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Abstract

This dissertation deals with the question of how to optimally execute orders for fi-

nancial assets that are subject to transaction costs. We study the problem in a

discrete–time model where the asset price processes of interest are subject to stochas-

tic volatility and liquidity.

First, we consider the case for the execution of a single asset. We find predictable

strategies that minimize the expectation, mean–variance and expected exponential of

the implementation cost.

Second, we extend the single asset case to incorporate a dark pool where the

orders can be crossed at the mid-price depending on the liquidity available. The

orders submitted to the dark pool face execution uncertainty and are assumed to be

subject to adverse selection risk. We find strategies that minimize the expectation

and the expected exponential of the implementation shortfall and show that one can

incur less costs by also making use of the dark pool.

Next chapter studies a multi asset setting in the presence of a dark pool. We

find strategies that minimize the expectation and expected exponential of a cost

functional that consists of the implementation shortfall and an aversion term that

penalizes the orders crossed in the dark pool. In the expected exponential of the cost

case, the dimensionality of the problem does not allow for the numerical computation

of optimal strategies. Therefore, we first solve the expected exponential case for

a second order Taylor approximation and then provide a framework via a duality

argument which can be used to generate approximate strategies.

Lastly, we treat the case where the single asset execution problem exhibits ambi-

guity for the distribution of stochastic liquidity and volatility. We see the implemen-

tation cost as the sum of risk terms arising at each execution period. We consider

the problem obtained from aggregating worst case expectations of these risk terms,

by penalizing the distributions used with dynamic indicator, relative entropy and
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Gini indices. Next, we formulate the problem as the multi–prior first order certainty

equivalent of the exponential cost and lastly we consider a second order certainty

equivalence formulation.
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Nicolas Pègard, Patrick Rebeschini, Lorenzo Reus, Juan Sagredo, Xin Tong, Firdevs

Ulus, Kevin Webster, Alexander Wugalter, and Zhikai Xu for their friendship.

Most of all, I am indebted to my parents Sibel and Yavuz, and to my sister Tug̃çe.
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Chapter 1

Introduction

The foundation of modern day equities trading has been floor trading, a system which

has been established about a century ago. A typical trading process would start by a

customer placing an order to his/her brokers order taker which would then be passed

on to a runner who would find the brokers floor trader on the trading floor. If the floor

trader can get a fill for the order then this information would be rushed back to the

customer and the clearing and settlement process would start. In todays markets there

is no need for runners and floor traders anymore. The shift from the physical form

of trading to electronic trading has replaced runners and floor traders with electronic

communication networks. These networks made trading substantially easier and more

transparent. Anyone can have access to all the bid and ask information, order sizes

and to the history of all such quantities. These networks ensure that one gets feedback

for his/her orders in fractions of seconds.

The technological progression of markets allowed participants to be more quan-

titative about how one should trade in an exchange hence it also changed the way

the brokers deal in the markets. Although, the mechanism of trading introduced

by floor trading fundamentally still remains the same, today the brokers are like an

interface that allows customers to interact with markets through algorithms which
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are designed to execute trades on behalf of the customer. It is common to measure

the performance of the broker against some benchmark performance criteria. At the

core of most performance criteria lies the transaction costs of trading. When speak-

ing of transaction costs we understand the unfavorable price movement for the trade

that is being executed. The transaction costs arise from shifts in the demand and

supply. When large orders are placed into the order book, they reveal information

to other market participants and therefore the prices of securities move unfavorably

for the broker and hence the customer. A typical practice for the broker would start

by receiving an execution order from an institutional investor. The deadline until

which the execution must be completed would be specified which typically is not

longer than a day and is usually around 1–2 hours. Then a benchmark performance

criterion would be selected or specified by the institutional investor. At this point the

broker or namely the execution services provider first selects a macro level algorithm,

known as the slicer, to decide on a trading schedule. The slicer decides how many

assets one should trade in a certain amount of time with respect to the performance

criteria that the broker is benchmarked against. Secondly, the broker has a tactical

algorithm which works on the limit order book level. The tactical algorithm uses

the output of the slicer and tries to get the best price for the assets being traded by

deciding how to place limit and market orders across different venues.

This dissertation focuses on the question of how to optimally execute orders for

financial assets at a macro algorithm level. In the rest of this chapter, we first

briefly introduce some of the most commonly used execution models by reviewing the

available literature. Then we discuss the Almgren–Chriss execution model in detail.

Chapter 2 studies the optimal execution of a single–asset in a market with stochastic

liquidity and volatility. Chapter 3 extends on the model for the single asset market

by including a dark pool; an exchange that hides the available liquidity and where the

orders can be crossed at the mid–price. Chapter 4 treats the case when one executes
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orders for a portfolio of assets in a setting with stochastic liquidity, volatility and a

dark pool. Chapter 5 deals with the question of finding a robust execution strategy

that is optimal for a single–asset when there is ambiguity for the distributions of

liquidity and volatility processes. All proofs are given in the Appendix.

1.1 Macro level execution models

The transaction costs have mostly been associated with the rate of trading. When

one trades a large volume in a short amount of time, it translates into consuming

the liquidity and it may result in high transaction costs. Therefore, in an execution

model one major component is how one models the impact of submitted orders on

the asset price. We should note that in the execution models that work on the macro

level it is assumed that price impact is exogenous, where as in the models that work

on the micro level the price impact is observed to be the natural consequence of

evolution of arriving orders on both the bid and ask side of the limit order book.

One strand of literature works with models which assume the market impact has two

components. One of these component is assumed to have a temporary impact and

the other a permanent impact on the asset price. In a fundamental paper, Bertsimas

and Lo (1998) address an optimal execution problem using a model where the asset

price process follows a discrete-time random walk and transactions in the asset cause

a permanent price impact that is linear in the amount of shares traded. In an other

fundamental paper, Almgren and Chriss (2001) add a temporary price impact to this

discrete–time model from which the asset recovers in the next period. They assume

that the temporary impact is also linear in the amount of transactions in the asset.

We classify these type of models as linear temporary impact models. In the same

setting Almgren (2003) studies the optimal execution problem for nonlinear impact

functions. The other strand of literature assumes that price impact is transient, which
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means that the impact of submitted orders will decay over time. Such a framework

was first proposed by Obizhaeva and Wang (2013). When using such a framework

one usually assumes a continuous density for the depth of order book, which helps to

model the impact of trading, and then a decay kernel dictating the time it takes for the

order book to recover from the price impact is specified. Obizhaeva and Wang (2013)

assume a constant density for the depth of the order book and use an exponential

decay kernel to model the order book recovery. Alfonsi et al. (2010) generalized this

framework by allowing the depth of the order book to vary as a function of the price.

Alfonsi et al. (2012) and Gatheral et al. (2012) have generalized it further by using

different decay kernels and order book densities.

Perold (1988) defines the cost of execution through implementation shortfall. Im-

plementation shortfall is the difference between the initial monetary value of the

position that one holds in a financial asset and the money collected from the sale

of the asset that is being liquidated. Therefore, it measures how costly the execu-

tion has been due to exposure to adverse selection. Cost functionals used in the

literature are mostly built around the implementation shortfall. Bertsimas and Lo

(1998) is an example where the expected implementation shorfall is minimized. On

the other hand, Almgren and Chriss (2001) minimize a mean-variance criterion of the

implementation shortfall. Both of these models assume constant volatility and price

impact in a setting where price process has an additive market innovation component.

Therefore, in the case of Bertsimas and Lo (1998) one loses the noise term as the in-

novations have mean zero; where as, in the case of Almgren and Chriss (2001) the

volatility risk is captured in the objective function that is being minimized because

of the variance term. It turns out the cost minimizing strategy of Bertsimas and Lo

(1998) is a constant speed sell strategy where one sells an equal amount of shares in

the asset at each period until the end of the execution. However, the deterministic

mean–variance minimizing strategy of Almgren and Chriss (2001) sells faster than
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the constant speed strategy beacuse of the aversion to volatility risk. Schied and

Schöneborn (2009) have associated the speed of the optimal execution strategy to

the absolute risk aversion of the objective function that is being optimized. They

have shown that the speed of selling increases as the absolute risk aversion increases.

Forsyth (2011) and Gatheral and Schied (2011) are example of a continuous-time

model in which the unaffected price process is assumed to be a geometric Brown-

ian motion. One rather surprising result is by Schied et al. (2010) who studied the

optimal execution problem for an agent with expected exponential utility of the im-

plementation shortfall in a continuous-time model with Lévy noise. They found that

in the analog of the Almgren-Chriss model the optimal strategy is of the same form

as the deterministic best mean-variance strategy even if one looks for a solution in

the class of all adapted strategies. A deterministic strategy usually turns out to be

optimal in the class of all adapted strategies if one works with a price process that

consists of additive noise and non–random price impact, and the cost functional does

not have a risk term that depends on the price process.

Among the models that account for stochastic price impact and volatility is Walia

(2006) where it is assumed that the volatility and liquidity processes follow a coupled

Markov chain and they minimize one-step mean-variance criteria. In an other con-

tribution, Almgren (2012) use the continuous–time analog of this model where the

volatility and liquidity follow correlated diffusion processes. To incorporate stochas-

tic impact Bayraktar and Ludkovski (2011) and Moazeni et al. (2013) model the

price impact with a Poisson process. When one assumes stochastic dynamics for

the liquidity process the dynamically optimal strategy will no longer be determin-

istic. Makimoto and Sugihara (2010) have studied a portfolio execution problem in

a setting by allowing the decay kernel used by Obizhaeva and Wang (2013) to be

stochastic. We refer to Gatheral and Schied (2013) for a more detailed survey of

models used in optimal execution.
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1.2 The Almgren–Chriss model

The market impact model proposed by Almgren and Chriss (2001) is the model we

extend on in the following chapters, therefore, we present it in detail. We consider

the problem of liquidating an asset position of X ∈ R+ shares until a given time

T ∈ R+. We divide the interval [0, T ] into N subintervals of length ∆t and decide at

every time tn−1 = (n− 1)∆t how many shares yn to sell in the interval (tn−1, tn]. We

assume that the unaffected price process of the asset is given by

S0
n = S0

n−1 + σ
√

∆tξn,

(ξn) is a sequence of standard normals and σ is the volatility of the unaffected stock

price process. When a sell order of yn is submitted it is assumed that the asset price is

depressed linearly in the amount of shares yn. We further assume that there are two

components of the price impact that yn has on the asset. One component depresses

the price process permanently hence for a constant c ∈ R+ describing a permanent

price impact, the price process while executing an order is described by

Sn = S0
n − c

n∑
i=1

yn

= Sn−1 + σ
√

∆tξn − cyi. (1.2.1)

since S0
0 = S0. We can think of Sn as a fixed convex combination of the bid and

ask price: Sn = λSbn + (1 − λ)San. For λ = 1/2, Sn is the mid price. The temporary

component affects the execution price that one gets for the order yn and its effect

is assumed to vanish in the next period. We assume the resulting execution price is

given by

S̃n = Sn−1 − ηyn, (1.2.2)
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Figure 1.1: Unaffected price process
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Figure 1.2: Price dynamics under permanent and temporary impact

where η ∈ R+ is a constant modeling the temporary price impact. Figures 1.1 and

1.2 depict the price processes we described. In Figure 1.2 it is assumed that yi = 0

for all i ≤ n− 1 and yn > 0.

Then the proceeds from selling the asset shares will be
∑N

n=1 ynS̃n. We can de-

scribe an execution strategy also in terms of remaining shares xn = X −
∑n

i=1 yi.

Furthermore, we require:

x0 = X, xn−1 ≥ xn, xN = 0,

This means that each yn must be non-negative and
∑N

n=1 yn = X. An execution

strategy is completely specified by xn for 1 ≤ n ≤ N − 1. Let us denote the set of all

7



such strategies by D. The implementation cost of a strategy x ∈ D is the difference

between the initial value and the proceeds: C(x) := XS0−
∑N

n=1 ynS̃n. Since xN = 0,

it can be written as

C(x) =
cX2

2
+

N∑
n=1

(xn−1 − xn)2
(
η − c

2

)
− xnσ

√
∆tξn.

The goal in Almgren and Chriss (2001) is to find x ∈ D such that for a parameter

λ ∈ R+ the mean–variance trade–off given by

E[C(x)] + λVar(C(x)) =
N∑
n=1

(xn−1 − xn)2
(
η − c

2

)
+ λσ2∆tx2

n, (1.2.3)

is minimized. Assume that η− c/2 > 0, then one can find the mean–variance optimal

deterministic strategy simply by a first order condition since the expression in (1.2.3)

is convex in x and the solution obtained in such a way turns out to be in D. The first

order condition reads as

xnλσ
2∆t = (xn−1 − 2xn + xn+1)(η − c/2), n = 1, . . . , N − 1,

and the solution to these set of of linear difference equations computes as,

x∗n = X
sinh(κ(T − n∆t))

sinh(κT )
, (1.2.4)

for the unique κ > 0 satisfying cosh(κ∆t)− 1 =
λσ2∆t

2η − c
.
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Chapter 2

Single–asset execution

Using the execution model proposed by Almgren and Chriss (2001) we consider an

execution problem under stochastic volatility and temporary price impact by follow-

ing Cheridito and Sepin (2014). We consider three different objective functions. First

is the expectation of the implementation cost. The second one is the expected expo-

nential and the last one is the mean–variance trade–off of the implementation cost.

Our focus is on finding predictable strategies that minimize the objective functions

we consider. For finding predictable strategies we assume that prices, volatility and

liquidity are observable. In the frameworks we consider, volatility and liquidity are

allowed to be dependent. Moreover, the strategy that minimizes the expectation and

a mean–variance of the implementation cost is also allowed to depend on the market

innovations of the price process. We use a Markovian setting. This assumption allows

us to focus on the last observed state of the process instead of the whole history and

hence makes the models we consider tractable.

The predictable strategy minimizing the expected implementation cost is the solu-

tion of a forward–backward system of stochastic equations. The solutions we obtain

in this case generalize the constant speed strategy of Bertsimas and Lo (1998) by

changing the position in the asset at every step by a fraction that depends on condi-

9



tional expectations of future liquidity terms. Since the term that consists of stochastic

volatility and market innovations disappears when one takes the expectation of the

implementation cost, they are observed to affect the optimal strategy only through

their co–dependence with the liquidity. In the case of the expected exponential cost

and the mean–variance criterion, we assume that the volatility and liquidity follow a

coupled Markov chain that is independent of the price innovations. For the expected

exponential case we deduce a Bellman equation that can be solved numerically. We

find that it is enough for the optimal strategy to observe the realizations of volatil-

ity and liquidity. In the case of a mean–variance criterion the dynamic programming

principle cannot be directly applied to obtain a predictable strategy since the criterion

does not break into sub–problems that optimally connect to each other. Moreover,

the optimal strategy depends on past realizations of volatility, liquidity and price

innovations. To simplify the problem, we first consider strategies that are restricted

to observing volatility and liquidity only. After that we solve the full problem in

which strategies can react to changing volatility, liquidity and prices. In both cases

we relate the execution problem to a quadratic cost minimization problem and derive

a Bellman equation that can be solved by discretizing the control space from which

the mean–variance optimal strategy can be obtained. The numerical experiments

show that the mean–variance optimal strategy produces implementation costs that

have a lower sample mean and standard deviation than the Almgren–Chriss strategy

corresponding to the long term time-averages of volatility and liquidity. The mean–

variance formulation we study is related to the optimal strategies found in Walia

(2006) and Almgren (2012). But our strategy minimizes a mean-variance objective of

the total implementation cost as opposed to a local mean-variance criterion. In addi-

tion, the mean–variance optimal strategy that we characterize by observing the prices

generalized Almgren and Lorenz (2007, 2011), where they investigate strategies that

react to price changes, to a stochastic volatility and liquidity setting. In the numerical

10



experiments we do we observe that the optimal strategy for the expected exponential

criterion generates outcomes that are virtually indistinguishable from those of the

best mean-variance strategy if the risk aversion parameters are chosen accordingly.

Moreover, it is simpler to solve than the mean–variance problem.

The structure of this chapter is as follows. In Section 2.1 we introduce our model

of price behavior and trading impact. In Section 2.2 we study the risk neutral case.

Section 2.3 treats the expected exponential case , and the mean-variance case is

investigated in Section 2.4. Section 2.5 concludes. We give all the proofs in Appendix

A.1.

2.1 The model

We use the same notation as in Section 1.2 and consider the same problem of liqui-

dating an asset position of X ∈ R+ shares on or before a given time T ∈ R+. A sell

order of size yn results in an execution price of

S̃n = Sn−1 − ηnyn, (2.1.1)

where Sn follows the dynamics

Sn = Sn−1 + σn
√

∆tξn − cyn. (2.1.2)

(ξn) is again a sequence of standard normals, but here (σn) is a stochastic volatility

and (ηn) is a stochastic liquidity process modeling the stochastic temporary price

impact. We suppose that Sn, σn, ηn are observable and define the filtration that they

generate as

Fn := σ(Si, σi, ηi : −∞ < i ≤ n).

11



Notice that Sn can be observed directly by looking at the quoted price in the exchange

and S̃n is observable to the user of the execution program since the proceeds from the

sale are observable. Therefore, if yn > 0, ηn can be deduced from (2.1.1). In the case

when yn = 0, it has to be inferred by using statical procedures (i.e. by considering

the observable quantities such as the bid-ask spread and order book imbalance). σn

has to be estimated from (2.1.2) or by a separate statistical procedure that uses more

frequent observations.

We describe an execution strategy in terms of remaining shares (xn) and say that

it is admissible if:

x0 = X, xn−1 ≥ xn, xN = 0, and (xn) is predictable with respect to (Fn).

This means that we require the strategy to be non–increasing hence each yn must

be non-negative. Moreover, asset position xn and yn are Fn−1-measurable as well

as
∑N

n=1 yn = X. An admissible strategy can be completely specified by xn for

1 ≤ n ≤ N − 1 and by A we denote the set of all admissible strategies. The

implementation shortfall of an admissible strategy x reads as

C(x) =
cX2

2
+

N∑
n=1

(xn−1 − xn)2
(
ηn −

c

2

)
− xnσn

√
∆tξn.

Since dropping the constant cX2/2 from C(x) does not change the optimality of the

solutions we obtain in the objective functions we consider, we work with the quadratic

form

Q(x) =
N∑
n=1

(xn−1 − xn)2
(
ηn −

c

2

)
− xnσn

√
∆tξn. (2.1.3)

We always assume that ξn is independent of σ(Fn−1, σn, ηn) and η̃n := ηn−c/2 > 0.

In the case when we minimize the expectation of the cost Q(x) we can assume slightly

generalized dynamics for (Sn, σn, ηn). To do this we fix a non-negative integer k

12



and for some measurable function ϕ : R → {1, . . . , k} we define ϕn := ϕ(σnξn).

This process allows us to incorporate information about the market innovations. For

example one can set ϕ(s) = 1 for s < 0 and ϕ(s) = 2 for s ≥ 0 to account for the sign of

innovation terms. We suppose that (σn, ηn) takes finitely many and different values in

V ⊂ R2
+, and conditional on Fn−1, its distribution only depends on (σn−1, ηn−1, ϕn−1).

Therefore, (σn, ηn, ϕn) is a Markov chain with the finite state space V k ⊆ R2
+ ×

{1, . . . , k}. We assume that it has time-dependent transition probabilities given by

pvwn−1 := P [(σn, ηn, ϕn) = w | (σn−1, ηn−1, ϕn−1) = v] , v, w ∈ V k.

These dynamics can be used in models where (σn, ηn) may depend on the last price

innovation. In Sections 2.3 and 2.4 we assume that the couple (σn, ηn) takes values in

the state space V which does not depend on the price innovations. Hence we define

the transition probabilities for this case as,

pvwn−1 := P [(σn, ηn) = w | (σn−1, ηn−1) = v] , v, w ∈ V.

For our numerical simulations we use the parameter values of Table 1 and assume

that (σn), (ηn), (ξn) are independent, and (σn), (ηn) are time-homogeneous Markov

chains with transition matrices given by

pη =


0.50 0.30 0.20

0.15 0.80 0.05

0.05 0.05 0.90

 and pσ =


0.9349 0.0434 0.0217

0.7164 0.2239 0.0597

0.4400 0.4800 0.0800

 .

We estimated the volatility parameters from 20 days of TAQ data for Panera Bread.

The liquidity parameters are inspired by the ones used in Almgren and Chriss (2001).

We always use σlow and ηlow as starting points for the chains (σn) and (ηn).
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Parameter Symbol Value

Initial stock price S0 172 $/share

Initial position X 35,000 shares

Duration T 100 minutes

Number of subintervals N 100

Length of subintervals ∆t 1 minute

Permanent impact c 2.5× 10−7

Volatility states σlow, σmed, σhigh 3.51× 10−3, 3.3× 10−2, 1.172× 10−1

Liquidity states ηlow, ηmed, ηhigh 10−6, 5× 10−6, 25× 10−6

Table 2.1: Parameter values

2.2 Risk neutral objective

In the risk neutral case (σn, ηn, ϕn) is assumed to be a Markov chain with finite state

space V k := V × {1, . . . , k} ⊆ R2
+ × N and transition probabilities

pvwn−1 := P [(σn, ηn, ϕn) = w | (σn−1, ηn−1, ϕn−1) = v] , v, w ∈ V k.

Evn denotes the conditional expectation E[. | (σn, ηn, ϕn) = v]. We want to find

x ∈ A that minimizes the conditional expectation Ev0[Q(x)] for a given initial state v

of the Markov chain. Notice that Q(x) does not contain Sn; therefore, it is enough

for us to observe the process (σn, ηn, ϕn), n ≥ 0 to find an optimal strategy. The

following theorem characterizes the optimal strategy and gives the optimal value for

this problem.

Theorem 2.2.1. One has

min
x∈A

Ev0[Q(x)] = X2av0, (2.2.1)

and the unique optimal execution strategy is given by

x∗n|x∗n−1, (σn−1,ηn−1,ϕn−1)=v = x∗n−1

Evn−1[η̃n]

Evn−1[η̃n] +
∑

w∈V k p
vw
n−1a

w
n

, n = 1, . . . , N − 1,

(2.2.2)
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where the coefficients avn satisfy the backwards recursion:

avN−1 = EvN−1[η̃N ], avn−1 =
Evn−1[η̃n]

∑
w∈V k p

vw
n−1a

w
n

Evn−1[η̃n] +
∑

w∈V k p
vw
n−1a

w
n

, n ≤ N − 1. (2.2.3)

In the forward-backward system given by equations (2.2.2)–(2.2.3), the optimal

strategy is defined as a function of the liquidity available in the market. One decreases

the position in the asset in every step by a fraction that depends on the expected

liquidity in the next period and a weighted sum of future liquidity terms. It is seen

by inspecting (2.2.2) that if the expected cost of liquidity in the next period is large,

hence the fraction in (2.2.2) is large, then there is an incentive to execute less orders

and wait for a more favorable state.

Remark 2.2.2. When one assumes constant liquidity; ηn ≡ η, Theorem 2.2.1 yields

avn =
η − c/2
N − n

, x∗n = x∗n−1

N − n
N − n+ 1

,

which gives the constant speed strategy

x∗n = X
N − n
N

(2.2.4)

and this is consistent with the findings of Bertsimas and Lo (1998). In the case of

constant liquidity one sees that there will be no incentive to sell faster or slower as

there will be no favorable state to take advantage of; therefore, the order is sliced into

equal amounts.

Simulation

We simulated 50,000 paths of the Markov chain (σn, ηn, ξn) and we have calculated

the optimal strategy on each of these paths. On the left side of Figure 2.1 we see

the average optimal position x̄n in percent of the initial number of shares X, and on
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Figure 2.1: Average and standard deviation of the optimal positions for different
scenarios in the risk neutral case.

the right side is the corresponding standard deviation sn of the liquidation trajectory

around this mean. Figure 2.2 shows three realizations of the optimal strategy on

different paths and they are compared to the constant speed strategy (2.2.4). The

histograms of Figure 2.3 show realizations of the implementation cost C(x). It can

be seen, that the optimal admissible strategy produces a lower sample mean and

standard deviation than the constant speed strategy.

2.3 Expected exponential cost

This section assumes that (σn, ηn) is a Markov chain with finite state space V ⊆ R2
+

and transition probabilities

pvwn−1 := P [(σn, ηn) = w | (σn−1, ηn−1) = v] , v, w ∈ V,
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Figure 2.2: Optimal strategies for three particular scenarios in the risk neutral case
compared to the constant speed strategy.

which does not depend on the sequence of innovations (ξn). Our goal is to find x ∈ A

that minimizes the expectation of the exponential cost

Ev0[exp(αQ(x))] (2.3.1)

for a parameter of absolute risk aversion α > 0, where Evn is the conditional expec-

tation E[. | (σn, ηn) = v]. Let An(z) be the set of (Fn)-predictable strategies (xi)
N
i=n

satisfying xn = z, xi−1 ≥ xi, xN = 0. Notice that Q(x) is a sum of local terms and

the exponential function factorizes; therefore, it is enough to observe (σn, ηn), n ≥ 0

to find the optimal strategy. Define

Jvn(z) := min
x∈An(z)

Evn [exp (αQn(x))] ,

The following theorem gives the optimal solution for 2.3.1.
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Figure 2.3: Histograms of C(x) for the optimal strategy and the constant speed
strategy in the risk neutral case.
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Theorem 2.3.1. The value function J satisfies the Bellman equation

JvN−1(xN−1) =
∑
w∈V

pvwN−1 exp
(
αx2

N−1(w2 − c/2)
)

Jvn−1(xn−1) =

min
0≤xn≤xn−1

∑
w∈V

pvwn−1 exp

(
α(xn−1 − xn)2(w2 − c/2) +

1

2
α2x2

nw
2
1∆t

)
Jwn (xn),

for n ≤ N − 1, and the minimizing x∗n form the unique optimal strategy for problem

(2.3.1).

Remark 2.3.2. In the special case of constant volatility σn ≡ σ and liquidity ηn ≡ η,

the minimization of the expected exponential (2.3.1) reduces to the deterministic

problem

min
xn−1≥xn≥0

exp
N∑
n=1

α(xn − xn−1)2(η − c/2) +
1

2
α2∆tσ2x2

n,

which is equivalent to the deterministic mean–variance problem (1.2.3) with λ = α/2,

hence the solution is given as in (1.2.4). This observation is in line with Schied et al.

(2010).

It should be pointed out that in the case of having constant volatility and liquidity,

(1.2.4) is the best (Fn)–predictable strategy for the exponential problem; however, the

optimal (Fn)–predictable mean–variance strategy is not deterministic; see Almgren

and Lorenz (2007), Lorenz and Almgren (2011) and Section 2.4.

For stochastic volatility and liquidity, the Bellman equation of Theorem 2.3.1 can

be solved numerically on a discrete grid of controls. The computational cost is of

order O(X2), when one allows trading in quantities of single shares. Because in every

step, Jvn−1(xn−1) has to be computed for all 0 ≤ xn−1 ≤ X, and for fixed xn−1, the

calculation of Jvn−1(xn−1) requires an evaluation for every xn = 0, . . . , xn−1. For large

X, the computational complexity can be reduced by restricting the sale of the asset

to larger lots of shares.
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Figure 2.4: Average and standard deviation of optimal positions for the expected
exponential cost criterion with different absolute risk aversions α.

Simulation

In this section’s simulations we allowed assets to be sold in lots of 350 shares which

amounts to 1% of the initial position. The optimal strategies have been computed

along 50,000 simulated paths of (σn, ηn, ξn). Figure 2.4 shows the average x̄n of the

optimal positions and the standard deviations sn for three different values of absolute

risk aversion α. It can be seen that the average liquidation speed is increasing in α,

an observation that makes senses intuitively because the expected exponential of the

cost also penalizes the exposure of the remaining asset positions to volatility risk. In

Figure 2.5 we see that three different realizations of the optimal admissible strategy

are compared to the Almgren–Chriss strategy (1.2.4) corresponding to λ = α/2 and

the mean volatility σ̄ and liquidity η̄ with respect to long run averages of (σn) and

(ηn). Figure 3.5 shows histograms of realized implementation costs C(x) produced

by the optimal strategy of Theorem 2.3.1 and the Almgren–Chriss strategy (1.2.4).

It can be seen that the sample mean and variance of the optimal admissible strategy

are significantly lower.
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Figure 2.5: Three realizations of the optimal strategy for the expected exponential
criterion with parameter α = 2 × 10−5 compared to the Almgren–Chriss strategy
(1.2.4) corresponding to σ̄, η̄ and parameter λ = 10−5.

2.4 Mean-variance criterion

This section considers the mean-variance minimization problem of the form

E[Q(x)] + λVar(Q(x)) (2.4.1)

for a given trade–off parameter λ > 0. We assume that as in Section 2.3, (σn, ηn) is

a Markov chain with finite state space V ⊆ R2
+ and transition probabilities

pvwn−1 := P [(σn, ηn) = w | (σn−1, ηn−1) = v] , v, w ∈ V,

which is independent of innovations (ξn). Notice that problem (2.4.1) is more difficult

to solve for a predictable strategy than the exponential problem (2.3.1). First of

all, the criterion (2.4.1) is not amenable for direct use of dynamic programming

methods. Additionally, since it does not factorize, it is no longer enough for the

optimal admissible strategy to only observe (σn, ηn). We solve the mean–variance
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problem for two different cases. In Subsection 2.4.1 we restrict the class of admissible

trading strategies to strategies that only observe (σn, ηn) and find the optimal one

among those. In Subsection 2.4.2 we compute the fully optimal admissible strategy.

Our simulation results suggest that the restricted solution is very close to being fully

optimal. Moreover, it showed a performance that is virtually indistinguishable from

the optimal strategy for the exponential criterion (2.3.1) with α = 2λ.

2.4.1 The restricted mean-variance problem

Let us define the filtration Gn := σ(σi, ηi : 0 ≤ i ≤ n), and denote by R the subset

of admissible strategies x ∈ A that are predictable with respect to (Gn). For a given

λ > 0 the restricted mean–variance problem P (λ) reads as

P (λ) min
x∈R

E[Q(x) | G0] + λVar(Q(x) | G0).

Since conditional variances are not recursively determined, problem P (λ) cannot be

solved recursively by using dynamic programming methods. But we show in Propo-

sition A.1.1 that a solution x∗ of P (λ) also solves the problem P (λ, µ),

P (λ, µ) min
x∈A

E
[
µQ(x) + λQ(x)2 | G0

]
for µ = 1−2λE [Q(x∗)]. Therefore, it is possible to relate P (λ) and P (λ, µ). Further-

more, we can derive a Bellman equation for problem P (λ, µ). However, the subtlety is

that we do not know µ before knowing x∗. Therefore, we compute solutions to P (λ, µ)

for different values of µ and check which one minimizes P (λ). One other subtlety is

whether the solution to P (λ) exists. Notice that (Gn) is discrete, and R is a compact

subset of a finite–dimensional space. Therefore, since the objective function of P (λ)

is continuous in x by standard arguments it follows that P (λ) admits an optimal

solution x∗ ∈ R. To solve P (λ, µ), we only need to know (σ0, η0). Let us denote by
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Rn(z) the set of R–predictable strategies (xi)
N
i=n such that xn = z, xi−1 ≥ xi, xN = 0

and define an optimal value function

Jvn(z) := min
x∈An(z)

Evn
[
µQn(x) + λQn(x)2

]
,

where Qn(x) :=
∑N

i=n+1(xi−1−xi)2η̃i−xiσi
√

∆tξi. Then the following theorem gives

the optimal solution.

Theorem 2.4.1. The value function J satisfies the Bellman equation

JvN−1(xN−1) =µx2
N−1EvN−1[η̃N ] + λx4

N−1EvN−1[η̃2
N ],

Jvn−1(xn−1) = min
0≤xn≤xn−1

µ(xn−1 − xn)2Evn−1 [η̃n] + λx2
n∆tEvn−1

[
σ2
n

]
(2.4.2)

+ λ(xn−1−xn)4Evn−1

[
η̃2
n

]
+ 2λ(xn−1−xn)2Evn−1

[
η̃n

N∑
i=n+1

(xi−1−xi)2η̃i

]

+
∑
w∈V

pvwn−1J
w
n (xn), n ≤ N − 1,

and any strategy x∗ ∈ R minimizing (2.4.2) for all n = 1, . . . , N − 1, is an optimal

solution to problem P (λ, µ). Moreover, if µ ≥ 0, the optimal strategy is unique.

Remark 2.4.2. For constant volatility σn ≡ σ and liquidity ηn ≡ η, problem P (λ)

becomes the Almgren–Chriss problem (1.2.3) with λ = α/2. (1.2.4) is the optimal

deterministic solution, but it is sub–optimal among all admissible strategies A; see

Almgren and Chriss (2001), Almgren and Lorenz (2007), Lorenz and Almgren (2011)

and Subsection 2.4.2.

In the case of having stochastic volatility and liquidity, the Bellman equation of

Theorem 2.4.1 can be solved numerically by discretizing the space of controls. If one

assumes that the asset can be sold in single units, the complexity of the numerical

procedure is O(X2) as in the expected exponential of the cost case. If the initial
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position X is large, then one may reduce the complexity by restricting the sale of the

asset to larger lots.

Simulation

When computing the optimal strategies along 50,000 simulated realizations of

(σn, ηn, ξn) by using a numerical procedure, we allowed trading in lots of 350 shares,

which amounts to 1% of the initial position of 35,000 shares. The average opti-

mal positions x̄n and the standard deviations sn for three different values of the

mean–variance trade–off parameter λ can be seen in Figure 2.7. One notices that

the speed of liquidation is higher for larger values of λ. This is intuitive since larger

values of λ penalize the exposure of the remaining asset position to volatility risk

more and hence the position is liquidated faster to reduce this exposure. Figure

2.8 shows three realizations of the optimal admissible strategy compared to the

Almgren–Chriss’ mean–variance optimal deterministic strategy (1.2.4) corresponding

to the mean values σ̄ and η̄ under the steady state distributions of the Markov chains

(σn) and (ηn). Figure 2.9 shows the mean–variance criterion for optimal solutions

xµ to problem P (λ, µ) for λ = 10−5 and different values of µ. The minimum is

attained for µ∗ = 0.968, which is almost equal to 1 − 2λE[Q(xµ
∗
)] = 0.997. Notice

that this is consistent with the theoretical result of Proposition A.1.1. Figure 2.10

shows histograms of the realized implementation cost C(x) for the optimal admissible

strategy and the Almgren–Chriss strategy (1.2.4) corresponding to σ̄ and η̄. It can

be seen that the simulation sample mean and variance of the optimal admissible

strategy are significantly lower. We note that in Figure 3.5 the optimal admissible

strategy produces a histogram of outcomes of C(x) that is almost indistinguishable

from the one produced by the optimal mean-variance strategy with λ = α/2. This

can be explained by the relation that the second order Taylor expansion of the

logarithm of the expected exponential cost formulation yields a mean–variance type

objective with λ = α/2.
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Figure 2.7: Average and standard deviation of R–optimal positions for the mean-
variance criterion with different values of λ.
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Figure 2.9: Mean–variance criterion for opimal solutions to P (λ, µ) for λ = 10−5 and
different values of µ. The minimum is attained for µ∗ = 0.968, and 1−2λE[Q(xµ

∗
)] =

0.997.
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Figure 2.10: Histogram of C(x) for the optimal restricted strategy in the mean-
variance case for λ = 10−5.
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2.4.2 The full mean-variance problem

In this subsection we are interested in the problem P̂ (λ),

P̂ (λ) min
x∈A

E[Q(x) | F0] + λVar(Q(x) | F0)

of finding a mean–variance optimal strategy in the set of all admissible strategies A.

Notice that A can be viewed as a closed, bounded, and convex subset of a Hilbert

space. Hence, it is weakly compact, and it follows that P̂ (λ) has an optimal solution

x∗ ∈ A. As in Subsection 2.4.1, we derive a Bellman equation for the auxiliary

problem P̂ (λ, µ) which is given by,

P̂ (λ, µ) min
x∈A

E
[
µQ(x) + λQ(x)2 | F0

]
.

We solve the auxilary problem for different µ and see which one gives the minimum

value. Let us introduce the running cost

hn(x) :=
n∑
i=1

(xi−1 − xi)2η̃i − xiσiξi,

and the value function

Jvn(h, z) := min
x∈An(z)

Evn
[
(µ+ 2λh)Qn(x) + λQn(x)2

]
,

where Evn, An(z) and Qn(x) are defined as before in Section 2.3. Jv0 (0, X) gives

the optimal value of the problem P̂ (µ, λ) given that the initial state we are in is

(σ0, η0) = v, and the following theorem yields a Bellman equation for J .
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Theorem 2.4.3. The value function J satisfies the Bellman equation

JvN−1(h, xN−1) = (µ+ 2λh)x2
N−1EvN−1[η̃N ] + λx4

N−1EvN−1[η̃2
N ],

Jvn−1(h, xn−1) = min
0≤xn≤xn−1

(µ+ 2λh)(xn−1 − xn)2Evn−1 [η̃n]

+λ(xn−1 − xn)4Evn−1

[
η̃2
n

]
+ λx2

n∆tEvn−1

[
σ2
n

]
+
∑
w∈V

pvwn−1

∫
R
Jwn

(
h+ (xn−1 − xn)2(w2 − c/2)− xnw1

√
∆tξ, xn

)
ρ(ξ)dξ,

where ρ is the density of a standard normal random variable. A strategy x∗ ∈ A

solves problem P̂ (µ, λ) if in every step, x∗n gives the minimum for h = hn−1(x∗) and

xn−1 = x∗n−1. Moreover, if µ ≥ 0, the optimal strategy x∗ ∈ A is unique.

Remark 2.4.4. P̂ (λ) extends the problem considered in Lorenz and Almgren (2011)

by allowing volatility and liquidity to be stochastic. To find the optimal strategy, one

needs to find solutions xµ to the auxiliary problem P̂ (µ, λ) for different values of µ

and check which one minimizes P̂ (λ). However, notice that the additional variable

h makes the numerical solution of J much more complicated than in Section 4.4

and Subsection 2.4.1. Therefore, we did our numerical experiments in an Almgren–

Chriss model with constant volatility and liquidity by using only five time steps.

The numerical results we obtained indicate that the optimal solution performs only

insignificantly better than the Almgren–Chriss strategy (1.2.4).

Simulation

The numerical results of this subsection have been obtained by restricting the sim-

ulation to a model with constant volatility and liquidity that only has five time

steps. We simulated 50, 000 realizations of (ξn)5
n=1 and used the long term averages

of volatility and liquidity, denoted by σ̄ and η̄ as in Section 4.4. We discretized

the state space of running cost using 250 evenly spaced grid points in the interval

[150− 2× 1500, 150 + 2× 1500]. The values 150 and 1500 were inspired by the mean
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Figure 2.11: Mean-variance criterion for optimal solutions to P̂ (λ, µ) for λ = 10−5 and
different values of µ. The minimum is attained for µ∗ = 1.192, and 1−2λE[Q(xµ

∗
)] =

0.998.

and standard deviation of Q(x) generated by the Almgren–Chriss strategy. We al-

low trading in multiples of 350 shares, which corresponds to 1% of the initial stock

position. Monte Carlo method has been used to compute the integral in Theorem

2.4.3. Figure 2.11 shows the µ-value producing the lowest mean-variance criterion.

Figure 2.12 contains the histograms of the optimal and the Almgren–Chriss strategy

for a mean–varaince trade–off parameter λ = 10−5. The optimal strategy is observed

to improve the mean–variance criterion slightly over the Almgren–Chriss strategy.

Notice also that while it produced a better sample mean, its standard deviation is

worse.

2.5 Conclusion

This chapter studied an optimal execution problem in a Markovian setting where

the volatility and temporary price impact are allowed to be stochastic. We used risk

neutral, expected exponential and mean-variance of the cost objectives to compute
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for λ = 10−5.
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optimal execution strategies. Notice that although we made independence assump-

tions for the liquidity and volatility parameter set we have specified, our formulation

allows for dependence between volatility, liquidity and price innovations. The transi-

tion probabilities can also be time–dependent. This feature makes the model flexible

to incorporate specific situations into the price dynamics. It is well known that price

dynamics depend on the time of the day. For example, some small or medium cap

stocks are traded less liquidly at certain times of the day, and volatility typically

increases around scheduled news announcements (i.e. earnings and FED announce-

ments). To apply the model in practice, one needs to estimate the parameters using

real data.
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Chapter 3

Single–asset execution with a dark

pool

As it was the case in Chapter 2, the majority of the models are used to determine

an optimal schedule of orders to be submitted to an exchange where the order book

is observable and do not consider dark pools. Dark pools are exchanges where the

liquidity dynamics are not directly observable. Although, the order crossing dynamics

may vary between dark pools, it is usually the case that the orders are crossed at

the mid price observed in the regular exchange. Therefore, it is assumed that the

dynamics of the regular exchange create price impact on the dark pool but not vice

versa. Nevertheless, the convenience of cost saving comes at the expense of execution

uncertainty, since the orders submitted to the dark pool may not be filled if there is

no liquidity available. One may see Degryse et al. (2009) for an overview of literature

on dark pools and their operating mechanisms.

We consider an aggregated dark pool as opposed to considering different exchanges

and deciding how to splits orders between them. For example, Ganchev et al. (2010)

study a dark pool problem where one submits orders into several dark pools in a

discrete time setting. After each order submission it is learned how many shares have
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executed at each venue. By using this information they estimate the tail probability

of how much extra liquidity there could be in each venue. Another example is Laurelle

et al. (2011) where they study the same problem but also incorporate a stochastic

crossing price which is modeled as a random variable that depends on the price process

in the regular exchange. We are not concerned with discovering the liquidity across

different venues and treat one dark pool as the main provider of hidden liquidity.

Examples of studies looking for an optimal execution program in the presence of a

dark pool include the models of Kratz and Schöneborn (2013a), Kratz and Schöneborn

(2013b), Kratz (2014). Kratz and Schöneborn (2013a) study a discrete time portfolio

execution problem in the presence of a dark pool. They use an objective function that

has a quadratic penalty term for the volatility of remaining stock positions and they

show the existence of an optimal strategy when one only assumes temporary costs

of transaction. They produce analytical solutions for Almgren–Chriss type transient

impact function in a setting where all or none of the orders submitted to dark pool

execute. Additionally they study a case for adverse selection. They assume that

depending on the execution in dark pool the expected market innovations will result

in an adverse price move in the regular exchange. This price move is assumed to be

equal to the permanent costs of transaction. Kratz and Schöneborn (2013b) study

the same problem in a continuous time analogue of Kratz and Schöneborn (2013a)

without adverse selection effects. Furthermore, they use a multi–dimensional Poisson

process to determine the time of execution for the orders submitted to the dark pool.

It is assumed that the orders in the dark pool will be executed full at the jump

times of the corresponding Poisson process. The jump probabilities are assumed to

be independent of the order sizes. Kratz (2014), on the other hand, treats a single

asset continuous time by accounting for adverse selection effects in a way that is along

the lines of Kratz and Schöneborn (2013a). However, they use the Poisson dynamics

proposed by Kratz and Schöneborn (2013b) for the dark pool execution times.
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We formulate our problem using the model in Chapter 2 by including a dark pool

where the orders submitted will be subject to adverse selection. We assume the orders

submitted to the dark pool are crossed at the mid price hence do not incur temporary

transaction costs. However, since the orders that transact in the regular exchange

cause a permanent change in the stock price they affect the dark pool crossing price.

Moreover, we make the trading program subject to adverse selection by letting the

dark pool execution probabilities depend on the direction of market innovations and

the orders submitted to the dark pool. Our model differs from the models of Kratz

and Schöneborn (2013a), Kratz and Schöneborn (2013b) and Kratz (2014) in a few

aspects. We first allow the permanent impact to affect the dynamics of the dark

pool. Second, we allow the stock price volatility and liquidity to be codependent

and stochastic. We also differ in the way we model the adverse selection. Instead of

effecting the fundamental price process depending on dark pool executions, we choose

to let the dark pool execution probabilities depend on the direction of submitted order

and the market innovations. In our framework the dark pool dynamics depend on

the primary exchange but not vice versa. We find the optimal execution strategy

when the objective is to minimize the expectation and the expected exponential of

the execution cost. When the objective is to minimize the expected cost the strategy

becomes insensitive to volatility of the price process. The optimal strategy in this case

can be characterized by a set of stochastic equations. In the expected exponential

of the cost case we derive a backward recursion that describes the optimal strategy

and solve it numerically. In this case case we are able to account for volatility of

remaining stock positions as the market innovations effect does not disappear from

the objective function.

The structure of this chapter is as follows. In the next section we extend the

model of Chapter 2 to include a dark pool. In Section 3.2 we study the risk neutral
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case. Section 3.3 treats the expected exponential case and Section 3.4 concludes. We

give all the proofs in Appendix A.2.

3.1 The model

The mid price process is assumed to behave according to (2.1.2) and the execution

price that an order yn achieves according to (2.1.1). The orders submitted to the dark

pool are denoted by zn and are assumed to be executed at price Sn−1. But they are

not always crossed. We suppose they are of fill or kill type, that is, an order to buy zn

shares at time tn−1 is either fully executed at price Sn−1, or it is immediately canceled.

The number of shares executed is bnzn, where bn is a random variable taking the value

0 or 1. Trading in the dark pool is exposed to adverse selection risk, which results

from the fact that orders are more likely to be crossed if the next price movement

is in a favorable direction. This is modeled by making the probability of {bn = 1}

depend on the sign of znξn.

We call the process (yn, zn) an execution strategy and denote by xn = X −∑n
i=1(yi + bizi) the remaining orders to be executed. We suppose that Sn, σn, ηn, bn

are observable and denote the filtration they generate by (Fn). An execution strat-

egy (y, z) is called admissible if it is predictable with respect to (Fn) and satisfies

xN = zN = 0. xN = 0 where the condition zN = 0 ensures that that the program

achieves execution completely by forcing yN = xN−1. We denote the set of all admis-

sible strategies by A. The implementation cost C(y, z) of a strategy (y, z) ∈ A reads

as

C(y, z) = XS0 −
N∑
n=1

(
ynS̃n + bnznSn−1

)
. (3.1.1)

which can be expressed as

C(y, z) =
N∑
n=1

cxnyn + y2
nηn − xnσn

√
∆tξn.
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ξn is independent of σ(Fn−1, σn, ηn) and (σn, ηn) is a Markov chain with finite state

space V ⊆ R2
+ and time-dependent transition probabilities

pvwn−1 := P [(σn, ηn) = w | (σn−1, ηn−1) = v] , v, w ∈ V.

We denote the conditional expectation E[ . | (σn, ηn) = v] by Evn. Moreover, we

assume there are two numbers 0 ≤ q1 < q2 ≤ 1 such that

P[bn = 1 | sign(znξn) = 1] = q1 and P[bn = 1 | sign(znξn) = −1] = q2.

Furthermore it is assumed that Evn−1η̃n > 0 for all n, where η̃n := ηn − c.

In the numerical examples we present, we use the same parameter set of Chapter

2 and furthermore assume that the dark pool execution probabilities are assumed to

be q1 = 1/1000, and q2 = 5/1000. The initial states σ0, and η0 are assumed to be

σlow and ηlow.

3.2 Risk neutral objective

We first find a strategy (y, z) ∈ A that minimizes the expected implementation cost.

The following theorem gives this strategy.

Theorem 3.2.1. For c ≥ 0 sufficiently small, one has

min
(y,z)∈A

Ev0 C(y, z) = av0X
2,

and the unique optimal strategy is given by

y∗n|x∗n−1, (σn−1,ηn−1)=v = dvn−1x
∗
n−1, z∗n|x∗n−1, (σn−1,ηn−1)=v = evn−1x

∗
n−1, n = 1, . . . , N−1,
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where the coefficients avn satisfy the backwards recursion

avN−1 = EvN−1ηN

avn−1 = cdvn−1(1− q̄evn−1) + (dvn−1)2Evn−1(ηn − c)

+
(
1− 2dvn−1 + (dvn−1)2 + q̄evn−1

[
evn−1 − 2 + 2dvn−1

])∑
w

pvwn−1a
w
n ,

for n ≤ N − 1 and

dvn−1 :=
(1− q̄)

(∑
w p

vw
n−1a

w
n

) (∑
w p

vw
n−1a

w
n − c/2

)(∑
w p

vw
n−1a

w
n

) (
Evn−1η̃n +

∑
w p

vw
n−1a

w
n

)
− q̄

(∑
w p

vw
n−1a

w
n − c/2

)2

evn−1 :=

(∑
w p

vw
n−1a

w
n

) (
Evn−1η̃n +

∑
w p

vw
n−1a

w
n

)
−
(∑

w p
vw
n−1a

w
n − c/2

)2(∑
w p

vw
n−1a

w
n

) (
Evn−1η̃n +

∑
w p

vw
n−1a

w
n

)
− q̄

(∑
w p

vw
n−1a

w
n − c/2

)2 .

If the assumption on c being sufficiently small (equivalently avn being sufficiently

negative to make the problem concave) is violated then the optimal strategy might

not exist if one does not restrict the set of admissible strategies. However, as it is

usually assumed that the temporary transaction costs are greater than half the spread

which is represented by c/2 the problem will most of the time be convex in practical

applications and can be solved in closed form.

In the case when c = 0, we see that yn + zn = xn−1, where yn = dvn−1xn−1.

Furthermore when q1, q2 are small as the actual dark pool execution probabilities

would be in practice dvn−1 ∈ (0, 1). This means that in a given period the optimal

strategy will be to execute a fraction of the remaining position directly in the regular

exchange and put the rest into the dark pool. Moreover, note that dvn−1 is decreasing

in q1 and q2, therefore, one allocates more shares to the dark pool as the probability of

execution increases. The special case of having q1 = q2 = 0 produces the risk neutral

optimal strategy Theorem 2.2.1. One interesting thing to note is that depending on

parameter values one may have optimal strategies such that yn + zn > xn−1. This

might seem counter intuitive at first, because one might expect the strategy to decide
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on a schedule yn and choose zn = xn−1 − yn so that when the order in the dark pool

executes the program will be over. However, depending on parameter values it will be

optimal to put more orders into the dark pool then one needs to acquire the necessary

position. When one acquires more shares than needed the direction of the execution

problem reverses and the strategy will start to sell and sales will contribute positively

to the execution cost as the acquisition of the extra shares came at no cost through

the dark pool. The following example illustrates this idea.

Example 3.2.2. Assume that N = 2, and consider a degenerate case where ηn ≡ η.

From Theorem 3.2.1, it follows that av1 ≡ a1 = η; therefore, dv0 ≡ d0 and ev0 ≡ e0. So,

d0 + e0 =
η2(2− q̄)− (1− q̄)ηc/2− c2/4

η2(2− q̄)− (1− q̄)ηc− q̄c2/4
.

and d0 + e0 > 1 if η > c/2 > 0.

Simulation

For the numerical examples we present, we have simulated 50, 000 paths of

σn, ηn, bn, ξn. Figure 3.1 shows the simulation mean of portfolio positions;

x̄n, and orders submitted to the regular exchange; ȳn for the optimal strategy of

Theorem 3.2.1, risk neutral optimal strategy of Theorem 2.2.1 and constant speed

strategy of Bertsimas and Lo (1998). We note that the risk neutral strategy 2.2.2

and the constant speed strategy do not take into account the existence of a dark

pool. The constant speed strategy treats the liquidity to be constant; however, the

strategy 2.2.2 observes the liquidity process ηn. It is seen that that on average the

optimal strategy submits less orders to the regular exchange than Cheridito and

Sepin (2014) because of the possibility of execution in the dark pool. Figure 3.2

shows d̄n−1 + ēn−1, the total ratio of orders submitted to the remaining stock position

for expected dn−1 + en−1 under the steady state distribution of (σn, ηn). Notice

that this ratio is slightly higher than the remaining stock position to be acquired
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Figure 3.1: Figures for average positions x̄n, ȳn over different scenarios in the risk
neutral case for the optimal strategies of Theorem 3.2.1, 2.2.1 and constant speed
strategy.
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Figure 3.2: Long term averages of dn−1 +en−1 and trajectory of three different strate-
gies under a realization in the risk neutral case.

and is consistent with the observation in Example 3.2.2. On the right hand side of

Figure 3.2 we see the three different execution strategies on the same realization of

outcomes where the order submitted to the dark pool is crossed. The histograms of

Figure 4.4 have been computed on the same realization of outcomes. It is seen that

the optimal strategy produces a better mean of implementation shortfall that than

the risk neutral optimal strategy of Chapter 2 and coincidentally a worse standard

deviation.
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3.3 Expected exponential cost

Our goal now is to minimize the expected exponential

Ev0 exp(αC(y, z)), v ∈ V, (3.3.1)

for an absolute risk aversion parameter α ≥ 0. Denote by An(x) the set of admissible

strategies (y, z) with xn = x, and define the value function

Jvn(x) := min
(y,z)∈An(x)

Evn exp (αCn(y, z)) ,

where Cn(y, z) :=
∑N

i=n+1 cxiyi + y2
i ηi − xiσi

√
∆tξi.

Introduce the function ψ : {0, 1} × R× R 7→ R,

ψ(b, z, u) :=



q2 − (q2 − q1)Φ(u) if b = 1 and z ≥ 0

q2 + (q2 − q1)Φ(u) if b = 1 and z < 0

1− q2 + (q2 − q1)Φ(u) if b = 0 and z ≥ 0

1− q2 − (q2 − q1)Φ(u) if b = 0 and z < 0.

where Φ is the cumulative density function of a standard normal variable. Then the

following holds:
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Theorem 3.3.1. For c ≥ 0 sufficiently small, the value function J satisfies the

Bellman equation

JvN−1(xN−1) =
∑
w∈V

pvwN−1 exp
(
αx2

N−1w2

)
Jvn−1(xn−1) = min

yn,zn

∑
w∈V,b∈{0,1}

pvwn−1ψ(b, zn, αw1

√
∆t(xn−1 − yn − bzn))×

exp

(
αc(xn−1 − yn − bzn)yn + αy2

nw2 +
α2

2
w2

1∆t(xn−1 − yn − bzn)2

)
×

Jwn (xn−1 − yn − bzn)

for n ≤ N − 1 and the minimizing (y∗n, z
∗
n) form an optimal strategy that minimizes

the objective function (3.3.1).

The Bellman equations of Theorem 3.3.1 can be solved by discretizing the space

of admissible controls A.

Simulation

This sections numerical examples have also been produced by simulating 50, 000 paths

of σn, ηn, bn, ξn. In the simulations the strategy of Theorem 3.3.1 is restricted to

orders such that yn + zn = xn−1 for computational convenience. Figure 3.4 shows

the simulation mean of portfolio positions x̄n, for the restricted optimal strategy of

Theorem 3.3.1, the strategy that minimizes the expected exponential in Chapter 2.3.1

and the strategy given in Theorem 3.2.1 when α = 10−5. As in the previous section

the strategy of Theorem 2.3.1 does not submit orders to the dark pool. On the right

hand side of Figure 3.4 we see the restricted optimal strategy of Theorem 3.3.1 for

different absolute risk aversion parameter values. Notice that the speed of execution

is increasing in the absolute risk aversion parameter. The histograms of Figure 3.5

have been computed on the same realization of outcomes as of the histograms of

Figure 4.4 for strategies when α = 10−5. It is seen that the optimal strategy produces

a better mean of implementation shortfall than the optimal strategy of Theorem 2.3.1
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for the expected exponential case and a worse standard deviation. Both strategies on

the other hand have produced less standard deviation than the risk neutral optimal

strategy.

3.4 Conclusion

In this chapter we have extended the model in Chapter 2 to include a dark pool. In the

dark pool, it is assumed that the orders are executed at the current mid-price of the

primary exchange. Therefore trading in the dark pool is affected by the permanent

price impact of orders executing at the standard exchange. On the other hand, not

all orders submitted to the dark pool are crossed. Moreover, trading in the dark

pool is exposed to adverse selection risk. We modeled this effect by making the dark

pool execution probability of an order dependent on the next price innovation. The

simulations showed that costs can be reduced by submitting orders to a dark pool in

addition to the standard exchange.
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Figure 3.4: Figure on top shows average positions x̄n over different scenarios in the ex-
pected exponential case for the optimal strategies of Theorem 3.3.1, of Theorem 2.3.1
with α = 10−5 and risk neutral optimal strategy of Theorem 3.2.1. Figure at the bot-
tom shows average positions x̄n for the optimal strategy of Theorem 3.3.1 for three
different parameter values of α.
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Figure 3.5: Histograms of C(y, z) for the optimal strategies in the expected expo-
nential cost case under the restricted optimal strategy of Theorem 3.3.1 and Theo-
rem 2.3.1 with α = 10−5.
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Chapter 4

Multi–asset execution with a dark

pool

In the case of executing orders for a portfolio of assets one also needs to consider

market impact relations across assets to construct an optimal trading schedule. In

this chapter we address a portfolio execution problem in the presence of stochastic

market impact, stochastic liquidity and a dark pool.

In our setup we follow a multi–asset version of the impact model introduced in

Chapter 2. However, the way we incorporate the dark pool is different than Chapter

3 and we closely follow the model of Cheridito and Sepin (2014c). First of all, we

do not explicitly model adverse selection risk but account for it through an aversion

term that penalizes the orders submitted to the dark pool. Moreover we assume that

the available liquidity for each asset, hence the execution probability of each order

submitted to the dark pool, can be determined indirectly by an observable Markov

process. The volatility, market impact and dark pool liquidity are then allowed to

be dependent on each other. Under these assumptions we find predictable strategies

that minimize the expectation and the expected exponential of a cost functional that

consists of the implementation shortfall of the execution program and an aversion
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term for the orders submitted to the dark pool. The aversion term is a quadratic

form that penalizes the orders crossed in the dark pool, which may reveal exploitable

information about the position being executed. The strategy minimizing the ex-

pectation of the cost functional does not directly account for volatility risk of the

portfolio positions and therefore trades slower on average. We compare the simula-

tion mean and standard deviation of the multi–asset optimal strategy we find to ones

obtained by using the risk neutral objective minimizing single–asset strategies found

in Chapter 2 without a dark pool. It is observed that the multi–asset optimal strat-

egy yields lower simulation mean and standard deviation for the cost of execution.

In the expected exponential cost minimization case we provide the Bellman equation

that the optimal strategy satisfies. However, the computation of optimal strategies

is in most cases not possible by using the characterization of the optimal solution

via Bellman equations, because it relies on using a numerical discretization procedure

which may not be computationally feasible. Therefore, we first solve the problem by

minimizing the expectation of the second order Taylor expansion of the exponential

cost and then provide a general framework via duality which can be used to generate

approximate strategies by specifying probabilities on the paths of outcomes. In all

the cases we consider, the strategies we find are characterized as solutions of a set

of stochastic forward–backward equations. Here we also observe that the multi–asset

optimal strategy minimizing the expectation of the second order Taylor expansion of

the cost yields lower simulation mean and standard deviation for the implementation

cost, compared to the ones obtained from the single–asset strategies of Chapter 2 in

the case where the expected exponential of the cost is minimized. Here we generalize

Kratz and Schöneborn (2013a) who study the same problem in a discrete–time model.

They first show the existence and uniqueness of an optimal solution in a framework

with a general deterministic impact function and then find strategies that minimize

the expectation of a cost function that consists of the implementation shortfall and a
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quadratic portfolio risk term with constant volatility under a constant linear transient

impact and dark pool execution probability.

In the next section we describe the market model. Section 4.2 describes the setup

we use for the numerical studies. Section 4.3 deals with the risk neutral objective

case. In Section 4.4 the expected exponential of the cost case is studied. Section 4.5

concludes and all proofs are given in Appendix A.3.

4.1 The model

We are interested in executing orders for a portfolio consisting of M different stocks

with initial positions X0 ∈ RM . Our goal is to attain a portfolio with final positions

in the stocks given by XN ∈ RM . Note that without loss of generality we can set

XN = 0; therefore, we assume that initial position is specified for a portfolio such

that XN = 0. We can place an order to sell yjn ∈ R shares for each asset j at every

time tn−1 = (n− 1)∆t. If yjn < 0 it means that a buy order is submitted. We use yn

to denote the vector of orders submitted
[
y1
n y

2
n . . . y

M
n

]′
. We assume that orders yjn

execute in the interval [tn−1, tn) at a price of

S̃jn = Sjn−1 −
M∑
i=1

ηjin y
i
n. (4.1.1)

(Sjn) denotes the mid–price process for asset j. By Sn we denote
[
S1
n S

2
n . . . SMn

]′
and

similarly by S̃n the vector of execution prices
[
S̃1
n S̃

2
n . . . S̃Mn

]′
. (ηjin ) is a stochastic

process modeling the temporary impact on the price of asset j which results from

executing an order for asset i in the interval [tn−1, tn). We denote the temporary

impact process in matrix form by Λn = [ηjin ]. Hence by using (4.1.1) we express S̃n as

S̃n = Sn−1 − Λnyn. (4.1.2)
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We assume that the dynamics of the mid–price process for each asset is given by

Sjn = Sjn−1 + σjn
√

∆tξjn. (4.1.3)

(σjn) denotes a stochastic volatility process. ξn =
[
ξ1
n ξ

2
n . . . ξ

M
n

]′
is a sequence of

innovations with distribution N (0,Σ) with Σ positive definite. We use σn to denote

the vector
[
σ1
n σ

2
n . . . σMn

]′
. Furthermore, diag (σn) is used to denote the M × M

matrix with σn on its diagonal and with other entries zero. The vector mid–price

process reads as,

Sn = Sn−1 +
√

∆tdiag (σn) ξn. (4.1.4)

We assume that one can also submit orders to a dark pool to make use of hidden

liquidity and reduce transaction costs. We use a stochastic process (δjn) to model the

liquidity dynamics of the dark pool for asset j. It is assumed that δjn take distinct and

finitely many values in a set D ⊆ R. We assume that the orders submitted are of fill

or kill type, that is when an order of zjn shares is submitted to the dark pool at time

tn−1, it results in the execution of 0 or zjn shares at a price of Sjn−1 and the order is

cancelled immediately if it is not filled. The vector of orders submitted and filled are

denoted by zn and diag (bn−1) zn, where bn−1 = [b1
n−1 b

2
n−1 . . . b

M
n−1]

′
denotes a vector

of Bernoulli random variables. We define qj : D 7→ [0, 1] to denote the probability of

success for the random variable bjn−1. Given δjn−1, bjn−1 is 1 with probability qj(δjn−1).

diag (q(δn)) denotes the matrix with vector [q1(δ1
n) q2(δ2

n) . . . qM(δMn )] on its diagonal

and other entries zero.

We call the pairs (yn, zn) ∈ RM ×RM an execution strategy and denote by xn the

remaining orders to be executed at time tn where xn = X0−
∑n

i=1(yi + diag (bi−1) zi).

We suppose that Λn, σn, δn, xn, and Sn can be observed and define the filtration that

they generate as

Fn := σ(Si, Λi, σi, δi, xi : −∞ < i ≤ n).
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An execution strategy is admissible if it is predictable with respect to (Fn), x0 = X0,

xN = 0 and zN = 0. This means that an admissible strategy must start with the

specified initial stock positions and execute orders such that at the deadline the

desired portfolio is attained. The condition zN = 0 ensures that xN = 0 is attained

by forcing yN = xN−1. We denote the set of all admissible strategies by A.

We assume that there is adverse selection risk which may result from information

leakage when zjn is crossed in the dark pool. We model aversion to adverse selection

by a risk term of the form αz
′
ndiag (bn−1)zn for a parameter α ≥ 0. We define our

cost functional as the sum of implementation shortfall and adverse selection risk.

Implementation shortfall is defined as the difference of the initial portfolio and the

execution value. The execution value is given by
∑N

n=1

(
S̃
′
nyn + S

′
n−1diag (bn−1) zn

)
,

therefore for (y, z) ∈ A the cost functional reads as,

C(x, y, z) = S
′

0X0 −
N∑
n=1

(
S̃
′

nyn + S
′

n−1diag (bn−1) zn

)
+ αz

′

ndiag (bn−1) zn (4.1.5)

One can express (4.1.5) also as

C(x, y, z) =
N∑
n=1

y
′

nΛ
′

nyn −
√

∆tξ
′

ndiag (σn) (xn−1 − yn − diag (bn−1) zn)

+αz
′

ndiag (bn−1) zn. (4.1.6)

We assume that ξn is independent of σ(Fn−1,Λn, σn, δn, xn). Moreover, given

σ(Fn−1,Λn, σn, δn, ξn), bjn−1 only depends on δjn−1, and given δn−1, bjn−1 is inde-

pendent of bin−1, hence Covn−1(bjn−1, b
i
n−1) = 0 for i 6= j. We suppose that Λn

takes finitely many different values in RM×M
+ and σn in RM

+ . We define (Λn, σn, δn)

as a Markov chain with finite state space W ⊆ RM×M × RM
+ × RM

+ and with
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time–dependent transition probabilities

pvwn−1 := P [(Λn, σn, δn) = w | (Λn−1, σn−1, δn−1) = v] , v, w ∈ W.

Notice that it is enough to observe (Λn, σn, δn, xn) for n ≥ 0 to decide on the optimal

strategy. By Ev,sn we denote the conditional expectation E[ . | (Λn, σn, δn) = v, xn = s]

and by Evn, E[ . | (Λn, σn, δn) = v]. We use Pvn(bn = u) to denote P(bn = u |

(Λn, σn, δn) = v) for v ∈ W and u ∈ {0, 1}M . We assume that Evn [Λn+1] is positive

definite. In the rest of the chapter we frequently encounter the matrix form

 U B

B′ L

 , (4.1.7)

for matrices U,L,B ∈ RM×M . The matrix forms given in (4.1.7) are positive definite.

For a matrix A ∈ RM×M we use Ã to denote the symmetric matrix A+A
′

and Tr(A)

to denote the trace of A.

4.2 Parameter set for simulations

In this section we specify the parameters of the model for the numerical experiments

we consider for risk neutral and expected exponential of the cost objectives. In our

numerical studies we consider a portfolio of 2 assets. We consider two hypothetical

companies; Company A and Company B and denote them by A and B.

We assume that σAn = σBn . This can be thought of having a common factor

that derives the overall volatility level of market innovations. For instance if one

is executing a portfolio of assets traded in S&P500 the volatility of S&P500 index

can be used as the common factor. We denote the common factor volatility by

σCFn . We assume that the state space of σCFn consists of three states and is given by

52



{
σCFlow , σ

CF
med, σ

CF
high

}
. Notice that in practice one may keep track of specific indices (i.e.

financials, consumer goods) and can construct the volatility process σn by aggregating

the volatility dynamics derived for the desired indices. Following such a procedure

would allow to capture cross sectional dynamics more effectively. For applications Σ,

the covariance matrix of market innovations, must be calculated by using statistical

procedures. In practice, Σ is usually supplied by a third party and is integrated into

the execution program. We use the following volatility parameter set, which is along

the lines of Chapter 2.

Σ =

 2 −
√

3/2

−
√

3/2 3/2



σCFlow

σCFmed

σCFhigh

 =


3.51× 10−3

3.3× 10−2

1.172× 10−1

 ,

(pσij) =


0.93 0.04 0.03

0.72 0.22 0.06

0.44 0.48 0.08

 .

We assume that impact process follows the dynamics given by

ηjin = ηjjn
Covn−1(Sin, S

j
n)√

Varn−1(Sin)
√

Varn−1(Sjn)
. (4.2.8)

Notice that ηjjn can be estimated more easily as opposed to ηjin because its effect can be

observed directly when one submits an order only for one asset. Then one can argue

that cross impact will be proportional as in (4.2.8) with the coefficient of correlation

of stock prices. In our case it computes as ηjin = ηjjn Σij/
√

Σjj

√
Σii because we assume

that σn = σCFn . The impact matrix is then given by

Λn = diag (ηn) diag

(
1√
Σjj

)
Σdiag

(
1√
Σjj

)
(4.2.9)
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where diag (ηn) is the diagonal matrix with ηn = [ηAn ηBn ] and diag

(
1√
Σjj

)
is the

diagonal matrix with 1√
Σjj

terms on its diagonal. Notice that as long as diag (ηn)

takes positive values in all states, Λn as defined in (4.2.9) will be positive definite

because Σ was assumed to be positive definite hence all of Λn’s principle minors are

positive for all states. We describe the state space of ηjn by
{
ηjlow, η

j
med, η

j
high

}
for

j ∈ {A,B} and specify the following state spaces,


ηAlow

ηAmed

ηAhigh

 =


2× 10−6

5.5× 10−6

32× 10−6

 ,

ηBlow

ηBmed

ηBhigh

 =


1× 10−6

3× 10−6

35× 10−6

 ,
and transition probabilities,

(pAij) =


0.5 0.3 0.2

0.4 0.5 0.1

0.3 0.6 0.1

 , (pBij) =


0.55 0.35 0.10

0.15 0.70 0.15

0.1 0.1 0.8

 ,

We assume that (ηAn ), (ηBn ), and (σCFn ) are independent Markov chains with sta-

tionary transition probabilities. We define the dark pool process as follows,

δjn :=


1 if ηjn = ηjlow,

0 otherwise.

and specify the execution probabilities as qj(1) = 1/500 and qj(0) = 1/1000 for

j ∈ {A,B}. Other parameter values we use are given in Table 4.1.
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Parameter Symbol Value

Initial stock prices SA0 , SB0 175, 161 $/share

Initial positions XA
0 , XB

0 30000, -25000 shares

Duration T 50 minutes

Number of subintervals N 50

Length of subintervals ∆t 1 minute

Table 4.1: Parameter values

4.3 Risk neutral objective

In this section we want to find the minimizer (y∗, z∗) ∈ A of Ev,X0

0 [C(x, y, z)] for

v ∈ W . Let us define the set An(s) as the set of admissible strategies such that

xn = s, (yi, zi)i≥n+1 is Fi predictable and (xN , zN) = (0, 0). Let us define

Qn(x, y, z) :=
N∑

i=n+1

y
′

iΛ
′

iyi−
√

∆tξ
′

idiag (σn) (xi−1−yi−diag (bi−1) zi)+αz
′

idiag (bi−1) zi

and for v ∈ W define the value function

Jvn(s) := min
(y,z)∈An(s)

Ev,sn [Qn(x, y, z)] .

By a backward recursion we define the following matrices,

Avn := Gv
n

′
Evn[Λ

′

n+1]Gv
n + αF v

n

′
diag (q(v3))F v

n

+
∑
w

pvwn

(
F v
n

′
diag

(
(Awn+1)ii

)
diag (q(v3)(1− q(v3)))F v

n

+ (I −Gv
n − diag (q(v3))F v

n )
′
Awn+1 (I −Gv

n − diag (q(v3))F v
n )
)

for n ≤ N − 2 and AvN−1 := EvN−1[Λ
′
N ]. The matrices Gv

n and F v
n are defined as

F v
n := (Svn)−1Bv

n

′

(
I−(U v

n)−1
∑
w

pvwn Ãwn+1

)
, Gv

n := (U v
n)−1

(∑
w

pvwn Ãwn+1−Bv
nF

v
n

)
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where Svn is the Schur complement in U v
n of the symmetric matrix

 U v
n Bv

n

Bv
n

′
Lvn


with U v

n := Evn[Λ̃n+1] +
∑

w p
vw
n Ãwn+1, B

v
n :=

∑
w p

vw
n Ãwn+1diag (q(v3)) , and

Lvn :=
∑
w

pvwn

(
diag (q(v3)) Ãwn+1diag (q(v3)) + 2αdiag (q(v3))

+2diag
(
(Awn+1)ii

)
diag (q(v3)(1− q(v3)))

)
,

for n ≤ N − 2.

Theorem 4.3.1. The optimal strategy minimizing the risk neutral objective is given

by

y∗n|x∗n−1, (Λn−1,σn−1,δn−1)=v=Gv
n−1x

∗
n−1, z

∗
n|x∗n−1, (Λn−1,σn−1,δn−1)=v=F v

n−1x
∗
n−1, (4.3.1)

for n ≤ N − 1.

Simulation

Here we present the results obtained by simulating 10, 000 scenarios in the setting we

described in Section 4.2. All the scenarios start from the the initial state σCF0 = σCFlow

and ηj0 = ηjlow for j ∈ {A,B}. x̄jn denotes the average position in asset j at time tn as

percentage of the absolute of initial position in that asset, so negative values indicate

buying and positive values indicate selling. Similarly ȳjn and z̄jn denote the average

order sizes submitted into the regular exchange and the dark pool at times tn. We

denote by sn the standard deviation of position xn as observed in the simulations.

Figure 4.1 shows the simulation mean of the execution trajectory and one standard

deviation around the mean. On the right side of Figure 4.1 we see one particular
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realization of an execution trajectory. In this realization we see an order placed to

the dark pool for Company A executes and a selling program is reversed into a buying

program because the order submitted to the dark pool was larger than the number

of shares that needed to be sold for Company A. The rationale behind this is better

understood by examining Figure 4.2.

Figure 4.2 shows the simulation mean of orders submitted to the dark pool and

to the regular exchange along with the simulation mean of execution trajectories as

percentages of initial positions in the assets. Notice that the assets are negatively

correlated. Therefore, one increases the stock price of Company B while selling the

stock of Company A. By a similar observation we see that one will depress the stock

price of Company A when buying the stock of Company B. Since the program needs

to liquidate the shares for Company A and acquire the stock of Company B, every

transaction made in one asset causes additional execution costs because of the corre-

lation structure. To remedy this, the optimal strategy tries to reverse the positions in

either of the assets by placing orders that are larger than the amount of shares that

needs to be executed. For instance, as the program starts, an order to sell about 35%

more than XA
0 is placed into the dark pool, likewise an order about 60% more than

XB
0 to buy is put into the dark pool. One desirable outcome would be that only one

of these orders gets crossed in the dark pool so that the negative correlation between

the stocks can be taken advantage of to reduce the transaction costs in the rest of the

execution. Another desirable outcome is that both dark pool orders are matched. For

such an outcome, we see that the program will have reduced the amounts of shares

to be executed to about 35% and 60% of initial positions at no cost. We also see that

the program submits orders in the order of about 2% of the initial positions into the

regular exchange to make sure that the amount of shares to be executed are decreased

at each period in the case the orders in the dark pool do not get crossed.
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Figure 4.3 shows the average size of sell orders submitted to the regular exchange

and the dark pool for different values of adverse selection parameter α. In practice, it

may be risky to place large orders into the dark pool because of potential predatory

trading. If it is discovered that a large position is being executed, the user program

will be adversely selected by a predatory trader who will move the prices unfavorably

for the user. We see that increasing the parameter of aversion for adverse selection

reduces the size of the order put into the dark pool.

Figure 4.4 shows two histograms of the implementation cost. The multi–asset

optimal strategy is obtained by Theorem 4.3.1 in the case when α = 0. To construct

the second histogram we have computed the risk neutral optimal single–asset strategy

described in Theorem 2.2.1 for the two stocks we consider without the inclusion of a

dark pool and by using the parameter set described in Section 4.2. Notice that since

Theorem 2.2.1 considers a single–asset case the cross impact is also not accounted

for in the strategies we obtain by using it. We see that if one assumes the parameter

set for the cross impact and asset correlations is true and there is a dark pool where

the orders may be crossed at the mid–price, then one may on average incur higher

execution costs and standard deviation by not using these features. It is seen in Figure

4.4 that the multi–asset optimal strategy minimizing the expected implementation

cost creates lower simulation mean and standard deviation.

4.4 Expected exponential cost

We fix a parameter of absolute risk aversion λ > 0 and want to find the minimizer

(y∗, z∗) ∈ A of the expected exponential of the cost functional; Ev,X0

0 [exp(λC(x, y, z))]

for v ∈ W . We define the value function

Jvn(s) := min
(y,z)∈An(s)

Ev,sn [exp (λQn(x, y, z))] . (4.4.1)
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Figure 4.1: Average of net optimal positions for different scenarios and a realization
of execution trajectories in the risk neutral case with α = 0.

Proposition 4.4.1. The value function J satisfies the Bellman equation

JvN−1(xN−1) =
∑
w∈W

pvwN−1 exp
(
λx
′

N−1w
′

1xN−1

)
Jvn−1(xn−1) = min

yn,zn

∑
w,u

pvwn−1Pvn−1(bn−1 = u) exp
(
λy
′

nw
′

1yn + λαz
′

ndiag (u) zn

+
1

2
λ2∆t(xn−1 − yn − diag (u) zn)

′
diag (w2) Σdiag (w2)

(xn−1 − yn − diag (u) zn)
)
Jwn (xn−1 − yn − diag (u) zn),

for n ≤ N − 1 and the minimizing (y∗n, z
∗
n) form the optimal strategy for the expected

exponential of the cost.

The recursion equation of Proposition 4.4.1 must be solved by discretizing the

control space. Since solving the problem on a grid is computationally very expensive,

one will usually not be able to obtain the optimal strategy. We have not been able
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shows the net average stock positions, and average of order sizes submitted into the
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for the risk neutral case with α = 0.
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Figure 4.3: Average size of orders submitted to the regular exchange and to the dark
pool for Company A as a function of the parameter α in the risk neutral case.
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Figure 4.4: Histograms of C(x) computed for the risk neutral objective under the
optimal strategy in the multi–asset case with a dark pool where α = 0 and the
aggregation of two individual single–asset cases from from Theorem 2.2.1 without a
dark pool.

to compute the optimal strategy numerically for reasonable choices of discretization

parameters (i.e. restricting order submission to multiples of 2.5% of the initial po-

sitions in the assets). Therefore, we first propose to use an approximation for the

exponential cost functional and then propose a dual method to generate approximate

solutions to the dynamic programming equation of Proposition 4.4.1.

4.4.1 Second order Taylor approximation

Let Ĉ(x, y, z) be the second order Taylor expansion of exp(λC(x, y, z)) around

(x, y, z) = (0, 0, 0). We want to find (y∗, z∗) ∈ A that minimizes Ev,X0

0 [Ĉ(x, y, z)].
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Define the value function

Jvn(s) := min
(y,z)∈An(s)

Ev,sn
[
Q̂n(x, y, z)

]
,

where

Q̂n(x, y, z) :=
N∑

i=n+1

1

2
y
′

iΛ̃iyi + αz
′

idiag (bi−1) zi

+
λ

2
∆t(xi−1−yi−diag (bi−1) zi)

′
diag (σi) ξiξ

′

idiag (σi) (xi−1−yi−diag (bi−1) zi).

We recursively define the following matrices,

Hv
n :=

1

2
(Ĝv

n)
′Evn[Λ̃n+1]Ĝv

n + (F̂ v
n )
′

(
αdiag (q(v3)) +

(∑
w

pvwn diag
(
(Hw

n+1)ii
)

+
λ

2
∆tdiag (Evn[diag (σn+1) Σdiag (σn+1)]ii)

)
diag (q(v3)(1− q(v3)))

)
F̂ v
n

+(I−Ĝv
n−diag (q(v3)) F̂ v

n )
′
(∑

w

pvwn Hw
n+1+

λ

2
∆tEvn[diag (σn+1) Σdiag (σn+1)]

)
(I−Ĝv

n−diag (q(v3)) F̂ v
n )

for n ≤ N − 2 and Hv
N−1 := 1

2
EvN−1[Λ̃N ]. Ĝv

n and F̂ v
n are defined as

F̂ v
n :=(Svn)−1(B̂v

n)
′

(
I−(U v

n)−1
(∑

w

pvwn H̃w
n+1+λ∆tEvn[diag (σn+1) Σdiag (σn+1)]

))
,

Ĝv
n := (U v

n)−1

(∑
w

pvwn H̃w
n+1 + λ∆tEvn[diag (σn+1) Σdiag (σn+1)]− B̂v

nF̂
v
n

)
,

where Ŝvn is the Schur complement in Û v
n of the matrix

 Û v
n B̂v

n

(B̂v
n)
′
L̂vn
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with

Û v
n :=Evn[Λ̃n+1] +

∑
w

pvwn H̃w
n+1 + λ∆tEvn[diag (σn+1) Σdiag (σn+1)],

B̂v
n :=

(∑
w

pvwn H̃w
n+1 + λ∆tEvn[diag (σn+1) Σdiag (σn+1)]

)
diag (q(v3)) , and

L̂vn :=2

(
αdiag (q(v3)) +

(∑
w

pvwn diag
(
(Hw

n+1)ii
)

+

λ

2
∆tdiag (Evn[diag (σn+1)Σdiag (σn+1)]ii)

)
diag (q(v3)(1−q(v3)))

)
+diag (q(v3)) B̂v

n

for n ≤ N − 2.

Theorem 4.4.2. The optimal strategy minimizing the expectation of second order

Taylor approximation of the exponential cost is given by

y∗n|x∗n−1, (Λn−1,σn−1,δn−1)=v=Ĝv
n−1x

∗
n−1, z

∗
n|x∗n−1, (Λn−1,σn−1,δn−1)=v= F̂ v

n−1x
∗
n−1, (4.4.2)

for n ≤ N − 1.

Simulation

Figure 4.5 shows the simulation average of net optimal stock positions for different

values of parameter λ as percentage of the initial positions in the assets. It is observed

that the average speed of execution increases as the parameter value λ is increased.

On the right side of Figure 4.5, a realization of an execution trajectory is shown.

Figure 4.6 shows a detailed analysis of the simulation average of orders submitted

to the regular exchange and dark pool along with the average execution trajectory

with parameter values α = 0, λ = 10−4. As in the risk neutral case, we observe

that the optimal strategy places orders larger than the remaining positions to be

executed into the dark pool to reduce the transaction costs due to the correlation

between Companies A and B. On the left side of Figure 4.7 the sample average of
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execution trajectories and one standard deviation around this average is shown for

parameter values of λ = 10−4 and α = 0. On the right side of Figure 4.7 we see the

effect of increasing the adverse selection parameter α on the average size of sell orders

submitted to the dark pool for Company A.

Figure 4.8 shows two histograms of the implementation cost. The multi–asset

optimal strategy is obtained by Theorem 4.4.2 in the case when λ = 10−4 and α = 0.

The second histogram was created by using two individually optimal single–asset

strategies found by using Theorem 2.3.1 for the expected exponential of the cost case.

The single–asset strategies do not account for the dark pool, cross impact and market

innovation correlations. Moreover they are obtained by a numerical procedure where

one is allowed to submit orders in the multiples of 1% of the starting asset positions.

It is assumed that the parameter of risk aversion is also 10−4. It is seen in Figure 4.8

that the multi–asset optimal strategy minimizing the expectation of the second order

Taylor expansion of the exponential cost yields lower simulation mean and standard

deviation.

4.4.2 An approximation via duality

In this section our goal is to provide a framework so that one can generate approx-

imate strategies by using the dual variables obtained from the dual representation

of the optimization problems defined in (4.4.1). We introduce new notation, let

us denote a path of the Markov chain and dark pool executions from time tn to

tN by (vn, un, . . . , vN−1, uN−1, vN) where vi ∈ W and ui ∈ {0, 1}M . We denote

the probability of this outcome given (Λn, σn, δn) = vn by p(un, . . . , vN | vn) and

µ(un, . . . , vN | vn). p(un, . . . , vN | vn) is given by

pv
n,vn+1

n × . . . pv
N−1,vN

N−1 × Pvnn (bn = un)× . . .PvN−1

N−1 (bN−1 = uN−1),
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Figure 4.5: Average of net optimal positions for different scenarios as a function of
risk aversion parameter λ, and a realization of execution trajectories in the second
order Taylor approximation case with α = 0.

and µ(un, . . . , vN | vn) is such that

∑
un,...,vN

µ(un, . . . , vN | vn) = 1 and µ(un, . . . , vN | vn) > 0, (4.4.3)

where n ≤ N − 2. For every path (vn, un, . . . , vN−1, uN−1, vN) we recursively define

the following matrices,

Aµn(un, . . . vN | vn) :=λGµ
n(vn)

′
vn+1

1 Gµ
n(vn) + λαF µ

n (vn)
′
diag (un)F µ

n (vn)

+(I−Gµ
n(vn)−diag (un)F µ

n (vn))
′
(1

2
λ2∆tdiag

(
vn+1

2

)
Σdiag

(
vn+1

2

)
+Aµn+1(un+1, . . . vN | vn+1)

)
(I−Gµ

n(vn)−diag (un)F µ
n (vn))

for n ≤ N − 2. The terminal condition reads as AµN−1(uN−1, vN | vN−1) := λvN1 for

all uN−1 ∈ {0, 1}M and vN−1, vN ∈ W . As a function of the probability distribution

65



n0%

140%

120%

100%

80%

60%

40%

20%

−160%

−140%

−120%

−100%

−80%

−60%

−40%

−20%
10 20 30 40 50

x̄An
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Figure 4.6: Detailed analysis of the negatively correlated pair Company A and B
shows the net average stock positions, and average of order sizes submitted into the
regular exchange and the dark pool as percentages of initial positions in the assets
for the second order Taylor approximation of the expected exponential cost case with
α = 0 and λ = 10−4.

µ as defined in (4.4.3), Gµ
n(vn) and F µ

n (vn) are defined as

F µ
n (vn) :=Sµn(vn)−1Bµ

n(vn)
′
(
I − Uµ

n (vn)−1
( ∑
un...vN

µ(un, . . . , vN | vn)

(
Ãµn+1(un+1, . . . vN | vn+1) + λ2∆tdiag

(
vn+1

2

)
Σdiag

(
vn+1

2

) )))
,

Gµ
n(vn) :=Uµ

n (vn)−1
( ∑
un...vN

µ(un, . . . , vN | vn)
(
Ãµn+1(un+1, . . . vN | vn+1)

+λ2∆tdiag
(
vn+1

2

)
Σdiag

(
vn+1

2

) )
−Bµ

n(vn)F µ
n (vn)

)
,
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Figure 4.7: Standard deviation from the average execution trajectories and average
size of orders submitted to the dark pool for Company A as a function of the parameter
α in the second order Taylor approximation case with λ = 10−4.

where Sµn(vn) is the Schur complement in Uµ
n (vn) of the matrix

 Uµ
n (vn) Bµ

n(vn)

Bµ
n(vn)

′
Lµn(vn)


with

Uµ
n (vn) :=

∑
un...vN

µ(un, . . . , vN | vn)
(
Ãµn+1(un+1, . . . vN | vn+1)+λṽn+1

1 λ2∆tdiag
(
vn+1

2

)
Σ

diag
(
vn+1

2

) )
,

Bµ
n(vn) :=

∑
un...vN

µ(un, . . . , vN | vn)
(
Ãµn+1(un+1, . . . vN | vn+1)+λ2∆tdiag

(
vn+1

2

)
Σ

diag
(
vn+1

2

) )
diag (un) and,

Lµn(vn) :=
∑

un...vN

µ(un, . . . , vN | vn)
(

2λαdiag (un) + diag (un) Ãµn+1(un+1, . . . vN | vn+1)

diag (un) + λ2∆tdiag (un) diag
(
vn+1

2

)
Σdiag

(
vn+1

2

)
diag (un)

)
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Figure 4.8: First histogram of C(x) is computed for the strategy minimizing the
expectation of the second order exponential of the cost in the multi–asset case with
a dark pool where λ = 10−4 and α = 0. Second histogram of C(x) is computed
by seperately finding two individually optimal strategies minimizing the expected
exponential of the cost in the single–asset case without a dark pool and where λ =
10−4.

for n ≤ N − 2. The following theorem characterizes the optimal strategy that solves

the dynamic programming equation of Proposition 4.4.1.

Theorem 4.4.3. For all n ≤ N −2 and vn ∈ W , there exist µ∗(un, . . . , vN | vn) such

that ∑
un,...,vN

µ∗(un, . . . , vN | vn) = 1 and µ∗(un, . . . , vN | vn) > 0,

and the strategy (y∗n, z
∗
n) given by

y∗n|x∗n−1, (Λn−1,σn−1,δn−1)=vn−1 = Gµ∗

n−1(vn−1)x∗n−1 and
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z∗n|x∗n−1, (Λn−1,σn−1,δn−1)=vn−1 = F µ∗

n−1(vn−1)x∗n−1,

solves the Bellman equations of Proposition 4.4.1.

Now one can generate approximate strategies for the expected exponential of the

portfolio execution cost by using Theorem 4.4.3. One simply should specify probabil-

ity distributions on the paths of the Markov chain and then use these distributions to

recursively generate matrices Gµ
n−1(vn−1) and F µ

n−1(vn−1). We provide two examples.

Example 4.4.4. For all n ≤ N − 1 and vn ∈ W choose

µ(un, . . . , vN | vn) =
1

#(W )N−n × 2M(N−n)
,

where #(W ) denotes the cardinality of the set W and 2M = #({0, 1}M). Define the

following matrices,

Λ̄=
1

#(W )

∑
v∈W

v1, Σ̄=
1

#(W )

∑
v∈W

diag (v2) Σdiag (v2) , ¯bΣb=
1

2M

∑
u∈{0,1}M

diag (u) Σ̄diag (u),

set Aµ̄N−1 = λΛ̄ and for n ≤ N − 2 recursively define

Aµ̄n =λGµ̄
n

′
Λ̄Gµ̄

n +
1

2
λαF µ̄

n

′
F µ̄
n

+
1

2M

∑
u∈{0,1}M

(I −Gµ̄
n − diag (u)F µ̄

n )
′
(1

2
λ2∆tΣ̄ + Aµ̄n+1

)
(I −Gµ̄

n − diag (u)F µ̄
n ),

F µ̄
n :=(Sµ̄n)−1Bµ̄

n

′
(
I−(U µ̄

n )−1(Ãµ̄n+1+λ2∆tΣ̄)

)
, Gµ̄

n := (U µ̄
n )−1

(
Ãµ̄n+1+λ2∆tΣ̄−Bµ̄

nF
µ̄
n

)
,

U µ̄
n :=Ãµ̄n+1 + λ ˜̄Λ + λ2∆tΣ̄, Bµ̄

n := Ãµ̄n+1 +
1

2
λ2∆tΣ̄, Lµ̄n := λαI + bÃµ̄n+1b+ λ2∆t ¯bΣb,

and bÃµ̄n+1b := 1
2M

∑
u∈{0,1}M diag (u) Ãµ̄n+1diag (u) , for a uniform distribution µ̄ on

execution paths. It follows that for such a choice of µ, the approximate (and deter-
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ministic) strategy is given by

yn|xn−1,(Λn−1,σn−1,δn−1)=vn−1 =Gµ̄
n−1xn−1, zn|xn−1,(Λn−1,σn−1,δn−1)=vn−1 = F µ̄

n−1xn−1

where n ≤ N − 1.

Example 4.4.5. Pick µ(un, . . . , vN | vn) = p(un, . . . , vN | vn), for all n ≤ N − 1

and vn ∈ W . For this particular choice of µ the strategy given in Theorem 4.4.2 is

optimal.

Note that one should make reasonable choices for µ. For instance, in the case

where the actual probabilities on the paths of the chain and the uniform distribution

are far from each other (such as in our case), Example 4.4.4 will not produce good

results. The dual of the problems given in (4.4.1) is a type of entropy maximization

problem where the objective function consists of the sum of relative entropy between

µ and p and a term that represents y and z in terms of µ and x. The choice of µ as in

Example 4.4.5 maximizes the entropy term but will not be optimal for the other term

in the objective function. The user of the program may develop heuristic approaches

to generate approximate strategies that perform better by making these observations.

One may also use a duality gap argument to estimate the error of an approximation.

4.5 Conclusion

We have addressed an optimal portfolio execution problem with a dark pool by using a

framework that assumes stochastic volatility, price impact and dark pool liquidity. We

found a predictable strategy that minimizes the risk neutral objective and provided

a solution minimizing the expectation of the second order Taylor expansion of the

exponential cost. Moreover, we have developed a framework via duality that can be

used to treat the exponential case by generating approximate strategies. Although we
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have made independence assumptions for the Markov processes we have in our setup,

our formulation can be used to account for codependence between volatility, market

impact, and dark pool liquidity by an appropriate choice of transition probabilities.

Moreover, one can capture the time varying dynamics of the markets by specifying

non–stationary transition probabilities. In practice, the adverse selection parameter

α can be used to adjust the size of orders submitted to the dark pool to levels that are

deemed appropriate for the execution program to be used. In practice one executes

orders for a portfolio of S&P500 stocks, and dimensionality can be a big problem for

the computation of optimal strategy. Therefore, the setup we proposed in Section

4.2 for the numerical studies, which makes use of common factors to describe the

volatility and market impact processes can be used to reduce the dimensionality of

the problem.
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Chapter 5

Robust execution of a single–asset

In practice the user of any model must find the corresponding parameter set which fits

the model that has been specified. In the case of stochastic dynamics one also assumes

a distribution for these parameters and believes that this distribution reflects the re-

ality for the probability of outcomes. One issue with this approach is that it does not

account for the possibility of model misspecification. When the distribution is known,

risk can be calculated. On the other hand, when there exists ambiguity regarding the

distribution, one will not be able to calculate the risks associated with the decision

making process with certainty. This concept was first introduced by Knight (1921)

and then has been formalized by Gilboa and Schmeidler (1989). Hansen and Sargent

(2001) studied a control problem under model uncertainty by using multiplier prefer-

ences. Klibanoff et al. (2005) proposed a model for decision making by introducing

second order certainty equivalance. Subsequently, variational preferences have been

introduced by Maccheroni et al. (2006a) and have been extended to time-consistent

dynamic preferences by Maccheroni et al. (2006b). Representation of preferences is

also closely related to risk measures. Coherent risk measures have been extended to a

dynamic framework by Riedel (2004). Cheridito and Kupper (2011) have shown how

one can see time-consistent risk measures as compositions of one-step risk measures.
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The purpose of this chapter is to compute robust execution strategies in an

Almgren–Chriss framework by making use of time-consistent risk measures, first order

multi–prior certainty equivalence and second order certainty equivalence frameworks.

We use the program developed in Chapter 2. Here we assume that there exists am-

biguity for the transition probabilities of this Markov chain and we consider three

setups that allow to account for both ambiguity and risk aversion. We see the total

cost of execution as sum of costs that arise at each period and call these costs periodic

costs. The first setup we consider aggregates worst case expectations of periodic costs

by penalizing the transition probabilities with dynamic ambiguity indices. The sec-

ond setup we consider formulates the problem as the first order certainty equivalent

of expected execution cost with multiple priors. The last setup uses a second order

certainty equivalence formulation. We find predictable strategies that minimize the

cost functionals of these setups. Our work is close to Schied (2013) who find a robust

strategy minimizing the execution cost by assuming uncertainty only for the distri-

bution of the unaffected stock price process in an Almgren–Chriss setup. However,

our approach differs because we assume ambiguity for the volatility and liquidity and

think that the law of market innovations are known with certainty.

The paper is organized such that in Section 5.1 we introduce the dynamics of the

market model with linear transient impact. In Section 5.2 we study the case when

the objective functional is assembled by aggregating periodic risks with dynamic

ambiguity indices of indicator, relative entropy and Gini type. Section 5.3 studies the

first order certainty equivalance formulation with multi–priors and Section 5.4 the

second order certainty equivalence case. All proofs are given in the Appendix A.4.
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5.1 The model

We consider the same problem of liquidating X ∈ R+ shares as in Chapter 2. After

droping the constant cX2/2 from the cost functional C(x) we express it as V (x) =∑N
n=1 Vn(x), where Vn(x) are the costs incurred in the time interval (tn−1, tn] that

read as

Vn(x) := (xn−1 − xn)2η̃n − xnσn
√

∆tξn. (5.1.1)

The filtration (Fn) and the definition of the set of admissible strategies A is the

same as in Chapter 2. We again assume that ξn isindependent of σ(Fn−1, σn, ηn).

(σn, ηn) is assumed to take finitely many and different values in R2
+, moreover, we

specify (σn, ηn) as a Markov chain with finite state space W ⊆ R2
+. Therefore, when

conditioned on Fn−1, its distribution only depends on (σn−1, ηn−1). However, we

assume there exists ambiguity for the transition probabilities of (σn, ηn). We define

time–dependent reference transition probabilities as

pvwn−1 := P [(σn, ηn) = w | (σn−1, ηn−1) = v] , v, w ∈ W. (5.1.2)

We assume pvwn−1 > 0 for all n ≤ N−1 and v, w ∈ W . Reference transition probability

for (σn, ηn) given (σn−1, ηn−1) = v is denoted by Pvn−1 :=
(
pvwn−1

)
w∈W . We denote by

EP the expectation taken by using the time-dependent reference transition matrix

defined in (5.1.2). Let Q denote the set of all discrete probability distributions on

the state space W . Q ∈ Q is then given by (qw)w∈W such that
∑

w∈W qw = 1 and

qw ≥ 0 for all w ∈ W . For a Q ∈ Q, EQ and En,vQ respectively denote the expectation

under Q and the conditional expectation EQ[. | (σn, ηn) = v]. Notice that for Q ∈ Q

we only specify a distribution on the state space of Markov chain (σn, ηn); therefore,

regardless of the Q specified, (ξn) has a standard normal distribution. It is enough

to consider the process (σn, ηn), n ≥ 0 to derive the optimal strategies. Moreover, we

define η̃n := ηn − c/2 and assume that w2 − c/2 > 0 for all w ∈ W .
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5.2 Aggregation with dynamic ambiguity indices

For v ∈ W and n ≤ N − 1 we define a dynamic ambiguity index αvn : Q 7→ [0,∞] to

penalize the distribution one uses on W when aggregating expected costs associated

with V (x). We define a risk map as follows

ρn (Z) := sup
Q∈Q

EQ
[
Z − α(σn,ηn)

n (Q) | Fn
]
, (5.2.1)

and

ρvn (Z) := sup
Q∈Q

En,vQ [Z]− αvn(Q), (5.2.2)

for an Fn+1-measurable random variable Z and v ∈ W . Let u : R 7→ R be a convex

function and define the aggregation,

ρv0 ◦ ρ1 . . . ρN−1

(
N∑
n=1

δn−1u (Vn(x))

)
(5.2.3)

for v ∈ W , and a discounting parameter δ ∈ (0, 1]. Let
∫
u (Vn(x)) denote

E [u (Vn(x)) | Fn−1, σn, ηn], that is we integrate only with respect to innovation at

period n. Also define

V w
n (x) := (xn−1 − xn)2(w2 − c/2)− xnw1

√
∆tξn,

for w ∈ W . In this section our goal is to find an x ∈ A that minimizes the aggregation

of equation (5.2.3) by assuming different ambiguity indices.

5.2.1 Indicator index

For all n ≤ N − 1, and v ∈ W we fix a set of distributions
{
P v
n,1, . . . , P

v
n,Mn

}
on

W , where Mn ∈ N. By Pvn we denote the convex hull of
{
P v
n,1, . . . , P

v
n,Mn

}
. First we

consider the problem obtained by assuming an ambiguity index of indicator function

75



type:

αvn(Q) =


∞, if Q /∈ Pvn

0, if Q ∈ Pvn.
(5.2.4)

Define the value function

Jvn(z) := min
x∈An(z)

ρvn ◦ ρn+1 . . . ρN−1

(
N∑

i=n+1

δi−1u (Vi(x))

)
. (5.2.5)

The following theorem characterizes the optimal strategy x∗ ∈ A that minimizes

(5.2.3) with an ambiguity index of indicator function type.

Theorem 5.2.1. The value function J satisfies the Bellman equation,

JvN−1(xN−1) = sup
Q∈

{
P vN−1,1,...,P

v
N−1,MN−1

}
∑
w∈W

qwδ
N−1

∫
u (V w

N (x))

∣∣∣∣
xN=0

Jvn−1(xn−1) = min
0≤xn≤xn−1

sup
Q∈

{
P vn−1,1,...,P

v
n−1,Mn−1

}
∑
w∈W

qw

(
δn−1

∫
u (V w

n (x)) + Jwn (xn)

)

for n ≤ N − 1, and the minimizing (x∗n) form the unique optimal strategy.

In the case when u is not linear, the risks associated with the volatility of the asset

price will be accounted for in the optimal strategy found by using Theorem 5.2.1. The

optimal strategy can be found by discretizing the space of controls if neccessary. One

special case is when u is assumed to be linear. This case would be of interest to

construct a robust strategy when there is no aversion for risks arising from volatility.

Next corollary gives the optimal strategy for a linear function u:

Corollary 5.2.2. When one assumes u is linear, the unique optimal strategy of The-

orem 5.2.1 is given by

x∗n|x∗n−1, (σn−1,ηn−1)=v = x∗n−1

δn−1En−1,v
Q∗ [η̃n]

δn−1En−1,v
Q∗ [η̃n] +

∑
w∈W q∗wa

w
n

, n = 1, . . . , N−1, (5.2.6)

76



where the coefficients awn satisfy the backwards recursion:

avN−1 = δN−1EN−1,v
Q∗ [η̃N ], avn−1 =

δn−1En−1,v
Q∗ [η̃n]

∑
w∈W q∗wa

w
n

δn−1En−1,v
Q∗ [η̃n] +

∑
w∈W q∗wa

w
n

, n ≤ N − 1.

(5.2.7)

and the optimal choice of transition probabilities Q∗ = (q∗w)w∈W satisfy

Q∗|(σN−1,ηN−1)=v = arg max
Q∈

{
P vN−1,1,...,P

v
N−1,MN−1

} δN−1EN−1,v
Q [η̃N ]. (5.2.8)

and for n ≤ N − 1,

Q∗|(σn−1,ηn−1)=v = arg max
Q∈

{
P vn−1,1,...,P

v
n−1,Mn−1

} δn−1En−1,v
Q [η̃n]

∑
w∈W qwa

w
n

δn−1En−1,v
Q [η̃n] +

∑
w∈W qwawn

. (5.2.9)

(5.2.6)–(5.2.9) define a system of forward–backward stochastic equations. The

optimal strategy is to reduce the position in the asset to a fraction of the previous

position. This fraction depends on the ratio of the next periods discounted expected

liquidity under the worst case distribution to a weighted path of discounted worst

case expected liquidity terms. Note that the strategy of Corollary 5.2.2 corresponds

to the predictable risk neutral strategy given by Theorem 2.2.1 when the set Pvn is

a singleton that consists of Pvn and δ = 1. In the special case of having constant

liquidity along with δ = 1, the optimal solution is the constant speed sell strategy

found in Bertsimas and Lo (1998).

5.2.2 Relative entropy index

For a parameter θ ∈ R+, we define the next dynamic ambiguity index we use as the

relative entropy:

αvn(Q) := EQ
[

1

θ
log

(
dQ

dPvn

)]
=
∑
w∈W

qw
1

θ
log

(
qw
pvwn

)
, (5.2.10)
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where Q ∈ Q. Our goal is to find a strategy that minimizes (5.2.3), where this time

the ambiguity index is the relative entropy. Define the value function

Jvn(z) := min
x∈An(z)

exp

(
θρvn ◦ ρn+1 . . . ρN−1

(
N∑

i=n+1

δi−1u (Vi(x))

))
.

It is well known that the relative entropy ambiguity index assembles the exponential

utility. The following theorem gives the Bellman equation which characterizes the

optimal strategy for this case:

Theorem 5.2.3. The value function J satisfies the Bellman equation,

JvN−1(xN−1) =
∑
w∈W

pvwN−1 exp

(
δN−1θ

∫
u (V w

N (x))

) ∣∣∣∣
xN=0

Jvn−1(xn−1) = min
0≤xn≤xn−1

∑
w∈W

pvwn−1 exp

(
δn−1θ

∫
u (V w

n (x))

)
Jwn (xn)

for n ≤ N − 1, and the minimizing (x∗n) form the unique optimal strategy.

The Bellman equation of Theorem 5.2.3 is solved by discretizing the space of

controls. When one assumes that u is linear, the optimal solution will not account

for volatility risk. In such a case one obtains a robust strategy minimizing only the

expected exponential of liquidity costs. Following corollary describes such a strategy:

Corollary 5.2.4. When one assumes u is linear the value function J in Theorem

5.2.3 satisfies the Bellman equation

JvN−1(xN−1) =
∑
w∈W

pvwN−1 exp
(
θδN−1x2

N−1(w2 − c/2)
)

Jvn−1(xN−1) = min
0≤xn≤xn−1

∑
w∈W

pvwn−1 exp
(
θδn−1(xn−1 − xn)2(w2 − c/2)

)
Jwn (xn),

for n ≤ N − 1 and the minimizing (x∗n) form the unique optimal strategy.
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5.2.3 Gini index

The next ambiguity index we consider belongs to the family of indices given by:

αvn(Q) := EPvn

[
φ

(
dQ

dPvn

)]
=
∑
w∈W

pvwn φ

(
qw
pvwn

)
, (5.2.11)

where Q ∈ Q and φ : R+ 7→ R, is a strictly convex differentiable function that grows

super-linearly with φ′(1) = φ(1) = 0. This index is known as the divergence index.

Proposition A.4.3 in the appendix shows the necessary and sufficient conditions for

finding the optimal choice of transition probabilities which can be used to solve (5.2.3)

when φ is used to describe the ambiguity index. We only consider the Gini index here.

It is given by φ(x) = λ(x− 1)2/2 for a parameter λ ∈ R+. Define the value function

Jvn(z) := min
x∈An(z)

ρvn ◦ . . . ρN−1

(
N∑

i=n+1

δi−1u(Vi(x))

)
.

Theorem 5.2.5. For a sufficiently large parameter λ ∈ R+, the value function J

satisfies the Bellman equation,

JvN−1(xN−1) =δN−1EN−1,v
P

[∫
u (VN(x))

]
+

1

2λ
δ2(N−1)VarN−1,v

P

(∫
u (VN(x))

) ∣∣∣∣
xN=0

Jvn−1(xn−1) = min
0≤xn≤xn−1

δn−1En−1,v
P

[∫
u (Vn(x))

]
+

1

2λ
δ2(n−1)Varn−1,v

P

(∫
u (Vn(x))

)
+En−1,v

P [Jn(xn)]+
1

2λ
Varn−1,v

P (Jn(xn))+
1

λ
δn−1Covn−1,v

P

(
Jn(xn),

∫
u (Vn(x))

)

for n ≤ N − 1, and the minimizing (x∗n) form the optimal strategy.

We solve the Bellman equation of Theorem 5.2.5 by discretizing the space of

controls when the value function can not be obtained in closed form. In the special

case of linear u the best robust strategy can be obtained by using the following

corollary, where given (σn, ηn) = v, Varn,vP , Covn,vP denote the conditional variance

and covariance computed using P.
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Corollary 5.2.6. For a sufficiently large parameter λ ∈ R+ and linear u, the value

function J satisfies the Bellman equation,

JvN−1(xN−1)=x2
N−1E

N−1,v
P [η̃N ]+

1

2λ
x4
N−1VarN−1,v

P (η̃N)

Jvn−1(xn−1)= min
0≤xn≤xn−1

(xn−1 − xn)2En−1,v
P [η̃n]+

1

2λ
(xn−1 − xn)4Varn−1,v

P (η̃n)

+En−1,v
P [Jn(xn)]+

1

2λ
Varn−1,v

P (Jn(xn))+
1

λ
(xn−1−xn)2Covn−1,v

P (Jn(xn), η̃n)

for n ≤ N − 1 and the minimizing (x∗n) form the optimal strategy.

5.3 First order certainty equivalent

In this section our goal is to find the strategy minimizing,

µv0 ◦ µ1 ◦ . . . µN−1 (V (x)) (5.3.1)

over x ∈ A for v ∈ W where,

µn(Z) =
1

θ
log

(
sup

Q∈P(σn,ηn,ϕn)
n

EQ [exp(θZ) | Fn]

)
(5.3.2)

and

µvn(Z) :=
1

θ
log

(
sup
Q∈Pvn

En,vQ [exp(θZ)]

)
for a parameter θ ∈ R+ and an Fn+1-measurable random variable Z. The sets{
P v
n,1, . . . , P

v
n,Mn

}
and Pvn are defined as in Section 5.2.1. The reason we only con-

sider the exponential function to specifiy the composition in (5.3.1) is because only

exponential and linear functions constitute a time-consistent formulation for a first

order certainty equivalence setup (i.e. see Cheridito and Kupper (2006)). Define the
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value function

Jvn(z) := min
x∈An(z)

exp

(
θµvn ◦ µn+1 . . . µN−1

(
N∑

i=n+1

Vi(x)

))
.

The following theorem characterizes the optimal solution x∗ ∈ A that minimizes

(5.3.1).

Theorem 5.3.1. The value function J satisfies the Bellman equation,

JvN−1(xN−1) = sup
Q∈

{
P vN−1,1,...,P

v
N−1,MN−1

}
∑
w∈W

qw exp
(
θx2

N−1(w2 − c/2)
)

Jvn−1(xn−1) = min
0≤xn≤xn−1

sup
Q∈{P 1

N−1,...,P
MN−1
N−1 }∑

w∈W

qw exp

(
θ(xn−1−xn)2(w2−c/2) +

1

2
θ2x2

nw
2
1∆t

)
Jwn (xn)

for n ≤ N − 1, and the minimizing (x∗n) form the unique optimal strategy.

Notice that when one assumes that Pvn is a singleton given by (pvwn )w∈W one

will obtain the optimal strategy minimizing the expected exponential cost given by

Theorem 2.3.1. Hence the minimizing strategy is also expected to be closely related

to the predictable strategy minimizing a mean–variance criterion with parameter θ/2

and in the case of constant liquidity and volatility one obtains the mean–variance

minimizing deterministic strategy of Almgren and Chriss (2001).

5.4 Second order certainty equivalent

In this section we assume u : R 7→ R is an increasing convex function, and introduce

a continuous and increasing function ν : R 7→ R. For each n ≤ N − 1 and v ∈ W we

fix a probability distribution
(
πvn,i
)Mn

i=1
on the set of distributions

{
P v
n,1, . . . , P

v
n,Mn

}
on
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W . Our goal is to find x∗ ∈ A that gives Jv0 (X) for v ∈ W where

JvN−1(xN−1) = min
x∈AN−1(xN−1)

ν−1

(
MN−1∑
i=1

ν ◦ u−1
(
EN−1,v
P vN−1,i

[u (VN(x))]
)
πvN−1,i

)

Jvn−1(xn−1) = min
x∈An−1(xn−1)

ν−1

(
Mn−1∑
i=1

ν ◦ u−1
(
En−1,v
P vn−1,i

[u (Vn(x)) + δu (Jn(xn))]
)
πvn−1,i

)

for n ≤ N−1 and a parameter δ ∈ (0, 1]. The following proposition gives the optimal

solution to this problem.

Proposition 5.4.1. The optimal strategy (x∗n) satisfying the following Bellman equa-

tions

J̃vN−1(xN−1) =

MN−1∑
i=1

ν ◦ u−1
(
EN−1,v
P vN−1,i

[u (VN(x))]
)
πvN−1,i

∣∣∣∣
xN=0

J̃vn−1(xn−1) = min
0≤xn≤xn−1

Mn−1∑
i=1

ν ◦ u−1
(
EP v

n−1,i
n−1,v

[
u (Vn(x))+δu ◦ ν−1

(
J̃n(xn)

)])
πvn−1,i

for n ≤ N − 1, is the optimal solution for the second order certainty equivalence

objective.

As a special case assume ν = u. Then the optimal strategy obtained from Propo-

sition 5.4.1 also minimizes (5.2.3) with indicator indices given by,

αvn(Q) =


∞, if Q 6=

∑Mn

i=1 P
v
n,iπ

v
n,i

0, if Q =
∑Mn

i=1 P
v
n,iπ

v
n,i.

Note that in the case ν = u, aversion towards uncertainty is not penalized. Moreover

if u is linear, δ = 1 and
∑Mn

i=1 P
v
n,iπ

v
n,i = Pvn for all n ≤ N − 1 then the optimal stragey

we obtain is that of the risk neutral objective given by Theorem 2.2.1.
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Appendix A

A.1 Proofs for Chapter 2

Proof of Theorem 2.2.1

We prove the theorem by backwards induction. Since Ev0[Q(x)] = Ev0[R(x)] for

Rn(x) =
N∑

i=n+1

(xi−1 − xi)2η̃i,

we denote by An(z) the set of predictable strategies (xi)
N
i=n such that xn = z, xi−1 ≥

xi, xN = 0 and define

Jvn(z) := min
x∈An(z)

Evn[Rn(x)].

Then

JvN−1(xN−1) = x2
N−1EvN−1[η̃N ] = x2

N−1a
v
N−1,

and inductively,

Jvn−1(xn−1) = min
x∈An−1(xn−1)

Evn−1[Rn−1(x)]

= min
x∈An−1(xn−1)

(xn−1 − xn)2Evn−1[η̃n] + Evn−1[Rn(xn)]

= min
xn

(xn−1 − xn)2Evn−1[η̃n] + x2
n

∑
w∈V k

pvwn−1a
w
n , n ≤ N − 1.
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It follows that the unique optimal strategy is given by

x∗n = x∗n−1

Evn−1[η̃n]

Evn−1[η̃n] +
∑

w∈V k p
vw
n−1a

w
n

,

and Jvn−1(x∗n−1) becomes

(x∗n−1)2 Evn−1[η̃n]
∑

w∈V k p
vw
n−1a

w
n

Evn−1[η̃n] +
∑

w∈V k p
vw
n−1a

w
n

= (x∗n−1)2awn−1.

In particular, Jv0 (X) = X2av0. �

Proof of Theorem 2.3.1

Define

Rn(x) := exp

(
N∑

i=n+1

α(xi−1 − xi)2η̃i +
1

2
α2x2

iσ
2
i ∆t

)

and note that Evn[exp(αQn(x))] = Evn[Rn(x)]. So

JvN−1(xN−1) =
∑
w∈V

pvwN−1 exp
(
αx2

N−1(w2 − c/2)
)

and

Jvn−1(xn−1) = min
x∈An−1(xn−1)

Evn−1

[
exp

(
α(xn−1−xn)2η̃n+

1

2
α2x2

nσ
2
n∆t

)
Rn(xn)

]
= min

0≤xn≤xn−1

∑
w∈V

pvwn−1 exp

(
α(xn−1−xn)2(w2 − c/2)+

1

2
α2x2

nw
2
1∆t

)
Jwn (xn),

n ≤ N − 1. Since in every step, x∗n minimizes a strictly convex function, the optimal

strategy x∗ is unique.

Proposition A.1.1. Let (Ω,F ,P) be a probability space and E a non-empty subset

of L2(Ω,F ,P). Denote

V λ (X) := EX + λVar (X) , V λ,µ (X) := µEX + λEX2, X ∈ L2,
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and assume V λ attains a minimum over E at X∗ ∈ E. Then X∗ minimizes V λ,µ over

E for µ = 1− 2λEX∗.

Proof. One can write V λ (X) = f (EX,EX2) for f(x) = x1 − λx2
1 + λx2. Since f is

concave, one has

f(x) ≤ f(x∗) +∇f(x∗) · (x− x∗) = f(x∗) + (1− 2λx∗1)(x1 − x∗1) + λ(x2 − x∗2).

So if X∗ ∈ E is a minimizer of V λ and µ = 1− 2λEX∗, then

V λ (X∗) ≤ V λ (X) ≤ V λ (X∗) + µ (EX − EX∗) + λ
(
EX2 − E (X∗)2)

for all X ∈ E, and therefore, V λ,µ (X∗) ≤ V λ,µ (X).

Proof of Theorem 2.4.1

Define

Rn(x):=
N∑

i=n+1

µ(xi−1−xi)2η̃i+λx
2
iσ

2
i ∆t+λ(xi−1−xi)4η̃2

i +2λ(xi−1−xi)2η̃2
i

∑
j>i

(xj−1−xj)2η̃j

and note that

Evn[Rn(x)] = Evn[µQn(x) + λQ2
n(x)].

So one has

JvN−1(xN−1) = µx2
N−1EvN−1[η̃N ] + λx4

N−1EvN−1[η̃2
N ]
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and

Jvn−1(xn−1) = min
x∈Rn−1(xn−1)

µ(xn−1 − xn)2Evn−1 [η̃n] + λx2
n∆tEvn−1

[
σ2
n

]
+ λ(xn−1 − xn)4Evn−1

[
η̃2
n

]
+ 2λ(xn−1 − xn)2Evn−1

[
η̃n

N∑
j=n+1

(xj−1 − xj)2η̃j

]
+ Evn−1 [Rn(x)]

= min
0≤xn≤xn−1

µ(xn−1 − xn)2Evn−1 [η̃n] + λx2
n∆tEvn−1

[
σ2
n

]
+ λ(xn−1 − xn)4Evn−1

[
η̃2
n

]
+ 2λ(xn−1 − xn)2Evn−1

[
η̃n

N∑
j=n+1

(xj−1 − xj)2η̃j

]
+
∑
w∈V

pvwn−1J
w
n (xn), n ≤ N − 1.

So a x∗ ∈ R is optimal if it realizes the minimum for every n = 1, . . . , N − 1. By

assumption, one has Evn−1 [η̃n] > 0. Therefore if µ > 0, then in every step, the function

to be minimized is strictly convex. It follows that the optimal strategy x∗ ∈ R is

unique. �

Proof of Theorem 2.4.3

It is clear that

JvN−1(h, xN−1) = (µ+ 2λh)x2
N−1EvN−1[η̃N ] + λx4

N−1EvN−1[η̃2
N ].

Moreover, for n ≤ N − 1,

Jvn−1(h, xn−1) = min
x∈An−1(xn−1)

Evn−1

[
(µ+ 2λh)Qn−1(x) + λQ2

n−1(x)
]

= min
x∈An−1(xn−1)

Evn−1

[
(µ+ 2λh)(un +Qn(x)) + λu2

n + 2λunQn(x) + λQ2
n(x)

]
,
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where un = (xn−1 − xn)2η̃n − xnσnξn. So

Jvn−1(h, xn−1) = min
0≤xn≤xn−1

(µ+ 2λh)(xn−1 − xn)2Evn−1[η̃n] + λ(xn−1 − xn)4Evn−1[η̃2
n]

+λx2
n∆tEvn−1[σ2

n] + Evn−1

[
(µ+ 2λh+ 2λun)Qn(x) + λQ2

n(x)
]

= min
0≤xn≤xn−1

(µ+ 2λh)(xn−1 − xn)2Evn−1[η̃n] + λ(xn−1 − xn)4Evn−1[η̃2
n]

+λx2
n∆tEvn−1[σ2

n]

+
∑
w∈V

pvwn−1

∫
R
Jwn

(
h+ (xn−1 − xn)2(w2 − c/2)− xnw1

√
∆tξ, xn

)
ρ(ξ)dξ,

and x∗ ∈ A is optimal if in every step, x∗n realizes the minimum for h = hn−1(x∗) and

xn−1 = x∗n−1. Finally, for µ ≥ 0, Ev0[µQ(x) + λQ(x)2] is strictly convex in x, and the

optimal strategy x∗ ∈ A is unique. �

A.2 Proofs for Chapter 3

Proof of Theorem 3.2.1

Note that Ev0C(y, z) = Ev0R0(y, z), where

Rn(y, z) :=
N∑

i=n+1

cxiyi + y2
i ηi.

For v ∈ V and x ∈ R, we denote

Jvn(x) := min
(y,z)∈An(x)

EvnRn(y, z),

where An(x) is the set of admissible strategies (y, z) with xn = x. Then

JvN−1(xN−1) = x2
N−1EvN−1ηN = avN−1x

2
N−1.
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Furthermore, assuming Jwn (x) = awnx
2 and awn ≥ 0, one obtains for q̄ = (q1 + q2)/2,

Jvn−1(xn−1) = min
(y,z)∈An−1(xn−1)

Evn−1Rn−1(xn−1)

= min
(y,z)∈An−1(xn−1)

cynEvn−1xn + y2
nEvn−1ηn + Evn−1Rn(xn)

= min
(y,z)∈An−1(xn−1)

cxn−1yn − cy2
n − cynznEvn−1bn + y2

nEvn−1ηn + Evn−1Rn(xn)

= min
yn,zn

cxn−1yn − cq̄ynzn + y2
nEvn−1η̃n

+
∑
w

pvwn−1 (q̄Jwn (xn−1 − (yn + zn)) + (1− q̄) Jwn (xn−1 − yn))

= min
yn,zn

cxn−1yn − cq̄ynzn + y2
nEvn−1η̃n (A.2.1)

+
∑
w

pvwn−1a
w
n

(
q̄(xn−1 − yn − zn)2 + (1− q̄) (xn−1 − yn)2

)
.

Provided that c ≥ 0 is small enough, the pair (yn, zn) must be chosen according to

the first order condition

yn =
(xn−1 − q̄zn)

(∑
w p

vw
n−1a

w
n − c/2

)
Evn−1η̃n +

∑
w p

vw
n−1a

w
n

zn = xn−1 −
∑

w p
vw
n−1a

w
n − c/2∑

w p
vw
n−1a

w
n

yn.

Therefore,

yn = dvn−1xn−1, zn = evn−1xn−1,

and the value function becomes Jvn−1(xn−1) = avn−1x
2
n−1. Moreover, for c ≥ 0 suffi-

ciently small, one has avn−1 ≥ 0. �

Proof of Theorem 3.3.1

One clearly has

JvN−1(xN−1) =
∑
w∈V

pvwN−1 exp
(
αx2

N−1w2

)
.
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If ρ denotes the standard normal density, then for n ≤ N − 1,

Jvn−1(xn−1) = min
(y,z)∈An−1(xn−1)

Evn−1 exp
(
α(cxnyn + y2

nηn − xnσn
√

∆tξn) + Cn(y, z)
)

= min
(y,z)∈An−1(xn−1)

∑
w∈V,b∈{0,1}

∫
R
dξρ(ξ)pvwn−1P [bn = b|ξ, zn]×

exp
(
α(c(xn−1 − yn − bzn)yn + y2

nw2 − (xn−1 − yn − bzn)w1

√
∆tξ)

)
×Ewn Cn(y, z)

= min
yn,zn

∑
w∈V,b∈{0,1}

pvwn−1ψ(b, zn, αw1

√
∆t(xn−1 − yn − bzn))× (A.2.2)

exp

(
αc(xn−1 − yn − bzn)yn + αy2

nw2 +
α2

2
w2

1∆t(xn−1 − yn − bzn)2

)
×

Jwn (xn−1 − yn − bzn).

and since c was assumed to be sufficiently small the objective function in (A.2.2) is

positive semidefinite in yn and zn hence the minimum is attained. �

A.3 Proofs for Chapter 4

Proof of Theorem 4.3.1

First notice that Ev,sn [Qn(x, y, z)] = Ev,sn [Rn(y, z)] for

Rn(y, z) =
N∑

i=n+1

y
′

iΛ
′

iyi + αz
′

idiag (bi−1) zi

It follows easily that

JvN−1(xN−1) = x
′

N−1EvN−1[Λ
′

N ]xN−1 = x
′

N−1A
v
N−1xN−1,
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and inductively,

Jvn−1(xn−1) = min
(y,z)∈An−1(xn−1)

Ev,xn−1

n−1 [Rn−1(y, z)]

= min
(y,z)∈An−1(xn−1)

y
′

nEvn−1[Λ
′

n]yn + αz
′

nEvn−1[diag (bn−1)]zn

+Ev,xn−1

n−1 [E [Rn(y, z) | (Λn, σn, ϕn, δn), xn]]

= min
yn,zn

y
′

nEvn−1[Λ
′

n]yn + αz
′

nEvn−1[diag (bn−1)]zn

+
∑
w

pvwn−1

(
Tr
(
AwnCovvn−1 (diag (bn−1) zn, diag (bn−1) zn)

)
+(xn−1 − yn − Evn−1 [diag (bn−1)] zn)

′
Awn

(xn−1 − yn − Evn−1 [diag (bn−1)] zn)

)
= min

yn,zn
y
′

nEvn−1[Λ
′

n]yn + αz
′

ndiag (q(v3)) zn

+
∑
w

pvwn−1

(
z
′

ndiag ((Awn )ii) diag (q(v3)(1− q(v3))) zn

+(xn−1 − yn − diag (q(v3)) zn)
′
Awn (xn−1 − yn − diag (q(v3)) zn)

)

for n ≤ N − 1. The optimal (y∗n, z
∗
n) pair must satisfy,

 U v
n−1 Bv

n−1

(Bv
n−1)

′
Lvn−1


 y∗n

z∗n

 =

 ∑w p
vw
n−1Ã

w
nx
∗
n−1

(Bv
n−1)

′
x∗n−1


It follows that the unique optimal strategy is given by

y∗n = Gv
n−1x

∗
n−1, and z∗n = F v

n−1x
∗
n−1.
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and hence

Jvn−1(x∗n−1) = x∗
′

n−1

(
(Gv

n−1)
′Evn−1[Λ

′

n]Gv
n−1 + α(F v

n−1)
′
diag (q(v3)) (F v

n−1)

+
∑
w

pvwn−1

(
(F v

n−1)
′
diag ((Awn )ii) diag (q(v3)(1− q(v3))) (F v

n−1)

+
(
I−Gv

n−1−diag (q(v3))F v
n−1

)′
Awn
(
I−Gv

n−1−diag (q(v3))F v
n−1

)))
x∗n−1

= x∗
′

n−1A
v
n−1x

∗
n−1

for n ≤ N − 1. �

Proof of Proposition 4.4.1

Define

Rn(x, y, z) =
N∑

i=n+1

exp
(
λy
′

iΛiyi + λαz
′

idiag (bi−1) zi

+
1

2
λ2∆t(xi−1 − yi − diag (bi−1) zi)

′
diag (σi) Σdiag (σi)

(xi−1 − yi − diag (bi−1) zi)
)
.

It follows that Evn [exp (αQn(x, y, z))] = Evn [Rn(x, y, z)] and hence

JvN−1(xN−1) =
∑
w∈W

pvwN−1 exp
(
λx
′

N−1w1xN−1

)
.
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By induction one obtains

Jvn−1(xn−1) = min
(y,z)∈An(xn−1)

∑
u

Pvn−1(bn−1 = u)Evn−1

[
exp

(
λy
′

nΛ
′

nyn + λαz
′

ndiag (u) zn

+
1

2
λ2∆t(xn−1 − yn − diag (u) zn)

′
diag (σn) Σ

diag (σn) (xn−1 − yn − diag (u) zn)
)
Rn(x, y, z) | bn−1 = u

]
= min

yn,zn

∑
w,u

pvwn−1Pvn−1(bn−1 = u) exp
(
λy
′

nw
′

1yn + λαz
′

ndiag (u) zn

+
1

2
λ2∆t(xn−1 − yn − diag (u) zn)

′
diag (w2) Σdiag (w2)

(xn−1 − yn − diag (u) zn)
)
Jwn (xn−1 − yn − diag (u) zn),

for n ≤ N − 1. Therefore the minimizing (y∗n, z
∗
n) form the unique optimal strategy

for the expected exponential cost. �

Proof of Theorem 4.4.2

We prove the Theorem by using backward induction. We first observe that

Ev,sn
[
Q̂n(x, y, z)

]
= Ev,sn

[
R̂n(x, y, z)

]

where

R̂n(x, y, z) :=
N∑

i=n+1

1

2
y
′

iΛ̃iyi + αz
′

idiag (bi−1) zi

+
λ

2
∆t(xi−1 − yi − diag (bi−1) zi)

′
diag (σi) Σdiag (σi)

(xi−1 − yi − diag (bi−1) zi).

Then the terminal conditional computes as,

JvN−1(xN−1) =
1

2
x
′

N−1EvN−1[Λ̃N ]xN−1.
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It follows,

Jvn−1(xn−1) = min
(y,z)∈An−1(xn−1)

Ev,xn−1

n−1 [R̂n−1(x, y, z)]

= min
(y,z)∈An−1(xn−1)

1

2
y
′

nEvn−1[Λ̃n]yn + αz
′

nEvn−1[diag (bn−1)]zn

+
λ

2
∆t(xn−1 − yn − Evn−1[diag (bn−1)]zn)

′Evn−1[diag (σn) Σdiag (σn)]

(xn−1 − yn − Evn−1[diag (bn−1)]zn)

+
λ

2
∆tTr

(
Evn−1[diag (σn) Σdiag (σn)]Covvn−1 (diag (bn−1) zn, diag (bn−1) zn)

)
+Ev,xn−1

n−1

[
E
[
R̂n(x, y, z) | (Λn, σn, ϕn, δn), xn

]]
= min

yn,zn

1

2
y
′

nEvn−1[Λ̃n]yn + αz
′

ndiag (q(v3)) zn

+
λ

2
∆t(xn−1 − yn − diag (q(v3)) zn)

′Evn−1[diag (σn) Σdiag (σn)]

(xn−1 − yn − diag (q(v3)) zn)

+
λ

2
∆tz

′

ndiag
((
Evn−1[diag (σn) Σdiag (σn)]

)
ii

)
diag (q(v3)(1− q(v3))) zn

+
∑
w

pvwn−1

(
Tr
(
Hw
n Covvn−1 (diag (bn−1) zn, diag (bn−1) zn)

)
+(xn−1 − yn − Evn−1 [diag (bn−1)] zn)

′
Hw
n

(xn−1 − yn − Evn−1 [diag (bn−1)] zn)

)
= min

yn,zn

1

2
y
′

nEvn−1[Λ̃n]yn + z
′

n

(
αdiag (q(v3)) +

(∑
w

pvwn−1diag ((Hw
n )ii)

+
λ

2
∆tdiag

(
Evn−1[diag (σn) Σdiag (σn)]ii

) )
diag (q(v3)(1− q(v3)))

)
zn

+(xn−1 − yn − diag (q(v3)) zn)
′(∑

w

pvwn−1H
w
n +

λ

2
∆tEvn−1[diag (σn) Σdiag (σn)]

)
(xn−1 − yn − diag (q(v3)) zn)
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for n ≤ N − 1. The optimal (y∗n, z
∗
n) pair must satisfy,

 Û v
n−1 B̂v

n−1

(B̂v
n−1)

′
L̂vn−1


 y∗n

z∗n

 =


(∑

w p
vw
n−1H̃

w
n + λ∆tEvn−1[diag (σn) Σdiag (σn)]

)
x∗n−1

(B̂v
n−1)

′
x∗n−1


Therefore the unique optimal strategy is given by

y∗n = Ĝv
n−1x

∗
n−1, and z∗n = F̂ v

n−1x
∗
n−1.

and hence

Jvn−1(x∗n−1) = x∗
′

n−1

(
1

2
(Ĝv

n−1)
′Evn−1[Λ̃n]Ĝv

n−1 + (F̂ v
n−1)

′

(
αdiag (q(v3))

+
(∑

w

pvwn−1diag ((Hw
n )ii) +

λ

2
∆tdiag

(
Evn−1[diag (σn) Σdiag (σn)]ii

) )
diag (q(v3)(1− q(v3)))

)
F̂ v
n−1 + (I − Ĝv

n−1 − diag (q(v3)) F̂ v
n−1)

′

(∑
w

pvwn−1H
w
n +

λ

2
∆tEvn−1[diag (σn) Σdiag (σn)]

)

(I − Ĝv
n−1 − diag (q(v3)) F̂ v

n−1)

)
x∗n−1

= x∗
′

n−1H
v
n−1x

∗
n−1

for n ≤ N − 1. �

Proof of Theorem 4.4.3

We prove the theorem by finding the dual of the optimization problems defined as in

(4.4.1) and carrying out the backward recursion for the optimal value function. The

terminal condition directly reads as

Jv
N−1

N−1 (x∗N−1) =
∑
vN∈W

pv
N−1 vN

N−1 exp
(
λx∗

′

N−1v
N
1 x
∗
N−1

)
,
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hence Aµ
∗

N−1(uN−1, vN | vN−1) := λvN1 . Assume that

Jv
n

n (xn) =
∑

un...vN

p(un . . . vN | vn) exp
(
xn
′
Aµn(un . . . vN | vn)xn

)

Now we find the dual of the following problem

Jv
n−1

n−1 (xn−1) = min
(y,z)∈An(xn−1)

Ev,xn−1
n [exp (λQn(x, y, z))]

= min
yn,zn

∑
un−1,vn

pv
n−1 vn

n−1 Pvn−1

n−1 (bn−1 = un−1) exp
(
λy
′

nv
n
1

′
yn

+ λαz
′

ndiag
(
un−1

)
zn +

1

2
λ2∆t(xn−1 − yn − diag

(
un−1

)
zn)

′
diag (vn2 ) Σ

diag (vn2 ) (xn−1 − yn − diag
(
un−1

)
zn)
)
Jv

n

n (xn−1 − yn − diag
(
un−1

)
zn),

= min
yn,zn

∑
un−1...vN

p(un−1 . . . vN | vn−1) exp
(
λy
′

nv
n
1

′
yn + λαz

′

ndiag
(
un−1

)
zn

+
1

2
λ2∆t(xn−1 − yn − diag

(
un−1

)
zn)

′
(

diag (vn2 ) Σdiag (vn2 )

+ Aµn(un . . . vN | vn)
)

(xn−1 − yn − diag
(
un−1

)
zn)
)

(A.3.3)

One can equivalently solve the following problem instead of (A.3.3),

min
yn,zn,γ

log

( ∑
un−1...vN

p(un−1 . . . vN | vn−1) exp
(
γ(un−1 . . . vN | vn−1)

))
(A.3.4)

s.t. exp
(
λy
′

nv
n
1

′
yn + λαz

′

ndiag
(
un−1

)
zn +

1

2
λ2∆t(xn−1 − yn − diag

(
un−1

)
zn)

′

(
diag (vn2 ) Σdiag (vn2 ) + Aµn(un . . . vN | vn)

)
(xn−1 − yn − diag

(
un−1

)
zn)
)

− γ(un−1 . . . vN | vn−1) ≤ 0 ∀(un−1 . . . vN)
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We assign the dual variables µ(un . . . vN | vn) to the constraints in (A.3.4) and form

the Lagrangean,

L(yn, zn, γ, µ) = log

( ∑
un−1...vN

p(un−1 . . . vN | vn−1) exp
(
γ(un−1 . . . vN | vn−1)

))

+
∑

un−1...vN

µ(un−1 . . . vN | vn−1)

(
exp

(
λy
′

nv
n
1

′
yn + λαz

′

ndiag
(
un−1

)
zn

+
1

2
λ2∆t(xn−1 − yn − diag

(
un−1

)
zn)

′
(

diag (vn2 ) Σdiag (vn2 )

+Aµn(un . . . vN | vn)
)

(xn−1 − yn − diag
(
un−1

)
zn)
)

−γ(un−1 . . . vN | vn−1)

)
.

Since (A.3.4) has Slater’s constraint qualification, strong duality holds. To obtain the

dual we look at

max
µ≥0

min
yn,zn,γ

L(yn, zn, γ, µ).

For the minimum to be bounded from below we need to impose

∑
un−1...vN

µ(un . . . vN | vn) = 1, µ(un . . . vN | vn) > 0 ∀(un . . . vN).

The minimizing strategy satisfying the first order condition reads as,

y∗n|xn−1, (Λn−1,σn−1,δn−1,ϕn−1)=vn−1 = Gµ
n−1(vn−1)xn−1, (A.3.5)

z∗n|xn−1, (Λn−1,σn−1,δn−1,ϕn−1)=vn−1 = F µ
n−1(vn−1)xn−1, and (A.3.6)

p(un−1 . . . vN | vn−1) exp
(
γ∗(un−1 . . . vN | vn−1)

)∑
un−1...vN p(u

n−1 . . . vN | vn−1) exp (γ∗(un−1 . . . vN | vn−1))
= µ(un−1 . . . vN | vn−1)
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∀(un . . . vN). Therefore the dual problem reads as,

max
µ
L(y∗n(µ), z∗n(µ), γ∗(µ), µ) (A.3.7)

subject to
∑

un−1...vN

µ(un . . . vN | vn) = 1, µ(un . . . vN | vn) > 0 ∀(un . . . vN).

In particular, letting xn−1 = x∗n−1 and denoting the maximizer of (A.3.7) by µ∗ the

optimal primal variables read by Karush–Kuhn–Tucker conditions from equations

(A.3.5)-(A.3.6) as,

y∗n|x∗n−1, (Λn−1,σn−1,δn−1)=vn−1 =Gµ∗

n−1(vn−1)x∗n−1,

z∗n|x∗n−1, (Λn−1,σn−1,δn−1)=vn−1 = F µ∗

n−1(vn−1)x∗n−1

for n ≤ N − 1. Plugging back the optimal strategy we obtain,

Jv
n−1

n−1 (x∗n−1) =
∑

un−1...vN

p(un−1 . . . vN | vn−1) exp
(
x∗n−1

′
Aµ
∗

n (un−1 . . . vN | vn−1)x∗n−1

)

for n ≤ N − 1. �

A.4 Proofs for Chapter 5

Proof of Theorem 5.2.1

We use backward induction to prove the theorem. It follows easily

JvN−1(xN−1) = min
x∈AN−1(xN−1)

sup
Q∈PvN−1

δN−1EN−1,v
Q [u (VN−1(x))]

= sup
Q∈

{
P vN−1,1,...,P

v
N−1,MN−1

}
∑
w∈W

qwδ
N−1

∫
u
(
V w
N−1(x)

) ∣∣∣∣
xN=0
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It follows inductively,

Jvn−1(xn−1) = min
x∈An−1(xn−1)

sup
Q∈Pvn−1

δn−1En−1,v
Q

[∫
u (Vn(x))

]

+ En−1,v
Q

[
ρvn ◦ . . . ρN−1

(
N∑

i=n+1

∫
u (Vn(x))

)]

= min
0≤xn≤xn−1

sup
Q∈

{
P vn−1,1,...,P

v
n−1,Mn−1

}
∑
w∈W

qw

(
δn−1

∫
u
(
V w
N−1(x)

)
+ Jwn (xn)

)

for n ≤ N − 1. �

Proof of Corollary 5.2.2

It follows from Theorem 5.2.1 that the terminal value function is given by

JvN−1(xN−1) = x2
N−1δ

N−1EN−1,v
Q∗ [η̃N ] = x2

N−1a
v
N−1,

where

Q∗|(σN−1,ηN−1)=v = arg max
Q∈

{
P vN−1,1,...,P

v
N−1,MN−1

}EN−1,v
Q [η̃N ].

It also follows from Theorem 5.2.1,

Jvn−1(xn−1) = min
0≤xn≤xn−1

sup
Q∈

{
P vn−1,1,...,P

v
n−1,Mn−1

}
∑
w∈W

qw

(
δn−1

∫
u
(
V w
n−1(x)

)
+Jwn (xn)

)

= min
xn

sup
Q∈

{
P vn−1,1,...,P

v
n−1,Mn−1

}(xn−1 − xn)2δn−1En−1,v
Q [η̃n] + x2

n

∑
w

qwa
w
n ,

for n ≤ N − 1. Therefore, the unique optimal strategy is given by

x∗n = x∗n−1

δn−1En−1,v
Q∗ [η̃n]

δn−1En−1,v
Q∗ [η̃n] +

∑
w∈W q∗wa

w
n

,

where

Q∗ = arg max
Q∈

{
P vn−1,1,...,P

v
n−1,Mn−1

} δn−1En−1,v
Q [η̃n]

∑
w∈W qwa

w
n

δn−1En−1,v
Q [η̃n] +

∑
w∈W qwawn

,
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and Jvn−1(x∗n−1) becomes

(x∗n−1)2
δn−1En−1,v

Q∗ [η̃n]
∑

w∈W q∗wa
w
n

δn−1En−1,v
Q∗ [η̃n] +

∑
w∈W q∗wa

w
n

= (x∗n−1)2avn−1.

�

Proposition A.4.1. For a function f : W 7→ R, θ ∈ R+ and a reference transition

probability distribution Pvn,

sup
Q∈Q

∑
w∈W

qwf(w)− qw
1

θ
log

(
qw
pvwn

)
=

1

θ
log

(∑
w∈W

pvwn exp (θf(w))

)
(A.4.8)

Proof. Notice that the maximization in (A.4.8) is concave in Q and it can be solved

by forming the Lagrangean:

L(λ) :=
∑
w∈W

qwf(w)− qw
1

θ
log

(
qw
pvwn

)
+ λ

(∑
w∈W

qw − 1

)
.

By a first order condition one obtains the maximizing distribution Q∗;

q∗w =
pvwn exp (θf(w))∑
w∈W pvwn exp (θf(w))

,

and the objective function of (A.4.8) atQ∗ evaluates as 1
θ

log
(∑

w∈W pvwn exp (θf(w))
)
.

Corollary A.4.2. For any x ∈ A one has

ρvn ◦ ρn+1 . . . ρN−1

( ∑
i=n+1

δi−1u (Vi(x))

)
=

1

θ
log

(
En,vP

[
exp

(
θ
∑
i=n+1

∫
δi−1u (Vi(x))

)])
,

where αvn is the relative entropy index as defined in (5.2.10).
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Proof. Fix an x ∈ A, then proceed by backwards induction,

ρvN−1

(
δN−1u (VN(x))

)
= sup

Q∈Q

∑
w∈W

qw

∫
δN−1u (V w

N (x))−
∑
w∈W

qw
1

θ
log

(
qw
pvwN−1

)

For w ∈ W , let f in Proposition A.4.1 be such that f(w) =
∫
δN−1u (V w

N (x)). It

follows

ρvN−1

(
δN−1u (VN(x))

)
=

1

θ
log

(
EN−1,v

P

[
exp

(
θ

∫
δN−1u (VN(x))

)])
.

Inductively one obtains,

ρvn−1 ◦ . . . ρN−1

(∑
i=n

δi−1u (Vi(x)))

)
= sup

Q∈Q

∑
w∈W

qw

∫
δn−1u (V w

n (x))−
∑
w∈W

qw
1

θ
log

(
qw
pvwn−1

)

+
∑
w∈W

qw
1

θ
log

(
En,wP

[
exp

(
θ
∑
i=n+1

∫
δi−1u (Vi(x))

)])
.

Using proposition A.4.1 with

f(w) =

∫
δn−1u (V w

n (x)) +
1

θ
log

(
En,wP

[
exp

(
θ
∑
i=n+1

∫
δi−1u (Vi(x))

)])
,

it follows that,

ρvn−1◦ρn . . . ρN−1

(∑
i=n

δi−1u (Vi(x))

)
=

1

θ
log

(
En−1,v

P

[
exp

(
θ
∑
i=n

∫
δi−1u (Vi(x))

)])

for n ≤ N − 1.
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Proof of Theorem 5.2.3

Notice that

min
x∈An(z)

ρvn ◦ ρn+1 . . . ρN−1

(
N∑

i=n+1

δi−1u (Vi(x))

)
≡

min
x∈An(z)

exp

(
θρvn ◦ ρn+1 . . . ρN−1

( N∑
i=n+1

δi−1u (Vi(x))
))

and it follows from Corollary A.4.2,

Jvn(xn) = min
x∈An(z)

En,vP

[
exp

(
θ

N∑
i=n+1

δi−1u (Vi(x))

)]
.

We now use backward induction to prove the theorem. It follows easily that

JvN−1(xN−1) = min
x∈AN−1(xN−1)

EN−1,v
P

[
exp

(
θδN−1u (VN(x))

)]
=

∑
w∈W

pvwN−1 exp

(
θδN−1

∫
u (V w

N (x))

) ∣∣∣∣
xN=0

and by induction,

Jvn−1(xn−1) = min
x∈An−1(xn−1)

En−1,v
P

[
exp

(
θδn−1u (Vn(x))

)
exp

(
θ

N∑
i=n+1

δi−1u (Vi(x))

)]

= min
0≤xn≤xn−1

∑
w∈W

pvwn−1 exp

(
θδn−1

∫
u (V w

n (x))

)
Jwn (xn) n ≤ N − 1.

�

Proof of Corollary 5.2.4

It directly follows from Theorem 5.2.3 that the terminal condition satisfies,

JvN−1(xN−1) =
∑
w∈W

pvwN−1 exp
(
θδN−1x2

N−1(w2 − c/2)
)
.
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One also obtains,

Jvn−1(xn−1) = min
0≤xn≤xn−1

∑
w∈W

pvwn−1 exp
(
θδn−1(xn−1 − xn)2(w2 − c/2)

)
Jwn (xn)

for n ≤ N − 1. In every step x∗n minimizes a strictly convex function, therefore the

optimal strategy is unique. �

Next proposition follows from Lemma 8 in Skiadas (2013).

Proposition A.4.3. Define f : W 7→ R, let φ be the divergence index defined

in Section 5.2.3. Fix a reference transition probability Pvn on W. Assume W :=

{w0, w1, . . . , wM} for an M ∈ N and f(w0) = minw∈W f(w). It follows

sup
Q∈Q

∑
w∈W

qwf(w)− pvwn φ

(
qw
pvwn

)
(A.4.9)

attains its maximum by a Q ∈ Q if and only if,

∑
w∈W

pvwn φ′−1
(
φ′(0+)− f(w0) + f(w)

)
< 1. (A.4.10)

Moreover, if the maximum is attained the maximizing Q satisfies,

qw
pvwn

= φ′−1 (β + f(w)) ∀w ∈ W, (A.4.11)

where β is the unique solution to

∑
w∈W

pvwn φ′−1 (β + f(w)) = 1 and β > φ′(0+)− f(w0) (A.4.12)

Proof. For a Q ∈ Q the objective function of equation (A.4.9) can be expressed as,

f(w0)− pvw0
n φ

(
1−

∑M
i=1 qwi

pvw0
n

)
+

M∑
i=1

qwi (f(wi)− f(w0))− pvwin φ

(
qwi
pvwin

)
. (A.4.13)
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The equation of (A.4.13) is maximized by a Q ∈ Q if and only if Q satisfies the first

order condition, so it follows,

qwn = pvwnn φ′−1 (β + f(wn)) ,

where β = φ′
(

1−
∑M
i=1 qwi

p
vw0
n

)
− f(w0). Notice that φ′

(
1−

∑M
i=1 qwi

p
vw0
n

)
> φ′(0+), therefore

the number β solving the equations in (A.4.12) implies the inequality in (A.4.10).

Now assume (A.4.10) holds. Then as a function of β

∑
w∈W

pvwn φ′−1 (β + f(w)) ,

is a continuous and an increasing function. When β is approaching φ′(0+)− f(w0) it

is less than 1 by assumption and as the divergence index grows super-linearly there

exists a unique β such that equations in (A.4.12) are satisfied. For the β satisfying

(A.4.12) we have β + f(wn) > φ′(0+) therefore Q satisfying (A.4.11) is well defined

and this implies the optimality of Q.

Proof of Theorem 5.2.5

We use backwards induction to prove the theorem. Let f in Proposition A.4.3 be

such that f(w) = δN−1
∫
u (V w

N (x)) for w ∈ W . Since λ is assumed to be sufficiently

large we assume,

∑
w∈W

pvwN−1δ
N−1

∫
u (V w

N (x))− min
w∈W

f(w) < λ,

hence (A.4.10) is satisfied for any x ∈ A. It follows by using the maximizing distri-

bution satisfying the equations (A.4.11) and (A.4.12) we obtain,

JvN−1(xN−1) = δN−1EN−1,v
P

[∫
u (VN(x))

]
+

1

2λ
δ2(N−1)VarN−1,v

P

(∫
u (VN(x))

) ∣∣∣∣
xN=0

.
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Inductively,

Jvn−1(xn−1) = min
x∈An−1(xn−1)

ρvn−1 ◦ . . . ρN−1

(∑
i=n

δi−1u(Vi(x))

)

= min
x∈An−1(xn−1)

sup
Q∈Q

δn−1En−1,v
Q

[∫
u (Vn(x))

]
− αvn−1(Q)

+En−1,v
Q

[
ρn ◦ . . . ρN−1

( ∑
i=n+1

δi−1Vi(x)

)]

= min
0≤xn≤xn−1

sup
Q∈Q

δn−1En−1,v
Q

[∫
u (Vn(x))

]
− αvn−1(Q) +

∑
w∈W

qwJ
w
n (xn)

for n ≤ N − 1. Now let f(w) = δn−1
∫
u (V w

N (x)) + Jwn (xn). By assumption λ is large

enough such that,

∑
w∈W

pvwn−1

(
δn−1

∫
u (V w

n (x)) + Jwn (xn)

)
− min

w∈W
f(w) < λ

so that (A.4.10) is satisfied. By using the maximizing distribution satisfying the

equations of (A.4.11) and (A.4.12) one obtains,

Jvn−1(xn−1) = min
0≤xn≤xn−1

δn−1En−1,v
P

[∫
u (Vn(x))

]
+

1

2λ
δ2(n−1)Varn−1,v

P

(∫
u (Vn(x))

)
+En−1,v

P [Jn(xn)]+
1

2λ
Varn−1,v

P (Jn(xn))+
1

λ
δn−1Covn−1,v

P

(
Jn(xn),

∫
u (Vn(x))

)

for n ≤ N − 1. �

Proof of Corollary 5.2.6

It follows directly from Theorem 5.2.5 that

JvN−1(xN−1) = x2
N−1E

N−1,v
P [η̃N ] +

1

2λ
x4
N−1VarN−1,v

P (η̃N),
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and

Jvn−1(xn−1)= min
0≤xn≤xn−1

(xn−1 − xn)2En−1,v
P [η̃n]+

1

2λ
(xn−1 − xn)4Varn−1,v

P (η̃n)

+En−1,v
P [Jn(xn)]+

1

2λ
Varn−1,v

P (Jn(xn))+
1

λ
(xn−1−xn)2Covn−1,v

P (Jn(xn), η̃n)

for n ≤ N − 1. �

Proof of Theorem 5.3.1

Notice that,

min
x∈An(z)

µvn ◦ µn+1 . . . µN−1

( ∑
i=n+1

Vi(x)

)
= min

x∈An(z)
µvn ◦ µn+1 . . . µN−1 (Rn(x))

≡ min
x∈An(z)

exp (θµvn ◦ µn+1 . . . µN−1 (Rn(x)))

where,

Rn(x) :=
N∑

i=n+1

(xi−1 − xi)2η̃i +
1

2
θx2

iσ
2
i ∆t.

It is easy to see,

JvN−1(xN−1) = min
x∈AN−1(xN−1)

sup
Q∈PvN−1

EN−1,v
Q [exp (θRN−1(x))]

= sup
Q∈{P vN−1,1,...,P

v
N−1,MN−1

}

∑
w∈W

qw exp
(
θx2

N−1(w2 − c/2)
)
.
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It follows by induction,

Jvn−1(xn−1) = min
x∈An−1(xn−1)

exp
(
θµvn−1 ◦ µn . . . µN−1 (Rn−1(x))

)
= min

x∈An−1(xn−1)
exp

(
θµvn−1

(
(xn−1 − xn)2η̃n +

1

2
θx2

nσ
2
n∆t

+ µn ◦ . . . µN−1 (Rn(x))
))

= min
x∈An−1(xn−1)

sup
Q∈Pvn−1

En−1,v
Q exp

(
θ(xn−1 − xn)2η̃n +

1

2
θ2x2

nσ
2
n∆t

+ θµn ◦ . . . µN−1 (Rn(x))

)
= min

0≤xn≤xn−1

sup
Q∈{P vn−1,1,...,P

v
n−1,Mn−1

}

∑
w∈W

qw exp

(
θ(xn−1 − xn)2(w2 − c/2)

+
1

2
θ2x2

nw
2
1∆t

)
Jwn (xn).

for n ≤ N − 1. Therefore the minimizing x∗n form the optimal strategy. �

Proof of Proposition 5.4.1

The proof follows trivially from the definition of An(z) and by making the monotone

transformation J̃vn(xn) = ν (Jvn(xn)). �
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