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Abstract

In this work a numerical method is presented to model the electrohydrodynam-

ics of a three-dimensional vesicle. The objective of this study is to develop robust

numerical algorithms to solve the physical governing equations of the vesicle in the

presence of fluid flow and DC electric fields. Furthermore the model will be able to

predict the fast dynamics of the vesicle exposed to strong fields for a wide range of

material properties and deformations that cannot be easily captured in experimental

settings.

The vesicle membrane is modeled as an infinitesimally thin capacitive interface.

The electric field calculations explicitly take into account the capacitive interface

by an implicit Immersed Interface Method formulation, which computes the electric

potential field and the trans-membrane potential simultaneously. The interface is

tracked through the use of a semi-implicit, gradient-augmented level set method.

The enclosed volume and surface area are conserved both locally and globally by a

new Navier-Stokes projection method.

The valdiation of the hydrodynamic model was examined in the light of experi-

mental data and observations. The two major modes of the vesicle motion in the linear

shear flow namely the tank-treading and tumbling regimes, were studied. Simulation

results show a very good agreement between the present results and the experimental

data.

The electrohydrodynamic results also match well with previously published exper-

imental, analytic and two-dimensional computational works and the model is capable

of capturing the type of topological changes previously observed in experiments. A

parameter study of different important material properties is carried out for the tran-

sition between oblate and prolate ellipsoidal shapes in order to estimate the critical

parameter tresholds for this transition to happen. In addition, investigation of the

vesicle behavior under the combined effects of shear flow and weak DC electric fields
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reveals the remarkable influence of the electric field in changing the standard behav-

iors of tank-treading and tumbling vesicles. If the electric field is strong enough the

induced resistance caused by the electric field may alter the behavior of a tumbling

vesicle into a tank-treading motion.

This research is a step in the path to understand the complex physics of multi-

component lipid membranes and predict more challenging interfacial phenomena such

as electroporation in the context of their biological applications.
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Chapter 1

Introduction and Motivation

Biological cells act as the basic structural unit of most living creatures and it is

obvious to focus on understanding the behavior of cell when trying to understand the

function and properties of organisms. In studying the cell the membrane is perhaps

the most essential component. For example, it plays a critical rule in regulating the

transport of molecules in and out of cells. In general, the cell membrane is not a

simple homogeneous interface. It is normally composed of lipid molecules, proteins,

cholesterol and ion channels. A schematic of cellular membrane is depicted in Fig.

1.1. Despite the apparent complex structure, studies show the double-layer of lipid

molecules is the most primary element of the membrane and occupies over 50% of

the mass in the membrane of eukaryotic cells (cells with nucleus) [5].

Giant unilamellar vesicles are enclosed bag-like membranes solely composed of the

above-mentioned lipid bilayers. Hence they form a basic model for actual biological

cells. It is quite easy to artificially create these soft particles in a laboratory setting.

In an aqueous solution, the two-dimensional phospholipid bilayer sheets fold and

curve in three-dimensional space and self-assemble into a fluid-filled vesicle due to

their strong tendency to minimize the free energy [39] (Fig. 1.2). This behavior is

attributed to the amphipathic nature of phospholipids. A single phospholipid consists

1



Figure 1.1: The schematic of the cell membrane

of a hydrophilic (or water-loving) phosphate head group, and a hydrophobic (or water

hating) fatty-acid tail. The amphipathic nature of phospholipids basically means that

the phospholipids arrange themselves into a bilayer, with hydrophobic tails on the

inside and hydrophilic heads on the outside.

Vesicles share remarkable similarities in composition and size with other biological

cells such as red blood cells. Experimental observations have demonstrated that lipid

vesicles exhibit a striking resemblance to more complicated biological cells in terms

of their equilibrium shapes and non-equilibrium behavior in various fluid conditions

[2, 97]. All of these properties make the vesicle a robust model system to mimic the

behavior of more complicated non-nucleated biological cells. Aside from the impor-

tant insight studying vesicles provides in understanding the rheology of biofluids and

biological cells, lipid vesicles of organic and artificial kinds have been also proposed

in various biomedical technologies such as directed drug and gene delivery [6, 26] or

biological microreactions [59, 17].

For all the above-mentioned reasons, the study of lipid vesicles has gained great

attention in the past two decades. Particularly, the interaction of vesicles with exter-
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Figure 1.2: Self assembly of the phospholipid bilayers into a cell-like vesicle.

nal flows has been of major interest. The dynamics of the vesicle is determined as a

result of competition between the hydrodynamic forces of the fluid and the bending

and tension forces of the vesicle membrane. In shear flow, these topological changes

depend on three major parameters: the viscosity ratio between the enclosed and sur-

rounding fluids, the imposed shear rate and the reduced volume defined as the ratio

of the volume of the vesicle to the volume of sphere with the same surface area as the

vesicle [8]. The most well-known regimes in shear flow are tank-treading, tumbling

and a transient state called trembling or vacillating breathing [51, 28]. Tank-treading

happens when the viscosity ratio between the interior and exterior fluids is below

a critical value. The vesicle then reaches an equilibrium inclination angle with re-

spect to the flow direction and stays at that position permanently (Fig 1.3(a)). A

viscosity ratio above the critical viscosity ratio results in a change in behavior, from

tank-treading to tumbling in which the vesicle undergoes a periodic flipping motion

(Fig 1.3(b)). Trembling is an unsteady state between the tank-treading and tumbling

regions in which the vesicle undergoes large oscillations while doing trembling-like

motion around the flow direction (Fig 1.3(c)). These behaviors have been extensively

studied in both theory [24, 41, 55, 83, 95] and experiments [1, 18, 28]. Also, several
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numerical simulations have appeared in the literature. Among the numerical studies

in two dimensions are modelings using the boundary integral method [8, 93], phase

field approach [9, 52, 4], coupled level set and projection method [72, 74], coupled

level set and finite-element method [21, 36] and lattice Boltzmann method [29]. A

few three-dimensional studies have been also reported using phase-field approach [11],

boundary integral method [10, 104, 94] and front-tracking method [101].

(a) Tank-treading [27]

(b) Tumbling [28]

(c) Trembling [28]

Figure 1.3: Snapshots of a vesicle under imposed shear flow. Different regimes of
motion are observed depends on the reduced volume, dimensionless shear rate and
the viscosity ratio between the inner and outer fluids.

Apart from all the available works on hydrodynamics of vesicles, of even greater

interest is studying the electrohydrodynamic response of vesicles in various types

and strengths of electric fields. In the presence of an external electric field the thin

vesicle membrane acts as an electric capacitor and barrier to ion transport. This

gives the vesicle a capacitive property which is very important in the dynamic re-

sponse of the vesicle and the surrounding electric potential [84, 105]. A wide range of

biotechnological applications have been reported using electric fields of both strong

and weak forms. Weak fields have been applied in cell manipulation techniques such

4



as electrofusion [98], tissue ablation[12], wound healing [30], and treating tumors [86].

Strong electric fields induce electro-poration through formation of transient pores in

the membrane. If the electric field is too strong, membrane collapses and cell death

may occur [30]. However, a reversible poration process can be achieved through the

application of a controlled electric field [31, 34, 68]. This is of a huge biotechnological

interest for delivering substances such as drugs and DNA into living cells [58, 91].

Controlled electroporation remains a challenge and is the subject matter of ongoing

research as the underlying physical mechanism of the membrane’s response to strong

electric fields is not well understood.

Experiments have been reported on the topological behavior of vesicles subjected

to either a DC or AC electric field with different intensity, frequency or duration

of exposure to the field [20, 66, 67, 75]. The time evolution of the vesicle in the

electric field is described by the general terms of oblate and prolate shapes. In this

context, the oblate shape (hamburger-like ellipsoid) happens when the two major

axes of the ellipsoidal vesicle are perpendicular to the direction of applied electric

field while in a prolate shape (egg-like ellipsoid), the only major axis of the ellipsoidal

vesicle is colinear with the external electric field, see Fig. 1.4. Experiments show

that depending on the conductivity and permittivity differences of the enclosed and

surrounding fluids the vesicle may undergo a prolate or oblate transition.

One of the very interesting phenomena in this context is the dynamics of an

initially prolate vesicle in a strong DC field with the conductivity of the enclosed

fluid being smaller than the conductivity of the surrounding fluid. It is theoretically

expected that as the membrane charges, the vesicle transitions to an oblate shape

first, then eventually evolves back into the prolate shape. In other words, a prolate

shape will always be the final equilibrium shape in such situations. However, possible

formation of pores can short circuit the membrane capacitor along the way and this

may sometimes cause the vesicle to remain in the oblate shape permanently. In a
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Figure 1.4: The prolate and oblate vesicles and their orientations with regard to the
direction of the field.

more recent experiment, this Prolate-Oblate-Prolate (POP) transition was observed

for a nearly spherical vesicle using a two-pulse technique [75]. A strong pulse with

short duration is applied first to obtain the oblate deformation. This is followed by

a weak long pulse to get the oblate-prolate transition (Fig 1.5(a)). Nearly cylindrical

shapes with high-curvature edges were also observed for a vesicle subjected to strong

pulses (Fig 1.5(b)) [67]. This behavior was claimed to be due to the presence of salt

in the solution and not strictly the membrane characteristics. However, in a more

recent study the vesicle poration was proposed as possible explanation for both vesicle

collapsing and cylindrical deformations [76].

In addition to the experimental works, recent theoretical models have also inves-

tigated the electrohydrodynamics of nearly-spherical vesicles. Leading-order pertur-

bation analysis has been employed to obtain reduced models in the form of ordinary

differential equations [78, 79, 84, 96]. In another work, a spheroidal shell model is

used to investigate the morphological change of the vesicle in AC electric field [102].

Despite numerous theoretical investigations, numerical studies of the vesicle elec-

trohydrodynamics are quite rare. In a recent work, the boundary integral method
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(a) Oblate to prolate transition using a two-pulse technique[75]

(b) Cylindrical deformation observed using strong electric field[67]

Figure 1.5: Different snapshots of a vesicle in the presence of strong DC fields.

was employed to study different equilibrium states of a two-dimensional vesicle in

the presence of a uniform DC electric field [53]. The POP transition was captured

for a vesicle with conductivity of the inner fluid being smaller than the surrounding

region. However a direct comparison with available experimental data and physical

parameters was not conducted. Also a two-fold reflection symmetry was enforced at

each time step to avoid computer round-off errors and keep the vesicle symmetric in

the direction perpendicular to the external electric field.

More recently, an Immersed Interface Method (IIM) was developed by the author

which solves for both the electric potential and trans-membrane potential around a

three-dimensional vesicle [32]. The jump conditions for the electric potential and its

first and second derivatives on the interface are determined and utilized in the IIM to

obtain accurate electric potential field solutions for a three-dimensional vesicle with

an arbitrary shape. The details of algorithm, implementation and preliminary results

using this method are discussed in Chapter 3.

Nevertheless, there is still a gap between the morphological changes observed in

experiments, what theoretical models predict and what is yet to be learned from
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vesicle behavior in electric fields. All these are deemed as essential prerequisites for

building and developing reliable EHD microfluidic systems. Part of the difficulty

arises from modeling the complex physics of the vesicle electrohydrodynamics and

challenging phenomena such as membrane poration or fusion. Compared to hydro-

dynamics investigations, the electrohydrodynamics of the vesicle has substantially

faster dynamics with much larger deformations which makes the numerical modeling

nontrivial. Hence a lack of thorough numerical investigation with different material

properties and electric field parameters still remains.

In this thesis the recently developed electric field model is combined with a

projection-based hydrodynamics solver and a semi-implicit jet scheme for captur-

ing the interface. This model is used to study the electrohydrodynamics of three

dimensional vesicles in general flow. Ultimately, the dynamics of the vesicle is de-

termined by the interplay between the hydrodynamics, bending, tension and electric

field stresses on the membrane. To the best of the author’s knowledge, this is the first

attempt at investigating the electrohydrodynamics of vesicles in three-dimensions. As

one may expect, for this kind of physics a three dimensional model will result in a

much richer and wider range of topological changes than a two dimensional model. In

addition to this, a full Navier-Stokes system of equations is considered here, unlike all

the previous models which investigate the problem in the Stokes region. For vesicles

in strong DC field, the approximate velocity may sometimes exceed 0.01m/s [76] and

therefore, the Stokes assumption for the fluid flow might be slightly simplistic. More-

over, the model here allows for studying highly deflected vesicles with small reduced

volumes and is able to predict the type of deformations observed in experiments.

The three-dimensional parallel coding framework is developed in C programming

language and parallelized using MPI. The code makes extensive use of high perfor-

mance libraries including PETSc, Zoltan and HDF5. Different numerical experiments

have been performed to determine the best solvers and preconditioners for the result-
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ing linear systems. This framework has been used for running all the subsequent

numerical work on massively parallel computer systems at the Center for Computa-

tional Research at SUNY Buffalo (UB CCR).

The rest of this dissertation is organized as follows. In Chapter 2 the physical

picture and formulation behind the electrohydrodynamics of the vesicle is described.

Chapter 3 focuses on the development of a numerical methodology for the implicit

solutions of the electric potential and trans-membrane voltage. This includes a new

implementation of the augmented IIM to compute the potential and electric field

around a three-dimensional vesicle. Chapter 4 explores the numerical solution of the

moving interface problem. A new semi-implicit formulation of the original gradient

augmented level set method is presented and this is followed by a note on possible

extension of the semi-implicit algorithm for the level set jet schemes. Chapter 5 details

the development of a novel projection method to solve for the velocity field, pressure

and tension. The volume incompressibility and surface in-extensibility conditions

are being satisfied both locally and globally through applications of pressure and

tension as two sets of Lagrange multipliers. This chapter finishes by giving the overall

algorithm for the electrohydrodynamic simulation of the vesicle using all the above-

mentioned proposed methods. Chapter 6 is devoted to sample results of the vesicle

hydrodynamics in both quiescent flow and under linear shear flow in the context of

experimental observations. The robustness of the method is tested by investigating

different regimes of motions and comparing the results against experimental and

other available numerical works. The major findings of this work is presented in

Chapter 7 where the electrohydrodynamics of the vesicle in strong electric fields is

vastly investigated. The success of the method in predicting the behaviors observed

in experiments is justified. Also, a comprehensive investigation of the important

parameter space is given for the POP transition. As another interesting example, the

combined effects of DC fields with linear shear flow is investigated in this chapter.
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The mixed effects of conductivity and viscosity ratios are studied in the context of

causing tank-treading, tumbling or other yet unknown behaviors. Ultimately, Chapter

8 presents the final remarks including the implication of this analysis in the light of

its biological applications and possible future work.
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Chapter 2

Theory and Formulation

To gain physical insight into the problem a good understanding of the innate prop-

erties of the vesicle membrane is required. A vesicle in an aqueous solution may

bear a qualitative resemblance to droplets in the sense that they are both deformable

and a fluid-fluid interface is present in both situations. However, the structure of

lipid bilayers in vesicles bring about more complex features which are not normally

present in the modeling of drops and bubbles. The membrane fluidity, inextensibility,

stretching and bending resistance are all important factors and the interplay between

them determine the dynamics of the vesicle in fluid flow. Furthermore, application of

an external electric field gives rise to another interesting yet complex behavior which

is solely pertinent to vesicles; that is the impermeability of the vesicle membrane to

ions and its function as an electric barrier to ion transport. This ion separation leads

to a capacitive membrane with charges being stored on its surface. In this chapter,

the physical picture for modeling the electrohydrodynamics of vesicles is presented

and the relevant constitutive relations and governing equations are provided.
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2.1 The mechanics of the membrane

Let a three-dimensional vesicle of encapsulated volume V have a surface area of

A. The deviations from perfect sphericity is then measured by a reduced volume

parameter, v, defined as the ratio of the vesicle volume to the volume of a sphere

with the same surface area as the vesicle,

v = 3V/(4πa3) (2.1)

where a =
√
A/4π is the characteristic length scale. The typical size of the vesicle is

a ≈ 10− 20µm while the thickness of the bilayer membrane is d ≈ 5nm [82]. Due to

the three-orders of magnitude difference between the vesicle size and the membrane

thickness the membrane can be treated as an infinitesimally thin interface separating

the inner and outer fluids. The vesicle membrane is also assumed to be impermeable

to the solvent molecules and the number of lipids on the membrane does not change

over time. These two conditions result in an inextensible membrane with constant

enclosed volume and local surface area. The resulting elastic properties are expressed

in terms of the bending and tension traction forces of the membrane. These two

forces together constitute the total membrane force per unit area and are calculated

by taking the variational derivative from total energy of the membrane

τm + τ γ =
δE
δΓ

(2.2)

where τm is the bending traction and τ γ is the tension traction of the membrane,

Γ is the vesicle surface area and E is the energy of the membrane. This energy is

calculated using Helfrich model of surface energy [24]

E =

∫
Γ

(
κc (H − C0)2 /2 + κgK + γ

)
dA. (2.3)
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In this relation, H = κ1 + κ2 is twice the mean curvature (the total curvature),

κ1 and κ2 are the principle curvatures, K = κ1κ2 is the Gaussian curvature, κc

is the bending rigidity, κg is the Gaussian bending rigidity and C0 is the intrinsic

spontaneous curvature. According to the Gauss-Bonnet theorem, for a vesicle with

unchanging topology the integral
∫

Γ
κgKdA is constant [7]. Also in the absence of

any asymmetry of the bilayer across the membrane one can set C0 to zero. After

taking the derivative and simplifying the terms, the bending and tension stresses are

ultimately found to be

τm = κc(
H3

2
− 2HK +∇2

sH)n, τ γ = γHn−∇sγ, (2.4)

where ∇s and ∇2
s are the surface gradient and surface Laplacian operators, γ is the

tension and n is the outward unit normal on the interface. The total and Gaussian

curvatures can be also formulated in terms of the the unit normal vector n such that

K = ∇ · [n∇ · n+ n× (∇× n)], (2.5)

H = ∇ · n. (2.6)

Another important feature of the membrane is its insulating property and imper-

meability against ionic transfer. Consider a vesicle with electric conductivity of the

interior region being smaller than the electric conductivity of the surrounding fluid.

By applying an external electric field the charges in both regions start migrating to-

wards the interface. However, accumulation of charges on the membrane happens at

different rates due to the difference in the electric conductivity, see Fig. 2.1. This

gives rise to a charge density imbalance on the two sides of the bilayer. With a zero

thickness assumption for the membrane, this appears as an induced surface charge

and makes the membrane acts as a capacitor in the presence of an external electric

field. Therefore rather than having a continuous potential across the interface which
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is the case for drops, a jump in the potential field is predicted on the vesicle mem-

brane. The resulting capacitive property plays an important role in the dynamics of

vesicles exposed to electric fields.

E

sout

+ + + + + + + + +

+ + + +

sin sout>
Figure 2.1: Part of the vesicle membrane subjected to external electric field. Under
infinitesimally thin assumption, ion impermeability of the membrane and difference
between electrical conductivity of the inner fluid, sin versus conductivity of the outer
fluid, sout, the vesicle appears as an induced surface charge and acts as an electrical
capacitance.

2.2 Electric field equations

A schematic of the vesicle exposed to an external electric field is illustrated in Fig.

2.2. Different properties inside(−) and outside(+) of the membrane are shown in the

figure. The embedded region (Ω−) is separated from the surrounding region (Ω+) by

the vesicle membrane represented as Γ. This membrane is assumed to be made of

charge-free lipid bilayers with a capacitance Cm and conductivity Gm. The vesicle

suspended in a media of conductivity s+ and dielectric constant ε+. The enclosed

region is assumed to have a different conductivity s− and dielectric constant ε−.

Both fluids are treated as leaky dielectrics and thus are weakly conducting.

Since there is no local free charge density in the domain, the electric field (E) is

irrotational and given as the negative gradient of the electric potential (Φ),

Ek = −∇Φk. (2.7)
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Figure 2.2: Schematic of a vesicle subjected to external electric field

Equation (2.7) implies that the electric potential is a solution of Laplace equation in

each domain

∇2Φk = 0. (2.8)

However, the presence of the capacitive interface leads to a discontinuity in the

potential across the membrane

Φ+ − Φ− = −Vm(t), (2.9)

where Vm(t) is the time-varying trans-membrane potential and can be obtained from

the conservation of current density across the membrane [85, 84, 19],

Cm
∂Vm
∂t

+GmVm = s±(n ·E±) + ε±
∂(E±)

∂t
· n+∇s ·

(
uQ±

)
, (2.10)

where Q± is the induced charge densities on the top and bottom side of the membrane

and n is the outward facing normal vector on the interface. In the limit of fast bulk

charge relaxation and negligible charge convection the time evolution of E± and

the convection of charges can be ignored [84]. If the response of the system in the
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presence of AC electric fields is desired then these terms must be kept. Under these

assumptions the simplified version of Eq. (2.11) is ultimately given as

Cm
dVm
dt

+GmVm = n · (s±E±). (2.11)

Assuming that the membrane conductance and capacitance have uniform and con-

stant values on the interface, the trans-membrane potential will only depend on

changes in the surrounding domain electric potential and the interface shape. Fur-

thermore, the continuity of the Ohmic current J = sE in the normal direction across

the membrane can be written as

n · (J+ − J−) = n · (s+E+ − s−E−) = 0. (2.12)

The net charges density Q induced on the membrane as a result of external electric

field is expressed as the jump in the normal component of displacement field D = εE

n · (ε+E+ − ε−E−) = Q. (2.13)

This net charge imbalance across the interface occurs due to the fact that charges

from inside and outside of the vesicle accumulate on the interface at different rates.

This itself is because of the difference in electrical conductivities of the internal and

external regions. The electric stress τ el acting on the membrane is obtained from the

Maxwell tensor T el:

τ el = n · (T+
el − T

−
el), T hd = ε(EE − 1

2
E ·EI) on Γ. (2.14)
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2.3 Fluid flow equations

Assume that both fluids are Newtonian and incompressible with a matched density

ρ. Consequently they both satisfy the Navier-Stokes equations,

ρ
Du±

Dt
= ∇ · T±hd and ∇ · u± = 0 in Ω±. (2.15)

where u is the velocity vector and T hd is the bulk hydrodynamic stress tensor defined

as

T±hd = −p±I + µ±(∇u± +∇Tu±) in Ω±. (2.16)

The fluid flow in each region is coupled via the conditions on the inextensible

membrane. The velocity is assumed to be continuous on the surface, [u] = 0. How-

ever, the hydrodynamic stress undergoes a jump across the interface of the two fluids.

This condition is obtained by balancing the hydrodynamic and electric stresses with

bending traction, τm, and in-extension traction, τ γ of the membrane

τ hd + τ el = τm + τ γ on Γ. (2.17)

where τ hd is defined as τ hd = n · (T+
hd − T

−
hd).

The last but not least is the local area incompressibility constraint on the mem-

brane. This condition is enforced by ensuring that the velocity is surface-divergence

free on the membrane

∇s · u = 0 on Γ. (2.18)

2.4 Description of the interface

The motion of the interface is tracked using a gradient-augmented level set method.

First developed by Osher and Sethian [61] the level set method is based upon an
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implicit representation of an interface as the zero level set of a higher dimensional

function. This was later extended to explicitly include information about the gra-

dients of the level set [56]. The use of gradient information allows for the accurate

determination of the interface location and curvature information away from grid

node locations [56].

Using the same notation for the interface as Fig. 2.2 the level set function φ is

defined as

Γ(t) = {x : φ(x, t) = 0} , (2.19)

while the level set gradient field is defined as

ψ = ∇φ. (2.20)

The level set value is chosen to be negative in the Ω− and positive in the Ω+ domain.

This representation has the advantages of treating any topological changes naturally

without complex remeshing, and the ability to calculate geometric quantities from the

level set function and its derivatives. For example, the unit normal to the surface, n,

can be easily computed as

n =
ψ

‖ψ‖
. (2.21)

The motion of the interface under the flow field u is modeled by a standard

advection equation

∂φ

∂t
+ u · ∇φ = 0. (2.22)

The evolution of the gradient field is obtained by taking the gradient of the level set

advection equation,

∂ψ

∂t
+ u · ∇ψ +∇u ·ψ = 0. (2.23)
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Using the level set function one is able to define the viscosity at any location in

the computational domain, x, with a single relation,

µ(x) = µ− + (µ+ − µ−)H(φ(x)), (2.24)

where H is the Heaviside function. Different first and second order accurate regular-

ization formulations have been proposed to approximate Heaviside and Dirac delta

functions [65, 88, 22]. Here an accurate method based on an integral calculation [90]

is used. The Heaviside is defined as

H(φ(x)) =
∇=(φ(x)) · ∇φ(x)

‖(∇φ(x))‖2
(2.25)

where

=(z) =

∫ z

0

H̄(ζ)dζ and H̄(ζ) =


0 if ζ < 0

1 if ζ > 0

.

Similarly the Dirac delta function is expressed as

δ(φ(x)) =
∇H(φ(x)) · ∇φ(x)

‖(∇φ(x))‖2
. (2.26)

The Dirac delta function will be used to localize the contributions of interface forces

in Navier-Stokes equations.

2.5 Continuous Surface Force Model

Through utilization of the level set properties and definitions given for Heaviside and

Dirac delta functions one is able to rewrite the hydrodynamic equations of binary

fluids with different properties into one single formulation [13]. Another interesting
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aspect of this formulation is that the singular forces of the membrane can be em-

bedded into a body force term and included in the momentum equation. Therefore

the contributions due to the electric field, bending and surface tension of the vesicle

can be localized over a small region near the interface using the Dirac delta function.

This is accomplished by writing the singular contributions of the bending, tension,

and electric field forces as localized body force terms, similar to what has been done

for two dimensional vesicles [72, 74]. Putting together this representation with the

governing equations in (2.15) and surface conditions in (2.17) we write the hydrody-

namic equation of the vesicle in the single-fluid form for the entire domain as (See

appendix A for the proof)

ρ
Du

Dt
= −∇p+∇ · (µ(∇u+∇Tu))

+ δ(φ)

(
| ∇φ | ∇sγ − γH∇φ

)
+ κcδ(φ)

(
H3

2
− 2KH +∇2

sH

)
∇φ

+ δ(φ) | ∇φ | n ·
[
ε(EE − 1

2
E ·EI)

]
(2.27)

with

∇ · u = 0 in Ω. (2.28)

∇s · u = 0 on Γ. (2.29)

As it will be explained in the Level Set Reinitialization and Closest Point Calcula-

tions in Chapter 4, all surface quantities in the above formulation such as tension or

the jump of the Maxwell stress tensor, are calculated on the interface and extended

such that they are constant in the direction normal to the interface.
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2.6 Dimensionless Parameters

There are several physical time scales associated with the electrohydrodynamics of

the vesicle. When an electric field is applied to the system charges from inside and

outside of the membrane start migrating to the interface at different rates which causes

inhomogeneous redistribution of bulk charge density. The time scale associated with

this migration process is given by the bulk charge relaxation time [77, 54],

t±c =
ε±

s±
. (2.30)

For an ion-impermeable membrane the characteristic time scale associated with

the charging process is given by [91, 31]

tm = aCm

(
1

s−
+

1

2s+

)
, (2.31)

where a is the characteristic length scale previously defined in Sec.2.1. The applied

electric stresses act to deform the vesicle membrane on the electrohydrodynamics time

scale given by

tehd =
µ+(1 + η)

ε+E2
0

, (2.32)

where the applied electric field has a strength of E0 and η = µ−/µ+ is the viscosity

ratio. The bending forces act to restore the membrane to an equilibrium configuration

on the bending time scale,

tκ =
µ+a3(1 + η)

κc
. (2.33)

Finally, the response time of a vesicle to any externally applied shear flow is simply

the inverse of the shear rate, γ̇0,

tγ̇ =
1

γ̇0

. (2.34)
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In order to choose a proper simulation time scale, it is beneficial to estimate the

order of magnitude for the times at which different physical processes occur. Typical

experimental values of the physical properties have been reported as a ≈ 20 µm,

κc ≈ 10−19 J, s+ ≈ 10−3 S/m, s− = s+/10, ε+ ≈ 10−9 F/m, Cm ≈ 10−2 F/m2,

ρ ≈ 103 kg/m3, γ̇0 ≈ 1 s−1 and µ− = µ+ ≈ 10−3 Pa s [67, 75, 57, 70]. Using

these values the bulk charge relaxation time is tc ≈ 10−6 s, the bending time scale is

tκc ≈ 160 s, the membrane charging time scale is tm ≈ 2× 10−3 s, the time scale for

shear is tγ̇ = 1 s and for an electric field of E0 = 105 V/m the electrohydrodynamic

time scale will be tehd ≈ 10−4 s.

The first thing to notice is that the bulk charge accumulation on the interface

happens in a much faster time than any other events. Therefore, it can be concluded

that the electric field adjusts to a new configuration of the vesicle and fluid almost

instantaneously and the quasi-static assumption for the electric field in Eq (2.7) is

valid. It is also important to note that with this parameter set the electrohydrody-

namics time scale, tehd, is faster than the membrane charging time scale, tm. If this

is not the case then the vesicle membrane will not be able to respond quickly enough

to the applied forces, and only small deformations will be observed [75, 79].

2.7 Nondimensional Model

Given a characteristic length a and time t0 the characteristic velocity is given by

u0 = a/t0. Material quantities such as viscosity and permittivity are normalized by

their counterparts in the (outer) bulk fluid (i.e. µ̂ = µ/µ+ and ε̂ = ε/ε+). The
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dimensionless fluid equations are written as

Dû

Dt̂
=− ∇̂p̂+

1

Re
∇̂ · (µ̂(∇̂û+ ∇̂T û))

+ δ(φ)‖∇̂φ‖
(
∇̂sγ̂ − γ̂Ĥ∇̂φ

)
+

1

Ca Re
δ(φ)

(
Ĥ3

2
− 2K̂Ĥ + ∇̂2

sĤ

)
∇̂φ

+
Mn

Re
δ(φ)‖∇̂φ‖

[
ε̂

(
ÊÊ − 1

2

(
Ê · Ê

)
I

)]
· n

(2.35)

where dimensionless quantities are denoted by a hat. The velocity at the boundary

of the domain is given as u∞ = χŷ where χ = γ̇t0 is the normalized applied shear

rate. The uniform DC electric field at the boundary is imposed as Φ∞ = Êŷ where Ê

is the normalized strength of the applied electric field. The dimensionless parameters

are defined as follows. The Reynolds number is taken to be Re = ρu0a/µ
+, while the

strength of the bending is given by a capillary-like parameter, Ca = tκ/t0 and the

strength of the electric field is given by the Mason number, Mn = t0/tehd.

The time-evolution equation of the transmembrane potential is nondimensional-

ized in a similar manner:

Ĉm
∂V̂m

∂t̂
+ ĜmV̂m + û · ∇

(
ĈmV̂m

)
= λn̂ · Ê− = n̂ · Ê+, (2.36)

where the dimensionless membrane capacitance is given as Ĉm = (Cma) / (t0s
+), the

dimensionless membrane conductivity is Ĝm = (Gma) /s+ and the conductivity ratio

is expressed as λ = s−/s+.

The most appropriate time scale would be the one that enables us to capture

all the important physics in the problem. For electrohydrodynamic simulations in

the absence of shear flow the most appropriate time scale is the membrane-charging

time, tm [75]. This is due to the significantly faster dynamics of the vesicle in elec-

tric fields than the hydrodynamic problem. Hence for all the electrohydrodynamic
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computations with no imposed shear flow (χ = 0) the simulation time scale is set to

t0 = tm and the dimensionless parameters Re, Ca and Mn are calculated accordingly.

However, using the membrane charging time scale for the hydrodynamic simulations

(Mn = 0) will lead to abnormally huge number of iterations. On the other hand, the

CFL limitations do not allow for taking larger time steps in this situation. Therefore

for the hydrodynamic computations the simulation time scale is set to the time scale

associated with shear flow (t0 = tγ̇). This time scale has been also used for the inves-

tigation of the vesicle dynamics under combined shear flow and weak electric field.

This seems to be a rational choice as the time scale of the applied weak electric field

is in the same range as the one for the shear flow.

Using the typical experimental values of the physical parameters discussed earlier

in Sec. 2.6 the non-dimensional numbers for simulations in the absence of shear are

t0 = tm = 2.1× 10−3 s, Ĉm = 0.095, Ĝm = 0, Re = 0.19, Ca = 3.8× 104, Mn = 18,

E0 = 1, and χ = 0. Clearly, at this time scale the Reynolds number is not small

enough to justify the Stokes approximation while the bending contribution is almost

negligible. Despite the small contribution from the bending in this situation it is

kept in the formulation as it may become important during other time-scales, such

as when shear is applied.

For simplicity the hat notation in the equations henceforth dropped. All the above

mentioned parameters along with the viscosity ratio, η, and reduced volume, v, will

be used to investigate the dynamics of a three-dimensional vesicle in different flow

conditions and strength of electric field.
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Chapter 3

The Solution of the Electric Field

Consider solving for the potential in the entire domain, ∇2Φ = 0, using a finite

difference method. Large errors are introduced into the solution near the interface

due to the discontinuous electrical conductivity and potential field. A simplified

augmented Immersed Interface Method is used in this work to address the issue

of solving discontinuous PDEs across an embedded interface. To produce accurate

solutions the jump of the solution across the interface is included in the numerical

discretization.

In this chapter the Immersed Interface Method is briefly described. This is fol-

lowed by the derivation of the electric potential jump conditions and the specific

numerical implementation. Lastly, various numerical experiments are presented to

illustrate the convergence, accuracy and robustness of the present method. Inves-

tigations verify the second-order accuracy of the underlying discretization even in

the presence of solution discontinuities. The content of this chapter is published in

Applied Mathematics Letters [33].

25



3.1 The Immersed Interface Method

First introduced by Leveque and Li [42], the Immersed Interface Method is a finite

difference method used to solve discontinuous PDE fields across an embedded inter-

face. To produce accurate solutions the jump conditions of the solution are explicitly

included in the numerical scheme. This method has been used extensively to solve el-

liptic problems with interfaces [42, 43, 44] and later was extended to model the Stokes

or Navier-Stokes equations with singular forces and discontinuous viscosity [47, 40].

Furthermore, this method is able to handle sharp interfaces with discontinuities and

singularities in the coefficients and the solutions [45].

In the Immersed Interface Method grid points can be classified as either regular

or irregular points, schematically shown in Fig. 3.1. Regular nodes are defined as

those nodes where the interface does not cross the discretization of the PDE. These

nodes are treated normally upon discretization, meaning that no modification needs

to be applied to the stencil. Irregular nodes, on the other hand, are the ones where

the interface crosses the stencil. Modifications need to be made to take into account

the discontinuity of the solution at such nodes.

Consider the solution of the electric potential from Eq. (2.8). For the irregular

node χi,j, shown in Fig. 3.1, a second-order central finite difference discretization of

the Laplace operator results in

Φ+
i,j−1 + Φ+

i−1,j − 4Φ+
i,j + Φ+

i+1,j + Φ+
i,j+1

h2
= 0, (3.1)

where we have made the assumption that the whole stencil exists in the Ω+ domain.

However, in reality the point χi,j−1 resides in the Ω− domain, not the Ω+ domain.

To account for this mismatch in the discretization we define a jump in a quantity f
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φ

Γ

Ω+

Ω-

χi,j

Figure 3.1: Sample stencils for regular node (circle) and irregular node (square). The
stencil in dashed-red crosses the interface and corrections need to be applied. Here ϕ
is the signed distance function to the closest point on the interface from a grid point.

across the interface as

[f ] = lim
ε→0+

f(χΓ + εn)− lim
ε→0+

f(χΓ − εn), (3.2)

where χΓ is the closest-point location on the interface to the grid point χ and n is the

outward normal vector (Fig. 3.2). Quantities on the interface can be defined based

on the direction from which the interface is approached,

f− = lim
ε→0+

f(χΓ − εn), (3.3)

f+ = lim
ε→0+

f(χΓ + εn). (3.4)

Assume that the physics of the problem provides enough information to derive the

jumps in the solution, [Φ], the first normal derivative, [∂Φ/∂n], and the second normal

derivative, [∂2Φ/∂n2], on the interface. Consequently the jump can be extended to a

27



Figure 3.2: Sample grid showing interface and outward facing normal. The grid node
denoted by the cross requires corrections due to discontinuities in the stencil. The
corrections are calculated at the circle and extended out to the grid node.

grid point by applying a Taylor Series expansion in the normal direction about the

closest point location [23, 38],

[Φ]i,j = [Φ] + ϕi,j

[
∂Φ

∂n

]
+
ϕ2
i,j

2

[
∂2Φ

∂n2

]
+O(h3), (3.5)

where ϕi,j is the signed distance function from the grid point χi,j to the corresponding

location on the interface. By extending the solution jumps from the interface to the

grid points it can be written that Φ+
i,j−1 = Φ−i,j−1 − [Φ]i,j−1. Using this expression in

Eq. (3.1) results in the corrected discretization,

Φ−i,j−1 + Φ+
i−1,j − 4Φ+

i,j + Φ+
i+1,j + Φ+

i,j+1

h2
+

[Φ]i,j−1

h2
= 0. (3.6)

The known jump value, [Φ]i,j−1, is obtained from Eq. (3.5) and can be moved to

the right-hand side of the linear system as an explicit correction term,

Φ−i,j−1 + Φ+
i−1,j − 4Φ+

i,j + Φ+
i+1,jΦ

+
i,j+1

h2
= Ci,j, (3.7)
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where Ci,j = −[Φ]i,j−1/h
2 is the total correction needed to discretize the Laplace

operator over the irregular node χi,j. The extension of this method to irregular nodes

on either side of the interface and to three-dimensional systems is straight-forward.

3.1.1 The electric potential jump conditions

By including the corrections the governing equation for the electric potential is written

over the entire domain as,

∇2Φ = C, (3.8)

where the total correction C is only non zero for irregular nodes. To obtain second-

order spatial accuracy in the solution the jumps in the electric potential and up to

the second normal derivative are needed across the interface [38]. The first jump

condition is obtained directly from the time-varying trans-membrane voltage, Eq.

(2.9),

[Φ] = −Vm, (3.9)

where Vm is a time-varying quantity with the evolution being described by Eq. (2.11).

To discretize this equation, first make use of Eq. (2.7) to express the electric field in

terms of the electric potential. This results in the expression

Cm
dVm
dt

+GmVm = −s±∂Φ±

∂n
. (3.10)

Using a second-order in time discretization and treating the term GmVm implicitly

results in

Cm
3V n+1

m − 4V n
m + V n−1

m

2∆t
+GmV

n+1
m = −s±∂Φ±

∂n
. (3.11)
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Solving for the trans-membrane potential V n+1
m gives the jump of the electric potential

across the interface in Eq.(3.9),

[Φ] =
1

3Cm + 2∆tGm

(2∆ts±
∂Φ±

∂n
− 4CmV

n
m + CmV

n−1
m ). (3.12)

To derive the jump condition for the first normal derivative of electric potential the

continuity of current density across the interface is used:

0 = s+∂Φ+

∂n
− s−∂Φ−

∂n
, (3.13)

0 = s+∂Φ+

∂n
− s−∂Φ−

∂n
+ s−

∂Φ+

∂n
− s−∂Φ+

∂n
, (3.14)

0 =
(
s+ − s−

) ∂Φ+

∂n
+ s−

(
∂Φ+

∂n
− ∂Φ−

∂n

)
, (3.15)

0 = [s]
∂Φ+

∂n
+ s−

[
∂Φ

∂n

]
. (3.16)

Similarly it can be shown that

0 = [s]
∂Φ−

∂n
+ s+

[
∂Φ

∂n

]
. (3.17)

Solving for the jump in the normal electric field yields

[
∂Φ

∂n

]
= − [s]

s+

∂Φ−

∂n
= − [s]

s−
∂Φ+

∂n
. (3.18)

For the jump in the second normal derivative, start with the relation between the

Laplacian and the surface Laplacian of an arbitrary scalar function,

∇2Φ ≡ ∇2
sΦ +H

∂Φ

∂n
+
∂2Φ

∂n2
. (3.19)

where∇2
s = [(I − n⊗ n)∇]·[(I − n⊗ n)∇] is the surface Laplacian andH = ∇·n is

the total curvature. As there is no jump in the curvature applying the jump operator
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results in

[∇2Φ] = [∇2
sΦ] +H[

∂Φ

∂n
] + [

∂2Φ

∂n2
], (3.20)

Previous work has shown that the jump condition commutes with differentiation along

the interface, [∇2
sΦ] = ∇2

s[Φ], see Ref. [100]. Also note that the jump in the Laplacian

of the electric potential is zero, [∇2Φ] = 0. It is thus possible to write the jump in

the second normal derivative as

[
∂2Φ

∂n2

]
= −∇2

s[Φ]−H
[
∂Φ

∂n

]
, (3.21)

where the expressions for [Φ] and [∂Φ/∂n] are already given in Eq. (2.9) and Eq.

(3.18), respectively.

The jumps are calculated on the interface and extended to the surrounding nodes

by extrapolating in the normal direction. The extended jumps at grid points, [Φ]gp,

are given by

[Φ]gp = [Φ] + d

[
∂Φ

∂n

]
+
d2

2

[
∂2Φ

∂n2

]
, (3.22)

where d is the signed distance from the grid point to the interface. Using these

extended jumps the corrections can be calculated, see Ref. [38] for more information

on the Immersed Interface Method.

3.1.2 Implementation details

The goal is to solve for the electric potential field in a rectangular domain discretized

using a Cartesian grid with uniform grid spacing h. Let the Ωmin domain contain

the fluid with the smaller electrical conductivity. To proceed with the numerical

implementation define the normal electric field in the Ωmin domain as r = ∂Φmin/∂n.

Note that this quantity is only defined on the embedded interface. With the new
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definition the complete set of jump conditions in Sec. 3.1.1 can be rewritten as

[Φ] =
1

3Cm + 2∆tGm

(2∆tsminr − 4CmV
n
m + CmV

n−1
m ), (3.23)

[
∂Φ

∂n
] = − [s]

smax
r, (3.24)

[
∂2Φ

∂n2
] = ∇2

s[Φ]−H
[
∂Φ

∂n

]
, (3.25)

where smax is the larger of the two fluid conductivities. If r is known then the jump

conditions are fully defined. It would then be possible to use the Immersed Interface

Method to solve for Φ in the entire domain. Unfortunately, the value of r is not

explicitly known but must be determined as part of the problem. Here a technique

first introduced for the solution of the Stokes equations [46] is used to determine Φn+1

and r simultaneously.

All the electric potential jump conditions are linear. Hence, all the Immersed

Interface corrections will be linear near the interface. Therefore, the resulting linear

system from the field equation in Eq. (3.8) can be written in operator form as

LΦ = C, (3.26)

where L is the Laplacian operator and C is the vector containing the required cor-

rections. The total correction C can be split into corrections due to r and trans-

membrane potential at time tn−1 and tn,

C = A0r +B0 (3.27)

where A0 is a linear operator and B0 contains the known contribution from the

previous voltages. By combining (3.27) and (3.26), it is possible to solve for electric

potential,

Φ = L−1A0r +L−1B0. (3.28)
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Let Mn be the one-sided normal derivative operator such that MnΦ = r. It is now

possible to write

MnΦ = r = MnL
−1A0r +MnL

−1B0. (3.29)

Equation (3.29) clearly shows that the normal electric field, r, has two linear

contributions. These is a contribution from the trans-membrane potential at previous

times and a contribution from the normal electric field itself. As the quantity B0 is

known, that particular contribution can be explicitly calculated as

r0 = MnL
−1B0, (3.30)

which is simply the solution of the electric potential field using only the contribution

to the jump conditions from V n
m and V n−1

m (i.e. the jump conditions in Eqs. (3.23)-

(3.25) are computed with r = 0). This electric potential solution is then projected

onto the normal electric field space through the Mn operator.

The second contribution is from the still-unknown normal electric field, r. This

contribution, though, can be written as MnL
−1A0r = Ar, where Ar is the solu-

tion of the electric potential projected onto the normal electric field space by only

considering the r contributions to the jump conditions.

Using this simplified notation it can be stated that r is the solution to the following

linear system,

(A− I)r = −r0. (3.31)

As this linear system can not be written in explicit form, a matrix-free iterative

linear system solution method is needed to obtain the solution. The quantity r is

only defined on the interface and is thus a lower dimension than the computational

domain. Therefore a solver such as GMRES proves to be an excellent choice.

To complete this section a word needs to be said about computing the normal

electric potential derivative, r = MΦ, and the calculation of surface Laplacian,
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∇2
s [Φ] = −∇2

sVm, at a point on the interface. First consider the surface Lapla-

cian of the trans-membrane potential. The trans-membrane voltage is only given on

the interface. To facilitate calculations Vm is extended in the normal direction into

the embedding region near the interface. It has been shown that standard Cartesian

derivatives are equal to surface derivatives if the quantity of interest is constant in

the normal direction, see the Closest Point Method for more details [49].

Next, let IΦ
3 be a bi-cubic (in 2D) or tri-cubic (in 3D) interpolant of the electric

potential for the cell containing the interface point of interest, see Fig. 3.2. The

normal derivative operator M can be calculated as appropriate derivatives of the

interpolant and the outward unit normal, M := n · ∇IΦ
3 . To calculate a normal

derivative in a particular fluid it is simply necessary to apply the corrections to the

opposite fluid’s nodes, e.g. if r = ∂Φ+/∂n the corrections would be applied to all

nodes in the Ω− fluid. In this way a particular fluid’s normal electric field can be

calculated and discontinuities in the field can be taken into account.

It should be noted that a similar scheme to model the electrohydrodynamics of

a leaky dielectric drop has recently been presented [25]. Unlike a vesicle, a drop in

the presence of an electric field does not have an electric potential jump across the

interface. Thus the jump in electric potential is not evolving in time and is set to

zero.

To sum up, assuming that the electric potential at the previous two time-steps

are known the overall algorithm is given as:

Step I: Solve for the electric potential field only using corrections due to V n
m and

V n−1
m : Φ0 = L−1B0 using the given physical boundary conditions.

Step II: Compute the constant contribution to the normal electric field as r0 =

MΦ0.

34



Step III: Use a matrix-free iterative solver such as GMRES to solve

(A− I) r = −r0. Each matrix-vector product (A− I) r requires the following

steps:

Step 1: Solve for the electric potential using the given r: Φr = L−1A0r using

uniform boundary conditions of Φr|bc = 0.

Step 2: Calculate the normal electric field as Ar = MΦr.

Step 3: Return the quantity Ar − r as the matrix-vector product.

Step IV: The electric potential field in the computational domain is Φn+1 = Φ0+Φr.

Step V: The new trans-membrane potential is updated using Eq. (3.11).

3.2 Sample results

In this section the convergence, accuracy and robustness of the novel Immersed In-

terface method is investigated through various numerical experiments. In particular,

convergence results are presented demonstrating the accuracy of the method. Both

single time-step and multi-time-step convergence are considered. Additionally, the

number of GMRES iterations needed to obtain convergence is also investigated. In

the next step to validate the code, the method is compared to an analytic solution

based on spherical harmonics and verifies the second-order accuracy of the underlying

discretization even in the presence of solution discontinuities. Finally, a qualitative

study is presented to illustrate the change of domain and trans-membrane potentials

over time for an ellipsoidal vesicle in the presence of a uniform DC electric field.

35



3.2.1 Convergence results

Time-Varying Convergence

Consider a spherical vesicle of radius one centered at the origin. The physical domain

is a [−2, 2]3 cube. The conductivities of the regions are set to be s− = 50.0 in the inner

region and s+ = 1.0 in the outer region. For simplicity, the membrane capacitance

and conductance are both set to Cm = Gm = 1.0. The relative convergence tolerance

for all iterative linear system solvers is set to 10−5. To examine the accuracy of the

underlying discretization of the problem, a well-behaved time-dependent solution of

the electric potential field is developed. This analytic solution was created to satisfy

the field equations and all jump conditions. The exact solution of the electric potential

and trans-membrane potential are taken to be

Φ− =
exp(−t)
s−

(3x2 − y2 − 2z2), (3.32)

Φ+ = exp(−t)(3x2 − y2 − 2z2), (3.33)

Vm =
exp(−t)
s−

(3x2 − y2 − 2z2)− exp(−t)(3x2 − y2 − 2z2). (3.34)

The initial trans-membrane potential is given as

V0 = Vm(t = 0) =
(3x2 − y2 − 2z2)

s−
− (3x2 − y2 − 2z2). (3.35)

A Dirichlet boundary condition of Φbc = φ+ is imposed on the domain boundaries.

The errors at a final time of 0.375 are shown in Tables (3.1) and (3.2). Overall the

domain electric potential observes second-order convergence in the L∞-norm error

while the trans-membrane potential has a slightly higher accuracy. This matches the

underlying second-order finite difference approximation of the spatial derivatives. It

is important to note that the extension of the jumps need to be calculated to third

order accuracy to ensure that irregular nodes have a local truncation error of O(h).
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Table 3.1: Domain Potential (Φ) error for a sphere on the domain [−2, 2]3 for a time-varying
function. The time step is ∆t = h while the final time is Tfinal = 0.375.

N L2 Order L∞ Order
33 2.53× 10−6 - 4.52× 10−3 -
65 2.39× 10−7 3.40 1.19× 10−3 1.98

129 2.26× 10−8 3.40 3.15× 10−4 1.99
257 1.98× 10−9 3.51 8.08× 10−5 2.01

Table 3.2: Trans-membrane potential(Vm) error for a sphere on the domain [−2, 2]3 for a
time-varying function. The time step is ∆t = h while the final time is Tfinal = 0.375.

N L2 Order L∞ Order
33 5.38× 10−6 - 5.81× 10−3 -
65 3.56× 10−7 3.92 1.36× 10−3 2.81

129 2.31× 10−8 3.94 3.34× 10−4 2.84
257 1.48× 10−9 3.96 8.56× 10−5 2.26

Despite this lower local truncation error, the overall method will retain the second-

order accuracy of the underlying discretization. If the second-normal derivative jump

is not taken into account, the local truncation error for irregular nodes will be reduced

to O(1) and the overall scheme would only be first-order [43, 23, 3].

One possible limitation of the method is the number of GMRES iterations. As

each matrix-vector product requires the solution of a linear system, a large number of

GMRES iterations would result in an extremely computationally expensive method.

In Fig (3.3) the number of GMRES iterations versus the time step for the example

in this section are provided. In all cases the number of GMRES iterations remains

between three and six, regardless of the grid size. While this is not a complete test

it appears that the number of GMRES iterations slightly decreases as the mesh size

decreases.

Validation of the method

Consider a spherical vesicle placed in an electric field in the absence of membrane

conductivity, Gm = 0. In this simple case an analytic solution exists for the electric
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Figure 3.3: The number of GMRES iterations versus time for different mesh sizes.

potential and trans-membrane potential [79]. Let the electric field far from the vesicle

be given byE∞ = E0ŷ. The electric potential can be written in terms of spherical har-

monics: Φ± = −E0

(
Y −1

1 + Y 1
1

)
P±, where Y ±1

1 are the first-order spherical harmonic

modes and P± is a function of the membrane capacitance Cm, the conductivity ratio

between the inner and outer fluids, Λ = s−/s+, and time, t. The trans-membrane

potential has a solution of Vm = V̄ (t)E0

(
Y −1

1 + Y 1
1

)
where V̄ (t) ∼ 1− exp(−t). See

Ref. [79] for details of solution.

Using a conductivity ratio of Λ = 0.1, membrane capacitance of Cm = 1, and

an external electric field strength of E0=1 the time-evolution of the electric potential

field and trans-membrane potential in Ω = Ω−∪Ω+ for a spherical vesicles of radius 1

has been calculated up to a time of t = 20. The domain spans the region [−4, 4]3 and

Dirichlet boundary conditions are imposed on the computational domain boundary.

Convergence results for grid spacing ranging from h = 0.0313 to h = 0.125 using a

time step of ∆t = h are reported in Table 3.3. The electric potential, trans-membrane
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potential, and normal electric field (r in the numerical method) are all consistently

second-order accurate in the L∞-norm error.

Table 3.3: Convergence results for the electric potential, trans-membrane potential, and
electric field normal to the interface for a spherical vesicle of radius 1. The normalized
inner fluid conductivity is 0.1 while the outer fluid conductivity is set to 1. The membrane
capacitance is set to Cm = 1 while the conductivity is Gm = 0. The external electric field
has strength of E0 = 1. The vesicle is placed in a [−4, 4]3 domain while the time step is
fixed as ∆t = h. All errors are computed at a time of t = 20. Comparison is done against
analytical results of Schwalbe et al. [79]

Electric Potential Trans-Membrane Potential Normal Electric Field

h L∞ Order L∞ Order L∞ Order

0.1250 4.5134× 10−3 - 3.9191× 10−3 - 8.8146× 10−4 -

0.0833 2.0335× 10−3 1.89 1.7681× 10−3 1.93 3.8786× 10−4 2.4

0.0625 1.1690× 10−3 1.82 1.0209× 10−3 1.86 2.0215× 10−4 2.22

0.0417 5.1347× 10−4 1.89 4.4380× 10−4 1.93 8.6623× 10−5 2.34

0.0313 3.0121× 10−4 1.85 2.6004× 10−4 1.88 5.1190× 10−5 2.25

Ellipsoidal vesicle in presence of uniform DC field

As an example of solving the system for a non-spherical shape consider an ellipsoidal

shape with an axis length of 3.7 in the ŷ-direction and an axis lengths of 1.33 in the

x̂- and ẑ-directions. The electric field is in the ŷ-direction and has a far-field strength

of 1. The membrane capacitance is set to Cm = 1 while the conductivity is set to a

small, but non-zero value, Gm = 0.001.

In this case the inner fluid conductivity is set to s− = 0.05 while the outer con-

ductivity is unity, s+ = 1. The time-evolution of the electric potential on the z = 0

plane and the evolution of the trans-membrane potential are shown in Fig. 3.4. Over

time the trans-membrane saturates between values of -2 and +2 and the potential of

the inner fluid flattens out, which matches what is expected for vesicles [79].
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t=0 t=46.875 t=187.5

Figure 3.4: Sample results for an elliptic interface in an electric field. The top row
are for the z = 0 plane while the bottom row is the trans-membrane potential. The
trans-membrane potential has values between -2 (blue) to +2 (red).
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Chapter 4

Interface Tracking

Many of the equations given in Chapter 2 require high order geometric quantities, such

as the curvature. To ensure that surface quantities are smooth a semi-implicit level

set advection scheme is utilized. This chapter outlines the numerical implementation

of the level set method for the evolution of the stiff interface in the vesicle simulation.

First the standard semi-implicit level set method and the original gradient augmented

level set method are separately described. The proposed combination of these two

methods then follows. This includes the complete algorithm of the novel semi-implicit

gradient augmented level set method along with sample results of mean curvature and

surface diffusion flows in both two and three dimensions. The content of this chapter

was published in the SIAM Journal on Scientific Computing [32].

The original third-order gradient augmented method has been recently generalized

to an arbitrary order under the name of jet schemes [80]. The possibility of extending

the idea of using the semi-implicit formulation for the generalized formulation of jet

schemes is discussed at the end of this chapter.
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4.1 The Original Semi-Implicit Formulation

The level set advection equation previously given in Eq. (2.22), can be written as a

Hamilton-Jacobi equation,

∂φ

∂t
+H (x, t, φ,∇φ) = 0. (4.1)

A Hamilton-Jacobi equation can be semi-discretized in time in a semi-implicit fash-

ion one of two ways. The first is to extract the linear portion of the Hamiltonian,

H (x, t, φ,∇φ), and treat it implicitly,

∂φ

∂t
+ L

(
x, tn+1, φn+1,∇φn+1

)
+N (x, tn, φn,∇φn) = 0, (4.2)

where L is the linear portion and N is the nonlinear portion such that H = L+N . If

it is not possible to explicitly extract the linear portion one can always determine an

approximation to the linear portion and solve the following semi-implicit equation,

∂φ

∂t
+H (x, tn, φn,∇φn)− L̃ (x, tn, φn,∇φn) + L̃

(
x, tn+1, φn+1,∇φn+1

)
= 0, (4.3)

where L̃ is the approximate linear portion. For mean curvature based flows it is typical

to take L̃ = β∇2φ while for surface diffusion based flows L̃ = −β∇4φ, where β is a

constant. Previous works with the semi-implicit level set method have shown that

a value of β = 1/2 results in a stable scheme for many different situations and time

steps [73, 87]. This additional smoothing allows the semi-implicit level set method to

utilize larger time steps than is possible with an explicit scheme [87]. For example, the

motion by surface diffusion of a seven-lobed star was demonstrated using an explicit

scheme [16] with a CFL condition of ∆t/h4 ≈ 0.25 compared to a CFL condition of

∆t/h4 ≈ 2× 104 for a semi-implicit scheme [87].
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4.2 The Original Gradient Augmented Method

The gradient augmented level set method, first introduced by Nave, Rosales and

Seibold [56], is an extension of the standard level set method which advects both the

level set function, φ, and the gradient vector field, ψ = ∇φ = (ψx, ψy, ψz), see Eqs.

(2.22) and (2.23). The inclusion of gradient information allows for the determination

of sub-grid information. Take as an example two grid points, x0 = 0 and x1 = 1, on

a one dimensional grid with φ (x0) = φ (x1) = 0.1 with φx (x0) = 1 and φx (x1) = −1.

The exact level set, the signed distance function, gives an interface (φ = 0) at points

x = 0.1 and 0.9. Using only the level set values linear interpolation does not return

any interface points in this domain. The additional gradient information allows for

the determination of a Hermite interpolant giving interface locations of x ≈ 0.112

and x ≈ 0.887. See Fig. 4.1 for a graphical representation.

Figure 4.1: A one-dimensional grid with data provided at grid points x = 0 and x = 1.
The linear interpolant misses the interface existing between the two grid points. The
Hermite interpolant determined using the additional gradient information finds two
interfaces close to the true interface locations.
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To ensure that the level set function and gradient field remain coupled throughout

time Eqs. (2.22) and (2.23) are advanced in a coherent and fully coupled manner [56].


∂φ
∂t

+ u · ∇φ = 0.

∂ψ
∂t

+ u · ∇ψ +∇u ·ψ = 0.

(4.4)

Lagrangian techniques are used to trace characteristics back in time to determine

departure locations. Using the available information a Hermite interpolating poly-

nomial is calculated and utilized to determine the departure values for the level set

function and gradient functions. To first-order in time this results in the following

scheme,

xd = x−∆t u (x, t) , (4.5)

∇xd = I −∆t ∇u (x, t) , (4.6)

φ (x, t) = P (xd, t−∆t) , (4.7)

ψ (x, t) = ∇xd ·G (xd, t−∆t) , (4.8)

where P (x, t) is the Hermite interpolating polynomial of φ at a time t, G = ∇P is

the gradient of the Hermite interpolant defined for the level set function, while xd and

∇xd are the departure location and “departure” gradient, respectively. It is important

to note that since the solutions of the underlying PDE are sufficiently smooth here,

the first order approximation of characteristic curves in time is consistent. However

a similar splitting for equations with shocks may lead to wrong entropy solutions and

therefore use of high resolution methods such as high order TVD schemes will be

needed [60].

Implementing a third-order version of the method Nave, Rosales and Seibold

demonstrated that for analytic flow fields the gradient augmented method is of com-
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parable quality to weighted essential non-oscillatory (WENO) schemes but with op-

timally local stencils. A more recent work by Chidyagwai et. al. demonstrates that

for a given grid size a WENO scheme is less computationally expensive than a gra-

dient augmented scheme [14]. However, the overall grid size to achieve a particular

accuracy level is larger for a gradient augmented level set method than a WENO

scheme. It was demonstrated that for a given accuracy the gradient augmented level

set method is less computationally expensive than a WENO scheme. In general gradi-

ent augmented schemes are more computationally efficient than comparable WENO

schemes. In both of these gradient augmented works results for flows depending on

derivatives of the level set function where not presented.

4.3 A semi-implicit gradient augmented level set

method

The original gradient augmented level set method is only applicable to linear advection

equations. For nonlinear curvature-based flows such as vesicle simulation, it is not

possible to take time steps on the order of the grid spacing, as it is with general semi-

implicit methods. This issue is addressed by introducing a semi-implicit gradient

augmented level set method. This method is a combination of the methods explained

in Secs. 4.1 and 4.2. The goal is to combine the additional accuracy afforded by

explicitly tracking gradient information with the stability properties of a semi-implicit

scheme. The system of equations in Eq.(4.4) is rewritten as


Dφ
Dt

+ βLφ− βLφ = 0,

Dψ
Dt

+∇u ·ψ + βLψ − βLψ = 0.

(4.9)
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where D/Dt is the material (Lagrangian) derivative, L is a linear operator, and β is

a constant. To first-order in time this can be written as

xd = x−∆t u (x, t) , (4.10)

∇xd = I −∆t ∇u (x, t) , (4.11)

φ̃ = P (xd, t−∆t) , (4.12)

ψ̃ = ∇xd ·G (xd, t−∆t) , (4.13)

φn+1 − φ̃
∆t

= βLφn+1 − βLφn, (4.14)

ψn+1 − ψ̃
∆t

= βLψn+1 − βLψn, (4.15)

The linear operator L is based on the underlying flow field. For mean curvature flow

L = ∇2 while for surface diffusion L = −∇4. If β = 0 the method results in the

standard gradient augmented method. If instead of Eqs. 4.10 to 4.13 values are set

as φ̃ = φn and ψ̃ = ψn the method gives the standard semi-implicit level set scheme.

The location xd is obtained by tracing characteristics backwards in time. In

general this location will not lie on a grid point and thus the use of an interpolant,

P and G = ∇P , is required. In two dimensions let xd lie within a grid cell Ωi,j

enclosing the region given by four grid points: xi,j, xi+1,j, xi,j+1, and xi+1,j+1. Using

the value of the level set function, φ, and the gradient field, ψ = (ψx, ψy), at time

t−∆t it is possible to define the Hermite interpolant over the grid cell by requiring

that P (xm,n) = φm,n, ∂xP (xm,n) = ψxm,n, ∂yP (xm,n) = ψym,n, and ∂xyP (xm,n) = φxy

for m = i, i+ 1 and n = j, j + 1. In contrast to the gradient augmented method the

inclusion of the smoothing term L in the semi-implicit formulation does not allow

for a purely cell-based method. The derivative φxy is therefore chosen to enforce C1

continuity across cell boundaries by setting φxy = (∂xψ
y
m,n + ∂yψ

x
m,n)/2. The gradient

interpolant is then defined as G = ∇P .
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4.4 Level Set Reinitialization

A distance-based reinitialization procedure is done in each time step. This algorithm

is employed here for two main reasons: first, the point on the interface with the

shortest distance to a given grid point, called the closest-point, is required for the

extension of surface quantities off the interface. Second, it has been shown that reini-

tialization aids in the conservation of mass in level set-based simulations [89]. The

method employed here uses a variant of Newton’s method and a tricubic interpola-

tion to find the closest point on the interface from an arbitrary grid location in the

neighborhood, see Ref. [15] for more details. Once the closest points are determined

the level set function is replaced by the corresponding signed distance value while the

gradient field is set to the unit outward normal vector, which is the normalized vector

pointing from the closest point to the grid point, corrected so that it points outward.

This procedure does not need to be done everywhere in the domain, but only near

the interface. For the purpose of vesicle simulations all nodes within five grid points

of the interface have their closest point calculated and explicitly reinitialized, see Fig.

4.2. The remaining nodes in the domain are reinitialized using a first-order PDE

based reinitialization scheme [73, 87, 64],

∂φ

∂τ
+ sign(φ0)(1− | ∇φ |) = 0, (4.16)

where τ is a fictitious time, φ0 is the original level set value which defines the interface

and sign(x) is the standard sign function. The particular discretization chosen in this

work is a first-order in time upwind scheme, see [64] for more details. For surface

properties such as curvature, tension or values of trans-membrane potential in the

electrohydrodynamic simulations which are normally defined only on the interface,

an extension is needed to define the quantity at nodes in the vicinity of the interface.

To determine smooth values of a surface quantity in a neighborhood of the interface,
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Figure 4.2: The closest point on the interface (cp) is the shortest distance to a given
grid point. These values are calculated for all the nodes within 5h where h is the grid
spacing.

values are extended away from the interface using the closest point values and the

tri-cubic interpolat. Ultimately, given a velocity field, u, the semi-implicit gradient

augmented level set scheme described above can be summarized in the following

algorithm:

Algorithm 1 Advance the Level Set function and Gradient Fields

Require: φn and ψn.
for every grid point in the domain do

Compute the departure point xd using Eq. 4.10.
Compute the departure gradient ∇xd using Eq. 4.11
Evaluate the tentative Lagrangian solutions φ̃ and ψ̃ by Eqs. (4.12) and (4.13).

end for
if velocity field is the surface diffusion (vecv = (∇2

sκ)n) then
Set L = −∇4

else
Set L = ∇2

end if
Solve (I −∆tβL)φn+1 = φ̃−∆tβLφn.

Solve (I −∆tβL)ψn+1 = ψ̃ −∆tβLψn.
Reinitialize the level set and recalculate the closest point data
return φn+1 and ψn+1.
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4.5 Sample results

Before using the proposed method for the vesicle simulations, the robustness and the

reliability of the algorithm is extensively tested for both two and three dimensional

problems. Two different velocity field types are considered here. The first one is the

mean curvature flow given by un = −κ or u = −κn, where the mean curvature, κ, is

equal to half of the total curvature, H, defined in chapter 2 and n is the unit normal

vector. Volume-preserving mean curvature flow given by u = (κ−κave)n, where κavg

is the average curvature in the domain, will also be considered.

The unit normal vector is simply given as the normalized gradient vector:

n =
ψ

‖ψ‖
. (4.17)

In two dimensions the curvature is computed as

κ =
φxx(ψ

y)2 + φyy(ψ
x)2 − 2φxyψ

xψy

((ψx)2 + (ψy)2 + ε)3/2
(4.18)

while for three-dimensional flows

κ =(φxx
(
(ψy)2 + (ψz)2

)
+ φyy

(
(ψx)2 + (ψz)2

)
+ φzz

(
(ψx)2 + (ψy)2

)
− 2φxyψ

xψy − 2φxzψ
xψx − 2φyzψ

yψz)/
(
(ψx)2 + (ψy)2 + (ψz)2 + ε

)3/2
, (4.19)

where ε = 10−8 is added to the denominator to ensure that no division by zero will

occur. The second-order derivatives are obtained by first derivatives of the ψ vector,

i.e. φxx = ∂xψ
x. Any cross derivatives are averages of the two possible first derivatives

of the gradient vector, i.e. φxy = (∂xψ
y+∂yψ

x)/2. It is worthwhile to mention that in

the original gradient augmented level set method analytic differentiation of interpolant

is proposed as a method to calculate differential quantities such as curvature [56].

This has the advantage of optimal locality when it comes to calculation of differential
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quantities inside grid cells. However, in this work curvature-dependent quantities are

only calculated at grid points. Therefore values can be obtained by finite difference

approximations of function values and gradient information. Indeed, one can easily

show that analytical differentiation of a bi-cubic interpolant determined using the φxy

given above and second-order finite difference approximations provide the same result

when the calculation is performed at grid points.

The second velocity field considered is that of surface diffusion, given by un = ∇2
sκ

or u = (∇2
sκ)n where ∇2

s is the surface Laplacian. Assume that the curvature is

known in the vicinity of the interface. In two dimensions the surface Laplacian of the

curvature can then be calculated as

S = ∇2
sκ =

κxx(ψ
y)2 + κyy(ψ

x)2 − 2κxyψ
xψy

(ψx)2 + (ψy)2 + ε
− κ κxψ

x + κyψ
y√

(ψx)2 + (ψy)2 + ε
, (4.20)

while for the three-dimensional case

S = ∇2
sκ =(κxx

(
(ψy)2 + (ψz)2

)
+ κyy

(
(ψx)2 + (ψz)2

)
+ κzz

(
(ψx)2 + (ψy)2

)
− 2κxyψ

xψy − 2κxzψ
xψz − 2κyzψ

yψz)/((ψx)2 + (ψy)2 + (ψz)2 + ε)

− κ(κxψ
x + κyψ

y + κzψ
z)/
√

(ψx)2 + (ψy)2 + (ψz)2 + ε. (4.21)

The results are obtained by a first-order in time discretization. Spatial deriva-

tives are calculated using second-order isotropic finite differences [35, 63]. The linear

systems in Eqs. (4.14) and (4.15) are solved using a standard Bi-CGSTAB method

[92, 69]. In each case periodic boundary conditions are assumed. Based on experi-

ence and previous works a constant of β = 1/2 is used [73]. Further justification of

β = 1/2 is provided in Sec. 4.5.5. The curvature and surface Laplacian of curvature

are first calculated near the interface and then extended to the rest of the domain

using the closest point calculations. The time step is given by ∆t while the uniform

grid spacing is given by h.
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Every simulation begins with an interface described by a signed distance function.

To obtain some of the interfaces it is necessary to begin with either a non-signed

distance function or a parametric representation. If the initial shape is described by

a non-signed distance level set function φ̃ an equivalent signed distance level set is

obtained by doing the reinitialization process.

4.5.1 Mean Curvature Flow

Here the evolution of two- and three-dimensional interfaces under mean-curvature

flow is shown. For all cases in this section the velocity of the interface is given by

u = −κn.

First consider a circular interface. With mean curvature flow a circular interface

beginning with an initial radius of r0 will collapse uniformly. A sample result is

presented in Fig. 4.3 for a grid spacing of h = 0.0625 and a time step of ∆t = 4h2 =

0.015625.
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Figure 4.3: A circle collapsing due to mean curvature flow. The initial interface is
represented by the thick line. The the grid spacing is h = 0.0625 and the time step
is ∆t = 4h2 = 0.015625. The interface is shown in time increments of 10∆t.
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The collapse of a circular interface under mean curvature flow is a situation with

a known analytic solution and thus allows for the investigation of the accuracy of the

semi-implicit gradient augmented scheme. At time t the radius of the circle is given

by

r(t) =
√
r2

0 − 2t, (4.22)

where r0 is the initial radius. The interface is allowed to evolve until a time of

t = 0.375 with various grid spacings and a time step set to ∆t = 8h2. To measure

error the level set function and the gradient field values for the region defined by

0.375 ≤
√
x2 + y2 ≤ 0.625 is compared to the analytic signed distance function for a

circle with the radius given by Eq. (4.22).

The resulting errors are shown in Tables 4.1 and 4.2. Overall both the level set

function and gradient field observe third-order L2-norm and second-order L∞-norm

convergence. This should be expected as the smoothing term, L in Eqs. (4.14) and

(4.15), is discretized using second-order finite differences. Additionally, the time step

scales as h2 to match the spatial discretization. Thus it should not be expected that

the third-order convergence in the L∞-norm, as observed in the original gradient

augmented level set method [56, 80], be obtainable using the current discretization.

In fact, let the order of the time discretization be O(∆tm), the order of the smoothing

term be O(hL), and the order of the interpolant used for the Lagrangian step Eqs.

(4.10) and (4.11) be O(hp). It should then be expected that the overall error will

scale as O(∆tm) + O(hL) + O(hp) = O(hmin(L,p)) assuming that the temporal order

m scales as min(L, p). Using higher-order approximations for the smoothing term

and the time-derivative should result in the same accuracy as the original gradient

augmented method.

Now consider the behavior of more complex interfaces. The collapse of a two-

dimensional Cassini Oval given by m = a2 cos 2θ +
√
b4 − a4 + a4 cos2(2θ), x(θ) =

√
m cos θ, and y(θ) =

√
m sin θ where 0 ≤ θ < 2π with a = 1.29 and b = 1.3 is shown
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Table 4.1: Level set error for a circle on the domain [−2, 2] × [−2, 2] with vn = −κ
using ∆t = 8h2.

N L2 Order L∞ Order

65 8.40× 10−4 1.19× 10−2

129 1.02× 10−4 3.04 2.98× 10−3 1.99

193 2.94× 10−5 3.07 1.26× 10−3 2.12

257 1.11× 10−5 3.39 6.35× 10−4 2.38

385 3.51× 10−6 2.84 3.11× 10−4 1.76

513 1.40× 10−6 3.19 1.99× 10−4 1.55

Table 4.2: Gradient error for a circle with vn = −κ using ∆t = 8h2.

N L2 Order L∞ Order

65 2.19× 10−4 5.85× 10−3

129 3.53× 10−5 2.63 1.55× 10−3 1.92

193 9.73× 10−6 3.18 8.08× 10−4 1.61

257 4.14× 10−6 2.97 4.55× 10−4 2.00

385 1.10× 10−6 3.26 2.20× 10−4 1.79

513 5.65× 10−7 2.32 1.33× 10−4 1.75

in Fig. 4.4. For this example the CFL condition is ∆t/h2 ≈ 30. Initially the interface

has regions of both positive and negative curvature. The positive curvature regions

move towards the center of the domain while those with negative curvature move

away from the center. After some time an ellipse-like interface is obtained. From this

point forward the interface collapses to a point.
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Figure 4.4: Motion by mean curvature for a Cassini oval at different times on a
128 × 128 grid. The grid spacing is h = 0.03125 while the time step is ∆t = 0.03 ≈
30h2. The thick line represents the initial interface while the arrow indicates the
direction of motion. Subsequent interface locations are shown in time increments of
3∆t. Eventually the interface collapses to a point.

Next consider a four-lobed star, Fig. 4.5. The initial shape is given by

r =r0 + ∆r cosnθ, (4.23)

x(θ) =r cos θ, (4.24)

y(θ) =r sin θ, (4.25)

with r0 = 1.16, ∆r = 0.55, and n = 4. For this example ∆t/h2 ≈ 20. As in the

Cassini oval result shown above the interface evolves until the curvature is strictly

positive at which point the shape collapses to a point.
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Figure 4.5: Evolution of a 4-lobe star under mean curvature flow. The grid size
256×256 giving a grid spacing of h = 0.015625. The time step is ∆t = 0.005 ≈ 20h2.
The thick line is the initial interface with subsequent interface locations shown in
increments of 20∆t. The arrows indicate the direction of motion.

To demonstrate the added stability properties of the semi-implicit gradient aug-

mented scheme as compared to a fully explicit (i.e. β = 0) adaptation of the original

gradient augmented level set method the evolution of a five-lobe star is shown in Fig.

4.6. The initial shape is provided by Eqs. (4.23)-(4.25) with r0 = 0.58, ∆r = 0.28

and n = 5. A common grid spacing of h = 0.03125 and time step ∆t = 5 × 10−4 is

used for both cases. This results in a CFL condition of ∆t/h2 ≈ 0.5.

Over time the fully explicit adaptation of the GALS method begins to demon-

strate numerical instabilities. The semi-implicit gradient augmented method does

not demonstrate any instability and shows the expected behavior.
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Figure 4.6: A comparison of the original gradient augmented method (left figures) with the semi-
implicit augmented method (right figures) The 5-lobe star is collapsing under mean curvature flow,
un = −κ, for ∆t = 5× 10−4, h = 0.03125 giving ∆t/h2 ≈ 0.5. The domain size is [−2, 2]2
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The extension of the semi-implicit gradient augmented method to three dimensions

is demonstrated in Fig. 4.7, which shows the collapse of a three-dimensional Cassini

oval with mean-curvature flow. The initial shape of the interface is given by φ̃ =

((x− a)2 + y2 + z2)((x+ a)2 + y2 + z2)− b4 with a = 1.29 and b = 1.3. As mentioned

above this initial level set function is replaced by a signed distance function using an

initialization procedure.

(a) t = 0 (b) t = 0.025

(c) t = 0.04 (d) t = 0.075

Figure 4.7: Collapse of a three dimensional Cassini oval under mean curvature flow
for h = 0.0625 and ∆t = 0.005 = 1.28h2.
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Due to the additional curvature the neck region does not thicken as in the two-

dimensional Cassini oval case, instead the surface collapses with the body splitting

into two separate interfaces. Clearly the semi-implicit gradient augmented method

can handle this topological change without difficulty. Note that the CFL condition

in this case is ∆t/h2 = 1.28 is chosen for accuracy and not for stability reasons.

4.5.2 Area Conserving Mean Curvature Flow

An extension of standard mean curvature flow is mass-conserving mean curvature

flow. In this type of motion the velocity of interface is given by u = (κ − κavg)n

where κ is the mean curvature, n is the outward normal to the interface and κavg

is the average of all interfacial curvature in the domain. The average curvature is

calculated using the underlying level set function:

κavg =

∫
Ω
κδ(φ)|∇φ|dx∫

Ω
δ(φ)|∇φ|dx

, (4.26)

where Ω is the computational domain. The function δ(φ) is a smoothed Dirac delta

function [62]. The final interface for this motion is given by a circle in two-dimensions,

which corresponds to the constant curvature case.

Here the motion of a circle and two ellipses, as shown in Fig. 4.8, is considered.

The circle has a radius of 0.4 and is centered at (0, 1.2) while both ellipses have a

semi-major axis of 1.2 and a semi-minor axis of 0.35. The centers of the two ellipses

are (0, 0) and (0, -1). Initially the average curvature is large due to the two ellipses.

The circle has a smaller curvature than the average curvature and thus disappears.

Over time the two ellipses grow and eventually merge. The final result is a single

circle.

The total interfacial length and the enclosed area is also tracked, Fig. 4.9. The

total interfacial length is given by Ltotal =
∫

Ω
δ(φ)|∇φ|dx while the total enclosed
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area is Atotal =
∫

Ω
H(−φ)dx, where H(φ) is a smooth Heaviside function [62]. The

total enclosed area changes by 1.2%, with the bulk of the errors in enclosed area

introduced when the circle disappears and when the two ellipses merge.
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Figure 4.8: Area conserved mean curvature flow. h = 0.0625 while the time step is
∆t = 0.005 = 1.28h2. The overall change in the volume is 1.2%.

4.5.3 Surface Diffusion

This section considers the motion of interfaces due to the intrinsic variation of the

curvature along the interface, or simply called surface diffusion. In this case the

velocity of an interface is given by v = (∇2
sκ)n, where ∇2

s is the surface Laplacian.

The final result for all surface diffusion cases will be a constant curvature interface:

a circle in two dimensions and a sphere in three dimensions.
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Figure 4.9: The enclosed area and interfacial length for area-preserving mean curva-
ture flow from Fig. 4.8. The enclosed area changes by 1.2%. The bulk of the enclosed
area error is introduced during topological changes.

The first shape considered is that of an inclined ellipse, Fig. 4.10, given by the

parametric equation x(θ) = a cos θ + b sin θ and y(θ) = a cos θ − b sin θ with a = 1.5

and b = 0.4. As expected the high curvature regions move inward while the low

curvature regions move outward. The end result is the expected circular interface.

This interface is also utilized as a qualitative check on the spatial and temporal

convergence of the method. A grid study is performed by fixing the time step at

∆t = 10−4 and varying the grid spacing. The temporal study fixes the grid size at

h = 0.03125 and varies the time step. The results for a time of 0.1 are seen in Fig.

4.11. As is seen in the detailed regions of Fig. 4.11 the solution consistently converges

towards a particular shape given a value of ∆t or h. This result indicates that h and

∆t can be chosen independently according to either accuracy or stability constraints.
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Figure 4.10: Motion by surface diffusion for an elliptical interface for a grid spacing of h = 0.03125
and a time step of ∆t = 0.001 ≈ 1048h4. The thick line is the initial interface and the arrows indicate
the direction of motion. Interfaces are shown for times of 0, 0.05, 0.2, and 0.6.
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Figure 4.11: Qualitative convergence check for motion due to surface diffusion. For the spatial
study the time step is fixed at ∆t = 10−4 while for the time study the grid spacing is fixed at
h = 0.015625. All results are shown at a time of t = 0.1.

Next consider the evolution of a five-lobed star under surface diffusion. The

equation of the star is given by Eqs. (4.23)-(4.25) with r0 = 1.1, ∆r = 0.62, and n = 5.

61



(a)

A
re

a

Time

0 0.01 0.02 0.03 0.04 0.05
4.5

4.55

4.6

0 0.01 0.02 0.03 0.04 0.05
5

10

15

Interface Length

Area

In
te

rf
a

c
e

L
e

n
g

th

(b)

Figure 4.12: Motion by surface diffusion for a five-lobe star at using a grid spacing
h = 0.0625 and a time step ∆t = 0.001 ≈ 65h4. The motion of the interface is seen
in (a) while the enclosed area and interface length are tracked in (b). The change in
the enclosed area is 1.1%.

The result using a grid spacing of h = 0.0625 and a time step of ∆t = 0.001 ≈ 65h4 is

seen in Fig. 4.12. Unlike the inclined ellipse example of Fig. 4.10 this star has large

curvature changes. The semi-implicit gradient augmented method is stable for this

difficult case and reaches the equilibrium circular interface.

The enclosed area and total interface length of the five-lobed star are tracked

and shown in Fig. 4.12. The initial area is 4.58 and changes by approximately 1.1%

during the course of the simulation. Given the initial enclosed area it is expected that

the final interface length should be 7.58. This compares to the actual final interface

length of 7.54.

Now the extension to three-dimensional surfaces under surface diffusion is pre-

sented. The first is a dumbbell shape, Fig. 4.13. The interface consists of two

spheres with a radius of 1.732 centered at (0, -0.9, 0) and (0., 0.9, 0). A cylinder

of radius 0.06 connects the the spheres. This is a difficult interface to model due to

the pinching of the center cylinder. Theoretically, as the center cylinder pinches off
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the mean curvature increases to infinity. This results in the surface Laplacian of the

curvature becoming singular. The semi-implicit gradient augmented level set method

shown here handles this difficulty easily.

(a) t = 0 (b) t = 0.0003

(c) t = 0.0005 (d) t = 0.005

Figure 4.13: Motion by surface diffusion for a three-dimensional dumbbell surface.
The grid spacing is h = 0.0625 and the time step is ∆t = 0.0001 ≈ 6.5h4
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Now consider a box-like shape with holes, Fig. 4.14. The interface is described by

φ̃ =
(
(x2 + y2 − C2)2 + (z − 1)2(z + 1)2

) (
(y2 + z2 − C2)2 + (x− 1)2(x+ 1)2

)
×(

(x2 + z2 − C2)2 + (y − 1)2(y + 1)2
)
− 1 (4.27)

where the parameter C is set to C = 1.3.

(a) t = 0 (b) t = 0.05

(c) t = 0.09 (d) t = 0.3

Figure 4.14: Evolution of a complex three-dimensional shape under surface diffusion.
The grid spacing is h = 0.0625 and the time step is ∆t = 10−4 ≈ 6.5h4
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This particular surface has a large number of both negative and positive curvature

regions. As the surface evolves portions of the interface merge, introducing large

values for curvature and surface Laplacian of curvature. The SIGALS method handles

these difficulties and the final result is the expected sphere.

4.5.4 The Non-Local Nature of the semi-implicit gradient

augmented Method

The original semi-implicit level set method by Smereka demonstrated that the non-

local nature of the smoothing term introduced errors as interfaces merge [87]. In this

work similar results are seen but to a smaller degree than in the original semi-implicit

level set method. To demonstrate this consider the the merging of a circle and an

ellipse under surface diffusion, Fig. 4.15. Clearly it appears that the circle does in fact

remain stationary until merging occurs. After merging the interface will eventually

evolve into a single circle.

A more detailed look at the evolution demonstrates that the semi-implicit gradient

augmented method does in fact introduce slight errors into the solution. In Fig. 4.16

the reference, original semi-implicit level set, and semi-implicit gradient augmented

solutions are shown for two times slightly before merging. The reference solution is

obtained by evolving the circle and ellipse on separate grids. In Fig. 4.16(a), shown at

a time of t = 0.0235, the solutions appear very similar and both deviate very slightly

from the reference solution. A short time later, at t = 0.025 (Fig. 4.16(b)), there is

a noticeable error in the standard semi-implicit level set method. Upon investigating

the curvatures of the circle (Fig. 4.16(c)) and the ellipse (Fig. 4.16(d)) at time

t = 0.0235 oscillations can be observed.
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(a) t = 0 (b) t = 0.01 (c) t = 0.029

(d) t = 0.0304 (e) t = 0.032 (f) t = 0.035

Figure 4.15: Coalescence of two bodies under surface diffusion flow. The time step
is ∆t = 0.0001 and while the grid spacing is h = 0.03125. There is minimal spurious
motion of the circle before merging.

The oscillations for the semi-implicit gradient augmented method are smaller than

for the original semi-implicit level set method. This is due to the additional informa-

tion provided by tracking the gradient field. It might be possible to further reduce

these oscillations by employing a more local version as suggested by the original gradi-

ent augmented level set method [56]. Even with a purely local curvature calculation,

though, oscillations in the surface Laplacian of curvature field will still occur due to

calculating the derivatives of the curvature field using finite difference approxima-

tions. It might be possible to use higher order interpolation schemes to approximate

the level set function but this is not explored in this work.
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(a) t = 0.0235 (b) t = 0.025

(c) Circle (d) Ellipse

Figure 4.16: A comparison between the standard semi-implicit level set, the the
semi-implicit gradient augmented method, and the reference solution for the case of
a merging circle and ellipse. Two representative times are shown in (a) and (b). The
curvature along the (c) circle and (d) ellipse are also shown for a time of t = 0.0235.
The large curvature oscillations in the standard semi-implicit level set result in the
incorrect behavior observed in (b).
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4.5.5 Stability and Sensitivity Studies for β

Based on previous work and for simplicity a single value of β = 0.5 is chosen for

the proposed method. While Smereka briefly explained that β = 0.5 is probably an

optimal choice for semi-implicit schemes [87] the influence of β on the stability and

accuracy of semi-implicit schemes has not yet been investigated.

To demonstrate the influence of β on the accuracy of a semi-implicit scheme

consider the collapse of a three-dimensional Cassini oval under mean curvature flow

(Fig. 4.7). As the smoothing term is artificially introduced it is expected that an

increase in β will result in additional error begin introduced into the system. To

demonstrate this the minimum neck radius of the Cassini oval is tracked over time for

time steps of ∆t = 10−3 and ∆t = 10−4 and values of β = 0, 0.1, 0.5, 1, and 5. Note

that the speed at which the pinching occurs does not allow for larger time steps. The

results are given in Fig. 4.17. Two main observations can be made. First, for a given

time step even a large value of β = 5 introduces only small errors into the evolution

of the neck radius. In fact, for the ∆t = 10−4 time step it is difficult to distinguish

between the various β values. Second, the errors introduced by the smoothing are

not solely controlled by the β parameters, but by the combination β∆t. Thus, if

relatively small time steps are needed based on the underlying dynamics then even

relatively large values of β will not adversely affect the accuracy. If on the other hand

large time steps are used the use of a large smoothing parameter β may introduce

large errors in the dynamical behavior of the system. This introduces are trade-off

between accuracy and stability in the semi-implicit gradient augmented method.
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Figure 4.17: Influence of β on the dynamics and accuracy of a three-dimensional
Cassini oval under mean curvature flow. (a) ∆t = 10−3. (b) ∆t = 10−4.

Next consider the minimum smoothing coefficient β needed for stability. Here

the evolution due to surface diffusion of the two-dimensional five-lobed star in Fig.

4.12 is considered. Given a time step ∆t the minimum β value needed for stability is

experimentally determined. Let dmax represent the maximum distance from the center

of the body to a location on the interface. Similarly let dmin represent the minimum

distance from the center of the body to the interface. The difference, d = dmax−dmin,

provides a measure that is used to qualitatively define stability. Stability is defined

as the quantity d asymptotically approaching a value of zero. A demonstration of

unstable behavior can be seen in Fig. 4.18(a) while stable behavior is seen in Fig.

4.18(b).
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Figure 4.18: Examples of unstable and stable behavior for different β using ∆t = 10−3.
Sample interfaces are also shown.

A systematic study has been performed using this qualitative stability measure

for time step ranging from 10−5 to 10−2, Fig. 4.19. As it is not possible to determine

the precise minimum β value needed the uncertainty is noted in the figure. Please

note that the fit is provided to aid the eye. As expected larger time steps require

large smoothing coefficients. This result also indicates that, at least for this particular

example, the choice of β = 0.5 is well justified. This smoothing parameter value is

well in the stable region for the time step chosen in Fig. 4.12. The result in Fig. 4.17

demonstrated that for reasonable time steps the value of β has only a small influence

on the accuracy of the result. While this result does not prove that β = 0.5 is the best

choice in all situations, it is reasonable to assume that this choice of the smoothing

parameter is a good first choice.
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Figure 4.19: The minimum β parameter needed for the stable evolution of the five-
lobed star shown in Fig. 4.12.

4.6 Evaluation/Advection of Surface Quantities

A word must be said about the solution of surface equations and advection of sur-

face quantities. In the projection method the pressure is defined everywhere in the

domain and thus standard techniques can be used. The tension, on the other hand,

is only defined on the interface and must be handled using special methods. Unlike

the immersed boundary method or other front-tracking techniques Lagrangian points

are not tracked over the course of the simulation. Instead, all surface equations and

quantities, such as the tension and trans-membrane potential, are evaluated using

the Closest Point Method [48, 50]. The general idea is to replace surface equations

by localized equations in the embedding space by extending quantities from the in-

terface in a systematic way. This is done by replacing the value at a grid point in a
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finite difference approximation by it’s interpolated value at the closest point on the

interface. Additional information can be found in References [48, 50].

All surface quantities, such as the tension and trans-membrane potential, are

advected along side the interface (level set). After the level set is advected surface

quantities are advected by using the total-derivative form of the advection equation

for a material quantity f :

xd =x−∆tun, (4.28)

f̂ =I3 (fn,xd) , (4.29)

where I3 (fn,xd) is the evaluation of the cubic interpolant using the previous time-

steps value evaluated at the departure location xd. The values are then replaced by

the values at the closest point to a grid point,

f(x) = I3

(
f̂ ,xcp

)
, (4.30)

where xcp is the closest point on the interface to grid point x.

4.7 Semi-Jet Scheme

More recently Seibold et al. have generalized the third-order GALSM to arbitrary

order under the name of Jet Schemes [81] . This method is essentially based on

an advect-and-project formulation in function spaces. By carrying suitable portions

of the jet of the solution, high-order numerical schemes can be easily constructed.

Although the semi-implicit gradient augmented is stable and robust enough to handle

the nonlinearities in the hydrodynamic and electrohydrodynamic equations and has

been used as a powerful basis for tracking the interface in the vesicle simulations, still
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an attempt has been made here to use the idea of the smoothing operator for the jet

schemes as well. The method is briefly described here.

Consider the advection of the level set field, φ, and the associated gradient field, ψ,

due to an underlying flow field, u. Seibold et. al. generalized this type of advection

by considering a sub-grid of points centered on a grid point, which provides a jet of

level set information [81]. It was shown that using a sub-grid spacing of O(δ1/4),

where δ is the floating point operation accuracy, provided the optimal accuracy for

linear advection equations. In two dimensions and for every grid point (xm, ym) the

level set and the higher derivatives, (φ,Dφ, φxy), are computed using approximate

advection solution at the four points (xm + q1ε, ym + q2ε) where q ∈ {−1, 1}2. The

procedure to find this advection solution is similar to the original gradient augmented

method. Using these subgrid values of the level set, φ(−1,1), φ(1,−1), φ(−1,−1) and φ(1,1)

one is able to obtain the desired derivatives at the grid point,

φ =
1

4

(
φ(1,1) + φ(−1,1) + φ(1,−1) + φ(−1,−1)

)
, (4.31)

φx =
1

4ε

(
φ(1,1) − φ(−1,1) + φ(1,−1) − φ(−1,−1)

)
, (4.32)

φy =
1

4ε

(
φ(1,1) + φ(−1,1) − φ(1,−1) − φ(−1,−1)

)
, (4.33)

φxy =
1

4ε

(
φ(1,1) − φ(−1,1) − φ(1,−1) + φ(−1,−1)

)
. (4.34)

As the equations which model the electrohydrodynamics of vesicles require that a

smooth level set field be maintained at all times, this high accuracy solution is relaxed.

In the proposed formulation of the semi-jet scheme the jet of level-set information

surrounding a grid point is in fact, the cell centers, Fig. 4.20(a). The advection of

the level set jet proceeds with the following three steps: 1) advection of cell-centers,

2) smoothing at cell-centers, and 3) projection onto grid points. This method has the

advantage of only requiring a single smoothing operation, as described below.
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(a) Advection (b) Smoothing (c) Interpolation

Figure 4.20: Schematic representation of the steps in Semi-implicit Jet Schemes.

The advection of cell-centers proceeds by using a Lagrangian advection scheme:

xd = xc −∆tunc , (4.35)

φ̂c = I3 (φn,xd) , (4.36)

where xc is the cell-center location, φ̂c is the tentative level set value at the cell

center, and I3 (φn,xd) is a cubic interpolant of the previous time-steps level set values

evaluated at the departure location, xd.

The values at cell-centers are then smoothed using a semi-implicit technique first

introduced for standard level set advection [87]:

φc − φ̂c

∆t
= β∇2φc − β∇2φ̂c, (4.37)

where β is a user-parameter, typically chosen to be 0.5 [32, 87]. Note that the grid

in this smoothing step is the cell-center (offset) grid. The boundary condition is the

continuity of derivatives using the tentative level set values. For example, on the right
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edge the boundary condition is

(
∂φc

∂x

)
Nx,j,k

=
φ̂cNx−1/2,j,k − φ̂cNx−3/2,j,k

hx
, (4.38)

where Nx and hx are the the number of grid points and the grid-spacing in the x-

direction, respectively.

Finally, the cell-center values are projected back onto the grid points by using

second-order stencils. For example, the updated level set values at grid point (i, j, k)

are given by

φi,j,k =
1

8

(
φci+1/2,j+1/2,k+1/2 + φci−1/2,j+1/2,k+1/2 + φci+1/2,j−1/2,k+1/2 (4.39)

+ φci−1/2,j−1/2,k+1/2 + φci+1/2,j+1/2,k−1/2 + φci−1/2,j+1/2,k−1/2

+φci+1/2,j−1/2,k−1/2 + φci−1/2,j−1/2,k−1/2

)
,

while the gradient in the x-direction is given by

ψxi,j,k =
1

8hx

(
φci+1/2,j+1/2,k+1/2 − φci−1/2,j+1/2,k+1/2 + φci+1/2,j−1/2,k+1/2 (4.40)

− φci−1/2,j−1/2,k+1/2 + φci+1/2,j+1/2,k−1/2 − φci−1/2,j+1/2,k−1/2

+φci+1/2,j−1/2,k−1/2 − φci−1/2,j−1/2,k−1/2

)
.

The other gradient values can be similarly evaluated. The advantage of this method

over the semi-implicit gradient augmented method is that only a single smoothing

operation is required, versus one for the level set and three for the gradient fields.

Work is currently underway investigating the full properties of this semi-implicit jet

scheme.

75



Chapter 5

Discretization of Fluid Flow

Equations

In this chapter a novel projection method is introduced to solve for the fluid flow equa-

tions. When considering the modeling of lipid vesicles, there are four total conserva-

tion conditions that must be satisfied during the course of the simulation: 1) local

surface area, 2) total surface area, 3) local fluid volume, 4) total fluid volume. Vesicle

dynamics are extremely sensitive to any changes in these quantities [72, 74, 11, 10]

and thus high accuracy is required. In [72] an iterative four-step level-set projection

method was employed to solve for the hydrodynamics of the vesicle. Pressure and

tension were determined as two Lagrange multipliers to ensure both the incompress-

ibility of the fluid and the surface inextensibility of the membrane. The algorithm

explained in this chapter bears some resemblance to the above-mentioned method

but there are some differences which will be addressed below.

Accumulation of error in the solution of the fluid equations over time, in addition

to the non-conservation properties of the level set method, can induce large errors

over the course of the simulation. To account for this, the fluid equations will be

modified to explicitly correct any error accumulation. The idea presented here is
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based on the work of Laadhari et. al. [36]. The difference is that in the previous

work the corrections were not reflected in the fluid field, but instead modified the

velocity used to advect the level set. Here, the corrections are included in the fluid

field calculation and therefore a modified advection field is not required. Preliminary

results for standard multiphase flow problems were presented in Ref. [71] and are

extended here for vesicles.

A projection method is implemented to solve for the velocity, pressure and tension.

First, a semi-implicit update is performed to obtain a tentative velocity field,

u∗ − un

∆t
+ un · ∇u∗ = −∇pn +

1

Re
∇ ·
(
∇u∗ + (∇un)T

)
+ fnH + fnγ + fnel, (5.1)

where fH , f γ and f el are the bending, tension, and electric field forces localized

around the interface, Eq. (2.27). The superscript n refers to the solution at the

previous time step.

Next, the tentative velocity field is projected onto the divergence and surface-

divergence free velocity space,

un+1 − u∗

∆t
= −∇q + δ(φ)‖∇φ‖ (∇sξ − ξH∇φ) , (5.2)

where q and ξ are the corrections needed for the pressure and tension, respectively.

Finally, the pressure and tension are updated by including the corrections,

pn+1 = pn + q, (5.3)

γn+1 = γn + ξ. (5.4)
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The four conservation conditions can be written as [36]

∇ · un+1 = 0 (local volume conservation), (5.5)∫
Γ

n · un+1 dA =
dV

dt
(global volume conservation), (5.6)

∇s · un+1 = 0 (local area conservation), (5.7)∫
Γ

Hn · un+1 dA =
dA

dt
(global area conservation). (5.8)

The use of only the pressure and tension is not sufficient to satisfy all four conserva-

tion conditions. There, the pressure and tension fields are split into a constant and

spatially-varying component:

p = p̃+ (1−H(φ))p0, (5.9)

γ = γ̃ + γ0, (5.10)

where p̃ and γ̃ are spatially varying while p0 and γ0 are constant. Note that p̃, γ̃,

p0, and γ0 all vary in time. Conceptually, this splitting allows for the enforcement of

local conservation through p̃ and γ̃ while global conservation is enforced through p0

and γ0.

The corresponding corrections are now q = q̃+(1−H(φ))q0, and ξ = ξ̃+ ξ0, while

the projection step, Eq. (5.2), is now written as

un+1 = u∗+ ∆t
(
−∇q̃ + δ(φ)q0∇φ+ δ(φ)‖∇φ‖

(
∇sξ̃ − ξ̃H∇φ− ξ0H∇φ

))
. (5.11)

Noting that the time derivatives of the volume and area are to correct any accu-

mulated errors in the solution, and using Eq. (5.11), the four conservation equations

can be written in terms of the four unknowns (q̃, ξ̃, q0, and ξ0), the current area

and volume, and the initial area and volume. Specifically, applying the local area

78



conservation equation requires that

−∇·u∗ = ∆t∇·
(
−∇q̃ + δ(φ)q0∇φ+ δ(φ)‖∇φ‖

(
∇sξ̃ − ξ̃H∇φ+ ξ0H∇φ

))
, (5.12)

while the total volume conservation requires that

V 0 − V n

∆t
−
∫

Γ

n · u∗ dA =

∆t

∫
Γ

(
−n · ∇q̃ + δ(φ)q0‖∇φ‖ − δ(φ)‖∇φ‖2

(
ξ̃H + ξ0H

))
dA, (5.13)

where V n is the current volume and the time-derivative of the volume is chosen so

that at the end of the time-step the volume equals the initial volume, V 0.

Conservation of local and global area results in the following two equations:

−∇s · u∗ = ∆t∇s ·
(
−∇q̃ + δ(φ)q0∇φ+ δ(φ)‖∇φ‖

(
∇sξ̃ − ξ̃H∇φ− ξ0H∇φ

))
,

(5.14)

and

A0 − An

∆t
−
∫

Γ

Hn · u∗ dA =

∆t

∫
Γ

H
(
−n · ∇q̃ + δ(φ)q0‖∇φ‖ − δ(φ)‖∇φ‖2

(
ξ̃H + ξ0H

))
dA, (5.15)

where A0 is the initial surface area and An is the current surface area.

Let q̃ represent the vector holding the values of q̃ in the entire, discretized domain

and ξ̃ is the vector holding the values of ξ̃ in the entire, discretized domain. It is

now possible to represent the conservation relationships, Eqs. (5.12)-(5.15), as linear

operators acting on q̃, q0, ξ̃, and ξ0. Local volume conservation, Eq. (5.12), can be

represented as

Lq̃ + lq0 +Lξξ̃ + lξξ0 = −Du∗, (5.16)
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where D is the discrete divergence operator and

Lq̃ ≈−∆t∇ · ∇q̃, lq0 ≈ q0∆t∇ · (δ(φ)∇φ) ,

(5.17)

Lξξ̃ ≈∆t∇ ·
(
δ(φ)‖∇φ‖

(
∇sξ̃ − ξ̃H∇φ

))
, lξξ0 ≈ ξ0∆t∇ · (δ(φ)‖∇φ‖H∇φ) ,

(5.18)

are the discretizations of the continuous operations. Note that L and Lξ are a linear

operator matrices while l and lξ are linear operator vectors.

The integrals over the vesicle interface can be approximated as summations over

the discretized domain:
∫

Γ
f dA ≈

∑
δi,j,kfi,j,k∆V , where δi,j,k is the Dirac delta

function defined in Eq. (2.26) at a grid point, fi,j,k is the function value at that

grid point, and ∆V = hxhyhz is the volume of a cell. In linear operator form this

calculated by taking the dot product between the integration vector and the vector

containing the function values. Define the following linear operations:

sT q̃ ≈−∆t

∫
Γ

(n · ∇q̃) dA, aq0 ≈q0∆t

∫
Γ

δ(φ)‖∇φ‖dA, (5.19)

sTξ ξ̃ ≈−∆t

∫
Γ

(
δ(φ)‖∇φ‖2ξ̃H

)
dA, aξξ0 ≈ξ0∆t

∫
Γ

(
δ(φ)‖∇φ‖2H

)
dA. (5.20)

In this case s and sξ are linear operator vectors while a and aξ are scalar values. This

results in the following linear equation:

sT q̃ + aq0 + sTξ ξ̃ + aξξ0 = EV , (5.21)

where EV ≈ (V 0 − V n)/∆t−
∫

Γ
(n · u∗) dA is the discrete form of the global volume

correction needed.
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The surface-conservation equations are written in a similar manner:

Lsq̃ + lsq0 +Lsξξ̃ + lsξξ0 = −Dsu
∗, (5.22)

where Ds is the discrete surface-divergence operator and

Lsq̃ ≈−∆t∇s · ∇q̃, lsq0 ≈ q0∆t∇s · (δ(φ)∇φ) ,

(5.23)

Lsξξ̃ ≈∆t∇s ·
(
δ(φ)‖∇φ‖

(
∇sξ̃ − ξ̃H∇φ

))
, lsξξ0 ≈ ξ0∆t∇s · (δ(φ)‖∇φ‖H∇φ)

(5.24)

for the local surface-area conservation, Eq. (5.14) and

sTH q̃ + bq0 + sTHξξ̃ + bξξ0 = EA, (5.25)

where EA ≈ (A0 − An)/∆t −
∫

Γ
(Hn · u∗) dA is the discrete form of the global area

correction needed and

sTH q̃ ≈−∆t

∫
Γ

(Hn · ∇q̃) dA, bq0 ≈q0∆t

∫
Γ

Hδ(φ)‖∇φ‖dA, (5.26)

sTHξξ̃ ≈−∆t

∫
Γ

(
δ(φ)‖∇φ‖2ξ̃H2

)
dA, bξξ0 ≈ξ0∆t

∫
Γ

(
δ(φ)‖∇φ‖2H2

)
dA. (5.27)

Using the notation above the set of four linear equations can be written in matrix-

vector form: 

L l Lξ lξ

sT a sTξ aξ

Ls ls Lsξ lsξ

sTH b sTHξ bξ





q̃

q0

ξ̃

ξ0


=



−Du∗

EV

−Dsu
∗

EA


. (5.28)
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Note that the specific spatial discretization have not yet been specified, as the general

concepts are discretization-independent.

While it is possible to form a globally-assembled matrix for Eq. (5.28), it would

be computationally expensive. Not only would the size of the system be large, but

it would also have to be re-formed every time step as many of the components, such

as Lsξ, l
s
ξ and sTH depend on the location of the interface, which changes over time.

Instead, write the complete system in the following simplified notation,

 A B

C D


 q
ξ

 =

 eV
eA

 , (5.29)

where

A =

 L l

sT a

 , B =

 Lξ lξ

sTξ aξ

 ,
C =

 Ls ls

sTH b

 , and D =

 Lsξ lsξ

sTHξ bξ

 , (5.30)

with the combined vectors q = [q̃, q0]T , ξ = [ξ̃, ξ0]T , eV = [−Du∗, EV ]T and eA =

[−Dsu
∗, EA]T . Using a Schur Complement approach the solution is

 q
ξ

 =

 Iq 0

−D−1C Iξ


 S−1 0

0 D−1


 Iq −BD−1

0 Iξ


 eV
eA

 , (5.31)

where S is the Schur Complement of the original partitioned matrix and is give by

S = A− BD−1C. (5.32)
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The application of the Schur Complement is accomplished by a matrix-free iterative

solver, such as GMRES.

Let the focus now turn to the calculation of D−1. This inverse is given implicitly

through the solution of the following, generalized linear system:

 Lsξ lsξ

sTH bξ


 x0

x1

 =

 y0

y1

 . (5.33)

Turning to the Schur Decomposition the solution can be written as

 x0

x1

 =

 I 0

b−1
ξ s

T
H 1


 S−1 0

0 b−1
ξ


 I −b−1

ξ l
s
ξ

0 1


 y0

y1

 , (5.34)

where the Schur Complement is a rank-1 update on the matrix Lsξ:

S = Lsξ −
1

bξ
lsξs

T
H . (5.35)

Using the Sherman–Morrison formula the inverse of this Schur Complement is given

by

S−1 =
(
Lsξ
)−1

+

(
Lsξ
)−1

lsξs
T
H

(
Lsξ
)−1

bξ − sTH
(
Lsξ
)−1

lsξ
. (5.36)

So long as bξ 6= sTH
(
Lsξ
)−1

lsξ this inverse is defined. While this inequality will not

be proven here, a check during the course of the simulations presented in Chapters 6

and 7 shows that this condition has never been violated.
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Chapter 6

Results: Hydrodynamics of the

Vesicle

To demonstrate the robustness and effectiveness of the hydrodynamic portion of the

numerical method and for the purpose of the verification, sample results are presented

in this chapter for a vesicle both in quiescent flow and under linear shear flow when

the electric field is absent (Mn = 0). Note that as it was mentioned in Chap. 2

the characteristic time scale associated with for this case is t0 = tγ = 1s. Using the

typical experimental values given in Sec. 2.6 the dimensionless parameters are found

to be Re = 0.001 and Ca = 10. Unless otherwise stated, these parameters along with

a dimensionless shear rate of χ = 1 at the boundary are used for the hydrodynamic

simulations.

The vesicle surface area is fixed to 4π in all the situations while the enclosed

volume varies depends on the reduced volume. For all results presented here a col-

located, Cartesian mesh with uniform grid spacing in each direction is used. Pe-

riodicity is assumed in the x- and z-directions while wall boundary conditions are

given in the y-direction. Unless otherwise stated the domain is a box covering the

domain [−4.5, 4.5]3, the grid spacing is h = 0.075 and the time-step is chosen to
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be ∆t = 0.05h ≈ 0.00375. A thorough investigation of grid-independence study,

temporal-independence and confinement effect are carried out for the electrohydro-

dynamic simulation and the results will be presented in chapter 7. Since the elec-

trohydrodynamics of the vesicle has much faster dynamics and significantly larger

deformation than the hydrodynamic simulation, the same choice of grid spacing,

time step and domain size are used for the hydrodynamic simulation as well.

6.1 The Equilibrium Biconcave Shape

In the first example, the behavior of the vesicle is investigated when no shear flow

is imposed (χ = 0). Therefore both hydrodynamic forces of the fluid and the elastic

forces of the membrane will be reactive forces attempting to minimize the energy

state of the vesicle. Due to the area and volume constraints and the nature of the

forces acting on the membrane the equilibrium shape for an initially disk-like vesicle

is expected to be a three-dimensional biconcave shape similar to the natural geometry

of human red blood cells. Figure 6.1 shows this evolution over time using the present

numerical model. The cross section of the vesicle in the final equilibrium shape clearly

demonstrates the formation of the biconcave shape.
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(a) (b)

(c) t = 0.0 (d) t = 1.2

Figure 6.1: The equilibrium biconcave shape of a free vesicle with a reduced volume
of v = 0.6 and η = 1 suspended in an initially quiescent flow. The non-dimensional
parameters are Ca = 1.0 and Re = 0.001

6.2 Vesicle Dynamics Under Linear Shear Flow

Two major modes of motions for the vesicle in shear flow are investigated: tank-

treading and tumbling. The tank-treading motion happens if the viscosity ratio, η,

is less than a critical value ηc, which depends on the reduced volume of the vesicle

[9]. In the tank-treading regime the vesicle reaches an equilibrium angle and stays at

that position. When the viscosity ratio is above the critical viscosity the behavior of

the vesicle changes, and it starts to tumble end-over-end. Studies have shown that
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the dynamics depend primarily on the viscosity ratio, η and the reduced volume, v,

with no remarkable dependence on the shear rate strength, χ [93].

Sample tank-treading results are illustrated in Fig. 6.2(a) for two initial condi-

tions: a disk-like vesicle and an ellipsoidal vesicle. Both initial conditions have the

same reduced volume of v = 0.85 and the dimensionless shear rate at the boundary is

set to χ = 1. The viscosity ratio is set to η = 1.0 and other dimensionless parameters

are Ca = 10 and Re = 0.001. The inclination angle with respect to the shear-flow

axis, θ, the semi-major axis L, semi-minor axis B, and the half axis length in the

vorticity direction, Z, are reported. These values are computed through the use of the

inertia matrix of the vesicle [37]. The eigenvalues of the inertia matrix correspond to

the axis lengths, while the angle between the eigenvector associated with the largest

eigenvalue and the y−axis is the inclination angle. It is clear from Fig. 6.2(a) that

both initial conditions result in the same equilibrium shape and inclination angle.

Figure 6.2(b) shows the fluid circulation being formed in the interior of the vesicle at

the equilibrium state. The streamlines demonstrate that the fluid velocity is tangent

to the membrane which indicates the tank-treading behavior.
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Figure 6.2: Sample result of tank treading vesicle with different initial shapes. Both
vesicles have the same reduced volume (v = 0.85) and the viscosity ratio is η = 1.0.
(a) The final equilibrium shape and angle are the same for both initially prolate and
oblate vesicles. (b) Streamlines for the vesicle in the equilibrium condition. Notice
the stable tank-treading configuration and formation of a vortex in the interior of the
vesicle.

The snapshots of the three dimensional disk-like vesicle (previously given in Fig.

6.2) are shown in Fig. 6.3 at different times. The vesicle relaxes to an ellipsoid with

an inclination angle θ with respect to the y axis. At the inclination angle the vesicle

slightly stretches due to the effect of the external shear flow and then stays at that

shape and position permanently.
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(a) t = 0 (b) t = 0.84

(c) t = 4.68 (d) t = 9.36

Figure 6.3: Snapshots of three-dimensional tank-treading vesicle in linear shear flow
at different times. The vesicle is described by v = 0.85 and η = 1.0

The equilibrium inclination angle as a function of reduced volume and viscosity

ratio is shown in Fig 6.4(a). A dimensionless shear rate of χ = 1 is applied at the

boundary and results are compared to experimental data from Ref. [103]. The angles

from the numerical model are in good agreement with experimental measurements.

Small discrepancies in the case of η = 4.9 could be related to the role of thermal

fluctuations in the dynamics of vesicles with larger viscosity ratios [103]. This effect

is absent in the proposed model and further investigation is needed to fully understand

this phenomena.
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The transition between tank-treading and tumbling happens at the critical vis-

cosity ratio ηc. As v increases a larger ηc is required to transition from tank-treading

to tumbling. This behavior is shown in Fig 6.4(b). The present method compares

well to experimental data from [28], particularly for larger reduced volumes.
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Figure 6.4: Comparison of vesicle hydrodynamics to experiments. (a) The effects
of reduced volume and viscosity ratio on the inclination angle of a tank-treading
vesicle. The results are compared against the experimental data from Ref. [103]. (b)
The critical viscosity ratio for vesicles with various reduced areas. The results are
compared to the experimental data in Ref. [28].

Three dimensional snapshots of the tumbling vesicle is shown in Fig. 6.5 at differ-

ent times. The vesicle has a reduced volume of v = 0.85 and a viscosity ratio of η = 8

is used. In the tumbling regime the vesicle experiences a flipping periodic motion.

The comparison of Figs. 6.3 and 6.5 clearly shows the importance of the viscosity

contrast in the dynamics of the vesicle and switching from tank-treading regime to

tumbling regime.
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(a) t = 0 (b) t = 8.4

(c) t = 12.6 (d) t = 21.6

Figure 6.5: Snapshots of three-dimensional tumbling vesicle in linear shear flow at
different times. The vesicle is described by v = 0.85 and η = 8.

Changes in volume and area of this tumbling vesicle are given in Fig. 6.6(a)

as a percent error with regard to the initial area and volume. There is an excellent

conservation of both area and volume, and the percent errors never exceed 0.01% over

time. The inclination angle of the same vesicle in Fig. 6.6(b) distinctly illustrates

the flipping periodic motion of the vesicle. Fig 6.6(c) shows the time evolution of

the semi-major axis L, the semi-minor axis B and the half of the axis length in the

vorticity direction Z. Starting from a vesicle with a shape of a disk (identical semi-

major and minor axes at the beginning) the axis length in the vorticity direction
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remains almost constant during the course of the simulation while there is a periodic

change in the length of the other two axes.
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Figure 6.6: Tumbling of the initial disk-like vesicle described by v = 0.85, η = 8,
Re = 0.001 and Ca = 10. (a) The errors of the volume and area of the vesicle as a
percentage of the initial area and volume. (b) The inclination angle of the vesicle in
the tumbling regime. The vesicle undergoes a periodic flipping motion over time. (c)
The semi-major axis, semi-minor axis and the half of the axis length in the vorticity
direction over time.
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Chapter 7

Results: Electrohydrodynamics of

the Vesicle

The response of a vesicle to an external electric field will depend on a number of fac-

tors, including the membrane properties, the viscosity ratio, the electrical properties

of the fluids, and the applied electric field. The shape of the vesicles is described by

the deformation parameter:

D =
ay
ax
, (7.1)

where ay is the dimension of the vesicle in the direction parallel to the applied electric

field (the y-direction) while ax is the dimension of the vesicle in the direction perpen-

dicular to the electric field, the x-direction. An oblate shape is given by D < 1 while

a prolate shape has D > 1. Note that in this chapter these parameters are being

calculated directly using the interface location and differ from the calculations of the

semi-axis values in chapter 6.

Similar to chapter 6 the vesicle surface area is fixed to 4π in all the simulations. A

periodic boundary condition is assumed in the x- and z-directions while wall boundary

conditions are given in the y-direction. The computational domain is a box with the
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size of [−4.5, 4.5]3, the grid spacing is h = 0.075 and a time-step of ∆t = 0.0005 is

used in all the simulations. A grid sensitivity study, temporal convergence study and

an analysis of the confinement effects are carried out in this chapter to ensure the

deformations are consistent over time.

7.1 Vesicle suspended in a viscous fluid

In the absence of an external shear flow (χ = 0) if the conductivity of the inner fluid

is lower than the outer fluid (λ < 1) and the electric field is strong enough such

that tehd < tm, then an initially prolate vesicle will undergo a prolate-oblate-prolate

(POP) transition [75, 79]. In an experimental setting, capturing the oblate-to-prolate

transition is not trivial [75]. Membranes can easily porate along the way and short-

circuit the capacitor. In fact, a precise control over the strength of the field seems

to be crucial since a pulse could either be too weak to observe the oblate-prolate

transition or lead to poration before the transition happens. To the best of the

author’s knowledge, no full prolate-oblate-prolate transition has been reported using

a single pulse. Hence the deformations are compared to the analytic work of Schwalbe

et. al. [79] which is based on small amplitude perturbation analysis using spherical

harmonics and is developed to only model nearly spherical vesicles.

7.1.1 Comparison against theoretical models

Consider a vesicle with a reduced volume of v = 0.98. The initial shape is given by

a second-order Spherical Harmonics parametric surface, see Ref. [79] for details. In

Figs. 7.1-7.3 the influence of the time step, grid size, and domain size is explored

and results are compared to Ref. [79]. Note that the membrane charging time is

chosen as the characteristic time in these simulations. Recall that using the typical

experimental values of the physical parameters discussed earlier in chapter 2 this
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results in t0 = tm = 2.1 × 10−3 s, Ĉm = 0.095, Ĝm = 0, Re = 0.19, Ca = 3.8 × 104,

Mn = 18, E0 = 1, and χ = 0. Also a matched dielectric ratio is used in all the

electrohydrodynamic simulations in this work.
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Figure 7.1: Comparison of the method against analytic solution of Schwalbe et. al.
[79]. Convergence test is done for three different time steps to check the temporal
independence. The domain size is [−4.5, 4.5] with a grid spacing of h = 0.075. The
analysis demonstrates that ∆t = 5× 10−4 is the maximum acceptable time-step.
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Figure 7.2: Comparison of the method against analytic solution of Schwalbe et. al.
[79]. Convergence test is done for three different grid spacing to check the grid
independence. The domain size is [−4.5, 4.5] and the time step is set to ∆t = 5×10−4.
The investigation reveals that that h = 0.075 is the maximum acceptable grid spacing.
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Figure 7.3: Comparison of the method against analytic solution of Schwalbe et. al.
[79]. Convergence test is done for three different domain sizes to check the domain
confinement effect. The grid spacing is h = 0.075 and the time step is set to ∆t =
5× 10−4. Numerical results shows that [−4.5, 4.5] is the smallest acceptable domain
size.

Several points need to be made about the results. First, the use of a time step of

size ∆t = 5 × 10−4, grid size of N = 1203 with a domain of [−4.5, 4.5]3 results in a

converged solution and is therefore used in the following simulations. Second, there

is a discrepancy between the simulation results and the analytic results of Schwalbe

et. al. While the general results are similar, for example the approximate time at

which the prolate-oblate transition occurs and the time in the oblate shape, there

are important differences. The transition from the initial prolate to oblate shape is

delayed and is sharper for the current simulation versus the analytic result. Also,

the deformation parameter increases slightly during the oblate shape (at a time of

0.4tm) before decreasing again. Finally, the final equilibrium shape is slightly different

between the two methods, as demonstrated by the difference in the final deformation

parameter. This difference is most likely due to the use of a mode-2 spherical harmonic

description of the interface in the analytic work. The current simulation has access to

a wider range of vesicle shapes than the analytic work and thus additional deformation

modes will be accessible. This can be seen by comparing the cross-section of the vesicle
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in the x − y plane for the two results, Fig. 7.4. The analytic works always remains

ellipsoidal in shape while the numerical simulation developed here demonstrates the

availability of additional shapes. The other possible explanation for the discrepancy

between the two results would be related to the use of Stokes assumption in the

analytic solution. The present method uses a full Navier-Stokes solver and therefore

possible inertia effects are taken into account.

(a) t/tm = 0 (b) t/tm = 0.06 (c) t/tm = 0.14 (d) t/tm = 0.50

(e) t/tm = 0.90 (f) t/tm = 1.20 (g) t/tm = 2.90 (h) t/tm = 5.00

Figure 7.4: Contours of vesicle shape in the x-y plane over time. The solid blue line
is the solution of the present method while the dashed red line shows the solution of
Schwalbe et. al. [79]. A clear difference is observed in the oblate-prolate transition
between the two solutions. While the analytic shape remains ellipsoidal during the
evolution, the current method predicts a nearly cylindrical deformation for the vesicle.

7.1.2 Full analysis of the POP transition

To demonstrate the axisymmetric POP behavior for vesicles with smaller reduced

volumes an initially prolate vesicle with reduced volume of v = 0.93 and matched
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viscosity (η = 1) is placed in a strong electric DC field. All the dimensionless param-

eters except for the Mn are the same as before. To ensure the full POP transition for

the more deflected vesicle the Mason number is set to Mn = 35. The electrohydro-

dynamic time for this situation is computed as tehd = 1.2× 10−4s < tm and therefore

the POP transition is expected. Three-dimensional results are shown in Fig. 7.5 at

various time during the evolution. The trans-membrane potential on the interface is

also shown, which demonstrates the charging process.

(a) t/tm = 0 (b) t/tm = 0.25 (c) t/tm = 0.35 (d) t/tm = 0.65

(e) t/tm = 1.00 (f) t/tm = 1.40 (g) t/tm = 2.50 (h) t/tm = 5.00

Figure 7.5: POP transition for the vesicle exposed to strong uniform DC electric field.
The vesicle has a reduced volume of v = 0.93, membrane capacitance of Ĉm = 0.095
and conductance of Ĝm = 0. The fluid conductivity ratio is λ = 0.1 with matched
viscosity and dielectric ratios. The dimensionless parameters are given as Mn = 35,
Re = 0.19 and Ca = 38000. The colors indicate the trans-membrane potential, with
blue (bottom of vesicle) indicating a membrane potential of Vm = −1.6 and red (top
of vesicle) indicating a membrane potential of Vm = −1.6.
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The results clearly demonstrate the transition from a prolate shape to an oblate

shape, and then back up to prolate. The initial prolate-oblate transition occurs

at about the membrane charging time. This type of behavior has been previously

predicted numerically [79, 53] and verified experimentally [75]. The cylindrical defor-

mations observed in two-dimensional vesicle electrohydrodynamic simulations is also

observed [53]. It is worth noting that the dimple at the center of the vesicle seen at

times 0.35 tm and 1.40 tm are more pronounced than in the two-dimensional simu-

lations. This could be due to the different parameters used here and the fact that

three-dimensional vesicles are typically more flexible due to the additional curvatures

and deformation modes.

The area and volume were also tracked during this symmetric POP simulation

and the errors, as a percentage of the initial area and volume, is given in Fig. 7.6.

As can be seen both the area and volume are conserved extremely well.
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Figure 7.6: Conservation of the area and volume of the vesicle during the POP
transition given in Fig. 7.5. The percent errors never exceed 0.01% over time.
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The effect of the viscosity ratio

The methods developed here allow for differing viscosity between the inner and outer

fluids. As has been demonstrated previously an increase in the viscosity ratio can

dramatically change vesicle dynamics in the absence of electric fields. Here the result

seen in Fig. 7.5 is compared to a vesicle with the same parameters except that the

viscosity ratio is increased to η = 2. The resulting deformation parameter evolution is

presented in Fig. 7.7. The increase in the viscosity ratio results in a vesicle which no

longer undergoes a full prolate-oblate-prolate transition. Instead, the higher viscosity

vesicle has a slight flattening, but never reaches an oblate shape. In both cases the

final equilibrium shape is the same.
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Figure 7.7: The effect of viscosity ratio on the dynamics of the vesicle. The solid
line shows the deformation parameter for a vesicle with the parameter set given as
Ĉm = 0.095, Ĝm = 0, Mn = 35, Re = 0.19, Ca = 38000 and λ = 0.1. This is
compared against a vesicle with the same conditions but a viscosity ratio of η = 2.0.
While a full POP transition is observed for the case with matched viscosity ratio, the
vesicle with larger η never evolves into the oblate shape.

A wider range of viscosity ratios are used in Fig. 7.8 to investigate the effect of

viscosity ratio on the dynamics of the POP transition. The results show the effect

of increasing the viscosity ratio is consistent for larger values and almost a linear

behavior is observed between the viscosity ratio and the critical Mn required to

observe the full POP transition.
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Figure 7.8: Sample parameter study for the effect of viscosity ratio on the dynamics
of the vesicle in POP transition. The parameter set are v = 0.93, Ĉm = 0.1, Ĝm = 0,
Re = 0.19, Ca = 3.8× 104, E0 = 1, and χ = 0. Below a critical electric field strength
the vesicle does not undergo a prolate-oblate-prolate transition.

7.2 Vesicle dynamics in combination of shear flow

and DC field

When both a shear flow and DC electric field are applied the forces will compete

to determine the dynamics of the vesicle. Previous works have demonstrated that

electric fields damp the tank-treading and tumbling motion of vesicles in shear flow

[79, 53]. If the electric field and shear flow directions are perpendicular the vesicle will
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have forces which act in perpendicular directions, leading to a competition between

the two forces.

To demonstrate this consider a vesicle with matched viscosity, η = 1 and a reduced

volume of v = 0.93 in a normalized shear flow of strength χ = 1. The characteristic

time is taken to be the shear flow timescale,t0 = tγ̇ = 1 s, and thus using standard

membrane parameters the dimensionless coefficients become Ĉm = 2×10−4, Ĝm = 0,

Re = 0.001, and Ca = 10. The behavior of this vesicle under the influence of three

electric field strengths, Mn = 0, Mn = 3 and Mn = 15 are shown in Fig. 7.9. Note

that due to the membrane charging time, tm ≈ 2.1× 10−3 s, being much faster than

the characteristic time it is assumed that the vesicle membrane begins fully charged.

During each time step the trans-membrane potential is updated using a sub-step

iteration until a pseudo-steady state is reached. As expected the application of an

electric field results in the equilibrium inclination angle increasing. A comparison in

the x − y plane for the vesicles with Mn = 0 and Mn = 15 are seen in Fig. 7.10,

which clearly demonstrates the higher inclination angle.

Next consider the application of an electric field to a vesicle in the tumbling regime,

η = 10 > ηc. The other parameters are the same as the tank-treading case: v = 0.93,

χ = 1, Ĉm = 2× 10−4, Ĝm = 0, Re = 0.001, and Ca = 10. As in the tank-treading

case the trans-membrane potential is iterated until a pseudo-steady state is reached

every time step.

In the absence of an electric field the vesicle will tumble end-over-end, with the

inclination angle undergoing periodic repetition, Fig. 7.11. The application of a weak

electric field, Mn = 3 results in periodic behavior more akin to trembling. The vesicle

does not undergo a rigid-body-like rotation, but instead the vesicle poles retract and

the vesicle reaches a nearly-spherical shape, see Fig. 7.12 for the three-dimensional

representation of the vesicle over time. A comparison of the vesicles in the x − y

plane at the elevated viscosity ratio for the cases of Mn = 0 and Mn = 3 is shown in
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Figure 7.9: The comparison of inclination angle between standard tank-treading vesi-
cle vs. vesicle in the presence of combined shear flow and weak electric fields. All the
three cases use a matched viscosity (η = 1) and a reduced volume of v = 0.93. The
rest of simulation parameters are Ĉm = 2 × 10−4, Re = 0.001, Ca = 10 and χ = 1.
The membrane of vesicles with Mn 6= 0 is initially charged. As the strength of the
electric field increases the equilibrium vesicle angle increases.

Fig. 7.13. This figure clearly shows the the tumbling behavior is due to membrane

deformation and not and end-over-end rotation. As the electric field strength is

increases to Mn = 15 the vesicle no longer undergoes a tumbling behavior. Instead

the vesicle reaches an equilibrium, tank-treading inclination angle.
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Figure 7.10: The x-y cross section of the vesicle with initially charged membrane,v =
0.93 and η = 1 under combined effect of shear flow and weak DC field with the
strength of Mn = 15 (the solid blue line). The dynamics is compared against a
tank-treading vesicle with no external field, Mn = 0 (dashed red line). The rest
of the parameters are Ĉm = 2 × 10−4, Re = 0.001, Ca = 10 and χ = 1. The
presence of the electric field affects the inclination angle and causes the vesicle to
reach the equilibrium condition at a smaller inclination angle. This behavior is due
to the vertical alignment of the electric field in the y direction. The electric field force
induces a resistance against any angular movement about the initial vertical position
of the vesicle.
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Figure 7.11: The comparison of dynamics between the standard tumbling vesicle vs.
vesicle in the presence of combined shear flow and weak electric fields. All the three
cases use a viscosity ratio of η = 10 and a reduced volume of v = 0.93. Other
parameters are Ĉm = 2× 10−4, Re = 0.001, Ca = 10 and χ = 1. The membranes of
vesicles with Mn 6= 0 are initially charged. Compared to the standard tumbling case,
the simulation with Mn = 3 shows a lagged tumbling behavior and experiences a
lot more topological changes during the transition as it will be illustrated below. An
interesting observation has been made for the vesicle with Mn = 15. In this situation,
the vesicle undergoes a tank-treading motion and stays at that position permanently.
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(a) t/tγ̇ = 0.0 (b) t/tγ̇ = 2.5 (c) t/tγ̇ = 3.5 (d) t/tγ̇ = 6.5 (e) t/tγ̇ = 7.5

(f) t/tγ̇ = 8.5 (g) t/tγ̇ = 10.0 (h) t/tγ̇ = 12.5 (i) t/tγ̇ = 15.0 (j) t/tγ̇ = 17.0

Figure 7.12: Simulation results on the dynamics of the vesicle with initially charged
membrane, v = 0.93 and η = 10 under combined influence of shear flow and weak DC
field. These results correspond to the case of Mn = 3 in Fig. 7.13. The presence of
the electric field influences the normal flipping motion of the vesicle. The topological
changes between time t = 6.5 to t = 10.0 show that the vesicle first retracts at the
poles prior to getting to the vertical direction and reforms back into the ellipsoidal
shape passed the vertical position.
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Figure 7.13: The x-y cross section of the vesicle with initially charged membrane and
η = 10 under combined effect of shear flow and weak DC field with the strength
of Mn = 3 (the solid blue line). The dynamics is compared against a tumbling
vesicle with the same viscosity ratio and no external field, Mn = 0 (dashed red line).
The rest of the parameters are Re = 0.001, Ca = 10 and χ = 1. The presence
of the electric field affects the inclination angle and causes the vesicle to reach the
equilibrium condition at a smaller θ. This behavior is due to the vertical alignment
of the electric field in the y direction. The electric field force induces a resistance
against any angular movement about the initial vertical position of the vesicle.
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Chapter 8

Summary and Outlook

In this work, a numerical method was developed to study the electrohydrodynamics

of a three dimensional vesicle. This included the investigation of the dynamics in

uniform DC electric field and under combined effects of linear shear flow and electric

fields. To the best of the author’s knowledge, this was the first attempt at numerical

modeling of three-dimensional vesicles in the presence of electric fields.

First a physical picture was provided in Chapter 2 by discussing the reason-

able assumptions, governing equations and development of a continuum surface force

model. The membrane was modeled as a thin capacitive interface with bending and

in-extension properties. The force balance between external hydrodynamic and elec-

tric field stresses and the membrane forces of bending and tension were modeled by

deriving the appropriate body force terms in the Navier-Stokes. This is done by using

the properties of the level set and Dirac delta functions.

The trans-membrane potential as a result of the capacitive membrane was im-

plicitly computed along with the solution of domain potential using an Immersed

Interface Method. This was achieved by derivation and inclusion of the implicit jump

conditions for the electric potential, up to the second normal derivative. This topic
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was thoroughly discussed in Chapter 2 and sample convergence results were presented

to support the the robustness and accuracy of the method.

The interface location was tracked using a semi-implicit gradient augmented level

set method. The method developed in this work is an extension of the original gradient

augmented method [56] for nonlinear evolutions and combines the additional accuracy

afforded by explicitly tracking gradient information with the stability properties of a

semi-implicit scheme. The complete algorithm as well as comprehensive investigation

of the method for two and three dimensional nonlinear problems were provided in

Chapter 4.

Last but not least in the description of the numerical methodology is the dis-

cretization method to solve for the full Navier-Stokes equations including the incom-

pressibility condition of the fluid and the inextensibility of the vesicle membrane. This

goal was achieved by introducing a novel projection method which uses a a set of local

and global Lagrange multipliers to enforce the necessary conditions in the domain and

at the interface of the two fluids. The details of the algorithm and implementation

considerations are discussed in Chapter 5.

To verify the hydrodynamic solution, numerical benchmark problems were used to

investigate the dynamics of the vesicle in both quiescent and linear shear flows. The

results were presented in Chapter 6. The method was found to successfully predict

the equilibrium biconcave shape of the vesicle in the absence of imposed shear flow.

The two major modes of the vesicle motion in the linear shear flow namely the tank-

treading and tumbling regimes were studied as well and the validation of the model

was examined in the light of experimental data and observations. Investigations

showed that there are very good agreements between the present results and the

experimental data.

Lastly, the simulation results of the vesicle electrohydrodynamics were provided in

Chapter 7. The type of results presented in this chapter were split into three sections.

108



In the first section an analytic model developed by Schwalbe et. al. [79] was used

to compare the deformation of the vesicle against the present results. This was

accompanied by a grid sensitivity study, temporal convergence study and an analysis

of the confinement effects to ensure the deformations are consistent over time. While

a general agreement was found between the the present numerical method and the

theoretical model, possible reasons for the discrepancies were discussed. The method

developed in this work has the advantage of having access to all the deformation

modes unlike the analytic solution. In addition, due to the fast dynamics of the

vesicle in the presence of strong fields more accurate dynamics are being expected by

employing the full Navier-Stokes equations rather than the Stokes assumption used

in the analytical work.

In the second section the topological changes of the vesicle during the prolate-

oblate-prolate transition was studied. The simulation was capable of capturing the full

prolate-oblate-prolate dynamics observed experimentally and predicted by previous

analytic and two-dimensional numeric works. The effect of the viscosity ratio in

the occurrence of a full prolate-oblate-prolate transition was investigated as well.

Work is currently underway to perform a broader parameter-space study in order to

investigate the effects of different material properties of the liquids and the membrane

on the prolate-oblate-prolate transition of the vesicle.

In section 7.2 of Chapter 7 the behavior of the vesicle under the combined effects

of shear flow and weak DC electric fields were explored. The results showed the

remarkable influence of the electric field in changing the standard behaviors of tank-

treading and tumbling vesicles. If the electric field is strong enough the induced

resistance caused by the electric field may alter the behavior of a tumbling vesicle

into a tank-treading motion.

Future work will use the method developed here to perform a more detailed in-

vestigation on how electric fields, fluid flow, and material parameters can be used to
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influence dynamics of the vesicle. Practical approximations of the critical parameter

thresholds such as the strength of the field or applied shear rate can be used as a

useful tool in the vesicle manipulation and sorting applications.

This research is a step in the path to understand the more complex physics of

multicomponent lipid membranes and predict challenging interfacial phenomena such

as electroporation in the context of their biological applications. Although the model

presented in this research is restricted to closed-surface membranes, much information

can be still extracted from mpresent results to gain insight into identifying regions

with high prevalence of pore formation. When a strong electric field is applied to a

vesicle, surface tension forces appear as the dominant resisting forces of the membrane

against the external fluid flow and electric field stresses. Therefore, one would expect

for the poration to happen in regions with higher tension values. This seems to be

the case according to experimental observations [76]. However, as soon as the vesicle

porates new considerations need to be taken into account including initiation of a line

tension and inhomogeneous conductivity of the charge at the pore location.
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Appendix A

Proof of the CSF formulation

Consider an arbitrary region Ω surrounding the vesicle. We decompose Ω into two

regions Ω− and Ω+ for the surrounding and enclosed fluids respectively (Figure A.1).

The standard integral forms of the momentum equation (2.15) is written for both

fluids as

∫
Ω−
ρ
Du−

Dt
dx =

∫
Ω−
∇ · T−hddx in Ω−. (A.1)∫

Ω+

ρ
Du+

Dt
dx =

∫
Ω+

∇ · T+
hddx in Ω+. (A.2)

(A.3)

From the Divergence theorem

∫
Ω−
ρ
Du−

Dt
dx =

∮
δΩ−

T−hd · dS. (A.4)∫
Ω+

ρ
Du+

Dt
dx =

∮
δΩ+

1

T+
hd · dS +

∮
δΩ+

2

T+
hd · dS. (A.5)

where δΩ+
1 and δΩ+

2 define the boundaries of Ω+ while δΩ− determines the single

boundary for the inner region Ω−. Now for the sake of this proof we make the

following two definitions,
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T =


T− if x ∈ Ω−

T+ if x ∈ Ω+

u =


u− if x ∈ Ω−

u+ if x ∈ Ω+

From Fig. (A.1) it is clear that δΩ = δΩ+. Using this along with the definition

for T we find ∮
δΩ+

1

T+
hddS =

∮
δΩ

T hddS (A.6)

It should be noted that T is not continuous across the interface. However in the

discrete sense we are able to make use of the divergence theorem again and write

∮
δΩ

T hddS =

∫
Ω

∇ · T hddx (A.7)

Also as it is depicted in Fig. (A.1) one can easily show that

∮
δΩ+

2

T+
hddS = −

∮
δΩ−

T+
hddS (A.8)

Note that the direction of the contours are determined such that as we walk on the

boundary the of the domain, the corresponding region falls on our right. Adding up

(A.4) and (A.5) and substituting the corresponding terms from (A.7) and (A.8) we

get

∫
Ω−
ρ
Du−

Dt
dx+

∫
Ω+

ρ
Du+

Dt
dx =

∫
Ω

∇ · T hddx−
∮
δΩ−

T+
hddS +

∮
δΩ−

T−hddS

=

∮
δΩ

T hddS −
∮
δΩ−

[T hd] · ndS
(A.9)

Since u− = u+ across the interface, u is a continuous function and we can write

∫
Ω−
ρ
Du−

Dt
dx+

∫
Ω+

ρ
Du+

Dt
dx =

∫
Ω

ρ
Du

Dt
dx (A.10)
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Using (A.9) and (A.10) the final integral form of the momentum equation is derived

as ∫
Ω

ρ
Du

Dt
dx =

∮
δΩ

T hddS −
∮
δΩ−

[T hd] · ndS (A.11)

where as it was previously stated in Eq. (2.17) the term n · [T hd] is given as

n · [T hd] = τ hd = τm + τ γ − τ el

= −κc(
H3

2
− 2HK +∇2

sH)n+ γHn−∇sγ − n · [ε(EE −
1

2
E ·EI)]

(A.12)

To continue with the proof, we make use of the following relation. Based on the

coarea formula for a continuous function f over the domain Ω we have [99]

∫
Γ

fdS =

∫
Ω

| ∇(φ) | δ(φ)fdx. (A.13)

Now we are able to convert the line integrals in the right hand side of the (A.12) to

integrals over the area Ω by using (A.13) and (A.7) for the terms

∫
Ω

ρ
Du

Dt
dx =

∫
Ω

∇·T hddx−
∫

Ω

| ∇φ | δ(φ)

(
−κc(

H3

2
−2HK+∇2

sH)n+γHn−∇sγ

− n · [ε(EE − 1

2
E ·EI)]

)
dx (A.14)

Noting that n = ∇φ
|∇φ| and rearranging the equation we find

∫
Ω

(
ρ
Du

Dt
−∇ · T hd − κcδ(φ)(

H3

2
− 2HK +∇2

sH)∇φ− δ(φ)(| ∇φ | ∇sγ − γH∇φ)

− δ(φ) | ∇φ | n · [ε(EE − 1

2
E ·EI)]

)
dx = 0. (A.15)
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This relation holds for the arbitrary domain Ω. Therefore we can write

ρ
Du

Dt
= −∇p+∇ · (µ(∇u+∇Tu))

+ δ(φ)

(
| ∇φ | ∇sγ − γH∇φ

)
+ κcδ(φ)

(
H3

2
− 2KH +∇2

sH

)
∇φ

+ δ(φ) | ∇φ | n ·
[
ε(EE − 1

2
E ·EI)

]
(A.16)
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δΩ1
+

+

δΩ-

-

δΩ2
+

Ω-

Ω U Ω = Ω
+

-δΩ + δΩ = δΩ
+

Figure A.1: Schematic of a portion of the fluid including the vesicle
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