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Clarkson University

Abstract
Department of Mechanical and Aeronautical Engineering

Doctor of Philosophy

by Fariduddin Behzad

Proper orthogonal decomposition-based reduced order modeling is a technique

that can be used to develop low dimensional models of fluid flow. In this tech-

nique, the Navier-Stokes equations are projected onto a finite number of POD

basis functions resulting in a system of ODEs that model the system. The overar-

ching goal of this work is to determine the best methods of applying this technique

to generate reliable models of fluid flow. The first chapter investigates some basic

characteristics of the proper orthogonal decomposition using the Burgers equation

as a surrogate model problem. In applying the POD to this problem, we found

that the eigenvalue spectrum is affected by machine precision and this leads to

non-phsical negative eigenvalues in the POD. To avoid this, we introduced a new

method called deflation that gives positive eigenvalues, but has the disadvantage

that the orthogonality of the POD modes is more affected by numerical precision

errors. To reduce the size of eigenproblem of POD process, the well-known snap-

shot method was tested. It was found that the number of snapshots required to

obtain an accurate eigenvalue spectrum was determined by the smallest time scale

of the phenomenon. After resolving this time scale, the errors in the eigenvalues

and modes drop rapidly then converge with second-order accuracy. After obtaing

POD modes, the ROM error was assessed using two errors, the error of projection

of the problem onto the POD modes (the out-plane error) and the error of the

ROM in the space spanned by POD modes (the in-plane error). The numerical

results showed not only is the in-plane error bounded by the out-plane error (in

agreement with theory) but it actually converges faster than the out-of-plane er-

ror. The second chapter is dedicated to building a robust POD-ROM for long

term simulation of Navier-Stokes equation. The ability of the POD method to

decompose the simulation and the capability of POD-ROM to simulate a low and

high Reynolds flow over a NACA0015 airfoil was studied. We observed that POD
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can be applied for low Reynolds flows successfully if a proper stabilization method

is used. For the high Reynolds case, the convergence of the eigenvalues spectrum

with respect to duration of time window from we observed that the number of

modes needed to simulate a certain time window increases almost linearly with

the length of the time window. So, generating a POD-ROM for high Reynolds

flow that reproduced the correct long-term limit cycle behavior needs many more

modes than has been usually used in the literature. In the last chapter, we address

the problem that the standard method of generating POD modes may be inaccu-

rate when used off-design (at parameter values not used to generate the POD).

We tested some of the popular methods developed to remedy that problem. The

accuracy of these methods was in direct relation with the amount of data provided

for those methods. So, in order to generate appropriate POD modes, very large

POD problems must be solved. To avoid this, a new multi-level method, called

recursive POD, for enriching the POD modes is introduced that mathematically

provides optimal POD modes while reducing the computational size of problem

to a manageable degrees. A low Reynolds flow over NACA 0015, actuated with

constant suction/blowing of a fluidic jet located on top surface of airfoil is used

as benchmark to test the technique. The flow is shifted from one periodic state

to another periodic state due to fluidic jet effect. It was found that the modes

extracted with the recursive POD method are as accurate as the modes of the best

known method, global POD, while the computational effort is lower.
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Chapter 1

Introduction

Fluid flow dynamics is rather complicated and has a rich class of solution due to

the nonlinear nature of its governing equation. The nonlinearity in the flow veloc-

ity originates from the convective transport and the pressure term which is also

nonlocal. The nonlinearity has a fundamental significance in aerodynamic and

hydrodynamic applications where real time and spatially resolved simulations of

the governing equations are needed. Accurate representation of the flow field typi-

cally requires large grids covering the computational domain, which leads to many

degrees of freedom (or modes). Typical finite element/finite volume method may

require many thousands/millions of elements/control volumes and consequently,

requires massive computational resources. On the other hand, a number of prac-

tical engineering problems including flow control, optimization and uncertainty

quantification of fluid systems, require repeated simulations of the unsteady fluid

flows. The huge computational cost and the necessity of fast and numerous simu-

lations brings up the natural question that whether or not it is necessary and/or

practical to accurately produce the entire features of the flow details for com-

plex systems? One possibility to make many of these flow analyses practical is

to use the reduced-order models to significantly reduce the required simulation

effort. Among various types of reduced-order models, the one that is of interest to

complex fluid systems using very few degrees of freedom is the proper orthogonal

decomposition (POD) approach. The POD is also known as the Karhunen-Loeve

1



Chapter 1. Introduction 2

expansion in the field of statistics and principal component analysis or empirical

orthogonal functions (EOF) in meteorology. The approach decomposes the flow

parameters based on their energy content meaning that the computed POD modes

are energetically optimized in mean square sense. Therefore, POD makes it possi-

ble to reconstruct a nonlinear process by a linear combination of limited number

of main modes. Order reduction of the equations is accomplishes by projecting

the governing equation onto a finite but optimal number of the POD basis func-

tions and solving the resulting ODEs. For nonlinear, time-dependent fluid flow

problems governed by the Navier-Stokes equations, the reduced-order models are

typically constructed from two steps. First, a series of the detailed simulations are

performed and the desired variable is mapped to a finite number of basis functions

or modes. The span of these modes forms a subspace. Second step is Galerkin

projection of the Navier-Stokes equations onto a span of small number of dominant

POD modes. Thereby the distributed-parameter problem is reduced into a set of

finite-dimensional nonlinear dynamical system in time.

1.0.1 Objectives

A comprehensive assessment of the numerical accuracy of POD representation has

been rarely addressed. The general objective of this thesis is to assess the accuracy

of the proper orthogonal decomposition of flow around an airfoil for active flow

control applications. The specific Objectives are:

• Assessing the effect of truncation and stabilization on the accuracy of POD

based reduced order model.

• Developing a robust POD-ROM for long term simulation of Navier-Stokes

equation. This includes assessing the ability of the POD-ROM to simulate

an unactuated low Reynolds and high Reynolds flow over an airfoil.

• Developing a new multi-level POD method capable of managing large eigen-

value problems, generating the enriched POD modes in terms of information,

that are capable of describing transient flows.
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The thesis is organized as follows:

1. An introduction to the reduced order models and proper orthogonal decom-

position is provided in the introduction section.

2. Chapter two of this study is devoted to inspection of the numerical error

of POD and the associated ROM, including round off error and error of

truncation of POD modes. A 1D Burgers equation, which involves both

convection and diffusion, is first studied. A series of numerical investigation

consisting of the sensitivity of the eigenvalues and POD modes to truncation

and round-off errors is performed. Then, the effects of POD mode quality,

ROM stabilization, and ROM dimension on the accuracy of ROMs for low-

and high-Reynolds number simulations are examined. The interplay between

the data that the straight Galerkin and SUPG POD modes are derived from

and the methods used to derive the ROM is also investigates in Chapter 2.

3. In Chapter 3, testing the long time stability and robustness of POD-ROM

for an incompressible viscous flow at low and high Reynolds number are

presented. For the case of low Reynolds flows, comparisons of the per-

formance of the Galerkin POD-ROM, streamwise-upwind-Petrov-Galerkin

(SUPG) POD-ROM and, spectral-vanishing-viscosity (SVV) POD-ROM are

done. After obtaining accurate results using the SUPG POD-ROM for peri-

odic flows at low Reynolds numbers, the flows at high Reynolds numbers are

analyzed and tested. This provides information on the capability of POD for

complex non-periodic viscous flow. Detailed analysis for a 2-D flow around

the airfoil at a high Reynolds number is performed. It is found that for

non-periodic fluid flow, long time detailed simulation is needed to derive the

POD modes. Also, including the high dimension of POD-ROM is crucial to

obtaining accurate result.

4. Chapter 4 is focused on the ability of POD-ROM for predicting the transient

flow conditions around the airfoils. When POD is evaluated from the data

for a certain time interval for example unactuated or actuated airfoils, the
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resulting spatial POD modes and the corresponding ROM fatefully represent

the flow field only over this temporal interval. That is the subspace spanned

by POD modes only portrays the unactuated flow regime, if the modes are

generated for this period. But during active flow control, the flow changes

from the condition of unactuated airfoil to a different flow under the actu-

ation conditions. The POD that is generated for the unforced airfoil is not

appropriate for generating the transient flow condition and or the actuated

flow. Therefore, there is a need for generating set of POD modes that the re-

sulting ROM produces accurate results over a wide range of flow conditions.

Accordingly, in Chapter 4 the procedure for developing a set of enriched

POD modes that is capable of covering a wide range of transient flow con-

ditions is described. As noted before, the standard methods for generating

POD-ROM does not lead to accurate results. A new novel approach using

the energy weighted PODs to generate the optimal enriched POD is intro-

duced. The new approach allows solving a manageable eigenvalue problem

that leads to enriched POD modes. Comparisons between the performances

of the new method with the standard POD-ROM methods are presented.



Chapter 2

POD-ROM

2.1 Introduction

Numerical simulation of the Navier-Stokes Equations (NSE) typically requires

enormous computational resources. Even with current significant increase in com-

putational power, it is still basically impossible to solve many practical flow prob-

lems accurately and even more difficult to do this in real time. The main difficulty

is the large number of degrees of freedom needed to resolve all of the flow features.

In order to obtain real-time solutions, which are often needed for flow control prob-

lems, one solution is to use the reduced order models (ROM). The idea of reduced

order modeling is to perform detailed, time consuming simulations ahead of time,

then use this information to generate a predictive and fast model which can be

used for real-time prediction of the response of a system to some time varying

input. An extensive review of ROM techniques was reported in [1].

Among the various ROM techniques, the proper orthogonal decomposition (POD)-

based reduced order modeling has attracted considerable attention for application

to fluid flow anlaysis. The goal of POD-ROM is to reduce the number of degrees of

freedom necessary for numerically solving a system of partial differential equations

by introducing spatial basis functions specifically adapted to the system. When

using finite volume, finite difference, finite element, or spectral methods to solve

5
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the Navier-Stokes equations, the basis functions typically have little connection

with the problem being solved and thus it requires many functions to represent the

solution. The POD [2] (also known as the Karhunen-Loeve (KL) expansion [3, 4])

generates the basis functions from either numerical simulations of the system or

from experimental data. These POD basis functions, called POD modes, are then

used with a Galerkin projection to construct a set of ODEs that predict the flow

behavior. Because the POD modes are generated specifically for an individual

flow, one can often generate an accurate model of that flow using only a small

number of modes.

Although POD-ROM should be able to simulate complex systems efficiently, recent

work has shown that these models often suffer from a lack of accuracy specially

for long-time simulations [5–10]. This is true even when using what seems like a

sufficient number of modes, enough to capture most of the energy of a system.

Possible reasons for this are suggested in [8–10]. One potential reason for loss

of accuracy is that the truncation involved in the POD-Galerkin approach omits

the modes through which energy dissipation occurs. This then leads to a lack

of robustness in the models. o remedy this difficulty, several modifications to

the Galerkin projection method have been suggested. In particular, the use of

“eddy viscosity” to account for energy dissipation has attracted attention. Aubry

et al. [5] used a mixing-length-based eddy viscosity for their analysis. Podvin

[11] improved the same model and concluded low-dimensional models are able to

capture some key features of near-wall turbulent flows. Sirisup and Karniadakis

[6] used the idea of Spectral Vanishing Viscosity (SVV) to add dissipation to

their model. Another approach is to calibrate the evolution of the POD-ROM

coefficients using the correct coefficients derived from detailed simulations [7, 8, 12].

An example is the least-squares calibration method [7]. In this method correction

terms are added to the dynamical model to force the ROM simulation toward the

data of the detailed simulation. Although this approach can repredict a DNS,

it is unclear whether it will be accurate for varying flow conditions and inputs.

Another approach is large-eddy-simulation-based POD-ROM, which takes take
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into account the effect of mode truncation by incorporating an LES-type subgrid-

scale model [13]. Wang et al. [10] tried this approach, replacing the grid scale in

the Smagorinsky subgrid-scale model with a scale related to the truncated modes.

The purpose of the chapter is two-fold; The first goal of the work is to determine

the importance of numerical errors on the POD and ROM process; the POD

problem is often significantly affected by numerical round-off errors, and it is

important to assess how these round-off errors affect the robustness of the ROM.

In almost all previous work, the effect of round-off errors in the POD process are

ignored. Furthermore, for numerical expediency, reduced data sets are often used

to generate the POD modes instead of using all available data. Here we explicitly

assess the magnitude of these errors and their impact on the derived ROM.

The Second goal of the study is to investigate the importance of stabilization

or dissipation in creating robust POD-ROM models. To do this, we will examine

Burgers’ equation which involves both convection and diffusion and investigate the

interplay between the data that the modes are derived from and the methods used

to derive the ROM. Kunisch and Volkwein [14] gave a combined temporal and POD

error estimate for ROMs of Burgers’ equation, but they did not consider the effect

of stabilization. Borggaard, Iliescu and Wang [15] performed a similar analysis on

a ROM derived with artificial viscosity as a stabilization method. . However, their

error analysis of the POD reduction was intertwined with the temporal errors so it

is not easy to understand the ROM errors. Luo, Zhou and Yang [16] performed a

combined analysis of spatial errors and ROM errors for an unstabilized formulation

of the Burger’s equation. Finally, Nguyen, Rozza and Patera [17] presented a

posteriori error bounds for reduced order model of the unsteady viscous Burgers’

equation, but their 1-D case did not really involve convective solutions which makes

it difficult to determine the importance of stabilization on the results. The goal of

this work is to determine the effect of stabilization on the ROM process without

also considering other effects like spatial or temporal resolution. To this end, we

assume that the FEM solutions are the “truth” and examine how stabilized and

unstabilized ROMs converge to these solutions as the number of degrees of freedom

in the models are increased.
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The chapter is organized as follows: Section 2.2 describes the physical problem

studied and the following section details the methods used to obtain the exact

detailed solutions. The next section describes the reduced order modeling process.

First, the Proper Orthogonal Decomposition (POD) and the “deflation” POD are

introduced, and the effects of various errors in the POD process are assessed.

In section 2.5 talks briefly about the methods of generating reduced order models

using a given set of modes and the stabilization of POD based reduced order model

are discussed. The last section examines the necessity of introducing stabilization

to improve the accuracy of the POD-ROM model for high grid based Reynolds

number. Also, it provides some notes on the effect of quality of POD modes on

the reduced order results.

2.2 Problem Formulation

Burger’s equation is a useful 1D model due to its incorporating both the nonlinear

convective term as well as diffusive effect. In this section, the reduced-order mod-

eling approach based on POD is applied to a one-dimensional Burgers’ equation,

L (u) =

(
∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2

)
= 0 in Ω,

where u is the solution variable and ν is the diffusivity. The spatial domain (Ω)

is taken as x ∈ [0, 1] with periodic boundary conditions. The temporal domain is

t ∈ [0, 3]. For initial conditions, we use either a sinusoidal function with a period

equal to the domain length 1 + sin(2πx) or a periodic function containing a wider

Fourier spectrum,

u(x, 0) = 1 + exp(sin(4πx)). (2.1)

are used. These initial conditions give rise to localized features that propagate

through the domain, thus they are a difficult test of reduced order modeling tech-

niques.
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2.3 Numerical Implementation

To generate solutions to the above problem, we use two different numerical tech-

niques, finite element and Fourier methods. Both methods project the partial

differential equation onto a finite dimensional subspace thus resulting a system

of ODEs. However, the finite element method and Fourier method have signifi-

cantly different basis function (C0 versus C∞ continuous functions) and conver-

gence rates. We primarily focus on data from the finite element method. The

Fourier method is used to provide a baseline of comparison for the ROMs.

A streamwise-upwind-Petrov-Galerkin variational (SUPG) approach is used for

the finite element formulation [18],

(
φ+ uτ

∂φ

∂x
,
∂u

∂t
+ u

∂u

∂x

)
+

(
∂φ

∂x
, ν

∂u

∂x

)
= 0, (2.2)

(., .) is the standard Euclidean inner product, φ is a test function, u is the solution

variable, and τ is a stabilization parameter, given by

τ =
1

| 2u
∆x
|+ 4.0ν

∆x2

, (2.3)

where ∆x is the mesh spacing. The domain is discretized into Ne equal length

elements where Ne varies depending on the case. The solution u and the test func-

tions are chosen from the space S, which is a standard piecewise linear, continuous

finite element space. To integrate Eq. (2.2), a 2-point Gaussian quadrature rule

is used on each element. The initial conditions for FE simulations are evaluated

using an L2 projection that requires a mass matrix inversion. The integrals in the

L2 projection are also calculated using the 2-point Gaussian rule.

The Fourier method uses a Fourier expansion of the solution,

u(x, t) =

Nf/2−1∑
n=−Nf/2

ûn(t) exp(iknx).
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where kn = 2πn and Nf is the number of terms kept in the trigonometric se-

ries (written in complex exponential form). This expansion is substituted into a

Galerkin weighted integral form of the governing equation to derive a system of

ordinary differential equations for the time-dependent coefficients. All integrals in

the Galerkin formulation are evaluated exactly; numerical integration is not used.

Two different methods for calculating the initial conditions are used. For the ini-

tial condition u = 1 + sin(2πx), an exact initial condition can be specified. For

the case u = 1 + exp(sin(4πx)), initial Fourier coefficients can be calculated using

standard fast Fourier transform subroutines. The most exact Fourier simulation

contains 512 modes. By comparing results between the two initial condition cases,

we can determine whether initial condition error has any impact on the results.

We note that there is little difference between a SUPG and Galerkin formulation

when using a Fourier expansion. An upwind weighted test function, φ+uτ∂φ/∂x,

becomes exp(iknx) + uτikn exp(iknx) = (1 + uτikn) exp(iknx) when φ is chosen

from the Fourier space. In the pure convection case, uτ = ∆x sign(u)/2, thus

the SUPG test function and the Galerkin test functions only differ by a multi-

plicative constant as long as u doesn’t change sign. Because this multiplicative

constant does not change the discrete equations, the results of the two formula-

tions are identical. For diffusive cases, there is a slight difference because uτ is

not strictly constant. If the problem were linear with a constant convection speed,

a, the Galerkin and SUPG formulations would give identical results independent

of viscosity. Thus SUPG stabilization is not necessary when a Fourier method is

used.

For both the finite element and Fourier methods, the standard 4th order Runge-

Kutta scheme is used to advance the solutions in time with ∆t = 1.25 × 10−5.

This value is much (at least 10 times) smaller than that required by stability,

∆t = (|2u/dx|+ 4.0ν/dx2)−1, for the most-resolved finite element simulation used

in the results. The time step is held fixed for all simulations so we can eliminate

temporal discretization error when comparing solutions derived using different

spatial basis functions (either reduced-order, FEM, or Fourier bases).
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(a) (b)

Figure 2.1: Typical solution of Burgers’ equation at t = 0.0, 0.15, 0.30 and 0.45s
second for initial condition (a)1 + sin(2πx) and (b)1 + exp(sin(4πx)).

To give an example of the behavior of the solution, Fig. 2.1a and Fig. 2.1b show

solution profiles at t = 0, 0.15, 0.30 and 0.45 for the two different initial conditions.

These are Fourier solutions with 512 modes and obtained with ν equal to 0.005.

For both initial conditions, by t = 0.3 the solutions develop a steep propagating

front. With 512 modes, the spatial resolution is on the order of 1.95×10−3 so that

this front is well-resolved; the difference in position between the maximum and

minimum around the front is approximately 6.0× 10−2, which is 30 times greater

than the spatial resolution.

Convergence of the FE and Fourier method are depicted in Fig. 2.2. As expected

the Fourier method converges exponentially with the number of modes used. Ex-

trapolating the error curve to 512 modes, one can estimate that the error in the

512 mode solution is roughly 5 orders of magnitude smaller than even the Fourier

solution with 256 modes. The SUPG FE solutions converge with the rate of ∆x1.5,

which is what is expected for a convection dominated problem [18]. Temporal er-

ror is not important because all simulations are done with the same time step and

time advancement scheme.
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(a) (b)

Figure 2.2: Norm 2 of Burgers’ equation solution by Fourier simulation (a) and
Finite Element(b) for initial condition 1+sin(2πx) (solid line) and 1+exp(sin(4πx))
(dash line).

2.4 Proper Orthogonal Decomposition

2.4.1 Formulation

The bases for the reduced order models are derived from the detailed data using

the proper orthogonal decomposition (POD). The POD was introduced by Lumley

[2] as a means to extract the large scale structures of turbulent flows. It uses data

obtained from experiments or numerical simulations to generate an orthogonal set

of spatial basis functions. These functions, herein called POD modes, optimally

represent the flow; the mean square inner product of the solution with a POD mode

is maximized. With an adequate number of POD modes, we can approximate any

solution as a linear combination of time-dependent weighting coefficients, an(t),

and the POD modes, Φn(x).
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u(x, t) =
M∑
n=1

an(t)Φn(x) (2.4)

=
M∑
n=1

(u(x, t),Φn(x)) Φn(x).

The POD modes are eigenfunctions of the following Fredholm integral equation

∫
Ω

R(x, x′)Φn(x′)dx′ = λnΦn(x), (2.5)

where

R(x, x′) = 〈u(x, t) u∗(x′, t)〉, (2.6)

is the time-averaged correlation tensor. The angled brackets indicate a time aver-

age and u∗ is the complex conjugate. An outcome of these definitions is that the

mean squared variation captured by the nth POD mode Φn(x) is

1

T

∫ T

0

an(t)2dt = λn.

and the an(t) are uncorrelated (orthogonal) variables in time.

Since both the finite element and Fourier solutions can be written as a linear

combination of coefficients and basis functions (u(x, t) =
∑

j ûj(t)φj(x) where

φj(x) is either the Finite element basis functions or the Fourier modes), it is

convenient to derive a general eigenvalue problem formulation which is suitable

for both cases. In this case, the integral Eq. (2.5) becomes a discrete eigenvalue

problem. Note that for the finite element formulation, the û(t) are real coefficients

and j varies from 1 to the number of basis functions, Ne, while for the Fourier

modes the û(t) are complex and j varies from −Nf/2 to Nf/2−1. For either case,

substituting in Eq. (2.5), the eigenvalue problem becomes

∫
〈
∑
j

ûj(t)φj(x)
∑
i

û∗i (t)φ
∗
i (x
′)〉Φn(x′)dx′ = λnΦn(x),
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Furthermore, the POD modes can be constructed as linear combinations of the

solution basis functions, Φn(x) =
∑

j vjnφj(x) = φTVn. Factoring φ(x) from both

sides, the results in tensorial notation becomes:

φT (x)

(
〈
∫
û(t)û∗T (t)φ∗(x′)φT (x′)Vndx

′〉 = λnVn

)
.

This becomes

〈û(t)û(t)∗T 〉MV = λV,

where the mass matrix M is defined as

M =

∫
φ∗(x′)φT (x′)dx′.

For the Fourier basis, the mass matrix is diagonal, while for the FEM basis in 1D,

the mass matrix is tridiagonal. To make the eigenvalue problem symmetric, we

multiply both sides by M,

M〈û(t)û(t)∗〉MV = λMV, (2.7)

This system can then be solved with standard eigenvalues solvers such as Lapack’s

DGEEV or SVGED.

This method of mode generation is known as the direct method. Independent of

whether the data comes from FEM or a Fourier simulation, we need to construct

the time-averaged correlation tensor (covariance matrix) of the FEM or Fourier

solution coefficients and find the eigenvalues and eigenvectors of this matrix. For

the Fourier method, the dimension of 〈ûT û〉 in Eq. (2.7) is equal to number of

Fourier modes, Nf , while it is equal to number of elements, Ne, for the finite

element approach. Thus, the eigenvalue problem becomes difficult when a fine

grid is used because the matrix is full and the dimension of the matrix is equal to

the dimension of grid.

To overcome this problem, Sirovich [19] developed the snapshot method. The

main idea of this method is to write the POD modes as a linear combination of



Chapter 2. POD-ROM 15

snapshots of the instantaneous flow field. That is,

Φn(x) =
Ns∑
m=1

u(x, tm)Ψm,n,

where the sum is performed over the number of snapshots, Ns, used in the discrete

time average for Eq. (2.6). By substituting this equation into Eq. (2.4), the

following analogous eigenvalue problem is obtained:

C Ψn = λnΨn, (2.8)

whose discrete matrix entries are given as

Clk =
1

Ns

∫
Ω

u(x, tl)u(x, tk)
∗dx. (2.9)

Plugging the numerical expansion of u into Eq. (2.9) and then substituting the

result into Eq. (2.8) gives

1

Ns

(
ûT (tl)

∫
φT (x)φ(x)∗dxû(tk)

∗
)

Ψn = λnΨn,

in vectorial notation,

1

Ns

(
ûT (tl)Mû(tk)

∗)Ψn = λnΨn,

This method involves solving an eigenvalue problem that has a dimension Ns.

Thus, the snapshot method is computationally more efficient whenever the number

of snapshots, Ns, is smaller than the number of elements, Ne.

For either of the above approaches, standard LAPACK routines can be used for

finding the eigenvalues and eigenvectors which then can be used to reconstruct the

POD modes.
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2.4.2 Deflation

There are several numerical difficulties associated with both the snapshot and di-

rect methods of finding the POD modes, which are often overlooked. As each

eigenvalue of the POD decomposition represents the energy captured by that spe-

cific mode, the eigenvalue spectrum typically spans many orders of magnitude.

Such eigenvalue problems often give rise to large numerical errors in the calcula-

tion of the eigenvalues and eigenvectors. In this section, we propose an alternative

approach to calculate the POD modes that helps eliminate some of the numerical

errors and compare the errors of the various methods from both a theoretical and

numerical perspective.

The new method for calculating the POD modes relies on the fact that the POD

modes are a hierarchal series of orthogonal functions. Rather than relying on

the eigenvalue solver to create eigenvectors that produce modes that satisfy this

property, we generate the modes sequentially so that we can explicitly control the

orthogonality of the derived POD modes.

The basic idea is as follows

step 1. Compute the dominant eigenvalue and eigenvector using either of the

two methods described above (direct or snapshot). Use this eigenvector to

generate the corresponding POD mode.

step 2. For each solution snapshot, generate new snapshots by subtracting the

projection of the snapshot onto the mode as follows

unew(x, t) = u(x, t)− (u(x, t),Φ1(x))Φ1(x).

step 3. Return to step 1 using the new solution snapshots to find the next mode.

Because the new snapshots are explicitly made orthogonal to the POD mode, any

mode found using the new snapshots should be orthogonal to the previous POD
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modes to machine precision (proof given below). This is also true of standard

approaches. In the results, we examine the outcomes using both approaches.

To see that the above procedure gives the same POD modes, let us examine

the POD problem that is created when using the new snapshots. Plugging in

u(x, t)− a1(t)Φ1(x) for u in Eq. (2.5) where a1(t) = (u(x, t),Φ1(x)) gives

∫
Ω

〈(u(x, t)− a1Φ1(x))(u∗(x′, t)− a∗1Φ1(x′)∗)T 〉Φn(x′)dx′ = λnΦn(x),

Expanding the left hand side, it follows that

∫
Ω

R(x, x′)Φn(x′)dx′

−
∫

Ω

〈a1(t)Φ1(x)(u∗(x′, t))T 〉Φn(x′)dx′

−
∫

Ω

〈u(x, t)(a∗1(t)Φ∗1(x′))T 〉Φn(x′)dx′

+

∫
Ω

〈a1(t)Φ1(x)(a∗1(t)Φ∗1(x′))T 〉Φn(x′)dx′ = λnΦn(x).

Now substituting u(x, t) =
∑
ai(t)Φi(x) this becomes

∫
Ω

R(x, x′)Φn(x′)dx′

− Φ1(x)

∫
Ω

〈a1(t)
∑

a∗i (t)Φ
∗
i (x
′)〉Φn(x′)dx′

− 〈
∑

ai(t)Φi(x)a∗1(t)〉
∫

Ω

Φ1(x′)Φn(x′)dx′

+ Φ1(x)〈a1(t)a∗1(t)〉
∫

Ω

Φ∗1(x′)Φn(x′)dx′ = λnΦn(x).
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Noting that a property of the POD is < aiaj >= λiδi,j where δi,j is the Kronecker

delta, for POD mode 1, Φ1, this can be further simplified to

∫
Ω

R(x, x′)Φ1(x′)dx′

− Φ1(x)λ1

− Φ1(x)λ1

+ Φ1(x)λ1

=

∫
Ω

R(x, x′)Φ1(x′)dx′ − Φ1(x)λ1 = (0)Φ1(x)

So the new snapshots have zero mean energy in the first POD mode. For the

remaining modes, Φn(x) n 6= 1, the same procedure would be

∫
Ω

R(x, x′)Φn(x′)dx′

− Φ1(x)

∫
Ω

〈a1(t)
∑

a∗i (t)Φ
∗
i (x
′)〉Φn(x′)dx′

− 〈
∑

ai(t)Φi(x)a∗1(t)〉
∫

Ω

Φ1(x′)Φn(x′)dx′

+ Φ1(x)〈a1(t)a∗1(t)〉
∫

Ω

Φ∗1(x′)Φn(x′)dx′ = λnΦn(x).

This becomes

∫
Ω

R(x, x′)Φn(x′)dx′

− Φ1(x)(0)

− 0

+ 0

=

∫
Ω

R(x, x′)Φn(x′)dx′ = λnΦn(x)

which shows that the form and eigenvalues of the remaining modes are unchanged.

Thus, this procedure, which we call “deflation” can be used sequentially to deter-

mine the entire sequence of POD modes. The Lapack routine, DGEESVD, can be

used to find the dominant eigenvalue and eigenvector pair rather than the entire
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spectrum, which allows step 1 in the procedure to be performed efficiently.

2.4.3 Accuracy

In this section the POD modes of Burgers’ equation are built from FEM data using

both the direct and snapshot method. The goal is to assess the effect of round-off

errors on both the predicted eigenvalue spectrum and the mode shapes as well

as to compare the different methods for calculating the eigenvalue spectrums and

modes. When using the snapshot method, not all of the snapshots were used to

create matrices (Eq. (2.6) and Eq. (2.9)) because the number of time steps in

the simulations was much larger than the number of grid points. This inherently

will make the snapshot results different than the direct method results. If the

snapshots used are linearly independent and the number used, Ns, is larger than

the number of grid points in the mesh, Ne, then any eigenvalues beyond Ne are

guaranteed to be zero. This is because one can reproduce any solution on the

mesh with Ne modes. Results are presented for Ne=100 and 400. For these cases,

Ns was taken as 100 and 400 respectively where the snapshots were uniformly

sampled from the full set of snapshots. The effect of the number of snapshots used

will be examined more thoroughly in a subsequent section.

The eigenvalue spectrum of the snapshot method and the direct method are de-

picted in Fig. 2.3 for simulations of the initial condition 1 + exp(sin(4πx)). Fig.

2.3a and Fig. 2.3b show results obtained from the simulations performed with Ne

= 100 and Ne=400 respectively. The initial condition 1 + exp(sin(4πx)) is inter-

esting because two complete periods are contained within the domain. Because of

this, all eigenvalues after the (Ne/2)th eigenvalue should be identically zero. By

examining this problem, one can easily identify effects of round-off error on the

eigenvalue spectrum. For Fig. 2.3a, all eigenvalues after 50 should be zero. For

the direct method without deflation, one can see a drop in the eigenvalue from

10−10 to just below 10−14. For the direct method with deflation the drop is larger,

going below 10−17. For the direct method without deflation, the eigenvalues be-

yond this point do not decay much further and the eigenvalue of mode 75 actually
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Figure 2.3: Energy distribution of POD modes, Direct method without deflation
(solid line), Snapshots method (dashed line), direct method with deflation (�)
and snapshot method with deflation (◦). Initial condition is 1 + exp(sin(4πx)). a)
N=100 b) N=400.

becomes negative and thus is not plotted. For the direct method with deflation,

the eigenvalues continue to exponentially decay and reach a value of 10−24 for

mode number 100. This was fairly typical of the behavior of these two methods.

The methods agreed for the larger eigenvalues, but when the eigenvalues became

small, the deflation method continued to give positive and diminishing eigenvalues

while the direct method often gave non-physical negative eigenvalues.

This also occurred for Ne = 400 with the direct method. In this case, all eigenval-

ues beyond number 200 should be zero. However, because the eigenvalue spectrum

already decayed 16 orders of magnitude at this point, the direct method was un-

able to predict this drop. For the direct method without deflation, the eigenvalue

decay slowed significantly at mode number 118 and then stayed flat until mode

number 251. At this point the eigenvalues went negative. For the direct method

with deflation, the eigenvalues continued to decay.

Comparing the direct method eigenvalues in both figures, one can see that the

eigenvalues agree reasonably well up to around the 50th eigenvalue where the

eigenvalues for the simulation with Ne = 100 suddenly dropped. The fact that
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the eigenvalue spectrum is reasonably independent of the numerical discretization

indicates that the eigenvalues are a property of the solution and not an outcome

of the numerical method. By comparing eigenvalue spectrums obtained with dif-

ferent meshes, one can discern which modes are physical (0-50 for Ne = 100) and

which modes are strictly numerical artifacts (50− 100).

Comparing the snapshot method eigenvalues to those obtained by the direct

method shows that the choice of Ns = Ne is not sufficient to guarantee good

agreement between the two methods. For Ns = 100 (Fig. 2.3a), the spectrums

only agree to the 6th mode or so. For Ns = 400 (Fig. 2.3b), the spectrums agree

up to the 30th mode. In most CFD calculations, the total number of snapshots is

usually less than the number of grid points and one typically then uses the snap-

shot method. In the next section, we examine how many snapshots are necessary

to give precise eigenvalues and eigenvectors. The difference between the snap-

shot method without deflation and the snapshot method with deflation is similar

to what was seen for the direct method. Deflation always gives positive decay-

ing eigenvalues where the snapshot method without deflation tends to plateau at

machine precision and then give negative eigenvalues.

To bound the effect of round-off errors on the POD, error estimates for the nu-

merical eigenvalue solvers can be used. For symmetric real matrices, two useful

inequalities are defined in references [20] and [21]. Let two eigenproblems be de-

fined as ASA = SAα, BSB = SBβ and let the sequence of eigenvalues αj and

βj be ordered by their (real) value. Define γ as the maximum difference of the

eigenvalues,

γ ≡ max
j
|αj − βj|,

then

γ ≤ ‖A−B‖.

This says that the magnitude of the change in an eigenvalue is not more than the

magnitude of the difference between the two matrices. Suppose that A is the finite

precision representation of Eq. (2.7) and B is the infinite precision representation.

Define H as the finite precision error, H = A−B. Then the error in eigenvalues,
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γ is bounded by

γ ≤ ‖A−B‖ = ‖H‖ (2.10)

if the relative precision is ε, we expect

‖H‖ ≤ nε‖A‖ (2.11)

where n is the rank of the matrix. For a real symmetric matrix A, the L2 norm of

A is is equal to its maximum absolute eigenvalue. Therefore, Eq. (2.11) shows that

the maximum difference between the real and calculated eigenvalues is bounded

by maximum absolute eigenvalue times machine precision times the rank of the

matrix. For the results in Fig. 2.3a and Fig. 2.3b, the maximum eigenvalue is

5.135 and the calculations were done in double precision so ε is O(10−16). This

gives an error estimate for the eigenvalues of 5e− 14 when Ns = 100 and 2e− 13

when Ns = 400. This a reasonable estimate of the limits beyond which the actual

values of the eigenvalues become predominately determined by round-off errors as

shown by the fact the deflation and direct methods give very different answers for

eigenvalues with a magnitude less than the error estimates.

The error estimates also predict the errors in direction of the eigenvectors [20, 21].

If gap(i) = minj 6=i |αi − βj| over all j’s, meaning that αi is separated by a gap(i)

from B’s eigenvalues other than βi, then

sin(∠(SAi, SBi)) ≤ ‖A−B‖/gap(i) (2.12)

Again using ‖A−B‖ = ‖H‖ ≤ nε‖A‖, it follows that

sin(∠(SAi, SBi)) ≤ nε‖A‖/gap(i)

The gap for any of the eigenvalues is determined by the neighboring eigenvalues.

For eigenvalue 1, for example the gap is 5.135 − 0.020 so the error in direction

of these eigenvectors is less than 1.004× 10−14. For the eigenvectors of the small

eigenvalues, the gap is approaching ε‖A‖ so these eigenvectors can point in entirely

the wrong direction. This is not surprising in that there is basically no energy in
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these modes, so the definition of the eigenvectors becomes difficult. We note that

the eigenvector solvers guarantee that all of the eigenvectors are orthonormal to

machine precision in spite of the fact that the directions may be totally wrong.

The orthogonality of the eigenvectors of the discrete eigenvalue problem does not

necessarily guarantee that the POD modes themselves are orthogonal. To demon-

strate this fact, Fig. 2.4 shows the logarithm of the orthogonality (log10(|
∫

Ω
Φi ·

Φjdx|)) of the modes generated by the four different methods for Ns = 100 and

the initial condition 1 + exp(sin(4πx)). (The eigenvalue spectrum for this case is

shown in Fig. 2.3a). The ideal POD modes should have a 0 on the main diagonal

and be around machine round-off (-16) everywhere else. The direct method with-

out deflation (Fig. 2.4a) gave the best result with all modes being orthogonal up

to machine precision. For the direct method with deflation (Fig. 2.4b) the eigen-

modes up to mode 50 are orthogonal to 14 orders of precision, but orthogonality

decreases significantly beyond 50 because there were two wavelengths within the

domain. For the initial condition 1 + sin(2πx), the orthogonality looked basically

like the bottom left quadrant of the Fig. 2.4b. For the deflation method, the

orthogonality decays because of the sequential nature in which the eigenmodes

are found. Round off error accumulates during the process which gives the initial

and final modes the worst orthogonality (the top and bottom left corners of the

figure).

For the snapshot method without deflation (Fig. 2.4c), the orthogonality of the

modes is poor for any mode beyond 30. This is the point where the eigenvalues

start to decay towards machine precision as shown in Fig. 2.3a. For the higher

resolution case (not shown), the behavior was similar with the decay starting at

mode number 55 in agreement with Fig. 2.3b. When using the deflation method,

the orthogonality was significantly improved and followed the same behavior as

that of the direct method with deflation. The reason that the snapshot method

without deflation is more sensitive to round-off errors than the direct method

without deflation is that for the snapshot method, orthogonality of the discrete

eigenvectors only guarantees orthogonality of the POD modes if the eigenvalue
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problem is solved precisely. For example, orthogonality is given by

∫
Ω

Φi(x)Φj(x)dx =

∫
Ω

Ψk,iu(x, tk)Ψl,ju(x, tl)dx = Ψk,i

∫
u(x, tk)u(x, tl)dxΨl,j

The last part of this expression is the left hand side of the snapshot eigenvalue

problem, Eq. (2.8). If the eigenvalue problem is solved up to machine precision,

then this can be replaced by the right hand side, and the orthogonality of the

eigenvectors gives

= Ψk,iλjΨk,j = δi,jλj.

Thus, the snapshot method relies on the eigenvalue problem being solved precisely

to obtain orthogonality of the POD modes. For the direct method, applying the

discrete eigen solvers to Eq. (2.7) guarantees the orthogonality of the eigenvectors

with respect to the mass matrix, (V T
i MVj = δi,j) to machine precision. This is

exactly the property needed to show orthogonality of the POD modes.

As a last check on the quality of the modes, we investigate their ability to reproduce

the detailed solutions. In this work, we follow the methodology of Rathinam and

Petzold [22] to evaluate error. The error between the detailed simulation and the

projection onto the POD subspace is called the out of plane error, eo(t). This

error is a consequence of the truncation of the POD modes. The instantaneous

out of plane error, ‖eo(t)‖, is defined as the L2 norm of the error caused by the

POD subspace approximation, Eq. (2.4). This error is defined as

‖eo(t)‖2 = ‖u(x, t)−
∑M

j=1
(u(x, t),Φj(x))Φj(x)‖2 (2.13)

=

∫
Ω

(
u(x, t)−

∑M

j=1
(u(x, t),Φj(x))Φj(x)

)2

dx.

Fig. 2.5 shows the out of plane error for the initial condition, ‖eo(0)‖, for Ne = 100

(The orthogonality of the POD modes for this case is shown in Fig. 2.4.) There

is a significant disagreement between the snapshot and the direct method because

only 100 snapshots were used for the snapshot method. The issue of the effect

of number of snapshots will be revisited in the next section. The methods with
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Figure 2.4: Orthogonality of POD modes for initial condition 1+exp(sin(4πx)), (a)
Direct method without deflation, (b) Direct method with deflation, (c) Snapshot
method using 100 snapshots, without deflation, (d) Snapshot method using 100
snapshots, with deflation.

and without deflation agree well up to about 40 modes at which point the error

using the deflation method increases as modes are added. This increase is due to

the nonorthogonality of the modes. As one can see in Fig. 2.3a, when using the

deflation method, the highest index modes are not orthogonal to the low index

modes. As the solution contains a large amount of energy in the low index modes,

this energy gets incorrectly captured by the high index modes as well causing the

increasing error. This is especially true of the snapshot method, and one can see

the resulting increase in error in Fig. 2.5.
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Figure 2.5: Out of plane error of the initial condition, ‖eo(0)‖. Direct method
without deflation ( ), snapshot method without deflation ( ), direct method
with deflation (�), snapshot method with deflation (◦).

To be sure that these errors are caused by the nonorthogonality of the modes, we

can reconstruction the initial condition using deflated POD coefficients, meaning

ai =

∫ (
Φi(x), (u(x)−

i−1∑
j=1

ajΦj)

)
dx. (2.14)

This eliminates the possibility that energy in the low index modes gets captured

by the high index modes. The results are depicted in Fig. 2.6. The results using

deflated coefficients deviate from the previous results at about 40 modes, but in

this case the reconstruction using the deflated coefficients gives improved results

relative to even the direct method. This demonstrates that the reason for the

increasing error shown in Fig. 2.5 is POD mode nonorthogonality.

We now investigate the effect of the number of snapshots used to generate the

POD modes. In most applications of the POD, the snapshot method is used

because one can choose the number of snapshots used and thus control the size

of the eigenvalue problem that needs to be solved. Numerical studies by Noack

et al. [23] showed that the first N pairs of POD modes can be computed from
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Figure 2.6: Out of plane error of initial condition ‖eo(0)‖. Direct method with
deflated coefficients ( ), snapshot method with deflated coefficients ( ), direct
method with deflation (�), snapshot method with deflation (◦).

only 2N snapshots for a shear layer flow. An increase to 4N or more snapshots

did not have any significant effect on the resulting models. In this section, we try

to quantify and predict the effect of the number of snapshots on the accuracy of

the POD process. To this end, Fig. 2.7 shows the eigenvalue spectrums obtained

when using different numbers of snapshots. The eigenvalues of the direct method

are also shown in this figure for comparison. As expected, with an increase in the

number of snapshots, the eigenvalues of the snapshot method converge to those of

the direct method. For Ns = 50, 100, 200, 400, 800, the eigenvalues have a visible

deviation from the direct method, respectively, for eigenvalues 5, 6, 15, 27, and 51

respectively. Thus, for this problem 8 times the number of grid points is enough

to ensure good agreement throughout the energy containing part of the spectrum.

Fig. 2.7b shows the out of plane error for the initial conditions for modes derived

with differing numbers of snapshots. Here we see deviation from the direct method

at 2, 5, 7, and 11, and 51 modes. Clearly, the number of snapshots needed depends

on how accurately one wants to reproduce the solution.
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Figure 2.7: Eigenvalues, λ, and out of plane error of the initial condition, eo(0), for
1 + exp(sin(4πx)). Direct method without deflation (solid line), snapshot method
without deflation constructed using 50 (boxes), 100 (circles), 200 (triangles), 400
(diamonds), and 800 (crosses) snapshots.

To more quantitatively analyze the effect of the number of snapshots on the accu-

racy of the modes, we begin by noting that if the time average needed for the direct

method is evaluated with Ns snapshots, then the direct method and the snapshot

method exactly agree (excluding finite precision errors). Thus, we can analyze the

effect of Ns on the direct method which is easier mathematically. Let two direct

method eigenproblems be ASA = SAα, BSB = SBβ. If A was constructed using a

time average over all snapshots and B used fewer snapshots, then A+H = B. The
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error in eigenvalues can be bounded using the same formula as before, Eq. (2.10)

max|αj − βj| ≤ ‖A−B‖ = ‖H‖ (2.15)

To determine H, we note that

〈u(x, t)u(x′, t)〉 =
1

T

∑
n

u(x, t)u(x′, t)dt ≈ 1

T

∫ T

0

u(x, t)u(x′, t)dt

This corresponds to a midpoint method of integration which has the following

error behavior

∫ T

0

f(t)dt =

T/dt∑
i=0

(
f

(
ti + ti+1

2

)
+
f ′′(t̄i)dt

2

24

)
dt , ti+1 − ti = dt (2.16)

where t̄i is some value in the time interval. Therefore, each step of the midpoint

method therefore contributes an error of order O(dt3). Because T/dt intervals are

used, the error of entire process is O(dt2). Substituting the error of Eq. (2.16) in

Eq. (2.15) shows that the eigenvalues converge as O(1/N2
s ). To confirm this, Fig.

2.8 shows the difference between eigenvalues 3, 7, and 11 of the direct method and

the snapshot method with different number of snapshots. The thick dash-dotted

line shows second-order convergence. Eigenvalues 3, 7, and 11 were chosen because

they exhibit the range of behaviors observed. Fig. 2.8a shows the effect of grid

resolution by comparing Ne = 100 and 400 at ν = 5× 10−3, and Fig. 2.8b shows

the effect of viscosity by comparing ν = 5×10−3 and 1×10−4 at Ne = 400. For all

of these cases, there are some common trends. First, once enough snapshots are

taken, all cases follow O(dt2) convergence. Thus, the above analysis is predictive

of the convergence behavior. However, for the cases with ν = 5× 10−3, the error

in the eigenvalues does not follow the predicted behavior until Ns is around 400 to

800. In addition, when this number of snapshots is reached, the error in the high

index eigenvalues decreases rapidly. This is shown by the curves for eigenvalue

11 and is even more pronounced for the higher eigenvalues. These typically reach

machine order accuracy when Ns is slightly greater than 800. This can also be

seen in Fig. 2.7a by noting that when the number of snapshots increases from



Chapter 2. POD-ROM 30

101 102 103 104 105
10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

Number of snapshots

E
rr
o
r 
o
f 
e
ig
e
n
v
a
lu
e
s

(a) ν = 10−3

101 102 103 104 105
10 -16

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

Number of snapshots

E
rr
o
r 
o
f 
e
ig
e
n
v
a
lu
e
s

(b) Ne = 400

Figure 2.8: Error in eigenvalues 3, 7, and 11 versus the number of snapshots.
Left figure compares two grid resolutions, Ne = 100 (dotted line) and Ne = 400
(dashed line) at ν = 5× 10−3. Right figure compares two viscosities, ν = 5× 10−3

(dotted line) and ν = 1× 10−4 (solid line) at Ne = 400. In both figures, the thick
dash-dotted line shows second order convergence.

400 to 800, one can no longer distinguish the snapshot eigenvalues from the direct

eigenvalues. Comparing the cases Ne = 100 and Ne = 400 with ν = 5 × 10−3,

shows that this behavior is essentially grid independent.

To understand why this occurs, it is constructive to consider the time scales of

the problem. As discussed previously, the width of the propagating front in this

problem is on the order of ν/u where u is the propagation velocity of the front.

Thus, there is an inherent time scale of ν/u2. This is a conservative estimate

of physical time scale. Another estimate can be obtained using the width of the

propagating front divided by velocity. A criteria to determine when sufficient

snapshots are used is that the snapshots intervals should be on the order of the

smallest physical time scale,

ν/u2

T/Ns

' 1⇒ (5× 10−3)/4

3/Ns

' 1⇒ Ns = 2400,

or
lfront/u

T/Ns

' 1⇒ (6× 10−2)/2

3/Ns

' 1⇒ Ns = 100.

So, assuming the mesh resolves the width of the propagating front, then the drop



Chapter 2. POD-ROM 31

off of the eigenvalue error should occur in the range of 100 to 2400 snapshots. The

third case confirms this analysis in that when the smallest time scale decreases (by

decreasing ν), the number of snapshots needed increases. The number of snapshot

does not increase in direct proportion to the change in ν however because in this

case the width of the propagating front can not be resolved on the mesh. Grid

resolution does begin to play a role when the solution becomes under-resolved.

Thus the critical feature for determining the number of snapshots is to resolve

the smallest time scale of the phenomenon of interest. After that time scale is

resolved, the eigenvalues and modes converge with second-order accuracy.

The last issue to examine is the out of plane error when using the modes generated

by different methods. It can be shown that the temporal integral of eo(t) is equal

to the summation of the truncated eigenvalues [22]

√∑N

j=M+1
λj =

√∫ T

0

‖eo(τ)‖2dτ . (2.17)

This is true as long as the modes are free from round-off errors or from errors

due to using a reduced number of snapshots. These errors, however, can clearly

invalidate this relation, for example in the case of the direct method where the

eigenvalues become negative. To investigate this further, Fig. 2.9 shows the left

and right hand side of equation Eq. (2.17) for two different POD computations,

the direct method and the snapshot method with Ns = 100. Neither case used

deflation. For both cases, the left hand side is shown with symbols and the right

hand side with lines. If symbols for the summation of the eigenvalues are not

shown, it is because the summation was negative. This occurred for the direct

method beyond 49 snapshots and for the snapshot method with 100 snapshots

beyond 43 snapshots. Using the direct method, the integrated out of plane error

and the summation of the truncated eigenvalues agree reasonably well with the

actual out of plane errors being slightly higher than that predicted by the sum

of the truncated eigenvalues. The out-of-plane error is slightly higher than the

sum of the truncated eigenvalues, most likely because of the negative contribution

of the eigenvalues greater than 49. For the modes generated with Ns = 100, the



Chapter 2. POD-ROM 32

 ∫
T

0
 |
| 
e
o
(τ
) 
||
2
 d
 τ
 ,
 

∑N

j=
M
+
1

 λ
j

0 10 20 30 40 50 60 70 80 90 100
10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

Number of modes

Figure 2.9: Integrated out of plane errors (lines) and the summation of the trun-
cated eigenvalues (symbols) for the: direct method (solid line, boxes) and snapshot
method with 100 snapshots (dashed line, circles).

sum of the truncated eigenvalues is much lower because of the errors discussed in

the previous section. However, for approximations with less than 40 modes, the

out-of-plane error of the modes is not significantly greater than the modes derived

from the direct method. The insensitivity of the out-of-plane error to the data

used to generate the modes has been discussed in [22]. Essentially, because the

modes satisfy a maximum condition, the change in the out-of-plane error with

infinitesimal perturbations to the eigenvector directions is zero. Thus, this gives

a low sensitivity of the error to finite amplitude changes in the POD modes. If

one is not concerned about the eigenvalue spectrum, one can use fewer snapshots

and still obtain modes that represent the solution well. For the snapshot method,

the error increases after 45 modes for the reasons given in the discussion on mode

orthogonality.

To conclude the analysis of the errors affecting the POD mode generation process,

the following observations are made:

• The number of samples for the snapshot method should be large enough

to resolve the smallest time scales of the problem. Beyond this number of
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snapshots, the error in the higher modes rapidly decays and converges with

second order in the number of snapshots.

• Round-off error significantly affects the higher index modes. If the snapshot

method is used, these errors cause non-orthogonality of the modes, which

leads to an increase in the projection error with number of modes.

• The error in eigenvalues can be reduced using the deflation method, but

this increases the non-orthogonality errors. It may be possible to use a

stabilized Gram-Schmidt algorithm or a Householder algorithm [24] to reduce

the nonorthogonality, but this has not been investigated here.

2.5 ROM

Given a set of POD modes, a ROM can be generated by using the POD modes as

test functions in a weak formulation of the governing equations. A Galerkin weak

form is most often used [7, 8] in which the system of equations is givne as

d

dt
(u,Φ) + ((u · ∇)u,Φ)− ν (∇u,∇Φ) = 0 ∀Φ

where u is expanded in a series of POD modes as shown in Eq. (2.4). If only a

finite number of terms in the expansion are kept, this becomes a low-dimensional

model. Keeping the first M modes, a system of ordinary differential equations of

dimension M is derived,

∂an
∂t

= fn(a1, ..., aM) n ∈ [1,M ].

This is the governing equations that determines the evolution of the weighting

coefficients, an. Additional information may be found in [25].

As discussed in the introduction, a POD-ROM using a Galerkin weak formulation

can diverge or drift to the wrong solution [5, 26–30] and a proposed solution to

this problem is to add dissipation or stabilization to the ROMs [6, 31]. Because
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the streamwise-upwind-Petrov-Galerkin (SUPG) was used to stabilize the FEM

simulations, we also investigate ROMs generated using a SUPG stabilized weak

form as proposed by [9]. The form of the SUPG equation after simplification is

d

dt

(
u,Φ + uτ

∂Φ

∂x

)
+

(
(u · ∇)u,Φ + uτ

∂Φ

∂x

)
− ν (∇u,∇Φ) = 0 ∀Φ

The advantage of SUPG over other stabilization methods is that it is a consistent

formulation in that if the POD modes can exactly represent the solution to the

governing equation, then this solution will also satisfy the weak form. This is not

true of artificial dissipation approaches that add additional stabilizing terms to

the governing equation.

Another subtlety of the ROM process is that the specific form of the data used

to generate the POD modes is important. For example, one could generate POD

modes from either Fourier or FEM simulations. If the simulations are well resolved,

then these modes should be very similar. However, as noted in the Numerical

Implementation section, a SUPG weak form will have no effect for the modes

constructed from the Fourier simulations. The implications of this will be seen in

the subsequent results section.

2.5.1 Results

In this section, the impact of stabilization and the quality of the POD modes on

the error of ROMs is investigated. To begin, the the error criteria are introduced.

Many previous authors [6–8, 12, 32] used the error of the first few POD coeffi-

cients as an error criterion, whereas much of the significant error happens in the

high index mode numbers. For example, Fig. 2.10 compares the FEM solution

with a POD-ROM simulation of Burgers equation with 10 POD modes for the

initial condition u(x, 0) = 1 + exp(sin(4πx)) and ν = 0.005 over Ne = 100 grid.

It is obvious that the difference between the simulations has high wave number

components. Therefore, the error of first few coefficients is not enough to assess

the total error. We therefore continue to follow the methodology of Rathinam and
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Figure 2.10: Comparison between detailed FEM (solid line) and 10 dimensional
POD-ROM (dash line) simulation of Burgers equation for initial condition 1 +
exp(sin(4πx)).

Petzold [22] to evaluate error. The out of plane error, eo(t), was introduced as

the error between u and its projection onto the POD subspace in section 2.4.3.

The total error between the FEM and ROM simulation can be thus split into two

orthogonal vectors: et(t) = eo(t) + ei(t) where ei(t) is the “in plane error” during

a ROM simulation in the POD subspace. Because the FEM results are known,

the total error, et(t), can be calculated easily and then the in-plane error can be

deduced. Assessing the in-plane error is important because it indicates the quality

of the ROM solution as compared to the best possible reproduction of the FEM

given that space of POD modes. Said another way, the in-plane error is the error

caused by the ROM and the out-of-plane error is the error caused by using a finite

dimensional POD space.

To understand the effect of stabilization, two different viscosities are studied, ν =

0.005 and ν = 0.0001. With Ne = 100, which is the grid resolution used in

all the following, these correspond to high and low grid-based Reynolds number

simulations. The first case has a Re∆x = 4 and the second of 200, however both

cases are actually high Reynolds number in terms of the domain length (400 and

2000 respectively). The first case corresponds to a simulation where Galerkin

FEM and SUPG FEM both perform well. In the second case, the front-thickness

is not well-resolved on the mesh and a SUPG simulation gives improved FEM
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results over a Galerkin formulation, but neither accurately resolves the propagating

front. This case was investigated mainly to obtain further insight into the effect of

stabilization; there is little reason to make a ROM from under-resolved simulations.

For both the FEM and POD-ROM simulations, two cases, one with (SUPG) and

without stabilization (Galerkin), have been performed. Unless otherwise noted,

the direct method without deflation has been employed to derive the POD modes.

We begin by examining the convergence of the ROM to the FEM simulations. Fig.

2.11 shows the convergence of the temporal maximum of the L2 error for the low

Reynolds case i.e. the maximum in time of e(t). As a point of comparison, the

convergence of an NF mode Fourier simulation to a 512 mode Fourier simulation is

shown as well. The convergence rate of the POD is faster than the Fourier method.

This is expected as the POD modes are chosen to optimally represent the solution.

Up to around 30 modes, there is little difference between the Galerkin and SUPG

ROMs. This was somewhat unexpected because even though the low index mode

shapes are nearly identical for the two approaches, the weighted integral forms

used in the ROM are not. The two weighted integral forms are essentially

∫
φL(u) dx

for Galerkin and ∫ (
φ+ uτ

dφ

dx

)
L(u) dx

for SUPG. When only a low number of modes is used, L(u) is not zero so the

two different weightings of the residual should give significantly different results.

The fact that the results are nearly identical indicates that the SUPG weighting

term is not having a significant effect. One could speculate various reasons for

this, maybe the SUPG term is small because the grid Reynolds number is only 4

or maybe the modes are Fourier-like such that the SUPG terms is irrelevant.

The total error, et(T ), and the out-of-plane error, eo(T ), are depicted in Fig. 2.12

for the low Reynolds case. We again see that the two approaches perform similarly.

Up to 30 modes, the out-of plane error for both the Galerkin and SUPG modes are
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Figure 2.11: Maximum L2 error of Fourier method (dotted line), POD-ROM sim-
ulation straight Galerkin (solid line) and POD-ROM simulation using SUPG sta-
bilization (dashed line).

basically indistinguishable confirming that the low-index mode shapes are nearly

the same. For both the SUPG and Galerkin approach, when a small number of

modes is used, the total error is higher than the out-of-plane error which indicates

that there is a significant in-plane error. As the number of modes increases, the

relative magnitude of the in-plane error decreases and the magnitude of the out-of-

plane and total errors are almost the same. In [22], it was proven that the in-plane

error, ei(T ), is bounded by an integral of the out-of-plane error, eo(t) as follows

‖ei(T )‖ < γM

√∫ T

0

‖eo(τ)‖2dτ = γM

√∑N

j=M+1
λj. (2.18)

where γM depends on the ROM solution evolution operator. The total error sat-

isfies a similar bound with a different definition of γM . As the solution evolution

operator changes with the number of modes included in the ROM, γM changes

with the number of modes included in the model. This fact was not investigated

in detail in [22] and the convergence of the in-plane error was mostly assumed

to reduce to zero in proportion to the out-of-plane error. Fig. 2.12 shows that

in fact the in-plane error goes to zero faster than the out-of plane error; for low



Chapter 2. POD-ROM 38

 ∫
T

0
 |
| 
e
o
(τ
) 
||
2
 d
 τ
 ,
 
 ∫

T

0
 |
| 
e
t(
τ
) 
||
2
 d
 τ
 

5 10 15 20 25 30 35 40 45 50 55
10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

100

Number of modes

Figure 2.12: Total error, et(t), and out-of-plane error, eo(t), for Galerkin (solid
line, boxes) and SUPG stabilized (dashed line,circles) POD-ROMs for low grid
based Reynolds number.

dimensional models (M < 30) the in-plane error makes an observable contribution

to the total error, but for higher dimensional models, the error is almost entirely

due to the out-of-plane component. This indicates that γM is actually decreasing

to zero as the number of modes in the model increases.

For the high Reynolds number case, there is a more significant difference between

the Galerkin and the SUPG results. As the steep propagating front in this case

is under-resolved, there is significant oscillations in both the Galerkin and SUPG

solutions although more so in the Galerkin simulations. This leads to a slower

convergence rate in the out-of-plane error as shown by the symbols in Fig. 2.13.

The total error for both cases follows the out-of-plane error; however in this case,

the in-plane error makes a more significant contribution to the total error. For the

SUPG case, we again see the in-plane error contribution decreasing at about 30 to

35 modes (where the total error and the out-of plane errors start to coincide). In

the Galerkin case, the in-plane error remains significant up to 50 modes. It should

be remembered that this is the comparison between the detailed simulations and

the reduced order model so the fact that the error becomes small at 50 modes is
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Figure 2.13: Total error, et(t), and out-of-plane error, eo(t), for Galerkin (solid
line, boxes) and SUPG stabilized (dashed line,circles) POD-ROMs for high grid
based Reynolds number.

only an indication that the ROM reproduces the detailed simulation, not that the

simulations are physically accurate.

Lastly, we examine the effect of the quality of the eigenmodes on the total error,

et(t). Two different sets of eigenmodes are used:

• Case A: The POD modes driven from direct method without deflation.

• Case B: The POD modes derived from snapshot method using 100 snap-

shots without deflation.

Case A corresponds to modes with the most orthogonal modes and lowest out-of-

plane error as shown in Fig. 2.4 and Fig. 2.9. Case B corresponds to modes with

less orthogonality and higher out-of-plane error. All simulations have been done

using SUPG stabilization applied to the low Reynolds case. The total error, et(t),

and out of plane error, eo(t) are depicted in Fig. 2.14. Comparing the two cases,

one sees that the penalty for using a reduced number of snapshots (100 versus

240,000) is not great; the out-of-plane error and total error of Case B are only
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Figure 2.14: Total error (curves) and out-of-plane error (symbols) of SUPG sta-
bilized POD-ROM simulations: direct method (solid line, circles) and snapshot
method with 100 snapshots (dotted line, triangles).

slightly greater than the results obtained with Case A. The main determiner of

the accuracy of the models is the number of modes included.

The one unexpected behavior in Fig. 2.14 is that for case B, the total error

of the ROM, et(t), is less than the out-of-plane error, eo(t) when the number of

modes used is greater than 43. As mentioned previously, the out-plane error is the

difference between the FEM simulation and its projection onto the POD modes.

Because of this, the out-plane error becomes larger as the non-orthogonality of the

modes increases. A large nonorthogonality of the POD modes for this case was

shown earlier in Fig. 2.4c. The total error is the difference between the FEM simu-

lation and the reduced order simulation. It is only affected by nonorthogonality of

the POD modes at the very first time step when the initial condition is construct

by projection. After this, the ROM solution dos not require orthogonality. The

out-plane-error is only required to be less than the total error when considering

modes that have no orthogonality errors.
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2.6 Conclusions

This chapter examined the accuracy of the reduced order model based on the

proper orthogonal decomposition (POS-ROM). The effect of various errors on the

eigenvalue spectra and the quality of the POD modes are first assessed. The sec-

ond part of Chapter 2 was focused on the accuracy of the reduced order models.

The cases of high- and low-grid-based-Reynolds-number studies for Burgers equa-

tion were examined. The cases with and without stabilization are treated. The

streamwise upwind-Petrov-Galerkin (SUPG) that was used to stabilize the FEM

simulations, was also used to stabilize the ROMs. Based on the presented results

the following conclusions are drawn:

• It was found that the lapack solution of the eigenvalue problem often gives

negative values when the eigenvalues approach the machine precision, while

the deflation method always gives positive decaying eigenvalues. Error bounds

were given that show that the errors depend on the maximum POD eigen-

value, machine precision, and the rank of the matrix. Percent error bound

showed that the eigenvalues less than the magnitude of machine precision

times maximum absolute eigenvalue are very different for the deflation and

direct methods.

• The orthogonality of the POD modes for different calculation methods was

compared. The direct method without deflation is the only method that

guarantees the orthogonality up to machine precision. For the snapshot

method without deflation the orthogonality of the modes is poor for any

mode beyond the point where the eigenvalues approach the machine preci-

sion. The orthogonality of the snapshot method can be improved using the

deflation method but not to the machine precision.

• For the snapshot method, the number of snapshots required to obtain an

accurate eigenvalue spectrum was determined by the smallest time scale of

the process. When this time scale is resolved, the errors in the eigenvalues
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and modes drop rapidly then converge toward the exact modes with second-

order accuracy.

• For the high Reynolds number flow case, the numerical results with stabi-

lization were more accurate. Without stabilization the in-plane error of the

ROM was high even when the number of POD modes used in the model

was increased. However, when the detailed simulations used to derive the

ROM were well-resolved (the low-Re case), the accuracy of both models was

comparable.

• Rathinam and Petzold [22] showed that the in-plane error was bounded by

the out-of-plane error times a modeling constant. Our results showed that

the modeling constant goes to zero as the number of modes increases. So not

only is the in-plane error bounded by the out-plane error, but the in-plane

error goes to zero faster than the out-of plane error as the number of POD

modes increases.

• Comparison of ROMs derived using the high and low quality POD modes

showed that the ROM was fairly insensitive to the quality of POD modes.

The accuracy of the ROMs was much more sensitive to the number of POD

modes used in the model. Percent increase in the number of modes (re-

gardless of orthogonality quality) improved the accuracy of ROM. However,

increasing the number of POD modes wass more effective if the modes were

more orthogonal.



Chapter 3

Proper Orthogonal

Decomposition Based Reduced

Order Models for Low and High

Reynolds Flows

3.1 Introduction

Despite the remarkable improvements in computer speed and memory, accurate

real time solution of the Navier-Stokes (NS) equations is still beyond the limits

of current computational capabilities. However, in certain applications, such as

active flow control, rapid flow prediction is critical. To overcome this problem,

one possibility is to use a reduced order model (ROM) of the flow. A review of

different ROMs was provided by Antoulas [1]. In this work, proper orthogonal

decomposition (POD)-based reduced order modeling is studied as this approach

has been used extensively in fluid flow applications as discussed below.

POD was introduced independently by Karhunen [3] and Loeve [4] for studying

the stochastic characteristics of complex non-linear dynamical systems. In fluid

mechanics, the POD was first introduced by [2, 33] for studying the coherent

43
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structures of a turbulent flow field. Due to its ability to capture dominant flow

structures, the use of the POD for analyzing turbulent flows has attracted attention

[5, 26, 28, 34, 35]. The POD provides an optimal orthogonal basis that makes it

possible to reconstruct a stochastic process using a linear combination of a small

number of spatial modes. These modes are normally obtained as eigenfunctions of

the two-point correlation function of the random process. Projecting the governing

equation (in this case the Navier-Stokes equation) onto a finite number of the

POD basis functions results in a system of coupled ordinary differential equations

(ODEs). The solution of which provides an accurate ROM of the flow field.

Although in principal POD-based ROMs can efficiently represent complex stochas-

tic systems, there are a number of points that need to be thought through. First,

POD-ROMs often use only a small number of modes to represent the flow. While

a few modes are often sufficient to reconstruct the large-scale energy containing

features of the flow, the modes that are associated with the small-scale fluctuations

are truncated. Because dissipation occurs at small scales, which are typically as-

sociated with the low-energy POD modes, the POD-ROM dynamical system may

not provide sufficient dissipation. It is crucial that the effect of small-scale dissi-

pation is taken into account to make the simulations stable and robust. In this

regards, different approaches have been suggested.

The first attempt for stabilizing POD-ROMs was with the use of eddy viscosity

models introduced by Aubry et al. [5]. In this approach an artificial viscosity is

added to the governing equation, which is referred to as the Heisenberg model [36].

Along this line, Ukeiley et al. [37] suggested an eddy viscosity model based on the

characteristic scales of the first truncated POD modes. Podvin [11] improved the

eddy viscosity closure models by accounting for the intermodal energy transfer.

His model did not reproduce the detailed physics of the flow, however, it captured

the essential aspects of the mechanism for the generation of turbulence.

Another class of eddy viscosity closure models considers the energy balance of the

POD-ROM [38, 39]. It is generally recognized that the eddy-viscosity type models

for POD depend on many parameters including the power spectrum shape, cutoff
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POD mode, and energy transfer to the cutoff POD mode. In some respect this is

similar to modeling the truncated modes in spectral closures [40, 41]. Rempfer and

Fasel [28] and Rempfer [27] suggested that the dissipation term should be replaced

by modal viscosities that affect each POD mode differently. Based on this idea,

Tadmore [42] developed the Spectral Vanishing Viscosity (SVV) approach, which

introduces an artificial dissipation that only affects the small-scales. This method

is suitable where global energetically-ordered modes are involved (hierarchical dis-

cretizations) e.g. spectral Fourier methods. In this spirit, [6] introduced SVV

into POD-ROM simulations and were able to obtain accurate large-scale results

although inaccuracies in the small-scale modes were observed.

Ullmann and Lang [13] briefly mentioned the possibility of taking an LES subgrid-

scale model into account in the reduced order model. The truncation of modes to

build a POD-ROM is similar to filtration of small-scales in a large-scale modeling

point of view. They employed the Smagorinsky subgrid-scale model as a stabiliza-

tion technique for the POD-ROM model with the standard constant. The results

of the model did not exactly match the original LES. However, the POD-ROM

reproduced the energy spectrum of the flow. Wang et al. [10] used the same

idea but instead of using the grid size in the Smagorinsky subgrid-scale model,

they used a constant coefficient associated with the unresolved POD modes. By

adjusting the model constants, they were able to obtain accurate results for the

large-scale POD modes for 100 vortex shedding cycles.

Another approach to stabilization is to calibrate the evolution of the POD-ROM

coefficients using the correct coefficients derived from the projection of the de-

tailed simulations onto the POD modes [7, 8, 12, 43]. Using the known correct

coefficients, all the ROM coefficients are adjusted using various error criteria such

as least-squares minimization [7, 12, 44] or solving an optimization problem [45].

Although this approach can predict a specific DNS, it is unclear whether it will be

accurate for varying flow conditions and inputs. In a related approach, Akhtar et

al. [30] used a shooting method for analyzing laminar flows over a cylinder. This

method adjusts the initial conditions of each cycle of to stabilize the solution. The
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effectiveness of this method for high Reynolds number non-periodic fluid flow still

needs to be tested.

Most of the available approaches suffer from lack of generality for various flow

conditions and/or lack of accuracy for the small-scale POD modes especially for

long-time simulations. In other words, even with stabilization, calibration and

closure, most of the available approaches are valid only for the time window of the

detailed simulation from which the POD modes were extracted and/or for short

term extrapolation. In addition, there are a number of parameters that need to

be adjusted or optimized in the closure models for different applications.

The second major issue with current POD-ROMs is that most numerical studies

have been done for low Reynolds number (Re) flows, with Re at most on the order

of 100 to 1000. [6, 8, 9, 12, 30, 43, 46–49]. However, most practical turbulent flow

problems are at higher Reynolds numbers. POD-ROMs may encounter issues in

high Reynolds number flows [50, 51]. In particular, high Reynolds number flows

involve more fluctuating energy and a wider spectrum. Therefore, there is a larger

amount of energy transfer to the small-scales and a wider bandwidth of energetic

POD modes. To reach the same accuracy of flow reconstruction at high Re, more

POD modes are needed and truncation effects are more significant.

Most of the POD-ROMs for high Reynolds number flows have been performed

using experimental databases [52–57], however there are few works in which nu-

merical databases were used for more complicated flows. Couplet et al. [7] consid-

ered the turbulent flow past a backward-facing step at Reynolds number of 7432

based on the step height. The corresponding calibrated POD-ROM was shown to

lead to reasonable results. Ulmann and Lang [13] examined the flow over a 3D

cylinder at Re=3900. They used the database generated by LES and applied the

subgrid-scale model of the original simulation to stabilize the corresponding POD

reduced order model. Although, the lift and drag coefficients of the reduced model

did not exactly represent the original LES, the energy spectrum was reproduced

well. Sinha et al. [58] used an existing direct numerical simulation database of

an unforced Mach 0.9 axisymmetric jet with Reynolds number of 3600 (based on
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the jet diameter). 30 POD modes were considered in straight Galerkin projection

without any stabilization. It was shown that the large-scale evolution of the flow

was well captured but not the small scales. They concluded that the POD-ROM

may be adequate for the purpose of simulating the actuated flow. All in all, the

natural question to ask is if a stabilization approach works well for low Reynolds

number flow, how well will it work at high Reynolds number?

The main purpose of this paper is to assess the accuracy of different stabilization

approaches for long term POD-ROM simulations for low and high Reynolds num-

ber flows. The test case of low Reynolds number flow at Re = 1000 over an airfoil

is first studied. The streamline-upwind-Petrov-Galerkin (SUPG) method and the

spectral vanishing viscosity (SVV) method for stabilization are used and the re-

sults are compared those of POD-ROM without stabilization (straight Galerkin).

Similar comparisons are then performed for the high Reynolds number flows. This

is done by analyzing 2D turbulent flow over an airfoil at a Reynolds number of

100,000 and generating POD-ROM models.

3.2 Detailed Solutions

In this section, details of the method used for simulating the unsteady, 2D, incom-

pressible, viscous, flow around a NACA0015 airfoil are described.

3.2.1 Problem Description

The geometry of the problem, as well as, the computational mesh (which is dis-

cussed subsequently)are shown in Fig. 3.1.
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Figure 3.1: hp-Finite element mesh for low Reynolds case study, Re=1000 (chord
length of the NACA0015 airfoil=1; Radius of domain=10.)

A circular domain, Ω, surrounds a NACA0015 airfoil which has its quarter-cord

location centered at (0, 0) and has an angle of attack (the angle between the chord

line of the airfoil and the free stream velocity vector) of 12◦. The radius of the

computational domain is 10 times the chord length. The boundary of the domain,

Γ, is divided into a left and a right arc. On the left side an inflow condition is

enforced where the velocity is set to the free-stream velocity, u∞. On the right

side, an outflow condition is enforced where the total stress is set to zero. On

the airfoil surface a no-slip boundary conditions is enforced. The problem is made

non-dimensional using the chord length, the fluid density, and the free-stream

velocity.

3.2.2 Governing Equations

The equations which govern the unsteady flow of an incompressible viscous fluid

are the continuity and Navier-Stokes equations,

∂w

∂t
+
∂fx
∂x

+
∂fy
∂y

=
∂τx
∂x

+
∂τy
∂y

, (3.1)
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where w and the inviscid fluxes fx and fy are given by

w =


0

ρu

ρv

 , fx =


ρu

ρu2 + p

ρvu

 , fy =


ρv

ρuv

ρv2 + p

 , (3.2)

u and v are the x- and y-direction velocities, and ρ and p are the density and

pressure. τx and τy are the viscous stresses,

τx = µ


0

2∂u/∂x

∂v/∂x+ ∂u/∂y

 , τy = µ


0

∂v/∂x+ ∂u/∂y

2∂v/∂y

 . (3.3)

where µ is the dynamic viscosity of the fluid which is assumed to be constant.

For convenience, we also introduce the total flux vectors in the x and y directions,

ex = fx − τx and ey = fy − τy.

3.2.3 Numerical Method

An hp-finite element method is employed for performing the numerical simula-

tions. The streamwise-Upwind-Petrov-Galerkin (SUPG) variational approach [18]

is used to discretize the governing equations on a finite element mesh consisting

of triangular elements as shown in Fig. 3.1. On each element, the flow solution is

represented using the high order triangular basis developed by Dubiner [59]. Spa-

tial integration and differentiation operators for a function represented using this

basis can be found in [60]. Time derivatives are approximated using a diagonally

implicit Runge-Kutta (DIRK) scheme [61] that is third order accurate in time and

is A-stable [62]. At each stage of the DIRK scheme the implicit problem is solved

using a p-multigrid iterative algorithm. More details can be found in [63, 64].

All of the following calculations were done with fourth order polynomials which

should give 5th order spatial accuracy in the L2 norm.
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3.3 Proper Orthogonal Decomposition for Fluid

Flow

This section provides a brief description of the POD method and how it is applied

to the velocity and pressure fields. The bases for the reduced order models are

derived from the detailed data using the proper orthogonal decomposition (POD).

The POD was introduced by [2] as a means to extract the large-scale structures

of turbulent flows. It uses data obtained from experiments or numerical simula-

tions to generate an orthogonal set of spatial basis functions. These functions are

optimal in terms of energy; the mean square inner product of a solution, q(x, t),

with the function: 〈
(q(x, t),φφφn(x))2〉

is maximized under the constraint that (φφφn(x),φφφn(x)) = 1, where ( , ) is the

L2 inner product and 〈〉 indicates a time average. This maximization problem

generates a sequence of orthogonal functions which herein are called POD modes,

With an adequate number of POD modes, we can approximate any solution as a

linear combination of time-dependent weighting coefficients, an(t), and the POD

modes

q(x, t) =
M∑
n=1

an(t)φφφn(x) (3.4)

=
M∑
n=1

(q(x, t),φφφn(x))φφφn(x),

The derivation of the POD can be found in any of the following references [26, 30,

31, 45, 65]. In this work, the snapshot method of Sirovich [19] has been employed

to derive the POD modes.

In most studies of POD-ROM for incompressible flows, the solution vector, q(x, t),

consists of the velocity components only; the pressure term does not appear ex-

plicitly. There are several good reasons for this. Because the POD modes are

derived from solution snapshots that are numerically divergence-free, the POD
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modes themselves are also divergence free. One can then show that by integrat-

ing the pressure terms in the Galerkin formulation of the Navier-Stokes equations

by parts, these terms cancel out [6, 32, 34, 66, 67]. Furthermore if a zero pres-

sure condition is applied on the outflow boundaries, no knowledge of the pressure

is necessary to construct a ROM. There are disadvantages to this approach how-

ever. [23] and [12] have shown that for convectively unstable shear layers, non-zero

boundary pressure terms must be considered. Furthermore, knowledge of the pres-

sure is necessary to evaluate the forces on a structure [10]. This is particularly

important for application of ROM to drag reduction.

To be able to directly incorporate the pressure into the POD formulation, following

ideas from compressible flow[68], [69] let q(x, t) =
(√

p(x, t) + p0, u(x, t), v(x, t)
)

where p0 represented the atmospheric pressure. They then expanded for p0 � p

to derive a method for obtaining the POD modes in the low Mach number limit.

This method is attractive because the POD formulation then maximizes a mean-

ingful flow quantity, the dynamic pressure, and the pressure and velocity fields

are represented by a POD mode of the form φφφ = (Φp(x),Φu(x),Φv(x))T . For

this work, we take the simple approach of using the scaled non-dimensionalized

flow variables q(x, t) =

(
p(x, t)

ρu∞2
,
u(x, t)

u∞
,
v(x, t)

u∞

)
to generate the POD modes.

This is similar to the “pressure extended model” of [70]. The disadvantage of this

approach compared to [69] is that the quantity maximized by the POD is depen-

dent on the non-dimensionalization. In practice we have not found a significant

difference between POD-ROMs derived using the two different approaches.
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3.4 Reduced Order Modeling

The solution for q = [p, u, v]T is sought in the space spanned by a subset of the

POD modes, φφφ. That is the flow field for ~q can be reconstructed as:

q =


p(x, t)

u(x, t)

v(x, t)

 =
Nr∑
n=1

an(t)


Φp
n(x)

Φu
n(x)

Φv
n(x)

 . (3.5)

The goal of reduced order modeling is to generate a dynamical model to predict

the evolution of the solution coefficients, an(t). In the following, we compare

three approaches for generating dynamical models, the Galerkin approach, the

streamwise-upwind-Petrov-Galerkin (SUPG) approach and the spectral vanishing

viscosity (SVV) approach. As mentioned in the introduction, previous authors

have reported that it is difficult to generate accurate results for the long term

simulation of fluid flow using the Galerkin approach [5, 26–28]. The goal is to

determine the effectiveness of stabilized approaches at medium and high Reynolds

number.

3.4.1 Galerkin ROM

The Galerkin approach to deriving a reduced order dynamical model to predict

the evolution of the solution coefficients an(t) is to use the POD modes as the test

functions in the weak form of the Navier-Stokes equations

∫ ∫
Ω

[
φφφTn

∂w

∂t
− ∂φφφTn

∂x
ex −

∂φφφTn
∂y

ey

]
dΩ +

∫
Γ

φφφTn ( ex, ey) · nΓdΓ = 0 (3.6)

where ~nΓ is the outward normal to the domain boundary Γ. This results in a

system of scalar equations for the coefficients an. Note that for a finite number of

POD modes, Nr, this becomes a reduced order or low dimensional model. Using
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Ns modes would lead to the exact value of ~q for the time interval over which the

POD modes were generated.

3.4.2 Streamwise-Upwind-Petrov-Galerkin (SUPG) ROM

The first approach to stabilize the POD based ROM is streamwise-Upwind-Petrov-

Galerkin (SUPG) approach. As mentioned in section 3.2, this is also the method

used to perform the detailed solutions. An advantage of the SUPG approach over

other stabilized methods is that there are no adjustable parameters in SUPG.

O’Donnell and Helenbrook [69] and [70] have both suggested that SUPG ideas

could be used in the development of stabilization models for POD. The SUPG

equations are

0 =

∫ ∫
Ω

[
φφφTn

∂w

∂t
− ∂φφφTn

∂x
ex −

∂φφφTn
∂y

ey

]
dΩ +

∫
Γ

φφφTn ( ex, ey) · nΓdΓ+

Ne∑
e=1

∫ ∫
Ωe

[
∂φφφTn
∂x

∂fx
∂(p, ρu, ρv)

+
∂φφφTn
∂y

∂fy
∂(p, ρu, ρv)

]
T

[
∂w

∂t
+
∂ ex
∂x

+
∂ ey
∂y

]
dΩ ∀n ∈ [1, Nr]

(3.7)

where Ne is the number of elements in the mesh, Ωe is the area of each element,

and the matrix T is the SUPG stabilization matrix. The first two integrals are

the standard Galerkin formulation with the first being the volumetric bi-linear

functional and the second the contribution of the boundary conditions. The third

integral is the SUPG stabilization, where T is given by

T =
hP
σ

diag[S, 1, 1], (3.8)

hp = h/P 2,

σ2 = max[S2, 0.1u2
∞] + (hp/∆t+ ν/hp)

2,

S2 = maxΩe [u
2 + v2],

and h is the diameter of the inscribed circle of each triangular element, P is the

polynomial degree of the element which for these calculations was always 4, ∆t
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is the time step of the calculations, and ν is kinematic viscosity. Note that this

stabilization depends on the underlying mesh used to calculate the modes.

There are two advantages to this approach. First, the SUPG formulations allows

one to use any set of modes for the velocity and the pressure; no restrictions

are placed on the choice of pressure and velocity spaces. Second, the SUPG

formulation is a consistent residual-based stabilization, implying that the exact

solution will satisfy the weighted integral form. This can be seen by the fact that

the last term in brackets in (3.7) is the governing equation, which would be zero

if evaluated using the exact solution. Thus, if the reduced-order-modeling basis

can accurately represent the exact solution, it will satisfy the discrete equation.

This is not true of artificial viscosity approaches that add terms to the governing

equation to stabilize the method.

3.4.3 Spectral Vanishing Viscosity ROM

The spectral vanishing viscosity stabilization (SVV) approach was first introduced

by Tadmor [42]. The general idea is to stabilize the computation by introducing

a dissipative term that is only active in the small-scale range of the spectrum.

The SVV approach allows more flexibility than SUPG but contains two empirical

coefficients that must be adjusted. These are an artificial viscosity magnitude

and a kernel function that determines the dissipative subrange. The connection

between the resolved scales and the parameters of SVV was studied by [71–73].

Here we use the standard SVV formulation [42]. The formulation is similar to the

Galerkin formulation, except with a modified flux,

Ne∑
e=1

{∫ ∫
Ω

[
φφφTn

∂w

∂t
− ∂φφφTn

∂x
(ex − sxn)− ∂φφφTn

∂y
(ey − syn)

]
dΩ

+

∫
Γ

φφφTn (ex, ey) · nΓdΓ

}
n=1,...,Nr

= 0,
(3.9)
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where the additional flux terms are given by sxn = Qn(ε/µ)τx and syn = Qn(ε/µ)τy,

with

Qn =

 1 n > K

0 n < K
(3.10)

where ε is SVV viscosity amplitude which is assumed to be constant, Q is a

viscosity kernel and n is the index for the reduced-order modeling basis. The basis

is assumed to be organized such that larger n indicates small-scale POD modes.

K is an integer cutoff above which the SVV is activated. K and ε must be found

empirically. This makes SVV worth being studied however, is the fact that one can

vary these parameters to investigate how stabilization affects the reduced order

model.

Although standard SVV was developed for methods that operate with hierarchical

discretization [42, 74], there is a disadvantage in combining SVV with POD-ROM

in comparison with spectral methods. In the Fourier spectral method, the viscous

terms act on each mode independently, but this is not true when using POD

modes.

3.5 Low Reynolds Case

In this section, ROMs are tested for a 2D incompressible flow over an NACA0015

airfoil at Re = 1000 which corresponds to the laminar flow regime. The flow

conditions are listed in table 3.1. An unstructured triangular mesh on a circular

domain is used in all the detailed simulations as shown in Fig. 3.1. The mesh

consists of 34032 triangles and the basis functions composed of quartic polynomials

on each element. There are 41 elements are on the surface of the airfoil which for

P = 4 gives 164 surface nodes. The time step of diagonally implicit Runge-Kutta

(DIRK) scheme is ∆t = 0.025. The detailed simulations were run until they

reached a periodic state and then ROMs were derived from data taken from the

periodic state.
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Term Condition

Airfoil NACA0015
Reynolds number 1000
Angle of attack 12◦

Time interval used to generate the modes 3
Number of snapshots 120

Table 3.1: POD-ROM characteristics

Contours of the u-velocity are shown in Fig. 3.2. For this angle of attack, the flow

separates near the leading edge of the airfoil and the wake of the separated region

then sheds alternating vortices of opposite vorticity. To show the periodic nature

of the flow, a point probe was taken at the location (2.09, 0.00). The time history

of the u and v velocity at the probe location are shown in Fig. 3.3. The Strouhal

number of the flow is 0.76 where the Strouhal number is defined as c/(u∞T ) where

c is the chord length, u∞ is the free-stream velocity, and T is the period of the

oscillation. Fig. 3.3 shows that the flow is nearly perfectly periodic.

As discussed in section 3.3, the POD modes are evaluated using the snapshot

method introduced by Sirovich [19]. The size of the eigenvalue problem for the

snapshot method is equal to the number of snapshots so it is computationally

advantageous to reduce the number of snapshots required to create the modes.

Previous numerical studies by Noack et al. [23] showed that the first N POD

modes can be computed from 2N snapshots. According to this work, an increase

to 4N or more samples did not have any significant effect on the resulting models.

In our previous work [75], we showed that the adequate number of snapshots

depends on the time scales of the flow. To be confident about the quality of the

modes, the snapshots should resolve the smallest time scale of the flow. Based on

this logic, modes were constructed using 120 consecutive time steps of the detailed

simulations, which corresponds to a non-dimensional time interval of 3. As shown

in Fig. 3.3, This guarantees that we capture more than one whole vortex shedding

period. Furthermore, if we had used every other snapshot, the time evolution in the

region where the sharp drop-off in the v-velocity occurs would not be adequately

resolved. The POD eigenvalue spectrums for Ns = 120 and Ns = 60 are shown in

Fig. 3.4. The spectrum with Ns = 60 deviates from the spectrum with Ns = 120 at
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Nr Energy summation

5 0.9859
11 0.9981
15 0.9991
21 0.9999

Table 3.2: Normalized energy summation for low Reynolds number case

mode 18 which has an energy that is 9 orders of magnitude lower than the energy

of the first mode. Therefore, 120 snapshots is a reasonable number of snapshots

for generating the POD modes.

Further examining the eigenvalue spectrum shows that the first mode has a huge

fraction of the energy. As shown in Fig. 3.5a and 3.5b, this mode is essentially

the mean of the flow. After the first mode, the eigenvalues come in pairs of

equal magnitude. This is typical of a convective problem and corresponds to POD

mode pairs that are similar to sine / cosine pairs. Examples for mode 2 and

mode 6 are shown in the remaining frames of Fig. 3.5. These modes capture the

propagation of the vortices through the wake. Higher index modes correspond to

higher wavenumber modes similar to a Fourier series.

The energetic optimality of the POD basis functions suggests that only a few POD

modes could accurately describe the flow. As a reference point for understanding

this, we have also plotted the curve 1/N2 in Fig. 3.4. This is the slowest decaying

series that will converge. For this laminar case, it is clear that the POD series will

rapidly converge. To measure the effectiveness of the POD modes in representing

the flow, the ratio of energy captured by the reduced order model to the energy

of the entire spectrum, =
∑N

i=1 λi/
∑Ns

i=1 λi is usually used. In practice, the size

of POD-ROM simulation, Nr, is usually determined as the smallest integer such

that this ratio is greater than a certain value [6, 7, 13, 29, 31]. Table 3.2 shows

the normalized energy sums when using 5, 11, 15 and 21 modes. (These are the

number of modes used in the ROMs in the next section.) In agreement with the

energy spectrum, the energy sum also shows that only a small number of modes

should be necessary to get accurate results.



Chapter 3. Reduced Order Models for Low and High Reynolds Flows 58

Figure 3.2: Instantaneous u-velocity contours, Re = 1000.
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Figure 3.3: Instantaneous u and v velocity at probe location, Re = 1000.
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Figure 3.4: POD mode eigenvalues with Ns = 120 (−�−) and Ns = 60 ( ◦ ).
1/N2 convergence (solid line).



Chapter 3. Reduced Order Models for Low and High Reynolds Flows 60

(a) Mode 1 of u velocity (b) Mode 1 of v velocity

(c) Mode 2 of u velocity (d) Mode 2 of v velocity

(e) Mode 6 of u velocity (f) Mode 6 of v velocity

Figure 3.5: Representation of some POD modes. u velocity POD modes (left) and
v velocity POD modes (right). Dashed lines show the negative values.

3.5.1 Results for Galerkin ROM

In this section, Galerkin POD-ROMs having Nr = 5, 11, 15, and 21 (the en-

tries in table 3.2) are examined. The initial conditions for the POD-ROM i.e.

(a1, a2, . . . , aNr)t=0 are calculated by projecting the initial solution snapshot onto

the ROM space. The POD-ROM simulation is then performed for 230 vortex

shedding cycles.
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(b) Nr = 11, No stabilization
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(d) Nr = 21, No stabilization

Figure 3.6: Envelopes of CD of detailed simulation (solid lines) and CD of 4
Galerkin POD-ROM cases from table 3.2 (gray).

The evolution of the drag coefficient, CD, for the 4 Galerkin POD-ROMs is shown

in Fig. 3.6. For reference, the amplitude of the oscillations as predicted by the

detailed simulation is shown as black curves on the figure. For the Galerkin POD-

ROM system with 5 modes (Fig. 3.6a), the result deviates from the DNS almost

immediately. With 11 modes the deviation is less rapid and becomes visually

detectable after about 15 time units. For the Galerkin POD-ROM system with

15 and 21 modes (Fig. 3.6c and d) the simulation is accurate for nearly 150 time

units. From this we conclude, as many previous authors have, that for any fixed

amount of simulation time the Galerkin model converges as the number of modes

increases, but a large number of modes are needed to accurately reproduce the

periodic limit cycle. Typically many authors use the guideline that Nr should

be chosen such that 99% of the energy is captured. Clearly this is insufficient to

accurately reproduce the limit cycle when using a Galerkin ROM.
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3.5.2 Results for SUPG ROM

To investigate the effect of stabilization, the evolution of the drag coefficients, CD,

for the 4 SUPG based POD-ROMs is shown in Fig. 3.7. The improvement with

stabilization is obvious when comparing Fig. 3.6 and 3.7. Even with 5 modes, the

simulation reproduces the limit cycle minimum and maximum drag within 1%.

This error decreases as the number of modes increase. With 15 and 21 modes, the

simulations reproduce the amplitude of the oscillations in CD to the point that

they are visually indistinguishable from the detailed simulation in the figure. This

indicates that SUPG is less sensitive to truncation errors than the Galerkin model

and can accurately predict the limit cycle. Ref. [43] found that, when simulating

3D fluids flows with a calibration method, the error rapidly grows outside the

temporal window used to generate the POD modes. In this periodic flow, only the

first two shedding cycles were used to derive the POD modes and obviously that

behavior was not observed.
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(b) Nr = 11, SUPG
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(d) Nr = 21, SUPG

Figure 3.7: Envelopes of CD of detailed simulation (solid lines) and CD of 4 SUPG
based POD-ROM cases from table 3.2 (gray).
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CD is calculated from the pressure and velocity gradients adjacent to the airfoil

surface and thus does not provide information about where the maximum error

occurs. Contours of velocity error at the end of the 230th vortex shedding period

for the 21 dimensional POD-ROM is shown in Fig. 3.8. Since u∞ is one, the

absolute error is almost the same as the relative error. The figure shows that the

largest errors occur in the few vortices behind the airfoil and that the maximum

error is less than 2.0%.

Since we know the exact solution, a quantitative comparison of the coefficients

obtained from detailed solution and coefficients obtained from POD-ROM is per-

mitted. The time evolution of a2, a4, a6, and a8 as well as the exact values for a

few vortex shedding cycles around 230th shedding cycle are represented in Fig. 3.9.

SUPG results for 15 and 21 modes and Galerkin results with 15 modes are shown.

The values show that the amplitude of the coefficients of 15 and 21 dimensional

systems are almost the same but the phase shift for the 15 modes simulation is

greater. The Galerkin result has phase and amplitude error. This is true for all

four coefficients shown.

Figure 3.8: Contour of
√

(uDetailed − uROM)2 + (vDetailed − vROM)2 after 230 shed-
ding cycles.
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(c) POD coefficients of mode 6
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Figure 3.9: Temporal evolution of the predicted POD-ROM coefficients in compar-
ison with projected over detailed simulation. Detailed simulation( ), 15 modes
simulation (−�−), 21 modes simulation (−N−) and 15 modes simulation without
stabilization ( · · · ).
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Term Condition Nr K ε

Case 7 SVV 15 7 10−4

Case 8 SVV 15 7 10−3

Case 9 SVV 15 9 10−4

Case 10 SVV 15 9 10−3

Case 11 SVV 15 11 10−4

Case 12 SVV 15 11 10−3

Table 3.3: Brief description of the different SVV-ROMs for comparison of SUPG
and SVV

3.5.3 Results for SVV ROM

For completeness, SVV and SUPG are compared by repeating the flow example

already presented in the previous section using SVV stabilization. The same POD

modes and the same initial conditions are used as in the SUPG and Galerkin

cases. Several different SVV formulations have been used by previous authors.

For example, Tadmor [42] used εK = 0.25, Maday et al. [76] used K = 5
√
N r,

and [77] used K = 2
√
N r . We have tried six different formulations which are

shown in table 3.3. The amplitude and cutoff number are chosen empirically.

Based on [77], K would be around 7.75 which falls into the range of conditions

tested.

Time histories of CD are depicted in Fig. 3.10. The results show that with K = 7

(a & b) the range of modes over which artificial viscosity is applied is too wide

and the amplitude of the limit cycle is too small. For larger K however, the limit

cycle grows in amplitude. When studying the 1D Burgers’ equation, [77] found

that increasing the cut-off wavenumber, K, increases oscillation amplitudes, but

that the amplitude is more sensitive to changes in ε. In this study, K seems

to determine growth or decay, while ε affects the time scale of the process. For

example, all of the simulations with ε = 10−4 evolve on a longer time scale than

the cases with ε = 10−3. Playing with ε and K might lead to more accurate

results, but many more numerical experiments would be required to accomplish

this. Furthermore, it is not clear how robust such a model would be to changes in

flow conditions. Thus, for the following high Reynolds number studies, we do not

include SVV results.
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(c) K = 9, ε = 10−4

C
D

50 100 150 200 250
0.195

0.2

0.205

0.21

0.215

Time

(d) K = 9, ε = 10−3
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(e) K = 11, ε = 10−4
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(f) K = 11, ε = 10−3

Figure 3.10: CD of detailed simulation (gray line) and envelopes of CD of SVV
simulations for the different values of K and ε given in table 3.3.

3.6 High Reynolds Number Case

POD is a powerful tool for laminar flow because POD extracts the main structures

of the flow based on energy content. In the laminar regime typically only a few

modes are enough to describe the flow accurately. This is shown by the sharp

decline of the POD eigenvalues. In turbulent flows, the energy is distributed over

a wider range of scales and consequently more POD modes will be needed to
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Table 3.4: POD-ROM characteristics

Term Re Domain radius (times the chord length) Angle of Attack
Case study 1 100, 000 10 15◦

Case study 2 100, 000 10 9◦

Case study 3 100, 000 5 15◦

describe the flow. Furthermore, the dynamics of turbulent flows are more complex

so this also will make obtaining accurate results more difficult. As mentioned in

the introduction, most of the numerical investigations of POD-ROM have been

done at low Reynolds numbers. In this section, we investigate the stability and

dynamics of two-dimensional high Reynolds number (100, 000) uniform flow over

a NACA0015 airfoil. Particular attention is paid to the long term behavior of the

POD-ROM.

High-resolution direct numerical simulations are employed to obtain flow samples

from which the POD modes are extracted. The three cases listed in table 3.4 have

been studied. To resolve the turbulent flow features, the mesh was adapted using

the technique given in [78]. They meshes consist of 524, 702, 474, 736 and 405, 728

triangles and are refined in the boundary layer and the separated shear layer. The

adapted mesh for case study 2 is shown in Fig. 3.11. There are 4702 elements on

the surface of the airfoil which for P = 4 gives 18, 808 surface nodes. The time

step of the diagonally implicit Runge-Kutta (DIRK) scheme was ∆t = 1/160. The

calculations were run on 2 processors. The detailed simulations were run until they

reached a quasi-periodic state (as the flow is chaotic, it is never truly periodic)

and then ROMs were derived from data taken from this state.

It is worth acknowledging the fact that the simulated flow is 2D. Although the

Reynolds number is high, it is not true turbulence because turbulence is always

3D. The 3D mesh size for our flow configuration would be too large for our com-

putational facilities, and as we will show, even generating accurate models for 2D

turbulence is challenging.

Fig. 3.12 shows instantaneous u and v-velocity contours from the detailed simu-

lation of case study 1. The flow separates near the airfoil leading edge and the
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Figure 3.11: hp-Finite element mesh (chord length of the NACA0015 airfoil=1;
Radius of domain=10.)

resulting shear layer sheds vortex pairs into the wake. These vortices interact and

can merge or circulate around each other. Just after the trailing edge of the air-

foil, there is another shear layer due to the velocity difference between the top and

bottom of the airfoil. This shear layer tends to oscillate with a flapping motion

and also generates vortices.

3.6.1 Mode generation

Two questions must be answered for a non-periodic flow. First, what time interval

is necessary to achieve a converged POD decomposition? For a periodic flow, we

know that one period is enough to generate converged POD modes and that those

modes are able to predict the long term flow. However, for the the high Reynolds

case, the time interval needed is not obvious. Second, for a fixed time interval,

how many snapshots are necessary to achieve a converged POD decomposition?

As mentioned previously, the number of snapshots needed for generating the POD

modes depends on the time scales of the flow. For a chaotic flow however, it may

not be necessary to resolve the smallest time scales because the flow is ergodic.

3.6.1.1 Effect of Time Window

To determine the answer to the first question, the POD modes are generated

using every snapshot of the detailed simulations over time windows with different
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(a)

(b)

Figure 3.12: Contour of instantaneous u and v-velocity field from detailed simu-
lation.

lengths. The length of time windows are from T = 0.3125 units (50 time steps)

up to T = 26.25 units (4800 time steps) long. Fig. 3.13 shows the eigenvalue

spectrum from case 1. Each curve corresponds to an eigenvalue spectrum for

a different length time window. As the length of the time window increases, the

rate of decay of the eigenvalue spectrum decreases. For time intervals smaller than

the time required to propagate an entire domain length (T = 10), the eigenvalue

spectrums decay more rapidly, but once this time interval is crossed, a fairly slow

eigenvalue decay is established and the rate of decay decreases further as the time

window increases. For a long time window, the rate of decay is barely faster than

the series 1/N2 which is shown as the dashed black curve.
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Figure 3.13: POD mode eigenvalues with different time length (number of snap-
shots) for case study 1.
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Fig. 3.14 shows similar results for the domain size of 5. The results are shifted

down slightly because the area of the domain is smaller (the eigenvalues represent

the integration of energy over the domain), but the spectra show almost exactly

the same trends. In this case, the time to propagate the entire domain is T = 5.

Again when the time interval is shorter than this, there is a more rapid decay. For

longer time windows, the decay is quite slow. The eigenvalues for case 2, which

are not shown, show a similar behavior so it is not the flow separation that causes

the slow decay. We conclude that the propagation of the vortices through the

wake results in a very slow decaying spectrum. Note that the laminar case also

involved vortex propagation, but here, the vortices are smaller scale, more sharply

defined, intermittent, and propagate in pairs in somewhat random directions (with

no periodicity).

Fig. 3.15 shows the number of POD needed to capture 90% and 99% of fluctuating

energy for case study 1. This figure shows that the number of modes needed to

capture 90% and 99% of fluctuating energy is basically increasing linearly with

the length of the time window. Eventually, this curve should reach a plateau,

but there is little evidence that this is happening, only a very slight negative

concavity to the curve. Note that, although the eigenvalue spectrums shown in

Figs. 3.13 and 3.14 seem to be converging as the time window is lengthened, this

plot is on a logarithmic scale and the actual magnitude of the changes in the

curves is remaining nearly constant. Thus, a time interval of 30 chord times is not

long enough to determine an eigenvalue spectrum that is independent of the time

window. This also indicates that one will likely need a large number of modes for

a ROM that accurately reproduces the long term behavior of the flow (as verified

below).

To understand the effect of the length of the time window on the shape of the

POD modes, Fig. 3.16 shows the u and v components of the first eigenfunction

for different time windows for Case 1. The first mode is basically the mean of

the flow. Comparing the results of the three cases, it is clear that T = 3.125 is

too short to achieve a converged mean. However, there are only slight differences

between mode 0 calculated with a time interval of 11.25 and 30 time units.
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Figure 3.14: POD mode eigenvalues with different time length (number of snap-
shots) for case study 3.
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Figure 3.15: Case study 1, number of POD modes needed to capture 90% (dashed)
and 99% (solid) of the energy as a function of the length of the time window T .

Fig. 3.17 shows the mode 1 results. In 1D one can show that the POD applied

to any periodic propagating wave form results in Fourier modes. Here there is a

similar result with the x-direction wavelength of the mode essentially equal to the

chord length (more easily visible for the v-velocity component). We also see that

there is greater change between the T = 11.25 and T = 30 results. For the mean

mode, the L2 norm of the difference in the velocity between T = 11.25 and T = 30

was 8×10−5 For the first mode, the norm of difference was 7×10−3. Thus, higher

modes need a longer time interval to converge.

To further confirm this, Figure 3.18 shows mode 5, which corresponds to the third

fluctuating pair. In this case, the x-direction wavelength is about 1/3 the chord

length. Especially in the wake for the u-velocity component there are significant

changes in the mode calculated with T = 11.25 and T = 30. This is consistent

with the fact that the eigenvalue spectrum has not converged. Although the low

index eigenvalues seem to be converged in the eigenvalue plots, one must remember

that this is a log scale so it is more difficult to see variations of the eigenvalues for

the low index eigenvalues. For the fifth mode, the L2 norm of the difference in the

u or v velocity between T = 11.25 and T = 30 was 2× 10−2.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: Representation of first POD mode (mode 0) of case study 1 for
different non-dimensional time windows, (a) and (b) for T = 3.125, (c) and (d)
for T = 11.25, and (e) and (f) for T = 30. u velocity POD modes (left) and v
velocity POD modes (right).
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(a) (b)

(c) (d)

Figure 3.17: Representation of second POD mode (first fluctuating mode) of case
study 1 for different non-dimensional time windows, (a) and (b) for T = 11.25,
and (c) and (d) for T = 30. u velocity POD modes (left) and v velocity POD
modes (right).

(a) (b)

(c) (d)

Figure 3.18: Representation of sixth POD mode (fifth fluctuating mode) of case
study 1 for different non-dimensional time windows, (a) and (b) for T = 11.25,
and (c) and (d) for T = 30. u velocity POD modes (left) and v velocity POD
modes (right).
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3.6.1.2 Effect of Snapshot Interval

To investigate the second question, we compare the eigenvalues for a fixed non-

dimensional time period of 26.25 units, generated with different numbers of snap-

shots, Ns. The reason for choosing this length is that the total number of time

steps in the DNS is 4200, which is divisable by 1 through 8. So, it is possible to

generate the POD modes of the same time window using every snapshot, every two

snapshots, every three snapshots and so on. As a reminder, for this time interval

about 380 modes were needed to capture 99% of the energy as shown in Fig. 3.15.

The eigenvalues are presented in Fig. 3.19. Examining the figure, it appears that

the eigenvalues well agree even with Ns = 525. Examining the blow-up, one can see

that the spectrums created with fewer snapshots deviate from the spectrum with

Ns = 4200 around eigenvalue 160 although this deviation is probably negligible.

In general it seems that for an ergodic flow such as this, a conservative rule of

thumb would be to use Ns equal to twice the number of modes needed for a 99%

reconstruction. If the samples are truly statistically independent then this should

generate a 99% energy reconstruction reliably. If the flow is not ergodic, then one

must resolve the smallest time scales of the flow to be sure that all of the flow

states get sampled.

3.6.1.3 Effect of Domain Size & Angle of Attack

To understand how domain size and angle of attack affects the eigenvalue spec-

trums, Table 3.5 shows the number of modes needed to capture 99% of the energy

for each of the three cases simulated. In general, the trends in each of the cases is

similar with a near linear growth in the number of required modes with domain

size. However, the changes in relative modes for each case was not as originally

expected. Case study 2, which was the attached flow, actually required the most

modes to reach 99% of the energy. The wake behind the NACA 0015 at an angle of

attack of 9◦ is composed of more but smaller vortices compared to the wake at an

angle of attack 15◦, (fig. 3.20) which has larger stronger structures. So, although
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Figure 3.19: POD mode eigenvalues with different Np for time window 26.25, case
study 1.
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Table 3.5: Number of fluctuating POD mode needed to capture 99% of energy

T Time Steps Case study 1 Case study 2 Case study 3
0.625 100 15 17 17
3.125 500 54 76 68

11.250 1800 175 248 204
20.000 3200 295 422 346
26.250 4200 381 540 435

Figure 3.20: Contour of instantaneous u-velocity field from detailed simulation,
angle of attck 9◦.

the energy carried by each fluctuating mode of a flow at angle of attack 9◦ is less

than for an angle of attack 15◦, the energy is more evenly distributed over the

modes. For the shorter domain, the number of modes increased, but this is due

to the fact that the domain is smaller. The energy captured in the mean mode

is less because the area is less and thus it takes more of the fluctuating modes to

construct 99% of the energy. As we showed above, the modes are Fourier-like in

the wake so the length of the domain does not strongly affect the number of modes

needed for an accurate reconstruction.

3.6.2 ROMs

To understand how the mode generation parameters affect the resulting ROM, we

test the short and long term behavior of the ROMs generated with different mode

sets. For Case 1, four sets of POD modes have been generated using four time

windows, those are T= 0.625, 3.125, 6.25 and 11.25 (time steps = 100, 500, 1000
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and 1800). For the sake of ease of explanation, we call them time window 1, 2, 3

and 4. For each time window, all of the DNS time steps were used so there is no

error induced by using a smaller subset of snapshots. We also investigate how the

number of modes included in the ROM affect the results and compare SUPG and

Galerkin ROMs.

3.6.2.1 Effect of Time Window

Figs. 3.21 shows the time history of CD for a ROM having 49 modes where the

modes were created used the first two time windows discussed above. The top

figure shows only the first 6 time units and the bottom figure shows the full 25

time units of simulation to give a sense of the long term behavior of the models.

From the short term behavior, one can see that the ROMs are accurate for the time

period that was used to generate the modes. The ROM generated with T = 0.625

follows the DNS up to this point but then deviates shortly thereafter. This is also

true for the ROM created with T = 3.125. Because the flow is chaotic, the model

will not follow the DNS for long times, but for a model to be useful the long term

statistics should be correct. The plot showing 25 time units, shows that neither

model reproduces the correct statistics. Both models eventually decay to a steady-

state instead of continuing to fluctuate. Table 3.6 shows the mean and standard

deviations of the simulations. The mean of the data is correct, mainly because the

mean flow mode is correct, but the long term behavior of the fluctuations leads to

essentially a zero standard deviation.
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Table 3.6: Mean and standard deviation of simulation of section 3.6.2.1

Term Mean Standard deviation
DNS 1.036 0.28
Nr = 49, T = 0.625 1.028 0.031
Nr = 49, T = 3.125 1.026 0.066
Nr = 49, T = 6.250 0.97 0.075
Nr = 49, T = 11.250 1.109 0.076
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(a) Short term behavior. Length of simulation = 6.25 non-dimensional time units.
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(b) Long term behavior. Length of simulation = 25.0 non-dimensional time units.

Figure 3.21: Case study 1, CD of detailed simulation (black line), SUPG POD-
ROM simulation with Nr = 49 for T = 0.625 (dashed line), and SUPG POD-ROM
simulation with Nr = 49 for T = 3.125. (dotted line).
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Figs. 3.22 shows the time history of CD for a SUPG ROM with size of 49 modes

where the modes were created using the time windows T = 6.25 and T = 11.25.

Again, the top figure shows only the first 6 time units and the bottom figure shows

the full 25 time units, long term behavior of the models. Over the short term, the

SUPG ROM using the T = 11.25 modes did not reproduce the CD fluctuations

as well as SUPG ROM using the T = 6.25 modes. This is because there is

an inherent tradeoff between the length of the time window used to create the

modes and the number of modes needed for the ROM. For longer time windows

the number of modes needed for a 99% reconstruction is greater (as shown in

Fig. 3.13). These modes are more general, and thus more of them are needed for

an accurate prediction. Using 49 of the modes generated with T = 6.25, gives a

more accurate prediction over the short term. In the long term, neither of the

two SUPG ROM simulation give an accurate prediction of the fluctuations. This

is also confirmed by the results in Table 3.6 which gives the standard deviations.

Thus longer time window modes and an increased number of modes is necessary

for long term prediction.
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(a) Short term behavior. Length of simulation = 6.25 non-dimensional time units.
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(b) Long term behavior. Length of simulation = 25.0 non-dimensional time units.

Figure 3.22: Case study 1, CD of detailed simulation (black line), SUPG POD-
ROM simulation with Nr = 49 for time window 3, T = 6.25 (dashed line), and
SUPG POD-ROM simulation with Nr = 49 for time window 4, T = 11.25 (dotted
line).

Fig. 3.23, shows a snapshot at t = 6.25 of the u-velocity of the detailed solution

and the SUPG ROM solution with Nr = 49 using the modes created from time

window 4. Not surprisingly, in the separation region above airfoil, the reduced

order model has difficulty reproducing the fine detail of the small scale structures.
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This is also true of the vortices in the wake. These small scale structures are

apparently critical for predicting the chaotic behavior of the flow.

(a)

(b)

Figure 3.23: Contour of u velocity, (a) uDetailed (b) uROM

3.6.2.2 Effect of Number of Modes

To investigate the effect of Nr on the model predictions, we start by examining

the short term predictions. Fig. 3.24 shows the comparison of SUPG ROMs with

Nr = 49 and Nr = 29 for time window 2. With 49 modes the ROM did a good

job predicting the short term behavior for time window 2. This remains true even

for Nr = 29 although some of the small scale fluctuations are missed. For this
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case, it requires 54 modes to reach 99% of the energy, thus this criteria actually

may be over restrictive. Outside of the time window, neither model can predict

the behavior and both decay as time goes to infinity. The model with Nr = 29

actually decays slower in the long term (not shown) which is difficult to explain.
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Figure 3.24: Case study 1, CD of detailed simulation (black line) SUPG POD-
ROM simulation with Nr = 49 (dashed line) and Nr = 29 (dot-dashed line) for
time window 2, T = 3.125.

Fig. 3.25 shows the comparison of the first 6 time units with Nr = 89 and Nr = 175

for the modes created from time window 4 (T = 11.25). For Nr = 49 (Fig. 3.22),

the short term prediction was not accurate. Fig. 3.25 shows that the accuracy im-

proves with increasing Nr and that with 175 modes, many of the higher-frequency

fluctuation begin to be predicted. For this case, the 99% cut-off is 175 modes so we

again see that this is a reasonable value to use to estimate the necessary number

of modes for an accurate model prediction. Examining the long term prediction,

we again see that even with 175 modes, the long term behavior is not captured

properly. In this case however, a limit cycle is predicted by models with both 89

and 175 modes however the amplitude of the fluctuations is significantly under

predicted. Overall, one can say from this that the 99% cut-off is a reasonable esti-

mate of the number of modes need for any finite window. However, as we have not

been able to predict how many modes are needed to capture 99% of the energy for
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a infinite time window (Fig. 3.15), it is unclear how many modes would be needed

to accurately predict the chaotic behavior of this flow.
C
D

Time
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

(a) Short term Length of simulation = 6.25 non-dimensional time units.
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(b) Long term Length of simulation = 25.0 non-dimensional time units.

Figure 3.25: Case study 1, CD of detailed simulation (black line) SUPG POD-
ROM simulation for time windows 4 (T = 11.25) with Nr = 89 (dotted line) and
Nr = 175 (dashed line).

3.6.2.3 Effect of Stabilization

In all of the previous results, the SUPG ROM either completely damped the

fluctuations or under predicted their magnitude. This may be because of the
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inherent dissipation in a SUPG stabilization. To investigate this, we compare

Galerkin ROM which includes no stabilization and SUPG ROM. Fig. 3.26 shows

the simulation of the Case 1 with Nr = 49 for both the Galerkin and the SUPG

ROM where the modes were made with T = 3.125. Again, the top figure shows

only the first 6 time units and the bottom figure shows 25 time units. For the

most part, both the Galerkin and SUPG ROMs predicted the results within the

time window that the modes were generated from although the Galerkin ROM

begins to deviate from the DNS before the end of the window (at t ≈ 2.25).

Out side the interval which was used to generate the modes, the amplitude of

the fluctuations is not well-predicted by either model. The Galerkin ROM over-

predicts (standard deviation = 0.80) the fluctuation amplitude while the SUPG

ROM under predicts the amplitude decaying to zero. This is somewhat what one

would expect as the SUPG model includes dissipation while the Galerkin model

does not and is consistent with what was observed in the low Reynolds number

case. The amplitude of Galerkin ROM continues to grow with time, although at

a non dimensional time of 25, the simulation did not blow-up.
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(b)

Figure 3.26: CD of detailed simulation (black line), SUPG POD-ROM with Nr =
49 (dashed line) and Galerkin POD-ROM with Nr = 49 (dotted line) from time
window 2, T = 3.125.

3.6.2.4 Effect of domain size

The last effect investigated is the domain size. With a smaller domain, it was

originally thought that a more compact model might be developed, but this con-

jecture was not supported by the eigenvalue spectrums as shown in Table 3.5. To

determine whether domain size affects the ROM, Figure 3.27 shows the SUPG
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ROM results with Nr = 49 for modes created from time windows 2 and 4. The

corresponding results for the larger domain size (Case 1) are shown in Fig. 3.21 and

Fig. 3.22. The results obtained for the smaller domain are basically the same as

for the larger domain; for the smaller time window modes (T = 3.125) the simula-

tions agree well up to the end of the time window, and for the longer time window

modes (T = 11.25) the short term behavior is not predicted well. The main differ-

ence is in the long term behavior of the ROM created using the T = 11.25 modes.

For the shorter domain, the solution was not damped, but reached a finite ampli-

tude limit cycle. The amplitude of this limit cycle was of the correct magnitude

(standard deviation of 0.12) which was the same as the DNS. However, unlike the

DNS this limit cycle was periodic and not chaotic. All in all, the size of domain

does not have a significant effect on the results for short term simulation; for the

same number of modes one obtains the similar accuracy over the short term even

though the long term behaviors can be significantly different.
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(a) case study 3
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(b) case study 3, time window 2 stdev = 0.065, time window 4 stdev = 0.11

Figure 3.27: CD of detailed simulation (black line), SUPG POD-ROM, Nr = 49,
time window 2 (dotted line) and time window 4 (dashed line)

3.7 Conclusions

The accuracy of proper orthogonal decomposition based reduced order models was

tested for flow over a NACA0015 airfoil for low and high Reynolds number flows.

The main conclusions of this chapter are:
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• For the low Reynolds number case (Re = 1000 and 12◦ angle of attack),

the streamwise upwind Petrov-Galerkin (SUPG) stabilization and spectral

vanishing viscosity (SVV) stabilization were used, and the results were com-

pared to a Galerkin ROM. In this case, the wake flow was periodic and the

eigenvalue spectrum indicated that the first 10 modes captured 99% of the

flow energy. For the short term prediction (within the time span used to

generate the POD modes), all models well predicted the details of the flow

when 15 modes were used. However, for the long term prediction of the drag

(beyond the original time span), only the SUPG model correctly predicted

the limit cycle amplitude.

• The high Reynolds number case was a 2-D flow with Re= 100,000 at angle

of attack of 15◦. At this Reynolds number, the flow separates and sheds

small scale vortices into the wake from both the separation point and from

the airfoil trailing edge. The resulting turbulent flow is chaotic with a broad

range of temporal and spatial scales. As a result, the energy is distributed

over a much larger range of POD modes. For a window of 30 non-dimensional

time units, 431 modes captured 99% of the energy. The convergence of the

eigenvalue spectrum with respect to the duration of time window from which

the modes were derived was investigated and it was found that the number

of modes needed to capture 99% of the energy increased almost linearly

with the time window. This indicates that to obtain a converged set of POD

modes for high Reynolds flows a long time simulation is needed (much longer

than 30 chord times).

• The modes of four different time windows with durations of 0.625, 3.125, 6.25

and 11.25 non-dimensional time were used to test the SUPG POD-ROM. It

was shown that the SUPG POD ROM reproduced the large scale structures

of the flow for the time period that was used to generate the modes but

did not produce the correct long-term behavior; none of the models could

reproduce the chaotic limit cycle of the DNS. As the length of time window

from which the modes was derived was increased, the accuracy of the ROM

decreased for a fixed number of modes. This is because of the fact that for a
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longer time window more modes were needed to capture the same percentage

of energy.

• A comparison between SUPG ROM and Galerkin ROM was done. It was

shown that the Galerkin ROM also can predict the fluid flow pattern within

the part of time window that the modes were extracted. However, the long

term simulation of Galerkin ROM showed that the drag oscillation ampli-

tudes increased with time, while the SUPG ROM under predicted the am-

plitudes.

• Domain size and the angle of attack had minor effects on the derived ROM.

The same basic behavior discussed above occurred at an angle of attack of

9◦ and for a domain sizes of 5 and 10 chord lengths.

Overall, the main conclusion is that generating a ROM for high Reynolds number

flows that reproduces the correct limit cycle behavior requires much more modes

than has been typically used. These results show that the number of modes

required (for this 2D flow) is at the minimum hundreds. If the flow was 3D,

additional Fourier-type modes would be needed in the span-wise direction. Thus,

although such a model may be significantly smaller than a turbulent DNS, it will

certainly not be a compact ROM in the traditional sense.



Chapter 4

Proper Orthogonal

Decomposition Based Reduced

Order Modeling for Transient

Flow

4.1 Introduction

Despite remarkable improvement in computational resources and speed, solving

the Navier-Stokes equations for complex flows in real time is still challenging. To

overcome this difficulty, one approach that has attracted attention is reduced-order

modeling (ROM), which uses specialized basis functions to decrease the number

of degrees of freedom necessary to represent the flow. A detailed review of the dif-

ferent ROM techniques was reported in [1]. Among various ROM approaches, the

proper orthogonal decomposition reduced order model (POD-ROM) is considered

in the present study.

The POD introduces orthogonal basis functions that can optimally capture the

energy of the process; they are derived by minimizing the mean-square error of

the reconstruction [2]. This makes it possible to reconstruct a process by a linear

92



Chapter 4. Reduced Order Modeling for Transient Flow 93

combination of a limited number of modes. By projecting the governing equa-

tions onto a finite number of these POD basis functions and solving the resulting

ordinary differential equations (ODEs) for the coefficients of these modes, an ac-

curate approximation of the response of complex systems can be obtained. In fluid

mechanics, POD was primarily employed to study the coherent structures of tur-

bulent flow fields [2, 33]. Lumley [2] suggested that coherent eddies in turbulent

flows may be associated with the POD modes. Later, Aubry et al. [5] studied the

dynamics of coherent structures in a turbulent boundary layer using POD modes.

In this approach, the POD modes form the basis used for the flow simulation

instead of finite element basis functions. This was the first POD-based reduced

order model (POD-ROM) of a fluid flow. This approach, which enables low-cost

flow simulations for a particular problem, is of interest in a variety of applications,

ranging from optimization to active flow control.

To create ROMs for flow control or ROMs that span a wide range of parame-

ters, one often needs to either apply the POD to large data sets run at a range

of conditions or combine the POD modes created from simulations at different

conditions. For example, to create POD modes for a controlled flow it has been

shown that one needs to generate POD modes that represent both the controlled

and uncontrolled flow states [79–82].

Several authors have examined ways to combine POD modes created from indi-

vidual simulations. Others have just combined all the data onto one long database

and performed the POD on that. For instance, Kriegseis et al. [83] performed the

POD on a combined database that included various flow conditions. Using this

method, which is referred to as “Common Proper Orthogonal Decomposition”,

they examined the influence of various parameters. Schmit and Glauser [84] re-

ferred to this method as “Global Proper Orthogonal Decomposition” (GPOD) and

used it for various Reynolds numbers. They reported that the GPOD properly

estimates the wake flow field behind a bluff body. Earlier, Taylor and Glauser [85]

found that this approach requires more modes to capture a given percentage of

mean-square energy compared to a database created for only a single flow condi-

tion. Siegel et al. [86] demonstrated that with GPOD method, transient data can
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be included to develop modes for transient as well as the pre-transient flow regime.

This approach was also used by Ma and Karniadakis [32] to generate a model of

3-D flow past a cylinder. They combined data from Reynolds numbers of 185 and

182 to make a model that correctly predicted the jump in Strouhal number which

occurs at a Reynolds number between 182 and 185. The model created using only

one Reynolds number failed. Galletti et al. [12] also constructed a database that

contained snapshots at different Reynolds numbers. They then used the POD

modes of the mixed database to simulate the dynamics of a flow with Reynolds

numbers that were not included in the database and found reasonable results for 30

vortex shedding cycles. More recently, Weller et al. [87] used a database including

various Reynolds numbers and found that having input data at different condi-

tions is crucial for improving the robustness of the POD-ROM system. A similar

approach is Generalized POD where one performs a single simulation but varies

the parameters of interest during the simulation. Bergmann et al. [31] used the

Generalized POD basis by using snapshots of a range of different states (a chirp

signal) in order to successfully represent a flow field which undergoes transient

development.

To avoid solving a large eigenvalue problem other authors have examined alterna-

tive methods of generating modes. One approach is to add additional mode(s) to

the expansion to make the new POD-ROM cover a wider range of flow dynamics.

Noack et al. [88] and Siegel et al. [89] found that the error in the mean-flow is

the main source of error for the case of periodic low Reynolds number flow behind

a cylinder. Noack et al. [88], Gerhard et al. [90] and Siegel et al. [89] added a

new ”shift-mode” or ”mean flow mode” to correct the mean flow. One additional

mode means one more degree of freedom and one more equation to solve, but the

inclusion of the shift-mode significantly improves the accuracy of the transient

dynamics from one state of vortex shedding to another. The shift mode is con-

structed by subtracting the mean flow and the steady solution. The shift mode is

orthogonalized with all other POD modes through a Gram-Schmidt procedure.

A second approach is producing POD modes for various states of the flow and

then using a combination of these modes. Christensen et al. [91] created a model



Chapter 4. Reduced Order Modeling for Transient Flow 95

for predicting the Hopf bifurcation for a rotating fluid in a cylindrical vessel using

POD modes from snapshots taken from several flow states with Reynolds number

at both sides of the bifurcation. In this case a union of all the modes was made

to generate the ROM. The modes are orthogonalized brfore being used for ROM.

Other researchers used interpolation or extrapolation of POD modes near the op-

erating condition as the third approach. Morzynski et al. [92, 93] interpolated the

POD modes to build a continuous mode interpolation procedure between two flow

states by interpolation of the corresponding two-point correlation matrices. The

direct interpolation of POD modes might not lead to accurate results due to the

fact that the interpolation of two orthogonal sets of modes is not guaranteed to

be orthogonal [94, 95]. Therefore, “subspace angle interpolation” was introduced

[94, 96] to address this problem and alleviate the error for different flow condi-

tions. But subspace angle interpolation loses its accuracy when the mode sets

are not similar, in addition to being computationally inefficient [97]. Amsallem

and Farhat [95] introduced a novel interpolation and obtained promising results.

Hay et al. [47] tried to derive modes from the POD modes of reference states by

either extrapolation of the referenced modes in the parameter space or through

a first-order expansion using the mode sensitivities. The expanded approach is

more accurate but computationally more expensive. In a series of studies Hay

et al. [98–100] tested both methods for varying bluff body shapes and different

Reynolds numbers and showed the effectiveness of the POD-ROM.

Jrgensen et al. [101] proposed the Sequential Proper Orthogonal Decomposition

(SPOD) using different sets of snapshots and yet still producing orthogonal POD

modes. This was carried out by projecting each set of old computed POD modes

on the new set of snapshots and subtracting the projection from new set of snap-

shots before calculating the auto-covariance matrix of POD. While the method is

reasonable accurate, the truncation of data might lead to errors. Bergmann et al.

[70] used another iterative ”Krylov-like” process. A POD-ROM was built using

POD modes of an alternative flow regime. Then the POD modes of the residuals

are computed and orthogonalized respect to the original POD modes. The new

set of POD modes including old and new modes are used for the next iteration.
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The same procedure is done at each iteration. They found excellent results for the

1-D Burgers equation, but the procedure converged too slowly for the 2-D Navier-

Stokes equations. Inspired by aforementioned mean flow mode or shift mode idea,

Siegel et al. [102, 103] introduced the Double Proper Orthogonal Decomposition

(DPOD). After computing the POD modes of each parameter state, the POD

modes are stored in new sets by rank. That is, the first POD mode of each set

goes to first secondary set and so on. Applying POD on the secondary sets leads

to the final DPOD modes.

There have been other less frequently used approaches. For example Afanasiev

and Hinze [104] use the POD-ROM iteratively for flow control. In this approach,

the new set of snapshots was added to the old set at each iteration. This process

is continued until the solution is converged. In another attempt [70], the hybrid

method that couples the direct numerical simulations and reduced order model

simulations was used. During the solution process, the DNS and POD-ROM are

performed sequentially to modify the results of POD-ROM and re-actualize the

database which is used to generate the modes. Camphouse et al. [73] introduced

the Split method which superposes modes derived from simulations of control

mechanism with no flow and simulations of the baseline flow with no control actu-

ation. They reported good results for Burgers equation. However, superposition of

modes for nonlinear equations is mathematically questionable. Behzad et al. [105]

tested the Split method for 2-D Navier-Stokes equation and found considerable

lack of accuracy.

None of the above approaches are optimal. In the GPOD and generalized POD

cases one obtains the correct POD modes and thus can optimally represent the

data, but a large eigenvalue problem must be solved. In the other cases, the

eigenvalue problem that must be solved is smaller, but the modes that one obtains

are suboptimal. In this work we introduce a new method that gives optimal modes

but doesn’t require the solution of 1 large eigenvalue problem.

To demonstrate the technique, we focus on developing POD modes for predicting

the transformation of a fluid flow from one state of motion to another. 2-D viscous
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flow around a NACA0015 airfoil at Reynolds number of 1000 was used as the test

bed. The actuation on the base flow was imposed by a fluidic jet located on 10%

cord length from the leading edge of the airfoil. A case study of constant blow-

ing/suction of fluidic jet is used to transform the flow from one state to another.

The accuracy of some popular POD enrichment methods including GPOD, and

DPOD are tested. These are compared to our new method called Recursive proper

orthogonal decomposition (RPOD). This method not only provides a method for

combining different flow states, but also allows the POD to be applied to large

data sets more efficiently than a standard POD.

4.2 Detailed Solution

In this section, the simulations that will be used to investigate the various POD

approaches are described. The simulations are of a two-dimensional incompressible

viscous flow past a NACA0015 airfoil with vortex-shedding.

4.2.1 Problem Description

Let Ω be a two-dimensional region containing a Newtonian incompressible viscous

fluid with the boundary Γ. For the simulation, a uniform inflow velocity is pre-

scribed at the left boundary of the domain. A NACA0015 airfoil is located at the

center of domain (0,0) with the angle of attack of 9◦. The angle of attack is defined

as the angle of the chord line of the airfoil and the velocity vector. The radius

of domain Ω is 10 times the chord length. The problem is non-dimensionalized

using the inlet velocity and the chord length such that when the viscosity, µ, is

one, the Reynolds number is also one. Several POD-reduced order models are

evaluated and tested for the airfoil in the laminar flow regime with Re = 1000.

An unstructured triangular mesh in a circular domain is used in all calculations.

Fig. 4.1 shows the mesh used for the flow simulation and for evaluation of the

corresponding POD. On the right side, an outflow boundary condition is imposed
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Figure 4.1: hp-Finite element mesh, resolved in wake region and high resolved
around jet region. (Re = 1000, chord length of the NACA0015 airfoil=1; Radious
of domain=10.)

where the total stress is set to zero. On the airfoil surface a no-slip boundary

conditions is prescribed.

4.2.2 Governing Equations

The governing equations are presented in this section and the numerical procedure

for the derivation of the reduced-order models are described in the next section.

The equations in curvilinear coordinates are solved using a high-order numerical

method. The details of the numerical scheme were described in [63, 106]. The

continuity and the Navier-Stokes equations governing the unsteady flow of an

incompressible viscous fluid are,

∂w

∂t
+
∂fx
∂x

+
∂fy
∂y

=
∂τx
∂x

+
∂τy
∂y

, (4.1)

with the flow vector

w =


ρ

ρu

ρv

 , fx =


ρu

ρu2 + p

ρvu

 , fy =


ρv

ρuv

ρv2 + p

 , (4.2)
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where u and v are the x- and y-direction velocities respectively and τx and τy are

the components of the total stress tensor, given by

τx = µ


0

2∂u/∂x

∂v/∂x+ ∂u/∂y

 , τy = µ


0

∂v/∂x+ ∂u/∂y

2∂v/∂y

 . (4.3)

where µ is the dynamic viscosity of the fluid which is assumed to be constant.

4.2.3 Numerical Method

An hp-finite element method is employed for performing the numerical simulations

[63, 69]. A Petrov-Galerkin variational approach is used to discretize the governing

equations on a finite element mesh consisting of triangular elements as shown

in Fig. 4.1. On each element, the flow solution is represented using the high

order triangular basis developed in [59]. Integration and differentiation operators

using this basis can be found in [60]. All calculations were done with the fourth

order polynomials which should give 5th order spatial accuracy in the L2 norm.

Both the finite element and the POD-ROM discrete equations are derived using

the streamwise-upwind-Petrov-Galerkin variational (SUPG) approach [18]. This

is a consistent residual based stabilization method. That is, the test function

of the integration is modified relative to the Galerkin approach, but the exact

solution still satisfies the weighted integral form. The details of formulation can

be found in [63, 69, 106]. The SUPG formulation is stable for convection and

viscous dominated flows and also allows equal order polynomials to be used for the

pressure and velocity field. A four-stage, index-2, diagonally implicit Runge-Kutta

(DIRK) method [61] was used for advancing time in all the flow and POD-ROM

simulations. The advantage of this method is its ability to achieve third order

accuracy while maintaining A-stability.
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4.2.4 Actuator Description

In this study, the flow is actuated through either constant blowing/suction (source

or sink jets) or oscillating flow (synthetic jet) placed on the airfoil surface. The

jet is modeled by imposing a velocity with the angle of 30◦ to the airfoil chord

line at a location of 10% of the chord length from the leading edge on the top

surface. Both a blowing/suction jet and a synthetic jet can changes the mean, the

flow fluctuations [29], and the amplitude of the lift and drag forces. Ausseur and

Pinier [107] suggested that placing the actuators near the leading edge increases

its effect. The mesh is well resolved around the jet position. The jet can be started

impulsively or gradually depending on the applications.

4.3 Reduced-Order Modeling Based on a POD

Galerkin Approach

4.3.1 Proper Orthogonal Decomposition

The bases for the reduced order models are derived from the detailed data using

the proper orthogonal decomposition (POD). The POD was introduced by Lumley

[2] as a means to extract the large-scale structures of turbulent flows. It uses data

obtained from experiments or numerical simulations to generate an orthogonal set

of spatial basis functions. These functions, herein called POD modes, are optimal

in terms of energy; the mean square inner product of the solution with a POD mode

is maximized. With an adequate number of POD modes, we can approximate any

solution as a linear combination of time-dependent weighting coefficients, an(t),

and the POD modes, Φn(x).

q(x , t) =
∑
n

an(t)φφφn(x ) (4.4)

=
∑
n

(q(x , t),φφφn(x ))φφφn(x ).
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where (·, ·) is an inner product.

The POD modes are eigenfunctions of the time-averaged correlation tensor of the

flow. mathematically,

∫
Ω

R(x ,x ′)φφφ(x ′)dx′ =

∫
Ω

〈q(x , t)qT (x ′, t)〉φφφ(x ′)dx ′ = λφφφ(x ), (4.5)

where,

R(x ,x ′) = 〈q(x , t)qT (x ′, t)〉. (4.6)

The angled brackets indicate time-averaging and λ represent the mean kinetic

energy captured by each mode or eigenfunction. The details of the POD tool can

be found in [26, 30, 31, 45, 65]. The discrete form of the (4.5) is applied to the

data obtained from numerical simulations. Therefore, the size of the eigenproblem

is equal to the number of data points in the mesh times the number of unknowns

at each data point (3 - u, v, and p), which makes it difficult to solve this problem.

To remedy that, snapshot method of Sirovich [19] has been employed to derive

the eigenfunction of the flow. That is an more efficient alternative method for

deriving the POD modes for data which is discrete in time. The main idea of this

method is to write the POD modes as a linear combination of ”snapshots” of the

instantaneous flow field. That is,

φφφ(x) =
Ns∑
l=1

q(x , tl)Ψ(tl), (4.7)

where the sum is performed over the number of snapshots, Ns. Substituting (4.7)

in (4.5), the size of the snapshot method eigenproblem is Ns,(
1

Ns

∫
x

q(x , tl) · q(x , tk)dx

)
Ψ = λΨ. (4.8)

The snapshot method is computationally more efficient whenever the number of

snapshots, Ns, is smaller than the number of solution unknowns.
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4.3.2 Low-dimensional Model

The solution for (u, v, p) is sought in the space spanned by a subset of the POD

modes, φφφ. That is the flow field for (u, v, p) can be reconstructed as:

q(x , t) =


u(x , t)

v(x , t)

p(x , t)

 =
Ns∑
n=1

an(t)φφφn(x ) =
Ns∑
n=1

an(t)


φun(x )

φvn(x )

φpn(x )

 . (4.9)

Note that the pressure and velocity modes are considered together which is known

as a coupled method. For more information about velocity-pressure ROMs the

reader can refer to [108]. Using the POD modes as the trial and test functions

in the SUPG weighted integral equations (eq. (3.7)), a system of nonlinear scalar

equations for the coefficients an are obtained,

r(an) = 0. (4.10)

That must be solved at each time step. For a finite number of POD modes, NR,

this becomes a reduced order or low dimensional model. The vector of reduced

order flow variables would be,

qROM(x , t) =


uROM(x , t)

vROM(x , t)

pROM(x , t)

 =

NR∑
n=1

an(t)φφφn(x ) =

NR∑
n=1

an(t)


φun(x )

φvn(x )

φpn(x )

 . (4.11)

4.4 Parameter Changes in the Proper Orthogo-

nal Decomposition

In many flow problems, the flow transitions from one mean flow state to another

such as would occur when a flow control system is turned on or off or when there

is a change in flow parameters such as inlet velocity or angle of attack. To have

a predictive ROM, one needs POD modes that can accurately represent not only
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pre and post parameter change states but also the path of the flow during the

parameter change. A brief review of different classes of methods that have been

proposed in the literature was given in the introduction (section 4.1). Here, three

of the more common methods are explained and compared: Global Proper Or-

thogonal Decomposition (GPOD) and Double Proper Orthogonal Decomposition

(DPOD). We then introduce a novel method of building POD modes that uses a

hierarchy of eigen-problems to generate modes. The new method uses the idea of

applying POD several times to generate a single set of POD modes from many

snapshots. It allows the POD to be applied to large data sets without requiring a

equally large eigen-solution and mathematically provides the optimal modes.

4.4.1 Global Proper Orthogonal Decomposition (GPOD)

In the GPOD approach [32, 85, 109] the averaging of the correlation matrix is

performed not only over time but also over data sets calculated at many different

solution parameters. ROMs created from these POD modes should be able to

simulate over a wide range of conditions because the correlation matrix (4.8) is

enriched with enough different solutions of the system. A pictorial representation

of the GPOD procedure is given in Fig. 4.2. In the figure, Nb is the number

of different conditions simulated and Ns is the number of snapshots taken from

each simulation. The problem with this approach is that one has a large database

composed of Nb × Ns snapshots which could make the eigenvalue problem (eq.

(4.8)) unmanageable.

4.4.2 Double Proper Orthogonal Decomposition (DPOD)

Siegel et al. [102, 103] introduced Double Proper Orthogonal Decomposition (DPOD)

method in which the POD is applied twice to generate modes. Fig. 4.3 gives a

pictorial representation. In this case, simulations are run at Nb parameter condi-

tions and the POD is first applied to each simulation individually (an eigenvalue

problem of size Ns). The POD is then applied again to each set of ith POD modes
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Figure 4.2: Pictorial representation of the GPOD procedure.

as shown by the dashed circle around each set of modes in the figure up for i up

to some cut-off value M1 (M1 eigenvalue problems of size Nb). This then results in

M1 sets of POD modes for each i. One then chooses the number of modes to keep

from each set, M2. If orthogonal modes are required, then an orthogonalization

procedure must be applied to the sets. The general idea is that each set will con-

tain the primary mode (first, second, third, etc.) plus the shift modes needed for

transient conditions. This method avoids having to solve one large POD problem.

In the following we implement a somewhat simpler version of DPOD where we

again apply POD to each simulation and decide how many modes to keep from

each simulation, M1. Rather than applying POD individually to the Nb sets of

modes we then apply POD to all the kept modes together. This results in an

orthogonal set of Nb by M1 modes. We can then select how many modes to use

from this final POD for the ROM. This approach does not individually identify

primary and “shift” modes, but should give similar ROM results while avoiding

having to perform a Gram-Schmidt orthogonalization procedure. In the following

we denote these results as MPOD for Modified DPOD. Note that this method

does still reduce the size of the final eigenvalue problem to size Nb ×M1 and thus
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is more easily applied to large data sets. A pictorial representation of the MPOD

procedure is given in Fig. 4.4.



Chapter 4. Reduced Order Modeling for Transient Flow 106

4.4.3 Recursive Proper Orthogonal Decomposition (RPOD)

Although, DPOD reduces the size of the eigenvalue problems that need to be

solved, there are assumptions inherent in the process that may not be correct. In

the second application of the POD, it is implicitly assumed that each of the ith

modes from the first level POD should be weighted equally. However, the reference

flows might have different eigenvalue spectrums, and one flows ith mode might be

much more important than another. To remedy this, we introduce the Recursive

Proper Orthogonal Decomposition (RPOD). This approach weights each mode

appropriately and gives identically the same modes as a GPOD, however it only

requires eigenvalues of size Ns to be solved, not Ns ×Nb.

Suppose that we have Nb simulations each of which has Ns snapshots, applying

the POD to each group of snapshots, Nb sets of modes will be generated. The

snapshots for any simulation can then be reconstructed as

q (i)(x , t) =
Ns∑
n=1

a(i)
n (t)φφφ(i)

n (x ) (4.12)

where the superscript (i) indicates the ith simulation. Subsituting (4.12) in (4.5)

gives

1∑Nb

i=1 ti

∫
x ′

(
Nb∑
i=1

∫ ti

0

(
Ns∑
j=1

a
(i)
j (t)φφφ

(i)
j (x )

)
,

(
Ns∑
k=1

a
(i)
k (t)φφφ

(i)
k (x ′)

))
dtΦ(x ′)dx ′ = ΛΦ(x )

(4.13)

ti is the length of ith simulation. Gathering terms this can be rewritten as

1∑Nb

i=1 ti

∫
x ′

(
Nb∑
i=1

Ns∑
j=1

Ns∑
k=1

(∫ ti

0

a
(i)
j (t)a

(i)
k (t)dt

)(
φφφ

(i)
j (x )φφφ

(i)
k (x ′)

))
Φ(x ′)dx ′ = ΛΦ(x ).

(4.14)
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One can show that the POD coefficients satisfy
∫
ajak = λjδj,k [31] where δj,k is

the Kronecker delta function. This then gives

∫
x ′

(
Nb∑
i=1

(
Ns∑
j=1

λ
(i)
j φφφ

(i)
j (x )φφφ

(i)
j (x ′)

))
Φ(x ′)dx ′ = ΛΦ(x ). (4.15)

This is again an eigenvalue problem similar to eq. (4.5), except here the two-point

correlation tensor is replaced by a weighted expression combining the POD modes

from each of the Nb simulations. This shows that the two point correlation tensor

that would be obtained from the GPOD approach (averaging over Nb simulations

and Ns snapshots) is exactly the same as the two point correlation tensor that one

obtains by using a weighted average over the modes from each simulation where

the weights are the eigenvalues.

To take this one step further, we can apply the “snapshot” POD approach to solve

the above eigenvalue problem. The main idea is to write the global POD modes

as a linear combination of the POD modes from the individual simulations. That

is,

Φ(x ) =

Nb∑
i=1

Ns∑
j=1

φφφ
(i)
j (x )Ψij, (4.16)

Substituting in (4.15),

∫
x ′

(
Nb∑
i=1

Ns∑
j=1

λ
(i)
j φφφ

(i)
j (x )φφφ

(i)
j (x ′)

)(
Nb∑
k=1

Ns∑
l=1

φφφ
(k)
l (x ′)Ψkl

)
dx ′ = Λ

Nb∑
i=1

Ns∑
j=1

φφφ
(i)
j (x )Ψij.

(4.17)

where Λ is the eigenvalue of the global POD problem. This can be rearranged as

(
Nb∑
i=1

Ns∑
j=1

λ
(i)
j φφφ

(i)
j (x )

Nb∑
k=1

Ns∑
l=1

(∫
x ′
φφφ

(i)
j (x ′)φφφ

(k)
l (x ′)dx ′Ψkl

))
= Λ

Nb∑
i=1

Ns∑
j=1

φφφ
(i)
j (x )Ψij.

(4.18)
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Bringing the right hand side over and factoring out the common factor of φ
(i)
j (x)

gives

Nb∑
i=1

Ns∑
j=1

φφφ
(i)
j (x )

(
λij

Nb∑
k=1

Ns∑
l=1

(∫
x ′
φφφ

(i)
j (x ′)φφφ

(k)
l (x ′)dx ′Ψkl

)
− ΛΨij

)
= 0. (4.19)

This equation can be satisfied by solving

λij

Nb∑
k=1

Ns∑
l=1

(∫
x ′
φφφ

(i)
j (x ′)φφφ

(k)
l (x ′)dx ′Ψkl

)
= ΛΨij. (4.20)

If the i, j indices are converted into a single index system, (i.e. I = Ns(i− 1) + j)

This can be written as a standard eigenvalue problem

DCΨ = ΛΨ, (4.21)

in which D is the diagonal matrix of eigenvalues, λ
(i)
j , and C is the inner product

of all the POD modes i.e.

Cij,kl =

∫
x ′
φφφ

(i)
j (x ′)φφφ

(k)
l (x ′)dx ′

At first glance, this does not seem to be an improvement over the GPOD approach

as it is still dimension Nb ×Ns modes, but one does not need to keep every POD

mode from the original decompositions. If one truncates the number of POD

modes used from the first decomposition to M modes, then the size of the final

eigenvalue problem is only Nb×M . One can determine M by examining the eigen-

value spectrum of the first decompositions, thus this approach allows a systematic

way to reduce the size of the eigenvalue problem needed to obtain global POD

modes. It also offers a systematic way to combine the modes generated from two

different POD decompositions without requiring a Gram-Schmidt orthogonaliza-

tion procedure. Although, we explained a two-level RPOD, this approach could

be applied in a recursive manner at each level keeping only modes with eigenvalues

above a specified energy threshold.
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4.5 Results

In this section, we compare the various methods by investigating a 2D flow over an

airfoil NACA0015 in laminar regime (Re = 1000). The flow is actuated through

constant blowing/suction (source or sink of mass) with varying values. The actu-

ator’s flow has the angle of 30◦ respect to the airfoil chord line at a location 10%

of the chord length from the leading edge on the top surface. The angle of attack

is 9◦. All of the parameters are nondimensionalized respect to far-field velocity,

u∞ and chord length. The same numerical set up has been tested for detailed and

POD-ROM simulation of a periodic flow in section 3.5 successfully.

For this work, only transient cases are considered; the simulations start with no

actuation. After 2 periodic vortex shedding cycles, the fluidic actuator is turned

on. During 5 nondimensionalized time units the power of the actuator is increased

from zero to a specified value, the magnitude of constant steady blowing/suction.

This change affects the coherent structures appearing in the flow. It causes the

periodic state of flow to shift from one amplitude to another one. Suction decreases

the drag force and increases the lift force. Blowing on the fluidic actuator has the

opposite effect. Each detailed simulation includes 1100 snapshots from the initial

periodic state to the final periodic state. Six different amplitudes (−1.5u∞, −u∞,

−u∞/2, u∞/2, u∞, and 1.5u∞) are imposed on the actuator. Therefore, the whole

database includes 6600 snapshots (6× 1100). This is not unreasonably large, but

as we showed in the previous chapter if the flow was turbulent a much larger

database would be needed. This simple problem is sufficient to demonstrate the

advantages of the our new technique.

4.5.1 RPOD Versus GPOD

If the POD is applied on all the snapshots in the database, the ROM using the

resultant modes provides an accurate representation of the flow but the eigenprob-

lem is large. Here we demonstrate that the RPOD can provide comparable results

while reducing the size of the eigenvalue problem that one must solve.
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Figure 4.5: Eigenvalues of POD using all snapshots (solid line), eigenvalues of four
detailed simulations (dashed line).

To study RPOD, first we look at the eigenvalues. Four detailed simulations with

actuation magnitudes of −u∞, −1/2u∞, 1/2u∞, and u∞ are performed. So the

whole data base is composed of 4× 1100 = 4400 snapshots. In applying the POD

to each simulation individually, four eigenvalue spectra are produced. Fig. 4.5

shows the eigenvalues of each detailed simulation and the POD of all the snapshots

together (GPOD). One can see that there is information in each simulation that

is not contained in the other simulations because the GPOD spectrum converges

slower than each simulation individually.

In the second step of RPOD, we weight each of the modes as discussed in sec-

tion 4.4.3 and perform an additional POD. Depending on the number of modes

kept from the first POD, this should reproduce the GPOD spectrum. Fig. 4.6

shows the GPOD spectrum versus RPOD spectra created with different mode

truncations M = 50, 75, 100, and 110. As the cut-off mode number is increased,

the spectrum converges toward POD of all snapshots. The deviation between the

full spectrum and the RPOD spectrums can be predicted by examining the cut-off

energy of the initial POD. For example, for a cut-off of M = 50, the cut-off energy

of the individual Nb spectra are at about λ = 10−6. This the level at which the

final RPOD spectrum deviates from the GPOD spectrum. This also holds fairly

well for the other cut-off levels so if one knows what tolerance one requires in

reproducing the GPOD results, it is straightforward to decide how many modes
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Figure 4.6: Eigenvalues of POD using all snapshots (solid line), eigenvalues of
RPODs with cut-off M = 50, 75, 100, and 110 (dashed line).

to keep from the first level of the RPOD. Also note that for M = 110, the size of

the final eigenvalue problem for the RPOD is a factor of 10 smaller than the full

eigenvalue of problem.

An alternative method that is often used to reduce the size of the eigenvalue prob-

lem for GPOD is to use a reduced set of snapshots. Fig. 4.7 shows a comparison

of the eigenvalues of the full GPOD to GPODs performed using a reduced number

of snapshots, Ns = 55 and 110. This is also compared to RPOD with M = 55

and 110. One can see that for this particular case, simply reducing the number of

snapshots still reproduces the eigenvalue spectrum reasonably well, but the RPOD

does a better job for the same size of the final eigenvalue problem. Furthermore,

the RPOD is a more controlled approach in that one can use the initial POD

decomposition to determine how many modes are necessary for the second POD

decomposition whereas one must arbitrarily choose a reduced snapshot size with

no a-priori insight on what amount of reduction is acceptable.

In order to investigate the ROM from RPOD and GPOD, two different cases are

considered:

• Case RPOD: POD is applied on 550 snapshots of detailed simulations of six

actuation amplitudes, −1.5u∞, −u∞, −u∞/2, u∞/2, u∞, and 1.5u∞. So six

eigenproblems with dimension 500 are solved and 6 × 550 POD modes are
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Figure 4.7: Eigenvalues of POD using all snapshots (solid line), eigenvalues of
GPOD using Ns = 220 and 440 (dotted line) and, RPOD using cut-off number of
Ncut−off = 55 and 110 (dashed line).

derived. 200 energetic POD modes are sampled from each set of modes for

the second level of RPOD approach. It would lead to an eigenproblem with

size 1200. Note that to do the RPOD, we need 200 eigenvalues of primary

POD level.

• Case GPOD: 400 snapshots, uniformly distributed over each of 6 detailed

simulation with actuation magnitude of −1.5u∞, −u∞, −1/2u∞, 1/2u∞, u∞,

and 1.5u∞ are sampled to construct temporal tensor (4.8). The dimension

of the eigenproblem becomes 6× 400 = 2400.

19 modes of the final RPOD modes are used to perform the POD-ROMs. Results,

showed in Fig. 4.8, are close to the detailed simulation. In fact, the results of

ROMs using GPOD and RPOD are on each other. It shows that GPOD could be

powerful if enough snapshots are sampled. Also, it shows that weighting process is

crucial in a muti-level POD to achieve right set of POD modes. RPOD can perform

as accurate as GPOD while it needs to solve smaller size of eigenproblems. This

capability of RPOD becomes more important when the method is supposed to be

used for non-periodic flows. Note that the first level of eigenproblems can be solve

parallelly. It means that instead of solving a giant eigenproblem once, it solve

some smaller eigenproblems, most of them can be solved at the same time. So,

RPOD make it possible that through manageable sizes of eigenproblems, optimal
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Figure 4.8: Comparison of the drag coefficient, detailed simulation with A=u∞
(solid lines), POD-ROM using GPOD modes with A=−u∞ (dashed lines), and
POD-ROM using RPOD modes with A=−u∞ (dotted lines).

energy is streamed toward the final set of modes. Therefore, more initial detailed

simulations and samples of each simulation are taken into account by the final

POD modes.

4.5.2 MPOD

In section 4.4.2, we introduced MPOD through which one can generate the POD

modes for each simulation individually and then truncate the POD modes of each

set and construct a second level set of POD modes. POD modes of the second

set produces a cascade of information from initial simulations POD modes to the

final set of POD modes, although, the size of matrices are manageable and the

final modes are orthogonal. In section 4.4.3 we introduced RPOD as the right way

multi-level POD process. To show the importance of weigthing the POD modes

at the second level POD, we present the results of ROM using MPOD modes.

For the sake of right comparison between RPOD and MPOD, we use the same

snapshots which were used in section 4.5.1. 550 snapshots of each six detailed

simulation are sampled and POD is applied to derive 550 POD modes. So, six

sets of modes are available, each includes 550 POD modes. The secondary POD

applied on 200 low frequency primary POD modes to derive the final POD modes.
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Figure 4.9: Comparison of the drag coefficient, detailed simulation with A=u∞
(solid lines), detailed simulation with A=−1/2u∞ (dash-dotted lines), POD-ROM
using MPOD basis with A=−1/2u∞ (dotted lines), POD-ROM using MPOD basis
with A=u∞ (dashed lines).

Therefore, the dimension of the secondary eigenproblem would be 1200, (6×200).

19 of the final modes are used to repeat the POD-ROMs. Fig. 4.9 shows the results

of MPOD for the same case of above. Poor results have been met. The reason is

various levels of energy corresponding to various flow simulations. Suppose that

two flow with totally different level of energy are used as the input of MPOD. The

second eigenproblem treats all the input POD modes the same, no matter that

each POD mode represents a special amount of energy. Due to the same reason,

eigenvalues spectrum of different cases are unique respect to that process.

4.6 Conclusion

The first goal of this section is a review on the methods which were developed to

conquer the difficulties that the POD faces to represent the transient state of a fluid

flow. The main issue in developing dynamically accurate low-dimensional models

lies in obtaining a mode set that spans the entire parameter range of interest. The

methods cathegorized to two main approches, enrichment of the flow and adding

more modes to reduced order model. We focused on the enrichment of the modes

and a novel method, called recursive proper orthogonal decomposition (RPOD)
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is introduced to solve the computational cost of the previous methods. Also, two

well-known methods, Generalized POD basis and Global POD modes, were tested

to show the advantage of the new method.

The so called methods were tested for a 2-D fluid flow over an airfoil at Re = 1000.

The flow was acctuated with a fluidic jet located on the airfoil. It derives the fluid

flow from a periodic state to a secondary periodic state with different amplitude

and frequence. The magnitude of constant blowing/suction of the fluidic jet could

be different and through that a variaty of fluid flow states were generate. The

snapshots of the simulations was used as the data base.

We conclude that the Generalized POD basis needs a long comprehensive refrensed

solution of Navier-Stokes to be able to produce appropriate POD modes. On the

other hand GPOD can produce informative modes. But the data base should be

large enough. GPOD is generally would be a more powerful method than the

Generalized POd basis. But in order to derive informative modes, both methods

suffer from solving giant eigenproblem. To solve that problem, we introduced

a new method called recursive proper orthogonal decomposition (RPOD). The

accuracy of the new method is as good as GPOD while it deals with smaller eigen

problems. The idea is breaking the full POD applied on the data base to some

smaller eigenproblems. The resulting POD modes are weigthed and employed as

the inlet of a secondary eigenproblem. Through this idea, it is possible to decreas

the computational time of solving an eigenproblem and keep the accuracy of the

modes. Mathematically RPOD generates the optimal cascade of information from

initial snapshots to final POD modes. Also the method that we propose appears

to be a viable approach for clusters where most of the needed eigenproblems could

be solved at the same time.
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Summary, Conclusions, and

Recommendations for Future

Work

In this chapter, concluding remarks and recommendations for future work are pre-

sented. The research performed here is motivated by the need for real time active

control of fluid flow, and in particular, separation control of airflow over an airfoil

at high angle of attack. It is possible to reduce the computational cost of fluid

flow simulation if the flow velocity field can be expressed in term of some intelli-

gent modes that characterizes the flow. These modes are typically evaluated from

detailed simulations. This approach has the advantage that accounting for the

energetic scales of the flow, so that the dominant features of the flow can be rep-

resented by a small number of modes. For example, for flow control applications,

there is a need for rapid computation of the variation of the flow to external actu-

ation. In this case, rapid availability of computational results is of essence as long

as the majority of the energy of the flow is accounted for. Among the methods to

decompose the fluid flow, the proper orthogonal decomposition (POD) that has

attracted considerable attention, is used in the present study. That is a number

of energetic modes is used to build a reduced order model for predicting the main

feature of the flow. Other important aspect of this dissertation includes assessment

116
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of numerical errors of derivation of POD modes, building reduced order modeling

for simple 1-D Burgers equation and 2-D flow over a NACA 0015 at low and high

Reynolds number. One innovative aspect of the present thesis is the development

of a new method by modifying the POD modes for accurate prediction of the flows

under transient states.

5.0.1 Conclusion

5.0.1.1 Proper orthogonal decomposition based reduced order model-

ing for burger equation

Two important aspects of proper-orthogonal-decomposition-based reduced order

modeling (POD-ROM) of the Burgers equation were examined. The first is the

sensitivity of the eigenvalue spectrum and the POD modes to round-off errors

and errors caused by using a reduced number of snapshots in building the POD.

For both the direct and the snapshot method of solving the POD problem, solu-

tions obtained using LAPACK’s DGEEV were compared to a new method that we

called the “deflation” method. The deflation method always gave positive eigen-

values where as LAPACK often gives spurious negative eigenvalues. However,

the direct method using DGEEV was the only method that gave POD modes

that are orthogonal to machine precision. For the snapshot method without de-

flation the orthogonality of the modes was poor for any mode beyond the point

where the eigenvalues approach machine precision. The orthogonality of the snap-

shot method improved using the deflation method but not to machine precision.

For the snapshot method, the number of snapshots required to obtain an accu-

rate eigenvalue spectrum was determined by the smallest time scale of the phe-

nomenon. After resolving this time scale, the errors in the eigenvalues and modes

drop rapidly then converge with second-order accuracy. Second aspect which was

studied is the effects of mode quality, ROM stabilization, and ROM dimension

were investigated for low- and high-Reynolds number simulations of the Burgers

equation. The ROM error was assessed using two errors, the error of projection
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of the problem onto the POD modes (the out-plane error) and the error of the

ROM in the space spanned by POD modes (the in-plane error). The numerical

results showed not only is the in-plane error bounded by the out-plane error (in

agreement with theory) but it actually converges faster than the out-of-plane er-

ror. The total error was only weakly affected by the quality and orthogonality of

the POD modes. Stabilization of the ROM had a positive effect at high-Re, but

when the underlying grid used to derive the ROM is well-resolved, stabilization

was not necessary.

5.0.1.2 On the robust proper orthogonal decomposition based reduced

order modeling

This section investigated the accuracy of reduced order models (ROMs) for low

and high Reynolds number flows. The benchmark configuration for low Reynolds

case study was a 2D incompressible flow over a NACA0015 at an angle of attack

of 12◦ at Re = 1000 such that separation occurred. The wake behind the airfoil is

periodic at this Reynolds. The benchmark for high Reynolds case study was Re

= 100,000 at angle of attack 15◦ where the flow became chaotic. For each flow,

proper orthogonal decomposition (POD) modes were generated that included a

pressure component to allow the easy calculation of drag forces from the model.

For the low Reynolds number case, Galerkin, Streamwise-Upwind-Petrov-Galerkin

(SUPG), and spectral vanishing viscosity (SVV) approaches were used for creating

the POD-ROM. For short term prediction in the low Reynolds case, all models

were in good agreement with the detailed simulation. However, the SUPG model

was the only model that provided accurate long-term predictions. For the high

Reynolds number case, the convergence rate of eigenvalues respect to the length of

the time window which was used to generate the modes was very slow. For ROM,

the Galerkin and SUPG approaches were compared. It was shown that both

methods do provide good agreement with detailed simulation in the time window

over which the POD modes are extracted. For long term simulation, neither

SUPG ROM nor Galerkin ROM provided accurate results. The SUPG ROM

decays to semi-periodic state where if the dimension of the ROM is increased, the
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amplitude of semi-periodic state is lower. The Galerking ROM method showed

over prediction with error more than 100%. It was concluded that a wide time

window of snapshots is needed to generate POD modes that can accurately predict

turbulent flows. Also, the size of the POD ROM should be high for chaotic flows,

because the energy distributed over a wide range of the modes. This result is in

contradiction with the goal of reduced order modeling, that is using a few number

of modes to have an accurate simulation of the flow.

5.0.1.3 Proper orthogonal decomposition based reduced order model-

ing for transient fluid flows

To have a set of POD modes which are capable to predict the flow over a transi-

tion of states, some methods have been recommended. The wildly used method

is enrichment of the modes in terms of information to adjust their capability for

prediction of a transient. In section 4, a review on the methods which were de-

veloped to conquer the difficulties that the POD faces to represent the transient

state of a fluid flow, was done. The benchmark was a 2-D fluid flow over an airfoil

at Re = 1000. The flow was actuated with a fluidic jet located on the airfoil.

It drives the fluid flow from a periodic state to a secondary periodic state with

different amplitude and frequency. Two well-known methods, Generalized POD

basis and Global POD modes, were tested. We concluded that GPOD is more

powerful than generalized POD basis. Hence, both methods need the solution of

a huge eigenvalue problem. So, a novel method, called Recursive proper orthog-

onal decomposition (RPOD) was introduced to reduce the computational cost of

the previous methods, while providing the accuracy of the GPOD. The idea is

breaking the full POD applied on the data base to some smaller eigenproblems.

The resulting POD modes are weighted and employed as the inlet of a secondary

eigenproblem. Mathematically RPOD generates the optimal cascade of informa-

tion from initial snapshots to final POD modes.
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5.0.2 Recommendations for future work

The subject, covered in this these has a lot of potential in many engineering

applications. The following recommendations for future study are made:

1. Additional investigation on the high Reynolds ROM is needed. The pre-

sented results showed that for high Reynolds flows the ROM requires very

large number of modes to lead to accurate simulation. It also needs a very

long duration detailed simulation for generating the modes POD modes. To

overcome the computational cost of evaluating POD modes from a very long

and highly resolved simulation, recursive proper orthogonal decomposition

(RPOD), introduced in chapter 4, could be employed. Then, a large size

ROM using those modes could be developed and tested. It is important to

verify the application of POD-ROM for real time control application.

2. The presented study showed that for high Reynolds flows, a large number of

modes should be employed for accurate description of the flow. To generate

a low order model with small number of models, a closure model is necessary.

On the other hand, it was shown that the dimension of ROM has a significant

effect on results. Therefore, the closure model should take into account the

effect of mode frequencies at high Reynolds POD ROMs. The idea of SUPG

could be used where the time scale involved in SUPG should be modified

by the effect of frequency of each mode. The eigenvalues correspond to each

mode could be the key to develop and adjust the closure model.

3. Full state feedback control law could be developed to suppress vortex shed-

ding behind the airfoil. Real dynamical systems require sensors and estima-

tors for feedback control. In this work, the coefficients of each mode of the

flow as the weight of main structures is the tool to decide about the feedback

control. It means that instead of reading pressure at a specific point and use

that as the input of feedback control, one can just use the coefficients of the

energetic POD modes within a ROM. Also, thanks to the decomposition, it
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is possible to just control a few energetic POD mode for control instead of

dealing with the whole fluid structures.
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