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Abstract

This dissertation focuses on two aspects of factor models, testing and forecasting. For

testing, we investigate a more general high-dimensional testing problem, with an emphasis

on panel data models. Specifically, we propose a novel technique to boost the power of

testing a high-dimensional vector H : θ = 0 against sparse alternatives. Existing tests

based on quadratic forms such as the Wald statistic often suffer from low powers, whereas

more powerful tests such as thresholding and extreme-value tests require either stringent

conditions or bootstrap to derive the null distribution, and often suffer from size distortions.

Based on a screening technique, we introduce a “power enhancement component”, which

is zero under the null hypothesis with high probability, but diverges quickly under sparse

alternatives. The proposed test statistic combines the power enhancement component with

an asymptotically pivotal statistic, and strengthens the power under sparse alternatives. As

a byproduct, the power enhancement component also consistently identifies the elements

that violate the null hypothesis.

Next, we consider forecasting a single time series using many predictors when nonliear-

ity is present. We develop a new methodology called sufficient forecasting, by connecting

sliced inverse regression with factor models. The sufficient forecasting correctly estimates

projections of the underlying factors and provides multiple predictive indices for further in-

vestigation. We derive asymptotic results for the estimate of the central space spanned by

these projection directions. Our method allows the number of predictors larger than the

sample size, and therefore extends the applicability of inverse regression. Numerical exper-

iments demonstrate that the proposed method improves upon a linear forecasting model.

Our results are further illustrated in an empirical study of macroeconomic variables, where

sufficient forecasting is found to deliver additional predictive power over conventional meth-

ods.
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Chapter 1

Power Enhancement in High

Dimensional Cross-Sectional Tests

1.1 Introduction

High-dimensional cross-sectional models have received growing attentions in both theoretical

and applied econometrics. These models typically involve a structural parameter, whose

dimension can be either comparable or much larger than the sample size. This chapter

addresses testing a high-dimensional structural parameter:

H0 : θ = 0,

where N = dim(θ) is allowed to grow faster than the sample size T. We are particularly

interested in boosting the power in sparse alternatives under which θ is approximately

a sparse vector. This type of alternative is of particular interest, as the null hypothesis

typically represents some economic theory and violations are expected to be only by some

exceptional individuals.

A showcase example is the factor pricing model in financial economics. Let yit be the

excess return of the i-th asset at time t, and ft = (f1t, ..., fKt)
′ be the excess returns of K
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tradable market risk factors. Then, the excess return has the following decomposition:

yit = θi + b′ift + uit, i = 1, ..., N, t = 1, ..., T,

where bi = (bi1, ..., biK)′ is a vector of factor loadings and uit represents the idiosyncratic er-

ror. The key implication from the multi-factor pricing theory is that the intercept θi should

be zero, known as the “mean-variance efficiency” pricing, for any asset i. An important

question is then if such a pricing theory can be validated by empirical data, namely we wish

to test the null hypothesis H0 : θ = 0, where θ = (θ1, ..., θN)′ is the vector of intercepts for

all N financial assets. As the factor pricing model is derived from theories of financial eco-

nomics (Merton, 1973; Ross, 1976), one would expect that inefficient pricing by the market

should only occur to a small fractions of exceptional assets. Indeed, our empirical study of

the constituents in the S&P 500 index indicates that there are only a couple of significant

nonzero-alpha stocks, corresponding to a small portion of mis-priced stocks instead of sys-

tematic mis-pricing of the whole market. Therefore, it is important to construct tests that

have high power when θ is sparse.

Most of the conventional tests for H0 : θ = 0 are based on a quadratic form:

W = θ̂
′
Vθ̂.

Here θ̂ is an element-wise consistent estimator of θ, and V is a high-dimensional positive

definite weight matrix, often taken to be the inverse of the asymptotic covariance matrix of θ̂

(e.g., the Wald test). After a proper standardization, the standardized W is asymptotically

pivotal under the null hypothesis. In high-dimensional testing problems, however, various

difficulties arise when using a quadratic statistic. First, when N > T , estimating V is

challenging, as the sample analogue of the covariance matrix is singular. More fundamentally,

tests based on W have low powers under sparse alternatives. The reason is that the quadratic

statistic accumulates high-dimensional estimation errors under H0, which results in large

2



critical values that can dominate the signals in the sparse alternatives. A formal proof of

this will be given in Section 1.3.

To overcome the aforementioned drawbacks, we introduce a novel technique for high-

dimensional cross-sectional testing problems, called the “power enhancement”. Let J1 be

a test statistic that has a correct asymptotic size (e.g., Wald statistic), which may suffer

from low powers under sparse alternatives. Let us augment the test by adding a power

enhancement component J0 ≥ 0, which satisfies the following three properties:

Power Enhancement Properties:

(a) Non-negativity: J0 ≥ 0 almost surely.

(b) No-size-distortion: Under H0, P (J0 = 0|H0)→ 1.

(c) Power-enhancement: J0 diverges in probability under some specific regions of alterna-

tives Ha.

Our constructed power enhancement test takes the form

J = J0 + J1.

The non-negativity property of J0 ensures that J is at least as powerful as J1. Property

(b) guarantees that the asymptotic null distribution of J is determined by that of J1, and

the size distortion due to adding J0 is negligible, and property (c) guarantees significant

power improvement under the designated alternatives. The power enhancement principle is

thus summarized as follows: Given a standard test statistic with a correct asymptotic size,

its power is substantially enhanced with little size distortion; this is achieved by adding a

component J0 that is asymptotically zero under the null, but diverges and dominates J1

under some specific regions of alternatives.

3



An example of such a J0 is a screening statistic:

J0 =
√
N
∑
j∈Ŝ

θ̂2
j v̂
−1
j =

√
N

N∑
j=1

θ̂2
j v̂
−1
j 1{|θ̂j| > v̂

1/2
j δN,T},

where Ŝ = {j ≤ N : |θ̂j| > v̂
1/2
j δN,T}, and v̂j denotes a data-dependent normalizing factor,

taken as the estimated asymptotic variance of θ̂j. The threshold δN,T , depending on (N, T ),

is a high-criticism threshold, chosen to be slightly larger than the noise level maxj≤N |θ̂j −

θj|/v̂1/2
j so that under H0, J0 = 0 with probability approaching one. In addition, we take

J1 as a pivotal statistic, e.g., standardized Wald statistic or other quadratic forms such

as the sum of the squared marginal t-statistics (Bai and Saranadasa, 1996; Chen and Qin,

2010; Pesaran and Yamagata, 2012). As a byproduct, the screening set Ŝ also consistently

identifies indices where the null hypothesis is violated.

One of the major differences of our test from most of the thresholding tests (Fan, 1996;

Hansen, 2005) is that, it enhances the power substantially by adding a screening statis-

tic, which does not introduce extra difficulty in deriving the asymptotic null distribution.

Since J0 = 0 under H0, it relies on the pivotal statistic J1 to determine its null distri-

bution. In contrast, the existing thresholding tests and extreme value tests often require

stringent conditions to derive their asymptotic null distributions, making them restrictive

in econometric applications, due to slow rates of convergence. Moreover, the asymptotic

null distributions are inaccurate at finite sample. As pointed out by Hansen (2003), these

statistics are non-pivotal even asymptotically, and require bootstrap methods to simulate

the null distributions.

As for specific applications, we study the tests of the aforementioned factor pricing model,

and of cross-sectional independence in mixed effect panel data models:

yit = α + x′itβ + µi + uit, i ≤ n, t ≤ T.
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Let ρij denote the correlation between uit and ujt, assumed to be time invariant. The “cross-

sectional independence” test is concerned about the following null hypothesis:

H0 : ρij = 0, for all i 6= j,

that is, under the null hypothesis, the n×n covariance matrix Σu of {uit}i≤n is diagonal. In

empirical applications, weak cross-sectional correlations are often present, which results in a

sparse covariance Σu with just a few nonzero off-diagonal elements. This leads to a sparse

vector θ = (ρ12, ρ13, ..., ρn−1,n). The dimensionality N = n(n−1)/2 can be much larger than

the number of observations. Therefore, the power enhancement in sparse alternatives is very

important to the testing problem.

There has been a large literature on high-dimensional cross-sectional tests. For instance,

the literature on testing the factor pricing model is found in Gibbons et al. (1989), MacKinlay

and Richardson (1991), Beaulieu et al. (2007) and Pesaran and Yamagata (2012), all in

quadratic forms. Moreover, for the mixed effect panel data model, most of the existing

statistics in the literature are based on the sum of squared residual correlations, which also

accumulates many off-diagonal estimation errors in the covariance matrix of (u1t, ..., unt). The

literature includes Breusch and Pagan (1980), Pesaran et al. (2008), Baltagi et al. (2012),

etc. In addition, our problem is also related to the test with a restricted parameter space,

previously considered by Andrews (1998), who improves the power by directing towards the

“relevant” alternatives (also see Hansen (2003) for a related idea). Recently, Chernozhukov

et al. (2013) proposed a high-dimensional inequality test, and employed an extreme value

statistic, whose critical value is determined through applying the moderate deviation theory

on an upper bound of the rejection probability. In contrast, the asymptotic distribution of

our proposed power enhancement statistic is determined through the pivotal statistic J1,

and the power is improved via screening off most of the noises under sparse alternatives.

5



In a related recent paper by Gagliardini et al. (2011), they studied estimating and testing

about the risk premia in a CAPM model. While we also study a large panel of stock returns

as a specific example and double asymptotics (as N, T →∞), the problems and approaches

being considered are very different. This chapter addresses a general problem of enhancing

powers under high-dimensional sparse alternatives.

The remainder of this chapter is organized as follows. Section 1.2 sets up the preliminaries

and highlights the major differences from existing tests. Section 1.3 presents the main result

of power enhancement test. As applications to specific cases, Section 1.4 and Section 1.5

respectively study the factor pricing model and test of cross-sectional independence. We

defer simulation results in Section 3.1, Chapter 3, along with an empirical application to the

stocks in the S&P 500 index. All the proofs are given in Section 5.1, Chapter 5.

Throughout this dissertation, for a symmetric matrix A, let λmin(A) and λmax(A) repre-

sent its minimum and maximum eigenvalues. Let ‖A‖2 and ‖A‖1 denote its operator norm

and l1-norm respectively, defined by ‖A‖2 = λ
1/2
max(A′A) and maxi

∑
j |Aij|. For a vector θ,

define ‖θ‖ = (
∑

j θ
2
j )

1/2 and ‖θ‖max = maxj |θj|. For two deterministic sequences aT and

bT , we write aT � bT (or equivalently bT � aT ) if aT = o(bT ). Also, aT � bT if there are

constants C1, C2 > 0 so that C1bT ≤ aT ≤ C2bT for all large T . Finally, we denote |S|0 as

the number of elements in a set S.

1.2 Power Enhancement in high dimensions

This section introduces power enhancement techniques and provides heuristics to justify the

techniques. Their differences with related ideas in the literature are also highlighted.
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1.2.1 Power enhancement

Consider a testing problem:

H0 : θ = 0, Ha : θ ∈ Θa,

where Θa ⊂ RN\{0} is an alternative set. A typical example is Θa = {θ : θ 6= 0}. Suppose

we observe a stationary process D = {Dt}Tt=1 of size T . Let J1(D) be a certain test statistic,

and for notational simplicity, we write J1 = J1(D). Often J1 is constructed such that under

H0, it has a non-degenerate limiting distribution F : As T,N →∞,

J1|H0 →d F. (1.1)

For the significance level q ∈ (0, 1), let Fq be the critical value for J1. Then the critical

region is taken as {D : J1 > Fq} and satisfies

lim sup
T,N→∞

P (J1 > Fq|H0) = q. (1.2)

This ensures that J1 has a correct asymptotic size. In addition, it is often the case that J1

has high power against H0 on a subset Θ(J1) ⊂ Θa, namely,

lim inf
T,N→∞

inf
θ∈Θ(J1)

P (J1 > Fq|θ)→ 1. (1.3)

Typically, Θ(J1) consists of those θ′s, whose l2-norm is relatively large, as J1 is normally an

omnibus test (e.g. Wald test).

In a data-rich environment, econometric models often involve high-dimensional param-

eters in which dim(θ) = N can grow fast with the sample size T . We are particularly

interested in sparse alternatives Θs ⊂ Θa under which H0 is violated only on a couple of

exceptional components of θ. Specifically, when θ ∈ Θs, the number of non-vanishing com-
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ponents is much less than N . As a result, its l2-norm is relatively small. Therefore, under

sparse alternative Θs, the omnibus test J1 typically has lower power, due to the accumula-

tion of high-dimensional estimation errors. Detailed explanations are given in Section 1.3.3

below.

We introduce a power enhancement principle for high-dimensional sparse testing, by

bringing in a data-dependent component J0 that satisfies the Power Enhancement Prop-

erties as defined in Section 1.1. The introduced component J0 does not serve as a test

statistic on its own, but is added to a classical statistic J1 that is often pivotal (e.g., Wald-

statistic), so the proposed test statistic is defined by

J = J0 + J1.

Our introduced “power enhancement principle” is explained as follows.

1. The critical region of J is defined by

{D : J > Fq}.

As J0 ≥ 0, P (J > Fq|θ) ≥ P (J1 > Fq|θ) for all θ ∈ Θa. Hence the power of J is at

least as large as that of J1.

2. When θ ∈ Θs is a sparse high-dimensional vector under the alternative, the “classical”

test J1 may have low power as ‖θ‖ is typically relatively small. On the other hand,

for θ ∈ Θs, J0 stochastically dominates J1. As a result, P (J > Fq|θ) > P (J1 > Fq|θ)

strictly holds, so the power of J1 over the set Θs is enhanced after adding J0. Often J0

diverges fast under sparse alternatives Θs, which ensures P (J > Fq|θ)→ 1 for θ ∈ Θs.

In contrast, the classical test only has P (J1 > Fq|θ) < c < 1 for some c ∈ (0, 1) and

θ ∈ Θs, and when ‖θ‖ is sufficiently small, P (J1 > Fq|θ) is approximately q.

8



3. Under mild conditions, P (J0 = 0|H0)→ 0. Hence when (1.1) is satisfied, we have

lim sup
T,N→∞

P (J > Fq|H0) = q.

Therefore, adding J0 to J1 does not affect the size of the standard test statistic asymp-

totically. Both J and J1 have the same limiting distribution under H0.

It is important to note that the power is enhanced without sacrificing the size asymp-

totically. In fact the power enhancement principle can be asymptotically fulfilled under a

weaker condition J0|H0 →p 0. However, we construct J0 so that P (J = 0|H0)→ 1 to ensure

a good finite sample size.

1.2.2 Construction of power enhancement component

We construct a specific power enhancement component J0 that satisfies (a)-(c) of the power

enhancement properties simultaneously, and identify the sparse alternatives in Θs. Such

a component can be constructed via screening as follows. Suppose we have a consistent

estimator θ̂ such that maxj≤N |θ̂j−θj| = oP (1). For some slowly growing sequence δN,T →∞

(as T,N →∞), define a screening set:

Ŝ = {j : |θ̂j| > v̂
1/2
j δN,T , j = 1, ..., N}, (1.4)

where v̂j > 0 is a data-dependent normalizing constant, often taken as the estimated asymp-

totic variance of θ̂j. The sequence δN,T , called “high criticism”, is chosen to be slightly larger

than the maximum-noise-level, satisfying: (recall that Θa denotes the alternative set)

inf
θ∈Θa∪{0}

P (max
j≤N
|θ̂j − θj|/v̂1/2

j < δN,T/2|θ)→ 1 (1.5)
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for θ under both null and alternate hypotheses. The screening statistic J0 is then defined as

J0 =
√
N
∑
j∈Ŝ

θ̂2
j v̂
−1
j =

√
N

N∑
j=1

θ̂2
j v̂
−1
j 1{|θ̂j| > v̂

1/2
j δN,T}.

By (1.4) and (1.5), under H0 : θ = 0,

P (J0 = 0|H0) ≥ P (Ŝ = ∅|H0) = P (max
j≤N
|θ̂j|/v̂1/2

j ≤ δN,T |H0)→ 1.

Therefore J0 satisfies the non-negativeness and no-size-distortion properties.

Let {vj}j≤N be the population counterpart of {v̂j}j≤N . For instance, one can take vj as

the asymptotic variance of θ̂j, and v̂j as its estimator. To satisfy the power-enhancement

property, note that the screening set mimics

S(θ) =
{
j : |θj| > 2v

1/2
j δN,T , j = 1, ..., N

}
, (1.6)

and in particular S(0) = ∅. We shall show in Theorem 1.3.1 below that P (Ŝ = S(θ)|θ)→ 1,

for all θ ∈ Θa∪{0}. Thus, the subvector θ̂Ŝ = (θ̂j : j ∈ Ŝ) behaves like θS = (θj : j ∈ S(θ)),

which can be interpreted as estimated significant signals. If S(θ) 6= ∅, then by the definition

of Ŝ and δN,T →∞, we have

P (J0 >
√
N |S(θ) 6= ∅) ≥ P (

√
N
∑
j∈Ŝ

δ2
N,T >

√
N |S(θ) 6= ∅)→ 1.

Thus, the power of J1 is enhanced on the subset

Θs ≡ {θ ∈ RN : S(θ) 6= ∅} = {θ ∈ RN : max
j≤N

|θj|
v

1/2
j

> 2δN,T}.

As a byproduct, the screening set consistently identifies the elements of θ that violate the

null hypothesis.
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The introduced J0 can be combined with any other test statistic with an accurate asymp-

totic size. Suppose J1 is a “classical” test statistic. Our power enhancement test is simply

J = J0 + J1.

For instance, suppose we can consistently estimate the asymptotic inverse covariance matrix

of θ̂, denoted by v̂ar(θ̂)−1, then J1 can be chosen as the standardized Wald-statistic:

J1 =
θ̂
′
v̂ar(θ̂)−1θ̂ −N√

2N
.

As a result, the asymptotic distribution of J is N (0, 1) under the null hypothesis.

In sparse alternatives where ‖θ‖ may not grow fast with N but θ ∈ Θs, the combined

test J0 +J1 can be very powerful. In contrast, we will formally show in Theorem 1.3.4 below

that the conventional Wald test J1 can have very low power on its own. On the other hand,

when the alternative is “dense” in the sense that ‖θ‖ grows fast with N , the conventional

test J1 itself is consistent. In this case, J is still as powerful as J1. Therefore, if we denote

Θ(J1) ⊂ RN/{0} as the set of alternative θ’s against which the classical J1 test has power

converging to one, then the combined J = J0 + J1 test has power converging to one against

θ on

Θs ∪Θ(J1).

We shall show in Section 1.3 that the power is enhanced uniformly over θ ∈ Θs ∪Θ(J1).

1.2.3 Comparisons with thresholding and extreme-value tests

One of the fundamental differences between our power enhancement component J0 and

existing tests with good power under sparse alternatives is that, existing test statistics have

a non-degenerate distribution under the null, and often require either bootstrap or strong

conditions to derive the null distribution. Such convergences are typically slow and the
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serious size distortion appears at finite sample. In contrast, our screening statistic J0 uses

“high criticism” sequence δN,T to make P (J0 = 0|H0) → 1, hence does not serve as a test

statistic on its own. Therefore, the asymptotic null distribution is determined by that of

J1, which may not be difficult to derive especially when J1 is asymptotically pivotal. As we

shall see in sections below, the required regularity condition is relatively mild, which makes

the power enhancement test applicable to many econometric problems.

In the high-dimensional testing literature, there are mainly two types of statistics with

good power under sparse alternatives: extreme value test and thresholding test respectively.

The test based on extreme values studies the maximum deviation from the null hypothesis

across the components of θ̂ = (θ̂1, ..., θ̂N), and forms the statistic based on maxj≤N | θ̂jwj |
δ for

some δ > 0 and a weight wj (e.g., Cai et al. (2013), Chernozhukov et al. (2013)). Such a

test statistic typically converges slowly to its asymptotic counterpart. An alternative test is

based on thresholding: for some δ > 0 and pre-determined threshold level tT ,

R =
√
T

N∑
j=1

| θ̂j
wj
|δ1{|θ̂j| > tTwj} (1.7)

The accumulation of estimation errors is prevented due to the threshold 1{|θ̂j| > tTwj}

(see, e.g., Fan (1996) and Zhong et al. (2013)) for sufficiently large tT . In a low-dimensional

setting, Hansen (2005) suggested using a threshold to enhance the power in a similar way.

Although (1.7) looks similar to J0, the ideas behind are very different. Both extreme

value test and thresholding test require regularity conditions that may be restrictive in

econometric applications. For instance, it can be difficult to employ the central limit theo-

rem directly on (1.7), as it requires the covariance between θ̂j and θ̂j+k decay fast enough

as k →∞ (Zhong et al., 2013). In cross-sectional testing problems, this essentially requires

an explicit ordering among the cross-sectional units which is, however, often unavailable in

panel data applications. In addition, as (1.7) involves effectively limited terms of summa-

tions due to thresholding, the asymptotic theory does not provide adequate approximations,
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resulting size-distortion in applications. For example, when tT is taken slightly less than

maxj≤N |θ̂j|/wj, R becomes the extreme statistic. When tT is small (e.g. 0), R becomes a

traditional test, which is not powerful in detecting sparse alternatives, though it can have

good size properties.

1.3 Asymptotic properties

1.3.1 Main results

This section presents the regularity conditions and formally establishes the claimed power

enhancement properties. Below we use P (·|θ) to denote the probability measure defined

from the sampling distribution with parameter θ. Let Θ ⊂ RN be the parameter space of

θ. When we write infθ∈Θ P (·|θ), the infimum is taken in the space that covers the union of

both null and alternative space.

We begin with a high-level assumption. In specific applications, they can be verified with

primitive conditions.

Assumption 1.3.1. As T,N →∞, the sequence δN,T →∞, and the estimators {θ̂j, v̂j}j≤N

are such that

(i) infθ∈Θ P (maxj≤N |θ̂j − θj|/v̂1/2
j < δN,T/2|θ)→ 1;

(ii) infθ∈Θ P (4/9 < v̂j/vj < 16/9, ∀j = 1, ..., N |θ)→ 1.

The normalizing constant vj is often taken as the asymptotic variance of θ̂j, with v̂j being

its consistent estimator. The constants 4/9 and 16/9 in condition (ii) are not optimally

chosen, as this condition only requires {v̂j}j≤N be not-too-bad estimators of their population

counterparts.

In many high-dimensional problems with strictly stationary data that satisfy strong mix-

ing conditions, following from the large-deviation theory, typically, maxj≤N |θ̂j − θj|/v̂1/2
j =
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OP (
√

logN). Therefore, we shall fix

δN,T = log(log T )
√

logN, (1.8)

which is a high criticism that slightly dominates the standardized noise level. We shall

provide primitive conditions for this choice of δN,T in the subsequent sections, so that As-

sumption 1.3.1 holds.

Recall that Ŝ and S(θ) are defined by (1.4) and (1.6) respectively for a given θ ∈ Θ and

its consistent estimator θ̂. In particular, S(θ) =
{
j : |θj| > 2v

1/2
j δN,T , j = 1, ..., N

}
, so under

H0 : θ = 0, S(θ) = ∅. Note that Θ denotes the parameter space containing both the null

and alternative hypotheses. The following theorem characterizes the asymptotic behavior of

J0 =
√
N
∑

j∈Ŝ θ̂
2
j v̂
−1
j under both the null and alternative hypotheses.

Define the “grey area set” as

G(θ) = {j : |θj|/v1/2
j � δN,T , j = 1, ..., N}.

Theorem 1.3.1. Let Assumption 1.3.1 hold. As T,N → ∞, we have, under H0 : θ = 0,

P (Ŝ = ∅|H0)→ 1. Hence

P (J0 = 0|H0)→ 1 and inf
{θ∈Θ:S(θ)6=∅}

P (J0 >
√
N |θ)→ 1.

In addition,

inf
θ∈Θ

P (S(θ) ⊂ Ŝ|θ)→ 1 and inf
θ∈Θ

P (Ŝ \ S(θ) ⊂ G(θ)|θ)→ 1.

Besides the asymptotic behavior of J0, Theorem 1.3.1 also provides a “sure screening”

property of Ŝ. Sometimes we wish to find out the identities of the elements in S(θ), which
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represent the components of θ that deviate from zero. Therefore, we are particularly inter-

ested in a type of alternative hypothesis that satisfies the following empty grey area condition.

Assumption 1.3.2 (Empty grey area). For any θ ∈ Θ, G(θ) = ∅.

Theorem 1.3.1 shows that the “large” θj’s can be selected with no missing discoveries and

Corollary 1.3.1 below further asserts that the selection is consistent with no false discoveries

either, under both the null and alternative hypotheses.

Corollary 1.3.1. Under Assumptions 1.3.1, 1.3.2, as T,N →∞,

inf
θ∈Θ

P (Ŝ = S(θ)|θ)→ 1.

Proof. Corollary 1.3.1 follows immediately from Theorem 1.3.1 and Assumption 1.3.2:

inf
θ∈Θ

P (Ŝ \ S(θ) = ∅|θ) ≥ inf
θ∈Θ

P (Ŝ \ S(θ) ⊂ G(θ)|θ)→ 1.

Remark 1.3.1. Corollary 1.3.1 and its required assumptions (Assumptions 1.3.1 and 1.3.2)

are stated uniformly over θ ∈ Θ. The empty grey area condition (Assumption 1.3.2) rules

out θ’s that have components on the boundary of the screening set. Intuitively, when a

component θj is on the boundary of the screening, it is hard to decide whether or not to

eliminate it from the screening step. Note that the boundary of the screening depends on

(N, T ), which is similar in spirit to the local alternatives in classical testing problems, and

is also a common practice for asymptotic analysis of high-dimensional tests (e.g., Cai et al.

(2010); Chernozhukov et al. (2013)).

We are now ready to formally show the power enhancement argument. The enhancement

is achieved uniformly on the following set:

Θs = {θ ∈ Θ : max
j≤N

|θj|
v

1/2
j

> 2δN,T}. (1.9)
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In particular, if θ̂j is
√
T -consistent, and v

1/2
j is the asymptotic standard deviation of θ̂j,

then σj =
√
Tvj is bounded away from both zero and infinity. Using (1.8), we have

Θs = {θ ∈ Θ : max
j≤N
|θj|/σj > 2 log(log T )

√
logN

T
}.

This is a relatively weak condition on the strength of the maximal signal in order to be

detected by J0.

A test is said to have high power uniformly on a set Θ? ⊂ RN \ {0} if

inf
θ∈Θ?

P (reject H0 by the test|θ)→ 1.

For a given distribution function F , let Fq denote its qth quantile.

Theorem 1.3.2. Let Assumptions 1.3.1-1.3.2 hold. Suppose there is a test J1 such that

(i) it has an asymptotic non-degenerate null distribution F , and the critical region takes

the form {D : J1 > Fq} for the significance level q ∈ (0, 1),

(ii) it has high power uniformly on some set Θ(J1) ⊂ Θ,

(iii) there is c > 0 so that infθ∈Θs P (c
√
N + J1 > Fq|θ)→ 1, as T,N →∞.

Then the power enhancement test J = J0 + J1 has the asymptotic null distribution F , and

has high power uniformly on the set Θs ∪Θ(J1): as T,N →∞

inf
θ∈Θs∪Θ(J1)

P (J > Fq|θ)→ 1.

The three required conditions for J1 are easy to understand: Conditions (i) and (ii)

respectively require the size and power conditions for J1. Condition (iii) requires J1 be

dominated by J0 under Θs. This condition is not restrictive since J1 is typically standardized

(e.g., Donald et al. (2003)).
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Theorem 1.3.2 also shows that J1 and J have the critical regions {D : J1 > Fq} and

{D : J > Fq} respectively, but the power is enhanced from Θ(J1) to Θs ∪ Θ(J1). In high-

dimensional testing problems with a fast-growing dimension, Θs ∪Θ(J1) can be much larger

than Θ(J1). As a result, the power of J1 can be substantially enhanced by adding J0.

1.3.2 Power enhancement for quadratic tests

As an example of J1, we consider the widely used quadratic test statistic, which is asymp-

totically pivotal:

JQ =
T θ̂
′
Vθ̂ −N(1 + µN,T )

ξN,T
√
N

,

where µN,T and ξN,T are deterministic sequences that may depend on (N, T ) and µN,T → 0,

ξN,T → ξ ∈ (0,∞). The weight matrix V is positive definite, whose eigenvalues are bounded

away from both zero and infinity. Here TV is often taken to be the inverse of the asymptotic

covariance matrix of θ̂. Other popular choices are V = diag(σ−2
1 , · · · , σ−2

N ) with σj =
√
Tvj

(Bai and Saranadasa, 1996; Chen and Qin, 2010; Pesaran and Yamagata, 2012) and V = IN ,

the N×N identity matrix. We set J1 = JQ, whose power enhancement version is J = J0+JQ.

For the moment, we shall assume V to be known, and just focus on the power enhancement

properties. We will deal with unknown V for testing factor pricing problem in the next

section.

Assumption 1.3.3. (i) There is a non-degenerate distribution F so that under H0, JQ →d F

(ii) The critical value Fq = O(1) and the critical region of JQ is {D : JQ > Fq},

(iii) V is positive definite, and there exist two positive constants C1 and C2 such that C1 ≤

λmin(V) ≤ λmax(V) ≤ C2.

(iv) C3 ≤ Tvj ≤ C4, j = 1, ..., N for positive constants C3 and C4.

Analyzing the power properties of JQ and applying Theorem 1.3.2, we obtain the following

theorem. Recall that δN,T and Θs are defined by (1.8) and (1.9).
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Theorem 1.3.3. Under Assumptions 1.3.1-1.3.3, the power enhancement test J = J0 + JQ

satisfies: as T,N →∞,

(i) under the null hypothesis H0 : θ = 0, J →d F ,

(ii) there is C > 0 so that J has high power uniformly on the set

Θs ∪ {θ ∈ Θ : ‖θ‖2 > Cδ2
N,TN/T} ≡ Θs ∪Θ(JQ);

that is, infθ∈Θs∪Θ(JQ) P (J > Fq|θ)→ 1 for any q ∈ (0, 1).

1.3.3 Low power of quadratic statistics under sparse alternatives

When JQ is used on its own, it can suffer from a low power under sparse alternatives if

N grows much faster than the sample size, even though it has been commonly used in

the econometric literature. Mainly, T θ̂
′
Vθ̂ aggregates high-dimensional estimation errors

under H0, which become large with a non-negligible probability and potentially override the

sparse signals under the alternative. The following result gives this intuition a more precise

description.

To simplify our discussion, we shall focus on the Wald-test with TV being the inverse

of the asymptotic covariance matrix of θ̂, assumed to exist. Specifically, we assume the

standardized T θ̂
′
Vθ̂ to be asymptotically normal under H0:

T θ̂
′
Vθ̂ −N√

2N
|H0 →d N (0, 1). (1.10)

This is one of the most commonly seen cases in various testing problems. The diagonal

entries of 1
T
V−1 are given by {vj}j≤N .

Theorem 1.3.4. Suppose that (1.10) holds with ‖V‖1 < C and ‖V−1‖1 < C for some C > 0.

Under Assumptions 1.3.1- 1.3.3, T = o(
√
N) and logN = o(T 1−γ) for some 0 < γ < 1, the
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quadratic test JQ has low power at the sparse alternative Θb given by

Θb = {θ ∈ Θ :
N∑
j=1

1{θj 6= 0} = o(
√
N/T ), ‖θ‖max = O(1)}.

In other words, ∀θ ∈ Θb, for any significance level q,

lim
T,N→∞

P (JQ > zq|θ) = q,

where zq is the qth quantile of standard normal distribution.

In the above theorem, the alternative is a sparse vector. However, using the quadratic

test itself, the asymptotic power of the test is as low as q. This is because the signals in

the sparse alternative are dominated by the aggregated high-dimensional estimation errors:

T
∑

i:θi=0 θ̂
2
i . In contrast, the nonzero components of θ (fixed constants) are actually de-

tectable by using J0. The power enhancement test J0 + JQ takes this into account, and has

a substantially improved power.

1.4 Application: Testing Factor Pricing Models

1.4.1 The model

The multi-factor pricing model, derived by Ross (1976) and Merton (1973), is one of the most

fundamental results in finance. It postulates how financial returns are related to market risks,

and has many important practical applications. Let yit be the excess return of the i-th asset

at time t and ft = (f1t, ..., fKt)
′ be the observable excess returns of K market risk factors.

Then, the excess return has the following decomposition:

yit = θi + b′ift + uit, i = 1, ..., N, t = 1, ..., T,
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where bi = (bi1, ..., biK)′ is a vector of factor loadings and uit represents the idiosyncratic

error. To make the notation consistent, we pertain to use θ to represent the commonly used

“alpha” in the finance literature.

The key implication from the multi-factor pricing theory for tradable factors is that under

no-arbitrage restrictions, the intercept θi should be zero for any asset i (Ross, 1976; Merton,

1973; Chamberlain and Rothschild, 1983). An important question is then testing the null

hypothesis

H0 : θ = 0, (1.11)

namely, whether the factor pricing model is consistent with empirical data, where θ =

(θ1, ..., θN)′ is the vector of intercepts for all N financial assets. One typically picks five-year

monthly data, because the factor pricing model is technically a one-period model whose

factor loadings can be time-varying; see Gagliardini et al. (2011) on how to model the time-

varying effects using firm characteristics and market variables. As the theory of the factor

pricing model applies to all tradable assets, rather than a handful selected portfolios, the

number of assets N should be much larger than T . This ameliorates the selection biases in

the construction of testing portfolios. On the other hand, if the theory does not hold, it is

expected that there are only a few significant nonzero components of θ, corresponding to

a small portion of mis-priced stocks instead of systematic mis-pricing of the whole market.

Our empirical studies on the S&P500 index lend further support to such kinds of sparse

alternatives, under which there are only a few nonzero components of θ compared to N .

Most existing tests to the problem (1.11) are based on the quadratic statisticW = T θ̂
′
Vθ̂,

where θ̂ is the OLS estimator for θ, and V is some positive definite matrix. Prominent

examples are given by Gibbons et al. (1989), MacKinlay and Richardson (1991) and Beaulieu

et al. (2007). When N is possibly much larger than T , Pesaran and Yamagata (2012) showed

that, under regularity conditions (Assumption 1.4.1 below),

J1 =
af,TT θ̂

′
Σ−1
u θ̂ −N√

2N
→d N (0, 1).
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where af,T > 0 is a constant that depends only on factors’ empirical moments, and Σu is the

N ×N covariance matrix of ut = (u1t, ..., uNt)
′, assumed to be time-invariant.

Recently, Gagliardini et al. (2011) propose a novel approach to modeling and estimating

time-varying risk premiums using two-pass least-squares method under asset pricing restric-

tions. Their problems and approaches differ substantially from ours, though both papers

study similar problems in finance. As a part of their model validation, they develop test

statistics against the asset pricing restrictions and weak risk factors. Their test statistics are

based on a weighted sum of squared residuals of the cross-sectional regression, which, like all

classical test statistics, have power only when there are many violations of the asset pricing

restrictions. They do not consider the issue of enhancing the power under sparse alternatives,

nor do they involve a Wald statistic that depends on a high-dimensional covariance matrix.

In fact, their testing power can be enhanced by using our techniques.

1.4.2 Power enhancement component

We propose a new statistic that depends on (i) the power enhancement component J0, and

(ii) a feasible Wald component based on a consistent covariance estimator for Σ−1
u , which

controls the size under the null even when N/T →∞.

Denote by f̄ = 1
T

∑T
t=1 ft and w = ( 1

T

∑T
t=1 ftf

′
t)
−1f̄ . Also define

af,T = 1− f̄ ′w, and af = 1− Ef ′t(Eftf
′
t)
−1Eft.

The OLS estimator of θ can be expressed as

θ̂ = (θ̂1, ..., θ̂N)′, θ̂j =
1

Taf,T

T∑
t=1

yjt(1− f ′tw). (1.12)

When cov(ft) is positive definite, under mild regularity conditions (Assumption 1.4.1 below),

af,T consistently estimates af , and af > 0. In addition, without serial correlations, the
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conditional variance of θ̂j (given {ft}) converges in probability to

vj = var(ujt)/(Taf ),

which can be estimated by v̂j based on the residuals of OLS estimator:

v̂j =
1

T

T∑
t=1

û2
jt/(Taf,T ), where ûjt = yjt − θ̂j − b̂′jft.

We show in Proposition 1.4.1 below that maxj≤N |θ̂j−θj|/v̂1/2
j = OP (

√
logN). Therefore,

δN,T = log(log T )
√

logN slightly dominates the maximum estimation noise. The screening

set and the power enhancement component are defined as

Ŝ = {j : |θ̂j| > v̂
1/2
j δN,T , j = 1, ..., N},

and

J0 =
√
N
∑
j∈Ŝ

θ̂2
j v̂
−1
j .

1.4.3 Feasible Wald test in high dimensions

Assuming no serial correlations among {ut}Tt=1 and conditional homoskedasticity (Assump-

tion 1.4.1 below), given the observed factors, the conditional covariance of θ̂ is Σu/(Taf,T ).

If the covariance matrix Σu of ut were known, the standardized Wald test statistic is

Taf,T θ̂
′
Σ−1
u θ̂ −N√

2N
. (1.13)

Under H0 : θ = 0, it converges in distribution to N (0, 1). Note that the idiosyncratic errors

(u1t, ..., uNt) are often cross-sectionally correlated, which leads to a non-diagonal inverse

covariance matrix Σ−1
u . When N/T →∞, it is practically difficult to estimate Σ−1

u , as there

are O(N2) free off-diagonal parameters.
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To consistently estimate Σ−1
u when N/T → ∞, without parametrizing the off-diagonal

elements, we assume Σu = cov(ut) be a sparse matrix. This assumption is natural for large

covariance estimations for factor models, and was previously considered by Fan et al. (2011).

Since the common factors dictate preliminarily the co-movement across the whole panel, a

particular asset’s idiosyncratic shock is usually correlated significantly only with a few of

other assets. For example, some shocks only exert influences on a particular industry, but

are not pervasive for the whole economy (Connor and Korajczyk, 1993).

Following the approach of Bickel and Levina (2008), we can consistently estimate Σ−1
u

via thresholding: let sij = 1
T

∑T
t=1 ûitûjt. Define the covariance estimator as

(Σ̂u)ij =


sij, if i = j,

hij(sij), if i 6= j,

where hij(·) is a generalized thresholding function (Antoniadis and Fan, 2001; Rothman et al.,

2009), with threshold value τij = C(siisjj
logN
T

)1/2 for some constant C > 0, designed to keep

only the sample correlation whose magnitude exceeds C( logN
T

)1/2. The hard-thresholding

function, for example, is hij(x) = x1{|x| > τij}, and many other thresholding functions such

as soft-thresholding and SCAD (Fan and Li, 2001) are specific examples. In general, hij(·)

should satisfy:

(i) hij(z) = 0 if |z| < τij;

(ii) |hij(z)− z| ≤ τij;

(iii) there are constants a > 0 and b > 1 such that |hij(z)− z| ≤ aτ 2
ij if |z| > bτij.

The thresholded covariance matrix estimator sets most of the off-diagonal estimation noises

in ( 1
T

∑T
t=1 ûitûjt) to zero. As studied in Fan et al. (2013), the constant C in the threshold

can be chosen in a data-driven manner so that Σ̂u is strictly positive definite in finite sample

even when N > T .
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With Σ̂−1
u , we are ready to define the feasible standardized Wald statistic:

Jwald =
Taf,T θ̂

′
Σ̂−1
u θ̂ −N√

2N
, (1.14)

whose power can be enhanced under sparse alternatives by:

J = J0 + Jwald. (1.15)

1.4.4 Does the thresholded covariance estimator affect the size?

A natural but technical question to address is that when Σu indeed admits a sparse struc-

ture, is the thresholded estimator Σ̂−1
u accurate enough so that the feasible Jwald is still

asymptotically normal? The answer is affirmative if N(logN)4 = o(T 2), and still we can

allow N/T → ∞. However, such a simple question is far more technically involved than

anticipated, as we now explain.

When Σu is a sparse matrix, under regularity conditions (Assumption 1.4.2 below), Fan

et al. (2011) showed that

‖Σ−1
u − Σ̂−1

u ‖2 = OP (

√
logN

T
). (1.16)

By the lower bound derived by Cai et al. (2010), the convergence rate is minimax optimal

for the sparse covariance estimation. On the other hand, when replacing Σ−1
u in (1.13) by

Σ̂−1
u , one needs to show that the effect of such a replacement is asymptotically negligible,

namely, under H0,

T θ̂
′
(Σ−1

u − Σ̂−1
u )θ̂/

√
N = oP (1). (1.17)

However, when θ = 0, with careful analysis, ‖θ̂‖2 = OP (N/T ). Using this and (1.16), by

the Cauchy-Schwartz inequality, we have

|T θ̂
′
(Σ−1

u − Σ̂−1
u )θ̂|/

√
N = OP (

√
N logN

T
).
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We see that it requires N logN = o(T ) to converge, which is basically a low-dimensional

scenario.

The above simple derivation uses, however, a Cauchy-Schwartz bound, which is too crude

for a large N . In fact, θ̂
′
(Σ−1

u −Σ̂−1
u )θ̂ is a weighted estimation error of Σ−1

u −Σ̂−1
u , where the

weights θ̂ “average down” the accumulated estimation errors in estimating elements of Σ−1
u ,

and result in an improved rate of convergence. The formalization of this argument requires

further regularity conditions and novel technical arguments. These are formally presented

in the following subsection.

1.4.5 Regularity conditions

We are now ready to present the regularity conditions. These conditions are imposed for

three technical purposes: (i) Achieving the uniform convergence for θ̂ − θ as required in

Assumption 1.3.1, (ii) defining the sparsity of Σu so that Σ̂−1
u is consistent, and (iii) showing

(1.17), so that the errors from estimating Σ−1
u do not affect the size of the test.

Let F0
−∞ and F∞T denote the σ-algebras generated by {ft : −∞ ≤ t ≤ 0} and {ft : T ≤

t ≤ ∞} respectively. In addition, define the α-mixing coefficient

α(T ) = sup
A∈F0

−∞,B∈F∞T
|P (A)P (B)− P (AB)|.

Assumption 1.4.1. (i) {ut}t≤T is i.i.d. N (0,Σu), where both ‖Σu‖1 and ‖Σ−1
u ‖1 are

bounded;

(ii) {ft}t≤T is strictly stationary, independent of {ut}t≤T , and there are r1, b1 > 0 so that

max
i≤K

P (|fit| > s) ≤ exp(−(s/b1)r1).

(iii) There exists r2 > 0 such that r−1
1 + r−1

2 > 0.5 and C > 0, for all T ∈ Z+,

α(T ) ≤ exp(−CT r2).
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(iv) cov(ft) is positive definite, and maxi≤N ‖bi‖ < c1 for some c1 > 0.

Some remarks are in order for the conditions in Assumption 1.4.1.

Remark 1.4.1. Condition (i), perhaps somewhat restrictive, substantially facilitates our

technical analysis. Here ut is required to be serially uncorrelated across t. Under this condi-

tion, the conditional covariance of θ̂, given the factors, has a simple expression Σu/(Taf,T ).

On the other hand, if serial correlations are present in ut, there would be additional auto-

covariance terms in the covariance matrix, which need to be further estimated via regular-

izations. Moreover, given that Σu is a sparse matrix, the Gaussianity ensures that most of

the idiosyncratic errors are cross-sectionally independent so that cov(u2
it, u

l
jt) = 0, l = 1, 2,

for most of the pairs in {(i, j) : i 6= j}.

Note that we do allow the factors {ft}t≤T to be weakly correlated across t, but satisfy

the strong mixing condition Assumption 1.4.1 (iii).

Remark 1.4.2. The conditional homoskedasticity E(utu
′
t|ft) = E(utu

′
t) is assumed, granted

by condition (ii). We admit that handling conditional heteroskedasticity, while important

in empirical applications, is very technically challenging in our context. Allowing the high-

dimensional covariance matrix E(utu
′
t|ft) to be time-varying is possible with suitable con-

tinuum of sparse conditions on the time domain. In that case, one can require the sparsity

condition to hold uniformly across t and continuously apply thresholding. However, un-

like in the traditional case, technically, estimating the family of large inverse covariances

{E(utu
′
t|ft)−1 : t = 1, 2, ...} uniformly over t is highly challenging. As we shall see in the

proof of Proposition 1.4.2, even in the homoskedastic case, proving the effect of estimating

Σ−1
u to be first-order negligible when N/T →∞ requires delicate technical analysis.

To characterize the sparsity of Σu in our context, define

mN = max
i≤N

N∑
j=1

1{(Σu)ij 6= 0}, DN =
∑
i 6=j

1{(Σu)ij 6= 0}.
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Here mN represents the maximum number of nonzeros in each row, and DN represents the

total number of nonzero off-diagonal entries. Formally, we assume:

Assumption 1.4.2. Suppose N1/2(logN)γ = o(T ) for some γ > 2, and

(i) min(Σu)ij 6=0 |(Σu)ij| �
√

(logN)/T ;

(ii) at least one of the following cases holds:

(a) DN = O(N1/2), and m2
N = O( T

N1/2(logN)γ
)

(b) DN = O(N), and m2
N = O(1).

As regulated in Assumption 1.4.2, we consider two kinds of sparse matrices, and develop

our results for both cases. In the first case (Assumption 1.4.2 (ii)(a)), Σu is required to have

no more than O(N1/2) off-diagonal nonzero entries, but allows a diverging mN . One typical

example of this case is that there are only a small portion (e.g., finitely many) of firms whose

individual shocks (uit) are correlated with many other firms’. In the second case (Assumption

1.4.2(ii)(b)), mN should be bounded, but Σu can have O(N) off-diagonal nonzero entries.

This allows block-diagonal matrices with finite size of blocks or banded matrices with finite

number of bands. This case typically arises when firms’ individual shocks are correlated only

within industries but not across industries.

Moreover, we require N1/2(logN)γ = o(T ), which is the price to pay for estimating a

large error covariance matrix. But still we allow N/T → ∞. It is also required that the

minimal signal for the nonzero components be larger than the noise level (Assumption 1.4.2

(i)), so that nonzero components are not thresholded off when estimating Σu.

1.4.6 Asymptotic properties

The following result verifies the uniform convergence required in Assumption 1.3.1 over the

entire parameter space that contains both the null and alternative hypotheses. Recall that

the OLS estimator and its asymptotic standard error are defined in (1.12).

27



Proposition 1.4.1. Suppose the distribution of (ft,ut) is independent of θ. Under Assump-

tion 1.4.1, for δN,T = log(log T )
√

logN , as T,N →∞,

inf
θ∈Θ

P (max
j≤N
|θ̂j − θj|/v̂1/2

j < δN,T/2|θ)→ 1.

inf
θ∈Θ

P (4/9 < v̂j/vj < 16/9, ∀j = 1, ..., N |θ)→ 1.

Proposition 1.4.2. Under Assumptions 1.3.2, 1.4.1, 1.4.2, and H0,

Jwald =
Taf,T θ̂

′
Σ̂−1
u θ̂ −N√

2N
→d N (0, 1).

As shown, the effect of replacing Σ−1
u by its thresholded estimator is asymptotically

negligible and the size of the standard Wald statistic can be well controlled.

We are now ready to apply Theorem 1.3.3 to obtain the asymptotic properties of J =

J0 + Jwald as follows. For δN,T = log(log T )
√

logN , let

Θs = {θ ∈ Θ : max
j≤N

T 1/2|θj|
var1/2(ujt)

> 2a
−1/2
f δN,T},

Θ(Jwald) = {θ ∈ Θ : ‖θ‖2 > Cδ2
N,TN/T}.

Theorem 1.4.1. Suppose the assumptions of Propositions 1.4.1 and 1.4.2 hold.

(i) Under the null hypothesis H0 : θ = 0, as T,N →∞,

P (J0 = 0|H0)→ 0, Jwald →d N (0, 1),

and hence

J = J0 + Jwald →d N (0, 1).

(ii) There is C > 0 so that for any q ∈ (0, 1), as T,N →∞,

inf
θ∈Θs

P (J0 >
√
N |θ)→ 1, inf

θ∈Θ(Jwald)
P (Jwald > zq|θ)→ 1,
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and hence

inf
θ∈Θs∪Θ(Jwald)

P (J > zq|θ)→ 1,

where zq denotes the qth quantile of the standard normal distribution.

We see that the power is substantially enhanced after J0 is added, as the region where

the test has power is enlarged from Θ(Jwald) to Θs ∪Θ(Jwald).

1.5 Application: Testing Cross-Sectional Indepen-

dence

1.5.1 The model

Consider a mixed effect panel data model

yit = α + x′itβ + µi + uit, i ≤ n, t ≤ T,

where the idiosyncratic error uit is assumed to be Gaussian. The regressor xit could be

correlated with the individual random effect µi, but is uncorrelated with uit. Let ρij denote

the correlation between uit and ujt, assumed to be time invariant. The goal is to test the

following hypothesis:

H0 : ρij = 0, for all i 6= j,

that is, whether the cross-sectional dependence is present. It is commonly known

that the cross-sectional dependence leads to efficiency loss for OLS, and sometimes it

may even cause inconsistent estimations (Andrews, 2005). Thus testing H0 is an im-

portant problem in applied panel data models. If we let N = n(n − 1)/2, and let

θ = (ρ12, ..., ρ1n, ρ23, ..., ρ2n, ..., ρn−1,n)′ be an N × 1 vector stacking all the mutual correla-

tions, then the problem is equivalent to testing about a high-dimensional vector H0 : θ = 0.

Note that often the cross-sectional dependences are weakly present. Hence the alternative
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hypothesis of interest is often a sparse vector θ, corresponding to a sparse covariance matrix

Σu of uit.

Most of the existing tests are based on the quadratic statistic W =
∑

i<j T ρ̂
2
ij = T θ̂

′
θ̂,

where ρ̂ij is the sample correlation between uit and ujt, estimated by the within-OLS (Baltagi,

2008), and θ̂ = (ρ̂12, ..., ρ̂n−1,n). Pesaran et al. (2008) and Baltagi et al. (2012) studied the

rescaled W , and showed that after a proper standardization, the rescaled W is asymptotically

normal when both n, T → ∞. However, the quadratic test suffers from a low power if Σu

is a sparse matrix under the alternative. In particular, as is shown in Theorem 1.3.4, when

n/T →∞, the quadratic test cannot detect the sparse alternatives with
∑

i<j 1{ρij 6= 0} =

o(n/T ), which is very restrictive. Such a sparse structure is present, for instance, when Σu

is a block-diagonal sparse matrix with finitely many blocks and finite block sizes.

1.5.2 Power enhancement test

Following the conventional notation of panel data models, let ỹit = yit − 1
T

∑T
t=1 yit, x̃it =

xit− 1
T

∑T
t=1 xit, and ũit = uit− 1

T

∑T
t=1 uit. Then ỹit = x̃′itβ+ ũit. The within-OLS estimator

β̂ is obtained by regressing ỹit on x̃it, which leads to the estimated residual ûit = ỹit − x̃′itβ̂.

Then ρij is estimated by

ρ̂ij =
σ̂ij

σ̂
1/2
ii σ̂

1/2
jj

, σ̂ij =
1

T

T∑
t=1

ûitûjt.

For the within-OLS, the asymptotic variance of ρ̂ij is given by vij = (1 − ρ2
ij)

2/T , and is

estimated by v̂ij = (1− ρ̂2
ij)

2/T. Therefore the screening statistic for the power enhancement

test is defined as

J0 =
√
N
∑

(i,j)∈Ŝ

ρ̂2
ij v̂
−1
ij , Ŝ = {(i, j) : |ρ̂ij|/v̂1/2

ij > δN,T , i < j ≤ n}. (1.18)

where δN,T = log(log T )
√

logN as before. The set Ŝ screens off most of the estimation errors.
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To control the size, we employ Baltagi et al. (2012)’s bias-corrected quadratic statistic:

J1 =

√
1

n(n− 1)

∑
i<j

(T ρ̂2
ij − 1)− n

2(T − 1)
. (1.19)

Under regularity conditions (Assumptions 1.5.1, 1.5.2 below), J1 →d N (0, 1) under H0. Then

the power enhancement test can be constructed as J = J0 + J1. The power is substantially

enhanced to cover the region

Θs = {θ : max
i<j

√
T |ρij|

1− ρ2
ij

> 2 log(log T )
√

logN}, (1.20)

in addition to the region detectable by J1 itself. As a byproduct, it also identifies pairs

(i, j) for ρij 6= 0 through Ŝ. Empirically, this set helps us understand better the underlying

pattern of cross-sectional correlations.

1.5.3 Asymptotic properties

In order for the power to be uniformly enhanced, the parameter space of θ = (ρ12, ..., ρ1n,

ρ23, ..., ρ2n, ..., ρn−1,n)′ is required to be: θ is element-wise bounded away from ±1: there is

ρmax ∈ (0, 1),

Θ = {θ ∈ RN : ‖θ‖max ≤ ρmax}.

We denote E(urit|θ) as the rth moment of uit when the correlation vector of the underlying

data generating process is θ. The following regularity conditions are imposed.

Assumption 1.5.1. There are C1, C2 > 0, so that

(i) supθ∈Θ

∑
i 6=j≤n |Ex̃′itx̃jtE(uitujt|θ)| < C1n,

(ii) supθ∈Θ maxj≤nE(u4
jt|θ) < C1, infθ∈Θ minj≤nE(u2

jt|θ) > C2,

Condition (i) is needed for the within-OLS to be
√
nT -consistent (see, e.g., Baltagi

(2008)). It is usually satisfied by weak cross-sectional correlations (sparse alternatives)

31



among the error terms, or weak dependence among the regressors. We require the sec-

ond moment of ujt be bounded away from zero uniformly in j ≤ n and θ ∈ Θ, so that the

cross-sectional correlations can be estimated stably.

The following conditions are assumed in Baltagi et al. (2012), which are needed for the

asymptotic normality of J1 under H0.

Assumption 1.5.2. (i) {ut}t≤T are i.i.d. N(0,Σu), E(ut|{ft}t≤T ,θ) = 0 almost surely.

(ii) With probability approaching one, all the eigenvalues of 1
T

∑T
t=1 x̃jtx̃

′
jt are bounded away

from both zero and infinity uniformly in j ≤ n.

Proposition 1.5.1. Under Assumptions 1.5.1 and 1.5.2, for δN,T = log(log T )
√

logN , and

N = n(n− 1)/2, as T,N →∞,

inf
θ∈Θ

P (max
ij
|ρ̂ij − ρij|/v̂1/2

ij < δN,T/2|θ)→ 1

inf
θ∈Θ

P (4/9 < v̂ij/vij < 16/9,∀i 6= j|θ)→ 1.

Define

Θ(J1) = {θ ∈ Θ :
∑
i<j

ρ2
ij ≥ Cn2 log n/T}.

For J1 defined in (1.19), let

J = J0 + J1. (1.21)

The main result is presented as follows.

Theorem 1.5.1. Suppose Assumptions 1.3.2, 1.5.1, 1.5.2 hold. As T,N →∞,

(i) under the null hypothesis H0 : θ = 0,

P (J0 = 0|H0)→ 0, J1 →d N (0, 1),

and hence

J = J0 + J1 →d N (0, 1);
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(ii) there is C > 0 in the definition of Θ(J1) so that for any q ∈ (0, 1),

inf
θ∈Θs

P (J0 >
√
N |θ)→ 1, inf

θ∈Θ(J1)
P (J1 > zq|θ)→ 1,

and hence

inf
θ∈Θs∪Θ(J1)

P (J > zq|θ)→ 1.

Therefore the power is enhanced from Θ(J1) to Θs ∪ Θ(J1) uniformly over sparse alter-

natives. In particular, the required signal strength of Θs in (1.20) is mild: the maximum

cross-sectional correlation is only required to exceed a magnitude of log(log T )
√

(logN)/T .
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Chapter 2

Sufficient Forecasting Using Factor

Models

2.1 Introduction

Forecasting using a data-rich environment has been an important research topic in statistics,

economics and finance. Typical examples include forecasts of a macroeconomic output using

a large number of employment and production variables (Stock and Watson, 1989; Bernanke

et al., 2005), and forecasts of the values of market prices and dividends using cross-sectional

asset returns (Sharpe, 1964; Lintner, 1965). The predominant framework to harness vast

predictive information is via the factor model, which proves effective in simultaneously mod-

eling the commonality and cross-sectional dependence of the observed data. Turning the

curse of dimensionality into blessing, factor models have been widely demonstrated in many

applications, such as portfolio management (Fama and French, 1992; Carhart, 1997), large-

scale multiple testing (Leek and Storey, 2008; Fan et al., 2012), high-dimensional covariance

matrix estimation (Fan et al., 2008, 2013), and in particular, linear forecasting using many

predictors (Stock and Watson, 2002a,b).
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With little knowledge of the relationship between the forecast target and the latent

factors, most research focuses on a linear model and its refinement. Motivated by the classic

principal component regression (Kendall, 1957; Hotelling, 1957), Stock and Watson (2002a,b)

employed a similar idea to forecast a single time series from a large number of predictors:

first used the traditional principal component analysis (PCA) to estimate the underlying

common factors, followed by a linear regression of the target on the estimated factors. The

key insight here is to condense information from many cross-sectional predictors into several

predictive indices. As an improvement to this procedure, Paul et al. (2006) used a correlation

screening to remove the irrelevant predictors before performing PCA. In a similar fashion,

Bai and Ng (2008) employed thresholding rules to select “targeted predictors”, and Stock and

Watson (2012) used shrinkage methods to downweight the unrelated principal components.

Recently, Kelly and Pruitt (2014) took into account the covariance with the forecast target,

and proposed a three-pass regression filter that generalizes partial least squares to forecast

a single time series.

However, a linear principle components framework only reveals one dimension of the

predictive power of the underlying factors. When the link function of the target and the

factors is nonlinear, an thorough exploration of the factor space often leads to additional

gains. In order to address this issue, we introduce an alternative method called sufficient

forecasting. Our procedure springs from the idea of sufficient dimension reduction, which

were first introduced as the sliced inverse regression in the seminal work of Li (1991). We are

interested in constructing the sufficient predictive indices, given which the forecast target

is independent of the common factors. Put it another way, the forecast target relates to

the common factors only through these sufficient predictive indices. Such a goal is closely

related to the estimation of the central space in dimension reduction literature (Cook, 2009).

In a linear forecasting model, the central space consists of only one dimension. By contrast,

when a nonlinear link function is present, the central space goes beyond one dimension

and our proposed method can effectively estimate all the sufficient predictive indices. This
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procedure therefore greatly enlarges the scope of factor forecasting. As demonstrated in

our numerical studies, the sufficient forecasting has improved performance over benchmark

methods, especially under a nonlinear forecasting equation.

To our knowledge, relatively few work has been done in forecasting a nonlinear time

series using factor models, partially because of the linear tradition. Bai and Ng (2008)

discussed the use of squared factors (i.e., volatility of the factors) in augmenting forecasting

equation. Ludvigson and Ng (2007) found that the square of the first factor estimated from

a set of financial factors is significant in the regression model for the mean excess returns.

This, however, naturally leads to the question of which factor, or more precisely, which

direction of factor space to include for higher moments. The sufficient predictive indices

provide guidelines for these directions, leaving questions such as how to model nonlinearity

for further investigation.

In summary, the contribution of this work is at least twofold. On one hand, our work

advances existing forecasting methods, and fills the important gap between incorporating

target information and dealing with nonlinear forecasting. We also provide a rigorous theo-

retical guarantee for the sufficient forecasting without requiring the i.i.d assumption. On the

other hand, our work actually presents a promising dimension reduction technique through

factor models. It is well-known that existing dimension reduction methods are limited to

either a fixed dimension or a diverging dimension that is smaller than the sample size (Zhu

et al., 2006). With the aid of factor models, our work alleviates what plagues sufficient di-

mension reduction in high-dimensional regimes, where the dimension might be much higher

than the sample size.

The rest of this chapter is organized as follows. Section 2.2 presents the complete method-

ological details of the sufficient forecasting, and Section 2.3 establishes the asymptotic prop-

erties. We give a few applications of the sufficient forecasting in Section 2.4 and put a few

remarks on future directions in Section 2.5. The numerical performance are demonstrated

in Section 3.2, Chapter 3. Proofs are given in Section 5.2, Chapter 5.
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2.2 Methodology

2.2.1 Factor models and forecasting

Consider the following factor model with a target variable yt which we wish to forecast:

yt+1 = h(φ′1ft, ...,φ
′
Lft, εt+1), (2.1)

xit = b′ift + uit, 1 ≤ i ≤ p, 1 ≤ t ≤ T, (2.2)

where xit is the i-th predictor observed at time t, bi is a vector of factor loadings, ft is a

K × 1 vector of common factors driving the predictors and uit is the error term, or the

idiosyncratic component. The target variable yt+1 depends on the factors ft = (f1t, ...fKt)
′

through L(≤ K) linear combinations φ1, ...,φL, which are orthogonal unit K × 1 vectors.

In (2.1), we assume that h(·) is an unknown link function and εt+1 is some stochastic error

independent of ft and uit. Note that the unknown function h(·) poses a significant challenge

in forecasting yt+1. As a special case, when the target is linearly related to the underlying

factors, we simply have L = 1, and (2.1) reduces to

yt+1 = φ′1ft + εt+1.

Such linear forecasting problems using many predictors have been addressed extensively in

the literature, for example, Stock and Watson (2002a), Stock and Watson (2002b), Bai and

Ng (2008), Stock and Watson (2012) and Kelly and Pruitt (2014), among others.

In order to forecast yt+1, we seek to find out certain projections of ft that is target-

relevant, i.e., φ′1ft, ...,φ
′
Lft. We call these projections sufficient predictive indices throughout

this work. They can be seen as a way of weighing common factors and reducing dimensions.

Traditional factor analysis, such as PCA, will yield factors whose loadings account for the

variation of predictors. However, those factors in PCA do not necessarily contain information

about the forecasting target. In particular, if the target-relevant factors contribute only a
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small fraction of the total variability in the predictors, principal component regression will

involve many irrelevant factors. To make things worse, the possible non-linearity will only

deteriorate the situation. This is seen through the following example.

Example 2.2.1. Suppose we have the following factor structure

yt+1 = f(K−1)t + f(K−1)tfKt + εt+1,

xit = b′ift + uit, 1 ≤ i ≤ p, 1 ≤ t ≤ T,

where {λk = (b1k, ..., bpk)
′}Kk=1 are orthogonal unit vectors and {fkt}Kk=1 are uncorrelated (i.e.

cov(ft) is a diagonal matrix). We further assume that only the first factor f1t is dominant,

that is var(fkt) = o(var(f1t)) for k ≥ 2. The covariance matrix of xt = (x1t, ..., xpt)
′ can be

decomposed as

cov(xt) =
K∑
k=1

var(fkt)λkλ
′
k + cov(ut).

When cov(ut) is very small, a direct application of PCA will deliver f1t as the first principal

component. However, since cov(f1, f(K−1)tfKt) is not necessarily zero, PCR will include f1t in

the regression function and possibly other fit’s. (As an example, let X, Y, Z be independent

standard normal variables and f1t = |X|sign(Y Z), f(K−1)t = Y, fKt = Z. It’s easy to verify

that fit are pairwise uncorrelated but cov(f1, f(K−1)tfKt) > 0.)

One way to tackle this issue is to use statistical methods to select relevant factors. Bai

and Ng (2009) applied boosting method in the screen of factors. However, such an approach

is more tailored to handle overfitting issues, and is often limited to linear forecasting, even

if we augment the factor set.

Traditional analysis of factor models focuses on the covariance of these predictors, which

we denote by a p × p matrix Σx. Writing xt = (x1t, ..., xpt)
′,B = (b1, ...,bp)

′ and ut =

(u1t, ..., upt)
′, we have

Σx = Bcov(ft)B
′ + Σu, (2.3)
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where Σu is the covariance matrix of ut or the error covariance matrix. However, the

covariance within the predictors is often not enough to construct an optimal linear forecast

since it does not incorporate the target information. Kelly and Pruitt (2014) resort to the

covariance with the target to produce a better linear forecast. In the presence of a possibly

nonlinear forecast target, the factor models (2.1)-(2.2) are more challenging than the linear

forecast of Kelly and Pruitt (2014). We adopt a different perspective, by considering the

covariance matrix of conditional expectation given the forecast target. This allows us to

fully utilize the target information without knowing the nonlinear dependence, a feature we

shall demonstrate below.

2.2.2 Sliced inverse regression

Suppose the factor model (2.2) has the following canonical normalization

cov(ft) = IK and B′B is diagonal, (2.4)

which serves as an indentifiability condition because Bft = BΩΩ−1ft holds for any nonsin-

gular matrix Ω. Also assume for simplicity that xit’s and ft’s in (2.2) have already been

de-meaned. If the common factors ft are observed, we can rely on the semi-parametric in-

dex model (2.1) itself to forecast yt+1. The so-called sufficient dimension reduction (SDR)

direction φi’s in the link function form the central subspace Sy|f (Cook, 2009), given which

yt+1 is independent of ft. Li (1991) developed a sliced inverse regression (SIR) method

to effectively estimate these SDR directions. Under model (2.1), Li (1991) showed that if

E(b′ft|φ′1ft, ...,φ′Lft) is a linear function of φ′1ft, ...,φ
′
Lft for any b ∈ Rp , E(ft|yt+1) is con-

tained in Sy|f . Thus, SDR directions can be obtained by the eigenvectors corresponding to

the L largest eigenvalues of cov(E(ft|yt+1)), which we denote by Σf |y.

Since the factors ft are unobserved in practice, the SIR can not be directly pursued by

looking at the conditional information of these underlying factors. A natural solution is to
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use estimated factors to approximate cov(E(ft|yt+1)), which leads to

Σ1
f |y := cov(E(f̂t|yt+1)), (2.5)

where f̂t is some consistent estimator for ft.

Alternatively, we can start with the observed predictors xit. By conditioning on the

target yt+1, we obtain

cov(E(xt|yt+1)) = Bcov(E(ft|yt+1))B′.

Here, the error covariance matrix Σu in (2.3) disappears since ut and yt+1 are indepen-

dent. This allows a flexible structure on Σu, and includes the approximate factor model

(Chamberlain and Rothschild, 1983) as a special case. As is well-known that principal com-

ponent analysis is not scale-invariant, we cannot directly deal with cov(E(xt|yt+1)). Letting

Λb = (B′B)−1B′ be a K × p matrix, the following linear transformation connects xt to the

factors ft,

cov(E(Λbxt|yt+1)) = cov(E(ft|yt+1)).

Note that Λb also needs to be estimated, which only involves factor loadings. With a

consistent estimator Λ̂b, we immediately obtain a second estimator for cov(E(ft|yt+1)),

Σ2
f |y := Λ̂bcov(E(xt|yt+1))Λ̂

′
b. (2.6)

Remark 2.2.1. The SIR (Li, 1991) takes into account the target information through co-

variance of the inverse regression curve E(ft|yt+1). As pointed out in Chen and Li (1998),

the largest eigenvalue of cov(E(ft|yt+1)) corresponds to the largest R-squared value among

all transformations of yt+1, i.e.

max
b,T

Corr2(T (yt+1),b′ft),
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where the maximum is taken over any transformation T (·) and b ∈ Rp. This further justifies

the need in considering cov(E(ft|yt+1)) and the corresponding SDR directions φj’s, especially

in the presence of a nonlinear relationship between the target and the common factors.

Remark 2.2.2. Under the factor model (2.1)-(2.2), the distribution of the forecast target

relates to the common factors only through the sufficient predictive indices. Thus, this is the

problem of estimating the central space (Cook, 2009). Since the seminal work of Li (1991),

various methods have been developed for identifying the central space, for example, the sliced

average variance estimation (Cook and Weisberg, 1991), the directional regression (Li and

Wang, 2007), and so on. This problem is also closely related to the problem of estimating

the central mean space (Cook and Li, 2002) where the conditional mean E(yt+1|ft) relates

to the common factors only through several predictive indices. Several other dimension

reduction techniques are developed to recover the central mean space, such as the ordinary

least squares (Li and Duan, 1989), the method of principal Hessian directions (Li, 1992),

etc. One should generally distinguish the two different goals when applying corresponding

techniques.

2.2.3 Sufficient forecasting

To make forecast, we first elucidate how factors and factor loadings are estimated. We

temporarily assume that the number of underlying factors K is known to us. Consider the

following constrained least squares problem

arg min
B,F
||X−BF′||2F , (2.7)

subject to T−1F′F = IK , B′B is diagonal, (2.8)

where X = (x1, ...,xT ) and F′ = (f1, ..., fT ). This is a classical principal components problem,

and has been used by many researchers to extract underlying factors (Stock and Watson,

2002a; Fan et al., 2013). The constraints (2.8) correspond to the normalization (2.4). The
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minimizers F̂K , B̂K are such that the columns of F̂K/
√
T are the eigenvectors corresponding

to the K largest eigenvalues of the T × T matrix X′X and B̂K = T−1XF̂K .

To fully estimate cov(E(ft|yt+1)), we follow the sliced inverse regression scheme in Li

(1991), replacing the expectation and covariance by their sample counterparts. Denote the

order statistics of {(yt+1, f̂t)}T−1
t=1 by {(y(t+1), f̂(t))}T−1

t=1 according to the values of y, where

y(2) ≤ · · · ≤ y(T ) and we only use information up to time T . We divide the range of y into

H slices, each of which contains an even number of observations c > 0. By introducing a

double script (h, j) in which h refers to the slice number and j refers to the order number of

an observation in the given slice, we write the data as

y(h,j) = y(c(h−1)+j)+1, f̂(h,j) = f̂(c(h−1)+j).

The estimate Σ̂1
f |y of Σf |y = cov(E(ft|yt+1)) has the form

Σ̂1
f |y =

1

H

H∑
h=1

[
1

c

c∑
l=1

f̂(h,l)][
1

c

c∑
l=1

f̂(h,l)]
′. (2.9)

Since H is typically fixed in practice, the fact that the last slice may have less than c

observations exerts little influence on SIR asymptotically. Analogously, for Σ2
f |y, we have

Σ̂2
f |y = Λ̂b(

1

H

H∑
h=1

[
1

c

c∑
l=1

x(h,l)][
1

c

c∑
l=1

x(h,l)]
′)Λ̂
′
b. (2.10)

The following proposition shows that the estimates of cov(E(ft|yt+1)) based on either the

estimated factors or the estimated factor loadings are equivalent.

Proposition 2.2.1. Suppose we have predictors xit that follow a factor structure (2.1), along

with a target yt+1. Let f̂t and B̂ be estimated from the method of principal components. Λ̂b is

obtained by substitution. Then, the two estimators (2.9) and (2.10) for cov(E(ft|yt+1)) are

equivalent, i.e.

Σ̂1
f |y = Σ̂2

f |y.
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Remark 2.2.3. There are alternative ways for estimating factors and loadings. For example,

Forni et al. (2000) studied factor estimation based on projection. Connor et al. (2012) applied

a weighted additive nonparametric estimation procedure to estimate characteristic-based

factor models. These methods do not necessarily lead to the identity above.

We denote the two equivalent terms by Σ̂f |y. We shall show that under mild conditions,

Σ̂f |y consistently estimate Σf |y as p, T →∞. As a result, the eigenvectors of Σ̂f |y, denoted as

φ̂j(j = 1, ..., K), converge to the corresponding eigenvectors of Σf |y, which span the central

space discussed before. This will yield consistent estimates of sufficient predictive indices

φ′ift, and provides baselines for further investigation.

2.2.4 Determining the number of factors

In practice, the number of factors K might be unknown to us. There are many existing

approaches to determining K in the literature, e.g., Bai and Ng (2002), Hallin and Lǐska

(2007), Alessi et al. (2010). Recently, Lam et al. (2012) and Ahn and Horenstein (2013)

proposed a ratio-based estimator by maximizing the ratio of two adjacent eigenvalues of

X′X arranged in descending order, i.e.

K̂ = arg max
1≤i≤kmax

λ̂i/λ̂i+1,

where λ̂1 ≥ ... ≥ λ̂T are the eigenvalues. The estimator enjoys good finite-sample perfor-

mances and was motivated by the following observation: the K largest eigenvalues of X′X

grow unboundedly as p increases, while the others remain bounded.

We note here that once a consistent estimator of K is found, the asymptotic results in

this paper hold true for the unknown K case by a conditioning argument. Unless otherwise

specified, we shall assume a known K in the sequel.
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2.3 Asymptotic properties

2.3.1 Assumptions

We first detail the modeling assumptions on model (2.1) and (2.2), in which {(xt, yt)}Tt=1 are

observable.

Assumption 2.3.1 (Factors and Loadings). (1) ||bi|| ≤ M for some M > 0 (i = 1, ..., p).

And as p→∞, there exists positive constants c1 and c2 such that

c1 < λmin(
1

p
B′B) < λmax(

1

p
B′B) < c2.

(2) E||ft||4 <∞, and T−1F′F→ cov(ft) = I as T →∞.

(3) Linearity: E(b′ft|φ′1ft, ...,φ′Lft) is a linear function of φ′1ft, ...,φ
′
Lft for any b ∈ Rp,

where φi’s come from model (2.1).

Condition (1) is often known as the pervasive condition (Bai and Ng, 2002; Fan et al.,

2013) in that the factors impact a non-vanishing portion of the predictors. Condition (2) is

also standard for factor models. Condition (3) ensures that the (centered) inverse regression

curve E(ft|yt+1) is contained in the central space, and is satisfied when the distribution of

ft is elliptically symmetric (Hall and Li, 1993). If the distribution of ft is non-elliptically

distributed, we can follow Li and Dong (2009) to greatly relax the linearity condition in As-

sumption 2.3.1, and assume that E(ft|φ′1ft, ...,φ′Lft) is a polynomial function of φ′1ft, ...,φ
′
Lft,

where φi’s come from model (2.1).

We impose the strong mixing condition on the data generating process. Let F0
∞ and F∞T

denote the σ−algebras generated by {(ft, yt+1) : t ≤ 0} and {(ft, yt+1) : t ≥ T} respectively.

Define the mixing coefficient

α(T ) = sup
A∈F0

∞,B∈F∞T
|P (A)P (B)− P (AB)|.
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Assumption 2.3.2 (Data generating process). {ft,ut, εt+1}t≥1 is strictly stationary,

E(||ft||2|yt+1) <∞ and for T ∈ Z+ and some ρ ∈ (0, 1), α(T ) < cρT .

The assumption above ensures that the sample average of ft|yt+1 for any range of yt+1

is root T consistent. In addition, we impose the following assumption on the residuals

and dependence of the factor model. Conditions (1)-(4) in Assumption 2.3.3 are similar

assumptions as those in Bai (2003), which are needed to consistently estimate the common

factors as well as the factor loadings.

Assumption 2.3.3 (Residuals and Dependence). For some M > 0 ,

(1) E(ut) = 0, and E|uit|8 ≤M .

(2) ||Σu||1 ≤M , and for every i, j, t, s > 0, (pT )−1
∑

i,j,t,s cov(uit, ujs) ≤M

(3) For every (t, s), E|p−1/2
∑p

i=1(u′sut − E(usut)|4 ≤M .

(4) Weak dependence between factors and idiosyncratic errors

E(
1

p

p∑
i=1

|| 1√
T

T∑
t=1

ftuit||2) ≤M

2.3.2 Convergence of Σ̂f |y

As with many other applications, the factor structure (2.2) often involves estimation of the

unknown factors. Note that the factor loadings B and the common factors ft are not separa-

bly identifiable. Let V denote the K ×K diagonal matrix of the first K largest eigenvalues

of the sample covariance matrix T−1X′X in descending order. Define a K × K matrix

H = (1/T )V−1F̂′FB′B, where F′ = (f1, ..., fT ). Since Hft = (1/T )V−1F̂′(BF′)′Bft depends

only on an identifiable part (BF′)′Bft and the data V−1F̂′, H eliminates identifiability issues

when estimating (B, ft) simultaneously.

The following theorem gives the rate of convergence of the estimated covariance of inverse

regression curve Σ̂f |y.
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Theorem 2.3.1. Suppose that assumptions 2.3.1-2.3.3 hold and let ωp,T = p−1/2 + T−1/2.

Then under model (2.1) and (2.2), we have

||Σ̂f |y −HΣf |yH
′|| = Op(ωp,T ). (2.11)

If the eigenvalues of Σf |y = cov(E(ft|yt+1)) are positive and distinct, then the eigenvectors,

φ̂j(j = 1, .., L) associated with L largest eigenvalues of Σ̂x|y give consistent estimate of SDR

directions up to rotation H, i.e.

||φ̂j −Hφj|| = Op(ωp,T ) (2.12)

for any j ≤ L.

The proof of this theorem relies on the fact that Λ̂b can be consistently estimated, and

it is straightforward given existing details in the literature. We render it in Section 5.2,

Chapter 5 . As a consequence of theorem 2.3.1, we have φ̂
′
j f̂t →p φjft for any j. The

sufficient predictive indices can therefore be consistently estimated. Define ξ̂j := Λ̂
′
bφ̂j, then

similarly ξ̂
′
jxt →p φjft. This supplies linear combinations of observed data xt with powerful

forecast performance. Traditional sliced inverse regression can not handle the case when

the number of predictors p is larger than the number of observations T . By condensing the

cross-sectional information, a factor structure effectively reduces the dimension of predictors

and extends the applicability of inverse regression.

2.3.3 Connection to linear estimators

What are the consequences of forcing a linear forecast? Forecasting problems within the

framework of factor model typically focuses on a linear target, which shares the same factor

representation as the predictors. When the underlying relationship between the target and

the driving factors is nonlinear, directly applying linear forecasts would violate the link func-
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tion h(·). Despite the validity issues of such forecast, linear estimates are easy to construct

and usually provide benchmarks for our analysis. We shall see that linear forecast actually

averages the sufficient predictive indices.

With a large number of predictors, the underlying factors are first estimated via PCA.

The target is then regressed on the extracted factors to form the predictive model. Note

that the normalization (2.8) serves as an orthogonal design for the estimated factors. One

may then employ the following linear estimate of the target’s loadings on ft

φ̂ =
1

T − 1

T−1∑
t=1

yt+1f̂t, (2.13)

where f̂t’s are estimated via the optimization (2.7) and (2.8). To examine the behavior of

this projection direction, we shall assume normality of the underlying factors. The following

proposition shows that, regardless of the specification of the link function h(·), φ̂ falls into

the central space spanned by φ1, ..., φL as p, T →∞.

Proposition 2.3.1. Consider model (2.1) and (2.2) under assumptions of theorem 2.3.1.

Suppose {ft, εt+1}t≥1 is i.i.d., the factors ft are normally distributed and that E(y2
t ) < ∞.

Then,

||φ̂− φ̄|| = Op(ωp,T ), (2.14)

where φ̄ =
∑L

i=1 E((φ′ift)yt+1)φi.

It is interesting to see that when L = 1, the coefficient φ̂ delivers asymptotically effi-

cient estimate of the projection direction of factors. The nonlinearity does not significantly

decrease one’s ability to estimate such direction. When L ≥ 2, this is no longer the case.

The estimated coefficient belongs to the linear subspace spanned by φi’s, and its coordinates

depend on the correlation between the target and the sufficient predictive indices. This

subspace, however, is entirely contained in Σf |y. By estimating Σf |y directly, sliced inverse
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regression tries to recover all the effective directions and would therefore capture most of the

driving forces.

2.4 Applications

We give two examples to which the preceding results can be readily applied. Although

detailed pursuits are beyond our scope, we demonstrate the corresponding numerical results

in the next Chapter.

Example 2.4.1. (Linear forecast)

When we have a priori knowledge that the link function h(·) in (2.1) is in fact linear,

only a single index needs to be estimated, i.e. L = 1. Prominent examples include asset

return predictability, where we use the cross section of book-to-market ratios to forecast

aggregate market returns (Campbell and Shiller, 1988; Polk et al., 2006; Kelly and Pruitt,

2013). The Arbitrage Pricing Theory (APT) by Ross (1976) states that the excessive return

of a financial asset can be explained by a linear combination of risk factors, which justifies

linear forecast. In such cases, the target admits the following linear factor structure

yt+1 = φ′1ft + εt+1, t ≤ T.

By Theorem 2.3.1 and Proposition 2.3.1, the eigenvector corresponding to the largest eigen-

value of Σ̂f |y provides estimation of target factor loadings equivalent to linear regression

(2.13), up to a scale factor. However, the motivations are different. The linear regression

is predicated on the assumption that the same set of factors drive both the target and the

cross section of predictors. By contrast, sliced inverse regression finds projections of factors

most relevant to the target. This incorporates the case when the target is a linear function

of a strict subset of the latent factors.

Example 2.4.2. (Interaction effect)
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Consider model (2.1) with an interaction effect

yt+1 = (φ′1ft)(φ
′
2ft) + εt+1,

where the interaction terms are formed by the two directions φ1,2, which we are interested

in determining. Note that since the underlying factors are extracted with the normalization

(2.9), direct interaction terms such as fifj may not make much sense. Interaction models

have been considered by many researchers in both economics and statistics. For example, in

an influential paper, Rajan and Zingales (1998) examined the interaction between financial

dependence and economic growth. Recently, Jiang and Liu (2014) studied variable selection

with interaction detection via inverse modeling.

Including all the interaction terms fifj would require K(K − 1)/2 parameters, and can

deteriorate prediction significantly. We can successfully solve this problem by applying the-

orem 2.3.1. The eigenvectors corresponding to the largest two eigenvalues are consistent

estimators of φ1,2. Regression models can be subsequently built to account for such interac-

tion effects.

2.5 Future work

We identify two avenues for future research. One is on the selection of the number of sufficient

predictive indices L. There are some existing methods to tackle this problem, for example, Li

(1991) and Schott (1994), whose approaches tend to be based on probabilistic assumptions

on the underlying factors. An alternative way is a cross-validation approach which penalizes

on the complexity of the forecasting model. Although heuristic methods such as eigenvalue

ratio test (as used in picking the number of underlying factors) can be used in practice, a

consistent estimate L is no doubt helpful.

A more fundamental direction is to remove the linearity condition (Li, 1991) or the

polynomial condition (Li and Dong, 2009) as in Assumption 2.3.1. Such conditions are for
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technical convenience and often difficult to check in practice. Recent advances in dimension-

reduction literature have solved this problem at the cost of performing additional nonpara-

metric regression. This could enrich the applicability of sufficient forecasting.
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Chapter 3

Numerical studies

We first present Monte Carlo experiments for the power enhancement test proposed in Chap-

ter 1, which is also applied to the components of S&P 500 as an empirical study. We next

examine numerical performance on sufficient forecasting with the use of factor models in

Section 3.2

3.1 Numerical studies for power enhancement test

In this section, Monte Carlo simulations are employed to examine the finite sample per-

formance of the power enhancement tests. We respectively study the factor pricing model

and the cross-sectional independence test. The proposed test is then applied to S&P 500

components to examine the market efficiency between 1985-2012.

3.1.1 Testing factor pricing models

To mimic the real data application, we consider the Fama and French (1992) three-factor

model:

yit = θi + b′ift + uit.
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We simulate {bi}Ni=1, {ft}Tt=1 and {ut}Tt=1 independently from N3(µB,ΣB), N3(µf ,Σf ), and

NN(0,Σu) respectively. The parameters are set to be the same as those in the simulations of

Fan et al. (2013), which are calibrated using daily returns of S&P 500’s top 100 constituents,

for the period from July 1st, 2008 to June 29th 2012. These parameters are listed in the

following table.

Table 3.1: Means and covariances used to generate bi and ft
µB ΣB µf Σf

0.9833 0.0921 -0.0178 0.0436 0.0260 3.2351 0.1783 0.7783
-0.1233 -0.0178 0.0862 -0.0211 0.0211 0.1783 0.5069 0.0102
0.0839 0.0436 -0.0211 0.7624 -0.0043 0.7783 0.0102 0.6586

Set Σu = diag{A1, ...,AN/4} to be a block-diagonal covariance matrix. Each diagonal

block Aj is a 4 × 4 positive definite matrix, whose correlation matrix has equi-off-diagonal

entry ρj, generated from Uniform[0, 0.5]. The diagonal entries of Aj are obtained via (Σu)ii =

1 + ‖vi‖2, where vi is generated independently from N3(0, 0.01I3).

We evaluate the power of the test under two specific alternatives (we set N > T ):

sparse alternative H1
a : θi =


0.3, i ≤ N

T

0, i > N
T

weak theta H2
a : θi =


√

logN
T
, i ≤ N0.4

0, i > N0.4

.

Under H1
a , there are only a few nonzero θ’s with a relative large magnitude. Under H2

a , there

are many non-vanishing θ’s, but their magnitudes are all relatively small. In our simulation

setup,
√

logN/T varies from 0.05 to 0.10. We therefore expect that under H1
a , P (Ŝ = ∅) is

close to zero because most of the first N/T estimated θ’s should survive from the screening

step. These survived θ̂’s contribute importantly to the rejection of the null hypothesis. In

contrast, P (Ŝ = ∅) should be much larger under H2
a because the non-vanishing θ’s are too

weak to be detected.
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For each test, we calculate the relative frequency of rejection under H0, H
1
a and H2

a based

on 2000 replications, with significance level q = 0.05. We also calculate the relative frequency

of Ŝ being empty, which approximates P (Ŝ = ∅). We use the soft-thresholding to estimate

the error covariance matrix.

Table 3.2: Size and power (%) of tests for simulated Fama-French three-factor model

H0 H1
a H2

a

T N Jwald PE P (Ŝ = ∅) Jwald PE P (Ŝ = ∅) Jwald PE P (Ŝ = ∅)

300 500 5.2 5.4 99.8 48.0 97.6 2.6 69.0 76.4 64.6

800 4.9 5.1 99.8 60.0 99.0 1.2 69.2 76.2 62.2

1000 4.6 4.7 99.8 54.6 98.4 2.6 75.8 82.6 63.2

1200 5.0 5.4 99.6 64.2 99.2 0.8 74.2 81.0 63.6

500 500 5.2 5.3 99.8 33.8 99.2 0.8 73.4 77.2 77.8

800 4.8 5.0 99.8 67.4 100.0 0.0 72.4 76.4 75.0

1000 5.0 5.2 99.8 65.0 100.0 0.2 76.8 80.4 74.0

1200 5.2 5.2 100.0 58.0 100.0 0.2 74.2 78.4 77.0

Notes: This table reports the frequencies of rejection and Ŝ = ∅ based on 2000 replications.

Here Jwald is the standardized Wald test, and PE the power enhanced test. These tests are

conducted at 5% significance level.

Table 3.2 presents the empirical size and power of the feasible standardized Wald test

Jwald as well as those of the power enhanced test J = J0 + Jwald. First of all, the size of

Jwald is close to the significance level. Under H0, P (Ŝ = ∅) is close to one, implying that

the power enhancement component J0 screens off most of the estimation errors. The power

enhanced test (PE) has approximately the same size as the original test JWald. Under H1
a ,

the PE test significantly improves the power of the standardized Wald-test. In this case,

P (Ŝ = ∅) is nearly zero because the screening set manages to capture the big thetas. Under

H2
a , as the non-vanishing thetas are very week, it follows that Ŝ has a large probability of
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being empty. But, whenever Ŝ is non-empty, it contributes to the power of the test. The

PE test still slightly improves the power of the quadratic test.

3.1.2 Testing cross-sectional independence

We use the following data generating process in our experiments,

yit = α + βxit + µi + uit, i ≤ n, t ≤ T, (3.1)

xit = ξxi,t−1 + µi + εit. (3.2)

Note that we model {xi}’s as AR(1) processes, so that xit is possibly correlated with µi,

but not with uit, as was the case in Im et al. (1999). For each i, initialize xit = 0.5 at

t = 1. We specify the parameters as follows: µi is drawn from N (0, 0.25) for i = 1, ..., n.

The parameters α and β are set −1 and 2 respectively. In regression (3.2), ξ = 0.7 and

εit ∼ N (0, 1).

We generate {ut}Tt=1 fromNn(0,Σu). Under the null hypothesis, Σu is set to be a diagonal

matrix Σu,0 = diag{σ2
1, ..., σ

2
n}. Following Baltagi et al. (2012), consider the heteroscedastic

errors

σ2
i = σ2(1 + κx̄i)

2 (3.3)

with κ = 0.5, where x̄i is the average of xit across t. Here σ2 is scaled to fix the average of

σ2
i ’s at one.

For alternative specifications, we use a spatial model for the errors uit. Baltagi et al.

(2012) considered a tri-diagonal error covariance matrix in this case. We extend it by allowing

for higher order spatial autocorrelations, but require that not all the errors be spatially cor-

related with their immediate neighbors. Specifically, we start with Σu,1 = diag{Σ1, ...,Σn/4}

as a block-diagonal matrix with 4 × 4 blocks located along the main diagonal. Each Σi is

assumed to be I4 initially. We then randomly choose bn0.3c blocks among them and make

them non-diagonal by setting Σi(m,n) = ρ|m−n|(m,n ≤ 4), with ρ = 0.2. To allow for error
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cross-sectional heteroscedasticity, we set Σu = Σ
1/2
u,0 Σu,1Σ

1/2
u,0 , where Σu,0 = diag{σ2

1, ..., σ
2
n}

as specified in (3.3).

The Monte Carlo experiments are conducted for different pairs of (n, T ) with significance

level q = 0.05 based on 2000 replications. The empirical size, power and the frequency of

Ŝ = ∅ as in (1.18) are recorded.

Table 3.3: Size and power (%) of tests for cross-sectional independence

H0 T n = 200 n = 400 n = 600 n = 800

J1/PE /P (Ŝ = ∅) J1/PE /P (Ŝ = ∅) J1/PE /P (Ŝ = ∅) J1/PE /P (Ŝ = ∅)

100 4.7/5.5 /99.1 4.9/5.3 /99.6 5.5/5.7 /99.7 4.9/5.2 /99.7

200 5.3/5.3 /100.0 5.5/5.9 /99.6 4.7/5.1 /99.4 4.9/5.1 /99.8

300 5.2/5.2 /100.0 5.2/5.2 /100.0 4.6/4.6 /100.0 4.9/4.9 /100.0

500 4.7/4.7 /100.0 5.5/5.5 /100.0 5.0/5.0 /100.0 5.1/5.1 /100.0

Ha T n = 200 n = 400 n = 600 n = 800

100 26.4/95.5 /5.0 19.8/98.0 /2.3 13.5/98.2 /2.0 12.2/99.2 /0.9

200 54.6/98.8 /1.6 40.3/99.6 /0.5 24.8/99.6 /0.4 21/99.7 /0.3

300 78.9/99.25 /1.1 65.3/100.0 /0.1 41.7/99.9 /0.2 37.2/100.0 /0.1

500 93.5/99.85 /0.2 89.0/100.0 /0.0 69.1/100.0 /0.0 61.8/100.0 /0.0

Notes: This table reports the frequencies of rejection by J1 in (1.19) and PE in (1.21) under

the null and alternative hypotheses, based on 2000 replications. The frequency of Ŝ being

empty is also recorded. These tests are conducted at 5% significance level.

Table 3.3 gives the size and power of the bias-corrected quadratic test J1 in (1.19) and

those of the power enhanced test J in (1.21). The sizes of both tests are close to 5%. In

particular, the power enhancement test has little distortion of the original size.

The bottom panel shows the power of the two tests under the alternative specification.

The PE test demonstrates almost full power under all combinations of (n, T ). In contrast,

the quadratic test J1 as in (1.19) only gains power when T gets large. As n increases, the
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proportion of nonzero off-diagonal elements in Σu gradually decreases. It becomes harder

for J1 to effectively detect those deviations from the null hypothesis. This explains the low

power exhibited by the quadratic test when facing a high sparsity level.

3.1.3 Empirical Study

As an empirical application, we consider a test of Carhart (1997)’s four-factor model on the

S&P 500 index. Our empirical findings show that there are only a few significant nonzero

“alpha” components, corresponding to a small portion of mis-priced stocks instead of sys-

tematic mis-pricing of the whole market.

We collect monthly excess returns on all the S&P 500 constituents from the CRSP

database for the period January 1980 to December 2012. We test whether θ = 0 (all

alpha’s are zero) in the factor-pricing model on a rolling window basis: for each month,

we evaluate our test statistics Jwald and J (as in (1.14) and (1.15) respectively) using the

preceding 60 months’ returns (T = 60). The panel at each testing month consists of stocks

without missing observations in the past five years, which yields a balanced panel with the

cross-sectional dimension larger than the time-series dimension (N > T ). In this manner

we not only capture the up-to-date information in the market, but also mitigate the im-

pact of time-varying factor loadings and sampling biases. In particular, for testing months

τ = 1984.12, ..., 2012.12, we run the regressions

rτit−rτft = θτi +βτi,MKT(MKTτ
t −rτft)+βτi,SMBSMBτ

t +βτi,HMLHMLτt +βτi,MOMMOMτ
t +uτit, (3.4)

for i = 1, ..., Nτ and t = τ − 59, ..., τ , where rit represents the return for stock i at month

t, rft the risk free rate, and MKT, SMB, HML and MOM constitute market, size, value

and momentum factors. The time series of factors are downloaded from Kenneth French’s

website. To make the notation consistent, we use θτi to represent the “alpha” of stock i.
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Table 3.4: Summary of descriptive statistics and testing results
Variables Mean Std dev. Median Min Max
Nτ 617.70 26.31 621 574 665

|Ŝ|0 5.20 3.50 5 0 20

|θ̂|
τ

i (%) 0.9767 0.1519 0.9308 0.7835 1.3816

|θ̂|
τ

i∈Ŝ(%) 4.5569 1.4305 4.1549 1.7839 10.8393
p-value of Jwald 0.2351 0.2907 0.0853 0 0.9992
p-value of J (PE) 0.1148 0.2164 0.0050 0 0.9982

Table 3.4 summarizes descriptive statistics for different components and estimates in the

model. On average, 618 stocks (which is more than 500 because we are recording stocks

that have ever become the constituents of the index) enter the panel of the regression during

each five-year estimation window. Of those, merely 5.2 stocks are selected by the screening

set Ŝ, which directly implies the presence of sparse alternatives. The threshold δN,T =√
(logN) log(log T ) varies as the panel size N changes at the end of each month, and is

about 3.5 on average, a high-criticism thresholding. The selected stocks have much larger

alphas (θ) than other stocks do. In addition, 64.05% of all the estimated alphas are positive,

whereas 87.33% of the selected alphas in Ŝ are positive. This indicates that the power

enhancement component in our test is primarily contributed by stocks with extra returns.

We also notice that the p-values of the Wald test Jwald are generally smaller than those of

the power enhanced test J .

Similar to Pesaran and Yamagata (2012), we plot the running p-values of Jwald and

the PE test from December 1984 to December 2012. We also add the dynamics of the

percentage of selected stocks (|Ŝ|0/N) to the plot, as shown in Figure 3.1. There is a strong

negative correlation between the stock selection percentage and the p-values of these tests.

In other words, the months at which the null hypothesis is rejected typically correspond to

a few stocks with alphas exceeding the threshold. Such evidence of sparse alternatives has

originally motivated our study. We also observe that the p-values of the PE test lie beneath

those of Jwald test as a result of enhanced power, and hence it captures several important

market disruptions ignored by the latter (e.g. collapse of Japanese bubble in 1990). Indeed,
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Figure 3.1: Dynamics of p-values and percents of selected stocks

Figure 3.2: Histograms of p-values for Jwald and PE.
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the null hypothesis of θ = 0 is rejected by the PE test at 5% level for almost all months

during financial crisis, including major financial crisis such as Black Wednesday in 1992,

Asian financial crisis in 1997, the financial crisis in 2008, which is also partially detected by

Jwald tests. The histograms of the p-values of the two test statistics are displayed in Figure

3.2. By inspection, we see that of 43.03% and 66.07% of the study months, Jwald and the

PE test reject the null hypothesis respectively. Again, the test results indicate the existence

of sparse alternatives when faced with high crosse-sectional dimension.

3.2 Numerical studies for sufficient forecasting

In this section, we conduct Monte Carlo experiments to evaluate the numerical performance

of sufficient forecast using factor models. The empirical results on forecasting macroeconomic

variables are presented subsequently, which provides substantial evidence for the predictive

power of sufficient forecasting.

3.2.1 Linear forecast

We first consider the case when the target is a linear function of a subset of the latent factors

plus some noise. To this end, we specify our data generating process as

yt+1 = φ′ft + σyεt+1,

xit = b′ift + uit,

where we let K = 5 and φ = (0.8, 0.5, 0.3, 0, 0)′. Factor loadings are drawn from standard

normal distribution. To account for serial correlation, we set fjt and uit as AR(1) processes

fjt = αjfjt−1 + ejt, uit = ρiuit−1 + νit.
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We draw αj, ρi from ∼ U [0.2, 0.8] and fix them during simulations, while the shocks ejt, νit

and εt+1 are standard normal respectively. σy is adjusted to equal the variance of the factors,

so that the infeasible best forecast when knowing φ′ft has an R2 of 50%.

Table 3.5 reports in-sample and out-of-sample comparisons between principal component

regression and sufficient forecasting. The out-of-sample R2 is defined as root-mean-squared

forecast error (RMSE) relative to the variance of y, and is computed from recursive out-

of-sample forecast begun at the middle of the time series. In all cases, the single effective

factor yields comparable results as PCR, which employs all the factors and therefore slightly

outperforms the former. In contrast, using first principal component alone has very poor

performance in general, as it may not be relevant to the forecasting target.

Table 3.5: Simulated Forecast Performance (Linear Model)

In-sample Out-of-sample

p T SIR PCR PC1 SIR PCR PC1

50 100 46.9 47.7 7.8 35.1 39.5 2.4

50 200 46.3 46.5 6.6 42.3 41.7 4.4

100 100 49.3 50.1 8.9 37.6 40.3 3.0

100 500 47.8 47.8 5.5 43.6 43.5 1.1

500 100 48.5 48.8 7.9 40.0 43.1 4.7

500 500 48.2 48.3 7.2 48.0 47.9 6.0

Notes: In-sample and out-of-sample median R2, recorded in per-

centage, over 2000 simulations. SIR denotes the sufficient forecast

using sliced inverse regression, PCR denotes principal component

regression, and PC1 uses only the first principal component.
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3.2.2 Factor Interaction

We next turn to the case when the interaction between factors is present. Consider the

model

yt+1 = f1t(f2t + f3t + 1) + εt+1,

where εt+1 is standard normal. The data generating process for the predictors xit is set to be

the same as that in the previous section, but we let K = 10. To measure the distance between

the estimated directions φ̂1,2 and the central subspace Sf |y spanned by φ1 = (1, 0, ..., 0) and

φ2 = (0, 1, 1, ..., 0), we first rotate φ̂i by left multiplying H′ as in theorem 2.3.1 to obtain

consistent estimators of φ1,2. Following Li (1991), we use the squared multiple correlation

coefficient R2(φ̂j) as an affine invariant criterion for each j, where

R2(φ̂j) = max
φ∈Sf |y

[(H′φ̂j)
′Σfφ]2

(H′φ̂j)
′Σf (H′φ̂j) · (φ′Σfφ)

.

Note that we have the convenience Σf = I corresponding to the normalization (2.4).

The simulation results are summarized in Table 3.2 based on 1000 replicates. We observe

that the time-series dimension T has a major effect in R2(φ̂j). When T gets larger from

100 to 500, so are the R2(φ̂j)’s for both j = 1, 2. A large cross-sectional dimension p helps

ensure the convergence of estimated factors, but only has slight influence on R2(φ̂j). As

theory shows, sliced inverse regression successfully picks up the effective dimension in the

simulation.

A practical question is how to use the two effective factors to make forecast. We adopt a

simple approach, by including φ̂
′
1f̂1, φ̂

′
2f̂2 and (φ̂

′
1f̂1) · (φ̂

′
2f̂2) in the regression of yt+1, which

takes into account constant terms in the factor interaction. For comparison purposes, we

report results from linear forecasts (PCR). In addition, we add the interaction between the

first two principal components to PCR. As can be seen from Table 3.6, the in-sample R2’s of

the linear forecast hover around 35%, and its out-of-sample R2’s are relatively low. Including
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interaction between the first two PCs does not help much. SIR picks up the correct form of

interaction and exhibit better performance, especially when T gets reasonably large.

Table 3.6: Simulated Forecast Performance (Factor Interaction)

Squared multiple correlation In-sample Out-of-sample

p T R2(φ̂1) R2(φ̂2) SIR PCR PCRi SIR PCR PCRi

100 100 66.2 (19.1) 46.9 (25.0) 46.2 38.5 42.4 20.8 12.7 13.5

100 200 80.4 (14.4) 68.4 (21.1) 57.7 35.1 38.6 41.6 24.0 24.7

100 500 91.0 (9.4) 87.6 (10.6) 77.0 31.9 34.9 69.7 29.1 31.5

200 100 68.2 (18.2) 45.0 (24.0) 48.2 39.0 44.1 26.1 17.9 19.1

500 200 80.3 (14.1) 69.4 (20.7) 58.9 34.7 39.0 40.2 22.2 24.0

500 500 91.5 (9.0) 88.4 (10.4) 79.8 32.5 35.6 72.3 26.9 28.2

Notes: Squared multiple correlation coefficients, in-sample and out-of-sample median

R2 recorded in percentage over 1000 replications. The values in parentheses are the

standard deviations. SIR uses first two predictive indices and includes their interaction

effect; PCR uses all principal components; PCRi extends PCR by including an extra

interaction term built on the first two principal components.

3.2.3 An Empirical Example

As an empirical investigation, we apply factor models and inverse regression to forecast

several macroeconomic variables. Our dataset is taken from Stock and Watson (2012),

which consists of quarterly observations on 108 U.S. low-level disaggregated macroeconomic

time series from 1959:I through 2008:IV. Similar datasets have been employed to forecast

other time series in the literature (Bai and Ng, 2008; Ludvigson and Ng, 2009). We study

out-of-sample performance of each time series with all the others forming the predictor set.

The procedure involves fully recursive factor estimation and parameter estimation starting

half-way of the sample, using data only through quarter t for forecasting in quarter t+ 1.
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Table 3.7: Out-of-sample Macroeconomic Forecasting

Category Label SIR SIR(2) PCR-ER PC1

GDP components GDP261 7.4 8.6 2.6 -2.5

IP IPS13 21.2 31.8 24.4 13.3

Employment CES033 38.8 27.5 38.6 40.4

Unemployment rate LHU15 28.7 33.0 30.1 23.7

Housing HSNE 33.6 28.8 31.8 30.5

Inventories PMDEL 27.4 20.1 16.8 17.1

Prices GDP276 3 8.3 10.9 8.2 4.9

Wages CES278.R 22.0 15.4 20.3 19.6

Interest rates FYFF 8.0 13.9 10.4 10.6

Money CCINRV 3.1 11.8 0.5 -0.1

Exchange rates EXRCAN 1.4 3.5 1.3 -1.8

Stock prices FSPCOM 19.0 15.5 16.0 15.0

Consumer expectations HHSNTN 6.1 8.2 8.2 7.6

Notes: Out-of-sample R2 for one quarter ahead forecasts. SIR uses single predictive

index built on 8 estimated factors to forecast, SIR(2) is fit by local linear regression

using the first two predictive indices, PCR-ER uses as many principal components as

determined by eigenvalue ratio test and PC1 uses the first principal component.

Table 3.7 presents the forecasting results for a few representatives in each macroeco-

nomic category. The time series are chosen such that the second eigenvalue of Σ̂f |y exceeds

60% of the first eigenvalue in the training sample, so we could consider the effect of second

predictive index. In terms of linear forecast, sliced inverse regression yields comparable per-

formance as PCR. There are cases where SIR exhibits more predictability than PCR, e.g.,

GDP components, Inventories and Wages. This is due to the fact that the first predictive

index obtained from our procedure gives a parsimonious representation of linear predictors,

and it is therefore less prone to over-fit. SIR(2) is fit by local linear regression using an
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additional predictive index, which improves predictability in a few cases. Taking CCINRV

(consumer credit outstanding) for example, Figure 3.2.3 plots the eigenvalues of its corre-

sponding Σ̂f |y, the estimated regression surface and the running out-of-sample R2’s. As can

been seen from the plot, there is a non-linear effect of the two underlying macro factors on

the target. By taking such effect into account, SIR(2) consistently outperforms the other

methods.

Figure 3.3: Forecasting results for CCINRV (consumer credit outstanding). The top left panel
shows the eigenvalues of Σ̂f |y. The top right panel gives a 3-d plot of the estimated regression
surface. The lower panel displays the running out-of-sample R2’s for the four methods described
in Table 3.7.
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Chapter 4

Concluding remarks

In this dissertation, we first consider testing a high-dimensional vector H : θ = 0 against

sparse alternatives where the null hypothesis is violated only by a few components. Existing

tests based on quadratic forms such as the Wald statistic often suffer from low powers due

to the accumulation of errors in estimating high-dimensional parameters. We introduce a

“power enhancement component” based on a screening technique, which is zero under the

null, but diverges quickly under sparse alternatives. The proposed test statistic combines

the power enhancement component with a classical statistic that is often asymptotically

pivotal, and strengthens the power under sparse alternatives. On the other hand, the null

distribution does not require stringent regularity conditions, and is completely determined by

that of the pivotal statistic. As a byproduct, the screening statistic also consistently identifies

the elements that violate the null hypothesis. As specific applications, the proposed methods

are applied to testing the mean-variance efficiency in factor pricing models and testing the

cross-sectional independence in panel data models. Our empirical study on the S&P500

index shows that there are only a few significant nonzero components, corresponding to a

small portion of mis-priced stocks instead of systematic mis-pricing of the whole market.

This provides empirical evidence of sparse alternatives.
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We then address how to employ factor models for nonlinear forecasting. We introduce

sufficient forecasting in a many-predictor environment to predict a single time series. By

connecting factor models and inverse regression, the proposed method enlarges the scope of

traditional factor forecasting. The key feature of the sufficient forecasting is its ability in

extracting multiple predictive indices when the target is a nonlinear function of underlying

factors. We have demonstrated its efficacy through Monte Carlo experiments. Our empirical

results on macroeconomic forecasting also suggest that such procedure can contribute to

substantial improvement beyond conventional linear models.
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Chapter 5

Technical Proofs

5.1 Proofs for Chapter 1

We detail the proofs for the theories of power enhancement test. Throughout the proofs, let

C denote a generic constant, which may differ at difference places.

5.1.1 Proofs for Section 1.3

Proof of Theorem 1.3.1

Proof. Define events

A1 =

{
max
j≤N
|θ̂j − θj|/v̂1/2

j < δN,T

}
, A2 =

{
4

9
< v̂j/vj <

16

9
,∀j = 1, ..., N

}
.

For any j ∈ S(θ), by the definition of S(θ), |θj| > 2δN,Tv
1/2
j . Under A1 ∩ A2,

|θ̂j|
v̂

1/2
j

≥ |θj| − |θ̂j − θj|
v̂

1/2
j

≥ 3|θj|
4v

1/2
j

− δN,T
2

> δN,T .

This implies that j ∈ Ŝ, hence S(θ) ⊂ Ŝ. If j ∈ Ŝ, by similar arguments, we have
|θj |
v
1/2
j

>

δN,T/3 on A1 ∩ A2. Hence Ŝ \ S(θ) ⊂ {j : δN,T/3 <
|θj |
v
1/2
j

< 2δN,T} ⊂ G(θ). In fact, we have
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proved that S(θ) ⊂ Ŝ and Ŝ \ S(θ) ⊂ G(θ) on the event A1 ∩A2 uniformly for θ ∈ Θ. This

yields

inf
θ∈Θ

P (S(θ) ⊂ Ŝ|θ)→ 1, and inf
θ∈Θ

P (Ŝ \ S(θ) ⊂ G(θ))→ 1.

Moreover, it is readily seen that, under H0 : θ = 0, by Assumption 1.3.1,

P (J0 = 0|H0) ≥ P (Ŝ = ∅|H0) = P (max
j≤N
{|θ̂j|/v̂1/2

j } < δN,T |H0)→ 1.

In addition, infθ∈Θ P (J0 >
√
N |S(θ) 6= ∅) is bounded from below by

inf
θ∈Θ

P (
√
N
∑
j∈Ŝ

δ2
N,T >

√
N |S(θ) 6= ∅) ≥ inf

θ∈Θ
P (
√
Nδ2

N,T >
√
N |S(θ) 6= ∅)− o(1)→ 1.

Note that the last convergence holds uniformly in θ ∈ Θ because δN,T →∞. This completes

the proof.

Proof of Theorem 1.3.2

Proof. It follows immediately from P (J0 = 0|H0) → 1 that J →d F , and hence the critical

region {D : J > Fq} has size q. Moreover, by the power condition of J1 and J0 ≥ 0,

inf
θ∈Θ(J1)

P (J > Fq|θ) ≥ inf
θ∈Θ(J1)

P (J1 > Fq|θ)→ 1.

This together with the fact

inf
θ∈Θs∪Θ(J1)

P (J > Fq|θ) ≥ min{ inf
θ∈Θs

P (J > Fq|θ), inf
θ∈Θ(J1)

P (J > Fq|θ)},

establish the theorem, if we show infθ∈Θs P (J > Fq|θ)→ 1.
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By the definition of Ŝ and J0, we have {J0 <
√
Nδ2

N,T} = {Ŝ = ∅}. Since infθ∈Θ P (S(θ) ⊂

Ŝ|θ)→ 1 and Θs = {θ ∈ Θ : S(θ) 6= ∅}, we have

sup
Θs

P (J0 <
√
Nδ2

N,T |θ) = sup
Θs

P (Ŝ = ∅|θ)

≤ sup
{θ∈Θ:S(θ)6=∅}

P (Ŝ = ∅, S(θ) ⊂ Ŝ|θ) + o(1),

which converges to zero, since the first term is zero. This implies infΘs P (J0 ≥
√
Nδ2

N,T |θ)→

1. Then by condition (ii), as δN,T →∞,

inf
θ∈Θs

P (J > Fq|θ) ≥ inf
θ∈Θs

P (
√
Nδ2

N,T + J1 > Fq|θ) ≥ inf
θ∈Θs

P (c
√
N + J1 > Fq|θ)→ 1.

This completes the proof.

Proof of Theorem 1.3.3

Proof. It suffices to verify conditions (i)-(iii) in Theorem 1.3.2 for J1 = JQ. Condition (i)

follows from Assumption 1.3.3. Condition (iii) is fulfilled for c > 2/ξ, since

inf
θ∈Θs

P (c
√
N + JQ > Fq|θ) ≥ inf

θ∈Θs
P (c
√
N − N(1 + µN,T )

ξN,T
√
N

> Fq|θ)→ 1,

by using Fq = O(1), ξN,T → ξ, and µN,T → 0. We now verify condition (ii) for the Θ(JQ) de-

fined in the theorem. Let D = diag(v1, ..., vN). Then ‖D‖2 < C3/T by Assumption 1.3.3(iv).

On the event A = {‖(θ̂ − θ)′D−1/2‖2 < δ2
N,TN/4}, we have

|(θ̂ − θ)′Vθ| ≤ ‖(θ̂ − θ)′D−1/2‖‖D1/2Vθ‖

≤ δN,T
√
N‖D‖1/2

2 ‖V‖
1/2
2 (θ′Vθ)1/2/2

≤ δN,T
√
N(C3/T )1/2‖V‖1/2

2 (θ′Vθ)1/2/2.
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For ‖θ‖2 > Cδ2
N,TN/T with C = 4C3‖V‖2/λmin(V), we can bound further that

|(θ̂ − θ)′Vθ| ≤ θ′Vθ/4.

Hence, θ̂
′
Vθ̂ ≥ θ′Vθ − 2(θ̂ − θ)′Vθ ≥ θ′Vθ/2. Therefore,

sup
θ∈Θ(JQ)

P (JQ ≤ Fq|θ) ≤ sup
Θ(JQ)

P (
Tθ′Vθ/2− 2N

ξ
√
N

≤ Fq|θ) + sup
Θ(JQ)

P (Ac|θ)

≤ sup
Θ(JQ)

P (Tλmin(V)‖θ‖2 < 2Fqξ
√
N + 4N |θ) + o(1)

≤ sup
Θ(JQ)

P (λmin(V)Cδ2
N,TN < 5N |θ) + o(1),

which converges to zero since δ2
N,T →∞. This implies infΘ(JQ) P (JQ > Fq|θ)→ 1 and finishes

the proof.

Proof of Theorem 1.3.4

Proof. Through this proof, C is a generic constant, which can vary from one line to another.

Without loss of generality, under the alternative, write

θ′ = (θ′1,θ
′
2) = (0′,θ′2), θ̂

′
= (θ̂

′
1, θ̂

′
2),

where dim(θ1) = N − rN and dim(θ2) = rN . Corresponding to (θ′1,θ
′
2), we partition V−1

and V into:

V−1 =

M1 β′

β M2

 and V =

M−1
1 + A G′

G C

 ,

where M1 and A are (N − rN) × (N − rN); β and G are rN × (N − rN); M2 and C are

rN × rN .

By the matrix inversion formula,

A = M−1
1 β′(M2 − βM−1

1 β′)−1βM−1
1 .
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Let ∆ = T θ̂
′
Vθ̂ − T θ̂

′
1M

−1
1 θ̂1. Note that

∆ = T θ̂
′
1Aθ̂1 + 2T θ̂

′
2Gθ̂1 + T θ̂

′
2Cθ̂2.

We first look at T θ̂
′
1Aθ̂1. Let λN,T = Tλmax((M2 − βM−1

1 β′)−1) and D1 = diag( 1
T
M1).

Note that the diagonal entries of 1
T
V−1 are given by diag( 1

T
V−1) = {vj}j≤N . Therefore D1

is a diagonal matrix with entries {vj}j≤N−rN , and maxj vj = O(T−1).

Since β is rN × (N − rN), using the expression of A, we have

T θ̂
′
1Aθ̂1 ≤ λN,T‖βM−1

1 θ̂1‖2

≤ λN,T rN‖M−1
1 (θ̂1 − θ1)‖2

max(max
i≤rN

∑
j≤N−r

|βij|)2

≤ λN,T rN‖M−1
1 D

1/2
1 ‖2

1‖D
−1/2
1 (θ̂1 − θ1)‖2

max‖V−1‖2
1,

where we used θ1 = 0 in the second inequality and the fact that maxi≤rN
∑

j≤N−r |βij| ≤

‖V−1‖1. Note that ‖V‖1 = O(1) = ‖V−1‖1. Hence,

‖M−1
1 D

1/2
1 ‖2

1 = O(T−1), and λN,T = O(T ).

Thus, there is C > 0, with probability approaching one,

T θ̂
′
1Aθ̂1 ≤ CrN‖D−1/2

1 (θ̂1 − θ1)‖2
max ≤ CrNδ

2
N,T .

Note that the uniform convergence in Assumption 1.3.1 and boundness of ‖θ‖max imply

that P (‖θ̂‖max ≤ C) → 1 for a sufficient large constant C. For G = (gij), note that

maxi≤r
∑N−r

j=1 |gij| ≤ ‖V‖1. Hence, by using θ1 = 0 again, with probability approaching one,

|T θ̂
′
2Gθ̂1| = T |θ̂

′
2GD

1/2
1 D

−1/2
1 (θ̂1 − θ1)|

≤ T‖θ̂2‖max‖D−1/2
1 (θ̂1 − θ1)‖max

rN∑
i=1

N−r∑
j=1

|gij|
√
vj
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≤ CrNδN,T
√
T .

Moreover, T θ̂
′
2Cθ̂2 ≤ T‖θ̂2‖2‖C‖2 = OP (rNT ). Combining all the results above, it yields

that for any θ ∈ Θb,

∆ = OP (rNδ
2
N,T + rNT ).

We denote var(θ̂), var(θ̂1), var(θ̂2) to be the asymptotic covariance matrix of θ̂, θ̂1 and

θ̂2. Then 1
T
V−1 = var(θ̂) and 1

T
M1 = var(θ̂1). It then follows from (1.10) that

Z ≡ T θ̂
′
1M

−1
1 θ̂1 − (N − rN)√
2(N − rN)

→d N (0, 1).

For any 0 < ε < Fq, define the event A = {|∆ − rN | <
√

2Nε}. Hence, suppressing the

dependence of θ,

P (JQ > Fq) = P (
T θ̂
′
1M

−1
1 θ̂1 + ∆−N√

2N
> Fq)

= P (Z

√
N − rN
N

+
∆− rN√

2N
> Fq)

≤ P (Z

√
N − rN
N

+ ε > Fq) + P (Ac),

which is further bounded by 1−Φ(Fq−ε)+P (Ac)+o(1). Since 1−Φ(Fq) = q, for small enough

ε, 1−Φ(Fq−ε) = q+O(ε). By letting ε→ 0 slower than O(TrN/
√
N), we have P (Ac) = o(1),

and lim supN→∞,T→∞ P (JQ > Fq) ≤ q. On the other hand, P (JQ > Fq) ≥ P (J1 > Fq), which

converges to q. This proves the result.

5.1.2 Proofs for Section 1.4

Lemma 5.1.1. When cov(ft) is positive definite, Ef ′t(Eftf
′
t)
−1Eft < 1.
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Proof. If Eft = 0, then Ef ′t(Eftf
′
t)
−1Eft < 1. If Eft 6= 0, because cov(ft) is positive definite,

let c = (Eftf
′
t)
−1Eft, then c′(Eftf

′
t − EftEf ′t)c > 0. Hence c′EftEf ′tc < c′Eftf

′
tc implies

Ef ′t(Eftf
′
t)
−1Eft > (Ef ′t(Eftf

′
t)
−1Eft)

2. This implies Ef ′t(Eftf
′
t)
−1Eft < 1.

Proof of Proposition 1.4.1

Recall that vj = var(ujt)/(T − TEf ′t(Eftf
′
t)
−1Eft), and v̂j = 1

T

∑T
t=1 û

2
jt/(Taf,T ). Write

σij = (Σu)ij, σ̂ij = 1
T

∑T
t=1 ûitûjt, σ

2
j = Tvj, and σ̂2

j = T v̂j.

Simple calculations yield

θ̂i = θi + a−1
f,T

1

T

T∑
t=1

uit(1− f ′tw).

We first prove the second statement. Note that there is σmin > 0 (independent of θ)

so that minj σj > σmin. By Lemma 5.1.11, there is C > 0, infΘ P (maxj≤N |σ̂j − σj| <

C
√

logN
T
|θ)→ 1. On the event {maxj≤N |σ̂j − σj| < C

√
logN
T
},

max
j≤N

∣∣∣∣∣ v̂
1/2
j

v
1/2
j

− 1

∣∣∣∣∣ ≤ max
j≤N

|σ̂j − σj|
σj

≤ C
√

logN

σmin

√
T
.

This proves the second statement. We can now use this to prove the first statement.

Note that vj is independent of θ, so there is C1 (independent of θ) so that maxj≤N v
−1/2
j <

C1

√
T . On the event {maxj≤N v

1/2
j /v̂

1/2
j < 2} ∩ {maxj≤N |θ̂j − θj| < C

√
logN
T
},

max
j≤N

|θ̂j − θj|
v̂

1/2
j

≤ C

√
logN

T
2 max

j
v
−1/2
j ≤ 2CC1

√
logN < δN,T .

The constants C,C1 appeared are independent of θ, and Lemma 5.1.11 holds uniformly in

θ. Hence the desired result also holds uniformly in θ.
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Proof of Proposition 1.4.2

By Theorem 1 of Pesaran and Yamagata (2012)(Theorem 1),

(Taf,T θ̂
′
Σ−1
u θ̂ −N)/

√
2N →d N (0, 1).

Therefore, we only need to show

T θ̂
′
(Σ−1

u − Σ̂−1
u )θ̂√

2N
= oP (1).

The left hand side is equal to

T θ̂
′
Σ−1
u (Σ̂u −Σu)Σ

−1
u θ̂

′

√
N

+
T θ̂
′
(Σ̂−1

u −Σ−1
u )(Σ̂u −Σu)Σ

−1
u θ̂

′

√
N

≡ a+ b.

It was shown by Fan et al. (2011) that ‖Σ̂u −Σu‖2 = OP (mN

√
logN
T

) = ‖Σ̂−1
u −Σ−1

u ‖2. In

addition, under H0, ‖θ̂‖2 = OP (N logN/T ). Hence b = OP (
m2
N

√
N(logN)2

T
) = oP (1).

The challenging part is to prove a = oP (1) when N > T . As is described in the main

text, simple inequalities like Cauchy-Schwarz accumulate estimation errors, and hence do

not work. Define et = Σ−1
u ut = (e1t, ..., eNt)

′, which is an N -dimensional vector with mean

zero and covariance Σ−1
u , whose entries are stochastically bounded. Let w̄ = (Eftf

′
t)
−1Eft.

A key step of proving this proposition is to establish the following two convergences:

1

T
E| 1√

NT

N∑
i=1

T∑
t=1

(u2
it − Eu2

it)(
1√
T

T∑
s=1

eis(1− f ′sw̄))2|2 = o(1), (5.1)

1

T
E| 1√

NT

∑
i 6=j,(i,j)∈SU

T∑
t=1

(uitujt−Euitujt)[
1√
T

T∑
s=1

eis(1−f ′sw̄)][
1√
T

T∑
k=1

ejk(1−f ′kw̄)]|2 = o(1),

(5.2)

where

SU = {(i, j) : (Σu)ij 6= 0}.
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The sparsity condition assumes that most of the off-diagonal entries of Σu are outside of SU .

The above two convergences are weighted cross-sectional and serial double sums, where the

weights satisfy 1√
T

∑T
t=1 eit(1 − f ′tw̄) = OP (1) for each i. The proofs of (5.1) and (5.2) are

given in the supplementary material in Appendix D.

We consider the hard-thresholding covariance estimator. The proof for the generalized

sparsity case as in Rothman et al. (2009) is very similar. Let sij = 1
T

∑T
t=1 ûitûjt and

σij = (Σu)ij. Under hard-thresholding,

σ̂ij = (Σ̂u)ij =


sii, if i = j,

sij, if i 6= j, |sij| > C(siisjj
logN
T

)1/2

0, if i 6= j, |sij| ≤ C(siisjj
logN
T

)1/2

Write (θ̂
′
Σ−1
u )i to denote the ith element of θ̂

′
Σ−1
u , and ScU = {(i, j) : (Σu)ij = 0}. For

σij ≡ (Σu)ij and σ̂ij = (Σ̂u)ij, we have

a =
T√
N

N∑
i=1

(θ̂
′
Σ−1
u )2

i (σ̂ii − σii) +
T√
N

∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1
u )i(θ̂

′
Σ−1
u )j(σ̂ij − σij)

+
T√
N

∑
(i,j)∈ScU

(θ̂
′
Σ−1
u )i(θ̂

′
Σ−1
u )j(σ̂ij − σij)

= a1 + a2 + a3

We first examine a3. Note that

a3 =
T√
N

∑
(i,j)∈ScU

(θ̂
′
Σ−1
u )i(θ̂

′
Σ−1
u )jσ̂ij.

Obviously,

P (a3 > T−1) ≤ P ( max
(i,j)∈ScU

|σ̂ij| 6= 0) ≤ P ( max
(i,j)∈ScU

|sij| > C(siisjj
logN

T
)1/2).
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Because sii is uniformly (across i) bounded away from zero with probability approaching

one, and max(i,j)∈ScU |sij| = OP (
√

logN
T

). Hence for any ε > 0, when C in the threshold is

large enough, P (a3 > T−1) < ε, this implies a3 = oP (1).

The proof is finished once we establish ai = oP (1) for i = 1, 2, which are given in Lemmas

5.1.6 and 5.1.7 respectively in the supplementary material.

Proof of Theorem 1.4.1 Part (i) follows from Proposition 1.4.2 and that P (J0 =

0|H0)→ 1. Part (ii) follows immediately from Theorem 1.3.3.

5.1.3 Proofs for Section 1.5

Proof of Proposition 1.5.1

Lemma 5.1.2. Under Assumption 1.5.1, infθ∈Θ P (
√
nT‖β̂ − β‖ <

√
log n|θ)→ 1.

Proof. Note that

√
nT‖β̂ − β‖ = ‖( 1

nT

n∑
i=1

T∑
t=1

x̃itx̃
′
it)
−1(

1√
nT

n∑
i=1

T∑
t=1

x̃itũit)‖.

Uniformly for θ ∈ Θ, due to serial independence, and 1
nT

∑n
i=1

∑T
t=1Ex̃′itx̃itEũitũit ≤ C1,

E‖ 1√
nT

n∑
i=1

T∑
t=1

x̃itũit‖2 =
1

nT

n∑
i=1

T∑
t=1

n∑
j=1

T∑
s=1

Ex̃′itx̃jsũitũjs

=
1

nT

n∑
i=1

T∑
t=1

Ex̃′itx̃itEũitũit +
1

nT

∑
i 6=j

T∑
t=1

Ex̃′itx̃jtEũitũjt

≤ C1 +
1

n

∑
i 6=j

|Ex̃′itx̃jt||Eũitũjt| ≤ C.

Hence the result follows from the Chebyshev inequality and that λmin( 1
nT

∑n
i=1

∑T
t=1 x̃itx̃

′
it)

is bounded away from zero with probability approaching one, uniformly in θ.

Lemma 5.1.3. Suppose maxj≤n ‖ 1
T

∑
t x̃jtx̃

′
jt‖2 < C ′ with probability approaching one and

supθ E(u4
jt|θ) < C ′. There is C > 0, so that
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(i) infθ∈Θ P (maxj≤n | 1T
∑T

t=1 ujt| < C
√

log n/T |θ)→ 1

(ii) infθ∈Θ P (maxi,j≤n | 1T
∑T

t=1 uitujt − Euitujt| < C
√

log n/T |θ)→ 1

(iii) infθ∈Θ P (maxj≤n
1
T

∑T
t=1(ujt − ûjt)2 < C log n/T |θ)→ 1

(iv) infθ∈Θ P (maxi,j≤n | 1T
∑T

t=1 ûitûjt − Euitujt| < C
√

log n/T |θ)→ 1

Proof. (i) By the Bernstein inequality, for C = (8 maxj≤n supθ∈ΘE(u2
jt|θ))1/2, we have

sup
θ∈Θ

P (max
j≤n
| 1
T

T∑
t=1

ujt| ≥ C

√
log n

T
|θ) ≤ sup

θ∈Θ
nmax

j≤n
P (| 1

T

T∑
t=1

ujt| ≥ C

√
log n

T
|θ)

≤ exp(log n− C2 log n

4 maxj≤n supθ∈ΘE(u2
jt|θ)

) =
1

n
.

Hence (i) is proved as infθ∈Θ P (maxj≤n | 1T
∑T

t=1 ujt| < C
√

log n/T |θ) ≥ 1− 1
n
.

(ii) For C = (12 maxj≤n supθ∈ΘE(u4
jt|θ))1/2, we have

sup
θ∈Θ

P (max
i,j≤n
| 1
T

T∑
t=1

uitujt − Euitujt| ≥ C

√
log n

T
|θ)

≤ sup
θ∈Θ

n2 max
i,j≤n

P (| 1
T

T∑
t=1

uitujt − Euitujt| ≥ C

√
log n

T
|θ)

≤ exp(2 log n− C2 log n

4 maxj≤n supθ∈ΘE(u4
jt|θ)

) =
1

n
.

(iii) Note that ûjt − ujt = − 1
T

∑T
t=1 ujt − x̃′jt(β̂ − β), and maxj≤n ‖ 1

T

∑
t x̃jtx̃

′
jt‖2 < C

with probability approaching one. The result then follows from part (i) and Lemma 5.1.2.

(iv) Observe that

| 1
T

T∑
t=1

ûitûjt − Euitujt| ≤ |
1

T

T∑
t=1

uitujt − Euitujt|+ |
1

T

T∑
t=1

uitujt − ûitûjt|

≤ | 1
T

T∑
t=1

uitujt − Euitujt|+
1

T

T∑
t=1

(ûjt − ujt)2 + (
2

T

∑
t

u2
jt)

1/2(
2

T

∑
t

(ûjt − ujt)2)1/2
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The first two terms and ( 2
T

∑
t(ûjt−ujt)2)1/2 in the third term are bounded by results in (ii)

and (iii). Therefore, it suffices to show that there is a constant M > 0 so that

inf
θ∈Θ

P (max
j≤n

1

T

∑
t

u2
jt < M |θ)→ 1.

Note that maxj≤n
1
T

∑
t u

2
jt ≤ maxj≤n | 1T

∑
t u

2
jt − Eu2

jt| + maxj≤nEu
2
jt. In addition, by (ii),

there is C > 0 so that

inf
θ∈Θ

P (max
j≤n
| 1
T

T∑
t=1

u2
jt − Eu2

jt| < C
√

log n/T |θ)→ 1.

Hence we can pick up M so that M − supθ∈Θ maxj≤nE(u2
jt|θ) > C

√
log n/T , and

sup
θ∈Θ

P (max
j≤n

1

T

∑
t

u2
jt ≥M |θ) ≤ sup

θ∈Θ
P (max

j≤n
| 1
T

∑
t

u2
jt − Eu2

jt| ≥M −max
j≤n

Eu2
jt|θ)

≤ sup
θ∈Θ

P (max
j≤n
| 1
T

∑
t

u2
jt − Eu2

jt| ≥ C

√
log n

T
|θ)→ 0.

This proves the desired result.

Lemma 5.1.4. Under Assumption 1.5.1, there is C > 0, infθ∈Θ P (maxij |ρ̂ij − ρij| <

C
√

log n/T |θ)→ 1.

Proof. By the definition ρ̂ij = ( 1
T

∑T
t=1 û

2
it)
−1/2( 1

T

∑T
t=1 û

2
jt)
−1/2 1

T

∑T
t=1 ûitûjt. By the trian-

gular inequality,

|ρ̂ij − ρij| ≤
| 1
T

∑
t ûitûjt − uitujt|

( 1
T

∑T
t=1 û

2
it)

1/2( 1
T

∑T
t=1 û

2
jt)

1/2︸ ︷︷ ︸
X1

+ | 1
T

∑
t

uitujt||(
1

T

T∑
t=1

û2
it

1

T

T∑
t=1

û2
jt)
−1/2 − (

1

T

T∑
t=1

u2
it

1

T

T∑
t=1

u2
it)
−1/2|︸ ︷︷ ︸

X2
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By part (iv) of Lemma 5.1.3, infθ∈Θ P (maxi,j≤n | 1T
∑T

t=1 ûitûjt−Euitujt| < C
√

log n/T |θ)→

1. Hence for sufficiently large M > 0 such that infθ minj E(u2
jt|θ)− C/M > C

√
log n/T ,

sup
θ∈Θ

P (max
ij
|X1| > M

√
log n

T
|θ) ≤ sup

θ∈Θ
P (min

j

1

T

∑
t

û2
jt < C/M |θ) + o(1)

≤ sup
θ∈Θ

P (max
j
| 1
T

∑
t

û2
jt − Eu2

jt| > min
j
Eu2

jt − C/M |θ) + o(1) = o(1).

By a similar argument, there is M ′ > 0 so that supθ∈Θ P (maxij |X2| > M ′
√

logn
T
|θ) = o(1).

The result then follows as,

sup
θ
P (max

ij
|ρ̂ij − ρij| ≥ 2(M +M ′)

√
log n/T )

≤ sup
θ
P (max

ij
|X1| ≥ (M +M ′)

√
log n/T ) + sup

θ
P (max

ij
|X2| ≥ (M +M ′)

√
log n/T ) = o(1).

Proof of Proposition 1.5.1

Proof. As 1 − ρ2
ij > 1 − c uniformly for (i, j) and θ, the second convergence follows from

Lemma 5.1.4. Also, with probability approaching one,

|ρ̂ij − ρij|
v̂

1/2
ij

≤ 3
√
T

2(1− c)
C

√
log n

T
< δN,T/2.

Proof of Theorem 1.5.1

Lemma 5.1.5. There is C > 0 so that J1 has power uniformly on Θ(J1) = {
∑

i<j ρ
2
ij ≥

Cn2 log n/T}.

Proof. By Lemma 5.1.4, there is C > 0, infθ∈Θ P (maxij |ρ̂ij − ρij| < C
√

log n/T |θ) → 1. If

we define

A = {
∑
i<j

(ρ̂ij − ρij)2 < C2n2(log n/T )},
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then infΘ P (A|θ)→ 1. On the event A, we have, uniformly in θ = {ρij},

∑
i<j

(ρ̂ij − ρij)ρij ≤ (
∑
i<j

(ρ̂ij − ρij)2)1/2(
∑
i<j

ρ2
ij)

1/2 ≤ Cn
√

log n√
T

(
∑
i<j

ρ2
ij)

1/2.

Therefore, when
∑

i<j ρ
2
ij ≥ 16C2n2 log n/T ,

∑
i<j

ρ̂2
ij =

∑
i<j

(ρ̂ij − ρij)2 + ρ2
ij + 2(ρ̂ij − ρij)ρij ≥

∑
i<j

ρ2
ij −

2Cn
√

log n√
T

(
∑
i<j

ρ2
ij)

1/2 ≥ 1

2

∑
i<j

ρ2
ij.

This entails that when
∑

i<j ρ
2
ij ≥ 16Cn2 log n/T , we have

sup
Θ(J1)

P (J1 < Fq|θ) ≤ sup
Θ(J1)

P (
∑
i<j

ρ̂2
ij <

n(n− 1)

2T
+ (Fq +

n

2(T − 1)
)

√
n(n− 1)

T
|θ)

≤ sup
Θ(J1)

P (
1

2

∑
i<j

ρ2
ij <

n(n− 1)

2T
+ (Fq +

n

2(T − 1)
)

√
n(n− 1)

T
|θ) + sup

Θ(J1)

P (Ac|θ)→ 0.

Proof of Theorem 1.5.1

It suffices to verify conditions (i)-(iii) of Theorem 1.3.2. Condition (i) follows from Theo-

rem 1 of Baltagi et al. (2012). As for condition (ii), note that J1 ≥ −
√
n(n−1)

2
− n

2(T−1)
almost

surely. Hence as n, T →∞,

inf
θ∈Θs

P (c
√
N + J1 > zq|θ) ≥ inf

θ∈Θs
P (c
√
N −

√
n(n− 1)

2
− n

2(T − 1)
> zq|θ) = 1.

Finally, condition (iii) follows from Lemma 5.1.5.
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5.1.4 Supplementary Material

Auxiliary lemmas for the proof of Proposition 1.4.2

Define et = Σ−1
u ut = (e1t, ..., eNt)

′, which is an N -dimensional vector with mean zero and

covariance Σ−1
u , whose entries are stochastically bounded. Let w̄ = (Eftf

′
t)
−1Eft. Also recall

that

a1 =
T√
N

N∑
i=1

(θ̂
′
Σ−1
u )2

i (σ̂ii − σii),

a2 =
T√
N

∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1
u )i(θ̂

′
Σ−1
u )j(σ̂ij − σij).

One of the key steps of proving a1 = oP (1), a2 = oP (1) is to establish the following two

convergences:

1

T
E| 1√

NT

N∑
i=1

T∑
t=1

(u2
it − Eu2

it)(
1√
T

T∑
s=1

eis(1− f ′sw̄))2|2 = o(1), (5.3)

1

T
E| 1√

NT

∑
i 6=j,(i,j)∈SU

T∑
t=1

(uitujt−Euitujt)[
1√
T

T∑
s=1

eis(1−f ′sw̄)][
1√
T

T∑
k=1

ejk(1−f ′kw̄)]|2 = o(1),

(5.4)

where SU = {(i, j) : (Σu)ij 6= 0}. The proofs of (5.3) and (5.4) are given later below.

Lemma 5.1.6. Under H0, a1 = oP (1).

Proof. We have a1 = T√
N

∑N
i=1(θ̂

′
Σ−1
u )2

i
1
T

∑T
t=1(û2

it − Eu2
it), which is

T√
N

N∑
i=1

(θ̂
′
Σ−1
u )2

i

1

T

T∑
t=1

(û2
it − u2

it) +
T√
N

N∑
i=1

(θ̂
′
Σ−1
u )2

i

1

T

T∑
t=1

(u2
it − Eu2

it) = a11 + a12.

For a12, note that (θ̂
′
Σ−1
u )i = (1− f̄ ′w)−1 1

T

∑T
s=1(1− f ′sw)(u′sΣ

−1
u )i = c 1

T

∑T
s=1(1− f ′sw)eis,

where c = (1− f̄ ′w)−1 = OP (1). Hence

a12 =
Tc√
N

N∑
i=1

(
1

T

T∑
s=1

(1− f ′sw)eis)
2 1

T

T∑
t=1

(u2
it − Eu2

it)
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By (5.3), Ea2
12 = o(1). On the other hand,

a11 =
T√
N

N∑
i=1

(θ̂
′
Σ−1
u )2

i

1

T

T∑
t=1

(ûit− uit)2 +
2T√
N

N∑
i=1

(θ̂
′
Σ−1
u )2

i

1

T

T∑
t=1

uit(ûit− uit) = a111 + a112.

Note that maxi≤N
1
T

∑T
t=1(ûit − uit)2 = OP ( logN

T
) by Lemma 3.1 of Fan et al. (2011). Since

‖θ̂‖2 = OP (N logN
T

), ‖Σ−1
u ‖2 = O(1) and N(logN)3 = o(T 2),

a111 ≤ OP (
logN

T
)
T√
N
‖θ̂
′
Σ−1
u ‖2 = OP (

(logN)2
√
N

T
) = oP (1),

To bound a112, note that

ûit − uit = θ̂i − θi + (b̂i − bi)
′ft, max

i
|θ̂i − θi| = OP (

√
logN

T
) = max

i
‖b̂i − bi‖.

Also, maxi | 1T
∑T

t=1 uit| = OP (
√

logN
T

) = maxi ‖ 1
T

∑T
t=1 uitft‖. Hence

a112 =
2T√
N

N∑
i=1

(θ̂
′
Σ−1
u )2

i

1

T

T∑
t=1

uit(θ̂i − θi) +
2T√
N

N∑
i=1

(θ̂
′
Σ−1
u )2

i (b̂i − bi)
′ 1

T

T∑
t=1

ftuit

≤ OP (
logN√
N

)‖θ̂
′
Σ−1
u ‖2 = oP (1).

In summary, a1 = a12 + a111 + a112 = oP (1).

Lemma 5.1.7. Under H0, a2 = oP (1).

Proof. We have a2 = T√
N

∑
i 6=j,(i,j)∈SU (θ̂

′
Σ−1
u )i(θ̂

′
Σ−1
u )j

1
T

∑T
t=1(ûitûjt − Euitujt), which is

T√
N

∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1
u )i(θ̂

′
Σ−1
u )j

(
1

T

T∑
t=1

(ûitûjt − uitujt) +
1

T

T∑
t=1

(uitujt − Euitujt)

)
= a21+a22.

where

a21 =
T√
N

∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1
u )i(θ̂

′
Σ−1
u )j

1

T

T∑
t=1

(ûitûjt − uitujt).
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Under H0, Σ−1
u θ̂ = 1

T
(1− f̄ ′w)−1

∑T
t=1 Σ−1

u ut(1− f ′tw), and et = Σ−1
u ut, we have

a22 =
T√
N

∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1
u )i(θ̂

′
Σ−1
u )j

1

T

T∑
t=1

(uitujt − Euitujt)

=
Tc√
N

∑
i 6=j,(i,j)∈SU

1

T

T∑
s=1

(1− f ′sw)eis
1

T

T∑
k=1

(1− f ′kw)ejk
1

T

T∑
t=1

(uitujt − Euitujt).

By (5.4), Ea2
22 = o(1).

On the other hand, a21 = a211 + a212, where

a211 =
T√
N

∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1
u )i(θ̂

′
Σ−1
u )j

1

T

T∑
t=1

(ûit − uit)(ûjt − ujt),

a212 =
2T√
N

∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1
u )i(θ̂

′
Σ−1
u )j

1

T

T∑
t=1

uit(ûjt − ujt).

By the Cauchy-Schwarz inequality, maxij | 1T
∑T

t=1(ûit − uit)(ûjt − ujt)| = OP ( logN
T

). Hence

|a211| ≤ OP (
logN√
N

)
∑

i 6=j,(i,j)∈SU

|(θ̂
′
Σ−1
u )i||(θ̂

′
Σ−1
u )j|

≤ OP (
logN√
N

)

 ∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1
u )2

i

1/2 ∑
i 6=j,(i,j)∈SU

(θ̂
′
Σ−1
u )2

j

1/2

= OP (
logN√
N

)
N∑
i=1

(θ̂
′
Σ−1
u )2

i

∑
j:(Σu)ij 6=0

1 ≤ OP (
logN√
N

)‖θ̂
′
Σ−1
u ‖2mN

= OP (
mN

√
N(logN)2

T
) = oP (1).

Similar to the proof of term a112 in Lemma 5.1.6, maxij | 1T
∑T

t=1 uit(ûjt−ujt)| = OP ( logN
T

).

|a212| ≤ OP (
logN√
N

)
∑

i 6=j,(i,j)∈SU

|(θ̂
′
Σ−1
u )i||(θ̂

′
Σ−1
u )j| = OP (

mN

√
N(logN)2

T
) = oP (1).

In summary, a2 = a22 + a211 + a212 = oP (1).
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Proof of (5.3) and (5.4)

For any index set A, we let |A|0 denote its number of elements.

Lemma 5.1.8. Recall that et = Σ−1
u ut. eit and ujt are independent if i 6= j.

Proof. Because ut is Gaussian, it suffices to show that cov(eit, ujt) = 0 when i 6= j. Consider

the vector (u′t, e
′
t)
′ = A(u′t,u

′
t)
′, where

A =

IN 0

0 Σ−1
u

 .

Then cov(u′t, e
′
t) = Acov(u′t,u

′
t)A, which is

IN 0

0 Σ−1
u


Σu Σu

Σu Σu


IN 0

0 Σ−1
u

 =

Σu IN

IN Σ−1
u

 .

This completes the proof.

Proof of (5.3)

Let X = 1√
NT

∑N
i=1

∑T
t=1(u2

it−Eu2
it)(

1√
T

∑T
s=1 eis(1− f ′sw))2. The goal is to show EX2 =

o(T ). We show respectively 1
T

(EX)2 = o(1) and 1
T

var(X) = o(1). The proof of (5.3) is the

same regardless of the type of sparsity in Assumption 1.4.2. For notational simplicity, let

ξit = u2
it − Eu2

it, ζis = eis(1− f ′sw).

Then X = 1√
NT

∑N
i=1

∑T
t=1 ξit(

1√
T

∑T
s=1 ζis)

2. Because of the serial independence, ξit is

independent of ζjs if t 6= s, for any i, j ≤ N , which implies cov(ξit, ζisζik) = 0 as long as

either s 6= t or k 6= t.

Expectation
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For the expectation,

EX =
1√
NT

N∑
i=1

T∑
t=1

cov(ξit, (
1√
T

T∑
s=1

ζis)
2) =

1

T
√
NT

N∑
i=1

T∑
t=1

T∑
s=1

T∑
k=1

cov(ξit, ζisζik)

=
1

T
√
NT

N∑
i=1

T∑
t=1

(cov(ξit, ζ
2
it) + 2

∑
k 6=t

cov(ξit, ζitζik))

=
1

T
√
NT

N∑
i=1

T∑
t=1

cov(ξit, ζ
2
it) = O(

√
N

T
),

where the second last equality follows since Eξit = Eζit = 0 and when k 6= t cov(ξit, ζitζik) =

Eξitζitζik = EξitζitEζik = 0. It then follows that 1
T

(EX)2 = O( N
T 2 ) = o(1), given N = o(T 2).

Variance

Consider the variance. We have,

var(X) =
1

N

N∑
i=1

var(
1√
T

T∑
t=1

ξit(
1√
T

T∑
s=1

ζis)
2)

+
1

NT 3

∑
i 6=j

∑
t,s,k,l,v,p≤T

cov(ξitζisζik, ξjlζjvζjp) = B1 +B2.

B1 can be bounded by the Cauchy-Schwarz inequality. Note that Eξit = Eζjs = 0,

B1 ≤
1

N

N∑
i=1

E(
1√
T

T∑
t=1

ξit(
1√
T

T∑
s=1

ζis)
2)2 ≤ 1

N

N∑
i=1

[E(
1√
T

T∑
t=1

ξit)
4]1/2[E(

1√
T

T∑
s=1

ζis)
8]1/2.

Hence B1 = O(1).

We now show 1
T
B2 = o(1). Once this is done, it implies 1

T
var(X) = o(1). The proof of

(5.3) is then completed because 1
T
EX2 = 1

T
(EX)2 + 1

T
var(X) = o(1).

For two variables X, Y , writing X ⊥ Y if they are independent. Note that Eξit =

Eζis = 0, and when t 6= s, ξit ⊥ ζjs, ξit ⊥ ξjs, ζit ⊥ ζjs for any i, j ≤ N . Therefore, it

is straightforward to verify that if the set {t, s, k, l, v, p} contains more than three distinct

elements, then cov(ξitζisζik, ξjlζjvζjp) = 0. Hence if we denote Ξ as the set of (t, s, k, l, v, p)

such that {t, s, k, l, v, p} contains no more than three distinct elements, then its cardinality
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satisfies: |Ξ|0 ≤ CT 3 for some C > 1, and

∑
t,s,k,l,v,p≤T

cov(ξitζisζik, ξjlζjvζjp) =
∑

(t,s,k,l,v,p)∈Ξ

cov(ξitζisζik, ξjlζjvζjp).

Hence

B2 =
1

NT 3

∑
i 6=j

∑
(t,s,k,l,v,p)∈Ξ

cov(ξitζisζik, ξjlζjvζjp).

Let us partition Ξ into Ξ1∪Ξ2 where each element (t, s, k, l, v, p) in Ξ1 contains exactly three

distinct indices, while each element in Ξ2 contains less than three distinct indices. We know

that 1
NT 3

∑
i 6=j
∑

(t,s,k,l,v,p)∈Ξ2
cov(ξitζisζik, ξjlζjvζjp) = O( 1

NT 3N
2T 2) = O(N

T
), which implies

1

T
B2 =

1

NT 4

∑
i 6=j

∑
(t,s,k,l,v,p)∈Ξ1

cov(ξitζisζik, ξjlζjvζjp) +Op(
N

T 2
).

The first term on the right hand side can be written as
∑5

h=1B2h. Each of these five terms

is defined and analyzed separately as below.

B21 =
1

NT 4

∑
i 6=j

T∑
t=1

∑
s 6=t

∑
l 6=s,t

EξitξjtEζ
2
isEζ

2
jl ≤ O(

1

NT
)
∑
i 6=j

|Eξitξjt|.

Note that if (Σu)ij = 0, uit and ujt are independent, and hence Eξitξjt = 0. This implies∑
i 6=j |Eξitξjt| ≤ O(1)

∑
i 6=j,(i,j)∈SU 1 = O(N). Hence B21 = o(1).

B22 =
1

NT 4

∑
i 6=j

T∑
t=1

∑
s 6=t

∑
l 6=s,t

EξitζitEζisξjsEζ
2
jl.

By Lemma 5.1.8, ujs and eis are independent for i 6= j. Also, ujs and fs are independent,

which implies ξjs and ζis are independent. So Eξjsζis = 0. It follows that B22 = 0.

B23 =
1

NT 4

∑
i 6=j

T∑
t=1

∑
s 6=t

∑
l 6=s,t

EξitζitEζisζjsEξjlζjl = O(
1

NT
)
∑
i 6=j

|Eζisζjs|
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= O(
1

NT
)
∑
i 6=j

|EeisejsE(1− f ′sw)2| = O(
1

NT
)
∑
i 6=j

|Eeisejs|.

By the definition es = Σ−1
u us, cov(es) = Σ−1

u . Hence Eeisejs = (Σ−1
u )ij, which implies

B23 ≤ O( N
NT

)‖Σ−1
u ‖1 = o(1).

B24 =
1

NT 4

∑
i 6=j

T∑
t=1

∑
s 6=t

∑
l 6=s,t

EξitξjtEζisζjsEζilζjl = O(
1

T
),

which is analyzed in the same way as B21.

Finally, B25 = 1
NT 4

∑
i 6=j
∑T

t=1

∑
s 6=t
∑

l 6=s,tEξitζjtEζisξjsEζilζjl = 0, because Eζisξjs = 0

when i 6= j, following from Lemma 5.1.8. Therefore, 1
T
B2 = o(1) +O( N

T 2 ) = o(1).

Proof of (5.4)

For notational simplicity, let ξijt = uitujt − Euitujt. Because of the serial independence

and the Gaussianity, cov(ξijt, ζlsζnk) = 0 when either s 6= t or k 6= t, for any i, j, l, n ≤ N . In

addition, define a set

H = {(i, j) ∈ SU : i 6= j}.

Then by the sparsity assumption,
∑

(i,j)∈H 1 = DN = O(N). Now let

Z =
1√
NT

∑
(i,j)∈H

T∑
t=1

(uitujt − Euitujt)[
1√
T

T∑
s=1

eis(1− f ′sw)][
1√
T

T∑
k=1

ejk(1− f ′kw)]

=
1√
NT

∑
(i,j)∈H

T∑
t=1

ξijt[
1√
T

T∑
s=1

ζis][
1√
T

T∑
k=1

ζjk] =
1

T
√
NT

∑
(i,j)∈H

T∑
t=1

T∑
s=1

T∑
k=1

ξijtζisζjk.

The goal is to show 1
T
EZ2 = o(1). We respectively show 1

T
(EZ)2 = o(1) = 1

T
var(Z).

Expectation

The proof for the expectation is the same regardless of the type of sparsity in Assumption

1.4.2, and is very similar to that of (5.3). In fact,

EZ =
1

T
√
NT

∑
(i,j)∈H

T∑
t=1

T∑
s=1

T∑
k=1

cov(ξijt, ζisζjk) =
1

T
√
NT

∑
(i,j)∈H

T∑
t=1

cov(ξijt, ζ
2
it).
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Because
∑

(i,j)∈H 1 = O(N), EZ = O(
√

N
T

). Thus 1
T

(EZ)2 = o(1).

Variance

For the variance, we have

var(Z) =
1

T 3N

∑
(i,j)∈H

var(
T∑
t=1

T∑
s=1

T∑
k=1

ξijtζisζjk)

+
1

T 3N

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n)6=(i,j),

∑
t,s,k,l,v,p≤T

cov(ξijtζisζjk, ξmnlζmvζnp)

= A1 + A2.

By the Cauchy-Schwarz inequality and the serial independence of ξijt,

A1 ≤
1

N

∑
(i,j)∈H

E[
1√
T

T∑
t=1

ξijt
1√
T

T∑
s=1

ζis
1√
T

T∑
k=1

ζjk]
2

≤ 1

N

∑
(i,j)∈H

[E(
1√
T

T∑
t=1

ξijt)
4]1/2[E(

1√
T

T∑
s=1

ζis)
8]1/4[E(

1√
T

T∑
k=1

ζjk)
8]1/4.

So A1 = O(1).

Note that Eξijt = Eζis = 0, and when t 6= s, ξijt ⊥ ζms, ξijt ⊥ ξmns, ζit ⊥ ζjs (inde-

pendent) for any i, j,m, n ≤ N . Therefore, it is straightforward to verify that if the set

{t, s, k, l, v, p} contains more than three distinct elements, then cov(ξijtζisζjk, ξmnlζmvζnp) =

0. Hence for the same set Ξ defined as before, it satisfies: |Ξ|0 ≤ CT 3 for some C > 1, and

∑
t,s,k,l,v,p≤T

cov(ξijtζisζjk, ξmnlζmvζnp) =
∑

(t,s,k,l,v,p)∈Ξ

cov(ξijtζisζjk, ξmnlζmvζnp).

We proceed by studying the two cases of Assumption 1.4.2 separately, and show that in

both cases 1
T
A2 = o(1). Once this is done, because we have just shown A1 = O(1), then

1
T

var(Z) = o(1). The proof is then completed because 1
T
EZ2 = 1

T
(EZ)2 + 1

T
var(Z) = o(1).

When DN = O(
√
N)
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Because |Ξ|0 ≤ CT 3 and |H|0 = DN = O(
√
N), and |cov(ξijtζisζjk, ξmnlζmvζnp)| is

bounded uniformly in i, j,m, n ≤ N , we have

1

T
A2 =

1

T 4N

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n) 6=(i,j),

∑
t,s,k,l,v,p∈Ξ

cov(ξijtζisζjk, ξmnlζmvζnp) = O(
1

T
).

When Dn = O(N), and mN = O(1)

Similar to the proof of the first statement, for the same set Ξ1 that contains exactly three

distinct indices in each of its element, (recall |H|0 = O(N))

1

T
A2 =

1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n)6=(i,j),

∑
t,s,k,l,v,p∈Ξ1

cov(ξijtζisζjk, ξmnlζmvζnp) +O(
N

T 2
).

The first term on the right hand side can be written as
∑5

h=1 A2h. Each of these five terms

is defined and analyzed separately as below. Before that, let us introduce a useful lemma.

The following lemma is needed when Σu has bounded number of nonzero entries in each

row (mN = O(1)). Let |S|0 denote the number of elements in a set S if S is countable. For

any i ≤ N , let

A(i) = {j ≤ N : cov(uit, ujt) 6= 0} = {j ≤ N : (i, j) ∈ SU}.

Lemma 5.1.9. Suppose mN = O(1). For any i, j ≤ N , let B(i, j) be a set of k ∈ {1, ..., N}

such that:

(i) k /∈ A(i) ∪ A(j)

(ii) there is p ∈ A(k) such that cov(uitujt, uktupt) 6= 0.

Then maxi,j≤N |B(i, j)|0 = O(1).

Proof. First we note that if B(i, j) = ∅, then |B(i, j)|0 = 0. If it is not empty, for any

k ∈ B(i, j), by definition, k /∈ A(i) ∪ A(j), which implies cov(uit, ukt) = cov(ujt, ukt) =

0. By the Gaussianity, ukt is independent of (uit, ujt). Hence if p ∈ A(k) is such that
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cov(uitujt, uktupt) 6= 0, then upt should be correlated with either uit or ujt. We thus must

have p ∈ A(i) ∪ A(j). In other words, there is p ∈ A(i) ∪ A(j) such that cov(ukt, upt) 6= 0,

which implies k ∈ A(p). Hence,

k ∈
⋃

p∈A(i)∪A(j)

A(p) ≡M(i, j),

and thus B(i, j) ⊂ M(i, j). Because mN = O(1), maxi≤N |A(i)|0 = O(1), which implies

maxi,j |M(i, j)|0 = O(1), yielding the result.

Now we define and bound each of A2h. For any (i, j) ∈ H = {(i, j) : (Σu)ij 6= 0}, we

must have j ∈ A(i). So

A21 =
1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n) 6=(i,j),

T∑
t=1

∑
s 6=t

∑
l 6=t,s

EξijtξmntEζisζjsEζmlζnl

≤ O(
1

NT
)
∑

(i,j)∈H,

∑
(m,n)∈H,(m,n)6=(i,j)

|Eξijtξmnt|

≤ O(
1

NT
)
∑

(i,j)∈H

(
∑

m∈A(i)∪A(j)

∑
n∈A(m)

+
∑

m/∈A(i)∪A(j)

∑
n∈A(m)

)|cov(uitujt, umtunt)|.

The first term is O( 1
T

) because |H|0 = O(N) and |A(i)|0 is bounded uniformly by mN = O(1).

So the number of summands in
∑

m∈A(i)∪A(j)

∑
n∈A(m) is bounded. For the second term, if

m /∈ A(i) ∪ A(j), n ∈ A(m) and cov(uitujt, umtunt) 6= 0, then m ∈ B(i, j). Hence the

second term is bounded by O( 1
NT

)
∑

(i,j)∈H
∑

m∈B(i,j)

∑
n∈A(m) |cov(uitujt, umtunt)|, which is

also O( 1
T

) by Lemma 5.1.9. Hence A21 = o(1).

Similarly, applying Lemma 5.1.9,

A22 =
1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n)6=(i,j),

T∑
t=1

∑
s 6=t

∑
l 6=t,s

EξijtξmntEζisζmsEζjlζnl = o(1),

which is proved in the same lines of those of A21.
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Also note three simple facts: (1) maxj≤N |A(j)|0 = O(1), (2) (m,n) ∈ H implies n ∈

A(m), and (3) ξmms = ξnms. The term A23 is defined as

A23 =
1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n)6=(i,j),

T∑
t=1

∑
s 6=t

∑
l 6=t,s

EξijtζitEζjsξmnsEζmlζnl

≤ O(
1

NT
)

N∑
j=1

∑
i∈A(j)

1
∑

(m,n)∈H,(m,n)6=(i,j)

|Eζjsξmns|

≤ O(
2

NT
)

N∑
j=1

∑
n∈A(j)

|Eζjsξjns|+O(
1

NT
)

N∑
j=1

∑
m 6=j,n6=j

|Eζjsξmns| = a+ b.

Term a = O( 1
T

). For b, note that Lemma 5.1.8 implies that when m,n 6= j, umsuns and ejs

are independent because of the Gaussianity. Also because us and fs are independent, hence

ζjs and ξmms are independent, which implies that b = 0. Hence A23 = o(1).

The same argument as of A23 also implies

A24 =
1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n) 6=(i,j),

T∑
t=1

∑
s 6=t

∑
l 6=t,s

EξijtζmtEζisξmnsEζilζnl = o(1)

Finally, because
∑

(i,j)∈H 1 ≤
∑N

i=1

∑
j∈A(i) 1 ≤ mN

∑N
i=1 1, and mN = O(1), we have

A25 =
1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n)6=(i,j),

T∑
t=1

∑
s 6=t

∑
l 6=t,s

EξijtζitEζisζmsEξmnlζnl

≤ O(
1

NT
)
∑

(i,j)∈H,

∑
(m,n)∈H,(m,n) 6=(i,j)

|EξijtζitEζisζmsEξmnlζnl|

≤ O(
1

NT
)

N∑
i=1

N∑
m=1

|Eζisζms| ≤ O(
1

NT
)

N∑
i=1

N∑
m=1

|(Σ−1
u )im|E(1− f ′sw)2

≤ O(
N

NT
)‖Σ−1

u ‖1 = o(1).

In summary, 1
T
A2 = o(1) +O( N

T 2 ) = o(1). This completes the proof.

Further technical lemmas for Section 4

We cite a lemma that will be needed throughout the proofs.
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Lemma 5.1.10. Under Assumption 1.4.1, there is C > 0,

(i) P (maxi,j≤N | 1T
∑T

t=1 uitujt − Euitujt| > C
√

logN
T

)→ 0.

(ii) P (maxi≤K,j≤N | 1T
∑T

t=1 fitujt| > C
√

logN
T

)→ 0.

(iii) P (maxj≤N | 1T
∑T

t=1 ujt| > C
√

logN
T

)→ 0.

Proof. The proof follows from Lemmas A.3 and B.1 in Fan et al. (2011).

Lemma 5.1.11. When the distribution of (ut, ft) is independent of θ, there is C > 0,

(i) supθ∈Θ P (maxj≤N |θ̂j − θj| > C
√

logN
T
|θ)→ 0

(ii) supθ∈Θ P (maxi,j≤N |σ̂ij − σij| > C
√

logN
T
|θ)→ 0,

(iii) supθ∈Θ P (maxi≤N |σ̂i − σi| > C
√

logN
T
|θ)→ 0.

Proof. Note that θ̂j − θj = 1
af,TT

∑T
t=1 ujt(1 − f ′tw). Here af,T = 1 − f̄ ′w →p 1 −

Ef ′t(Eftf
′
t)
−1Eft > 0, hence af,T is bounded away from zero with probability approaching

one. Thus by Lemma 5.1.10, there is C > 0 independent of θ, such that

sup
θ∈Θ

P (max
j≤N
|θ̂j − θj| > C

√
logN

T
|θ) = P (max

j
| 1

af,TT

T∑
t=1

ujt(1− f ′tw)| > C

√
logN

T
)→ 0

(ii) There is C independent of θ, such that the event

A = {max
i,j
| 1
T

T∑
t=1

uitujt − σij| < C

√
logN

T
,

1

T

T∑
t=1

‖ft‖2 < C}

has probability approaching one. Also, there is C2 also independent of θ such that the event

B = {maxi
1
T

∑
t u

2
it < C2} occurs with probability approaching one. Then on the event

A ∩B, by the triangular and Cauchy-Schwarz inequalities,

|σ̂ij − σij| ≤ C

√
logN

T
+ 2 max

i

√
1

T

∑
t

(ûit − uit)2C2 + max
i

1

T

∑
t

(uit − ûit)2.
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It can be shown that

max
i≤N

1

T

T∑
t=1

(ûit − uit)2 ≤ max
i

(‖b̂i − bi‖2 + (θ̂i − θi)2)(
1

T

T∑
t=1

‖ft‖2 + 1).

Note that b̂i − bi and θ̂i − θi only depend on (ft,ut) (independent of θ). By Lemma 3.1

of Fan et al. (2011), there is C3 > 0 such that supb,θ P (maxi≤N ‖b̂i − bi‖2 + (θ̂i − θi)
2 >

C3
logN
T

) = o(1). Combining the last two displayed inequalities yields, for C4 = (C + 1)C3,

sup
θ
P (max

i≤N

1

T

T∑
t=1

(ûit − uit)2 > C4
logN

T
|θ) = o(1),

which yields the desired result.

(iii): Recall σ̂2
j = σ̂jj/af,T , and σ2

j = σjj/(1 − Ef ′t(Eftf
′
t)
−1Eft). Moreover, af,T is inde-

pendent of θ. The result follows immediately from part (ii).

Lemma 5.1.12. For any ε > 0, supθ P (‖Σ̂−1
u −Σ−1

u ‖ > ε|θ) = o(1).

Proof. By Lemma 5.1.11 (ii), supθ∈Θ P (maxi,j≤N |σ̂ij−σij| > C
√

logN
T
|θ)→ 1. By Fan et al.

(2011), on the event maxi,j≤N |σ̂ij−σij| ≤ C
√

logN
T

, there is constant C ′ that is independent

of θ, ‖Σ̂−1
u − Σ−1

u ‖ ≤ C ′mN( logN
T

)1/2. Hence the result follows due to the sparse condition

mN( logN
T

)1/2 = o(1).

5.2 Proofs for Chapter 2

In this section, we provide theoretical proofs in developing the theory of sufficient forecasting.

We first cite a few lemmas from Fan et al. (2013), which are needed subsequently in the

proofs.
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Lemma 5.2.1. Suppose A and B are two symmetric, semi-positive definite matrices, and

that λmin(A) > cp,T for some sequence cp,T > 0. If ||A−B|| = op(cp,T ), then

||A−1 −B−1|| = Op(c
−2
p,T )||A−B||.

Lemma 5.2.2. Let {λi}pi=1 be the eigenvalues of Σ in descending order and {ξ}pi=1 be their

associated eigenvectors. Correspondingly, let {λ̂i}pi=1 be the eigenvalues of Σ̂ in descending

order and {ξ̂}pi=1 be their associated eigenvectors. Then,

(a)(Weyl’s theorem) |λ̂i − λi| ≤ ||Σ̂−Σ||.

(b) (sin(θ) theorem)

||ξ̂i − ξi|| ≤
||Σ̂−Σ||/

√
2

min(|λ̂i−1 − λi|, |λi − λ̂i+1|)

5.2.1 Proof of Proposition 2.2.1

It suffices to show that f̂t = Λ̂bxt, or F̂′ = Λ̂bX in matrix form. First let M = diag(λ1, ..., λK),

where λi are the largest K eigenvalues of X′X. By construction, we have (X′X)F̂ = F̂M,

or M−1F̂′(X′X) = F̂′. Since B̂′B̂ = T−2F̂′(X′X)F̂ = T−2F̂′F̂M = T−1M, it follows that

(B̂′B̂)−1(T−1F̂′X′)X = (B̂′B̂)−1B̂′X = F̂′. This concludes the proof.

5.2.2 Proof of Theorem 2.3.1

Recall that H = (1/T )V−1F̂′FB′B. A preliminary result about H is as follows, which can

be proved analogously to Lemma 11 in Fan et al. (2013).

Lemma 5.2.3. Under assumptions 2.3.1-2.3.3, we have

(a) HH′ = IK +Op(ωp,T ),

(b) H′H = IK +Op(ωp,T ).

The next lemma shows that the normalization matrix Λb can be consistently estimated

under operator norm.

94



Lemma 5.2.4. Under assumptions 2.3.1-2.3.3,

(a) ||B̂−BH′|| = Op(p
1/2ωp,T ),

(b) ||Λ̂b −HΛb|| = Op(p
−1/2ωp,T ).

Proof. (a) We outline the procedure as follows.

First, under assumptions 2.3.1-2.3.3, we have the following convergence of factors,

1

T

T∑
t=1

||̂ft −Hft|| = Op(ωp,T ).

This result can be similarly obtained from Theorem 1 of Bai and Ng (2002).

Next, lemma 5.2.3 leads to ||H|| = Op(1). Note that b̂i = (1/T )
∑T

t=1 xitf̂t and that

(1/T )
∑T

t=1 f̂ ′t f̂t = IK . As a result,

b̂i −Hbi =
1

T

T∑
t=1

Hftuit +
1

T

T∑
t=1

xit(f̂t −Hft) + H(
1

T

T∑
t=1

f ′tft − IK)bi

The three terms on the right-hand side can be bounded as follows. For the first term, we

have

|| 1
T

T∑
t=1

Hftuit|| ≤ ||H|| · ||
1

T

T∑
t=1

ftuit||.

For the second term, since E(x2
it) = O(1), T−1

∑T
t=1 x

2
it = Op(1). Hence

|| 1
T

T∑
t=1

xit(f̂t −Hft)|| ≤ (
1

T

T∑
t=1

x2
it)

1

T

T∑
t=1

||̂ft −Hft||1/2 = Op(ωp,T ).

And lastly, ||T−1
∑T

t=1(f ′tft − IK)|| = Op(T
−1/2) and ||bi|| = O(1) imply that the third term

is Op(T
−1/2).
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Therefore we have

||B̂−BH′||2 ≤ ||B̂−BH′||2F =

p∑
i=1

||b̂i −Hbi||2

≤ 3||H||2 · (T−1

p∑
i=1

|| 1√
T

T∑
t=1

ftuit||2)) + pOp(ω
2
p,T ),

where we used the fact that (a+ b+ c)2 ≤ 3(a2 + b2 + c2). Since p−1
∑p

i=1 ||
1√
T

∑T
t=1 ftuit||2 =

Op(1) by assumption 2.3.3, it follows that

||B̂−BH′||2 = Op(p/T ) +Op(pω
2
p,T ) = Op(pω

2
p,T ).

(b) Since ||B|| = Op(
√
p), from part (a) we have ||B̂′B̂ −HB′BH′|| ≤ ||(B̂ − BH′)′|| ·

||B̂ + BH′|| = Op(pωp,T ). In addition, λmin(B′B) > p/2, by lemma 5.2.1,

||(B̂′B̂)−1 − (HB′BH′)−1|| = Op(p
−1ωp,T ).

According to lemma 5.2.3 , the effect of replacing H−1 by H′ is negligible, as ||H−1−H′|| =

Op(ωp,T ). From part (a), it follows that ||H(B′B)−1H−1 − (HB′BH′)−1|| = Op(p
−1ωp,T ).

Hence

||(B′B)−1 −H(B′B)−1H−1|| = Op(p
−1ωp,T ).

Consequently,

||Λ̂b −HΛb|| = ||(B̂′B̂)−1B̂′ −H(B′B)−1H−1HB′||

≤ ||(B′B)−1 −H(B′B)−1H−1|| · ||B̂′||+ ||H(B′B)−1H−1|| · ||B̂′ −HB′||

= Op(p
−1/2ωp,T ).
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The following lemma lays the foundation of inverse regression, which can be found in Li

(1991).

Lemma 5.2.5. Under model (2.1) and Assumption 2.3.1 (3), the centered inverse regression

curve E(ft|yt+1)−E(ft) is contained in the linear subspace spanned by φ′kcov(ft), k = 1, ..., L.

We are now ready to complete the proof of Theorem 2.3.1.

Proof of Theorem 2.3.1

Let m̂h = 1
c

∑c
l=1 x(h,l) denote the average of the predictors within a particular slice Ih, and

mh = E(xt|yt+1 ∈ Ih) be its population version. We immediately have

||m̂h −mh|| = ||1
c

c∑
l=1

(Bf(h,l) + u(h,l))−BE(ft|yt+1 ∈ Ih)||

≤ ||B|| · ||1
c

c∑
l=1

f(h,l) − E(ft|yt+1 ∈ Ih)||+ ||
1

c

c∑
l=1

u(h,l)||

= Op(p
1/2)Op(T

−1/2) +Op(
√
p/T ) = Op(

√
p/T ).

Here, we use the fact that the sample mean of E(ft|yt+1 ∈ Ih) converges at the rate of

Op(T
−1/2). This holds true as the random variable ft|yt+1 ∈ Ih is still stationary with

finite second moments, and the sum of the α-mixing coefficients converges. This applies to

ut|yt+1 ∈ Ih as well.

In addition to the inequality above, we have ||mh|| = Op(||E(xt|yt+1 ∈ Ih)||) ≤ Op(||B|| ·

||E(ft|yt+1 ∈ Ih)||) = Op(p
1/2), so m̂h = Op(p

1/2). It follows that

||Λ̂bm̂h −HΛbmh|| ≤ ||Λ̂b −HΛb|| · ||m̂h||+ ||HΛb|| · ||m̂h −mh||

= Op(ωp,T ) +Op(T
−1/2) = Op(ωp,T ).
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By definition, Σf |y = H−1
∑H

h=1(Λbmh)(Λbmh)
′. For fixed H, note that

Σ̂f |y −HΣf |yH
′ = H−1

H∑
h=1

[(Λ̂bm̂h)(Λ̂bm̂h)
′ − (HΛbmh)(HΛbmh)

′],

and that both ||Λ̂bm̂h|| and Λ̂bm̂h are Op(1), we reach the desired result that ||Σ̂f |y −

HΣf |yH
′|| = Op(ωp,T ).

A direct application of sin(θ) theorem shows that ||φ̂j − Hφj|| = Op(ωp,T ). Since we

have the normalization cov(ft) = IK and E(ft) = 0, the eigenvalue φj’s of Σf |y constitute

the SDR directions for model (2.1).

5.2.3 Proof of Proposition 2.3.1

First we write φ̂ in terms of the true factors ft,

φ̂ =
1

T − 1

T−1∑
t=1

yt+1f̂t =
1

T − 1
Λ̂b

T−1∑
t=1

yt+1xt

=
1

T − 1
Λ̂b

T−1∑
t=1

(Bft + ut)yt+1,

where we used the fact that ft = Λ̂bxt. Using triangular inequality,

||φ̂− φ̄|| = ||φ̂− (Λ̂bB)φ̄ + (Λ̂bB− I)φ̄||

≤ ||(Λ̂bB)
1

T − 1
(
T−1∑
t=1

yt+1ft − φ̄)||+ ||(Λ̂bB− I)φ̄||+ || 1

T − 1
Λ̂b

T−1∑
t=1

utyt+1||.

By lemma 5.2.3 and 5.2.4, we have ||Λ̂bB|| = Op(1) and ||Λ̂bB − ΛbB|| = ||Λ̂bB − I|| =

Op(ωp,T ). Since ||φ̄|| = Op(1), the second term on the right hand side of the inequality is

Op(ωp,T ). For the third term, note that ut is independent of yt+1, hence E(utyt+1) = 0. By

law of large numbers and ||Λ̂b|| = Op(p
−1/2), the third term is Op(T

−1/2). It remains to

bound || 1
T−1

(
∑T−1

t=1 yt+1ft − φ̄)|| in the first term.
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We express ft along the basis φ1, ...,φL and their orthogonal hyperplane,

ft =
L∑
j=1

〈ft,φj〉φj + f⊥t .

By the orthogonal decomposition of normal distribution, 〈ft,φj〉 and f⊥t are independent.

In addition, yt+1 depends on ft only through φ′1ft, ...,φ
′
Lft, and is therefore conditionally

independent of f⊥t . It follows from contraction property that yt+1 and f⊥t are independent,

unconditionally. E(yt+1f
⊥
t ) = E(yt+1)E(f⊥t ) = 0. Now it is easy to see that

|| 1

T − 1
(
T−1∑
t=1

yt+1ft − φ̄)|| = ||
L∑
j=1

[
1

T − 1

T−1∑
t=1

(φ′jft)yt+1 − E((φ′jft)yt+1)] +
1

T − 1

T−1∑
t=1

yt+1f
⊥
t ||

≤
L∑
j=1

|| 1

T − 1

T−1∑
t=1

(φ′jft)yt+1 − E((φ′jft)yt+1)||+ || 1

T − 1

T−1∑
t=1

yt+1f
⊥
t ||

and each term is Op(T
−1/2) by law of large numbers. This concludes the proof.
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