(a|c)p(a|ac) . (2.10)

Since a, b, c, . . . are propositions, they obey Boolean algebra. We can write p(aa|c) =

p(a|c) because aa = a. We obtain

p(a|c) = p(a|c)p(a|ac) ⇒ p(a|ac) = 1 , (2.11)

where p(a|ac) is the plausibility of a given a which happens in the situation of total

certainty. Let pT reflect total certainty. Therefore

pT = 1 . (2.12)
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This is one of the extreme value of p. To find the other extreme value use the product

rule again with a different setting,

p(ab′|b) = p(a|b)p(b′|ab) . (2.13)

Since both ab′|b and b′|ab are absurdities, call p(ab′|b) = pF = p(b′|ab), therefore

pF = p(a|b)pF . (2.14)

Since p(a|b) is arbitrary, therefore pF = 0,∞ or −∞. The negative values of p are

not allowed because it violates consistency with the product rule. If pF = ∞, then

p is a decreasing function which is changing from p = ∞ for absurdity down to

p = 1 for certainty – that is 1 ≤ p ≤ ∞. In the later case, the plausibility p can be

regraduateed to a new plausibility P such that P(a|b) = 1/p(a|b) [26]. This means

that 0 ≤ P ≤ 1. Therefore without loss of generality we can set: 0 ≤ p ≤ 1. Hence

the second condition of probability is also derived.

2.3.3 Probability sum rule

Now let us solve eq. (2.3). Start with the product rule, eq. (2.9).

P (ab|c) = P (a|c)P (b|ac) = P (a|c)f (P (b′|ac)) , (2.15)

but

P (ab′|c) = P (a|c)P (b′|ac) , (2.16)

then

P (ab|c) = P (a|c)f
(
P (ab′|c)
P (a|c)

)
. (2.17)
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Since P (ab|c) is symmetric in ab = ba, therefore

P (a|c)f
(
P (ab′|c)
P (a|c)

)
= P (b|c)f

(
P (a′b|c)
P (b|c)

)
. (2.18)

Since a, b, and c are arbitrary, we can choose b′ = ad. In the l. h. s. ab′ = aad = b′,

therefore P (ab′|c) = P (b′|c) = f(P (b|c)). In the r. h. s. b = (ad)′ = a′ + d′ so that

a′b = a′a′ + a′ab = a′, therefore P (a′b|c) = P (a′|c) = f(P (a|c))

P (a|c)f
(
f(P (b|c))
P (a|c)

)
= P (b|c)f

(
f(P (a|c))
P (b|c)

)
. (2.19)

Writing P (a|c) = u, and P (b|c) = v, we have

uf

(
f(v)

u

)
= vf

(
f(u)

v

)
. (2.20)

The general solution of eq. (2.20) is given by [19,26],

f(u) = (1− uα)1/α or uα + (f(u))α = 1 , (2.21)

which means that

[P (a|c)]α + [P (a′|c)]α = 1 . (2.22)

Performing regraduation again

p(a|c) def
= [P (a|c)]α , (2.23)

leads to

p(a|c) + p(a′|c) = 1 . (2.24)

This is the ‘sum rule of probability’. For any statements a and b the ‘extended sum

rule’ is given by

p(a+ b|c) = p(a|c) + p(b|c)− p(ab|c) . (2.25)
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In summary, since all conditions of probability — the product and sum rules and

that probability is normalized are derived, we have proved that ‘plausibility’ is indeed

‘probability’. From now on we shall call it probability.

2.4 Conclusions

The very motive of this chapter was to put forward probability theory either in purely

mathematical settings, the Kolmogorov’s framework (KF), or on the interpretational

grounds, the Cox’s framework (CF). In KF probability is just measure based on set

theory. For mathematicians this maybe the standard way of dealing with probability.

Of course, it is still needed to attach some interpretation to probability in order to

apply it to practical problems. One naturally recovers KF if one associates probability

with the relative frequency of equally likely events. To demonstrate this let A and

B be disjoint sets, and Ω = A ∪ B, then |Ω| = |A| + |B|, where |.| represents total

number of elements (cardinality) of a set. Now define probability of event A as

P (A) = |A|/|Ω|, and similarly P (B) = |B|/|Ω|. One observers that P (Ω) = P (A) +

P (B) = 1. Unfortunately one arrives at a contradiction if A,B and Ω are all infinite

sets having cardinality ℵ0, where ℵ0 is the cardinality of the set of integers, then

P (Ω) = P (A) + P (B) = 1 is not guaranteed.

Formulating a theory purely in a mathematical way (theorem-proof style) and

leaving the interpretation to the end may lead to difficulties if the interpretation is

disputable. It may satisfy the curiosity of mathematicians but may not be much
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appreciated by other disciplines. Returning to probability theory, Cox framework

(CF) does not have this problem. In CF both the mathematics and interpretation

of probability are in complete agreement. The fundamental object in CF is the

conditional probability P (a|b). The credibility of a proposition a is relative to some

known evidence b. This makes all probabilities conditional. One assigns probability

on the basis of partial knowledge. Furthermore a probability can be assigned to single

events without the need for large ensemble of identical trials and that the ‘randomness’

in KF is nothing but incomplete information.
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Chapter 3

The Problem of Inference

3.1 Introduction

The process of making judgments on the basis of partial knowledge is called inductive

inference. The tool to handle incomplete information or uncertainty is probability.

Since probability is defined as the degree of belief of a rational agent, our beliefs

change when new information becomes available. Likewise probabilities must also be

updated. A common method of updating probabilities from the prior given informa-

tion to the posterior probability distribution is the Bayes’ rule.

Although Bayes’ rule is very successful, it also has some limitations. It is re-

stricted to situations where the information is in the form of data,, it cannot handle

other forms of information such as constraints. When information is in the form of

constraints, one uses a different method, namely the method of maximum entropy

(MaxEnt), originally formulated by E. T. Jaynes [10, 11] to reconcile the statistical

mechanics of J. W. Gibbs [28] and communication theory of C. E. Shannon [29].

MaxEnt also has some limitations. It allows arbitrary constraints but it does not
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allow information contained in arbitrary priors. A more general method of updating

that allows arbitrary constraints and arbitrary priors involves maximizing relative

entropy. Such a method of entropic inference is an extended method of maximum

entropy (abbreviated ME).

Processing information on the basis of available information is the subject of this

chapter. We begin with Bayesian inference and then present entropic inference.

3.2 Bayesian Inference

Bayesian inference deals with updating probabilities from old beliefs about one or

several parameters θ ∈ Θ when the new evidence is available in the form of data

x ∈ X . First we wish to describe the old probabilities before the data has been

observed. At this stage the relevant space is neither Θ nor X but the product space

Θ×X whose probability is represented by the joint distribution

q(θ, x) = q(θ)q(x|θ) , (3.1)

where q(θ) is called the prior probability distribution that represent our knowledge

about θ before the data has been collected. The relation between x and θ is encoded

into the conditional probability distribution q(x|θ) called the likelihood.

We note that since the joint distribution q(θ, x) is symmetric in its arguments, we

can also write as

q(x, θ) = q(x)q(θ|x) . (3.2)
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Equating eqs. (3.1) and (3.2), we obtain

q(θ|x) =
q(θ)q(x|θ)
q(x)

, (3.3)

which is called Bayes’ theorem. It is named after Reverend Thomas Bayes who

addressed the problem of inverse probabilities sometime during 1740s. Its modern

mathematical form is due to Pierre-Simon Laplace who discovered the theorem inde-

pendently.

It should be noted that Bayes’ theorem just relates two prior conditional probabil-

ities regardless of what has been observed in the data. One uses Bayes’ rule in order

to take into account the actual data. Bayes’ rule is a method of update from prior

probabilities to posterior probability distribution when the new evidence is available

in the form of actual data. Prior probability should be revised only the extent re-

quired by the new data —the so-called Principle of Minimal Updating (PMU), see

for example [30].

Our goal is to obtain the new joint posterior probability distribution p(θ, x). Using

the product rule

p(θ, x) = p(x)p(θ|x) . (3.4)

When the experiment is performed, the actual value of x is found to be x′, therefore

p(x) = δ(x− x′) . (3.5)

Next PMU takes over and we require that the prior conditional probability q(θ|x′)

not be updated,

p(θ|x′) = q(θ|x′) . (3.6)
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Combining PMU with Bayes’ theorem lead to Bayes’ rule

p(θ) = q(θ)
q(x′|θ)
q(x′)

, (3.7)

where p(θ) is the desired posterior distribution. The factor in the denominator is the

normalization constant given by

q(x′) =
∫
q(θ)q(x′|θ)dθ . (3.8)

3.3 Entropic Inference

The goal of inductive inference is to update from the prior to the posterior probability

distribution when new information, either in the form of data or constraints, becomes

available. In general there could be several candidate distributions p1, p2, p3,. . . that

satisfy the constraints and qualify for the desired posterior. To select the posterior

one has to rank all p’s in increasing order of “preference” and then select the one

that maximizes “preference”. In order to work the ranking scheme, the measure of

preference must be transitive: if p1 is better than p2, and p2 is better than p3, then p1

is better than p3. To implement the ranking one introduces certain quantity S[p, q].

The quantity S[p, q] is called the entropy of p relative to the prior q, and it is designed

in such a way that if p1 is preferred over p2, then S[p1, q] > S[p2, q]. The preferred

distribution is obtained by maximizing the entropy functional.

It is desirable to first find the functional form of S[p, q] that follows from certain

axioms based on the process of eliminative induction. The method presented here
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is due to Caticha [31, 32] see also [30], and is based on previous work by Shore and

Johnson [33] and Skilling [34].

Axiom 1. (Locality) Local information has local effects.

Let x ∈ X , and let X be partitioned into two non-overlapping domains D and D̃

with X = D ∪ D̃. Suppose that the information to be processed does not refer to

D, then according to the principle of minimal updating (PMU) the prior conditional

probability q(x|D) is not updated. It should be noted that PMU is now generalized to

include any kind of information. The generalized version of PMU states that beliefs

should be updated only to the extent required by the new information [30]. In the

earlier section PMU was only restricted to the new information in the form of data

but now it includes information either in the form of data or constraints.

The consequence of the locality criterion is that non-overlapping domains of x

contribute additively to the entropy functional

S[p, q] =

∫
dxF (p(x), q(x), x) , (3.9)

where F is a function yet to be determined.

Axiom 2. (Coordinate Invariance) The system of coordinates carries no infor-

mation.

The process of updating remains unchanged by a mere change of coordinates. The

consequence of axiom 2 is that eq. (3.9) can be written in a coordinate invariant way
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S[p, q] =

∫
dxm(x) Φ

(
p(x)

m(x)
,
q(x)

m(x)

)
, (3.10)

where m(x) is a density and Φ is another function of only two arguments in contrast

to F which has three arguments.

The function Φ is still undetermined. Combining the locality and coordinate

invariance criteria reduces Φ to be a function of only argument. A second use of the

locality axiom 1 allows us to determine the unknown density m(x). Recall the locality

criterion and require that the domain D covers the whole space, that is D = X . This

corresponds to a situation when no new information is available. The immediate

consequence of this is that up to a normalization m(x) turns out to be the same as

the prior q(x). Therefore the entropy functional (3.10) reduces to the following form

S[p, q] =

∫
dx q(x) Φ

(
p(x)

q(x)

)
. (3.11)

Axiom 3. (Independence) When two systems are a priori believed to be indepen-

dent and we receive independent information about each then it should not matter if

one is included in the analysis of the other or not (and vice versa).

Suppose that the system is composed of subsystems, (x1, x2) ∈ X = X1 × X2. If

the subsystems happen to be independent then the probability of composite system

should update to p(x1, x2) = p(x1)p(x2) whether they are treated jointly or separately.

The consequences of this is that the function Φ is determined to be Φ(z) = −z log z,

and therefore

S[p, q] = −
∫
dx p(x) log

p(x)

q(x)
, (3.12)

24



where q(x) is the prior and p(x) is the posterior probability distribution.

3.4 Special Cases of ME

The entropic inference framework or ME is of general applicability. Whether the

information is available in the form of data or constraints, it can be used for updating

when new information becomes available. It turns out that both the MaxEnt of

Jaynes and Bayes’ rule are special cases of ME. Here we derive them as special cases

of ME.

3.4.1 Jaynes’ method of maximum entropy (MaxEnt)

Originally the method of maximum entropy (MaxEnt) was designed by Jaynes to

assign probabilities on the basis of constraint information [10]. To obtain MaxEnt,

we write eq. (3.12) in the discrete form (for a uniform prior qi = constant),

S[p] = −
∑
i

pi log pi , (3.13)

which can be recognized as the Shannon’s entropy.

Now specifying the constraints: Beside the normalization condition,
∑

i pi = 1, it

is assumed that the information is available in the form of expected values of certain

quantities

〈fk〉 =
∑
i

pif
k
i = F k , (3.14)

where F k are numerical values of the functions fk, for k = 1, 2, . . .
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Next maximizing S[p] subject to the constraints

0 = δ
(
S[p]− α

∑
i pi −

∑
k λk

∑
i pif

k
i

)
, (3.15)

where λ’s are Lagrange multipliers. The solution of eq. (3.15) is the generalized

canonical distribution

pi =
exp

[
−
∑

k λkf
k
i

]
Z

(3.16)

where Z is the partition function

Z =
∑
i

exp
[
−
∑

k λkf
k
i

]
(3.17)

For example, the Maxwell-Boltzmann distribution of statistical mechanics follows

immediately if the only information available is the expected energy, 〈E〉 =
∑

i piEi,

then

pi =
e−βEi

Z
. (3.18)

This concludes that statistical physics which is commonly regarded as a “physical”

theory is nothing but an example of inference.

3.4.2 Bayes’ rule

Bayes’ rule and MaxEnt were regarded as two parallel methods for update. Appar-

ently they operate at different levels. The difficulties in their unification is that Bayes’

rule allows for the information contained in an arbitrary prior and in data, it cannot

handle arbitrary constraints. On the other hand, MaxEnt can cope with arbitrary

constraints but fixed prior. In MaxEnt the prior is the underlying measure.
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The unification of Bayes’ rule and MaxEnt was finally achieved by Caticha and

Giffin in 2006 [12, 35]. It turned out that Bayes’ rule is also a special case of ME.

Here we outline their work. For detailed analysis see [30].

In Bayes’ rule one aims to infer one or more parameters θ ∈ Θ on the basis of

information available in the form of data x ∈ X . But before the data is available we

do not know both θ and x, therefore the relevant space is the product space Θ× X .

We want to update from joint prior distribution q(x, θ) to the posterior p(x, θ). To

find it maximize the appropriate entropy

S[p, q] = −
∫
dxdθ p(x, θ) log

p(x, θ)

q(x, θ)
. (3.19)

Constraints: When the data x′ is collected, the data imposes a constraint on the

posterior: p(x, θ) must reflect complete knowledge of the value of x. In addition to

the normalization, the relevant constraint that takes into account the observed data

is given by

p(x) =
∫
dθ p(θ, x) = δ(x− x′) . (3.20)

Now use the machinery of ME

δ{S − α[
∫
dxdθ p(x, θ)− 1] +

∫
dx λ(x)[

∫
dθ p(x, θ)− δ(x− x′) ]} = 0 , (3.21)

which yields

p(x, θ) = q(x, θ)
eλ(x)

Z
, (3.22)

where Z is a normalization constant and λ(x) is the Lagrange multiplier. The La-
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grange multiplier can be found by using eq. (3.20).

∫
dθ p(x, θ) =

∫
dθ q(x, θ)

eλ(x)

Z
= δ(x− x′) , (3.23)

this gives

q(x)
eλ(x)

Z
= δ(x− x′) , (3.24)

and therefore eq. (3.22) becomes

p(x, θ) = q(x, θ)
δ(x− x′)
q(x)

. (3.25)

The joint prior can be written as

q(x, θ) = q(θ)q(x|θ) , (3.26)

so that

p(x, θ) = q(θ)q(x|θ)δ(x− x
′)

q(x)
. (3.27)

Finally marginalizing over x yields

∫
dx p(x, θ) =

∫
dx q(θ)q(x|θ)δ(x− x

′)

q(x)
, (3.28)

and thus we obtain the Bayes’ rule

p(θ) = q(θ)
q(x′|θ)
q(x′)

. (3.29)

3.5 Conclusions

We have shown that the extended method of maximum Entropy (ME) is capable of

processing any form of information. It extends beyond the original scope of Bayes’
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method and MaxEnt. The ME method described here and MaxEnt are formally very

similar but there is an important difference. In the original formalism of MaxEnt by

Jaynes, the constraints always take the form of expected values of certain functions.

ME is not restricted in this way: any type of constraint is acceptable. This will be

important in the derivation of QM. For example, in chapter 5 a constraint, namely

eq. (5.9), is used which is not in the form of expected values.

Another difference between MaxEnt and ME is that in both Shannon’s and Jaynes’

formalism, S[p] measures an amount of information. This is what people call Shan-

non’s information — it is an “amount” (usually measured in bits). In the entropic

inference described here “information” is not an amount. Its meaning is close to

the colloquial meaning: information is what changes our beliefs. Information is the

constraints that induce the updating from prior to posterior.

Entropic inference has universal applicability. It provides a framework to derive

not only statistical physics but also quantum theory as an application of ME method

[8].
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Chapter 4

Nelson’s Stochastic Mechanics

4.1 Introduction

Classical mechanics and quantum mechanics deal with physical systems very differ-

ently. The fundamental objects in the former are positions and velocities or momenta

while in the latter the state of a physical system is described by the wave function.

The mathematical objects in classical mechanics can be intuitively understood but

the interpretation of the wave function in quantum mechanics remains controversial.

Our common sense would accept it more readily if quantum phenomena were express-

ible in purely classical terms. Indeed there have been several attempts along these

lines. One approach is due to E. Nelson. In 1966, he derived the Schrödinger equation

as an entirely classical but unusual type of Brownian motion [13–15]. The particle

obeys a stochastic version of F = ma.

This chapter is devoted to Nelson’s theory of quantum mechanics. Since Brownian

motion plays a crucial rule in this theory, we shall explore it in section 4.2, Nelson’s

formalism is reviewed in section 4.3 and the chapter is concluded in section 4.4.
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4.2 Brownian Motion

Brownian motion was first noticed by the Scottish botanist R. Brown in 1827 while

investigating pollen in water through a microscope. He observed that microscopic par-

ticles immersed in water exhibit a continuously zigzagging motion. The explanation

of the phenomenon was unclear until 1905 when A. Einstein [36] and independently

M. von Smoluchowski [37] explained that the incessant motion of small suspended

particle in fluid is actually caused by the bombardment of molecules of the fluid.

Mathematically Brownian motion is a stochastic process which can be formally

defined as below, see e.g., [38];

Definition 1. (Brownian Motion) A real-valued stochastic process {w(t) : t ≥ 0}

is called a Wiener process or Brownian motion if the following conditions hold:

1. w(0) = x where x ∈ R is the starting point.

2. The process has independent increments, i.e., for all times 0 ≤ t1 ≤ t2 ≤ . . . ≤

tn the increments w(tn) − w(tn−1), . . . , w(t2) − w(t1) are independent random

variables.

3. For all t ≥ 0 and ∆t > 0, the increments w(t + ∆t) − w(t) are normally

distributed.

4. The process w(t) is almost surely continuous.

The process has a starting point but never ceases. The transition probability of

Brownian motion keeps track of the future given the present while it is independent
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of the past,

p(x′, t′|x, t) =
1

(2πσ2∆t)d/2
e−

(x′−x)2

2σ2∆t , (4.1)

where ∆t = t′ − t and d is the dimension of the space. The expectation and variance

of the increment ∆w(t) can be computed as follows

〈
∆wi

〉
=

∫
(x′i − xi) p(x′, t′|x, t)dx′ = 0 , (4.2)

and 〈
∆wi∆wj

〉
=

∫
(x′i − xi)(x′j − xj) p(x′, t′|x, t)dx′ = σ2∆tδij . (4.3)

This shows that ∆w ∼ O(∆t1/2), which means that the trajectory of the particle is

continuous but it is nowhere differentiable (see eq. (4.6) below).

4.3 Nelson’s Formalism

Nelson’s stochastic mechanics is based on the assumption that particles in vacuum

undergo a continuous Brownian motion in real space. The description presented here

follows Nelson’s original paper [13]. Nelson assumes that the displacement of the

particle at any time t is given by the stochastic differential equation

∆xi(t) = bi(x(t), t)∆t+ ∆wi(t) , (4.4)

where wi(t) is a Wiener process with

〈
∆wi

〉
= 0 , and

〈
∆wi∆wj

〉
= σ2∆tδij , (4.5)

where σ2/2 is the diffusion coefficient which will be later identified with h̄/2m.
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One can check that the velocity dxi/dt does not exist because

∆xi

∆t
= bi +

∆wi

∆t
= bi +O

(
1

∆t1/2

)
→∞ , (4.6)

but its expected value does because 〈∆wi〉 = 0. First take 〈··〉 and then the limit,

lim
∆t→0

〈
∆xi

∆t

〉
= bi . (4.7)

Formally the function bi is called the mean forward velocity defined by

bi(x(t), t) = Dxi(t) = lim
∆t→0+

〈xi(t+ ∆t)− xi(t)〉x(t)

∆t
, (4.8)

where Dxi(t) is the mean forward derivative and 〈.〉x(t) is the conditional expectation

given the state of the particle at the earlier position x(t).

Similarly the mean backward velocity is defined by

bi∗(x(t), t) = D∗x
i(t) = lim

∆t→0+

〈xi(t)− xi(t−∆t)〉x(t)

∆t
, (4.9)

so that the displacement from the past is

∆xi∗(t) = xi(t)− xi(t−∆t) = bi∗(t)∆t+ ∆wi∗(t) , (4.10)

where w∗ is again a Wiener process with

〈
∆wi∗

〉
= 0 , and

〈
∆wi∗∆w

j
∗
〉

= σ2∆tδij . (4.11)

Let ρ(x, t) be the probability density at location x and time t, then Nelson showed

that ρ evolves according to the forward Fokker-Planck equation

∂ρ

∂t
= −∂i

(
biρ
)

+
σ2

2
∂2ρ , (4.12)
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and according to the backward Fokker-Planck equation

∂ρ

∂t
= −∂i

(
bi∗ρ
)
− σ2

2
∂2ρ , (4.13)

where ∂i = ∂/∂xi, and ∂2 = δij∂i∂j.

Adding eqs. (4.12) and (4.13), and using

vi =
1

2

(
bi + bi∗

)
, (4.14)

we obtain the continuity equation

∂ρ

∂t
= −∂i

(
viρ
)
, (4.15)

where vi is the velocity with which the probability flows. Accordingly, vi is called the

current velocity.

Subtracting eq. (4.12) from eq. (4.13) we get

ui =
1

2

(
bi − bi∗

)
=
σ2

2
δij
∂jρ

ρ
, (4.16)

where ui is called the osmotic velocity. It reflects the velocity of the Brownian particle

in equilibrium when the external force is balanced by the osmotic force [13].

Next take the time derivative of eq. (4.16) and using eq. (4.15), we get the following

useful equation

∂ui

∂t
= −δij∂j

(
σ2

2
∂kv

k + δklv
kul
)
. (4.17)

We also want to compute ∂vi/∂t. To do this we proceed as follows: Let f(x(t), t)

be a function, then by Taylor expansion

∆f =
∂f

∂t
∆t+ ∆xi∂if +

1

2
∆xi∆xj∂i∂jf + . . . , (4.18)
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where ∆f = f(x(t+ ∆t), t+ ∆t)− f(x(t), t), and ∆x = x(t+ ∆t)− x(t). Next find

the expected value of f given the state of the function at the earlier position x(t) and

divide it by ∆t and also use eqs. (4.4), and (4.5), we get

Df =

〈
∆f

∆t

〉
=
∂f

∂t
+ bi∂if +

σ2

2
∂2f + . . . , (4.19)

where D is the mean forward derivative defined earlier, eq. (4.8).

In the similar way we can also find the mean backward derivative of f ,

D∗f =
∂f

∂t
+ bi∗∂if −

σ2

2
∂2f + . . . . (4.20)

Now set f = D∗x
i(t) = bi∗ in eq. (4.19), and f = Dxi(t) = bi in eq. (4.20), and add

we get

ai =
∂

∂t

(
bi + bi∗

2

)
+

1

2
bj∂jb

i
∗ +

1

2
bj∗∂jb

i − σ2

2
∂2

(
bi − bi∗

2

)
, (4.21)

where ai is the mean acceleration defined by

ai =
1

2
(DD∗x

i(t) +D∗Dx
i(t)) . (4.22)

Finally using bi = vi + ui, and bi∗ = vi − ui in eq. (4.21) and rearrange,

∂vi

∂t
= ai − vj∂jvi + uj∂ju

i +
σ2

2
∂2ui . (4.23)

We have derived the stochastic dynamical equations given by eqs. (4.17) and (4.23)

but further assumptions are needed to derive Schrödinger equation.

The first assumption involves the mean acceleration ai, Nelson requires that it is

given by Newton’s law such that

F i = mai = −δij∂jV , (4.24)
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where V is an external potential. Thus, in Nelson’s stochastic mechanics the particle

obeys a stochastic form of Newton’s F = ma.

The second assumption of Nelson deals with the current velocity, he requires that

it is a gradient of a scalar function such that

vi = δij∂jφ . (4.25)

Note that osmotic velocity is also a gradient given by (4.16).

Next substitute eqs. (4.16), (4.24), and (4.25) in eqs. (4.17) and (4.23) and fur-

thermore identify the diffusion coefficient σ2/2 with h̄/2m. After making this substi-

tutions eqs. (4.17), and (4.23) can be combined into a single equation by introducing

a complex function Ψ = ρ1/2eiφ, we arrive at

ih̄
∂Ψ

∂t
= − h̄2

2m
∂2Ψ + VΨ , (4.26)

which is the Schrödinger equation.

In summary Nelson’s derivation of Schödinger equation is based on three assump-

tions — the background field hypothesis, the requirements that the mean acceleration

is given by the Newton law, and that the current velocity is a gradient. However in

a later work [39], Nelson avoided the Newton’s law and required that the diffusion

process can be non-dissipative such that the expected energy is constant in time

dE

dt
=

d

dt

∫
dx3ρ

(
1

2
mv2 +

1

2
mu2 + V

)
= 0 . (4.27)
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4.4 Conclusions

The goal of stochastic mechanics is to give a physically realistic interpretation of

quantum mechanics. According to Nelson, “It is an attempt to derive and explain

nonrelativistic quantum mechanics as an emergent theory in which particle trajecto-

ries are physically real and governed by stochastic laws of motion” [40].

In this picture of quantum mechanics, the wave function Ψ is not fundamental

but the drift field ~b is the fundamental object. It is a classical theory in the sense

that the fundamental equation is the Newton-Nelson Law, (4.24), which governs the

evolution of the drift field. The Schrödinger equation is equivalent to eqs. (4.17) and

(4.23) that determines the drift field.

The quantum theory derived in this way smells like a classical theory but not

in the fullest. The theory rests on the background field hypothesis, the Brownian

motion. There is no classical analog of such a field to exist in the vacuum. Also,

for several particles the background field induces a Brownian motion that is highly

non-local in real space R3 [15]. It is not at all clear how a physical field that lives in

real space could perform this role.

Nelson’s second assumption is also ad hoc. It is not clear why the mean accelera-

tion should take the form of eq. (4.24). However it can be more elegantly avoided by

requiring the diffusion process can be non-dissipative [39].

Another serious objection was raised by T. C. Wallstrom [41, 42]. It deals with

the third assumption of Nelson’s theory. The current velocity is required to be a local
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gradient of a scalar function φ, eq. (4.25), it does not guarantee whether φ is single-

valued or multi-valued. If it is single-valued then Schrödinger equation immediately

follows from eqs. (4.17) and (4.23). Since φ is the phase of the wave function, to

include non-zero angular momentum one has to allow that the phase to be multi-

valued while still requiring that the wave function is single-valued. It is so because

the wave functions of the angular momentum contain factors of the form eimϕ, where

ϕ is the azimuthal angle and m is integer. If that is the case then the phase is multi-

valued (φ = mϕ) and therefore eqs. (4.17) and (4.23) have other solutions that do

not correspond to Schrödinger equation. There are also other variants of stochastic

mechanics [43], which allows the current velocity be a global gradient but then the

phase is single-valued and one cannot have non zero angular momentum. Whether

the current velocity is a local or global gradient the solutions are either too many or

too few, therefore stochastic mechanics does not reproduce the Schrödinger equation

in full generality.
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Chapter 5

Entropic Quantum Dynamics

5.1 Introduction

Quantum theory introduced in the last century is a highly successful physical theory.

It describes the properties of atoms, nuclei, elementary particles and photons to a

high level of accuracy. Despite of its successful applications at microscopic level,

the formalism of standard quantum mechanics is highly abstract and non-intuitive.

The basic equation is the Schrödinger equation that describes the evolution of wave

function rather than the motion of particles. This gives rise to serious interpretational

issues. Does the wave function correspond to reality itself or does it concern with

our knowledge of reality? In philosophical terminology, the question is whether the

wave function represents the ontic state (Ψ represents what the system is really,

objectively doing) or whether the wave function represents an epistemic state (Ψ

represents information that is known about the system — its previous history, how

it was prepared, and so on).

Since the wave function is defined over an abstract configuration space rather than
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the real three dimensional space, the ontic interpretation makes Ψ more mysterious.

Though the ontic view has a long history dating back to Schrödinger and many others,

the most popular one is the de Broglie-Bohm pilot wave theory which is referred to

as a causal interpretation [2, 44]. On the other hand the epistemic view also has

a long history. Einstein’s argument of quantum theory being incomplete [45] and

Ballentine’s statistical interpretation [3] favor an epistemic view of the wave function.

The advent of information theory, which handles incomplete information in a

natural way, has further enhanced the epistemic view. Still in the earlier works it was

only the amplitude of the wave function, |Ψ|2, that represents a state of knowledge. A

completely epistemological interpretation was provided by A. Caticha in 2009 [7, 8].

In this approach not only the amplitude but also the phase of the wave function

is also expressed in purely informational terms. The basic assumption is that in

addition to the particle of interest the world contains other variables whose entropy

is reflected in the phase of the wave function. It is shown that quantum theory is also

an application of the method of maximum entropy. In a more recent development [9]

ED is formulated without appealing to extra variables.

This chapter is devoted to Caticha’s original approach to quantum theory.

5.2 Entropic Dynamics

Here we review Caticha’s approach to foundations of quantum mechanics within the

framework of entropic dynamics (ED). For a detailed analysis see [8,30]. The theory
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is defined on the configuration space. It is assumed that the particles have definite

positions x. For a single particle the configuration space X is Euclidean with the

metric

γab = δab/σ
2, a, b = 1, 2, 3. (5.1)

where σ2 is a scale factor. The full significance of the scale factor only becomes

apparent when discussing several particles with different masses [8].

In addition to the particle of interest there exists other variables which we call y

and live in a space Y . We do not need to be very specific about the y variables. We

will assume that their value is uncertain and that this uncertainty depends on the

location x of the particle and is expressed by some probability distribution p(y|x).

We do not need to be very specific about p(y|x) either. As we shall see it is their

entropy that matters. The entropy of the y variables is given by

S[p, q] = −
∫
dy p(y|x) log

p(y|x)

q(y)
= S(x) . (5.2)

where q(y) is some underlying measure that need not be specified further. Since x

enters as a parameter in p(y|x) the entropy is a function of x: S[p, q] = S(x).

When the particle moves from an initial position x to a neighboring position x′

and the y variables change from y to y′, then we want to find the joint distribution

P (x′, y′|x). Thus the relevant space is X ×Y , in which case, the appropriate entropy

is

S[P,Q] = −
∫
dx′dy′P (x′, y′|x) log

P (x′, y′|x)

Q(x′, y′|x)
, (5.3)
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where Q(x′, y′|x) is the prior probability distribution. The acceptable posteriors

P (x′, y′|x) can be obtained by making use of the prior information and specifying

the relevant constraints.

The prior

The prior probability distribution codifies relation between x′ and y′ given x before

the actual information contained in the constraints has been processed. At this point

we are ignorant about any relation between x′ and y′. When the knowledge of x′ tells

us nothing about y′ and vice versa, then the joint prior can be written as a product

Q(x′, y′|x) = Q(x′|x)Q(y′|x) . (5.4)

We will furthermore assume complete ignorance so that Q reflects a uniform distri-

bution, that is, it assigns equal probabilities to equal volumes,

Q(x′|x)d3x′ ∝ γ1/2d3x′ , (5.5)

where γ = det γab, and

Q(y′|x)dy′ ∝ q(y′)dy′ . (5.6)

Therefore up to a proportionality constant, the joint prior becomes

Q(x′, y′|x) = γ1/2q(y′) , (5.7)

The constraints

To specify the constraints, we write the posterior as

P (x′, y′|x) = P (x′|x)P (y′|x′, x) (5.8)
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The first constraint is introduced through the second factor in eq. (5.8) which

codifies information about the uncertainty in y′ given x, and x′. We will assume that

the uncertainty in y′ depends only the present value of x′, and not on the earlier value

x. This means that

P (y′|x′, x) = p(y′|x′) , (5.9)

where p(y′|x′) is the probability distribution of y variables.

The second constraint concerns the factor P (x′|x) in eq. (5.8) which represents the

transition probability from x to x′. We require that actual physical changes happen

continuously, there is no discontinuity while moving from x to x′. To allow the

continuity condition we require that x′ is infinitesimally close to x. This information

is incorporated in to the following constraint: Let ∆x = x′ − x, then we require that

the expectation 〈
∆`2

〉
=
〈
γab∆x

a∆xb
〉
, (5.10)

be some small numerical value, which we take to be independent of x in order to

reflect the translational symmetry of the space X .

The last constraint involves the normalization condition

∫
d3x′ P (x′|x) = 1 (5.11)

Finally substituting eq. (5.7) in eq. (5.3), and incorporating the constraints eqs. (5.9),

(5.10) and (5.11), the machinery of Maximum Entropy method (ME) leads to

P (x′|x) =
1

ζ
eS(x′)− 1

2
α∆`2 , (5.12)
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where ζ is a normalization constant and α is a Lagrange multiplier.

The transition probability P (x′|x) is meant to hold for short steps, eq. (5.10).

This happens when α is very large. For large α, eq. (5.12) can be approximated to a

Gaussian

P (x′|x) ≈ 1

Z
exp

[
− α

2σ2
δab (∆xa −∆x̄a)

(
∆xb −∆x̄b

)]
. (5.13)

where Z is a new normalization constant. The displacement ∆xa can be expressed

as an expected drift plus a fluctuation,

∆xa = ∆x̄a + ∆wa , (5.14)

where

〈∆xa〉 = ∆x̄a =
σ2

α
δab∂bS(x) , (5.15)

〈∆wa〉 = 0 and 〈∆wa∆wb〉 =
σ2

α
δab . (5.16)

As can be seen from eq. (5.15), the particle tends to drift along the entropy gradient.

For large α the step size becomes very small but the fluctuations become dominant,

because ∆x̄ ∼ O(α−1) while ∆w ∼ O(α−1/2). It means that as α→∞ the trajectory

is continuous but not differentiable—just like Brownian motion.

5.3 The Construction of Entropic Time

The concept of time is closely connected with motion and change [46]. In entropic

dynamics (ED) motion is described by the transition probability, eq. (5.13), that

44



describes small changes in short steps. Larger changes will be obtained as the accu-

mulation of very many small short steps.

To construct time in ED we must define: (a) an instant of time, (b) the temporal

order of instants, (c) the duration of time [47]. We begin with constructing an instant

of time. Consider the particle is initially at position x and it moves to a final position

x′. In general both x and x′ are unknown. This means that we must deal with the

joint probability P (x, x′), and then using the product rule

P (x′, x) = P (x′|x)P (x) . (5.17)

We note that P (x′|x) is the probability of x′ given x, but x is also unknown so we

marginalize over x

P (x′) =

∫
P (x′, x)dx =

∫
P (x′|x)P (x)dx , (5.18)

where P (x) is the probability of the particle being located at position of x and P (x′)

is the probability of the particle being found at x′. Since x is the initial position

which occurs at an initial time t and x′ occurs at a later time t′ > t, therefore we

write P (x) = ρ(x, t) and P (x′) = ρ(x′, t′) so that

ρ(x′, t′) =

∫
P (x′|x)ρ(x, t)dx , (5.19)

where t and t′ are different instants of time which are ordered according to earlier

and later (t′ > t).

Having introduced the notion of ordered instants in entropic dynamics the next

important issue is of the duration or interval of time. Since we want to reconstruct non
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relativistic quantum mechanics, we need to construct Newtonian time. In Newtonian

time, the time interval is independent of position x and of time t. To achieve this we

assume that the Lagrange multiplier α is a constant such that

α =
τ

∆t
= constant , (5.20)

where τ is a constant that sets the unit of time interval ∆t.

Finally the transition probability, eq. (5.13), becomes

P (x′|x) ≈ 1

Z
exp

[
− τ

2σ2∆t
δab (∆xa −∆x̄a)

(
∆xb −∆x̄b

)]
. (5.21)

which can be recognized as standard Wiener process where now eq. (5.14) can be

expressed in a familiar form

∆xa = ba (x) ∆t+ ∆wa, (5.22)

where

ba (x) =
σ2

τ
δab∂bS (x) , (5.23)

is the drift velocity, and ∆wa is a fluctuation with

〈∆wa〉 = 0 and
〈
∆wa∆wb

〉
=
σ2

τ
∆tδab , (5.24)

where σ2/2τ is the diffusion constant.

5.4 Derivation of the Schrödinger Equation

The set of equations (5.21-5.24) describe small changes. Standard methods show

that the successive iteration of eq. (5.19) yields a probability distribution ρ (x, t) that
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evolves according to Fokker-Planck equation [15,30,48]

∂ρ

∂t
= −∂a (baρ) +

σ2

2τ
∇2ρ , (5.25)

which can be written as an equation for conservation of probability

∂tρ = −∂a (ρva) (5.26)

Clearly va is interpreted as the velocity of flow of probability — it is called the current

velocity. The current velocity can also be written as

va = ba + ua , (5.27)

where ba is the drift velocity given by eq. (5.23), and

ua = −σ
2

τ
δab∂b log ρ1/2 , (5.28)

To interpret eq. (5.28) we write it as

ρua = −σ
2

2τ
δab∂bρ , (5.29)

which we recognize as Fick’s Law and shows that ρua is the probability flux due to

diffusion. The velocity ua is called the osmotic velocity.

Since both ba (in eq. (5.23)) and ua (in eq. (5.28)) are gradients, therefore the

current velocity is also a gradient,

va =
σ2

τ
δab∂bφ , with φ (x, t) = S (x)− log ρ1/2 (x, t) (5.30)

In Nelson theory the current velocity was postulated to be a gradient (see eq. (4.25)).

In this version of ED, this fact is derived!
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The dynamics just described is standard irreversible diffusion. It is not QM. In

particular there is no conservation of energy. To fix this problem we recognize that

an additional constraint must be imposed. Here we borrow Nelson’s brilliant idea

that diffusion can be non-dissipative if the expected energy is conserved [39]. In

entropic dynamics, this is achieved by allowing p(y|x) and S (x) to be functions of

time, S = S (x, t).

To this end introduce an energy functional [8, 30],

E[ρ, S] =

∫
d3xρ (x, t)

(
1

2
mv2 +

1

2
µu2 + V (x)

)
, (5.31)

where m and µ are constants that will be called the mass and the osmotic mass

respectively.

For static potential V̇ = 0, it is assumed that the energy is constant

dE

dt
= 0 . (5.32)

Otherwise the energy increases at a rate given by eq. (5.36) below.

For arbitrary initial choices of ρ and φ the energy conservation leads to the quan-

tum Hamilton-Jacobi equation,

ηφ̇+
η2

2m
(∂aφ)2 + V − µη2

2m2

∇2ρ1/2

ρ1/2
= 0 , (5.33)

where we have defined a new constant η so that

η
def
= mσ2/τ , (5.34)

In terms of η, the Focker-Planck equation (5.26) becomes

ρ̇ = − η

m
∂a(ρ∂aφ) . (5.35)
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Eqs. (5.33) and (5.35) are the entropic dynamical equations that determine the evo-

lution of the dynamical variables φ(x, t) and ρ(x, t) .

It should be noted that eq. (5.33) can be obtained without loss of generality even

when the potential is time dependent in which case the energy increases at the rate

of

Ė =

∫
d3xρV̇ . (5.36)

The two coupled equations (5.33) and (5.35), which involve real quantities, can

be combined into a single complex equation by introducing a complex quantity

Ψ = ρ1/2eiφ , (5.37)

then

iηΨ̇ = − η2

2m
∇Ψ + VΨ +

η2

2m

(
1− µ

m

) ∇2 (ΨΨ∗)1/2

(ΨΨ∗)1/2
Ψ . (5.38)

This reproduces the Schrödinger equation provided µ = m,

ih̄
∂Ψ

∂t
= − h̄2

2m
∇2Ψ + VΨ , (5.39)

where we have also identified η with h̄.

There are essentially two possibilities if m 6= µ: either µ > 0 or µ = 0. Here we

analyze both cases separately. First we consider the former case. It turns out [8, 30]

that all theories with µ > 0 are physically equivalent in that they can be regraduated

to a theory with µnew = m. To show this we note that the units η and τ can always

be rescaled into η = κη′ and τ = κτ ′ while simultaneously rescaling φ into φ = φ′/κ

where κ is some constant. Making these substitutions in eqs. (5.35) and (5.31) we
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get

∂ρ

∂t
= − η

′

m
∂a (ρ∂aφ′) , (5.40)

and

E[ρ, S] =

∫
d3xρ

(
η′2

2m
(∂aφ

′)
2

+
µκ2η′2

8m2
(∂a log ρ)2 + V

)
. (5.41)

Again follow the same procedure that led to eq. (5.38) we get

iη′Ψ̇′ = − η
′2

2m
∇2Ψ′ + VΨ +

η′2

2m

(
1− µκ2

m

)
∇2 (Ψ′Ψ′∗)1/2

(Ψ′Ψ′∗)1/2
Ψ′ , (5.42)

where now Ψ′ = ρ1/2eiφ
′
. Since κ is just a rescaling factor which has no physical

implications we can tune it so that µnew = µκ2 = m, and thus we again recover the

Schrödinger equation provided µnew = m,

ih̄
∂Ψ

∂t
= − h̄2

2m
∇2Ψ + VΨ , (5.43)

where we dropped primes over Ψ and identified η′ with h̄.

The other possibility occurs for µ = 0 which allows no regraduation and leads to

a non-linear Schrödinger equation,

ih̄Ψ̇ = − h̄2

2m
∇2Ψ + VΨ +

h̄2

2m

∇2 (ΨΨ∗)1/2

(ΨΨ∗)1/2
Ψ . (5.44)

This case will be further discussed in chapter 6.

5.5 External Electromagnetic Field

Entropic dynamics can handle an external electromagnetic field in a natural way. If

the particle is placed in an external field, it constrains the possible trajectories of
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the particle. To encode this additional information in the transition probability, the

following constraint is to be used

〈∆xaAa(x)〉 = C , (5.45)

where Aa(x) are the components of the vector potential and C is a constant. This

condition only constrains the expected components of displacements ∆~x along the

direction of ~A.

Carrying out the calculations as in the previous sections, the transition probability

turns out to be [8, 30],

P (x′|x) ∝ exp
[
− m

2h̄∆t
δab (∆xa −∆x̄a)

(
∆xb −∆x̄b

)]
, (5.46)

where the displacement ∆xa is given by

∆xa = ∆x̄a + ∆wa , (5.47)

with

∆x̄a = ba∆t where ba =
h̄

m
δab[∂bS − λAb] , (5.48)

where λ is a Lagrange multiplier that arises due to the additional constraint, eq. (5.45).

The fluctuations remain unaffected

〈∆wa〉 = 0 and 〈∆wa∆wb〉 =
h̄

m
∆tδab . (5.49)

The Fokker-Planck equation takes the form

ρ̇ = −∂a(ρva) , (5.50)
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where now the current velocity is given by

va =
h̄

m
δab(∂bφ− λAb) . (5.51)

The phase φ and the osmotic velocity ua do not change,

φ(x, t) = S(x, t)− log ρ1/2(x, t) , (5.52)

and

ua = − h̄
m
δab∂b log ρ1/2 . (5.53)

The energy functional is the same as in eq. (5.31), but now the current velocity is

given by eq. (5.51),

E =

∫
d3xρ

(
h̄2

2m
(∂aφ− λAa)2 +

h̄2

8m
(∂a log ρ)2 + V

)
. (5.54)

Just as before, the energy conservation (Ė = 0) can be imposed if the external

potentials are time-independent (V̇ = 0 and Ȧ = 0), otherwise we require that the

energy increases at the rate

Ė =

∫
d3xρ(V̇ + h̄λvaȦa) (5.55)

In general,

Ė −
∫
d3xρ(V̇ + h̄λvaȦa) =

∫
d3xρ̇

(
h̄φ̇+

h̄2

2m
(∂a − λAa)2 + V − h̄2

2m

∇2ρ1/2

ρ1/2

)
= 0 .

(5.56)

For arbitrary choice of ρ̇, we have

h̄φ̇+
h̄2

2m
(∂a − λAa)2 + V − h̄2

2m

∇2ρ1/2

ρ1/2
= 0 . (5.57)
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This is the Hamilton-Jacobi equation in an external electromagnetic field.

Now again let Ψ = ρ1/2eiφ, then eqs. (5.50) and (5.57) lead to the Schrödinger

equation in an external electromagnetic field,

ih̄
∂Ψ

∂t
=

h̄2

2m
(i∂a − λAa)2Ψ + VΨ (5.58)

It turns out that the Lagrange multiplier λ plays the rule of electric charge e by

making the identification λ = e/h̄c.

5.6 Conclusions

This chapter was devoted to deriving quantum theory as an example of entropic

inference. Entropic dynamics (ED) allows one to overcome the conceptual difficulties

that arise due to the interpretation of the wave function. In ED, the wave function is

fully epistemic — both the amplitude and phase of the wave function are expressed

in purely informational terms.

Entropic dynamics developed here has formal similarities with Nelson’s stochastic

mechanics. They both are position-based theories and that the Schrödinger equation

is derived as a non-dissipative diffusion. However there is an important difference.

Nelson’s stochastic theory is meant to be realistic, an extension of classical mechanics.

On the other hand, ED operates at an epistemological level. The second difference is

that the basic assumptions, the Brownian motion and that the current velocity be a

gradient which are postulated in Nelson’s theory, are derived in ED.
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However Wallstrom’s objection [41, 42] of multivaluedness of the phase of the

wave function also applies to ED as the dynamical equations (5.33) and (5.35) involve

single-valued functions ρ and φ, where ρ is amplitude and φ is phase of the wave func-

tion. This means that eqs.(5.33) and (5.35) are not fully equivalent to the Schrödinger

equation (5.39). This apparent non-equivalence of ED and the Schrödinger equation

is due to the existence of y variables as the phase φ involves entropy of y variables,

φ = S − log ρ1/2. In a more recent formulation of ED [9], the y variables are elim-

inated. In the newer version of ED the phase φ has the properties of an angular

variable and satisfies a quantization condition [49]

∮
~∇φ · ~d` = 2πn , (5.59)

which guarantees that the wave function will remain single-valued even for multi-

valued phases. Therefore ED and the Schrödinger equation are in full equivalence.
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Chapter 6

Linear Momentum

In this chapter we present the first original contribution of this thesis —the theory of

linear momentum and the uncertainty relations. The presentation of the material is

found in the publication [50].

6.1 Introduction

In the previous chapter we have shown how the method of maximum entropy (ME)

can be used to derive quantum theory from a purely informational perspective. Since

entropic dynamics (ED) is formulated in configuration space, it distinguishes ED from

other information-based approaches to quantum theory in that the position observable

assumes a privileged role: particles have well-defined, albeit unknown, positions. This

opens the possibility of explaining all other observables in purely informational terms.

The notion of momentum has undergone a remarkable evolution from Descar-

tes’ early imperfect notion of a scalar “quantity of motion” to Newton’s vectorial

quantity of motion, then through Lagrange’s generalized momenta and Hamilton’s

canonical momenta, to the modern quantum version of momentum as the generator

55



of infinitesimal translations. Each theory of motion demands its own concept of

momentum. Our goal is to identify what concept, within the entropic dynamics (ED)

framework, plays the role of momentum.

6.2 Momentum in Classical Mechanics

In classical mechanics linear momentum is defined as mass times velocity

pi = m
dxi
dt

, (6.1)

and, more generally, momentum associated with generalized coordinate qi in the

Lagrange formalism is defined as

pi =
∂L

∂q̇i
, (6.2)

where L is the Lagrangian and q̇i is the generalized velocity. Since q̇ is not necessarily

the linear velocity, the generalized momentum defined by eq. (6.2) does not necessarily

represent linear momentum.

6.3 Momentum in Quantum Mechanics

In quantum mechanics momentum is the generator of a translation group. If ψ(~x) is

a wave function, then under space translation, ~x→ ~x ′ = ~x+~a, the shape of the new

wave function ψ′(~x+ ~a) remains the same [51,52]

ψ′(~x+ ~a) = ψ(~x) , (6.3)
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or equivalently

ψ′(~x) = ψ(~x− ~a) = Û(~a)ψ(~x) , (6.4)

where Û is a unitary operator. For infinitesimal transformation

Û(δ~a) = 1− iδ~a · ~pq/h̄ , (6.5)

where ~pq = −ih̄~∇ is the generator of translation.

A finite transformation can be obtained by using group property

Û(δa1)Û(δa2) = Û(δa1 + δa2) , (6.6)

so that

Û(~a) = lim
N→∞

(
1− i~a · ~pq

Nh̄

)N
= e−i~a·~pq/h̄ (6.7)

Therefore

ψ′(~x) = e−i~a·~pq/h̄ψ(~x) . (6.8)

6.4 Momentum in ED

When quantum mechanics was invented a central problem was to identify the quan-

tum concept of momentum that would, in the appropriate limit, correspond to the

classical momentum. We face an analogous (but easier) problem: our goal is to identify

what concept, within the entropic framework, may reasonably be called momentum.

Since the particle follows a Brownian non-differentiable trajectory it is clear that

the classical momentum md~x/dt along the trajectory cannot be defined. Nevertheless

three different notions of momentum can be usefully defined. They are associated to

the drift, osmotic and current velocities.
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6.4.1 The drift momentum

The entropic dynamics developed in chapter 5 does not allow us to define the instan-

taneous velocity. This can be seen by recalling eq. (5.22),

∆xa = ba (x) ∆t+ ∆wa . (6.9)

Since ∆w ∼ O(∆t1/2), therefore

lim
∆t→0+

∆xa

∆t
= ba +O(∆t−1/2)→∞ . (6.10)

However

lim
∆t→0+

〈
∆xa

∆t

〉
= ba exists because 〈∆wa〉 = 0 , (6.11)

where ba is called the drift velocity defined by

ba = lim
∆t→0+

1

∆t

∫
d3x′ P (x′|x)∆xa , (6.12)

where x = x(t), x′ = x(t+ ∆t), and ∆xa = x′a − xa.

The drift velocity is a fundamental object both in Nelson’s stochastic mechanics

as well as in ED. However in Nelson’s theory it is postulated that the drift velocity is

the gradient of some scalar function. In the ED discussed in Ch. 5 this fact is derived.

ED provides us that the drift velocity is the gradient of the entropy of y variables,

ba(x) =
h̄

m
∂aS(x) . (6.13)

We are now in a position to define our first type of momentum by re-arranging

eq. (6.13)

pad = mba = h̄δab∂bS(x) . (6.14)
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The drift momentum reflects probability flow along the entropy gradient. Since en-

tropy is a statistical concept, therefore the drift momentum is not an attribute of the

particle but of the probability distributions.

6.4.2 The osmotic momentum

The osmotic (or diffusion) effects are central to quantum behavior — As reflected by

Fick’s law for the osmotic current flow

ρua = − h̄

2m
δab∂bρ , (6.15)

which can be rewritten as

ua = − h̄
m
δab∂b log ρ1/2 , (6.16)

where ua is called the osmotic velocity.

We can now define the second type of momentum

pao = mua = −h̄δab∂b log ρ1/2 , (6.17)

which is the osmotic momentum. It reflects the flow of probability by diffusion. Just

like the drift momentum, the osmotic momentum is also statistical in nature.

6.4.3 The current momentum

The probability density ρ(x, t) is one of the entropic dynamical variables, its time

evolution is given by

∂ρ

∂t
= −∂a(ρva) , (6.18)
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where ρva is the total probability flux, and va is the velocity of the probability current.

Furthermore, we have also derived in chapter 5 that va is a gradient of a scalar function

va =
h̄

m
δab∂bφ , with φ = S − log ρ1/2 . (6.19)

This leads in to define the third type of momentum

pac = mva = h̄δab∂bφ , (6.20)

which is the current momentum. It reflects the total flow of probability. Since the

current momentum is the gradient of phase φ that involves statistical attributes S

and ρ, therefore the current momentum is also statistical in nature.

Thus, we have constructed three different momenta that are associated with the

particle. The fourth notion of momentum that one can introduce in ED is the differen-

tial operator that generates infinitesimal translation—it coincides with the standard

quantum momentum ~pq = −ih̄~∇.

Notice that the three momenta ~pd, ~po, and ~pc are local functions of ~x and this

makes them conceptually very different from the differential operator ~pq. In the next

section we explore what properties they share with ~pq. We calculate their first and

second moments and their corresponding uncertainty relations. The results below are

formally similar to analogous relations derived in the context of Nelson’s stochastic

mechanics [53–56] and the Hall-Reginatto exact uncertainty formalism of [57].
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6.5 Expected Values

The three momenta that appear in ED are not independent. Recall eq. (6.20),

pac = h̄δab∂bφ

= h̄δab∂bS − h̄δab∂b log ρ1/2

= pad + pao . (6.21)

We wish to calculate their expected values. The important theorem here is the van-

ishing expectation of the osmotic momentum. Using eq. (6.17) and since ρ vanishes

at infinity,

〈pao〉 = −h̄
∫
d3x ρ ∂a log ρ1/2 = − h̄

2

∫
d3x ∂aρ = 0 . (6.22)

The immediate consequence is that

〈pac〉 = 〈pad〉 . (6.23)

To study the connection to the quantum mechanical momentum we calculate

〈paq〉 =

∫
d3xΨ∗

h̄

i
∂a Ψ . (6.24)

Using Ψ = ρ1/2ei(S−log ρ1/2) and (6.22) and (6.20) one gets

〈paq〉 = −ih̄
∫
d3xρ

(
∂a log ρ1/2 + i∂aS − i∂a log ρ1/2

)
= h̄ 〈∂aS〉 . (6.25)

Therefore

〈~pq〉 = 〈~pc〉 = 〈~pd〉 , (6.26)

the expectations of quantum momentum, current momentum and drift momentum

coincide.
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6.6 Uncertainty Relations

We start by stating a couple of definitions and an inequality. The variance of a

quantity A is

VarA = 〈(A− 〈A〉)2〉 =
〈
A2
〉
− 〈A〉2 , (6.27)

and its covariance with B is

Cov (A,B) = 〈(A− 〈A〉) (B − 〈B〉)〉 = 〈AB〉 − 〈A〉 〈B〉 . (6.28)

The general form of uncertainty relation to be used below follows from the Schwarz

inequality

〈a2〉〈b2〉 ≥ |〈ab〉|2 , (6.29)

or

(VarA) (VarB) =
〈
(A− 〈A〉)2〉 〈(B − 〈B〉)2〉

≥ |〈(A− 〈A〉) (B − 〈B〉)〉|2 = Cov2 (A,B) . (6.30)

Next we apply these notions to the various momenta. An analogous calculation in

the context of stochastic mechanics is given in [55].

6.6.1 Uncertainty relation for osmotic momentum

Starting from the covariance inequality

(Var xa)
(
Var pbo

)
≥ Cov2

(
xa, pbo

)
= 〈xapbo〉 − 〈xa〉〈pbo〉 . (6.31)
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The second term vanishes by (6.22) and while integrating by parts the first term

〈xapbo〉 = −h̄
∫
d3x ρxaδbc∂c log ρ1/2

= − h̄
2

{∫
dx2ρxaδbcρ|xc=∞xc=−∞ −

∫
d3x ρ δbc

∂xa

∂xc

}
, (6.32)

the surface term vanishes, and the second term involves the Kronecker delta

∂xa

∂xc
= δac , (6.33)

so that

〈xapbo〉 =
h̄

2
δab . (6.34)

Therefore

(Var xa)
(
Var pbo

)
≥
(
h̄

2
δab
)2

, (6.35)

or

∆xa ∆pbo ≥
h̄

2
δab . (6.36)

The osmotic uncertainty relation coincides with the Heisenberg uncertainty relation.

6.6.2 Uncertainty relation for drift momentum

The uncertainty relation is

(Var xa)
(
Var pbd

)
≥ Cov2

(
xa, pbd

)
. (6.37)

Evaluating the r.h.s. by making use of (6.28) and (6.20), we obtain

Cov
(
xa, pbd

)
= 〈xapbd〉 − 〈xa〉〈pbd〉

= h̄
∫
d3x ρxa∂bS −

(∫
d3xρxa

) (
h̄
∫
d3x ρ∂bS

)
. (6.38)
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The integrands involve ρ and ∂S which can be chosen independently. We can choose

as narrow a probability distribution as we like, for example ρ → δ (xa − xa0), which

trivially leads to Cov
(
xa, pbd

)
→ 0. Therefore, the uncertainty relation for drift mo-

mentum is

(Var xa)
(
Var pbd

)
≥ 0 or ∆xa ∆pbd ≥ 0 . (6.39)

6.6.3 The Schrödinger and the Heisenberg uncertainty relations

To derive uncertainty relation for quantum momentum pq, we calculate the second

moment of quantum momentum. Using Ψ = ρ1/2eiφ, (6.17) and (6.20) we have, after

an integration by parts

〈p2
q〉 =

∫
d3xΨ∗(

h̄

i
∂)2 Ψ = 〈p2

c〉+ 〈p2
o〉 . (6.40)

Together with eqs.(6.22) and (6.26) this leads to

Var pbq = 〈p2
q〉 − 〈pq〉2 = Var pbc + Var pbo , (6.41)

then

(Var xa)
(
Var pbq

)
= (Var xa)

(
Var pbc

)
+ (Var xa)

(
Var pbo

)
≥ Cov

(
xa, pbc

)
+ Cov

(
xa, pbo

)
(Var xa)

(
Var pbq

)
≥ Cov

(
xa, pbc

)
+

(
h̄

2
δab
)2

. (6.42)

Next we also want to calculate Cov
(
xa, pbq

)
. Since it involves non commuting opera-

tors, one has to modify (6.28) accordingly [55]

Cov(Â, B̂) =
1

2

〈
(Â− 〈Â〉)(B̂ − 〈B̂〉) + (B̂ − 〈B̂〉)(Â− 〈Â〉)

〉
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=
1

2
〈ÂB̂ + B̂Â〉 − 〈Â〉〈B̂〉 , (6.43)

so that

Cov
(
xa, pbq

)
=

1

2
〈xapbq + pbqx

a〉 − 〈xa〉〈pbq〉 . (6.44)

Consider the first term

1

2
〈xapbq + pbqx

a〉 = −ih̄
2

∫
dx3Ψ∗xa∂bΨ− ih̄

2

∫
d3xΨ∗∂b(xaΨ) . (6.45)

Now Ψ = ρ1/2 eiφ, then after an integration by parts we get

1

2
〈xapbq + pbqx

a〉 = h̄

∫
d3xρ xa∂bφ = 〈xapbc〉 . (6.46)

Previously we have 〈pbq〉 = 〈pbc〉. Finally eq. (6.44) becomes

Cov
(
xa, pbq

)
= 〈xapbc〉 − 〈xa〉〈pbc〉 = Cov

(
xa, pbc

)
. (6.47)

Substitute eq. (6.47) in eq. (6.42), we obtain

(Var xa)
(
Var pbq

)
≥ Cov

(
xa, pbq

)
+

(
h̄

2
δab
)2

, (6.48)

which is a version of the quantum uncertainty relation originally proposed by Schrödinger

[58]. Since Cov2
(
xa, pbq

)
≥ 0 the somewhat weaker Heisenberg uncertainty relation

follows immediately

(Var xa)
(
Var pbq

)
≥ (

h̄

2
δab)2 or ∆xa ∆pbq ≥

h̄

2
δab . (6.49)

6.6.4 Uncertainty relation for current momentum

The current momentum uncertainty relation is given by

(Var xa)
(
Var pbc

)
≥ Cov2

(
xa, pbc

)
. (6.50)
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We wish to place a bound on the r.h.s. of this equation. This can be done by making

use of eq. (6.47) which involves quantum momentum pq.

Recall eq. (6.44)

Cov
(
xa, pbq

)
=

1

2
〈xapbq + pbqx

a〉 − 〈xa〉〈pbq〉 . (6.44)

The minimum value of the l.h.s. can be found by using, for example, the ground state

of harmonic oscillator. For simplicity we consider the one dimensional harmonic

oscillator. In the ground state, the wave function of harmonic oscillator is given by

Ψ(x) =

(
1

πσ2

)1/4

e−x
2/2σ2

. (6.51)

Now use pq = −ih̄∂/∂x, and

〈Â〉 =

∫ ∞
−∞

dxΨ∗ÂΨ . (6.52)

We find that

Cov (x, pq) =
1

2
〈xpq + pqx〉 − 〈x〉〈pq〉 = 0 . (6.53)

In general

Cov2(xa, pbq) ≥ 0 . (6.54)

It implies that

Cov2(xa, pbc) ≥ 0 , (6.55)

and therefore

(Var xa)
(
Var pbc

)
≥ 0 ⇒ ∆xa∆pbc ≥ 0 . (6.56)
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Results:

We now collect the results. We have constructed momentum in the framework of

ED. Since the trajectory of the particle is non differentiable, several momenta are

associated with the particle. In the classical limit, h̄→ 0, the drift/current momenta

converge to the classical momentum while the osmotic momentum tends to zero. In

this limit

~pd = ~pc = m~v and ~po = m~u = 0 , (6.57)

where ~v is the velocity of the particle. The classical limit will be further elaborated

in section 6.7.

The expected values of drift and current momenta coincide with the expectation

of quantum momentum while osmotic momentum has vanishing expectation

〈~pd〉 = 〈~pc〉 = 〈~pq〉 , 〈~po〉 = 0 . (6.58)

We have found that the Heisenberg uncertainty relation

∆xa∆pbq ≥
h̄

2
δab , (6.59)

is the same as the osmotic momentum uncertainty relation

∆xa∆pbo ≥
h̄

2
δab . (6.60)

The Heisenberg uncertainty relation is a diffusion effect, which in ED, arises due to

the constraint given by eq. (5.10) (i.e.
〈
γab∆x

a∆xb
〉

= 〈∆`2〉). This constraint is

responsible for the non differentiability of the Brownian paths.
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Furthermore, we have also found the drift momentum uncertainty relation

∆xa∆pbd ≥ 0 , (6.61)

and the current momentum uncertainty relation

∆xa∆pbc ≥ 0 . (6.62)

6.7 A Hybrid Theory

Non-dissipative ED is defined by the quantum Hamilton-Jacobi equation (5.33) and

the Fokker-Planck equation (5.35). We can consider a different theory obtained by

setting the osmotic mass, µ = 0, which is neither a classical nor a quantum theory.

To better understand this case we first discuss the classical limit.

Classical limit: Define SHJ = ηφ in eq. (5.33) and letting η = h̄→ 0 with SHJ ,

m, and µ fixed, gives the classical Hamilton-Jacobi equation

ṠHJ +
1

2m
(∂aSHJ)2 + V = 0 , (6.63)

where

mva = ∂aSHJ , (6.64)

is the classical momentum. In classical limits, the drift and current momentum coin-

cide with the classical momentum while the osmotic momentum is zero.

pad = pac = ∂aSHJ and pao = 0 (6.65)
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This suggests that up to a proportionality constant the Hamilton-Jacobi function SHJ

is the entropy S of the y variables

SHJ = h̄S (6.66)

The fluctuations vanish in the classical limits

〈∆wa∆wb〉 =
h̄

m
∆tδab → 0 . (6.67)

But our main concern in this section is to focus on a different limit which also

reproduces the classical Hamilton Jacobi theory but with non vanishing fluctuations.

We can also arrive at the classical Hamilton-Jacobi equation (6.63) in the limit

where the osmotic mass is set to zero, µ = 0, while keeping h̄ and m fixed. In this

case the fluctuations do not vanish

〈∆wa∆wb〉 =
h̄

m
∆tδab . (6.68)

The expected trajectory still lies along a classical path but the osmotic momentum

does not vanish,

pac = mva = ∂aSHJ , and pao = mua = −h̄∂a log ρ1/2 . (6.69)

All the considerations about momentum described in the previous sections apply

to this µ = 0 model. In particular, the momentum operator ~pq = −ih̄~∇ can be

introduced—for exactly the same reasons that one would introduce it in quantum

theory—as a generator of translations, and this means that the µ = 0 model obeys

uncertainty relations identical to quantum theory

∆xa∆pbo ≥
h̄

2
δab, and ∆xa∆pbq ≥

h̄

2
δab . (6.70)
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And yet, this is not quantum theory: the corresponding Schrödinger equation, eq.(5.44),

is nonlinear and therefore there is no superposition principle.

6.8 Conclusions

We have explored the notion of momentum in entropic dynamics. We find that both

the drift and current momenta converge to the classical momentum in the appropriate

limit, and their expected values coincide with the expectation of quantum momentum.

The Heisenberg uncertainty relation can be explained as a diffusion or osmotic effect

arises due to a diffusion effect; it can be traced back to the osmotic momentum.

In the ED framework the various momenta we considered are not attributes of

the particle; they are the properties of probability distributions. In ED, unlike the

standard interpretation of quantum mechanics, particles have positions with definite

values just as they would have in classical physics, but they do not have a momentum.

Finally, we have also briefly explored ED for the µ = 0 model that exhibits both

classical and quantum features. Whether it can be used to model any actual system

remains to be seen.
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Chapter 7

Angular Momentum

7.1 Introduction

The concept of angular momentum is important in classical as well as in quantum

mechanics. It deals with the rotational symmetry of physical systems. In CM, angular

momentum is the vector product of position vector and linear momentum ~L = ~r× ~p.

In QM, the operator of orbital angular momentum is the generator of the rotation

group ~Lq = −ih̄ ~r × ~∇. Our main concern in this chapter is to establish an entropic

analog of angular momentum and to derive its corresponding uncertainty relations.

7.2 Angular Momentum in ED

As we have noted in chapter 6 there are three linear momenta, ~pd, ~po, and ~pc, as-

sociated with the particle. Their corresponding angular momenta can be defined as

follows

The drift angular momentum is associated with the drift momentum

~Ld = ~r × ~pd = h̄ ~r × ~∇S . (7.1)
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The osmotic angular momentum is associated with the osmotic momentum

~Lo = ~r × ~po = −h̄ ~r × ~∇ log ρ1/2 . (7.2)

The current angular momentum is associated with the current momentum

~Lc = ~r × ~pc = h̄ ~r × ~∇φ . (7.3)

All these angular momenta involve various attributes of probabilities, therefore just

as linear momentum, angular momentum is also statistical in nature.

We are interested to explore how these angular momenta are related to the quan-

tum angular momentum operator ~Lq = −ih̄~r × ~∇. We calculate the expected values

of ~Lq, and solve the eigenvalue equation for the eigenstates of ~Lq in the following

subsections.

7.2.1 Expected values

We calculate the expectation value of quantum angular momentum starting with the

third component of angular momentum L3
q

〈
L3
q

〉
=

∫
d3xΨ∗

h̄

i
(x1∂2 − x2∂1)Ψ . (7.4)

Using Ψ = ρ1/2eiφ, we have

〈
L3
q

〉
= h̄

∫
d3xρ(x1∂2φ− x2∂1φ)− ih̄

∫
d3xρ

(
x1∂

2ρ

2ρ
− x2∂

1ρ

2ρ

)
. (7.5)

The second integral vanishes on integrating by parts, and since φ = S − log ρ1/2 we

have 〈
L3
q

〉
=
〈
L3
c

〉
=
〈
L3
d

〉
, and 〈L3

o〉 = 0 . (7.6)
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The same equations hold for all 3 components,

〈
Liq
〉

=
〈
Lic
〉

=
〈
Lid
〉
, and 〈Lio〉 = 0 . (7.7)

The expectation value of quantum angular momentum coincides with the expectations

of current angular momentum and drift angular momentum while the osmotic angular

momentum has vanishing expectation.

7.2.2 The eigenvalue equation

If Ψ is an eigenfunction of L3
q , then

L3
qΨ = mh̄Ψ . (7.8)

Now using L3
q = −ih̄ (x1∂2 − x2∂1) and Ψ = ρ1/2eiφ , eq. (7.8) becomes

L3
qΨ = h̄

(
x1∂2φ− x2∂1φ

)
Ψ− ih̄

(
x1∂

2ρ

2ρ
− x2∂

1ρ

2ρ

)
Ψ . (7.9)

Comparing eqs. (7.8) and (7.9), and then separating into real and imaginary parts.

We have

L3
c = h̄

(
x1∂2φ− x2∂1φ

)
= mh̄ , (7.10)

and

L3
o = −h̄

(
x1∂

2ρ

2ρ
− x2∂

1ρ

2ρ

)
= 0 . (7.11)

Since φ = S − log ρ1/2 , eq. (7.10) simplifies to

L3
d = h̄

(
x1∂2S − x2∂1S

)
= mh̄ . (7.12)
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Results: When Ψ is the eigenstate of the z−component of angular momentum, then

the osmotic angular momentum vanishes while the drift/current angular momenta

become quantized and the eigenvalue equation, eq. (7.8) reduces to

L3
qΨ = L3

cΨ = L3
dΨ = mh̄Ψ . (7.13)

In Nelson’s stochastic theory, it was shown previously that the current angular mo-

mentum is the classical analog of angular momentum [59]. It is important to em-

phasize that the stochastic analog of angular momentum only becomes possible by

requiring that the current velocity is a gradient of some scalar function φ that repre-

sents phase of the wave function. On the hand hand, this fact is derived in ED and

therefore both Lc and Ld are good candidates.

7.3 Angular Momentum Uncertainty Relations in QM

In standard quantum mechanics observable are represented by the Hermitian opera-

tors. If Â and B̂ are two Hermitian operators, then the uncertainties in Â and B̂ are

given by

∆A∆B ≥ 1

2
|〈[Â, B̂]〉| , (7.14)

where (∆A)2 = 〈(A − 〈A〉)2〉 is the uncertainty of Â, (∆B)2 = 〈(B − 〈B〉)2〉 is

the uncertainty of B, and [Â, B̂] = ÂB̂ − B̂Â. For instance, when Â = x̂, and

B̂ = p̂x = −ih̄∂/∂x, then

[x̂, p̂x] = ih̄ , (7.15)
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therefore

∆x∆px ≥
h̄

2
(7.16)

It should be noted that there is also a shortcoming of eq. (7.14). Take, for example,

the z−component of angular momentum,

L3
q = −ih̄∂/∂ϕ , (7.17)

where ϕ is the azimuthal angle. This implies that

[ϕ,L3
q] = ih̄ . (7.18)

This suggests that

∆ϕ∆L3
q ≥

h̄

2
, (7.19)

but this is wrong because ∆L3
q can be arbitrarily small but ∆ϕ ≤ 2π. In fact ∆L3

q

can even be chosen to be zero. If Ψ is an eigenfunction of L3
q, then ∆L3

q = 0 which

implies that ∆ϕ = ∞ but ∆ϕ ≤ 2π which is a contradiction. In fact, eq. (7.18) can

only be assumed if L3
q hermitian. Furthermore, L3

q is hermitian only when acting on

a single-valued functions while ϕ is not.

The correct uncertainty relation for ∆L3
q follows for the functions periodic in ϕ

such as cosϕ and sinϕ. These are the functions that are single valued. One can

compute [3, 60, 61]

(∆L3
q)

2{(∆ cosϕ)2 + (∆ sinϕ)2} ≥ h̄2

4
(〈cosϕ〉2 + 〈sinϕ〉2) (7.20)
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7.4 Angular Momentum Uncertainty Relations in ED

There are several angular momenta in ED. They are the drift, osmotic and current

angular momenta. As we have seen in the previous section the angular momentum

uncertainty relation involves the azimuthal angle ϕ. The azimuthal angle can be

introduced in ED by treating ϕ = ϕ(x, y, z). Here we follow Golin [62] to derive the

corresponding uncertainty relations for angular momentum.

Starting with the covariance inequality (6.30). First we find uncertainty relations

for the osmotic angular momentum. Let A = sinϕ, and B = L3
o, then

(Var sinϕ)
(
Var L3

o

)
≥ Cov2

(
sinϕ,L3

o

)
. (7.21)

Similarly

(Var cosϕ)
(
Var L3

o

)
≥ Cov2

(
cosϕ,L3

o

)
, (7.22)

Computing the r.h.s. of eq. (7.21),

Cov
(
sinϕ,L3

o

)
=

〈
sinϕL3

o

〉
− 〈sinϕ〉

〈
L3
o

〉
, (7.23)

the second term vanishes by using eq. (7.7) while the first term can be written as

〈
sinϕL3

o

〉
= −h̄

∫
d3x ρ sinϕ

(
x1∂

2ρ

2ρ
− x2∂

1ρ

2ρ

)
=

h̄

2

∫
d3x ρ cosϕ

(
x1∂2ρ− x2∂1ρ

)
. (7.24)

It is convenient to express the r.h.s. in spherical polar coordinates,

x1 = r sin θ cosϕ ,
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x2 = r sin θ sinϕ ,

x3 = r cos θ , (7.25)

then a straightforward calculation yields,

Cov
(
sinϕ,L3

o

)
=
h̄

2
〈cosϕ〉 , (7.26)

and thus eq. (7.21) becomes

(Var sinϕ)
(
Var L3

o

)
≥ h̄2

4
〈cosϕ〉2 . (7.27)

Similarly

(Var cosϕ)
(
Var L3

o

)
≥ h̄2

4
〈sinϕ〉2 . (7.28)

The corresponding uncertainty relations for current angular momentum are given

by

(Var sinϕ)
(
VarL3

c

)
≥ Cov2

(
sinϕ,L3

c

)
, (7.29)

and

(Var cosϕ)
(
VarL3

c

)
≥ Cov2

(
cosϕ,L3

c

)
, (7.30)

which cannot be written in a more familiar form, however the combination of eqs. (7.27)–

(7.30) lead to useful results

(Var sinϕ)
(
VarL3

c + VarL3
o

)
≥ Cov2

(
sinϕ,L3

c

)
+
h̄2

4
〈cosϕ〉2 (7.31)

(Var cosϕ)
(
VarL3

c + VarL3
o

)
≥ Cov2

(
cosϕ,L3

c

)
+
h̄2

4
〈sinϕ〉2 . (7.32)

On further combining we have

{
VarL3

c + VarL3
o

} (Var sinϕ) + (Var cosϕ)

〈sinϕ〉2 + 〈cosϕ〉2
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≥ Cov2 (sinϕ,L3
c) + Cov2 (cosϕ,L3

c)

〈sinϕ〉2 + 〈cosϕ〉2
+
h̄2

4
. (7.33)

Let us calculate the variance of quantum angular momentum operator L3
q:

VarL3
q =

〈(
L3
q

)2
〉
−
〈
L3
q

〉2
(7.34)

Since

〈(
L3
q

)2
〉

= −h̄2

∫
d3xΨ∗

(
x1∂2 − x2∂1

)2
Ψ

= h̄2

∫
d3x

∣∣(x1∂2 − x2∂1
)

Ψ
∣∣2

=
〈(
L3
c

)2
〉

+
〈(
L3
o

)2
〉
, (7.35)

while 〈L3
q〉 = 〈L3

c〉 by eq. (7.7). Therefore

VarL3
q = VarL3

c + VarL3
o , (7.36)

and

Cov
(
sinϕ,L3

q

)
= Cov

(
sinϕ,L3

c

)
(7.37)

Cov
(
cosϕ,L3

q

)
= Cov

(
cosϕ,L3

c

)
. (7.38)

Finally eq. (7.33) becomes

VarL3
q

Var sinϕ+ Var cosϕ

〈sinϕ〉2 + 〈cosϕ〉2
≥

Cov2
(
sinϕ,L3

q

)
+ Cov2

(
cosϕ,L3

q

)
〈sinϕ〉2 + 〈cosϕ〉2

+
h̄2

4
, (7.39)

which is a quantum angular momentum uncertainty relation (UR). This is the ana-

logue of the Schrödinger’s UR. It places a stronger bound on the uncertainty for

angular momentum than that given by eq. (7.20).
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7.5 Conclusions

In this chapter we have defined angular momentum within the framework of ED.

We observed that there are several angular momenta. They are the drift, osmotic

and current angular momenta. Just as linear momentum, angular momentum is also

statistical in nature — angular momentum is an attribute of the probability distribu-

tions. We also observed that it is the current/drift angular momentum that represents

entropic analog of angular momentum. We have also explored the connection of en-

tropic angular momenta with that of quantum angular momentum. Finally, we have

derived the corresponding uncertainty relations for angular momentum.
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Chapter 8

Entropic Dynamics on a Curved
Space

8.1 Introduction

Entropic dynamics (ED) developed in chapter 5 successfully explains quantum me-

chanics in the non relativistic limit. The Schrödinger equation is obtained if the

particle without spin is assumed to lie in flat Euclidean space, R3. It is desirable to

generalize the formulation of ED on a curved space. The immediate consequences of

this is that we can incorporate spin into ED. In this chapter, we derive a modified

Schrödinger equation on a curved space. The theory of spin will be discussed in the

subsequent chapter.

8.2 The Statistical Model

We consider a particle lying in an n-dimensional curved space. The generalization

for several particles is immediate. For a single particle the configuration space X is

Riemannian with metric gab(x). As in flat space, in this version of ED, we assume
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that there are extra variables, lying in a space Y , whose entropy is given by

S(x) = −
∫
dy p(y|x) log

p(y|x)

q(y)
, (8.1)

where all terms have their usual meaning as in chapter 5 (cf. eq. (5.2)).

In order to predict the new position x′ we proceed as in chapter 5. We want to find

P (x′|x) but the actual relevant space is X ×Y . Therefore the appropriate entropy is

S [P,Q] = −
∫
dnx′dy′P (x′, y′|x) log

P (x′, y′|x)

Q (x′, y′|x)
, (8.2)

Having specified the appropriate entropy, we want to maximize it to find the accept-

able posterior P (x′, y′|x). The relevant information is introduced through the prior

Q(x′, y′|x) and the constraints.

The prior

Before the actual information contained in the constraints is processed we are igno-

rant about any relation between x′ and y′, therefore the prior is a product. We also

assume that the prior to be uniform which is expressed by equal probabilities for

equal volumes

Q (x′, y′|x) = g1/2(x′)q (y′) , (8.3)

where g(x′) = det gab(x
′).

The constraints

First we write the posterior P (x′, y′|x) in the following form

P (x′, y′|x) = P (x′|x)P (y′|x′, x) . (8.4)
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We require that x′ and y′ are related such that P (y′|x′, x) = p(y′|x′), where p(y′|x′)

is the probability distribution of y-variables. This is our first constraint and so

P (x′, y′|x) = P (x′|x) p (y′|x′) . (8.5)

The second constraint concerns the factor P (x′|x) and represents the fact that

actual physical changes happen continuously. We assume that x′ is short step away

from x, that is, x′a = xa + ∆xa. We require the expectation

〈
∆`2 (x′, x)

〉
=
〈
gab(x)∆xa∆xb

〉
= ∆¯̀2 (x) , (8.6)

be small but for now unspecified numerical value ∆¯̀2 (x) which might depend on x.

The last constraint is the normalization∫
dnx′P (x′|x) = 1 . (8.7)

Finally maximize eq. (8.2) subject to constraints (8.5), (8.6), and (8.7) to get

P (x′|x) =
1

ζ(x, α)
g1/2(x′) exp

[
S(x′)− 1

2
α(x)gab(x)∆xa∆xb

]
, (8.8)

where

ζ(x, α) =

∫
dnx′g1/2(x′)eS(x′)− 1

2
α(x)gab(x)∆xa∆xb . (8.9)

The Lagrange multiplier α can be determined from the constraint (8.6)

∂

∂α
log ζ(x, α) = −1

2
∆¯̀2 . (8.10)

The Jacobian factor g1/2(x′) in eq. (8.8) makes P (x′|x)dnx′ invariant under changes

of the coordinates x′ in the space X . Sometimes it is convenient to write eq. (8.8) as

P (x′|x) = g1/2(x′)P(x′|x) , (8.11)
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with

P(x′|x) =
1

ζ(x, α)
exp
[
S(x′)− 1

2
α(x)gab(x)∆xa∆xb

]
, (8.12)

where P(x′|x) is a scalar density, an invariant. Its transformation does not involve a

Jacobian. On the other hand P (x′|x) is a tensor density of rank zero and weight 1.

Its transformation involves a Jacobian.

The transition probability P(x′|x) holds for short steps which can be guaranteed

if the Lagrange multiplier α is large. To examine this limit we write eq. (8.12) in

locally Cartesian coordinates, called the normal coordinates. In normal coordinates

(NC) at a point p the metric tensor in the vicinity of p is approximately that of flat

Euclidean space. That is, at the point p we can choose

gab(xp) = γab , with γab =
δab
σ2

, (8.13)

and

∂gab
∂xc

∣∣∣∣
xp

= 0 . (8.14)

However the second derivatives do not vanish

∂2gab
∂xc∂xd

∣∣∣∣
xp

6= 0 , (8.15)

they are the effects of curvature if the manifold is not exactly flat.

For large α or short step, expanding the exponent of eq. (8.12)) about its maxi-

mum.

P (x′|x) ≈ 1

Z (x)
exp

[
−α (x)

2σ2
δab (∆xa −∆x̄a)

(
∆xb −∆x̄b

)]
. (8.16)

83



This is the expression for transition probability in normal coordinates which is obvi-

ously a Gaussian. The factors independent of x′ are absorbed into a new normalization

Z(x). The displacement ∆xa and the expected drift ∆x̄a are given by

∆xa = ∆x̄a + ∆wa , (8.17)

∆x̄a =
σ2

α(x)
δab∂bS (x) , (8.18)

and the fluctuations

〈∆wa〉 = 0 , and 〈∆wa∆wb〉 =
σ2

α(x)
δab . (8.19)

Having established diffusion process in normal coordinates its transformation to

any other coordinates is immediate. If xa
′

is another coordinate in the neighborhood

of xa(xa
′
), then by Taylor expansion

∆xa =
∂xa

∂xa′
∆xa

′
+

1

2
∆xa

′
∆xb

′ ∂2xa

∂xa′∂xb′
. (8.20)

It should be noted that in ordinary differential geometry, one only keeps the first term

on the right. But in our case the displacement ∆xa involves fluctuations which is of

the order of O(t1/2), therefore the second order term must be included in the Taylor

expansion, which is ∆xa∆xb ∼ O(t). Notice also that ∆xa does not transform like

a vector because the second order term on the right spoils its vectorial nature. It is

convenient to define a new quantity,

∆̃xa = ∆xa in NC, (8.21)
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and require that it transforms like a vector [15]. Then

∆̃xa =
∂xa

∂xa′
∆xa

′
, (8.22)

Now for ∆xa
′

on the l.h.s. of eq. (8.22) use eq. (8.20) by reversing the roles of the

prime indices

∆̃xa
′

=
∂xa

′

∂xa
∆xa

=
∂xa

′

∂xa

(
∂xa

∂xb′
∆xb

′
+

1

2
∆xb

′
∆xc

′ ∂2xa

∂xb′∂xc′

)
=

∂xa
′

∂xa
∂xa

∂xb′
∆xb

′
+

1

2
∆xb

′
∆xc

′ ∂xa
′

∂xa
∂2xa

∂xb′∂xc′
. (8.23)

The second derivative on the r.h.s. can be eliminated by introducing the Christoffel

symbols. The Christoffel symbols are defined by

Γabc =
1

2
gad
(
∂gbd
∂xc

+
∂gcd
∂xb
− ∂gbc
∂xd

)
. (8.24)

The transformation rule of Γabc is

Γa
′

b′c′ =
∂xa

′

∂xa
∂xb

∂xb′
∂xc

∂xc′
Γabc +

∂xa
′

∂xa
∂2xa

∂xb′∂xc′
, (8.25)

Since the unprimed coordinates in eq. (8.23) are normal coordinates we have Γabc = 0

because they involve first derivative of metric tensor. Therefore

∆̃xa
′
= ∆xa

′
+

1

2
∆xb

′
∆xc

′
Γa
′

b′c′ . (8.26)

Re-arranging eq. (8.26)

∆xa
′
= ∆̃xa

′ − 1

2
∆xb

′
∆xc

′
Γa
′

b′c′ , (8.27)
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which is the displacement in general coordinates. On taking the expectation

∆x̄a
′
= ∆̃x̄a

′ − 1

2
〈∆xb′∆xc′〉Γa′b′c′ . (8.28)

Recall eq. (8.18), in normal coordinates ∆̃x̄a
′

is given by eq. (8.21) and since it is

assumed that it transforms like a vector, therefore in general coordinates

∆̃x̄a
′
=

1

α(x)
ga
′b′∂b′S . (8.29)

Similarly 〈∆xa′∆xb′〉 in normal coordinates is given by eqs. (8.17), (8.18), and (8.19)

〈∆̃xa′∆̃xb′〉 =
γa
′b′

α(x)
with γa

′b′ = σ2δa
′b′ (8.30)

Therefore in general coordinates

〈∆xa′∆xb′〉 =
ga
′b′(x)

α(x)
, (8.31)

where

ga
′b′(x) =

∂xa
′

∂xa′′
∂xb

′

∂xb′′
γa
′′b′′ . (8.32)

Finally eq. (8.27) can also be written as an expectation plus a fluctuation

∆xa
′
= ∆x̄a

′
+ ∆wa

′
, (8.33)

where now

∆x̄a
′
= ∆̃x̄a

′ − 1

2α(x)
Γa
′
=

1

α(x)

(
ga
′b′∂b′S −

1

2
Γa
′
)
, with Γa

′
= gb

′c′ Γa
′

b′c′ , (8.34)

〈∆wa′〉 = 0 and 〈∆wa′∆wb′〉 =
ga
′b′(x)

α(x)
, (8.35)
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which describes diffusion process in general coordinates. In what follows, we drop

primes over the indices.

8.3 Entropic Time in Riemannian Manifolds

The notion of time introduced in chapter 5 can be easily extended to Riemannian

manifolds simply by defining

ρ(x′, t′) =
∫
dnx g1/2(x)ρ(x, t)P(x′|x) . (8.36)

Note that the ρ is a scalar function.

Next is to introduce the duration of time (time interval). In chapter 5 we intro-

duced the time interval ∆t though the Lagrange multiplier α (see eq. (5.20)). The

same form of α continues to hold in curved spaces within non-relativistic regime.

Therefore

α =
τ

∆t
= constant . (8.37)

Having introduced time we can now define drift velocities in a similar manner

ba(x) = lim
∆t→0+

∆x̄a

∆t
= lim

∆t→0+

1

∆t

∫
dnx′g1/2(x′)P(x′|x)∆xa , (8.38)

which is the future drift velocity. The displacement is by eqs. (8.33-8.35)

∆xa = ba(x)∆t+ ∆wa , (8.39)

where

〈∆wa〉 = 0 and 〈∆wa∆wb〉 =
1

τ
gab∆t , (8.40)
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ba(x) = b̃a(x)− 1

2τ
Γa , with b̃a(x) =

1

τ
gab∂bS(x) , (8.41)

Note that ba does not transform like a vector but b̃a does.

Similarly the past drift velocity is defined by

ba∗(x
′) = lim

∆t→0+

1

∆t

∫
dnxg1/2(x)P(x|x′)∆xa (8.42)

The connection between the two drift velocities is given by

ba∗(x) = ba(x)− 1

τ
gab∂b log ρ(x, t) , (8.43)

which follows as a straightforward application of Bayes’ theorem

P(x|x′) =
P(x)

P(x′)
P(x′|x) . (8.44)

8.4 Fokker-Planck Equation

The transition probability P(x′|x) holds for small changes. The result of building up

finite change from initial time t0 up to final time t leads to the density

ρ (x, t) =
∫
dnx0 g

1/2(x0)ρ (x0, t0)P (x, t|x0, t0) , (8.45)

where the finite-time transition probability,P (x, t|x0, t0), can be constructed by iter-

ating the infinitesimal changes

P (x, t+ ∆t|x0, t0) =
∫
dnzg1/2(z)P (z, t|x0, t0)P (x, t+ ∆t|z, t) . (8.46)

The integral equation can be written as differential equation by a Taylor expanding

in ∆t. Since P (x, t+ ∆t|z, t)→ δ(x− z) as ∆t→ 0. To avoid this singular behavior
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we multiply eq. (8.46) by a smooth function f (x) and integrate over x

∫
dnx g1/2(x)P (x, t+ ∆t|x0, t0) f (x)=

∫
dnz g1/2(z)P (z, t|x0, t0)F (z) , (8.47)

where

F (z) =
∫
dnx g1/2(x)P (x, t+ ∆t|z, t) f (x) . (8.48)

Expand f (x) about z

F (z) =
∫
dnxg1/2(x)P (x, t+ ∆t|z, t)

(
f (z) +

∂f

∂za
∆za +

1

2

∂2f

∂za∂zb
∆za∆zb + . . .

)
= f (z) + ∆tba (z)

∂f

∂za
+

1

2τ
∆tgab

∂2f

∂za∂zb
+ . . . , (8.49)

where ∆za = xa − za, and by eqs. (8.38) and (8.40)

lim
∆t→0+

1

∆t

∫
dnxg1/2(x)P (x, t+ ∆t|z, t) ∆za = ba(z) , (8.50)

lim
∆t→0+

1

∆t

∫
dnxg1/2(x)P (x, t+ ∆t|z, t) ∆za∆zb =

1

τ
gab . (8.51)

Substituting eq. (8.49) in to eq. (8.47) and then integrating by parts

∫
dnx g1/2(x)

∆P
∆t

f(x) =

∫
dnz[−∂a

(
g1/2baP(z, t|x0, t0)

)
+

1

2τ
∂a∂b

(
g1/2gab P (z, t|x0, t0)

)
]f(z) , (8.52)

where ∂a = ∂/∂za, and ∆P = P(x, t+ ∆t|x0, t0)−P(x, t|x0, t0). Finally let ∆t→ 0,

and since f(x) is an arbitrary test function we get

∂

∂t
P(x, t|x0, t0) = − 1

√
g
∂a (
√
gbaP(x, t|x0, t0)) +

1

2τ

1
√
g
∂a∂b

(√
ggab P (x, t|x0, t0)

)
,

(8.53)
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where now ∂a = ∂/∂xa. Next multiply by g1/2(x0)ρ(x0, t0), integrate eq. (8.53) with

respect to x0, and make use of eq. (8.45) to get the FP equation,

∂

∂t
ρ(x, t) = − 1

√
g
∂a (
√
gbaρ(x, t)) +

1

2τ

1
√
g
∂a∂b

(√
ggabρ(x, t)

)
. (8.54)

Recall eq. (8.41)

ba(x) = b̃a(x)− 1

2τ
Γa . (8.41)

Use the identity

Γa = − 1
√
g
∂b
(√

ggab
)
. (8.55)

and finally eq. (8.54) becomes

∂ρ

∂t
= − 1
√
g
∂a

(√
g b̃aρ

)
+

1

2τ
∆gρ , (8.56)

which is the forward Fokker-Planck equation, where ∆g is the Laplace-Beltrami op-

erator given by

∆g =
1
√
g
∂a
(√

ggab∂b
)

(8.57)

The Fokker-Planck equation can be written as a continuity equation

∂ρ

∂t
= − 1
√
g
∂a (
√
gvaρ) , (8.58)

where va is the current velocity

va = b̃a + ua , (8.59)

the osmotic velocity ua is given by

ua = − 1

2τ
gab

∂bρ

ρ
. (8.60)
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The continuity equation can also be written as

∂ρ

∂t
= − 1

τ
√
g
∂a
(√

gρgab∂bφ
)
, (8.61)

where

va =
1

τ
gab∂bφ with φ(x, t) = S(x, t)− log ρ1/2(x, t) . (8.62)

Note that since ρ and S are scalars (not densities) then va and ua are vectors, and φ

is a scalar.

8.5 The Schrödinger Equation in Riemannian Manifolds

We now derive the Schrödinger equation in curved space. To derive it, we recall that

what we have learned so far as the joint evolution of ρ and S: ρ evolves as constrained

by S, and then S is updated by the new ρ, in such a way the energy E is conserved.

We start with the appropriate energy functional,

E[S, ρ] =
∫
dnx
√
g ρ[Agabv

avb +Bgabu
aub + V (x) + Vc(x)] , (8.63)

where V (x) is the usual external potential, and Vc(x) is potential due to a possible

curvature effect. In a flat space, or a space of constant curvature Vc becomes a

constant.

Having specified the energy functional next we put the values of va and ua from

eqs. (8.60) and (8.62) respectively

E[S, ρ] =

∫
dnx
√
g ρ

(
A

τ 2
gab∂aφ∂bφ+

B

4τ 2
gab

∂aρ∂bρ

ρ2
+ V (x) + Vc(x)

)
. (8.64)
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We assume that the Riemannian manifold is static (i.e. gab(x) is independent of time).

Furthermore the potential terms are also assumed to be time independent, then the

time derivative of eq. (8.64) gives

Ė =

∫
dnx
√
g ρ̇

(
A

τ 2
gab∂aφ∂bφ+

B

4τ 2
gab

∂aρ∂bρ

ρ2
+ V (x) + Vc(x)

)
+

2A

τ 2

∫
dnx
√
gρgab∂aφ∂bφ̇

+
B

2τ 2

∫
dnx
√
gρgab

(
∂aρ∂bρ̇

ρ2
− ∂aρ∂bρ

ρ3
ρ̇

)
. (8.65)

Consider the second and third terms

I1 =
2A

τ 2

∫
dnx
√
gρgab∂aφ∂bφ̇ , (8.66)

I2 =
B

2τ 2

∫
dnx
√
gρgab

(
∂aρ∂bρ̇

ρ2
− ∂aρ∂bρ

ρ3
ρ̇

)
. (8.67)

Integrate by parts the r.h.s. of eq. (8.66) and use eq. (8.61) to get

I1 =
2A

τ

∫
dnx
√
gρ̇φ̇ . (8.68)

Similarly eq. (8.67) gives

I2 = − B

2τ 2

∫
dnx
√
g

(
1
√
g

∂a(
√
ggab∂bρ

ρ

)
ρ̇ . (8.69)

Thus eq. (8.65) becomes

Ė =

∫
dnx
√
g ρ̇

(
2A

τ
φ̇+

A

τ 2
gab∂aφ ∂bφ

+V (x) + Vc(x)− B

τ 2

∆g
√
ρ

√
ρ

)
, (8.70)
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where we have also used the identity

∆g
√
ρ

√
ρ

=
1
√
g

∂a(
√
g gab∂bρ)

2ρ
− gab∂aρ ∂bρ

4ρ2
(8.71)

Any time t can be considered the initial time for evolution into the future. If

we require that Ė = 0 for arbitrary choices of the initial ρ̇ which from eq. (8.61), is

equivalent to arbitrary choices of initial ρ and initial φ then the integrand of eq. (8.70)

is zero

2A

τ
φ̇+

A

τ 2
gab∂aφ ∂bφ+ V (x) + Vc(x)− B

τ 2

∆g
√
ρ

√
ρ

= 0 , (8.72)

which can be recognized as the Hamilton-Jacobi equation in a curved space. The

Hamilton-Jacobi equation and the continuity equation (8.61) can be combined in to

a single equation by introducing Ψ =
√
ρ eiφ. The result is

i
2A

τ

∂Ψ

∂t
= −A

τ 2
∆gΨ + V (x)Ψ + Vc(x)Ψ +

A

τ 2

(
1− B

A

)
∆g
√
ρ

√
ρ

Ψ . (8.73)

It should be noted that the Laplace-Beltrami operator ∆g involves the metric gab of

the configuration space. It is convenient to write gab in terms of the metric hab of the

curved space,

gab(x) = σ2hab(x) . (8.74)

where σ2 is scale factor.

We now introduce new constants m, µ and η such that

m =
2A

σ2
and µ =

2B

σ2
, (8.75)

and

η =
2A

τ
so that

σ2

τ
=

η

m
, (8.76)
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In terms of the new constants eq. (8.73) becomes

iη
∂Ψ

∂t
= − η2

2m
∆hΨ + V (x)Ψ + Vc(x)Ψ +

η2

2m

(
1− µ

m

) ∆h
√
ρ

√
ρ

Ψ , (8.77)

where now

∆h =
1√
h
∂a

(√
hhab∂b

)
. (8.78)

The last term in eq. (8.77) can be dropped out by rescaling the constants η and τ as

η = κη′, τ = τ ′/κ, and introducing a new Ψ′ = ρ1/2eiφ
′

where φ = φ′/κ, so that

iη
∂Ψ′

∂t
= − η2

2m
∆hΨ

′ + V (x)Ψ′ + Vc(x)Ψ′ +
η2

2m

(
1− µκ2

m

)
∆h
√
ρ

√
ρ

Ψ′ , (8.79)

We can choose κ such that µκ2 = m, and by setting η = h̄, and also dropping primes

over Ψ for brevity, then

ih̄
∂Ψ

∂t
= − h̄2

2m
∆hΨ + V (x)Ψ + Vc(x)Ψ . (8.80)

This is the familiar Schrödinger equation in a curved space. The modified Schrödinger

equation for a curved space is different from its counterpart in flat space for two

reasons: Firstly, the Laplacian ∇2 = δab∂a∂b is replaced by the Laplace-Beltrami

operator ∆h and secondly there is a possible additional potential term Vc(x) due to

curvature.

The curvature term has a long history. B. Podolsky [63] in 1928 derived the

Schrödinger equation in curved space without the curvature potential. Using path in-

tegral formulation B. DeWitt [64] in 1957 proposed that there is a curvature potential

proportional to Ricci scalar curvature R, that is Vc(x) ∝ R. However for a particle
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constrained to move in a two dimensional curved surface, Jensen and Koppe [65], da

Costa [66] and more recently Inomata and Junker [67] have noted that the curvature

term is of the form of

Vc(x) =
h̄2

2m

(
K(x)−H2(x)

)
, (8.81)

where K(x) is the Gaussian curvature and H(x) is the mean curvature of the surface.

The Schrödinger equation in a curved space has been also a subject of interest

in the framework of Nelson’s stochastic mechanics. In 1978, Dohrn and Guerra [68]

derived the Schrödinger equation in the framework of Nelson’s stochastic mechanics

on Riemannian manifolds without the curvature term. However, here we remark

that the curvature term does not arise in Ref. [68] because it is not included in the

Lagrangian from the start.

In entropic dynamics, on the other hand, the curvature term is quite arbitrary

it only enters through the energy constraint, namely eq. (8.63). However this term

can be thrown away for a space of constant curvature because in that case it only

introduces an overall irrelevant phase factor.

8.6 Interaction with External Electromagnetic Field

The interaction of charged particle with an external EM field is represented by im-

posing an additional constraint,

〈∆xaAa(x)〉 = C . (8.82)
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The contraction of indices is performed with respect to the metric gab(x). Here Aa(x)

is the vector potential in a curved space. This constraint together with the old

constraints in section 8.2 lead to the transition probability

P (x′|x) = g1/2(x′)P(x′|x) , (8.83)

with

P(x′|x) =
1

ζ(x, α, λ)
eS(x′)− 1

2
α∆`2−λ∆xaAa(x) , (8.84)

ζ(x, α, λ) =

∫
dnx′g1/2(x′)eS(x′)− 1

2
α∆`2−λ∆xaAa(x) , (8.85)

and the Lagrange multiplier λ can be determined from the constraint (8.82),

∂

∂λ
log ζ(x, α, λ) = −C . (8.86)

For large α the diffusion process takes the form

∆xa = b̃a(x)∆t− 1

2τ
Γa∆t+ ∆wa , (8.87)

where now

b̃a =
1

τ
gab(∂bS − λAb) , (8.88)

and

〈∆wa〉 = 0 and 〈∆wa∆wb〉 =
1

τ
gab∆t . (8.89)

The Fokker-Planck equation is obtained in a similar way. The only difference is that

∂S is replaced by a gauge invariant term ∂S − λA,

∂ρ

∂t
= − 1
√
g
∂a (
√
g ρva) , (8.90)
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where

va =
1

τ
gab(∂bφ− λAb) with φ(x, t) = S(x, t)− log ρ1/2(x, t) . (8.91)

The energy constraint is the same as in eq. (8.63)

E(S, ρ) =
∫
dnx
√
g ρ[Agabv

avb +Bgabu
aub + V (x) + Vc(x)] , (8.92)

where now va is given by eq. (8.91). Impose the energy conservation, Ė = 0, and the

result is

2A

τ
φ̇+

A

τ 2
gab(∂aφ− λAa)(∂bφ− λAb) + V (x) + Vc(x)− B

τ 2

∆g
√
ρ

√
ρ

= 0 , (8.93)

The Lagrange multiplier λ is related to charge of the particle by the equation

λ =
e

h̄c
. (8.94)

Let

Ψ =
√
ρ eiφ , (8.95)

then the couple of equations (8.90) and (8.93) can be combined in to a single equation

i
2A

τ

∂Ψ

∂t
=

A

τ 2
√
g

(
i∂a −

e

h̄c
Aa

)√
ggab

(
i∂b −

e

h̄c
Ab

)
Ψ

+V (x)Ψ + Vc(x)Ψ +
A

τ 2

(
1− B

A

)
∆g
√
ρ

√
ρ

Ψ . (8.96)

We can redefine and rescale the constants A, B, τ , σ2, and the metric gab as in

eqs. (8.75), (8.76), and (8.74) so that

ih̄
∂Ψ

∂t
=

h̄2

2m
√
h

(
i∂a −

e

h̄c
Aa

)√
hhab

(
i∂b −

e

h̄c
Ab

)
Ψ
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+V (x)Ψ + Vc(x)Ψ +
h̄2

2m

(
1− µ

m

) ∆h
√
ρ

√
ρ

Ψ . (8.97)

The last term also vanishes when µ = m, therefore

ih̄
∂Ψ

∂t
=

h̄2

2m
√
h

(
i∂a −

e

h̄c
Aa

)√
hhab

(
i∂b −

e

h̄c
Ab

)
Ψ + V (x)Ψ + Vc(x)Ψ . (8.98)

This is the Schrödinger equation in a curved space for a charged particle interacting

with an EM field.

8.7 Conclusions

We have derived the modified Schrödinger equation on a Riemannian manifold in the

framework of entropic dynamics (ED). The modified equation replaces the Laplacian

∇2 = δab∂a∂b by the Laplace-Beltrami operator ∆h. Furthermore, the modified equa-

tion may contain an additional potential term Vc(x) due to curvature provided it is

included in the energy functional (8.63). However, this term can be thrown away for

a space of constant curvature because it only introduces an overall irrelevant phase

factor.

An additional constraint, eq. (8.82), is introduced for a charged particle inter-

acting with electromagnetic field and thus the Schrödinger equation takes the form

of eq. (8.98). In the next chapter we will show that the motion of a non relativistic

particle with spin can be modeled by an appropriate choice of the curved Riemannian

manifold.
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Chapter 9

Entropic Dynamics of Spin-Half
Particles

9.1 Introduction

The idea of spin was proposed by Uhlenbeck and Goudsmith in 1925 [69], to explain

the splitting of spectral lines of atoms placed in a magnetic field, the so-called anoma-

lous Zeeman effect. In 1927, W. Pauli [70] formulated the theory of electron spin

within non relativistic quantum mechanics while P. Dirac in 1928 [71,72] established

a relativistic version of quantum mechanics that describes all fermions..

In the model discussed here, unlike angular momentum, the spin angular momen-

tum does not depend on spatial coordinates of a particle. This makes it difficult to re-

alize it classically, although many authors (Kramers [73], Takabayasi [74], Schiller [75]

and others) have developed classical descriptions of spinning particles. The goal of

the present chapter is to incorporate spin within the framework of entropic dynamics.

Our specific concern is spin-half particles. The model presented here has formal sim-

ilarities with Dankel [16]; and Dohrn, Guerra and Ruggiero [17] in Nelson’s stochastic
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mechanics.

9.2 The Model

We consider a single particle. We assume that the particle has the usual spatial

coordinates as well as some internal degrees of freedom. To incorporate those internal

degrees of freedom in entropic dynamics we extend the configuration space from R3

to R3 × S3, where R3 corresponds to the three dimensional Euclidean space and S3

is a 3-sphere (see below).

The metric gab of R3 × S3 is written in block matrix form

gab =

δij/σ2
1 0

0 hµν/σ
2
2

 , (9.1)

where the indices i, j and µ, ν correspond to directions in R3 and S3 respectively, and

σ2
1 and σ2

2 are scale factors that are introduced for later convenience.

Now recall eq. (8.96)

i
2A

τ

∂Ψ

∂t
=

A

τ 2
√
g

(
i∂a −

e

h̄c
Aa

)√
ggab

(
i∂b −

e

h̄c
Ab

)
Ψ

+V (x)Ψ + Vc(x)Ψ +
A

τ 2

(
1− B

A

)
∆g
√
ρ

√
ρ

Ψ . (9.2)

Since R3 × S3 has a constant curvature therefore Vc(x) is constant, which can be

omitted. Furthermore we are only interested in the case when the osmotic mass µ is

equal to the current mass m or A = B. Then eq. (9.2) simplifies to

i
2A

τ

∂Ψ

∂t
=

A

τ 2
√
g

(
i∂a −

e

h̄c
Aa

)√
ggab

(
i∂b −

e

h̄c
Ab

)
Ψ + V (x)Ψ (9.3)
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Put Aa = (Ai,Bµ), where Ai = (A1, A2, A3) is the vector potential and Bµ is the spin

potential. In ED, the potential Ai reflects a constraint on the motion:

〈∆xi〉Ai = C1 . (9.4)

The same happens with Bµ, the spin potential but as the choice of Ai is not arbitrary

(determined by the external environment) we will find that the choice of Bµ is not ar-

bitrary either. As we will later see that the potentials Ai and Bµ are not independent.

Bµ is determined by Ai.

Next, use eq. (9.1) for the metric gab which decomposes the first term on r.h.s.

into two parts,

i
2A

τ

∂Ψ

∂t
=
Aσ2

1δ
ij

τ 2

(
i∂i −

e

h̄c
Ai

)(
i∂j −

e

h̄c
Aj

)
Ψ + V (x)Ψ

+
Aσ2

2

τ 2
√
h

(
i∂µ −

e

h̄c
Bµ
)√
hhµν

(
i∂ν −

e

h̄c
Bν
)

Ψ . (9.5)

Introducing new constants

h̄ =
2A

τ
,

σ2
1

τ
=

h̄

m
,

σ2
2

τ
=
h̄

I
, (9.6)

where m is the mass and I is the moment of inertia, then eq. (9.5) becomes

ih̄
∂Ψ

∂t
=
h̄2δij

2m

(
i∂i −

e

h̄c
Ai

)(
i∂j −

e

h̄c
Aj

)
Ψ + V (x)Ψ

+
h̄2

2I
√
h

(
i∂µ −

e

h̄c
Bµ
)√
hhµν

(
i∂ν −

e

h̄c
Bν
)

Ψ . (9.7)

For I > 0, this equation represents a rigid charged sphere also known as the Bopp-

Haag equation [76]. For a point particle we will let I → 0 at the end. The metric hµν

is the inverse of hµν . To find hµν we study the connection of S3 with SU(2) group.
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9.3 The Geometry of the 3–Sphere and the SU(2) Group

A three sphere S3 is a unit sphere embedded in R4. Let qk ∈ R (with k = 0, 1, 2, 3.),

then

S3 = {(q0, q1, q2, q3) ∈ R4 : (q0)2 + (q1)2 + (q2)2 + (q3)2 = 1} . (9.8)

The components qk can be parameterized in several ways but a convenient one is that

of Euler angles (α, β, γ). To find out Euler angles parameterization we note that S3

is isomorphic to SU(2). The special unitary group SU(2) is a set of 2× 2 matrices

SU(2) =


 a b

−b? a?

 : a, b ∈ C, |a|2 + |b|2 = 1

 . (9.9)

The isomorphism of S3 and SU(2) follows immediately if we define a = q0 + iq3, and

b = iq1 + q2, then |a|2 + |b|2 = 1 implies (q0)2 + (q1)2 + (q2)2 + (q3)2 = 1. Hence

S3 ∼= SU(2). The advantage of this isomorphism is that any element of SU(2) can

be expressed in terms of Euler angles. For example, the elements in the spin half

representation are [77,78]

D(1/2) = e−iασ̂3/2e−iβσ̂2/2e−iγσ̂3/2

=

e−
1
2
i(α+γ) cos β

2
−e− 1

2
i(α−γ) sin β

2

e
1
2
i(α−γ) sin β

2
e

1
2
i(α+γ) cos β

2

 . (9.10)

where σ̂’s on the right in the first equality are Pauli matrices. Compare eq. (9.9) and

eq. (9.10) we obtain

a = e−
i
2

(α+γ) cos
β

2
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b = −e−
i
2

(α−γ) sin
β

2
(9.11)

Separating the real and imaginary parts we obtain

q0 = cos
β

2
cos

α + γ

2
,

q1 = sin
β

2
sin

α− γ
2

,

q2 = − sin
β

2
cos

α− γ
2

,

q3 = − cos
β

2
sin

α + γ

2
. (9.12)

Note that the entire three sphere can be covered only once if the angles are taken in

the range 0 ≤ α ≤ 2π, 0 ≤ β ≤ π, and 0 ≤ γ ≤ 4π.

The metric δkl of R4 induces a metric hµν on a hypersurface (in this case the

hypersurface is S3)

hµν =
∂qk

∂xµ
∂ql

∂xν
δkl , (9.13)

where qk are given by eq. (9.12), and xµ = (α, β, γ). Carrying out the calculations

we obtain the matrix elements of hµν

hµν =


hαα hαβ hαγ

hβα hββ hβγ

hγα hγβ hγγ

 =


1
4

0 1
4

cos β

0 1
4

0

1
4

cos β 0 1
4

 . (9.14)

The volume of SU(2) or S3 can be computed likewise

VSU(2) =

∫ 2π

0

dα

∫ π

0

1

8
sin β dβ

∫ 4π

0

dγ = 2π2 . (9.15)

It is customary to introduce a normalized invariant measure

dτ =
1

2π2

√
h dα dβ dγ , with

√
h =

1

8
sin β . (9.16)
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We also note that for the j−representation of SU(2) equation (9.10) can be written

as

D
(j)
mm′ (α, β, γ) = 〈jm |R(α, β, γ)| jm′〉 , (9.17)

where R(α, β, γ) is the rotation matrix on SU(2)

R(α, β, γ) = e−i
α
h̄
J3e−i

β
h̄
J2e−i

γ
h̄
J3 , (9.18)

where J ’s are the generators of the group. For future considerations we also need to

calculate the derivatives of D
(j)
mm′ with respect to the Euler angles

∂

∂α
D

(j)
mm′ =

〈
jm

∣∣∣∣ ∂∂αR (α, β, γ)

∣∣∣∣ jm′〉 , (9.19)

∂

∂β
D

(j)
mm′ =

〈
jm

∣∣∣∣ ∂∂βR (α, β, γ)

∣∣∣∣ jm′〉 , (9.20)

∂

∂γ
D

(j)
mm′ =

〈
jm

∣∣∣∣ ∂∂γR (α, β, γ)

∣∣∣∣ jm′〉 , (9.21)

where

∂

∂α
R (α, β, γ) = − i

h̄
J3R = − i

h̄
R
[
R−1J3R

]
, (9.22)

∂

∂β
R (α, β, γ) = − i

h̄
R
[
ei
γ
h̄
J3J2e

−i γ
h̄
J3

]
, (9.23)

∂

∂γ
R (α, β, γ) = − i

h̄
RJ3 . (9.24)
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We want to compute the quantities in the square brackets in the r.h.s. of eqs. (9.22)

and (9.23). To compute them use the identity (see for example, [79])

aÂB̂a−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] +

1

3!
[Â, [Â, [Â, B̂]]] + . . . , (9.25)

and the commutation relations

[Ji, Jj] = ih̄Jk , (in cyclic order.) (9.26)

For instance

ei
γ
h̄
J3J2e

−i γ
h̄
J3 = J1 sin γ + J2 cos γ . (9.27)

Here we have used Â = iγJ3/h̄, and B̂ = J2. In a similar way we obtain

R−1J3R = −J1 sin β cos γ + J2 sin β sin γ + J3 cos β . (9.28)

Collecting the results, eqs. (9.19–9.21) become,

∂

∂α
D

(j)
mm′ = − i

h̄

〈
jm
∣∣R[R−1J3R]

∣∣ jm′〉
= − i

h̄

∑
m′′

〈
jm
∣∣R |jm′′〉〈 jm′′|R−1J3R

∣∣ jm′〉 , (9.29)

where we have introduced an identity matrix
∑

m′′ |jm′′〉〈 jm′′| = 1. On substituting

eq. (9.28) we have

∂

∂α
D

(j)
mm′ = − i

h̄

∑
m′′

D
(j)

mm′′
[− sin β cos γ(Σ1)

(j)
m′′m′+sin β sin γ(Σ2)

(j)
m′′m′+cos β(Σ3)

(j)
m′′m′ ] ,

(9.30)

where

(Σi)
(j)
m′′m′ = 〈jm′′ |Ji| jm′〉 , i = 1, 2, 3. (9.31)
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Similarly

∂

∂β
D

(j)
mm′ = − i

h̄

∑
m′′

D
(j)

mm′′
[sin γ(Σ1)

(j)
m′′m′ + cos γ(Σ2)

(j)
m′′m′ ] , (9.32)

and

∂

∂γ
D

(j)
mm′ = − i

h̄

∑
m′′

D
(j)

mm′′
(Σ3)

(j)
m′′m′ . (9.33)

Furthermore it is also straightforward to show that{
1

sin β

∂

∂β

(
sin β

∂

∂β

)
+

1

sin2 β

(
∂2

∂α2
+

∂2

∂γ2
− 2 cos β

∂2

∂α∂γ

)
+ j(j + 1)

}
D

(j)
mm′ = 0 ,

(9.34)

and the orthnormalization condition,∫
dτD

(j)
mm′D

∗(j′)
m1m′1

=
δjj′δmm1δm′m′1

2j + 1
, (9.35)

where the measure dτ is given by eq. (9.16).

9.4 Derivation of the Pauli Equation

As we saw in chapters 5 and 8, the wave function ψ was constructed from two real

quantities ρ and φ, that is ψ =
√
ρ eiφ. As a result we obtained Schrödinger equation

in which ψ is a one component scalar. In contrast Ψ is a two component spinor in

Pauli equation. The Pauli equation for spin half can be derived from eq. (9.7) by

using the Peter-Weyl decomposition [78]

Ψ(x;α, β, γ; t) =
∑
j,m,m′

D
(j)
mm′(α, β, γ)ψ

(j)
m′m(x, t) , (9.36)

where D
(j)
mm′ , given by eq. (9.17), is the j− representation of SU(2). The advantage

of Peter-Weyl decomposition is that it separates spatial coordinates and Euler angles
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as can be seen D
(j)
mm′ depends only on the Euler angles while ψ

(j)
m′m depends on x and

t.

At this stage the evolution according to eq. (9.7) is such that different j’s are

coupled. The different spins are uncoupled only if Bµ are chosen accordingly (see eq.

(??) below). Next we carry on the calculations and Substitute eq. (9.36) into eq. (9.7)

ih̄
∑
j,m,m′

D
(j)
mm′

∂ψ
(j)
m′m

∂t
=
∑
j,m,m′

(
D

(j)
mm′C

(j)
m′m +K

(j)
mm′ψ

(j)
m′m

)
, (9.37)

where

C
(j)
m′m =

[
h̄2δij

2m

(
i∂i −

e

h̄c
Ai

)(
i∂i −

e

h̄c
Ai

)
+ V (x)

]
ψ

(j)
m′m , (9.38)

and

K
(j)
mm′ =

h̄2

2I
√
h

(
i∂µ −

e

h̄c
Bµ
)√
hhµν

(
i∂ν −

e

h̄c
Bν
)
D

(j)
mm′ . (9.39)

Note that the time derivative ∂/∂t, and spatial derivatives ∂i = (∂/∂x, ∂/∂y, ∂/∂z)

act on ψ
(j)
mm′ , while the Euler angles derivatives ∂µ = (∂/∂α, ∂/∂β, ∂/∂γ) act on D

(j)
mm′

only. We first focus on eq. (9.39),

K
(j)
mm′ = T1 + T2 + T3 + T4 , (9.40)

where

T1 = − h̄
2

2I

1√
h
∂µ

(√
hhµν∂νD

(j)
mm′

)
, (9.41)

T2 = − ieh̄
2Ic

hµνBµ∂νD(j)
mm′ , (9.42)
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T3 = − ieh̄
2Ic

1√
h
∂µ

(√
hhµνBν

)
D

(j)
mm′ , (9.43)

T4 =
e2

2Ic2
hµνBµBνD(j)

mm′ , (9.44)

while hµν is the inverse of hµν

hµν =


hαα hαβ hαγ

hβα hββ hβγ

hγα hγβ hγγ

 =


4

sin2 β
0 −4 cosβ

sin2 β

0 4 0

−4 cosβ
sin2 β

0 4
sin2 β

 , (9.45)

and
√
h = 1

8
sin β.

We want to compute each term in eq. (9.40). Starting with T1 which after re-

arrangements becomes,

T1 = −2h̄2

I

{
1

sin β

∂

∂β

(
sin β

∂

∂β

)
+

1

sin2 β

(
∂2

∂α2
+

∂2

∂γ2
− 2 cos β

∂2

∂α∂γ

)}
D

(j)
mm′

=
2h̄2

I
j (j + 1)D

(j)
mm′ , (9.46)

where we have also used eq. (9.34) to obtain the second equality.

Now computing eq. (9.42)

T2 = − ieh̄
2Ic

(
Bα∂αD(j)

mm′ + B
β∂βD

(j)
mm′ + B

γ∂γD
(j)
mm′

)
, (9.47)

where Bµ = hµνBν . Use eqs. (9.30–9.33),

T2 = − e

2Ic

∑
m′′

D
(j)

mm′′

[{
−Bα sin β cos γ + Bβ sin γ

}
(Σ1)

(j)
m′′m′

+
{
Bα sin β sin γ + Bβ cos γ

}
(Σ2)

(j)
m′′m′ + {B

α cos β + Bγ} (Σ3)
(j)
m′′m′

]
. (9.48)
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Next we follow [17] and define the quantities in the curly brackets {..} on the right as

I

m
B1 def

= −Bα sin β cos γ + Bβ sin γ , (9.49)

I

m
B2 def

= Bα sin β sin γ + Bβ cos γ , (9.50)

I

m
B3 def

= Bα cos β + Bγ , (9.51)

so that

T2 = − e

2mc

∑
m′′

D
(j)

mm′′
~B · (~Σ)

(j)
m′′m′ , (9.52)

where ~B will eventually be identified with the magnetic field. The significance of

eqs. (9.49–9.51) become clear when it is inverted for the spin potential B’s

Bα =
I

m

(
−B1 cos γ

sin β
+B2 sin γ

sin β

)
, (9.53)

Bβ =
I

m

(
B1 sin γ +B2 cos γ

)
, (9.54)

Bγ =
I

m

(
B1 cos γ cot β −B2 sin γ cot β +B3

)
. (9.55)

Note that the spin potential is a function of both the spatial coordinates and the

internal Euler angles: ~B = ~B(x;α, β, γ). This means that, in general, the quan-

tities Bi’s on the right are functions of both the spatial coordinates and the Eu-

ler angles: ~B = ~B(x;α, β, γ). This implies that in general ~B(x;α, β, γ) is not

a legitimate magnetic field because it allows a transition between different spins

(0 ↔ 1/2 ↔ 1 ↔ 3/2 . . .). This transition between spins occurs if T3 6= 0. T3 is

given by (9.43). On the other hand there is no spins transition if Bi = Bi(x) which

gives

T3 = − ieh̄
2Ic

1√
h
∂µ

(√
hhµνBν

)
D

(j)
mm′ = 0 , (9.56)
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because ∂µ only acts on the Euler angles. The vanishing value of T3 means that

different values of j’s are uncoupled.

Finally the calculations of T4 give

T4 =
e2

2Ic2
hµνBµBνD(j)

mm′

=
e2I

8m2c2
~B2D

(j)
mm′ . (9.57)

Substituting eqs. (9.46), (9.52), (9.56) and (9.57) in eq. (9.40), we have

K
(j)
mm′ =

2h̄2

I
j (j + 1)D

(j)
mm′ −

e

2mc

∑
m′′

D
(j)

mm′′
~B · (~Σ)

(j)
m′′m′ +

e2I

8m2c2
~B2D

(j)
mm′ . (9.58)

Hence eq. (9.37) becomes

ih̄
∑
j,m,m′

D
(j)
mm′

∂ψ
(j)
m′m

∂t
=

∑
j,m,m′

D
(j)
mm′

[
h̄2

2m

(
i~∇− e

h̄c
~A
)2

+ V (x)

]
ψ

(j)
m′m

+
2h̄2

I

∑
j,m,m′

j (j + 1)D
(j)
mm′ψ

(j)
m′m

− e

2mc

∑
j,m,m′,m′′

D
(j)

mm′′
~B · (~Σ)

(j)
m′′m′ψ

(j)
m′m

+
e2I

8m2c2

∑
j,m,m′

~B2D
(j)
mm′ψ

(j)
m′m . (9.59)

Multiplying eq. (9.59) by D
∗(j′)
m1m′1

and integrate over the Euler angles and making

use of the orthogonality condition (9.35), we get

ih̄
∂ψ

(j)
mm′

∂t
=

[
h̄2

2m

(
i~∇− e

h̄c
~A
)2

+ V (x)

]
ψ

(j)
mm′

+
2h̄2

I
j (j + 1)ψ

(j)
mm′

− e

2mc

∑
m′′

~B · (~Σ)
(j)
mm′′ψ

(j)
m′′m′

+
e2I

8m2c2
~B2ψ

(j)
mm′ . (9.60)
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The second term is interesting. As I → 0 (point particle), the different spins corre-

spond to different subspaces that are largely separated in energy (∆E ∼ 1/I → ∞)

and therefore become decoupled: typical finite energy interactions cannot induce

transitions. However, in this limit the fourth term vanishes while the second term is

an infinite constant which contributes an overall irrelevant phase factor that can be

omitted and so we are left with,

ih̄
∂ψ

(j)
mm′

∂t
=

[
h̄2

2m

(
i~∇− e

h̄c
~A
)2

+ V (x)

]
ψ

(j)
mm′ −

e

2mc

∑
m′′

~B · (~Σ)
(j)
mm′′ψ

(j)
m′′m′ . (9.61)

This equation holds for any value of j. In particular for j = 1/2 we can obtain the

Pauli equation for spin-half particle. To write the Pauli equation in a familiar form

we recall eq. (9.31)

~Σ
(j)
m′m =

〈
jm′

∣∣∣ ~J∣∣∣ jm〉 , (9.62)

For j = 1/2, we have m,m′ = ±1/2, and

~J =
h̄

2
~σ , (9.63)

where ~σ are the Pauli matrices,

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (9.64)

Therefore eq. (9.61) becomes,

ih̄
∂ψ

(1/2)
mm′

∂t
=

[
h̄2

2m

(
i~∇− e

h̄c
~A
)2

+ V (x)

]
ψ

(1/2)
mm′ −

eh̄

2mc
~B · ~σmm′′ψ(1/2)

m′′m′ , (9.65)

Note that the summation over the repeated indexm′′ is understood. Equation (9.65) is

also known as Dankel equation [16], it describes two identical copies of Pauli equation
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because ψ(1/2) is a 2× 2 matrix where each column represents a spinor

ψ1/2 =


ψ

1/2
1/2 1/2 ψ

1/2
1/2−1/2

ψ
1/2
−1/2 1/2 ψ

1/2
−1/2−1/2

 . (9.66)

We further note that eq. (9.65) is the j = 1/2 sector of the regular representation of

SU(2). The regular representation is reducible; it is the direct sum of the (2j + 1)

copies of the jth representation for all values of j = 0, 1/2, 1, 3/2, . . .

We can decompose eq. (9.66) into the minimal left ideals by which we mean

subspaces that are invariant under left multiplication. This is done as follows. Write

eq. (9.66) as

ψ1/2 =


ψ

1/2
1/2 1/2 0

ψ
1/2
−1/2 1/2 0

+


0 ψ

1/2
1/2−1/2

0 ψ
1/2
−1/2−1/2

 , (9.67)

For brevity, we write eq. (9.67) as

ψ1/2 = ψ1 + ψ2 , (9.68)

where ψ1 and ψ2 are Pauli spinors. If eq. (9.68) is multiplied from left by a matrix

U , then it does not mix the spinors, that is,

Uψ1/2 = Uψ1 + Uψ2 = ψ′1 + ψ′2 , (9.69)

It is in this this sense that eq. (9.65) describes two copies of the Pauli equation.
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Remarks: Since ED has close similarities with Nelson’s stochastic mechanics,

some of the questionable features that are present in Nelson/Dankel theory also show

up in this version of ED.

The entropic model presented in this chapter gives rise to several questions;

1. Gauge invariance is one of the fundamental symmetries in physics. It implies

that electric charge is conserved. The Schrödinger equation is also invariant

under the gauge transformation,

Ψ→ Ψ′ = eiχ(x)Ψ , and Ai → A′i = Ai +
ih̄c

e
∂iχ(x) . (9.70)

In our case, eq. (9.7) is also invariant under (9.70). However there is an un-

wanted gauge symmetry inherent in eq. (9.7): We can see that eq. (9.7) is also

invariant if we use the following gauge transformation

Ψ→ Ψ′ = eiχ(α,β,γ)Ψ , and Bµ → B′µ = Bµ +
ih̄c

e
∂µχ(α, β, γ) (9.71)

where B is the field on SU(2), and the arguments of χ are Euler angles. Nev-

ertheless, this apparent ambiguity disappears if we let the moment of inertia

I → 0 in which case the final equation takes the form of eq. (9.65) which is

invariant under the standard gauge transformation (9.70).

2. Another shortcoming of the Dohrn, Guerra and Ruggiero [17] derivation in

connection with stochastic mechanics is that the B field in eqs. (9.53), (9.54)

and (9.55) is constrained to satisfy T3 = 0 in eq. (9.56), and then the B field on

the right of eqs. (9.53), (9.54) and (9.55) is identified with the magnetic field.
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However, the problem remains that the connection between ~B and ~∇ × ~A is

merely stated, not established.

3. Another objection was raised by Wallstrom [80], it deals with eq. (9.65). Since

eq. (9.65) generates two identical copies of Pauli equation, it represents the reg-

ular representation of SU(2) rather than the irreducible spinor representation.

9.5 Conclusions

In this chapter our goal was to construct spin 1/2 theory as an example of entropic

dynamics. To construct a statistical model it is necessary to first identify the appro-

priate configuration space. To model spin 1/2 theory we chose R3×S3 manifold which

is isomorphic to R3 × SU(2). But the difficulty with this model is that it enlarges

the configuration space from R3 to R3 × SU(2); the rotator can have any spin, as

in eq. (9.61). We derived the regular Pauli equation that corresponds to the regular

representation of SU(2)which include the irreducible spinor representation.

The difficulty in constructing any statistical model is to identify the subject mat-

ter. In our case here, what is the configuration space appropriate to the descrip-

tion of spin? What is a spin? Is it a “point” rigid rotator as in the Bopp-Hagg

model [16, 76, 81]? or is it a precessing dipole as described by Kramers [73] and

Schiller [75]? Is spin a property of the particle or is it a property of the proba-

bility distributions that describe its motion? Then we must identify the relevant

information—that is, the constraints—that when taken into account through entropic
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inference lead to the Pauli equation. And even if we succeed in describing a single spin

1/2 particle the problem remains of describing many particles and the spin-statistics

connection.

We conclude that the formulation developed in this chapter represents an interest-

ing preliminary exercise but that a more definitive approach must involve developing

the ED of fermion fields.

115



Chapter 10

Conclusions

Entropic dynamics (ED) is a framework for inference on the basis of incomplete infor-

mation. Probabilities play a key role when dealing with incomplete information and

the goal is to update probabilities when new information becomes available. Since

probability is also a common feature of quantum mechanics, in the ED framework

quantum mechanics is also an example of inference. ED does not challenge the for-

malism of quantum theory but focuses on removing the conceptual difficulties that

arise in understanding of quantum mechanics. Conceptually the most important ad-

vance is the understanding of the fundamental object in quantum mechanics — the

wave function. The work of A. Caticha [8,9,30] clarifies that the wave function is fully

epistemic — both the amplitude and the phase of the wave function receive a statis-

tical interpretation, and the modes of evolution are dictated by updating according

to entropic methods.

Entropic quantum dynamics (EQD) developed in Chapter 5 allows us to define

almost all observables in quantum theory in purely informational terms. Along these

lines, the problem of measurement in quantum mechanics is addressed in [82, 83].
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ED of relativistic scalar quantum fields is developed in [84, 85]. In this thesis we

explored the concepts of momentum, angular momentum and spin within the entropic

dynamics framework, and extended the theory to curved spaces.

In chapter 6 we established the entropic analog of linear momentum. We noted

that the particle follows a non-differentiable trajectory so that the classical momentum

md~x/dt along the trajectory cannot be defined. We introduced three different types of

momentum. They are the drift, osmotic and current momenta— the drift momentum

reflects flow along the entropy gradient, the osmotic momentum indicates diffusion of

probability flow, while the current momentum reflects the flow of total probability.

It is shown that these momenta share properties with the quantum momentum ~pq =

−ih̄~∇, and in the appropriate classical limit the drift/current momenta converge to

classical momentum while the osmotic momentum tends to zero.

The conclusion of this chapter is that momentum is a statistical concept. Momen-

tum is not an attribute of the particles but of the probability distributions. Finally

we derived the uncertainty relations for all momenta that show up in entropic dy-

namics and we showed that the Heisenberg’s uncertainty relation is an effect that

can be attributed to diffusion – it is an osmotic effect. In the same chapter we also

explored a special case of entropic dynamics that involves hybrid features. It obeys

the classical Hamilton-Jacobi equation and also the usual uncertainty principle.

In chapter 7, just like linear momentum, angular momentum was also expressed

in purely informational terms. In addition to the quantum angular momentum, there
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are three other local angular momenta. They are the drift angular momentum, os-

motic angular momentum, and current angular momentum. Having defined angular

momenta, we also established their uncertainty relations.

In chapter 8 we extended entropic dynamics to curved spaces. Here the con-

figuration space was assumed to be a general Riemannian manifold. No additional

assumptions were introduced. Time was introduced exactly in the same way as in flat

case. The diffusion process in general coordinates was derived. Taking into account

the second order terms we noted that the displacement vector ∆xa as well as the drift

velocity ba do not transform like a vector. This led to a modified Schrödinger equation

for curved spaces which also takes into account the curvature effects. We also derived

Schrödinger equation for a charged particle interacting with external electromagnetic

field on general Riemannian manifold.

In chapter 9 we discussed an application of the theory developed in chapter 8. We

developed the entropic analog of the spin models of Dankel [16]; and Dohrn, Guerra

and Ruggiero [17] models of spin in connection with Nelson’s stochastic mechanics. To

model spin 1/2 theory we chose R3×S3 manifold which is isomorphic to R3×SU(2).

But the difficulty with this model is that it enlarges the configuration space from

R3 to R3 × SU(2); the rotator can have any spin. In the limit I → 0 the various

spins decouples and we arrived at the regular Pauli equation that corresponds to the

regular representation of SU(2) which includes the irreducible spinor representation.

In the future studies I have several interesting problems in mind. Especially I
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wish to explore further applications of the theory developed in chapter 8. Can we

derive classical Einstein field equations within the framework of ED? What is the ED

of quantum gravity? Is it possible to develop a theory of incorporating spin without

enlarging the configuration space from R3? These questions and other interesting

problems can be addressed once we know the appropriate statistical manifold and the

relevant constraints.
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